]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - net/wireless/reg.c
Merge tag 'pstore-v4.20-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/kees...
[mirror_ubuntu-focal-kernel.git] / net / wireless / reg.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2017 Intel Deutschland GmbH
8 * Copyright (C) 2018 Intel Corporation
9 *
10 * Permission to use, copy, modify, and/or distribute this software for any
11 * purpose with or without fee is hereby granted, provided that the above
12 * copyright notice and this permission notice appear in all copies.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21 */
22
23
24 /**
25 * DOC: Wireless regulatory infrastructure
26 *
27 * The usual implementation is for a driver to read a device EEPROM to
28 * determine which regulatory domain it should be operating under, then
29 * looking up the allowable channels in a driver-local table and finally
30 * registering those channels in the wiphy structure.
31 *
32 * Another set of compliance enforcement is for drivers to use their
33 * own compliance limits which can be stored on the EEPROM. The host
34 * driver or firmware may ensure these are used.
35 *
36 * In addition to all this we provide an extra layer of regulatory
37 * conformance. For drivers which do not have any regulatory
38 * information CRDA provides the complete regulatory solution.
39 * For others it provides a community effort on further restrictions
40 * to enhance compliance.
41 *
42 * Note: When number of rules --> infinity we will not be able to
43 * index on alpha2 any more, instead we'll probably have to
44 * rely on some SHA1 checksum of the regdomain for example.
45 *
46 */
47
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49
50 #include <linux/kernel.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/list.h>
54 #include <linux/ctype.h>
55 #include <linux/nl80211.h>
56 #include <linux/platform_device.h>
57 #include <linux/verification.h>
58 #include <linux/moduleparam.h>
59 #include <linux/firmware.h>
60 #include <net/cfg80211.h>
61 #include "core.h"
62 #include "reg.h"
63 #include "rdev-ops.h"
64 #include "nl80211.h"
65
66 /*
67 * Grace period we give before making sure all current interfaces reside on
68 * channels allowed by the current regulatory domain.
69 */
70 #define REG_ENFORCE_GRACE_MS 60000
71
72 /**
73 * enum reg_request_treatment - regulatory request treatment
74 *
75 * @REG_REQ_OK: continue processing the regulatory request
76 * @REG_REQ_IGNORE: ignore the regulatory request
77 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
78 * be intersected with the current one.
79 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
80 * regulatory settings, and no further processing is required.
81 */
82 enum reg_request_treatment {
83 REG_REQ_OK,
84 REG_REQ_IGNORE,
85 REG_REQ_INTERSECT,
86 REG_REQ_ALREADY_SET,
87 };
88
89 static struct regulatory_request core_request_world = {
90 .initiator = NL80211_REGDOM_SET_BY_CORE,
91 .alpha2[0] = '0',
92 .alpha2[1] = '0',
93 .intersect = false,
94 .processed = true,
95 .country_ie_env = ENVIRON_ANY,
96 };
97
98 /*
99 * Receipt of information from last regulatory request,
100 * protected by RTNL (and can be accessed with RCU protection)
101 */
102 static struct regulatory_request __rcu *last_request =
103 (void __force __rcu *)&core_request_world;
104
105 /* To trigger userspace events and load firmware */
106 static struct platform_device *reg_pdev;
107
108 /*
109 * Central wireless core regulatory domains, we only need two,
110 * the current one and a world regulatory domain in case we have no
111 * information to give us an alpha2.
112 * (protected by RTNL, can be read under RCU)
113 */
114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
115
116 /*
117 * Number of devices that registered to the core
118 * that support cellular base station regulatory hints
119 * (protected by RTNL)
120 */
121 static int reg_num_devs_support_basehint;
122
123 /*
124 * State variable indicating if the platform on which the devices
125 * are attached is operating in an indoor environment. The state variable
126 * is relevant for all registered devices.
127 */
128 static bool reg_is_indoor;
129 static spinlock_t reg_indoor_lock;
130
131 /* Used to track the userspace process controlling the indoor setting */
132 static u32 reg_is_indoor_portid;
133
134 static void restore_regulatory_settings(bool reset_user);
135
136 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
137 {
138 return rcu_dereference_rtnl(cfg80211_regdomain);
139 }
140
141 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
142 {
143 return rcu_dereference_rtnl(wiphy->regd);
144 }
145
146 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
147 {
148 switch (dfs_region) {
149 case NL80211_DFS_UNSET:
150 return "unset";
151 case NL80211_DFS_FCC:
152 return "FCC";
153 case NL80211_DFS_ETSI:
154 return "ETSI";
155 case NL80211_DFS_JP:
156 return "JP";
157 }
158 return "Unknown";
159 }
160
161 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
162 {
163 const struct ieee80211_regdomain *regd = NULL;
164 const struct ieee80211_regdomain *wiphy_regd = NULL;
165
166 regd = get_cfg80211_regdom();
167 if (!wiphy)
168 goto out;
169
170 wiphy_regd = get_wiphy_regdom(wiphy);
171 if (!wiphy_regd)
172 goto out;
173
174 if (wiphy_regd->dfs_region == regd->dfs_region)
175 goto out;
176
177 pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
178 dev_name(&wiphy->dev),
179 reg_dfs_region_str(wiphy_regd->dfs_region),
180 reg_dfs_region_str(regd->dfs_region));
181
182 out:
183 return regd->dfs_region;
184 }
185
186 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
187 {
188 if (!r)
189 return;
190 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
191 }
192
193 static struct regulatory_request *get_last_request(void)
194 {
195 return rcu_dereference_rtnl(last_request);
196 }
197
198 /* Used to queue up regulatory hints */
199 static LIST_HEAD(reg_requests_list);
200 static spinlock_t reg_requests_lock;
201
202 /* Used to queue up beacon hints for review */
203 static LIST_HEAD(reg_pending_beacons);
204 static spinlock_t reg_pending_beacons_lock;
205
206 /* Used to keep track of processed beacon hints */
207 static LIST_HEAD(reg_beacon_list);
208
209 struct reg_beacon {
210 struct list_head list;
211 struct ieee80211_channel chan;
212 };
213
214 static void reg_check_chans_work(struct work_struct *work);
215 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
216
217 static void reg_todo(struct work_struct *work);
218 static DECLARE_WORK(reg_work, reg_todo);
219
220 /* We keep a static world regulatory domain in case of the absence of CRDA */
221 static const struct ieee80211_regdomain world_regdom = {
222 .n_reg_rules = 8,
223 .alpha2 = "00",
224 .reg_rules = {
225 /* IEEE 802.11b/g, channels 1..11 */
226 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
227 /* IEEE 802.11b/g, channels 12..13. */
228 REG_RULE(2467-10, 2472+10, 20, 6, 20,
229 NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
230 /* IEEE 802.11 channel 14 - Only JP enables
231 * this and for 802.11b only */
232 REG_RULE(2484-10, 2484+10, 20, 6, 20,
233 NL80211_RRF_NO_IR |
234 NL80211_RRF_NO_OFDM),
235 /* IEEE 802.11a, channel 36..48 */
236 REG_RULE(5180-10, 5240+10, 80, 6, 20,
237 NL80211_RRF_NO_IR |
238 NL80211_RRF_AUTO_BW),
239
240 /* IEEE 802.11a, channel 52..64 - DFS required */
241 REG_RULE(5260-10, 5320+10, 80, 6, 20,
242 NL80211_RRF_NO_IR |
243 NL80211_RRF_AUTO_BW |
244 NL80211_RRF_DFS),
245
246 /* IEEE 802.11a, channel 100..144 - DFS required */
247 REG_RULE(5500-10, 5720+10, 160, 6, 20,
248 NL80211_RRF_NO_IR |
249 NL80211_RRF_DFS),
250
251 /* IEEE 802.11a, channel 149..165 */
252 REG_RULE(5745-10, 5825+10, 80, 6, 20,
253 NL80211_RRF_NO_IR),
254
255 /* IEEE 802.11ad (60GHz), channels 1..3 */
256 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
257 }
258 };
259
260 /* protected by RTNL */
261 static const struct ieee80211_regdomain *cfg80211_world_regdom =
262 &world_regdom;
263
264 static char *ieee80211_regdom = "00";
265 static char user_alpha2[2];
266
267 module_param(ieee80211_regdom, charp, 0444);
268 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
269
270 static void reg_free_request(struct regulatory_request *request)
271 {
272 if (request == &core_request_world)
273 return;
274
275 if (request != get_last_request())
276 kfree(request);
277 }
278
279 static void reg_free_last_request(void)
280 {
281 struct regulatory_request *lr = get_last_request();
282
283 if (lr != &core_request_world && lr)
284 kfree_rcu(lr, rcu_head);
285 }
286
287 static void reg_update_last_request(struct regulatory_request *request)
288 {
289 struct regulatory_request *lr;
290
291 lr = get_last_request();
292 if (lr == request)
293 return;
294
295 reg_free_last_request();
296 rcu_assign_pointer(last_request, request);
297 }
298
299 static void reset_regdomains(bool full_reset,
300 const struct ieee80211_regdomain *new_regdom)
301 {
302 const struct ieee80211_regdomain *r;
303
304 ASSERT_RTNL();
305
306 r = get_cfg80211_regdom();
307
308 /* avoid freeing static information or freeing something twice */
309 if (r == cfg80211_world_regdom)
310 r = NULL;
311 if (cfg80211_world_regdom == &world_regdom)
312 cfg80211_world_regdom = NULL;
313 if (r == &world_regdom)
314 r = NULL;
315
316 rcu_free_regdom(r);
317 rcu_free_regdom(cfg80211_world_regdom);
318
319 cfg80211_world_regdom = &world_regdom;
320 rcu_assign_pointer(cfg80211_regdomain, new_regdom);
321
322 if (!full_reset)
323 return;
324
325 reg_update_last_request(&core_request_world);
326 }
327
328 /*
329 * Dynamic world regulatory domain requested by the wireless
330 * core upon initialization
331 */
332 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
333 {
334 struct regulatory_request *lr;
335
336 lr = get_last_request();
337
338 WARN_ON(!lr);
339
340 reset_regdomains(false, rd);
341
342 cfg80211_world_regdom = rd;
343 }
344
345 bool is_world_regdom(const char *alpha2)
346 {
347 if (!alpha2)
348 return false;
349 return alpha2[0] == '0' && alpha2[1] == '0';
350 }
351
352 static bool is_alpha2_set(const char *alpha2)
353 {
354 if (!alpha2)
355 return false;
356 return alpha2[0] && alpha2[1];
357 }
358
359 static bool is_unknown_alpha2(const char *alpha2)
360 {
361 if (!alpha2)
362 return false;
363 /*
364 * Special case where regulatory domain was built by driver
365 * but a specific alpha2 cannot be determined
366 */
367 return alpha2[0] == '9' && alpha2[1] == '9';
368 }
369
370 static bool is_intersected_alpha2(const char *alpha2)
371 {
372 if (!alpha2)
373 return false;
374 /*
375 * Special case where regulatory domain is the
376 * result of an intersection between two regulatory domain
377 * structures
378 */
379 return alpha2[0] == '9' && alpha2[1] == '8';
380 }
381
382 static bool is_an_alpha2(const char *alpha2)
383 {
384 if (!alpha2)
385 return false;
386 return isalpha(alpha2[0]) && isalpha(alpha2[1]);
387 }
388
389 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
390 {
391 if (!alpha2_x || !alpha2_y)
392 return false;
393 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
394 }
395
396 static bool regdom_changes(const char *alpha2)
397 {
398 const struct ieee80211_regdomain *r = get_cfg80211_regdom();
399
400 if (!r)
401 return true;
402 return !alpha2_equal(r->alpha2, alpha2);
403 }
404
405 /*
406 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
407 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
408 * has ever been issued.
409 */
410 static bool is_user_regdom_saved(void)
411 {
412 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
413 return false;
414
415 /* This would indicate a mistake on the design */
416 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
417 "Unexpected user alpha2: %c%c\n",
418 user_alpha2[0], user_alpha2[1]))
419 return false;
420
421 return true;
422 }
423
424 static const struct ieee80211_regdomain *
425 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
426 {
427 struct ieee80211_regdomain *regd;
428 int size_of_regd;
429 unsigned int i;
430
431 size_of_regd =
432 sizeof(struct ieee80211_regdomain) +
433 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
434
435 regd = kzalloc(size_of_regd, GFP_KERNEL);
436 if (!regd)
437 return ERR_PTR(-ENOMEM);
438
439 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
440
441 for (i = 0; i < src_regd->n_reg_rules; i++)
442 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
443 sizeof(struct ieee80211_reg_rule));
444
445 return regd;
446 }
447
448 struct reg_regdb_apply_request {
449 struct list_head list;
450 const struct ieee80211_regdomain *regdom;
451 };
452
453 static LIST_HEAD(reg_regdb_apply_list);
454 static DEFINE_MUTEX(reg_regdb_apply_mutex);
455
456 static void reg_regdb_apply(struct work_struct *work)
457 {
458 struct reg_regdb_apply_request *request;
459
460 rtnl_lock();
461
462 mutex_lock(&reg_regdb_apply_mutex);
463 while (!list_empty(&reg_regdb_apply_list)) {
464 request = list_first_entry(&reg_regdb_apply_list,
465 struct reg_regdb_apply_request,
466 list);
467 list_del(&request->list);
468
469 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
470 kfree(request);
471 }
472 mutex_unlock(&reg_regdb_apply_mutex);
473
474 rtnl_unlock();
475 }
476
477 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
478
479 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
480 {
481 struct reg_regdb_apply_request *request;
482
483 request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
484 if (!request) {
485 kfree(regdom);
486 return -ENOMEM;
487 }
488
489 request->regdom = regdom;
490
491 mutex_lock(&reg_regdb_apply_mutex);
492 list_add_tail(&request->list, &reg_regdb_apply_list);
493 mutex_unlock(&reg_regdb_apply_mutex);
494
495 schedule_work(&reg_regdb_work);
496 return 0;
497 }
498
499 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
500 /* Max number of consecutive attempts to communicate with CRDA */
501 #define REG_MAX_CRDA_TIMEOUTS 10
502
503 static u32 reg_crda_timeouts;
504
505 static void crda_timeout_work(struct work_struct *work);
506 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
507
508 static void crda_timeout_work(struct work_struct *work)
509 {
510 pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
511 rtnl_lock();
512 reg_crda_timeouts++;
513 restore_regulatory_settings(true);
514 rtnl_unlock();
515 }
516
517 static void cancel_crda_timeout(void)
518 {
519 cancel_delayed_work(&crda_timeout);
520 }
521
522 static void cancel_crda_timeout_sync(void)
523 {
524 cancel_delayed_work_sync(&crda_timeout);
525 }
526
527 static void reset_crda_timeouts(void)
528 {
529 reg_crda_timeouts = 0;
530 }
531
532 /*
533 * This lets us keep regulatory code which is updated on a regulatory
534 * basis in userspace.
