]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - net/wireless/scan.c
Merge branch 'net-phy-mscc-miim-reduce-waiting-time-between-MDIO-transactions'
[mirror_ubuntu-hirsute-kernel.git] / net / wireless / scan.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * cfg80211 scan result handling
4 *
5 * Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2016 Intel Deutschland GmbH
8 * Copyright (C) 2018-2019 Intel Corporation
9 */
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/netdevice.h>
14 #include <linux/wireless.h>
15 #include <linux/nl80211.h>
16 #include <linux/etherdevice.h>
17 #include <net/arp.h>
18 #include <net/cfg80211.h>
19 #include <net/cfg80211-wext.h>
20 #include <net/iw_handler.h>
21 #include "core.h"
22 #include "nl80211.h"
23 #include "wext-compat.h"
24 #include "rdev-ops.h"
25
26 /**
27 * DOC: BSS tree/list structure
28 *
29 * At the top level, the BSS list is kept in both a list in each
30 * registered device (@bss_list) as well as an RB-tree for faster
31 * lookup. In the RB-tree, entries can be looked up using their
32 * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
33 * for other BSSes.
34 *
35 * Due to the possibility of hidden SSIDs, there's a second level
36 * structure, the "hidden_list" and "hidden_beacon_bss" pointer.
37 * The hidden_list connects all BSSes belonging to a single AP
38 * that has a hidden SSID, and connects beacon and probe response
39 * entries. For a probe response entry for a hidden SSID, the
40 * hidden_beacon_bss pointer points to the BSS struct holding the
41 * beacon's information.
42 *
43 * Reference counting is done for all these references except for
44 * the hidden_list, so that a beacon BSS struct that is otherwise
45 * not referenced has one reference for being on the bss_list and
46 * one for each probe response entry that points to it using the
47 * hidden_beacon_bss pointer. When a BSS struct that has such a
48 * pointer is get/put, the refcount update is also propagated to
49 * the referenced struct, this ensure that it cannot get removed
50 * while somebody is using the probe response version.
51 *
52 * Note that the hidden_beacon_bss pointer never changes, due to
53 * the reference counting. Therefore, no locking is needed for
54 * it.
55 *
56 * Also note that the hidden_beacon_bss pointer is only relevant
57 * if the driver uses something other than the IEs, e.g. private
58 * data stored stored in the BSS struct, since the beacon IEs are
59 * also linked into the probe response struct.
60 */
61
62 /*
63 * Limit the number of BSS entries stored in mac80211. Each one is
64 * a bit over 4k at most, so this limits to roughly 4-5M of memory.
65 * If somebody wants to really attack this though, they'd likely
66 * use small beacons, and only one type of frame, limiting each of
67 * the entries to a much smaller size (in order to generate more
68 * entries in total, so overhead is bigger.)
69 */
70 static int bss_entries_limit = 1000;
71 module_param(bss_entries_limit, int, 0644);
72 MODULE_PARM_DESC(bss_entries_limit,
73 "limit to number of scan BSS entries (per wiphy, default 1000)");
74
75 #define IEEE80211_SCAN_RESULT_EXPIRE (30 * HZ)
76
77 static void bss_free(struct cfg80211_internal_bss *bss)
78 {
79 struct cfg80211_bss_ies *ies;
80
81 if (WARN_ON(atomic_read(&bss->hold)))
82 return;
83
84 ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
85 if (ies && !bss->pub.hidden_beacon_bss)
86 kfree_rcu(ies, rcu_head);
87 ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
88 if (ies)
89 kfree_rcu(ies, rcu_head);
90
91 /*
92 * This happens when the module is removed, it doesn't
93 * really matter any more save for completeness
94 */
95 if (!list_empty(&bss->hidden_list))
96 list_del(&bss->hidden_list);
97
98 kfree(bss);
99 }
100
101 static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
102 struct cfg80211_internal_bss *bss)
103 {
104 lockdep_assert_held(&rdev->bss_lock);
105
106 bss->refcount++;
107 if (bss->pub.hidden_beacon_bss) {
108 bss = container_of(bss->pub.hidden_beacon_bss,
109 struct cfg80211_internal_bss,
110 pub);
111 bss->refcount++;
112 }
113 if (bss->pub.transmitted_bss) {
114 bss = container_of(bss->pub.transmitted_bss,
115 struct cfg80211_internal_bss,
116 pub);
117 bss->refcount++;
118 }
119 }
120
121 static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
122 struct cfg80211_internal_bss *bss)
123 {
124 lockdep_assert_held(&rdev->bss_lock);
125
126 if (bss->pub.hidden_beacon_bss) {
127 struct cfg80211_internal_bss *hbss;
128 hbss = container_of(bss->pub.hidden_beacon_bss,
129 struct cfg80211_internal_bss,
130 pub);
131 hbss->refcount--;
132 if (hbss->refcount == 0)
133 bss_free(hbss);
134 }
135
136 if (bss->pub.transmitted_bss) {
137 struct cfg80211_internal_bss *tbss;
138
139 tbss = container_of(bss->pub.transmitted_bss,
140 struct cfg80211_internal_bss,
141 pub);
142 tbss->refcount--;
143 if (tbss->refcount == 0)
144 bss_free(tbss);
145 }
146
147 bss->refcount--;
148 if (bss->refcount == 0)
149 bss_free(bss);
150 }
151
152 static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
153 struct cfg80211_internal_bss *bss)
154 {
155 lockdep_assert_held(&rdev->bss_lock);
156
157 if (!list_empty(&bss->hidden_list)) {
158 /*
159 * don't remove the beacon entry if it has
160 * probe responses associated with it
161 */
162 if (!bss->pub.hidden_beacon_bss)
163 return false;
164 /*
165 * if it's a probe response entry break its
166 * link to the other entries in the group
167 */
168 list_del_init(&bss->hidden_list);
169 }
170
171 list_del_init(&bss->list);
172 list_del_init(&bss->pub.nontrans_list);
173 rb_erase(&bss->rbn, &rdev->bss_tree);
174 rdev->bss_entries--;
175 WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list),
176 "rdev bss entries[%d]/list[empty:%d] corruption\n",
177 rdev->bss_entries, list_empty(&rdev->bss_list));
178 bss_ref_put(rdev, bss);
179 return true;
180 }
181
182 bool cfg80211_is_element_inherited(const struct element *elem,
183 const struct element *non_inherit_elem)
184 {
185 u8 id_len, ext_id_len, i, loop_len, id;
186 const u8 *list;
187
188 if (elem->id == WLAN_EID_MULTIPLE_BSSID)
189 return false;
190
191 if (!non_inherit_elem || non_inherit_elem->datalen < 2)
192 return true;
193
194 /*
195 * non inheritance element format is:
196 * ext ID (56) | IDs list len | list | extension IDs list len | list
197 * Both lists are optional. Both lengths are mandatory.
198 * This means valid length is:
199 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths
200 */
201 id_len = non_inherit_elem->data[1];
202 if (non_inherit_elem->datalen < 3 + id_len)
203 return true;
204
205 ext_id_len = non_inherit_elem->data[2 + id_len];
206 if (non_inherit_elem->datalen < 3 + id_len + ext_id_len)
207 return true;
208
209 if (elem->id == WLAN_EID_EXTENSION) {
210 if (!ext_id_len)
211 return true;
212 loop_len = ext_id_len;
213 list = &non_inherit_elem->data[3 + id_len];
214 id = elem->data[0];
215 } else {
216 if (!id_len)
217 return true;
218 loop_len = id_len;
219 list = &non_inherit_elem->data[2];
220 id = elem->id;
221 }
222
223 for (i = 0; i < loop_len; i++) {
224 if (list[i] == id)
225 return false;
226 }
227
228 return true;
229 }
230 EXPORT_SYMBOL(cfg80211_is_element_inherited);
231
232 static size_t cfg80211_gen_new_ie(const u8 *ie, size_t ielen,
233 const u8 *subelement, size_t subie_len,
234 u8 *new_ie, gfp_t gfp)
235 {
236 u8 *pos, *tmp;
237 const u8 *tmp_old, *tmp_new;
238 const struct element *non_inherit_elem;
239 u8 *sub_copy;
240
241 /* copy subelement as we need to change its content to
242 * mark an ie after it is processed.
243 */
244 sub_copy = kmemdup(subelement, subie_len, gfp);
245 if (!sub_copy)
246 return 0;
247
248 pos = &new_ie[0];
249
250 /* set new ssid */
251 tmp_new = cfg80211_find_ie(WLAN_EID_SSID, sub_copy, subie_len);
252 if (tmp_new) {
253 memcpy(pos, tmp_new, tmp_new[1] + 2);
254 pos += (tmp_new[1] + 2);
255 }
256
257 /* get non inheritance list if exists */
258 non_inherit_elem =
259 cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
260 sub_copy, subie_len);
261
262 /* go through IEs in ie (skip SSID) and subelement,
263 * merge them into new_ie
264 */
265 tmp_old = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen);
266 tmp_old = (tmp_old) ? tmp_old + tmp_old[1] + 2 : ie;
267
268 while (tmp_old + tmp_old[1] + 2 - ie <= ielen) {
269 if (tmp_old[0] == 0) {
270 tmp_old++;
271 continue;
272 }
273
274 if (tmp_old[0] == WLAN_EID_EXTENSION)
275 tmp = (u8 *)cfg80211_find_ext_ie(tmp_old[2], sub_copy,
276 subie_len);
277 else
278 tmp = (u8 *)cfg80211_find_ie(tmp_old[0], sub_copy,
279 subie_len);
280
281 if (!tmp) {
282 const struct element *old_elem = (void *)tmp_old;
283
284 /* ie in old ie but not in subelement */
285 if (cfg80211_is_element_inherited(old_elem,
286 non_inherit_elem)) {
287 memcpy(pos, tmp_old, tmp_old[1] + 2);
288 pos += tmp_old[1] + 2;
289 }
290 } else {
291 /* ie in transmitting ie also in subelement,
292 * copy from subelement and flag the ie in subelement
293 * as copied (by setting eid field to WLAN_EID_SSID,
294 * which is skipped anyway).
295 * For vendor ie, compare OUI + type + subType to
296 * determine if they are the same ie.
