]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/wireless/reg.c
cfg80211: simplify strict custom alpha2 regdomain check
[mirror_ubuntu-bionic-kernel.git] / net / wireless / reg.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 *
7 * Permission to use, copy, modify, and/or distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20
21 /**
22 * DOC: Wireless regulatory infrastructure
23 *
24 * The usual implementation is for a driver to read a device EEPROM to
25 * determine which regulatory domain it should be operating under, then
26 * looking up the allowable channels in a driver-local table and finally
27 * registering those channels in the wiphy structure.
28 *
29 * Another set of compliance enforcement is for drivers to use their
30 * own compliance limits which can be stored on the EEPROM. The host
31 * driver or firmware may ensure these are used.
32 *
33 * In addition to all this we provide an extra layer of regulatory
34 * conformance. For drivers which do not have any regulatory
35 * information CRDA provides the complete regulatory solution.
36 * For others it provides a community effort on further restrictions
37 * to enhance compliance.
38 *
39 * Note: When number of rules --> infinity we will not be able to
40 * index on alpha2 any more, instead we'll probably have to
41 * rely on some SHA1 checksum of the regdomain for example.
42 *
43 */
44
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
47 #include <linux/kernel.h>
48 #include <linux/export.h>
49 #include <linux/slab.h>
50 #include <linux/list.h>
51 #include <linux/ctype.h>
52 #include <linux/nl80211.h>
53 #include <linux/platform_device.h>
54 #include <linux/moduleparam.h>
55 #include <net/cfg80211.h>
56 #include "core.h"
57 #include "reg.h"
58 #include "regdb.h"
59 #include "nl80211.h"
60
61 #ifdef CONFIG_CFG80211_REG_DEBUG
62 #define REG_DBG_PRINT(format, args...) \
63 printk(KERN_DEBUG pr_fmt(format), ##args)
64 #else
65 #define REG_DBG_PRINT(args...)
66 #endif
67
68 enum reg_request_treatment {
69 REG_REQ_OK,
70 REG_REQ_IGNORE,
71 REG_REQ_INTERSECT,
72 REG_REQ_ALREADY_SET,
73 };
74
75 static struct regulatory_request core_request_world = {
76 .initiator = NL80211_REGDOM_SET_BY_CORE,
77 .alpha2[0] = '0',
78 .alpha2[1] = '0',
79 .intersect = false,
80 .processed = true,
81 .country_ie_env = ENVIRON_ANY,
82 };
83
84 /*
85 * Receipt of information from last regulatory request,
86 * protected by RTNL (and can be accessed with RCU protection)
87 */
88 static struct regulatory_request __rcu *last_request =
89 (void __rcu *)&core_request_world;
90
91 /* To trigger userspace events */
92 static struct platform_device *reg_pdev;
93
94 static struct device_type reg_device_type = {
95 .uevent = reg_device_uevent,
96 };
97
98 /*
99 * Central wireless core regulatory domains, we only need two,
100 * the current one and a world regulatory domain in case we have no
101 * information to give us an alpha2.
102 * (protected by RTNL, can be read under RCU)
103 */
104 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
105
106 /*
107 * Number of devices that registered to the core
108 * that support cellular base station regulatory hints
109 * (protected by RTNL)
110 */
111 static int reg_num_devs_support_basehint;
112
113 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
114 {
115 return rtnl_dereference(cfg80211_regdomain);
116 }
117
118 static const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
119 {
120 return rtnl_dereference(wiphy->regd);
121 }
122
123 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
124 {
125 if (!r)
126 return;
127 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
128 }
129
130 static struct regulatory_request *get_last_request(void)
131 {
132 return rcu_dereference_rtnl(last_request);
133 }
134
135 /* Used to queue up regulatory hints */
136 static LIST_HEAD(reg_requests_list);
137 static spinlock_t reg_requests_lock;
138
139 /* Used to queue up beacon hints for review */
140 static LIST_HEAD(reg_pending_beacons);
141 static spinlock_t reg_pending_beacons_lock;
142
143 /* Used to keep track of processed beacon hints */
144 static LIST_HEAD(reg_beacon_list);
145
146 struct reg_beacon {
147 struct list_head list;
148 struct ieee80211_channel chan;
149 };
150
151 static void reg_todo(struct work_struct *work);
152 static DECLARE_WORK(reg_work, reg_todo);
153
154 static void reg_timeout_work(struct work_struct *work);
155 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
156
157 /* We keep a static world regulatory domain in case of the absence of CRDA */
158 static const struct ieee80211_regdomain world_regdom = {
159 .n_reg_rules = 6,
160 .alpha2 = "00",
161 .reg_rules = {
162 /* IEEE 802.11b/g, channels 1..11 */
163 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
164 /* IEEE 802.11b/g, channels 12..13. */
165 REG_RULE(2467-10, 2472+10, 40, 6, 20,
166 NL80211_RRF_PASSIVE_SCAN |
167 NL80211_RRF_NO_IBSS),
168 /* IEEE 802.11 channel 14 - Only JP enables
169 * this and for 802.11b only */
170 REG_RULE(2484-10, 2484+10, 20, 6, 20,
171 NL80211_RRF_PASSIVE_SCAN |
172 NL80211_RRF_NO_IBSS |
173 NL80211_RRF_NO_OFDM),
174 /* IEEE 802.11a, channel 36..48 */
175 REG_RULE(5180-10, 5240+10, 160, 6, 20,
176 NL80211_RRF_PASSIVE_SCAN |
177 NL80211_RRF_NO_IBSS),
178
179 /* IEEE 802.11a, channel 52..64 - DFS required */
180 REG_RULE(5260-10, 5320+10, 160, 6, 20,
181 NL80211_RRF_PASSIVE_SCAN |
182 NL80211_RRF_NO_IBSS |
183 NL80211_RRF_DFS),
184
185 /* IEEE 802.11a, channel 100..144 - DFS required */
186 REG_RULE(5500-10, 5720+10, 160, 6, 20,
187 NL80211_RRF_PASSIVE_SCAN |
188 NL80211_RRF_NO_IBSS |
189 NL80211_RRF_DFS),
190
191 /* IEEE 802.11a, channel 149..165 */
192 REG_RULE(5745-10, 5825+10, 80, 6, 20,
193 NL80211_RRF_PASSIVE_SCAN |
194 NL80211_RRF_NO_IBSS),
195
196 /* IEEE 802.11ad (60gHz), channels 1..3 */
197 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
198 }
199 };
200
201 /* protected by RTNL */
202 static const struct ieee80211_regdomain *cfg80211_world_regdom =
203 &world_regdom;
204
205 static char *ieee80211_regdom = "00";
206 static char user_alpha2[2];
207
208 module_param(ieee80211_regdom, charp, 0444);
209 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
210
211 static void reset_regdomains(bool full_reset,
212 const struct ieee80211_regdomain *new_regdom)
213 {
214 const struct ieee80211_regdomain *r;
215 struct regulatory_request *lr;
216
217 ASSERT_RTNL();
218
219 r = get_cfg80211_regdom();
220
221 /* avoid freeing static information or freeing something twice */
222 if (r == cfg80211_world_regdom)
223 r = NULL;
224 if (cfg80211_world_regdom == &world_regdom)
225 cfg80211_world_regdom = NULL;
226 if (r == &world_regdom)
227 r = NULL;
228
229 rcu_free_regdom(r);
230 rcu_free_regdom(cfg80211_world_regdom);
231
232 cfg80211_world_regdom = &world_regdom;
233 rcu_assign_pointer(cfg80211_regdomain, new_regdom);
234
235 if (!full_reset)
236 return;
237
238 lr = get_last_request();
239 if (lr != &core_request_world && lr)
240 kfree_rcu(lr, rcu_head);
241 rcu_assign_pointer(last_request, &core_request_world);
242 }
243
244 /*
245 * Dynamic world regulatory domain requested by the wireless
246 * core upon initialization
247 */
248 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
249 {
250 struct regulatory_request *lr;
251
252 lr = get_last_request();
253
254 WARN_ON(!lr);
255
256 reset_regdomains(false, rd);
257
258 cfg80211_world_regdom = rd;
259 }
260
261 bool is_world_regdom(const char *alpha2)
262 {
263 if (!alpha2)
264 return false;
265 return alpha2[0] == '0' && alpha2[1] == '0';
266 }
267
268 static bool is_alpha2_set(const char *alpha2)
269 {
270 if (!alpha2)
271 return false;
272 return alpha2[0] && alpha2[1];
273 }
274
275 static bool is_unknown_alpha2(const char *alpha2)
276 {
277 if (!alpha2)
278 return false;
279 /*
280 * Special case where regulatory domain was built by driver
281 * but a specific alpha2 cannot be determined
282 */
283 return alpha2[0] == '9' && alpha2[1] == '9';
284 }
285
286 static bool is_intersected_alpha2(const char *alpha2)
287 {
288 if (!alpha2)
289 return false;
290 /*
291 * Special case where regulatory domain is the
292 * result of an intersection between two regulatory domain
293 * structures
294 */
295 return alpha2[0] == '9' && alpha2[1] == '8';
296 }
297
298 static bool is_an_alpha2(const char *alpha2)
299 {
300 if (!alpha2)
301 return false;
302 return isalpha(alpha2[0]) && isalpha(alpha2[1]);
303 }
304
305 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
306 {
307 if (!alpha2_x || !alpha2_y)
308 return false;
309 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
310 }
311
312 static bool regdom_changes(const char *alpha2)
313 {
314 const struct ieee80211_regdomain *r = get_cfg80211_regdom();
315
316 if (!r)
317 return true;
318 return !alpha2_equal(r->alpha2, alpha2);
319 }
320
321 /*
322 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
323 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
324 * has ever been issued.
