]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - net/wireless/reg.c
wireless: remove unreachable code
[mirror_ubuntu-jammy-kernel.git] / net / wireless / reg.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 *
7 * Permission to use, copy, modify, and/or distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20
21 /**
22 * DOC: Wireless regulatory infrastructure
23 *
24 * The usual implementation is for a driver to read a device EEPROM to
25 * determine which regulatory domain it should be operating under, then
26 * looking up the allowable channels in a driver-local table and finally
27 * registering those channels in the wiphy structure.
28 *
29 * Another set of compliance enforcement is for drivers to use their
30 * own compliance limits which can be stored on the EEPROM. The host
31 * driver or firmware may ensure these are used.
32 *
33 * In addition to all this we provide an extra layer of regulatory
34 * conformance. For drivers which do not have any regulatory
35 * information CRDA provides the complete regulatory solution.
36 * For others it provides a community effort on further restrictions
37 * to enhance compliance.
38 *
39 * Note: When number of rules --> infinity we will not be able to
40 * index on alpha2 any more, instead we'll probably have to
41 * rely on some SHA1 checksum of the regdomain for example.
42 *
43 */
44
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
47 #include <linux/kernel.h>
48 #include <linux/export.h>
49 #include <linux/slab.h>
50 #include <linux/list.h>
51 #include <linux/random.h>
52 #include <linux/ctype.h>
53 #include <linux/nl80211.h>
54 #include <linux/platform_device.h>
55 #include <linux/moduleparam.h>
56 #include <net/cfg80211.h>
57 #include "core.h"
58 #include "reg.h"
59 #include "regdb.h"
60 #include "nl80211.h"
61
62 #ifdef CONFIG_CFG80211_REG_DEBUG
63 #define REG_DBG_PRINT(format, args...) \
64 printk(KERN_DEBUG pr_fmt(format), ##args)
65 #else
66 #define REG_DBG_PRINT(args...)
67 #endif
68
69 static struct regulatory_request core_request_world = {
70 .initiator = NL80211_REGDOM_SET_BY_CORE,
71 .alpha2[0] = '0',
72 .alpha2[1] = '0',
73 .intersect = false,
74 .processed = true,
75 .country_ie_env = ENVIRON_ANY,
76 };
77
78 /* Receipt of information from last regulatory request */
79 static struct regulatory_request *last_request = &core_request_world;
80
81 /* To trigger userspace events */
82 static struct platform_device *reg_pdev;
83
84 static struct device_type reg_device_type = {
85 .uevent = reg_device_uevent,
86 };
87
88 /*
89 * Central wireless core regulatory domains, we only need two,
90 * the current one and a world regulatory domain in case we have no
91 * information to give us an alpha2
92 */
93 const struct ieee80211_regdomain *cfg80211_regdomain;
94
95 /*
96 * Protects static reg.c components:
97 * - cfg80211_world_regdom
98 * - cfg80211_regdom
99 * - last_request
100 * - reg_num_devs_support_basehint
101 */
102 static DEFINE_MUTEX(reg_mutex);
103
104 /*
105 * Number of devices that registered to the core
106 * that support cellular base station regulatory hints
107 */
108 static int reg_num_devs_support_basehint;
109
110 static inline void assert_reg_lock(void)
111 {
112 lockdep_assert_held(&reg_mutex);
113 }
114
115 /* Used to queue up regulatory hints */
116 static LIST_HEAD(reg_requests_list);
117 static spinlock_t reg_requests_lock;
118
119 /* Used to queue up beacon hints for review */
120 static LIST_HEAD(reg_pending_beacons);
121 static spinlock_t reg_pending_beacons_lock;
122
123 /* Used to keep track of processed beacon hints */
124 static LIST_HEAD(reg_beacon_list);
125
126 struct reg_beacon {
127 struct list_head list;
128 struct ieee80211_channel chan;
129 };
130
131 static void reg_todo(struct work_struct *work);
132 static DECLARE_WORK(reg_work, reg_todo);
133
134 static void reg_timeout_work(struct work_struct *work);
135 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
136
137 /* We keep a static world regulatory domain in case of the absence of CRDA */
138 static const struct ieee80211_regdomain world_regdom = {
139 .n_reg_rules = 6,
140 .alpha2 = "00",
141 .reg_rules = {
142 /* IEEE 802.11b/g, channels 1..11 */
143 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
144 /* IEEE 802.11b/g, channels 12..13. No HT40
145 * channel fits here. */
146 REG_RULE(2467-10, 2472+10, 20, 6, 20,
147 NL80211_RRF_PASSIVE_SCAN |
148 NL80211_RRF_NO_IBSS),
149 /* IEEE 802.11 channel 14 - Only JP enables
150 * this and for 802.11b only */
151 REG_RULE(2484-10, 2484+10, 20, 6, 20,
152 NL80211_RRF_PASSIVE_SCAN |
153 NL80211_RRF_NO_IBSS |
154 NL80211_RRF_NO_OFDM),
155 /* IEEE 802.11a, channel 36..48 */
156 REG_RULE(5180-10, 5240+10, 40, 6, 20,
157 NL80211_RRF_PASSIVE_SCAN |
158 NL80211_RRF_NO_IBSS),
159
160 /* NB: 5260 MHz - 5700 MHz requies DFS */
161
162 /* IEEE 802.11a, channel 149..165 */
163 REG_RULE(5745-10, 5825+10, 40, 6, 20,
164 NL80211_RRF_PASSIVE_SCAN |
165 NL80211_RRF_NO_IBSS),
166
167 /* IEEE 802.11ad (60gHz), channels 1..3 */
168 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
169 }
170 };
171
172 static const struct ieee80211_regdomain *cfg80211_world_regdom =
173 &world_regdom;
174
175 static char *ieee80211_regdom = "00";
176 static char user_alpha2[2];
177
178 module_param(ieee80211_regdom, charp, 0444);
179 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
180
181 static void reset_regdomains(bool full_reset)
182 {
183 /* avoid freeing static information or freeing something twice */
184 if (cfg80211_regdomain == cfg80211_world_regdom)
185 cfg80211_regdomain = NULL;
186 if (cfg80211_world_regdom == &world_regdom)
187 cfg80211_world_regdom = NULL;
188 if (cfg80211_regdomain == &world_regdom)
189 cfg80211_regdomain = NULL;
190
191 kfree(cfg80211_regdomain);
192 kfree(cfg80211_world_regdom);
193
194 cfg80211_world_regdom = &world_regdom;
195 cfg80211_regdomain = NULL;
196
197 if (!full_reset)
198 return;
199
200 if (last_request != &core_request_world)
201 kfree(last_request);
202 last_request = &core_request_world;
203 }
204
205 /*
206 * Dynamic world regulatory domain requested by the wireless
207 * core upon initialization
208 */
209 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
210 {
211 BUG_ON(!last_request);
212
213 reset_regdomains(false);
214
215 cfg80211_world_regdom = rd;
216 cfg80211_regdomain = rd;
217 }
218
219 bool is_world_regdom(const char *alpha2)
220 {
221 if (!alpha2)
222 return false;
223 if (alpha2[0] == '0' && alpha2[1] == '0')
224 return true;
225 return false;
226 }
227
228 static bool is_alpha2_set(const char *alpha2)
229 {
230 if (!alpha2)
231 return false;
232 if (alpha2[0] != 0 && alpha2[1] != 0)
233 return true;
234 return false;
235 }
236
237 static bool is_unknown_alpha2(const char *alpha2)
238 {
239 if (!alpha2)
240 return false;
241 /*
242 * Special case where regulatory domain was built by driver
243 * but a specific alpha2 cannot be determined
244 */
245 if (alpha2[0] == '9' && alpha2[1] == '9')
246 return true;
247 return false;
248 }
249
250 static bool is_intersected_alpha2(const char *alpha2)
251 {
252 if (!alpha2)
253 return false;
254 /*
255 * Special case where regulatory domain is the
256 * result of an intersection between two regulatory domain
257 * structures
258 */
259 if (alpha2[0] == '9' && alpha2[1] == '8')
260 return true;
261 return false;
262 }
263
264 static bool is_an_alpha2(const char *alpha2)
265 {
266 if (!alpha2)
267 return false;
268 if (isalpha(alpha2[0]) && isalpha(alpha2[1]))
269 return true;
270 return false;
271 }
272
273 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
274 {
275 if (!alpha2_x || !alpha2_y)
276 return false;
277 if (alpha2_x[0] == alpha2_y[0] &&
278 alpha2_x[1] == alpha2_y[1])
279 return true;
280 return false;
281 }
282
283 static bool regdom_changes(const char *alpha2)
284 {
285 assert_cfg80211_lock();
286
287 if (!cfg80211_regdomain)
288 return true;
289 if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
290 return false;
291 return true;
292 }
293
294 /*
295 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
296 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
297 * has ever been issued.