297 */
298 if (tmp_old[0] == WLAN_EID_VENDOR_SPECIFIC) {
299 if (!memcmp(tmp_old + 2, tmp + 2, 5)) {
300 /* same vendor ie, copy from
301 * subelement
302 */
303 memcpy(pos, tmp, tmp[1] + 2);
304 pos += tmp[1] + 2;
305 tmp[0] = WLAN_EID_SSID;
306 } else {
307 memcpy(pos, tmp_old, tmp_old[1] + 2);
308 pos += tmp_old[1] + 2;
309 }
310 } else {
311 /* copy ie from subelement into new ie */
312 memcpy(pos, tmp, tmp[1] + 2);
313 pos += tmp[1] + 2;
314 tmp[0] = WLAN_EID_SSID;
315 }
316 }
317
318 if (tmp_old + tmp_old[1] + 2 - ie == ielen)
319 break;
320
321 tmp_old += tmp_old[1] + 2;
322 }
323
324 /* go through subelement again to check if there is any ie not
325 * copied to new ie, skip ssid, capability, bssid-index ie
326 */
327 tmp_new = sub_copy;
328 while (tmp_new + tmp_new[1] + 2 - sub_copy <= subie_len) {
329 if (!(tmp_new[0] == WLAN_EID_NON_TX_BSSID_CAP ||
330 tmp_new[0] == WLAN_EID_SSID)) {
331 memcpy(pos, tmp_new, tmp_new[1] + 2);
332 pos += tmp_new[1] + 2;
333 }
334 if (tmp_new + tmp_new[1] + 2 - sub_copy == subie_len)
335 break;
336 tmp_new += tmp_new[1] + 2;
337 }
338
339 kfree(sub_copy);
340 return pos - new_ie;
341 }
342
343 static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
344 const u8 *ssid, size_t ssid_len)
345 {
346 const struct cfg80211_bss_ies *ies;
347 const u8 *ssidie;
348
349 if (bssid && !ether_addr_equal(a->bssid, bssid))
350 return false;
351
352 if (!ssid)
353 return true;
354
355 ies = rcu_access_pointer(a->ies);
356 if (!ies)
357 return false;
358 ssidie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
359 if (!ssidie)
360 return false;
361 if (ssidie[1] != ssid_len)
362 return false;
363 return memcmp(ssidie + 2, ssid, ssid_len) == 0;
364 }
365
366 static int
367 cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss,
368 struct cfg80211_bss *nontrans_bss)
369 {
370 const u8 *ssid;
371 size_t ssid_len;
372 struct cfg80211_bss *bss = NULL;
373
374 rcu_read_lock();
375 ssid = ieee80211_bss_get_ie(nontrans_bss, WLAN_EID_SSID);
376 if (!ssid) {
377 rcu_read_unlock();
378 return -EINVAL;
379 }
380 ssid_len = ssid[1];
381 ssid = ssid + 2;
382 rcu_read_unlock();
383
384 /* check if nontrans_bss is in the list */
385 list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) {
386 if (is_bss(bss, nontrans_bss->bssid, ssid, ssid_len))
387 return 0;
388 }
389
390 /* add to the list */
391 list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list);
392 return 0;
393 }
394
395 static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
396 unsigned long expire_time)
397 {
398 struct cfg80211_internal_bss *bss, *tmp;
399 bool expired = false;
400
401 lockdep_assert_held(&rdev->bss_lock);
402
403 list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
404 if (atomic_read(&bss->hold))
405 continue;
406 if (!time_after(expire_time, bss->ts))
407 continue;
408
409 if (__cfg80211_unlink_bss(rdev, bss))
410 expired = true;
411 }
412
413 if (expired)
414 rdev->bss_generation++;
415 }
416
417 static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev)
418 {
419 struct cfg80211_internal_bss *bss, *oldest = NULL;
420 bool ret;
421
422 lockdep_assert_held(&rdev->bss_lock);
423
424 list_for_each_entry(bss, &rdev->bss_list, list) {
425 if (atomic_read(&bss->hold))
426 continue;
427
428 if (!list_empty(&bss->hidden_list) &&
429 !bss->pub.hidden_beacon_bss)
430 continue;
431
432 if (oldest && time_before(oldest->ts, bss->ts))
433 continue;
434 oldest = bss;
435 }
436
437 if (WARN_ON(!oldest))
438 return false;
439
440 /*
441 * The callers make sure to increase rdev->bss_generation if anything
442 * gets removed (and a new entry added), so there's no need to also do
443 * it here.
444 */
445
446 ret = __cfg80211_unlink_bss(rdev, oldest);
447 WARN_ON(!ret);
448 return ret;
449 }
450
451 void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
452 bool send_message)
453 {
454 struct cfg80211_scan_request *request;
455 struct wireless_dev *wdev;
456 struct sk_buff *msg;
457 #ifdef CONFIG_CFG80211_WEXT
458 union iwreq_data wrqu;
459 #endif
460
461 ASSERT_RTNL();
462
463 if (rdev->scan_msg) {
464 nl80211_send_scan_msg(rdev, rdev->scan_msg);
465 rdev->scan_msg = NULL;
466 return;
467 }
468
469 request = rdev->scan_req;
470 if (!request)
471 return;
472
473 wdev = request->wdev;
474
475 /*
476 * This must be before sending the other events!
477 * Otherwise, wpa_supplicant gets completely confused with
478 * wext events.
479 */
480 if (wdev->netdev)
481 cfg80211_sme_scan_done(wdev->netdev);
482
483 if (!request->info.aborted &&
484 request->flags & NL80211_SCAN_FLAG_FLUSH) {
485 /* flush entries from previous scans */
486 spin_lock_bh(&rdev->bss_lock);
487 __cfg80211_bss_expire(rdev, request->scan_start);
488 spin_unlock_bh(&rdev->bss_lock);
489 }
490
491 msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted);
492
493 #ifdef CONFIG_CFG80211_WEXT
494 if (wdev->netdev && !request->info.aborted) {
495 memset(&wrqu, 0, sizeof(wrqu));
496
497 wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL);
498 }
499 #endif
500
501 if (wdev->netdev)
502 dev_put(wdev->netdev);
503
504 rdev->scan_req = NULL;
505 kfree(request);
506
507 if (!send_message)
508 rdev->scan_msg = msg;
509 else
510 nl80211_send_scan_msg(rdev, msg);
511 }
512
513 void __cfg80211_scan_done(struct work_struct *wk)
514 {
515 struct cfg80211_registered_device *rdev;
516
517 rdev = container_of(wk, struct cfg80211_registered_device,
518 scan_done_wk);
519
520 rtnl_lock();
521 ___cfg80211_scan_done(rdev, true);
522 rtnl_unlock();
523 }
524
525 void cfg80211_scan_done(struct cfg80211_scan_request *request,
526 struct cfg80211_scan_info *info)
527 {
528 trace_cfg80211_scan_done(request, info);
529 WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req);
530
531 request->info = *info;
532 request->notified = true;
533 queue_work(cfg80211_wq, &wiphy_to_rdev(request->wiphy)->scan_done_wk);
534 }
535 EXPORT_SYMBOL(cfg80211_scan_done);
536
537 void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev,
538 struct cfg80211_sched_scan_request *req)
539 {
540 ASSERT_RTNL();
541
542 list_add_rcu(&req->list, &rdev->sched_scan_req_list);
543 }
544
545 static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev,
546 struct cfg80211_sched_scan_request *req)
547 {
548 ASSERT_RTNL();
549
550 list_del_rcu(&req->list);
551 kfree_rcu(req, rcu_head);
552 }
553
554 static struct cfg80211_sched_scan_request *
555 cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid)
556 {
557 struct cfg80211_sched_scan_request *pos;
558
559 list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list,
560 lockdep_rtnl_is_held()) {
561 if (pos->reqid == reqid)
562 return pos;
563 }
564 return NULL;
565 }
566
567 /*
568 * Determines if a scheduled scan request can be handled. When a legacy
569 * scheduled scan is running no other scheduled scan is allowed regardless
570 * whether the request is for legacy or multi-support scan. When a multi-support
571 * scheduled scan is running a request for legacy scan is not allowed. In this
572 * case a request for multi-support scan can be handled if resources are
573 * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached.
574 */
575 int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev,
576 bool want_multi)
577 {
578 struct cfg80211_sched_scan_request *pos;
579 int i = 0;
580
581 list_for_each_entry(pos, &rdev->sched_scan_req_list, list) {
582 /* request id zero means legacy in progress */
583 if (!i && !pos->reqid)
584 return -EINPROGRESS;
585 i++;
586 }
587
588 if (i) {
589 /* no legacy allowed when multi request(s) are active */
590 if (!want_multi)
591 return -EINPROGRESS;
592
593 /* resource limit reached */
594 if (i == rdev->wiphy.max_sched_scan_reqs)
595 return -ENOSPC;
596 }
597 return 0;
598 }
599
600 void cfg80211_sched_scan_results_wk(struct work_struct *work)
601 {
602 struct cfg80211_registered_device *rdev;
603 struct cfg80211_sched_scan_request *req, *tmp;
604
605 rdev = container_of(work, struct cfg80211_registered_device,
606 sched_scan_res_wk);
607
608 rtnl_lock();
609 list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) {
610 if (req->report_results) {
611 req->report_results = false;
612 if (req->flags & NL80211_SCAN_FLAG_FLUSH) {
613 /* flush entries from previous scans */
614 spin_lock_bh(&rdev->bss_lock);
615 __cfg80211_bss_expire(rdev, req->scan_start);
616 spin_unlock_bh(&rdev->bss_lock);
617 req->scan_start = jiffies;
618 }
619 nl80211_send_sched_scan(req,
620 NL80211_CMD_SCHED_SCAN_RESULTS);
621 }
622 }
623 rtnl_unlock();
624 }
625
626 void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid)
627 {
628 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
629 struct cfg80211_sched_scan_request *request;
630
631 trace_cfg80211_sched_scan_results(wiphy, reqid);
632 /* ignore if we're not scanning */
633
634 rcu_read_lock();
635 request = cfg80211_find_sched_scan_req(rdev, reqid);
636 if (request) {
637 request->report_results = true;
638 queue_work(cfg80211_wq, &rdev->sched_scan_res_wk);
639 }
640 rcu_read_unlock();
641 }
642 EXPORT_SYMBOL(cfg80211_sched_scan_results);
643
644 void cfg80211_sched_scan_stopped_rtnl(struct wiphy *wiphy, u64 reqid)
645 {
646 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
647
648 ASSERT_RTNL();
649
650 trace_cfg80211_sched_scan_stopped(wiphy, reqid);
651
652 __cfg80211_stop_sched_scan(rdev, reqid, true);
653 }
654 EXPORT_SYMBOL(cfg80211_sched_scan_stopped_rtnl);
655
656 void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid)
657 {
658 rtnl_lock();
659 cfg80211_sched_scan_stopped_rtnl(wiphy, reqid);
660 rtnl_unlock();
661 }
662 EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
663
664 int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev,
665 struct cfg80211_sched_scan_request *req,
666 bool driver_initiated)
667 {
668 ASSERT_RTNL();
669
670 if (!driver_initiated) {
671 int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid);
672 if (err)
673 return err;
674 }
675
676 nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED);
677
678 cfg80211_del_sched_scan_req(rdev, req);
679
680 return 0;
681 }
682
683 int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
684 u64 reqid, bool driver_initiated)
685 {
686 struct cfg80211_sched_scan_request *sched_scan_req;
687
688 ASSERT_RTNL();
689
690 sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid);
691 if (!sched_scan_req)
692 return -ENOENT;
693
694 return cfg80211_stop_sched_scan_req(rdev, sched_scan_req,
695 driver_initiated);
696 }
697
698 void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
699 unsigned long age_secs)
700 {
701 struct cfg80211_internal_bss *bss;
702 unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC);
703
704 spin_lock_bh(&rdev->bss_lock);
705 list_for_each_entry(bss, &rdev->bss_list, list)
706 bss->ts -= age_jiffies;
707 spin_unlock_bh(&rdev->bss_lock);
708 }
709
710 void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
711 {
712 __cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
713 }
714
715 const struct element *
716 cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
717 const u8 *match, unsigned int match_len,
718 unsigned int match_offset)
719 {
720 const struct element *elem;
721
722 for_each_element_id(elem, eid, ies, len) {
