]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - net/wireless/scan.c
Merge tag 'modules-for-v5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/jeyu...
[mirror_ubuntu-kernels.git] / net / wireless / scan.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * cfg80211 scan result handling
4 *
5 * Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2016 Intel Deutschland GmbH
8 * Copyright (C) 2018-2020 Intel Corporation
9 */
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/netdevice.h>
14 #include <linux/wireless.h>
15 #include <linux/nl80211.h>
16 #include <linux/etherdevice.h>
17 #include <linux/crc32.h>
18 #include <linux/bitfield.h>
19 #include <net/arp.h>
20 #include <net/cfg80211.h>
21 #include <net/cfg80211-wext.h>
22 #include <net/iw_handler.h>
23 #include "core.h"
24 #include "nl80211.h"
25 #include "wext-compat.h"
26 #include "rdev-ops.h"
27
28 /**
29 * DOC: BSS tree/list structure
30 *
31 * At the top level, the BSS list is kept in both a list in each
32 * registered device (@bss_list) as well as an RB-tree for faster
33 * lookup. In the RB-tree, entries can be looked up using their
34 * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
35 * for other BSSes.
36 *
37 * Due to the possibility of hidden SSIDs, there's a second level
38 * structure, the "hidden_list" and "hidden_beacon_bss" pointer.
39 * The hidden_list connects all BSSes belonging to a single AP
40 * that has a hidden SSID, and connects beacon and probe response
41 * entries. For a probe response entry for a hidden SSID, the
42 * hidden_beacon_bss pointer points to the BSS struct holding the
43 * beacon's information.
44 *
45 * Reference counting is done for all these references except for
46 * the hidden_list, so that a beacon BSS struct that is otherwise
47 * not referenced has one reference for being on the bss_list and
48 * one for each probe response entry that points to it using the
49 * hidden_beacon_bss pointer. When a BSS struct that has such a
50 * pointer is get/put, the refcount update is also propagated to
51 * the referenced struct, this ensure that it cannot get removed
52 * while somebody is using the probe response version.
53 *
54 * Note that the hidden_beacon_bss pointer never changes, due to
55 * the reference counting. Therefore, no locking is needed for
56 * it.
57 *
58 * Also note that the hidden_beacon_bss pointer is only relevant
59 * if the driver uses something other than the IEs, e.g. private
60 * data stored in the BSS struct, since the beacon IEs are
61 * also linked into the probe response struct.
62 */
63
64 /*
65 * Limit the number of BSS entries stored in mac80211. Each one is
66 * a bit over 4k at most, so this limits to roughly 4-5M of memory.
67 * If somebody wants to really attack this though, they'd likely
68 * use small beacons, and only one type of frame, limiting each of
69 * the entries to a much smaller size (in order to generate more
70 * entries in total, so overhead is bigger.)
71 */
72 static int bss_entries_limit = 1000;
73 module_param(bss_entries_limit, int, 0644);
74 MODULE_PARM_DESC(bss_entries_limit,
75 "limit to number of scan BSS entries (per wiphy, default 1000)");
76
77 #define IEEE80211_SCAN_RESULT_EXPIRE (30 * HZ)
78
79 /**
80 * struct cfg80211_colocated_ap - colocated AP information
81 *
82 * @list: linked list to all colocated aPS
83 * @bssid: BSSID of the reported AP
84 * @ssid: SSID of the reported AP
85 * @ssid_len: length of the ssid
86 * @center_freq: frequency the reported AP is on
87 * @unsolicited_probe: the reported AP is part of an ESS, where all the APs
88 * that operate in the same channel as the reported AP and that might be
89 * detected by a STA receiving this frame, are transmitting unsolicited
90 * Probe Response frames every 20 TUs
91 * @oct_recommended: OCT is recommended to exchange MMPDUs with the reported AP
92 * @same_ssid: the reported AP has the same SSID as the reporting AP
93 * @multi_bss: the reported AP is part of a multiple BSSID set
94 * @transmitted_bssid: the reported AP is the transmitting BSSID
95 * @colocated_ess: all the APs that share the same ESS as the reported AP are
96 * colocated and can be discovered via legacy bands.
97 * @short_ssid_valid: short_ssid is valid and can be used
98 * @short_ssid: the short SSID for this SSID
99 */
100 struct cfg80211_colocated_ap {
101 struct list_head list;
102 u8 bssid[ETH_ALEN];
103 u8 ssid[IEEE80211_MAX_SSID_LEN];
104 size_t ssid_len;
105 u32 short_ssid;
106 u32 center_freq;
107 u8 unsolicited_probe:1,
108 oct_recommended:1,
109 same_ssid:1,
110 multi_bss:1,
111 transmitted_bssid:1,
112 colocated_ess:1,
113 short_ssid_valid:1;
114 };
115
116 static void bss_free(struct cfg80211_internal_bss *bss)
117 {
118 struct cfg80211_bss_ies *ies;
119
120 if (WARN_ON(atomic_read(&bss->hold)))
121 return;
122
123 ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
124 if (ies && !bss->pub.hidden_beacon_bss)
125 kfree_rcu(ies, rcu_head);
126 ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
127 if (ies)
128 kfree_rcu(ies, rcu_head);
129
130 /*
131 * This happens when the module is removed, it doesn't
132 * really matter any more save for completeness
133 */
134 if (!list_empty(&bss->hidden_list))
135 list_del(&bss->hidden_list);
136
137 kfree(bss);
138 }
139
140 static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
141 struct cfg80211_internal_bss *bss)
142 {
143 lockdep_assert_held(&rdev->bss_lock);
144
145 bss->refcount++;
146 if (bss->pub.hidden_beacon_bss) {
147 bss = container_of(bss->pub.hidden_beacon_bss,
148 struct cfg80211_internal_bss,
149 pub);
150 bss->refcount++;
151 }
152 if (bss->pub.transmitted_bss) {
153 bss = container_of(bss->pub.transmitted_bss,
154 struct cfg80211_internal_bss,
155 pub);
156 bss->refcount++;
157 }
158 }
159
160 static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
161 struct cfg80211_internal_bss *bss)
162 {
163 lockdep_assert_held(&rdev->bss_lock);
164
165 if (bss->pub.hidden_beacon_bss) {
166 struct cfg80211_internal_bss *hbss;
167 hbss = container_of(bss->pub.hidden_beacon_bss,
168 struct cfg80211_internal_bss,
169 pub);
170 hbss->refcount--;
171 if (hbss->refcount == 0)
172 bss_free(hbss);
173 }
174
175 if (bss->pub.transmitted_bss) {
176 struct cfg80211_internal_bss *tbss;
177
178 tbss = container_of(bss->pub.transmitted_bss,
179 struct cfg80211_internal_bss,
180 pub);
181 tbss->refcount--;
182 if (tbss->refcount == 0)
183 bss_free(tbss);
184 }
185
186 bss->refcount--;
187 if (bss->refcount == 0)
188 bss_free(bss);
189 }
190
191 static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
192 struct cfg80211_internal_bss *bss)
193 {
194 lockdep_assert_held(&rdev->bss_lock);
195
196 if (!list_empty(&bss->hidden_list)) {
197 /*
198 * don't remove the beacon entry if it has
199 * probe responses associated with it
200 */
201 if (!bss->pub.hidden_beacon_bss)
202 return false;
203 /*
204 * if it's a probe response entry break its
205 * link to the other entries in the group
206 */
207 list_del_init(&bss->hidden_list);
208 }
209
210 list_del_init(&bss->list);
211 list_del_init(&bss->pub.nontrans_list);
212 rb_erase(&bss->rbn, &rdev->bss_tree);
213 rdev->bss_entries--;
214 WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list),
215 "rdev bss entries[%d]/list[empty:%d] corruption\n",
216 rdev->bss_entries, list_empty(&rdev->bss_list));
217 bss_ref_put(rdev, bss);
218 return true;
219 }
220
221 bool cfg80211_is_element_inherited(const struct element *elem,
222 const struct element *non_inherit_elem)
223 {
224 u8 id_len, ext_id_len, i, loop_len, id;
225 const u8 *list;
226
227 if (elem->id == WLAN_EID_MULTIPLE_BSSID)
228 return false;
229
230 if (!non_inherit_elem || non_inherit_elem->datalen < 2)
231 return true;
232
233 /*
234 * non inheritance element format is:
235 * ext ID (56) | IDs list len | list | extension IDs list len | list
236 * Both lists are optional. Both lengths are mandatory.
237 * This means valid length is:
238 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths
239 */
240 id_len = non_inherit_elem->data[1];
241 if (non_inherit_elem->datalen < 3 + id_len)
242 return true;
243
244 ext_id_len = non_inherit_elem->data[2 + id_len];
245 if (non_inherit_elem->datalen < 3 + id_len + ext_id_len)
246 return true;
247
248 if (elem->id == WLAN_EID_EXTENSION) {
249 if (!ext_id_len)
250 return true;
251 loop_len = ext_id_len;
252 list = &non_inherit_elem->data[3 + id_len];
253 id = elem->data[0];
254 } else {
255 if (!id_len)
256 return true;
257 loop_len = id_len;
258 list = &non_inherit_elem->data[2];
259 id = elem->id;
260 }
261
262 for (i = 0; i < loop_len; i++) {
263 if (list[i] == id)
264 return false;
265 }
266
267 return true;
268 }
269 EXPORT_SYMBOL(cfg80211_is_element_inherited);
270
271 static size_t cfg80211_gen_new_ie(const u8 *ie, size_t ielen,
272 const u8 *subelement, size_t subie_len,
273 u8 *new_ie, gfp_t gfp)
274 {
275 u8 *pos, *tmp;
276 const u8 *tmp_old, *tmp_new;
277 const struct element *non_inherit_elem;
278 u8 *sub_copy;
279
280 /* copy subelement as we need to change its content to
281 * mark an ie after it is processed.
282 */
283 sub_copy = kmemdup(subelement, subie_len, gfp);
284 if (!sub_copy)
285 return 0;
286
287 pos = &new_ie[0];
288
289 /* set new ssid */
290 tmp_new = cfg80211_find_ie(WLAN_EID_SSID, sub_copy, subie_len);
291 if (tmp_new) {
292 memcpy(pos, tmp_new, tmp_new[1] + 2);
293 pos += (tmp_new[1] + 2);
294 }
295
296 /* get non inheritance list if exists */
297 non_inherit_elem =
298 cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
299 sub_copy, subie_len);
300
301 /* go through IEs in ie (skip SSID) and subelement,
302 * merge them into new_ie
303 */
304 tmp_old = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen);
305 tmp_old = (tmp_old) ? tmp_old + tmp_old[1] + 2 : ie;
306
307 while (tmp_old + tmp_old[1] + 2 - ie <= ielen) {
308 if (tmp_old[0] == 0) {
309 tmp_old++;
310 continue;
311 }
312
313 if (tmp_old[0] == WLAN_EID_EXTENSION)
314 tmp = (u8 *)cfg80211_find_ext_ie(tmp_old[2], sub_copy,
315 subie_len);
316 else
317 tmp = (u8 *)cfg80211_find_ie(tmp_old[0], sub_copy,
318 subie_len);
319
320 if (!tmp) {
321 const struct element *old_elem = (void *)tmp_old;
322
323 /* ie in old ie but not in subelement */
324 if (cfg80211_is_element_inherited(old_elem,
325 non_inherit_elem)) {
326 memcpy(pos, tmp_old, tmp_old[1] + 2);
327 pos += tmp_old[1] + 2;
328 }
329 } else {
330 /* ie in transmitting ie also in subelement,
331 * copy from subelement and flag the ie in subelement
332 * as copied (by setting eid field to WLAN_EID_SSID,
333 * which is skipped anyway).
334 * For vendor ie, compare OUI + type + subType to
335 * determine if they are the same ie.
