]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/wireless/reg.c
cfg80211: remove wiphy_idx_valid
[mirror_ubuntu-bionic-kernel.git] / net / wireless / reg.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 *
7 * Permission to use, copy, modify, and/or distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20
21 /**
22 * DOC: Wireless regulatory infrastructure
23 *
24 * The usual implementation is for a driver to read a device EEPROM to
25 * determine which regulatory domain it should be operating under, then
26 * looking up the allowable channels in a driver-local table and finally
27 * registering those channels in the wiphy structure.
28 *
29 * Another set of compliance enforcement is for drivers to use their
30 * own compliance limits which can be stored on the EEPROM. The host
31 * driver or firmware may ensure these are used.
32 *
33 * In addition to all this we provide an extra layer of regulatory
34 * conformance. For drivers which do not have any regulatory
35 * information CRDA provides the complete regulatory solution.
36 * For others it provides a community effort on further restrictions
37 * to enhance compliance.
38 *
39 * Note: When number of rules --> infinity we will not be able to
40 * index on alpha2 any more, instead we'll probably have to
41 * rely on some SHA1 checksum of the regdomain for example.
42 *
43 */
44
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
47 #include <linux/kernel.h>
48 #include <linux/export.h>
49 #include <linux/slab.h>
50 #include <linux/list.h>
51 #include <linux/ctype.h>
52 #include <linux/nl80211.h>
53 #include <linux/platform_device.h>
54 #include <linux/moduleparam.h>
55 #include <net/cfg80211.h>
56 #include "core.h"
57 #include "reg.h"
58 #include "regdb.h"
59 #include "nl80211.h"
60
61 #ifdef CONFIG_CFG80211_REG_DEBUG
62 #define REG_DBG_PRINT(format, args...) \
63 printk(KERN_DEBUG pr_fmt(format), ##args)
64 #else
65 #define REG_DBG_PRINT(args...)
66 #endif
67
68 enum reg_request_treatment {
69 REG_REQ_OK,
70 REG_REQ_IGNORE,
71 REG_REQ_INTERSECT,
72 REG_REQ_ALREADY_SET,
73 };
74
75 static struct regulatory_request core_request_world = {
76 .initiator = NL80211_REGDOM_SET_BY_CORE,
77 .alpha2[0] = '0',
78 .alpha2[1] = '0',
79 .intersect = false,
80 .processed = true,
81 .country_ie_env = ENVIRON_ANY,
82 };
83
84 /* Receipt of information from last regulatory request */
85 static struct regulatory_request *last_request = &core_request_world;
86
87 /* To trigger userspace events */
88 static struct platform_device *reg_pdev;
89
90 static struct device_type reg_device_type = {
91 .uevent = reg_device_uevent,
92 };
93
94 /*
95 * Central wireless core regulatory domains, we only need two,
96 * the current one and a world regulatory domain in case we have no
97 * information to give us an alpha2
98 */
99 const struct ieee80211_regdomain *cfg80211_regdomain;
100
101 /*
102 * Protects static reg.c components:
103 * - cfg80211_world_regdom
104 * - cfg80211_regdom
105 * - last_request
106 * - reg_num_devs_support_basehint
107 */
108 static DEFINE_MUTEX(reg_mutex);
109
110 /*
111 * Number of devices that registered to the core
112 * that support cellular base station regulatory hints
113 */
114 static int reg_num_devs_support_basehint;
115
116 static inline void assert_reg_lock(void)
117 {
118 lockdep_assert_held(&reg_mutex);
119 }
120
121 /* Used to queue up regulatory hints */
122 static LIST_HEAD(reg_requests_list);
123 static spinlock_t reg_requests_lock;
124
125 /* Used to queue up beacon hints for review */
126 static LIST_HEAD(reg_pending_beacons);
127 static spinlock_t reg_pending_beacons_lock;
128
129 /* Used to keep track of processed beacon hints */
130 static LIST_HEAD(reg_beacon_list);
131
132 struct reg_beacon {
133 struct list_head list;
134 struct ieee80211_channel chan;
135 };
136
137 static void reg_todo(struct work_struct *work);
138 static DECLARE_WORK(reg_work, reg_todo);
139
140 static void reg_timeout_work(struct work_struct *work);
141 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
142
143 /* We keep a static world regulatory domain in case of the absence of CRDA */
144 static const struct ieee80211_regdomain world_regdom = {
145 .n_reg_rules = 6,
146 .alpha2 = "00",
147 .reg_rules = {
148 /* IEEE 802.11b/g, channels 1..11 */
149 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
150 /* IEEE 802.11b/g, channels 12..13. */
151 REG_RULE(2467-10, 2472+10, 40, 6, 20,
152 NL80211_RRF_PASSIVE_SCAN |
153 NL80211_RRF_NO_IBSS),
154 /* IEEE 802.11 channel 14 - Only JP enables
155 * this and for 802.11b only */
156 REG_RULE(2484-10, 2484+10, 20, 6, 20,
157 NL80211_RRF_PASSIVE_SCAN |
158 NL80211_RRF_NO_IBSS |
159 NL80211_RRF_NO_OFDM),
160 /* IEEE 802.11a, channel 36..48 */
161 REG_RULE(5180-10, 5240+10, 40, 6, 20,
162 NL80211_RRF_PASSIVE_SCAN |
163 NL80211_RRF_NO_IBSS),
164
165 /* NB: 5260 MHz - 5700 MHz requies DFS */
166
167 /* IEEE 802.11a, channel 149..165 */
168 REG_RULE(5745-10, 5825+10, 40, 6, 20,
169 NL80211_RRF_PASSIVE_SCAN |
170 NL80211_RRF_NO_IBSS),
171
172 /* IEEE 802.11ad (60gHz), channels 1..3 */
173 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
174 }
175 };
176
177 static const struct ieee80211_regdomain *cfg80211_world_regdom =
178 &world_regdom;
179
180 static char *ieee80211_regdom = "00";
181 static char user_alpha2[2];
182
183 module_param(ieee80211_regdom, charp, 0444);
184 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
185
186 static void reset_regdomains(bool full_reset)
187 {
188 /* avoid freeing static information or freeing something twice */
189 if (cfg80211_regdomain == cfg80211_world_regdom)
190 cfg80211_regdomain = NULL;
191 if (cfg80211_world_regdom == &world_regdom)
192 cfg80211_world_regdom = NULL;
193 if (cfg80211_regdomain == &world_regdom)
194 cfg80211_regdomain = NULL;
195
196 kfree(cfg80211_regdomain);
197 kfree(cfg80211_world_regdom);
198
199 cfg80211_world_regdom = &world_regdom;
200 cfg80211_regdomain = NULL;
201
202 if (!full_reset)
203 return;
204
205 if (last_request != &core_request_world)
206 kfree(last_request);
207 last_request = &core_request_world;
208 }
209
210 /*
211 * Dynamic world regulatory domain requested by the wireless
212 * core upon initialization
213 */
214 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
215 {
216 BUG_ON(!last_request);
217
218 reset_regdomains(false);
219
220 cfg80211_world_regdom = rd;
221 cfg80211_regdomain = rd;
222 }
223
224 bool is_world_regdom(const char *alpha2)
225 {
226 if (!alpha2)
227 return false;
228 return alpha2[0] == '0' && alpha2[1] == '0';
229 }
230
231 static bool is_alpha2_set(const char *alpha2)
232 {
233 if (!alpha2)
234 return false;
235 return alpha2[0] && alpha2[1];
236 }
237
238 static bool is_unknown_alpha2(const char *alpha2)
239 {
240 if (!alpha2)
241 return false;
242 /*
243 * Special case where regulatory domain was built by driver
244 * but a specific alpha2 cannot be determined
245 */
246 return alpha2[0] == '9' && alpha2[1] == '9';
247 }
248
249 static bool is_intersected_alpha2(const char *alpha2)
250 {
251 if (!alpha2)
252 return false;
253 /*
254 * Special case where regulatory domain is the
255 * result of an intersection between two regulatory domain
256 * structures
257 */
258 return alpha2[0] == '9' && alpha2[1] == '8';
259 }
260
261 static bool is_an_alpha2(const char *alpha2)
262 {
263 if (!alpha2)
264 return false;
265 return isalpha(alpha2[0]) && isalpha(alpha2[1]);
266 }
267
268 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
269 {
270 if (!alpha2_x || !alpha2_y)
271 return false;
272 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
273 }
274
275 static bool regdom_changes(const char *alpha2)
276 {
277 assert_cfg80211_lock();
278
279 if (!cfg80211_regdomain)
280 return true;
281 return !alpha2_equal(cfg80211_regdomain->alpha2, alpha2);
282 }
283
284 /*
285 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
286 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
287 * has ever been issued.