325 */
326 static bool is_user_regdom_saved(void)
327 {
328 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
329 return false;
330
331 /* This would indicate a mistake on the design */
332 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
333 "Unexpected user alpha2: %c%c\n",
334 user_alpha2[0], user_alpha2[1]))
335 return false;
336
337 return true;
338 }
339
340 static const struct ieee80211_regdomain *
341 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
342 {
343 struct ieee80211_regdomain *regd;
344 int size_of_regd;
345 unsigned int i;
346
347 size_of_regd =
348 sizeof(struct ieee80211_regdomain) +
349 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
350
351 regd = kzalloc(size_of_regd, GFP_KERNEL);
352 if (!regd)
353 return ERR_PTR(-ENOMEM);
354
355 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
356
357 for (i = 0; i < src_regd->n_reg_rules; i++)
358 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
359 sizeof(struct ieee80211_reg_rule));
360
361 return regd;
362 }
363
364 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
365 struct reg_regdb_search_request {
366 char alpha2[2];
367 struct list_head list;
368 };
369
370 static LIST_HEAD(reg_regdb_search_list);
371 static DEFINE_MUTEX(reg_regdb_search_mutex);
372
373 static void reg_regdb_search(struct work_struct *work)
374 {
375 struct reg_regdb_search_request *request;
376 const struct ieee80211_regdomain *curdom, *regdom = NULL;
377 int i;
378
379 rtnl_lock();
380
381 mutex_lock(&reg_regdb_search_mutex);
382 while (!list_empty(&reg_regdb_search_list)) {
383 request = list_first_entry(&reg_regdb_search_list,
384 struct reg_regdb_search_request,
385 list);
386 list_del(&request->list);
387
388 for (i = 0; i < reg_regdb_size; i++) {
389 curdom = reg_regdb[i];
390
391 if (alpha2_equal(request->alpha2, curdom->alpha2)) {
392 regdom = reg_copy_regd(curdom);
393 break;
394 }
395 }
396
397 kfree(request);
398 }
399 mutex_unlock(&reg_regdb_search_mutex);
400
401 if (!IS_ERR_OR_NULL(regdom))
402 set_regdom(regdom);
403
404 rtnl_unlock();
405 }
406
407 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
408
409 static void reg_regdb_query(const char *alpha2)
410 {
411 struct reg_regdb_search_request *request;
412
413 if (!alpha2)
414 return;
415
416 request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
417 if (!request)
418 return;
419
420 memcpy(request->alpha2, alpha2, 2);
421
422 mutex_lock(&reg_regdb_search_mutex);
423 list_add_tail(&request->list, &reg_regdb_search_list);
424 mutex_unlock(&reg_regdb_search_mutex);
425
426 schedule_work(&reg_regdb_work);
427 }
428
429 /* Feel free to add any other sanity checks here */
430 static void reg_regdb_size_check(void)
431 {
432 /* We should ideally BUILD_BUG_ON() but then random builds would fail */
433 WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
434 }
435 #else
436 static inline void reg_regdb_size_check(void) {}
437 static inline void reg_regdb_query(const char *alpha2) {}
438 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
439
440 /*
441 * This lets us keep regulatory code which is updated on a regulatory
442 * basis in userspace. Country information is filled in by
443 * reg_device_uevent
444 */
445 static int call_crda(const char *alpha2)
446 {
447 if (!is_world_regdom((char *) alpha2))
448 pr_info("Calling CRDA for country: %c%c\n",
449 alpha2[0], alpha2[1]);
450 else
451 pr_info("Calling CRDA to update world regulatory domain\n");
452
453 /* query internal regulatory database (if it exists) */
454 reg_regdb_query(alpha2);
455
456 return kobject_uevent(&reg_pdev->dev.kobj, KOBJ_CHANGE);
457 }
458
459 static bool reg_is_valid_request(const char *alpha2)
460 {
461 struct regulatory_request *lr = get_last_request();
462
463 if (!lr || lr->processed)
464 return false;
465
466 return alpha2_equal(lr->alpha2, alpha2);
467 }
468
469 /* Sanity check on a regulatory rule */
470 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
471 {
472 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
473 u32 freq_diff;
474
475 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
476 return false;
477
478 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
479 return false;
480
481 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
482
483 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
484 freq_range->max_bandwidth_khz > freq_diff)
485 return false;
486
487 return true;
488 }
489
490 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
491 {
492 const struct ieee80211_reg_rule *reg_rule = NULL;
493 unsigned int i;
494
495 if (!rd->n_reg_rules)
496 return false;
497
498 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
499 return false;
500
501 for (i = 0; i < rd->n_reg_rules; i++) {
502 reg_rule = &rd->reg_rules[i];
503 if (!is_valid_reg_rule(reg_rule))
504 return false;
505 }
506
507 return true;
508 }
509
510 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
511 u32 center_freq_khz, u32 bw_khz)
512 {
513 u32 start_freq_khz, end_freq_khz;
514
515 start_freq_khz = center_freq_khz - (bw_khz/2);
516 end_freq_khz = center_freq_khz + (bw_khz/2);
517
518 if (start_freq_khz >= freq_range->start_freq_khz &&
519 end_freq_khz <= freq_range->end_freq_khz)
520 return true;
521
522 return false;
523 }
524
525 /**
526 * freq_in_rule_band - tells us if a frequency is in a frequency band
527 * @freq_range: frequency rule we want to query
528 * @freq_khz: frequency we are inquiring about
529 *
530 * This lets us know if a specific frequency rule is or is not relevant to
531 * a specific frequency's band. Bands are device specific and artificial
532 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
533 * however it is safe for now to assume that a frequency rule should not be
534 * part of a frequency's band if the start freq or end freq are off by more
535 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
536 * 60 GHz band.
537 * This resolution can be lowered and should be considered as we add
538 * regulatory rule support for other "bands".
539 **/
540 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
541 u32 freq_khz)
542 {
543 #define ONE_GHZ_IN_KHZ 1000000
544 /*
545 * From 802.11ad: directional multi-gigabit (DMG):
546 * Pertaining to operation in a frequency band containing a channel
547 * with the Channel starting frequency above 45 GHz.
548 */
549 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
550 10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
551 if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
552 return true;
553 if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
554 return true;
555 return false;
556 #undef ONE_GHZ_IN_KHZ
557 }
558
559 /*
560 * Helper for regdom_intersect(), this does the real
561 * mathematical intersection fun
562 */
563 static int reg_rules_intersect(const struct ieee80211_reg_rule *rule1,
564 const struct ieee80211_reg_rule *rule2,
565 struct ieee80211_reg_rule *intersected_rule)
566 {
567 const struct ieee80211_freq_range *freq_range1, *freq_range2;
568 struct ieee80211_freq_range *freq_range;
569 const struct ieee80211_power_rule *power_rule1, *power_rule2;
570 struct ieee80211_power_rule *power_rule;
571 u32 freq_diff;
572
573 freq_range1 = &rule1->freq_range;
574 freq_range2 = &rule2->freq_range;
575 freq_range = &intersected_rule->freq_range;
576
577 power_rule1 = &rule1->power_rule;
578 power_rule2 = &rule2->power_rule;
579 power_rule = &intersected_rule->power_rule;
580
581 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
582 freq_range2->start_freq_khz);
583 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
584 freq_range2->end_freq_khz);
585 freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
586 freq_range2->max_bandwidth_khz);
587
588 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
589 if (freq_range->max_bandwidth_khz > freq_diff)
590 freq_range->max_bandwidth_khz = freq_diff;
591
592 power_rule->max_eirp = min(power_rule1->max_eirp,
593 power_rule2->max_eirp);
594 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
595 power_rule2->max_antenna_gain);
596
597 intersected_rule->flags = rule1->flags | rule2->flags;
598
599 if (!is_valid_reg_rule(intersected_rule))
600 return -EINVAL;
601
602 return 0;
603 }
604
605 /**
606 * regdom_intersect - do the intersection between two regulatory domains
607 * @rd1: first regulatory domain
608 * @rd2: second regulatory domain
609 *
610 * Use this function to get the intersection between two regulatory domains.
611 * Once completed we will mark the alpha2 for the rd as intersected, "98",
612 * as no one single alpha2 can represent this regulatory domain.
613 *
614 * Returns a pointer to the regulatory domain structure which will hold the
615 * resulting intersection of rules between rd1 and rd2. We will
616 * kzalloc() this structure for you.