723 if (elem->datalen >= match_offset + match_len &&
724 !memcmp(elem->data + match_offset, match, match_len))
725 return elem;
726 }
727
728 return NULL;
729 }
730 EXPORT_SYMBOL(cfg80211_find_elem_match);
731
732 const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
733 const u8 *ies,
734 unsigned int len)
735 {
736 const struct element *elem;
737 u8 match[] = { oui >> 16, oui >> 8, oui, oui_type };
738 int match_len = (oui_type < 0) ? 3 : sizeof(match);
739
740 if (WARN_ON(oui_type > 0xff))
741 return NULL;
742
743 elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len,
744 match, match_len, 0);
745
746 if (!elem || elem->datalen < 4)
747 return NULL;
748
749 return elem;
750 }
751 EXPORT_SYMBOL(cfg80211_find_vendor_elem);
752
753 /**
754 * enum bss_compare_mode - BSS compare mode
755 * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
756 * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
757 * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
758 */
759 enum bss_compare_mode {
760 BSS_CMP_REGULAR,
761 BSS_CMP_HIDE_ZLEN,
762 BSS_CMP_HIDE_NUL,
763 };
764
765 static int cmp_bss(struct cfg80211_bss *a,
766 struct cfg80211_bss *b,
767 enum bss_compare_mode mode)
768 {
769 const struct cfg80211_bss_ies *a_ies, *b_ies;
770 const u8 *ie1 = NULL;
771 const u8 *ie2 = NULL;
772 int i, r;
773
774 if (a->channel != b->channel)
775 return b->channel->center_freq - a->channel->center_freq;
776
777 a_ies = rcu_access_pointer(a->ies);
778 if (!a_ies)
779 return -1;
780 b_ies = rcu_access_pointer(b->ies);
781 if (!b_ies)
782 return 1;
783
784 if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
785 ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID,
786 a_ies->data, a_ies->len);
787 if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
788 ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID,
789 b_ies->data, b_ies->len);
790 if (ie1 && ie2) {
791 int mesh_id_cmp;
792
793 if (ie1[1] == ie2[1])
794 mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]);
795 else
796 mesh_id_cmp = ie2[1] - ie1[1];
797
798 ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
799 a_ies->data, a_ies->len);
800 ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
801 b_ies->data, b_ies->len);
802 if (ie1 && ie2) {
803 if (mesh_id_cmp)
804 return mesh_id_cmp;
805 if (ie1[1] != ie2[1])
806 return ie2[1] - ie1[1];
807 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
808 }
809 }
810
811 r = memcmp(a->bssid, b->bssid, sizeof(a->bssid));
812 if (r)
813 return r;
814
815 ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len);
816 ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len);
817
818 if (!ie1 && !ie2)
819 return 0;
820
821 /*
822 * Note that with "hide_ssid", the function returns a match if
823 * the already-present BSS ("b") is a hidden SSID beacon for
824 * the new BSS ("a").
825 */
826
827 /* sort missing IE before (left of) present IE */
828 if (!ie1)
829 return -1;
830 if (!ie2)
831 return 1;
832
833 switch (mode) {
834 case BSS_CMP_HIDE_ZLEN:
835 /*
836 * In ZLEN mode we assume the BSS entry we're
837 * looking for has a zero-length SSID. So if
838 * the one we're looking at right now has that,
839 * return 0. Otherwise, return the difference
840 * in length, but since we're looking for the
841 * 0-length it's really equivalent to returning
842 * the length of the one we're looking at.
843 *
844 * No content comparison is needed as we assume
845 * the content length is zero.
846 */
847 return ie2[1];
848 case BSS_CMP_REGULAR:
849 default:
850 /* sort by length first, then by contents */
851 if (ie1[1] != ie2[1])
852 return ie2[1] - ie1[1];
853 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
854 case BSS_CMP_HIDE_NUL:
855 if (ie1[1] != ie2[1])
856 return ie2[1] - ie1[1];
857 /* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
858 for (i = 0; i < ie2[1]; i++)
859 if (ie2[i + 2])
860 return -1;
861 return 0;
862 }
863 }
864
865 static bool cfg80211_bss_type_match(u16 capability,
866 enum nl80211_band band,
867 enum ieee80211_bss_type bss_type)
868 {
869 bool ret = true;
870 u16 mask, val;
871
872 if (bss_type == IEEE80211_BSS_TYPE_ANY)
873 return ret;
874
875 if (band == NL80211_BAND_60GHZ) {
876 mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
877 switch (bss_type) {
878 case IEEE80211_BSS_TYPE_ESS:
879 val = WLAN_CAPABILITY_DMG_TYPE_AP;
880 break;
881 case IEEE80211_BSS_TYPE_PBSS:
882 val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
883 break;
884 case IEEE80211_BSS_TYPE_IBSS:
885 val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
886 break;
887 default:
888 return false;
889 }
890 } else {
891 mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
892 switch (bss_type) {
893 case IEEE80211_BSS_TYPE_ESS:
894 val = WLAN_CAPABILITY_ESS;
895 break;
896 case IEEE80211_BSS_TYPE_IBSS:
897 val = WLAN_CAPABILITY_IBSS;
898 break;
899 case IEEE80211_BSS_TYPE_MBSS:
900 val = 0;
901 break;
902 default:
903 return false;
904 }
905 }
906
907 ret = ((capability & mask) == val);
908 return ret;
909 }
910
911 /* Returned bss is reference counted and must be cleaned up appropriately. */
912 struct cfg80211_bss *cfg80211_get_bss(struct wiphy *wiphy,
913 struct ieee80211_channel *channel,
914 const u8 *bssid,
915 const u8 *ssid, size_t ssid_len,
916 enum ieee80211_bss_type bss_type,
917 enum ieee80211_privacy privacy)
918 {
919 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
920 struct cfg80211_internal_bss *bss, *res = NULL;
921 unsigned long now = jiffies;
922 int bss_privacy;
923
924 trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
925 privacy);
926
927 spin_lock_bh(&rdev->bss_lock);
928
929 list_for_each_entry(bss, &rdev->bss_list, list) {
930 if (!cfg80211_bss_type_match(bss->pub.capability,
931 bss->pub.channel->band, bss_type))
932 continue;
933
934 bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
935 if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
936 (privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
937 continue;
938 if (channel && bss->pub.channel != channel)
939 continue;
940 if (!is_valid_ether_addr(bss->pub.bssid))
941 continue;
942 /* Don't get expired BSS structs */
943 if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
944 !atomic_read(&bss->hold))
945 continue;
946 if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
947 res = bss;
948 bss_ref_get(rdev, res);
949 break;
950 }
951 }
952
953 spin_unlock_bh(&rdev->bss_lock);
954 if (!res)
955 return NULL;
956 trace_cfg80211_return_bss(&res->pub);
957 return &res->pub;
958 }
959 EXPORT_SYMBOL(cfg80211_get_bss);
960
961 static void rb_insert_bss(struct cfg80211_registered_device *rdev,
962 struct cfg80211_internal_bss *bss)
963 {
964 struct rb_node **p = &rdev->bss_tree.rb_node;
965 struct rb_node *parent = NULL;
966 struct cfg80211_internal_bss *tbss;
967 int cmp;
968
969 while (*p) {
970 parent = *p;
971 tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
972
973 cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR);
974
975 if (WARN_ON(!cmp)) {
976 /* will sort of leak this BSS */
977 return;
978 }
979
980 if (cmp < 0)
981 p = &(*p)->rb_left;
982 else
983 p = &(*p)->rb_right;
984 }
985
986 rb_link_node(&bss->rbn, parent, p);
987 rb_insert_color(&bss->rbn, &rdev->bss_tree);
988 }
989
990 static struct cfg80211_internal_bss *
991 rb_find_bss(struct cfg80211_registered_device *rdev,
992 struct cfg80211_internal_bss *res,
993 enum bss_compare_mode mode)
994 {
995 struct rb_node *n = rdev->bss_tree.rb_node;
996 struct cfg80211_internal_bss *bss;
997 int r;
998
999 while (n) {
1000 bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
1001 r = cmp_bss(&res->pub, &bss->pub, mode);
1002
1003 if (r == 0)
1004 return bss;
1005 else if (r < 0)
1006 n = n->rb_left;
1007 else
1008 n = n->rb_right;
1009 }
1010
1011 return NULL;
1012 }
1013
1014 static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
1015 struct cfg80211_internal_bss *new)
1016 {
1017 const struct cfg80211_bss_ies *ies;
1018 struct cfg80211_internal_bss *bss;
1019 const u8 *ie;
1020 int i, ssidlen;
1021 u8 fold = 0;
1022 u32 n_entries = 0;
1023
1024 ies = rcu_access_pointer(new->pub.beacon_ies);
1025 if (WARN_ON(!ies))
1026 return false;
1027
1028 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1029 if (!ie) {
1030 /* nothing to do */
1031 return true;
1032 }
1033
1034 ssidlen = ie[1];
1035 for (i = 0; i < ssidlen; i++)
1036 fold |= ie[2 + i];
1037
1038 if (fold) {
1039 /* not a hidden SSID */
1040 return true;
1041 }
1042
1043 /* This is the bad part ... */
1044
1045 list_for_each_entry(bss, &rdev->bss_list, list) {
1046 /*
1047 * we're iterating all the entries anyway, so take the
1048 * opportunity to validate the list length accounting
1049 */
1050 n_entries++;
1051
1052 if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid))
1053 continue;
1054 if (bss->pub.channel != new->pub.channel)
1055 continue;
1056 if (bss->pub.scan_width != new->pub.scan_width)
1057 continue;
1058 if (rcu_access_pointer(bss->pub.beacon_ies))
1059 continue;
1060 ies = rcu_access_pointer(bss->pub.ies);
1061 if (!ies)
1062 continue;
1063 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1064 if (!ie)
1065 continue;
1066 if (ssidlen && ie[1] != ssidlen)
1067 continue;
1068 if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
1069 continue;
1070 if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
1071 list_del(&bss->hidden_list);
1072 /* combine them */
1073 list_add(&bss->hidden_list, &new->hidden_list);
1074 bss->pub.hidden_beacon_bss = &new->pub;
1075 new->refcount += bss->refcount;
1076 rcu_assign_pointer(bss->pub.beacon_ies,
1077 new->pub.beacon_ies);
1078 }
1079
1080 WARN_ONCE(n_entries != rdev->bss_entries,
1081 "rdev bss entries[%d]/list[len:%d] corruption\n",
1082 rdev->bss_entries, n_entries);
1083
1084 return true;
1085 }
1086
1087 struct cfg80211_non_tx_bss {
1088 struct cfg80211_bss *tx_bss;
1089 u8 max_bssid_indicator;
1090 u8 bssid_index;
1091 };
1092
1093 static bool
1094 cfg80211_update_known_bss(struct cfg80211_registered_device *rdev,
1095 struct cfg80211_internal_bss *known,
1096 struct cfg80211_internal_bss *new,
1097 bool signal_valid)
1098 {
1099 lockdep_assert_held(&rdev->bss_lock);
1100
1101 /* Update IEs */
1102 if (rcu_access_pointer(new->pub.proberesp_ies)) {
1103 const struct cfg80211_bss_ies *old;
1104
1105 old = rcu_access_pointer(known->pub.proberesp_ies);
1106
1107 rcu_assign_pointer(known->pub.proberesp_ies,
1108 new->pub.proberesp_ies);
1109 /* Override possible earlier Beacon frame IEs */
1110 rcu_assign_pointer(known->pub.ies,
1111 new->pub.proberesp_ies);
1112 if (old)
1113 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1114 } else if (rcu_access_pointer(new->pub.beacon_ies)) {
1115 const struct cfg80211_bss_ies *old;
1116 struct cfg80211_internal_bss *bss;
1117
1118 if (known->pub.hidden_beacon_bss &&
1119 !list_empty(&known->hidden_list)) {
1120 const struct cfg80211_bss_ies *f;
1121
1122 /* The known BSS struct is one of the probe
1123 * response members of a group, but we're
1124 * receiving a beacon (beacon_ies in the new
1125 * bss is used). This can only mean that the
1126 * AP changed its beacon from not having an
1127 * SSID to showing it, which is confusing so
1128 * drop this information.