336 */
337 if (tmp_old[0] == WLAN_EID_VENDOR_SPECIFIC) {
338 if (!memcmp(tmp_old + 2, tmp + 2, 5)) {
339 /* same vendor ie, copy from
340 * subelement
341 */
342 memcpy(pos, tmp, tmp[1] + 2);
343 pos += tmp[1] + 2;
344 tmp[0] = WLAN_EID_SSID;
345 } else {
346 memcpy(pos, tmp_old, tmp_old[1] + 2);
347 pos += tmp_old[1] + 2;
348 }
349 } else {
350 /* copy ie from subelement into new ie */
351 memcpy(pos, tmp, tmp[1] + 2);
352 pos += tmp[1] + 2;
353 tmp[0] = WLAN_EID_SSID;
354 }
355 }
356
357 if (tmp_old + tmp_old[1] + 2 - ie == ielen)
358 break;
359
360 tmp_old += tmp_old[1] + 2;
361 }
362
363 /* go through subelement again to check if there is any ie not
364 * copied to new ie, skip ssid, capability, bssid-index ie
365 */
366 tmp_new = sub_copy;
367 while (tmp_new + tmp_new[1] + 2 - sub_copy <= subie_len) {
368 if (!(tmp_new[0] == WLAN_EID_NON_TX_BSSID_CAP ||
369 tmp_new[0] == WLAN_EID_SSID)) {
370 memcpy(pos, tmp_new, tmp_new[1] + 2);
371 pos += tmp_new[1] + 2;
372 }
373 if (tmp_new + tmp_new[1] + 2 - sub_copy == subie_len)
374 break;
375 tmp_new += tmp_new[1] + 2;
376 }
377
378 kfree(sub_copy);
379 return pos - new_ie;
380 }
381
382 static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
383 const u8 *ssid, size_t ssid_len)
384 {
385 const struct cfg80211_bss_ies *ies;
386 const u8 *ssidie;
387
388 if (bssid && !ether_addr_equal(a->bssid, bssid))
389 return false;
390
391 if (!ssid)
392 return true;
393
394 ies = rcu_access_pointer(a->ies);
395 if (!ies)
396 return false;
397 ssidie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
398 if (!ssidie)
399 return false;
400 if (ssidie[1] != ssid_len)
401 return false;
402 return memcmp(ssidie + 2, ssid, ssid_len) == 0;
403 }
404
405 static int
406 cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss,
407 struct cfg80211_bss *nontrans_bss)
408 {
409 const u8 *ssid;
410 size_t ssid_len;
411 struct cfg80211_bss *bss = NULL;
412
413 rcu_read_lock();
414 ssid = ieee80211_bss_get_ie(nontrans_bss, WLAN_EID_SSID);
415 if (!ssid) {
416 rcu_read_unlock();
417 return -EINVAL;
418 }
419 ssid_len = ssid[1];
420 ssid = ssid + 2;
421 rcu_read_unlock();
422
423 /* check if nontrans_bss is in the list */
424 list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) {
425 if (is_bss(bss, nontrans_bss->bssid, ssid, ssid_len))
426 return 0;
427 }
428
429 /* add to the list */
430 list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list);
431 return 0;
432 }
433
434 static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
435 unsigned long expire_time)
436 {
437 struct cfg80211_internal_bss *bss, *tmp;
438 bool expired = false;
439
440 lockdep_assert_held(&rdev->bss_lock);
441
442 list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
443 if (atomic_read(&bss->hold))
444 continue;
445 if (!time_after(expire_time, bss->ts))
446 continue;
447
448 if (__cfg80211_unlink_bss(rdev, bss))
449 expired = true;
450 }
451
452 if (expired)
453 rdev->bss_generation++;
454 }
455
456 static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev)
457 {
458 struct cfg80211_internal_bss *bss, *oldest = NULL;
459 bool ret;
460
461 lockdep_assert_held(&rdev->bss_lock);
462
463 list_for_each_entry(bss, &rdev->bss_list, list) {
464 if (atomic_read(&bss->hold))
465 continue;
466
467 if (!list_empty(&bss->hidden_list) &&
468 !bss->pub.hidden_beacon_bss)
469 continue;
470
471 if (oldest && time_before(oldest->ts, bss->ts))
472 continue;
473 oldest = bss;
474 }
475
476 if (WARN_ON(!oldest))
477 return false;
478
479 /*
480 * The callers make sure to increase rdev->bss_generation if anything
481 * gets removed (and a new entry added), so there's no need to also do
482 * it here.
483 */
484
485 ret = __cfg80211_unlink_bss(rdev, oldest);
486 WARN_ON(!ret);
487 return ret;
488 }
489
490 static u8 cfg80211_parse_bss_param(u8 data,
491 struct cfg80211_colocated_ap *coloc_ap)
492 {
493 coloc_ap->oct_recommended =
494 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED);
495 coloc_ap->same_ssid =
496 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID);
497 coloc_ap->multi_bss =
498 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID);
499 coloc_ap->transmitted_bssid =
500 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID);
501 coloc_ap->unsolicited_probe =
502 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE);
503 coloc_ap->colocated_ess =
504 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS);
505
506 return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP);
507 }
508
509 static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies,
510 const struct element **elem, u32 *s_ssid)
511 {
512
513 *elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
514 if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN)
515 return -EINVAL;
516
517 *s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen);
518 return 0;
519 }
520
521 static void cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list)
522 {
523 struct cfg80211_colocated_ap *ap, *tmp_ap;
524
525 list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) {
526 list_del(&ap->list);
527 kfree(ap);
528 }
529 }
530
531 static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry,
532 const u8 *pos, u8 length,
533 const struct element *ssid_elem,
534 int s_ssid_tmp)
535 {
536 /* skip the TBTT offset */
537 pos++;
538
539 memcpy(entry->bssid, pos, ETH_ALEN);
540 pos += ETH_ALEN;
541
542 if (length == IEEE80211_TBTT_INFO_OFFSET_BSSID_SSSID_BSS_PARAM) {
543 memcpy(&entry->short_ssid, pos,
544 sizeof(entry->short_ssid));
545 entry->short_ssid_valid = true;
546 pos += 4;
547 }
548
549 /* skip non colocated APs */
550 if (!cfg80211_parse_bss_param(*pos, entry))
551 return -EINVAL;
552 pos++;
553
554 if (length == IEEE80211_TBTT_INFO_OFFSET_BSSID_BSS_PARAM) {
555 /*
556 * no information about the short ssid. Consider the entry valid
557 * for now. It would later be dropped in case there are explicit
558 * SSIDs that need to be matched
559 */
560 if (!entry->same_ssid)
561 return 0;
562 }
563
564 if (entry->same_ssid) {
565 entry->short_ssid = s_ssid_tmp;
566 entry->short_ssid_valid = true;
567
568 /*
569 * This is safe because we validate datalen in
570 * cfg80211_parse_colocated_ap(), before calling this
571 * function.
572 */
573 memcpy(&entry->ssid, &ssid_elem->data,
574 ssid_elem->datalen);
575 entry->ssid_len = ssid_elem->datalen;
576 }
577 return 0;
578 }
579
580 static int cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies,
581 struct list_head *list)
582 {
583 struct ieee80211_neighbor_ap_info *ap_info;
584 const struct element *elem, *ssid_elem;
585 const u8 *pos, *end;
586 u32 s_ssid_tmp;
587 int n_coloc = 0, ret;
588 LIST_HEAD(ap_list);
589
590 elem = cfg80211_find_elem(WLAN_EID_REDUCED_NEIGHBOR_REPORT, ies->data,
591 ies->len);
592 if (!elem)
593 return 0;
594
595 pos = elem->data;
596 end = pos + elem->datalen;
597
598 ret = cfg80211_calc_short_ssid(ies, &ssid_elem, &s_ssid_tmp);
599 if (ret)
600 return ret;
601
602 /* RNR IE may contain more than one NEIGHBOR_AP_INFO */
603 while (pos + sizeof(*ap_info) <= end) {
604 enum nl80211_band band;
605 int freq;
606 u8 length, i, count;
607
608 ap_info = (void *)pos;
609 count = u8_get_bits(ap_info->tbtt_info_hdr,
610 IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1;
611 length = ap_info->tbtt_info_len;
612
613 pos += sizeof(*ap_info);
614
615 if (!ieee80211_operating_class_to_band(ap_info->op_class,
616 &band))
617 break;
618
619 freq = ieee80211_channel_to_frequency(ap_info->channel, band);
620
621 if (end - pos < count * ap_info->tbtt_info_len)
622 break;
623
624 /*
625 * TBTT info must include bss param + BSSID +
626 * (short SSID or same_ssid bit to be set).
627 * ignore other options, and move to the
628 * next AP info
629 */
630 if (band != NL80211_BAND_6GHZ ||
631 (length != IEEE80211_TBTT_INFO_OFFSET_BSSID_BSS_PARAM &&
632 length < IEEE80211_TBTT_INFO_OFFSET_BSSID_SSSID_BSS_PARAM)) {
633 pos += count * ap_info->tbtt_info_len;
634 continue;
635 }
636
637 for (i = 0; i < count; i++) {
638 struct cfg80211_colocated_ap *entry;
639
640 entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN,
641 GFP_ATOMIC);
642
643 if (!entry)
644 break;
645
646 entry->center_freq = freq;
647
648 if (!cfg80211_parse_ap_info(entry, pos, length,
649 ssid_elem, s_ssid_tmp)) {
650 n_coloc++;
651 list_add_tail(&entry->list, &ap_list);
652 } else {
653 kfree(entry);
654 }
655
656 pos += ap_info->tbtt_info_len;
657 }
658 }
659
660 if (pos != end) {
661 cfg80211_free_coloc_ap_list(&ap_list);
662 return 0;
663 }
664
665 list_splice_tail(&ap_list, list);
666 return n_coloc;
667 }
668
669 static void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request,
670 struct ieee80211_channel *chan,
671 bool add_to_6ghz)
672 {
673 int i;
674 u32 n_channels = request->n_channels;
675 struct cfg80211_scan_6ghz_params *params =
676 &request->scan_6ghz_params[request->n_6ghz_params];
677
678 for (i = 0; i < n_channels; i++) {
679 if (request->channels[i] == chan) {
680 if (add_to_6ghz)
681 params->channel_idx = i;
682 return;
683 }
684 }
685
686 request->channels[n_channels] = chan;
687 if (add_to_6ghz)
688 request->scan_6ghz_params[request->n_6ghz_params].channel_idx =
689 n_channels;
690
691 request->n_channels++;
692 }
693
694 static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap,
695 struct cfg80211_scan_request *request)
696 {
697 int i;
698 u32 s_ssid;
699
700 for (i = 0; i < request->n_ssids; i++) {
701 /* wildcard ssid in the scan request */
702 if (!request->ssids[i].ssid_len)
703 return true;
704
705 if (ap->ssid_len &&
706 ap->ssid_len == request->ssids[i].ssid_len) {
707 if (!memcmp(request->ssids[i].ssid, ap->ssid,
708 ap->ssid_len))
709 return true;
710 } else if (ap->short_ssid_valid) {
711 s_ssid = ~crc32_le(~0, request->ssids[i].ssid,
712 request->ssids[i].ssid_len);
713
714 if (ap->short_ssid == s_ssid)
715 return true;
716 }
717 }
718
719 return false;
720 }
721
722 static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev)
723 {
724 u8 i;
725 struct cfg80211_colocated_ap *ap;
726 int n_channels, count = 0, err;
727 struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req;
728 LIST_HEAD(coloc_ap_list);
729 bool need_scan_psc = true;
730 const struct ieee80211_sband_iftype_data *iftd;
731
732 rdev_req->scan_6ghz = true;
733
734 if (!rdev->wiphy.bands[NL80211_BAND_6GHZ])
735 return -EOPNOTSUPP;
736
737 iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ],
738 rdev_req->wdev->iftype);
739 if (!iftd || !iftd->he_cap.has_he)
740 return -EOPNOTSUPP;
741
742 n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels;
743
744 if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) {
745 struct cfg80211_internal_bss *intbss;
746
747 spin_lock_bh(&rdev->bss_lock);
748 list_for_each_entry(intbss, &rdev->bss_list, list) {
749 struct cfg80211_bss *res = &intbss->pub;
750 const struct cfg80211_bss_ies *ies;
751
752 ies = rcu_access_pointer(res->ies);
753 count += cfg80211_parse_colocated_ap(ies,
754 &coloc_ap_list);
755 }
756 spin_unlock_bh(&rdev->bss_lock);
757 }
758
759 request = kzalloc(struct_size(request, channels, n_channels) +
760 sizeof(*request->scan_6ghz_params) * count,
761 GFP_KERNEL);
762 if (!request) {
763 cfg80211_free_coloc_ap_list(&coloc_ap_list);
764 return -ENOMEM;
765 }
766
767 *request = *rdev_req;
768 request->n_channels = 0;
769 request->scan_6ghz_params =
770 (void *)&request->channels[n_channels];
771
772 /*
773 * PSC channels should not be scanned in case of direct scan with 1 SSID
774 * and at least one of the reported co-located APs with same SSID
775 * indicating that all APs in the same ESS are co-located
776 */
777 if (count && request->n_ssids == 1 && request->ssids[0].ssid_len) {
778 list_for_each_entry(ap, &coloc_ap_list, list) {
779 if (ap->colocated_ess &&
780 cfg80211_find_ssid_match(ap, request)) {
781 need_scan_psc = false;
782 break;
783 }
784 }
785 }
786
787 /*
788 * add to the scan request the channels that need to be scanned
789 * regardless of the collocated APs (PSC channels or all channels
790 * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set)
791 */
792 for (i = 0; i < rdev_req->n_channels; i++) {
793 if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ &&
794 ((need_scan_psc &&
795 cfg80211_channel_is_psc(rdev_req->channels[i])) ||
796 !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) {
797 cfg80211_scan_req_add_chan(request,
798 rdev_req->channels[i],
799 false);
800 }
801 }
802
803 if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))
804 goto skip;
805
806 list_for_each_entry(ap, &coloc_ap_list, list) {
807 bool found = false;
808 struct cfg80211_scan_6ghz_params *scan_6ghz_params =
809 &request->scan_6ghz_params[request->n_6ghz_params];
810 struct ieee80211_channel *chan =
811 ieee80211_get_channel(&rdev->wiphy, ap->center_freq);
812
813 if (!chan || chan->flags & IEEE80211_CHAN_DISABLED)
814 continue;
815
816 for (i = 0; i < rdev_req->n_channels; i++) {
817 if (rdev_req->channels[i] == chan)
818 found = true;
819 }
820
821 if (!found)
822 continue;
823
824 if (request->n_ssids > 0 &&
825 !cfg80211_find_ssid_match(ap, request))
826 continue;
827
828 cfg80211_scan_req_add_chan(request, chan, true);
829 memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN);
830 scan_6ghz_params->short_ssid = ap->short_ssid;
831 scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid;
832 scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe;
833
834 /*
835 * If a PSC channel is added to the scan and 'need_scan_psc' is
836 * set to false, then all the APs that the scan logic is
837 * interested with on the channel are collocated and thus there
838 * is no need to perform the initial PSC channel listen.
