]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - net/wireless/scan.c
8e1e578d64bc0882b9c3fd2a42276bf0a8988700
[mirror_ubuntu-jammy-kernel.git] / net / wireless / scan.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * cfg80211 scan result handling
4 *
5 * Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2016 Intel Deutschland GmbH
8 * Copyright (C) 2018-2021 Intel Corporation
9 */
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/netdevice.h>
14 #include <linux/wireless.h>
15 #include <linux/nl80211.h>
16 #include <linux/etherdevice.h>
17 #include <linux/crc32.h>
18 #include <linux/bitfield.h>
19 #include <net/arp.h>
20 #include <net/cfg80211.h>
21 #include <net/cfg80211-wext.h>
22 #include <net/iw_handler.h>
23 #include "core.h"
24 #include "nl80211.h"
25 #include "wext-compat.h"
26 #include "rdev-ops.h"
27
28 /**
29 * DOC: BSS tree/list structure
30 *
31 * At the top level, the BSS list is kept in both a list in each
32 * registered device (@bss_list) as well as an RB-tree for faster
33 * lookup. In the RB-tree, entries can be looked up using their
34 * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
35 * for other BSSes.
36 *
37 * Due to the possibility of hidden SSIDs, there's a second level
38 * structure, the "hidden_list" and "hidden_beacon_bss" pointer.
39 * The hidden_list connects all BSSes belonging to a single AP
40 * that has a hidden SSID, and connects beacon and probe response
41 * entries. For a probe response entry for a hidden SSID, the
42 * hidden_beacon_bss pointer points to the BSS struct holding the
43 * beacon's information.
44 *
45 * Reference counting is done for all these references except for
46 * the hidden_list, so that a beacon BSS struct that is otherwise
47 * not referenced has one reference for being on the bss_list and
48 * one for each probe response entry that points to it using the
49 * hidden_beacon_bss pointer. When a BSS struct that has such a
50 * pointer is get/put, the refcount update is also propagated to
51 * the referenced struct, this ensure that it cannot get removed
52 * while somebody is using the probe response version.
53 *
54 * Note that the hidden_beacon_bss pointer never changes, due to
55 * the reference counting. Therefore, no locking is needed for
56 * it.
57 *
58 * Also note that the hidden_beacon_bss pointer is only relevant
59 * if the driver uses something other than the IEs, e.g. private
60 * data stored in the BSS struct, since the beacon IEs are
61 * also linked into the probe response struct.
62 */
63
64 /*
65 * Limit the number of BSS entries stored in mac80211. Each one is
66 * a bit over 4k at most, so this limits to roughly 4-5M of memory.
67 * If somebody wants to really attack this though, they'd likely
68 * use small beacons, and only one type of frame, limiting each of
69 * the entries to a much smaller size (in order to generate more
70 * entries in total, so overhead is bigger.)
71 */
72 static int bss_entries_limit = 1000;
73 module_param(bss_entries_limit, int, 0644);
74 MODULE_PARM_DESC(bss_entries_limit,
75 "limit to number of scan BSS entries (per wiphy, default 1000)");
76
77 #define IEEE80211_SCAN_RESULT_EXPIRE (30 * HZ)
78
79 /**
80 * struct cfg80211_colocated_ap - colocated AP information
81 *
82 * @list: linked list to all colocated aPS
83 * @bssid: BSSID of the reported AP
84 * @ssid: SSID of the reported AP
85 * @ssid_len: length of the ssid
86 * @center_freq: frequency the reported AP is on
87 * @unsolicited_probe: the reported AP is part of an ESS, where all the APs
88 * that operate in the same channel as the reported AP and that might be
89 * detected by a STA receiving this frame, are transmitting unsolicited
90 * Probe Response frames every 20 TUs
91 * @oct_recommended: OCT is recommended to exchange MMPDUs with the reported AP
92 * @same_ssid: the reported AP has the same SSID as the reporting AP
93 * @multi_bss: the reported AP is part of a multiple BSSID set
94 * @transmitted_bssid: the reported AP is the transmitting BSSID
95 * @colocated_ess: all the APs that share the same ESS as the reported AP are
96 * colocated and can be discovered via legacy bands.
97 * @short_ssid_valid: short_ssid is valid and can be used
98 * @short_ssid: the short SSID for this SSID
99 */
100 struct cfg80211_colocated_ap {
101 struct list_head list;
102 u8 bssid[ETH_ALEN];
103 u8 ssid[IEEE80211_MAX_SSID_LEN];
104 size_t ssid_len;
105 u32 short_ssid;
106 u32 center_freq;
107 u8 unsolicited_probe:1,
108 oct_recommended:1,
109 same_ssid:1,
110 multi_bss:1,
111 transmitted_bssid:1,
112 colocated_ess:1,
113 short_ssid_valid:1;
114 };
115
116 static void bss_free(struct cfg80211_internal_bss *bss)
117 {
118 struct cfg80211_bss_ies *ies;
119
120 if (WARN_ON(atomic_read(&bss->hold)))
121 return;
122
123 ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
124 if (ies && !bss->pub.hidden_beacon_bss)
125 kfree_rcu(ies, rcu_head);
126 ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
127 if (ies)
128 kfree_rcu(ies, rcu_head);
129
130 /*
131 * This happens when the module is removed, it doesn't
132 * really matter any more save for completeness
133 */
134 if (!list_empty(&bss->hidden_list))
135 list_del(&bss->hidden_list);
136
137 kfree(bss);
138 }
139
140 static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
141 struct cfg80211_internal_bss *bss)
142 {
143 lockdep_assert_held(&rdev->bss_lock);
144
145 bss->refcount++;
146 if (bss->pub.hidden_beacon_bss) {
147 bss = container_of(bss->pub.hidden_beacon_bss,
148 struct cfg80211_internal_bss,
149 pub);
150 bss->refcount++;
151 }
152 if (bss->pub.transmitted_bss) {
153 bss = container_of(bss->pub.transmitted_bss,
154 struct cfg80211_internal_bss,
155 pub);
156 bss->refcount++;
157 }
158 }
159
160 static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
161 struct cfg80211_internal_bss *bss)
162 {
163 lockdep_assert_held(&rdev->bss_lock);
164
165 if (bss->pub.hidden_beacon_bss) {
166 struct cfg80211_internal_bss *hbss;
167 hbss = container_of(bss->pub.hidden_beacon_bss,
168 struct cfg80211_internal_bss,
169 pub);
170 hbss->refcount--;
171 if (hbss->refcount == 0)
172 bss_free(hbss);
173 }
174
175 if (bss->pub.transmitted_bss) {
176 struct cfg80211_internal_bss *tbss;
177
178 tbss = container_of(bss->pub.transmitted_bss,
179 struct cfg80211_internal_bss,
180 pub);
181 tbss->refcount--;
182 if (tbss->refcount == 0)
183 bss_free(tbss);
184 }
185
186 bss->refcount--;
187 if (bss->refcount == 0)
188 bss_free(bss);
189 }
190
191 static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
192 struct cfg80211_internal_bss *bss)
193 {
194 lockdep_assert_held(&rdev->bss_lock);
195
196 if (!list_empty(&bss->hidden_list)) {
197 /*
198 * don't remove the beacon entry if it has
199 * probe responses associated with it
200 */
201 if (!bss->pub.hidden_beacon_bss)
202 return false;
203 /*
204 * if it's a probe response entry break its
205 * link to the other entries in the group
206 */
207 list_del_init(&bss->hidden_list);
208 }
209
210 list_del_init(&bss->list);
211 list_del_init(&bss->pub.nontrans_list);
212 rb_erase(&bss->rbn, &rdev->bss_tree);
213 rdev->bss_entries--;
214 WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list),
215 "rdev bss entries[%d]/list[empty:%d] corruption\n",
216 rdev->bss_entries, list_empty(&rdev->bss_list));
217 bss_ref_put(rdev, bss);
218 return true;
219 }
220
221 bool cfg80211_is_element_inherited(const struct element *elem,
222 const struct element *non_inherit_elem)
223 {
224 u8 id_len, ext_id_len, i, loop_len, id;
225 const u8 *list;
226
227 if (elem->id == WLAN_EID_MULTIPLE_BSSID)
228 return false;
229
230 if (!non_inherit_elem || non_inherit_elem->datalen < 2)
231 return true;
232
233 /*
234 * non inheritance element format is:
235 * ext ID (56) | IDs list len | list | extension IDs list len | list
236 * Both lists are optional. Both lengths are mandatory.
237 * This means valid length is:
238 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths
239 */
240 id_len = non_inherit_elem->data[1];
241 if (non_inherit_elem->datalen < 3 + id_len)
242 return true;
243
244 ext_id_len = non_inherit_elem->data[2 + id_len];
245 if (non_inherit_elem->datalen < 3 + id_len + ext_id_len)
246 return true;
247
248 if (elem->id == WLAN_EID_EXTENSION) {
249 if (!ext_id_len)
250 return true;
251 loop_len = ext_id_len;
252 list = &non_inherit_elem->data[3 + id_len];
253 id = elem->data[0];
254 } else {
255 if (!id_len)
256 return true;
257 loop_len = id_len;
258 list = &non_inherit_elem->data[2];
259 id = elem->id;
260 }
261
262 for (i = 0; i < loop_len; i++) {
263 if (list[i] == id)
264 return false;
265 }
266
267 return true;
268 }
269 EXPORT_SYMBOL(cfg80211_is_element_inherited);
270
271 static size_t cfg80211_gen_new_ie(const u8 *ie, size_t ielen,
272 const u8 *subelement, size_t subie_len,
273 u8 *new_ie, gfp_t gfp)
274 {
275 u8 *pos, *tmp;
276 const u8 *tmp_old, *tmp_new;
277 const struct element *non_inherit_elem;
278 u8 *sub_copy;
279
280 /* copy subelement as we need to change its content to
281 * mark an ie after it is processed.
282 */
283 sub_copy = kmemdup(subelement, subie_len, gfp);
284 if (!sub_copy)
285 return 0;
286
287 pos = &new_ie[0];
288
289 /* set new ssid */
290 tmp_new = cfg80211_find_ie(WLAN_EID_SSID, sub_copy, subie_len);
291 if (tmp_new) {
292 memcpy(pos, tmp_new, tmp_new[1] + 2);
293 pos += (tmp_new[1] + 2);
294 }
295
296 /* get non inheritance list if exists */
297 non_inherit_elem =
298 cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
299 sub_copy, subie_len);
300
301 /* go through IEs in ie (skip SSID) and subelement,
302 * merge them into new_ie
303 */
304 tmp_old = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen);
305 tmp_old = (tmp_old) ? tmp_old + tmp_old[1] + 2 : ie;
306
307 while (tmp_old + tmp_old[1] + 2 - ie <= ielen) {
308 if (tmp_old[0] == 0) {
309 tmp_old++;
310 continue;
311 }
312
313 if (tmp_old[0] == WLAN_EID_EXTENSION)
314 tmp = (u8 *)cfg80211_find_ext_ie(tmp_old[2], sub_copy,
315 subie_len);
316 else
317 tmp = (u8 *)cfg80211_find_ie(tmp_old[0], sub_copy,
318 subie_len);
319
320 if (!tmp) {
321 const struct element *old_elem = (void *)tmp_old;
322
323 /* ie in old ie but not in subelement */
324 if (cfg80211_is_element_inherited(old_elem,
325 non_inherit_elem)) {
326 memcpy(pos, tmp_old, tmp_old[1] + 2);
327 pos += tmp_old[1] + 2;
328 }
329 } else {
330 /* ie in transmitting ie also in subelement,
331 * copy from subelement and flag the ie in subelement
332 * as copied (by setting eid field to WLAN_EID_SSID,
333 * which is skipped anyway).
334 * For vendor ie, compare OUI + type + subType to
335 * determine if they are the same ie.
