]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - net/wireless/scan.c
cfg80211: hold bss_lock while updating nontrans_list
[mirror_ubuntu-jammy-kernel.git] / net / wireless / scan.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * cfg80211 scan result handling
4 *
5 * Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2016 Intel Deutschland GmbH
8 * Copyright (C) 2018-2021 Intel Corporation
9 */
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/netdevice.h>
14 #include <linux/wireless.h>
15 #include <linux/nl80211.h>
16 #include <linux/etherdevice.h>
17 #include <linux/crc32.h>
18 #include <linux/bitfield.h>
19 #include <net/arp.h>
20 #include <net/cfg80211.h>
21 #include <net/cfg80211-wext.h>
22 #include <net/iw_handler.h>
23 #include "core.h"
24 #include "nl80211.h"
25 #include "wext-compat.h"
26 #include "rdev-ops.h"
27
28 /**
29 * DOC: BSS tree/list structure
30 *
31 * At the top level, the BSS list is kept in both a list in each
32 * registered device (@bss_list) as well as an RB-tree for faster
33 * lookup. In the RB-tree, entries can be looked up using their
34 * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
35 * for other BSSes.
36 *
37 * Due to the possibility of hidden SSIDs, there's a second level
38 * structure, the "hidden_list" and "hidden_beacon_bss" pointer.
39 * The hidden_list connects all BSSes belonging to a single AP
40 * that has a hidden SSID, and connects beacon and probe response
41 * entries. For a probe response entry for a hidden SSID, the
42 * hidden_beacon_bss pointer points to the BSS struct holding the
43 * beacon's information.
44 *
45 * Reference counting is done for all these references except for
46 * the hidden_list, so that a beacon BSS struct that is otherwise
47 * not referenced has one reference for being on the bss_list and
48 * one for each probe response entry that points to it using the
49 * hidden_beacon_bss pointer. When a BSS struct that has such a
50 * pointer is get/put, the refcount update is also propagated to
51 * the referenced struct, this ensure that it cannot get removed
52 * while somebody is using the probe response version.
53 *
54 * Note that the hidden_beacon_bss pointer never changes, due to
55 * the reference counting. Therefore, no locking is needed for
56 * it.
57 *
58 * Also note that the hidden_beacon_bss pointer is only relevant
59 * if the driver uses something other than the IEs, e.g. private
60 * data stored in the BSS struct, since the beacon IEs are
61 * also linked into the probe response struct.
62 */
63
64 /*
65 * Limit the number of BSS entries stored in mac80211. Each one is
66 * a bit over 4k at most, so this limits to roughly 4-5M of memory.
67 * If somebody wants to really attack this though, they'd likely
68 * use small beacons, and only one type of frame, limiting each of
69 * the entries to a much smaller size (in order to generate more
70 * entries in total, so overhead is bigger.)
71 */
72 static int bss_entries_limit = 1000;
73 module_param(bss_entries_limit, int, 0644);
74 MODULE_PARM_DESC(bss_entries_limit,
75 "limit to number of scan BSS entries (per wiphy, default 1000)");
76
77 #define IEEE80211_SCAN_RESULT_EXPIRE (30 * HZ)
78
79 /**
80 * struct cfg80211_colocated_ap - colocated AP information
81 *
82 * @list: linked list to all colocated aPS
83 * @bssid: BSSID of the reported AP
84 * @ssid: SSID of the reported AP
85 * @ssid_len: length of the ssid
86 * @center_freq: frequency the reported AP is on
87 * @unsolicited_probe: the reported AP is part of an ESS, where all the APs
88 * that operate in the same channel as the reported AP and that might be
89 * detected by a STA receiving this frame, are transmitting unsolicited
90 * Probe Response frames every 20 TUs
91 * @oct_recommended: OCT is recommended to exchange MMPDUs with the reported AP
92 * @same_ssid: the reported AP has the same SSID as the reporting AP
93 * @multi_bss: the reported AP is part of a multiple BSSID set
94 * @transmitted_bssid: the reported AP is the transmitting BSSID
95 * @colocated_ess: all the APs that share the same ESS as the reported AP are
96 * colocated and can be discovered via legacy bands.
97 * @short_ssid_valid: short_ssid is valid and can be used
98 * @short_ssid: the short SSID for this SSID
99 */
100 struct cfg80211_colocated_ap {
101 struct list_head list;
102 u8 bssid[ETH_ALEN];
103 u8 ssid[IEEE80211_MAX_SSID_LEN];
104 size_t ssid_len;
105 u32 short_ssid;
106 u32 center_freq;
107 u8 unsolicited_probe:1,
108 oct_recommended:1,
109 same_ssid:1,
110 multi_bss:1,
111 transmitted_bssid:1,
112 colocated_ess:1,
113 short_ssid_valid:1;
114 };
115
116 static void bss_free(struct cfg80211_internal_bss *bss)
117 {
118 struct cfg80211_bss_ies *ies;
119
120 if (WARN_ON(atomic_read(&bss->hold)))
121 return;
122
123 ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
124 if (ies && !bss->pub.hidden_beacon_bss)
125 kfree_rcu(ies, rcu_head);
126 ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
127 if (ies)
128 kfree_rcu(ies, rcu_head);
129
130 /*
131 * This happens when the module is removed, it doesn't
132 * really matter any more save for completeness
133 */
134 if (!list_empty(&bss->hidden_list))
135 list_del(&bss->hidden_list);
136
137 kfree(bss);
138 }
139
140 static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
141 struct cfg80211_internal_bss *bss)
142 {
143 lockdep_assert_held(&rdev->bss_lock);
144
145 bss->refcount++;
146 if (bss->pub.hidden_beacon_bss) {
147 bss = container_of(bss->pub.hidden_beacon_bss,
148 struct cfg80211_internal_bss,
149 pub);
150 bss->refcount++;
151 }
152 if (bss->pub.transmitted_bss) {
153 bss = container_of(bss->pub.transmitted_bss,
154 struct cfg80211_internal_bss,
155 pub);
156 bss->refcount++;
157 }
158 }
159
160 static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
161 struct cfg80211_internal_bss *bss)
162 {
163 lockdep_assert_held(&rdev->bss_lock);
164
165 if (bss->pub.hidden_beacon_bss) {
166 struct cfg80211_internal_bss *hbss;
167 hbss = container_of(bss->pub.hidden_beacon_bss,
168 struct cfg80211_internal_bss,
169 pub);
170 hbss->refcount--;
171 if (hbss->refcount == 0)
172 bss_free(hbss);
173 }
174
175 if (bss->pub.transmitted_bss) {
176 struct cfg80211_internal_bss *tbss;
177
178 tbss = container_of(bss->pub.transmitted_bss,
179 struct cfg80211_internal_bss,
180 pub);
181 tbss->refcount--;
182 if (tbss->refcount == 0)
183 bss_free(tbss);
184 }
185
186 bss->refcount--;
187 if (bss->refcount == 0)
188 bss_free(bss);
189 }
190
191 static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
192 struct cfg80211_internal_bss *bss)
193 {
194 lockdep_assert_held(&rdev->bss_lock);
195
196 if (!list_empty(&bss->hidden_list)) {
197 /*
198 * don't remove the beacon entry if it has
199 * probe responses associated with it
200 */
201 if (!bss->pub.hidden_beacon_bss)
202 return false;
203 /*
204 * if it's a probe response entry break its
205 * link to the other entries in the group
206 */
207 list_del_init(&bss->hidden_list);
208 }
209
210 list_del_init(&bss->list);
211 list_del_init(&bss->pub.nontrans_list);
212 rb_erase(&bss->rbn, &rdev->bss_tree);
213 rdev->bss_entries--;
214 WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list),
215 "rdev bss entries[%d]/list[empty:%d] corruption\n",
216 rdev->bss_entries, list_empty(&rdev->bss_list));
217 bss_ref_put(rdev, bss);
218 return true;
219 }
220
221 bool cfg80211_is_element_inherited(const struct element *elem,
222 const struct element *non_inherit_elem)
223 {
224 u8 id_len, ext_id_len, i, loop_len, id;
225 const u8 *list;
226
227 if (elem->id == WLAN_EID_MULTIPLE_BSSID)
228 return false;
229
230 if (!non_inherit_elem || non_inherit_elem->datalen < 2)
231 return true;
232
233 /*
234 * non inheritance element format is:
235 * ext ID (56) | IDs list len | list | extension IDs list len | list
236 * Both lists are optional. Both lengths are mandatory.
237 * This means valid length is:
238 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths
239 */
240 id_len = non_inherit_elem->data[1];
241 if (non_inherit_elem->datalen < 3 + id_len)
242 return true;
243
244 ext_id_len = non_inherit_elem->data[2 + id_len];
245 if (non_inherit_elem->datalen < 3 + id_len + ext_id_len)
246 return true;
247
248 if (elem->id == WLAN_EID_EXTENSION) {
249 if (!ext_id_len)
250 return true;
251 loop_len = ext_id_len;
252 list = &non_inherit_elem->data[3 + id_len];
253 id = elem->data[0];
254 } else {
255 if (!id_len)
256 return true;
257 loop_len = id_len;
258 list = &non_inherit_elem->data[2];
259 id = elem->id;
260 }
261
262 for (i = 0; i < loop_len; i++) {
263 if (list[i] == id)
264 return false;
265 }
266
267 return true;
268 }
269 EXPORT_SYMBOL(cfg80211_is_element_inherited);
270
271 static size_t cfg80211_gen_new_ie(const u8 *ie, size_t ielen,
272 const u8 *subelement, size_t subie_len,
273 u8 *new_ie, gfp_t gfp)
274 {
275 u8 *pos, *tmp;
276 const u8 *tmp_old, *tmp_new;
277 const struct element *non_inherit_elem;
278 u8 *sub_copy;
279
280 /* copy subelement as we need to change its content to
281 * mark an ie after it is processed.
282 */
283 sub_copy = kmemdup(subelement, subie_len, gfp);
284 if (!sub_copy)
285 return 0;
286
287 pos = &new_ie[0];
288
289 /* set new ssid */
290 tmp_new = cfg80211_find_ie(WLAN_EID_SSID, sub_copy, subie_len);
291 if (tmp_new) {
292 memcpy(pos, tmp_new, tmp_new[1] + 2);
293 pos += (tmp_new[1] + 2);
294 }
295
296 /* get non inheritance list if exists */
297 non_inherit_elem =
298 cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
299 sub_copy, subie_len);
300
301 /* go through IEs in ie (skip SSID) and subelement,
302 * merge them into new_ie
303 */
304 tmp_old = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen);
305 tmp_old = (tmp_old) ? tmp_old + tmp_old[1] + 2 : ie;
306
307 while (tmp_old + tmp_old[1] + 2 - ie <= ielen) {
308 if (tmp_old[0] == 0) {
309 tmp_old++;
310 continue;
311 }
312
313 if (tmp_old[0] == WLAN_EID_EXTENSION)
314 tmp = (u8 *)cfg80211_find_ext_ie(tmp_old[2], sub_copy,
315 subie_len);
316 else
317 tmp = (u8 *)cfg80211_find_ie(tmp_old[0], sub_copy,
318 subie_len);
319
320 if (!tmp) {
321 const struct element *old_elem = (void *)tmp_old;
322
323 /* ie in old ie but not in subelement */
324 if (cfg80211_is_element_inherited(old_elem,
325 non_inherit_elem)) {
326 memcpy(pos, tmp_old, tmp_old[1] + 2);
327 pos += tmp_old[1] + 2;
328 }
329 } else {
330 /* ie in transmitting ie also in subelement,
331 * copy from subelement and flag the ie in subelement
332 * as copied (by setting eid field to WLAN_EID_SSID,
333 * which is skipped anyway).
334 * For vendor ie, compare OUI + type + subType to
335 * determine if they are the same ie.