839 */
840 if (cfg80211_channel_is_psc(chan) && !need_scan_psc)
841 scan_6ghz_params->psc_no_listen = true;
842
843 request->n_6ghz_params++;
844 }
845
846 skip:
847 cfg80211_free_coloc_ap_list(&coloc_ap_list);
848
849 if (request->n_channels) {
850 struct cfg80211_scan_request *old = rdev->int_scan_req;
851
852 rdev->int_scan_req = request;
853
854 /*
855 * If this scan follows a previous scan, save the scan start
856 * info from the first part of the scan
857 */
858 if (old)
859 rdev->int_scan_req->info = old->info;
860
861 err = rdev_scan(rdev, request);
862 if (err) {
863 rdev->int_scan_req = old;
864 kfree(request);
865 } else {
866 kfree(old);
867 }
868
869 return err;
870 }
871
872 kfree(request);
873 return -EINVAL;
874 }
875
876 int cfg80211_scan(struct cfg80211_registered_device *rdev)
877 {
878 struct cfg80211_scan_request *request;
879 struct cfg80211_scan_request *rdev_req = rdev->scan_req;
880 u32 n_channels = 0, idx, i;
881
882 if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ))
883 return rdev_scan(rdev, rdev_req);
884
885 for (i = 0; i < rdev_req->n_channels; i++) {
886 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
887 n_channels++;
888 }
889
890 if (!n_channels)
891 return cfg80211_scan_6ghz(rdev);
892
893 request = kzalloc(struct_size(request, channels, n_channels),
894 GFP_KERNEL);
895 if (!request)
896 return -ENOMEM;
897
898 *request = *rdev_req;
899 request->n_channels = n_channels;
900
901 for (i = idx = 0; i < rdev_req->n_channels; i++) {
902 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
903 request->channels[idx++] = rdev_req->channels[i];
904 }
905
906 rdev_req->scan_6ghz = false;
907 rdev->int_scan_req = request;
908 return rdev_scan(rdev, request);
909 }
910
911 void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
912 bool send_message)
913 {
914 struct cfg80211_scan_request *request, *rdev_req;
915 struct wireless_dev *wdev;
916 struct sk_buff *msg;
917 #ifdef CONFIG_CFG80211_WEXT
918 union iwreq_data wrqu;
919 #endif
920
921 lockdep_assert_held(&rdev->wiphy.mtx);
922
923 if (rdev->scan_msg) {
924 nl80211_send_scan_msg(rdev, rdev->scan_msg);
925 rdev->scan_msg = NULL;
926 return;
927 }
928
929 rdev_req = rdev->scan_req;
930 if (!rdev_req)
931 return;
932
933 wdev = rdev_req->wdev;
934 request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req;
935
936 if (wdev_running(wdev) &&
937 (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) &&
938 !rdev_req->scan_6ghz && !request->info.aborted &&
939 !cfg80211_scan_6ghz(rdev))
940 return;
941
942 /*
943 * This must be before sending the other events!
944 * Otherwise, wpa_supplicant gets completely confused with
945 * wext events.
946 */
947 if (wdev->netdev)
948 cfg80211_sme_scan_done(wdev->netdev);
949
950 if (!request->info.aborted &&
951 request->flags & NL80211_SCAN_FLAG_FLUSH) {
952 /* flush entries from previous scans */
953 spin_lock_bh(&rdev->bss_lock);
954 __cfg80211_bss_expire(rdev, request->scan_start);
955 spin_unlock_bh(&rdev->bss_lock);
956 }
957
958 msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted);
959
960 #ifdef CONFIG_CFG80211_WEXT
961 if (wdev->netdev && !request->info.aborted) {
962 memset(&wrqu, 0, sizeof(wrqu));
963
964 wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL);
965 }
966 #endif
967
968 if (wdev->netdev)
969 dev_put(wdev->netdev);
970
971 kfree(rdev->int_scan_req);
972 rdev->int_scan_req = NULL;
973
974 kfree(rdev->scan_req);
975 rdev->scan_req = NULL;
976
977 if (!send_message)
978 rdev->scan_msg = msg;
979 else
980 nl80211_send_scan_msg(rdev, msg);
981 }
982
983 void __cfg80211_scan_done(struct work_struct *wk)
984 {
985 struct cfg80211_registered_device *rdev;
986
987 rdev = container_of(wk, struct cfg80211_registered_device,
988 scan_done_wk);
989
990 wiphy_lock(&rdev->wiphy);
991 ___cfg80211_scan_done(rdev, true);
992 wiphy_unlock(&rdev->wiphy);
993 }
994
995 void cfg80211_scan_done(struct cfg80211_scan_request *request,
996 struct cfg80211_scan_info *info)
997 {
998 struct cfg80211_scan_info old_info = request->info;
999
1000 trace_cfg80211_scan_done(request, info);
1001 WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req &&
1002 request != wiphy_to_rdev(request->wiphy)->int_scan_req);
1003
1004 request->info = *info;
1005
1006 /*
1007 * In case the scan is split, the scan_start_tsf and tsf_bssid should
1008 * be of the first part. In such a case old_info.scan_start_tsf should
1009 * be non zero.
1010 */
1011 if (request->scan_6ghz && old_info.scan_start_tsf) {
1012 request->info.scan_start_tsf = old_info.scan_start_tsf;
1013 memcpy(request->info.tsf_bssid, old_info.tsf_bssid,
1014 sizeof(request->info.tsf_bssid));
1015 }
1016
1017 request->notified = true;
1018 queue_work(cfg80211_wq, &wiphy_to_rdev(request->wiphy)->scan_done_wk);
1019 }
1020 EXPORT_SYMBOL(cfg80211_scan_done);
1021
1022 void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev,
1023 struct cfg80211_sched_scan_request *req)
1024 {
1025 lockdep_assert_held(&rdev->wiphy.mtx);
1026
1027 list_add_rcu(&req->list, &rdev->sched_scan_req_list);
1028 }
1029
1030 static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev,
1031 struct cfg80211_sched_scan_request *req)
1032 {
1033 lockdep_assert_held(&rdev->wiphy.mtx);
1034
1035 list_del_rcu(&req->list);
1036 kfree_rcu(req, rcu_head);
1037 }
1038
1039 static struct cfg80211_sched_scan_request *
1040 cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid)
1041 {
1042 struct cfg80211_sched_scan_request *pos;
1043
1044 list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list,
1045 lockdep_is_held(&rdev->wiphy.mtx)) {
1046 if (pos->reqid == reqid)
1047 return pos;
1048 }
1049 return NULL;
1050 }
1051
1052 /*
1053 * Determines if a scheduled scan request can be handled. When a legacy
1054 * scheduled scan is running no other scheduled scan is allowed regardless
1055 * whether the request is for legacy or multi-support scan. When a multi-support
1056 * scheduled scan is running a request for legacy scan is not allowed. In this
1057 * case a request for multi-support scan can be handled if resources are
1058 * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached.
1059 */
1060 int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev,
1061 bool want_multi)
1062 {
1063 struct cfg80211_sched_scan_request *pos;
1064 int i = 0;
1065
1066 list_for_each_entry(pos, &rdev->sched_scan_req_list, list) {
1067 /* request id zero means legacy in progress */
1068 if (!i && !pos->reqid)
1069 return -EINPROGRESS;
1070 i++;
1071 }
1072
1073 if (i) {
1074 /* no legacy allowed when multi request(s) are active */
1075 if (!want_multi)
1076 return -EINPROGRESS;
1077
1078 /* resource limit reached */
1079 if (i == rdev->wiphy.max_sched_scan_reqs)
1080 return -ENOSPC;
1081 }
1082 return 0;
1083 }
1084
1085 void cfg80211_sched_scan_results_wk(struct work_struct *work)
1086 {
1087 struct cfg80211_registered_device *rdev;
1088 struct cfg80211_sched_scan_request *req, *tmp;
1089
1090 rdev = container_of(work, struct cfg80211_registered_device,
1091 sched_scan_res_wk);
1092
1093 wiphy_lock(&rdev->wiphy);
1094 list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) {
1095 if (req->report_results) {
1096 req->report_results = false;
1097 if (req->flags & NL80211_SCAN_FLAG_FLUSH) {
1098 /* flush entries from previous scans */
1099 spin_lock_bh(&rdev->bss_lock);
1100 __cfg80211_bss_expire(rdev, req->scan_start);
1101 spin_unlock_bh(&rdev->bss_lock);
1102 req->scan_start = jiffies;
1103 }
1104 nl80211_send_sched_scan(req,
1105 NL80211_CMD_SCHED_SCAN_RESULTS);
1106 }
1107 }
1108 wiphy_unlock(&rdev->wiphy);
1109 }
1110
1111 void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid)
1112 {
1113 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1114 struct cfg80211_sched_scan_request *request;
1115
1116 trace_cfg80211_sched_scan_results(wiphy, reqid);
1117 /* ignore if we're not scanning */
1118
1119 rcu_read_lock();
1120 request = cfg80211_find_sched_scan_req(rdev, reqid);
1121 if (request) {
1122 request->report_results = true;
1123 queue_work(cfg80211_wq, &rdev->sched_scan_res_wk);
1124 }
1125 rcu_read_unlock();
1126 }
1127 EXPORT_SYMBOL(cfg80211_sched_scan_results);
1128
1129 void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid)
1130 {
1131 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1132
1133 lockdep_assert_held(&wiphy->mtx);
1134
1135 trace_cfg80211_sched_scan_stopped(wiphy, reqid);
1136
1137 __cfg80211_stop_sched_scan(rdev, reqid, true);
1138 }
1139 EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked);
1140
1141 void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid)
1142 {
1143 wiphy_lock(wiphy);
1144 cfg80211_sched_scan_stopped_locked(wiphy, reqid);
1145 wiphy_unlock(wiphy);
1146 }
1147 EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
1148
1149 int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev,
1150 struct cfg80211_sched_scan_request *req,
1151 bool driver_initiated)
1152 {
1153 lockdep_assert_held(&rdev->wiphy.mtx);
1154
1155 if (!driver_initiated) {
1156 int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid);
1157 if (err)
1158 return err;
1159 }
1160
1161 nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED);
1162
1163 cfg80211_del_sched_scan_req(rdev, req);
1164
1165 return 0;
1166 }
1167
1168 int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
1169 u64 reqid, bool driver_initiated)
1170 {
1171 struct cfg80211_sched_scan_request *sched_scan_req;
1172
1173 lockdep_assert_held(&rdev->wiphy.mtx);
1174
1175 sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid);
1176 if (!sched_scan_req)
1177 return -ENOENT;
1178
1179 return cfg80211_stop_sched_scan_req(rdev, sched_scan_req,
1180 driver_initiated);
1181 }
1182
1183 void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
1184 unsigned long age_secs)
1185 {
1186 struct cfg80211_internal_bss *bss;
1187 unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC);
1188
1189 spin_lock_bh(&rdev->bss_lock);
1190 list_for_each_entry(bss, &rdev->bss_list, list)
1191 bss->ts -= age_jiffies;
1192 spin_unlock_bh(&rdev->bss_lock);
1193 }
1194
1195 void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
1196 {
1197 __cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
1198 }
1199
1200 void cfg80211_bss_flush(struct wiphy *wiphy)
1201 {
1202 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1203
1204 spin_lock_bh(&rdev->bss_lock);
1205 __cfg80211_bss_expire(rdev, jiffies);
1206 spin_unlock_bh(&rdev->bss_lock);
1207 }
1208 EXPORT_SYMBOL(cfg80211_bss_flush);
1209
1210 const struct element *
1211 cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
1212 const u8 *match, unsigned int match_len,
1213 unsigned int match_offset)
1214 {
1215 const struct element *elem;
1216
1217 for_each_element_id(elem, eid, ies, len) {
1218 if (elem->datalen >= match_offset + match_len &&
1219 !memcmp(elem->data + match_offset, match, match_len))
1220 return elem;
1221 }
1222
1223 return NULL;
1224 }
1225 EXPORT_SYMBOL(cfg80211_find_elem_match);
1226
1227 const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
1228 const u8 *ies,
1229 unsigned int len)
1230 {
1231 const struct element *elem;
1232 u8 match[] = { oui >> 16, oui >> 8, oui, oui_type };
1233 int match_len = (oui_type < 0) ? 3 : sizeof(match);
1234
1235 if (WARN_ON(oui_type > 0xff))
1236 return NULL;
1237
1238 elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len,
1239 match, match_len, 0);
1240
1241 if (!elem || elem->datalen < 4)
1242 return NULL;
1243
1244 return elem;
1245 }
1246 EXPORT_SYMBOL(cfg80211_find_vendor_elem);
1247
1248 /**
1249 * enum bss_compare_mode - BSS compare mode
1250 * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
1251 * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
1252 * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
1253 */
1254 enum bss_compare_mode {
1255 BSS_CMP_REGULAR,
1256 BSS_CMP_HIDE_ZLEN,
1257 BSS_CMP_HIDE_NUL,
1258 };
1259
1260 static int cmp_bss(struct cfg80211_bss *a,
1261 struct cfg80211_bss *b,
1262 enum bss_compare_mode mode)
1263 {
1264 const struct cfg80211_bss_ies *a_ies, *b_ies;
1265 const u8 *ie1 = NULL;
1266 const u8 *ie2 = NULL;
1267 int i, r;
1268
1269 if (a->channel != b->channel)
1270 return b->channel->center_freq - a->channel->center_freq;
1271
1272 a_ies = rcu_access_pointer(a->ies);
1273 if (!a_ies)
1274 return -1;
1275 b_ies = rcu_access_pointer(b->ies);
1276 if (!b_ies)
1277 return 1;
1278
1279 if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
1280 ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1281 a_ies->data, a_ies->len);
1282 if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
1283 ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1284 b_ies->data, b_ies->len);
1285 if (ie1 && ie2) {
1286 int mesh_id_cmp;
1287
1288 if (ie1[1] == ie2[1])
1289 mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1290 else
1291 mesh_id_cmp = ie2[1] - ie1[1];
1292
1293 ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1294 a_ies->data, a_ies->len);
1295 ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1296 b_ies->data, b_ies->len);
1297 if (ie1 && ie2) {
1298 if (mesh_id_cmp)
1299 return mesh_id_cmp;
1300 if (ie1[1] != ie2[1])
1301 return ie2[1] - ie1[1];
1302 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1303 }
1304 }
1305
1306 r = memcmp(a->bssid, b->bssid, sizeof(a->bssid));
1307 if (r)
1308 return r;
1309
1310 ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len);
1311 ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len);
1312
1313 if (!ie1 && !ie2)
1314 return 0;
1315
1316 /*
1317 * Note that with "hide_ssid", the function returns a match if
1318 * the already-present BSS ("b") is a hidden SSID beacon for
1319 * the new BSS ("a").