298 */
299 static bool is_user_regdom_saved(void)
300 {
301 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
302 return false;
303
304 /* This would indicate a mistake on the design */
305 if (WARN((!is_world_regdom(user_alpha2) &&
306 !is_an_alpha2(user_alpha2)),
307 "Unexpected user alpha2: %c%c\n",
308 user_alpha2[0],
309 user_alpha2[1]))
310 return false;
311
312 return true;
313 }
314
315 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
316 const struct ieee80211_regdomain *src_regd)
317 {
318 struct ieee80211_regdomain *regd;
319 int size_of_regd = 0;
320 unsigned int i;
321
322 size_of_regd = sizeof(struct ieee80211_regdomain) +
323 ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
324
325 regd = kzalloc(size_of_regd, GFP_KERNEL);
326 if (!regd)
327 return -ENOMEM;
328
329 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
330
331 for (i = 0; i < src_regd->n_reg_rules; i++)
332 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
333 sizeof(struct ieee80211_reg_rule));
334
335 *dst_regd = regd;
336 return 0;
337 }
338
339 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
340 struct reg_regdb_search_request {
341 char alpha2[2];
342 struct list_head list;
343 };
344
345 static LIST_HEAD(reg_regdb_search_list);
346 static DEFINE_MUTEX(reg_regdb_search_mutex);
347
348 static void reg_regdb_search(struct work_struct *work)
349 {
350 struct reg_regdb_search_request *request;
351 const struct ieee80211_regdomain *curdom, *regdom;
352 int i, r;
353
354 mutex_lock(&reg_regdb_search_mutex);
355 while (!list_empty(&reg_regdb_search_list)) {
356 request = list_first_entry(&reg_regdb_search_list,
357 struct reg_regdb_search_request,
358 list);
359 list_del(&request->list);
360
361 for (i=0; i<reg_regdb_size; i++) {
362 curdom = reg_regdb[i];
363
364 if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
365 r = reg_copy_regd(&regdom, curdom);
366 if (r)
367 break;
368 mutex_lock(&cfg80211_mutex);
369 set_regdom(regdom);
370 mutex_unlock(&cfg80211_mutex);
371 break;
372 }
373 }
374
375 kfree(request);
376 }
377 mutex_unlock(&reg_regdb_search_mutex);
378 }
379
380 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
381
382 static void reg_regdb_query(const char *alpha2)
383 {
384 struct reg_regdb_search_request *request;
385
386 if (!alpha2)
387 return;
388
389 request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
390 if (!request)
391 return;
392
393 memcpy(request->alpha2, alpha2, 2);
394
395 mutex_lock(&reg_regdb_search_mutex);
396 list_add_tail(&request->list, &reg_regdb_search_list);
397 mutex_unlock(&reg_regdb_search_mutex);
398
399 schedule_work(&reg_regdb_work);
400 }
401
402 /* Feel free to add any other sanity checks here */
403 static void reg_regdb_size_check(void)
404 {
405 /* We should ideally BUILD_BUG_ON() but then random builds would fail */
406 WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
407 }
408 #else
409 static inline void reg_regdb_size_check(void) {}
410 static inline void reg_regdb_query(const char *alpha2) {}
411 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
412
413 /*
414 * This lets us keep regulatory code which is updated on a regulatory
415 * basis in userspace. Country information is filled in by
416 * reg_device_uevent
417 */
418 static int call_crda(const char *alpha2)
419 {
420 if (!is_world_regdom((char *) alpha2))
421 pr_info("Calling CRDA for country: %c%c\n",
422 alpha2[0], alpha2[1]);
423 else
424 pr_info("Calling CRDA to update world regulatory domain\n");
425
426 /* query internal regulatory database (if it exists) */
427 reg_regdb_query(alpha2);
428
429 return kobject_uevent(&reg_pdev->dev.kobj, KOBJ_CHANGE);
430 }
431
432 /* Used by nl80211 before kmalloc'ing our regulatory domain */
433 bool reg_is_valid_request(const char *alpha2)
434 {
435 assert_cfg80211_lock();
436
437 if (!last_request)
438 return false;
439
440 return alpha2_equal(last_request->alpha2, alpha2);
441 }
442
443 /* Sanity check on a regulatory rule */
444 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
445 {
446 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
447 u32 freq_diff;
448
449 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
450 return false;
451
452 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
453 return false;
454
455 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
456
457 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
458 freq_range->max_bandwidth_khz > freq_diff)
459 return false;
460
461 return true;
462 }
463
464 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
465 {
466 const struct ieee80211_reg_rule *reg_rule = NULL;
467 unsigned int i;
468
469 if (!rd->n_reg_rules)
470 return false;
471
472 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
473 return false;
474
475 for (i = 0; i < rd->n_reg_rules; i++) {
476 reg_rule = &rd->reg_rules[i];
477 if (!is_valid_reg_rule(reg_rule))
478 return false;
479 }
480
481 return true;
482 }
483
484 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
485 u32 center_freq_khz,
486 u32 bw_khz)
487 {
488 u32 start_freq_khz, end_freq_khz;
489
490 start_freq_khz = center_freq_khz - (bw_khz/2);
491 end_freq_khz = center_freq_khz + (bw_khz/2);
492
493 if (start_freq_khz >= freq_range->start_freq_khz &&
494 end_freq_khz <= freq_range->end_freq_khz)
495 return true;
496
497 return false;
498 }
499
500 /**
501 * freq_in_rule_band - tells us if a frequency is in a frequency band
502 * @freq_range: frequency rule we want to query
503 * @freq_khz: frequency we are inquiring about
504 *
505 * This lets us know if a specific frequency rule is or is not relevant to
506 * a specific frequency's band. Bands are device specific and artificial
507 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
508 * safe for now to assume that a frequency rule should not be part of a
509 * frequency's band if the start freq or end freq are off by more than 2 GHz.
510 * This resolution can be lowered and should be considered as we add
511 * regulatory rule support for other "bands".
512 **/
513 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
514 u32 freq_khz)
515 {
516 #define ONE_GHZ_IN_KHZ 1000000
517 if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
518 return true;
519 if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
520 return true;
521 return false;
522 #undef ONE_GHZ_IN_KHZ
523 }
524
525 /*
526 * Helper for regdom_intersect(), this does the real
527 * mathematical intersection fun
528 */
529 static int reg_rules_intersect(
530 const struct ieee80211_reg_rule *rule1,
531 const struct ieee80211_reg_rule *rule2,
532 struct ieee80211_reg_rule *intersected_rule)
533 {
534 const struct ieee80211_freq_range *freq_range1, *freq_range2;
535 struct ieee80211_freq_range *freq_range;
536 const struct ieee80211_power_rule *power_rule1, *power_rule2;
537 struct ieee80211_power_rule *power_rule;
538 u32 freq_diff;
539
540 freq_range1 = &rule1->freq_range;
541 freq_range2 = &rule2->freq_range;
542 freq_range = &intersected_rule->freq_range;
543
544 power_rule1 = &rule1->power_rule;
545 power_rule2 = &rule2->power_rule;
546 power_rule = &intersected_rule->power_rule;
547
548 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
549 freq_range2->start_freq_khz);
550 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
551 freq_range2->end_freq_khz);
552 freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
553 freq_range2->max_bandwidth_khz);
554
555 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
556 if (freq_range->max_bandwidth_khz > freq_diff)
557 freq_range->max_bandwidth_khz = freq_diff;
558
559 power_rule->max_eirp = min(power_rule1->max_eirp,
560 power_rule2->max_eirp);
561 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
562 power_rule2->max_antenna_gain);
563
564 intersected_rule->flags = (rule1->flags | rule2->flags);
565
566 if (!is_valid_reg_rule(intersected_rule))
567 return -EINVAL;
568
569 return 0;
570 }
571
572 /**
573 * regdom_intersect - do the intersection between two regulatory domains
574 * @rd1: first regulatory domain
575 * @rd2: second regulatory domain
576 *
577 * Use this function to get the intersection between two regulatory domains.
578 * Once completed we will mark the alpha2 for the rd as intersected, "98",
579 * as no one single alpha2 can represent this regulatory domain.
580 *
581 * Returns a pointer to the regulatory domain structure which will hold the
582 * resulting intersection of rules between rd1 and rd2. We will
583 * kzalloc() this structure for you.
584 */
585 static struct ieee80211_regdomain *regdom_intersect(
586 const struct ieee80211_regdomain *rd1,
587 const struct ieee80211_regdomain *rd2)
588 {
589 int r, size_of_regd;
590 unsigned int x, y;
591 unsigned int num_rules = 0, rule_idx = 0;
592 const struct ieee80211_reg_rule *rule1, *rule2;
593 struct ieee80211_reg_rule *intersected_rule;
594 struct ieee80211_regdomain *rd;
595 /* This is just a dummy holder to help us count */
596 struct ieee80211_reg_rule irule;
597
598 /* Uses the stack temporarily for counter arithmetic */
599 intersected_rule = &irule;
600
601 memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
602
603 if (!rd1 || !rd2)
604 return NULL;
605
606 /*
607 * First we get a count of the rules we'll need, then we actually
608 * build them. This is to so we can malloc() and free() a
609 * regdomain once. The reason we use reg_rules_intersect() here
610 * is it will return -EINVAL if the rule computed makes no sense.
611 * All rules that do check out OK are valid.