617 */
618 static struct ieee80211_regdomain *
619 regdom_intersect(const struct ieee80211_regdomain *rd1,
620 const struct ieee80211_regdomain *rd2)
621 {
622 int r, size_of_regd;
623 unsigned int x, y;
624 unsigned int num_rules = 0, rule_idx = 0;
625 const struct ieee80211_reg_rule *rule1, *rule2;
626 struct ieee80211_reg_rule *intersected_rule;
627 struct ieee80211_regdomain *rd;
628 /* This is just a dummy holder to help us count */
629 struct ieee80211_reg_rule dummy_rule;
630
631 if (!rd1 || !rd2)
632 return NULL;
633
634 /*
635 * First we get a count of the rules we'll need, then we actually
636 * build them. This is to so we can malloc() and free() a
637 * regdomain once. The reason we use reg_rules_intersect() here
638 * is it will return -EINVAL if the rule computed makes no sense.
639 * All rules that do check out OK are valid.
640 */
641
642 for (x = 0; x < rd1->n_reg_rules; x++) {
643 rule1 = &rd1->reg_rules[x];
644 for (y = 0; y < rd2->n_reg_rules; y++) {
645 rule2 = &rd2->reg_rules[y];
646 if (!reg_rules_intersect(rule1, rule2, &dummy_rule))
647 num_rules++;
648 }
649 }
650
651 if (!num_rules)
652 return NULL;
653
654 size_of_regd = sizeof(struct ieee80211_regdomain) +
655 num_rules * sizeof(struct ieee80211_reg_rule);
656
657 rd = kzalloc(size_of_regd, GFP_KERNEL);
658 if (!rd)
659 return NULL;
660
661 for (x = 0; x < rd1->n_reg_rules && rule_idx < num_rules; x++) {
662 rule1 = &rd1->reg_rules[x];
663 for (y = 0; y < rd2->n_reg_rules && rule_idx < num_rules; y++) {
664 rule2 = &rd2->reg_rules[y];
665 /*
666 * This time around instead of using the stack lets
667 * write to the target rule directly saving ourselves
668 * a memcpy()
669 */
670 intersected_rule = &rd->reg_rules[rule_idx];
671 r = reg_rules_intersect(rule1, rule2, intersected_rule);
672 /*
673 * No need to memset here the intersected rule here as
674 * we're not using the stack anymore
675 */
676 if (r)
677 continue;
678 rule_idx++;
679 }
680 }
681
682 if (rule_idx != num_rules) {
683 kfree(rd);
684 return NULL;
685 }
686
687 rd->n_reg_rules = num_rules;
688 rd->alpha2[0] = '9';
689 rd->alpha2[1] = '8';
690
691 return rd;
692 }
693
694 /*
695 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
696 * want to just have the channel structure use these
697 */
698 static u32 map_regdom_flags(u32 rd_flags)
699 {
700 u32 channel_flags = 0;
701 if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
702 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
703 if (rd_flags & NL80211_RRF_NO_IBSS)
704 channel_flags |= IEEE80211_CHAN_NO_IBSS;
705 if (rd_flags & NL80211_RRF_DFS)
706 channel_flags |= IEEE80211_CHAN_RADAR;
707 if (rd_flags & NL80211_RRF_NO_OFDM)
708 channel_flags |= IEEE80211_CHAN_NO_OFDM;
709 return channel_flags;
710 }
711
712 static const struct ieee80211_reg_rule *
713 freq_reg_info_regd(struct wiphy *wiphy, u32 center_freq,
714 const struct ieee80211_regdomain *regd)
715 {
716 int i;
717 bool band_rule_found = false;
718 bool bw_fits = false;
719
720 if (!regd)
721 return ERR_PTR(-EINVAL);
722
723 for (i = 0; i < regd->n_reg_rules; i++) {
724 const struct ieee80211_reg_rule *rr;
725 const struct ieee80211_freq_range *fr = NULL;
726
727 rr = &regd->reg_rules[i];
728 fr = &rr->freq_range;
729
730 /*
731 * We only need to know if one frequency rule was
732 * was in center_freq's band, that's enough, so lets
733 * not overwrite it once found
734 */
735 if (!band_rule_found)
736 band_rule_found = freq_in_rule_band(fr, center_freq);
737
738 bw_fits = reg_does_bw_fit(fr, center_freq, MHZ_TO_KHZ(20));
739
740 if (band_rule_found && bw_fits)
741 return rr;
742 }
743
744 if (!band_rule_found)
745 return ERR_PTR(-ERANGE);
746
747 return ERR_PTR(-EINVAL);
748 }
749
750 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
751 u32 center_freq)
752 {
753 const struct ieee80211_regdomain *regd;
754 struct regulatory_request *lr = get_last_request();
755
756 /*
757 * Follow the driver's regulatory domain, if present, unless a country
758 * IE has been processed or a user wants to help complaince further
759 */
760 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
761 lr->initiator != NL80211_REGDOM_SET_BY_USER &&
762 wiphy->regd)
763 regd = get_wiphy_regdom(wiphy);
764 else
765 regd = get_cfg80211_regdom();
766
767 return freq_reg_info_regd(wiphy, center_freq, regd);
768 }
769 EXPORT_SYMBOL(freq_reg_info);
770
771 #ifdef CONFIG_CFG80211_REG_DEBUG
772 static const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
773 {
774 switch (initiator) {
775 case NL80211_REGDOM_SET_BY_CORE:
776 return "Set by core";
777 case NL80211_REGDOM_SET_BY_USER:
778 return "Set by user";
779 case NL80211_REGDOM_SET_BY_DRIVER:
780 return "Set by driver";
781 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
782 return "Set by country IE";
783 default:
784 WARN_ON(1);
785 return "Set by bug";
786 }
787 }
788
789 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
790 const struct ieee80211_reg_rule *reg_rule)
791 {
792 const struct ieee80211_power_rule *power_rule;
793 const struct ieee80211_freq_range *freq_range;
794 char max_antenna_gain[32];
795
796 power_rule = &reg_rule->power_rule;
797 freq_range = &reg_rule->freq_range;
798
799 if (!power_rule->max_antenna_gain)
800 snprintf(max_antenna_gain, 32, "N/A");
801 else
802 snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);
803
804 REG_DBG_PRINT("Updating information on frequency %d MHz with regulatory rule:\n",
805 chan->center_freq);
806
807 REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n",
808 freq_range->start_freq_khz, freq_range->end_freq_khz,
809 freq_range->max_bandwidth_khz, max_antenna_gain,
810 power_rule->max_eirp);
811 }
812 #else
813 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
814 const struct ieee80211_reg_rule *reg_rule)
815 {
816 return;
817 }
818 #endif
819
820 /*
821 * Note that right now we assume the desired channel bandwidth
822 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
823 * per channel, the primary and the extension channel).
824 */
825 static void handle_channel(struct wiphy *wiphy,
826 enum nl80211_reg_initiator initiator,
827 struct ieee80211_channel *chan)
828 {
829 u32 flags, bw_flags = 0;
830 const struct ieee80211_reg_rule *reg_rule = NULL;
831 const struct ieee80211_power_rule *power_rule = NULL;
832 const struct ieee80211_freq_range *freq_range = NULL;
833 struct wiphy *request_wiphy = NULL;
834 struct regulatory_request *lr = get_last_request();
835
836 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
837
838 flags = chan->orig_flags;
839
840 reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
841 if (IS_ERR(reg_rule)) {
842 /*
843 * We will disable all channels that do not match our
844 * received regulatory rule unless the hint is coming
845 * from a Country IE and the Country IE had no information
846 * about a band. The IEEE 802.11 spec allows for an AP
847 * to send only a subset of the regulatory rules allowed,
848 * so an AP in the US that only supports 2.4 GHz may only send
849 * a country IE with information for the 2.4 GHz band
850 * while 5 GHz is still supported.
851 */
852 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
853 PTR_ERR(reg_rule) == -ERANGE)
854 return;
855
856 REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
857 chan->flags |= IEEE80211_CHAN_DISABLED;
858 return;
859 }
860
861 chan_reg_rule_print_dbg(chan, reg_rule);
862
863 power_rule = &reg_rule->power_rule;
864 freq_range = &reg_rule->freq_range;
865
866 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
867 bw_flags = IEEE80211_CHAN_NO_HT40;
868 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(80))
869 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
870 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(160))
871 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
872
873 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
874 request_wiphy && request_wiphy == wiphy &&
875 request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
876 /*
877 * This guarantees the driver's requested regulatory domain
878 * will always be used as a base for further regulatory
879 * settings
880 */
881 chan->flags = chan->orig_flags =
882 map_regdom_flags(reg_rule->flags) | bw_flags;
883 chan->max_antenna_gain = chan->orig_mag =
884 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
885 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
886 (int) MBM_TO_DBM(power_rule->max_eirp);
887 return;
888 }
889
890 chan->dfs_state = NL80211_DFS_USABLE;
891 chan->dfs_state_entered = jiffies;
892
893 chan->beacon_found = false;
894 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
895 chan->max_antenna_gain =
896 min_t(int, chan->orig_mag,
897 MBI_TO_DBI(power_rule->max_antenna_gain));
898 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
899 if (chan->orig_mpwr) {
900 /*
901 * Devices that have their own custom regulatory domain
902 * but also use WIPHY_FLAG_STRICT_REGULATORY will follow the
903 * passed country IE power settings.