288 */
289 static bool is_user_regdom_saved(void)
290 {
291 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
292 return false;
293
294 /* This would indicate a mistake on the design */
295 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
296 "Unexpected user alpha2: %c%c\n",
297 user_alpha2[0], user_alpha2[1]))
298 return false;
299
300 return true;
301 }
302
303 static const struct ieee80211_regdomain *
304 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
305 {
306 struct ieee80211_regdomain *regd;
307 int size_of_regd;
308 unsigned int i;
309
310 size_of_regd =
311 sizeof(struct ieee80211_regdomain) +
312 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
313
314 regd = kzalloc(size_of_regd, GFP_KERNEL);
315 if (!regd)
316 return ERR_PTR(-ENOMEM);
317
318 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
319
320 for (i = 0; i < src_regd->n_reg_rules; i++)
321 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
322 sizeof(struct ieee80211_reg_rule));
323
324 return regd;
325 }
326
327 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
328 struct reg_regdb_search_request {
329 char alpha2[2];
330 struct list_head list;
331 };
332
333 static LIST_HEAD(reg_regdb_search_list);
334 static DEFINE_MUTEX(reg_regdb_search_mutex);
335
336 static void reg_regdb_search(struct work_struct *work)
337 {
338 struct reg_regdb_search_request *request;
339 const struct ieee80211_regdomain *curdom, *regdom = NULL;
340 int i;
341
342 mutex_lock(&cfg80211_mutex);
343
344 mutex_lock(&reg_regdb_search_mutex);
345 while (!list_empty(&reg_regdb_search_list)) {
346 request = list_first_entry(&reg_regdb_search_list,
347 struct reg_regdb_search_request,
348 list);
349 list_del(&request->list);
350
351 for (i = 0; i < reg_regdb_size; i++) {
352 curdom = reg_regdb[i];
353
354 if (alpha2_equal(request->alpha2, curdom->alpha2)) {
355 regdom = reg_copy_regd(curdom);
356 break;
357 }
358 }
359
360 kfree(request);
361 }
362 mutex_unlock(&reg_regdb_search_mutex);
363
364 if (!IS_ERR_OR_NULL(regdom))
365 set_regdom(regdom);
366
367 mutex_unlock(&cfg80211_mutex);
368 }
369
370 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
371
372 static void reg_regdb_query(const char *alpha2)
373 {
374 struct reg_regdb_search_request *request;
375
376 if (!alpha2)
377 return;
378
379 request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
380 if (!request)
381 return;
382
383 memcpy(request->alpha2, alpha2, 2);
384
385 mutex_lock(&reg_regdb_search_mutex);
386 list_add_tail(&request->list, &reg_regdb_search_list);
387 mutex_unlock(&reg_regdb_search_mutex);
388
389 schedule_work(&reg_regdb_work);
390 }
391
392 /* Feel free to add any other sanity checks here */
393 static void reg_regdb_size_check(void)
394 {
395 /* We should ideally BUILD_BUG_ON() but then random builds would fail */
396 WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
397 }
398 #else
399 static inline void reg_regdb_size_check(void) {}
400 static inline void reg_regdb_query(const char *alpha2) {}
401 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
402
403 /*
404 * This lets us keep regulatory code which is updated on a regulatory
405 * basis in userspace. Country information is filled in by
406 * reg_device_uevent
407 */
408 static int call_crda(const char *alpha2)
409 {
410 if (!is_world_regdom((char *) alpha2))
411 pr_info("Calling CRDA for country: %c%c\n",
412 alpha2[0], alpha2[1]);
413 else
414 pr_info("Calling CRDA to update world regulatory domain\n");
415
416 /* query internal regulatory database (if it exists) */
417 reg_regdb_query(alpha2);
418
419 return kobject_uevent(&reg_pdev->dev.kobj, KOBJ_CHANGE);
420 }
421
422 /* Used by nl80211 before kmalloc'ing our regulatory domain */
423 bool reg_is_valid_request(const char *alpha2)
424 {
425 assert_cfg80211_lock();
426
427 if (!last_request)
428 return false;
429
430 return alpha2_equal(last_request->alpha2, alpha2);
431 }
432
433 /* Sanity check on a regulatory rule */
434 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
435 {
436 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
437 u32 freq_diff;
438
439 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
440 return false;
441
442 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
443 return false;
444
445 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
446
447 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
448 freq_range->max_bandwidth_khz > freq_diff)
449 return false;
450
451 return true;
452 }
453
454 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
455 {
456 const struct ieee80211_reg_rule *reg_rule = NULL;
457 unsigned int i;
458
459 if (!rd->n_reg_rules)
460 return false;
461
462 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
463 return false;
464
465 for (i = 0; i < rd->n_reg_rules; i++) {
466 reg_rule = &rd->reg_rules[i];
467 if (!is_valid_reg_rule(reg_rule))
468 return false;
469 }
470
471 return true;
472 }
473
474 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
475 u32 center_freq_khz,
476 u32 bw_khz)
477 {
478 u32 start_freq_khz, end_freq_khz;
479
480 start_freq_khz = center_freq_khz - (bw_khz/2);
481 end_freq_khz = center_freq_khz + (bw_khz/2);
482
483 if (start_freq_khz >= freq_range->start_freq_khz &&
484 end_freq_khz <= freq_range->end_freq_khz)
485 return true;
486
487 return false;
488 }
489
490 /**
491 * freq_in_rule_band - tells us if a frequency is in a frequency band
492 * @freq_range: frequency rule we want to query
493 * @freq_khz: frequency we are inquiring about
494 *
495 * This lets us know if a specific frequency rule is or is not relevant to
496 * a specific frequency's band. Bands are device specific and artificial
497 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
498 * however it is safe for now to assume that a frequency rule should not be
499 * part of a frequency's band if the start freq or end freq are off by more
500 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
501 * 60 GHz band.
502 * This resolution can be lowered and should be considered as we add
503 * regulatory rule support for other "bands".
504 **/
505 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
506 u32 freq_khz)
507 {
508 #define ONE_GHZ_IN_KHZ 1000000
509 /*
510 * From 802.11ad: directional multi-gigabit (DMG):
511 * Pertaining to operation in a frequency band containing a channel
512 * with the Channel starting frequency above 45 GHz.
513 */
514 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
515 10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
516 if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
517 return true;
518 if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
519 return true;
520 return false;
521 #undef ONE_GHZ_IN_KHZ
522 }
523
524 /*
525 * Helper for regdom_intersect(), this does the real
526 * mathematical intersection fun
527 */
528 static int reg_rules_intersect(const struct ieee80211_reg_rule *rule1,
529 const struct ieee80211_reg_rule *rule2,
530 struct ieee80211_reg_rule *intersected_rule)
531 {
532 const struct ieee80211_freq_range *freq_range1, *freq_range2;
533 struct ieee80211_freq_range *freq_range;
534 const struct ieee80211_power_rule *power_rule1, *power_rule2;
535 struct ieee80211_power_rule *power_rule;
536 u32 freq_diff;
537
538 freq_range1 = &rule1->freq_range;
539 freq_range2 = &rule2->freq_range;
540 freq_range = &intersected_rule->freq_range;
541
542 power_rule1 = &rule1->power_rule;
543 power_rule2 = &rule2->power_rule;
544 power_rule = &intersected_rule->power_rule;
545
546 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
547 freq_range2->start_freq_khz);
548 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
549 freq_range2->end_freq_khz);
550 freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
551 freq_range2->max_bandwidth_khz);
552
553 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
554 if (freq_range->max_bandwidth_khz > freq_diff)
555 freq_range->max_bandwidth_khz = freq_diff;
556
557 power_rule->max_eirp = min(power_rule1->max_eirp,
558 power_rule2->max_eirp);
559 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
560 power_rule2->max_antenna_gain);
561
562 intersected_rule->flags = rule1->flags | rule2->flags;
563
564 if (!is_valid_reg_rule(intersected_rule))
565 return -EINVAL;
566
567 return 0;
568 }
569
570 /**
571 * regdom_intersect - do the intersection between two regulatory domains
572 * @rd1: first regulatory domain
573 * @rd2: second regulatory domain
574 *
575 * Use this function to get the intersection between two regulatory domains.
576 * Once completed we will mark the alpha2 for the rd as intersected, "98",
577 * as no one single alpha2 can represent this regulatory domain.
578 *
579 * Returns a pointer to the regulatory domain structure which will hold the
580 * resulting intersection of rules between rd1 and rd2. We will
581 * kzalloc() this structure for you.
582 */
583 static struct ieee80211_regdomain *
584 regdom_intersect(const struct ieee80211_regdomain *rd1,
585 const struct ieee80211_regdomain *rd2)
586 {
587 int r, size_of_regd;
588 unsigned int x, y;
589 unsigned int num_rules = 0, rule_idx = 0;
590 const struct ieee80211_reg_rule *rule1, *rule2;
591 struct ieee80211_reg_rule *intersected_rule;
592 struct ieee80211_regdomain *rd;
593 /* This is just a dummy holder to help us count */
594 struct ieee80211_reg_rule dummy_rule;
595
596 if (!rd1 || !rd2)
597 return NULL;
598
599 /*
600 * First we get a count of the rules we'll need, then we actually
601 * build them. This is to so we can malloc() and free() a
602 * regdomain once. The reason we use reg_rules_intersect() here
603 * is it will return -EINVAL if the rule computed makes no sense.
604 * All rules that do check out OK are valid.