612 */
613
614 for (x = 0; x < rd1->n_reg_rules; x++) {
615 rule1 = &rd1->reg_rules[x];
616 for (y = 0; y < rd2->n_reg_rules; y++) {
617 rule2 = &rd2->reg_rules[y];
618 if (!reg_rules_intersect(rule1, rule2,
619 intersected_rule))
620 num_rules++;
621 memset(intersected_rule, 0,
622 sizeof(struct ieee80211_reg_rule));
623 }
624 }
625
626 if (!num_rules)
627 return NULL;
628
629 size_of_regd = sizeof(struct ieee80211_regdomain) +
630 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
631
632 rd = kzalloc(size_of_regd, GFP_KERNEL);
633 if (!rd)
634 return NULL;
635
636 for (x = 0; x < rd1->n_reg_rules; x++) {
637 rule1 = &rd1->reg_rules[x];
638 for (y = 0; y < rd2->n_reg_rules; y++) {
639 rule2 = &rd2->reg_rules[y];
640 /*
641 * This time around instead of using the stack lets
642 * write to the target rule directly saving ourselves
643 * a memcpy()
644 */
645 intersected_rule = &rd->reg_rules[rule_idx];
646 r = reg_rules_intersect(rule1, rule2,
647 intersected_rule);
648 /*
649 * No need to memset here the intersected rule here as
650 * we're not using the stack anymore
651 */
652 if (r)
653 continue;
654 rule_idx++;
655 }
656 }
657
658 if (rule_idx != num_rules) {
659 kfree(rd);
660 return NULL;
661 }
662
663 rd->n_reg_rules = num_rules;
664 rd->alpha2[0] = '9';
665 rd->alpha2[1] = '8';
666
667 return rd;
668 }
669
670 /*
671 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
672 * want to just have the channel structure use these
673 */
674 static u32 map_regdom_flags(u32 rd_flags)
675 {
676 u32 channel_flags = 0;
677 if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
678 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
679 if (rd_flags & NL80211_RRF_NO_IBSS)
680 channel_flags |= IEEE80211_CHAN_NO_IBSS;
681 if (rd_flags & NL80211_RRF_DFS)
682 channel_flags |= IEEE80211_CHAN_RADAR;
683 if (rd_flags & NL80211_RRF_NO_OFDM)
684 channel_flags |= IEEE80211_CHAN_NO_OFDM;
685 return channel_flags;
686 }
687
688 static int freq_reg_info_regd(struct wiphy *wiphy,
689 u32 center_freq,
690 u32 desired_bw_khz,
691 const struct ieee80211_reg_rule **reg_rule,
692 const struct ieee80211_regdomain *custom_regd)
693 {
694 int i;
695 bool band_rule_found = false;
696 const struct ieee80211_regdomain *regd;
697 bool bw_fits = false;
698
699 if (!desired_bw_khz)
700 desired_bw_khz = MHZ_TO_KHZ(20);
701
702 regd = custom_regd ? custom_regd : cfg80211_regdomain;
703
704 /*
705 * Follow the driver's regulatory domain, if present, unless a country
706 * IE has been processed or a user wants to help complaince further
707 */
708 if (!custom_regd &&
709 last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
710 last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
711 wiphy->regd)
712 regd = wiphy->regd;
713
714 if (!regd)
715 return -EINVAL;
716
717 for (i = 0; i < regd->n_reg_rules; i++) {
718 const struct ieee80211_reg_rule *rr;
719 const struct ieee80211_freq_range *fr = NULL;
720
721 rr = &regd->reg_rules[i];
722 fr = &rr->freq_range;
723
724 /*
725 * We only need to know if one frequency rule was
726 * was in center_freq's band, that's enough, so lets
727 * not overwrite it once found
728 */
729 if (!band_rule_found)
730 band_rule_found = freq_in_rule_band(fr, center_freq);
731
732 bw_fits = reg_does_bw_fit(fr,
733 center_freq,
734 desired_bw_khz);
735
736 if (band_rule_found && bw_fits) {
737 *reg_rule = rr;
738 return 0;
739 }
740 }
741
742 if (!band_rule_found)
743 return -ERANGE;
744
745 return -EINVAL;
746 }
747
748 int freq_reg_info(struct wiphy *wiphy,
749 u32 center_freq,
750 u32 desired_bw_khz,
751 const struct ieee80211_reg_rule **reg_rule)
752 {
753 assert_cfg80211_lock();
754 return freq_reg_info_regd(wiphy,
755 center_freq,
756 desired_bw_khz,
757 reg_rule,
758 NULL);
759 }
760 EXPORT_SYMBOL(freq_reg_info);
761
762 #ifdef CONFIG_CFG80211_REG_DEBUG
763 static const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
764 {
765 switch (initiator) {
766 case NL80211_REGDOM_SET_BY_CORE:
767 return "Set by core";
768 case NL80211_REGDOM_SET_BY_USER:
769 return "Set by user";
770 case NL80211_REGDOM_SET_BY_DRIVER:
771 return "Set by driver";
772 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
773 return "Set by country IE";
774 default:
775 WARN_ON(1);
776 return "Set by bug";
777 }
778 }
779
780 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
781 u32 desired_bw_khz,
782 const struct ieee80211_reg_rule *reg_rule)
783 {
784 const struct ieee80211_power_rule *power_rule;
785 const struct ieee80211_freq_range *freq_range;
786 char max_antenna_gain[32];
787
788 power_rule = &reg_rule->power_rule;
789 freq_range = &reg_rule->freq_range;
790
791 if (!power_rule->max_antenna_gain)
792 snprintf(max_antenna_gain, 32, "N/A");
793 else
794 snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);
795
796 REG_DBG_PRINT("Updating information on frequency %d MHz "
797 "for a %d MHz width channel with regulatory rule:\n",
798 chan->center_freq,
799 KHZ_TO_MHZ(desired_bw_khz));
800
801 REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n",
802 freq_range->start_freq_khz,
803 freq_range->end_freq_khz,
804 freq_range->max_bandwidth_khz,
805 max_antenna_gain,
806 power_rule->max_eirp);
807 }
808 #else
809 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
810 u32 desired_bw_khz,
811 const struct ieee80211_reg_rule *reg_rule)
812 {
813 return;
814 }
815 #endif
816
817 /*
818 * Note that right now we assume the desired channel bandwidth
819 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
820 * per channel, the primary and the extension channel). To support
821 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
822 * new ieee80211_channel.target_bw and re run the regulatory check
823 * on the wiphy with the target_bw specified. Then we can simply use
824 * that below for the desired_bw_khz below.
825 */
826 static void handle_channel(struct wiphy *wiphy,
827 enum nl80211_reg_initiator initiator,
828 enum ieee80211_band band,
829 unsigned int chan_idx)
830 {
831 int r;
832 u32 flags, bw_flags = 0;
833 u32 desired_bw_khz = MHZ_TO_KHZ(20);
834 const struct ieee80211_reg_rule *reg_rule = NULL;
835 const struct ieee80211_power_rule *power_rule = NULL;
836 const struct ieee80211_freq_range *freq_range = NULL;
837 struct ieee80211_supported_band *sband;
838 struct ieee80211_channel *chan;
839 struct wiphy *request_wiphy = NULL;
840
841 assert_cfg80211_lock();
842
843 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
844
845 sband = wiphy->bands[band];
846 BUG_ON(chan_idx >= sband->n_channels);
847 chan = &sband->channels[chan_idx];
848
849 flags = chan->orig_flags;
850
851 r = freq_reg_info(wiphy,
852 MHZ_TO_KHZ(chan->center_freq),
853 desired_bw_khz,
854 &reg_rule);
855
856 if (r) {
857 /*
858 * We will disable all channels that do not match our
859 * received regulatory rule unless the hint is coming
860 * from a Country IE and the Country IE had no information
861 * about a band. The IEEE 802.11 spec allows for an AP
862 * to send only a subset of the regulatory rules allowed,
863 * so an AP in the US that only supports 2.4 GHz may only send
864 * a country IE with information for the 2.4 GHz band
865 * while 5 GHz is still supported.
866 */
867 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
868 r == -ERANGE)
869 return;
870
871 REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
872 chan->flags = IEEE80211_CHAN_DISABLED;
873 return;
874 }
875
876 chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
877
878 power_rule = &reg_rule->power_rule;
879 freq_range = &reg_rule->freq_range;
880
881 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
882 bw_flags = IEEE80211_CHAN_NO_HT40;
883
884 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
885 request_wiphy && request_wiphy == wiphy &&
886 request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
887 /*
888 * This guarantees the driver's requested regulatory domain
889 * will always be used as a base for further regulatory
890 * settings
891 */
892 chan->flags = chan->orig_flags =
893 map_regdom_flags(reg_rule->flags) | bw_flags;
894 chan->max_antenna_gain = chan->orig_mag =
895 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
896 chan->max_power = chan->orig_mpwr =
897 (int) MBM_TO_DBM(power_rule->max_eirp);
898 return;
899 }
900
901 chan->beacon_found = false;
902 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
903 chan->max_antenna_gain = min(chan->orig_mag,
904 (int) MBI_TO_DBI(power_rule->max_antenna_gain));
905 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
906 if (chan->orig_mpwr) {
907 /*
908 * Devices that have their own custom regulatory domain
909 * but also use WIPHY_FLAG_STRICT_REGULATORY will follow the
910 * passed country IE power settings.