904 */
905 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
906 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
907 wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
908 chan->max_power = chan->max_reg_power;
909 else
910 chan->max_power = min(chan->orig_mpwr,
911 chan->max_reg_power);
912 } else
913 chan->max_power = chan->max_reg_power;
914 }
915
916 static void handle_band(struct wiphy *wiphy,
917 enum nl80211_reg_initiator initiator,
918 struct ieee80211_supported_band *sband)
919 {
920 unsigned int i;
921
922 if (!sband)
923 return;
924
925 for (i = 0; i < sband->n_channels; i++)
926 handle_channel(wiphy, initiator, &sband->channels[i]);
927 }
928
929 static bool reg_request_cell_base(struct regulatory_request *request)
930 {
931 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
932 return false;
933 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
934 }
935
936 bool reg_last_request_cell_base(void)
937 {
938 return reg_request_cell_base(get_last_request());
939 }
940
941 #ifdef CONFIG_CFG80211_CERTIFICATION_ONUS
942 /* Core specific check */
943 static enum reg_request_treatment
944 reg_ignore_cell_hint(struct regulatory_request *pending_request)
945 {
946 struct regulatory_request *lr = get_last_request();
947
948 if (!reg_num_devs_support_basehint)
949 return REG_REQ_IGNORE;
950
951 if (reg_request_cell_base(lr) &&
952 !regdom_changes(pending_request->alpha2))
953 return REG_REQ_ALREADY_SET;
954
955 return REG_REQ_OK;
956 }
957
958 /* Device specific check */
959 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
960 {
961 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
962 }
963 #else
964 static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
965 {
966 return REG_REQ_IGNORE;
967 }
968
969 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
970 {
971 return true;
972 }
973 #endif
974
975 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
976 {
977 if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY &&
978 !(wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY))
979 return true;
980 return false;
981 }
982
983 static bool ignore_reg_update(struct wiphy *wiphy,
984 enum nl80211_reg_initiator initiator)
985 {
986 struct regulatory_request *lr = get_last_request();
987
988 if (!lr) {
989 REG_DBG_PRINT("Ignoring regulatory request %s since last_request is not set\n",
990 reg_initiator_name(initiator));
991 return true;
992 }
993
994 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
995 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
996 REG_DBG_PRINT("Ignoring regulatory request %s since the driver uses its own custom regulatory domain\n",
997 reg_initiator_name(initiator));
998 return true;
999 }
1000
1001 /*
1002 * wiphy->regd will be set once the device has its own
1003 * desired regulatory domain set
1004 */
1005 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1006 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1007 !is_world_regdom(lr->alpha2)) {
1008 REG_DBG_PRINT("Ignoring regulatory request %s since the driver requires its own regulatory domain to be set first\n",
1009 reg_initiator_name(initiator));
1010 return true;
1011 }
1012
1013 if (reg_request_cell_base(lr))
1014 return reg_dev_ignore_cell_hint(wiphy);
1015
1016 return false;
1017 }
1018
1019 static bool reg_is_world_roaming(struct wiphy *wiphy)
1020 {
1021 const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1022 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1023 struct regulatory_request *lr = get_last_request();
1024
1025 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1026 return true;
1027
1028 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1029 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1030 return true;
1031
1032 return false;
1033 }
1034
1035 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1036 struct reg_beacon *reg_beacon)
1037 {
1038 struct ieee80211_supported_band *sband;
1039 struct ieee80211_channel *chan;
1040 bool channel_changed = false;
1041 struct ieee80211_channel chan_before;
1042
1043 sband = wiphy->bands[reg_beacon->chan.band];
1044 chan = &sband->channels[chan_idx];
1045
1046 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1047 return;
1048
1049 if (chan->beacon_found)
1050 return;
1051
1052 chan->beacon_found = true;
1053
1054 if (!reg_is_world_roaming(wiphy))
1055 return;
1056
1057 if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
1058 return;
1059
1060 chan_before.center_freq = chan->center_freq;
1061 chan_before.flags = chan->flags;
1062
1063 if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
1064 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
1065 channel_changed = true;
1066 }
1067
1068 if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
1069 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
1070 channel_changed = true;
1071 }
1072
1073 if (channel_changed)
1074 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1075 }
1076
1077 /*
1078 * Called when a scan on a wiphy finds a beacon on
1079 * new channel
1080 */
1081 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1082 struct reg_beacon *reg_beacon)
1083 {
1084 unsigned int i;
1085 struct ieee80211_supported_band *sband;
1086
1087 if (!wiphy->bands[reg_beacon->chan.band])
1088 return;
1089
1090 sband = wiphy->bands[reg_beacon->chan.band];
1091
1092 for (i = 0; i < sband->n_channels; i++)
1093 handle_reg_beacon(wiphy, i, reg_beacon);
1094 }
1095
1096 /*
1097 * Called upon reg changes or a new wiphy is added
1098 */
1099 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1100 {
1101 unsigned int i;
1102 struct ieee80211_supported_band *sband;
1103 struct reg_beacon *reg_beacon;
1104
1105 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1106 if (!wiphy->bands[reg_beacon->chan.band])
1107 continue;
1108 sband = wiphy->bands[reg_beacon->chan.band];
1109 for (i = 0; i < sband->n_channels; i++)
1110 handle_reg_beacon(wiphy, i, reg_beacon);
1111 }
1112 }
1113
1114 /* Reap the advantages of previously found beacons */
1115 static void reg_process_beacons(struct wiphy *wiphy)
1116 {
1117 /*
1118 * Means we are just firing up cfg80211, so no beacons would
1119 * have been processed yet.
1120 */
1121 if (!last_request)
1122 return;
1123 wiphy_update_beacon_reg(wiphy);
1124 }
1125
1126 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1127 {
1128 if (!chan)
1129 return false;
1130 if (chan->flags & IEEE80211_CHAN_DISABLED)
1131 return false;
1132 /* This would happen when regulatory rules disallow HT40 completely */
1133 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1134 return false;
1135 return true;
1136 }
1137
1138 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1139 struct ieee80211_channel *channel)
1140 {
1141 struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1142 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1143 unsigned int i;
1144
1145 if (!is_ht40_allowed(channel)) {
1146 channel->flags |= IEEE80211_CHAN_NO_HT40;
1147 return;
1148 }
1149
1150 /*
1151 * We need to ensure the extension channels exist to
1152 * be able to use HT40- or HT40+, this finds them (or not)
1153 */
1154 for (i = 0; i < sband->n_channels; i++) {
1155 struct ieee80211_channel *c = &sband->channels[i];
1156
1157 if (c->center_freq == (channel->center_freq - 20))
1158 channel_before = c;
1159 if (c->center_freq == (channel->center_freq + 20))
1160 channel_after = c;
1161 }
1162
1163 /*
1164 * Please note that this assumes target bandwidth is 20 MHz,
1165 * if that ever changes we also need to change the below logic
1166 * to include that as well.
1167 */
1168 if (!is_ht40_allowed(channel_before))
1169 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1170 else
1171 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1172
1173 if (!is_ht40_allowed(channel_after))
1174 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1175 else
1176 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1177 }
1178
1179 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1180 struct ieee80211_supported_band *sband)
1181 {
1182 unsigned int i;
1183
1184 if (!sband)
1185 return;
1186
1187 for (i = 0; i < sband->n_channels; i++)
1188 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1189 }
1190
1191 static void reg_process_ht_flags(struct wiphy *wiphy)
1192 {
1193 enum ieee80211_band band;
1194
1195 if (!wiphy)
1196 return;
1197
1198 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1199 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1200 }
1201
1202 static void wiphy_update_regulatory(struct wiphy *wiphy,
1203 enum nl80211_reg_initiator initiator)
1204 {
1205 enum ieee80211_band band;
1206 struct regulatory_request *lr = get_last_request();
1207
1208 if (ignore_reg_update(wiphy, initiator))
1209 return;
1210
1211 lr->dfs_region = get_cfg80211_regdom()->dfs_region;
1212
1213 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1214 handle_band(wiphy, initiator, wiphy->bands[band]);
1215
1216 reg_process_beacons(wiphy);
1217 reg_process_ht_flags(wiphy);
1218
1219 if (wiphy->reg_notifier)
1220 wiphy->reg_notifier(wiphy, lr);
1221 }
1222
1223 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1224 {
1225 struct cfg80211_registered_device *rdev;
1226 struct wiphy *wiphy;
1227
1228 ASSERT_RTNL();
1229
1230 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1231 wiphy = &rdev->wiphy;
1232 wiphy_update_regulatory(wiphy, initiator);
1233 /*
1234 * Regulatory updates set by CORE are ignored for custom
1235 * regulatory cards. Let us notify the changes to the driver,
1236 * as some drivers used this to restore its orig_* reg domain.