336 */
337 if (tmp_old[0] == WLAN_EID_VENDOR_SPECIFIC) {
338 if (!memcmp(tmp_old + 2, tmp + 2, 5)) {
339 /* same vendor ie, copy from
340 * subelement
341 */
342 memcpy(pos, tmp, tmp[1] + 2);
343 pos += tmp[1] + 2;
344 tmp[0] = WLAN_EID_SSID;
345 } else {
346 memcpy(pos, tmp_old, tmp_old[1] + 2);
347 pos += tmp_old[1] + 2;
348 }
349 } else {
350 /* copy ie from subelement into new ie */
351 memcpy(pos, tmp, tmp[1] + 2);
352 pos += tmp[1] + 2;
353 tmp[0] = WLAN_EID_SSID;
354 }
355 }
356
357 if (tmp_old + tmp_old[1] + 2 - ie == ielen)
358 break;
359
360 tmp_old += tmp_old[1] + 2;
361 }
362
363 /* go through subelement again to check if there is any ie not
364 * copied to new ie, skip ssid, capability, bssid-index ie
365 */
366 tmp_new = sub_copy;
367 while (tmp_new + tmp_new[1] + 2 - sub_copy <= subie_len) {
368 if (!(tmp_new[0] == WLAN_EID_NON_TX_BSSID_CAP ||
369 tmp_new[0] == WLAN_EID_SSID)) {
370 memcpy(pos, tmp_new, tmp_new[1] + 2);
371 pos += tmp_new[1] + 2;
372 }
373 if (tmp_new + tmp_new[1] + 2 - sub_copy == subie_len)
374 break;
375 tmp_new += tmp_new[1] + 2;
376 }
377
378 kfree(sub_copy);
379 return pos - new_ie;
380 }
381
382 static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
383 const u8 *ssid, size_t ssid_len)
384 {
385 const struct cfg80211_bss_ies *ies;
386 const u8 *ssidie;
387
388 if (bssid && !ether_addr_equal(a->bssid, bssid))
389 return false;
390
391 if (!ssid)
392 return true;
393
394 ies = rcu_access_pointer(a->ies);
395 if (!ies)
396 return false;
397 ssidie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
398 if (!ssidie)
399 return false;
400 if (ssidie[1] != ssid_len)
401 return false;
402 return memcmp(ssidie + 2, ssid, ssid_len) == 0;
403 }
404
405 static int
406 cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss,
407 struct cfg80211_bss *nontrans_bss)
408 {
409 const u8 *ssid;
410 size_t ssid_len;
411 struct cfg80211_bss *bss = NULL;
412
413 rcu_read_lock();
414 ssid = ieee80211_bss_get_ie(nontrans_bss, WLAN_EID_SSID);
415 if (!ssid) {
416 rcu_read_unlock();
417 return -EINVAL;
418 }
419 ssid_len = ssid[1];
420 ssid = ssid + 2;
421
422 /* check if nontrans_bss is in the list */
423 list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) {
424 if (is_bss(bss, nontrans_bss->bssid, ssid, ssid_len)) {
425 rcu_read_unlock();
426 return 0;
427 }
428 }
429
430 rcu_read_unlock();
431
432 /* add to the list */
433 list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list);
434 return 0;
435 }
436
437 static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
438 unsigned long expire_time)
439 {
440 struct cfg80211_internal_bss *bss, *tmp;
441 bool expired = false;
442
443 lockdep_assert_held(&rdev->bss_lock);
444
445 list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
446 if (atomic_read(&bss->hold))
447 continue;
448 if (!time_after(expire_time, bss->ts))
449 continue;
450
451 if (__cfg80211_unlink_bss(rdev, bss))
452 expired = true;
453 }
454
455 if (expired)
456 rdev->bss_generation++;
457 }
458
459 static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev)
460 {
461 struct cfg80211_internal_bss *bss, *oldest = NULL;
462 bool ret;
463
464 lockdep_assert_held(&rdev->bss_lock);
465
466 list_for_each_entry(bss, &rdev->bss_list, list) {
467 if (atomic_read(&bss->hold))
468 continue;
469
470 if (!list_empty(&bss->hidden_list) &&
471 !bss->pub.hidden_beacon_bss)
472 continue;
473
474 if (oldest && time_before(oldest->ts, bss->ts))
475 continue;
476 oldest = bss;
477 }
478
479 if (WARN_ON(!oldest))
480 return false;
481
482 /*
483 * The callers make sure to increase rdev->bss_generation if anything
484 * gets removed (and a new entry added), so there's no need to also do
485 * it here.
486 */
487
488 ret = __cfg80211_unlink_bss(rdev, oldest);
489 WARN_ON(!ret);
490 return ret;
491 }
492
493 static u8 cfg80211_parse_bss_param(u8 data,
494 struct cfg80211_colocated_ap *coloc_ap)
495 {
496 coloc_ap->oct_recommended =
497 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED);
498 coloc_ap->same_ssid =
499 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID);
500 coloc_ap->multi_bss =
501 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID);
502 coloc_ap->transmitted_bssid =
503 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID);
504 coloc_ap->unsolicited_probe =
505 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE);
506 coloc_ap->colocated_ess =
507 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS);
508
509 return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP);
510 }
511
512 static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies,
513 const struct element **elem, u32 *s_ssid)
514 {
515
516 *elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
517 if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN)
518 return -EINVAL;
519
520 *s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen);
521 return 0;
522 }
523
524 static void cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list)
525 {
526 struct cfg80211_colocated_ap *ap, *tmp_ap;
527
528 list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) {
529 list_del(&ap->list);
530 kfree(ap);
531 }
532 }
533
534 static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry,
535 const u8 *pos, u8 length,
536 const struct element *ssid_elem,
537 int s_ssid_tmp)
538 {
539 /* skip the TBTT offset */
540 pos++;
541
542 memcpy(entry->bssid, pos, ETH_ALEN);
543 pos += ETH_ALEN;
544
545 if (length == IEEE80211_TBTT_INFO_OFFSET_BSSID_SSSID_BSS_PARAM) {
546 memcpy(&entry->short_ssid, pos,
547 sizeof(entry->short_ssid));
548 entry->short_ssid_valid = true;
549 pos += 4;
550 }
551
552 /* skip non colocated APs */
553 if (!cfg80211_parse_bss_param(*pos, entry))
554 return -EINVAL;
555 pos++;
556
557 if (length == IEEE80211_TBTT_INFO_OFFSET_BSSID_BSS_PARAM) {
558 /*
559 * no information about the short ssid. Consider the entry valid
560 * for now. It would later be dropped in case there are explicit
561 * SSIDs that need to be matched
562 */
563 if (!entry->same_ssid)
564 return 0;
565 }
566
567 if (entry->same_ssid) {
568 entry->short_ssid = s_ssid_tmp;
569 entry->short_ssid_valid = true;
570
571 /*
572 * This is safe because we validate datalen in
573 * cfg80211_parse_colocated_ap(), before calling this
574 * function.
575 */
576 memcpy(&entry->ssid, &ssid_elem->data,
577 ssid_elem->datalen);
578 entry->ssid_len = ssid_elem->datalen;
579 }
580 return 0;
581 }
582
583 static int cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies,
584 struct list_head *list)
585 {
586 struct ieee80211_neighbor_ap_info *ap_info;
587 const struct element *elem, *ssid_elem;
588 const u8 *pos, *end;
589 u32 s_ssid_tmp;
590 int n_coloc = 0, ret;
591 LIST_HEAD(ap_list);
592
593 elem = cfg80211_find_elem(WLAN_EID_REDUCED_NEIGHBOR_REPORT, ies->data,
594 ies->len);
595 if (!elem)
596 return 0;
597
598 pos = elem->data;
599 end = pos + elem->datalen;
600
601 ret = cfg80211_calc_short_ssid(ies, &ssid_elem, &s_ssid_tmp);
602 if (ret)
603 return ret;
604
605 /* RNR IE may contain more than one NEIGHBOR_AP_INFO */
606 while (pos + sizeof(*ap_info) <= end) {
607 enum nl80211_band band;
608 int freq;
609 u8 length, i, count;
610
611 ap_info = (void *)pos;
612 count = u8_get_bits(ap_info->tbtt_info_hdr,
613 IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1;
614 length = ap_info->tbtt_info_len;
615
616 pos += sizeof(*ap_info);
617
618 if (!ieee80211_operating_class_to_band(ap_info->op_class,
619 &band))
620 break;
621
622 freq = ieee80211_channel_to_frequency(ap_info->channel, band);
623
624 if (end - pos < count * length)
625 break;
626
627 /*
628 * TBTT info must include bss param + BSSID +
629 * (short SSID or same_ssid bit to be set).
630 * ignore other options, and move to the
631 * next AP info
632 */
633 if (band != NL80211_BAND_6GHZ ||
634 (length != IEEE80211_TBTT_INFO_OFFSET_BSSID_BSS_PARAM &&
635 length < IEEE80211_TBTT_INFO_OFFSET_BSSID_SSSID_BSS_PARAM)) {
636 pos += count * length;
637 continue;
638 }
639
640 for (i = 0; i < count; i++) {
641 struct cfg80211_colocated_ap *entry;
642
643 entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN,
644 GFP_ATOMIC);
645
646 if (!entry)
647 break;
648
649 entry->center_freq = freq;
650
651 if (!cfg80211_parse_ap_info(entry, pos, length,
652 ssid_elem, s_ssid_tmp)) {
653 n_coloc++;
654 list_add_tail(&entry->list, &ap_list);
655 } else {
656 kfree(entry);
657 }
658
659 pos += length;
660 }
661 }
662
663 if (pos != end) {
664 cfg80211_free_coloc_ap_list(&ap_list);
665 return 0;
666 }
667
668 list_splice_tail(&ap_list, list);
669 return n_coloc;
670 }
671
672 static void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request,
673 struct ieee80211_channel *chan,
674 bool add_to_6ghz)
675 {
676 int i;
677 u32 n_channels = request->n_channels;
678 struct cfg80211_scan_6ghz_params *params =
679 &request->scan_6ghz_params[request->n_6ghz_params];
680
681 for (i = 0; i < n_channels; i++) {
682 if (request->channels[i] == chan) {
683 if (add_to_6ghz)
684 params->channel_idx = i;
685 return;
686 }
687 }
688
689 request->channels[n_channels] = chan;
690 if (add_to_6ghz)
691 request->scan_6ghz_params[request->n_6ghz_params].channel_idx =
692 n_channels;
693
694 request->n_channels++;
695 }
696
697 static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap,
698 struct cfg80211_scan_request *request)
699 {
700 int i;
701 u32 s_ssid;
702
703 for (i = 0; i < request->n_ssids; i++) {
704 /* wildcard ssid in the scan request */
705 if (!request->ssids[i].ssid_len) {
706 if (ap->multi_bss && !ap->transmitted_bssid)
707 continue;
708
709 return true;
710 }
711
712 if (ap->ssid_len &&
713 ap->ssid_len == request->ssids[i].ssid_len) {
714 if (!memcmp(request->ssids[i].ssid, ap->ssid,
715 ap->ssid_len))
716 return true;
717 } else if (ap->short_ssid_valid) {
718 s_ssid = ~crc32_le(~0, request->ssids[i].ssid,
719 request->ssids[i].ssid_len);
720
721 if (ap->short_ssid == s_ssid)
722 return true;
723 }
724 }
725
726 return false;
727 }
728
729 static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev)
730 {
731 u8 i;
732 struct cfg80211_colocated_ap *ap;
733 int n_channels, count = 0, err;
734 struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req;
735 LIST_HEAD(coloc_ap_list);
736 bool need_scan_psc = true;
737 const struct ieee80211_sband_iftype_data *iftd;
738
739 rdev_req->scan_6ghz = true;
740
741 if (!rdev->wiphy.bands[NL80211_BAND_6GHZ])
742 return -EOPNOTSUPP;
743
744 iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ],
745 rdev_req->wdev->iftype);
746 if (!iftd || !iftd->he_cap.has_he)
747 return -EOPNOTSUPP;
748
749 n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels;
750
751 if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) {
752 struct cfg80211_internal_bss *intbss;
753
754 spin_lock_bh(&rdev->bss_lock);
755 list_for_each_entry(intbss, &rdev->bss_list, list) {
756 struct cfg80211_bss *res = &intbss->pub;
757 const struct cfg80211_bss_ies *ies;
758
759 ies = rcu_access_pointer(res->ies);
760 count += cfg80211_parse_colocated_ap(ies,
761 &coloc_ap_list);
762 }
763 spin_unlock_bh(&rdev->bss_lock);
764 }
765
766 request = kzalloc(struct_size(request, channels, n_channels) +
767 sizeof(*request->scan_6ghz_params) * count +
768 sizeof(*request->ssids) * rdev_req->n_ssids,
769 GFP_KERNEL);
770 if (!request) {
771 cfg80211_free_coloc_ap_list(&coloc_ap_list);
772 return -ENOMEM;
773 }
774
775 *request = *rdev_req;
776 request->n_channels = 0;
777 request->scan_6ghz_params =
778 (void *)&request->channels[n_channels];
779
780 /*
781 * PSC channels should not be scanned in case of direct scan with 1 SSID
782 * and at least one of the reported co-located APs with same SSID
783 * indicating that all APs in the same ESS are co-located
784 */
785 if (count && request->n_ssids == 1 && request->ssids[0].ssid_len) {
786 list_for_each_entry(ap, &coloc_ap_list, list) {
787 if (ap->colocated_ess &&
788 cfg80211_find_ssid_match(ap, request)) {
789 need_scan_psc = false;
790 break;
791 }
792 }
793 }
794
795 /*
796 * add to the scan request the channels that need to be scanned
797 * regardless of the collocated APs (PSC channels or all channels
798 * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set)
799 */
800 for (i = 0; i < rdev_req->n_channels; i++) {
801 if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ &&
802 ((need_scan_psc &&
803 cfg80211_channel_is_psc(rdev_req->channels[i])) ||
804 !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) {
805 cfg80211_scan_req_add_chan(request,
806 rdev_req->channels[i],
807 false);
808 }
809 }
810
811 if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))
812 goto skip;
813
814 list_for_each_entry(ap, &coloc_ap_list, list) {
815 bool found = false;
816 struct cfg80211_scan_6ghz_params *scan_6ghz_params =
817 &request->scan_6ghz_params[request->n_6ghz_params];
818 struct ieee80211_channel *chan =
819 ieee80211_get_channel(&rdev->wiphy, ap->center_freq);
820
821 if (!chan || chan->flags & IEEE80211_CHAN_DISABLED)
822 continue;
823
824 for (i = 0; i < rdev_req->n_channels; i++) {
825 if (rdev_req->channels[i] == chan)
826 found = true;
827 }
828
829 if (!found)
830 continue;
831
832 if (request->n_ssids > 0 &&
833 !cfg80211_find_ssid_match(ap, request))
834 continue;
835
836 if (!request->n_ssids && ap->multi_bss && !ap->transmitted_bssid)
837 continue;
838
839 cfg80211_scan_req_add_chan(request, chan, true);
840 memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN);
841 scan_6ghz_params->short_ssid = ap->short_ssid;
842 scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid;
843 scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe;
844
845 /*
846 * If a PSC channel is added to the scan and 'need_scan_psc' is
847 * set to false, then all the APs that the scan logic is
848 * interested with on the channel are collocated and thus there
849 * is no need to perform the initial PSC channel listen.