535 */
536 static int call_crda(const char *alpha2)
537 {
538 char country[12];
539 char *env[] = { country, NULL };
540 int ret;
541
542 snprintf(country, sizeof(country), "COUNTRY=%c%c",
543 alpha2[0], alpha2[1]);
544
545 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
546 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
547 return -EINVAL;
548 }
549
550 if (!is_world_regdom((char *) alpha2))
551 pr_debug("Calling CRDA for country: %c%c\n",
552 alpha2[0], alpha2[1]);
553 else
554 pr_debug("Calling CRDA to update world regulatory domain\n");
555
556 ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
557 if (ret)
558 return ret;
559
560 queue_delayed_work(system_power_efficient_wq,
561 &crda_timeout, msecs_to_jiffies(3142));
562 return 0;
563 }
564 #else
565 static inline void cancel_crda_timeout(void) {}
566 static inline void cancel_crda_timeout_sync(void) {}
567 static inline void reset_crda_timeouts(void) {}
568 static inline int call_crda(const char *alpha2)
569 {
570 return -ENODATA;
571 }
572 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
573
574 /* code to directly load a firmware database through request_firmware */
575 static const struct fwdb_header *regdb;
576
577 struct fwdb_country {
578 u8 alpha2[2];
579 __be16 coll_ptr;
580 /* this struct cannot be extended */
581 } __packed __aligned(4);
582
583 struct fwdb_collection {
584 u8 len;
585 u8 n_rules;
586 u8 dfs_region;
587 /* no optional data yet */
588 /* aligned to 2, then followed by __be16 array of rule pointers */
589 } __packed __aligned(4);
590
591 enum fwdb_flags {
592 FWDB_FLAG_NO_OFDM = BIT(0),
593 FWDB_FLAG_NO_OUTDOOR = BIT(1),
594 FWDB_FLAG_DFS = BIT(2),
595 FWDB_FLAG_NO_IR = BIT(3),
596 FWDB_FLAG_AUTO_BW = BIT(4),
597 };
598
599 struct fwdb_wmm_ac {
600 u8 ecw;
601 u8 aifsn;
602 __be16 cot;
603 } __packed;
604
605 struct fwdb_wmm_rule {
606 struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
607 struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
608 } __packed;
609
610 struct fwdb_rule {
611 u8 len;
612 u8 flags;
613 __be16 max_eirp;
614 __be32 start, end, max_bw;
615 /* start of optional data */
616 __be16 cac_timeout;
617 __be16 wmm_ptr;
618 } __packed __aligned(4);
619
620 #define FWDB_MAGIC 0x52474442
621 #define FWDB_VERSION 20
622
623 struct fwdb_header {
624 __be32 magic;
625 __be32 version;
626 struct fwdb_country country[];
627 } __packed __aligned(4);
628
629 static int ecw2cw(int ecw)
630 {
631 return (1 << ecw) - 1;
632 }
633
634 static bool valid_wmm(struct fwdb_wmm_rule *rule)
635 {
636 struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
637 int i;
638
639 for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
640 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
641 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
642 u8 aifsn = ac[i].aifsn;
643
644 if (cw_min >= cw_max)
645 return false;
646
647 if (aifsn < 1)
648 return false;
649 }
650
651 return true;
652 }
653
654 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
655 {
656 struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
657
658 if ((u8 *)rule + sizeof(rule->len) > data + size)
659 return false;
660
661 /* mandatory fields */
662 if (rule->len < offsetofend(struct fwdb_rule, max_bw))
663 return false;
664 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
665 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
666 struct fwdb_wmm_rule *wmm;
667
668 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
669 return false;
670
671 wmm = (void *)(data + wmm_ptr);
672
673 if (!valid_wmm(wmm))
674 return false;
675 }
676 return true;
677 }
678
679 static bool valid_country(const u8 *data, unsigned int size,
680 const struct fwdb_country *country)
681 {
682 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
683 struct fwdb_collection *coll = (void *)(data + ptr);
684 __be16 *rules_ptr;
685 unsigned int i;
686
687 /* make sure we can read len/n_rules */
688 if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
689 return false;
690
691 /* make sure base struct and all rules fit */
692 if ((u8 *)coll + ALIGN(coll->len, 2) +
693 (coll->n_rules * 2) > data + size)
694 return false;
695
696 /* mandatory fields must exist */
697 if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
698 return false;
699
700 rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
701
702 for (i = 0; i < coll->n_rules; i++) {
703 u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
704
705 if (!valid_rule(data, size, rule_ptr))
706 return false;
707 }
708
709 return true;
710 }
711
712 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
713 static struct key *builtin_regdb_keys;
714
715 static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen)
716 {
717 const u8 *end = p + buflen;
718 size_t plen;
719 key_ref_t key;
720
721 while (p < end) {
722 /* Each cert begins with an ASN.1 SEQUENCE tag and must be more
723 * than 256 bytes in size.
724 */
725 if (end - p < 4)
726 goto dodgy_cert;
727 if (p[0] != 0x30 &&
728 p[1] != 0x82)
729 goto dodgy_cert;
730 plen = (p[2] << 8) | p[3];
731 plen += 4;
732 if (plen > end - p)
733 goto dodgy_cert;
734
735 key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1),
736 "asymmetric", NULL, p, plen,
737 ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
738 KEY_USR_VIEW | KEY_USR_READ),
739 KEY_ALLOC_NOT_IN_QUOTA |
740 KEY_ALLOC_BUILT_IN |
741 KEY_ALLOC_BYPASS_RESTRICTION);
742 if (IS_ERR(key)) {
743 pr_err("Problem loading in-kernel X.509 certificate (%ld)\n",
744 PTR_ERR(key));
745 } else {
746 pr_notice("Loaded X.509 cert '%s'\n",
747 key_ref_to_ptr(key)->description);
748 key_ref_put(key);
749 }
750 p += plen;
751 }
752
753 return;
754
755 dodgy_cert:
756 pr_err("Problem parsing in-kernel X.509 certificate list\n");
757 }
758
759 static int __init load_builtin_regdb_keys(void)
760 {
761 builtin_regdb_keys =
762 keyring_alloc(".builtin_regdb_keys",
763 KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
764 ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
765 KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
766 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
767 if (IS_ERR(builtin_regdb_keys))
768 return PTR_ERR(builtin_regdb_keys);
769
770 pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
771
772 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
773 load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len);
774 #endif
775 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
776 if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
777 load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len);
778 #endif
779
780 return 0;
781 }
782
783 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
784 {
785 const struct firmware *sig;
786 bool result;
787
788 if (request_firmware(&sig, "regulatory.db.p7s", &reg_pdev->dev))
789 return false;
790
791 result = verify_pkcs7_signature(data, size, sig->data, sig->size,
792 builtin_regdb_keys,
793 VERIFYING_UNSPECIFIED_SIGNATURE,
794 NULL, NULL) == 0;
795
796 release_firmware(sig);
797
798 return result;
799 }
800
801 static void free_regdb_keyring(void)
802 {
803 key_put(builtin_regdb_keys);
804 }
805 #else
806 static int load_builtin_regdb_keys(void)
807 {
808 return 0;
809 }
810
811 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
812 {
813 return true;
814 }
815
816 static void free_regdb_keyring(void)
817 {
818 }
819 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
820
821 static bool valid_regdb(const u8 *data, unsigned int size)
822 {
823 const struct fwdb_header *hdr = (void *)data;
824 const struct fwdb_country *country;
825
826 if (size < sizeof(*hdr))
827 return false;
828
829 if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
830 return false;
831
832 if (hdr->version != cpu_to_be32(FWDB_VERSION))
833 return false;
834
835 if (!regdb_has_valid_signature(data, size))
836 return false;
837
838 country = &hdr->country[0];
839 while ((u8 *)(country + 1) <= data + size) {
840 if (!country->coll_ptr)
841 break;
842 if (!valid_country(data, size, country))
843 return false;
844 country++;
845 }
846
847 return true;
848 }
849
850 static void set_wmm_rule(const struct fwdb_header *db,
851 const struct fwdb_country *country,
852 const struct fwdb_rule *rule,
853 struct ieee80211_reg_rule *rrule)
854 {
855 struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
856 struct fwdb_wmm_rule *wmm;
857 unsigned int i, wmm_ptr;
858
859 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
860 wmm = (void *)((u8 *)db + wmm_ptr);
861
862 if (!valid_wmm(wmm)) {
863 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
864 be32_to_cpu(rule->start), be32_to_cpu(rule->end),
865 country->alpha2[0], country->alpha2[1]);
866 return;
867 }
868
869 for (i = 0; i < IEEE80211_NUM_ACS; i++) {
870 wmm_rule->client[i].cw_min =
871 ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
872 wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
873 wmm_rule->client[i].aifsn = wmm->client[i].aifsn;
874 wmm_rule->client[i].cot =
875 1000 * be16_to_cpu(wmm->client[i].cot);
876 wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
877 wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
878 wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
879 wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
880 }
881
882 rrule->has_wmm = true;
883 }
884
885 static int __regdb_query_wmm(const struct fwdb_header *db,
886 const struct fwdb_country *country, int freq,
887 struct ieee80211_reg_rule *rrule)
888 {
889 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
890 struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
891 int i;
892
893 for (i = 0; i < coll->n_rules; i++) {
894 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
895 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
896 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
897
898 if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
899 continue;
900
901 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
902 freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
903 set_wmm_rule(db, country, rule, rrule);
904 return 0;
905 }
906 }
907
908 return -ENODATA;
909 }
910
911 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
912 {
913 const struct fwdb_header *hdr = regdb;
914 const struct fwdb_country *country;
915
916 if (!regdb)
917 return -ENODATA;
918
919 if (IS_ERR(regdb))
920 return PTR_ERR(regdb);
921
922 country = &hdr->country[0];
923 while (country->coll_ptr) {
924 if (alpha2_equal(alpha2, country->alpha2))
925 return __regdb_query_wmm(regdb, country, freq, rule);
926
927 country++;
928 }
929
930 return -ENODATA;
931 }
932 EXPORT_SYMBOL(reg_query_regdb_wmm);
933
934 static int regdb_query_country(const struct fwdb_header *db,
935 const struct fwdb_country *country)
936 {
937 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
938 struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
939 struct ieee80211_regdomain *regdom;
940 unsigned int size_of_regd, i;
941
942 size_of_regd = sizeof(struct ieee80211_regdomain) +
943 coll->n_rules * sizeof(struct ieee80211_reg_rule);
944
945 regdom = kzalloc(size_of_regd, GFP_KERNEL);
946 if (!regdom)
947 return -ENOMEM;
948
949 regdom->n_reg_rules = coll->n_rules;
950 regdom->alpha2[0] = country->alpha2[0];
951 regdom->alpha2[1] = country->alpha2[1];
952 regdom->dfs_region = coll->dfs_region;
953
954 for (i = 0; i < regdom->n_reg_rules; i++) {
955 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
956 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
957 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
958 struct ieee80211_reg_rule *rrule = &regdom->reg_rules[i];
959
960 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
961 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
962 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
963
964 rrule->power_rule.max_antenna_gain = 0;
965 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
966
967 rrule->flags = 0;
968 if (rule->flags & FWDB_FLAG_NO_OFDM)
969 rrule->flags |= NL80211_RRF_NO_OFDM;
970 if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
971 rrule->flags |= NL80211_RRF_NO_OUTDOOR;
972 if (rule->flags & FWDB_FLAG_DFS)
973 rrule->flags |= NL80211_RRF_DFS;
974 if (rule->flags & FWDB_FLAG_NO_IR)
975 rrule->flags |= NL80211_RRF_NO_IR;
976 if (rule->flags & FWDB_FLAG_AUTO_BW)
977 rrule->flags |= NL80211_RRF_AUTO_BW;
978
979 rrule->dfs_cac_ms = 0;
980
981 /* handle optional data */
982 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
983 rrule->dfs_cac_ms =
984 1000 * be16_to_cpu(rule->cac_timeout);
985 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
986 set_wmm_rule(db, country, rule, rrule);
987 }
988
989 return reg_schedule_apply(regdom);
990 }
991
992 static int query_regdb(const char *alpha2)
993 {
994 const struct fwdb_header *hdr = regdb;
995 const struct fwdb_country *country;
996
997 ASSERT_RTNL();
998
999 if (IS_ERR(regdb))
1000 return PTR_ERR(regdb);
1001
1002 country = &hdr->country[0];
1003 while (country->coll_ptr) {
1004 if (alpha2_equal(alpha2, country->alpha2))
1005 return regdb_query_country(regdb, country);
1006 country++;
1007 }
1008
1009 return -ENODATA;
1010 }
1011
1012 static void regdb_fw_cb(const struct firmware *fw, void *context)
1013 {
1014 int set_error = 0;
1015 bool restore = true;
1016 void *db;
1017
1018 if (!fw) {
1019 pr_info("failed to load regulatory.db\n");
1020 set_error = -ENODATA;
1021 } else if (!valid_regdb(fw->data, fw->size)) {
1022 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1023 set_error = -EINVAL;
1024 }
1025
1026 rtnl_lock();
1027 if (WARN_ON(regdb && !IS_ERR(regdb))) {
1028 /* just restore and free new db */
1029 } else if (set_error) {
1030 regdb = ERR_PTR(set_error);
1031 } else if (fw) {
1032 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1033 if (db) {
1034 regdb = db;
1035 restore = context && query_regdb(context);
1036 } else {
1037 restore = true;
1038 }
1039 }
1040
1041 if (restore)
1042 restore_regulatory_settings(true);
1043
1044 rtnl_unlock();
1045
1046 kfree(context);
1047
1048 release_firmware(fw);
1049 }
1050
1051 static int query_regdb_file(const char *alpha2)
1052 {
1053 ASSERT_RTNL();
1054
1055 if (regdb)
1056 return query_regdb(alpha2);
1057
1058 alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1059 if (!alpha2)
1060 return -ENOMEM;
1061
1062 return request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1063 &reg_pdev->dev, GFP_KERNEL,
1064 (void *)alpha2, regdb_fw_cb);
1065 }
1066
1067 int reg_reload_regdb(void)
1068 {
1069 const struct firmware *fw;
1070 void *db;
1071 int err;
1072
1073 err = request_firmware(&fw, "regulatory.db", &reg_pdev->dev);
1074 if (err)
1075 return err;
1076
1077 if (!valid_regdb(fw->data, fw->size)) {
1078 err = -ENODATA;
1079 goto out;
1080 }
1081
1082 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1083 if (!db) {
1084 err = -ENOMEM;
1085 goto out;
1086 }
1087
1088 rtnl_lock();
1089 if (!IS_ERR_OR_NULL(regdb))
1090 kfree(regdb);
1091 regdb = db;
1092 rtnl_unlock();
1093
1094 out:
1095 release_firmware(fw);
1096 return err;
1097 }
1098
1099 static bool reg_query_database(struct regulatory_request *request)
1100 {
1101 if (query_regdb_file(request->alpha2) == 0)
1102 return true;
1103
1104 if (call_crda(request->alpha2) == 0)
1105 return true;
1106
1107 return false;
1108 }
1109
1110 bool reg_is_valid_request(const char *alpha2)
1111 {
1112 struct regulatory_request *lr = get_last_request();
1113
1114 if (!lr || lr->processed)
1115 return false;
1116
1117 return alpha2_equal(lr->alpha2, alpha2);
1118 }
1119
1120 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1121 {
1122 struct regulatory_request *lr = get_last_request();
1123
1124 /*
1125 * Follow the driver's regulatory domain, if present, unless a country
1126 * IE has been processed or a user wants to help complaince further
1127 */
1128 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1129 lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1130 wiphy->regd)
1131 return get_wiphy_regdom(wiphy);
1132
1133 return get_cfg80211_regdom();
1134 }
1135
1136 static unsigned int
1137 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1138 const struct ieee80211_reg_rule *rule)
1139 {
1140 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1141 const struct ieee80211_freq_range *freq_range_tmp;
1142 const struct ieee80211_reg_rule *tmp;
1143 u32 start_freq, end_freq, idx, no;
1144
1145 for (idx = 0; idx < rd->n_reg_rules; idx++)
1146 if (rule == &rd->reg_rules[idx])
1147 break;
1148
1149 if (idx == rd->n_reg_rules)
1150 return 0;
1151
1152 /* get start_freq */
1153 no = idx;
1154
1155 while (no) {
1156 tmp = &rd->reg_rules[--no];
1157 freq_range_tmp = &tmp->freq_range;
1158
1159 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1160 break;
1161
1162 freq_range = freq_range_tmp;
1163 }
1164
1165 start_freq = freq_range->start_freq_khz;
1166
1167 /* get end_freq */
1168 freq_range = &rule->freq_range;
1169 no = idx;
1170
1171 while (no < rd->n_reg_rules - 1) {
1172 tmp = &rd->reg_rules[++no];
1173 freq_range_tmp = &tmp->freq_range;
1174
1175 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1176 break;
1177
1178 freq_range = freq_range_tmp;
1179 }
1180
1181 end_freq = freq_range->end_freq_khz;
1182
1183 return end_freq - start_freq;
1184 }
1185
1186 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1187 const struct ieee80211_reg_rule *rule)
1188 {
1189 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1190
1191 if (rule->flags & NL80211_RRF_NO_160MHZ)
1192 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1193 if (rule->flags & NL80211_RRF_NO_80MHZ)
1194 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1195
1196 /*
1197 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1198 * are not allowed.