605 */
606
607 for (x = 0; x < rd1->n_reg_rules; x++) {
608 rule1 = &rd1->reg_rules[x];
609 for (y = 0; y < rd2->n_reg_rules; y++) {
610 rule2 = &rd2->reg_rules[y];
611 if (!reg_rules_intersect(rule1, rule2, &dummy_rule))
612 num_rules++;
613 }
614 }
615
616 if (!num_rules)
617 return NULL;
618
619 size_of_regd = sizeof(struct ieee80211_regdomain) +
620 num_rules * sizeof(struct ieee80211_reg_rule);
621
622 rd = kzalloc(size_of_regd, GFP_KERNEL);
623 if (!rd)
624 return NULL;
625
626 for (x = 0; x < rd1->n_reg_rules && rule_idx < num_rules; x++) {
627 rule1 = &rd1->reg_rules[x];
628 for (y = 0; y < rd2->n_reg_rules && rule_idx < num_rules; y++) {
629 rule2 = &rd2->reg_rules[y];
630 /*
631 * This time around instead of using the stack lets
632 * write to the target rule directly saving ourselves
633 * a memcpy()
634 */
635 intersected_rule = &rd->reg_rules[rule_idx];
636 r = reg_rules_intersect(rule1, rule2, intersected_rule);
637 /*
638 * No need to memset here the intersected rule here as
639 * we're not using the stack anymore
640 */
641 if (r)
642 continue;
643 rule_idx++;
644 }
645 }
646
647 if (rule_idx != num_rules) {
648 kfree(rd);
649 return NULL;
650 }
651
652 rd->n_reg_rules = num_rules;
653 rd->alpha2[0] = '9';
654 rd->alpha2[1] = '8';
655
656 return rd;
657 }
658
659 /*
660 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
661 * want to just have the channel structure use these
662 */
663 static u32 map_regdom_flags(u32 rd_flags)
664 {
665 u32 channel_flags = 0;
666 if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
667 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
668 if (rd_flags & NL80211_RRF_NO_IBSS)
669 channel_flags |= IEEE80211_CHAN_NO_IBSS;
670 if (rd_flags & NL80211_RRF_DFS)
671 channel_flags |= IEEE80211_CHAN_RADAR;
672 if (rd_flags & NL80211_RRF_NO_OFDM)
673 channel_flags |= IEEE80211_CHAN_NO_OFDM;
674 return channel_flags;
675 }
676
677 static int freq_reg_info_regd(struct wiphy *wiphy,
678 u32 center_freq,
679 u32 desired_bw_khz,
680 const struct ieee80211_reg_rule **reg_rule,
681 const struct ieee80211_regdomain *custom_regd)
682 {
683 int i;
684 bool band_rule_found = false;
685 const struct ieee80211_regdomain *regd;
686 bool bw_fits = false;
687
688 if (!desired_bw_khz)
689 desired_bw_khz = MHZ_TO_KHZ(20);
690
691 regd = custom_regd ? custom_regd : cfg80211_regdomain;
692
693 /*
694 * Follow the driver's regulatory domain, if present, unless a country
695 * IE has been processed or a user wants to help complaince further
696 */
697 if (!custom_regd &&
698 last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
699 last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
700 wiphy->regd)
701 regd = wiphy->regd;
702
703 if (!regd)
704 return -EINVAL;
705
706 for (i = 0; i < regd->n_reg_rules; i++) {
707 const struct ieee80211_reg_rule *rr;
708 const struct ieee80211_freq_range *fr = NULL;
709
710 rr = &regd->reg_rules[i];
711 fr = &rr->freq_range;
712
713 /*
714 * We only need to know if one frequency rule was
715 * was in center_freq's band, that's enough, so lets
716 * not overwrite it once found
717 */
718 if (!band_rule_found)
719 band_rule_found = freq_in_rule_band(fr, center_freq);
720
721 bw_fits = reg_does_bw_fit(fr, center_freq, desired_bw_khz);
722
723 if (band_rule_found && bw_fits) {
724 *reg_rule = rr;
725 return 0;
726 }
727 }
728
729 if (!band_rule_found)
730 return -ERANGE;
731
732 return -EINVAL;
733 }
734
735 int freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 desired_bw_khz,
736 const struct ieee80211_reg_rule **reg_rule)
737 {
738 assert_cfg80211_lock();
739
740 return freq_reg_info_regd(wiphy, center_freq, desired_bw_khz,
741 reg_rule, NULL);
742 }
743 EXPORT_SYMBOL(freq_reg_info);
744
745 #ifdef CONFIG_CFG80211_REG_DEBUG
746 static const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
747 {
748 switch (initiator) {
749 case NL80211_REGDOM_SET_BY_CORE:
750 return "Set by core";
751 case NL80211_REGDOM_SET_BY_USER:
752 return "Set by user";
753 case NL80211_REGDOM_SET_BY_DRIVER:
754 return "Set by driver";
755 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
756 return "Set by country IE";
757 default:
758 WARN_ON(1);
759 return "Set by bug";
760 }
761 }
762
763 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
764 u32 desired_bw_khz,
765 const struct ieee80211_reg_rule *reg_rule)
766 {
767 const struct ieee80211_power_rule *power_rule;
768 const struct ieee80211_freq_range *freq_range;
769 char max_antenna_gain[32];
770
771 power_rule = &reg_rule->power_rule;
772 freq_range = &reg_rule->freq_range;
773
774 if (!power_rule->max_antenna_gain)
775 snprintf(max_antenna_gain, 32, "N/A");
776 else
777 snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);
778
779 REG_DBG_PRINT("Updating information on frequency %d MHz for a %d MHz width channel with regulatory rule:\n",
780 chan->center_freq, KHZ_TO_MHZ(desired_bw_khz));
781
782 REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n",
783 freq_range->start_freq_khz, freq_range->end_freq_khz,
784 freq_range->max_bandwidth_khz, max_antenna_gain,
785 power_rule->max_eirp);
786 }
787 #else
788 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
789 u32 desired_bw_khz,
790 const struct ieee80211_reg_rule *reg_rule)
791 {
792 return;
793 }
794 #endif
795
796 /*
797 * Note that right now we assume the desired channel bandwidth
798 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
799 * per channel, the primary and the extension channel). To support
800 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
801 * new ieee80211_channel.target_bw and re run the regulatory check
802 * on the wiphy with the target_bw specified. Then we can simply use
803 * that below for the desired_bw_khz below.
804 */
805 static void handle_channel(struct wiphy *wiphy,
806 enum nl80211_reg_initiator initiator,
807 enum ieee80211_band band,
808 unsigned int chan_idx)
809 {
810 int r;
811 u32 flags, bw_flags = 0;
812 u32 desired_bw_khz = MHZ_TO_KHZ(20);
813 const struct ieee80211_reg_rule *reg_rule = NULL;
814 const struct ieee80211_power_rule *power_rule = NULL;
815 const struct ieee80211_freq_range *freq_range = NULL;
816 struct ieee80211_supported_band *sband;
817 struct ieee80211_channel *chan;
818 struct wiphy *request_wiphy = NULL;
819
820 assert_cfg80211_lock();
821
822 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
823
824 sband = wiphy->bands[band];
825 BUG_ON(chan_idx >= sband->n_channels);
826 chan = &sband->channels[chan_idx];
827
828 flags = chan->orig_flags;
829
830 r = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq),
831 desired_bw_khz, &reg_rule);
832 if (r) {
833 /*
834 * We will disable all channels that do not match our
835 * received regulatory rule unless the hint is coming
836 * from a Country IE and the Country IE had no information
837 * about a band. The IEEE 802.11 spec allows for an AP
838 * to send only a subset of the regulatory rules allowed,
839 * so an AP in the US that only supports 2.4 GHz may only send
840 * a country IE with information for the 2.4 GHz band
841 * while 5 GHz is still supported.
842 */
843 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
844 r == -ERANGE)
845 return;
846
847 REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
848 chan->flags = IEEE80211_CHAN_DISABLED;
849 return;
850 }
851
852 chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
853
854 power_rule = &reg_rule->power_rule;
855 freq_range = &reg_rule->freq_range;
856
857 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
858 bw_flags = IEEE80211_CHAN_NO_HT40;
859
860 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
861 request_wiphy && request_wiphy == wiphy &&
862 request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
863 /*
864 * This guarantees the driver's requested regulatory domain
865 * will always be used as a base for further regulatory
866 * settings
867 */
868 chan->flags = chan->orig_flags =
869 map_regdom_flags(reg_rule->flags) | bw_flags;
870 chan->max_antenna_gain = chan->orig_mag =
871 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
872 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
873 (int) MBM_TO_DBM(power_rule->max_eirp);
874 return;
875 }
876
877 chan->beacon_found = false;
878 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
879 chan->max_antenna_gain =
880 min_t(int, chan->orig_mag,
881 MBI_TO_DBI(power_rule->max_antenna_gain));
882 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
883 if (chan->orig_mpwr) {
884 /*
885 * Devices that have their own custom regulatory domain
886 * but also use WIPHY_FLAG_STRICT_REGULATORY will follow the
887 * passed country IE power settings.