850 */
851 if (cfg80211_channel_is_psc(chan) && !need_scan_psc)
852 scan_6ghz_params->psc_no_listen = true;
853
854 request->n_6ghz_params++;
855 }
856
857 skip:
858 cfg80211_free_coloc_ap_list(&coloc_ap_list);
859
860 if (request->n_channels) {
861 struct cfg80211_scan_request *old = rdev->int_scan_req;
862 rdev->int_scan_req = request;
863
864 /*
865 * Add the ssids from the parent scan request to the new scan
866 * request, so the driver would be able to use them in its
867 * probe requests to discover hidden APs on PSC channels.
868 */
869 request->ssids = (void *)&request->channels[request->n_channels];
870 request->n_ssids = rdev_req->n_ssids;
871 memcpy(request->ssids, rdev_req->ssids, sizeof(*request->ssids) *
872 request->n_ssids);
873
874 /*
875 * If this scan follows a previous scan, save the scan start
876 * info from the first part of the scan
877 */
878 if (old)
879 rdev->int_scan_req->info = old->info;
880
881 err = rdev_scan(rdev, request);
882 if (err) {
883 rdev->int_scan_req = old;
884 kfree(request);
885 } else {
886 kfree(old);
887 }
888
889 return err;
890 }
891
892 kfree(request);
893 return -EINVAL;
894 }
895
896 int cfg80211_scan(struct cfg80211_registered_device *rdev)
897 {
898 struct cfg80211_scan_request *request;
899 struct cfg80211_scan_request *rdev_req = rdev->scan_req;
900 u32 n_channels = 0, idx, i;
901
902 if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ))
903 return rdev_scan(rdev, rdev_req);
904
905 for (i = 0; i < rdev_req->n_channels; i++) {
906 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
907 n_channels++;
908 }
909
910 if (!n_channels)
911 return cfg80211_scan_6ghz(rdev);
912
913 request = kzalloc(struct_size(request, channels, n_channels),
914 GFP_KERNEL);
915 if (!request)
916 return -ENOMEM;
917
918 *request = *rdev_req;
919 request->n_channels = n_channels;
920
921 for (i = idx = 0; i < rdev_req->n_channels; i++) {
922 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
923 request->channels[idx++] = rdev_req->channels[i];
924 }
925
926 rdev_req->scan_6ghz = false;
927 rdev->int_scan_req = request;
928 return rdev_scan(rdev, request);
929 }
930
931 void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
932 bool send_message)
933 {
934 struct cfg80211_scan_request *request, *rdev_req;
935 struct wireless_dev *wdev;
936 struct sk_buff *msg;
937 #ifdef CONFIG_CFG80211_WEXT
938 union iwreq_data wrqu;
939 #endif
940
941 lockdep_assert_held(&rdev->wiphy.mtx);
942
943 if (rdev->scan_msg) {
944 nl80211_send_scan_msg(rdev, rdev->scan_msg);
945 rdev->scan_msg = NULL;
946 return;
947 }
948
949 rdev_req = rdev->scan_req;
950 if (!rdev_req)
951 return;
952
953 wdev = rdev_req->wdev;
954 request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req;
955
956 if (wdev_running(wdev) &&
957 (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) &&
958 !rdev_req->scan_6ghz && !request->info.aborted &&
959 !cfg80211_scan_6ghz(rdev))
960 return;
961
962 /*
963 * This must be before sending the other events!
964 * Otherwise, wpa_supplicant gets completely confused with
965 * wext events.
966 */
967 if (wdev->netdev)
968 cfg80211_sme_scan_done(wdev->netdev);
969
970 if (!request->info.aborted &&
971 request->flags & NL80211_SCAN_FLAG_FLUSH) {
972 /* flush entries from previous scans */
973 spin_lock_bh(&rdev->bss_lock);
974 __cfg80211_bss_expire(rdev, request->scan_start);
975 spin_unlock_bh(&rdev->bss_lock);
976 }
977
978 msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted);
979
980 #ifdef CONFIG_CFG80211_WEXT
981 if (wdev->netdev && !request->info.aborted) {
982 memset(&wrqu, 0, sizeof(wrqu));
983
984 wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL);
985 }
986 #endif
987
988 dev_put(wdev->netdev);
989
990 kfree(rdev->int_scan_req);
991 rdev->int_scan_req = NULL;
992
993 kfree(rdev->scan_req);
994 rdev->scan_req = NULL;
995
996 if (!send_message)
997 rdev->scan_msg = msg;
998 else
999 nl80211_send_scan_msg(rdev, msg);
1000 }
1001
1002 void __cfg80211_scan_done(struct work_struct *wk)
1003 {
1004 struct cfg80211_registered_device *rdev;
1005
1006 rdev = container_of(wk, struct cfg80211_registered_device,
1007 scan_done_wk);
1008
1009 wiphy_lock(&rdev->wiphy);
1010 ___cfg80211_scan_done(rdev, true);
1011 wiphy_unlock(&rdev->wiphy);
1012 }
1013
1014 void cfg80211_scan_done(struct cfg80211_scan_request *request,
1015 struct cfg80211_scan_info *info)
1016 {
1017 struct cfg80211_scan_info old_info = request->info;
1018
1019 trace_cfg80211_scan_done(request, info);
1020 WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req &&
1021 request != wiphy_to_rdev(request->wiphy)->int_scan_req);
1022
1023 request->info = *info;
1024
1025 /*
1026 * In case the scan is split, the scan_start_tsf and tsf_bssid should
1027 * be of the first part. In such a case old_info.scan_start_tsf should
1028 * be non zero.
1029 */
1030 if (request->scan_6ghz && old_info.scan_start_tsf) {
1031 request->info.scan_start_tsf = old_info.scan_start_tsf;
1032 memcpy(request->info.tsf_bssid, old_info.tsf_bssid,
1033 sizeof(request->info.tsf_bssid));
1034 }
1035
1036 request->notified = true;
1037 queue_work(cfg80211_wq, &wiphy_to_rdev(request->wiphy)->scan_done_wk);
1038 }
1039 EXPORT_SYMBOL(cfg80211_scan_done);
1040
1041 void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev,
1042 struct cfg80211_sched_scan_request *req)
1043 {
1044 lockdep_assert_held(&rdev->wiphy.mtx);
1045
1046 list_add_rcu(&req->list, &rdev->sched_scan_req_list);
1047 }
1048
1049 static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev,
1050 struct cfg80211_sched_scan_request *req)
1051 {
1052 lockdep_assert_held(&rdev->wiphy.mtx);
1053
1054 list_del_rcu(&req->list);
1055 kfree_rcu(req, rcu_head);
1056 }
1057
1058 static struct cfg80211_sched_scan_request *
1059 cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid)
1060 {
1061 struct cfg80211_sched_scan_request *pos;
1062
1063 list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list,
1064 lockdep_is_held(&rdev->wiphy.mtx)) {
1065 if (pos->reqid == reqid)
1066 return pos;
1067 }
1068 return NULL;
1069 }
1070
1071 /*
1072 * Determines if a scheduled scan request can be handled. When a legacy
1073 * scheduled scan is running no other scheduled scan is allowed regardless
1074 * whether the request is for legacy or multi-support scan. When a multi-support
1075 * scheduled scan is running a request for legacy scan is not allowed. In this
1076 * case a request for multi-support scan can be handled if resources are
1077 * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached.
1078 */
1079 int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev,
1080 bool want_multi)
1081 {
1082 struct cfg80211_sched_scan_request *pos;
1083 int i = 0;
1084
1085 list_for_each_entry(pos, &rdev->sched_scan_req_list, list) {
1086 /* request id zero means legacy in progress */
1087 if (!i && !pos->reqid)
1088 return -EINPROGRESS;
1089 i++;
1090 }
1091
1092 if (i) {
1093 /* no legacy allowed when multi request(s) are active */
1094 if (!want_multi)
1095 return -EINPROGRESS;
1096
1097 /* resource limit reached */
1098 if (i == rdev->wiphy.max_sched_scan_reqs)
1099 return -ENOSPC;
1100 }
1101 return 0;
1102 }
1103
1104 void cfg80211_sched_scan_results_wk(struct work_struct *work)
1105 {
1106 struct cfg80211_registered_device *rdev;
1107 struct cfg80211_sched_scan_request *req, *tmp;
1108
1109 rdev = container_of(work, struct cfg80211_registered_device,
1110 sched_scan_res_wk);
1111
1112 wiphy_lock(&rdev->wiphy);
1113 list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) {
1114 if (req->report_results) {
1115 req->report_results = false;
1116 if (req->flags & NL80211_SCAN_FLAG_FLUSH) {
1117 /* flush entries from previous scans */
1118 spin_lock_bh(&rdev->bss_lock);
1119 __cfg80211_bss_expire(rdev, req->scan_start);
1120 spin_unlock_bh(&rdev->bss_lock);
1121 req->scan_start = jiffies;
1122 }
1123 nl80211_send_sched_scan(req,
1124 NL80211_CMD_SCHED_SCAN_RESULTS);
1125 }
1126 }
1127 wiphy_unlock(&rdev->wiphy);
1128 }
1129
1130 void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid)
1131 {
1132 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1133 struct cfg80211_sched_scan_request *request;
1134
1135 trace_cfg80211_sched_scan_results(wiphy, reqid);
1136 /* ignore if we're not scanning */
1137
1138 rcu_read_lock();
1139 request = cfg80211_find_sched_scan_req(rdev, reqid);
1140 if (request) {
1141 request->report_results = true;
1142 queue_work(cfg80211_wq, &rdev->sched_scan_res_wk);
1143 }
1144 rcu_read_unlock();
1145 }
1146 EXPORT_SYMBOL(cfg80211_sched_scan_results);
1147
1148 void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid)
1149 {
1150 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1151
1152 lockdep_assert_held(&wiphy->mtx);
1153
1154 trace_cfg80211_sched_scan_stopped(wiphy, reqid);
1155
1156 __cfg80211_stop_sched_scan(rdev, reqid, true);
1157 }
1158 EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked);
1159
1160 void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid)
1161 {
1162 wiphy_lock(wiphy);
1163 cfg80211_sched_scan_stopped_locked(wiphy, reqid);
1164 wiphy_unlock(wiphy);
1165 }
1166 EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
1167
1168 int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev,
1169 struct cfg80211_sched_scan_request *req,
1170 bool driver_initiated)
1171 {
1172 lockdep_assert_held(&rdev->wiphy.mtx);
1173
1174 if (!driver_initiated) {
1175 int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid);
1176 if (err)
1177 return err;
1178 }
1179
1180 nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED);
1181
1182 cfg80211_del_sched_scan_req(rdev, req);
1183
1184 return 0;
1185 }
1186
1187 int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
1188 u64 reqid, bool driver_initiated)
1189 {
1190 struct cfg80211_sched_scan_request *sched_scan_req;
1191
1192 lockdep_assert_held(&rdev->wiphy.mtx);
1193
1194 sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid);
1195 if (!sched_scan_req)
1196 return -ENOENT;
1197
1198 return cfg80211_stop_sched_scan_req(rdev, sched_scan_req,
1199 driver_initiated);
1200 }
1201
1202 void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
1203 unsigned long age_secs)
1204 {
1205 struct cfg80211_internal_bss *bss;
1206 unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC);
1207
1208 spin_lock_bh(&rdev->bss_lock);
1209 list_for_each_entry(bss, &rdev->bss_list, list)
1210 bss->ts -= age_jiffies;
1211 spin_unlock_bh(&rdev->bss_lock);
1212 }
1213
1214 void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
1215 {
1216 __cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
1217 }
1218
1219 void cfg80211_bss_flush(struct wiphy *wiphy)
1220 {
1221 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1222
1223 spin_lock_bh(&rdev->bss_lock);
1224 __cfg80211_bss_expire(rdev, jiffies);
1225 spin_unlock_bh(&rdev->bss_lock);
1226 }
1227 EXPORT_SYMBOL(cfg80211_bss_flush);
1228
1229 const struct element *
1230 cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
1231 const u8 *match, unsigned int match_len,
1232 unsigned int match_offset)
1233 {
1234 const struct element *elem;
1235
1236 for_each_element_id(elem, eid, ies, len) {
1237 if (elem->datalen >= match_offset + match_len &&
1238 !memcmp(elem->data + match_offset, match, match_len))
1239 return elem;
1240 }
1241
1242 return NULL;
1243 }
1244 EXPORT_SYMBOL(cfg80211_find_elem_match);
1245
1246 const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
1247 const u8 *ies,
1248 unsigned int len)
1249 {
1250 const struct element *elem;
1251 u8 match[] = { oui >> 16, oui >> 8, oui, oui_type };
1252 int match_len = (oui_type < 0) ? 3 : sizeof(match);
1253
1254 if (WARN_ON(oui_type > 0xff))
1255 return NULL;
1256
1257 elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len,
1258 match, match_len, 0);
1259
1260 if (!elem || elem->datalen < 4)
1261 return NULL;
1262
1263 return elem;
1264 }
1265 EXPORT_SYMBOL(cfg80211_find_vendor_elem);
1266
1267 /**
1268 * enum bss_compare_mode - BSS compare mode
1269 * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
1270 * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
1271 * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
1272 */
1273 enum bss_compare_mode {
1274 BSS_CMP_REGULAR,
1275 BSS_CMP_HIDE_ZLEN,
1276 BSS_CMP_HIDE_NUL,
1277 };
1278
1279 static int cmp_bss(struct cfg80211_bss *a,
1280 struct cfg80211_bss *b,
1281 enum bss_compare_mode mode)
1282 {
1283 const struct cfg80211_bss_ies *a_ies, *b_ies;
1284 const u8 *ie1 = NULL;
1285 const u8 *ie2 = NULL;
1286 int i, r;
1287
1288 if (a->channel != b->channel)
1289 return b->channel->center_freq - a->channel->center_freq;
1290
1291 a_ies = rcu_access_pointer(a->ies);
1292 if (!a_ies)
1293 return -1;
1294 b_ies = rcu_access_pointer(b->ies);
1295 if (!b_ies)
1296 return 1;
1297
1298 if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
1299 ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1300 a_ies->data, a_ies->len);
1301 if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
1302 ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1303 b_ies->data, b_ies->len);
1304 if (ie1 && ie2) {
1305 int mesh_id_cmp;
1306
1307 if (ie1[1] == ie2[1])
1308 mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1309 else
1310 mesh_id_cmp = ie2[1] - ie1[1];
1311
1312 ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1313 a_ies->data, a_ies->len);
1314 ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1315 b_ies->data, b_ies->len);
1316 if (ie1 && ie2) {
1317 if (mesh_id_cmp)
1318 return mesh_id_cmp;
1319 if (ie1[1] != ie2[1])
1320 return ie2[1] - ie1[1];
1321 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1322 }
1323 }
1324
1325 r = memcmp(a->bssid, b->bssid, sizeof(a->bssid));
1326 if (r)
1327 return r;
1328
1329 ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len);
1330 ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len);
1331
1332 if (!ie1 && !ie2)
1333 return 0;
1334
1335 /*
1336 * Note that with "hide_ssid", the function returns a match if
1337 * the already-present BSS ("b") is a hidden SSID beacon for
1338 * the new BSS ("a").
