]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/wireless/reg.c
cfg80211: allow only the core to request to update the world regdom
[mirror_ubuntu-bionic-kernel.git] / net / wireless / reg.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 *
7 * Permission to use, copy, modify, and/or distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20
21 /**
22 * DOC: Wireless regulatory infrastructure
23 *
24 * The usual implementation is for a driver to read a device EEPROM to
25 * determine which regulatory domain it should be operating under, then
26 * looking up the allowable channels in a driver-local table and finally
27 * registering those channels in the wiphy structure.
28 *
29 * Another set of compliance enforcement is for drivers to use their
30 * own compliance limits which can be stored on the EEPROM. The host
31 * driver or firmware may ensure these are used.
32 *
33 * In addition to all this we provide an extra layer of regulatory
34 * conformance. For drivers which do not have any regulatory
35 * information CRDA provides the complete regulatory solution.
36 * For others it provides a community effort on further restrictions
37 * to enhance compliance.
38 *
39 * Note: When number of rules --> infinity we will not be able to
40 * index on alpha2 any more, instead we'll probably have to
41 * rely on some SHA1 checksum of the regdomain for example.
42 *
43 */
44
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
47 #include <linux/kernel.h>
48 #include <linux/export.h>
49 #include <linux/slab.h>
50 #include <linux/list.h>
51 #include <linux/ctype.h>
52 #include <linux/nl80211.h>
53 #include <linux/platform_device.h>
54 #include <linux/moduleparam.h>
55 #include <net/cfg80211.h>
56 #include "core.h"
57 #include "reg.h"
58 #include "regdb.h"
59 #include "nl80211.h"
60
61 #ifdef CONFIG_CFG80211_REG_DEBUG
62 #define REG_DBG_PRINT(format, args...) \
63 printk(KERN_DEBUG pr_fmt(format), ##args)
64 #else
65 #define REG_DBG_PRINT(args...)
66 #endif
67
68 enum reg_request_treatment {
69 REG_REQ_OK,
70 REG_REQ_IGNORE,
71 REG_REQ_INTERSECT,
72 REG_REQ_ALREADY_SET,
73 };
74
75 static struct regulatory_request core_request_world = {
76 .initiator = NL80211_REGDOM_SET_BY_CORE,
77 .alpha2[0] = '0',
78 .alpha2[1] = '0',
79 .intersect = false,
80 .processed = true,
81 .country_ie_env = ENVIRON_ANY,
82 };
83
84 /*
85 * Receipt of information from last regulatory request,
86 * protected by RTNL (and can be accessed with RCU protection)
87 */
88 static struct regulatory_request __rcu *last_request =
89 (void __rcu *)&core_request_world;
90
91 /* To trigger userspace events */
92 static struct platform_device *reg_pdev;
93
94 static struct device_type reg_device_type = {
95 .uevent = reg_device_uevent,
96 };
97
98 /*
99 * Central wireless core regulatory domains, we only need two,
100 * the current one and a world regulatory domain in case we have no
101 * information to give us an alpha2.
102 * (protected by RTNL, can be read under RCU)
103 */
104 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
105
106 /*
107 * Number of devices that registered to the core
108 * that support cellular base station regulatory hints
109 * (protected by RTNL)
110 */
111 static int reg_num_devs_support_basehint;
112
113 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
114 {
115 return rtnl_dereference(cfg80211_regdomain);
116 }
117
118 static const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
119 {
120 return rtnl_dereference(wiphy->regd);
121 }
122
123 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
124 {
125 if (!r)
126 return;
127 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
128 }
129
130 static struct regulatory_request *get_last_request(void)
131 {
132 return rcu_dereference_rtnl(last_request);
133 }
134
135 /* Used to queue up regulatory hints */
136 static LIST_HEAD(reg_requests_list);
137 static spinlock_t reg_requests_lock;
138
139 /* Used to queue up beacon hints for review */
140 static LIST_HEAD(reg_pending_beacons);
141 static spinlock_t reg_pending_beacons_lock;
142
143 /* Used to keep track of processed beacon hints */
144 static LIST_HEAD(reg_beacon_list);
145
146 struct reg_beacon {
147 struct list_head list;
148 struct ieee80211_channel chan;
149 };
150
151 static void reg_todo(struct work_struct *work);
152 static DECLARE_WORK(reg_work, reg_todo);
153
154 static void reg_timeout_work(struct work_struct *work);
155 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
156
157 /* We keep a static world regulatory domain in case of the absence of CRDA */
158 static const struct ieee80211_regdomain world_regdom = {
159 .n_reg_rules = 6,
160 .alpha2 = "00",
161 .reg_rules = {
162 /* IEEE 802.11b/g, channels 1..11 */
163 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
164 /* IEEE 802.11b/g, channels 12..13. */
165 REG_RULE(2467-10, 2472+10, 40, 6, 20,
166 NL80211_RRF_NO_IR),
167 /* IEEE 802.11 channel 14 - Only JP enables
168 * this and for 802.11b only */
169 REG_RULE(2484-10, 2484+10, 20, 6, 20,
170 NL80211_RRF_NO_IR |
171 NL80211_RRF_NO_OFDM),
172 /* IEEE 802.11a, channel 36..48 */
173 REG_RULE(5180-10, 5240+10, 160, 6, 20,
174 NL80211_RRF_NO_IR),
175
176 /* IEEE 802.11a, channel 52..64 - DFS required */
177 REG_RULE(5260-10, 5320+10, 160, 6, 20,
178 NL80211_RRF_NO_IR |
179 NL80211_RRF_DFS),
180
181 /* IEEE 802.11a, channel 100..144 - DFS required */
182 REG_RULE(5500-10, 5720+10, 160, 6, 20,
183 NL80211_RRF_NO_IR |
184 NL80211_RRF_DFS),
185
186 /* IEEE 802.11a, channel 149..165 */
187 REG_RULE(5745-10, 5825+10, 80, 6, 20,
188 NL80211_RRF_NO_IR),
189
190 /* IEEE 802.11ad (60gHz), channels 1..3 */
191 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
192 }
193 };
194
195 /* protected by RTNL */
196 static const struct ieee80211_regdomain *cfg80211_world_regdom =
197 &world_regdom;
198
199 static char *ieee80211_regdom = "00";
200 static char user_alpha2[2];
201
202 module_param(ieee80211_regdom, charp, 0444);
203 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
204
205 static void reg_kfree_last_request(void)
206 {
207 struct regulatory_request *lr;
208
209 lr = get_last_request();
210
211 if (lr != &core_request_world && lr)
212 kfree_rcu(lr, rcu_head);
213 }
214
215 static void reg_update_last_request(struct regulatory_request *request)
216 {
217 reg_kfree_last_request();
218 rcu_assign_pointer(last_request, request);
219 }
220
221 static void reset_regdomains(bool full_reset,
222 const struct ieee80211_regdomain *new_regdom)
223 {
224 const struct ieee80211_regdomain *r;
225
226 ASSERT_RTNL();
227
228 r = get_cfg80211_regdom();
229
230 /* avoid freeing static information or freeing something twice */
231 if (r == cfg80211_world_regdom)
232 r = NULL;
233 if (cfg80211_world_regdom == &world_regdom)
234 cfg80211_world_regdom = NULL;
235 if (r == &world_regdom)
236 r = NULL;
237
238 rcu_free_regdom(r);
239 rcu_free_regdom(cfg80211_world_regdom);
240
241 cfg80211_world_regdom = &world_regdom;
242 rcu_assign_pointer(cfg80211_regdomain, new_regdom);
243
244 if (!full_reset)
245 return;
246
247 reg_update_last_request(&core_request_world);
248 }
249
250 /*
251 * Dynamic world regulatory domain requested by the wireless
252 * core upon initialization
253 */
254 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
255 {
256 struct regulatory_request *lr;
257
258 lr = get_last_request();
259
260 WARN_ON(!lr);
261
262 reset_regdomains(false, rd);
263
264 cfg80211_world_regdom = rd;
265 }
266
267 bool is_world_regdom(const char *alpha2)
268 {
269 if (!alpha2)
270 return false;
271 return alpha2[0] == '0' && alpha2[1] == '0';
272 }
273
274 static bool is_alpha2_set(const char *alpha2)
275 {
276 if (!alpha2)
277 return false;
278 return alpha2[0] && alpha2[1];
279 }
280
281 static bool is_unknown_alpha2(const char *alpha2)
282 {
283 if (!alpha2)
284 return false;
285 /*
286 * Special case where regulatory domain was built by driver
287 * but a specific alpha2 cannot be determined
288 */
289 return alpha2[0] == '9' && alpha2[1] == '9';
290 }
291
292 static bool is_intersected_alpha2(const char *alpha2)
293 {
294 if (!alpha2)
295 return false;
296 /*
297 * Special case where regulatory domain is the
298 * result of an intersection between two regulatory domain
299 * structures
300 */
301 return alpha2[0] == '9' && alpha2[1] == '8';
302 }
303
304 static bool is_an_alpha2(const char *alpha2)
305 {
306 if (!alpha2)
307 return false;
308 return isalpha(alpha2[0]) && isalpha(alpha2[1]);
309 }
310
311 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
312 {
313 if (!alpha2_x || !alpha2_y)
314 return false;
315 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
316 }
317
318 static bool regdom_changes(const char *alpha2)
319 {
320 const struct ieee80211_regdomain *r = get_cfg80211_regdom();
321
322 if (!r)
323 return true;
324 return !alpha2_equal(r->alpha2, alpha2);
325 }
326
327 /*
328 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
329 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
330 * has ever been issued.