911 */
912 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
913 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
914 wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
915 chan->max_power = chan->max_reg_power;
916 else
917 chan->max_power = min(chan->orig_mpwr,
918 chan->max_reg_power);
919 } else
920 chan->max_power = chan->max_reg_power;
921 }
922
923 static void handle_band(struct wiphy *wiphy,
924 enum ieee80211_band band,
925 enum nl80211_reg_initiator initiator)
926 {
927 unsigned int i;
928 struct ieee80211_supported_band *sband;
929
930 BUG_ON(!wiphy->bands[band]);
931 sband = wiphy->bands[band];
932
933 for (i = 0; i < sband->n_channels; i++)
934 handle_channel(wiphy, initiator, band, i);
935 }
936
937 static bool reg_request_cell_base(struct regulatory_request *request)
938 {
939 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
940 return false;
941 if (request->user_reg_hint_type != NL80211_USER_REG_HINT_CELL_BASE)
942 return false;
943 return true;
944 }
945
946 bool reg_last_request_cell_base(void)
947 {
948 bool val;
949 assert_cfg80211_lock();
950
951 mutex_lock(&reg_mutex);
952 val = reg_request_cell_base(last_request);
953 mutex_unlock(&reg_mutex);
954 return val;
955 }
956
957 #ifdef CONFIG_CFG80211_CERTIFICATION_ONUS
958
959 /* Core specific check */
960 static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
961 {
962 if (!reg_num_devs_support_basehint)
963 return -EOPNOTSUPP;
964
965 if (reg_request_cell_base(last_request)) {
966 if (!regdom_changes(pending_request->alpha2))
967 return -EALREADY;
968 return 0;
969 }
970 return 0;
971 }
972
973 /* Device specific check */
974 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
975 {
976 if (!(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS))
977 return true;
978 return false;
979 }
980 #else
981 static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
982 {
983 return -EOPNOTSUPP;
984 }
985 static int reg_dev_ignore_cell_hint(struct wiphy *wiphy)
986 {
987 return true;
988 }
989 #endif
990
991
992 static bool ignore_reg_update(struct wiphy *wiphy,
993 enum nl80211_reg_initiator initiator)
994 {
995 if (!last_request) {
996 REG_DBG_PRINT("Ignoring regulatory request %s since "
997 "last_request is not set\n",
998 reg_initiator_name(initiator));
999 return true;
1000 }
1001
1002 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1003 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
1004 REG_DBG_PRINT("Ignoring regulatory request %s "
1005 "since the driver uses its own custom "
1006 "regulatory domain\n",
1007 reg_initiator_name(initiator));
1008 return true;
1009 }
1010
1011 /*
1012 * wiphy->regd will be set once the device has its own
1013 * desired regulatory domain set
1014 */
1015 if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
1016 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1017 !is_world_regdom(last_request->alpha2)) {
1018 REG_DBG_PRINT("Ignoring regulatory request %s "
1019 "since the driver requires its own regulatory "
1020 "domain to be set first\n",
1021 reg_initiator_name(initiator));
1022 return true;
1023 }
1024
1025 if (reg_request_cell_base(last_request))
1026 return reg_dev_ignore_cell_hint(wiphy);
1027
1028 return false;
1029 }
1030
1031 static void handle_reg_beacon(struct wiphy *wiphy,
1032 unsigned int chan_idx,
1033 struct reg_beacon *reg_beacon)
1034 {
1035 struct ieee80211_supported_band *sband;
1036 struct ieee80211_channel *chan;
1037 bool channel_changed = false;
1038 struct ieee80211_channel chan_before;
1039
1040 assert_cfg80211_lock();
1041
1042 sband = wiphy->bands[reg_beacon->chan.band];
1043 chan = &sband->channels[chan_idx];
1044
1045 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1046 return;
1047
1048 if (chan->beacon_found)
1049 return;
1050
1051 chan->beacon_found = true;
1052
1053 if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
1054 return;
1055
1056 chan_before.center_freq = chan->center_freq;
1057 chan_before.flags = chan->flags;
1058
1059 if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
1060 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
1061 channel_changed = true;
1062 }
1063
1064 if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
1065 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
1066 channel_changed = true;
1067 }
1068
1069 if (channel_changed)
1070 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1071 }
1072
1073 /*
1074 * Called when a scan on a wiphy finds a beacon on
1075 * new channel
1076 */
1077 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1078 struct reg_beacon *reg_beacon)
1079 {
1080 unsigned int i;
1081 struct ieee80211_supported_band *sband;
1082
1083 assert_cfg80211_lock();
1084
1085 if (!wiphy->bands[reg_beacon->chan.band])
1086 return;
1087
1088 sband = wiphy->bands[reg_beacon->chan.band];
1089
1090 for (i = 0; i < sband->n_channels; i++)
1091 handle_reg_beacon(wiphy, i, reg_beacon);
1092 }
1093
1094 /*
1095 * Called upon reg changes or a new wiphy is added
1096 */
1097 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1098 {
1099 unsigned int i;
1100 struct ieee80211_supported_band *sband;
1101 struct reg_beacon *reg_beacon;
1102
1103 assert_cfg80211_lock();
1104
1105 if (list_empty(&reg_beacon_list))
1106 return;
1107
1108 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1109 if (!wiphy->bands[reg_beacon->chan.band])
1110 continue;
1111 sband = wiphy->bands[reg_beacon->chan.band];
1112 for (i = 0; i < sband->n_channels; i++)
1113 handle_reg_beacon(wiphy, i, reg_beacon);
1114 }
1115 }
1116
1117 static bool reg_is_world_roaming(struct wiphy *wiphy)
1118 {
1119 if (is_world_regdom(cfg80211_regdomain->alpha2) ||
1120 (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
1121 return true;
1122 if (last_request &&
1123 last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1124 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1125 return true;
1126 return false;
1127 }
1128
1129 /* Reap the advantages of previously found beacons */
1130 static void reg_process_beacons(struct wiphy *wiphy)
1131 {
1132 /*
1133 * Means we are just firing up cfg80211, so no beacons would
1134 * have been processed yet.
1135 */
1136 if (!last_request)
1137 return;
1138 if (!reg_is_world_roaming(wiphy))
1139 return;
1140 wiphy_update_beacon_reg(wiphy);
1141 }
1142
1143 static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
1144 {
1145 if (!chan)
1146 return true;
1147 if (chan->flags & IEEE80211_CHAN_DISABLED)
1148 return true;
1149 /* This would happen when regulatory rules disallow HT40 completely */
1150 if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
1151 return true;
1152 return false;
1153 }
1154
1155 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1156 enum ieee80211_band band,
1157 unsigned int chan_idx)
1158 {
1159 struct ieee80211_supported_band *sband;
1160 struct ieee80211_channel *channel;
1161 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1162 unsigned int i;
1163
1164 assert_cfg80211_lock();
1165
1166 sband = wiphy->bands[band];
1167 BUG_ON(chan_idx >= sband->n_channels);
1168 channel = &sband->channels[chan_idx];
1169
1170 if (is_ht40_not_allowed(channel)) {
1171 channel->flags |= IEEE80211_CHAN_NO_HT40;
1172 return;
1173 }
1174
1175 /*
1176 * We need to ensure the extension channels exist to
1177 * be able to use HT40- or HT40+, this finds them (or not)
1178 */
1179 for (i = 0; i < sband->n_channels; i++) {
1180 struct ieee80211_channel *c = &sband->channels[i];
1181 if (c->center_freq == (channel->center_freq - 20))
1182 channel_before = c;
1183 if (c->center_freq == (channel->center_freq + 20))
1184 channel_after = c;
1185 }
1186
1187 /*
1188 * Please note that this assumes target bandwidth is 20 MHz,
1189 * if that ever changes we also need to change the below logic
1190 * to include that as well.
1191 */
1192 if (is_ht40_not_allowed(channel_before))
1193 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1194 else
1195 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1196
1197 if (is_ht40_not_allowed(channel_after))
1198 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1199 else
1200 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1201 }
1202
1203 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1204 enum ieee80211_band band)
1205 {
1206 unsigned int i;
1207 struct ieee80211_supported_band *sband;
1208
1209 BUG_ON(!wiphy->bands[band]);
1210 sband = wiphy->bands[band];
1211
1212 for (i = 0; i < sband->n_channels; i++)
1213 reg_process_ht_flags_channel(wiphy, band, i);
1214 }
1215
1216 static void reg_process_ht_flags(struct wiphy *wiphy)
1217 {
1218 enum ieee80211_band band;
1219
1220 if (!wiphy)
1221 return;
1222
1223 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1224 if (wiphy->bands[band])
1225 reg_process_ht_flags_band(wiphy, band);
1226 }
1227
1228 }
1229
1230 static void wiphy_update_regulatory(struct wiphy *wiphy,
1231 enum nl80211_reg_initiator initiator)
1232 {
1233 enum ieee80211_band band;
1234
1235 assert_reg_lock();
1236
1237 if (ignore_reg_update(wiphy, initiator))
1238 return;
1239
1240 last_request->dfs_region = cfg80211_regdomain->dfs_region;
1241
1242 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1243 if (wiphy->bands[band])
1244 handle_band(wiphy, band, initiator);
1245 }
1246
1247 reg_process_beacons(wiphy);
1248 reg_process_ht_flags(wiphy);
1249 if (wiphy->reg_notifier)
1250 wiphy->reg_notifier(wiphy, last_request);
1251 }
1252
1253 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1254 {
1255 struct cfg80211_registered_device *rdev;
1256 struct wiphy *wiphy;
1257
1258 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1259 wiphy = &rdev->wiphy;
1260 wiphy_update_regulatory(wiphy, initiator);
1261 /*
1262 * Regulatory updates set by CORE are ignored for custom
1263 * regulatory cards. Let us notify the changes to the driver,
1264 * as some drivers used this to restore its orig_* reg domain.