336 */
337 if (tmp_old[0] == WLAN_EID_VENDOR_SPECIFIC) {
338 if (!memcmp(tmp_old + 2, tmp + 2, 5)) {
339 /* same vendor ie, copy from
340 * subelement
341 */
342 memcpy(pos, tmp, tmp[1] + 2);
343 pos += tmp[1] + 2;
344 tmp[0] = WLAN_EID_SSID;
345 } else {
346 memcpy(pos, tmp_old, tmp_old[1] + 2);
347 pos += tmp_old[1] + 2;
348 }
349 } else {
350 /* copy ie from subelement into new ie */
351 memcpy(pos, tmp, tmp[1] + 2);
352 pos += tmp[1] + 2;
353 tmp[0] = WLAN_EID_SSID;
354 }
355 }
356
357 if (tmp_old + tmp_old[1] + 2 - ie == ielen)
358 break;
359
360 tmp_old += tmp_old[1] + 2;
361 }
362
363 /* go through subelement again to check if there is any ie not
364 * copied to new ie, skip ssid, capability, bssid-index ie
365 */
366 tmp_new = sub_copy;
367 while (tmp_new + tmp_new[1] + 2 - sub_copy <= subie_len) {
368 if (!(tmp_new[0] == WLAN_EID_NON_TX_BSSID_CAP ||
369 tmp_new[0] == WLAN_EID_SSID)) {
370 memcpy(pos, tmp_new, tmp_new[1] + 2);
371 pos += tmp_new[1] + 2;
372 }
373 if (tmp_new + tmp_new[1] + 2 - sub_copy == subie_len)
374 break;
375 tmp_new += tmp_new[1] + 2;
376 }
377
378 kfree(sub_copy);
379 return pos - new_ie;
380 }
381
382 static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
383 const u8 *ssid, size_t ssid_len)
384 {
385 const struct cfg80211_bss_ies *ies;
386 const u8 *ssidie;
387
388 if (bssid && !ether_addr_equal(a->bssid, bssid))
389 return false;
390
391 if (!ssid)
392 return true;
393
394 ies = rcu_access_pointer(a->ies);
395 if (!ies)
396 return false;
397 ssidie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
398 if (!ssidie)
399 return false;
400 if (ssidie[1] != ssid_len)
401 return false;
402 return memcmp(ssidie + 2, ssid, ssid_len) == 0;
403 }
404
405 static int
406 cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss,
407 struct cfg80211_bss *nontrans_bss)
408 {
409 const u8 *ssid;
410 size_t ssid_len;
411 struct cfg80211_bss *bss = NULL;
412
413 rcu_read_lock();
414 ssid = ieee80211_bss_get_ie(nontrans_bss, WLAN_EID_SSID);
415 if (!ssid) {
416 rcu_read_unlock();
417 return -EINVAL;
418 }
419 ssid_len = ssid[1];
420 ssid = ssid + 2;
421
422 /* check if nontrans_bss is in the list */
423 list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) {
424 if (is_bss(bss, nontrans_bss->bssid, ssid, ssid_len)) {
425 rcu_read_unlock();
426 return 0;
427 }
428 }
429
430 rcu_read_unlock();
431
432 /* add to the list */
433 list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list);
434 return 0;
435 }
436
437 static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
438 unsigned long expire_time)
439 {
440 struct cfg80211_internal_bss *bss, *tmp;
441 bool expired = false;
442
443 lockdep_assert_held(&rdev->bss_lock);
444
445 list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
446 if (atomic_read(&bss->hold))
447 continue;
448 if (!time_after(expire_time, bss->ts))
449 continue;
450
451 if (__cfg80211_unlink_bss(rdev, bss))
452 expired = true;
453 }
454
455 if (expired)
456 rdev->bss_generation++;
457 }
458
459 static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev)
460 {
461 struct cfg80211_internal_bss *bss, *oldest = NULL;
462 bool ret;
463
464 lockdep_assert_held(&rdev->bss_lock);
465
466 list_for_each_entry(bss, &rdev->bss_list, list) {
467 if (atomic_read(&bss->hold))
468 continue;
469
470 if (!list_empty(&bss->hidden_list) &&
471 !bss->pub.hidden_beacon_bss)
472 continue;
473
474 if (oldest && time_before(oldest->ts, bss->ts))
475 continue;
476 oldest = bss;
477 }
478
479 if (WARN_ON(!oldest))
480 return false;
481
482 /*
483 * The callers make sure to increase rdev->bss_generation if anything
484 * gets removed (and a new entry added), so there's no need to also do
485 * it here.
486 */
487
488 ret = __cfg80211_unlink_bss(rdev, oldest);
489 WARN_ON(!ret);
490 return ret;
491 }
492
493 static u8 cfg80211_parse_bss_param(u8 data,
494 struct cfg80211_colocated_ap *coloc_ap)
495 {
496 coloc_ap->oct_recommended =
497 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED);
498 coloc_ap->same_ssid =
499 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID);
500 coloc_ap->multi_bss =
501 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID);
502 coloc_ap->transmitted_bssid =
503 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID);
504 coloc_ap->unsolicited_probe =
505 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE);
506 coloc_ap->colocated_ess =
507 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS);
508
509 return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP);
510 }
511
512 static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies,
513 const struct element **elem, u32 *s_ssid)
514 {
515
516 *elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
517 if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN)
518 return -EINVAL;
519
520 *s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen);
521 return 0;
522 }
523
524 static void cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list)
525 {
526 struct cfg80211_colocated_ap *ap, *tmp_ap;
527
528 list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) {
529 list_del(&ap->list);
530 kfree(ap);
531 }
532 }
533
534 static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry,
535 const u8 *pos, u8 length,
536 const struct element *ssid_elem,
537 int s_ssid_tmp)
538 {
539 /* skip the TBTT offset */
540 pos++;
541
542 memcpy(entry->bssid, pos, ETH_ALEN);
543 pos += ETH_ALEN;
544
545 if (length == IEEE80211_TBTT_INFO_OFFSET_BSSID_SSSID_BSS_PARAM) {
546 memcpy(&entry->short_ssid, pos,
547 sizeof(entry->short_ssid));
548 entry->short_ssid_valid = true;
549 pos += 4;
550 }
551
552 /* skip non colocated APs */
553 if (!cfg80211_parse_bss_param(*pos, entry))
554 return -EINVAL;
555 pos++;
556
557 if (length == IEEE80211_TBTT_INFO_OFFSET_BSSID_BSS_PARAM) {
558 /*
559 * no information about the short ssid. Consider the entry valid
560 * for now. It would later be dropped in case there are explicit
561 * SSIDs that need to be matched
562 */
563 if (!entry->same_ssid)
564 return 0;
565 }
566
567 if (entry->same_ssid) {
568 entry->short_ssid = s_ssid_tmp;
569 entry->short_ssid_valid = true;
570
571 /*
572 * This is safe because we validate datalen in
573 * cfg80211_parse_colocated_ap(), before calling this
574 * function.
575 */
576 memcpy(&entry->ssid, &ssid_elem->data,
577 ssid_elem->datalen);
578 entry->ssid_len = ssid_elem->datalen;
579 }
580 return 0;
581 }
582
583 static int cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies,
584 struct list_head *list)
585 {
586 struct ieee80211_neighbor_ap_info *ap_info;
587 const struct element *elem, *ssid_elem;
588 const u8 *pos, *end;
589 u32 s_ssid_tmp;
590 int n_coloc = 0, ret;
591 LIST_HEAD(ap_list);
592
593 elem = cfg80211_find_elem(WLAN_EID_REDUCED_NEIGHBOR_REPORT, ies->data,
594 ies->len);
595 if (!elem)
596 return 0;
597
598 pos = elem->data;
599 end = pos + elem->datalen;
600
601 ret = cfg80211_calc_short_ssid(ies, &ssid_elem, &s_ssid_tmp);
602 if (ret)
603 return ret;
604
605 /* RNR IE may contain more than one NEIGHBOR_AP_INFO */
606 while (pos + sizeof(*ap_info) <= end) {
607 enum nl80211_band band;
608 int freq;
609 u8 length, i, count;
610
611 ap_info = (void *)pos;
612 count = u8_get_bits(ap_info->tbtt_info_hdr,
613 IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1;
614 length = ap_info->tbtt_info_len;
615
616 pos += sizeof(*ap_info);
617
618 if (!ieee80211_operating_class_to_band(ap_info->op_class,
619 &band))
620 break;
621
622 freq = ieee80211_channel_to_frequency(ap_info->channel, band);
623
624 if (end - pos < count * length)
625 break;
626
627 /*
628 * TBTT info must include bss param + BSSID +
629 * (short SSID or same_ssid bit to be set).
630 * ignore other options, and move to the
631 * next AP info
632 */
633 if (band != NL80211_BAND_6GHZ ||
634 (length != IEEE80211_TBTT_INFO_OFFSET_BSSID_BSS_PARAM &&
635 length < IEEE80211_TBTT_INFO_OFFSET_BSSID_SSSID_BSS_PARAM)) {
636 pos += count * length;
637 continue;
638 }
639
640 for (i = 0; i < count; i++) {
641 struct cfg80211_colocated_ap *entry;
642
643 entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN,
644 GFP_ATOMIC);
645
646 if (!entry)
647 break;
648
649 entry->center_freq = freq;
650
651 if (!cfg80211_parse_ap_info(entry, pos, length,
652 ssid_elem, s_ssid_tmp)) {
653 n_coloc++;
654 list_add_tail(&entry->list, &ap_list);
655 } else {
656 kfree(entry);
657 }
658
659 pos += length;
660 }
661 }
662
663 if (pos != end) {
664 cfg80211_free_coloc_ap_list(&ap_list);
665 return 0;
666 }
667
668 list_splice_tail(&ap_list, list);
669 return n_coloc;
670 }
671
672 static void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request,
673 struct ieee80211_channel *chan,
674 bool add_to_6ghz)
675 {
676 int i;
677 u32 n_channels = request->n_channels;
678 struct cfg80211_scan_6ghz_params *params =
679 &request->scan_6ghz_params[request->n_6ghz_params];
680
681 for (i = 0; i < n_channels; i++) {
682 if (request->channels[i] == chan) {
683 if (add_to_6ghz)
684 params->channel_idx = i;
685 return;
686 }
687 }
688
689 request->channels[n_channels] = chan;
690 if (add_to_6ghz)
691 request->scan_6ghz_params[request->n_6ghz_params].channel_idx =
692 n_channels;
693
694 request->n_channels++;
695 }
696
697 static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap,
698 struct cfg80211_scan_request *request)
699 {
700 int i;
701 u32 s_ssid;
702
703 for (i = 0; i < request->n_ssids; i++) {
704 /* wildcard ssid in the scan request */
705 if (!request->ssids[i].ssid_len) {
706 if (ap->multi_bss && !ap->transmitted_bssid)
707 continue;
708
709 return true;
710 }
711
712 if (ap->ssid_len &&
713 ap->ssid_len == request->ssids[i].ssid_len) {
714 if (!memcmp(request->ssids[i].ssid, ap->ssid,
715 ap->ssid_len))
716 return true;
717 } else if (ap->short_ssid_valid) {
718 s_ssid = ~crc32_le(~0, request->ssids[i].ssid,
719 request->ssids[i].ssid_len);
720
721 if (ap->short_ssid == s_ssid)
722 return true;
723 }
724 }
725
726 return false;
727 }
728
729 static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev)
730 {
731 u8 i;
732 struct cfg80211_colocated_ap *ap;
733 int n_channels, count = 0, err;
734 struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req;
735 LIST_HEAD(coloc_ap_list);
736 bool need_scan_psc = true;
737 const struct ieee80211_sband_iftype_data *iftd;
738
739 rdev_req->scan_6ghz = true;
740
741 if (!rdev->wiphy.bands[NL80211_BAND_6GHZ])
742 return -EOPNOTSUPP;
743
744 iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ],
745 rdev_req->wdev->iftype);
746 if (!iftd || !iftd->he_cap.has_he)
747 return -EOPNOTSUPP;
748
749 n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels;
750
751 if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) {
752 struct cfg80211_internal_bss *intbss;
753
754 spin_lock_bh(&rdev->bss_lock);
755 list_for_each_entry(intbss, &rdev->bss_list, list) {
756 struct cfg80211_bss *res = &intbss->pub;
757 const struct cfg80211_bss_ies *ies;
758
759 ies = rcu_access_pointer(res->ies);
760 count += cfg80211_parse_colocated_ap(ies,
761 &coloc_ap_list);
762 }
763 spin_unlock_bh(&rdev->bss_lock);
764 }
765
766 request = kzalloc(struct_size(request, channels, n_channels) +
767 sizeof(*request->scan_6ghz_params) * count +
768 sizeof(*request->ssids) * rdev_req->n_ssids,
769 GFP_KERNEL);
770 if (!request) {
771 cfg80211_free_coloc_ap_list(&coloc_ap_list);
772 return -ENOMEM;
773 }
774
775 *request = *rdev_req;
776 request->n_channels = 0;
777 request->scan_6ghz_params =
778 (void *)&request->channels[n_channels];
779
780 /*
781 * PSC channels should not be scanned in case of direct scan with 1 SSID
782 * and at least one of the reported co-located APs with same SSID
783 * indicating that all APs in the same ESS are co-located
784 */
785 if (count && request->n_ssids == 1 && request->ssids[0].ssid_len) {
786 list_for_each_entry(ap, &coloc_ap_list, list) {
787 if (ap->colocated_ess &&
788 cfg80211_find_ssid_match(ap, request)) {
789 need_scan_psc = false;
790 break;
791 }
792 }
793 }
794
795 /*
796 * add to the scan request the channels that need to be scanned
797 * regardless of the collocated APs (PSC channels or all channels
798 * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set)
799 */
800 for (i = 0; i < rdev_req->n_channels; i++) {
801 if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ &&
802 ((need_scan_psc &&
803 cfg80211_channel_is_psc(rdev_req->channels[i])) ||
804 !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) {
805 cfg80211_scan_req_add_chan(request,
806 rdev_req->channels[i],
807 false);
808 }
809 }
810
811 if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))
812 goto skip;
813
814 list_for_each_entry(ap, &coloc_ap_list, list) {
815 bool found = false;
816 struct cfg80211_scan_6ghz_params *scan_6ghz_params =
817 &request->scan_6ghz_params[request->n_6ghz_params];
818 struct ieee80211_channel *chan =
819 ieee80211_get_channel(&rdev->wiphy, ap->center_freq);
820
821 if (!chan || chan->flags & IEEE80211_CHAN_DISABLED)
822 continue;
823
824 for (i = 0; i < rdev_req->n_channels; i++) {
825 if (rdev_req->channels[i] == chan)
826 found = true;
827 }
828
829 if (!found)
830 continue;
831
832 if (request->n_ssids > 0 &&
833 !cfg80211_find_ssid_match(ap, request))
834 continue;
835
836 if (!request->n_ssids && ap->multi_bss && !ap->transmitted_bssid)
837 continue;
838
839 cfg80211_scan_req_add_chan(request, chan, true);
840 memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN);
841 scan_6ghz_params->short_ssid = ap->short_ssid;
842 scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid;
843 scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe;
844
845 /*
846 * If a PSC channel is added to the scan and 'need_scan_psc' is
847 * set to false, then all the APs that the scan logic is
848 * interested with on the channel are collocated and thus there
849 * is no need to perform the initial PSC channel listen.