331 */
332 static bool is_user_regdom_saved(void)
333 {
334 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
335 return false;
336
337 /* This would indicate a mistake on the design */
338 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
339 "Unexpected user alpha2: %c%c\n",
340 user_alpha2[0], user_alpha2[1]))
341 return false;
342
343 return true;
344 }
345
346 static const struct ieee80211_regdomain *
347 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
348 {
349 struct ieee80211_regdomain *regd;
350 int size_of_regd;
351 unsigned int i;
352
353 size_of_regd =
354 sizeof(struct ieee80211_regdomain) +
355 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
356
357 regd = kzalloc(size_of_regd, GFP_KERNEL);
358 if (!regd)
359 return ERR_PTR(-ENOMEM);
360
361 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
362
363 for (i = 0; i < src_regd->n_reg_rules; i++)
364 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
365 sizeof(struct ieee80211_reg_rule));
366
367 return regd;
368 }
369
370 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
371 struct reg_regdb_search_request {
372 char alpha2[2];
373 struct list_head list;
374 };
375
376 static LIST_HEAD(reg_regdb_search_list);
377 static DEFINE_MUTEX(reg_regdb_search_mutex);
378
379 static void reg_regdb_search(struct work_struct *work)
380 {
381 struct reg_regdb_search_request *request;
382 const struct ieee80211_regdomain *curdom, *regdom = NULL;
383 int i;
384
385 rtnl_lock();
386
387 mutex_lock(&reg_regdb_search_mutex);
388 while (!list_empty(&reg_regdb_search_list)) {
389 request = list_first_entry(&reg_regdb_search_list,
390 struct reg_regdb_search_request,
391 list);
392 list_del(&request->list);
393
394 for (i = 0; i < reg_regdb_size; i++) {
395 curdom = reg_regdb[i];
396
397 if (alpha2_equal(request->alpha2, curdom->alpha2)) {
398 regdom = reg_copy_regd(curdom);
399 break;
400 }
401 }
402
403 kfree(request);
404 }
405 mutex_unlock(&reg_regdb_search_mutex);
406
407 if (!IS_ERR_OR_NULL(regdom))
408 set_regdom(regdom);
409
410 rtnl_unlock();
411 }
412
413 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
414
415 static void reg_regdb_query(const char *alpha2)
416 {
417 struct reg_regdb_search_request *request;
418
419 if (!alpha2)
420 return;
421
422 request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
423 if (!request)
424 return;
425
426 memcpy(request->alpha2, alpha2, 2);
427
428 mutex_lock(&reg_regdb_search_mutex);
429 list_add_tail(&request->list, &reg_regdb_search_list);
430 mutex_unlock(&reg_regdb_search_mutex);
431
432 schedule_work(&reg_regdb_work);
433 }
434
435 /* Feel free to add any other sanity checks here */
436 static void reg_regdb_size_check(void)
437 {
438 /* We should ideally BUILD_BUG_ON() but then random builds would fail */
439 WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
440 }
441 #else
442 static inline void reg_regdb_size_check(void) {}
443 static inline void reg_regdb_query(const char *alpha2) {}
444 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
445
446 /*
447 * This lets us keep regulatory code which is updated on a regulatory
448 * basis in userspace. Country information is filled in by
449 * reg_device_uevent
450 */
451 static int call_crda(const char *alpha2)
452 {
453 if (!is_world_regdom((char *) alpha2))
454 pr_info("Calling CRDA for country: %c%c\n",
455 alpha2[0], alpha2[1]);
456 else
457 pr_info("Calling CRDA to update world regulatory domain\n");
458
459 /* query internal regulatory database (if it exists) */
460 reg_regdb_query(alpha2);
461
462 return kobject_uevent(&reg_pdev->dev.kobj, KOBJ_CHANGE);
463 }
464
465 static enum reg_request_treatment
466 reg_call_crda(struct regulatory_request *request)
467 {
468 if (call_crda(request->alpha2))
469 return REG_REQ_IGNORE;
470 return REG_REQ_OK;
471 }
472
473 bool reg_is_valid_request(const char *alpha2)
474 {
475 struct regulatory_request *lr = get_last_request();
476
477 if (!lr || lr->processed)
478 return false;
479
480 return alpha2_equal(lr->alpha2, alpha2);
481 }
482
483 /* Sanity check on a regulatory rule */
484 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
485 {
486 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
487 u32 freq_diff;
488
489 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
490 return false;
491
492 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
493 return false;
494
495 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
496
497 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
498 freq_range->max_bandwidth_khz > freq_diff)
499 return false;
500
501 return true;
502 }
503
504 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
505 {
506 const struct ieee80211_reg_rule *reg_rule = NULL;
507 unsigned int i;
508
509 if (!rd->n_reg_rules)
510 return false;
511
512 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
513 return false;
514
515 for (i = 0; i < rd->n_reg_rules; i++) {
516 reg_rule = &rd->reg_rules[i];
517 if (!is_valid_reg_rule(reg_rule))
518 return false;
519 }
520
521 return true;
522 }
523
524 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
525 u32 center_freq_khz, u32 bw_khz)
526 {
527 u32 start_freq_khz, end_freq_khz;
528
529 start_freq_khz = center_freq_khz - (bw_khz/2);
530 end_freq_khz = center_freq_khz + (bw_khz/2);
531
532 if (start_freq_khz >= freq_range->start_freq_khz &&
533 end_freq_khz <= freq_range->end_freq_khz)
534 return true;
535
536 return false;
537 }
538
539 /**
540 * freq_in_rule_band - tells us if a frequency is in a frequency band
541 * @freq_range: frequency rule we want to query
542 * @freq_khz: frequency we are inquiring about
543 *
544 * This lets us know if a specific frequency rule is or is not relevant to
545 * a specific frequency's band. Bands are device specific and artificial
546 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
547 * however it is safe for now to assume that a frequency rule should not be
548 * part of a frequency's band if the start freq or end freq are off by more
549 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
550 * 60 GHz band.
551 * This resolution can be lowered and should be considered as we add
552 * regulatory rule support for other "bands".
553 **/
554 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
555 u32 freq_khz)
556 {
557 #define ONE_GHZ_IN_KHZ 1000000
558 /*
559 * From 802.11ad: directional multi-gigabit (DMG):
560 * Pertaining to operation in a frequency band containing a channel
561 * with the Channel starting frequency above 45 GHz.
562 */
563 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
564 10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
565 if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
566 return true;
567 if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
568 return true;
569 return false;
570 #undef ONE_GHZ_IN_KHZ
571 }
572
573 /*
574 * Helper for regdom_intersect(), this does the real
575 * mathematical intersection fun
576 */
577 static int reg_rules_intersect(const struct ieee80211_reg_rule *rule1,
578 const struct ieee80211_reg_rule *rule2,
579 struct ieee80211_reg_rule *intersected_rule)
580 {
581 const struct ieee80211_freq_range *freq_range1, *freq_range2;
582 struct ieee80211_freq_range *freq_range;
583 const struct ieee80211_power_rule *power_rule1, *power_rule2;
584 struct ieee80211_power_rule *power_rule;
585 u32 freq_diff;
586
587 freq_range1 = &rule1->freq_range;
588 freq_range2 = &rule2->freq_range;
589 freq_range = &intersected_rule->freq_range;
590
591 power_rule1 = &rule1->power_rule;
592 power_rule2 = &rule2->power_rule;
593 power_rule = &intersected_rule->power_rule;
594
595 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
596 freq_range2->start_freq_khz);
597 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
598 freq_range2->end_freq_khz);
599 freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
600 freq_range2->max_bandwidth_khz);
601
602 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
603 if (freq_range->max_bandwidth_khz > freq_diff)
604 freq_range->max_bandwidth_khz = freq_diff;
605
606 power_rule->max_eirp = min(power_rule1->max_eirp,
607 power_rule2->max_eirp);
608 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
609 power_rule2->max_antenna_gain);
610
611 intersected_rule->flags = rule1->flags | rule2->flags;
612
613 if (!is_valid_reg_rule(intersected_rule))
614 return -EINVAL;
615
616 return 0;
617 }
618
619 /**
620 * regdom_intersect - do the intersection between two regulatory domains
621 * @rd1: first regulatory domain
622 * @rd2: second regulatory domain
623 *
624 * Use this function to get the intersection between two regulatory domains.
625 * Once completed we will mark the alpha2 for the rd as intersected, "98",
626 * as no one single alpha2 can represent this regulatory domain.
627 *
628 * Returns a pointer to the regulatory domain structure which will hold the
629 * resulting intersection of rules between rd1 and rd2. We will
630 * kzalloc() this structure for you.
631 */
632 static struct ieee80211_regdomain *
633 regdom_intersect(const struct ieee80211_regdomain *rd1,
634 const struct ieee80211_regdomain *rd2)
635 {
636 int r, size_of_regd;
637 unsigned int x, y;
638 unsigned int num_rules = 0, rule_idx = 0;
639 const struct ieee80211_reg_rule *rule1, *rule2;
640 struct ieee80211_reg_rule *intersected_rule;
641 struct ieee80211_regdomain *rd;
642 /* This is just a dummy holder to help us count */
643 struct ieee80211_reg_rule dummy_rule;
644
645 if (!rd1 || !rd2)
646 return NULL;
647
648 /*
649 * First we get a count of the rules we'll need, then we actually
650 * build them. This is to so we can malloc() and free() a
651 * regdomain once. The reason we use reg_rules_intersect() here
652 * is it will return -EINVAL if the rule computed makes no sense.