1320 */
1321
1322 /* sort missing IE before (left of) present IE */
1323 if (!ie1)
1324 return -1;
1325 if (!ie2)
1326 return 1;
1327
1328 switch (mode) {
1329 case BSS_CMP_HIDE_ZLEN:
1330 /*
1331 * In ZLEN mode we assume the BSS entry we're
1332 * looking for has a zero-length SSID. So if
1333 * the one we're looking at right now has that,
1334 * return 0. Otherwise, return the difference
1335 * in length, but since we're looking for the
1336 * 0-length it's really equivalent to returning
1337 * the length of the one we're looking at.
1338 *
1339 * No content comparison is needed as we assume
1340 * the content length is zero.
1341 */
1342 return ie2[1];
1343 case BSS_CMP_REGULAR:
1344 default:
1345 /* sort by length first, then by contents */
1346 if (ie1[1] != ie2[1])
1347 return ie2[1] - ie1[1];
1348 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1349 case BSS_CMP_HIDE_NUL:
1350 if (ie1[1] != ie2[1])
1351 return ie2[1] - ie1[1];
1352 /* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
1353 for (i = 0; i < ie2[1]; i++)
1354 if (ie2[i + 2])
1355 return -1;
1356 return 0;
1357 }
1358 }
1359
1360 static bool cfg80211_bss_type_match(u16 capability,
1361 enum nl80211_band band,
1362 enum ieee80211_bss_type bss_type)
1363 {
1364 bool ret = true;
1365 u16 mask, val;
1366
1367 if (bss_type == IEEE80211_BSS_TYPE_ANY)
1368 return ret;
1369
1370 if (band == NL80211_BAND_60GHZ) {
1371 mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
1372 switch (bss_type) {
1373 case IEEE80211_BSS_TYPE_ESS:
1374 val = WLAN_CAPABILITY_DMG_TYPE_AP;
1375 break;
1376 case IEEE80211_BSS_TYPE_PBSS:
1377 val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
1378 break;
1379 case IEEE80211_BSS_TYPE_IBSS:
1380 val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
1381 break;
1382 default:
1383 return false;
1384 }
1385 } else {
1386 mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
1387 switch (bss_type) {
1388 case IEEE80211_BSS_TYPE_ESS:
1389 val = WLAN_CAPABILITY_ESS;
1390 break;
1391 case IEEE80211_BSS_TYPE_IBSS:
1392 val = WLAN_CAPABILITY_IBSS;
1393 break;
1394 case IEEE80211_BSS_TYPE_MBSS:
1395 val = 0;
1396 break;
1397 default:
1398 return false;
1399 }
1400 }
1401
1402 ret = ((capability & mask) == val);
1403 return ret;
1404 }
1405
1406 /* Returned bss is reference counted and must be cleaned up appropriately. */
1407 struct cfg80211_bss *cfg80211_get_bss(struct wiphy *wiphy,
1408 struct ieee80211_channel *channel,
1409 const u8 *bssid,
1410 const u8 *ssid, size_t ssid_len,
1411 enum ieee80211_bss_type bss_type,
1412 enum ieee80211_privacy privacy)
1413 {
1414 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1415 struct cfg80211_internal_bss *bss, *res = NULL;
1416 unsigned long now = jiffies;
1417 int bss_privacy;
1418
1419 trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
1420 privacy);
1421
1422 spin_lock_bh(&rdev->bss_lock);
1423
1424 list_for_each_entry(bss, &rdev->bss_list, list) {
1425 if (!cfg80211_bss_type_match(bss->pub.capability,
1426 bss->pub.channel->band, bss_type))
1427 continue;
1428
1429 bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
1430 if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
1431 (privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
1432 continue;
1433 if (channel && bss->pub.channel != channel)
1434 continue;
1435 if (!is_valid_ether_addr(bss->pub.bssid))
1436 continue;
1437 /* Don't get expired BSS structs */
1438 if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
1439 !atomic_read(&bss->hold))
1440 continue;
1441 if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
1442 res = bss;
1443 bss_ref_get(rdev, res);
1444 break;
1445 }
1446 }
1447
1448 spin_unlock_bh(&rdev->bss_lock);
1449 if (!res)
1450 return NULL;
1451 trace_cfg80211_return_bss(&res->pub);
1452 return &res->pub;
1453 }
1454 EXPORT_SYMBOL(cfg80211_get_bss);
1455
1456 static void rb_insert_bss(struct cfg80211_registered_device *rdev,
1457 struct cfg80211_internal_bss *bss)
1458 {
1459 struct rb_node **p = &rdev->bss_tree.rb_node;
1460 struct rb_node *parent = NULL;
1461 struct cfg80211_internal_bss *tbss;
1462 int cmp;
1463
1464 while (*p) {
1465 parent = *p;
1466 tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
1467
1468 cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR);
1469
1470 if (WARN_ON(!cmp)) {
1471 /* will sort of leak this BSS */
1472 return;
1473 }
1474
1475 if (cmp < 0)
1476 p = &(*p)->rb_left;
1477 else
1478 p = &(*p)->rb_right;
1479 }
1480
1481 rb_link_node(&bss->rbn, parent, p);
1482 rb_insert_color(&bss->rbn, &rdev->bss_tree);
1483 }
1484
1485 static struct cfg80211_internal_bss *
1486 rb_find_bss(struct cfg80211_registered_device *rdev,
1487 struct cfg80211_internal_bss *res,
1488 enum bss_compare_mode mode)
1489 {
1490 struct rb_node *n = rdev->bss_tree.rb_node;
1491 struct cfg80211_internal_bss *bss;
1492 int r;
1493
1494 while (n) {
1495 bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
1496 r = cmp_bss(&res->pub, &bss->pub, mode);
1497
1498 if (r == 0)
1499 return bss;
1500 else if (r < 0)
1501 n = n->rb_left;
1502 else
1503 n = n->rb_right;
1504 }
1505
1506 return NULL;
1507 }
1508
1509 static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
1510 struct cfg80211_internal_bss *new)
1511 {
1512 const struct cfg80211_bss_ies *ies;
1513 struct cfg80211_internal_bss *bss;
1514 const u8 *ie;
1515 int i, ssidlen;
1516 u8 fold = 0;
1517 u32 n_entries = 0;
1518
1519 ies = rcu_access_pointer(new->pub.beacon_ies);
1520 if (WARN_ON(!ies))
1521 return false;
1522
1523 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1524 if (!ie) {
1525 /* nothing to do */
1526 return true;
1527 }
1528
1529 ssidlen = ie[1];
1530 for (i = 0; i < ssidlen; i++)
1531 fold |= ie[2 + i];
1532
1533 if (fold) {
1534 /* not a hidden SSID */
1535 return true;
1536 }
1537
1538 /* This is the bad part ... */
1539
1540 list_for_each_entry(bss, &rdev->bss_list, list) {
1541 /*
1542 * we're iterating all the entries anyway, so take the
1543 * opportunity to validate the list length accounting
1544 */
1545 n_entries++;
1546
1547 if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid))
1548 continue;
1549 if (bss->pub.channel != new->pub.channel)
1550 continue;
1551 if (bss->pub.scan_width != new->pub.scan_width)
1552 continue;
1553 if (rcu_access_pointer(bss->pub.beacon_ies))
1554 continue;
1555 ies = rcu_access_pointer(bss->pub.ies);
1556 if (!ies)
1557 continue;
1558 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1559 if (!ie)
1560 continue;
1561 if (ssidlen && ie[1] != ssidlen)
1562 continue;
1563 if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
1564 continue;
1565 if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
1566 list_del(&bss->hidden_list);
1567 /* combine them */
1568 list_add(&bss->hidden_list, &new->hidden_list);
1569 bss->pub.hidden_beacon_bss = &new->pub;
1570 new->refcount += bss->refcount;
1571 rcu_assign_pointer(bss->pub.beacon_ies,
1572 new->pub.beacon_ies);
1573 }
1574
1575 WARN_ONCE(n_entries != rdev->bss_entries,
1576 "rdev bss entries[%d]/list[len:%d] corruption\n",
1577 rdev->bss_entries, n_entries);
1578
1579 return true;
1580 }
1581
1582 struct cfg80211_non_tx_bss {
1583 struct cfg80211_bss *tx_bss;
1584 u8 max_bssid_indicator;
1585 u8 bssid_index;
1586 };
1587
1588 static bool
1589 cfg80211_update_known_bss(struct cfg80211_registered_device *rdev,
1590 struct cfg80211_internal_bss *known,
1591 struct cfg80211_internal_bss *new,
1592 bool signal_valid)
1593 {
1594 lockdep_assert_held(&rdev->bss_lock);
1595
1596 /* Update IEs */
1597 if (rcu_access_pointer(new->pub.proberesp_ies)) {
1598 const struct cfg80211_bss_ies *old;
1599
1600 old = rcu_access_pointer(known->pub.proberesp_ies);
1601
1602 rcu_assign_pointer(known->pub.proberesp_ies,
1603 new->pub.proberesp_ies);
1604 /* Override possible earlier Beacon frame IEs */
1605 rcu_assign_pointer(known->pub.ies,
1606 new->pub.proberesp_ies);
1607 if (old)
1608 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1609 } else if (rcu_access_pointer(new->pub.beacon_ies)) {
1610 const struct cfg80211_bss_ies *old;
1611 struct cfg80211_internal_bss *bss;
1612
1613 if (known->pub.hidden_beacon_bss &&
1614 !list_empty(&known->hidden_list)) {
1615 const struct cfg80211_bss_ies *f;
1616
1617 /* The known BSS struct is one of the probe
1618 * response members of a group, but we're
1619 * receiving a beacon (beacon_ies in the new
1620 * bss is used). This can only mean that the
1621 * AP changed its beacon from not having an
1622 * SSID to showing it, which is confusing so
1623 * drop this information.
1624 */
1625
1626 f = rcu_access_pointer(new->pub.beacon_ies);
1627 kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head);
1628 return false;
1629 }
1630
1631 old = rcu_access_pointer(known->pub.beacon_ies);
1632
1633 rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies);
1634
1635 /* Override IEs if they were from a beacon before */
1636 if (old == rcu_access_pointer(known->pub.ies))
1637 rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies);
1638
1639 /* Assign beacon IEs to all sub entries */
1640 list_for_each_entry(bss, &known->hidden_list, hidden_list) {
1641 const struct cfg80211_bss_ies *ies;
1642
1643 ies = rcu_access_pointer(bss->pub.beacon_ies);
1644 WARN_ON(ies != old);
1645
1646 rcu_assign_pointer(bss->pub.beacon_ies,
1647 new->pub.beacon_ies);
1648 }
1649
1650 if (old)
1651 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1652 }
1653
1654 known->pub.beacon_interval = new->pub.beacon_interval;
1655
1656 /* don't update the signal if beacon was heard on
1657 * adjacent channel.