850 */
851 if (cfg80211_channel_is_psc(chan) && !need_scan_psc)
852 scan_6ghz_params->psc_no_listen = true;
853
854 request->n_6ghz_params++;
855 }
856
857 skip:
858 cfg80211_free_coloc_ap_list(&coloc_ap_list);
859
860 if (request->n_channels) {
861 struct cfg80211_scan_request *old = rdev->int_scan_req;
862 rdev->int_scan_req = request;
863
864 /*
865 * Add the ssids from the parent scan request to the new scan
866 * request, so the driver would be able to use them in its
867 * probe requests to discover hidden APs on PSC channels.
868 */
869 request->ssids = (void *)&request->channels[request->n_channels];
870 request->n_ssids = rdev_req->n_ssids;
871 memcpy(request->ssids, rdev_req->ssids, sizeof(*request->ssids) *
872 request->n_ssids);
873
874 /*
875 * If this scan follows a previous scan, save the scan start
876 * info from the first part of the scan
877 */
878 if (old)
879 rdev->int_scan_req->info = old->info;
880
881 err = rdev_scan(rdev, request);
882 if (err) {
883 rdev->int_scan_req = old;
884 kfree(request);
885 } else {
886 kfree(old);
887 }
888
889 return err;
890 }
891
892 kfree(request);
893 return -EINVAL;
894 }
895
896 int cfg80211_scan(struct cfg80211_registered_device *rdev)
897 {
898 struct cfg80211_scan_request *request;
899 struct cfg80211_scan_request *rdev_req = rdev->scan_req;
900 u32 n_channels = 0, idx, i;
901
902 if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ))
903 return rdev_scan(rdev, rdev_req);
904
905 for (i = 0; i < rdev_req->n_channels; i++) {
906 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
907 n_channels++;
908 }
909
910 if (!n_channels)
911 return cfg80211_scan_6ghz(rdev);
912
913 request = kzalloc(struct_size(request, channels, n_channels),
914 GFP_KERNEL);
915 if (!request)
916 return -ENOMEM;
917
918 *request = *rdev_req;
919 request->n_channels = n_channels;
920
921 for (i = idx = 0; i < rdev_req->n_channels; i++) {
922 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
923 request->channels[idx++] = rdev_req->channels[i];
924 }
925
926 rdev_req->scan_6ghz = false;
927 rdev->int_scan_req = request;
928 return rdev_scan(rdev, request);
929 }
930
931 void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
932 bool send_message)
933 {
934 struct cfg80211_scan_request *request, *rdev_req;
935 struct wireless_dev *wdev;
936 struct sk_buff *msg;
937 #ifdef CONFIG_CFG80211_WEXT
938 union iwreq_data wrqu;
939 #endif
940
941 lockdep_assert_held(&rdev->wiphy.mtx);
942
943 if (rdev->scan_msg) {
944 nl80211_send_scan_msg(rdev, rdev->scan_msg);
945 rdev->scan_msg = NULL;
946 return;
947 }
948
949 rdev_req = rdev->scan_req;
950 if (!rdev_req)
951 return;
952
953 wdev = rdev_req->wdev;
954 request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req;
955
956 if (wdev_running(wdev) &&
957 (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) &&
958 !rdev_req->scan_6ghz && !request->info.aborted &&
959 !cfg80211_scan_6ghz(rdev))
960 return;
961
962 /*
963 * This must be before sending the other events!
964 * Otherwise, wpa_supplicant gets completely confused with
965 * wext events.
966 */
967 if (wdev->netdev)
968 cfg80211_sme_scan_done(wdev->netdev);
969
970 if (!request->info.aborted &&
971 request->flags & NL80211_SCAN_FLAG_FLUSH) {
972 /* flush entries from previous scans */
973 spin_lock_bh(&rdev->bss_lock);
974 __cfg80211_bss_expire(rdev, request->scan_start);
975 spin_unlock_bh(&rdev->bss_lock);
976 }
977
978 msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted);
979
980 #ifdef CONFIG_CFG80211_WEXT
981 if (wdev->netdev && !request->info.aborted) {
982 memset(&wrqu, 0, sizeof(wrqu));
983
984 wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL);
985 }
986 #endif
987
988 dev_put(wdev->netdev);
989
990 kfree(rdev->int_scan_req);
991 rdev->int_scan_req = NULL;
992
993 kfree(rdev->scan_req);
994 rdev->scan_req = NULL;
995
996 if (!send_message)
997 rdev->scan_msg = msg;
998 else
999 nl80211_send_scan_msg(rdev, msg);
1000 }
1001
1002 void __cfg80211_scan_done(struct work_struct *wk)
1003 {
1004 struct cfg80211_registered_device *rdev;
1005
1006 rdev = container_of(wk, struct cfg80211_registered_device,
1007 scan_done_wk);
1008
1009 wiphy_lock(&rdev->wiphy);
1010 ___cfg80211_scan_done(rdev, true);
1011 wiphy_unlock(&rdev->wiphy);
1012 }
1013
1014 void cfg80211_scan_done(struct cfg80211_scan_request *request,
1015 struct cfg80211_scan_info *info)
1016 {
1017 struct cfg80211_scan_info old_info = request->info;
1018
1019 trace_cfg80211_scan_done(request, info);
1020 WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req &&
1021 request != wiphy_to_rdev(request->wiphy)->int_scan_req);
1022
1023 request->info = *info;
1024
1025 /*
1026 * In case the scan is split, the scan_start_tsf and tsf_bssid should
1027 * be of the first part. In such a case old_info.scan_start_tsf should
1028 * be non zero.
1029 */
1030 if (request->scan_6ghz && old_info.scan_start_tsf) {
1031 request->info.scan_start_tsf = old_info.scan_start_tsf;
1032 memcpy(request->info.tsf_bssid, old_info.tsf_bssid,
1033 sizeof(request->info.tsf_bssid));
1034 }
1035
1036 request->notified = true;
1037 queue_work(cfg80211_wq, &wiphy_to_rdev(request->wiphy)->scan_done_wk);
1038 }
1039 EXPORT_SYMBOL(cfg80211_scan_done);
1040
1041 void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev,
1042 struct cfg80211_sched_scan_request *req)
1043 {
1044 lockdep_assert_held(&rdev->wiphy.mtx);
1045
1046 list_add_rcu(&req->list, &rdev->sched_scan_req_list);
1047 }
1048
1049 static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev,
1050 struct cfg80211_sched_scan_request *req)
1051 {
1052 lockdep_assert_held(&rdev->wiphy.mtx);
1053
1054 list_del_rcu(&req->list);
1055 kfree_rcu(req, rcu_head);
1056 }
1057
1058 static struct cfg80211_sched_scan_request *
1059 cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid)
1060 {
1061 struct cfg80211_sched_scan_request *pos;
1062
1063 list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list,
1064 lockdep_is_held(&rdev->wiphy.mtx)) {
1065 if (pos->reqid == reqid)
1066 return pos;
1067 }
1068 return NULL;
1069 }
1070
1071 /*
1072 * Determines if a scheduled scan request can be handled. When a legacy
1073 * scheduled scan is running no other scheduled scan is allowed regardless
1074 * whether the request is for legacy or multi-support scan. When a multi-support
1075 * scheduled scan is running a request for legacy scan is not allowed. In this
1076 * case a request for multi-support scan can be handled if resources are
1077 * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached.
1078 */
1079 int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev,
1080 bool want_multi)
1081 {
1082 struct cfg80211_sched_scan_request *pos;
1083 int i = 0;
1084
1085 list_for_each_entry(pos, &rdev->sched_scan_req_list, list) {
1086 /* request id zero means legacy in progress */
1087 if (!i && !pos->reqid)
1088 return -EINPROGRESS;
1089 i++;
1090 }
1091
1092 if (i) {
1093 /* no legacy allowed when multi request(s) are active */
1094 if (!want_multi)
1095 return -EINPROGRESS;
1096
1097 /* resource limit reached */
1098 if (i == rdev->wiphy.max_sched_scan_reqs)
1099 return -ENOSPC;
1100 }
1101 return 0;
1102 }
1103
1104 void cfg80211_sched_scan_results_wk(struct work_struct *work)
1105 {
1106 struct cfg80211_registered_device *rdev;
1107 struct cfg80211_sched_scan_request *req, *tmp;
1108
1109 rdev = container_of(work, struct cfg80211_registered_device,
1110 sched_scan_res_wk);
1111
1112 wiphy_lock(&rdev->wiphy);
1113 list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) {
1114 if (req->report_results) {
1115 req->report_results = false;
1116 if (req->flags & NL80211_SCAN_FLAG_FLUSH) {
1117 /* flush entries from previous scans */
1118 spin_lock_bh(&rdev->bss_lock);
1119 __cfg80211_bss_expire(rdev, req->scan_start);
1120 spin_unlock_bh(&rdev->bss_lock);
1121 req->scan_start = jiffies;
1122 }
1123 nl80211_send_sched_scan(req,
1124 NL80211_CMD_SCHED_SCAN_RESULTS);
1125 }
1126 }
1127 wiphy_unlock(&rdev->wiphy);
1128 }
1129
1130 void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid)
1131 {
1132 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1133 struct cfg80211_sched_scan_request *request;
1134
1135 trace_cfg80211_sched_scan_results(wiphy, reqid);
1136 /* ignore if we're not scanning */
1137
1138 rcu_read_lock();
1139 request = cfg80211_find_sched_scan_req(rdev, reqid);
1140 if (request) {
1141 request->report_results = true;
1142 queue_work(cfg80211_wq, &rdev->sched_scan_res_wk);
1143 }
1144 rcu_read_unlock();
1145 }
1146 EXPORT_SYMBOL(cfg80211_sched_scan_results);
1147
1148 void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid)
1149 {
1150 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1151
1152 lockdep_assert_held(&wiphy->mtx);
1153
1154 trace_cfg80211_sched_scan_stopped(wiphy, reqid);
1155
1156 __cfg80211_stop_sched_scan(rdev, reqid, true);
1157 }
1158 EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked);
1159
1160 void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid)
1161 {
1162 wiphy_lock(wiphy);
1163 cfg80211_sched_scan_stopped_locked(wiphy, reqid);
1164 wiphy_unlock(wiphy);
1165 }
1166 EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
1167
1168 int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev,
1169 struct cfg80211_sched_scan_request *req,
1170 bool driver_initiated)
1171 {
1172 lockdep_assert_held(&rdev->wiphy.mtx);
1173
1174 if (!driver_initiated) {
1175 int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid);
1176 if (err)
1177 return err;
1178 }
1179
1180 nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED);
1181
1182 cfg80211_del_sched_scan_req(rdev, req);
1183
1184 return 0;
1185 }
1186
1187 int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
1188 u64 reqid, bool driver_initiated)
1189 {
1190 struct cfg80211_sched_scan_request *sched_scan_req;
1191
1192 lockdep_assert_held(&rdev->wiphy.mtx);
1193
1194 sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid);
1195 if (!sched_scan_req)
1196 return -ENOENT;
1197
1198 return cfg80211_stop_sched_scan_req(rdev, sched_scan_req,
1199 driver_initiated);
1200 }
1201
1202 void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
1203 unsigned long age_secs)
1204 {
1205 struct cfg80211_internal_bss *bss;
1206 unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC);
1207
1208 spin_lock_bh(&rdev->bss_lock);
1209 list_for_each_entry(bss, &rdev->bss_list, list)
1210 bss->ts -= age_jiffies;
1211 spin_unlock_bh(&rdev->bss_lock);
1212 }
1213
1214 void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
1215 {
1216 __cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
1217 }
1218
1219 void cfg80211_bss_flush(struct wiphy *wiphy)
1220 {
1221 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1222
1223 spin_lock_bh(&rdev->bss_lock);
1224 __cfg80211_bss_expire(rdev, jiffies);
1225 spin_unlock_bh(&rdev->bss_lock);
1226 }
1227 EXPORT_SYMBOL(cfg80211_bss_flush);
1228
1229 const struct element *
1230 cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
1231 const u8 *match, unsigned int match_len,
1232 unsigned int match_offset)
1233 {
1234 const struct element *elem;
1235
1236 for_each_element_id(elem, eid, ies, len) {
1237 if (elem->datalen >= match_offset + match_len &&
1238 !memcmp(elem->data + match_offset, match, match_len))
1239 return elem;
1240 }
1241
1242 return NULL;
1243 }
1244 EXPORT_SYMBOL(cfg80211_find_elem_match);
1245
1246 const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
1247 const u8 *ies,
1248 unsigned int len)
1249 {
1250 const struct element *elem;
1251 u8 match[] = { oui >> 16, oui >> 8, oui, oui_type };
1252 int match_len = (oui_type < 0) ? 3 : sizeof(match);
1253
1254 if (WARN_ON(oui_type > 0xff))
1255 return NULL;
1256
1257 elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len,
1258 match, match_len, 0);
1259
1260 if (!elem || elem->datalen < 4)
1261 return NULL;
1262
1263 return elem;
1264 }
1265 EXPORT_SYMBOL(cfg80211_find_vendor_elem);
1266
1267 /**
1268 * enum bss_compare_mode - BSS compare mode
1269 * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
1270 * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
1271 * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
1272 */
1273 enum bss_compare_mode {
1274 BSS_CMP_REGULAR,
1275 BSS_CMP_HIDE_ZLEN,
1276 BSS_CMP_HIDE_NUL,
1277 };
1278
1279 static int cmp_bss(struct cfg80211_bss *a,
1280 struct cfg80211_bss *b,
1281 enum bss_compare_mode mode)
1282 {
1283 const struct cfg80211_bss_ies *a_ies, *b_ies;
1284 const u8 *ie1 = NULL;
1285 const u8 *ie2 = NULL;
1286 int i, r;
1287
1288 if (a->channel != b->channel)
1289 return b->channel->center_freq - a->channel->center_freq;
1290
1291 a_ies = rcu_access_pointer(a->ies);
1292 if (!a_ies)
1293 return -1;
1294 b_ies = rcu_access_pointer(b->ies);
1295 if (!b_ies)
1296 return 1;
1297
1298 if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
1299 ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1300 a_ies->data, a_ies->len);
1301 if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
1302 ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1303 b_ies->data, b_ies->len);
1304 if (ie1 && ie2) {
1305 int mesh_id_cmp;
1306
1307 if (ie1[1] == ie2[1])
1308 mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1309 else
1310 mesh_id_cmp = ie2[1] - ie1[1];
1311
1312 ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1313 a_ies->data, a_ies->len);
1314 ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1315 b_ies->data, b_ies->len);
1316 if (ie1 && ie2) {
1317 if (mesh_id_cmp)
1318 return mesh_id_cmp;
1319 if (ie1[1] != ie2[1])
1320 return ie2[1] - ie1[1];
1321 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1322 }
1323 }
1324
1325 r = memcmp(a->bssid, b->bssid, sizeof(a->bssid));
1326 if (r)
1327 return r;
1328
1329 ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len);
1330 ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len);
1331
1332 if (!ie1 && !ie2)
1333 return 0;
1334
1335 /*
1336 * Note that with "hide_ssid", the function returns a match if
1337 * the already-present BSS ("b") is a hidden SSID beacon for
1338 * the new BSS ("a").