653 * All rules that do check out OK are valid.
654 */
655
656 for (x = 0; x < rd1->n_reg_rules; x++) {
657 rule1 = &rd1->reg_rules[x];
658 for (y = 0; y < rd2->n_reg_rules; y++) {
659 rule2 = &rd2->reg_rules[y];
660 if (!reg_rules_intersect(rule1, rule2, &dummy_rule))
661 num_rules++;
662 }
663 }
664
665 if (!num_rules)
666 return NULL;
667
668 size_of_regd = sizeof(struct ieee80211_regdomain) +
669 num_rules * sizeof(struct ieee80211_reg_rule);
670
671 rd = kzalloc(size_of_regd, GFP_KERNEL);
672 if (!rd)
673 return NULL;
674
675 for (x = 0; x < rd1->n_reg_rules && rule_idx < num_rules; x++) {
676 rule1 = &rd1->reg_rules[x];
677 for (y = 0; y < rd2->n_reg_rules && rule_idx < num_rules; y++) {
678 rule2 = &rd2->reg_rules[y];
679 /*
680 * This time around instead of using the stack lets
681 * write to the target rule directly saving ourselves
682 * a memcpy()
683 */
684 intersected_rule = &rd->reg_rules[rule_idx];
685 r = reg_rules_intersect(rule1, rule2, intersected_rule);
686 /*
687 * No need to memset here the intersected rule here as
688 * we're not using the stack anymore
689 */
690 if (r)
691 continue;
692 rule_idx++;
693 }
694 }
695
696 if (rule_idx != num_rules) {
697 kfree(rd);
698 return NULL;
699 }
700
701 rd->n_reg_rules = num_rules;
702 rd->alpha2[0] = '9';
703 rd->alpha2[1] = '8';
704
705 return rd;
706 }
707
708 /*
709 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
710 * want to just have the channel structure use these
711 */
712 static u32 map_regdom_flags(u32 rd_flags)
713 {
714 u32 channel_flags = 0;
715 if (rd_flags & NL80211_RRF_NO_IR_ALL)
716 channel_flags |= IEEE80211_CHAN_NO_IR;
717 if (rd_flags & NL80211_RRF_DFS)
718 channel_flags |= IEEE80211_CHAN_RADAR;
719 if (rd_flags & NL80211_RRF_NO_OFDM)
720 channel_flags |= IEEE80211_CHAN_NO_OFDM;
721 return channel_flags;
722 }
723
724 static const struct ieee80211_reg_rule *
725 freq_reg_info_regd(struct wiphy *wiphy, u32 center_freq,
726 const struct ieee80211_regdomain *regd)
727 {
728 int i;
729 bool band_rule_found = false;
730 bool bw_fits = false;
731
732 if (!regd)
733 return ERR_PTR(-EINVAL);
734
735 for (i = 0; i < regd->n_reg_rules; i++) {
736 const struct ieee80211_reg_rule *rr;
737 const struct ieee80211_freq_range *fr = NULL;
738
739 rr = &regd->reg_rules[i];
740 fr = &rr->freq_range;
741
742 /*
743 * We only need to know if one frequency rule was
744 * was in center_freq's band, that's enough, so lets
745 * not overwrite it once found
746 */
747 if (!band_rule_found)
748 band_rule_found = freq_in_rule_band(fr, center_freq);
749
750 bw_fits = reg_does_bw_fit(fr, center_freq, MHZ_TO_KHZ(20));
751
752 if (band_rule_found && bw_fits)
753 return rr;
754 }
755
756 if (!band_rule_found)
757 return ERR_PTR(-ERANGE);
758
759 return ERR_PTR(-EINVAL);
760 }
761
762 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
763 u32 center_freq)
764 {
765 const struct ieee80211_regdomain *regd;
766 struct regulatory_request *lr = get_last_request();
767
768 /*
769 * Follow the driver's regulatory domain, if present, unless a country
770 * IE has been processed or a user wants to help complaince further
771 */
772 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
773 lr->initiator != NL80211_REGDOM_SET_BY_USER &&
774 wiphy->regd)
775 regd = get_wiphy_regdom(wiphy);
776 else
777 regd = get_cfg80211_regdom();
778
779 return freq_reg_info_regd(wiphy, center_freq, regd);
780 }
781 EXPORT_SYMBOL(freq_reg_info);
782
783 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
784 {
785 switch (initiator) {
786 case NL80211_REGDOM_SET_BY_CORE:
787 return "core";
788 case NL80211_REGDOM_SET_BY_USER:
789 return "user";
790 case NL80211_REGDOM_SET_BY_DRIVER:
791 return "driver";
792 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
793 return "country IE";
794 default:
795 WARN_ON(1);
796 return "bug";
797 }
798 }
799 EXPORT_SYMBOL(reg_initiator_name);
800
801 #ifdef CONFIG_CFG80211_REG_DEBUG
802 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
803 const struct ieee80211_reg_rule *reg_rule)
804 {
805 const struct ieee80211_power_rule *power_rule;
806 const struct ieee80211_freq_range *freq_range;
807 char max_antenna_gain[32];
808
809 power_rule = &reg_rule->power_rule;
810 freq_range = &reg_rule->freq_range;
811
812 if (!power_rule->max_antenna_gain)
813 snprintf(max_antenna_gain, 32, "N/A");
814 else
815 snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);
816
817 REG_DBG_PRINT("Updating information on frequency %d MHz with regulatory rule:\n",
818 chan->center_freq);
819
820 REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n",
821 freq_range->start_freq_khz, freq_range->end_freq_khz,
822 freq_range->max_bandwidth_khz, max_antenna_gain,
823 power_rule->max_eirp);
824 }
825 #else
826 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
827 const struct ieee80211_reg_rule *reg_rule)
828 {
829 return;
830 }
831 #endif
832
833 /*
834 * Note that right now we assume the desired channel bandwidth
835 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
836 * per channel, the primary and the extension channel).
837 */
838 static void handle_channel(struct wiphy *wiphy,
839 enum nl80211_reg_initiator initiator,
840 struct ieee80211_channel *chan)
841 {
842 u32 flags, bw_flags = 0;
843 const struct ieee80211_reg_rule *reg_rule = NULL;
844 const struct ieee80211_power_rule *power_rule = NULL;
845 const struct ieee80211_freq_range *freq_range = NULL;
846 struct wiphy *request_wiphy = NULL;
847 struct regulatory_request *lr = get_last_request();
848
849 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
850
851 flags = chan->orig_flags;
852
853 reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
854 if (IS_ERR(reg_rule)) {
855 /*
856 * We will disable all channels that do not match our
857 * received regulatory rule unless the hint is coming
858 * from a Country IE and the Country IE had no information
859 * about a band. The IEEE 802.11 spec allows for an AP
860 * to send only a subset of the regulatory rules allowed,
861 * so an AP in the US that only supports 2.4 GHz may only send
862 * a country IE with information for the 2.4 GHz band
863 * while 5 GHz is still supported.
864 */
865 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
866 PTR_ERR(reg_rule) == -ERANGE)
867 return;
868
869 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
870 request_wiphy && request_wiphy == wiphy &&
871 request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
872 REG_DBG_PRINT("Disabling freq %d MHz for good\n",
873 chan->center_freq);
874 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
875 chan->flags = chan->orig_flags;
876 } else {
877 REG_DBG_PRINT("Disabling freq %d MHz\n",
878 chan->center_freq);
879 chan->flags |= IEEE80211_CHAN_DISABLED;
880 }
881 return;
882 }
883
884 chan_reg_rule_print_dbg(chan, reg_rule);
885
886 power_rule = &reg_rule->power_rule;
887 freq_range = &reg_rule->freq_range;
888
889 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
890 bw_flags = IEEE80211_CHAN_NO_HT40;
891 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(80))
892 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
893 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(160))
894 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
895
896 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
897 request_wiphy && request_wiphy == wiphy &&
898 request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
899 /*
900 * This guarantees the driver's requested regulatory domain
901 * will always be used as a base for further regulatory
902 * settings
903 */
904 chan->flags = chan->orig_flags =
905 map_regdom_flags(reg_rule->flags) | bw_flags;
906 chan->max_antenna_gain = chan->orig_mag =
907 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
908 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
909 (int) MBM_TO_DBM(power_rule->max_eirp);
910 return;
911 }
912
913 chan->dfs_state = NL80211_DFS_USABLE;
914 chan->dfs_state_entered = jiffies;
915
916 chan->beacon_found = false;
917 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
918 chan->max_antenna_gain =
919 min_t(int, chan->orig_mag,
920 MBI_TO_DBI(power_rule->max_antenna_gain));
921 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
922 if (chan->orig_mpwr) {
923 /*
924 * Devices that have their own custom regulatory domain
925 * but also use WIPHY_FLAG_STRICT_REGULATORY will follow the
926 * passed country IE power settings.