888 */
889 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
890 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
891 wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
892 chan->max_power = chan->max_reg_power;
893 else
894 chan->max_power = min(chan->orig_mpwr,
895 chan->max_reg_power);
896 } else
897 chan->max_power = chan->max_reg_power;
898 }
899
900 static void handle_band(struct wiphy *wiphy, enum ieee80211_band band,
901 enum nl80211_reg_initiator initiator)
902 {
903 unsigned int i;
904 struct ieee80211_supported_band *sband;
905
906 BUG_ON(!wiphy->bands[band]);
907 sband = wiphy->bands[band];
908
909 for (i = 0; i < sband->n_channels; i++)
910 handle_channel(wiphy, initiator, band, i);
911 }
912
913 static bool reg_request_cell_base(struct regulatory_request *request)
914 {
915 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
916 return false;
917 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
918 }
919
920 bool reg_last_request_cell_base(void)
921 {
922 bool val;
923
924 assert_cfg80211_lock();
925
926 mutex_lock(&reg_mutex);
927 val = reg_request_cell_base(last_request);
928 mutex_unlock(&reg_mutex);
929
930 return val;
931 }
932
933 #ifdef CONFIG_CFG80211_CERTIFICATION_ONUS
934 /* Core specific check */
935 static enum reg_request_treatment
936 reg_ignore_cell_hint(struct regulatory_request *pending_request)
937 {
938 if (!reg_num_devs_support_basehint)
939 return REG_REQ_IGNORE;
940
941 if (reg_request_cell_base(last_request) &&
942 !regdom_changes(pending_request->alpha2))
943 return REG_REQ_ALREADY_SET;
944
945 return REG_REQ_OK;
946 }
947
948 /* Device specific check */
949 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
950 {
951 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
952 }
953 #else
954 static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
955 {
956 return REG_REQ_IGNORE;
957 }
958
959 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
960 {
961 return true;
962 }
963 #endif
964
965
966 static bool ignore_reg_update(struct wiphy *wiphy,
967 enum nl80211_reg_initiator initiator)
968 {
969 if (!last_request) {
970 REG_DBG_PRINT("Ignoring regulatory request %s since last_request is not set\n",
971 reg_initiator_name(initiator));
972 return true;
973 }
974
975 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
976 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
977 REG_DBG_PRINT("Ignoring regulatory request %s since the driver uses its own custom regulatory domain\n",
978 reg_initiator_name(initiator));
979 return true;
980 }
981
982 /*
983 * wiphy->regd will be set once the device has its own
984 * desired regulatory domain set
985 */
986 if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
987 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
988 !is_world_regdom(last_request->alpha2)) {
989 REG_DBG_PRINT("Ignoring regulatory request %s since the driver requires its own regulatory domain to be set first\n",
990 reg_initiator_name(initiator));
991 return true;
992 }
993
994 if (reg_request_cell_base(last_request))
995 return reg_dev_ignore_cell_hint(wiphy);
996
997 return false;
998 }
999
1000 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1001 struct reg_beacon *reg_beacon)
1002 {
1003 struct ieee80211_supported_band *sband;
1004 struct ieee80211_channel *chan;
1005 bool channel_changed = false;
1006 struct ieee80211_channel chan_before;
1007
1008 assert_cfg80211_lock();
1009
1010 sband = wiphy->bands[reg_beacon->chan.band];
1011 chan = &sband->channels[chan_idx];
1012
1013 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1014 return;
1015
1016 if (chan->beacon_found)
1017 return;
1018
1019 chan->beacon_found = true;
1020
1021 if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
1022 return;
1023
1024 chan_before.center_freq = chan->center_freq;
1025 chan_before.flags = chan->flags;
1026
1027 if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
1028 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
1029 channel_changed = true;
1030 }
1031
1032 if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
1033 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
1034 channel_changed = true;
1035 }
1036
1037 if (channel_changed)
1038 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1039 }
1040
1041 /*
1042 * Called when a scan on a wiphy finds a beacon on
1043 * new channel
1044 */
1045 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1046 struct reg_beacon *reg_beacon)
1047 {
1048 unsigned int i;
1049 struct ieee80211_supported_band *sband;
1050
1051 assert_cfg80211_lock();
1052
1053 if (!wiphy->bands[reg_beacon->chan.band])
1054 return;
1055
1056 sband = wiphy->bands[reg_beacon->chan.band];
1057
1058 for (i = 0; i < sband->n_channels; i++)
1059 handle_reg_beacon(wiphy, i, reg_beacon);
1060 }
1061
1062 /*
1063 * Called upon reg changes or a new wiphy is added
1064 */
1065 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1066 {
1067 unsigned int i;
1068 struct ieee80211_supported_band *sband;
1069 struct reg_beacon *reg_beacon;
1070
1071 assert_cfg80211_lock();
1072
1073 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1074 if (!wiphy->bands[reg_beacon->chan.band])
1075 continue;
1076 sband = wiphy->bands[reg_beacon->chan.band];
1077 for (i = 0; i < sband->n_channels; i++)
1078 handle_reg_beacon(wiphy, i, reg_beacon);
1079 }
1080 }
1081
1082 static bool reg_is_world_roaming(struct wiphy *wiphy)
1083 {
1084 if (is_world_regdom(cfg80211_regdomain->alpha2) ||
1085 (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
1086 return true;
1087 if (last_request &&
1088 last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1089 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1090 return true;
1091 return false;
1092 }
1093
1094 /* Reap the advantages of previously found beacons */
1095 static void reg_process_beacons(struct wiphy *wiphy)
1096 {
1097 /*
1098 * Means we are just firing up cfg80211, so no beacons would
1099 * have been processed yet.
1100 */
1101 if (!last_request)
1102 return;
1103 if (!reg_is_world_roaming(wiphy))
1104 return;
1105 wiphy_update_beacon_reg(wiphy);
1106 }
1107
1108 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1109 {
1110 if (!chan)
1111 return false;
1112 if (chan->flags & IEEE80211_CHAN_DISABLED)
1113 return false;
1114 /* This would happen when regulatory rules disallow HT40 completely */
1115 return !(chan->flags & IEEE80211_CHAN_NO_HT40);
1116 }
1117
1118 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1119 enum ieee80211_band band,
1120 unsigned int chan_idx)
1121 {
1122 struct ieee80211_supported_band *sband;
1123 struct ieee80211_channel *channel;
1124 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1125 unsigned int i;
1126
1127 assert_cfg80211_lock();
1128
1129 sband = wiphy->bands[band];
1130 BUG_ON(chan_idx >= sband->n_channels);
1131 channel = &sband->channels[chan_idx];
1132
1133 if (!is_ht40_allowed(channel)) {
1134 channel->flags |= IEEE80211_CHAN_NO_HT40;
1135 return;
1136 }
1137
1138 /*
1139 * We need to ensure the extension channels exist to
1140 * be able to use HT40- or HT40+, this finds them (or not)
1141 */
1142 for (i = 0; i < sband->n_channels; i++) {
1143 struct ieee80211_channel *c = &sband->channels[i];
1144
1145 if (c->center_freq == (channel->center_freq - 20))
1146 channel_before = c;
1147 if (c->center_freq == (channel->center_freq + 20))
1148 channel_after = c;
1149 }
1150
1151 /*
1152 * Please note that this assumes target bandwidth is 20 MHz,
1153 * if that ever changes we also need to change the below logic
1154 * to include that as well.
1155 */
1156 if (!is_ht40_allowed(channel_before))
1157 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1158 else
1159 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1160
1161 if (!is_ht40_allowed(channel_after))
1162 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1163 else
1164 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1165 }
1166
1167 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1168 enum ieee80211_band band)
1169 {
1170 unsigned int i;
1171 struct ieee80211_supported_band *sband;
1172
1173 BUG_ON(!wiphy->bands[band]);
1174 sband = wiphy->bands[band];
1175
1176 for (i = 0; i < sband->n_channels; i++)
1177 reg_process_ht_flags_channel(wiphy, band, i);
1178 }
1179
1180 static void reg_process_ht_flags(struct wiphy *wiphy)
1181 {
1182 enum ieee80211_band band;
1183
1184 if (!wiphy)
1185 return;
1186
1187 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1188 if (wiphy->bands[band])
1189 reg_process_ht_flags_band(wiphy, band);
1190 }
1191
1192 }
1193
1194 static void wiphy_update_regulatory(struct wiphy *wiphy,
1195 enum nl80211_reg_initiator initiator)
1196 {
1197 enum ieee80211_band band;
1198
1199 assert_reg_lock();
1200
1201 if (ignore_reg_update(wiphy, initiator))
1202 return;
1203
1204 last_request->dfs_region = cfg80211_regdomain->dfs_region;
1205
1206 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1207 if (wiphy->bands[band])
1208 handle_band(wiphy, band, initiator);
1209 }
1210
1211 reg_process_beacons(wiphy);
1212 reg_process_ht_flags(wiphy);
1213
1214 if (wiphy->reg_notifier)
1215 wiphy->reg_notifier(wiphy, last_request);
1216 }
1217
1218 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1219 {
1220 struct cfg80211_registered_device *rdev;
1221 struct wiphy *wiphy;
1222
1223 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1224 wiphy = &rdev->wiphy;
1225 wiphy_update_regulatory(wiphy, initiator);
1226 /*
1227 * Regulatory updates set by CORE are ignored for custom
1228 * regulatory cards. Let us notify the changes to the driver,
1229 * as some drivers used this to restore its orig_* reg domain.