1339 */
1340
1341 /* sort missing IE before (left of) present IE */
1342 if (!ie1)
1343 return -1;
1344 if (!ie2)
1345 return 1;
1346
1347 switch (mode) {
1348 case BSS_CMP_HIDE_ZLEN:
1349 /*
1350 * In ZLEN mode we assume the BSS entry we're
1351 * looking for has a zero-length SSID. So if
1352 * the one we're looking at right now has that,
1353 * return 0. Otherwise, return the difference
1354 * in length, but since we're looking for the
1355 * 0-length it's really equivalent to returning
1356 * the length of the one we're looking at.
1357 *
1358 * No content comparison is needed as we assume
1359 * the content length is zero.
1360 */
1361 return ie2[1];
1362 case BSS_CMP_REGULAR:
1363 default:
1364 /* sort by length first, then by contents */
1365 if (ie1[1] != ie2[1])
1366 return ie2[1] - ie1[1];
1367 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1368 case BSS_CMP_HIDE_NUL:
1369 if (ie1[1] != ie2[1])
1370 return ie2[1] - ie1[1];
1371 /* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
1372 for (i = 0; i < ie2[1]; i++)
1373 if (ie2[i + 2])
1374 return -1;
1375 return 0;
1376 }
1377 }
1378
1379 static bool cfg80211_bss_type_match(u16 capability,
1380 enum nl80211_band band,
1381 enum ieee80211_bss_type bss_type)
1382 {
1383 bool ret = true;
1384 u16 mask, val;
1385
1386 if (bss_type == IEEE80211_BSS_TYPE_ANY)
1387 return ret;
1388
1389 if (band == NL80211_BAND_60GHZ) {
1390 mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
1391 switch (bss_type) {
1392 case IEEE80211_BSS_TYPE_ESS:
1393 val = WLAN_CAPABILITY_DMG_TYPE_AP;
1394 break;
1395 case IEEE80211_BSS_TYPE_PBSS:
1396 val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
1397 break;
1398 case IEEE80211_BSS_TYPE_IBSS:
1399 val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
1400 break;
1401 default:
1402 return false;
1403 }
1404 } else {
1405 mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
1406 switch (bss_type) {
1407 case IEEE80211_BSS_TYPE_ESS:
1408 val = WLAN_CAPABILITY_ESS;
1409 break;
1410 case IEEE80211_BSS_TYPE_IBSS:
1411 val = WLAN_CAPABILITY_IBSS;
1412 break;
1413 case IEEE80211_BSS_TYPE_MBSS:
1414 val = 0;
1415 break;
1416 default:
1417 return false;
1418 }
1419 }
1420
1421 ret = ((capability & mask) == val);
1422 return ret;
1423 }
1424
1425 /* Returned bss is reference counted and must be cleaned up appropriately. */
1426 struct cfg80211_bss *cfg80211_get_bss(struct wiphy *wiphy,
1427 struct ieee80211_channel *channel,
1428 const u8 *bssid,
1429 const u8 *ssid, size_t ssid_len,
1430 enum ieee80211_bss_type bss_type,
1431 enum ieee80211_privacy privacy)
1432 {
1433 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1434 struct cfg80211_internal_bss *bss, *res = NULL;
1435 unsigned long now = jiffies;
1436 int bss_privacy;
1437
1438 trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
1439 privacy);
1440
1441 spin_lock_bh(&rdev->bss_lock);
1442
1443 list_for_each_entry(bss, &rdev->bss_list, list) {
1444 if (!cfg80211_bss_type_match(bss->pub.capability,
1445 bss->pub.channel->band, bss_type))
1446 continue;
1447
1448 bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
1449 if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
1450 (privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
1451 continue;
1452 if (channel && bss->pub.channel != channel)
1453 continue;
1454 if (!is_valid_ether_addr(bss->pub.bssid))
1455 continue;
1456 /* Don't get expired BSS structs */
1457 if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
1458 !atomic_read(&bss->hold))
1459 continue;
1460 if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
1461 res = bss;
1462 bss_ref_get(rdev, res);
1463 break;
1464 }
1465 }
1466
1467 spin_unlock_bh(&rdev->bss_lock);
1468 if (!res)
1469 return NULL;
1470 trace_cfg80211_return_bss(&res->pub);
1471 return &res->pub;
1472 }
1473 EXPORT_SYMBOL(cfg80211_get_bss);
1474
1475 static void rb_insert_bss(struct cfg80211_registered_device *rdev,
1476 struct cfg80211_internal_bss *bss)
1477 {
1478 struct rb_node **p = &rdev->bss_tree.rb_node;
1479 struct rb_node *parent = NULL;
1480 struct cfg80211_internal_bss *tbss;
1481 int cmp;
1482
1483 while (*p) {
1484 parent = *p;
1485 tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
1486
1487 cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR);
1488
1489 if (WARN_ON(!cmp)) {
1490 /* will sort of leak this BSS */
1491 return;
1492 }
1493
1494 if (cmp < 0)
1495 p = &(*p)->rb_left;
1496 else
1497 p = &(*p)->rb_right;
1498 }
1499
1500 rb_link_node(&bss->rbn, parent, p);
1501 rb_insert_color(&bss->rbn, &rdev->bss_tree);
1502 }
1503
1504 static struct cfg80211_internal_bss *
1505 rb_find_bss(struct cfg80211_registered_device *rdev,
1506 struct cfg80211_internal_bss *res,
1507 enum bss_compare_mode mode)
1508 {
1509 struct rb_node *n = rdev->bss_tree.rb_node;
1510 struct cfg80211_internal_bss *bss;
1511 int r;
1512
1513 while (n) {
1514 bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
1515 r = cmp_bss(&res->pub, &bss->pub, mode);
1516
1517 if (r == 0)
1518 return bss;
1519 else if (r < 0)
1520 n = n->rb_left;
1521 else
1522 n = n->rb_right;
1523 }
1524
1525 return NULL;
1526 }
1527
1528 static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
1529 struct cfg80211_internal_bss *new)
1530 {
1531 const struct cfg80211_bss_ies *ies;
1532 struct cfg80211_internal_bss *bss;
1533 const u8 *ie;
1534 int i, ssidlen;
1535 u8 fold = 0;
1536 u32 n_entries = 0;
1537
1538 ies = rcu_access_pointer(new->pub.beacon_ies);
1539 if (WARN_ON(!ies))
1540 return false;
1541
1542 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1543 if (!ie) {
1544 /* nothing to do */
1545 return true;
1546 }
1547
1548 ssidlen = ie[1];
1549 for (i = 0; i < ssidlen; i++)
1550 fold |= ie[2 + i];
1551
1552 if (fold) {
1553 /* not a hidden SSID */
1554 return true;
1555 }
1556
1557 /* This is the bad part ... */
1558
1559 list_for_each_entry(bss, &rdev->bss_list, list) {
1560 /*
1561 * we're iterating all the entries anyway, so take the
1562 * opportunity to validate the list length accounting
1563 */
1564 n_entries++;
1565
1566 if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid))
1567 continue;
1568 if (bss->pub.channel != new->pub.channel)
1569 continue;
1570 if (bss->pub.scan_width != new->pub.scan_width)
1571 continue;
1572 if (rcu_access_pointer(bss->pub.beacon_ies))
1573 continue;
1574 ies = rcu_access_pointer(bss->pub.ies);
1575 if (!ies)
1576 continue;
1577 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1578 if (!ie)
1579 continue;
1580 if (ssidlen && ie[1] != ssidlen)
1581 continue;
1582 if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
1583 continue;
1584 if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
1585 list_del(&bss->hidden_list);
1586 /* combine them */
1587 list_add(&bss->hidden_list, &new->hidden_list);
1588 bss->pub.hidden_beacon_bss = &new->pub;
1589 new->refcount += bss->refcount;
1590 rcu_assign_pointer(bss->pub.beacon_ies,
1591 new->pub.beacon_ies);
1592 }
1593
1594 WARN_ONCE(n_entries != rdev->bss_entries,
1595 "rdev bss entries[%d]/list[len:%d] corruption\n",
1596 rdev->bss_entries, n_entries);
1597
1598 return true;
1599 }
1600
1601 struct cfg80211_non_tx_bss {
1602 struct cfg80211_bss *tx_bss;
1603 u8 max_bssid_indicator;
1604 u8 bssid_index;
1605 };
1606
1607 static bool
1608 cfg80211_update_known_bss(struct cfg80211_registered_device *rdev,
1609 struct cfg80211_internal_bss *known,
1610 struct cfg80211_internal_bss *new,
1611 bool signal_valid)
1612 {
1613 lockdep_assert_held(&rdev->bss_lock);
1614
1615 /* Update IEs */
1616 if (rcu_access_pointer(new->pub.proberesp_ies)) {
1617 const struct cfg80211_bss_ies *old;
1618
1619 old = rcu_access_pointer(known->pub.proberesp_ies);
1620
1621 rcu_assign_pointer(known->pub.proberesp_ies,
1622 new->pub.proberesp_ies);
1623 /* Override possible earlier Beacon frame IEs */
1624 rcu_assign_pointer(known->pub.ies,
1625 new->pub.proberesp_ies);
1626 if (old)
1627 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1628 } else if (rcu_access_pointer(new->pub.beacon_ies)) {
1629 const struct cfg80211_bss_ies *old;
1630 struct cfg80211_internal_bss *bss;
1631
1632 if (known->pub.hidden_beacon_bss &&
1633 !list_empty(&known->hidden_list)) {
1634 const struct cfg80211_bss_ies *f;
1635
1636 /* The known BSS struct is one of the probe
1637 * response members of a group, but we're
1638 * receiving a beacon (beacon_ies in the new
1639 * bss is used). This can only mean that the
1640 * AP changed its beacon from not having an
1641 * SSID to showing it, which is confusing so
1642 * drop this information.
1643 */
1644
1645 f = rcu_access_pointer(new->pub.beacon_ies);
1646 kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head);
1647 return false;
1648 }
1649
1650 old = rcu_access_pointer(known->pub.beacon_ies);
1651
1652 rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies);
1653
1654 /* Override IEs if they were from a beacon before */
1655 if (old == rcu_access_pointer(known->pub.ies))
1656 rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies);
1657
1658 /* Assign beacon IEs to all sub entries */
1659 list_for_each_entry(bss, &known->hidden_list, hidden_list) {
1660 const struct cfg80211_bss_ies *ies;
1661
1662 ies = rcu_access_pointer(bss->pub.beacon_ies);
1663 WARN_ON(ies != old);
1664
1665 rcu_assign_pointer(bss->pub.beacon_ies,
1666 new->pub.beacon_ies);
1667 }
1668
1669 if (old)
1670 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1671 }
1672
1673 known->pub.beacon_interval = new->pub.beacon_interval;
1674
1675 /* don't update the signal if beacon was heard on
1676 * adjacent channel.