927 */
928 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
929 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
930 wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
931 chan->max_power = chan->max_reg_power;
932 else
933 chan->max_power = min(chan->orig_mpwr,
934 chan->max_reg_power);
935 } else
936 chan->max_power = chan->max_reg_power;
937 }
938
939 static void handle_band(struct wiphy *wiphy,
940 enum nl80211_reg_initiator initiator,
941 struct ieee80211_supported_band *sband)
942 {
943 unsigned int i;
944
945 if (!sband)
946 return;
947
948 for (i = 0; i < sband->n_channels; i++)
949 handle_channel(wiphy, initiator, &sband->channels[i]);
950 }
951
952 static bool reg_request_cell_base(struct regulatory_request *request)
953 {
954 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
955 return false;
956 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
957 }
958
959 bool reg_last_request_cell_base(void)
960 {
961 return reg_request_cell_base(get_last_request());
962 }
963
964 #ifdef CONFIG_CFG80211_CERTIFICATION_ONUS
965 /* Core specific check */
966 static enum reg_request_treatment
967 reg_ignore_cell_hint(struct regulatory_request *pending_request)
968 {
969 struct regulatory_request *lr = get_last_request();
970
971 if (!reg_num_devs_support_basehint)
972 return REG_REQ_IGNORE;
973
974 if (reg_request_cell_base(lr) &&
975 !regdom_changes(pending_request->alpha2))
976 return REG_REQ_ALREADY_SET;
977
978 return REG_REQ_OK;
979 }
980
981 /* Device specific check */
982 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
983 {
984 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
985 }
986 #else
987 static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
988 {
989 return REG_REQ_IGNORE;
990 }
991
992 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
993 {
994 return true;
995 }
996 #endif
997
998 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
999 {
1000 if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY &&
1001 !(wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY))
1002 return true;
1003 return false;
1004 }
1005
1006 static bool ignore_reg_update(struct wiphy *wiphy,
1007 enum nl80211_reg_initiator initiator)
1008 {
1009 struct regulatory_request *lr = get_last_request();
1010
1011 if (!lr) {
1012 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1013 "since last_request is not set\n",
1014 reg_initiator_name(initiator));
1015 return true;
1016 }
1017
1018 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1019 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
1020 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1021 "since the driver uses its own custom "
1022 "regulatory domain\n",
1023 reg_initiator_name(initiator));
1024 return true;
1025 }
1026
1027 /*
1028 * wiphy->regd will be set once the device has its own
1029 * desired regulatory domain set
1030 */
1031 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1032 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1033 !is_world_regdom(lr->alpha2)) {
1034 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1035 "since the driver requires its own regulatory "
1036 "domain to be set first\n",
1037 reg_initiator_name(initiator));
1038 return true;
1039 }
1040
1041 if (reg_request_cell_base(lr))
1042 return reg_dev_ignore_cell_hint(wiphy);
1043
1044 return false;
1045 }
1046
1047 static bool reg_is_world_roaming(struct wiphy *wiphy)
1048 {
1049 const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1050 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1051 struct regulatory_request *lr = get_last_request();
1052
1053 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1054 return true;
1055
1056 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1057 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1058 return true;
1059
1060 return false;
1061 }
1062
1063 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1064 struct reg_beacon *reg_beacon)
1065 {
1066 struct ieee80211_supported_band *sband;
1067 struct ieee80211_channel *chan;
1068 bool channel_changed = false;
1069 struct ieee80211_channel chan_before;
1070
1071 sband = wiphy->bands[reg_beacon->chan.band];
1072 chan = &sband->channels[chan_idx];
1073
1074 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1075 return;
1076
1077 if (chan->beacon_found)
1078 return;
1079
1080 chan->beacon_found = true;
1081
1082 if (!reg_is_world_roaming(wiphy))
1083 return;
1084
1085 if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
1086 return;
1087
1088 chan_before.center_freq = chan->center_freq;
1089 chan_before.flags = chan->flags;
1090
1091 if (chan->flags & IEEE80211_CHAN_NO_IR) {
1092 chan->flags &= ~IEEE80211_CHAN_NO_IR;
1093 channel_changed = true;
1094 }
1095
1096 if (channel_changed)
1097 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1098 }
1099
1100 /*
1101 * Called when a scan on a wiphy finds a beacon on
1102 * new channel
1103 */
1104 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1105 struct reg_beacon *reg_beacon)
1106 {
1107 unsigned int i;
1108 struct ieee80211_supported_band *sband;
1109
1110 if (!wiphy->bands[reg_beacon->chan.band])
1111 return;
1112
1113 sband = wiphy->bands[reg_beacon->chan.band];
1114
1115 for (i = 0; i < sband->n_channels; i++)
1116 handle_reg_beacon(wiphy, i, reg_beacon);
1117 }
1118
1119 /*
1120 * Called upon reg changes or a new wiphy is added
1121 */
1122 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1123 {
1124 unsigned int i;
1125 struct ieee80211_supported_band *sband;
1126 struct reg_beacon *reg_beacon;
1127
1128 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1129 if (!wiphy->bands[reg_beacon->chan.band])
1130 continue;
1131 sband = wiphy->bands[reg_beacon->chan.band];
1132 for (i = 0; i < sband->n_channels; i++)
1133 handle_reg_beacon(wiphy, i, reg_beacon);
1134 }
1135 }
1136
1137 /* Reap the advantages of previously found beacons */
1138 static void reg_process_beacons(struct wiphy *wiphy)
1139 {
1140 /*
1141 * Means we are just firing up cfg80211, so no beacons would
1142 * have been processed yet.
1143 */
1144 if (!last_request)
1145 return;
1146 wiphy_update_beacon_reg(wiphy);
1147 }
1148
1149 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1150 {
1151 if (!chan)
1152 return false;
1153 if (chan->flags & IEEE80211_CHAN_DISABLED)
1154 return false;
1155 /* This would happen when regulatory rules disallow HT40 completely */
1156 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1157 return false;
1158 return true;
1159 }
1160
1161 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1162 struct ieee80211_channel *channel)
1163 {
1164 struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1165 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1166 unsigned int i;
1167
1168 if (!is_ht40_allowed(channel)) {
1169 channel->flags |= IEEE80211_CHAN_NO_HT40;
1170 return;
1171 }
1172
1173 /*
1174 * We need to ensure the extension channels exist to
1175 * be able to use HT40- or HT40+, this finds them (or not)
1176 */
1177 for (i = 0; i < sband->n_channels; i++) {
1178 struct ieee80211_channel *c = &sband->channels[i];
1179
1180 if (c->center_freq == (channel->center_freq - 20))
1181 channel_before = c;
1182 if (c->center_freq == (channel->center_freq + 20))
1183 channel_after = c;
1184 }
1185
1186 /*
1187 * Please note that this assumes target bandwidth is 20 MHz,
1188 * if that ever changes we also need to change the below logic
1189 * to include that as well.
1190 */
1191 if (!is_ht40_allowed(channel_before))
1192 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1193 else
1194 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1195
1196 if (!is_ht40_allowed(channel_after))
1197 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1198 else
1199 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1200 }
1201
1202 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1203 struct ieee80211_supported_band *sband)
1204 {
1205 unsigned int i;
1206
1207 if (!sband)
1208 return;
1209
1210 for (i = 0; i < sband->n_channels; i++)
1211 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1212 }
1213
1214 static void reg_process_ht_flags(struct wiphy *wiphy)
1215 {
1216 enum ieee80211_band band;
1217
1218 if (!wiphy)
1219 return;
1220
1221 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1222 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1223 }
1224
1225 static void wiphy_update_regulatory(struct wiphy *wiphy,
1226 enum nl80211_reg_initiator initiator)
1227 {
1228 enum ieee80211_band band;
1229 struct regulatory_request *lr = get_last_request();
1230
1231 if (ignore_reg_update(wiphy, initiator))
1232 return;
1233
1234 lr->dfs_region = get_cfg80211_regdom()->dfs_region;
1235
1236 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1237 handle_band(wiphy, initiator, wiphy->bands[band]);
1238
1239 reg_process_beacons(wiphy);
1240 reg_process_ht_flags(wiphy);
1241
1242 if (wiphy->reg_notifier)
1243 wiphy->reg_notifier(wiphy, lr);
1244 }
1245
1246 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1247 {
1248 struct cfg80211_registered_device *rdev;
1249 struct wiphy *wiphy;
1250
1251 ASSERT_RTNL();
1252
1253 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1254 wiphy = &rdev->wiphy;
1255 wiphy_update_regulatory(wiphy, initiator);
1256 /*
1257 * Regulatory updates set by CORE are ignored for custom
1258 * regulatory cards. Let us notify the changes to the driver,
1259 * as some drivers used this to restore its orig_* reg domain.