1129 */
1130
1131 f = rcu_access_pointer(new->pub.beacon_ies);
1132 kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head);
1133 return false;
1134 }
1135
1136 old = rcu_access_pointer(known->pub.beacon_ies);
1137
1138 rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies);
1139
1140 /* Override IEs if they were from a beacon before */
1141 if (old == rcu_access_pointer(known->pub.ies))
1142 rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies);
1143
1144 /* Assign beacon IEs to all sub entries */
1145 list_for_each_entry(bss, &known->hidden_list, hidden_list) {
1146 const struct cfg80211_bss_ies *ies;
1147
1148 ies = rcu_access_pointer(bss->pub.beacon_ies);
1149 WARN_ON(ies != old);
1150
1151 rcu_assign_pointer(bss->pub.beacon_ies,
1152 new->pub.beacon_ies);
1153 }
1154
1155 if (old)
1156 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1157 }
1158
1159 known->pub.beacon_interval = new->pub.beacon_interval;
1160
1161 /* don't update the signal if beacon was heard on
1162 * adjacent channel.
1163 */
1164 if (signal_valid)
1165 known->pub.signal = new->pub.signal;
1166 known->pub.capability = new->pub.capability;
1167 known->ts = new->ts;
1168 known->ts_boottime = new->ts_boottime;
1169 known->parent_tsf = new->parent_tsf;
1170 known->pub.chains = new->pub.chains;
1171 memcpy(known->pub.chain_signal, new->pub.chain_signal,
1172 IEEE80211_MAX_CHAINS);
1173 ether_addr_copy(known->parent_bssid, new->parent_bssid);
1174 known->pub.max_bssid_indicator = new->pub.max_bssid_indicator;
1175 known->pub.bssid_index = new->pub.bssid_index;
1176
1177 return true;
1178 }
1179
1180 /* Returned bss is reference counted and must be cleaned up appropriately. */
1181 struct cfg80211_internal_bss *
1182 cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1183 struct cfg80211_internal_bss *tmp,
1184 bool signal_valid, unsigned long ts)
1185 {
1186 struct cfg80211_internal_bss *found = NULL;
1187
1188 if (WARN_ON(!tmp->pub.channel))
1189 return NULL;
1190
1191 tmp->ts = ts;
1192
1193 spin_lock_bh(&rdev->bss_lock);
1194
1195 if (WARN_ON(!rcu_access_pointer(tmp->pub.ies))) {
1196 spin_unlock_bh(&rdev->bss_lock);
1197 return NULL;
1198 }
1199
1200 found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR);
1201
1202 if (found) {
1203 if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid))
1204 goto drop;
1205 } else {
1206 struct cfg80211_internal_bss *new;
1207 struct cfg80211_internal_bss *hidden;
1208 struct cfg80211_bss_ies *ies;
1209
1210 /*
1211 * create a copy -- the "res" variable that is passed in
1212 * is allocated on the stack since it's not needed in the
1213 * more common case of an update
1214 */
1215 new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size,
1216 GFP_ATOMIC);
1217 if (!new) {
1218 ies = (void *)rcu_dereference(tmp->pub.beacon_ies);
1219 if (ies)
1220 kfree_rcu(ies, rcu_head);
1221 ies = (void *)rcu_dereference(tmp->pub.proberesp_ies);
1222 if (ies)
1223 kfree_rcu(ies, rcu_head);
1224 goto drop;
1225 }
1226 memcpy(new, tmp, sizeof(*new));
1227 new->refcount = 1;
1228 INIT_LIST_HEAD(&new->hidden_list);
1229 INIT_LIST_HEAD(&new->pub.nontrans_list);
1230
1231 if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
1232 hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN);
1233 if (!hidden)
1234 hidden = rb_find_bss(rdev, tmp,
1235 BSS_CMP_HIDE_NUL);
1236 if (hidden) {
1237 new->pub.hidden_beacon_bss = &hidden->pub;
1238 list_add(&new->hidden_list,
1239 &hidden->hidden_list);
1240 hidden->refcount++;
1241 rcu_assign_pointer(new->pub.beacon_ies,
1242 hidden->pub.beacon_ies);
1243 }
1244 } else {
1245 /*
1246 * Ok so we found a beacon, and don't have an entry. If
1247 * it's a beacon with hidden SSID, we might be in for an
1248 * expensive search for any probe responses that should
1249 * be grouped with this beacon for updates ...
1250 */
1251 if (!cfg80211_combine_bsses(rdev, new)) {
1252 kfree(new);
1253 goto drop;
1254 }
1255 }
1256
1257 if (rdev->bss_entries >= bss_entries_limit &&
1258 !cfg80211_bss_expire_oldest(rdev)) {
1259 kfree(new);
1260 goto drop;
1261 }
1262
1263 /* This must be before the call to bss_ref_get */
1264 if (tmp->pub.transmitted_bss) {
1265 struct cfg80211_internal_bss *pbss =
1266 container_of(tmp->pub.transmitted_bss,
1267 struct cfg80211_internal_bss,
1268 pub);
1269
1270 new->pub.transmitted_bss = tmp->pub.transmitted_bss;
1271 bss_ref_get(rdev, pbss);
1272 }
1273
1274 list_add_tail(&new->list, &rdev->bss_list);
1275 rdev->bss_entries++;
1276 rb_insert_bss(rdev, new);
1277 found = new;
1278 }
1279
1280 rdev->bss_generation++;
1281 bss_ref_get(rdev, found);
1282 spin_unlock_bh(&rdev->bss_lock);
1283
1284 return found;
1285 drop:
1286 spin_unlock_bh(&rdev->bss_lock);
1287 return NULL;
1288 }
1289
1290 /*
1291 * Update RX channel information based on the available frame payload
1292 * information. This is mainly for the 2.4 GHz band where frames can be received
1293 * from neighboring channels and the Beacon frames use the DSSS Parameter Set
1294 * element to indicate the current (transmitting) channel, but this might also
1295 * be needed on other bands if RX frequency does not match with the actual
1296 * operating channel of a BSS.
1297 */
1298 static struct ieee80211_channel *
1299 cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
1300 struct ieee80211_channel *channel,
1301 enum nl80211_bss_scan_width scan_width)
1302 {
1303 const u8 *tmp;
1304 u32 freq;
1305 int channel_number = -1;
1306 struct ieee80211_channel *alt_channel;
1307
1308 tmp = cfg80211_find_ie(WLAN_EID_DS_PARAMS, ie, ielen);
1309 if (tmp && tmp[1] == 1) {
1310 channel_number = tmp[2];
1311 } else {
1312 tmp = cfg80211_find_ie(WLAN_EID_HT_OPERATION, ie, ielen);
1313 if (tmp && tmp[1] >= sizeof(struct ieee80211_ht_operation)) {
1314 struct ieee80211_ht_operation *htop = (void *)(tmp + 2);
1315
1316 channel_number = htop->primary_chan;
1317 }
1318 }
1319
1320 if (channel_number < 0) {
1321 /* No channel information in frame payload */
1322 return channel;
1323 }
1324
1325 freq = ieee80211_channel_to_frequency(channel_number, channel->band);
1326 alt_channel = ieee80211_get_channel(wiphy, freq);
1327 if (!alt_channel) {
1328 if (channel->band == NL80211_BAND_2GHZ) {
1329 /*
1330 * Better not allow unexpected channels when that could
1331 * be going beyond the 1-11 range (e.g., discovering
1332 * BSS on channel 12 when radio is configured for
1333 * channel 11.
1334 */
1335 return NULL;
1336 }
1337
1338 /* No match for the payload channel number - ignore it */
1339 return channel;
1340 }
1341
1342 if (scan_width == NL80211_BSS_CHAN_WIDTH_10 ||
1343 scan_width == NL80211_BSS_CHAN_WIDTH_5) {
1344 /*
1345 * Ignore channel number in 5 and 10 MHz channels where there
1346 * may not be an n:1 or 1:n mapping between frequencies and
1347 * channel numbers.
1348 */
1349 return channel;
1350 }
1351
1352 /*
1353 * Use the channel determined through the payload channel number
1354 * instead of the RX channel reported by the driver.