1339 */
1340
1341 /* sort missing IE before (left of) present IE */
1342 if (!ie1)
1343 return -1;
1344 if (!ie2)
1345 return 1;
1346
1347 switch (mode) {
1348 case BSS_CMP_HIDE_ZLEN:
1349 /*
1350 * In ZLEN mode we assume the BSS entry we're
1351 * looking for has a zero-length SSID. So if
1352 * the one we're looking at right now has that,
1353 * return 0. Otherwise, return the difference
1354 * in length, but since we're looking for the
1355 * 0-length it's really equivalent to returning
1356 * the length of the one we're looking at.
1357 *
1358 * No content comparison is needed as we assume
1359 * the content length is zero.
1360 */
1361 return ie2[1];
1362 case BSS_CMP_REGULAR:
1363 default:
1364 /* sort by length first, then by contents */
1365 if (ie1[1] != ie2[1])
1366 return ie2[1] - ie1[1];
1367 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1368 case BSS_CMP_HIDE_NUL:
1369 if (ie1[1] != ie2[1])
1370 return ie2[1] - ie1[1];
1371 /* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
1372 for (i = 0; i < ie2[1]; i++)
1373 if (ie2[i + 2])
1374 return -1;
1375 return 0;
1376 }
1377 }
1378
1379 static bool cfg80211_bss_type_match(u16 capability,
1380 enum nl80211_band band,
1381 enum ieee80211_bss_type bss_type)
1382 {
1383 bool ret = true;
1384 u16 mask, val;
1385
1386 if (bss_type == IEEE80211_BSS_TYPE_ANY)
1387 return ret;
1388
1389 if (band == NL80211_BAND_60GHZ) {
1390 mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
1391 switch (bss_type) {
1392 case IEEE80211_BSS_TYPE_ESS:
1393 val = WLAN_CAPABILITY_DMG_TYPE_AP;
1394 break;
1395 case IEEE80211_BSS_TYPE_PBSS:
1396 val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
1397 break;
1398 case IEEE80211_BSS_TYPE_IBSS:
1399 val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
1400 break;
1401 default:
1402 return false;
1403 }
1404 } else {
1405 mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
1406 switch (bss_type) {
1407 case IEEE80211_BSS_TYPE_ESS:
1408 val = WLAN_CAPABILITY_ESS;
1409 break;
1410 case IEEE80211_BSS_TYPE_IBSS:
1411 val = WLAN_CAPABILITY_IBSS;
1412 break;
1413 case IEEE80211_BSS_TYPE_MBSS:
1414 val = 0;
1415 break;
1416 default:
1417 return false;
1418 }
1419 }
1420
1421 ret = ((capability & mask) == val);
1422 return ret;
1423 }
1424
1425 /* Returned bss is reference counted and must be cleaned up appropriately. */
1426 struct cfg80211_bss *cfg80211_get_bss(struct wiphy *wiphy,
1427 struct ieee80211_channel *channel,
1428 const u8 *bssid,
1429 const u8 *ssid, size_t ssid_len,
1430 enum ieee80211_bss_type bss_type,
1431 enum ieee80211_privacy privacy)
1432 {
1433 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1434 struct cfg80211_internal_bss *bss, *res = NULL;
1435 unsigned long now = jiffies;
1436 int bss_privacy;
1437
1438 trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
1439 privacy);
1440
1441 spin_lock_bh(&rdev->bss_lock);
1442
1443 list_for_each_entry(bss, &rdev->bss_list, list) {
1444 if (!cfg80211_bss_type_match(bss->pub.capability,
1445 bss->pub.channel->band, bss_type))
1446 continue;
1447
1448 bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
1449 if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
1450 (privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
1451 continue;
1452 if (channel && bss->pub.channel != channel)
1453 continue;
1454 if (!is_valid_ether_addr(bss->pub.bssid))
1455 continue;
1456 /* Don't get expired BSS structs */
1457 if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
1458 !atomic_read(&bss->hold))
1459 continue;
1460 if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
1461 res = bss;
1462 bss_ref_get(rdev, res);
1463 break;
1464 }
1465 }
1466
1467 spin_unlock_bh(&rdev->bss_lock);
1468 if (!res)
1469 return NULL;
1470 trace_cfg80211_return_bss(&res->pub);
1471 return &res->pub;
1472 }
1473 EXPORT_SYMBOL(cfg80211_get_bss);
1474
1475 static void rb_insert_bss(struct cfg80211_registered_device *rdev,
1476 struct cfg80211_internal_bss *bss)
1477 {
1478 struct rb_node **p = &rdev->bss_tree.rb_node;
1479 struct rb_node *parent = NULL;
1480 struct cfg80211_internal_bss *tbss;
1481 int cmp;
1482
1483 while (*p) {
1484 parent = *p;
1485 tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
1486
1487 cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR);
1488
1489 if (WARN_ON(!cmp)) {
1490 /* will sort of leak this BSS */
1491 return;
1492 }
1493
1494 if (cmp < 0)
1495 p = &(*p)->rb_left;
1496 else
1497 p = &(*p)->rb_right;
1498 }
1499
1500 rb_link_node(&bss->rbn, parent, p);
1501 rb_insert_color(&bss->rbn, &rdev->bss_tree);
1502 }
1503
1504 static struct cfg80211_internal_bss *
1505 rb_find_bss(struct cfg80211_registered_device *rdev,
1506 struct cfg80211_internal_bss *res,
1507 enum bss_compare_mode mode)
1508 {
1509 struct rb_node *n = rdev->bss_tree.rb_node;
1510 struct cfg80211_internal_bss *bss;
1511 int r;
1512
1513 while (n) {
1514 bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
1515 r = cmp_bss(&res->pub, &bss->pub, mode);
1516
1517 if (r == 0)
1518 return bss;
1519 else if (r < 0)
1520 n = n->rb_left;
1521 else
1522 n = n->rb_right;
1523 }
1524
1525 return NULL;
1526 }
1527
1528 static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
1529 struct cfg80211_internal_bss *new)
1530 {
1531 const struct cfg80211_bss_ies *ies;
1532 struct cfg80211_internal_bss *bss;
1533 const u8 *ie;
1534 int i, ssidlen;
1535 u8 fold = 0;
1536 u32 n_entries = 0;
1537
1538 ies = rcu_access_pointer(new->pub.beacon_ies);
1539 if (WARN_ON(!ies))
1540 return false;
1541
1542 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1543 if (!ie) {
1544 /* nothing to do */
1545 return true;
1546 }
1547
1548 ssidlen = ie[1];
1549 for (i = 0; i < ssidlen; i++)
1550 fold |= ie[2 + i];
1551
1552 if (fold) {
1553 /* not a hidden SSID */
1554 return true;
1555 }
1556
1557 /* This is the bad part ... */
1558
1559 list_for_each_entry(bss, &rdev->bss_list, list) {
1560 /*
1561 * we're iterating all the entries anyway, so take the
1562 * opportunity to validate the list length accounting
1563 */
1564 n_entries++;
1565
1566 if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid))
1567 continue;
1568 if (bss->pub.channel != new->pub.channel)
1569 continue;
1570 if (bss->pub.scan_width != new->pub.scan_width)
1571 continue;
1572 if (rcu_access_pointer(bss->pub.beacon_ies))
1573 continue;
1574 ies = rcu_access_pointer(bss->pub.ies);
1575 if (!ies)
1576 continue;
1577 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1578 if (!ie)
1579 continue;
1580 if (ssidlen && ie[1] != ssidlen)
1581 continue;
1582 if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
1583 continue;
1584 if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
1585 list_del(&bss->hidden_list);
1586 /* combine them */
1587 list_add(&bss->hidden_list, &new->hidden_list);
1588 bss->pub.hidden_beacon_bss = &new->pub;
1589 new->refcount += bss->refcount;
1590 rcu_assign_pointer(bss->pub.beacon_ies,
1591 new->pub.beacon_ies);
1592 }
1593
1594 WARN_ONCE(n_entries != rdev->bss_entries,
1595 "rdev bss entries[%d]/list[len:%d] corruption\n",
1596 rdev->bss_entries, n_entries);
1597
1598 return true;
1599 }
1600
1601 struct cfg80211_non_tx_bss {
1602 struct cfg80211_bss *tx_bss;
1603 u8 max_bssid_indicator;
1604 u8 bssid_index;
1605 };
1606
1607 static bool
1608 cfg80211_update_known_bss(struct cfg80211_registered_device *rdev,
1609 struct cfg80211_internal_bss *known,
1610 struct cfg80211_internal_bss *new,
1611 bool signal_valid)
1612 {
1613 lockdep_assert_held(&rdev->bss_lock);
1614
1615 /* Update IEs */
1616 if (rcu_access_pointer(new->pub.proberesp_ies)) {
1617 const struct cfg80211_bss_ies *old;
1618
1619 old = rcu_access_pointer(known->pub.proberesp_ies);
1620
1621 rcu_assign_pointer(known->pub.proberesp_ies,
1622 new->pub.proberesp_ies);
1623 /* Override possible earlier Beacon frame IEs */
1624 rcu_assign_pointer(known->pub.ies,
1625 new->pub.proberesp_ies);
1626 if (old)
1627 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1628 } else if (rcu_access_pointer(new->pub.beacon_ies)) {
1629 const struct cfg80211_bss_ies *old;
1630 struct cfg80211_internal_bss *bss;
1631
1632 if (known->pub.hidden_beacon_bss &&
1633 !list_empty(&known->hidden_list)) {
1634 const struct cfg80211_bss_ies *f;
1635
1636 /* The known BSS struct is one of the probe
1637 * response members of a group, but we're
1638 * receiving a beacon (beacon_ies in the new
1639 * bss is used). This can only mean that the
1640 * AP changed its beacon from not having an
1641 * SSID to showing it, which is confusing so
1642 * drop this information.
1643 */
1644
1645 f = rcu_access_pointer(new->pub.beacon_ies);
1646 kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head);
1647 return false;
1648 }
1649
1650 old = rcu_access_pointer(known->pub.beacon_ies);
1651
1652 rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies);
1653
1654 /* Override IEs if they were from a beacon before */
1655 if (old == rcu_access_pointer(known->pub.ies))
1656 rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies);
1657
1658 /* Assign beacon IEs to all sub entries */
1659 list_for_each_entry(bss, &known->hidden_list, hidden_list) {
1660 const struct cfg80211_bss_ies *ies;
1661
1662 ies = rcu_access_pointer(bss->pub.beacon_ies);
1663 WARN_ON(ies != old);
1664
1665 rcu_assign_pointer(bss->pub.beacon_ies,
1666 new->pub.beacon_ies);
1667 }
1668
1669 if (old)
1670 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1671 }
1672
1673 known->pub.beacon_interval = new->pub.beacon_interval;
1674
1675 /* don't update the signal if beacon was heard on
1676 * adjacent channel.