1260 */
1261 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1262 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
1263 wiphy->reg_notifier)
1264 wiphy->reg_notifier(wiphy, get_last_request());
1265 }
1266 }
1267
1268 static void handle_channel_custom(struct wiphy *wiphy,
1269 struct ieee80211_channel *chan,
1270 const struct ieee80211_regdomain *regd)
1271 {
1272 u32 bw_flags = 0;
1273 const struct ieee80211_reg_rule *reg_rule = NULL;
1274 const struct ieee80211_power_rule *power_rule = NULL;
1275 const struct ieee80211_freq_range *freq_range = NULL;
1276
1277 reg_rule = freq_reg_info_regd(wiphy, MHZ_TO_KHZ(chan->center_freq),
1278 regd);
1279
1280 if (IS_ERR(reg_rule)) {
1281 REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1282 chan->center_freq);
1283 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1284 chan->flags = chan->orig_flags;
1285 return;
1286 }
1287
1288 chan_reg_rule_print_dbg(chan, reg_rule);
1289
1290 power_rule = &reg_rule->power_rule;
1291 freq_range = &reg_rule->freq_range;
1292
1293 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1294 bw_flags = IEEE80211_CHAN_NO_HT40;
1295 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(80))
1296 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1297 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(160))
1298 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1299
1300 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1301 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1302 chan->max_reg_power = chan->max_power =
1303 (int) MBM_TO_DBM(power_rule->max_eirp);
1304 }
1305
1306 static void handle_band_custom(struct wiphy *wiphy,
1307 struct ieee80211_supported_band *sband,
1308 const struct ieee80211_regdomain *regd)
1309 {
1310 unsigned int i;
1311
1312 if (!sband)
1313 return;
1314
1315 for (i = 0; i < sband->n_channels; i++)
1316 handle_channel_custom(wiphy, &sband->channels[i], regd);
1317 }
1318
1319 /* Used by drivers prior to wiphy registration */
1320 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1321 const struct ieee80211_regdomain *regd)
1322 {
1323 enum ieee80211_band band;
1324 unsigned int bands_set = 0;
1325
1326 WARN(!(wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY),
1327 "wiphy should have WIPHY_FLAG_CUSTOM_REGULATORY\n");
1328 wiphy->flags |= WIPHY_FLAG_CUSTOM_REGULATORY;
1329
1330 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1331 if (!wiphy->bands[band])
1332 continue;
1333 handle_band_custom(wiphy, wiphy->bands[band], regd);
1334 bands_set++;
1335 }
1336
1337 /*
1338 * no point in calling this if it won't have any effect
1339 * on your device's supported bands.
1340 */
1341 WARN_ON(!bands_set);
1342 }
1343 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1344
1345 static void reg_set_request_processed(void)
1346 {
1347 bool need_more_processing = false;
1348 struct regulatory_request *lr = get_last_request();
1349
1350 lr->processed = true;
1351
1352 spin_lock(&reg_requests_lock);
1353 if (!list_empty(&reg_requests_list))
1354 need_more_processing = true;
1355 spin_unlock(&reg_requests_lock);
1356
1357 if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
1358 cancel_delayed_work(&reg_timeout);
1359
1360 if (need_more_processing)
1361 schedule_work(&reg_work);
1362 }
1363
1364 /**
1365 * reg_process_hint_core - process core regulatory requests
1366 * @pending_request: a pending core regulatory request
1367 *
1368 * The wireless subsystem can use this function to process
1369 * a regulatory request issued by the regulatory core.
1370 *
1371 * Returns one of the different reg request treatment values.
1372 */
1373 static enum reg_request_treatment
1374 reg_process_hint_core(struct regulatory_request *core_request)
1375 {
1376
1377 core_request->intersect = false;
1378 core_request->processed = false;
1379
1380 reg_update_last_request(core_request);
1381
1382 return reg_call_crda(core_request);
1383 }
1384
1385 static enum reg_request_treatment
1386 __reg_process_hint_user(struct regulatory_request *user_request)
1387 {
1388 struct regulatory_request *lr = get_last_request();
1389
1390 if (reg_request_cell_base(user_request))
1391 return reg_ignore_cell_hint(user_request);
1392
1393 if (reg_request_cell_base(lr))
1394 return REG_REQ_IGNORE;
1395
1396 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1397 return REG_REQ_INTERSECT;
1398 /*
1399 * If the user knows better the user should set the regdom
1400 * to their country before the IE is picked up
1401 */
1402 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
1403 lr->intersect)
1404 return REG_REQ_IGNORE;
1405 /*
1406 * Process user requests only after previous user/driver/core
1407 * requests have been processed
1408 */
1409 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
1410 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1411 lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
1412 regdom_changes(lr->alpha2))
1413 return REG_REQ_IGNORE;
1414
1415 if (!regdom_changes(user_request->alpha2))
1416 return REG_REQ_ALREADY_SET;
1417
1418 return REG_REQ_OK;
1419 }
1420
1421 /**
1422 * reg_process_hint_user - process user regulatory requests
1423 * @user_request: a pending user regulatory request
1424 *
1425 * The wireless subsystem can use this function to process
1426 * a regulatory request initiated by userspace.
1427 *
1428 * Returns one of the different reg request treatment values.
1429 */
1430 static enum reg_request_treatment
1431 reg_process_hint_user(struct regulatory_request *user_request)
1432 {
1433 enum reg_request_treatment treatment;
1434
1435 treatment = __reg_process_hint_user(user_request);
1436 if (treatment == REG_REQ_IGNORE ||
1437 treatment == REG_REQ_ALREADY_SET) {
1438 kfree(user_request);
1439 return treatment;
1440 }
1441
1442 user_request->intersect = treatment == REG_REQ_INTERSECT;
1443 user_request->processed = false;
1444
1445 reg_update_last_request(user_request);
1446
1447 user_alpha2[0] = user_request->alpha2[0];
1448 user_alpha2[1] = user_request->alpha2[1];
1449
1450 return reg_call_crda(user_request);
1451 }
1452
1453 static enum reg_request_treatment
1454 __reg_process_hint_driver(struct regulatory_request *driver_request)
1455 {
1456 struct regulatory_request *lr = get_last_request();
1457
1458 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
1459 if (regdom_changes(driver_request->alpha2))
1460 return REG_REQ_OK;
1461 return REG_REQ_ALREADY_SET;
1462 }
1463
1464 /*
1465 * This would happen if you unplug and plug your card
1466 * back in or if you add a new device for which the previously
1467 * loaded card also agrees on the regulatory domain.
1468 */
1469 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1470 !regdom_changes(driver_request->alpha2))
1471 return REG_REQ_ALREADY_SET;
1472
1473 return REG_REQ_INTERSECT;
1474 }
1475
1476 /**
1477 * reg_process_hint_driver - process driver regulatory requests
1478 * @driver_request: a pending driver regulatory request
1479 *
1480 * The wireless subsystem can use this function to process
1481 * a regulatory request issued by an 802.11 driver.
1482 *
1483 * Returns one of the different reg request treatment values.
1484 */
1485 static enum reg_request_treatment
1486 reg_process_hint_driver(struct wiphy *wiphy,
1487 struct regulatory_request *driver_request)
1488 {
1489 const struct ieee80211_regdomain *regd;
1490 enum reg_request_treatment treatment;
1491
1492 treatment = __reg_process_hint_driver(driver_request);
1493
1494 switch (treatment) {
1495 case REG_REQ_OK:
1496 break;
1497 case REG_REQ_IGNORE:
1498 kfree(driver_request);
1499 return treatment;
1500 case REG_REQ_INTERSECT:
1501 /* fall through */
1502 case REG_REQ_ALREADY_SET:
1503 regd = reg_copy_regd(get_cfg80211_regdom());
1504 if (IS_ERR(regd)) {
1505 kfree(driver_request);
1506 return REG_REQ_IGNORE;
1507 }
1508 rcu_assign_pointer(wiphy->regd, regd);
1509 }
1510
1511
1512 driver_request->intersect = treatment == REG_REQ_INTERSECT;
1513 driver_request->processed = false;
1514
1515 reg_update_last_request(driver_request);
1516
1517 /*
1518 * Since CRDA will not be called in this case as we already
1519 * have applied the requested regulatory domain before we just
1520 * inform userspace we have processed the request
1521 */
1522 if (treatment == REG_REQ_ALREADY_SET) {
1523 nl80211_send_reg_change_event(driver_request);
1524 reg_set_request_processed();
1525 return treatment;
1526 }
1527
1528 return reg_call_crda(driver_request);
1529 }
1530
1531 static enum reg_request_treatment
1532 __reg_process_hint_country_ie(struct wiphy *wiphy,
1533 struct regulatory_request *country_ie_request)
1534 {
1535 struct wiphy *last_wiphy = NULL;
1536 struct regulatory_request *lr = get_last_request();
1537
1538 if (reg_request_cell_base(lr)) {
1539 /* Trust a Cell base station over the AP's country IE */
1540 if (regdom_changes(country_ie_request->alpha2))
1541 return REG_REQ_IGNORE;
1542 return REG_REQ_ALREADY_SET;
1543 }
1544
1545 if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
1546 return -EINVAL;
1547
1548 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
1549 return REG_REQ_OK;
1550
1551 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1552
1553 if (last_wiphy != wiphy) {
1554 /*
1555 * Two cards with two APs claiming different
1556 * Country IE alpha2s. We could
1557 * intersect them, but that seems unlikely
1558 * to be correct. Reject second one for now.
1559 */
1560 if (regdom_changes(country_ie_request->alpha2))
1561 return REG_REQ_IGNORE;
1562 return REG_REQ_ALREADY_SET;
1563 }
1564 /*
1565 * Two consecutive Country IE hints on the same wiphy.
1566 * This should be picked up early by the driver/stack
1567 */
1568 if (WARN_ON(regdom_changes(country_ie_request->alpha2)))
1569 return REG_REQ_OK;
1570 return REG_REQ_ALREADY_SET;
1571 }
1572
1573 /**
1574 * reg_process_hint_country_ie - process regulatory requests from country IEs
1575 * @country_ie_request: a regulatory request from a country IE
1576 *
1577 * The wireless subsystem can use this function to process
1578 * a regulatory request issued by a country Information Element.
1579 *
1580 * Returns one of the different reg request treatment values.