1355 */
1356 if (alt_channel->flags & IEEE80211_CHAN_DISABLED)
1357 return NULL;
1358 return alt_channel;
1359 }
1360
1361 /* Returned bss is reference counted and must be cleaned up appropriately. */
1362 static struct cfg80211_bss *
1363 cfg80211_inform_single_bss_data(struct wiphy *wiphy,
1364 struct cfg80211_inform_bss *data,
1365 enum cfg80211_bss_frame_type ftype,
1366 const u8 *bssid, u64 tsf, u16 capability,
1367 u16 beacon_interval, const u8 *ie, size_t ielen,
1368 struct cfg80211_non_tx_bss *non_tx_data,
1369 gfp_t gfp)
1370 {
1371 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1372 struct cfg80211_bss_ies *ies;
1373 struct ieee80211_channel *channel;
1374 struct cfg80211_internal_bss tmp = {}, *res;
1375 int bss_type;
1376 bool signal_valid;
1377 unsigned long ts;
1378
1379 if (WARN_ON(!wiphy))
1380 return NULL;
1381
1382 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
1383 (data->signal < 0 || data->signal > 100)))
1384 return NULL;
1385
1386 channel = cfg80211_get_bss_channel(wiphy, ie, ielen, data->chan,
1387 data->scan_width);
1388 if (!channel)
1389 return NULL;
1390
1391 memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
1392 tmp.pub.channel = channel;
1393 tmp.pub.scan_width = data->scan_width;
1394 tmp.pub.signal = data->signal;
1395 tmp.pub.beacon_interval = beacon_interval;
1396 tmp.pub.capability = capability;
1397 tmp.ts_boottime = data->boottime_ns;
1398 if (non_tx_data) {
1399 tmp.pub.transmitted_bss = non_tx_data->tx_bss;
1400 ts = bss_from_pub(non_tx_data->tx_bss)->ts;
1401 tmp.pub.bssid_index = non_tx_data->bssid_index;
1402 tmp.pub.max_bssid_indicator = non_tx_data->max_bssid_indicator;
1403 } else {
1404 ts = jiffies;
1405 }
1406
1407 /*
1408 * If we do not know here whether the IEs are from a Beacon or Probe
1409 * Response frame, we need to pick one of the options and only use it
1410 * with the driver that does not provide the full Beacon/Probe Response
1411 * frame. Use Beacon frame pointer to avoid indicating that this should
1412 * override the IEs pointer should we have received an earlier
1413 * indication of Probe Response data.
1414 */
1415 ies = kzalloc(sizeof(*ies) + ielen, gfp);
1416 if (!ies)
1417 return NULL;
1418 ies->len = ielen;
1419 ies->tsf = tsf;
1420 ies->from_beacon = false;
1421 memcpy(ies->data, ie, ielen);
1422
1423 switch (ftype) {
1424 case CFG80211_BSS_FTYPE_BEACON:
1425 ies->from_beacon = true;
1426 /* fall through */
1427 case CFG80211_BSS_FTYPE_UNKNOWN:
1428 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
1429 break;
1430 case CFG80211_BSS_FTYPE_PRESP:
1431 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
1432 break;
1433 }
1434 rcu_assign_pointer(tmp.pub.ies, ies);
1435
1436 signal_valid = data->chan == channel;
1437 res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid, ts);
1438 if (!res)
1439 return NULL;
1440
1441 if (channel->band == NL80211_BAND_60GHZ) {
1442 bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
1443 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
1444 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
1445 regulatory_hint_found_beacon(wiphy, channel, gfp);
1446 } else {
1447 if (res->pub.capability & WLAN_CAPABILITY_ESS)
1448 regulatory_hint_found_beacon(wiphy, channel, gfp);
1449 }
1450
1451 if (non_tx_data) {
1452 /* this is a nontransmitting bss, we need to add it to
1453 * transmitting bss' list if it is not there
1454 */
1455 if (cfg80211_add_nontrans_list(non_tx_data->tx_bss,
1456 &res->pub)) {
1457 if (__cfg80211_unlink_bss(rdev, res))
1458 rdev->bss_generation++;
1459 }
1460 }
1461
1462 trace_cfg80211_return_bss(&res->pub);
1463 /* cfg80211_bss_update gives us a referenced result */
1464 return &res->pub;
1465 }
1466
1467 static const struct element
1468 *cfg80211_get_profile_continuation(const u8 *ie, size_t ielen,
1469 const struct element *mbssid_elem,
1470 const struct element *sub_elem)
1471 {
1472 const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen;
1473 const struct element *next_mbssid;
1474 const struct element *next_sub;
1475
1476 next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
1477 mbssid_end,
1478 ielen - (mbssid_end - ie));
1479
1480 /*
1481 * If is is not the last subelement in current MBSSID IE or there isn't
1482 * a next MBSSID IE - profile is complete.
1483 */
1484 if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) ||
1485 !next_mbssid)
1486 return NULL;
1487
1488 /* For any length error, just return NULL */
1489
1490 if (next_mbssid->datalen < 4)
1491 return NULL;
1492
1493 next_sub = (void *)&next_mbssid->data[1];
1494
1495 if (next_mbssid->data + next_mbssid->datalen <
1496 next_sub->data + next_sub->datalen)
1497 return NULL;
1498
1499 if (next_sub->id != 0 || next_sub->datalen < 2)
1500 return NULL;
1501
1502 /*
1503 * Check if the first element in the next sub element is a start
1504 * of a new profile
1505 */
1506 return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ?
1507 NULL : next_mbssid;
1508 }
1509
1510 size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
1511 const struct element *mbssid_elem,
1512 const struct element *sub_elem,
1513 u8 *merged_ie, size_t max_copy_len)
1514 {
1515 size_t copied_len = sub_elem->datalen;
1516 const struct element *next_mbssid;
1517
1518 if (sub_elem->datalen > max_copy_len)
1519 return 0;
1520
1521 memcpy(merged_ie, sub_elem->data, sub_elem->datalen);
1522
1523 while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen,
1524 mbssid_elem,
1525 sub_elem))) {
1526 const struct element *next_sub = (void *)&next_mbssid->data[1];
1527
1528 if (copied_len + next_sub->datalen > max_copy_len)
1529 break;
1530 memcpy(merged_ie + copied_len, next_sub->data,
1531 next_sub->datalen);
1532 copied_len += next_sub->datalen;
1533 }
1534
1535 return copied_len;
1536 }
1537 EXPORT_SYMBOL(cfg80211_merge_profile);
1538
1539 static void cfg80211_parse_mbssid_data(struct wiphy *wiphy,
1540 struct cfg80211_inform_bss *data,
1541 enum cfg80211_bss_frame_type ftype,
1542 const u8 *bssid, u64 tsf,
1543 u16 beacon_interval, const u8 *ie,
1544 size_t ielen,
1545 struct cfg80211_non_tx_bss *non_tx_data,
1546 gfp_t gfp)
1547 {
1548 const u8 *mbssid_index_ie;
1549 const struct element *elem, *sub;
1550 size_t new_ie_len;
1551 u8 new_bssid[ETH_ALEN];
1552 u8 *new_ie, *profile;
1553 u64 seen_indices = 0;
1554 u16 capability;
1555 struct cfg80211_bss *bss;
1556
1557 if (!non_tx_data)
1558 return;
1559 if (!cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen))
1560 return;
1561 if (!wiphy->support_mbssid)
1562 return;
1563 if (wiphy->support_only_he_mbssid &&
1564 !cfg80211_find_ext_ie(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen))
1565 return;
1566
1567 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
1568 if (!new_ie)
1569 return;
1570
1571 profile = kmalloc(ielen, gfp);
1572 if (!profile)
1573 goto out;
1574
1575 for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, ie, ielen) {
1576 if (elem->datalen < 4)
1577 continue;
1578 for_each_element(sub, elem->data + 1, elem->datalen - 1) {
1579 u8 profile_len;
1580
1581 if (sub->id != 0 || sub->datalen < 4) {
1582 /* not a valid BSS profile */
1583 continue;
1584 }
1585
1586 if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
1587 sub->data[1] != 2) {
1588 /* The first element within the Nontransmitted
1589 * BSSID Profile is not the Nontransmitted
1590 * BSSID Capability element.
1591 */
1592 continue;
1593 }
1594
1595 memset(profile, 0, ielen);
1596 profile_len = cfg80211_merge_profile(ie, ielen,
1597 elem,
1598 sub,
1599 profile,
1600 ielen);
1601
1602 /* found a Nontransmitted BSSID Profile */
1603 mbssid_index_ie = cfg80211_find_ie
1604 (WLAN_EID_MULTI_BSSID_IDX,
1605 profile, profile_len);
1606 if (!mbssid_index_ie || mbssid_index_ie[1] < 1 ||
1607 mbssid_index_ie[2] == 0 ||
1608 mbssid_index_ie[2] > 46) {
1609 /* No valid Multiple BSSID-Index element */
1610 continue;
1611 }
1612
1613 if (seen_indices & BIT_ULL(mbssid_index_ie[2]))
1614 /* We don't support legacy split of a profile */
1615 net_dbg_ratelimited("Partial info for BSSID index %d\n",
1616 mbssid_index_ie[2]);
1617
1618 seen_indices |= BIT_ULL(mbssid_index_ie[2]);
1619
1620 non_tx_data->bssid_index = mbssid_index_ie[2];
1621 non_tx_data->max_bssid_indicator = elem->data[0];
1622
1623 cfg80211_gen_new_bssid(bssid,
1624 non_tx_data->max_bssid_indicator,
1625 non_tx_data->bssid_index,
1626 new_bssid);
1627 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
1628 new_ie_len = cfg80211_gen_new_ie(ie, ielen,
1629 profile,
1630 profile_len, new_ie,
1631 gfp);
1632 if (!new_ie_len)
1633 continue;
1634
1635 capability = get_unaligned_le16(profile + 2);
1636 bss = cfg80211_inform_single_bss_data(wiphy, data,
1637 ftype,
1638 new_bssid, tsf,
1639 capability,
1640 beacon_interval,
1641 new_ie,
1642 new_ie_len,
1643 non_tx_data,
1644 gfp);
1645 if (!bss)
1646 break;
1647 cfg80211_put_bss(wiphy, bss);
1648 }
1649 }
1650
1651 out:
1652 kfree(new_ie);
1653 kfree(profile);
1654 }
1655
1656 struct cfg80211_bss *
1657 cfg80211_inform_bss_data(struct wiphy *wiphy,
1658 struct cfg80211_inform_bss *data,
1659 enum cfg80211_bss_frame_type ftype,
1660 const u8 *bssid, u64 tsf, u16 capability,
1661 u16 beacon_interval, const u8 *ie, size_t ielen,
1662 gfp_t gfp)
1663 {
1664 struct cfg80211_bss *res;
1665 struct cfg80211_non_tx_bss non_tx_data;
1666
1667 res = cfg80211_inform_single_bss_data(wiphy, data, ftype, bssid, tsf,
1668 capability, beacon_interval, ie,
1669 ielen, NULL, gfp);
1670 if (!res)
1671 return NULL;
1672 non_tx_data.tx_bss = res;
1673 cfg80211_parse_mbssid_data(wiphy, data, ftype, bssid, tsf,
1674 beacon_interval, ie, ielen, &non_tx_data,
1675 gfp);
1676 return res;
1677 }
1678 EXPORT_SYMBOL(cfg80211_inform_bss_data);
1679
1680 static void
1681 cfg80211_parse_mbssid_frame_data(struct wiphy *wiphy,
1682 struct cfg80211_inform_bss *data,
1683 struct ieee80211_mgmt *mgmt, size_t len,
1684 struct cfg80211_non_tx_bss *non_tx_data,
1685 gfp_t gfp)
1686 {
1687 enum cfg80211_bss_frame_type ftype;
1688 const u8 *ie = mgmt->u.probe_resp.variable;
1689 size_t ielen = len - offsetof(struct ieee80211_mgmt,
1690 u.probe_resp.variable);
1691
1692 ftype = ieee80211_is_beacon(mgmt->frame_control) ?