1199 */
1200 if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1201 rule->flags & NL80211_RRF_NO_HT40PLUS)
1202 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1203
1204 return bw;
1205 }
1206
1207 /* Sanity check on a regulatory rule */
1208 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1209 {
1210 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1211 u32 freq_diff;
1212
1213 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1214 return false;
1215
1216 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1217 return false;
1218
1219 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1220
1221 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1222 freq_range->max_bandwidth_khz > freq_diff)
1223 return false;
1224
1225 return true;
1226 }
1227
1228 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1229 {
1230 const struct ieee80211_reg_rule *reg_rule = NULL;
1231 unsigned int i;
1232
1233 if (!rd->n_reg_rules)
1234 return false;
1235
1236 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1237 return false;
1238
1239 for (i = 0; i < rd->n_reg_rules; i++) {
1240 reg_rule = &rd->reg_rules[i];
1241 if (!is_valid_reg_rule(reg_rule))
1242 return false;
1243 }
1244
1245 return true;
1246 }
1247
1248 /**
1249 * freq_in_rule_band - tells us if a frequency is in a frequency band
1250 * @freq_range: frequency rule we want to query
1251 * @freq_khz: frequency we are inquiring about
1252 *
1253 * This lets us know if a specific frequency rule is or is not relevant to
1254 * a specific frequency's band. Bands are device specific and artificial
1255 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1256 * however it is safe for now to assume that a frequency rule should not be
1257 * part of a frequency's band if the start freq or end freq are off by more
1258 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
1259 * 60 GHz band.
1260 * This resolution can be lowered and should be considered as we add
1261 * regulatory rule support for other "bands".
1262 **/
1263 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1264 u32 freq_khz)
1265 {
1266 #define ONE_GHZ_IN_KHZ 1000000
1267 /*
1268 * From 802.11ad: directional multi-gigabit (DMG):
1269 * Pertaining to operation in a frequency band containing a channel
1270 * with the Channel starting frequency above 45 GHz.
1271 */
1272 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1273 10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1274 if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1275 return true;
1276 if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1277 return true;
1278 return false;
1279 #undef ONE_GHZ_IN_KHZ
1280 }
1281
1282 /*
1283 * Later on we can perhaps use the more restrictive DFS
1284 * region but we don't have information for that yet so
1285 * for now simply disallow conflicts.
1286 */
1287 static enum nl80211_dfs_regions
1288 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1289 const enum nl80211_dfs_regions dfs_region2)
1290 {
1291 if (dfs_region1 != dfs_region2)
1292 return NL80211_DFS_UNSET;
1293 return dfs_region1;
1294 }
1295
1296 /*
1297 * Helper for regdom_intersect(), this does the real
1298 * mathematical intersection fun
1299 */
1300 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1301 const struct ieee80211_regdomain *rd2,
1302 const struct ieee80211_reg_rule *rule1,
1303 const struct ieee80211_reg_rule *rule2,
1304 struct ieee80211_reg_rule *intersected_rule)
1305 {
1306 const struct ieee80211_freq_range *freq_range1, *freq_range2;
1307 struct ieee80211_freq_range *freq_range;
1308 const struct ieee80211_power_rule *power_rule1, *power_rule2;
1309 struct ieee80211_power_rule *power_rule;
1310 u32 freq_diff, max_bandwidth1, max_bandwidth2;
1311
1312 freq_range1 = &rule1->freq_range;
1313 freq_range2 = &rule2->freq_range;
1314 freq_range = &intersected_rule->freq_range;
1315
1316 power_rule1 = &rule1->power_rule;
1317 power_rule2 = &rule2->power_rule;
1318 power_rule = &intersected_rule->power_rule;
1319
1320 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1321 freq_range2->start_freq_khz);
1322 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1323 freq_range2->end_freq_khz);
1324
1325 max_bandwidth1 = freq_range1->max_bandwidth_khz;
1326 max_bandwidth2 = freq_range2->max_bandwidth_khz;
1327
1328 if (rule1->flags & NL80211_RRF_AUTO_BW)
1329 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1330 if (rule2->flags & NL80211_RRF_AUTO_BW)
1331 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1332
1333 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1334
1335 intersected_rule->flags = rule1->flags | rule2->flags;
1336
1337 /*
1338 * In case NL80211_RRF_AUTO_BW requested for both rules
1339 * set AUTO_BW in intersected rule also. Next we will
1340 * calculate BW correctly in handle_channel function.
1341 * In other case remove AUTO_BW flag while we calculate
1342 * maximum bandwidth correctly and auto calculation is
1343 * not required.
1344 */
1345 if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1346 (rule2->flags & NL80211_RRF_AUTO_BW))
1347 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1348 else
1349 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1350
1351 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1352 if (freq_range->max_bandwidth_khz > freq_diff)
1353 freq_range->max_bandwidth_khz = freq_diff;
1354
1355 power_rule->max_eirp = min(power_rule1->max_eirp,
1356 power_rule2->max_eirp);
1357 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1358 power_rule2->max_antenna_gain);
1359
1360 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1361 rule2->dfs_cac_ms);
1362
1363 if (!is_valid_reg_rule(intersected_rule))
1364 return -EINVAL;
1365
1366 return 0;
1367 }
1368
1369 /* check whether old rule contains new rule */
1370 static bool rule_contains(struct ieee80211_reg_rule *r1,
1371 struct ieee80211_reg_rule *r2)
1372 {
1373 /* for simplicity, currently consider only same flags */
1374 if (r1->flags != r2->flags)
1375 return false;
1376
1377 /* verify r1 is more restrictive */
1378 if ((r1->power_rule.max_antenna_gain >
1379 r2->power_rule.max_antenna_gain) ||
1380 r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1381 return false;
1382
1383 /* make sure r2's range is contained within r1 */
1384 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1385 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1386 return false;
1387
1388 /* and finally verify that r1.max_bw >= r2.max_bw */
1389 if (r1->freq_range.max_bandwidth_khz <
1390 r2->freq_range.max_bandwidth_khz)
1391 return false;
1392
1393 return true;
1394 }
1395
1396 /* add or extend current rules. do nothing if rule is already contained */
1397 static void add_rule(struct ieee80211_reg_rule *rule,
1398 struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1399 {
1400 struct ieee80211_reg_rule *tmp_rule;
1401 int i;
1402
1403 for (i = 0; i < *n_rules; i++) {
1404 tmp_rule = &reg_rules[i];
1405 /* rule is already contained - do nothing */
1406 if (rule_contains(tmp_rule, rule))
1407 return;
1408
1409 /* extend rule if possible */
1410 if (rule_contains(rule, tmp_rule)) {
1411 memcpy(tmp_rule, rule, sizeof(*rule));
1412 return;
1413 }
1414 }
1415
1416 memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
1417 (*n_rules)++;
1418 }
1419
1420 /**
1421 * regdom_intersect - do the intersection between two regulatory domains
1422 * @rd1: first regulatory domain
1423 * @rd2: second regulatory domain
1424 *
1425 * Use this function to get the intersection between two regulatory domains.
1426 * Once completed we will mark the alpha2 for the rd as intersected, "98",
1427 * as no one single alpha2 can represent this regulatory domain.
1428 *
1429 * Returns a pointer to the regulatory domain structure which will hold the
1430 * resulting intersection of rules between rd1 and rd2. We will
1431 * kzalloc() this structure for you.
1432 */
1433 static struct ieee80211_regdomain *
1434 regdom_intersect(const struct ieee80211_regdomain *rd1,
1435 const struct ieee80211_regdomain *rd2)
1436 {
1437 int r, size_of_regd;
1438 unsigned int x, y;
1439 unsigned int num_rules = 0;
1440 const struct ieee80211_reg_rule *rule1, *rule2;
1441 struct ieee80211_reg_rule intersected_rule;
1442 struct ieee80211_regdomain *rd;
1443
1444 if (!rd1 || !rd2)
1445 return NULL;
1446
1447 /*
1448 * First we get a count of the rules we'll need, then we actually
1449 * build them. This is to so we can malloc() and free() a
1450 * regdomain once. The reason we use reg_rules_intersect() here
1451 * is it will return -EINVAL if the rule computed makes no sense.
1452 * All rules that do check out OK are valid.
1453 */
1454
1455 for (x = 0; x < rd1->n_reg_rules; x++) {
1456 rule1 = &rd1->reg_rules[x];
1457 for (y = 0; y < rd2->n_reg_rules; y++) {
1458 rule2 = &rd2->reg_rules[y];
1459 if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1460 &intersected_rule))
1461 num_rules++;
1462 }
1463 }
1464
1465 if (!num_rules)
1466 return NULL;
1467
1468 size_of_regd = sizeof(struct ieee80211_regdomain) +
1469 num_rules * sizeof(struct ieee80211_reg_rule);
1470
1471 rd = kzalloc(size_of_regd, GFP_KERNEL);
1472 if (!rd)
1473 return NULL;
1474
1475 for (x = 0; x < rd1->n_reg_rules; x++) {
1476 rule1 = &rd1->reg_rules[x];
1477 for (y = 0; y < rd2->n_reg_rules; y++) {
1478 rule2 = &rd2->reg_rules[y];
1479 r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1480 &intersected_rule);
1481 /*
1482 * No need to memset here the intersected rule here as
1483 * we're not using the stack anymore
1484 */
1485 if (r)
1486 continue;
1487
1488 add_rule(&intersected_rule, rd->reg_rules,
1489 &rd->n_reg_rules);
1490 }
1491 }
1492
1493 rd->alpha2[0] = '9';
1494 rd->alpha2[1] = '8';
1495 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1496 rd2->dfs_region);
1497
1498 return rd;
1499 }
1500
1501 /*
1502 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1503 * want to just have the channel structure use these
1504 */
1505 static u32 map_regdom_flags(u32 rd_flags)
1506 {
1507 u32 channel_flags = 0;
1508 if (rd_flags & NL80211_RRF_NO_IR_ALL)
1509 channel_flags |= IEEE80211_CHAN_NO_IR;
1510 if (rd_flags & NL80211_RRF_DFS)
1511 channel_flags |= IEEE80211_CHAN_RADAR;
1512 if (rd_flags & NL80211_RRF_NO_OFDM)
1513 channel_flags |= IEEE80211_CHAN_NO_OFDM;
1514 if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1515 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1516 if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1517 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1518 if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1519 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1520 if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1521 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1522 if (rd_flags & NL80211_RRF_NO_80MHZ)
1523 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1524 if (rd_flags & NL80211_RRF_NO_160MHZ)
1525 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1526 return channel_flags;
1527 }
1528
1529 static const struct ieee80211_reg_rule *
1530 freq_reg_info_regd(u32 center_freq,
1531 const struct ieee80211_regdomain *regd, u32 bw)
1532 {
1533 int i;
1534 bool band_rule_found = false;
1535 bool bw_fits = false;
1536
1537 if (!regd)
1538 return ERR_PTR(-EINVAL);
1539
1540 for (i = 0; i < regd->n_reg_rules; i++) {
1541 const struct ieee80211_reg_rule *rr;
1542 const struct ieee80211_freq_range *fr = NULL;
1543
1544 rr = &regd->reg_rules[i];
1545 fr = &rr->freq_range;
1546
1547 /*
1548 * We only need to know if one frequency rule was
1549 * was in center_freq's band, that's enough, so lets
1550 * not overwrite it once found
1551 */
1552 if (!band_rule_found)
1553 band_rule_found = freq_in_rule_band(fr, center_freq);
1554
1555 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1556
1557 if (band_rule_found && bw_fits)
1558 return rr;
1559 }
1560
1561 if (!band_rule_found)
1562 return ERR_PTR(-ERANGE);
1563
1564 return ERR_PTR(-EINVAL);
1565 }
1566
1567 static const struct ieee80211_reg_rule *
1568 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1569 {
1570 const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1571 const struct ieee80211_reg_rule *reg_rule = NULL;
1572 u32 bw;
1573
1574 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
1575 reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1576 if (!IS_ERR(reg_rule))
1577 return reg_rule;
1578 }
1579
1580 return reg_rule;
1581 }
1582
1583 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1584 u32 center_freq)
1585 {
1586 return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20));
1587 }
1588 EXPORT_SYMBOL(freq_reg_info);
1589
1590 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1591 {
1592 switch (initiator) {
1593 case NL80211_REGDOM_SET_BY_CORE:
1594 return "core";
1595 case NL80211_REGDOM_SET_BY_USER:
1596 return "user";
1597 case NL80211_REGDOM_SET_BY_DRIVER:
1598 return "driver";
1599 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1600 return "country element";
1601 default:
1602 WARN_ON(1);
1603 return "bug";
1604 }
1605 }
1606 EXPORT_SYMBOL(reg_initiator_name);
1607
1608 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1609 const struct ieee80211_reg_rule *reg_rule,
1610 const struct ieee80211_channel *chan)
1611 {
1612 const struct ieee80211_freq_range *freq_range = NULL;
1613 u32 max_bandwidth_khz, bw_flags = 0;
1614
1615 freq_range = &reg_rule->freq_range;
1616
1617 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1618 /* Check if auto calculation requested */
1619 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1620 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1621
1622 /* If we get a reg_rule we can assume that at least 5Mhz fit */
1623 if (!cfg80211_does_bw_fit_range(freq_range,
1624 MHZ_TO_KHZ(chan->center_freq),
1625 MHZ_TO_KHZ(10)))
1626 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1627 if (!cfg80211_does_bw_fit_range(freq_range,
1628 MHZ_TO_KHZ(chan->center_freq),
1629 MHZ_TO_KHZ(20)))
1630 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1631
1632 if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1633 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1634 if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1635 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1636 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1637 bw_flags |= IEEE80211_CHAN_NO_HT40;
1638 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1639 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1640 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1641 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1642 return bw_flags;
1643 }
1644
1645 /*
1646 * Note that right now we assume the desired channel bandwidth
1647 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1648 * per channel, the primary and the extension channel).