1581 */
1582 static enum reg_request_treatment
1583 reg_process_hint_country_ie(struct wiphy *wiphy,
1584 struct regulatory_request *country_ie_request)
1585 {
1586 enum reg_request_treatment treatment;
1587
1588 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
1589
1590 switch (treatment) {
1591 case REG_REQ_OK:
1592 break;
1593 case REG_REQ_IGNORE:
1594 /* fall through */
1595 case REG_REQ_ALREADY_SET:
1596 kfree(country_ie_request);
1597 return treatment;
1598 case REG_REQ_INTERSECT:
1599 kfree(country_ie_request);
1600 /*
1601 * This doesn't happen yet, not sure we
1602 * ever want to support it for this case.
1603 */
1604 WARN_ONCE(1, "Unexpected intersection for country IEs");
1605 return REG_REQ_IGNORE;
1606 }
1607
1608 country_ie_request->intersect = false;
1609 country_ie_request->processed = false;
1610
1611 reg_update_last_request(country_ie_request);
1612
1613 return reg_call_crda(country_ie_request);
1614 }
1615
1616 /* This processes *all* regulatory hints */
1617 static void reg_process_hint(struct regulatory_request *reg_request)
1618 {
1619 struct wiphy *wiphy = NULL;
1620 enum reg_request_treatment treatment;
1621
1622 if (WARN_ON(!reg_request->alpha2))
1623 return;
1624
1625 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
1626 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1627
1628 if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER && !wiphy) {
1629 kfree(reg_request);
1630 return;
1631 }
1632
1633 switch (reg_request->initiator) {
1634 case NL80211_REGDOM_SET_BY_CORE:
1635 reg_process_hint_core(reg_request);
1636 return;
1637 case NL80211_REGDOM_SET_BY_USER:
1638 treatment = reg_process_hint_user(reg_request);
1639 if (treatment == REG_REQ_OK ||
1640 treatment == REG_REQ_ALREADY_SET)
1641 return;
1642 schedule_delayed_work(&reg_timeout, msecs_to_jiffies(3142));
1643 return;
1644 case NL80211_REGDOM_SET_BY_DRIVER:
1645 treatment = reg_process_hint_driver(wiphy, reg_request);
1646 break;
1647 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1648 treatment = reg_process_hint_country_ie(wiphy, reg_request);
1649 break;
1650 default:
1651 WARN(1, "invalid initiator %d\n", reg_request->initiator);
1652 return;
1653 }
1654
1655 /* This is required so that the orig_* parameters are saved */
1656 if (treatment == REG_REQ_ALREADY_SET && wiphy &&
1657 wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
1658 wiphy_update_regulatory(wiphy, reg_request->initiator);
1659 }
1660
1661 /*
1662 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1663 * Regulatory hints come on a first come first serve basis and we
1664 * must process each one atomically.
1665 */
1666 static void reg_process_pending_hints(void)
1667 {
1668 struct regulatory_request *reg_request, *lr;
1669
1670 lr = get_last_request();
1671
1672 /* When last_request->processed becomes true this will be rescheduled */
1673 if (lr && !lr->processed) {
1674 REG_DBG_PRINT("Pending regulatory request, waiting for it to be processed...\n");
1675 return;
1676 }
1677
1678 spin_lock(&reg_requests_lock);
1679
1680 if (list_empty(&reg_requests_list)) {
1681 spin_unlock(&reg_requests_lock);
1682 return;
1683 }
1684
1685 reg_request = list_first_entry(&reg_requests_list,
1686 struct regulatory_request,
1687 list);
1688 list_del_init(&reg_request->list);
1689
1690 spin_unlock(&reg_requests_lock);
1691
1692 reg_process_hint(reg_request);
1693 }
1694
1695 /* Processes beacon hints -- this has nothing to do with country IEs */
1696 static void reg_process_pending_beacon_hints(void)
1697 {
1698 struct cfg80211_registered_device *rdev;
1699 struct reg_beacon *pending_beacon, *tmp;
1700
1701 /* This goes through the _pending_ beacon list */
1702 spin_lock_bh(&reg_pending_beacons_lock);
1703
1704 list_for_each_entry_safe(pending_beacon, tmp,
1705 &reg_pending_beacons, list) {
1706 list_del_init(&pending_beacon->list);
1707
1708 /* Applies the beacon hint to current wiphys */
1709 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1710 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1711
1712 /* Remembers the beacon hint for new wiphys or reg changes */
1713 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1714 }
1715
1716 spin_unlock_bh(&reg_pending_beacons_lock);
1717 }
1718
1719 static void reg_todo(struct work_struct *work)
1720 {
1721 rtnl_lock();
1722 reg_process_pending_hints();
1723 reg_process_pending_beacon_hints();
1724 rtnl_unlock();
1725 }
1726
1727 static void queue_regulatory_request(struct regulatory_request *request)
1728 {
1729 request->alpha2[0] = toupper(request->alpha2[0]);
1730 request->alpha2[1] = toupper(request->alpha2[1]);
1731
1732 spin_lock(&reg_requests_lock);
1733 list_add_tail(&request->list, &reg_requests_list);
1734 spin_unlock(&reg_requests_lock);
1735
1736 schedule_work(&reg_work);
1737 }
1738
1739 /*
1740 * Core regulatory hint -- happens during cfg80211_init()
1741 * and when we restore regulatory settings.
1742 */
1743 static int regulatory_hint_core(const char *alpha2)
1744 {
1745 struct regulatory_request *request;
1746
1747 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1748 if (!request)
1749 return -ENOMEM;
1750
1751 request->alpha2[0] = alpha2[0];
1752 request->alpha2[1] = alpha2[1];
1753 request->initiator = NL80211_REGDOM_SET_BY_CORE;
1754
1755 queue_regulatory_request(request);
1756
1757 return 0;
1758 }
1759
1760 /* User hints */
1761 int regulatory_hint_user(const char *alpha2,
1762 enum nl80211_user_reg_hint_type user_reg_hint_type)
1763 {
1764 struct regulatory_request *request;
1765
1766 if (WARN_ON(!alpha2))
1767 return -EINVAL;
1768
1769 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1770 if (!request)
1771 return -ENOMEM;
1772
1773 request->wiphy_idx = WIPHY_IDX_INVALID;
1774 request->alpha2[0] = alpha2[0];
1775 request->alpha2[1] = alpha2[1];
1776 request->initiator = NL80211_REGDOM_SET_BY_USER;
1777 request->user_reg_hint_type = user_reg_hint_type;
1778
1779 queue_regulatory_request(request);
1780
1781 return 0;
1782 }
1783
1784 /* Driver hints */
1785 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1786 {
1787 struct regulatory_request *request;
1788
1789 if (WARN_ON(!alpha2 || !wiphy))
1790 return -EINVAL;
1791
1792 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1793 if (!request)
1794 return -ENOMEM;
1795
1796 request->wiphy_idx = get_wiphy_idx(wiphy);
1797
1798 request->alpha2[0] = alpha2[0];
1799 request->alpha2[1] = alpha2[1];
1800 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1801
1802 queue_regulatory_request(request);
1803
1804 return 0;
1805 }
1806 EXPORT_SYMBOL(regulatory_hint);
1807
1808 void regulatory_hint_country_ie(struct wiphy *wiphy, enum ieee80211_band band,
1809 const u8 *country_ie, u8 country_ie_len)
1810 {
1811 char alpha2[2];
1812 enum environment_cap env = ENVIRON_ANY;
1813 struct regulatory_request *request = NULL, *lr;
1814
1815 /* IE len must be evenly divisible by 2 */
1816 if (country_ie_len & 0x01)
1817 return;
1818
1819 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1820 return;
1821
1822 request = kzalloc(sizeof(*request), GFP_KERNEL);
1823 if (!request)
1824 return;
1825
1826 alpha2[0] = country_ie[0];
1827 alpha2[1] = country_ie[1];
1828
1829 if (country_ie[2] == 'I')
1830 env = ENVIRON_INDOOR;
1831 else if (country_ie[2] == 'O')
1832 env = ENVIRON_OUTDOOR;
1833
1834 rcu_read_lock();
1835 lr = get_last_request();
1836
1837 if (unlikely(!lr))
1838 goto out;
1839
1840 /*
1841 * We will run this only upon a successful connection on cfg80211.
1842 * We leave conflict resolution to the workqueue, where can hold
1843 * the RTNL.
1844 */
1845 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1846 lr->wiphy_idx != WIPHY_IDX_INVALID)
1847 goto out;
1848
1849 request->wiphy_idx = get_wiphy_idx(wiphy);
1850 request->alpha2[0] = alpha2[0];
1851 request->alpha2[1] = alpha2[1];
1852 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1853 request->country_ie_env = env;
1854
1855 queue_regulatory_request(request);
1856 request = NULL;
1857 out:
1858 kfree(request);
1859 rcu_read_unlock();
1860 }
1861
1862 static void restore_alpha2(char *alpha2, bool reset_user)
1863 {
1864 /* indicates there is no alpha2 to consider for restoration */
1865 alpha2[0] = '9';
1866 alpha2[1] = '7';
1867
1868 /* The user setting has precedence over the module parameter */
1869 if (is_user_regdom_saved()) {
1870 /* Unless we're asked to ignore it and reset it */
1871 if (reset_user) {
1872 REG_DBG_PRINT("Restoring regulatory settings including user preference\n");
1873 user_alpha2[0] = '9';
1874 user_alpha2[1] = '7';
1875
1876 /*
1877 * If we're ignoring user settings, we still need to
1878 * check the module parameter to ensure we put things
1879 * back as they were for a full restore.