1265 */
1266 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1267 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
1268 wiphy->reg_notifier)
1269 wiphy->reg_notifier(wiphy, last_request);
1270 }
1271 }
1272
1273 static void handle_channel_custom(struct wiphy *wiphy,
1274 enum ieee80211_band band,
1275 unsigned int chan_idx,
1276 const struct ieee80211_regdomain *regd)
1277 {
1278 int r;
1279 u32 desired_bw_khz = MHZ_TO_KHZ(20);
1280 u32 bw_flags = 0;
1281 const struct ieee80211_reg_rule *reg_rule = NULL;
1282 const struct ieee80211_power_rule *power_rule = NULL;
1283 const struct ieee80211_freq_range *freq_range = NULL;
1284 struct ieee80211_supported_band *sband;
1285 struct ieee80211_channel *chan;
1286
1287 assert_reg_lock();
1288
1289 sband = wiphy->bands[band];
1290 BUG_ON(chan_idx >= sband->n_channels);
1291 chan = &sband->channels[chan_idx];
1292
1293 r = freq_reg_info_regd(wiphy,
1294 MHZ_TO_KHZ(chan->center_freq),
1295 desired_bw_khz,
1296 &reg_rule,
1297 regd);
1298
1299 if (r) {
1300 REG_DBG_PRINT("Disabling freq %d MHz as custom "
1301 "regd has no rule that fits a %d MHz "
1302 "wide channel\n",
1303 chan->center_freq,
1304 KHZ_TO_MHZ(desired_bw_khz));
1305 chan->flags = IEEE80211_CHAN_DISABLED;
1306 return;
1307 }
1308
1309 chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
1310
1311 power_rule = &reg_rule->power_rule;
1312 freq_range = &reg_rule->freq_range;
1313
1314 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1315 bw_flags = IEEE80211_CHAN_NO_HT40;
1316
1317 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1318 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1319 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1320 }
1321
1322 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1323 const struct ieee80211_regdomain *regd)
1324 {
1325 unsigned int i;
1326 struct ieee80211_supported_band *sband;
1327
1328 BUG_ON(!wiphy->bands[band]);
1329 sband = wiphy->bands[band];
1330
1331 for (i = 0; i < sband->n_channels; i++)
1332 handle_channel_custom(wiphy, band, i, regd);
1333 }
1334
1335 /* Used by drivers prior to wiphy registration */
1336 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1337 const struct ieee80211_regdomain *regd)
1338 {
1339 enum ieee80211_band band;
1340 unsigned int bands_set = 0;
1341
1342 mutex_lock(&reg_mutex);
1343 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1344 if (!wiphy->bands[band])
1345 continue;
1346 handle_band_custom(wiphy, band, regd);
1347 bands_set++;
1348 }
1349 mutex_unlock(&reg_mutex);
1350
1351 /*
1352 * no point in calling this if it won't have any effect
1353 * on your device's supportd bands.
1354 */
1355 WARN_ON(!bands_set);
1356 }
1357 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1358
1359 /*
1360 * Return value which can be used by ignore_request() to indicate
1361 * it has been determined we should intersect two regulatory domains
1362 */
1363 #define REG_INTERSECT 1
1364
1365 /* This has the logic which determines when a new request
1366 * should be ignored. */
1367 static int ignore_request(struct wiphy *wiphy,
1368 struct regulatory_request *pending_request)
1369 {
1370 struct wiphy *last_wiphy = NULL;
1371
1372 assert_cfg80211_lock();
1373
1374 /* All initial requests are respected */
1375 if (!last_request)
1376 return 0;
1377
1378 switch (pending_request->initiator) {
1379 case NL80211_REGDOM_SET_BY_CORE:
1380 return 0;
1381 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1382
1383 if (reg_request_cell_base(last_request)) {
1384 /* Trust a Cell base station over the AP's country IE */
1385 if (regdom_changes(pending_request->alpha2))
1386 return -EOPNOTSUPP;
1387 return -EALREADY;
1388 }
1389
1390 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1391
1392 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1393 return -EINVAL;
1394 if (last_request->initiator ==
1395 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1396 if (last_wiphy != wiphy) {
1397 /*
1398 * Two cards with two APs claiming different
1399 * Country IE alpha2s. We could
1400 * intersect them, but that seems unlikely
1401 * to be correct. Reject second one for now.
1402 */
1403 if (regdom_changes(pending_request->alpha2))
1404 return -EOPNOTSUPP;
1405 return -EALREADY;
1406 }
1407 /*
1408 * Two consecutive Country IE hints on the same wiphy.
1409 * This should be picked up early by the driver/stack
1410 */
1411 if (WARN_ON(regdom_changes(pending_request->alpha2)))
1412 return 0;
1413 return -EALREADY;
1414 }
1415 return 0;
1416 case NL80211_REGDOM_SET_BY_DRIVER:
1417 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1418 if (regdom_changes(pending_request->alpha2))
1419 return 0;
1420 return -EALREADY;
1421 }
1422
1423 /*
1424 * This would happen if you unplug and plug your card
1425 * back in or if you add a new device for which the previously
1426 * loaded card also agrees on the regulatory domain.
1427 */
1428 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1429 !regdom_changes(pending_request->alpha2))
1430 return -EALREADY;
1431
1432 return REG_INTERSECT;
1433 case NL80211_REGDOM_SET_BY_USER:
1434 if (reg_request_cell_base(pending_request))
1435 return reg_ignore_cell_hint(pending_request);
1436
1437 if (reg_request_cell_base(last_request))
1438 return -EOPNOTSUPP;
1439
1440 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1441 return REG_INTERSECT;
1442 /*
1443 * If the user knows better the user should set the regdom
1444 * to their country before the IE is picked up
1445 */
1446 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1447 last_request->intersect)
1448 return -EOPNOTSUPP;
1449 /*
1450 * Process user requests only after previous user/driver/core
1451 * requests have been processed
1452 */
1453 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1454 last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1455 last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1456 if (regdom_changes(last_request->alpha2))
1457 return -EAGAIN;
1458 }
1459
1460 if (!regdom_changes(pending_request->alpha2))
1461 return -EALREADY;
1462
1463 return 0;
1464 }
1465
1466 return -EINVAL;
1467 }
1468
1469 static void reg_set_request_processed(void)
1470 {
1471 bool need_more_processing = false;
1472
1473 last_request->processed = true;
1474
1475 spin_lock(&reg_requests_lock);
1476 if (!list_empty(&reg_requests_list))
1477 need_more_processing = true;
1478 spin_unlock(&reg_requests_lock);
1479
1480 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER)
1481 cancel_delayed_work(&reg_timeout);
1482
1483 if (need_more_processing)
1484 schedule_work(&reg_work);
1485 }
1486
1487 /**
1488 * __regulatory_hint - hint to the wireless core a regulatory domain
1489 * @wiphy: if the hint comes from country information from an AP, this
1490 * is required to be set to the wiphy that received the information
1491 * @pending_request: the regulatory request currently being processed
1492 *
1493 * The Wireless subsystem can use this function to hint to the wireless core
1494 * what it believes should be the current regulatory domain.
1495 *
1496 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1497 * already been set or other standard error codes.
1498 *
1499 * Caller must hold &cfg80211_mutex and &reg_mutex
1500 */
1501 static int __regulatory_hint(struct wiphy *wiphy,
1502 struct regulatory_request *pending_request)
1503 {
1504 bool intersect = false;
1505 int r = 0;
1506
1507 assert_cfg80211_lock();
1508
1509 r = ignore_request(wiphy, pending_request);
1510
1511 if (r == REG_INTERSECT) {
1512 if (pending_request->initiator ==
1513 NL80211_REGDOM_SET_BY_DRIVER) {
1514 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1515 if (r) {
1516 kfree(pending_request);
1517 return r;
1518 }
1519 }
1520 intersect = true;
1521 } else if (r) {
1522 /*
1523 * If the regulatory domain being requested by the
1524 * driver has already been set just copy it to the
1525 * wiphy
1526 */
1527 if (r == -EALREADY &&
1528 pending_request->initiator ==
1529 NL80211_REGDOM_SET_BY_DRIVER) {
1530 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1531 if (r) {
1532 kfree(pending_request);
1533 return r;
1534 }
1535 r = -EALREADY;
1536 goto new_request;
1537 }
1538 kfree(pending_request);
1539 return r;
1540 }
1541
1542 new_request:
1543 if (last_request != &core_request_world)
1544 kfree(last_request);
1545
1546 last_request = pending_request;
1547 last_request->intersect = intersect;
1548
1549 pending_request = NULL;
1550
1551 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1552 user_alpha2[0] = last_request->alpha2[0];
1553 user_alpha2[1] = last_request->alpha2[1];
1554 }
1555
1556 /* When r == REG_INTERSECT we do need to call CRDA */
1557 if (r < 0) {
1558 /*
1559 * Since CRDA will not be called in this case as we already
1560 * have applied the requested regulatory domain before we just
1561 * inform userspace we have processed the request
1562 */
1563 if (r == -EALREADY) {
1564 nl80211_send_reg_change_event(last_request);
1565 reg_set_request_processed();
1566 }
1567 return r;
1568 }
1569
1570 return call_crda(last_request->alpha2);
1571 }
1572
1573 /* This processes *all* regulatory hints */
1574 static void reg_process_hint(struct regulatory_request *reg_request,
1575 enum nl80211_reg_initiator reg_initiator)
1576 {
1577 int r = 0;
1578 struct wiphy *wiphy = NULL;
1579
1580 BUG_ON(!reg_request->alpha2);
1581
1582 if (wiphy_idx_valid(reg_request->wiphy_idx))
1583 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1584
1585 if (reg_initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1586 !wiphy) {
1587 kfree(reg_request);
1588 return;
1589 }
1590
1591 r = __regulatory_hint(wiphy, reg_request);
1592 /* This is required so that the orig_* parameters are saved */
1593 if (r == -EALREADY && wiphy &&
1594 wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
1595 wiphy_update_regulatory(wiphy, reg_initiator);
1596 return;
1597 }
1598
1599 /*
1600 * We only time out user hints, given that they should be the only
1601 * source of bogus requests.
1602 */
1603 if (r != -EALREADY &&
1604 reg_initiator == NL80211_REGDOM_SET_BY_USER)
1605 schedule_delayed_work(&reg_timeout, msecs_to_jiffies(3142));
1606 }
1607
1608 /*
1609 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1610 * Regulatory hints come on a first come first serve basis and we
1611 * must process each one atomically.