1237 */
1238 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1239 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
1240 wiphy->reg_notifier)
1241 wiphy->reg_notifier(wiphy, get_last_request());
1242 }
1243 }
1244
1245 static void handle_channel_custom(struct wiphy *wiphy,
1246 struct ieee80211_channel *chan,
1247 const struct ieee80211_regdomain *regd)
1248 {
1249 u32 bw_flags = 0;
1250 const struct ieee80211_reg_rule *reg_rule = NULL;
1251 const struct ieee80211_power_rule *power_rule = NULL;
1252 const struct ieee80211_freq_range *freq_range = NULL;
1253
1254 reg_rule = freq_reg_info_regd(wiphy, MHZ_TO_KHZ(chan->center_freq),
1255 regd);
1256
1257 if (IS_ERR(reg_rule)) {
1258 REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1259 chan->center_freq);
1260 chan->flags = IEEE80211_CHAN_DISABLED;
1261 return;
1262 }
1263
1264 chan_reg_rule_print_dbg(chan, reg_rule);
1265
1266 power_rule = &reg_rule->power_rule;
1267 freq_range = &reg_rule->freq_range;
1268
1269 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1270 bw_flags = IEEE80211_CHAN_NO_HT40;
1271 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(80))
1272 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1273 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(160))
1274 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1275
1276 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1277 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1278 chan->max_reg_power = chan->max_power =
1279 (int) MBM_TO_DBM(power_rule->max_eirp);
1280 }
1281
1282 static void handle_band_custom(struct wiphy *wiphy,
1283 struct ieee80211_supported_band *sband,
1284 const struct ieee80211_regdomain *regd)
1285 {
1286 unsigned int i;
1287
1288 if (!sband)
1289 return;
1290
1291 for (i = 0; i < sband->n_channels; i++)
1292 handle_channel_custom(wiphy, &sband->channels[i], regd);
1293 }
1294
1295 /* Used by drivers prior to wiphy registration */
1296 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1297 const struct ieee80211_regdomain *regd)
1298 {
1299 enum ieee80211_band band;
1300 unsigned int bands_set = 0;
1301
1302 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1303 if (!wiphy->bands[band])
1304 continue;
1305 handle_band_custom(wiphy, wiphy->bands[band], regd);
1306 bands_set++;
1307 }
1308
1309 /*
1310 * no point in calling this if it won't have any effect
1311 * on your device's supported bands.
1312 */
1313 WARN_ON(!bands_set);
1314 }
1315 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1316
1317 /* This has the logic which determines when a new request
1318 * should be ignored. */
1319 static enum reg_request_treatment
1320 get_reg_request_treatment(struct wiphy *wiphy,
1321 struct regulatory_request *pending_request)
1322 {
1323 struct wiphy *last_wiphy = NULL;
1324 struct regulatory_request *lr = get_last_request();
1325
1326 /* All initial requests are respected */
1327 if (!lr)
1328 return REG_REQ_OK;
1329
1330 switch (pending_request->initiator) {
1331 case NL80211_REGDOM_SET_BY_CORE:
1332 return REG_REQ_OK;
1333 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1334 if (reg_request_cell_base(lr)) {
1335 /* Trust a Cell base station over the AP's country IE */
1336 if (regdom_changes(pending_request->alpha2))
1337 return REG_REQ_IGNORE;
1338 return REG_REQ_ALREADY_SET;
1339 }
1340
1341 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1342
1343 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1344 return -EINVAL;
1345 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1346 if (last_wiphy != wiphy) {
1347 /*
1348 * Two cards with two APs claiming different
1349 * Country IE alpha2s. We could
1350 * intersect them, but that seems unlikely
1351 * to be correct. Reject second one for now.
1352 */
1353 if (regdom_changes(pending_request->alpha2))
1354 return REG_REQ_IGNORE;
1355 return REG_REQ_ALREADY_SET;
1356 }
1357 /*
1358 * Two consecutive Country IE hints on the same wiphy.
1359 * This should be picked up early by the driver/stack
1360 */
1361 if (WARN_ON(regdom_changes(pending_request->alpha2)))
1362 return REG_REQ_OK;
1363 return REG_REQ_ALREADY_SET;
1364 }
1365 return REG_REQ_OK;
1366 case NL80211_REGDOM_SET_BY_DRIVER:
1367 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
1368 if (regdom_changes(pending_request->alpha2))
1369 return REG_REQ_OK;
1370 return REG_REQ_ALREADY_SET;
1371 }
1372
1373 /*
1374 * This would happen if you unplug and plug your card
1375 * back in or if you add a new device for which the previously
1376 * loaded card also agrees on the regulatory domain.
1377 */
1378 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1379 !regdom_changes(pending_request->alpha2))
1380 return REG_REQ_ALREADY_SET;
1381
1382 return REG_REQ_INTERSECT;
1383 case NL80211_REGDOM_SET_BY_USER:
1384 if (reg_request_cell_base(pending_request))
1385 return reg_ignore_cell_hint(pending_request);
1386
1387 if (reg_request_cell_base(lr))
1388 return REG_REQ_IGNORE;
1389
1390 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1391 return REG_REQ_INTERSECT;
1392 /*
1393 * If the user knows better the user should set the regdom
1394 * to their country before the IE is picked up
1395 */
1396 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
1397 lr->intersect)
1398 return REG_REQ_IGNORE;
1399 /*
1400 * Process user requests only after previous user/driver/core
1401 * requests have been processed
1402 */
1403 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
1404 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1405 lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
1406 regdom_changes(lr->alpha2))
1407 return REG_REQ_IGNORE;
1408
1409 if (!regdom_changes(pending_request->alpha2))
1410 return REG_REQ_ALREADY_SET;
1411
1412 return REG_REQ_OK;
1413 }
1414
1415 return REG_REQ_IGNORE;
1416 }
1417
1418 static void reg_set_request_processed(void)
1419 {
1420 bool need_more_processing = false;
1421 struct regulatory_request *lr = get_last_request();
1422
1423 lr->processed = true;
1424
1425 spin_lock(&reg_requests_lock);
1426 if (!list_empty(&reg_requests_list))
1427 need_more_processing = true;
1428 spin_unlock(&reg_requests_lock);
1429
1430 if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
1431 cancel_delayed_work(&reg_timeout);
1432
1433 if (need_more_processing)
1434 schedule_work(&reg_work);
1435 }
1436
1437 /**
1438 * __regulatory_hint - hint to the wireless core a regulatory domain
1439 * @wiphy: if the hint comes from country information from an AP, this
1440 * is required to be set to the wiphy that received the information
1441 * @pending_request: the regulatory request currently being processed
1442 *
1443 * The Wireless subsystem can use this function to hint to the wireless core
1444 * what it believes should be the current regulatory domain.
1445 *
1446 * Returns one of the different reg request treatment values.
1447 */
1448 static enum reg_request_treatment
1449 __regulatory_hint(struct wiphy *wiphy,
1450 struct regulatory_request *pending_request)
1451 {
1452 const struct ieee80211_regdomain *regd;
1453 bool intersect = false;
1454 enum reg_request_treatment treatment;
1455 struct regulatory_request *lr;
1456
1457 treatment = get_reg_request_treatment(wiphy, pending_request);
1458
1459 switch (treatment) {
1460 case REG_REQ_INTERSECT:
1461 if (pending_request->initiator ==
1462 NL80211_REGDOM_SET_BY_DRIVER) {
1463 regd = reg_copy_regd(get_cfg80211_regdom());
1464 if (IS_ERR(regd)) {
1465 kfree(pending_request);
1466 return PTR_ERR(regd);
1467 }
1468 rcu_assign_pointer(wiphy->regd, regd);
1469 }
1470 intersect = true;
1471 break;
1472 case REG_REQ_OK:
1473 break;
1474 default:
1475 /*
1476 * If the regulatory domain being requested by the
1477 * driver has already been set just copy it to the
1478 * wiphy
1479 */
1480 if (treatment == REG_REQ_ALREADY_SET &&
1481 pending_request->initiator == NL80211_REGDOM_SET_BY_DRIVER) {
1482 regd = reg_copy_regd(get_cfg80211_regdom());
1483 if (IS_ERR(regd)) {
1484 kfree(pending_request);
1485 return REG_REQ_IGNORE;
1486 }
1487 treatment = REG_REQ_ALREADY_SET;
1488 rcu_assign_pointer(wiphy->regd, regd);
1489 goto new_request;
1490 }
1491 kfree(pending_request);
1492 return treatment;
1493 }
1494
1495 new_request:
1496 lr = get_last_request();
1497 if (lr != &core_request_world && lr)
1498 kfree_rcu(lr, rcu_head);
1499
1500 pending_request->intersect = intersect;
1501 pending_request->processed = false;
1502 rcu_assign_pointer(last_request, pending_request);
1503 lr = pending_request;
1504
1505 pending_request = NULL;
1506
1507 if (lr->initiator == NL80211_REGDOM_SET_BY_USER) {
1508 user_alpha2[0] = lr->alpha2[0];
1509 user_alpha2[1] = lr->alpha2[1];
1510 }
1511
1512 /* When r == REG_REQ_INTERSECT we do need to call CRDA */
1513 if (treatment != REG_REQ_OK && treatment != REG_REQ_INTERSECT) {
1514 /*
1515 * Since CRDA will not be called in this case as we already
1516 * have applied the requested regulatory domain before we just
1517 * inform userspace we have processed the request
1518 */
1519 if (treatment == REG_REQ_ALREADY_SET) {
1520 nl80211_send_reg_change_event(lr);
1521 reg_set_request_processed();
1522 }
1523 return treatment;
1524 }
1525
1526 if (call_crda(lr->alpha2))
1527 return REG_REQ_IGNORE;
1528 return REG_REQ_OK;
1529 }
1530
1531 /* This processes *all* regulatory hints */
1532 static void reg_process_hint(struct regulatory_request *reg_request,
1533 enum nl80211_reg_initiator reg_initiator)
1534 {
1535 struct wiphy *wiphy = NULL;
1536
1537 if (WARN_ON(!reg_request->alpha2))
1538 return;
1539
1540 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
1541 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1542
1543 if (reg_initiator == NL80211_REGDOM_SET_BY_DRIVER && !wiphy) {
1544 kfree(reg_request);
1545 return;
1546 }
1547
1548 switch (__regulatory_hint(wiphy, reg_request)) {
1549 case REG_REQ_ALREADY_SET:
1550 /* This is required so that the orig_* parameters are saved */
1551 if (wiphy && wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
1552 wiphy_update_regulatory(wiphy, reg_initiator);
1553 break;
1554 default:
1555 if (reg_initiator == NL80211_REGDOM_SET_BY_USER)
1556 schedule_delayed_work(&reg_timeout,
1557 msecs_to_jiffies(3142));
1558 break;
1559 }
1560 }
1561
1562 /*
1563 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1564 * Regulatory hints come on a first come first serve basis and we
1565 * must process each one atomically.