1677 */
1678 if (signal_valid)
1679 known->pub.signal = new->pub.signal;
1680 known->pub.capability = new->pub.capability;
1681 known->ts = new->ts;
1682 known->ts_boottime = new->ts_boottime;
1683 known->parent_tsf = new->parent_tsf;
1684 known->pub.chains = new->pub.chains;
1685 memcpy(known->pub.chain_signal, new->pub.chain_signal,
1686 IEEE80211_MAX_CHAINS);
1687 ether_addr_copy(known->parent_bssid, new->parent_bssid);
1688 known->pub.max_bssid_indicator = new->pub.max_bssid_indicator;
1689 known->pub.bssid_index = new->pub.bssid_index;
1690
1691 return true;
1692 }
1693
1694 /* Returned bss is reference counted and must be cleaned up appropriately. */
1695 struct cfg80211_internal_bss *
1696 cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1697 struct cfg80211_internal_bss *tmp,
1698 bool signal_valid, unsigned long ts)
1699 {
1700 struct cfg80211_internal_bss *found = NULL;
1701
1702 if (WARN_ON(!tmp->pub.channel))
1703 return NULL;
1704
1705 tmp->ts = ts;
1706
1707 spin_lock_bh(&rdev->bss_lock);
1708
1709 if (WARN_ON(!rcu_access_pointer(tmp->pub.ies))) {
1710 spin_unlock_bh(&rdev->bss_lock);
1711 return NULL;
1712 }
1713
1714 found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR);
1715
1716 if (found) {
1717 if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid))
1718 goto drop;
1719 } else {
1720 struct cfg80211_internal_bss *new;
1721 struct cfg80211_internal_bss *hidden;
1722 struct cfg80211_bss_ies *ies;
1723
1724 /*
1725 * create a copy -- the "res" variable that is passed in
1726 * is allocated on the stack since it's not needed in the
1727 * more common case of an update
1728 */
1729 new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size,
1730 GFP_ATOMIC);
1731 if (!new) {
1732 ies = (void *)rcu_dereference(tmp->pub.beacon_ies);
1733 if (ies)
1734 kfree_rcu(ies, rcu_head);
1735 ies = (void *)rcu_dereference(tmp->pub.proberesp_ies);
1736 if (ies)
1737 kfree_rcu(ies, rcu_head);
1738 goto drop;
1739 }
1740 memcpy(new, tmp, sizeof(*new));
1741 new->refcount = 1;
1742 INIT_LIST_HEAD(&new->hidden_list);
1743 INIT_LIST_HEAD(&new->pub.nontrans_list);
1744
1745 if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
1746 hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN);
1747 if (!hidden)
1748 hidden = rb_find_bss(rdev, tmp,
1749 BSS_CMP_HIDE_NUL);
1750 if (hidden) {
1751 new->pub.hidden_beacon_bss = &hidden->pub;
1752 list_add(&new->hidden_list,
1753 &hidden->hidden_list);
1754 hidden->refcount++;
1755 rcu_assign_pointer(new->pub.beacon_ies,
1756 hidden->pub.beacon_ies);
1757 }
1758 } else {
1759 /*
1760 * Ok so we found a beacon, and don't have an entry. If
1761 * it's a beacon with hidden SSID, we might be in for an
1762 * expensive search for any probe responses that should
1763 * be grouped with this beacon for updates ...
1764 */
1765 if (!cfg80211_combine_bsses(rdev, new)) {
1766 bss_ref_put(rdev, new);
1767 goto drop;
1768 }
1769 }
1770
1771 if (rdev->bss_entries >= bss_entries_limit &&
1772 !cfg80211_bss_expire_oldest(rdev)) {
1773 bss_ref_put(rdev, new);
1774 goto drop;
1775 }
1776
1777 /* This must be before the call to bss_ref_get */
1778 if (tmp->pub.transmitted_bss) {
1779 struct cfg80211_internal_bss *pbss =
1780 container_of(tmp->pub.transmitted_bss,
1781 struct cfg80211_internal_bss,
1782 pub);
1783
1784 new->pub.transmitted_bss = tmp->pub.transmitted_bss;
1785 bss_ref_get(rdev, pbss);
1786 }
1787
1788 list_add_tail(&new->list, &rdev->bss_list);
1789 rdev->bss_entries++;
1790 rb_insert_bss(rdev, new);
1791 found = new;
1792 }
1793
1794 rdev->bss_generation++;
1795 bss_ref_get(rdev, found);
1796 spin_unlock_bh(&rdev->bss_lock);
1797
1798 return found;
1799 drop:
1800 spin_unlock_bh(&rdev->bss_lock);
1801 return NULL;
1802 }
1803
1804 /*
1805 * Update RX channel information based on the available frame payload
1806 * information. This is mainly for the 2.4 GHz band where frames can be received
1807 * from neighboring channels and the Beacon frames use the DSSS Parameter Set
1808 * element to indicate the current (transmitting) channel, but this might also
1809 * be needed on other bands if RX frequency does not match with the actual
1810 * operating channel of a BSS.
1811 */
1812 static struct ieee80211_channel *
1813 cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
1814 struct ieee80211_channel *channel,
1815 enum nl80211_bss_scan_width scan_width)
1816 {
1817 const u8 *tmp;
1818 u32 freq;
1819 int channel_number = -1;
1820 struct ieee80211_channel *alt_channel;
1821
1822 if (channel->band == NL80211_BAND_S1GHZ) {
1823 tmp = cfg80211_find_ie(WLAN_EID_S1G_OPERATION, ie, ielen);
1824 if (tmp && tmp[1] >= sizeof(struct ieee80211_s1g_oper_ie)) {
1825 struct ieee80211_s1g_oper_ie *s1gop = (void *)(tmp + 2);
1826
1827 channel_number = s1gop->primary_ch;
1828 }
1829 } else {
1830 tmp = cfg80211_find_ie(WLAN_EID_DS_PARAMS, ie, ielen);
1831 if (tmp && tmp[1] == 1) {
1832 channel_number = tmp[2];
1833 } else {
1834 tmp = cfg80211_find_ie(WLAN_EID_HT_OPERATION, ie, ielen);
1835 if (tmp && tmp[1] >= sizeof(struct ieee80211_ht_operation)) {
1836 struct ieee80211_ht_operation *htop = (void *)(tmp + 2);
1837
1838 channel_number = htop->primary_chan;
1839 }
1840 }
1841 }
1842
1843 if (channel_number < 0) {
1844 /* No channel information in frame payload */
1845 return channel;
1846 }
1847
1848 freq = ieee80211_channel_to_freq_khz(channel_number, channel->band);
1849 alt_channel = ieee80211_get_channel_khz(wiphy, freq);
1850 if (!alt_channel) {
1851 if (channel->band == NL80211_BAND_2GHZ) {
1852 /*
1853 * Better not allow unexpected channels when that could
1854 * be going beyond the 1-11 range (e.g., discovering
1855 * BSS on channel 12 when radio is configured for
1856 * channel 11.
1857 */
1858 return NULL;
1859 }
1860
1861 /* No match for the payload channel number - ignore it */
1862 return channel;
1863 }
1864
1865 if (scan_width == NL80211_BSS_CHAN_WIDTH_10 ||
1866 scan_width == NL80211_BSS_CHAN_WIDTH_5) {
1867 /*
1868 * Ignore channel number in 5 and 10 MHz channels where there
1869 * may not be an n:1 or 1:n mapping between frequencies and
1870 * channel numbers.
1871 */
1872 return channel;
1873 }
1874
1875 /*
1876 * Use the channel determined through the payload channel number
1877 * instead of the RX channel reported by the driver.
1878 */
1879 if (alt_channel->flags & IEEE80211_CHAN_DISABLED)
1880 return NULL;
1881 return alt_channel;
1882 }
1883
1884 /* Returned bss is reference counted and must be cleaned up appropriately. */
1885 static struct cfg80211_bss *
1886 cfg80211_inform_single_bss_data(struct wiphy *wiphy,
1887 struct cfg80211_inform_bss *data,
1888 enum cfg80211_bss_frame_type ftype,
1889 const u8 *bssid, u64 tsf, u16 capability,
1890 u16 beacon_interval, const u8 *ie, size_t ielen,
1891 struct cfg80211_non_tx_bss *non_tx_data,
1892 gfp_t gfp)
1893 {
1894 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1895 struct cfg80211_bss_ies *ies;
1896 struct ieee80211_channel *channel;
1897 struct cfg80211_internal_bss tmp = {}, *res;
1898 int bss_type;
1899 bool signal_valid;
1900 unsigned long ts;
1901
1902 if (WARN_ON(!wiphy))
1903 return NULL;
1904
1905 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
1906 (data->signal < 0 || data->signal > 100)))
1907 return NULL;
1908
1909 channel = cfg80211_get_bss_channel(wiphy, ie, ielen, data->chan,
1910 data->scan_width);
1911 if (!channel)
1912 return NULL;
1913
1914 memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
1915 tmp.pub.channel = channel;
1916 tmp.pub.scan_width = data->scan_width;
1917 tmp.pub.signal = data->signal;
1918 tmp.pub.beacon_interval = beacon_interval;
1919 tmp.pub.capability = capability;
1920 tmp.ts_boottime = data->boottime_ns;
1921 tmp.parent_tsf = data->parent_tsf;
1922 ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
1923
1924 if (non_tx_data) {
1925 tmp.pub.transmitted_bss = non_tx_data->tx_bss;
1926 ts = bss_from_pub(non_tx_data->tx_bss)->ts;
1927 tmp.pub.bssid_index = non_tx_data->bssid_index;
1928 tmp.pub.max_bssid_indicator = non_tx_data->max_bssid_indicator;
1929 } else {
1930 ts = jiffies;
1931 }
1932
1933 /*
1934 * If we do not know here whether the IEs are from a Beacon or Probe
1935 * Response frame, we need to pick one of the options and only use it
1936 * with the driver that does not provide the full Beacon/Probe Response
1937 * frame. Use Beacon frame pointer to avoid indicating that this should
1938 * override the IEs pointer should we have received an earlier
1939 * indication of Probe Response data.
1940 */
1941 ies = kzalloc(sizeof(*ies) + ielen, gfp);
1942 if (!ies)
1943 return NULL;
1944 ies->len = ielen;
1945 ies->tsf = tsf;
1946 ies->from_beacon = false;
1947 memcpy(ies->data, ie, ielen);
1948
1949 switch (ftype) {
1950 case CFG80211_BSS_FTYPE_BEACON:
1951 ies->from_beacon = true;
1952 fallthrough;
1953 case CFG80211_BSS_FTYPE_UNKNOWN:
1954 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
1955 break;
1956 case CFG80211_BSS_FTYPE_PRESP:
1957 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
1958 break;
1959 }
1960 rcu_assign_pointer(tmp.pub.ies, ies);
1961
1962 signal_valid = data->chan == channel;
1963 res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid, ts);
1964 if (!res)
1965 return NULL;
1966
1967 if (channel->band == NL80211_BAND_60GHZ) {
1968 bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
1969 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
1970 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
1971 regulatory_hint_found_beacon(wiphy, channel, gfp);
1972 } else {
1973 if (res->pub.capability & WLAN_CAPABILITY_ESS)
1974 regulatory_hint_found_beacon(wiphy, channel, gfp);
1975 }
1976
1977 if (non_tx_data) {
1978 /* this is a nontransmitting bss, we need to add it to
1979 * transmitting bss' list if it is not there
1980 */
1981 spin_lock_bh(&rdev->bss_lock);
1982 if (cfg80211_add_nontrans_list(non_tx_data->tx_bss,
1983 &res->pub)) {
1984 if (__cfg80211_unlink_bss(rdev, res))
1985 rdev->bss_generation++;
1986 }
1987 spin_unlock_bh(&rdev->bss_lock);
1988 }
1989
1990 trace_cfg80211_return_bss(&res->pub);
1991 /* cfg80211_bss_update gives us a referenced result */
1992 return &res->pub;
1993 }
1994
1995 static const struct element
1996 *cfg80211_get_profile_continuation(const u8 *ie, size_t ielen,
1997 const struct element *mbssid_elem,
1998 const struct element *sub_elem)
1999 {
2000 const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen;
2001 const struct element *next_mbssid;
2002 const struct element *next_sub;
2003
2004 next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2005 mbssid_end,
2006 ielen - (mbssid_end - ie));
2007
2008 /*
2009 * If it is not the last subelement in current MBSSID IE or there isn't
2010 * a next MBSSID IE - profile is complete.
2011 */
2012 if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) ||
2013 !next_mbssid)
2014 return NULL;
2015
2016 /* For any length error, just return NULL */
2017
2018 if (next_mbssid->datalen < 4)
2019 return NULL;
2020
2021 next_sub = (void *)&next_mbssid->data[1];
2022
2023 if (next_mbssid->data + next_mbssid->datalen <
2024 next_sub->data + next_sub->datalen)
2025 return NULL;
2026
2027 if (next_sub->id != 0 || next_sub->datalen < 2)
2028 return NULL;
2029
2030 /*
2031 * Check if the first element in the next sub element is a start
2032 * of a new profile
2033 */
2034 return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ?