1658 */
1659 if (signal_valid)
1660 known->pub.signal = new->pub.signal;
1661 known->pub.capability = new->pub.capability;
1662 known->ts = new->ts;
1663 known->ts_boottime = new->ts_boottime;
1664 known->parent_tsf = new->parent_tsf;
1665 known->pub.chains = new->pub.chains;
1666 memcpy(known->pub.chain_signal, new->pub.chain_signal,
1667 IEEE80211_MAX_CHAINS);
1668 ether_addr_copy(known->parent_bssid, new->parent_bssid);
1669 known->pub.max_bssid_indicator = new->pub.max_bssid_indicator;
1670 known->pub.bssid_index = new->pub.bssid_index;
1671
1672 return true;
1673 }
1674
1675 /* Returned bss is reference counted and must be cleaned up appropriately. */
1676 struct cfg80211_internal_bss *
1677 cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1678 struct cfg80211_internal_bss *tmp,
1679 bool signal_valid, unsigned long ts)
1680 {
1681 struct cfg80211_internal_bss *found = NULL;
1682
1683 if (WARN_ON(!tmp->pub.channel))
1684 return NULL;
1685
1686 tmp->ts = ts;
1687
1688 spin_lock_bh(&rdev->bss_lock);
1689
1690 if (WARN_ON(!rcu_access_pointer(tmp->pub.ies))) {
1691 spin_unlock_bh(&rdev->bss_lock);
1692 return NULL;
1693 }
1694
1695 found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR);
1696
1697 if (found) {
1698 if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid))
1699 goto drop;
1700 } else {
1701 struct cfg80211_internal_bss *new;
1702 struct cfg80211_internal_bss *hidden;
1703 struct cfg80211_bss_ies *ies;
1704
1705 /*
1706 * create a copy -- the "res" variable that is passed in
1707 * is allocated on the stack since it's not needed in the
1708 * more common case of an update
1709 */
1710 new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size,
1711 GFP_ATOMIC);
1712 if (!new) {
1713 ies = (void *)rcu_dereference(tmp->pub.beacon_ies);
1714 if (ies)
1715 kfree_rcu(ies, rcu_head);
1716 ies = (void *)rcu_dereference(tmp->pub.proberesp_ies);
1717 if (ies)
1718 kfree_rcu(ies, rcu_head);
1719 goto drop;
1720 }
1721 memcpy(new, tmp, sizeof(*new));
1722 new->refcount = 1;
1723 INIT_LIST_HEAD(&new->hidden_list);
1724 INIT_LIST_HEAD(&new->pub.nontrans_list);
1725
1726 if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
1727 hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN);
1728 if (!hidden)
1729 hidden = rb_find_bss(rdev, tmp,
1730 BSS_CMP_HIDE_NUL);
1731 if (hidden) {
1732 new->pub.hidden_beacon_bss = &hidden->pub;
1733 list_add(&new->hidden_list,
1734 &hidden->hidden_list);
1735 hidden->refcount++;
1736 rcu_assign_pointer(new->pub.beacon_ies,
1737 hidden->pub.beacon_ies);
1738 }
1739 } else {
1740 /*
1741 * Ok so we found a beacon, and don't have an entry. If
1742 * it's a beacon with hidden SSID, we might be in for an
1743 * expensive search for any probe responses that should
1744 * be grouped with this beacon for updates ...
1745 */
1746 if (!cfg80211_combine_bsses(rdev, new)) {
1747 kfree(new);
1748 goto drop;
1749 }
1750 }
1751
1752 if (rdev->bss_entries >= bss_entries_limit &&
1753 !cfg80211_bss_expire_oldest(rdev)) {
1754 if (!list_empty(&new->hidden_list))
1755 list_del(&new->hidden_list);
1756 kfree(new);
1757 goto drop;
1758 }
1759
1760 /* This must be before the call to bss_ref_get */
1761 if (tmp->pub.transmitted_bss) {
1762 struct cfg80211_internal_bss *pbss =
1763 container_of(tmp->pub.transmitted_bss,
1764 struct cfg80211_internal_bss,
1765 pub);
1766
1767 new->pub.transmitted_bss = tmp->pub.transmitted_bss;
1768 bss_ref_get(rdev, pbss);
1769 }
1770
1771 list_add_tail(&new->list, &rdev->bss_list);
1772 rdev->bss_entries++;
1773 rb_insert_bss(rdev, new);
1774 found = new;
1775 }
1776
1777 rdev->bss_generation++;
1778 bss_ref_get(rdev, found);
1779 spin_unlock_bh(&rdev->bss_lock);
1780
1781 return found;
1782 drop:
1783 spin_unlock_bh(&rdev->bss_lock);
1784 return NULL;
1785 }
1786
1787 /*
1788 * Update RX channel information based on the available frame payload
1789 * information. This is mainly for the 2.4 GHz band where frames can be received
1790 * from neighboring channels and the Beacon frames use the DSSS Parameter Set
1791 * element to indicate the current (transmitting) channel, but this might also
1792 * be needed on other bands if RX frequency does not match with the actual
1793 * operating channel of a BSS.
1794 */
1795 static struct ieee80211_channel *
1796 cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
1797 struct ieee80211_channel *channel,
1798 enum nl80211_bss_scan_width scan_width)
1799 {
1800 const u8 *tmp;
1801 u32 freq;
1802 int channel_number = -1;
1803 struct ieee80211_channel *alt_channel;
1804
1805 if (channel->band == NL80211_BAND_S1GHZ) {
1806 tmp = cfg80211_find_ie(WLAN_EID_S1G_OPERATION, ie, ielen);
1807 if (tmp && tmp[1] >= sizeof(struct ieee80211_s1g_oper_ie)) {
1808 struct ieee80211_s1g_oper_ie *s1gop = (void *)(tmp + 2);
1809
1810 channel_number = s1gop->primary_ch;
1811 }
1812 } else {
1813 tmp = cfg80211_find_ie(WLAN_EID_DS_PARAMS, ie, ielen);
1814 if (tmp && tmp[1] == 1) {
1815 channel_number = tmp[2];
1816 } else {
1817 tmp = cfg80211_find_ie(WLAN_EID_HT_OPERATION, ie, ielen);
1818 if (tmp && tmp[1] >= sizeof(struct ieee80211_ht_operation)) {
1819 struct ieee80211_ht_operation *htop = (void *)(tmp + 2);
1820
1821 channel_number = htop->primary_chan;
1822 }
1823 }
1824 }
1825
1826 if (channel_number < 0) {
1827 /* No channel information in frame payload */
1828 return channel;
1829 }
1830
1831 freq = ieee80211_channel_to_freq_khz(channel_number, channel->band);
1832 alt_channel = ieee80211_get_channel_khz(wiphy, freq);
1833 if (!alt_channel) {
1834 if (channel->band == NL80211_BAND_2GHZ) {
1835 /*
1836 * Better not allow unexpected channels when that could
1837 * be going beyond the 1-11 range (e.g., discovering
1838 * BSS on channel 12 when radio is configured for
1839 * channel 11.
1840 */
1841 return NULL;
1842 }
1843
1844 /* No match for the payload channel number - ignore it */
1845 return channel;
1846 }
1847
1848 if (scan_width == NL80211_BSS_CHAN_WIDTH_10 ||
1849 scan_width == NL80211_BSS_CHAN_WIDTH_5) {
1850 /*
1851 * Ignore channel number in 5 and 10 MHz channels where there
1852 * may not be an n:1 or 1:n mapping between frequencies and
1853 * channel numbers.
1854 */
1855 return channel;
1856 }
1857
1858 /*
1859 * Use the channel determined through the payload channel number
1860 * instead of the RX channel reported by the driver.
1861 */
1862 if (alt_channel->flags & IEEE80211_CHAN_DISABLED)
1863 return NULL;
1864 return alt_channel;
1865 }
1866
1867 /* Returned bss is reference counted and must be cleaned up appropriately. */
1868 static struct cfg80211_bss *
1869 cfg80211_inform_single_bss_data(struct wiphy *wiphy,
1870 struct cfg80211_inform_bss *data,
1871 enum cfg80211_bss_frame_type ftype,
1872 const u8 *bssid, u64 tsf, u16 capability,
1873 u16 beacon_interval, const u8 *ie, size_t ielen,
1874 struct cfg80211_non_tx_bss *non_tx_data,
1875 gfp_t gfp)
1876 {
1877 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1878 struct cfg80211_bss_ies *ies;
1879 struct ieee80211_channel *channel;
1880 struct cfg80211_internal_bss tmp = {}, *res;
1881 int bss_type;
1882 bool signal_valid;
1883 unsigned long ts;
1884
1885 if (WARN_ON(!wiphy))
1886 return NULL;
1887
1888 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
1889 (data->signal < 0 || data->signal > 100)))
1890 return NULL;
1891
1892 channel = cfg80211_get_bss_channel(wiphy, ie, ielen, data->chan,
1893 data->scan_width);
1894 if (!channel)
1895 return NULL;
1896
1897 memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
1898 tmp.pub.channel = channel;
1899 tmp.pub.scan_width = data->scan_width;
1900 tmp.pub.signal = data->signal;
1901 tmp.pub.beacon_interval = beacon_interval;
1902 tmp.pub.capability = capability;
1903 tmp.ts_boottime = data->boottime_ns;
1904 tmp.parent_tsf = data->parent_tsf;
1905 ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
1906
1907 if (non_tx_data) {
1908 tmp.pub.transmitted_bss = non_tx_data->tx_bss;
1909 ts = bss_from_pub(non_tx_data->tx_bss)->ts;
1910 tmp.pub.bssid_index = non_tx_data->bssid_index;
1911 tmp.pub.max_bssid_indicator = non_tx_data->max_bssid_indicator;
1912 } else {
1913 ts = jiffies;
1914 }
1915
1916 /*
1917 * If we do not know here whether the IEs are from a Beacon or Probe
1918 * Response frame, we need to pick one of the options and only use it
1919 * with the driver that does not provide the full Beacon/Probe Response
1920 * frame. Use Beacon frame pointer to avoid indicating that this should
1921 * override the IEs pointer should we have received an earlier
1922 * indication of Probe Response data.
1923 */
1924 ies = kzalloc(sizeof(*ies) + ielen, gfp);
1925 if (!ies)
1926 return NULL;
1927 ies->len = ielen;
1928 ies->tsf = tsf;
1929 ies->from_beacon = false;
1930 memcpy(ies->data, ie, ielen);
1931
1932 switch (ftype) {
1933 case CFG80211_BSS_FTYPE_BEACON:
1934 ies->from_beacon = true;
1935 fallthrough;
1936 case CFG80211_BSS_FTYPE_UNKNOWN:
1937 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
1938 break;
1939 case CFG80211_BSS_FTYPE_PRESP:
1940 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
1941 break;
1942 }
1943 rcu_assign_pointer(tmp.pub.ies, ies);
1944
1945 signal_valid = data->chan == channel;
1946 res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid, ts);
1947 if (!res)
1948 return NULL;
1949
1950 if (channel->band == NL80211_BAND_60GHZ) {
1951 bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
1952 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
1953 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
1954 regulatory_hint_found_beacon(wiphy, channel, gfp);
1955 } else {
1956 if (res->pub.capability & WLAN_CAPABILITY_ESS)
1957 regulatory_hint_found_beacon(wiphy, channel, gfp);
1958 }
1959
1960 if (non_tx_data) {
1961 /* this is a nontransmitting bss, we need to add it to
1962 * transmitting bss' list if it is not there
1963 */
1964 if (cfg80211_add_nontrans_list(non_tx_data->tx_bss,
1965 &res->pub)) {
1966 if (__cfg80211_unlink_bss(rdev, res))
1967 rdev->bss_generation++;
1968 }
1969 }
1970
1971 trace_cfg80211_return_bss(&res->pub);
1972 /* cfg80211_bss_update gives us a referenced result */
1973 return &res->pub;
1974 }
1975
1976 static const struct element
1977 *cfg80211_get_profile_continuation(const u8 *ie, size_t ielen,
1978 const struct element *mbssid_elem,
1979 const struct element *sub_elem)
1980 {
1981 const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen;
1982 const struct element *next_mbssid;
1983 const struct element *next_sub;
1984
1985 next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
1986 mbssid_end,
1987 ielen - (mbssid_end - ie));
1988
1989 /*
1990 * If it is not the last subelement in current MBSSID IE or there isn't
1991 * a next MBSSID IE - profile is complete.
1992 */
1993 if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) ||
1994 !next_mbssid)
1995 return NULL;
1996
1997 /* For any length error, just return NULL */
1998
1999 if (next_mbssid->datalen < 4)
2000 return NULL;
2001
2002 next_sub = (void *)&next_mbssid->data[1];
2003
2004 if (next_mbssid->data + next_mbssid->datalen <
2005 next_sub->data + next_sub->datalen)
2006 return NULL;
2007
2008 if (next_sub->id != 0 || next_sub->datalen < 2)
2009 return NULL;
2010
2011 /*
2012 * Check if the first element in the next sub element is a start
2013 * of a new profile
2014 */
2015 return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ?