1649 */
1650 static void handle_channel(struct wiphy *wiphy,
1651 enum nl80211_reg_initiator initiator,
1652 struct ieee80211_channel *chan)
1653 {
1654 u32 flags, bw_flags = 0;
1655 const struct ieee80211_reg_rule *reg_rule = NULL;
1656 const struct ieee80211_power_rule *power_rule = NULL;
1657 struct wiphy *request_wiphy = NULL;
1658 struct regulatory_request *lr = get_last_request();
1659 const struct ieee80211_regdomain *regd;
1660
1661 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1662
1663 flags = chan->orig_flags;
1664
1665 reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1666 if (IS_ERR(reg_rule)) {
1667 /*
1668 * We will disable all channels that do not match our
1669 * received regulatory rule unless the hint is coming
1670 * from a Country IE and the Country IE had no information
1671 * about a band. The IEEE 802.11 spec allows for an AP
1672 * to send only a subset of the regulatory rules allowed,
1673 * so an AP in the US that only supports 2.4 GHz may only send
1674 * a country IE with information for the 2.4 GHz band
1675 * while 5 GHz is still supported.
1676 */
1677 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1678 PTR_ERR(reg_rule) == -ERANGE)
1679 return;
1680
1681 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1682 request_wiphy && request_wiphy == wiphy &&
1683 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1684 pr_debug("Disabling freq %d MHz for good\n",
1685 chan->center_freq);
1686 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1687 chan->flags = chan->orig_flags;
1688 } else {
1689 pr_debug("Disabling freq %d MHz\n",
1690 chan->center_freq);
1691 chan->flags |= IEEE80211_CHAN_DISABLED;
1692 }
1693 return;
1694 }
1695
1696 regd = reg_get_regdomain(wiphy);
1697
1698 power_rule = &reg_rule->power_rule;
1699 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1700
1701 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1702 request_wiphy && request_wiphy == wiphy &&
1703 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1704 /*
1705 * This guarantees the driver's requested regulatory domain
1706 * will always be used as a base for further regulatory
1707 * settings
1708 */
1709 chan->flags = chan->orig_flags =
1710 map_regdom_flags(reg_rule->flags) | bw_flags;
1711 chan->max_antenna_gain = chan->orig_mag =
1712 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1713 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1714 (int) MBM_TO_DBM(power_rule->max_eirp);
1715
1716 if (chan->flags & IEEE80211_CHAN_RADAR) {
1717 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1718 if (reg_rule->dfs_cac_ms)
1719 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1720 }
1721
1722 return;
1723 }
1724
1725 chan->dfs_state = NL80211_DFS_USABLE;
1726 chan->dfs_state_entered = jiffies;
1727
1728 chan->beacon_found = false;
1729 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1730 chan->max_antenna_gain =
1731 min_t(int, chan->orig_mag,
1732 MBI_TO_DBI(power_rule->max_antenna_gain));
1733 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1734
1735 if (chan->flags & IEEE80211_CHAN_RADAR) {
1736 if (reg_rule->dfs_cac_ms)
1737 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1738 else
1739 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1740 }
1741
1742 if (chan->orig_mpwr) {
1743 /*
1744 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1745 * will always follow the passed country IE power settings.
1746 */
1747 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1748 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1749 chan->max_power = chan->max_reg_power;
1750 else
1751 chan->max_power = min(chan->orig_mpwr,
1752 chan->max_reg_power);
1753 } else
1754 chan->max_power = chan->max_reg_power;
1755 }
1756
1757 static void handle_band(struct wiphy *wiphy,
1758 enum nl80211_reg_initiator initiator,
1759 struct ieee80211_supported_band *sband)
1760 {
1761 unsigned int i;
1762
1763 if (!sband)
1764 return;
1765
1766 for (i = 0; i < sband->n_channels; i++)
1767 handle_channel(wiphy, initiator, &sband->channels[i]);
1768 }
1769
1770 static bool reg_request_cell_base(struct regulatory_request *request)
1771 {
1772 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1773 return false;
1774 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1775 }
1776
1777 bool reg_last_request_cell_base(void)
1778 {
1779 return reg_request_cell_base(get_last_request());
1780 }
1781
1782 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1783 /* Core specific check */
1784 static enum reg_request_treatment
1785 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1786 {
1787 struct regulatory_request *lr = get_last_request();
1788
1789 if (!reg_num_devs_support_basehint)
1790 return REG_REQ_IGNORE;
1791
1792 if (reg_request_cell_base(lr) &&
1793 !regdom_changes(pending_request->alpha2))
1794 return REG_REQ_ALREADY_SET;
1795
1796 return REG_REQ_OK;
1797 }
1798
1799 /* Device specific check */
1800 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1801 {
1802 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1803 }
1804 #else
1805 static enum reg_request_treatment
1806 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1807 {
1808 return REG_REQ_IGNORE;
1809 }
1810
1811 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1812 {
1813 return true;
1814 }
1815 #endif
1816
1817 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1818 {
1819 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1820 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1821 return true;
1822 return false;
1823 }
1824
1825 static bool ignore_reg_update(struct wiphy *wiphy,
1826 enum nl80211_reg_initiator initiator)
1827 {
1828 struct regulatory_request *lr = get_last_request();
1829
1830 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1831 return true;
1832
1833 if (!lr) {
1834 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
1835 reg_initiator_name(initiator));
1836 return true;
1837 }
1838
1839 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1840 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1841 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
1842 reg_initiator_name(initiator));
1843 return true;
1844 }
1845
1846 /*
1847 * wiphy->regd will be set once the device has its own
1848 * desired regulatory domain set
1849 */
1850 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1851 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1852 !is_world_regdom(lr->alpha2)) {
1853 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
1854 reg_initiator_name(initiator));
1855 return true;
1856 }
1857
1858 if (reg_request_cell_base(lr))
1859 return reg_dev_ignore_cell_hint(wiphy);
1860
1861 return false;
1862 }
1863
1864 static bool reg_is_world_roaming(struct wiphy *wiphy)
1865 {
1866 const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1867 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1868 struct regulatory_request *lr = get_last_request();
1869
1870 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1871 return true;
1872
1873 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1874 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1875 return true;
1876
1877 return false;
1878 }
1879
1880 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1881 struct reg_beacon *reg_beacon)
1882 {
1883 struct ieee80211_supported_band *sband;
1884 struct ieee80211_channel *chan;
1885 bool channel_changed = false;
1886 struct ieee80211_channel chan_before;
1887
1888 sband = wiphy->bands[reg_beacon->chan.band];
1889 chan = &sband->channels[chan_idx];
1890
1891 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1892 return;
1893
1894 if (chan->beacon_found)
1895 return;
1896
1897 chan->beacon_found = true;
1898
1899 if (!reg_is_world_roaming(wiphy))
1900 return;
1901
1902 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1903 return;
1904
1905 chan_before = *chan;
1906
1907 if (chan->flags & IEEE80211_CHAN_NO_IR) {
1908 chan->flags &= ~IEEE80211_CHAN_NO_IR;
1909 channel_changed = true;
1910 }
1911
1912 if (channel_changed)
1913 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1914 }
1915
1916 /*
1917 * Called when a scan on a wiphy finds a beacon on
1918 * new channel
1919 */
1920 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1921 struct reg_beacon *reg_beacon)
1922 {
1923 unsigned int i;
1924 struct ieee80211_supported_band *sband;
1925
1926 if (!wiphy->bands[reg_beacon->chan.band])
1927 return;
1928
1929 sband = wiphy->bands[reg_beacon->chan.band];
1930
1931 for (i = 0; i < sband->n_channels; i++)
1932 handle_reg_beacon(wiphy, i, reg_beacon);
1933 }
1934
1935 /*
1936 * Called upon reg changes or a new wiphy is added
1937 */
1938 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1939 {
1940 unsigned int i;
1941 struct ieee80211_supported_band *sband;
1942 struct reg_beacon *reg_beacon;
1943
1944 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1945 if (!wiphy->bands[reg_beacon->chan.band])
1946 continue;
1947 sband = wiphy->bands[reg_beacon->chan.band];
1948 for (i = 0; i < sband->n_channels; i++)
1949 handle_reg_beacon(wiphy, i, reg_beacon);
1950 }
1951 }
1952
1953 /* Reap the advantages of previously found beacons */
1954 static void reg_process_beacons(struct wiphy *wiphy)
1955 {
1956 /*
1957 * Means we are just firing up cfg80211, so no beacons would
1958 * have been processed yet.
1959 */
1960 if (!last_request)
1961 return;
1962 wiphy_update_beacon_reg(wiphy);
1963 }
1964
1965 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1966 {
1967 if (!chan)
1968 return false;
1969 if (chan->flags & IEEE80211_CHAN_DISABLED)
1970 return false;
1971 /* This would happen when regulatory rules disallow HT40 completely */
1972 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1973 return false;
1974 return true;
1975 }
1976
1977 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1978 struct ieee80211_channel *channel)
1979 {
1980 struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1981 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1982 const struct ieee80211_regdomain *regd;
1983 unsigned int i;
1984 u32 flags;
1985
1986 if (!is_ht40_allowed(channel)) {
1987 channel->flags |= IEEE80211_CHAN_NO_HT40;
1988 return;
1989 }
1990
1991 /*
1992 * We need to ensure the extension channels exist to
1993 * be able to use HT40- or HT40+, this finds them (or not)
1994 */
1995 for (i = 0; i < sband->n_channels; i++) {
1996 struct ieee80211_channel *c = &sband->channels[i];
1997
1998 if (c->center_freq == (channel->center_freq - 20))
1999 channel_before = c;
2000 if (c->center_freq == (channel->center_freq + 20))
2001 channel_after = c;
2002 }
2003
2004 flags = 0;
2005 regd = get_wiphy_regdom(wiphy);
2006 if (regd) {
2007 const struct ieee80211_reg_rule *reg_rule =
2008 freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2009 regd, MHZ_TO_KHZ(20));
2010
2011 if (!IS_ERR(reg_rule))
2012 flags = reg_rule->flags;
2013 }
2014
2015 /*
2016 * Please note that this assumes target bandwidth is 20 MHz,
2017 * if that ever changes we also need to change the below logic
2018 * to include that as well.