1677 */
1678 if (signal_valid)
1679 known->pub.signal = new->pub.signal;
1680 known->pub.capability = new->pub.capability;
1681 known->ts = new->ts;
1682 known->ts_boottime = new->ts_boottime;
1683 known->parent_tsf = new->parent_tsf;
1684 known->pub.chains = new->pub.chains;
1685 memcpy(known->pub.chain_signal, new->pub.chain_signal,
1686 IEEE80211_MAX_CHAINS);
1687 ether_addr_copy(known->parent_bssid, new->parent_bssid);
1688 known->pub.max_bssid_indicator = new->pub.max_bssid_indicator;
1689 known->pub.bssid_index = new->pub.bssid_index;
1690
1691 return true;
1692 }
1693
1694 /* Returned bss is reference counted and must be cleaned up appropriately. */
1695 struct cfg80211_internal_bss *
1696 cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1697 struct cfg80211_internal_bss *tmp,
1698 bool signal_valid, unsigned long ts)
1699 {
1700 struct cfg80211_internal_bss *found = NULL;
1701
1702 if (WARN_ON(!tmp->pub.channel))
1703 return NULL;
1704
1705 tmp->ts = ts;
1706
1707 spin_lock_bh(&rdev->bss_lock);
1708
1709 if (WARN_ON(!rcu_access_pointer(tmp->pub.ies))) {
1710 spin_unlock_bh(&rdev->bss_lock);
1711 return NULL;
1712 }
1713
1714 found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR);
1715
1716 if (found) {
1717 if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid))
1718 goto drop;
1719 } else {
1720 struct cfg80211_internal_bss *new;
1721 struct cfg80211_internal_bss *hidden;
1722 struct cfg80211_bss_ies *ies;
1723
1724 /*
1725 * create a copy -- the "res" variable that is passed in
1726 * is allocated on the stack since it's not needed in the
1727 * more common case of an update
1728 */
1729 new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size,
1730 GFP_ATOMIC);
1731 if (!new) {
1732 ies = (void *)rcu_dereference(tmp->pub.beacon_ies);
1733 if (ies)
1734 kfree_rcu(ies, rcu_head);
1735 ies = (void *)rcu_dereference(tmp->pub.proberesp_ies);
1736 if (ies)
1737 kfree_rcu(ies, rcu_head);
1738 goto drop;
1739 }
1740 memcpy(new, tmp, sizeof(*new));
1741 new->refcount = 1;
1742 INIT_LIST_HEAD(&new->hidden_list);
1743 INIT_LIST_HEAD(&new->pub.nontrans_list);
1744
1745 if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
1746 hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN);
1747 if (!hidden)
1748 hidden = rb_find_bss(rdev, tmp,
1749 BSS_CMP_HIDE_NUL);
1750 if (hidden) {
1751 new->pub.hidden_beacon_bss = &hidden->pub;
1752 list_add(&new->hidden_list,
1753 &hidden->hidden_list);
1754 hidden->refcount++;
1755 rcu_assign_pointer(new->pub.beacon_ies,
1756 hidden->pub.beacon_ies);
1757 }
1758 } else {
1759 /*
1760 * Ok so we found a beacon, and don't have an entry. If
1761 * it's a beacon with hidden SSID, we might be in for an
1762 * expensive search for any probe responses that should
1763 * be grouped with this beacon for updates ...
1764 */
1765 if (!cfg80211_combine_bsses(rdev, new)) {
1766 bss_ref_put(rdev, new);
1767 goto drop;
1768 }
1769 }
1770
1771 if (rdev->bss_entries >= bss_entries_limit &&
1772 !cfg80211_bss_expire_oldest(rdev)) {
1773 bss_ref_put(rdev, new);
1774 goto drop;
1775 }
1776
1777 /* This must be before the call to bss_ref_get */
1778 if (tmp->pub.transmitted_bss) {
1779 struct cfg80211_internal_bss *pbss =
1780 container_of(tmp->pub.transmitted_bss,
1781 struct cfg80211_internal_bss,
1782 pub);
1783
1784 new->pub.transmitted_bss = tmp->pub.transmitted_bss;
1785 bss_ref_get(rdev, pbss);
1786 }
1787
1788 list_add_tail(&new->list, &rdev->bss_list);
1789 rdev->bss_entries++;
1790 rb_insert_bss(rdev, new);
1791 found = new;
1792 }
1793
1794 rdev->bss_generation++;
1795 bss_ref_get(rdev, found);
1796 spin_unlock_bh(&rdev->bss_lock);
1797
1798 return found;
1799 drop:
1800 spin_unlock_bh(&rdev->bss_lock);
1801 return NULL;
1802 }
1803
1804 /*
1805 * Update RX channel information based on the available frame payload
1806 * information. This is mainly for the 2.4 GHz band where frames can be received
1807 * from neighboring channels and the Beacon frames use the DSSS Parameter Set
1808 * element to indicate the current (transmitting) channel, but this might also
1809 * be needed on other bands if RX frequency does not match with the actual
1810 * operating channel of a BSS.
1811 */
1812 static struct ieee80211_channel *
1813 cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
1814 struct ieee80211_channel *channel,
1815 enum nl80211_bss_scan_width scan_width)
1816 {
1817 const u8 *tmp;
1818 u32 freq;
1819 int channel_number = -1;
1820 struct ieee80211_channel *alt_channel;
1821
1822 if (channel->band == NL80211_BAND_S1GHZ) {
1823 tmp = cfg80211_find_ie(WLAN_EID_S1G_OPERATION, ie, ielen);
1824 if (tmp && tmp[1] >= sizeof(struct ieee80211_s1g_oper_ie)) {
1825 struct ieee80211_s1g_oper_ie *s1gop = (void *)(tmp + 2);
1826
1827 channel_number = s1gop->primary_ch;
1828 }
1829 } else {
1830 tmp = cfg80211_find_ie(WLAN_EID_DS_PARAMS, ie, ielen);
1831 if (tmp && tmp[1] == 1) {
1832 channel_number = tmp[2];
1833 } else {
1834 tmp = cfg80211_find_ie(WLAN_EID_HT_OPERATION, ie, ielen);
1835 if (tmp && tmp[1] >= sizeof(struct ieee80211_ht_operation)) {
1836 struct ieee80211_ht_operation *htop = (void *)(tmp + 2);
1837
1838 channel_number = htop->primary_chan;
1839 }
1840 }
1841 }
1842
1843 if (channel_number < 0) {
1844 /* No channel information in frame payload */
1845 return channel;
1846 }
1847
1848 freq = ieee80211_channel_to_freq_khz(channel_number, channel->band);
1849 alt_channel = ieee80211_get_channel_khz(wiphy, freq);
1850 if (!alt_channel) {
1851 if (channel->band == NL80211_BAND_2GHZ) {
1852 /*
1853 * Better not allow unexpected channels when that could
1854 * be going beyond the 1-11 range (e.g., discovering
1855 * BSS on channel 12 when radio is configured for
1856 * channel 11.
1857 */
1858 return NULL;
1859 }
1860
1861 /* No match for the payload channel number - ignore it */
1862 return channel;
1863 }
1864
1865 if (scan_width == NL80211_BSS_CHAN_WIDTH_10 ||
1866 scan_width == NL80211_BSS_CHAN_WIDTH_5) {
1867 /*
1868 * Ignore channel number in 5 and 10 MHz channels where there
1869 * may not be an n:1 or 1:n mapping between frequencies and
1870 * channel numbers.
1871 */
1872 return channel;
1873 }
1874
1875 /*
1876 * Use the channel determined through the payload channel number
1877 * instead of the RX channel reported by the driver.
1878 */
1879 if (alt_channel->flags & IEEE80211_CHAN_DISABLED)
1880 return NULL;
1881 return alt_channel;
1882 }
1883
1884 /* Returned bss is reference counted and must be cleaned up appropriately. */
1885 static struct cfg80211_bss *
1886 cfg80211_inform_single_bss_data(struct wiphy *wiphy,
1887 struct cfg80211_inform_bss *data,
1888 enum cfg80211_bss_frame_type ftype,
1889 const u8 *bssid, u64 tsf, u16 capability,
1890 u16 beacon_interval, const u8 *ie, size_t ielen,
1891 struct cfg80211_non_tx_bss *non_tx_data,
1892 gfp_t gfp)
1893 {
1894 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1895 struct cfg80211_bss_ies *ies;
1896 struct ieee80211_channel *channel;
1897 struct cfg80211_internal_bss tmp = {}, *res;
1898 int bss_type;
1899 bool signal_valid;
1900 unsigned long ts;
1901
1902 if (WARN_ON(!wiphy))
1903 return NULL;
1904
1905 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
1906 (data->signal < 0 || data->signal > 100)))
1907 return NULL;
1908
1909 channel = cfg80211_get_bss_channel(wiphy, ie, ielen, data->chan,
1910 data->scan_width);
1911 if (!channel)
1912 return NULL;
1913
1914 memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
1915 tmp.pub.channel = channel;
1916 tmp.pub.scan_width = data->scan_width;
1917 tmp.pub.signal = data->signal;
1918 tmp.pub.beacon_interval = beacon_interval;
1919 tmp.pub.capability = capability;
1920 tmp.ts_boottime = data->boottime_ns;
1921 tmp.parent_tsf = data->parent_tsf;
1922 ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
1923
1924 if (non_tx_data) {
1925 tmp.pub.transmitted_bss = non_tx_data->tx_bss;
1926 ts = bss_from_pub(non_tx_data->tx_bss)->ts;
1927 tmp.pub.bssid_index = non_tx_data->bssid_index;
1928 tmp.pub.max_bssid_indicator = non_tx_data->max_bssid_indicator;
1929 } else {
1930 ts = jiffies;
1931 }
1932
1933 /*
1934 * If we do not know here whether the IEs are from a Beacon or Probe
1935 * Response frame, we need to pick one of the options and only use it
1936 * with the driver that does not provide the full Beacon/Probe Response
1937 * frame. Use Beacon frame pointer to avoid indicating that this should
1938 * override the IEs pointer should we have received an earlier
1939 * indication of Probe Response data.
1940 */
1941 ies = kzalloc(sizeof(*ies) + ielen, gfp);
1942 if (!ies)
1943 return NULL;
1944 ies->len = ielen;
1945 ies->tsf = tsf;
1946 ies->from_beacon = false;
1947 memcpy(ies->data, ie, ielen);
1948
1949 switch (ftype) {
1950 case CFG80211_BSS_FTYPE_BEACON:
1951 ies->from_beacon = true;
1952 fallthrough;
1953 case CFG80211_BSS_FTYPE_UNKNOWN:
1954 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
1955 break;
1956 case CFG80211_BSS_FTYPE_PRESP:
1957 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
1958 break;
1959 }
1960 rcu_assign_pointer(tmp.pub.ies, ies);
1961
1962 signal_valid = data->chan == channel;
1963 res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid, ts);
1964 if (!res)
1965 return NULL;
1966
1967 if (channel->band == NL80211_BAND_60GHZ) {
1968 bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
1969 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
1970 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
1971 regulatory_hint_found_beacon(wiphy, channel, gfp);
1972 } else {
1973 if (res->pub.capability & WLAN_CAPABILITY_ESS)
1974 regulatory_hint_found_beacon(wiphy, channel, gfp);
1975 }
1976
1977 if (non_tx_data) {
1978 /* this is a nontransmitting bss, we need to add it to
1979 * transmitting bss' list if it is not there
1980 */
1981 if (cfg80211_add_nontrans_list(non_tx_data->tx_bss,
1982 &res->pub)) {
1983 if (__cfg80211_unlink_bss(rdev, res))
1984 rdev->bss_generation++;
1985 }
1986 }
1987
1988 trace_cfg80211_return_bss(&res->pub);
1989 /* cfg80211_bss_update gives us a referenced result */
1990 return &res->pub;
1991 }
1992
1993 static const struct element
1994 *cfg80211_get_profile_continuation(const u8 *ie, size_t ielen,
1995 const struct element *mbssid_elem,
1996 const struct element *sub_elem)
1997 {
1998 const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen;
1999 const struct element *next_mbssid;
2000 const struct element *next_sub;
2001
2002 next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2003 mbssid_end,
2004 ielen - (mbssid_end - ie));
2005
2006 /*
2007 * If it is not the last subelement in current MBSSID IE or there isn't
2008 * a next MBSSID IE - profile is complete.
2009 */
2010 if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) ||
2011 !next_mbssid)
2012 return NULL;
2013
2014 /* For any length error, just return NULL */
2015
2016 if (next_mbssid->datalen < 4)
2017 return NULL;
2018
2019 next_sub = (void *)&next_mbssid->data[1];
2020
2021 if (next_mbssid->data + next_mbssid->datalen <
2022 next_sub->data + next_sub->datalen)
2023 return NULL;
2024
2025 if (next_sub->id != 0 || next_sub->datalen < 2)
2026 return NULL;
2027
2028 /*
2029 * Check if the first element in the next sub element is a start
2030 * of a new profile
2031 */
2032 return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ?