2035 NULL : next_mbssid;
2036 }
2037
2038 size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
2039 const struct element *mbssid_elem,
2040 const struct element *sub_elem,
2041 u8 *merged_ie, size_t max_copy_len)
2042 {
2043 size_t copied_len = sub_elem->datalen;
2044 const struct element *next_mbssid;
2045
2046 if (sub_elem->datalen > max_copy_len)
2047 return 0;
2048
2049 memcpy(merged_ie, sub_elem->data, sub_elem->datalen);
2050
2051 while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen,
2052 mbssid_elem,
2053 sub_elem))) {
2054 const struct element *next_sub = (void *)&next_mbssid->data[1];
2055
2056 if (copied_len + next_sub->datalen > max_copy_len)
2057 break;
2058 memcpy(merged_ie + copied_len, next_sub->data,
2059 next_sub->datalen);
2060 copied_len += next_sub->datalen;
2061 }
2062
2063 return copied_len;
2064 }
2065 EXPORT_SYMBOL(cfg80211_merge_profile);
2066
2067 static void cfg80211_parse_mbssid_data(struct wiphy *wiphy,
2068 struct cfg80211_inform_bss *data,
2069 enum cfg80211_bss_frame_type ftype,
2070 const u8 *bssid, u64 tsf,
2071 u16 beacon_interval, const u8 *ie,
2072 size_t ielen,
2073 struct cfg80211_non_tx_bss *non_tx_data,
2074 gfp_t gfp)
2075 {
2076 const u8 *mbssid_index_ie;
2077 const struct element *elem, *sub;
2078 size_t new_ie_len;
2079 u8 new_bssid[ETH_ALEN];
2080 u8 *new_ie, *profile;
2081 u64 seen_indices = 0;
2082 u16 capability;
2083 struct cfg80211_bss *bss;
2084
2085 if (!non_tx_data)
2086 return;
2087 if (!cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen))
2088 return;
2089 if (!wiphy->support_mbssid)
2090 return;
2091 if (wiphy->support_only_he_mbssid &&
2092 !cfg80211_find_ext_ie(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen))
2093 return;
2094
2095 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2096 if (!new_ie)
2097 return;
2098
2099 profile = kmalloc(ielen, gfp);
2100 if (!profile)
2101 goto out;
2102
2103 for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, ie, ielen) {
2104 if (elem->datalen < 4)
2105 continue;
2106 for_each_element(sub, elem->data + 1, elem->datalen - 1) {
2107 u8 profile_len;
2108
2109 if (sub->id != 0 || sub->datalen < 4) {
2110 /* not a valid BSS profile */
2111 continue;
2112 }
2113
2114 if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
2115 sub->data[1] != 2) {
2116 /* The first element within the Nontransmitted
2117 * BSSID Profile is not the Nontransmitted
2118 * BSSID Capability element.
2119 */
2120 continue;
2121 }
2122
2123 memset(profile, 0, ielen);
2124 profile_len = cfg80211_merge_profile(ie, ielen,
2125 elem,
2126 sub,
2127 profile,
2128 ielen);
2129
2130 /* found a Nontransmitted BSSID Profile */
2131 mbssid_index_ie = cfg80211_find_ie
2132 (WLAN_EID_MULTI_BSSID_IDX,
2133 profile, profile_len);
2134 if (!mbssid_index_ie || mbssid_index_ie[1] < 1 ||
2135 mbssid_index_ie[2] == 0 ||
2136 mbssid_index_ie[2] > 46) {
2137 /* No valid Multiple BSSID-Index element */
2138 continue;
2139 }
2140
2141 if (seen_indices & BIT_ULL(mbssid_index_ie[2]))
2142 /* We don't support legacy split of a profile */
2143 net_dbg_ratelimited("Partial info for BSSID index %d\n",
2144 mbssid_index_ie[2]);
2145
2146 seen_indices |= BIT_ULL(mbssid_index_ie[2]);
2147
2148 non_tx_data->bssid_index = mbssid_index_ie[2];
2149 non_tx_data->max_bssid_indicator = elem->data[0];
2150
2151 cfg80211_gen_new_bssid(bssid,
2152 non_tx_data->max_bssid_indicator,
2153 non_tx_data->bssid_index,
2154 new_bssid);
2155 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2156 new_ie_len = cfg80211_gen_new_ie(ie, ielen,
2157 profile,
2158 profile_len, new_ie,
2159 gfp);
2160 if (!new_ie_len)
2161 continue;
2162
2163 capability = get_unaligned_le16(profile + 2);
2164 bss = cfg80211_inform_single_bss_data(wiphy, data,
2165 ftype,
2166 new_bssid, tsf,
2167 capability,
2168 beacon_interval,
2169 new_ie,
2170 new_ie_len,
2171 non_tx_data,
2172 gfp);
2173 if (!bss)
2174 break;
2175 cfg80211_put_bss(wiphy, bss);
2176 }
2177 }
2178
2179 out:
2180 kfree(new_ie);
2181 kfree(profile);
2182 }
2183
2184 struct cfg80211_bss *
2185 cfg80211_inform_bss_data(struct wiphy *wiphy,
2186 struct cfg80211_inform_bss *data,
2187 enum cfg80211_bss_frame_type ftype,
2188 const u8 *bssid, u64 tsf, u16 capability,
2189 u16 beacon_interval, const u8 *ie, size_t ielen,
2190 gfp_t gfp)
2191 {
2192 struct cfg80211_bss *res;
2193 struct cfg80211_non_tx_bss non_tx_data;
2194
2195 res = cfg80211_inform_single_bss_data(wiphy, data, ftype, bssid, tsf,
2196 capability, beacon_interval, ie,
2197 ielen, NULL, gfp);
2198 if (!res)
2199 return NULL;
2200 non_tx_data.tx_bss = res;
2201 cfg80211_parse_mbssid_data(wiphy, data, ftype, bssid, tsf,
2202 beacon_interval, ie, ielen, &non_tx_data,
2203 gfp);
2204 return res;
2205 }
2206 EXPORT_SYMBOL(cfg80211_inform_bss_data);
2207
2208 static void
2209 cfg80211_parse_mbssid_frame_data(struct wiphy *wiphy,
2210 struct cfg80211_inform_bss *data,
2211 struct ieee80211_mgmt *mgmt, size_t len,
2212 struct cfg80211_non_tx_bss *non_tx_data,
2213 gfp_t gfp)
2214 {
2215 enum cfg80211_bss_frame_type ftype;
2216 const u8 *ie = mgmt->u.probe_resp.variable;
2217 size_t ielen = len - offsetof(struct ieee80211_mgmt,
2218 u.probe_resp.variable);
2219
2220 ftype = ieee80211_is_beacon(mgmt->frame_control) ?
2221 CFG80211_BSS_FTYPE_BEACON : CFG80211_BSS_FTYPE_PRESP;
2222
2223 cfg80211_parse_mbssid_data(wiphy, data, ftype, mgmt->bssid,
2224 le64_to_cpu(mgmt->u.probe_resp.timestamp),
2225 le16_to_cpu(mgmt->u.probe_resp.beacon_int),
2226 ie, ielen, non_tx_data, gfp);
2227 }
2228
2229 static void
2230 cfg80211_update_notlisted_nontrans(struct wiphy *wiphy,
2231 struct cfg80211_bss *nontrans_bss,
2232 struct ieee80211_mgmt *mgmt, size_t len)
2233 {
2234 u8 *ie, *new_ie, *pos;
2235 const u8 *nontrans_ssid, *trans_ssid, *mbssid;
2236 size_t ielen = len - offsetof(struct ieee80211_mgmt,
2237 u.probe_resp.variable);
2238 size_t new_ie_len;
2239 struct cfg80211_bss_ies *new_ies;
2240 const struct cfg80211_bss_ies *old;
2241 u8 cpy_len;
2242
2243 lockdep_assert_held(&wiphy_to_rdev(wiphy)->bss_lock);
2244
2245 ie = mgmt->u.probe_resp.variable;
2246
2247 new_ie_len = ielen;
2248 trans_ssid = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen);
2249 if (!trans_ssid)
2250 return;
2251 new_ie_len -= trans_ssid[1];
2252 mbssid = cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen);
2253 /*
2254 * It's not valid to have the MBSSID element before SSID
2255 * ignore if that happens - the code below assumes it is
2256 * after (while copying things inbetween).
2257 */
2258 if (!mbssid || mbssid < trans_ssid)
2259 return;
2260 new_ie_len -= mbssid[1];
2261
2262 nontrans_ssid = ieee80211_bss_get_ie(nontrans_bss, WLAN_EID_SSID);
2263 if (!nontrans_ssid)
2264 return;
2265
2266 new_ie_len += nontrans_ssid[1];
2267
2268 /* generate new ie for nontrans BSS
2269 * 1. replace SSID with nontrans BSS' SSID
2270 * 2. skip MBSSID IE
2271 */
2272 new_ie = kzalloc(new_ie_len, GFP_ATOMIC);
2273 if (!new_ie)
2274 return;
2275
2276 new_ies = kzalloc(sizeof(*new_ies) + new_ie_len, GFP_ATOMIC);
2277 if (!new_ies)
2278 goto out_free;
2279
2280 pos = new_ie;
2281
2282 /* copy the nontransmitted SSID */
2283 cpy_len = nontrans_ssid[1] + 2;
2284 memcpy(pos, nontrans_ssid, cpy_len);
2285 pos += cpy_len;
2286 /* copy the IEs between SSID and MBSSID */
2287 cpy_len = trans_ssid[1] + 2;
2288 memcpy(pos, (trans_ssid + cpy_len), (mbssid - (trans_ssid + cpy_len)));
2289 pos += (mbssid - (trans_ssid + cpy_len));
2290 /* copy the IEs after MBSSID */
2291 cpy_len = mbssid[1] + 2;
2292 memcpy(pos, mbssid + cpy_len, ((ie + ielen) - (mbssid + cpy_len)));
2293
2294 /* update ie */
2295 new_ies->len = new_ie_len;
2296 new_ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
2297 new_ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control);
2298 memcpy(new_ies->data, new_ie, new_ie_len);
2299 if (ieee80211_is_probe_resp(mgmt->frame_control)) {
2300 old = rcu_access_pointer(nontrans_bss->proberesp_ies);
2301 rcu_assign_pointer(nontrans_bss->proberesp_ies, new_ies);
2302 rcu_assign_pointer(nontrans_bss->ies, new_ies);
2303 if (old)
2304 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
2305 } else {
2306 old = rcu_access_pointer(nontrans_bss->beacon_ies);
2307 rcu_assign_pointer(nontrans_bss->beacon_ies, new_ies);
2308 rcu_assign_pointer(nontrans_bss->ies, new_ies);
2309 if (old)
2310 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
2311 }
2312
2313 out_free:
2314 kfree(new_ie);
2315 }
2316
2317 /* cfg80211_inform_bss_width_frame helper */
2318 static struct cfg80211_bss *
2319 cfg80211_inform_single_bss_frame_data(struct wiphy *wiphy,
2320 struct cfg80211_inform_bss *data,
2321 struct ieee80211_mgmt *mgmt, size_t len,
2322 gfp_t gfp)
2323 {
2324 struct cfg80211_internal_bss tmp = {}, *res;
2325 struct cfg80211_bss_ies *ies;
2326 struct ieee80211_channel *channel;
2327 bool signal_valid;
2328 struct ieee80211_ext *ext = NULL;
2329 u8 *bssid, *variable;
2330 u16 capability, beacon_int;
2331 size_t ielen, min_hdr_len = offsetof(struct ieee80211_mgmt,
2332 u.probe_resp.variable);
2333 int bss_type;
2334
2335 BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
2336 offsetof(struct ieee80211_mgmt, u.beacon.variable));
2337
2338 trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
2339
2340 if (WARN_ON(!mgmt))
2341 return NULL;
2342
2343 if (WARN_ON(!wiphy))
2344 return NULL;
2345
2346 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2347 (data->signal < 0 || data->signal > 100)))
2348 return NULL;
2349
2350 if (ieee80211_is_s1g_beacon(mgmt->frame_control)) {
2351 ext = (void *) mgmt;
2352 min_hdr_len = offsetof(struct ieee80211_ext, u.s1g_beacon);
2353 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
2354 min_hdr_len = offsetof(struct ieee80211_ext,
2355 u.s1g_short_beacon.variable);
2356 }
2357
2358 if (WARN_ON(len < min_hdr_len))
2359 return NULL;
2360
2361 ielen = len - min_hdr_len;
2362 variable = mgmt->u.probe_resp.variable;
2363 if (ext) {
2364 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
2365 variable = ext->u.s1g_short_beacon.variable;
2366 else
2367 variable = ext->u.s1g_beacon.variable;
2368 }
2369
2370 channel = cfg80211_get_bss_channel(wiphy, variable,
2371 ielen, data->chan, data->scan_width);
2372 if (!channel)
2373 return NULL;
2374
2375 if (ext) {
2376 const struct ieee80211_s1g_bcn_compat_ie *compat;
2377 const struct element *elem;
2378
2379 elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT,
2380 variable, ielen);
2381 if (!elem)
2382 return NULL;
2383 if (elem->datalen < sizeof(*compat))
2384 return NULL;
2385 compat = (void *)elem->data;
2386 bssid = ext->u.s1g_beacon.sa;
2387 capability = le16_to_cpu(compat->compat_info);
2388 beacon_int = le16_to_cpu(compat->beacon_int);
2389 } else {
2390 bssid = mgmt->bssid;