1566 */
1567 static void reg_process_pending_hints(void)
1568 {
1569 struct regulatory_request *reg_request, *lr;
1570
1571 lr = get_last_request();
1572
1573 /* When last_request->processed becomes true this will be rescheduled */
1574 if (lr && !lr->processed) {
1575 REG_DBG_PRINT("Pending regulatory request, waiting for it to be processed...\n");
1576 return;
1577 }
1578
1579 spin_lock(&reg_requests_lock);
1580
1581 if (list_empty(&reg_requests_list)) {
1582 spin_unlock(&reg_requests_lock);
1583 return;
1584 }
1585
1586 reg_request = list_first_entry(&reg_requests_list,
1587 struct regulatory_request,
1588 list);
1589 list_del_init(&reg_request->list);
1590
1591 spin_unlock(&reg_requests_lock);
1592
1593 reg_process_hint(reg_request, reg_request->initiator);
1594 }
1595
1596 /* Processes beacon hints -- this has nothing to do with country IEs */
1597 static void reg_process_pending_beacon_hints(void)
1598 {
1599 struct cfg80211_registered_device *rdev;
1600 struct reg_beacon *pending_beacon, *tmp;
1601
1602 /* This goes through the _pending_ beacon list */
1603 spin_lock_bh(&reg_pending_beacons_lock);
1604
1605 list_for_each_entry_safe(pending_beacon, tmp,
1606 &reg_pending_beacons, list) {
1607 list_del_init(&pending_beacon->list);
1608
1609 /* Applies the beacon hint to current wiphys */
1610 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1611 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1612
1613 /* Remembers the beacon hint for new wiphys or reg changes */
1614 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1615 }
1616
1617 spin_unlock_bh(&reg_pending_beacons_lock);
1618 }
1619
1620 static void reg_todo(struct work_struct *work)
1621 {
1622 rtnl_lock();
1623 reg_process_pending_hints();
1624 reg_process_pending_beacon_hints();
1625 rtnl_unlock();
1626 }
1627
1628 static void queue_regulatory_request(struct regulatory_request *request)
1629 {
1630 request->alpha2[0] = toupper(request->alpha2[0]);
1631 request->alpha2[1] = toupper(request->alpha2[1]);
1632
1633 spin_lock(&reg_requests_lock);
1634 list_add_tail(&request->list, &reg_requests_list);
1635 spin_unlock(&reg_requests_lock);
1636
1637 schedule_work(&reg_work);
1638 }
1639
1640 /*
1641 * Core regulatory hint -- happens during cfg80211_init()
1642 * and when we restore regulatory settings.
1643 */
1644 static int regulatory_hint_core(const char *alpha2)
1645 {
1646 struct regulatory_request *request;
1647
1648 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1649 if (!request)
1650 return -ENOMEM;
1651
1652 request->alpha2[0] = alpha2[0];
1653 request->alpha2[1] = alpha2[1];
1654 request->initiator = NL80211_REGDOM_SET_BY_CORE;
1655
1656 queue_regulatory_request(request);
1657
1658 return 0;
1659 }
1660
1661 /* User hints */
1662 int regulatory_hint_user(const char *alpha2,
1663 enum nl80211_user_reg_hint_type user_reg_hint_type)
1664 {
1665 struct regulatory_request *request;
1666
1667 if (WARN_ON(!alpha2))
1668 return -EINVAL;
1669
1670 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1671 if (!request)
1672 return -ENOMEM;
1673
1674 request->wiphy_idx = WIPHY_IDX_INVALID;
1675 request->alpha2[0] = alpha2[0];
1676 request->alpha2[1] = alpha2[1];
1677 request->initiator = NL80211_REGDOM_SET_BY_USER;
1678 request->user_reg_hint_type = user_reg_hint_type;
1679
1680 queue_regulatory_request(request);
1681
1682 return 0;
1683 }
1684
1685 /* Driver hints */
1686 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1687 {
1688 struct regulatory_request *request;
1689
1690 if (WARN_ON(!alpha2 || !wiphy))
1691 return -EINVAL;
1692
1693 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1694 if (!request)
1695 return -ENOMEM;
1696
1697 request->wiphy_idx = get_wiphy_idx(wiphy);
1698
1699 request->alpha2[0] = alpha2[0];
1700 request->alpha2[1] = alpha2[1];
1701 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1702
1703 queue_regulatory_request(request);
1704
1705 return 0;
1706 }
1707 EXPORT_SYMBOL(regulatory_hint);
1708
1709 void regulatory_hint_country_ie(struct wiphy *wiphy, enum ieee80211_band band,
1710 const u8 *country_ie, u8 country_ie_len)
1711 {
1712 char alpha2[2];
1713 enum environment_cap env = ENVIRON_ANY;
1714 struct regulatory_request *request = NULL, *lr;
1715
1716 /* IE len must be evenly divisible by 2 */
1717 if (country_ie_len & 0x01)
1718 return;
1719
1720 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1721 return;
1722
1723 request = kzalloc(sizeof(*request), GFP_KERNEL);
1724 if (!request)
1725 return;
1726
1727 alpha2[0] = country_ie[0];
1728 alpha2[1] = country_ie[1];
1729
1730 if (country_ie[2] == 'I')
1731 env = ENVIRON_INDOOR;
1732 else if (country_ie[2] == 'O')
1733 env = ENVIRON_OUTDOOR;
1734
1735 rcu_read_lock();
1736 lr = get_last_request();
1737
1738 if (unlikely(!lr))
1739 goto out;
1740
1741 /*
1742 * We will run this only upon a successful connection on cfg80211.
1743 * We leave conflict resolution to the workqueue, where can hold
1744 * the RTNL.
1745 */
1746 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1747 lr->wiphy_idx != WIPHY_IDX_INVALID)
1748 goto out;
1749
1750 request->wiphy_idx = get_wiphy_idx(wiphy);
1751 request->alpha2[0] = alpha2[0];
1752 request->alpha2[1] = alpha2[1];
1753 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1754 request->country_ie_env = env;
1755
1756 queue_regulatory_request(request);
1757 request = NULL;
1758 out:
1759 kfree(request);
1760 rcu_read_unlock();
1761 }
1762
1763 static void restore_alpha2(char *alpha2, bool reset_user)
1764 {
1765 /* indicates there is no alpha2 to consider for restoration */
1766 alpha2[0] = '9';
1767 alpha2[1] = '7';
1768
1769 /* The user setting has precedence over the module parameter */
1770 if (is_user_regdom_saved()) {
1771 /* Unless we're asked to ignore it and reset it */
1772 if (reset_user) {
1773 REG_DBG_PRINT("Restoring regulatory settings including user preference\n");
1774 user_alpha2[0] = '9';
1775 user_alpha2[1] = '7';
1776
1777 /*
1778 * If we're ignoring user settings, we still need to
1779 * check the module parameter to ensure we put things
1780 * back as they were for a full restore.