1230 */
1231 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1232 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
1233 wiphy->reg_notifier)
1234 wiphy->reg_notifier(wiphy, last_request);
1235 }
1236 }
1237
1238 static void handle_channel_custom(struct wiphy *wiphy,
1239 enum ieee80211_band band,
1240 unsigned int chan_idx,
1241 const struct ieee80211_regdomain *regd)
1242 {
1243 int r;
1244 u32 desired_bw_khz = MHZ_TO_KHZ(20);
1245 u32 bw_flags = 0;
1246 const struct ieee80211_reg_rule *reg_rule = NULL;
1247 const struct ieee80211_power_rule *power_rule = NULL;
1248 const struct ieee80211_freq_range *freq_range = NULL;
1249 struct ieee80211_supported_band *sband;
1250 struct ieee80211_channel *chan;
1251
1252 assert_reg_lock();
1253
1254 sband = wiphy->bands[band];
1255 BUG_ON(chan_idx >= sband->n_channels);
1256 chan = &sband->channels[chan_idx];
1257
1258 r = freq_reg_info_regd(wiphy, MHZ_TO_KHZ(chan->center_freq),
1259 desired_bw_khz, &reg_rule, regd);
1260
1261 if (r) {
1262 REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits a %d MHz wide channel\n",
1263 chan->center_freq, KHZ_TO_MHZ(desired_bw_khz));
1264 chan->flags = IEEE80211_CHAN_DISABLED;
1265 return;
1266 }
1267
1268 chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
1269
1270 power_rule = &reg_rule->power_rule;
1271 freq_range = &reg_rule->freq_range;
1272
1273 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1274 bw_flags = IEEE80211_CHAN_NO_HT40;
1275
1276 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1277 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1278 chan->max_reg_power = chan->max_power =
1279 (int) MBM_TO_DBM(power_rule->max_eirp);
1280 }
1281
1282 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1283 const struct ieee80211_regdomain *regd)
1284 {
1285 unsigned int i;
1286 struct ieee80211_supported_band *sband;
1287
1288 BUG_ON(!wiphy->bands[band]);
1289 sband = wiphy->bands[band];
1290
1291 for (i = 0; i < sband->n_channels; i++)
1292 handle_channel_custom(wiphy, band, i, regd);
1293 }
1294
1295 /* Used by drivers prior to wiphy registration */
1296 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1297 const struct ieee80211_regdomain *regd)
1298 {
1299 enum ieee80211_band band;
1300 unsigned int bands_set = 0;
1301
1302 mutex_lock(&reg_mutex);
1303 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1304 if (!wiphy->bands[band])
1305 continue;
1306 handle_band_custom(wiphy, band, regd);
1307 bands_set++;
1308 }
1309 mutex_unlock(&reg_mutex);
1310
1311 /*
1312 * no point in calling this if it won't have any effect
1313 * on your device's supported bands.
1314 */
1315 WARN_ON(!bands_set);
1316 }
1317 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1318
1319 /* This has the logic which determines when a new request
1320 * should be ignored. */
1321 static enum reg_request_treatment
1322 get_reg_request_treatment(struct wiphy *wiphy,
1323 struct regulatory_request *pending_request)
1324 {
1325 struct wiphy *last_wiphy = NULL;
1326
1327 assert_cfg80211_lock();
1328
1329 /* All initial requests are respected */
1330 if (!last_request)
1331 return REG_REQ_OK;
1332
1333 switch (pending_request->initiator) {
1334 case NL80211_REGDOM_SET_BY_CORE:
1335 return REG_REQ_OK;
1336 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1337 if (reg_request_cell_base(last_request)) {
1338 /* Trust a Cell base station over the AP's country IE */
1339 if (regdom_changes(pending_request->alpha2))
1340 return REG_REQ_IGNORE;
1341 return REG_REQ_ALREADY_SET;
1342 }
1343
1344 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1345
1346 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1347 return -EINVAL;
1348 if (last_request->initiator ==
1349 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1350 if (last_wiphy != wiphy) {
1351 /*
1352 * Two cards with two APs claiming different
1353 * Country IE alpha2s. We could
1354 * intersect them, but that seems unlikely
1355 * to be correct. Reject second one for now.
1356 */
1357 if (regdom_changes(pending_request->alpha2))
1358 return REG_REQ_IGNORE;
1359 return REG_REQ_ALREADY_SET;
1360 }
1361 /*
1362 * Two consecutive Country IE hints on the same wiphy.
1363 * This should be picked up early by the driver/stack
1364 */
1365 if (WARN_ON(regdom_changes(pending_request->alpha2)))
1366 return REG_REQ_OK;
1367 return REG_REQ_ALREADY_SET;
1368 }
1369 return 0;
1370 case NL80211_REGDOM_SET_BY_DRIVER:
1371 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1372 if (regdom_changes(pending_request->alpha2))
1373 return REG_REQ_OK;
1374 return REG_REQ_ALREADY_SET;
1375 }
1376
1377 /*
1378 * This would happen if you unplug and plug your card
1379 * back in or if you add a new device for which the previously
1380 * loaded card also agrees on the regulatory domain.
1381 */
1382 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1383 !regdom_changes(pending_request->alpha2))
1384 return REG_REQ_ALREADY_SET;
1385
1386 return REG_REQ_INTERSECT;
1387 case NL80211_REGDOM_SET_BY_USER:
1388 if (reg_request_cell_base(pending_request))
1389 return reg_ignore_cell_hint(pending_request);
1390
1391 if (reg_request_cell_base(last_request))
1392 return REG_REQ_IGNORE;
1393
1394 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1395 return REG_REQ_INTERSECT;
1396 /*
1397 * If the user knows better the user should set the regdom
1398 * to their country before the IE is picked up
1399 */
1400 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1401 last_request->intersect)
1402 return REG_REQ_IGNORE;
1403 /*
1404 * Process user requests only after previous user/driver/core
1405 * requests have been processed
1406 */
1407 if ((last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1408 last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1409 last_request->initiator == NL80211_REGDOM_SET_BY_USER) &&
1410 regdom_changes(last_request->alpha2))
1411 return REG_REQ_IGNORE;
1412
1413 if (!regdom_changes(pending_request->alpha2))
1414 return REG_REQ_ALREADY_SET;
1415
1416 return REG_REQ_OK;
1417 }
1418
1419 return REG_REQ_IGNORE;
1420 }
1421
1422 static void reg_set_request_processed(void)
1423 {
1424 bool need_more_processing = false;
1425
1426 last_request->processed = true;
1427
1428 spin_lock(&reg_requests_lock);
1429 if (!list_empty(&reg_requests_list))
1430 need_more_processing = true;
1431 spin_unlock(&reg_requests_lock);
1432
1433 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER)
1434 cancel_delayed_work(&reg_timeout);
1435
1436 if (need_more_processing)
1437 schedule_work(&reg_work);
1438 }
1439
1440 /**
1441 * __regulatory_hint - hint to the wireless core a regulatory domain
1442 * @wiphy: if the hint comes from country information from an AP, this
1443 * is required to be set to the wiphy that received the information
1444 * @pending_request: the regulatory request currently being processed
1445 *
1446 * The Wireless subsystem can use this function to hint to the wireless core
1447 * what it believes should be the current regulatory domain.
1448 *
1449 * Returns one of the different reg request treatment values.
1450 *
1451 * Caller must hold &cfg80211_mutex and &reg_mutex
1452 */
1453 static enum reg_request_treatment
1454 __regulatory_hint(struct wiphy *wiphy,
1455 struct regulatory_request *pending_request)
1456 {
1457 const struct ieee80211_regdomain *regd;
1458 bool intersect = false;
1459 enum reg_request_treatment treatment;
1460
1461 assert_cfg80211_lock();
1462
1463 treatment = get_reg_request_treatment(wiphy, pending_request);
1464
1465 switch (treatment) {
1466 case REG_REQ_INTERSECT:
1467 if (pending_request->initiator ==
1468 NL80211_REGDOM_SET_BY_DRIVER) {
1469 regd = reg_copy_regd(cfg80211_regdomain);
1470 if (IS_ERR(regd)) {
1471 kfree(pending_request);
1472 return PTR_ERR(regd);
1473 }
1474 wiphy->regd = regd;
1475 }
1476 intersect = true;
1477 break;
1478 case REG_REQ_OK:
1479 break;
1480 default:
1481 /*
1482 * If the regulatory domain being requested by the
1483 * driver has already been set just copy it to the
1484 * wiphy
1485 */
1486 if (treatment == REG_REQ_ALREADY_SET &&
1487 pending_request->initiator == NL80211_REGDOM_SET_BY_DRIVER) {
1488 regd = reg_copy_regd(cfg80211_regdomain);
1489 if (IS_ERR(regd)) {
1490 kfree(pending_request);
1491 return REG_REQ_IGNORE;
1492 }
1493 treatment = REG_REQ_ALREADY_SET;
1494 wiphy->regd = regd;
1495 goto new_request;
1496 }
1497 kfree(pending_request);
1498 return treatment;
1499 }
1500
1501 new_request:
1502 if (last_request != &core_request_world)
1503 kfree(last_request);
1504
1505 last_request = pending_request;
1506 last_request->intersect = intersect;
1507
1508 pending_request = NULL;
1509
1510 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1511 user_alpha2[0] = last_request->alpha2[0];
1512 user_alpha2[1] = last_request->alpha2[1];
1513 }
1514
1515 /* When r == REG_REQ_INTERSECT we do need to call CRDA */
1516 if (treatment != REG_REQ_OK && treatment != REG_REQ_INTERSECT) {
1517 /*
1518 * Since CRDA will not be called in this case as we already
1519 * have applied the requested regulatory domain before we just
1520 * inform userspace we have processed the request
1521 */
1522 if (treatment == REG_REQ_ALREADY_SET) {
1523 nl80211_send_reg_change_event(last_request);
1524 reg_set_request_processed();
1525 }
1526 return treatment;
1527 }
1528
1529 if (call_crda(last_request->alpha2))
1530 return REG_REQ_IGNORE;
1531 return REG_REQ_OK;
1532 }
1533
1534 /* This processes *all* regulatory hints */
1535 static void reg_process_hint(struct regulatory_request *reg_request,
1536 enum nl80211_reg_initiator reg_initiator)
1537 {
1538 struct wiphy *wiphy = NULL;
1539
1540 BUG_ON(!reg_request->alpha2);
1541
1542 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
1543 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1544
1545 if (reg_initiator == NL80211_REGDOM_SET_BY_DRIVER && !wiphy) {
1546 kfree(reg_request);
1547 return;
1548 }
1549
1550 switch (__regulatory_hint(wiphy, reg_request)) {
1551 case REG_REQ_ALREADY_SET:
1552 /* This is required so that the orig_* parameters are saved */
1553 if (wiphy && wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
1554 wiphy_update_regulatory(wiphy, reg_initiator);
1555 break;
1556 default:
1557 if (reg_initiator == NL80211_REGDOM_SET_BY_USER)
1558 schedule_delayed_work(&reg_timeout,
1559 msecs_to_jiffies(3142));
1560 break;
1561 }
1562 }
1563
1564 /*
1565 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1566 * Regulatory hints come on a first come first serve basis and we
1567 * must process each one atomically.