1693 CFG80211_BSS_FTYPE_BEACON : CFG80211_BSS_FTYPE_PRESP;
1694
1695 cfg80211_parse_mbssid_data(wiphy, data, ftype, mgmt->bssid,
1696 le64_to_cpu(mgmt->u.probe_resp.timestamp),
1697 le16_to_cpu(mgmt->u.probe_resp.beacon_int),
1698 ie, ielen, non_tx_data, gfp);
1699 }
1700
1701 static void
1702 cfg80211_update_notlisted_nontrans(struct wiphy *wiphy,
1703 struct cfg80211_bss *nontrans_bss,
1704 struct ieee80211_mgmt *mgmt, size_t len)
1705 {
1706 u8 *ie, *new_ie, *pos;
1707 const u8 *nontrans_ssid, *trans_ssid, *mbssid;
1708 size_t ielen = len - offsetof(struct ieee80211_mgmt,
1709 u.probe_resp.variable);
1710 size_t new_ie_len;
1711 struct cfg80211_bss_ies *new_ies;
1712 const struct cfg80211_bss_ies *old;
1713 u8 cpy_len;
1714
1715 lockdep_assert_held(&wiphy_to_rdev(wiphy)->bss_lock);
1716
1717 ie = mgmt->u.probe_resp.variable;
1718
1719 new_ie_len = ielen;
1720 trans_ssid = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen);
1721 if (!trans_ssid)
1722 return;
1723 new_ie_len -= trans_ssid[1];
1724 mbssid = cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen);
1725 /*
1726 * It's not valid to have the MBSSID element before SSID
1727 * ignore if that happens - the code below assumes it is
1728 * after (while copying things inbetween).
1729 */
1730 if (!mbssid || mbssid < trans_ssid)
1731 return;
1732 new_ie_len -= mbssid[1];
1733
1734 nontrans_ssid = ieee80211_bss_get_ie(nontrans_bss, WLAN_EID_SSID);
1735 if (!nontrans_ssid)
1736 return;
1737
1738 new_ie_len += nontrans_ssid[1];
1739
1740 /* generate new ie for nontrans BSS
1741 * 1. replace SSID with nontrans BSS' SSID
1742 * 2. skip MBSSID IE
1743 */
1744 new_ie = kzalloc(new_ie_len, GFP_ATOMIC);
1745 if (!new_ie)
1746 return;
1747
1748 new_ies = kzalloc(sizeof(*new_ies) + new_ie_len, GFP_ATOMIC);
1749 if (!new_ies)
1750 goto out_free;
1751
1752 pos = new_ie;
1753
1754 /* copy the nontransmitted SSID */
1755 cpy_len = nontrans_ssid[1] + 2;
1756 memcpy(pos, nontrans_ssid, cpy_len);
1757 pos += cpy_len;
1758 /* copy the IEs between SSID and MBSSID */
1759 cpy_len = trans_ssid[1] + 2;
1760 memcpy(pos, (trans_ssid + cpy_len), (mbssid - (trans_ssid + cpy_len)));
1761 pos += (mbssid - (trans_ssid + cpy_len));
1762 /* copy the IEs after MBSSID */
1763 cpy_len = mbssid[1] + 2;
1764 memcpy(pos, mbssid + cpy_len, ((ie + ielen) - (mbssid + cpy_len)));
1765
1766 /* update ie */
1767 new_ies->len = new_ie_len;
1768 new_ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
1769 new_ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control);
1770 memcpy(new_ies->data, new_ie, new_ie_len);
1771 if (ieee80211_is_probe_resp(mgmt->frame_control)) {
1772 old = rcu_access_pointer(nontrans_bss->proberesp_ies);
1773 rcu_assign_pointer(nontrans_bss->proberesp_ies, new_ies);
1774 rcu_assign_pointer(nontrans_bss->ies, new_ies);
1775 if (old)
1776 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1777 } else {
1778 old = rcu_access_pointer(nontrans_bss->beacon_ies);
1779 rcu_assign_pointer(nontrans_bss->beacon_ies, new_ies);
1780 rcu_assign_pointer(nontrans_bss->ies, new_ies);
1781 if (old)
1782 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1783 }
1784
1785 out_free:
1786 kfree(new_ie);
1787 }
1788
1789 /* cfg80211_inform_bss_width_frame helper */
1790 static struct cfg80211_bss *
1791 cfg80211_inform_single_bss_frame_data(struct wiphy *wiphy,
1792 struct cfg80211_inform_bss *data,
1793 struct ieee80211_mgmt *mgmt, size_t len,
1794 gfp_t gfp)
1795 {
1796 struct cfg80211_internal_bss tmp = {}, *res;
1797 struct cfg80211_bss_ies *ies;
1798 struct ieee80211_channel *channel;
1799 bool signal_valid;
1800 size_t ielen = len - offsetof(struct ieee80211_mgmt,
1801 u.probe_resp.variable);
1802 int bss_type;
1803
1804 BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
1805 offsetof(struct ieee80211_mgmt, u.beacon.variable));
1806
1807 trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
1808
1809 if (WARN_ON(!mgmt))
1810 return NULL;
1811
1812 if (WARN_ON(!wiphy))
1813 return NULL;
1814
1815 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
1816 (data->signal < 0 || data->signal > 100)))
1817 return NULL;
1818
1819 if (WARN_ON(len < offsetof(struct ieee80211_mgmt, u.probe_resp.variable)))
1820 return NULL;
1821
1822 channel = cfg80211_get_bss_channel(wiphy, mgmt->u.beacon.variable,
1823 ielen, data->chan, data->scan_width);
1824 if (!channel)
1825 return NULL;
1826
1827 ies = kzalloc(sizeof(*ies) + ielen, gfp);
1828 if (!ies)
1829 return NULL;
1830 ies->len = ielen;
1831 ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
1832 ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control);
1833 memcpy(ies->data, mgmt->u.probe_resp.variable, ielen);
1834
1835 if (ieee80211_is_probe_resp(mgmt->frame_control))
1836 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
1837 else
1838 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
1839 rcu_assign_pointer(tmp.pub.ies, ies);
1840
1841 memcpy(tmp.pub.bssid, mgmt->bssid, ETH_ALEN);
1842 tmp.pub.channel = channel;
1843 tmp.pub.scan_width = data->scan_width;
1844 tmp.pub.signal = data->signal;
1845 tmp.pub.beacon_interval = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
1846 tmp.pub.capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
1847 tmp.ts_boottime = data->boottime_ns;
1848 tmp.parent_tsf = data->parent_tsf;
1849 tmp.pub.chains = data->chains;
1850 memcpy(tmp.pub.chain_signal, data->chain_signal, IEEE80211_MAX_CHAINS);
1851 ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
1852
1853 signal_valid = data->chan == channel;
1854 res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid,
1855 jiffies);
1856 if (!res)
1857 return NULL;
1858
1859 if (channel->band == NL80211_BAND_60GHZ) {
1860 bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
1861 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
1862 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
1863 regulatory_hint_found_beacon(wiphy, channel, gfp);
1864 } else {
1865 if (res->pub.capability & WLAN_CAPABILITY_ESS)
1866 regulatory_hint_found_beacon(wiphy, channel, gfp);
1867 }
1868
1869 trace_cfg80211_return_bss(&res->pub);
1870 /* cfg80211_bss_update gives us a referenced result */
1871 return &res->pub;
1872 }
1873
1874 struct cfg80211_bss *
1875 cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
1876 struct cfg80211_inform_bss *data,
1877 struct ieee80211_mgmt *mgmt, size_t len,
1878 gfp_t gfp)
1879 {
1880 struct cfg80211_bss *res, *tmp_bss;
1881 const u8 *ie = mgmt->u.probe_resp.variable;
1882 const struct cfg80211_bss_ies *ies1, *ies2;
1883 size_t ielen = len - offsetof(struct ieee80211_mgmt,
1884 u.probe_resp.variable);
1885 struct cfg80211_non_tx_bss non_tx_data;
1886
1887 res = cfg80211_inform_single_bss_frame_data(wiphy, data, mgmt,
1888 len, gfp);
1889 if (!res || !wiphy->support_mbssid ||
1890 !cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen))
1891 return res;
1892 if (wiphy->support_only_he_mbssid &&
1893 !cfg80211_find_ext_ie(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen))
1894 return res;
1895
1896 non_tx_data.tx_bss = res;
1897 /* process each non-transmitting bss */
1898 cfg80211_parse_mbssid_frame_data(wiphy, data, mgmt, len,
1899 &non_tx_data, gfp);
1900
1901 spin_lock_bh(&wiphy_to_rdev(wiphy)->bss_lock);
1902
1903 /* check if the res has other nontransmitting bss which is not
1904 * in MBSSID IE
1905 */
1906 ies1 = rcu_access_pointer(res->ies);
1907
1908 /* go through nontrans_list, if the timestamp of the BSS is
1909 * earlier than the timestamp of the transmitting BSS then
1910 * update it
1911 */
1912 list_for_each_entry(tmp_bss, &res->nontrans_list,
1913 nontrans_list) {
1914 ies2 = rcu_access_pointer(tmp_bss->ies);
1915 if (ies2->tsf < ies1->tsf)
1916 cfg80211_update_notlisted_nontrans(wiphy, tmp_bss,
1917 mgmt, len);
1918 }
1919 spin_unlock_bh(&wiphy_to_rdev(wiphy)->bss_lock);
1920
1921 return res;
1922 }
1923 EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
1924
1925 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
1926 {
1927 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1928 struct cfg80211_internal_bss *bss;
1929
1930 if (!pub)
1931 return;
1932
1933 bss = container_of(pub, struct cfg80211_internal_bss, pub);
1934
1935 spin_lock_bh(&rdev->bss_lock);
1936 bss_ref_get(rdev, bss);
1937 spin_unlock_bh(&rdev->bss_lock);
1938 }
1939 EXPORT_SYMBOL(cfg80211_ref_bss);
1940
1941 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
1942 {
1943 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1944 struct cfg80211_internal_bss *bss;
1945
1946 if (!pub)
1947 return;
1948
1949 bss = container_of(pub, struct cfg80211_internal_bss, pub);
1950
1951 spin_lock_bh(&rdev->bss_lock);
1952 bss_ref_put(rdev, bss);
1953 spin_unlock_bh(&rdev->bss_lock);
1954 }
1955 EXPORT_SYMBOL(cfg80211_put_bss);
1956
1957 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
1958 {
1959 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1960 struct cfg80211_internal_bss *bss, *tmp1;
1961 struct cfg80211_bss *nontrans_bss, *tmp;
1962
1963 if (WARN_ON(!pub))
1964 return;
1965
1966 bss = container_of(pub, struct cfg80211_internal_bss, pub);
1967
1968 spin_lock_bh(&rdev->bss_lock);
1969 if (list_empty(&bss->list))
1970 goto out;
1971
1972 list_for_each_entry_safe(nontrans_bss, tmp,
1973 &pub->nontrans_list,
1974 nontrans_list) {
1975 tmp1 = container_of(nontrans_bss,
1976 struct cfg80211_internal_bss, pub);
1977 if (__cfg80211_unlink_bss(rdev, tmp1))
1978 rdev->bss_generation++;
1979 }
1980
1981 if (__cfg80211_unlink_bss(rdev, bss))
1982 rdev->bss_generation++;
1983 out:
1984 spin_unlock_bh(&rdev->bss_lock);
1985 }
1986 EXPORT_SYMBOL(cfg80211_unlink_bss);
1987
1988 void cfg80211_bss_iter(struct wiphy *wiphy,
1989 struct cfg80211_chan_def *chandef,
1990 void (*iter)(struct wiphy *wiphy,
1991 struct cfg80211_bss *bss,
1992 void *data),
1993 void *iter_data)
1994 {
1995 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1996 struct cfg80211_internal_bss *bss;
1997
1998 spin_lock_bh(&rdev->bss_lock);
1999
2000 list_for_each_entry(bss, &rdev->bss_list, list) {
2001 if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel))
2002 iter(wiphy, &bss->pub, iter_data);
2003 }
2004
2005 spin_unlock_bh(&rdev->bss_lock);
2006 }
2007 EXPORT_SYMBOL(cfg80211_bss_iter);
2008
2009 void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev,
2010 struct ieee80211_channel *chan)
2011 {
2012 struct wiphy *wiphy = wdev->wiphy;
2013 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2014 struct cfg80211_internal_bss *cbss = wdev->current_bss;
2015 struct cfg80211_internal_bss *new = NULL;
2016 struct cfg80211_internal_bss *bss;
2017 struct cfg80211_bss *nontrans_bss;
2018 struct cfg80211_bss *tmp;
2019
2020 spin_lock_bh(&rdev->bss_lock);
2021
2022 /*
2023 * Some APs use CSA also for bandwidth changes, i.e., without actually
2024 * changing the control channel, so no need to update in such a case.