1781 */
1782 if (!is_world_regdom(ieee80211_regdom)) {
1783 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
1784 ieee80211_regdom[0], ieee80211_regdom[1]);
1785 alpha2[0] = ieee80211_regdom[0];
1786 alpha2[1] = ieee80211_regdom[1];
1787 }
1788 } else {
1789 REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n",
1790 user_alpha2[0], user_alpha2[1]);
1791 alpha2[0] = user_alpha2[0];
1792 alpha2[1] = user_alpha2[1];
1793 }
1794 } else if (!is_world_regdom(ieee80211_regdom)) {
1795 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
1796 ieee80211_regdom[0], ieee80211_regdom[1]);
1797 alpha2[0] = ieee80211_regdom[0];
1798 alpha2[1] = ieee80211_regdom[1];
1799 } else
1800 REG_DBG_PRINT("Restoring regulatory settings\n");
1801 }
1802
1803 static void restore_custom_reg_settings(struct wiphy *wiphy)
1804 {
1805 struct ieee80211_supported_band *sband;
1806 enum ieee80211_band band;
1807 struct ieee80211_channel *chan;
1808 int i;
1809
1810 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1811 sband = wiphy->bands[band];
1812 if (!sband)
1813 continue;
1814 for (i = 0; i < sband->n_channels; i++) {
1815 chan = &sband->channels[i];
1816 chan->flags = chan->orig_flags;
1817 chan->max_antenna_gain = chan->orig_mag;
1818 chan->max_power = chan->orig_mpwr;
1819 chan->beacon_found = false;
1820 }
1821 }
1822 }
1823
1824 /*
1825 * Restoring regulatory settings involves ingoring any
1826 * possibly stale country IE information and user regulatory
1827 * settings if so desired, this includes any beacon hints
1828 * learned as we could have traveled outside to another country
1829 * after disconnection. To restore regulatory settings we do
1830 * exactly what we did at bootup:
1831 *
1832 * - send a core regulatory hint
1833 * - send a user regulatory hint if applicable
1834 *
1835 * Device drivers that send a regulatory hint for a specific country
1836 * keep their own regulatory domain on wiphy->regd so that does does
1837 * not need to be remembered.
1838 */
1839 static void restore_regulatory_settings(bool reset_user)
1840 {
1841 char alpha2[2];
1842 char world_alpha2[2];
1843 struct reg_beacon *reg_beacon, *btmp;
1844 struct regulatory_request *reg_request, *tmp;
1845 LIST_HEAD(tmp_reg_req_list);
1846 struct cfg80211_registered_device *rdev;
1847
1848 ASSERT_RTNL();
1849
1850 reset_regdomains(true, &world_regdom);
1851 restore_alpha2(alpha2, reset_user);
1852
1853 /*
1854 * If there's any pending requests we simply
1855 * stash them to a temporary pending queue and
1856 * add then after we've restored regulatory
1857 * settings.
1858 */
1859 spin_lock(&reg_requests_lock);
1860 list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
1861 if (reg_request->initiator != NL80211_REGDOM_SET_BY_USER)
1862 continue;
1863 list_move_tail(&reg_request->list, &tmp_reg_req_list);
1864 }
1865 spin_unlock(&reg_requests_lock);
1866
1867 /* Clear beacon hints */
1868 spin_lock_bh(&reg_pending_beacons_lock);
1869 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
1870 list_del(&reg_beacon->list);
1871 kfree(reg_beacon);
1872 }
1873 spin_unlock_bh(&reg_pending_beacons_lock);
1874
1875 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
1876 list_del(&reg_beacon->list);
1877 kfree(reg_beacon);
1878 }
1879
1880 /* First restore to the basic regulatory settings */
1881 world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
1882 world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
1883
1884 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1885 if (rdev->wiphy.flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1886 restore_custom_reg_settings(&rdev->wiphy);
1887 }
1888
1889 regulatory_hint_core(world_alpha2);
1890
1891 /*
1892 * This restores the ieee80211_regdom module parameter
1893 * preference or the last user requested regulatory
1894 * settings, user regulatory settings takes precedence.
1895 */
1896 if (is_an_alpha2(alpha2))
1897 regulatory_hint_user(user_alpha2, NL80211_USER_REG_HINT_USER);
1898
1899 spin_lock(&reg_requests_lock);
1900 list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
1901 spin_unlock(&reg_requests_lock);
1902
1903 REG_DBG_PRINT("Kicking the queue\n");
1904
1905 schedule_work(&reg_work);
1906 }
1907
1908 void regulatory_hint_disconnect(void)
1909 {
1910 REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n");
1911 restore_regulatory_settings(false);
1912 }
1913
1914 static bool freq_is_chan_12_13_14(u16 freq)
1915 {
1916 if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
1917 freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
1918 freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
1919 return true;
1920 return false;
1921 }
1922
1923 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
1924 {
1925 struct reg_beacon *pending_beacon;
1926
1927 list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
1928 if (beacon_chan->center_freq ==
1929 pending_beacon->chan.center_freq)
1930 return true;
1931 return false;
1932 }
1933
1934 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1935 struct ieee80211_channel *beacon_chan,
1936 gfp_t gfp)
1937 {
1938 struct reg_beacon *reg_beacon;
1939 bool processing;
1940
1941 if (beacon_chan->beacon_found ||
1942 beacon_chan->flags & IEEE80211_CHAN_RADAR ||
1943 (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1944 !freq_is_chan_12_13_14(beacon_chan->center_freq)))
1945 return 0;
1946
1947 spin_lock_bh(&reg_pending_beacons_lock);
1948 processing = pending_reg_beacon(beacon_chan);
1949 spin_unlock_bh(&reg_pending_beacons_lock);
1950
1951 if (processing)
1952 return 0;
1953
1954 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1955 if (!reg_beacon)
1956 return -ENOMEM;
1957
1958 REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
1959 beacon_chan->center_freq,
1960 ieee80211_frequency_to_channel(beacon_chan->center_freq),
1961 wiphy_name(wiphy));
1962
1963 memcpy(&reg_beacon->chan, beacon_chan,
1964 sizeof(struct ieee80211_channel));
1965
1966 /*
1967 * Since we can be called from BH or and non-BH context
1968 * we must use spin_lock_bh()
1969 */
1970 spin_lock_bh(&reg_pending_beacons_lock);
1971 list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1972 spin_unlock_bh(&reg_pending_beacons_lock);
1973
1974 schedule_work(&reg_work);
1975
1976 return 0;
1977 }
1978
1979 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1980 {
1981 unsigned int i;
1982 const struct ieee80211_reg_rule *reg_rule = NULL;
1983 const struct ieee80211_freq_range *freq_range = NULL;
1984 const struct ieee80211_power_rule *power_rule = NULL;
1985
1986 pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
1987
1988 for (i = 0; i < rd->n_reg_rules; i++) {
1989 reg_rule = &rd->reg_rules[i];
1990 freq_range = &reg_rule->freq_range;
1991 power_rule = &reg_rule->power_rule;
1992
1993 /*
1994 * There may not be documentation for max antenna gain
1995 * in certain regions
1996 */
1997 if (power_rule->max_antenna_gain)
1998 pr_info(" (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
1999 freq_range->start_freq_khz,
2000 freq_range->end_freq_khz,
2001 freq_range->max_bandwidth_khz,
2002 power_rule->max_antenna_gain,
2003 power_rule->max_eirp);
2004 else
2005 pr_info(" (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
2006 freq_range->start_freq_khz,
2007 freq_range->end_freq_khz,
2008 freq_range->max_bandwidth_khz,
2009 power_rule->max_eirp);
2010 }
2011 }
2012
2013 bool reg_supported_dfs_region(u8 dfs_region)
2014 {
2015 switch (dfs_region) {
2016 case NL80211_DFS_UNSET:
2017 case NL80211_DFS_FCC:
2018 case NL80211_DFS_ETSI:
2019 case NL80211_DFS_JP:
2020 return true;
2021 default:
2022 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2023 dfs_region);
2024 return false;
2025 }
2026 }
2027
2028 static void print_dfs_region(u8 dfs_region)
2029 {
2030 if (!dfs_region)
2031 return;
2032
2033 switch (dfs_region) {
2034 case NL80211_DFS_FCC:
2035 pr_info(" DFS Master region FCC");
2036 break;
2037 case NL80211_DFS_ETSI:
2038 pr_info(" DFS Master region ETSI");
2039 break;
2040 case NL80211_DFS_JP:
2041 pr_info(" DFS Master region JP");
2042 break;
2043 default:
2044 pr_info(" DFS Master region Unknown");
2045 break;
2046 }
2047 }
2048
2049 static void print_regdomain(const struct ieee80211_regdomain *rd)
2050 {
2051 struct regulatory_request *lr = get_last_request();
2052
2053 if (is_intersected_alpha2(rd->alpha2)) {
2054 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2055 struct cfg80211_registered_device *rdev;
2056 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
2057 if (rdev) {
2058 pr_info("Current regulatory domain updated by AP to: %c%c\n",
2059 rdev->country_ie_alpha2[0],
2060 rdev->country_ie_alpha2[1]);
2061 } else
2062 pr_info("Current regulatory domain intersected:\n");
2063 } else
2064 pr_info("Current regulatory domain intersected:\n");
2065 } else if (is_world_regdom(rd->alpha2)) {
2066 pr_info("World regulatory domain updated:\n");
2067 } else {
2068 if (is_unknown_alpha2(rd->alpha2))
2069 pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2070 else {
2071 if (reg_request_cell_base(lr))
2072 pr_info("Regulatory domain changed to country: %c%c by Cell Station\n",
2073 rd->alpha2[0], rd->alpha2[1]);
2074 else
2075 pr_info("Regulatory domain changed to country: %c%c\n",
2076 rd->alpha2[0], rd->alpha2[1]);
2077 }
2078 }
2079
2080 print_dfs_region(rd->dfs_region);
2081 print_rd_rules(rd);
2082 }
2083
2084 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2085 {
2086 pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2087 print_rd_rules(rd);
2088 }
2089
2090 /* Takes ownership of rd only if it doesn't fail */
2091 static int __set_regdom(const struct ieee80211_regdomain *rd)
2092 {
2093 const struct ieee80211_regdomain *regd;
2094 const struct ieee80211_regdomain *intersected_rd = NULL;
2095 struct wiphy *request_wiphy;
2096 struct regulatory_request *lr = get_last_request();
2097
2098 /* Some basic sanity checks first */
2099
2100 if (!reg_is_valid_request(rd->alpha2))
2101 return -EINVAL;
2102
2103 if (is_world_regdom(rd->alpha2)) {
2104 update_world_regdomain(rd);
2105 return 0;
2106 }
2107
2108 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2109 !is_unknown_alpha2(rd->alpha2))
2110 return -EINVAL;
2111
2112 /*
2113 * Lets only bother proceeding on the same alpha2 if the current
2114 * rd is non static (it means CRDA was present and was used last)
2115 * and the pending request came in from a country IE
2116 */
2117 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2118 /*
2119 * If someone else asked us to change the rd lets only bother
2120 * checking if the alpha2 changes if CRDA was already called
2121 */
2122 if (!regdom_changes(rd->alpha2))
2123 return -EALREADY;
2124 }
2125
2126 /*
2127 * Now lets set the regulatory domain, update all driver channels
2128 * and finally inform them of what we have done, in case they want
2129 * to review or adjust their own settings based on their own
2130 * internal EEPROM data
2131 */
2132
2133 if (!is_valid_rd(rd)) {
2134 pr_err("Invalid regulatory domain detected:\n");
2135 print_regdomain_info(rd);
2136 return -EINVAL;
2137 }
2138
2139 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2140 if (!request_wiphy &&
2141 (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2142 lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)) {
2143 schedule_delayed_work(&reg_timeout, 0);
2144 return -ENODEV;
2145 }
2146
2147 if (!lr->intersect) {
2148 if (lr->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2149 reset_regdomains(false, rd);
2150 return 0;
2151 }
2152
2153 /*
2154 * For a driver hint, lets copy the regulatory domain the
2155 * driver wanted to the wiphy to deal with conflicts
2156 */
2157
2158 /*
2159 * Userspace could have sent two replies with only
2160 * one kernel request.