1612 */
1613 static void reg_process_pending_hints(void)
1614 {
1615 struct regulatory_request *reg_request;
1616
1617 mutex_lock(&cfg80211_mutex);
1618 mutex_lock(&reg_mutex);
1619
1620 /* When last_request->processed becomes true this will be rescheduled */
1621 if (last_request && !last_request->processed) {
1622 REG_DBG_PRINT("Pending regulatory request, waiting "
1623 "for it to be processed...\n");
1624 goto out;
1625 }
1626
1627 spin_lock(&reg_requests_lock);
1628
1629 if (list_empty(&reg_requests_list)) {
1630 spin_unlock(&reg_requests_lock);
1631 goto out;
1632 }
1633
1634 reg_request = list_first_entry(&reg_requests_list,
1635 struct regulatory_request,
1636 list);
1637 list_del_init(&reg_request->list);
1638
1639 spin_unlock(&reg_requests_lock);
1640
1641 reg_process_hint(reg_request, reg_request->initiator);
1642
1643 out:
1644 mutex_unlock(&reg_mutex);
1645 mutex_unlock(&cfg80211_mutex);
1646 }
1647
1648 /* Processes beacon hints -- this has nothing to do with country IEs */
1649 static void reg_process_pending_beacon_hints(void)
1650 {
1651 struct cfg80211_registered_device *rdev;
1652 struct reg_beacon *pending_beacon, *tmp;
1653
1654 /*
1655 * No need to hold the reg_mutex here as we just touch wiphys
1656 * and do not read or access regulatory variables.
1657 */
1658 mutex_lock(&cfg80211_mutex);
1659
1660 /* This goes through the _pending_ beacon list */
1661 spin_lock_bh(&reg_pending_beacons_lock);
1662
1663 if (list_empty(&reg_pending_beacons)) {
1664 spin_unlock_bh(&reg_pending_beacons_lock);
1665 goto out;
1666 }
1667
1668 list_for_each_entry_safe(pending_beacon, tmp,
1669 &reg_pending_beacons, list) {
1670
1671 list_del_init(&pending_beacon->list);
1672
1673 /* Applies the beacon hint to current wiphys */
1674 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1675 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1676
1677 /* Remembers the beacon hint for new wiphys or reg changes */
1678 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1679 }
1680
1681 spin_unlock_bh(&reg_pending_beacons_lock);
1682 out:
1683 mutex_unlock(&cfg80211_mutex);
1684 }
1685
1686 static void reg_todo(struct work_struct *work)
1687 {
1688 reg_process_pending_hints();
1689 reg_process_pending_beacon_hints();
1690 }
1691
1692 static void queue_regulatory_request(struct regulatory_request *request)
1693 {
1694 if (isalpha(request->alpha2[0]))
1695 request->alpha2[0] = toupper(request->alpha2[0]);
1696 if (isalpha(request->alpha2[1]))
1697 request->alpha2[1] = toupper(request->alpha2[1]);
1698
1699 spin_lock(&reg_requests_lock);
1700 list_add_tail(&request->list, &reg_requests_list);
1701 spin_unlock(&reg_requests_lock);
1702
1703 schedule_work(&reg_work);
1704 }
1705
1706 /*
1707 * Core regulatory hint -- happens during cfg80211_init()
1708 * and when we restore regulatory settings.
1709 */
1710 static int regulatory_hint_core(const char *alpha2)
1711 {
1712 struct regulatory_request *request;
1713
1714 request = kzalloc(sizeof(struct regulatory_request),
1715 GFP_KERNEL);
1716 if (!request)
1717 return -ENOMEM;
1718
1719 request->alpha2[0] = alpha2[0];
1720 request->alpha2[1] = alpha2[1];
1721 request->initiator = NL80211_REGDOM_SET_BY_CORE;
1722
1723 queue_regulatory_request(request);
1724
1725 return 0;
1726 }
1727
1728 /* User hints */
1729 int regulatory_hint_user(const char *alpha2,
1730 enum nl80211_user_reg_hint_type user_reg_hint_type)
1731 {
1732 struct regulatory_request *request;
1733
1734 BUG_ON(!alpha2);
1735
1736 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1737 if (!request)
1738 return -ENOMEM;
1739
1740 request->wiphy_idx = WIPHY_IDX_STALE;
1741 request->alpha2[0] = alpha2[0];
1742 request->alpha2[1] = alpha2[1];
1743 request->initiator = NL80211_REGDOM_SET_BY_USER;
1744 request->user_reg_hint_type = user_reg_hint_type;
1745
1746 queue_regulatory_request(request);
1747
1748 return 0;
1749 }
1750
1751 /* Driver hints */
1752 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1753 {
1754 struct regulatory_request *request;
1755
1756 BUG_ON(!alpha2);
1757 BUG_ON(!wiphy);
1758
1759 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1760 if (!request)
1761 return -ENOMEM;
1762
1763 request->wiphy_idx = get_wiphy_idx(wiphy);
1764
1765 /* Must have registered wiphy first */
1766 BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1767
1768 request->alpha2[0] = alpha2[0];
1769 request->alpha2[1] = alpha2[1];
1770 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1771
1772 queue_regulatory_request(request);
1773
1774 return 0;
1775 }
1776 EXPORT_SYMBOL(regulatory_hint);
1777
1778 /*
1779 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1780 * therefore cannot iterate over the rdev list here.
1781 */
1782 void regulatory_hint_11d(struct wiphy *wiphy,
1783 enum ieee80211_band band,
1784 u8 *country_ie,
1785 u8 country_ie_len)
1786 {
1787 char alpha2[2];
1788 enum environment_cap env = ENVIRON_ANY;
1789 struct regulatory_request *request;
1790
1791 mutex_lock(&reg_mutex);
1792
1793 if (unlikely(!last_request))
1794 goto out;
1795
1796 /* IE len must be evenly divisible by 2 */
1797 if (country_ie_len & 0x01)
1798 goto out;
1799
1800 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1801 goto out;
1802
1803 alpha2[0] = country_ie[0];
1804 alpha2[1] = country_ie[1];
1805
1806 if (country_ie[2] == 'I')
1807 env = ENVIRON_INDOOR;
1808 else if (country_ie[2] == 'O')
1809 env = ENVIRON_OUTDOOR;
1810
1811 /*
1812 * We will run this only upon a successful connection on cfg80211.
1813 * We leave conflict resolution to the workqueue, where can hold
1814 * cfg80211_mutex.
1815 */
1816 if (likely(last_request->initiator ==
1817 NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1818 wiphy_idx_valid(last_request->wiphy_idx)))
1819 goto out;
1820
1821 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1822 if (!request)
1823 goto out;
1824
1825 request->wiphy_idx = get_wiphy_idx(wiphy);
1826 request->alpha2[0] = alpha2[0];
1827 request->alpha2[1] = alpha2[1];
1828 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1829 request->country_ie_env = env;
1830
1831 mutex_unlock(&reg_mutex);
1832
1833 queue_regulatory_request(request);
1834
1835 return;
1836
1837 out:
1838 mutex_unlock(&reg_mutex);
1839 }
1840
1841 static void restore_alpha2(char *alpha2, bool reset_user)
1842 {
1843 /* indicates there is no alpha2 to consider for restoration */
1844 alpha2[0] = '9';
1845 alpha2[1] = '7';
1846
1847 /* The user setting has precedence over the module parameter */
1848 if (is_user_regdom_saved()) {
1849 /* Unless we're asked to ignore it and reset it */
1850 if (reset_user) {
1851 REG_DBG_PRINT("Restoring regulatory settings "
1852 "including user preference\n");
1853 user_alpha2[0] = '9';
1854 user_alpha2[1] = '7';
1855
1856 /*
1857 * If we're ignoring user settings, we still need to
1858 * check the module parameter to ensure we put things
1859 * back as they were for a full restore.
1860 */
1861 if (!is_world_regdom(ieee80211_regdom)) {
1862 REG_DBG_PRINT("Keeping preference on "
1863 "module parameter ieee80211_regdom: %c%c\n",
1864 ieee80211_regdom[0],
1865 ieee80211_regdom[1]);
1866 alpha2[0] = ieee80211_regdom[0];
1867 alpha2[1] = ieee80211_regdom[1];
1868 }
1869 } else {
1870 REG_DBG_PRINT("Restoring regulatory settings "
1871 "while preserving user preference for: %c%c\n",
1872 user_alpha2[0],
1873 user_alpha2[1]);
1874 alpha2[0] = user_alpha2[0];
1875 alpha2[1] = user_alpha2[1];
1876 }
1877 } else if (!is_world_regdom(ieee80211_regdom)) {
1878 REG_DBG_PRINT("Keeping preference on "
1879 "module parameter ieee80211_regdom: %c%c\n",
1880 ieee80211_regdom[0],
1881 ieee80211_regdom[1]);
1882 alpha2[0] = ieee80211_regdom[0];
1883 alpha2[1] = ieee80211_regdom[1];
1884 } else
1885 REG_DBG_PRINT("Restoring regulatory settings\n");
1886 }
1887
1888 static void restore_custom_reg_settings(struct wiphy *wiphy)
1889 {
1890 struct ieee80211_supported_band *sband;
1891 enum ieee80211_band band;
1892 struct ieee80211_channel *chan;
1893 int i;
1894
1895 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1896 sband = wiphy->bands[band];
1897 if (!sband)
1898 continue;
1899 for (i = 0; i < sband->n_channels; i++) {
1900 chan = &sband->channels[i];
1901 chan->flags = chan->orig_flags;
1902 chan->max_antenna_gain = chan->orig_mag;
1903 chan->max_power = chan->orig_mpwr;
1904 chan->beacon_found = false;
1905 }
1906 }
1907 }
1908
1909 /*
1910 * Restoring regulatory settings involves ingoring any
1911 * possibly stale country IE information and user regulatory
1912 * settings if so desired, this includes any beacon hints
1913 * learned as we could have traveled outside to another country
1914 * after disconnection. To restore regulatory settings we do
1915 * exactly what we did at bootup:
1916 *
1917 * - send a core regulatory hint
1918 * - send a user regulatory hint if applicable
1919 *
1920 * Device drivers that send a regulatory hint for a specific country
1921 * keep their own regulatory domain on wiphy->regd so that does does
1922 * not need to be remembered.