2025 */
2026 if (cbss->pub.channel == chan)
2027 goto done;
2028
2029 /* use transmitting bss */
2030 if (cbss->pub.transmitted_bss)
2031 cbss = container_of(cbss->pub.transmitted_bss,
2032 struct cfg80211_internal_bss,
2033 pub);
2034
2035 cbss->pub.channel = chan;
2036
2037 list_for_each_entry(bss, &rdev->bss_list, list) {
2038 if (!cfg80211_bss_type_match(bss->pub.capability,
2039 bss->pub.channel->band,
2040 wdev->conn_bss_type))
2041 continue;
2042
2043 if (bss == cbss)
2044 continue;
2045
2046 if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) {
2047 new = bss;
2048 break;
2049 }
2050 }
2051
2052 if (new) {
2053 /* to save time, update IEs for transmitting bss only */
2054 if (cfg80211_update_known_bss(rdev, cbss, new, false)) {
2055 new->pub.proberesp_ies = NULL;
2056 new->pub.beacon_ies = NULL;
2057 }
2058
2059 list_for_each_entry_safe(nontrans_bss, tmp,
2060 &new->pub.nontrans_list,
2061 nontrans_list) {
2062 bss = container_of(nontrans_bss,
2063 struct cfg80211_internal_bss, pub);
2064 if (__cfg80211_unlink_bss(rdev, bss))
2065 rdev->bss_generation++;
2066 }
2067
2068 WARN_ON(atomic_read(&new->hold));
2069 if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new)))
2070 rdev->bss_generation++;
2071 }
2072
2073 rb_erase(&cbss->rbn, &rdev->bss_tree);
2074 rb_insert_bss(rdev, cbss);
2075 rdev->bss_generation++;
2076
2077 list_for_each_entry_safe(nontrans_bss, tmp,
2078 &cbss->pub.nontrans_list,
2079 nontrans_list) {
2080 bss = container_of(nontrans_bss,
2081 struct cfg80211_internal_bss, pub);
2082 bss->pub.channel = chan;
2083 rb_erase(&bss->rbn, &rdev->bss_tree);
2084 rb_insert_bss(rdev, bss);
2085 rdev->bss_generation++;
2086 }
2087
2088 done:
2089 spin_unlock_bh(&rdev->bss_lock);
2090 }
2091
2092 #ifdef CONFIG_CFG80211_WEXT
2093 static struct cfg80211_registered_device *
2094 cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
2095 {
2096 struct cfg80211_registered_device *rdev;
2097 struct net_device *dev;
2098
2099 ASSERT_RTNL();
2100
2101 dev = dev_get_by_index(net, ifindex);
2102 if (!dev)
2103 return ERR_PTR(-ENODEV);
2104 if (dev->ieee80211_ptr)
2105 rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy);
2106 else
2107 rdev = ERR_PTR(-ENODEV);
2108 dev_put(dev);
2109 return rdev;
2110 }
2111
2112 int cfg80211_wext_siwscan(struct net_device *dev,
2113 struct iw_request_info *info,
2114 union iwreq_data *wrqu, char *extra)
2115 {
2116 struct cfg80211_registered_device *rdev;
2117 struct wiphy *wiphy;
2118 struct iw_scan_req *wreq = NULL;
2119 struct cfg80211_scan_request *creq = NULL;
2120 int i, err, n_channels = 0;
2121 enum nl80211_band band;
2122
2123 if (!netif_running(dev))
2124 return -ENETDOWN;
2125
2126 if (wrqu->data.length == sizeof(struct iw_scan_req))
2127 wreq = (struct iw_scan_req *)extra;
2128
2129 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
2130
2131 if (IS_ERR(rdev))
2132 return PTR_ERR(rdev);
2133
2134 if (rdev->scan_req || rdev->scan_msg) {
2135 err = -EBUSY;
2136 goto out;
2137 }
2138
2139 wiphy = &rdev->wiphy;
2140
2141 /* Determine number of channels, needed to allocate creq */
2142 if (wreq && wreq->num_channels)
2143 n_channels = wreq->num_channels;
2144 else
2145 n_channels = ieee80211_get_num_supported_channels(wiphy);
2146
2147 creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) +
2148 n_channels * sizeof(void *),
2149 GFP_ATOMIC);
2150 if (!creq) {
2151 err = -ENOMEM;
2152 goto out;
2153 }
2154
2155 creq->wiphy = wiphy;
2156 creq->wdev = dev->ieee80211_ptr;
2157 /* SSIDs come after channels */
2158 creq->ssids = (void *)&creq->channels[n_channels];
2159 creq->n_channels = n_channels;
2160 creq->n_ssids = 1;
2161 creq->scan_start = jiffies;
2162
2163 /* translate "Scan on frequencies" request */
2164 i = 0;
2165 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2166 int j;
2167
2168 if (!wiphy->bands[band])
2169 continue;
2170
2171 for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
2172 /* ignore disabled channels */
2173 if (wiphy->bands[band]->channels[j].flags &
2174 IEEE80211_CHAN_DISABLED)
2175 continue;
2176
2177 /* If we have a wireless request structure and the
2178 * wireless request specifies frequencies, then search
2179 * for the matching hardware channel.
2180 */
2181 if (wreq && wreq->num_channels) {
2182 int k;
2183 int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
2184 for (k = 0; k < wreq->num_channels; k++) {
2185 struct iw_freq *freq =
2186 &wreq->channel_list[k];
2187 int wext_freq =
2188 cfg80211_wext_freq(freq);
2189
2190 if (wext_freq == wiphy_freq)
2191 goto wext_freq_found;
2192 }
2193 goto wext_freq_not_found;
2194 }
2195
2196 wext_freq_found:
2197 creq->channels[i] = &wiphy->bands[band]->channels[j];
2198 i++;
2199 wext_freq_not_found: ;
2200 }
2201 }
2202 /* No channels found? */
2203 if (!i) {
2204 err = -EINVAL;
2205 goto out;
2206 }
2207
2208 /* Set real number of channels specified in creq->channels[] */
2209 creq->n_channels = i;
2210
2211 /* translate "Scan for SSID" request */
2212 if (wreq) {
2213 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
2214 if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) {
2215 err = -EINVAL;
2216 goto out;
2217 }
2218 memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len);
2219 creq->ssids[0].ssid_len = wreq->essid_len;
2220 }
2221 if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE)
2222 creq->n_ssids = 0;
2223 }
2224
2225 for (i = 0; i < NUM_NL80211_BANDS; i++)
2226 if (wiphy->bands[i])
2227 creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1;
2228
2229 eth_broadcast_addr(creq->bssid);
2230
2231 rdev->scan_req = creq;
2232 err = rdev_scan(rdev, creq);
2233 if (err) {
2234 rdev->scan_req = NULL;
2235 /* creq will be freed below */
2236 } else {
2237 nl80211_send_scan_start(rdev, dev->ieee80211_ptr);
2238 /* creq now owned by driver */
2239 creq = NULL;
2240 dev_hold(dev);
2241 }
2242 out:
2243 kfree(creq);
2244 return err;
2245 }
2246 EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan);
2247
2248 static char *ieee80211_scan_add_ies(struct iw_request_info *info,
2249 const struct cfg80211_bss_ies *ies,
2250 char *current_ev, char *end_buf)
2251 {
2252 const u8 *pos, *end, *next;
2253 struct iw_event iwe;
2254
2255 if (!ies)
2256 return current_ev;
2257
2258 /*
2259 * If needed, fragment the IEs buffer (at IE boundaries) into short
2260 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
2261 */
2262 pos = ies->data;
2263 end = pos + ies->len;
2264
2265 while (end - pos > IW_GENERIC_IE_MAX) {
2266 next = pos + 2 + pos[1];
2267 while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
2268 next = next + 2 + next[1];
2269
2270 memset(&iwe, 0, sizeof(iwe));
2271 iwe.cmd = IWEVGENIE;
2272 iwe.u.data.length = next - pos;
2273 current_ev = iwe_stream_add_point_check(info, current_ev,
2274 end_buf, &iwe,
2275 (void *)pos);
2276 if (IS_ERR(current_ev))
2277 return current_ev;
2278 pos = next;
2279 }
2280
2281 if (end > pos) {
2282 memset(&iwe, 0, sizeof(iwe));
2283 iwe.cmd = IWEVGENIE;
2284 iwe.u.data.length = end - pos;
2285 current_ev = iwe_stream_add_point_check(info, current_ev,
2286 end_buf, &iwe,
2287 (void *)pos);
2288 if (IS_ERR(current_ev))
2289 return current_ev;
2290 }
2291
2292 return current_ev;
2293 }
2294
2295 static char *
2296 ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
2297 struct cfg80211_internal_bss *bss, char *current_ev,
2298 char *end_buf)
2299 {
2300 const struct cfg80211_bss_ies *ies;
2301 struct iw_event iwe;
2302 const u8 *ie;
2303 u8 buf[50];
2304 u8 *cfg, *p, *tmp;
2305 int rem, i, sig;
2306 bool ismesh = false;
2307
2308 memset(&iwe, 0, sizeof(iwe));
2309 iwe.cmd = SIOCGIWAP;
2310 iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
2311 memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
2312 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2313 IW_EV_ADDR_LEN);
2314 if (IS_ERR(current_ev))
2315 return current_ev;
2316
2317 memset(&iwe, 0, sizeof(iwe));
2318 iwe.cmd = SIOCGIWFREQ;
2319 iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
2320 iwe.u.freq.e = 0;