2033 NULL : next_mbssid;
2034 }
2035
2036 size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
2037 const struct element *mbssid_elem,
2038 const struct element *sub_elem,
2039 u8 *merged_ie, size_t max_copy_len)
2040 {
2041 size_t copied_len = sub_elem->datalen;
2042 const struct element *next_mbssid;
2043
2044 if (sub_elem->datalen > max_copy_len)
2045 return 0;
2046
2047 memcpy(merged_ie, sub_elem->data, sub_elem->datalen);
2048
2049 while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen,
2050 mbssid_elem,
2051 sub_elem))) {
2052 const struct element *next_sub = (void *)&next_mbssid->data[1];
2053
2054 if (copied_len + next_sub->datalen > max_copy_len)
2055 break;
2056 memcpy(merged_ie + copied_len, next_sub->data,
2057 next_sub->datalen);
2058 copied_len += next_sub->datalen;
2059 }
2060
2061 return copied_len;
2062 }
2063 EXPORT_SYMBOL(cfg80211_merge_profile);
2064
2065 static void cfg80211_parse_mbssid_data(struct wiphy *wiphy,
2066 struct cfg80211_inform_bss *data,
2067 enum cfg80211_bss_frame_type ftype,
2068 const u8 *bssid, u64 tsf,
2069 u16 beacon_interval, const u8 *ie,
2070 size_t ielen,
2071 struct cfg80211_non_tx_bss *non_tx_data,
2072 gfp_t gfp)
2073 {
2074 const u8 *mbssid_index_ie;
2075 const struct element *elem, *sub;
2076 size_t new_ie_len;
2077 u8 new_bssid[ETH_ALEN];
2078 u8 *new_ie, *profile;
2079 u64 seen_indices = 0;
2080 u16 capability;
2081 struct cfg80211_bss *bss;
2082
2083 if (!non_tx_data)
2084 return;
2085 if (!cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen))
2086 return;
2087 if (!wiphy->support_mbssid)
2088 return;
2089 if (wiphy->support_only_he_mbssid &&
2090 !cfg80211_find_ext_ie(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen))
2091 return;
2092
2093 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2094 if (!new_ie)
2095 return;
2096
2097 profile = kmalloc(ielen, gfp);
2098 if (!profile)
2099 goto out;
2100
2101 for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, ie, ielen) {
2102 if (elem->datalen < 4)
2103 continue;
2104 for_each_element(sub, elem->data + 1, elem->datalen - 1) {
2105 u8 profile_len;
2106
2107 if (sub->id != 0 || sub->datalen < 4) {
2108 /* not a valid BSS profile */
2109 continue;
2110 }
2111
2112 if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
2113 sub->data[1] != 2) {
2114 /* The first element within the Nontransmitted
2115 * BSSID Profile is not the Nontransmitted
2116 * BSSID Capability element.
2117 */
2118 continue;
2119 }
2120
2121 memset(profile, 0, ielen);
2122 profile_len = cfg80211_merge_profile(ie, ielen,
2123 elem,
2124 sub,
2125 profile,
2126 ielen);
2127
2128 /* found a Nontransmitted BSSID Profile */
2129 mbssid_index_ie = cfg80211_find_ie
2130 (WLAN_EID_MULTI_BSSID_IDX,
2131 profile, profile_len);
2132 if (!mbssid_index_ie || mbssid_index_ie[1] < 1 ||
2133 mbssid_index_ie[2] == 0 ||
2134 mbssid_index_ie[2] > 46) {
2135 /* No valid Multiple BSSID-Index element */
2136 continue;
2137 }
2138
2139 if (seen_indices & BIT_ULL(mbssid_index_ie[2]))
2140 /* We don't support legacy split of a profile */
2141 net_dbg_ratelimited("Partial info for BSSID index %d\n",
2142 mbssid_index_ie[2]);
2143
2144 seen_indices |= BIT_ULL(mbssid_index_ie[2]);
2145
2146 non_tx_data->bssid_index = mbssid_index_ie[2];
2147 non_tx_data->max_bssid_indicator = elem->data[0];
2148
2149 cfg80211_gen_new_bssid(bssid,
2150 non_tx_data->max_bssid_indicator,
2151 non_tx_data->bssid_index,
2152 new_bssid);
2153 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2154 new_ie_len = cfg80211_gen_new_ie(ie, ielen,
2155 profile,
2156 profile_len, new_ie,
2157 gfp);
2158 if (!new_ie_len)
2159 continue;
2160
2161 capability = get_unaligned_le16(profile + 2);
2162 bss = cfg80211_inform_single_bss_data(wiphy, data,
2163 ftype,
2164 new_bssid, tsf,
2165 capability,
2166 beacon_interval,
2167 new_ie,
2168 new_ie_len,
2169 non_tx_data,
2170 gfp);
2171 if (!bss)
2172 break;
2173 cfg80211_put_bss(wiphy, bss);
2174 }
2175 }
2176
2177 out:
2178 kfree(new_ie);
2179 kfree(profile);
2180 }
2181
2182 struct cfg80211_bss *
2183 cfg80211_inform_bss_data(struct wiphy *wiphy,
2184 struct cfg80211_inform_bss *data,
2185 enum cfg80211_bss_frame_type ftype,
2186 const u8 *bssid, u64 tsf, u16 capability,
2187 u16 beacon_interval, const u8 *ie, size_t ielen,
2188 gfp_t gfp)
2189 {
2190 struct cfg80211_bss *res;
2191 struct cfg80211_non_tx_bss non_tx_data;
2192
2193 res = cfg80211_inform_single_bss_data(wiphy, data, ftype, bssid, tsf,
2194 capability, beacon_interval, ie,
2195 ielen, NULL, gfp);
2196 if (!res)
2197 return NULL;
2198 non_tx_data.tx_bss = res;
2199 cfg80211_parse_mbssid_data(wiphy, data, ftype, bssid, tsf,
2200 beacon_interval, ie, ielen, &non_tx_data,
2201 gfp);
2202 return res;
2203 }
2204 EXPORT_SYMBOL(cfg80211_inform_bss_data);
2205
2206 static void
2207 cfg80211_parse_mbssid_frame_data(struct wiphy *wiphy,
2208 struct cfg80211_inform_bss *data,
2209 struct ieee80211_mgmt *mgmt, size_t len,
2210 struct cfg80211_non_tx_bss *non_tx_data,
2211 gfp_t gfp)
2212 {
2213 enum cfg80211_bss_frame_type ftype;
2214 const u8 *ie = mgmt->u.probe_resp.variable;
2215 size_t ielen = len - offsetof(struct ieee80211_mgmt,
2216 u.probe_resp.variable);
2217
2218 ftype = ieee80211_is_beacon(mgmt->frame_control) ?
2219 CFG80211_BSS_FTYPE_BEACON : CFG80211_BSS_FTYPE_PRESP;
2220
2221 cfg80211_parse_mbssid_data(wiphy, data, ftype, mgmt->bssid,
2222 le64_to_cpu(mgmt->u.probe_resp.timestamp),
2223 le16_to_cpu(mgmt->u.probe_resp.beacon_int),
2224 ie, ielen, non_tx_data, gfp);
2225 }
2226
2227 static void
2228 cfg80211_update_notlisted_nontrans(struct wiphy *wiphy,
2229 struct cfg80211_bss *nontrans_bss,
2230 struct ieee80211_mgmt *mgmt, size_t len)
2231 {
2232 u8 *ie, *new_ie, *pos;
2233 const u8 *nontrans_ssid, *trans_ssid, *mbssid;
2234 size_t ielen = len - offsetof(struct ieee80211_mgmt,
2235 u.probe_resp.variable);
2236 size_t new_ie_len;
2237 struct cfg80211_bss_ies *new_ies;
2238 const struct cfg80211_bss_ies *old;
2239 u8 cpy_len;
2240
2241 lockdep_assert_held(&wiphy_to_rdev(wiphy)->bss_lock);
2242
2243 ie = mgmt->u.probe_resp.variable;
2244
2245 new_ie_len = ielen;
2246 trans_ssid = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen);
2247 if (!trans_ssid)
2248 return;
2249 new_ie_len -= trans_ssid[1];
2250 mbssid = cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen);
2251 /*
2252 * It's not valid to have the MBSSID element before SSID
2253 * ignore if that happens - the code below assumes it is
2254 * after (while copying things inbetween).
2255 */
2256 if (!mbssid || mbssid < trans_ssid)
2257 return;
2258 new_ie_len -= mbssid[1];
2259
2260 nontrans_ssid = ieee80211_bss_get_ie(nontrans_bss, WLAN_EID_SSID);
2261 if (!nontrans_ssid)
2262 return;
2263
2264 new_ie_len += nontrans_ssid[1];
2265
2266 /* generate new ie for nontrans BSS
2267 * 1. replace SSID with nontrans BSS' SSID
2268 * 2. skip MBSSID IE
2269 */
2270 new_ie = kzalloc(new_ie_len, GFP_ATOMIC);
2271 if (!new_ie)
2272 return;
2273
2274 new_ies = kzalloc(sizeof(*new_ies) + new_ie_len, GFP_ATOMIC);
2275 if (!new_ies)
2276 goto out_free;
2277
2278 pos = new_ie;
2279
2280 /* copy the nontransmitted SSID */
2281 cpy_len = nontrans_ssid[1] + 2;
2282 memcpy(pos, nontrans_ssid, cpy_len);
2283 pos += cpy_len;
2284 /* copy the IEs between SSID and MBSSID */
2285 cpy_len = trans_ssid[1] + 2;
2286 memcpy(pos, (trans_ssid + cpy_len), (mbssid - (trans_ssid + cpy_len)));
2287 pos += (mbssid - (trans_ssid + cpy_len));
2288 /* copy the IEs after MBSSID */
2289 cpy_len = mbssid[1] + 2;
2290 memcpy(pos, mbssid + cpy_len, ((ie + ielen) - (mbssid + cpy_len)));
2291
2292 /* update ie */
2293 new_ies->len = new_ie_len;
2294 new_ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
2295 new_ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control);
2296 memcpy(new_ies->data, new_ie, new_ie_len);
2297 if (ieee80211_is_probe_resp(mgmt->frame_control)) {
2298 old = rcu_access_pointer(nontrans_bss->proberesp_ies);
2299 rcu_assign_pointer(nontrans_bss->proberesp_ies, new_ies);
2300 rcu_assign_pointer(nontrans_bss->ies, new_ies);
2301 if (old)
2302 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
2303 } else {
2304 old = rcu_access_pointer(nontrans_bss->beacon_ies);
2305 rcu_assign_pointer(nontrans_bss->beacon_ies, new_ies);
2306 rcu_assign_pointer(nontrans_bss->ies, new_ies);
2307 if (old)
2308 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
2309 }
2310
2311 out_free:
2312 kfree(new_ie);
2313 }
2314
2315 /* cfg80211_inform_bss_width_frame helper */
2316 static struct cfg80211_bss *
2317 cfg80211_inform_single_bss_frame_data(struct wiphy *wiphy,
2318 struct cfg80211_inform_bss *data,
2319 struct ieee80211_mgmt *mgmt, size_t len,
2320 gfp_t gfp)
2321 {
2322 struct cfg80211_internal_bss tmp = {}, *res;
2323 struct cfg80211_bss_ies *ies;
2324 struct ieee80211_channel *channel;
2325 bool signal_valid;
2326 struct ieee80211_ext *ext = NULL;
2327 u8 *bssid, *variable;
2328 u16 capability, beacon_int;
2329 size_t ielen, min_hdr_len = offsetof(struct ieee80211_mgmt,
2330 u.probe_resp.variable);
2331 int bss_type;
2332
2333 BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
2334 offsetof(struct ieee80211_mgmt, u.beacon.variable));
2335
2336 trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
2337
2338 if (WARN_ON(!mgmt))
2339 return NULL;
2340
2341 if (WARN_ON(!wiphy))
2342 return NULL;
2343
2344 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2345 (data->signal < 0 || data->signal > 100)))
2346 return NULL;
2347
2348 if (ieee80211_is_s1g_beacon(mgmt->frame_control)) {
2349 ext = (void *) mgmt;
2350 min_hdr_len = offsetof(struct ieee80211_ext, u.s1g_beacon);
2351 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
2352 min_hdr_len = offsetof(struct ieee80211_ext,
2353 u.s1g_short_beacon.variable);
2354 }
2355
2356 if (WARN_ON(len < min_hdr_len))
2357 return NULL;
2358
2359 ielen = len - min_hdr_len;
2360 variable = mgmt->u.probe_resp.variable;
2361 if (ext) {
2362 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
2363 variable = ext->u.s1g_short_beacon.variable;
2364 else
2365 variable = ext->u.s1g_beacon.variable;
2366 }
2367
2368 channel = cfg80211_get_bss_channel(wiphy, variable,
2369 ielen, data->chan, data->scan_width);
2370 if (!channel)
2371 return NULL;
2372
2373 if (ext) {
2374 const struct ieee80211_s1g_bcn_compat_ie *compat;
2375 const struct element *elem;
2376
2377 elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT,
2378 variable, ielen);
2379 if (!elem)
2380 return NULL;
2381 if (elem->datalen < sizeof(*compat))
2382 return NULL;
2383 compat = (void *)elem->data;
2384 bssid = ext->u.s1g_beacon.sa;
2385 capability = le16_to_cpu(compat->compat_info);
2386 beacon_int = le16_to_cpu(compat->beacon_int);
2387 } else {
2388 bssid = mgmt->bssid;