2016 NULL : next_mbssid;
2017 }
2018
2019 size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
2020 const struct element *mbssid_elem,
2021 const struct element *sub_elem,
2022 u8 *merged_ie, size_t max_copy_len)
2023 {
2024 size_t copied_len = sub_elem->datalen;
2025 const struct element *next_mbssid;
2026
2027 if (sub_elem->datalen > max_copy_len)
2028 return 0;
2029
2030 memcpy(merged_ie, sub_elem->data, sub_elem->datalen);
2031
2032 while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen,
2033 mbssid_elem,
2034 sub_elem))) {
2035 const struct element *next_sub = (void *)&next_mbssid->data[1];
2036
2037 if (copied_len + next_sub->datalen > max_copy_len)
2038 break;
2039 memcpy(merged_ie + copied_len, next_sub->data,
2040 next_sub->datalen);
2041 copied_len += next_sub->datalen;
2042 }
2043
2044 return copied_len;
2045 }
2046 EXPORT_SYMBOL(cfg80211_merge_profile);
2047
2048 static void cfg80211_parse_mbssid_data(struct wiphy *wiphy,
2049 struct cfg80211_inform_bss *data,
2050 enum cfg80211_bss_frame_type ftype,
2051 const u8 *bssid, u64 tsf,
2052 u16 beacon_interval, const u8 *ie,
2053 size_t ielen,
2054 struct cfg80211_non_tx_bss *non_tx_data,
2055 gfp_t gfp)
2056 {
2057 const u8 *mbssid_index_ie;
2058 const struct element *elem, *sub;
2059 size_t new_ie_len;
2060 u8 new_bssid[ETH_ALEN];
2061 u8 *new_ie, *profile;
2062 u64 seen_indices = 0;
2063 u16 capability;
2064 struct cfg80211_bss *bss;
2065
2066 if (!non_tx_data)
2067 return;
2068 if (!cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen))
2069 return;
2070 if (!wiphy->support_mbssid)
2071 return;
2072 if (wiphy->support_only_he_mbssid &&
2073 !cfg80211_find_ext_ie(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen))
2074 return;
2075
2076 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2077 if (!new_ie)
2078 return;
2079
2080 profile = kmalloc(ielen, gfp);
2081 if (!profile)
2082 goto out;
2083
2084 for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, ie, ielen) {
2085 if (elem->datalen < 4)
2086 continue;
2087 for_each_element(sub, elem->data + 1, elem->datalen - 1) {
2088 u8 profile_len;
2089
2090 if (sub->id != 0 || sub->datalen < 4) {
2091 /* not a valid BSS profile */
2092 continue;
2093 }
2094
2095 if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
2096 sub->data[1] != 2) {
2097 /* The first element within the Nontransmitted
2098 * BSSID Profile is not the Nontransmitted
2099 * BSSID Capability element.
2100 */
2101 continue;
2102 }
2103
2104 memset(profile, 0, ielen);
2105 profile_len = cfg80211_merge_profile(ie, ielen,
2106 elem,
2107 sub,
2108 profile,
2109 ielen);
2110
2111 /* found a Nontransmitted BSSID Profile */
2112 mbssid_index_ie = cfg80211_find_ie
2113 (WLAN_EID_MULTI_BSSID_IDX,
2114 profile, profile_len);
2115 if (!mbssid_index_ie || mbssid_index_ie[1] < 1 ||
2116 mbssid_index_ie[2] == 0 ||
2117 mbssid_index_ie[2] > 46) {
2118 /* No valid Multiple BSSID-Index element */
2119 continue;
2120 }
2121
2122 if (seen_indices & BIT_ULL(mbssid_index_ie[2]))
2123 /* We don't support legacy split of a profile */
2124 net_dbg_ratelimited("Partial info for BSSID index %d\n",
2125 mbssid_index_ie[2]);
2126
2127 seen_indices |= BIT_ULL(mbssid_index_ie[2]);
2128
2129 non_tx_data->bssid_index = mbssid_index_ie[2];
2130 non_tx_data->max_bssid_indicator = elem->data[0];
2131
2132 cfg80211_gen_new_bssid(bssid,
2133 non_tx_data->max_bssid_indicator,
2134 non_tx_data->bssid_index,
2135 new_bssid);
2136 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2137 new_ie_len = cfg80211_gen_new_ie(ie, ielen,
2138 profile,
2139 profile_len, new_ie,
2140 gfp);
2141 if (!new_ie_len)
2142 continue;
2143
2144 capability = get_unaligned_le16(profile + 2);
2145 bss = cfg80211_inform_single_bss_data(wiphy, data,
2146 ftype,
2147 new_bssid, tsf,
2148 capability,
2149 beacon_interval,
2150 new_ie,
2151 new_ie_len,
2152 non_tx_data,
2153 gfp);
2154 if (!bss)
2155 break;
2156 cfg80211_put_bss(wiphy, bss);
2157 }
2158 }
2159
2160 out:
2161 kfree(new_ie);
2162 kfree(profile);
2163 }
2164
2165 struct cfg80211_bss *
2166 cfg80211_inform_bss_data(struct wiphy *wiphy,
2167 struct cfg80211_inform_bss *data,
2168 enum cfg80211_bss_frame_type ftype,
2169 const u8 *bssid, u64 tsf, u16 capability,
2170 u16 beacon_interval, const u8 *ie, size_t ielen,
2171 gfp_t gfp)
2172 {
2173 struct cfg80211_bss *res;
2174 struct cfg80211_non_tx_bss non_tx_data;
2175
2176 res = cfg80211_inform_single_bss_data(wiphy, data, ftype, bssid, tsf,
2177 capability, beacon_interval, ie,
2178 ielen, NULL, gfp);
2179 if (!res)
2180 return NULL;
2181 non_tx_data.tx_bss = res;
2182 cfg80211_parse_mbssid_data(wiphy, data, ftype, bssid, tsf,
2183 beacon_interval, ie, ielen, &non_tx_data,
2184 gfp);
2185 return res;
2186 }
2187 EXPORT_SYMBOL(cfg80211_inform_bss_data);
2188
2189 static void
2190 cfg80211_parse_mbssid_frame_data(struct wiphy *wiphy,
2191 struct cfg80211_inform_bss *data,
2192 struct ieee80211_mgmt *mgmt, size_t len,
2193 struct cfg80211_non_tx_bss *non_tx_data,
2194 gfp_t gfp)
2195 {
2196 enum cfg80211_bss_frame_type ftype;
2197 const u8 *ie = mgmt->u.probe_resp.variable;
2198 size_t ielen = len - offsetof(struct ieee80211_mgmt,
2199 u.probe_resp.variable);
2200
2201 ftype = ieee80211_is_beacon(mgmt->frame_control) ?
2202 CFG80211_BSS_FTYPE_BEACON : CFG80211_BSS_FTYPE_PRESP;
2203
2204 cfg80211_parse_mbssid_data(wiphy, data, ftype, mgmt->bssid,
2205 le64_to_cpu(mgmt->u.probe_resp.timestamp),
2206 le16_to_cpu(mgmt->u.probe_resp.beacon_int),
2207 ie, ielen, non_tx_data, gfp);
2208 }
2209
2210 static void
2211 cfg80211_update_notlisted_nontrans(struct wiphy *wiphy,
2212 struct cfg80211_bss *nontrans_bss,
2213 struct ieee80211_mgmt *mgmt, size_t len)
2214 {
2215 u8 *ie, *new_ie, *pos;
2216 const u8 *nontrans_ssid, *trans_ssid, *mbssid;
2217 size_t ielen = len - offsetof(struct ieee80211_mgmt,
2218 u.probe_resp.variable);
2219 size_t new_ie_len;
2220 struct cfg80211_bss_ies *new_ies;
2221 const struct cfg80211_bss_ies *old;
2222 u8 cpy_len;
2223
2224 lockdep_assert_held(&wiphy_to_rdev(wiphy)->bss_lock);
2225
2226 ie = mgmt->u.probe_resp.variable;
2227
2228 new_ie_len = ielen;
2229 trans_ssid = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen);
2230 if (!trans_ssid)
2231 return;
2232 new_ie_len -= trans_ssid[1];
2233 mbssid = cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen);
2234 /*
2235 * It's not valid to have the MBSSID element before SSID
2236 * ignore if that happens - the code below assumes it is
2237 * after (while copying things inbetween).
2238 */
2239 if (!mbssid || mbssid < trans_ssid)
2240 return;
2241 new_ie_len -= mbssid[1];
2242
2243 nontrans_ssid = ieee80211_bss_get_ie(nontrans_bss, WLAN_EID_SSID);
2244 if (!nontrans_ssid)
2245 return;
2246
2247 new_ie_len += nontrans_ssid[1];
2248
2249 /* generate new ie for nontrans BSS
2250 * 1. replace SSID with nontrans BSS' SSID
2251 * 2. skip MBSSID IE
2252 */
2253 new_ie = kzalloc(new_ie_len, GFP_ATOMIC);
2254 if (!new_ie)
2255 return;
2256
2257 new_ies = kzalloc(sizeof(*new_ies) + new_ie_len, GFP_ATOMIC);
2258 if (!new_ies)
2259 goto out_free;
2260
2261 pos = new_ie;
2262
2263 /* copy the nontransmitted SSID */
2264 cpy_len = nontrans_ssid[1] + 2;
2265 memcpy(pos, nontrans_ssid, cpy_len);
2266 pos += cpy_len;
2267 /* copy the IEs between SSID and MBSSID */
2268 cpy_len = trans_ssid[1] + 2;
2269 memcpy(pos, (trans_ssid + cpy_len), (mbssid - (trans_ssid + cpy_len)));
2270 pos += (mbssid - (trans_ssid + cpy_len));
2271 /* copy the IEs after MBSSID */
2272 cpy_len = mbssid[1] + 2;
2273 memcpy(pos, mbssid + cpy_len, ((ie + ielen) - (mbssid + cpy_len)));
2274
2275 /* update ie */
2276 new_ies->len = new_ie_len;
2277 new_ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
2278 new_ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control);
2279 memcpy(new_ies->data, new_ie, new_ie_len);
2280 if (ieee80211_is_probe_resp(mgmt->frame_control)) {
2281 old = rcu_access_pointer(nontrans_bss->proberesp_ies);
2282 rcu_assign_pointer(nontrans_bss->proberesp_ies, new_ies);
2283 rcu_assign_pointer(nontrans_bss->ies, new_ies);
2284 if (old)
2285 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
2286 } else {
2287 old = rcu_access_pointer(nontrans_bss->beacon_ies);
2288 rcu_assign_pointer(nontrans_bss->beacon_ies, new_ies);
2289 rcu_assign_pointer(nontrans_bss->ies, new_ies);
2290 if (old)
2291 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
2292 }
2293
2294 out_free:
2295 kfree(new_ie);
2296 }
2297
2298 /* cfg80211_inform_bss_width_frame helper */
2299 static struct cfg80211_bss *
2300 cfg80211_inform_single_bss_frame_data(struct wiphy *wiphy,
2301 struct cfg80211_inform_bss *data,
2302 struct ieee80211_mgmt *mgmt, size_t len,
2303 gfp_t gfp)
2304 {
2305 struct cfg80211_internal_bss tmp = {}, *res;
2306 struct cfg80211_bss_ies *ies;
2307 struct ieee80211_channel *channel;
2308 bool signal_valid;
2309 struct ieee80211_ext *ext = NULL;
2310 u8 *bssid, *variable;
2311 u16 capability, beacon_int;
2312 size_t ielen, min_hdr_len = offsetof(struct ieee80211_mgmt,
2313 u.probe_resp.variable);
2314 int bss_type;
2315
2316 BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
2317 offsetof(struct ieee80211_mgmt, u.beacon.variable));
2318
2319 trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
2320
2321 if (WARN_ON(!mgmt))
2322 return NULL;
2323
2324 if (WARN_ON(!wiphy))
2325 return NULL;
2326
2327 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2328 (data->signal < 0 || data->signal > 100)))
2329 return NULL;
2330
2331 if (ieee80211_is_s1g_beacon(mgmt->frame_control)) {
2332 ext = (void *) mgmt;
2333 min_hdr_len = offsetof(struct ieee80211_ext, u.s1g_beacon);
2334 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
2335 min_hdr_len = offsetof(struct ieee80211_ext,
2336 u.s1g_short_beacon.variable);
2337 }
2338
2339 if (WARN_ON(len < min_hdr_len))
2340 return NULL;
2341
2342 ielen = len - min_hdr_len;
2343 variable = mgmt->u.probe_resp.variable;
2344 if (ext) {
2345 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
2346 variable = ext->u.s1g_short_beacon.variable;
2347 else
2348 variable = ext->u.s1g_beacon.variable;
2349 }
2350
2351 channel = cfg80211_get_bss_channel(wiphy, variable,
2352 ielen, data->chan, data->scan_width);
2353 if (!channel)
2354 return NULL;
2355
2356 if (ext) {
2357 const struct ieee80211_s1g_bcn_compat_ie *compat;
2358 const struct element *elem;
2359
2360 elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT,
2361 variable, ielen);
2362 if (!elem)
2363 return NULL;
2364 if (elem->datalen < sizeof(*compat))
2365 return NULL;
2366 compat = (void *)elem->data;
2367 bssid = ext->u.s1g_beacon.sa;
2368 capability = le16_to_cpu(compat->compat_info);
2369 beacon_int = le16_to_cpu(compat->beacon_int);
2370 } else {
2371 bssid = mgmt->bssid;