1923 */
1924 static void restore_regulatory_settings(bool reset_user)
1925 {
1926 char alpha2[2];
1927 char world_alpha2[2];
1928 struct reg_beacon *reg_beacon, *btmp;
1929 struct regulatory_request *reg_request, *tmp;
1930 LIST_HEAD(tmp_reg_req_list);
1931 struct cfg80211_registered_device *rdev;
1932
1933 mutex_lock(&cfg80211_mutex);
1934 mutex_lock(&reg_mutex);
1935
1936 reset_regdomains(true);
1937 restore_alpha2(alpha2, reset_user);
1938
1939 /*
1940 * If there's any pending requests we simply
1941 * stash them to a temporary pending queue and
1942 * add then after we've restored regulatory
1943 * settings.
1944 */
1945 spin_lock(&reg_requests_lock);
1946 if (!list_empty(&reg_requests_list)) {
1947 list_for_each_entry_safe(reg_request, tmp,
1948 &reg_requests_list, list) {
1949 if (reg_request->initiator !=
1950 NL80211_REGDOM_SET_BY_USER)
1951 continue;
1952 list_move_tail(&reg_request->list, &tmp_reg_req_list);
1953 }
1954 }
1955 spin_unlock(&reg_requests_lock);
1956
1957 /* Clear beacon hints */
1958 spin_lock_bh(&reg_pending_beacons_lock);
1959 if (!list_empty(&reg_pending_beacons)) {
1960 list_for_each_entry_safe(reg_beacon, btmp,
1961 &reg_pending_beacons, list) {
1962 list_del(&reg_beacon->list);
1963 kfree(reg_beacon);
1964 }
1965 }
1966 spin_unlock_bh(&reg_pending_beacons_lock);
1967
1968 if (!list_empty(&reg_beacon_list)) {
1969 list_for_each_entry_safe(reg_beacon, btmp,
1970 &reg_beacon_list, list) {
1971 list_del(&reg_beacon->list);
1972 kfree(reg_beacon);
1973 }
1974 }
1975
1976 /* First restore to the basic regulatory settings */
1977 cfg80211_regdomain = cfg80211_world_regdom;
1978 world_alpha2[0] = cfg80211_regdomain->alpha2[0];
1979 world_alpha2[1] = cfg80211_regdomain->alpha2[1];
1980
1981 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1982 if (rdev->wiphy.flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1983 restore_custom_reg_settings(&rdev->wiphy);
1984 }
1985
1986 mutex_unlock(&reg_mutex);
1987 mutex_unlock(&cfg80211_mutex);
1988
1989 regulatory_hint_core(world_alpha2);
1990
1991 /*
1992 * This restores the ieee80211_regdom module parameter
1993 * preference or the last user requested regulatory
1994 * settings, user regulatory settings takes precedence.
1995 */
1996 if (is_an_alpha2(alpha2))
1997 regulatory_hint_user(user_alpha2, NL80211_USER_REG_HINT_USER);
1998
1999 if (list_empty(&tmp_reg_req_list))
2000 return;
2001
2002 mutex_lock(&cfg80211_mutex);
2003 mutex_lock(&reg_mutex);
2004
2005 spin_lock(&reg_requests_lock);
2006 list_for_each_entry_safe(reg_request, tmp, &tmp_reg_req_list, list) {
2007 REG_DBG_PRINT("Adding request for country %c%c back "
2008 "into the queue\n",
2009 reg_request->alpha2[0],
2010 reg_request->alpha2[1]);
2011 list_move_tail(&reg_request->list, &reg_requests_list);
2012 }
2013 spin_unlock(&reg_requests_lock);
2014
2015 mutex_unlock(&reg_mutex);
2016 mutex_unlock(&cfg80211_mutex);
2017
2018 REG_DBG_PRINT("Kicking the queue\n");
2019
2020 schedule_work(&reg_work);
2021 }
2022
2023 void regulatory_hint_disconnect(void)
2024 {
2025 REG_DBG_PRINT("All devices are disconnected, going to "
2026 "restore regulatory settings\n");
2027 restore_regulatory_settings(false);
2028 }
2029
2030 static bool freq_is_chan_12_13_14(u16 freq)
2031 {
2032 if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
2033 freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
2034 freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
2035 return true;
2036 return false;
2037 }
2038
2039 int regulatory_hint_found_beacon(struct wiphy *wiphy,
2040 struct ieee80211_channel *beacon_chan,
2041 gfp_t gfp)
2042 {
2043 struct reg_beacon *reg_beacon;
2044
2045 if (likely((beacon_chan->beacon_found ||
2046 (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
2047 (beacon_chan->band == IEEE80211_BAND_2GHZ &&
2048 !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
2049 return 0;
2050
2051 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2052 if (!reg_beacon)
2053 return -ENOMEM;
2054
2055 REG_DBG_PRINT("Found new beacon on "
2056 "frequency: %d MHz (Ch %d) on %s\n",
2057 beacon_chan->center_freq,
2058 ieee80211_frequency_to_channel(beacon_chan->center_freq),
2059 wiphy_name(wiphy));
2060
2061 memcpy(&reg_beacon->chan, beacon_chan,
2062 sizeof(struct ieee80211_channel));
2063
2064
2065 /*
2066 * Since we can be called from BH or and non-BH context
2067 * we must use spin_lock_bh()
2068 */
2069 spin_lock_bh(&reg_pending_beacons_lock);
2070 list_add_tail(&reg_beacon->list, &reg_pending_beacons);
2071 spin_unlock_bh(&reg_pending_beacons_lock);
2072
2073 schedule_work(&reg_work);
2074
2075 return 0;
2076 }
2077
2078 static void print_rd_rules(const struct ieee80211_regdomain *rd)
2079 {
2080 unsigned int i;
2081 const struct ieee80211_reg_rule *reg_rule = NULL;
2082 const struct ieee80211_freq_range *freq_range = NULL;
2083 const struct ieee80211_power_rule *power_rule = NULL;
2084
2085 pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
2086
2087 for (i = 0; i < rd->n_reg_rules; i++) {
2088 reg_rule = &rd->reg_rules[i];
2089 freq_range = &reg_rule->freq_range;
2090 power_rule = &reg_rule->power_rule;
2091
2092 /*
2093 * There may not be documentation for max antenna gain
2094 * in certain regions
2095 */
2096 if (power_rule->max_antenna_gain)
2097 pr_info(" (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
2098 freq_range->start_freq_khz,
2099 freq_range->end_freq_khz,
2100 freq_range->max_bandwidth_khz,
2101 power_rule->max_antenna_gain,
2102 power_rule->max_eirp);
2103 else
2104 pr_info(" (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
2105 freq_range->start_freq_khz,
2106 freq_range->end_freq_khz,
2107 freq_range->max_bandwidth_khz,
2108 power_rule->max_eirp);
2109 }
2110 }
2111
2112 bool reg_supported_dfs_region(u8 dfs_region)
2113 {
2114 switch (dfs_region) {
2115 case NL80211_DFS_UNSET:
2116 case NL80211_DFS_FCC:
2117 case NL80211_DFS_ETSI:
2118 case NL80211_DFS_JP:
2119 return true;
2120 default:
2121 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2122 dfs_region);
2123 return false;
2124 }
2125 }
2126
2127 static void print_dfs_region(u8 dfs_region)
2128 {
2129 if (!dfs_region)
2130 return;
2131
2132 switch (dfs_region) {
2133 case NL80211_DFS_FCC:
2134 pr_info(" DFS Master region FCC");
2135 break;
2136 case NL80211_DFS_ETSI:
2137 pr_info(" DFS Master region ETSI");
2138 break;
2139 case NL80211_DFS_JP:
2140 pr_info(" DFS Master region JP");
2141 break;
2142 default:
2143 pr_info(" DFS Master region Uknown");
2144 break;
2145 }
2146 }
2147
2148 static void print_regdomain(const struct ieee80211_regdomain *rd)
2149 {
2150
2151 if (is_intersected_alpha2(rd->alpha2)) {
2152
2153 if (last_request->initiator ==
2154 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2155 struct cfg80211_registered_device *rdev;
2156 rdev = cfg80211_rdev_by_wiphy_idx(
2157 last_request->wiphy_idx);
2158 if (rdev) {
2159 pr_info("Current regulatory domain updated by AP to: %c%c\n",
2160 rdev->country_ie_alpha2[0],
2161 rdev->country_ie_alpha2[1]);
2162 } else
2163 pr_info("Current regulatory domain intersected:\n");
2164 } else
2165 pr_info("Current regulatory domain intersected:\n");
2166 } else if (is_world_regdom(rd->alpha2))
2167 pr_info("World regulatory domain updated:\n");
2168 else {
2169 if (is_unknown_alpha2(rd->alpha2))
2170 pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2171 else {
2172 if (reg_request_cell_base(last_request))
2173 pr_info("Regulatory domain changed "
2174 "to country: %c%c by Cell Station\n",
2175 rd->alpha2[0], rd->alpha2[1]);
2176 else
2177 pr_info("Regulatory domain changed "
2178 "to country: %c%c\n",
2179 rd->alpha2[0], rd->alpha2[1]);
2180 }
2181 }
2182 print_dfs_region(rd->dfs_region);
2183 print_rd_rules(rd);
2184 }
2185
2186 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2187 {
2188 pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2189 print_rd_rules(rd);
2190 }
2191
2192 /* Takes ownership of rd only if it doesn't fail */
2193 static int __set_regdom(const struct ieee80211_regdomain *rd)
2194 {
2195 const struct ieee80211_regdomain *intersected_rd = NULL;
2196 struct wiphy *request_wiphy;
2197 /* Some basic sanity checks first */
2198
2199 if (is_world_regdom(rd->alpha2)) {
2200 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2201 return -EINVAL;
2202 update_world_regdomain(rd);
2203 return 0;
2204 }
2205
2206 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2207 !is_unknown_alpha2(rd->alpha2))
2208 return -EINVAL;
2209
2210 if (!last_request)
2211 return -EINVAL;
2212
2213 /*
2214 * Lets only bother proceeding on the same alpha2 if the current
2215 * rd is non static (it means CRDA was present and was used last)
2216 * and the pending request came in from a country IE
2217 */
2218 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2219 /*
2220 * If someone else asked us to change the rd lets only bother
2221 * checking if the alpha2 changes if CRDA was already called
2222 */
2223 if (!regdom_changes(rd->alpha2))
2224 return -EALREADY;
2225 }
2226
2227 /*
2228 * Now lets set the regulatory domain, update all driver channels
2229 * and finally inform them of what we have done, in case they want
2230 * to review or adjust their own settings based on their own
2231 * internal EEPROM data
2232 */
2233
2234 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2235 return -EINVAL;
2236
2237 if (!is_valid_rd(rd)) {
2238 pr_err("Invalid regulatory domain detected:\n");
2239 print_regdomain_info(rd);
2240 return -EINVAL;
2241 }
2242
2243 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2244 if (!request_wiphy &&
2245 (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2246 last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)) {
2247 schedule_delayed_work(&reg_timeout, 0);
2248 return -ENODEV;
2249 }
2250
2251 if (!last_request->intersect) {
2252 int r;
2253
2254 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2255 reset_regdomains(false);
2256 cfg80211_regdomain = rd;
2257 return 0;
2258 }
2259
2260 /*
2261 * For a driver hint, lets copy the regulatory domain the
2262 * driver wanted to the wiphy to deal with conflicts
2263 */
2264
2265 /*
2266 * Userspace could have sent two replies with only
2267 * one kernel request.