2019 */
2020 if (!is_ht40_allowed(channel_before) ||
2021 flags & NL80211_RRF_NO_HT40MINUS)
2022 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2023 else
2024 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2025
2026 if (!is_ht40_allowed(channel_after) ||
2027 flags & NL80211_RRF_NO_HT40PLUS)
2028 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2029 else
2030 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2031 }
2032
2033 static void reg_process_ht_flags_band(struct wiphy *wiphy,
2034 struct ieee80211_supported_band *sband)
2035 {
2036 unsigned int i;
2037
2038 if (!sband)
2039 return;
2040
2041 for (i = 0; i < sband->n_channels; i++)
2042 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2043 }
2044
2045 static void reg_process_ht_flags(struct wiphy *wiphy)
2046 {
2047 enum nl80211_band band;
2048
2049 if (!wiphy)
2050 return;
2051
2052 for (band = 0; band < NUM_NL80211_BANDS; band++)
2053 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2054 }
2055
2056 static void reg_call_notifier(struct wiphy *wiphy,
2057 struct regulatory_request *request)
2058 {
2059 if (wiphy->reg_notifier)
2060 wiphy->reg_notifier(wiphy, request);
2061 }
2062
2063 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2064 {
2065 struct cfg80211_chan_def chandef;
2066 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2067 enum nl80211_iftype iftype;
2068
2069 wdev_lock(wdev);
2070 iftype = wdev->iftype;
2071
2072 /* make sure the interface is active */
2073 if (!wdev->netdev || !netif_running(wdev->netdev))
2074 goto wdev_inactive_unlock;
2075
2076 switch (iftype) {
2077 case NL80211_IFTYPE_AP:
2078 case NL80211_IFTYPE_P2P_GO:
2079 if (!wdev->beacon_interval)
2080 goto wdev_inactive_unlock;
2081 chandef = wdev->chandef;
2082 break;
2083 case NL80211_IFTYPE_ADHOC:
2084 if (!wdev->ssid_len)
2085 goto wdev_inactive_unlock;
2086 chandef = wdev->chandef;
2087 break;
2088 case NL80211_IFTYPE_STATION:
2089 case NL80211_IFTYPE_P2P_CLIENT:
2090 if (!wdev->current_bss ||
2091 !wdev->current_bss->pub.channel)
2092 goto wdev_inactive_unlock;
2093
2094 if (!rdev->ops->get_channel ||
2095 rdev_get_channel(rdev, wdev, &chandef))
2096 cfg80211_chandef_create(&chandef,
2097 wdev->current_bss->pub.channel,
2098 NL80211_CHAN_NO_HT);
2099 break;
2100 case NL80211_IFTYPE_MONITOR:
2101 case NL80211_IFTYPE_AP_VLAN:
2102 case NL80211_IFTYPE_P2P_DEVICE:
2103 /* no enforcement required */
2104 break;
2105 default:
2106 /* others not implemented for now */
2107 WARN_ON(1);
2108 break;
2109 }
2110
2111 wdev_unlock(wdev);
2112
2113 switch (iftype) {
2114 case NL80211_IFTYPE_AP:
2115 case NL80211_IFTYPE_P2P_GO:
2116 case NL80211_IFTYPE_ADHOC:
2117 return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
2118 case NL80211_IFTYPE_STATION:
2119 case NL80211_IFTYPE_P2P_CLIENT:
2120 return cfg80211_chandef_usable(wiphy, &chandef,
2121 IEEE80211_CHAN_DISABLED);
2122 default:
2123 break;
2124 }
2125
2126 return true;
2127
2128 wdev_inactive_unlock:
2129 wdev_unlock(wdev);
2130 return true;
2131 }
2132
2133 static void reg_leave_invalid_chans(struct wiphy *wiphy)
2134 {
2135 struct wireless_dev *wdev;
2136 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2137
2138 ASSERT_RTNL();
2139
2140 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2141 if (!reg_wdev_chan_valid(wiphy, wdev))
2142 cfg80211_leave(rdev, wdev);
2143 }
2144
2145 static void reg_check_chans_work(struct work_struct *work)
2146 {
2147 struct cfg80211_registered_device *rdev;
2148
2149 pr_debug("Verifying active interfaces after reg change\n");
2150 rtnl_lock();
2151
2152 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2153 if (!(rdev->wiphy.regulatory_flags &
2154 REGULATORY_IGNORE_STALE_KICKOFF))
2155 reg_leave_invalid_chans(&rdev->wiphy);
2156
2157 rtnl_unlock();
2158 }
2159
2160 static void reg_check_channels(void)
2161 {
2162 /*
2163 * Give usermode a chance to do something nicer (move to another
2164 * channel, orderly disconnection), before forcing a disconnection.
2165 */
2166 mod_delayed_work(system_power_efficient_wq,
2167 &reg_check_chans,
2168 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2169 }
2170
2171 static void wiphy_update_regulatory(struct wiphy *wiphy,
2172 enum nl80211_reg_initiator initiator)
2173 {
2174 enum nl80211_band band;
2175 struct regulatory_request *lr = get_last_request();
2176
2177 if (ignore_reg_update(wiphy, initiator)) {
2178 /*
2179 * Regulatory updates set by CORE are ignored for custom
2180 * regulatory cards. Let us notify the changes to the driver,
2181 * as some drivers used this to restore its orig_* reg domain.
2182 */
2183 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2184 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2185 !(wiphy->regulatory_flags &
2186 REGULATORY_WIPHY_SELF_MANAGED))
2187 reg_call_notifier(wiphy, lr);
2188 return;
2189 }
2190
2191 lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2192
2193 for (band = 0; band < NUM_NL80211_BANDS; band++)
2194 handle_band(wiphy, initiator, wiphy->bands[band]);
2195
2196 reg_process_beacons(wiphy);
2197 reg_process_ht_flags(wiphy);
2198 reg_call_notifier(wiphy, lr);
2199 }
2200
2201 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2202 {
2203 struct cfg80211_registered_device *rdev;
2204 struct wiphy *wiphy;
2205
2206 ASSERT_RTNL();
2207
2208 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2209 wiphy = &rdev->wiphy;
2210 wiphy_update_regulatory(wiphy, initiator);
2211 }
2212
2213 reg_check_channels();
2214 }
2215
2216 static void handle_channel_custom(struct wiphy *wiphy,
2217 struct ieee80211_channel *chan,
2218 const struct ieee80211_regdomain *regd)
2219 {
2220 u32 bw_flags = 0;
2221 const struct ieee80211_reg_rule *reg_rule = NULL;
2222 const struct ieee80211_power_rule *power_rule = NULL;
2223 u32 bw;
2224
2225 for (bw = MHZ_TO_KHZ(20); bw >= MHZ_TO_KHZ(5); bw = bw / 2) {
2226 reg_rule = freq_reg_info_regd(MHZ_TO_KHZ(chan->center_freq),
2227 regd, bw);
2228 if (!IS_ERR(reg_rule))
2229 break;
2230 }
2231
2232 if (IS_ERR(reg_rule)) {
2233 pr_debug("Disabling freq %d MHz as custom regd has no rule that fits it\n",
2234 chan->center_freq);
2235 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2236 chan->flags |= IEEE80211_CHAN_DISABLED;
2237 } else {
2238 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2239 chan->flags = chan->orig_flags;
2240 }
2241 return;
2242 }
2243
2244 power_rule = &reg_rule->power_rule;
2245 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2246
2247 chan->dfs_state_entered = jiffies;
2248 chan->dfs_state = NL80211_DFS_USABLE;
2249
2250 chan->beacon_found = false;
2251
2252 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2253 chan->flags = chan->orig_flags | bw_flags |
2254 map_regdom_flags(reg_rule->flags);
2255 else
2256 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2257
2258 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2259 chan->max_reg_power = chan->max_power =
2260 (int) MBM_TO_DBM(power_rule->max_eirp);
2261
2262 if (chan->flags & IEEE80211_CHAN_RADAR) {
2263 if (reg_rule->dfs_cac_ms)
2264 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2265 else
2266 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2267 }
2268
2269 chan->max_power = chan->max_reg_power;
2270 }
2271
2272 static void handle_band_custom(struct wiphy *wiphy,
2273 struct ieee80211_supported_band *sband,
2274 const struct ieee80211_regdomain *regd)
2275 {
2276 unsigned int i;
2277
2278 if (!sband)
2279 return;
2280
2281 for (i = 0; i < sband->n_channels; i++)
2282 handle_channel_custom(wiphy, &sband->channels[i], regd);
2283 }
2284
2285 /* Used by drivers prior to wiphy registration */
2286 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2287 const struct ieee80211_regdomain *regd)
2288 {
2289 enum nl80211_band band;
2290 unsigned int bands_set = 0;
2291
2292 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2293 "wiphy should have REGULATORY_CUSTOM_REG\n");
2294 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2295
2296 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2297 if (!wiphy->bands[band])
2298 continue;
2299 handle_band_custom(wiphy, wiphy->bands[band], regd);
2300 bands_set++;
2301 }
2302
2303 /*
2304 * no point in calling this if it won't have any effect
2305 * on your device's supported bands.
2306 */
2307 WARN_ON(!bands_set);
2308 }
2309 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2310
2311 static void reg_set_request_processed(void)
2312 {
2313 bool need_more_processing = false;
2314 struct regulatory_request *lr = get_last_request();
2315
2316 lr->processed = true;
2317
2318 spin_lock(&reg_requests_lock);
2319 if (!list_empty(&reg_requests_list))
2320 need_more_processing = true;
2321 spin_unlock(&reg_requests_lock);
2322
2323 cancel_crda_timeout();
2324
2325 if (need_more_processing)
2326 schedule_work(&reg_work);
2327 }
2328
2329 /**
2330 * reg_process_hint_core - process core regulatory requests
2331 * @pending_request: a pending core regulatory request
2332 *
2333 * The wireless subsystem can use this function to process
2334 * a regulatory request issued by the regulatory core.
2335 */
2336 static enum reg_request_treatment
2337 reg_process_hint_core(struct regulatory_request *core_request)
2338 {
2339 if (reg_query_database(core_request)) {
2340 core_request->intersect = false;
2341 core_request->processed = false;
2342 reg_update_last_request(core_request);
2343 return REG_REQ_OK;
2344 }
2345
2346 return REG_REQ_IGNORE;
2347 }
2348
2349 static enum reg_request_treatment
2350 __reg_process_hint_user(struct regulatory_request *user_request)
2351 {
2352 struct regulatory_request *lr = get_last_request();
2353
2354 if (reg_request_cell_base(user_request))
2355 return reg_ignore_cell_hint(user_request);
2356
2357 if (reg_request_cell_base(lr))
2358 return REG_REQ_IGNORE;
2359
2360 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2361 return REG_REQ_INTERSECT;
2362 /*
2363 * If the user knows better the user should set the regdom
2364 * to their country before the IE is picked up
2365 */
2366 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2367 lr->intersect)
2368 return REG_REQ_IGNORE;
2369 /*
2370 * Process user requests only after previous user/driver/core
2371 * requests have been processed
2372 */
2373 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2374 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2375 lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2376 regdom_changes(lr->alpha2))
2377 return REG_REQ_IGNORE;
2378
2379 if (!regdom_changes(user_request->alpha2))
2380 return REG_REQ_ALREADY_SET;
2381
2382 return REG_REQ_OK;
2383 }
2384
2385 /**
2386 * reg_process_hint_user - process user regulatory requests
2387 * @user_request: a pending user regulatory request
2388 *
2389 * The wireless subsystem can use this function to process
2390 * a regulatory request initiated by userspace.
2391 */
2392 static enum reg_request_treatment
2393 reg_process_hint_user(struct regulatory_request *user_request)
2394 {
2395 enum reg_request_treatment treatment;
2396
2397 treatment = __reg_process_hint_user(user_request);
2398 if (treatment == REG_REQ_IGNORE ||
2399 treatment == REG_REQ_ALREADY_SET)
2400 return REG_REQ_IGNORE;
2401
2402 user_request->intersect = treatment == REG_REQ_INTERSECT;
2403 user_request->processed = false;
2404
2405 if (reg_query_database(user_request)) {
2406 reg_update_last_request(user_request);
2407 user_alpha2[0] = user_request->alpha2[0];
2408 user_alpha2[1] = user_request->alpha2[1];
2409 return REG_REQ_OK;
2410 }
2411
2412 return REG_REQ_IGNORE;
2413 }
2414
2415 static enum reg_request_treatment
2416 __reg_process_hint_driver(struct regulatory_request *driver_request)
2417 {
2418 struct regulatory_request *lr = get_last_request();
2419
2420 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2421 if (regdom_changes(driver_request->alpha2))
2422 return REG_REQ_OK;
2423 return REG_REQ_ALREADY_SET;
2424 }
2425
2426 /*
2427 * This would happen if you unplug and plug your card
2428 * back in or if you add a new device for which the previously
2429 * loaded card also agrees on the regulatory domain.
2430 */
2431 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2432 !regdom_changes(driver_request->alpha2))
2433 return REG_REQ_ALREADY_SET;
2434
2435 return REG_REQ_INTERSECT;
2436 }
2437
2438 /**
2439 * reg_process_hint_driver - process driver regulatory requests
2440 * @driver_request: a pending driver regulatory request
2441 *
2442 * The wireless subsystem can use this function to process
2443 * a regulatory request issued by an 802.11 driver.
2444 *
2445 * Returns one of the different reg request treatment values.
2446 */
2447 static enum reg_request_treatment
2448 reg_process_hint_driver(struct wiphy *wiphy,
2449 struct regulatory_request *driver_request)
2450 {
2451 const struct ieee80211_regdomain *regd, *tmp;
2452 enum reg_request_treatment treatment;
2453
2454 treatment = __reg_process_hint_driver(driver_request);
2455
2456 switch (treatment) {
2457 case REG_REQ_OK:
2458 break;
2459 case REG_REQ_IGNORE:
2460 return REG_REQ_IGNORE;
2461 case REG_REQ_INTERSECT:
2462 case REG_REQ_ALREADY_SET:
2463 regd = reg_copy_regd(get_cfg80211_regdom());
2464 if (IS_ERR(regd))
2465 return REG_REQ_IGNORE;
2466
2467 tmp = get_wiphy_regdom(wiphy);
2468 rcu_assign_pointer(wiphy->regd, regd);
2469 rcu_free_regdom(tmp);
2470 }
2471
2472
2473 driver_request->intersect = treatment == REG_REQ_INTERSECT;
2474 driver_request->processed = false;
2475
2476 /*
2477 * Since CRDA will not be called in this case as we already
2478 * have applied the requested regulatory domain before we just
2479 * inform userspace we have processed the request
2480 */
2481 if (treatment == REG_REQ_ALREADY_SET) {
2482 nl80211_send_reg_change_event(driver_request);
2483 reg_update_last_request(driver_request);
2484 reg_set_request_processed();
2485 return REG_REQ_ALREADY_SET;
2486 }
2487
2488 if (reg_query_database(driver_request)) {
2489 reg_update_last_request(driver_request);
2490 return REG_REQ_OK;
2491 }
2492
2493 return REG_REQ_IGNORE;
2494 }
2495
2496 static enum reg_request_treatment
2497 __reg_process_hint_country_ie(struct wiphy *wiphy,
2498 struct regulatory_request *country_ie_request)
2499 {
2500 struct wiphy *last_wiphy = NULL;
2501 struct regulatory_request *lr = get_last_request();
2502
2503 if (reg_request_cell_base(lr)) {
2504 /* Trust a Cell base station over the AP's country IE */
2505 if (regdom_changes(country_ie_request->alpha2))
2506 return REG_REQ_IGNORE;
2507 return REG_REQ_ALREADY_SET;
2508 } else {
2509 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2510 return REG_REQ_IGNORE;
2511 }
2512
2513 if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2514 return -EINVAL;
2515
2516 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2517 return REG_REQ_OK;
2518
2519 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2520
2521 if (last_wiphy != wiphy) {
2522 /*
2523 * Two cards with two APs claiming different
2524 * Country IE alpha2s. We could
2525 * intersect them, but that seems unlikely
2526 * to be correct. Reject second one for now.