2389 beacon_int = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
2390 capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
2391 }
2392
2393 ies = kzalloc(sizeof(*ies) + ielen, gfp);
2394 if (!ies)
2395 return NULL;
2396 ies->len = ielen;
2397 ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
2398 ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control) ||
2399 ieee80211_is_s1g_beacon(mgmt->frame_control);
2400 memcpy(ies->data, variable, ielen);
2401
2402 if (ieee80211_is_probe_resp(mgmt->frame_control))
2403 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2404 else
2405 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2406 rcu_assign_pointer(tmp.pub.ies, ies);
2407
2408 memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
2409 tmp.pub.beacon_interval = beacon_int;
2410 tmp.pub.capability = capability;
2411 tmp.pub.channel = channel;
2412 tmp.pub.scan_width = data->scan_width;
2413 tmp.pub.signal = data->signal;
2414 tmp.ts_boottime = data->boottime_ns;
2415 tmp.parent_tsf = data->parent_tsf;
2416 tmp.pub.chains = data->chains;
2417 memcpy(tmp.pub.chain_signal, data->chain_signal, IEEE80211_MAX_CHAINS);
2418 ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
2419
2420 signal_valid = data->chan == channel;
2421 res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid,
2422 jiffies);
2423 if (!res)
2424 return NULL;
2425
2426 if (channel->band == NL80211_BAND_60GHZ) {
2427 bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
2428 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2429 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2430 regulatory_hint_found_beacon(wiphy, channel, gfp);
2431 } else {
2432 if (res->pub.capability & WLAN_CAPABILITY_ESS)
2433 regulatory_hint_found_beacon(wiphy, channel, gfp);
2434 }
2435
2436 trace_cfg80211_return_bss(&res->pub);
2437 /* cfg80211_bss_update gives us a referenced result */
2438 return &res->pub;
2439 }
2440
2441 struct cfg80211_bss *
2442 cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
2443 struct cfg80211_inform_bss *data,
2444 struct ieee80211_mgmt *mgmt, size_t len,
2445 gfp_t gfp)
2446 {
2447 struct cfg80211_bss *res, *tmp_bss;
2448 const u8 *ie = mgmt->u.probe_resp.variable;
2449 const struct cfg80211_bss_ies *ies1, *ies2;
2450 size_t ielen = len - offsetof(struct ieee80211_mgmt,
2451 u.probe_resp.variable);
2452 struct cfg80211_non_tx_bss non_tx_data;
2453
2454 res = cfg80211_inform_single_bss_frame_data(wiphy, data, mgmt,
2455 len, gfp);
2456 if (!res || !wiphy->support_mbssid ||
2457 !cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen))
2458 return res;
2459 if (wiphy->support_only_he_mbssid &&
2460 !cfg80211_find_ext_ie(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen))
2461 return res;
2462
2463 non_tx_data.tx_bss = res;
2464 /* process each non-transmitting bss */
2465 cfg80211_parse_mbssid_frame_data(wiphy, data, mgmt, len,
2466 &non_tx_data, gfp);
2467
2468 spin_lock_bh(&wiphy_to_rdev(wiphy)->bss_lock);
2469
2470 /* check if the res has other nontransmitting bss which is not
2471 * in MBSSID IE
2472 */
2473 ies1 = rcu_access_pointer(res->ies);
2474
2475 /* go through nontrans_list, if the timestamp of the BSS is
2476 * earlier than the timestamp of the transmitting BSS then
2477 * update it
2478 */
2479 list_for_each_entry(tmp_bss, &res->nontrans_list,
2480 nontrans_list) {
2481 ies2 = rcu_access_pointer(tmp_bss->ies);
2482 if (ies2->tsf < ies1->tsf)
2483 cfg80211_update_notlisted_nontrans(wiphy, tmp_bss,
2484 mgmt, len);
2485 }
2486 spin_unlock_bh(&wiphy_to_rdev(wiphy)->bss_lock);
2487
2488 return res;
2489 }
2490 EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
2491
2492 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2493 {
2494 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2495 struct cfg80211_internal_bss *bss;
2496
2497 if (!pub)
2498 return;
2499
2500 bss = container_of(pub, struct cfg80211_internal_bss, pub);
2501
2502 spin_lock_bh(&rdev->bss_lock);
2503 bss_ref_get(rdev, bss);
2504 spin_unlock_bh(&rdev->bss_lock);
2505 }
2506 EXPORT_SYMBOL(cfg80211_ref_bss);
2507
2508 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2509 {
2510 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2511 struct cfg80211_internal_bss *bss;
2512
2513 if (!pub)
2514 return;
2515
2516 bss = container_of(pub, struct cfg80211_internal_bss, pub);
2517
2518 spin_lock_bh(&rdev->bss_lock);
2519 bss_ref_put(rdev, bss);
2520 spin_unlock_bh(&rdev->bss_lock);
2521 }
2522 EXPORT_SYMBOL(cfg80211_put_bss);
2523
2524 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2525 {
2526 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2527 struct cfg80211_internal_bss *bss, *tmp1;
2528 struct cfg80211_bss *nontrans_bss, *tmp;
2529
2530 if (WARN_ON(!pub))
2531 return;
2532
2533 bss = container_of(pub, struct cfg80211_internal_bss, pub);
2534
2535 spin_lock_bh(&rdev->bss_lock);
2536 if (list_empty(&bss->list))
2537 goto out;
2538
2539 list_for_each_entry_safe(nontrans_bss, tmp,
2540 &pub->nontrans_list,
2541 nontrans_list) {
2542 tmp1 = container_of(nontrans_bss,
2543 struct cfg80211_internal_bss, pub);
2544 if (__cfg80211_unlink_bss(rdev, tmp1))
2545 rdev->bss_generation++;
2546 }
2547
2548 if (__cfg80211_unlink_bss(rdev, bss))
2549 rdev->bss_generation++;
2550 out:
2551 spin_unlock_bh(&rdev->bss_lock);
2552 }
2553 EXPORT_SYMBOL(cfg80211_unlink_bss);
2554
2555 void cfg80211_bss_iter(struct wiphy *wiphy,
2556 struct cfg80211_chan_def *chandef,
2557 void (*iter)(struct wiphy *wiphy,
2558 struct cfg80211_bss *bss,
2559 void *data),
2560 void *iter_data)
2561 {
2562 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2563 struct cfg80211_internal_bss *bss;
2564
2565 spin_lock_bh(&rdev->bss_lock);
2566
2567 list_for_each_entry(bss, &rdev->bss_list, list) {
2568 if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel))
2569 iter(wiphy, &bss->pub, iter_data);
2570 }
2571
2572 spin_unlock_bh(&rdev->bss_lock);
2573 }
2574 EXPORT_SYMBOL(cfg80211_bss_iter);
2575
2576 void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev,
2577 struct ieee80211_channel *chan)
2578 {
2579 struct wiphy *wiphy = wdev->wiphy;
2580 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2581 struct cfg80211_internal_bss *cbss = wdev->current_bss;
2582 struct cfg80211_internal_bss *new = NULL;
2583 struct cfg80211_internal_bss *bss;
2584 struct cfg80211_bss *nontrans_bss;
2585 struct cfg80211_bss *tmp;
2586
2587 spin_lock_bh(&rdev->bss_lock);
2588
2589 /*
2590 * Some APs use CSA also for bandwidth changes, i.e., without actually
2591 * changing the control channel, so no need to update in such a case.
2592 */
2593 if (cbss->pub.channel == chan)
2594 goto done;
2595
2596 /* use transmitting bss */
2597 if (cbss->pub.transmitted_bss)
2598 cbss = container_of(cbss->pub.transmitted_bss,
2599 struct cfg80211_internal_bss,
2600 pub);
2601
2602 cbss->pub.channel = chan;
2603
2604 list_for_each_entry(bss, &rdev->bss_list, list) {
2605 if (!cfg80211_bss_type_match(bss->pub.capability,
2606 bss->pub.channel->band,
2607 wdev->conn_bss_type))
2608 continue;
2609
2610 if (bss == cbss)
2611 continue;
2612
2613 if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) {
2614 new = bss;
2615 break;
2616 }
2617 }
2618
2619 if (new) {
2620 /* to save time, update IEs for transmitting bss only */
2621 if (cfg80211_update_known_bss(rdev, cbss, new, false)) {
2622 new->pub.proberesp_ies = NULL;
2623 new->pub.beacon_ies = NULL;
2624 }
2625
2626 list_for_each_entry_safe(nontrans_bss, tmp,
2627 &new->pub.nontrans_list,
2628 nontrans_list) {
2629 bss = container_of(nontrans_bss,
2630 struct cfg80211_internal_bss, pub);
2631 if (__cfg80211_unlink_bss(rdev, bss))
2632 rdev->bss_generation++;
2633 }
2634
2635 WARN_ON(atomic_read(&new->hold));
2636 if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new)))
2637 rdev->bss_generation++;
2638 }
2639
2640 rb_erase(&cbss->rbn, &rdev->bss_tree);
2641 rb_insert_bss(rdev, cbss);
2642 rdev->bss_generation++;
2643
2644 list_for_each_entry_safe(nontrans_bss, tmp,
2645 &cbss->pub.nontrans_list,
2646 nontrans_list) {
2647 bss = container_of(nontrans_bss,
2648 struct cfg80211_internal_bss, pub);
2649 bss->pub.channel = chan;
2650 rb_erase(&bss->rbn, &rdev->bss_tree);
2651 rb_insert_bss(rdev, bss);
2652 rdev->bss_generation++;
2653 }
2654
2655 done:
2656 spin_unlock_bh(&rdev->bss_lock);
2657 }
2658
2659 #ifdef CONFIG_CFG80211_WEXT
2660 static struct cfg80211_registered_device *
2661 cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
2662 {
2663 struct cfg80211_registered_device *rdev;
2664 struct net_device *dev;
2665
2666 ASSERT_RTNL();
2667
2668 dev = dev_get_by_index(net, ifindex);
2669 if (!dev)
2670 return ERR_PTR(-ENODEV);
2671 if (dev->ieee80211_ptr)
2672 rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy);
2673 else
2674 rdev = ERR_PTR(-ENODEV);
2675 dev_put(dev);
2676 return rdev;
2677 }
2678
2679 int cfg80211_wext_siwscan(struct net_device *dev,
2680 struct iw_request_info *info,
2681 union iwreq_data *wrqu, char *extra)
2682 {
2683 struct cfg80211_registered_device *rdev;
2684 struct wiphy *wiphy;
2685 struct iw_scan_req *wreq = NULL;
2686 struct cfg80211_scan_request *creq = NULL;
2687 int i, err, n_channels = 0;
2688 enum nl80211_band band;
2689
2690 if (!netif_running(dev))
2691 return -ENETDOWN;
2692
2693 if (wrqu->data.length == sizeof(struct iw_scan_req))
2694 wreq = (struct iw_scan_req *)extra;
2695
2696 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
2697
2698 if (IS_ERR(rdev))
2699 return PTR_ERR(rdev);
2700
2701 if (rdev->scan_req || rdev->scan_msg) {
2702 err = -EBUSY;
2703 goto out;
2704 }
2705
2706 wiphy = &rdev->wiphy;
2707
2708 /* Determine number of channels, needed to allocate creq */
2709 if (wreq && wreq->num_channels)
2710 n_channels = wreq->num_channels;
2711 else
2712 n_channels = ieee80211_get_num_supported_channels(wiphy);
2713
2714 creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) +
2715 n_channels * sizeof(void *),
2716 GFP_ATOMIC);
2717 if (!creq) {
2718 err = -ENOMEM;
2719 goto out;
2720 }
2721
2722 creq->wiphy = wiphy;
2723 creq->wdev = dev->ieee80211_ptr;
2724 /* SSIDs come after channels */
2725 creq->ssids = (void *)&creq->channels[n_channels];
2726 creq->n_channels = n_channels;
2727 creq->n_ssids = 1;
2728 creq->scan_start = jiffies;
2729
2730 /* translate "Scan on frequencies" request */
2731 i = 0;
2732 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2733 int j;
2734
2735 if (!wiphy->bands[band])
2736 continue;
2737
2738 for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
2739 /* ignore disabled channels */
2740 if (wiphy->bands[band]->channels[j].flags &
2741 IEEE80211_CHAN_DISABLED)
2742 continue;
2743
2744 /* If we have a wireless request structure and the
2745 * wireless request specifies frequencies, then search
2746 * for the matching hardware channel.