1880 */
1881 if (!is_world_regdom(ieee80211_regdom)) {
1882 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
1883 ieee80211_regdom[0], ieee80211_regdom[1]);
1884 alpha2[0] = ieee80211_regdom[0];
1885 alpha2[1] = ieee80211_regdom[1];
1886 }
1887 } else {
1888 REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n",
1889 user_alpha2[0], user_alpha2[1]);
1890 alpha2[0] = user_alpha2[0];
1891 alpha2[1] = user_alpha2[1];
1892 }
1893 } else if (!is_world_regdom(ieee80211_regdom)) {
1894 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
1895 ieee80211_regdom[0], ieee80211_regdom[1]);
1896 alpha2[0] = ieee80211_regdom[0];
1897 alpha2[1] = ieee80211_regdom[1];
1898 } else
1899 REG_DBG_PRINT("Restoring regulatory settings\n");
1900 }
1901
1902 static void restore_custom_reg_settings(struct wiphy *wiphy)
1903 {
1904 struct ieee80211_supported_band *sband;
1905 enum ieee80211_band band;
1906 struct ieee80211_channel *chan;
1907 int i;
1908
1909 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1910 sband = wiphy->bands[band];
1911 if (!sband)
1912 continue;
1913 for (i = 0; i < sband->n_channels; i++) {
1914 chan = &sband->channels[i];
1915 chan->flags = chan->orig_flags;
1916 chan->max_antenna_gain = chan->orig_mag;
1917 chan->max_power = chan->orig_mpwr;
1918 chan->beacon_found = false;
1919 }
1920 }
1921 }
1922
1923 /*
1924 * Restoring regulatory settings involves ingoring any
1925 * possibly stale country IE information and user regulatory
1926 * settings if so desired, this includes any beacon hints
1927 * learned as we could have traveled outside to another country
1928 * after disconnection. To restore regulatory settings we do
1929 * exactly what we did at bootup:
1930 *
1931 * - send a core regulatory hint
1932 * - send a user regulatory hint if applicable
1933 *
1934 * Device drivers that send a regulatory hint for a specific country
1935 * keep their own regulatory domain on wiphy->regd so that does does
1936 * not need to be remembered.
1937 */
1938 static void restore_regulatory_settings(bool reset_user)
1939 {
1940 char alpha2[2];
1941 char world_alpha2[2];
1942 struct reg_beacon *reg_beacon, *btmp;
1943 struct regulatory_request *reg_request, *tmp;
1944 LIST_HEAD(tmp_reg_req_list);
1945 struct cfg80211_registered_device *rdev;
1946
1947 ASSERT_RTNL();
1948
1949 reset_regdomains(true, &world_regdom);
1950 restore_alpha2(alpha2, reset_user);
1951
1952 /*
1953 * If there's any pending requests we simply
1954 * stash them to a temporary pending queue and
1955 * add then after we've restored regulatory
1956 * settings.
1957 */
1958 spin_lock(&reg_requests_lock);
1959 list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
1960 if (reg_request->initiator != NL80211_REGDOM_SET_BY_USER)
1961 continue;
1962 list_move_tail(&reg_request->list, &tmp_reg_req_list);
1963 }
1964 spin_unlock(&reg_requests_lock);
1965
1966 /* Clear beacon hints */
1967 spin_lock_bh(&reg_pending_beacons_lock);
1968 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
1969 list_del(&reg_beacon->list);
1970 kfree(reg_beacon);
1971 }
1972 spin_unlock_bh(&reg_pending_beacons_lock);
1973
1974 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
1975 list_del(&reg_beacon->list);
1976 kfree(reg_beacon);
1977 }
1978
1979 /* First restore to the basic regulatory settings */
1980 world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
1981 world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
1982
1983 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1984 if (rdev->wiphy.flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1985 restore_custom_reg_settings(&rdev->wiphy);
1986 }
1987
1988 regulatory_hint_core(world_alpha2);
1989
1990 /*
1991 * This restores the ieee80211_regdom module parameter
1992 * preference or the last user requested regulatory
1993 * settings, user regulatory settings takes precedence.
1994 */
1995 if (is_an_alpha2(alpha2))
1996 regulatory_hint_user(user_alpha2, NL80211_USER_REG_HINT_USER);
1997
1998 spin_lock(&reg_requests_lock);
1999 list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
2000 spin_unlock(&reg_requests_lock);
2001
2002 REG_DBG_PRINT("Kicking the queue\n");
2003
2004 schedule_work(&reg_work);
2005 }
2006
2007 void regulatory_hint_disconnect(void)
2008 {
2009 REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n");
2010 restore_regulatory_settings(false);
2011 }
2012
2013 static bool freq_is_chan_12_13_14(u16 freq)
2014 {
2015 if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
2016 freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
2017 freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
2018 return true;
2019 return false;
2020 }
2021
2022 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
2023 {
2024 struct reg_beacon *pending_beacon;
2025
2026 list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
2027 if (beacon_chan->center_freq ==
2028 pending_beacon->chan.center_freq)
2029 return true;
2030 return false;
2031 }
2032
2033 int regulatory_hint_found_beacon(struct wiphy *wiphy,
2034 struct ieee80211_channel *beacon_chan,
2035 gfp_t gfp)
2036 {
2037 struct reg_beacon *reg_beacon;
2038 bool processing;
2039
2040 if (beacon_chan->beacon_found ||
2041 beacon_chan->flags & IEEE80211_CHAN_RADAR ||
2042 (beacon_chan->band == IEEE80211_BAND_2GHZ &&
2043 !freq_is_chan_12_13_14(beacon_chan->center_freq)))
2044 return 0;
2045
2046 spin_lock_bh(&reg_pending_beacons_lock);
2047 processing = pending_reg_beacon(beacon_chan);
2048 spin_unlock_bh(&reg_pending_beacons_lock);
2049
2050 if (processing)
2051 return 0;
2052
2053 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2054 if (!reg_beacon)
2055 return -ENOMEM;
2056
2057 REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
2058 beacon_chan->center_freq,
2059 ieee80211_frequency_to_channel(beacon_chan->center_freq),
2060 wiphy_name(wiphy));
2061
2062 memcpy(&reg_beacon->chan, beacon_chan,
2063 sizeof(struct ieee80211_channel));
2064
2065 /*
2066 * Since we can be called from BH or and non-BH context
2067 * we must use spin_lock_bh()
2068 */
2069 spin_lock_bh(&reg_pending_beacons_lock);
2070 list_add_tail(&reg_beacon->list, &reg_pending_beacons);
2071 spin_unlock_bh(&reg_pending_beacons_lock);
2072
2073 schedule_work(&reg_work);
2074
2075 return 0;
2076 }
2077
2078 static void print_rd_rules(const struct ieee80211_regdomain *rd)
2079 {
2080 unsigned int i;
2081 const struct ieee80211_reg_rule *reg_rule = NULL;
2082 const struct ieee80211_freq_range *freq_range = NULL;
2083 const struct ieee80211_power_rule *power_rule = NULL;
2084
2085 pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
2086
2087 for (i = 0; i < rd->n_reg_rules; i++) {
2088 reg_rule = &rd->reg_rules[i];
2089 freq_range = &reg_rule->freq_range;
2090 power_rule = &reg_rule->power_rule;
2091
2092 /*
2093 * There may not be documentation for max antenna gain
2094 * in certain regions
2095 */
2096 if (power_rule->max_antenna_gain)
2097 pr_info(" (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
2098 freq_range->start_freq_khz,
2099 freq_range->end_freq_khz,
2100 freq_range->max_bandwidth_khz,
2101 power_rule->max_antenna_gain,
2102 power_rule->max_eirp);
2103 else
2104 pr_info(" (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
2105 freq_range->start_freq_khz,
2106 freq_range->end_freq_khz,
2107 freq_range->max_bandwidth_khz,
2108 power_rule->max_eirp);
2109 }
2110 }
2111
2112 bool reg_supported_dfs_region(u8 dfs_region)
2113 {
2114 switch (dfs_region) {
2115 case NL80211_DFS_UNSET:
2116 case NL80211_DFS_FCC:
2117 case NL80211_DFS_ETSI:
2118 case NL80211_DFS_JP:
2119 return true;
2120 default:
2121 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2122 dfs_region);
2123 return false;
2124 }
2125 }
2126
2127 static void print_dfs_region(u8 dfs_region)
2128 {
2129 if (!dfs_region)
2130 return;
2131
2132 switch (dfs_region) {
2133 case NL80211_DFS_FCC:
2134 pr_info(" DFS Master region FCC");
2135 break;
2136 case NL80211_DFS_ETSI:
2137 pr_info(" DFS Master region ETSI");
2138 break;
2139 case NL80211_DFS_JP:
2140 pr_info(" DFS Master region JP");
2141 break;
2142 default:
2143 pr_info(" DFS Master region Unknown");
2144 break;
2145 }
2146 }
2147
2148 static void print_regdomain(const struct ieee80211_regdomain *rd)
2149 {
2150 struct regulatory_request *lr = get_last_request();
2151
2152 if (is_intersected_alpha2(rd->alpha2)) {
2153 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2154 struct cfg80211_registered_device *rdev;
2155 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
2156 if (rdev) {
2157 pr_info("Current regulatory domain updated by AP to: %c%c\n",
2158 rdev->country_ie_alpha2[0],
2159 rdev->country_ie_alpha2[1]);
2160 } else
2161 pr_info("Current regulatory domain intersected:\n");
2162 } else
2163 pr_info("Current regulatory domain intersected:\n");