2268 */
2269 if (request_wiphy->regd)
2270 return -EALREADY;
2271
2272 r = reg_copy_regd(&request_wiphy->regd, rd);
2273 if (r)
2274 return r;
2275
2276 reset_regdomains(false);
2277 cfg80211_regdomain = rd;
2278 return 0;
2279 }
2280
2281 /* Intersection requires a bit more work */
2282
2283 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2284
2285 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
2286 if (!intersected_rd)
2287 return -EINVAL;
2288
2289 /*
2290 * We can trash what CRDA provided now.
2291 * However if a driver requested this specific regulatory
2292 * domain we keep it for its private use
2293 */
2294 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2295 request_wiphy->regd = rd;
2296 else
2297 kfree(rd);
2298
2299 rd = NULL;
2300
2301 reset_regdomains(false);
2302 cfg80211_regdomain = intersected_rd;
2303
2304 return 0;
2305 }
2306
2307 return -EINVAL;
2308 }
2309
2310
2311 /*
2312 * Use this call to set the current regulatory domain. Conflicts with
2313 * multiple drivers can be ironed out later. Caller must've already
2314 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2315 */
2316 int set_regdom(const struct ieee80211_regdomain *rd)
2317 {
2318 int r;
2319
2320 assert_cfg80211_lock();
2321
2322 mutex_lock(&reg_mutex);
2323
2324 /* Note that this doesn't update the wiphys, this is done below */
2325 r = __set_regdom(rd);
2326 if (r) {
2327 if (r == -EALREADY)
2328 reg_set_request_processed();
2329
2330 kfree(rd);
2331 mutex_unlock(&reg_mutex);
2332 return r;
2333 }
2334
2335 /* This would make this whole thing pointless */
2336 if (!last_request->intersect)
2337 BUG_ON(rd != cfg80211_regdomain);
2338
2339 /* update all wiphys now with the new established regulatory domain */
2340 update_all_wiphy_regulatory(last_request->initiator);
2341
2342 print_regdomain(cfg80211_regdomain);
2343
2344 nl80211_send_reg_change_event(last_request);
2345
2346 reg_set_request_processed();
2347
2348 mutex_unlock(&reg_mutex);
2349
2350 return r;
2351 }
2352
2353 #ifdef CONFIG_HOTPLUG
2354 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2355 {
2356 if (last_request && !last_request->processed) {
2357 if (add_uevent_var(env, "COUNTRY=%c%c",
2358 last_request->alpha2[0],
2359 last_request->alpha2[1]))
2360 return -ENOMEM;
2361 }
2362
2363 return 0;
2364 }
2365 #else
2366 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2367 {
2368 return -ENODEV;
2369 }
2370 #endif /* CONFIG_HOTPLUG */
2371
2372 void wiphy_regulatory_register(struct wiphy *wiphy)
2373 {
2374 assert_cfg80211_lock();
2375
2376 mutex_lock(&reg_mutex);
2377
2378 if (!reg_dev_ignore_cell_hint(wiphy))
2379 reg_num_devs_support_basehint++;
2380
2381 wiphy_update_regulatory(wiphy, NL80211_REGDOM_SET_BY_CORE);
2382
2383 mutex_unlock(&reg_mutex);
2384 }
2385
2386 /* Caller must hold cfg80211_mutex */
2387 void wiphy_regulatory_deregister(struct wiphy *wiphy)
2388 {
2389 struct wiphy *request_wiphy = NULL;
2390
2391 assert_cfg80211_lock();
2392
2393 mutex_lock(&reg_mutex);
2394
2395 if (!reg_dev_ignore_cell_hint(wiphy))
2396 reg_num_devs_support_basehint--;
2397
2398 kfree(wiphy->regd);
2399
2400 if (last_request)
2401 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2402
2403 if (!request_wiphy || request_wiphy != wiphy)
2404 goto out;
2405
2406 last_request->wiphy_idx = WIPHY_IDX_STALE;
2407 last_request->country_ie_env = ENVIRON_ANY;
2408 out:
2409 mutex_unlock(&reg_mutex);
2410 }
2411
2412 static void reg_timeout_work(struct work_struct *work)
2413 {
2414 REG_DBG_PRINT("Timeout while waiting for CRDA to reply, "
2415 "restoring regulatory settings\n");
2416 restore_regulatory_settings(true);
2417 }
2418
2419 int __init regulatory_init(void)
2420 {
2421 int err = 0;
2422
2423 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2424 if (IS_ERR(reg_pdev))
2425 return PTR_ERR(reg_pdev);
2426
2427 reg_pdev->dev.type = &reg_device_type;
2428
2429 spin_lock_init(&reg_requests_lock);
2430 spin_lock_init(&reg_pending_beacons_lock);
2431
2432 reg_regdb_size_check();
2433
2434 cfg80211_regdomain = cfg80211_world_regdom;
2435
2436 user_alpha2[0] = '9';
2437 user_alpha2[1] = '7';
2438
2439 /* We always try to get an update for the static regdomain */
2440 err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2441 if (err) {
2442 if (err == -ENOMEM)
2443 return err;
2444 /*
2445 * N.B. kobject_uevent_env() can fail mainly for when we're out
2446 * memory which is handled and propagated appropriately above
2447 * but it can also fail during a netlink_broadcast() or during
2448 * early boot for call_usermodehelper(). For now treat these
2449 * errors as non-fatal.
2450 */
2451 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2452 #ifdef CONFIG_CFG80211_REG_DEBUG
2453 /* We want to find out exactly why when debugging */
2454 WARN_ON(err);
2455 #endif
2456 }
2457
2458 /*
2459 * Finally, if the user set the module parameter treat it
2460 * as a user hint.
2461 */
2462 if (!is_world_regdom(ieee80211_regdom))
2463 regulatory_hint_user(ieee80211_regdom,
2464 NL80211_USER_REG_HINT_USER);
2465
2466 return 0;
2467 }
2468
2469 void /* __init_or_exit */ regulatory_exit(void)
2470 {
2471 struct regulatory_request *reg_request, *tmp;
2472 struct reg_beacon *reg_beacon, *btmp;
2473
2474 cancel_work_sync(&reg_work);
2475 cancel_delayed_work_sync(&reg_timeout);
2476
2477 mutex_lock(&cfg80211_mutex);
2478 mutex_lock(&reg_mutex);
2479
2480 reset_regdomains(true);
2481
2482 dev_set_uevent_suppress(&reg_pdev->dev, true);
2483
2484 platform_device_unregister(reg_pdev);
2485
2486 spin_lock_bh(&reg_pending_beacons_lock);
2487 if (!list_empty(&reg_pending_beacons)) {
2488 list_for_each_entry_safe(reg_beacon, btmp,
2489 &reg_pending_beacons, list) {
2490 list_del(&reg_beacon->list);
2491 kfree(reg_beacon);
2492 }
2493 }
2494 spin_unlock_bh(&reg_pending_beacons_lock);
2495
2496 if (!list_empty(&reg_beacon_list)) {
2497 list_for_each_entry_safe(reg_beacon, btmp,
2498 &reg_beacon_list, list) {
2499 list_del(&reg_beacon->list);
2500 kfree(reg_beacon);
2501 }
2502 }
2503
2504 spin_lock(&reg_requests_lock);
2505 if (!list_empty(&reg_requests_list)) {
2506 list_for_each_entry_safe(reg_request, tmp,
2507 &reg_requests_list, list) {
2508 list_del(&reg_request->list);
2509 kfree(reg_request);
2510 }
2511 }
2512 spin_unlock(&reg_requests_lock);
2513
2514 mutex_unlock(&reg_mutex);
2515 mutex_unlock(&cfg80211_mutex);
2516 }