2372 beacon_int = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
2373 capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
2374 }
2375
2376 ies = kzalloc(sizeof(*ies) + ielen, gfp);
2377 if (!ies)
2378 return NULL;
2379 ies->len = ielen;
2380 ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
2381 ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control) ||
2382 ieee80211_is_s1g_beacon(mgmt->frame_control);
2383 memcpy(ies->data, variable, ielen);
2384
2385 if (ieee80211_is_probe_resp(mgmt->frame_control))
2386 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2387 else
2388 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2389 rcu_assign_pointer(tmp.pub.ies, ies);
2390
2391 memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
2392 tmp.pub.beacon_interval = beacon_int;
2393 tmp.pub.capability = capability;
2394 tmp.pub.channel = channel;
2395 tmp.pub.scan_width = data->scan_width;
2396 tmp.pub.signal = data->signal;
2397 tmp.ts_boottime = data->boottime_ns;
2398 tmp.parent_tsf = data->parent_tsf;
2399 tmp.pub.chains = data->chains;
2400 memcpy(tmp.pub.chain_signal, data->chain_signal, IEEE80211_MAX_CHAINS);
2401 ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
2402
2403 signal_valid = data->chan == channel;
2404 res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid,
2405 jiffies);
2406 if (!res)
2407 return NULL;
2408
2409 if (channel->band == NL80211_BAND_60GHZ) {
2410 bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
2411 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2412 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2413 regulatory_hint_found_beacon(wiphy, channel, gfp);
2414 } else {
2415 if (res->pub.capability & WLAN_CAPABILITY_ESS)
2416 regulatory_hint_found_beacon(wiphy, channel, gfp);
2417 }
2418
2419 trace_cfg80211_return_bss(&res->pub);
2420 /* cfg80211_bss_update gives us a referenced result */
2421 return &res->pub;
2422 }
2423
2424 struct cfg80211_bss *
2425 cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
2426 struct cfg80211_inform_bss *data,
2427 struct ieee80211_mgmt *mgmt, size_t len,
2428 gfp_t gfp)
2429 {
2430 struct cfg80211_bss *res, *tmp_bss;
2431 const u8 *ie = mgmt->u.probe_resp.variable;
2432 const struct cfg80211_bss_ies *ies1, *ies2;
2433 size_t ielen = len - offsetof(struct ieee80211_mgmt,
2434 u.probe_resp.variable);
2435 struct cfg80211_non_tx_bss non_tx_data;
2436
2437 res = cfg80211_inform_single_bss_frame_data(wiphy, data, mgmt,
2438 len, gfp);
2439 if (!res || !wiphy->support_mbssid ||
2440 !cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen))
2441 return res;
2442 if (wiphy->support_only_he_mbssid &&
2443 !cfg80211_find_ext_ie(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen))
2444 return res;
2445
2446 non_tx_data.tx_bss = res;
2447 /* process each non-transmitting bss */
2448 cfg80211_parse_mbssid_frame_data(wiphy, data, mgmt, len,
2449 &non_tx_data, gfp);
2450
2451 spin_lock_bh(&wiphy_to_rdev(wiphy)->bss_lock);
2452
2453 /* check if the res has other nontransmitting bss which is not
2454 * in MBSSID IE
2455 */
2456 ies1 = rcu_access_pointer(res->ies);
2457
2458 /* go through nontrans_list, if the timestamp of the BSS is
2459 * earlier than the timestamp of the transmitting BSS then
2460 * update it
2461 */
2462 list_for_each_entry(tmp_bss, &res->nontrans_list,
2463 nontrans_list) {
2464 ies2 = rcu_access_pointer(tmp_bss->ies);
2465 if (ies2->tsf < ies1->tsf)
2466 cfg80211_update_notlisted_nontrans(wiphy, tmp_bss,
2467 mgmt, len);
2468 }
2469 spin_unlock_bh(&wiphy_to_rdev(wiphy)->bss_lock);
2470
2471 return res;
2472 }
2473 EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
2474
2475 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2476 {
2477 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2478 struct cfg80211_internal_bss *bss;
2479
2480 if (!pub)
2481 return;
2482
2483 bss = container_of(pub, struct cfg80211_internal_bss, pub);
2484
2485 spin_lock_bh(&rdev->bss_lock);
2486 bss_ref_get(rdev, bss);
2487 spin_unlock_bh(&rdev->bss_lock);
2488 }
2489 EXPORT_SYMBOL(cfg80211_ref_bss);
2490
2491 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2492 {
2493 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2494 struct cfg80211_internal_bss *bss;
2495
2496 if (!pub)
2497 return;
2498
2499 bss = container_of(pub, struct cfg80211_internal_bss, pub);
2500
2501 spin_lock_bh(&rdev->bss_lock);
2502 bss_ref_put(rdev, bss);
2503 spin_unlock_bh(&rdev->bss_lock);
2504 }
2505 EXPORT_SYMBOL(cfg80211_put_bss);
2506
2507 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2508 {
2509 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2510 struct cfg80211_internal_bss *bss, *tmp1;
2511 struct cfg80211_bss *nontrans_bss, *tmp;
2512
2513 if (WARN_ON(!pub))
2514 return;
2515
2516 bss = container_of(pub, struct cfg80211_internal_bss, pub);
2517
2518 spin_lock_bh(&rdev->bss_lock);
2519 if (list_empty(&bss->list))
2520 goto out;
2521
2522 list_for_each_entry_safe(nontrans_bss, tmp,
2523 &pub->nontrans_list,
2524 nontrans_list) {
2525 tmp1 = container_of(nontrans_bss,
2526 struct cfg80211_internal_bss, pub);
2527 if (__cfg80211_unlink_bss(rdev, tmp1))
2528 rdev->bss_generation++;
2529 }
2530
2531 if (__cfg80211_unlink_bss(rdev, bss))
2532 rdev->bss_generation++;
2533 out:
2534 spin_unlock_bh(&rdev->bss_lock);
2535 }
2536 EXPORT_SYMBOL(cfg80211_unlink_bss);
2537
2538 void cfg80211_bss_iter(struct wiphy *wiphy,
2539 struct cfg80211_chan_def *chandef,
2540 void (*iter)(struct wiphy *wiphy,
2541 struct cfg80211_bss *bss,
2542 void *data),
2543 void *iter_data)
2544 {
2545 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2546 struct cfg80211_internal_bss *bss;
2547
2548 spin_lock_bh(&rdev->bss_lock);
2549
2550 list_for_each_entry(bss, &rdev->bss_list, list) {
2551 if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel))
2552 iter(wiphy, &bss->pub, iter_data);
2553 }
2554
2555 spin_unlock_bh(&rdev->bss_lock);
2556 }
2557 EXPORT_SYMBOL(cfg80211_bss_iter);
2558
2559 void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev,
2560 struct ieee80211_channel *chan)
2561 {
2562 struct wiphy *wiphy = wdev->wiphy;
2563 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2564 struct cfg80211_internal_bss *cbss = wdev->current_bss;
2565 struct cfg80211_internal_bss *new = NULL;
2566 struct cfg80211_internal_bss *bss;
2567 struct cfg80211_bss *nontrans_bss;
2568 struct cfg80211_bss *tmp;
2569
2570 spin_lock_bh(&rdev->bss_lock);
2571
2572 /*
2573 * Some APs use CSA also for bandwidth changes, i.e., without actually
2574 * changing the control channel, so no need to update in such a case.
2575 */
2576 if (cbss->pub.channel == chan)
2577 goto done;
2578
2579 /* use transmitting bss */
2580 if (cbss->pub.transmitted_bss)
2581 cbss = container_of(cbss->pub.transmitted_bss,
2582 struct cfg80211_internal_bss,
2583 pub);
2584
2585 cbss->pub.channel = chan;
2586
2587 list_for_each_entry(bss, &rdev->bss_list, list) {
2588 if (!cfg80211_bss_type_match(bss->pub.capability,
2589 bss->pub.channel->band,
2590 wdev->conn_bss_type))
2591 continue;
2592
2593 if (bss == cbss)
2594 continue;
2595
2596 if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) {
2597 new = bss;
2598 break;
2599 }
2600 }
2601
2602 if (new) {
2603 /* to save time, update IEs for transmitting bss only */
2604 if (cfg80211_update_known_bss(rdev, cbss, new, false)) {
2605 new->pub.proberesp_ies = NULL;
2606 new->pub.beacon_ies = NULL;
2607 }
2608
2609 list_for_each_entry_safe(nontrans_bss, tmp,
2610 &new->pub.nontrans_list,
2611 nontrans_list) {
2612 bss = container_of(nontrans_bss,
2613 struct cfg80211_internal_bss, pub);
2614 if (__cfg80211_unlink_bss(rdev, bss))
2615 rdev->bss_generation++;
2616 }
2617
2618 WARN_ON(atomic_read(&new->hold));
2619 if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new)))
2620 rdev->bss_generation++;
2621 }
2622
2623 rb_erase(&cbss->rbn, &rdev->bss_tree);
2624 rb_insert_bss(rdev, cbss);
2625 rdev->bss_generation++;
2626
2627 list_for_each_entry_safe(nontrans_bss, tmp,
2628 &cbss->pub.nontrans_list,
2629 nontrans_list) {
2630 bss = container_of(nontrans_bss,
2631 struct cfg80211_internal_bss, pub);
2632 bss->pub.channel = chan;
2633 rb_erase(&bss->rbn, &rdev->bss_tree);
2634 rb_insert_bss(rdev, bss);
2635 rdev->bss_generation++;
2636 }
2637
2638 done:
2639 spin_unlock_bh(&rdev->bss_lock);
2640 }
2641
2642 #ifdef CONFIG_CFG80211_WEXT
2643 static struct cfg80211_registered_device *
2644 cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
2645 {
2646 struct cfg80211_registered_device *rdev;
2647 struct net_device *dev;
2648
2649 ASSERT_RTNL();
2650
2651 dev = dev_get_by_index(net, ifindex);
2652 if (!dev)
2653 return ERR_PTR(-ENODEV);
2654 if (dev->ieee80211_ptr)
2655 rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy);
2656 else
2657 rdev = ERR_PTR(-ENODEV);
2658 dev_put(dev);
2659 return rdev;
2660 }
2661
2662 int cfg80211_wext_siwscan(struct net_device *dev,
2663 struct iw_request_info *info,
2664 union iwreq_data *wrqu, char *extra)
2665 {
2666 struct cfg80211_registered_device *rdev;
2667 struct wiphy *wiphy;
2668 struct iw_scan_req *wreq = NULL;
2669 struct cfg80211_scan_request *creq = NULL;
2670 int i, err, n_channels = 0;
2671 enum nl80211_band band;
2672
2673 if (!netif_running(dev))
2674 return -ENETDOWN;
2675
2676 if (wrqu->data.length == sizeof(struct iw_scan_req))
2677 wreq = (struct iw_scan_req *)extra;
2678
2679 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
2680
2681 if (IS_ERR(rdev))
2682 return PTR_ERR(rdev);
2683
2684 if (rdev->scan_req || rdev->scan_msg) {
2685 err = -EBUSY;
2686 goto out;
2687 }
2688
2689 wiphy = &rdev->wiphy;
2690
2691 /* Determine number of channels, needed to allocate creq */
2692 if (wreq && wreq->num_channels)
2693 n_channels = wreq->num_channels;
2694 else
2695 n_channels = ieee80211_get_num_supported_channels(wiphy);
2696
2697 creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) +
2698 n_channels * sizeof(void *),
2699 GFP_ATOMIC);
2700 if (!creq) {
2701 err = -ENOMEM;
2702 goto out;
2703 }
2704
2705 creq->wiphy = wiphy;
2706 creq->wdev = dev->ieee80211_ptr;
2707 /* SSIDs come after channels */
2708 creq->ssids = (void *)&creq->channels[n_channels];
2709 creq->n_channels = n_channels;
2710 creq->n_ssids = 1;
2711 creq->scan_start = jiffies;
2712
2713 /* translate "Scan on frequencies" request */
2714 i = 0;
2715 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2716 int j;
2717
2718 if (!wiphy->bands[band])
2719 continue;
2720
2721 for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
2722 /* ignore disabled channels */
2723 if (wiphy->bands[band]->channels[j].flags &
2724 IEEE80211_CHAN_DISABLED)
2725 continue;
2726
2727 /* If we have a wireless request structure and the
2728 * wireless request specifies frequencies, then search
2729 * for the matching hardware channel.