1568 */
1569 static void reg_process_pending_hints(void)
1570 {
1571 struct regulatory_request *reg_request;
1572
1573 mutex_lock(&cfg80211_mutex);
1574 mutex_lock(&reg_mutex);
1575
1576 /* When last_request->processed becomes true this will be rescheduled */
1577 if (last_request && !last_request->processed) {
1578 REG_DBG_PRINT("Pending regulatory request, waiting for it to be processed...\n");
1579 goto out;
1580 }
1581
1582 spin_lock(&reg_requests_lock);
1583
1584 if (list_empty(&reg_requests_list)) {
1585 spin_unlock(&reg_requests_lock);
1586 goto out;
1587 }
1588
1589 reg_request = list_first_entry(&reg_requests_list,
1590 struct regulatory_request,
1591 list);
1592 list_del_init(&reg_request->list);
1593
1594 spin_unlock(&reg_requests_lock);
1595
1596 reg_process_hint(reg_request, reg_request->initiator);
1597
1598 out:
1599 mutex_unlock(&reg_mutex);
1600 mutex_unlock(&cfg80211_mutex);
1601 }
1602
1603 /* Processes beacon hints -- this has nothing to do with country IEs */
1604 static void reg_process_pending_beacon_hints(void)
1605 {
1606 struct cfg80211_registered_device *rdev;
1607 struct reg_beacon *pending_beacon, *tmp;
1608
1609 /*
1610 * No need to hold the reg_mutex here as we just touch wiphys
1611 * and do not read or access regulatory variables.
1612 */
1613 mutex_lock(&cfg80211_mutex);
1614
1615 /* This goes through the _pending_ beacon list */
1616 spin_lock_bh(&reg_pending_beacons_lock);
1617
1618 list_for_each_entry_safe(pending_beacon, tmp,
1619 &reg_pending_beacons, list) {
1620 list_del_init(&pending_beacon->list);
1621
1622 /* Applies the beacon hint to current wiphys */
1623 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1624 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1625
1626 /* Remembers the beacon hint for new wiphys or reg changes */
1627 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1628 }
1629
1630 spin_unlock_bh(&reg_pending_beacons_lock);
1631 mutex_unlock(&cfg80211_mutex);
1632 }
1633
1634 static void reg_todo(struct work_struct *work)
1635 {
1636 reg_process_pending_hints();
1637 reg_process_pending_beacon_hints();
1638 }
1639
1640 static void queue_regulatory_request(struct regulatory_request *request)
1641 {
1642 if (isalpha(request->alpha2[0]))
1643 request->alpha2[0] = toupper(request->alpha2[0]);
1644 if (isalpha(request->alpha2[1]))
1645 request->alpha2[1] = toupper(request->alpha2[1]);
1646
1647 spin_lock(&reg_requests_lock);
1648 list_add_tail(&request->list, &reg_requests_list);
1649 spin_unlock(&reg_requests_lock);
1650
1651 schedule_work(&reg_work);
1652 }
1653
1654 /*
1655 * Core regulatory hint -- happens during cfg80211_init()
1656 * and when we restore regulatory settings.
1657 */
1658 static int regulatory_hint_core(const char *alpha2)
1659 {
1660 struct regulatory_request *request;
1661
1662 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1663 if (!request)
1664 return -ENOMEM;
1665
1666 request->alpha2[0] = alpha2[0];
1667 request->alpha2[1] = alpha2[1];
1668 request->initiator = NL80211_REGDOM_SET_BY_CORE;
1669
1670 queue_regulatory_request(request);
1671
1672 return 0;
1673 }
1674
1675 /* User hints */
1676 int regulatory_hint_user(const char *alpha2,
1677 enum nl80211_user_reg_hint_type user_reg_hint_type)
1678 {
1679 struct regulatory_request *request;
1680
1681 BUG_ON(!alpha2);
1682
1683 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1684 if (!request)
1685 return -ENOMEM;
1686
1687 request->wiphy_idx = WIPHY_IDX_INVALID;
1688 request->alpha2[0] = alpha2[0];
1689 request->alpha2[1] = alpha2[1];
1690 request->initiator = NL80211_REGDOM_SET_BY_USER;
1691 request->user_reg_hint_type = user_reg_hint_type;
1692
1693 queue_regulatory_request(request);
1694
1695 return 0;
1696 }
1697
1698 /* Driver hints */
1699 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1700 {
1701 struct regulatory_request *request;
1702
1703 BUG_ON(!alpha2);
1704 BUG_ON(!wiphy);
1705
1706 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1707 if (!request)
1708 return -ENOMEM;
1709
1710 request->wiphy_idx = get_wiphy_idx(wiphy);
1711
1712 request->alpha2[0] = alpha2[0];
1713 request->alpha2[1] = alpha2[1];
1714 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1715
1716 queue_regulatory_request(request);
1717
1718 return 0;
1719 }
1720 EXPORT_SYMBOL(regulatory_hint);
1721
1722 /*
1723 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1724 * therefore cannot iterate over the rdev list here.
1725 */
1726 void regulatory_hint_11d(struct wiphy *wiphy, enum ieee80211_band band,
1727 const u8 *country_ie, u8 country_ie_len)
1728 {
1729 char alpha2[2];
1730 enum environment_cap env = ENVIRON_ANY;
1731 struct regulatory_request *request;
1732
1733 mutex_lock(&reg_mutex);
1734
1735 if (unlikely(!last_request))
1736 goto out;
1737
1738 /* IE len must be evenly divisible by 2 */
1739 if (country_ie_len & 0x01)
1740 goto out;
1741
1742 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1743 goto out;
1744
1745 alpha2[0] = country_ie[0];
1746 alpha2[1] = country_ie[1];
1747
1748 if (country_ie[2] == 'I')
1749 env = ENVIRON_INDOOR;
1750 else if (country_ie[2] == 'O')
1751 env = ENVIRON_OUTDOOR;
1752
1753 /*
1754 * We will run this only upon a successful connection on cfg80211.
1755 * We leave conflict resolution to the workqueue, where can hold
1756 * cfg80211_mutex.
1757 */
1758 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1759 last_request->wiphy_idx != WIPHY_IDX_INVALID)
1760 goto out;
1761
1762 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1763 if (!request)
1764 goto out;
1765
1766 request->wiphy_idx = get_wiphy_idx(wiphy);
1767 request->alpha2[0] = alpha2[0];
1768 request->alpha2[1] = alpha2[1];
1769 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1770 request->country_ie_env = env;
1771
1772 queue_regulatory_request(request);
1773 out:
1774 mutex_unlock(&reg_mutex);
1775 }
1776
1777 static void restore_alpha2(char *alpha2, bool reset_user)
1778 {
1779 /* indicates there is no alpha2 to consider for restoration */
1780 alpha2[0] = '9';
1781 alpha2[1] = '7';
1782
1783 /* The user setting has precedence over the module parameter */
1784 if (is_user_regdom_saved()) {
1785 /* Unless we're asked to ignore it and reset it */
1786 if (reset_user) {
1787 REG_DBG_PRINT("Restoring regulatory settings including user preference\n");
1788 user_alpha2[0] = '9';
1789 user_alpha2[1] = '7';
1790
1791 /*
1792 * If we're ignoring user settings, we still need to
1793 * check the module parameter to ensure we put things
1794 * back as they were for a full restore.