2527 */
2528 if (regdom_changes(country_ie_request->alpha2))
2529 return REG_REQ_IGNORE;
2530 return REG_REQ_ALREADY_SET;
2531 }
2532
2533 if (regdom_changes(country_ie_request->alpha2))
2534 return REG_REQ_OK;
2535 return REG_REQ_ALREADY_SET;
2536 }
2537
2538 /**
2539 * reg_process_hint_country_ie - process regulatory requests from country IEs
2540 * @country_ie_request: a regulatory request from a country IE
2541 *
2542 * The wireless subsystem can use this function to process
2543 * a regulatory request issued by a country Information Element.
2544 *
2545 * Returns one of the different reg request treatment values.
2546 */
2547 static enum reg_request_treatment
2548 reg_process_hint_country_ie(struct wiphy *wiphy,
2549 struct regulatory_request *country_ie_request)
2550 {
2551 enum reg_request_treatment treatment;
2552
2553 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2554
2555 switch (treatment) {
2556 case REG_REQ_OK:
2557 break;
2558 case REG_REQ_IGNORE:
2559 return REG_REQ_IGNORE;
2560 case REG_REQ_ALREADY_SET:
2561 reg_free_request(country_ie_request);
2562 return REG_REQ_ALREADY_SET;
2563 case REG_REQ_INTERSECT:
2564 /*
2565 * This doesn't happen yet, not sure we
2566 * ever want to support it for this case.
2567 */
2568 WARN_ONCE(1, "Unexpected intersection for country elements");
2569 return REG_REQ_IGNORE;
2570 }
2571
2572 country_ie_request->intersect = false;
2573 country_ie_request->processed = false;
2574
2575 if (reg_query_database(country_ie_request)) {
2576 reg_update_last_request(country_ie_request);
2577 return REG_REQ_OK;
2578 }
2579
2580 return REG_REQ_IGNORE;
2581 }
2582
2583 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2584 {
2585 const struct ieee80211_regdomain *wiphy1_regd = NULL;
2586 const struct ieee80211_regdomain *wiphy2_regd = NULL;
2587 const struct ieee80211_regdomain *cfg80211_regd = NULL;
2588 bool dfs_domain_same;
2589
2590 rcu_read_lock();
2591
2592 cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2593 wiphy1_regd = rcu_dereference(wiphy1->regd);
2594 if (!wiphy1_regd)
2595 wiphy1_regd = cfg80211_regd;
2596
2597 wiphy2_regd = rcu_dereference(wiphy2->regd);
2598 if (!wiphy2_regd)
2599 wiphy2_regd = cfg80211_regd;
2600
2601 dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2602
2603 rcu_read_unlock();
2604
2605 return dfs_domain_same;
2606 }
2607
2608 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2609 struct ieee80211_channel *src_chan)
2610 {
2611 if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2612 !(src_chan->flags & IEEE80211_CHAN_RADAR))
2613 return;
2614
2615 if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2616 src_chan->flags & IEEE80211_CHAN_DISABLED)
2617 return;
2618
2619 if (src_chan->center_freq == dst_chan->center_freq &&
2620 dst_chan->dfs_state == NL80211_DFS_USABLE) {
2621 dst_chan->dfs_state = src_chan->dfs_state;
2622 dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2623 }
2624 }
2625
2626 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2627 struct wiphy *src_wiphy)
2628 {
2629 struct ieee80211_supported_band *src_sband, *dst_sband;
2630 struct ieee80211_channel *src_chan, *dst_chan;
2631 int i, j, band;
2632
2633 if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2634 return;
2635
2636 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2637 dst_sband = dst_wiphy->bands[band];
2638 src_sband = src_wiphy->bands[band];
2639 if (!dst_sband || !src_sband)
2640 continue;
2641
2642 for (i = 0; i < dst_sband->n_channels; i++) {
2643 dst_chan = &dst_sband->channels[i];
2644 for (j = 0; j < src_sband->n_channels; j++) {
2645 src_chan = &src_sband->channels[j];
2646 reg_copy_dfs_chan_state(dst_chan, src_chan);
2647 }
2648 }
2649 }
2650 }
2651
2652 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
2653 {
2654 struct cfg80211_registered_device *rdev;
2655
2656 ASSERT_RTNL();
2657
2658 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2659 if (wiphy == &rdev->wiphy)
2660 continue;
2661 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
2662 }
2663 }
2664
2665 /* This processes *all* regulatory hints */
2666 static void reg_process_hint(struct regulatory_request *reg_request)
2667 {
2668 struct wiphy *wiphy = NULL;
2669 enum reg_request_treatment treatment;
2670 enum nl80211_reg_initiator initiator = reg_request->initiator;
2671
2672 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2673 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2674
2675 switch (initiator) {
2676 case NL80211_REGDOM_SET_BY_CORE:
2677 treatment = reg_process_hint_core(reg_request);
2678 break;
2679 case NL80211_REGDOM_SET_BY_USER:
2680 treatment = reg_process_hint_user(reg_request);
2681 break;
2682 case NL80211_REGDOM_SET_BY_DRIVER:
2683 if (!wiphy)
2684 goto out_free;
2685 treatment = reg_process_hint_driver(wiphy, reg_request);
2686 break;
2687 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2688 if (!wiphy)
2689 goto out_free;
2690 treatment = reg_process_hint_country_ie(wiphy, reg_request);
2691 break;
2692 default:
2693 WARN(1, "invalid initiator %d\n", initiator);
2694 goto out_free;
2695 }
2696
2697 if (treatment == REG_REQ_IGNORE)
2698 goto out_free;
2699
2700 WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
2701 "unexpected treatment value %d\n", treatment);
2702
2703 /* This is required so that the orig_* parameters are saved.
2704 * NOTE: treatment must be set for any case that reaches here!
2705 */
2706 if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2707 wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2708 wiphy_update_regulatory(wiphy, initiator);
2709 wiphy_all_share_dfs_chan_state(wiphy);
2710 reg_check_channels();
2711 }
2712
2713 return;
2714
2715 out_free:
2716 reg_free_request(reg_request);
2717 }
2718
2719 static void notify_self_managed_wiphys(struct regulatory_request *request)
2720 {
2721 struct cfg80211_registered_device *rdev;
2722 struct wiphy *wiphy;
2723
2724 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2725 wiphy = &rdev->wiphy;
2726 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
2727 request->initiator == NL80211_REGDOM_SET_BY_USER &&
2728 request->user_reg_hint_type ==
2729 NL80211_USER_REG_HINT_CELL_BASE)
2730 reg_call_notifier(wiphy, request);
2731 }
2732 }
2733
2734 /*
2735 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2736 * Regulatory hints come on a first come first serve basis and we
2737 * must process each one atomically.
2738 */
2739 static void reg_process_pending_hints(void)
2740 {
2741 struct regulatory_request *reg_request, *lr;
2742
2743 lr = get_last_request();
2744
2745 /* When last_request->processed becomes true this will be rescheduled */
2746 if (lr && !lr->processed) {
2747 reg_process_hint(lr);
2748 return;
2749 }
2750
2751 spin_lock(&reg_requests_lock);
2752
2753 if (list_empty(&reg_requests_list)) {
2754 spin_unlock(&reg_requests_lock);
2755 return;
2756 }
2757
2758 reg_request = list_first_entry(&reg_requests_list,
2759 struct regulatory_request,
2760 list);
2761 list_del_init(&reg_request->list);
2762
2763 spin_unlock(&reg_requests_lock);
2764
2765 notify_self_managed_wiphys(reg_request);
2766
2767 reg_process_hint(reg_request);
2768
2769 lr = get_last_request();
2770
2771 spin_lock(&reg_requests_lock);
2772 if (!list_empty(&reg_requests_list) && lr && lr->processed)
2773 schedule_work(&reg_work);
2774 spin_unlock(&reg_requests_lock);
2775 }
2776
2777 /* Processes beacon hints -- this has nothing to do with country IEs */
2778 static void reg_process_pending_beacon_hints(void)
2779 {
2780 struct cfg80211_registered_device *rdev;
2781 struct reg_beacon *pending_beacon, *tmp;
2782
2783 /* This goes through the _pending_ beacon list */
2784 spin_lock_bh(&reg_pending_beacons_lock);
2785
2786 list_for_each_entry_safe(pending_beacon, tmp,
2787 &reg_pending_beacons, list) {
2788 list_del_init(&pending_beacon->list);
2789
2790 /* Applies the beacon hint to current wiphys */
2791 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2792 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
2793
2794 /* Remembers the beacon hint for new wiphys or reg changes */
2795 list_add_tail(&pending_beacon->list, &reg_beacon_list);
2796 }
2797
2798 spin_unlock_bh(&reg_pending_beacons_lock);
2799 }
2800
2801 static void reg_process_self_managed_hints(void)
2802 {
2803 struct cfg80211_registered_device *rdev;
2804 struct wiphy *wiphy;
2805 const struct ieee80211_regdomain *tmp;
2806 const struct ieee80211_regdomain *regd;
2807 enum nl80211_band band;
2808 struct regulatory_request request = {};
2809
2810 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2811 wiphy = &rdev->wiphy;
2812
2813 spin_lock(&reg_requests_lock);
2814 regd = rdev->requested_regd;
2815 rdev->requested_regd = NULL;
2816 spin_unlock(&reg_requests_lock);
2817
2818 if (regd == NULL)
2819 continue;
2820
2821 tmp = get_wiphy_regdom(wiphy);
2822 rcu_assign_pointer(wiphy->regd, regd);
2823 rcu_free_regdom(tmp);
2824
2825 for (band = 0; band < NUM_NL80211_BANDS; band++)
2826 handle_band_custom(wiphy, wiphy->bands[band], regd);
2827
2828 reg_process_ht_flags(wiphy);
2829
2830 request.wiphy_idx = get_wiphy_idx(wiphy);
2831 request.alpha2[0] = regd->alpha2[0];
2832 request.alpha2[1] = regd->alpha2[1];
2833 request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
2834
2835 nl80211_send_wiphy_reg_change_event(&request);
2836 }
2837
2838 reg_check_channels();
2839 }
2840
2841 static void reg_todo(struct work_struct *work)
2842 {
2843 rtnl_lock();
2844 reg_process_pending_hints();
2845 reg_process_pending_beacon_hints();
2846 reg_process_self_managed_hints();
2847 rtnl_unlock();
2848 }
2849
2850 static void queue_regulatory_request(struct regulatory_request *request)
2851 {
2852 request->alpha2[0] = toupper(request->alpha2[0]);
2853 request->alpha2[1] = toupper(request->alpha2[1]);
2854
2855 spin_lock(&reg_requests_lock);
2856 list_add_tail(&request->list, &reg_requests_list);
2857 spin_unlock(&reg_requests_lock);
2858
2859 schedule_work(&reg_work);
2860 }
2861
2862 /*
2863 * Core regulatory hint -- happens during cfg80211_init()
2864 * and when we restore regulatory settings.
2865 */
2866 static int regulatory_hint_core(const char *alpha2)
2867 {
2868 struct regulatory_request *request;
2869
2870 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2871 if (!request)
2872 return -ENOMEM;
2873
2874 request->alpha2[0] = alpha2[0];
2875 request->alpha2[1] = alpha2[1];
2876 request->initiator = NL80211_REGDOM_SET_BY_CORE;
2877 request->wiphy_idx = WIPHY_IDX_INVALID;
2878
2879 queue_regulatory_request(request);
2880
2881 return 0;
2882 }
2883
2884 /* User hints */
2885 int regulatory_hint_user(const char *alpha2,
2886 enum nl80211_user_reg_hint_type user_reg_hint_type)
2887 {
2888 struct regulatory_request *request;
2889
2890 if (WARN_ON(!alpha2))
2891 return -EINVAL;
2892
2893 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2894 if (!request)
2895 return -ENOMEM;
2896
2897 request->wiphy_idx = WIPHY_IDX_INVALID;
2898 request->alpha2[0] = alpha2[0];
2899 request->alpha2[1] = alpha2[1];
2900 request->initiator = NL80211_REGDOM_SET_BY_USER;
2901 request->user_reg_hint_type = user_reg_hint_type;
2902
2903 /* Allow calling CRDA again */
2904 reset_crda_timeouts();
2905
2906 queue_regulatory_request(request);
2907
2908 return 0;
2909 }
2910
2911 int regulatory_hint_indoor(bool is_indoor, u32 portid)
2912 {
2913 spin_lock(&reg_indoor_lock);
2914
2915 /* It is possible that more than one user space process is trying to
2916 * configure the indoor setting. To handle such cases, clear the indoor
2917 * setting in case that some process does not think that the device
2918 * is operating in an indoor environment. In addition, if a user space
2919 * process indicates that it is controlling the indoor setting, save its
2920 * portid, i.e., make it the owner.
2921 */
2922 reg_is_indoor = is_indoor;
2923 if (reg_is_indoor) {
2924 if (!reg_is_indoor_portid)
2925 reg_is_indoor_portid = portid;
2926 } else {
2927 reg_is_indoor_portid = 0;
2928 }
2929
2930 spin_unlock(&reg_indoor_lock);
2931
2932 if (!is_indoor)
2933 reg_check_channels();
2934
2935 return 0;
2936 }
2937
2938 void regulatory_netlink_notify(u32 portid)
2939 {
2940 spin_lock(&reg_indoor_lock);
2941
2942 if (reg_is_indoor_portid != portid) {
2943 spin_unlock(&reg_indoor_lock);
2944 return;
2945 }
2946
2947 reg_is_indoor = false;
2948 reg_is_indoor_portid = 0;
2949
2950 spin_unlock(&reg_indoor_lock);
2951
2952 reg_check_channels();
2953 }
2954
2955 /* Driver hints */
2956 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
2957 {
2958 struct regulatory_request *request;
2959
2960 if (WARN_ON(!alpha2 || !wiphy))
2961 return -EINVAL;
2962
2963 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
2964
2965 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2966 if (!request)
2967 return -ENOMEM;
2968
2969 request->wiphy_idx = get_wiphy_idx(wiphy);
2970
2971 request->alpha2[0] = alpha2[0];
2972 request->alpha2[1] = alpha2[1];
2973 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
2974
2975 /* Allow calling CRDA again */
2976 reset_crda_timeouts();
2977
2978 queue_regulatory_request(request);
2979
2980 return 0;
2981 }
2982 EXPORT_SYMBOL(regulatory_hint);
2983
2984 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
2985 const u8 *country_ie, u8 country_ie_len)
2986 {
2987 char alpha2[2];
2988 enum environment_cap env = ENVIRON_ANY;
2989 struct regulatory_request *request = NULL, *lr;
2990
2991 /* IE len must be evenly divisible by 2 */
2992 if (country_ie_len & 0x01)
2993 return;
2994
2995 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
2996 return;
2997
2998 request = kzalloc(sizeof(*request), GFP_KERNEL);
2999 if (!request)
3000 return;
3001
3002 alpha2[0] = country_ie[0];
3003 alpha2[1] = country_ie[1];
3004
3005 if (country_ie[2] == 'I')
3006 env = ENVIRON_INDOOR;
3007 else if (country_ie[2] == 'O')
3008 env = ENVIRON_OUTDOOR;
3009
3010 rcu_read_lock();
3011 lr = get_last_request();
3012
3013 if (unlikely(!lr))
3014 goto out;
3015
3016 /*
3017 * We will run this only upon a successful connection on cfg80211.