2730 */
2731 if (wreq && wreq->num_channels) {
2732 int k;
2733 int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
2734 for (k = 0; k < wreq->num_channels; k++) {
2735 struct iw_freq *freq =
2736 &wreq->channel_list[k];
2737 int wext_freq =
2738 cfg80211_wext_freq(freq);
2739
2740 if (wext_freq == wiphy_freq)
2741 goto wext_freq_found;
2742 }
2743 goto wext_freq_not_found;
2744 }
2745
2746 wext_freq_found:
2747 creq->channels[i] = &wiphy->bands[band]->channels[j];
2748 i++;
2749 wext_freq_not_found: ;
2750 }
2751 }
2752 /* No channels found? */
2753 if (!i) {
2754 err = -EINVAL;
2755 goto out;
2756 }
2757
2758 /* Set real number of channels specified in creq->channels[] */
2759 creq->n_channels = i;
2760
2761 /* translate "Scan for SSID" request */
2762 if (wreq) {
2763 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
2764 if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) {
2765 err = -EINVAL;
2766 goto out;
2767 }
2768 memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len);
2769 creq->ssids[0].ssid_len = wreq->essid_len;
2770 }
2771 if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE)
2772 creq->n_ssids = 0;
2773 }
2774
2775 for (i = 0; i < NUM_NL80211_BANDS; i++)
2776 if (wiphy->bands[i])
2777 creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1;
2778
2779 eth_broadcast_addr(creq->bssid);
2780
2781 wiphy_lock(&rdev->wiphy);
2782
2783 rdev->scan_req = creq;
2784 err = rdev_scan(rdev, creq);
2785 if (err) {
2786 rdev->scan_req = NULL;
2787 /* creq will be freed below */
2788 } else {
2789 nl80211_send_scan_start(rdev, dev->ieee80211_ptr);
2790 /* creq now owned by driver */
2791 creq = NULL;
2792 dev_hold(dev);
2793 }
2794 wiphy_unlock(&rdev->wiphy);
2795 out:
2796 kfree(creq);
2797 return err;
2798 }
2799 EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan);
2800
2801 static char *ieee80211_scan_add_ies(struct iw_request_info *info,
2802 const struct cfg80211_bss_ies *ies,
2803 char *current_ev, char *end_buf)
2804 {
2805 const u8 *pos, *end, *next;
2806 struct iw_event iwe;
2807
2808 if (!ies)
2809 return current_ev;
2810
2811 /*
2812 * If needed, fragment the IEs buffer (at IE boundaries) into short
2813 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
2814 */
2815 pos = ies->data;
2816 end = pos + ies->len;
2817
2818 while (end - pos > IW_GENERIC_IE_MAX) {
2819 next = pos + 2 + pos[1];
2820 while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
2821 next = next + 2 + next[1];
2822
2823 memset(&iwe, 0, sizeof(iwe));
2824 iwe.cmd = IWEVGENIE;
2825 iwe.u.data.length = next - pos;
2826 current_ev = iwe_stream_add_point_check(info, current_ev,
2827 end_buf, &iwe,
2828 (void *)pos);
2829 if (IS_ERR(current_ev))
2830 return current_ev;
2831 pos = next;
2832 }
2833
2834 if (end > pos) {
2835 memset(&iwe, 0, sizeof(iwe));
2836 iwe.cmd = IWEVGENIE;
2837 iwe.u.data.length = end - pos;
2838 current_ev = iwe_stream_add_point_check(info, current_ev,
2839 end_buf, &iwe,
2840 (void *)pos);
2841 if (IS_ERR(current_ev))
2842 return current_ev;
2843 }
2844
2845 return current_ev;
2846 }
2847
2848 static char *
2849 ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
2850 struct cfg80211_internal_bss *bss, char *current_ev,
2851 char *end_buf)
2852 {
2853 const struct cfg80211_bss_ies *ies;
2854 struct iw_event iwe;
2855 const u8 *ie;
2856 u8 buf[50];
2857 u8 *cfg, *p, *tmp;
2858 int rem, i, sig;
2859 bool ismesh = false;
2860
2861 memset(&iwe, 0, sizeof(iwe));
2862 iwe.cmd = SIOCGIWAP;
2863 iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
2864 memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
2865 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2866 IW_EV_ADDR_LEN);
2867 if (IS_ERR(current_ev))
2868 return current_ev;
2869
2870 memset(&iwe, 0, sizeof(iwe));
2871 iwe.cmd = SIOCGIWFREQ;
2872 iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
2873 iwe.u.freq.e = 0;
2874 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2875 IW_EV_FREQ_LEN);
2876 if (IS_ERR(current_ev))
2877 return current_ev;
2878
2879 memset(&iwe, 0, sizeof(iwe));
2880 iwe.cmd = SIOCGIWFREQ;
2881 iwe.u.freq.m = bss->pub.channel->center_freq;
2882 iwe.u.freq.e = 6;
2883 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2884 IW_EV_FREQ_LEN);
2885 if (IS_ERR(current_ev))
2886 return current_ev;
2887
2888 if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
2889 memset(&iwe, 0, sizeof(iwe));
2890 iwe.cmd = IWEVQUAL;
2891 iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
2892 IW_QUAL_NOISE_INVALID |
2893 IW_QUAL_QUAL_UPDATED;
2894 switch (wiphy->signal_type) {
2895 case CFG80211_SIGNAL_TYPE_MBM:
2896 sig = bss->pub.signal / 100;
2897 iwe.u.qual.level = sig;
2898 iwe.u.qual.updated |= IW_QUAL_DBM;
2899 if (sig < -110) /* rather bad */
2900 sig = -110;
2901 else if (sig > -40) /* perfect */
2902 sig = -40;
2903 /* will give a range of 0 .. 70 */
2904 iwe.u.qual.qual = sig + 110;
2905 break;
2906 case CFG80211_SIGNAL_TYPE_UNSPEC:
2907 iwe.u.qual.level = bss->pub.signal;
2908 /* will give range 0 .. 100 */
2909 iwe.u.qual.qual = bss->pub.signal;
2910 break;
2911 default:
2912 /* not reached */
2913 break;
2914 }
2915 current_ev = iwe_stream_add_event_check(info, current_ev,
2916 end_buf, &iwe,
2917 IW_EV_QUAL_LEN);
2918 if (IS_ERR(current_ev))
2919 return current_ev;
2920 }
2921
2922 memset(&iwe, 0, sizeof(iwe));
2923 iwe.cmd = SIOCGIWENCODE;
2924 if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
2925 iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
2926 else
2927 iwe.u.data.flags = IW_ENCODE_DISABLED;
2928 iwe.u.data.length = 0;
2929 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
2930 &iwe, "");
2931 if (IS_ERR(current_ev))
2932 return current_ev;
2933
2934 rcu_read_lock();
2935 ies = rcu_dereference(bss->pub.ies);
2936 rem = ies->len;
2937 ie = ies->data;
2938
2939 while (rem >= 2) {
2940 /* invalid data */
2941 if (ie[1] > rem - 2)
2942 break;
2943
2944 switch (ie[0]) {
2945 case WLAN_EID_SSID:
2946 memset(&iwe, 0, sizeof(iwe));
2947 iwe.cmd = SIOCGIWESSID;
2948 iwe.u.data.length = ie[1];
2949 iwe.u.data.flags = 1;
2950 current_ev = iwe_stream_add_point_check(info,
2951 current_ev,
2952 end_buf, &iwe,
2953 (u8 *)ie + 2);
2954 if (IS_ERR(current_ev))
2955 goto unlock;
2956 break;
2957 case WLAN_EID_MESH_ID:
2958 memset(&iwe, 0, sizeof(iwe));
2959 iwe.cmd = SIOCGIWESSID;
2960 iwe.u.data.length = ie[1];
2961 iwe.u.data.flags = 1;
2962 current_ev = iwe_stream_add_point_check(info,
2963 current_ev,
2964 end_buf, &iwe,
2965 (u8 *)ie + 2);
2966 if (IS_ERR(current_ev))
2967 goto unlock;
2968 break;
2969 case WLAN_EID_MESH_CONFIG:
2970 ismesh = true;
2971 if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
2972 break;
2973 cfg = (u8 *)ie + 2;
2974 memset(&iwe, 0, sizeof(iwe));
2975 iwe.cmd = IWEVCUSTOM;
2976 sprintf(buf, "Mesh Network Path Selection Protocol ID: "
2977 "0x%02X", cfg[0]);
2978 iwe.u.data.length = strlen(buf);
2979 current_ev = iwe_stream_add_point_check(info,
2980 current_ev,
2981 end_buf,
2982 &iwe, buf);
2983 if (IS_ERR(current_ev))
2984 goto unlock;
2985 sprintf(buf, "Path Selection Metric ID: 0x%02X",
2986 cfg[1]);
2987 iwe.u.data.length = strlen(buf);
2988 current_ev = iwe_stream_add_point_check(info,
2989 current_ev,
2990 end_buf,
2991 &iwe, buf);
2992 if (IS_ERR(current_ev))
2993 goto unlock;
2994 sprintf(buf, "Congestion Control Mode ID: 0x%02X",
2995 cfg[2]);
2996 iwe.u.data.length = strlen(buf);
2997 current_ev = iwe_stream_add_point_check(info,
2998 current_ev,
2999 end_buf,
3000 &iwe, buf);
3001 if (IS_ERR(current_ev))
3002 goto unlock;
3003 sprintf(buf, "Synchronization ID: 0x%02X", cfg[3]);
3004 iwe.u.data.length = strlen(buf);
3005 current_ev = iwe_stream_add_point_check(info,
3006 current_ev,
3007 end_buf,
3008 &iwe, buf);
3009 if (IS_ERR(current_ev))
3010 goto unlock;
3011 sprintf(buf, "Authentication ID: 0x%02X", cfg[4]);
3012 iwe.u.data.length = strlen(buf);
3013 current_ev = iwe_stream_add_point_check(info,
3014 current_ev,
3015 end_buf,
3016 &iwe, buf);
3017 if (IS_ERR(current_ev))
3018 goto unlock;
3019 sprintf(buf, "Formation Info: 0x%02X", cfg[5]);
3020 iwe.u.data.length = strlen(buf);
3021 current_ev = iwe_stream_add_point_check(info,
3022 current_ev,
3023 end_buf,
3024 &iwe, buf);
3025 if (IS_ERR(current_ev))
3026 goto unlock;
3027 sprintf(buf, "Capabilities: 0x%02X", cfg[6]);
3028 iwe.u.data.length = strlen(buf);
3029 current_ev = iwe_stream_add_point_check(info,
3030 current_ev,
3031 end_buf,
3032 &iwe, buf);
3033 if (IS_ERR(current_ev))
3034 goto unlock;
3035 break;
3036 case WLAN_EID_SUPP_RATES:
3037 case WLAN_EID_EXT_SUPP_RATES:
3038 /* display all supported rates in readable format */
3039 p = current_ev + iwe_stream_lcp_len(info);
3040
3041 memset(&iwe, 0, sizeof(iwe));
3042 iwe.cmd = SIOCGIWRATE;
3043 /* Those two flags are ignored... */
3044 iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
3045
3046 for (i = 0; i < ie[1]; i++) {
3047 iwe.u.bitrate.value =
3048 ((ie[i + 2] & 0x7f) * 500000);
3049 tmp = p;
3050 p = iwe_stream_add_value(info, current_ev, p,
3051 end_buf, &iwe,
3052 IW_EV_PARAM_LEN);
3053 if (p == tmp) {
3054 current_ev = ERR_PTR(-E2BIG);
3055 goto unlock;
3056 }
3057 }
3058 current_ev = p;
3059 break;
3060 }
3061 rem -= ie[1] + 2;
3062 ie += ie[1] + 2;
3063 }
3064
3065 if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
3066 ismesh) {
3067 memset(&iwe, 0, sizeof(iwe));
3068 iwe.cmd = SIOCGIWMODE;
3069 if (ismesh)
3070 iwe.u.mode = IW_MODE_MESH;
3071 else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
3072 iwe.u.mode = IW_MODE_MASTER;
3073 else
3074 iwe.u.mode = IW_MODE_ADHOC;
3075 current_ev = iwe_stream_add_event_check(info, current_ev,
3076 end_buf, &iwe,
3077 IW_EV_UINT_LEN);
3078 if (IS_ERR(current_ev))
3079 goto unlock;
3080 }
3081
3082 memset(&iwe, 0, sizeof(iwe));
3083 iwe.cmd = IWEVCUSTOM;
3084 sprintf(buf, "tsf=%016llx", (unsigned long long)(ies->tsf));
3085 iwe.u.data.length = strlen(buf);
3086 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3087 &iwe, buf);
3088 if (IS_ERR(current_ev))
3089 goto unlock;
3090 memset(&iwe, 0, sizeof(iwe));
3091 iwe.cmd = IWEVCUSTOM;
3092 sprintf(buf, " Last beacon: %ums ago",
3093 elapsed_jiffies_msecs(bss->ts));
3094 iwe.u.data.length = strlen(buf);
3095 current_ev = iwe_stream_add_point_check(info, current_ev,
3096 end_buf, &iwe, buf);
3097 if (IS_ERR(current_ev))
3098 goto unlock;
3099
3100 current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
3101
3102 unlock:
3103 rcu_read_unlock();
3104 return current_ev;
3105 }
3106
3107
3108 static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
3109 struct iw_request_info *info,
3110 char *buf, size_t len)
3111 {
3112 char *current_ev = buf;
3113 char *end_buf = buf + len;
3114 struct cfg80211_internal_bss *bss;
3115 int err = 0;
3116
3117 spin_lock_bh(&rdev->bss_lock);
3118 cfg80211_bss_expire(rdev);
3119
3120 list_for_each_entry(bss, &rdev->bss_list, list) {
3121 if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
3122 err = -E2BIG;
3123 break;
3124 }
3125 current_ev = ieee80211_bss(&rdev->wiphy, info, bss,
3126 current_ev, end_buf);
3127 if (IS_ERR(current_ev)) {
3128 err = PTR_ERR(current_ev);
3129 break;
3130 }
3131 }
3132 spin_unlock_bh(&rdev->bss_lock);
3133
3134 if (err)
3135 return err;
3136 return current_ev - buf;
3137 }
3138
3139
3140 int cfg80211_wext_giwscan(struct net_device *dev,
3141 struct iw_request_info *info,
3142 struct iw_point *data, char *extra)
3143 {
3144 struct cfg80211_registered_device *rdev;
3145 int res;
3146
3147 if (!netif_running(dev))
3148 return -ENETDOWN;
3149
3150 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3151
3152 if (IS_ERR(rdev))
3153 return PTR_ERR(rdev);
3154
3155 if (rdev->scan_req || rdev->scan_msg)
3156 return -EAGAIN;
3157
3158 res = ieee80211_scan_results(rdev, info, extra, data->length);
3159 data->length = 0;
3160 if (res >= 0) {
3161 data->length = res;
3162 res = 0;
3163 }
3164
3165 return res;
3166 }
3167 EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan);
3168 #endif