2164 } else if (is_world_regdom(rd->alpha2)) {
2165 pr_info("World regulatory domain updated:\n");
2166 } else {
2167 if (is_unknown_alpha2(rd->alpha2))
2168 pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2169 else {
2170 if (reg_request_cell_base(lr))
2171 pr_info("Regulatory domain changed to country: %c%c by Cell Station\n",
2172 rd->alpha2[0], rd->alpha2[1]);
2173 else
2174 pr_info("Regulatory domain changed to country: %c%c\n",
2175 rd->alpha2[0], rd->alpha2[1]);
2176 }
2177 }
2178
2179 print_dfs_region(rd->dfs_region);
2180 print_rd_rules(rd);
2181 }
2182
2183 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2184 {
2185 pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2186 print_rd_rules(rd);
2187 }
2188
2189 /* Takes ownership of rd only if it doesn't fail */
2190 static int __set_regdom(const struct ieee80211_regdomain *rd)
2191 {
2192 const struct ieee80211_regdomain *regd;
2193 const struct ieee80211_regdomain *intersected_rd = NULL;
2194 struct wiphy *request_wiphy;
2195 struct regulatory_request *lr = get_last_request();
2196
2197 /* Some basic sanity checks first */
2198
2199 if (!reg_is_valid_request(rd->alpha2))
2200 return -EINVAL;
2201
2202 if (is_world_regdom(rd->alpha2)) {
2203 if (lr->initiator != NL80211_REGDOM_SET_BY_CORE)
2204 return -EINVAL;
2205 update_world_regdomain(rd);
2206 return 0;
2207 }
2208
2209 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2210 !is_unknown_alpha2(rd->alpha2))
2211 return -EINVAL;
2212
2213 /*
2214 * Lets only bother proceeding on the same alpha2 if the current
2215 * rd is non static (it means CRDA was present and was used last)
2216 * and the pending request came in from a country IE
2217 */
2218 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2219 /*
2220 * If someone else asked us to change the rd lets only bother
2221 * checking if the alpha2 changes if CRDA was already called
2222 */
2223 if (!regdom_changes(rd->alpha2))
2224 return -EALREADY;
2225 }
2226
2227 /*
2228 * Now lets set the regulatory domain, update all driver channels
2229 * and finally inform them of what we have done, in case they want
2230 * to review or adjust their own settings based on their own
2231 * internal EEPROM data
2232 */
2233
2234 if (!is_valid_rd(rd)) {
2235 pr_err("Invalid regulatory domain detected:\n");
2236 print_regdomain_info(rd);
2237 return -EINVAL;
2238 }
2239
2240 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2241 if (!request_wiphy &&
2242 (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2243 lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)) {
2244 schedule_delayed_work(&reg_timeout, 0);
2245 return -ENODEV;
2246 }
2247
2248 if (!lr->intersect) {
2249 if (lr->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2250 reset_regdomains(false, rd);
2251 return 0;
2252 }
2253
2254 /*
2255 * For a driver hint, lets copy the regulatory domain the
2256 * driver wanted to the wiphy to deal with conflicts
2257 */
2258
2259 /*
2260 * Userspace could have sent two replies with only
2261 * one kernel request.
2262 */
2263 if (request_wiphy->regd)
2264 return -EALREADY;
2265
2266 regd = reg_copy_regd(rd);
2267 if (IS_ERR(regd))
2268 return PTR_ERR(regd);
2269
2270 rcu_assign_pointer(request_wiphy->regd, regd);
2271 reset_regdomains(false, rd);
2272 return 0;
2273 }
2274
2275 /* Intersection requires a bit more work */
2276
2277 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2278 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2279 if (!intersected_rd)
2280 return -EINVAL;
2281
2282 /*
2283 * We can trash what CRDA provided now.
2284 * However if a driver requested this specific regulatory
2285 * domain we keep it for its private use
2286 */
2287 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER) {
2288 const struct ieee80211_regdomain *tmp;
2289
2290 tmp = get_wiphy_regdom(request_wiphy);
2291 rcu_assign_pointer(request_wiphy->regd, rd);
2292 rcu_free_regdom(tmp);
2293 } else {
2294 kfree(rd);
2295 }
2296
2297 rd = NULL;
2298
2299 reset_regdomains(false, intersected_rd);
2300
2301 return 0;
2302 }
2303
2304 return -EINVAL;
2305 }
2306
2307
2308 /*
2309 * Use this call to set the current regulatory domain. Conflicts with
2310 * multiple drivers can be ironed out later. Caller must've already
2311 * kmalloc'd the rd structure.
2312 */
2313 int set_regdom(const struct ieee80211_regdomain *rd)
2314 {
2315 struct regulatory_request *lr;
2316 int r;
2317
2318 lr = get_last_request();
2319
2320 /* Note that this doesn't update the wiphys, this is done below */
2321 r = __set_regdom(rd);
2322 if (r) {
2323 if (r == -EALREADY)
2324 reg_set_request_processed();
2325
2326 kfree(rd);
2327 return r;
2328 }
2329
2330 /* This would make this whole thing pointless */
2331 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
2332 return -EINVAL;
2333
2334 /* update all wiphys now with the new established regulatory domain */
2335 update_all_wiphy_regulatory(lr->initiator);
2336
2337 print_regdomain(get_cfg80211_regdom());
2338
2339 nl80211_send_reg_change_event(lr);
2340
2341 reg_set_request_processed();
2342
2343 return 0;
2344 }
2345
2346 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2347 {
2348 struct regulatory_request *lr;
2349 u8 alpha2[2];
2350 bool add = false;
2351
2352 rcu_read_lock();
2353 lr = get_last_request();
2354 if (lr && !lr->processed) {
2355 memcpy(alpha2, lr->alpha2, 2);
2356 add = true;
2357 }
2358 rcu_read_unlock();
2359
2360 if (add)
2361 return add_uevent_var(env, "COUNTRY=%c%c",
2362 alpha2[0], alpha2[1]);
2363 return 0;
2364 }
2365
2366 void wiphy_regulatory_register(struct wiphy *wiphy)
2367 {
2368 struct regulatory_request *lr;
2369
2370 if (!reg_dev_ignore_cell_hint(wiphy))
2371 reg_num_devs_support_basehint++;
2372
2373 lr = get_last_request();
2374 wiphy_update_regulatory(wiphy, lr->initiator);
2375 }
2376
2377 void wiphy_regulatory_deregister(struct wiphy *wiphy)
2378 {
2379 struct wiphy *request_wiphy = NULL;
2380 struct regulatory_request *lr;
2381
2382 lr = get_last_request();
2383
2384 if (!reg_dev_ignore_cell_hint(wiphy))
2385 reg_num_devs_support_basehint--;
2386
2387 rcu_free_regdom(get_wiphy_regdom(wiphy));
2388 rcu_assign_pointer(wiphy->regd, NULL);
2389
2390 if (lr)
2391 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2392
2393 if (!request_wiphy || request_wiphy != wiphy)
2394 return;
2395
2396 lr->wiphy_idx = WIPHY_IDX_INVALID;
2397 lr->country_ie_env = ENVIRON_ANY;
2398 }
2399
2400 static void reg_timeout_work(struct work_struct *work)
2401 {
2402 REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
2403 rtnl_lock();
2404 restore_regulatory_settings(true);
2405 rtnl_unlock();
2406 }
2407
2408 int __init regulatory_init(void)
2409 {
2410 int err = 0;
2411
2412 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2413 if (IS_ERR(reg_pdev))
2414 return PTR_ERR(reg_pdev);
2415
2416 reg_pdev->dev.type = &reg_device_type;
2417
2418 spin_lock_init(&reg_requests_lock);
2419 spin_lock_init(&reg_pending_beacons_lock);
2420
2421 reg_regdb_size_check();
2422
2423 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
2424
2425 user_alpha2[0] = '9';
2426 user_alpha2[1] = '7';
2427
2428 /* We always try to get an update for the static regdomain */
2429 err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
2430 if (err) {
2431 if (err == -ENOMEM)
2432 return err;
2433 /*
2434 * N.B. kobject_uevent_env() can fail mainly for when we're out
2435 * memory which is handled and propagated appropriately above
2436 * but it can also fail during a netlink_broadcast() or during
2437 * early boot for call_usermodehelper(). For now treat these
2438 * errors as non-fatal.
2439 */
2440 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2441 }
2442
2443 /*
2444 * Finally, if the user set the module parameter treat it
2445 * as a user hint.
2446 */
2447 if (!is_world_regdom(ieee80211_regdom))
2448 regulatory_hint_user(ieee80211_regdom,
2449 NL80211_USER_REG_HINT_USER);
2450
2451 return 0;
2452 }
2453
2454 void regulatory_exit(void)
2455 {
2456 struct regulatory_request *reg_request, *tmp;
2457 struct reg_beacon *reg_beacon, *btmp;
2458
2459 cancel_work_sync(&reg_work);
2460 cancel_delayed_work_sync(&reg_timeout);
2461
2462 /* Lock to suppress warnings */
2463 rtnl_lock();
2464 reset_regdomains(true, NULL);
2465 rtnl_unlock();
2466
2467 dev_set_uevent_suppress(&reg_pdev->dev, true);
2468
2469 platform_device_unregister(reg_pdev);
2470
2471 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2472 list_del(&reg_beacon->list);
2473 kfree(reg_beacon);
2474 }
2475
2476 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2477 list_del(&reg_beacon->list);
2478 kfree(reg_beacon);
2479 }
2480
2481 list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
2482 list_del(&reg_request->list);
2483 kfree(reg_request);
2484 }
2485 }