2391 beacon_int = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
2392 capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
2393 }
2394
2395 ies = kzalloc(sizeof(*ies) + ielen, gfp);
2396 if (!ies)
2397 return NULL;
2398 ies->len = ielen;
2399 ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
2400 ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control) ||
2401 ieee80211_is_s1g_beacon(mgmt->frame_control);
2402 memcpy(ies->data, variable, ielen);
2403
2404 if (ieee80211_is_probe_resp(mgmt->frame_control))
2405 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2406 else
2407 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2408 rcu_assign_pointer(tmp.pub.ies, ies);
2409
2410 memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
2411 tmp.pub.beacon_interval = beacon_int;
2412 tmp.pub.capability = capability;
2413 tmp.pub.channel = channel;
2414 tmp.pub.scan_width = data->scan_width;
2415 tmp.pub.signal = data->signal;
2416 tmp.ts_boottime = data->boottime_ns;
2417 tmp.parent_tsf = data->parent_tsf;
2418 tmp.pub.chains = data->chains;
2419 memcpy(tmp.pub.chain_signal, data->chain_signal, IEEE80211_MAX_CHAINS);
2420 ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
2421
2422 signal_valid = data->chan == channel;
2423 res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid,
2424 jiffies);
2425 if (!res)
2426 return NULL;
2427
2428 if (channel->band == NL80211_BAND_60GHZ) {
2429 bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
2430 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2431 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2432 regulatory_hint_found_beacon(wiphy, channel, gfp);
2433 } else {
2434 if (res->pub.capability & WLAN_CAPABILITY_ESS)
2435 regulatory_hint_found_beacon(wiphy, channel, gfp);
2436 }
2437
2438 trace_cfg80211_return_bss(&res->pub);
2439 /* cfg80211_bss_update gives us a referenced result */
2440 return &res->pub;
2441 }
2442
2443 struct cfg80211_bss *
2444 cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
2445 struct cfg80211_inform_bss *data,
2446 struct ieee80211_mgmt *mgmt, size_t len,
2447 gfp_t gfp)
2448 {
2449 struct cfg80211_bss *res, *tmp_bss;
2450 const u8 *ie = mgmt->u.probe_resp.variable;
2451 const struct cfg80211_bss_ies *ies1, *ies2;
2452 size_t ielen = len - offsetof(struct ieee80211_mgmt,
2453 u.probe_resp.variable);
2454 struct cfg80211_non_tx_bss non_tx_data;
2455
2456 res = cfg80211_inform_single_bss_frame_data(wiphy, data, mgmt,
2457 len, gfp);
2458 if (!res || !wiphy->support_mbssid ||
2459 !cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen))
2460 return res;
2461 if (wiphy->support_only_he_mbssid &&
2462 !cfg80211_find_ext_ie(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen))
2463 return res;
2464
2465 non_tx_data.tx_bss = res;
2466 /* process each non-transmitting bss */
2467 cfg80211_parse_mbssid_frame_data(wiphy, data, mgmt, len,
2468 &non_tx_data, gfp);
2469
2470 spin_lock_bh(&wiphy_to_rdev(wiphy)->bss_lock);
2471
2472 /* check if the res has other nontransmitting bss which is not
2473 * in MBSSID IE
2474 */
2475 ies1 = rcu_access_pointer(res->ies);
2476
2477 /* go through nontrans_list, if the timestamp of the BSS is
2478 * earlier than the timestamp of the transmitting BSS then
2479 * update it
2480 */
2481 list_for_each_entry(tmp_bss, &res->nontrans_list,
2482 nontrans_list) {
2483 ies2 = rcu_access_pointer(tmp_bss->ies);
2484 if (ies2->tsf < ies1->tsf)
2485 cfg80211_update_notlisted_nontrans(wiphy, tmp_bss,
2486 mgmt, len);
2487 }
2488 spin_unlock_bh(&wiphy_to_rdev(wiphy)->bss_lock);
2489
2490 return res;
2491 }
2492 EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
2493
2494 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2495 {
2496 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2497 struct cfg80211_internal_bss *bss;
2498
2499 if (!pub)
2500 return;
2501
2502 bss = container_of(pub, struct cfg80211_internal_bss, pub);
2503
2504 spin_lock_bh(&rdev->bss_lock);
2505 bss_ref_get(rdev, bss);
2506 spin_unlock_bh(&rdev->bss_lock);
2507 }
2508 EXPORT_SYMBOL(cfg80211_ref_bss);
2509
2510 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2511 {
2512 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2513 struct cfg80211_internal_bss *bss;
2514
2515 if (!pub)
2516 return;
2517
2518 bss = container_of(pub, struct cfg80211_internal_bss, pub);
2519
2520 spin_lock_bh(&rdev->bss_lock);
2521 bss_ref_put(rdev, bss);
2522 spin_unlock_bh(&rdev->bss_lock);
2523 }
2524 EXPORT_SYMBOL(cfg80211_put_bss);
2525
2526 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2527 {
2528 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2529 struct cfg80211_internal_bss *bss, *tmp1;
2530 struct cfg80211_bss *nontrans_bss, *tmp;
2531
2532 if (WARN_ON(!pub))
2533 return;
2534
2535 bss = container_of(pub, struct cfg80211_internal_bss, pub);
2536
2537 spin_lock_bh(&rdev->bss_lock);
2538 if (list_empty(&bss->list))
2539 goto out;
2540
2541 list_for_each_entry_safe(nontrans_bss, tmp,
2542 &pub->nontrans_list,
2543 nontrans_list) {
2544 tmp1 = container_of(nontrans_bss,
2545 struct cfg80211_internal_bss, pub);
2546 if (__cfg80211_unlink_bss(rdev, tmp1))
2547 rdev->bss_generation++;
2548 }
2549
2550 if (__cfg80211_unlink_bss(rdev, bss))
2551 rdev->bss_generation++;
2552 out:
2553 spin_unlock_bh(&rdev->bss_lock);
2554 }
2555 EXPORT_SYMBOL(cfg80211_unlink_bss);
2556
2557 void cfg80211_bss_iter(struct wiphy *wiphy,
2558 struct cfg80211_chan_def *chandef,
2559 void (*iter)(struct wiphy *wiphy,
2560 struct cfg80211_bss *bss,
2561 void *data),
2562 void *iter_data)
2563 {
2564 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2565 struct cfg80211_internal_bss *bss;
2566
2567 spin_lock_bh(&rdev->bss_lock);
2568
2569 list_for_each_entry(bss, &rdev->bss_list, list) {
2570 if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel))
2571 iter(wiphy, &bss->pub, iter_data);
2572 }
2573
2574 spin_unlock_bh(&rdev->bss_lock);
2575 }
2576 EXPORT_SYMBOL(cfg80211_bss_iter);
2577
2578 void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev,
2579 struct ieee80211_channel *chan)
2580 {
2581 struct wiphy *wiphy = wdev->wiphy;
2582 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2583 struct cfg80211_internal_bss *cbss = wdev->current_bss;
2584 struct cfg80211_internal_bss *new = NULL;
2585 struct cfg80211_internal_bss *bss;
2586 struct cfg80211_bss *nontrans_bss;
2587 struct cfg80211_bss *tmp;
2588
2589 spin_lock_bh(&rdev->bss_lock);
2590
2591 /*
2592 * Some APs use CSA also for bandwidth changes, i.e., without actually
2593 * changing the control channel, so no need to update in such a case.
2594 */
2595 if (cbss->pub.channel == chan)
2596 goto done;
2597
2598 /* use transmitting bss */
2599 if (cbss->pub.transmitted_bss)
2600 cbss = container_of(cbss->pub.transmitted_bss,
2601 struct cfg80211_internal_bss,
2602 pub);
2603
2604 cbss->pub.channel = chan;
2605
2606 list_for_each_entry(bss, &rdev->bss_list, list) {
2607 if (!cfg80211_bss_type_match(bss->pub.capability,
2608 bss->pub.channel->band,
2609 wdev->conn_bss_type))
2610 continue;
2611
2612 if (bss == cbss)
2613 continue;
2614
2615 if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) {
2616 new = bss;
2617 break;
2618 }
2619 }
2620
2621 if (new) {
2622 /* to save time, update IEs for transmitting bss only */
2623 if (cfg80211_update_known_bss(rdev, cbss, new, false)) {
2624 new->pub.proberesp_ies = NULL;
2625 new->pub.beacon_ies = NULL;
2626 }
2627
2628 list_for_each_entry_safe(nontrans_bss, tmp,
2629 &new->pub.nontrans_list,
2630 nontrans_list) {
2631 bss = container_of(nontrans_bss,
2632 struct cfg80211_internal_bss, pub);
2633 if (__cfg80211_unlink_bss(rdev, bss))
2634 rdev->bss_generation++;
2635 }
2636
2637 WARN_ON(atomic_read(&new->hold));
2638 if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new)))
2639 rdev->bss_generation++;
2640 }
2641
2642 rb_erase(&cbss->rbn, &rdev->bss_tree);
2643 rb_insert_bss(rdev, cbss);
2644 rdev->bss_generation++;
2645
2646 list_for_each_entry_safe(nontrans_bss, tmp,
2647 &cbss->pub.nontrans_list,
2648 nontrans_list) {
2649 bss = container_of(nontrans_bss,
2650 struct cfg80211_internal_bss, pub);
2651 bss->pub.channel = chan;
2652 rb_erase(&bss->rbn, &rdev->bss_tree);
2653 rb_insert_bss(rdev, bss);
2654 rdev->bss_generation++;
2655 }
2656
2657 done:
2658 spin_unlock_bh(&rdev->bss_lock);
2659 }
2660
2661 #ifdef CONFIG_CFG80211_WEXT
2662 static struct cfg80211_registered_device *
2663 cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
2664 {
2665 struct cfg80211_registered_device *rdev;
2666 struct net_device *dev;
2667
2668 ASSERT_RTNL();
2669
2670 dev = dev_get_by_index(net, ifindex);
2671 if (!dev)
2672 return ERR_PTR(-ENODEV);
2673 if (dev->ieee80211_ptr)
2674 rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy);
2675 else
2676 rdev = ERR_PTR(-ENODEV);
2677 dev_put(dev);
2678 return rdev;
2679 }
2680
2681 int cfg80211_wext_siwscan(struct net_device *dev,
2682 struct iw_request_info *info,
2683 union iwreq_data *wrqu, char *extra)
2684 {
2685 struct cfg80211_registered_device *rdev;
2686 struct wiphy *wiphy;
2687 struct iw_scan_req *wreq = NULL;
2688 struct cfg80211_scan_request *creq = NULL;
2689 int i, err, n_channels = 0;
2690 enum nl80211_band band;
2691
2692 if (!netif_running(dev))
2693 return -ENETDOWN;
2694
2695 if (wrqu->data.length == sizeof(struct iw_scan_req))
2696 wreq = (struct iw_scan_req *)extra;
2697
2698 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
2699
2700 if (IS_ERR(rdev))
2701 return PTR_ERR(rdev);
2702
2703 if (rdev->scan_req || rdev->scan_msg) {
2704 err = -EBUSY;
2705 goto out;
2706 }
2707
2708 wiphy = &rdev->wiphy;
2709
2710 /* Determine number of channels, needed to allocate creq */
2711 if (wreq && wreq->num_channels)
2712 n_channels = wreq->num_channels;
2713 else
2714 n_channels = ieee80211_get_num_supported_channels(wiphy);
2715
2716 creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) +
2717 n_channels * sizeof(void *),
2718 GFP_ATOMIC);
2719 if (!creq) {
2720 err = -ENOMEM;
2721 goto out;
2722 }
2723
2724 creq->wiphy = wiphy;
2725 creq->wdev = dev->ieee80211_ptr;
2726 /* SSIDs come after channels */
2727 creq->ssids = (void *)&creq->channels[n_channels];
2728 creq->n_channels = n_channels;
2729 creq->n_ssids = 1;
2730 creq->scan_start = jiffies;
2731
2732 /* translate "Scan on frequencies" request */
2733 i = 0;
2734 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2735 int j;
2736
2737 if (!wiphy->bands[band])
2738 continue;
2739
2740 for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
2741 /* ignore disabled channels */
2742 if (wiphy->bands[band]->channels[j].flags &
2743 IEEE80211_CHAN_DISABLED)
2744 continue;
2745
2746 /* If we have a wireless request structure and the
2747 * wireless request specifies frequencies, then search
2748 * for the matching hardware channel.