2321 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2322 IW_EV_FREQ_LEN);
2323 if (IS_ERR(current_ev))
2324 return current_ev;
2325
2326 memset(&iwe, 0, sizeof(iwe));
2327 iwe.cmd = SIOCGIWFREQ;
2328 iwe.u.freq.m = bss->pub.channel->center_freq;
2329 iwe.u.freq.e = 6;
2330 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2331 IW_EV_FREQ_LEN);
2332 if (IS_ERR(current_ev))
2333 return current_ev;
2334
2335 if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
2336 memset(&iwe, 0, sizeof(iwe));
2337 iwe.cmd = IWEVQUAL;
2338 iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
2339 IW_QUAL_NOISE_INVALID |
2340 IW_QUAL_QUAL_UPDATED;
2341 switch (wiphy->signal_type) {
2342 case CFG80211_SIGNAL_TYPE_MBM:
2343 sig = bss->pub.signal / 100;
2344 iwe.u.qual.level = sig;
2345 iwe.u.qual.updated |= IW_QUAL_DBM;
2346 if (sig < -110) /* rather bad */
2347 sig = -110;
2348 else if (sig > -40) /* perfect */
2349 sig = -40;
2350 /* will give a range of 0 .. 70 */
2351 iwe.u.qual.qual = sig + 110;
2352 break;
2353 case CFG80211_SIGNAL_TYPE_UNSPEC:
2354 iwe.u.qual.level = bss->pub.signal;
2355 /* will give range 0 .. 100 */
2356 iwe.u.qual.qual = bss->pub.signal;
2357 break;
2358 default:
2359 /* not reached */
2360 break;
2361 }
2362 current_ev = iwe_stream_add_event_check(info, current_ev,
2363 end_buf, &iwe,
2364 IW_EV_QUAL_LEN);
2365 if (IS_ERR(current_ev))
2366 return current_ev;
2367 }
2368
2369 memset(&iwe, 0, sizeof(iwe));
2370 iwe.cmd = SIOCGIWENCODE;
2371 if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
2372 iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
2373 else
2374 iwe.u.data.flags = IW_ENCODE_DISABLED;
2375 iwe.u.data.length = 0;
2376 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
2377 &iwe, "");
2378 if (IS_ERR(current_ev))
2379 return current_ev;
2380
2381 rcu_read_lock();
2382 ies = rcu_dereference(bss->pub.ies);
2383 rem = ies->len;
2384 ie = ies->data;
2385
2386 while (rem >= 2) {
2387 /* invalid data */
2388 if (ie[1] > rem - 2)
2389 break;
2390
2391 switch (ie[0]) {
2392 case WLAN_EID_SSID:
2393 memset(&iwe, 0, sizeof(iwe));
2394 iwe.cmd = SIOCGIWESSID;
2395 iwe.u.data.length = ie[1];
2396 iwe.u.data.flags = 1;
2397 current_ev = iwe_stream_add_point_check(info,
2398 current_ev,
2399 end_buf, &iwe,
2400 (u8 *)ie + 2);
2401 if (IS_ERR(current_ev))
2402 goto unlock;
2403 break;
2404 case WLAN_EID_MESH_ID:
2405 memset(&iwe, 0, sizeof(iwe));
2406 iwe.cmd = SIOCGIWESSID;
2407 iwe.u.data.length = ie[1];
2408 iwe.u.data.flags = 1;
2409 current_ev = iwe_stream_add_point_check(info,
2410 current_ev,
2411 end_buf, &iwe,
2412 (u8 *)ie + 2);
2413 if (IS_ERR(current_ev))
2414 goto unlock;
2415 break;
2416 case WLAN_EID_MESH_CONFIG:
2417 ismesh = true;
2418 if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
2419 break;
2420 cfg = (u8 *)ie + 2;
2421 memset(&iwe, 0, sizeof(iwe));
2422 iwe.cmd = IWEVCUSTOM;
2423 sprintf(buf, "Mesh Network Path Selection Protocol ID: "
2424 "0x%02X", cfg[0]);
2425 iwe.u.data.length = strlen(buf);
2426 current_ev = iwe_stream_add_point_check(info,
2427 current_ev,
2428 end_buf,
2429 &iwe, buf);
2430 if (IS_ERR(current_ev))
2431 goto unlock;
2432 sprintf(buf, "Path Selection Metric ID: 0x%02X",
2433 cfg[1]);
2434 iwe.u.data.length = strlen(buf);
2435 current_ev = iwe_stream_add_point_check(info,
2436 current_ev,
2437 end_buf,
2438 &iwe, buf);
2439 if (IS_ERR(current_ev))
2440 goto unlock;
2441 sprintf(buf, "Congestion Control Mode ID: 0x%02X",
2442 cfg[2]);
2443 iwe.u.data.length = strlen(buf);
2444 current_ev = iwe_stream_add_point_check(info,
2445 current_ev,
2446 end_buf,
2447 &iwe, buf);
2448 if (IS_ERR(current_ev))
2449 goto unlock;
2450 sprintf(buf, "Synchronization ID: 0x%02X", cfg[3]);
2451 iwe.u.data.length = strlen(buf);
2452 current_ev = iwe_stream_add_point_check(info,
2453 current_ev,
2454 end_buf,
2455 &iwe, buf);
2456 if (IS_ERR(current_ev))
2457 goto unlock;
2458 sprintf(buf, "Authentication ID: 0x%02X", cfg[4]);
2459 iwe.u.data.length = strlen(buf);
2460 current_ev = iwe_stream_add_point_check(info,
2461 current_ev,
2462 end_buf,
2463 &iwe, buf);
2464 if (IS_ERR(current_ev))
2465 goto unlock;
2466 sprintf(buf, "Formation Info: 0x%02X", cfg[5]);
2467 iwe.u.data.length = strlen(buf);
2468 current_ev = iwe_stream_add_point_check(info,
2469 current_ev,
2470 end_buf,
2471 &iwe, buf);
2472 if (IS_ERR(current_ev))
2473 goto unlock;
2474 sprintf(buf, "Capabilities: 0x%02X", cfg[6]);
2475 iwe.u.data.length = strlen(buf);
2476 current_ev = iwe_stream_add_point_check(info,
2477 current_ev,
2478 end_buf,
2479 &iwe, buf);
2480 if (IS_ERR(current_ev))
2481 goto unlock;
2482 break;
2483 case WLAN_EID_SUPP_RATES:
2484 case WLAN_EID_EXT_SUPP_RATES:
2485 /* display all supported rates in readable format */
2486 p = current_ev + iwe_stream_lcp_len(info);
2487
2488 memset(&iwe, 0, sizeof(iwe));
2489 iwe.cmd = SIOCGIWRATE;
2490 /* Those two flags are ignored... */
2491 iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
2492
2493 for (i = 0; i < ie[1]; i++) {
2494 iwe.u.bitrate.value =
2495 ((ie[i + 2] & 0x7f) * 500000);
2496 tmp = p;
2497 p = iwe_stream_add_value(info, current_ev, p,
2498 end_buf, &iwe,
2499 IW_EV_PARAM_LEN);
2500 if (p == tmp) {
2501 current_ev = ERR_PTR(-E2BIG);
2502 goto unlock;
2503 }
2504 }
2505 current_ev = p;
2506 break;
2507 }
2508 rem -= ie[1] + 2;
2509 ie += ie[1] + 2;
2510 }
2511
2512 if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
2513 ismesh) {
2514 memset(&iwe, 0, sizeof(iwe));
2515 iwe.cmd = SIOCGIWMODE;
2516 if (ismesh)
2517 iwe.u.mode = IW_MODE_MESH;
2518 else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
2519 iwe.u.mode = IW_MODE_MASTER;
2520 else
2521 iwe.u.mode = IW_MODE_ADHOC;
2522 current_ev = iwe_stream_add_event_check(info, current_ev,
2523 end_buf, &iwe,
2524 IW_EV_UINT_LEN);
2525 if (IS_ERR(current_ev))
2526 goto unlock;
2527 }
2528
2529 memset(&iwe, 0, sizeof(iwe));
2530 iwe.cmd = IWEVCUSTOM;
2531 sprintf(buf, "tsf=%016llx", (unsigned long long)(ies->tsf));
2532 iwe.u.data.length = strlen(buf);
2533 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
2534 &iwe, buf);
2535 if (IS_ERR(current_ev))
2536 goto unlock;
2537 memset(&iwe, 0, sizeof(iwe));
2538 iwe.cmd = IWEVCUSTOM;
2539 sprintf(buf, " Last beacon: %ums ago",
2540 elapsed_jiffies_msecs(bss->ts));
2541 iwe.u.data.length = strlen(buf);
2542 current_ev = iwe_stream_add_point_check(info, current_ev,
2543 end_buf, &iwe, buf);
2544 if (IS_ERR(current_ev))
2545 goto unlock;
2546
2547 current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
2548
2549 unlock:
2550 rcu_read_unlock();
2551 return current_ev;
2552 }
2553
2554
2555 static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
2556 struct iw_request_info *info,
2557 char *buf, size_t len)
2558 {
2559 char *current_ev = buf;
2560 char *end_buf = buf + len;
2561 struct cfg80211_internal_bss *bss;
2562 int err = 0;
2563
2564 spin_lock_bh(&rdev->bss_lock);
2565 cfg80211_bss_expire(rdev);
2566
2567 list_for_each_entry(bss, &rdev->bss_list, list) {
2568 if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
2569 err = -E2BIG;
2570 break;
2571 }
2572 current_ev = ieee80211_bss(&rdev->wiphy, info, bss,
2573 current_ev, end_buf);
2574 if (IS_ERR(current_ev)) {
2575 err = PTR_ERR(current_ev);
2576 break;
2577 }
2578 }
2579 spin_unlock_bh(&rdev->bss_lock);
2580
2581 if (err)
2582 return err;
2583 return current_ev - buf;
2584 }
2585
2586
2587 int cfg80211_wext_giwscan(struct net_device *dev,
2588 struct iw_request_info *info,
2589 struct iw_point *data, char *extra)
2590 {
2591 struct cfg80211_registered_device *rdev;
2592 int res;
2593
2594 if (!netif_running(dev))
2595 return -ENETDOWN;
2596
2597 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
2598
2599 if (IS_ERR(rdev))
2600 return PTR_ERR(rdev);
2601
2602 if (rdev->scan_req || rdev->scan_msg)
2603 return -EAGAIN;
2604
2605 res = ieee80211_scan_results(rdev, info, extra, data->length);
2606 data->length = 0;
2607 if (res >= 0) {
2608 data->length = res;
2609 res = 0;
2610 }
2611
2612 return res;
2613 }
2614 EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan);
2615 #endif