3018 * We leave conflict resolution to the workqueue, where can hold
3019 * the RTNL.
3020 */
3021 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3022 lr->wiphy_idx != WIPHY_IDX_INVALID)
3023 goto out;
3024
3025 request->wiphy_idx = get_wiphy_idx(wiphy);
3026 request->alpha2[0] = alpha2[0];
3027 request->alpha2[1] = alpha2[1];
3028 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3029 request->country_ie_env = env;
3030
3031 /* Allow calling CRDA again */
3032 reset_crda_timeouts();
3033
3034 queue_regulatory_request(request);
3035 request = NULL;
3036 out:
3037 kfree(request);
3038 rcu_read_unlock();
3039 }
3040
3041 static void restore_alpha2(char *alpha2, bool reset_user)
3042 {
3043 /* indicates there is no alpha2 to consider for restoration */
3044 alpha2[0] = '9';
3045 alpha2[1] = '7';
3046
3047 /* The user setting has precedence over the module parameter */
3048 if (is_user_regdom_saved()) {
3049 /* Unless we're asked to ignore it and reset it */
3050 if (reset_user) {
3051 pr_debug("Restoring regulatory settings including user preference\n");
3052 user_alpha2[0] = '9';
3053 user_alpha2[1] = '7';
3054
3055 /*
3056 * If we're ignoring user settings, we still need to
3057 * check the module parameter to ensure we put things
3058 * back as they were for a full restore.
3059 */
3060 if (!is_world_regdom(ieee80211_regdom)) {
3061 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3062 ieee80211_regdom[0], ieee80211_regdom[1]);
3063 alpha2[0] = ieee80211_regdom[0];
3064 alpha2[1] = ieee80211_regdom[1];
3065 }
3066 } else {
3067 pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3068 user_alpha2[0], user_alpha2[1]);
3069 alpha2[0] = user_alpha2[0];
3070 alpha2[1] = user_alpha2[1];
3071 }
3072 } else if (!is_world_regdom(ieee80211_regdom)) {
3073 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3074 ieee80211_regdom[0], ieee80211_regdom[1]);
3075 alpha2[0] = ieee80211_regdom[0];
3076 alpha2[1] = ieee80211_regdom[1];
3077 } else
3078 pr_debug("Restoring regulatory settings\n");
3079 }
3080
3081 static void restore_custom_reg_settings(struct wiphy *wiphy)
3082 {
3083 struct ieee80211_supported_band *sband;
3084 enum nl80211_band band;
3085 struct ieee80211_channel *chan;
3086 int i;
3087
3088 for (band = 0; band < NUM_NL80211_BANDS; band++) {
3089 sband = wiphy->bands[band];
3090 if (!sband)
3091 continue;
3092 for (i = 0; i < sband->n_channels; i++) {
3093 chan = &sband->channels[i];
3094 chan->flags = chan->orig_flags;
3095 chan->max_antenna_gain = chan->orig_mag;
3096 chan->max_power = chan->orig_mpwr;
3097 chan->beacon_found = false;
3098 }
3099 }
3100 }
3101
3102 /*
3103 * Restoring regulatory settings involves ingoring any
3104 * possibly stale country IE information and user regulatory
3105 * settings if so desired, this includes any beacon hints
3106 * learned as we could have traveled outside to another country
3107 * after disconnection. To restore regulatory settings we do
3108 * exactly what we did at bootup:
3109 *
3110 * - send a core regulatory hint
3111 * - send a user regulatory hint if applicable
3112 *
3113 * Device drivers that send a regulatory hint for a specific country
3114 * keep their own regulatory domain on wiphy->regd so that does does
3115 * not need to be remembered.
3116 */
3117 static void restore_regulatory_settings(bool reset_user)
3118 {
3119 char alpha2[2];
3120 char world_alpha2[2];
3121 struct reg_beacon *reg_beacon, *btmp;
3122 LIST_HEAD(tmp_reg_req_list);
3123 struct cfg80211_registered_device *rdev;
3124
3125 ASSERT_RTNL();
3126
3127 /*
3128 * Clear the indoor setting in case that it is not controlled by user
3129 * space, as otherwise there is no guarantee that the device is still
3130 * operating in an indoor environment.
3131 */
3132 spin_lock(&reg_indoor_lock);
3133 if (reg_is_indoor && !reg_is_indoor_portid) {
3134 reg_is_indoor = false;
3135 reg_check_channels();
3136 }
3137 spin_unlock(&reg_indoor_lock);
3138
3139 reset_regdomains(true, &world_regdom);
3140 restore_alpha2(alpha2, reset_user);
3141
3142 /*
3143 * If there's any pending requests we simply
3144 * stash them to a temporary pending queue and
3145 * add then after we've restored regulatory
3146 * settings.
3147 */
3148 spin_lock(&reg_requests_lock);
3149 list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
3150 spin_unlock(&reg_requests_lock);
3151
3152 /* Clear beacon hints */
3153 spin_lock_bh(&reg_pending_beacons_lock);
3154 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3155 list_del(&reg_beacon->list);
3156 kfree(reg_beacon);
3157 }
3158 spin_unlock_bh(&reg_pending_beacons_lock);
3159
3160 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3161 list_del(&reg_beacon->list);
3162 kfree(reg_beacon);
3163 }
3164
3165 /* First restore to the basic regulatory settings */
3166 world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3167 world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3168
3169 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3170 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3171 continue;
3172 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3173 restore_custom_reg_settings(&rdev->wiphy);
3174 }
3175
3176 regulatory_hint_core(world_alpha2);
3177
3178 /*
3179 * This restores the ieee80211_regdom module parameter
3180 * preference or the last user requested regulatory
3181 * settings, user regulatory settings takes precedence.
3182 */
3183 if (is_an_alpha2(alpha2))
3184 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3185
3186 spin_lock(&reg_requests_lock);
3187 list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
3188 spin_unlock(&reg_requests_lock);
3189
3190 pr_debug("Kicking the queue\n");
3191
3192 schedule_work(&reg_work);
3193 }
3194
3195 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3196 {
3197 struct cfg80211_registered_device *rdev;
3198 struct wireless_dev *wdev;
3199
3200 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3201 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3202 wdev_lock(wdev);
3203 if (!(wdev->wiphy->regulatory_flags & flag)) {
3204 wdev_unlock(wdev);
3205 return false;
3206 }
3207 wdev_unlock(wdev);
3208 }
3209 }
3210
3211 return true;
3212 }
3213
3214 void regulatory_hint_disconnect(void)
3215 {
3216 /* Restore of regulatory settings is not required when wiphy(s)
3217 * ignore IE from connected access point but clearance of beacon hints
3218 * is required when wiphy(s) supports beacon hints.
3219 */
3220 if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3221 struct reg_beacon *reg_beacon, *btmp;
3222
3223 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3224 return;
3225
3226 spin_lock_bh(&reg_pending_beacons_lock);
3227 list_for_each_entry_safe(reg_beacon, btmp,
3228 &reg_pending_beacons, list) {
3229 list_del(&reg_beacon->list);
3230 kfree(reg_beacon);
3231 }
3232 spin_unlock_bh(&reg_pending_beacons_lock);
3233
3234 list_for_each_entry_safe(reg_beacon, btmp,
3235 &reg_beacon_list, list) {
3236 list_del(&reg_beacon->list);
3237 kfree(reg_beacon);
3238 }
3239
3240 return;
3241 }
3242
3243 pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3244 restore_regulatory_settings(false);
3245 }
3246
3247 static bool freq_is_chan_12_13_14(u32 freq)
3248 {
3249 if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3250 freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3251 freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3252 return true;
3253 return false;
3254 }
3255
3256 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3257 {
3258 struct reg_beacon *pending_beacon;
3259
3260 list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
3261 if (beacon_chan->center_freq ==
3262 pending_beacon->chan.center_freq)
3263 return true;
3264 return false;
3265 }
3266
3267 int regulatory_hint_found_beacon(struct wiphy *wiphy,
3268 struct ieee80211_channel *beacon_chan,
3269 gfp_t gfp)
3270 {
3271 struct reg_beacon *reg_beacon;
3272 bool processing;
3273
3274 if (beacon_chan->beacon_found ||
3275 beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3276 (beacon_chan->band == NL80211_BAND_2GHZ &&
3277 !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3278 return 0;
3279
3280 spin_lock_bh(&reg_pending_beacons_lock);
3281 processing = pending_reg_beacon(beacon_chan);
3282 spin_unlock_bh(&reg_pending_beacons_lock);
3283
3284 if (processing)
3285 return 0;
3286
3287 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3288 if (!reg_beacon)
3289 return -ENOMEM;
3290
3291 pr_debug("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
3292 beacon_chan->center_freq,
3293 ieee80211_frequency_to_channel(beacon_chan->center_freq),
3294 wiphy_name(wiphy));
3295
3296 memcpy(&reg_beacon->chan, beacon_chan,
3297 sizeof(struct ieee80211_channel));
3298
3299 /*
3300 * Since we can be called from BH or and non-BH context
3301 * we must use spin_lock_bh()
3302 */
3303 spin_lock_bh(&reg_pending_beacons_lock);
3304 list_add_tail(&reg_beacon->list, &reg_pending_beacons);
3305 spin_unlock_bh(&reg_pending_beacons_lock);
3306
3307 schedule_work(&reg_work);
3308
3309 return 0;
3310 }
3311
3312 static void print_rd_rules(const struct ieee80211_regdomain *rd)
3313 {
3314 unsigned int i;
3315 const struct ieee80211_reg_rule *reg_rule = NULL;
3316 const struct ieee80211_freq_range *freq_range = NULL;
3317 const struct ieee80211_power_rule *power_rule = NULL;
3318 char bw[32], cac_time[32];
3319
3320 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3321
3322 for (i = 0; i < rd->n_reg_rules; i++) {
3323 reg_rule = &rd->reg_rules[i];
3324 freq_range = &reg_rule->freq_range;
3325 power_rule = &reg_rule->power_rule;
3326
3327 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3328 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
3329 freq_range->max_bandwidth_khz,
3330 reg_get_max_bandwidth(rd, reg_rule));
3331 else
3332 snprintf(bw, sizeof(bw), "%d KHz",
3333 freq_range->max_bandwidth_khz);
3334
3335 if (reg_rule->flags & NL80211_RRF_DFS)
3336 scnprintf(cac_time, sizeof(cac_time), "%u s",
3337 reg_rule->dfs_cac_ms/1000);
3338 else
3339 scnprintf(cac_time, sizeof(cac_time), "N/A");
3340
3341
3342 /*
3343 * There may not be documentation for max antenna gain
3344 * in certain regions
3345 */
3346 if (power_rule->max_antenna_gain)
3347 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3348 freq_range->start_freq_khz,
3349 freq_range->end_freq_khz,
3350 bw,
3351 power_rule->max_antenna_gain,
3352 power_rule->max_eirp,
3353 cac_time);
3354 else
3355 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3356 freq_range->start_freq_khz,
3357 freq_range->end_freq_khz,
3358 bw,
3359 power_rule->max_eirp,
3360 cac_time);
3361 }
3362 }
3363
3364 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3365 {
3366 switch (dfs_region) {
3367 case NL80211_DFS_UNSET:
3368 case NL80211_DFS_FCC:
3369 case NL80211_DFS_ETSI:
3370 case NL80211_DFS_JP:
3371 return true;
3372 default:
3373 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3374 return false;
3375 }
3376 }
3377
3378 static void print_regdomain(const struct ieee80211_regdomain *rd)
3379 {
3380 struct regulatory_request *lr = get_last_request();
3381
3382 if (is_intersected_alpha2(rd->alpha2)) {
3383 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3384 struct cfg80211_registered_device *rdev;
3385 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3386 if (rdev) {
3387 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3388 rdev->country_ie_alpha2[0],
3389 rdev->country_ie_alpha2[1]);
3390 } else
3391 pr_debug("Current regulatory domain intersected:\n");
3392 } else
3393 pr_debug("Current regulatory domain intersected:\n");
3394 } else if (is_world_regdom(rd->alpha2)) {
3395 pr_debug("World regulatory domain updated:\n");
3396 } else {
3397 if (is_unknown_alpha2(rd->alpha2))
3398 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3399 else {
3400 if (reg_request_cell_base(lr))
3401 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3402 rd->alpha2[0], rd->alpha2[1]);
3403 else
3404 pr_debug("Regulatory domain changed to country: %c%c\n",
3405 rd->alpha2[0], rd->alpha2[1]);
3406 }
3407 }
3408
3409 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3410 print_rd_rules(rd);
3411 }
3412
3413 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3414 {
3415 pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3416 print_rd_rules(rd);
3417 }
3418
3419 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3420 {
3421 if (!is_world_regdom(rd->alpha2))
3422 return -EINVAL;
3423 update_world_regdomain(rd);
3424 return 0;
3425 }
3426
3427 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3428 struct regulatory_request *user_request)
3429 {
3430 const struct ieee80211_regdomain *intersected_rd = NULL;
3431
3432 if (!regdom_changes(rd->alpha2))
3433 return -EALREADY;
3434
3435 if (!is_valid_rd(rd)) {
3436 pr_err("Invalid regulatory domain detected: %c%c\n",
3437 rd->alpha2[0], rd->alpha2[1]);
3438 print_regdomain_info(rd);
3439 return -EINVAL;
3440 }
3441
3442 if (!user_request->intersect) {
3443 reset_regdomains(false, rd);
3444 return 0;
3445 }
3446
3447 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3448 if (!intersected_rd)
3449 return -EINVAL;
3450
3451 kfree(rd);
3452 rd = NULL;
3453 reset_regdomains(false, intersected_rd);
3454
3455 return 0;
3456 }
3457
3458 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3459 struct regulatory_request *driver_request)
3460 {
3461 const struct ieee80211_regdomain *regd;
3462 const struct ieee80211_regdomain *intersected_rd = NULL;
3463 const struct ieee80211_regdomain *tmp;
3464 struct wiphy *request_wiphy;
3465
3466 if (is_world_regdom(rd->alpha2))
3467 return -EINVAL;
3468
3469 if (!regdom_changes(rd->alpha2))
3470 return -EALREADY;
3471
3472 if (!is_valid_rd(rd)) {
3473 pr_err("Invalid regulatory domain detected: %c%c\n",
3474 rd->alpha2[0], rd->alpha2[1]);
3475 print_regdomain_info(rd);
3476 return -EINVAL;
3477 }
3478
3479 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3480 if (!request_wiphy)
3481 return -ENODEV;
3482
3483 if (!driver_request->intersect) {
3484 if (request_wiphy->regd)
3485 return -EALREADY;
3486
3487 regd = reg_copy_regd(rd);
3488 if (IS_ERR(regd))
3489 return PTR_ERR(regd);
3490
3491 rcu_assign_pointer(request_wiphy->regd, regd);
3492 reset_regdomains(false, rd);
3493 return 0;
3494 }
3495
3496 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3497 if (!intersected_rd)
3498 return -EINVAL;
3499
3500 /*
3501 * We can trash what CRDA provided now.