1795 */
1796 if (!is_world_regdom(ieee80211_regdom)) {
1797 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
1798 ieee80211_regdom[0], ieee80211_regdom[1]);
1799 alpha2[0] = ieee80211_regdom[0];
1800 alpha2[1] = ieee80211_regdom[1];
1801 }
1802 } else {
1803 REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n",
1804 user_alpha2[0], user_alpha2[1]);
1805 alpha2[0] = user_alpha2[0];
1806 alpha2[1] = user_alpha2[1];
1807 }
1808 } else if (!is_world_regdom(ieee80211_regdom)) {
1809 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
1810 ieee80211_regdom[0], ieee80211_regdom[1]);
1811 alpha2[0] = ieee80211_regdom[0];
1812 alpha2[1] = ieee80211_regdom[1];
1813 } else
1814 REG_DBG_PRINT("Restoring regulatory settings\n");
1815 }
1816
1817 static void restore_custom_reg_settings(struct wiphy *wiphy)
1818 {
1819 struct ieee80211_supported_band *sband;
1820 enum ieee80211_band band;
1821 struct ieee80211_channel *chan;
1822 int i;
1823
1824 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1825 sband = wiphy->bands[band];
1826 if (!sband)
1827 continue;
1828 for (i = 0; i < sband->n_channels; i++) {
1829 chan = &sband->channels[i];
1830 chan->flags = chan->orig_flags;
1831 chan->max_antenna_gain = chan->orig_mag;
1832 chan->max_power = chan->orig_mpwr;
1833 chan->beacon_found = false;
1834 }
1835 }
1836 }
1837
1838 /*
1839 * Restoring regulatory settings involves ingoring any
1840 * possibly stale country IE information and user regulatory
1841 * settings if so desired, this includes any beacon hints
1842 * learned as we could have traveled outside to another country
1843 * after disconnection. To restore regulatory settings we do
1844 * exactly what we did at bootup:
1845 *
1846 * - send a core regulatory hint
1847 * - send a user regulatory hint if applicable
1848 *
1849 * Device drivers that send a regulatory hint for a specific country
1850 * keep their own regulatory domain on wiphy->regd so that does does
1851 * not need to be remembered.
1852 */
1853 static void restore_regulatory_settings(bool reset_user)
1854 {
1855 char alpha2[2];
1856 char world_alpha2[2];
1857 struct reg_beacon *reg_beacon, *btmp;
1858 struct regulatory_request *reg_request, *tmp;
1859 LIST_HEAD(tmp_reg_req_list);
1860 struct cfg80211_registered_device *rdev;
1861
1862 mutex_lock(&cfg80211_mutex);
1863 mutex_lock(&reg_mutex);
1864
1865 reset_regdomains(true);
1866 restore_alpha2(alpha2, reset_user);
1867
1868 /*
1869 * If there's any pending requests we simply
1870 * stash them to a temporary pending queue and
1871 * add then after we've restored regulatory
1872 * settings.
1873 */
1874 spin_lock(&reg_requests_lock);
1875 list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
1876 if (reg_request->initiator != NL80211_REGDOM_SET_BY_USER)
1877 continue;
1878 list_move_tail(&reg_request->list, &tmp_reg_req_list);
1879 }
1880 spin_unlock(&reg_requests_lock);
1881
1882 /* Clear beacon hints */
1883 spin_lock_bh(&reg_pending_beacons_lock);
1884 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
1885 list_del(&reg_beacon->list);
1886 kfree(reg_beacon);
1887 }
1888 spin_unlock_bh(&reg_pending_beacons_lock);
1889
1890 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
1891 list_del(&reg_beacon->list);
1892 kfree(reg_beacon);
1893 }
1894
1895 /* First restore to the basic regulatory settings */
1896 cfg80211_regdomain = cfg80211_world_regdom;
1897 world_alpha2[0] = cfg80211_regdomain->alpha2[0];
1898 world_alpha2[1] = cfg80211_regdomain->alpha2[1];
1899
1900 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1901 if (rdev->wiphy.flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1902 restore_custom_reg_settings(&rdev->wiphy);
1903 }
1904
1905 mutex_unlock(&reg_mutex);
1906 mutex_unlock(&cfg80211_mutex);
1907
1908 regulatory_hint_core(world_alpha2);
1909
1910 /*
1911 * This restores the ieee80211_regdom module parameter
1912 * preference or the last user requested regulatory
1913 * settings, user regulatory settings takes precedence.
1914 */
1915 if (is_an_alpha2(alpha2))
1916 regulatory_hint_user(user_alpha2, NL80211_USER_REG_HINT_USER);
1917
1918 if (list_empty(&tmp_reg_req_list))
1919 return;
1920
1921 mutex_lock(&cfg80211_mutex);
1922 mutex_lock(&reg_mutex);
1923
1924 spin_lock(&reg_requests_lock);
1925 list_for_each_entry_safe(reg_request, tmp, &tmp_reg_req_list, list) {
1926 REG_DBG_PRINT("Adding request for country %c%c back into the queue\n",
1927 reg_request->alpha2[0], reg_request->alpha2[1]);
1928 list_move_tail(&reg_request->list, &reg_requests_list);
1929 }
1930 spin_unlock(&reg_requests_lock);
1931
1932 mutex_unlock(&reg_mutex);
1933 mutex_unlock(&cfg80211_mutex);
1934
1935 REG_DBG_PRINT("Kicking the queue\n");
1936
1937 schedule_work(&reg_work);
1938 }
1939
1940 void regulatory_hint_disconnect(void)
1941 {
1942 REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n");
1943 restore_regulatory_settings(false);
1944 }
1945
1946 static bool freq_is_chan_12_13_14(u16 freq)
1947 {
1948 if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
1949 freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
1950 freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
1951 return true;
1952 return false;
1953 }
1954
1955 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1956 struct ieee80211_channel *beacon_chan,
1957 gfp_t gfp)
1958 {
1959 struct reg_beacon *reg_beacon;
1960
1961 if (beacon_chan->beacon_found ||
1962 beacon_chan->flags & IEEE80211_CHAN_RADAR ||
1963 (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1964 !freq_is_chan_12_13_14(beacon_chan->center_freq)))
1965 return 0;
1966
1967 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1968 if (!reg_beacon)
1969 return -ENOMEM;
1970
1971 REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
1972 beacon_chan->center_freq,
1973 ieee80211_frequency_to_channel(beacon_chan->center_freq),
1974 wiphy_name(wiphy));
1975
1976 memcpy(&reg_beacon->chan, beacon_chan,
1977 sizeof(struct ieee80211_channel));
1978
1979 /*
1980 * Since we can be called from BH or and non-BH context
1981 * we must use spin_lock_bh()
1982 */
1983 spin_lock_bh(&reg_pending_beacons_lock);
1984 list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1985 spin_unlock_bh(&reg_pending_beacons_lock);
1986
1987 schedule_work(&reg_work);
1988
1989 return 0;
1990 }
1991
1992 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1993 {
1994 unsigned int i;
1995 const struct ieee80211_reg_rule *reg_rule = NULL;
1996 const struct ieee80211_freq_range *freq_range = NULL;
1997 const struct ieee80211_power_rule *power_rule = NULL;
1998
1999 pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
2000
2001 for (i = 0; i < rd->n_reg_rules; i++) {
2002 reg_rule = &rd->reg_rules[i];
2003 freq_range = &reg_rule->freq_range;
2004 power_rule = &reg_rule->power_rule;
2005
2006 /*
2007 * There may not be documentation for max antenna gain
2008 * in certain regions
2009 */
2010 if (power_rule->max_antenna_gain)
2011 pr_info(" (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
2012 freq_range->start_freq_khz,
2013 freq_range->end_freq_khz,
2014 freq_range->max_bandwidth_khz,
2015 power_rule->max_antenna_gain,
2016 power_rule->max_eirp);
2017 else
2018 pr_info(" (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
2019 freq_range->start_freq_khz,
2020 freq_range->end_freq_khz,
2021 freq_range->max_bandwidth_khz,
2022 power_rule->max_eirp);
2023 }
2024 }
2025
2026 bool reg_supported_dfs_region(u8 dfs_region)
2027 {
2028 switch (dfs_region) {
2029 case NL80211_DFS_UNSET:
2030 case NL80211_DFS_FCC:
2031 case NL80211_DFS_ETSI:
2032 case NL80211_DFS_JP:
2033 return true;
2034 default:
2035 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2036 dfs_region);
2037 return false;
2038 }
2039 }
2040
2041 static void print_dfs_region(u8 dfs_region)
2042 {
2043 if (!dfs_region)
2044 return;
2045
2046 switch (dfs_region) {
2047 case NL80211_DFS_FCC:
2048 pr_info(" DFS Master region FCC");
2049 break;
2050 case NL80211_DFS_ETSI:
2051 pr_info(" DFS Master region ETSI");
2052 break;
2053 case NL80211_DFS_JP:
2054 pr_info(" DFS Master region JP");
2055 break;
2056 default:
2057 pr_info(" DFS Master region Unknown");
2058 break;
2059 }
2060 }
2061
2062 static void print_regdomain(const struct ieee80211_regdomain *rd)
2063 {
2064
2065 if (is_intersected_alpha2(rd->alpha2)) {
2066 if (last_request->initiator ==
2067 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2068 struct cfg80211_registered_device *rdev;
2069 rdev = cfg80211_rdev_by_wiphy_idx(
2070 last_request->wiphy_idx);
2071 if (rdev) {
2072 pr_info("Current regulatory domain updated by AP to: %c%c\n",
2073 rdev->country_ie_alpha2[0],
2074 rdev->country_ie_alpha2[1]);
2075 } else
2076 pr_info("Current regulatory domain intersected:\n");
2077 } else
2078 pr_info("Current regulatory domain intersected:\n");
2079 } else if (is_world_regdom(rd->alpha2)) {
2080 pr_info("World regulatory domain updated:\n");
2081 } else {
2082 if (is_unknown_alpha2(rd->alpha2))
2083 pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2084 else {
2085 if (reg_request_cell_base(last_request))
2086 pr_info("Regulatory domain changed to country: %c%c by Cell Station\n",
2087 rd->alpha2[0], rd->alpha2[1]);
2088 else
2089 pr_info("Regulatory domain changed to country: %c%c\n",
2090 rd->alpha2[0], rd->alpha2[1]);
2091 }
2092 }
2093
2094 print_dfs_region(rd->dfs_region);
2095 print_rd_rules(rd);
2096 }
2097
2098 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2099 {
2100 pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2101 print_rd_rules(rd);
2102 }
2103
2104 /* Takes ownership of rd only if it doesn't fail */
2105 static int __set_regdom(const struct ieee80211_regdomain *rd)
2106 {
2107 const struct ieee80211_regdomain *regd;
2108 const struct ieee80211_regdomain *intersected_rd = NULL;
2109 struct wiphy *request_wiphy;
2110 /* Some basic sanity checks first */
2111
2112 if (is_world_regdom(rd->alpha2)) {
2113 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2114 return -EINVAL;
2115 update_world_regdomain(rd);
2116 return 0;
2117 }
2118
2119 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2120 !is_unknown_alpha2(rd->alpha2))
2121 return -EINVAL;
2122
2123 if (!last_request)
2124 return -EINVAL;
2125
2126 /*
2127 * Lets only bother proceeding on the same alpha2 if the current
2128 * rd is non static (it means CRDA was present and was used last)
2129 * and the pending request came in from a country IE
2130 */
2131 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2132 /*
2133 * If someone else asked us to change the rd lets only bother
2134 * checking if the alpha2 changes if CRDA was already called
2135 */
2136 if (!regdom_changes(rd->alpha2))
2137 return -EALREADY;
2138 }
2139
2140 /*
2141 * Now lets set the regulatory domain, update all driver channels
2142 * and finally inform them of what we have done, in case they want
2143 * to review or adjust their own settings based on their own
2144 * internal EEPROM data
2145 */
2146
2147 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2148 return -EINVAL;
2149
2150 if (!is_valid_rd(rd)) {
2151 pr_err("Invalid regulatory domain detected:\n");
2152 print_regdomain_info(rd);
2153 return -EINVAL;
2154 }
2155
2156 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2157 if (!request_wiphy &&
2158 (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2159 last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)) {
2160 schedule_delayed_work(&reg_timeout, 0);
2161 return -ENODEV;
2162 }
2163
2164 if (!last_request->intersect) {
2165 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2166 reset_regdomains(false);
2167 cfg80211_regdomain = rd;
2168 return 0;
2169 }
2170
2171 /*
2172 * For a driver hint, lets copy the regulatory domain the
2173 * driver wanted to the wiphy to deal with conflicts
2174 */
2175
2176 /*
2177 * Userspace could have sent two replies with only
2178 * one kernel request.