2747 */
2748 if (wreq && wreq->num_channels) {
2749 int k;
2750 int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
2751 for (k = 0; k < wreq->num_channels; k++) {
2752 struct iw_freq *freq =
2753 &wreq->channel_list[k];
2754 int wext_freq =
2755 cfg80211_wext_freq(freq);
2756
2757 if (wext_freq == wiphy_freq)
2758 goto wext_freq_found;
2759 }
2760 goto wext_freq_not_found;
2761 }
2762
2763 wext_freq_found:
2764 creq->channels[i] = &wiphy->bands[band]->channels[j];
2765 i++;
2766 wext_freq_not_found: ;
2767 }
2768 }
2769 /* No channels found? */
2770 if (!i) {
2771 err = -EINVAL;
2772 goto out;
2773 }
2774
2775 /* Set real number of channels specified in creq->channels[] */
2776 creq->n_channels = i;
2777
2778 /* translate "Scan for SSID" request */
2779 if (wreq) {
2780 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
2781 if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) {
2782 err = -EINVAL;
2783 goto out;
2784 }
2785 memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len);
2786 creq->ssids[0].ssid_len = wreq->essid_len;
2787 }
2788 if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE)
2789 creq->n_ssids = 0;
2790 }
2791
2792 for (i = 0; i < NUM_NL80211_BANDS; i++)
2793 if (wiphy->bands[i])
2794 creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1;
2795
2796 eth_broadcast_addr(creq->bssid);
2797
2798 wiphy_lock(&rdev->wiphy);
2799
2800 rdev->scan_req = creq;
2801 err = rdev_scan(rdev, creq);
2802 if (err) {
2803 rdev->scan_req = NULL;
2804 /* creq will be freed below */
2805 } else {
2806 nl80211_send_scan_start(rdev, dev->ieee80211_ptr);
2807 /* creq now owned by driver */
2808 creq = NULL;
2809 dev_hold(dev);
2810 }
2811 wiphy_unlock(&rdev->wiphy);
2812 out:
2813 kfree(creq);
2814 return err;
2815 }
2816 EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan);
2817
2818 static char *ieee80211_scan_add_ies(struct iw_request_info *info,
2819 const struct cfg80211_bss_ies *ies,
2820 char *current_ev, char *end_buf)
2821 {
2822 const u8 *pos, *end, *next;
2823 struct iw_event iwe;
2824
2825 if (!ies)
2826 return current_ev;
2827
2828 /*
2829 * If needed, fragment the IEs buffer (at IE boundaries) into short
2830 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
2831 */
2832 pos = ies->data;
2833 end = pos + ies->len;
2834
2835 while (end - pos > IW_GENERIC_IE_MAX) {
2836 next = pos + 2 + pos[1];
2837 while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
2838 next = next + 2 + next[1];
2839
2840 memset(&iwe, 0, sizeof(iwe));
2841 iwe.cmd = IWEVGENIE;
2842 iwe.u.data.length = next - pos;
2843 current_ev = iwe_stream_add_point_check(info, current_ev,
2844 end_buf, &iwe,
2845 (void *)pos);
2846 if (IS_ERR(current_ev))
2847 return current_ev;
2848 pos = next;
2849 }
2850
2851 if (end > pos) {
2852 memset(&iwe, 0, sizeof(iwe));
2853 iwe.cmd = IWEVGENIE;
2854 iwe.u.data.length = end - pos;
2855 current_ev = iwe_stream_add_point_check(info, current_ev,
2856 end_buf, &iwe,
2857 (void *)pos);
2858 if (IS_ERR(current_ev))
2859 return current_ev;
2860 }
2861
2862 return current_ev;
2863 }
2864
2865 static char *
2866 ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
2867 struct cfg80211_internal_bss *bss, char *current_ev,
2868 char *end_buf)
2869 {
2870 const struct cfg80211_bss_ies *ies;
2871 struct iw_event iwe;
2872 const u8 *ie;
2873 u8 buf[50];
2874 u8 *cfg, *p, *tmp;
2875 int rem, i, sig;
2876 bool ismesh = false;
2877
2878 memset(&iwe, 0, sizeof(iwe));
2879 iwe.cmd = SIOCGIWAP;
2880 iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
2881 memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
2882 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2883 IW_EV_ADDR_LEN);
2884 if (IS_ERR(current_ev))
2885 return current_ev;
2886
2887 memset(&iwe, 0, sizeof(iwe));
2888 iwe.cmd = SIOCGIWFREQ;
2889 iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
2890 iwe.u.freq.e = 0;
2891 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2892 IW_EV_FREQ_LEN);
2893 if (IS_ERR(current_ev))
2894 return current_ev;
2895
2896 memset(&iwe, 0, sizeof(iwe));
2897 iwe.cmd = SIOCGIWFREQ;
2898 iwe.u.freq.m = bss->pub.channel->center_freq;
2899 iwe.u.freq.e = 6;
2900 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2901 IW_EV_FREQ_LEN);
2902 if (IS_ERR(current_ev))
2903 return current_ev;
2904
2905 if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
2906 memset(&iwe, 0, sizeof(iwe));
2907 iwe.cmd = IWEVQUAL;
2908 iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
2909 IW_QUAL_NOISE_INVALID |
2910 IW_QUAL_QUAL_UPDATED;
2911 switch (wiphy->signal_type) {
2912 case CFG80211_SIGNAL_TYPE_MBM:
2913 sig = bss->pub.signal / 100;
2914 iwe.u.qual.level = sig;
2915 iwe.u.qual.updated |= IW_QUAL_DBM;
2916 if (sig < -110) /* rather bad */
2917 sig = -110;
2918 else if (sig > -40) /* perfect */
2919 sig = -40;
2920 /* will give a range of 0 .. 70 */
2921 iwe.u.qual.qual = sig + 110;
2922 break;
2923 case CFG80211_SIGNAL_TYPE_UNSPEC:
2924 iwe.u.qual.level = bss->pub.signal;
2925 /* will give range 0 .. 100 */
2926 iwe.u.qual.qual = bss->pub.signal;
2927 break;
2928 default:
2929 /* not reached */
2930 break;
2931 }
2932 current_ev = iwe_stream_add_event_check(info, current_ev,
2933 end_buf, &iwe,
2934 IW_EV_QUAL_LEN);
2935 if (IS_ERR(current_ev))
2936 return current_ev;
2937 }
2938
2939 memset(&iwe, 0, sizeof(iwe));
2940 iwe.cmd = SIOCGIWENCODE;
2941 if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
2942 iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
2943 else
2944 iwe.u.data.flags = IW_ENCODE_DISABLED;
2945 iwe.u.data.length = 0;
2946 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
2947 &iwe, "");
2948 if (IS_ERR(current_ev))
2949 return current_ev;
2950
2951 rcu_read_lock();
2952 ies = rcu_dereference(bss->pub.ies);
2953 rem = ies->len;
2954 ie = ies->data;
2955
2956 while (rem >= 2) {
2957 /* invalid data */
2958 if (ie[1] > rem - 2)
2959 break;
2960
2961 switch (ie[0]) {
2962 case WLAN_EID_SSID:
2963 memset(&iwe, 0, sizeof(iwe));
2964 iwe.cmd = SIOCGIWESSID;
2965 iwe.u.data.length = ie[1];
2966 iwe.u.data.flags = 1;
2967 current_ev = iwe_stream_add_point_check(info,
2968 current_ev,
2969 end_buf, &iwe,
2970 (u8 *)ie + 2);
2971 if (IS_ERR(current_ev))
2972 goto unlock;
2973 break;
2974 case WLAN_EID_MESH_ID:
2975 memset(&iwe, 0, sizeof(iwe));
2976 iwe.cmd = SIOCGIWESSID;
2977 iwe.u.data.length = ie[1];
2978 iwe.u.data.flags = 1;
2979 current_ev = iwe_stream_add_point_check(info,
2980 current_ev,
2981 end_buf, &iwe,
2982 (u8 *)ie + 2);
2983 if (IS_ERR(current_ev))
2984 goto unlock;
2985 break;
2986 case WLAN_EID_MESH_CONFIG:
2987 ismesh = true;
2988 if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
2989 break;
2990 cfg = (u8 *)ie + 2;
2991 memset(&iwe, 0, sizeof(iwe));
2992 iwe.cmd = IWEVCUSTOM;
2993 sprintf(buf, "Mesh Network Path Selection Protocol ID: "
2994 "0x%02X", cfg[0]);
2995 iwe.u.data.length = strlen(buf);
2996 current_ev = iwe_stream_add_point_check(info,
2997 current_ev,
2998 end_buf,
2999 &iwe, buf);
3000 if (IS_ERR(current_ev))
3001 goto unlock;
3002 sprintf(buf, "Path Selection Metric ID: 0x%02X",
3003 cfg[1]);
3004 iwe.u.data.length = strlen(buf);
3005 current_ev = iwe_stream_add_point_check(info,
3006 current_ev,
3007 end_buf,
3008 &iwe, buf);
3009 if (IS_ERR(current_ev))
3010 goto unlock;
3011 sprintf(buf, "Congestion Control Mode ID: 0x%02X",
3012 cfg[2]);
3013 iwe.u.data.length = strlen(buf);
3014 current_ev = iwe_stream_add_point_check(info,
3015 current_ev,
3016 end_buf,
3017 &iwe, buf);
3018 if (IS_ERR(current_ev))
3019 goto unlock;
3020 sprintf(buf, "Synchronization ID: 0x%02X", cfg[3]);
3021 iwe.u.data.length = strlen(buf);
3022 current_ev = iwe_stream_add_point_check(info,
3023 current_ev,
3024 end_buf,
3025 &iwe, buf);
3026 if (IS_ERR(current_ev))
3027 goto unlock;
3028 sprintf(buf, "Authentication ID: 0x%02X", cfg[4]);
3029 iwe.u.data.length = strlen(buf);
3030 current_ev = iwe_stream_add_point_check(info,
3031 current_ev,
3032 end_buf,
3033 &iwe, buf);
3034 if (IS_ERR(current_ev))
3035 goto unlock;
3036 sprintf(buf, "Formation Info: 0x%02X", cfg[5]);
3037 iwe.u.data.length = strlen(buf);
3038 current_ev = iwe_stream_add_point_check(info,
3039 current_ev,
3040 end_buf,
3041 &iwe, buf);
3042 if (IS_ERR(current_ev))
3043 goto unlock;
3044 sprintf(buf, "Capabilities: 0x%02X", cfg[6]);
3045 iwe.u.data.length = strlen(buf);
3046 current_ev = iwe_stream_add_point_check(info,
3047 current_ev,
3048 end_buf,
3049 &iwe, buf);
3050 if (IS_ERR(current_ev))
3051 goto unlock;
3052 break;
3053 case WLAN_EID_SUPP_RATES:
3054 case WLAN_EID_EXT_SUPP_RATES:
3055 /* display all supported rates in readable format */
3056 p = current_ev + iwe_stream_lcp_len(info);
3057
3058 memset(&iwe, 0, sizeof(iwe));
3059 iwe.cmd = SIOCGIWRATE;
3060 /* Those two flags are ignored... */
3061 iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
3062
3063 for (i = 0; i < ie[1]; i++) {
3064 iwe.u.bitrate.value =
3065 ((ie[i + 2] & 0x7f) * 500000);
3066 tmp = p;
3067 p = iwe_stream_add_value(info, current_ev, p,
3068 end_buf, &iwe,
3069 IW_EV_PARAM_LEN);
3070 if (p == tmp) {
3071 current_ev = ERR_PTR(-E2BIG);
3072 goto unlock;
3073 }
3074 }
3075 current_ev = p;
3076 break;
3077 }
3078 rem -= ie[1] + 2;
3079 ie += ie[1] + 2;
3080 }
3081
3082 if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
3083 ismesh) {
3084 memset(&iwe, 0, sizeof(iwe));
3085 iwe.cmd = SIOCGIWMODE;
3086 if (ismesh)
3087 iwe.u.mode = IW_MODE_MESH;
3088 else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
3089 iwe.u.mode = IW_MODE_MASTER;
3090 else
3091 iwe.u.mode = IW_MODE_ADHOC;
3092 current_ev = iwe_stream_add_event_check(info, current_ev,
3093 end_buf, &iwe,
3094 IW_EV_UINT_LEN);
3095 if (IS_ERR(current_ev))
3096 goto unlock;
3097 }
3098
3099 memset(&iwe, 0, sizeof(iwe));
3100 iwe.cmd = IWEVCUSTOM;
3101 sprintf(buf, "tsf=%016llx", (unsigned long long)(ies->tsf));
3102 iwe.u.data.length = strlen(buf);
3103 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3104 &iwe, buf);
3105 if (IS_ERR(current_ev))
3106 goto unlock;
3107 memset(&iwe, 0, sizeof(iwe));
3108 iwe.cmd = IWEVCUSTOM;
3109 sprintf(buf, " Last beacon: %ums ago",
3110 elapsed_jiffies_msecs(bss->ts));
3111 iwe.u.data.length = strlen(buf);
3112 current_ev = iwe_stream_add_point_check(info, current_ev,
3113 end_buf, &iwe, buf);
3114 if (IS_ERR(current_ev))
3115 goto unlock;
3116
3117 current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
3118
3119 unlock:
3120 rcu_read_unlock();
3121 return current_ev;
3122 }
3123
3124
3125 static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
3126 struct iw_request_info *info,
3127 char *buf, size_t len)
3128 {
3129 char *current_ev = buf;
3130 char *end_buf = buf + len;
3131 struct cfg80211_internal_bss *bss;
3132 int err = 0;
3133
3134 spin_lock_bh(&rdev->bss_lock);
3135 cfg80211_bss_expire(rdev);
3136
3137 list_for_each_entry(bss, &rdev->bss_list, list) {
3138 if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
3139 err = -E2BIG;
3140 break;
3141 }
3142 current_ev = ieee80211_bss(&rdev->wiphy, info, bss,
3143 current_ev, end_buf);
3144 if (IS_ERR(current_ev)) {
3145 err = PTR_ERR(current_ev);
3146 break;
3147 }
3148 }
3149 spin_unlock_bh(&rdev->bss_lock);
3150
3151 if (err)
3152 return err;
3153 return current_ev - buf;
3154 }
3155
3156
3157 int cfg80211_wext_giwscan(struct net_device *dev,
3158 struct iw_request_info *info,
3159 struct iw_point *data, char *extra)
3160 {
3161 struct cfg80211_registered_device *rdev;
3162 int res;
3163
3164 if (!netif_running(dev))
3165 return -ENETDOWN;
3166
3167 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3168
3169 if (IS_ERR(rdev))
3170 return PTR_ERR(rdev);
3171
3172 if (rdev->scan_req || rdev->scan_msg)
3173 return -EAGAIN;
3174
3175 res = ieee80211_scan_results(rdev, info, extra, data->length);
3176 data->length = 0;
3177 if (res >= 0) {
3178 data->length = res;
3179 res = 0;
3180 }
3181
3182 return res;
3183 }
3184 EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan);
3185 #endif