3502 * However if a driver requested this specific regulatory
3503 * domain we keep it for its private use
3504 */
3505 tmp = get_wiphy_regdom(request_wiphy);
3506 rcu_assign_pointer(request_wiphy->regd, rd);
3507 rcu_free_regdom(tmp);
3508
3509 rd = NULL;
3510
3511 reset_regdomains(false, intersected_rd);
3512
3513 return 0;
3514 }
3515
3516 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3517 struct regulatory_request *country_ie_request)
3518 {
3519 struct wiphy *request_wiphy;
3520
3521 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3522 !is_unknown_alpha2(rd->alpha2))
3523 return -EINVAL;
3524
3525 /*
3526 * Lets only bother proceeding on the same alpha2 if the current
3527 * rd is non static (it means CRDA was present and was used last)
3528 * and the pending request came in from a country IE
3529 */
3530
3531 if (!is_valid_rd(rd)) {
3532 pr_err("Invalid regulatory domain detected: %c%c\n",
3533 rd->alpha2[0], rd->alpha2[1]);
3534 print_regdomain_info(rd);
3535 return -EINVAL;
3536 }
3537
3538 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3539 if (!request_wiphy)
3540 return -ENODEV;
3541
3542 if (country_ie_request->intersect)
3543 return -EINVAL;
3544
3545 reset_regdomains(false, rd);
3546 return 0;
3547 }
3548
3549 /*
3550 * Use this call to set the current regulatory domain. Conflicts with
3551 * multiple drivers can be ironed out later. Caller must've already
3552 * kmalloc'd the rd structure.
3553 */
3554 int set_regdom(const struct ieee80211_regdomain *rd,
3555 enum ieee80211_regd_source regd_src)
3556 {
3557 struct regulatory_request *lr;
3558 bool user_reset = false;
3559 int r;
3560
3561 if (!reg_is_valid_request(rd->alpha2)) {
3562 kfree(rd);
3563 return -EINVAL;
3564 }
3565
3566 if (regd_src == REGD_SOURCE_CRDA)
3567 reset_crda_timeouts();
3568
3569 lr = get_last_request();
3570
3571 /* Note that this doesn't update the wiphys, this is done below */
3572 switch (lr->initiator) {
3573 case NL80211_REGDOM_SET_BY_CORE:
3574 r = reg_set_rd_core(rd);
3575 break;
3576 case NL80211_REGDOM_SET_BY_USER:
3577 r = reg_set_rd_user(rd, lr);
3578 user_reset = true;
3579 break;
3580 case NL80211_REGDOM_SET_BY_DRIVER:
3581 r = reg_set_rd_driver(rd, lr);
3582 break;
3583 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3584 r = reg_set_rd_country_ie(rd, lr);
3585 break;
3586 default:
3587 WARN(1, "invalid initiator %d\n", lr->initiator);
3588 kfree(rd);
3589 return -EINVAL;
3590 }
3591
3592 if (r) {
3593 switch (r) {
3594 case -EALREADY:
3595 reg_set_request_processed();
3596 break;
3597 default:
3598 /* Back to world regulatory in case of errors */
3599 restore_regulatory_settings(user_reset);
3600 }
3601
3602 kfree(rd);
3603 return r;
3604 }
3605
3606 /* This would make this whole thing pointless */
3607 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3608 return -EINVAL;
3609
3610 /* update all wiphys now with the new established regulatory domain */
3611 update_all_wiphy_regulatory(lr->initiator);
3612
3613 print_regdomain(get_cfg80211_regdom());
3614
3615 nl80211_send_reg_change_event(lr);
3616
3617 reg_set_request_processed();
3618
3619 return 0;
3620 }
3621
3622 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
3623 struct ieee80211_regdomain *rd)
3624 {
3625 const struct ieee80211_regdomain *regd;
3626 const struct ieee80211_regdomain *prev_regd;
3627 struct cfg80211_registered_device *rdev;
3628
3629 if (WARN_ON(!wiphy || !rd))
3630 return -EINVAL;
3631
3632 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
3633 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3634 return -EPERM;
3635
3636 if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
3637 print_regdomain_info(rd);
3638 return -EINVAL;
3639 }
3640
3641 regd = reg_copy_regd(rd);
3642 if (IS_ERR(regd))
3643 return PTR_ERR(regd);
3644
3645 rdev = wiphy_to_rdev(wiphy);
3646
3647 spin_lock(&reg_requests_lock);
3648 prev_regd = rdev->requested_regd;
3649 rdev->requested_regd = regd;
3650 spin_unlock(&reg_requests_lock);
3651
3652 kfree(prev_regd);
3653 return 0;
3654 }
3655
3656 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
3657 struct ieee80211_regdomain *rd)
3658 {
3659 int ret = __regulatory_set_wiphy_regd(wiphy, rd);
3660
3661 if (ret)
3662 return ret;
3663
3664 schedule_work(&reg_work);
3665 return 0;
3666 }
3667 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
3668
3669 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy,
3670 struct ieee80211_regdomain *rd)
3671 {
3672 int ret;
3673
3674 ASSERT_RTNL();
3675
3676 ret = __regulatory_set_wiphy_regd(wiphy, rd);
3677 if (ret)
3678 return ret;
3679
3680 /* process the request immediately */
3681 reg_process_self_managed_hints();
3682 return 0;
3683 }
3684 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl);
3685
3686 void wiphy_regulatory_register(struct wiphy *wiphy)
3687 {
3688 struct regulatory_request *lr = get_last_request();
3689
3690 /* self-managed devices ignore beacon hints and country IE */
3691 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
3692 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
3693 REGULATORY_COUNTRY_IE_IGNORE;
3694
3695 /*
3696 * The last request may have been received before this
3697 * registration call. Call the driver notifier if
3698 * initiator is USER and user type is CELL_BASE.
3699 */
3700 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
3701 lr->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE)
3702 reg_call_notifier(wiphy, lr);
3703 }
3704
3705 if (!reg_dev_ignore_cell_hint(wiphy))
3706 reg_num_devs_support_basehint++;
3707
3708 wiphy_update_regulatory(wiphy, lr->initiator);
3709 wiphy_all_share_dfs_chan_state(wiphy);
3710 }
3711
3712 void wiphy_regulatory_deregister(struct wiphy *wiphy)
3713 {
3714 struct wiphy *request_wiphy = NULL;
3715 struct regulatory_request *lr;
3716
3717 lr = get_last_request();
3718
3719 if (!reg_dev_ignore_cell_hint(wiphy))
3720 reg_num_devs_support_basehint--;
3721
3722 rcu_free_regdom(get_wiphy_regdom(wiphy));
3723 RCU_INIT_POINTER(wiphy->regd, NULL);
3724
3725 if (lr)
3726 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
3727
3728 if (!request_wiphy || request_wiphy != wiphy)
3729 return;
3730
3731 lr->wiphy_idx = WIPHY_IDX_INVALID;
3732 lr->country_ie_env = ENVIRON_ANY;
3733 }
3734
3735 /*
3736 * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
3737 * UNII band definitions
3738 */
3739 int cfg80211_get_unii(int freq)
3740 {
3741 /* UNII-1 */
3742 if (freq >= 5150 && freq <= 5250)
3743 return 0;
3744
3745 /* UNII-2A */
3746 if (freq > 5250 && freq <= 5350)
3747 return 1;
3748
3749 /* UNII-2B */
3750 if (freq > 5350 && freq <= 5470)
3751 return 2;
3752
3753 /* UNII-2C */
3754 if (freq > 5470 && freq <= 5725)
3755 return 3;
3756
3757 /* UNII-3 */
3758 if (freq > 5725 && freq <= 5825)
3759 return 4;
3760
3761 return -EINVAL;
3762 }
3763
3764 bool regulatory_indoor_allowed(void)
3765 {
3766 return reg_is_indoor;
3767 }
3768
3769 bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
3770 {
3771 const struct ieee80211_regdomain *regd = NULL;
3772 const struct ieee80211_regdomain *wiphy_regd = NULL;
3773 bool pre_cac_allowed = false;
3774
3775 rcu_read_lock();
3776
3777 regd = rcu_dereference(cfg80211_regdomain);
3778 wiphy_regd = rcu_dereference(wiphy->regd);
3779 if (!wiphy_regd) {
3780 if (regd->dfs_region == NL80211_DFS_ETSI)
3781 pre_cac_allowed = true;
3782
3783 rcu_read_unlock();
3784
3785 return pre_cac_allowed;
3786 }
3787
3788 if (regd->dfs_region == wiphy_regd->dfs_region &&
3789 wiphy_regd->dfs_region == NL80211_DFS_ETSI)
3790 pre_cac_allowed = true;
3791
3792 rcu_read_unlock();
3793
3794 return pre_cac_allowed;
3795 }
3796
3797 void regulatory_propagate_dfs_state(struct wiphy *wiphy,
3798 struct cfg80211_chan_def *chandef,
3799 enum nl80211_dfs_state dfs_state,
3800 enum nl80211_radar_event event)
3801 {
3802 struct cfg80211_registered_device *rdev;
3803
3804 ASSERT_RTNL();
3805
3806 if (WARN_ON(!cfg80211_chandef_valid(chandef)))
3807 return;
3808
3809 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3810 if (wiphy == &rdev->wiphy)
3811 continue;
3812
3813 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
3814 continue;
3815
3816 if (!ieee80211_get_channel(&rdev->wiphy,
3817 chandef->chan->center_freq))
3818 continue;
3819
3820 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
3821
3822 if (event == NL80211_RADAR_DETECTED ||
3823 event == NL80211_RADAR_CAC_FINISHED)
3824 cfg80211_sched_dfs_chan_update(rdev);
3825
3826 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
3827 }
3828 }
3829
3830 static int __init regulatory_init_db(void)
3831 {
3832 int err;
3833
3834 /*
3835 * It's possible that - due to other bugs/issues - cfg80211
3836 * never called regulatory_init() below, or that it failed;
3837 * in that case, don't try to do any further work here as
3838 * it's doomed to lead to crashes.
3839 */
3840 if (IS_ERR_OR_NULL(reg_pdev))
3841 return -EINVAL;
3842
3843 err = load_builtin_regdb_keys();
3844 if (err)
3845 return err;
3846
3847 /* We always try to get an update for the static regdomain */
3848 err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
3849 if (err) {
3850 if (err == -ENOMEM) {
3851 platform_device_unregister(reg_pdev);
3852 return err;
3853 }
3854 /*
3855 * N.B. kobject_uevent_env() can fail mainly for when we're out
3856 * memory which is handled and propagated appropriately above
3857 * but it can also fail during a netlink_broadcast() or during
3858 * early boot for call_usermodehelper(). For now treat these
3859 * errors as non-fatal.
3860 */
3861 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
3862 }
3863
3864 /*
3865 * Finally, if the user set the module parameter treat it
3866 * as a user hint.
3867 */
3868 if (!is_world_regdom(ieee80211_regdom))
3869 regulatory_hint_user(ieee80211_regdom,
3870 NL80211_USER_REG_HINT_USER);
3871
3872 return 0;
3873 }
3874 #ifndef MODULE
3875 late_initcall(regulatory_init_db);
3876 #endif
3877
3878 int __init regulatory_init(void)
3879 {
3880 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
3881 if (IS_ERR(reg_pdev))
3882 return PTR_ERR(reg_pdev);
3883
3884 spin_lock_init(&reg_requests_lock);
3885 spin_lock_init(&reg_pending_beacons_lock);
3886 spin_lock_init(&reg_indoor_lock);
3887
3888 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
3889
3890 user_alpha2[0] = '9';
3891 user_alpha2[1] = '7';
3892
3893 #ifdef MODULE
3894 return regulatory_init_db();
3895 #else
3896 return 0;
3897 #endif
3898 }
3899
3900 void regulatory_exit(void)
3901 {
3902 struct regulatory_request *reg_request, *tmp;
3903 struct reg_beacon *reg_beacon, *btmp;
3904
3905 cancel_work_sync(&reg_work);
3906 cancel_crda_timeout_sync();
3907 cancel_delayed_work_sync(&reg_check_chans);
3908
3909 /* Lock to suppress warnings */
3910 rtnl_lock();
3911 reset_regdomains(true, NULL);
3912 rtnl_unlock();
3913
3914 dev_set_uevent_suppress(&reg_pdev->dev, true);
3915
3916 platform_device_unregister(reg_pdev);
3917
3918 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3919 list_del(&reg_beacon->list);
3920 kfree(reg_beacon);
3921 }
3922
3923 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3924 list_del(&reg_beacon->list);
3925 kfree(reg_beacon);
3926 }
3927
3928 list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
3929 list_del(&reg_request->list);
3930 kfree(reg_request);
3931 }
3932
3933 if (!IS_ERR_OR_NULL(regdb))
3934 kfree(regdb);
3935
3936 free_regdb_keyring();
3937 }