2161 */
2162 if (request_wiphy->regd)
2163 return -EALREADY;
2164
2165 regd = reg_copy_regd(rd);
2166 if (IS_ERR(regd))
2167 return PTR_ERR(regd);
2168
2169 rcu_assign_pointer(request_wiphy->regd, regd);
2170 reset_regdomains(false, rd);
2171 return 0;
2172 }
2173
2174 /* Intersection requires a bit more work */
2175
2176 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2177 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2178 if (!intersected_rd)
2179 return -EINVAL;
2180
2181 /*
2182 * We can trash what CRDA provided now.
2183 * However if a driver requested this specific regulatory
2184 * domain we keep it for its private use
2185 */
2186 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER) {
2187 const struct ieee80211_regdomain *tmp;
2188
2189 tmp = get_wiphy_regdom(request_wiphy);
2190 rcu_assign_pointer(request_wiphy->regd, rd);
2191 rcu_free_regdom(tmp);
2192 } else {
2193 kfree(rd);
2194 }
2195
2196 rd = NULL;
2197
2198 reset_regdomains(false, intersected_rd);
2199
2200 return 0;
2201 }
2202
2203 return -EINVAL;
2204 }
2205
2206
2207 /*
2208 * Use this call to set the current regulatory domain. Conflicts with
2209 * multiple drivers can be ironed out later. Caller must've already
2210 * kmalloc'd the rd structure.
2211 */
2212 int set_regdom(const struct ieee80211_regdomain *rd)
2213 {
2214 struct regulatory_request *lr;
2215 int r;
2216
2217 lr = get_last_request();
2218
2219 /* Note that this doesn't update the wiphys, this is done below */
2220 r = __set_regdom(rd);
2221 if (r) {
2222 if (r == -EALREADY)
2223 reg_set_request_processed();
2224
2225 kfree(rd);
2226 return r;
2227 }
2228
2229 /* This would make this whole thing pointless */
2230 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
2231 return -EINVAL;
2232
2233 /* update all wiphys now with the new established regulatory domain */
2234 update_all_wiphy_regulatory(lr->initiator);
2235
2236 print_regdomain(get_cfg80211_regdom());
2237
2238 nl80211_send_reg_change_event(lr);
2239
2240 reg_set_request_processed();
2241
2242 return 0;
2243 }
2244
2245 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2246 {
2247 struct regulatory_request *lr;
2248 u8 alpha2[2];
2249 bool add = false;
2250
2251 rcu_read_lock();
2252 lr = get_last_request();
2253 if (lr && !lr->processed) {
2254 memcpy(alpha2, lr->alpha2, 2);
2255 add = true;
2256 }
2257 rcu_read_unlock();
2258
2259 if (add)
2260 return add_uevent_var(env, "COUNTRY=%c%c",
2261 alpha2[0], alpha2[1]);
2262 return 0;
2263 }
2264
2265 void wiphy_regulatory_register(struct wiphy *wiphy)
2266 {
2267 struct regulatory_request *lr;
2268
2269 if (!reg_dev_ignore_cell_hint(wiphy))
2270 reg_num_devs_support_basehint++;
2271
2272 lr = get_last_request();
2273 wiphy_update_regulatory(wiphy, lr->initiator);
2274 }
2275
2276 void wiphy_regulatory_deregister(struct wiphy *wiphy)
2277 {
2278 struct wiphy *request_wiphy = NULL;
2279 struct regulatory_request *lr;
2280
2281 lr = get_last_request();
2282
2283 if (!reg_dev_ignore_cell_hint(wiphy))
2284 reg_num_devs_support_basehint--;
2285
2286 rcu_free_regdom(get_wiphy_regdom(wiphy));
2287 rcu_assign_pointer(wiphy->regd, NULL);
2288
2289 if (lr)
2290 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2291
2292 if (!request_wiphy || request_wiphy != wiphy)
2293 return;
2294
2295 lr->wiphy_idx = WIPHY_IDX_INVALID;
2296 lr->country_ie_env = ENVIRON_ANY;
2297 }
2298
2299 static void reg_timeout_work(struct work_struct *work)
2300 {
2301 REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
2302 rtnl_lock();
2303 restore_regulatory_settings(true);
2304 rtnl_unlock();
2305 }
2306
2307 int __init regulatory_init(void)
2308 {
2309 int err = 0;
2310
2311 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2312 if (IS_ERR(reg_pdev))
2313 return PTR_ERR(reg_pdev);
2314
2315 reg_pdev->dev.type = &reg_device_type;
2316
2317 spin_lock_init(&reg_requests_lock);
2318 spin_lock_init(&reg_pending_beacons_lock);
2319
2320 reg_regdb_size_check();
2321
2322 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
2323
2324 user_alpha2[0] = '9';
2325 user_alpha2[1] = '7';
2326
2327 /* We always try to get an update for the static regdomain */
2328 err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
2329 if (err) {
2330 if (err == -ENOMEM)
2331 return err;
2332 /*
2333 * N.B. kobject_uevent_env() can fail mainly for when we're out
2334 * memory which is handled and propagated appropriately above
2335 * but it can also fail during a netlink_broadcast() or during
2336 * early boot for call_usermodehelper(). For now treat these
2337 * errors as non-fatal.
2338 */
2339 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2340 }
2341
2342 /*
2343 * Finally, if the user set the module parameter treat it
2344 * as a user hint.
2345 */
2346 if (!is_world_regdom(ieee80211_regdom))
2347 regulatory_hint_user(ieee80211_regdom,
2348 NL80211_USER_REG_HINT_USER);
2349
2350 return 0;
2351 }
2352
2353 void regulatory_exit(void)
2354 {
2355 struct regulatory_request *reg_request, *tmp;
2356 struct reg_beacon *reg_beacon, *btmp;
2357
2358 cancel_work_sync(&reg_work);
2359 cancel_delayed_work_sync(&reg_timeout);
2360
2361 /* Lock to suppress warnings */
2362 rtnl_lock();
2363 reset_regdomains(true, NULL);
2364 rtnl_unlock();
2365
2366 dev_set_uevent_suppress(&reg_pdev->dev, true);
2367
2368 platform_device_unregister(reg_pdev);
2369
2370 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2371 list_del(&reg_beacon->list);
2372 kfree(reg_beacon);
2373 }
2374
2375 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2376 list_del(&reg_beacon->list);
2377 kfree(reg_beacon);
2378 }
2379
2380 list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
2381 list_del(&reg_request->list);
2382 kfree(reg_request);
2383 }
2384 }