2749 */
2750 if (wreq && wreq->num_channels) {
2751 int k;
2752 int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
2753 for (k = 0; k < wreq->num_channels; k++) {
2754 struct iw_freq *freq =
2755 &wreq->channel_list[k];
2756 int wext_freq =
2757 cfg80211_wext_freq(freq);
2758
2759 if (wext_freq == wiphy_freq)
2760 goto wext_freq_found;
2761 }
2762 goto wext_freq_not_found;
2763 }
2764
2765 wext_freq_found:
2766 creq->channels[i] = &wiphy->bands[band]->channels[j];
2767 i++;
2768 wext_freq_not_found: ;
2769 }
2770 }
2771 /* No channels found? */
2772 if (!i) {
2773 err = -EINVAL;
2774 goto out;
2775 }
2776
2777 /* Set real number of channels specified in creq->channels[] */
2778 creq->n_channels = i;
2779
2780 /* translate "Scan for SSID" request */
2781 if (wreq) {
2782 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
2783 if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) {
2784 err = -EINVAL;
2785 goto out;
2786 }
2787 memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len);
2788 creq->ssids[0].ssid_len = wreq->essid_len;
2789 }
2790 if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE)
2791 creq->n_ssids = 0;
2792 }
2793
2794 for (i = 0; i < NUM_NL80211_BANDS; i++)
2795 if (wiphy->bands[i])
2796 creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1;
2797
2798 eth_broadcast_addr(creq->bssid);
2799
2800 wiphy_lock(&rdev->wiphy);
2801
2802 rdev->scan_req = creq;
2803 err = rdev_scan(rdev, creq);
2804 if (err) {
2805 rdev->scan_req = NULL;
2806 /* creq will be freed below */
2807 } else {
2808 nl80211_send_scan_start(rdev, dev->ieee80211_ptr);
2809 /* creq now owned by driver */
2810 creq = NULL;
2811 dev_hold(dev);
2812 }
2813 wiphy_unlock(&rdev->wiphy);
2814 out:
2815 kfree(creq);
2816 return err;
2817 }
2818 EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan);
2819
2820 static char *ieee80211_scan_add_ies(struct iw_request_info *info,
2821 const struct cfg80211_bss_ies *ies,
2822 char *current_ev, char *end_buf)
2823 {
2824 const u8 *pos, *end, *next;
2825 struct iw_event iwe;
2826
2827 if (!ies)
2828 return current_ev;
2829
2830 /*
2831 * If needed, fragment the IEs buffer (at IE boundaries) into short
2832 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
2833 */
2834 pos = ies->data;
2835 end = pos + ies->len;
2836
2837 while (end - pos > IW_GENERIC_IE_MAX) {
2838 next = pos + 2 + pos[1];
2839 while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
2840 next = next + 2 + next[1];
2841
2842 memset(&iwe, 0, sizeof(iwe));
2843 iwe.cmd = IWEVGENIE;
2844 iwe.u.data.length = next - pos;
2845 current_ev = iwe_stream_add_point_check(info, current_ev,
2846 end_buf, &iwe,
2847 (void *)pos);
2848 if (IS_ERR(current_ev))
2849 return current_ev;
2850 pos = next;
2851 }
2852
2853 if (end > pos) {
2854 memset(&iwe, 0, sizeof(iwe));
2855 iwe.cmd = IWEVGENIE;
2856 iwe.u.data.length = end - pos;
2857 current_ev = iwe_stream_add_point_check(info, current_ev,
2858 end_buf, &iwe,
2859 (void *)pos);
2860 if (IS_ERR(current_ev))
2861 return current_ev;
2862 }
2863
2864 return current_ev;
2865 }
2866
2867 static char *
2868 ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
2869 struct cfg80211_internal_bss *bss, char *current_ev,
2870 char *end_buf)
2871 {
2872 const struct cfg80211_bss_ies *ies;
2873 struct iw_event iwe;
2874 const u8 *ie;
2875 u8 buf[50];
2876 u8 *cfg, *p, *tmp;
2877 int rem, i, sig;
2878 bool ismesh = false;
2879
2880 memset(&iwe, 0, sizeof(iwe));
2881 iwe.cmd = SIOCGIWAP;
2882 iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
2883 memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
2884 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2885 IW_EV_ADDR_LEN);
2886 if (IS_ERR(current_ev))
2887 return current_ev;
2888
2889 memset(&iwe, 0, sizeof(iwe));
2890 iwe.cmd = SIOCGIWFREQ;
2891 iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
2892 iwe.u.freq.e = 0;
2893 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2894 IW_EV_FREQ_LEN);
2895 if (IS_ERR(current_ev))
2896 return current_ev;
2897
2898 memset(&iwe, 0, sizeof(iwe));
2899 iwe.cmd = SIOCGIWFREQ;
2900 iwe.u.freq.m = bss->pub.channel->center_freq;
2901 iwe.u.freq.e = 6;
2902 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2903 IW_EV_FREQ_LEN);
2904 if (IS_ERR(current_ev))
2905 return current_ev;
2906
2907 if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
2908 memset(&iwe, 0, sizeof(iwe));
2909 iwe.cmd = IWEVQUAL;
2910 iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
2911 IW_QUAL_NOISE_INVALID |
2912 IW_QUAL_QUAL_UPDATED;
2913 switch (wiphy->signal_type) {
2914 case CFG80211_SIGNAL_TYPE_MBM:
2915 sig = bss->pub.signal / 100;
2916 iwe.u.qual.level = sig;
2917 iwe.u.qual.updated |= IW_QUAL_DBM;
2918 if (sig < -110) /* rather bad */
2919 sig = -110;
2920 else if (sig > -40) /* perfect */
2921 sig = -40;
2922 /* will give a range of 0 .. 70 */
2923 iwe.u.qual.qual = sig + 110;
2924 break;
2925 case CFG80211_SIGNAL_TYPE_UNSPEC:
2926 iwe.u.qual.level = bss->pub.signal;
2927 /* will give range 0 .. 100 */
2928 iwe.u.qual.qual = bss->pub.signal;
2929 break;
2930 default:
2931 /* not reached */
2932 break;
2933 }
2934 current_ev = iwe_stream_add_event_check(info, current_ev,
2935 end_buf, &iwe,
2936 IW_EV_QUAL_LEN);
2937 if (IS_ERR(current_ev))
2938 return current_ev;
2939 }
2940
2941 memset(&iwe, 0, sizeof(iwe));
2942 iwe.cmd = SIOCGIWENCODE;
2943 if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
2944 iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
2945 else
2946 iwe.u.data.flags = IW_ENCODE_DISABLED;
2947 iwe.u.data.length = 0;
2948 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
2949 &iwe, "");
2950 if (IS_ERR(current_ev))
2951 return current_ev;
2952
2953 rcu_read_lock();
2954 ies = rcu_dereference(bss->pub.ies);
2955 rem = ies->len;
2956 ie = ies->data;
2957
2958 while (rem >= 2) {
2959 /* invalid data */
2960 if (ie[1] > rem - 2)
2961 break;
2962
2963 switch (ie[0]) {
2964 case WLAN_EID_SSID:
2965 memset(&iwe, 0, sizeof(iwe));
2966 iwe.cmd = SIOCGIWESSID;
2967 iwe.u.data.length = ie[1];
2968 iwe.u.data.flags = 1;
2969 current_ev = iwe_stream_add_point_check(info,
2970 current_ev,
2971 end_buf, &iwe,
2972 (u8 *)ie + 2);
2973 if (IS_ERR(current_ev))
2974 goto unlock;
2975 break;
2976 case WLAN_EID_MESH_ID:
2977 memset(&iwe, 0, sizeof(iwe));
2978 iwe.cmd = SIOCGIWESSID;
2979 iwe.u.data.length = ie[1];
2980 iwe.u.data.flags = 1;
2981 current_ev = iwe_stream_add_point_check(info,
2982 current_ev,
2983 end_buf, &iwe,
2984 (u8 *)ie + 2);
2985 if (IS_ERR(current_ev))
2986 goto unlock;
2987 break;
2988 case WLAN_EID_MESH_CONFIG:
2989 ismesh = true;
2990 if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
2991 break;
2992 cfg = (u8 *)ie + 2;
2993 memset(&iwe, 0, sizeof(iwe));
2994 iwe.cmd = IWEVCUSTOM;
2995 sprintf(buf, "Mesh Network Path Selection Protocol ID: "
2996 "0x%02X", cfg[0]);
2997 iwe.u.data.length = strlen(buf);
2998 current_ev = iwe_stream_add_point_check(info,
2999 current_ev,
3000 end_buf,
3001 &iwe, buf);
3002 if (IS_ERR(current_ev))
3003 goto unlock;
3004 sprintf(buf, "Path Selection Metric ID: 0x%02X",
3005 cfg[1]);
3006 iwe.u.data.length = strlen(buf);
3007 current_ev = iwe_stream_add_point_check(info,
3008 current_ev,
3009 end_buf,
3010 &iwe, buf);
3011 if (IS_ERR(current_ev))
3012 goto unlock;
3013 sprintf(buf, "Congestion Control Mode ID: 0x%02X",
3014 cfg[2]);
3015 iwe.u.data.length = strlen(buf);
3016 current_ev = iwe_stream_add_point_check(info,
3017 current_ev,
3018 end_buf,
3019 &iwe, buf);
3020 if (IS_ERR(current_ev))
3021 goto unlock;
3022 sprintf(buf, "Synchronization ID: 0x%02X", cfg[3]);
3023 iwe.u.data.length = strlen(buf);
3024 current_ev = iwe_stream_add_point_check(info,
3025 current_ev,
3026 end_buf,
3027 &iwe, buf);
3028 if (IS_ERR(current_ev))
3029 goto unlock;
3030 sprintf(buf, "Authentication ID: 0x%02X", cfg[4]);
3031 iwe.u.data.length = strlen(buf);
3032 current_ev = iwe_stream_add_point_check(info,
3033 current_ev,
3034 end_buf,
3035 &iwe, buf);
3036 if (IS_ERR(current_ev))
3037 goto unlock;
3038 sprintf(buf, "Formation Info: 0x%02X", cfg[5]);
3039 iwe.u.data.length = strlen(buf);
3040 current_ev = iwe_stream_add_point_check(info,
3041 current_ev,
3042 end_buf,
3043 &iwe, buf);
3044 if (IS_ERR(current_ev))
3045 goto unlock;
3046 sprintf(buf, "Capabilities: 0x%02X", cfg[6]);
3047 iwe.u.data.length = strlen(buf);
3048 current_ev = iwe_stream_add_point_check(info,
3049 current_ev,
3050 end_buf,
3051 &iwe, buf);
3052 if (IS_ERR(current_ev))
3053 goto unlock;
3054 break;
3055 case WLAN_EID_SUPP_RATES:
3056 case WLAN_EID_EXT_SUPP_RATES:
3057 /* display all supported rates in readable format */
3058 p = current_ev + iwe_stream_lcp_len(info);
3059
3060 memset(&iwe, 0, sizeof(iwe));
3061 iwe.cmd = SIOCGIWRATE;
3062 /* Those two flags are ignored... */
3063 iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
3064
3065 for (i = 0; i < ie[1]; i++) {
3066 iwe.u.bitrate.value =
3067 ((ie[i + 2] & 0x7f) * 500000);
3068 tmp = p;
3069 p = iwe_stream_add_value(info, current_ev, p,
3070 end_buf, &iwe,
3071 IW_EV_PARAM_LEN);
3072 if (p == tmp) {
3073 current_ev = ERR_PTR(-E2BIG);
3074 goto unlock;
3075 }
3076 }
3077 current_ev = p;
3078 break;
3079 }
3080 rem -= ie[1] + 2;
3081 ie += ie[1] + 2;
3082 }
3083
3084 if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
3085 ismesh) {
3086 memset(&iwe, 0, sizeof(iwe));
3087 iwe.cmd = SIOCGIWMODE;
3088 if (ismesh)
3089 iwe.u.mode = IW_MODE_MESH;
3090 else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
3091 iwe.u.mode = IW_MODE_MASTER;
3092 else
3093 iwe.u.mode = IW_MODE_ADHOC;
3094 current_ev = iwe_stream_add_event_check(info, current_ev,
3095 end_buf, &iwe,
3096 IW_EV_UINT_LEN);
3097 if (IS_ERR(current_ev))
3098 goto unlock;
3099 }
3100
3101 memset(&iwe, 0, sizeof(iwe));
3102 iwe.cmd = IWEVCUSTOM;
3103 sprintf(buf, "tsf=%016llx", (unsigned long long)(ies->tsf));
3104 iwe.u.data.length = strlen(buf);
3105 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3106 &iwe, buf);
3107 if (IS_ERR(current_ev))
3108 goto unlock;
3109 memset(&iwe, 0, sizeof(iwe));
3110 iwe.cmd = IWEVCUSTOM;
3111 sprintf(buf, " Last beacon: %ums ago",
3112 elapsed_jiffies_msecs(bss->ts));
3113 iwe.u.data.length = strlen(buf);
3114 current_ev = iwe_stream_add_point_check(info, current_ev,
3115 end_buf, &iwe, buf);
3116 if (IS_ERR(current_ev))
3117 goto unlock;
3118
3119 current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
3120
3121 unlock:
3122 rcu_read_unlock();
3123 return current_ev;
3124 }
3125
3126
3127 static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
3128 struct iw_request_info *info,
3129 char *buf, size_t len)
3130 {
3131 char *current_ev = buf;
3132 char *end_buf = buf + len;
3133 struct cfg80211_internal_bss *bss;
3134 int err = 0;
3135
3136 spin_lock_bh(&rdev->bss_lock);
3137 cfg80211_bss_expire(rdev);
3138
3139 list_for_each_entry(bss, &rdev->bss_list, list) {
3140 if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
3141 err = -E2BIG;
3142 break;
3143 }
3144 current_ev = ieee80211_bss(&rdev->wiphy, info, bss,
3145 current_ev, end_buf);
3146 if (IS_ERR(current_ev)) {
3147 err = PTR_ERR(current_ev);
3148 break;
3149 }
3150 }
3151 spin_unlock_bh(&rdev->bss_lock);
3152
3153 if (err)
3154 return err;
3155 return current_ev - buf;
3156 }
3157
3158
3159 int cfg80211_wext_giwscan(struct net_device *dev,
3160 struct iw_request_info *info,
3161 struct iw_point *data, char *extra)
3162 {
3163 struct cfg80211_registered_device *rdev;
3164 int res;
3165
3166 if (!netif_running(dev))
3167 return -ENETDOWN;
3168
3169 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3170
3171 if (IS_ERR(rdev))
3172 return PTR_ERR(rdev);
3173
3174 if (rdev->scan_req || rdev->scan_msg)
3175 return -EAGAIN;
3176
3177 res = ieee80211_scan_results(rdev, info, extra, data->length);
3178 data->length = 0;
3179 if (res >= 0) {
3180 data->length = res;
3181 res = 0;
3182 }
3183
3184 return res;
3185 }
3186 EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan);
3187 #endif