2179 */
2180 if (request_wiphy->regd)
2181 return -EALREADY;
2182
2183 regd = reg_copy_regd(rd);
2184 if (IS_ERR(regd))
2185 return PTR_ERR(regd);
2186
2187 request_wiphy->regd = regd;
2188 reset_regdomains(false);
2189 cfg80211_regdomain = rd;
2190 return 0;
2191 }
2192
2193 /* Intersection requires a bit more work */
2194
2195 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2196 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
2197 if (!intersected_rd)
2198 return -EINVAL;
2199
2200 /*
2201 * We can trash what CRDA provided now.
2202 * However if a driver requested this specific regulatory
2203 * domain we keep it for its private use
2204 */
2205 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2206 request_wiphy->regd = rd;
2207 else
2208 kfree(rd);
2209
2210 rd = NULL;
2211
2212 reset_regdomains(false);
2213 cfg80211_regdomain = intersected_rd;
2214
2215 return 0;
2216 }
2217
2218 return -EINVAL;
2219 }
2220
2221
2222 /*
2223 * Use this call to set the current regulatory domain. Conflicts with
2224 * multiple drivers can be ironed out later. Caller must've already
2225 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2226 */
2227 int set_regdom(const struct ieee80211_regdomain *rd)
2228 {
2229 int r;
2230
2231 assert_cfg80211_lock();
2232
2233 mutex_lock(&reg_mutex);
2234
2235 /* Note that this doesn't update the wiphys, this is done below */
2236 r = __set_regdom(rd);
2237 if (r) {
2238 if (r == -EALREADY)
2239 reg_set_request_processed();
2240
2241 kfree(rd);
2242 mutex_unlock(&reg_mutex);
2243 return r;
2244 }
2245
2246 /* This would make this whole thing pointless */
2247 BUG_ON(!last_request->intersect && rd != cfg80211_regdomain);
2248
2249 /* update all wiphys now with the new established regulatory domain */
2250 update_all_wiphy_regulatory(last_request->initiator);
2251
2252 print_regdomain(cfg80211_regdomain);
2253
2254 nl80211_send_reg_change_event(last_request);
2255
2256 reg_set_request_processed();
2257
2258 mutex_unlock(&reg_mutex);
2259
2260 return r;
2261 }
2262
2263 #ifdef CONFIG_HOTPLUG
2264 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2265 {
2266 if (last_request && !last_request->processed) {
2267 if (add_uevent_var(env, "COUNTRY=%c%c",
2268 last_request->alpha2[0],
2269 last_request->alpha2[1]))
2270 return -ENOMEM;
2271 }
2272
2273 return 0;
2274 }
2275 #else
2276 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2277 {
2278 return -ENODEV;
2279 }
2280 #endif /* CONFIG_HOTPLUG */
2281
2282 void wiphy_regulatory_register(struct wiphy *wiphy)
2283 {
2284 assert_cfg80211_lock();
2285
2286 mutex_lock(&reg_mutex);
2287
2288 if (!reg_dev_ignore_cell_hint(wiphy))
2289 reg_num_devs_support_basehint++;
2290
2291 wiphy_update_regulatory(wiphy, NL80211_REGDOM_SET_BY_CORE);
2292
2293 mutex_unlock(&reg_mutex);
2294 }
2295
2296 /* Caller must hold cfg80211_mutex */
2297 void wiphy_regulatory_deregister(struct wiphy *wiphy)
2298 {
2299 struct wiphy *request_wiphy = NULL;
2300
2301 assert_cfg80211_lock();
2302
2303 mutex_lock(&reg_mutex);
2304
2305 if (!reg_dev_ignore_cell_hint(wiphy))
2306 reg_num_devs_support_basehint--;
2307
2308 kfree(wiphy->regd);
2309
2310 if (last_request)
2311 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2312
2313 if (!request_wiphy || request_wiphy != wiphy)
2314 goto out;
2315
2316 last_request->wiphy_idx = WIPHY_IDX_INVALID;
2317 last_request->country_ie_env = ENVIRON_ANY;
2318 out:
2319 mutex_unlock(&reg_mutex);
2320 }
2321
2322 static void reg_timeout_work(struct work_struct *work)
2323 {
2324 REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
2325 restore_regulatory_settings(true);
2326 }
2327
2328 int __init regulatory_init(void)
2329 {
2330 int err = 0;
2331
2332 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2333 if (IS_ERR(reg_pdev))
2334 return PTR_ERR(reg_pdev);
2335
2336 reg_pdev->dev.type = &reg_device_type;
2337
2338 spin_lock_init(&reg_requests_lock);
2339 spin_lock_init(&reg_pending_beacons_lock);
2340
2341 reg_regdb_size_check();
2342
2343 cfg80211_regdomain = cfg80211_world_regdom;
2344
2345 user_alpha2[0] = '9';
2346 user_alpha2[1] = '7';
2347
2348 /* We always try to get an update for the static regdomain */
2349 err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2350 if (err) {
2351 if (err == -ENOMEM)
2352 return err;
2353 /*
2354 * N.B. kobject_uevent_env() can fail mainly for when we're out
2355 * memory which is handled and propagated appropriately above
2356 * but it can also fail during a netlink_broadcast() or during
2357 * early boot for call_usermodehelper(). For now treat these
2358 * errors as non-fatal.
2359 */
2360 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2361 #ifdef CONFIG_CFG80211_REG_DEBUG
2362 /* We want to find out exactly why when debugging */
2363 WARN_ON(err);
2364 #endif
2365 }
2366
2367 /*
2368 * Finally, if the user set the module parameter treat it
2369 * as a user hint.
2370 */
2371 if (!is_world_regdom(ieee80211_regdom))
2372 regulatory_hint_user(ieee80211_regdom,
2373 NL80211_USER_REG_HINT_USER);
2374
2375 return 0;
2376 }
2377
2378 void regulatory_exit(void)
2379 {
2380 struct regulatory_request *reg_request, *tmp;
2381 struct reg_beacon *reg_beacon, *btmp;
2382
2383 cancel_work_sync(&reg_work);
2384 cancel_delayed_work_sync(&reg_timeout);
2385
2386 /* Lock to suppress warnings */
2387 mutex_lock(&cfg80211_mutex);
2388 mutex_lock(&reg_mutex);
2389 reset_regdomains(true);
2390 mutex_unlock(&cfg80211_mutex);
2391 mutex_unlock(&reg_mutex);
2392
2393 dev_set_uevent_suppress(&reg_pdev->dev, true);
2394
2395 platform_device_unregister(reg_pdev);
2396
2397 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2398 list_del(&reg_beacon->list);
2399 kfree(reg_beacon);
2400 }
2401
2402 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2403 list_del(&reg_beacon->list);
2404 kfree(reg_beacon);
2405 }
2406
2407 list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
2408 list_del(&reg_request->list);
2409 kfree(reg_request);
2410 }
2411 }