]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/wireless/util.c
cfg80211/mac80211: move more combination checks to mac80211
[mirror_ubuntu-bionic-kernel.git] / net / wireless / util.c
1 /*
2 * Wireless utility functions
3 *
4 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net>
5 */
6 #include <linux/export.h>
7 #include <linux/bitops.h>
8 #include <linux/etherdevice.h>
9 #include <linux/slab.h>
10 #include <net/cfg80211.h>
11 #include <net/ip.h>
12 #include <net/dsfield.h>
13 #include <linux/if_vlan.h>
14 #include <linux/mpls.h>
15 #include "core.h"
16 #include "rdev-ops.h"
17
18
19 struct ieee80211_rate *
20 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
21 u32 basic_rates, int bitrate)
22 {
23 struct ieee80211_rate *result = &sband->bitrates[0];
24 int i;
25
26 for (i = 0; i < sband->n_bitrates; i++) {
27 if (!(basic_rates & BIT(i)))
28 continue;
29 if (sband->bitrates[i].bitrate > bitrate)
30 continue;
31 result = &sband->bitrates[i];
32 }
33
34 return result;
35 }
36 EXPORT_SYMBOL(ieee80211_get_response_rate);
37
38 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
39 enum nl80211_bss_scan_width scan_width)
40 {
41 struct ieee80211_rate *bitrates;
42 u32 mandatory_rates = 0;
43 enum ieee80211_rate_flags mandatory_flag;
44 int i;
45
46 if (WARN_ON(!sband))
47 return 1;
48
49 if (sband->band == IEEE80211_BAND_2GHZ) {
50 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
51 scan_width == NL80211_BSS_CHAN_WIDTH_10)
52 mandatory_flag = IEEE80211_RATE_MANDATORY_G;
53 else
54 mandatory_flag = IEEE80211_RATE_MANDATORY_B;
55 } else {
56 mandatory_flag = IEEE80211_RATE_MANDATORY_A;
57 }
58
59 bitrates = sband->bitrates;
60 for (i = 0; i < sband->n_bitrates; i++)
61 if (bitrates[i].flags & mandatory_flag)
62 mandatory_rates |= BIT(i);
63 return mandatory_rates;
64 }
65 EXPORT_SYMBOL(ieee80211_mandatory_rates);
66
67 int ieee80211_channel_to_frequency(int chan, enum ieee80211_band band)
68 {
69 /* see 802.11 17.3.8.3.2 and Annex J
70 * there are overlapping channel numbers in 5GHz and 2GHz bands */
71 if (chan <= 0)
72 return 0; /* not supported */
73 switch (band) {
74 case IEEE80211_BAND_2GHZ:
75 if (chan == 14)
76 return 2484;
77 else if (chan < 14)
78 return 2407 + chan * 5;
79 break;
80 case IEEE80211_BAND_5GHZ:
81 if (chan >= 182 && chan <= 196)
82 return 4000 + chan * 5;
83 else
84 return 5000 + chan * 5;
85 break;
86 case IEEE80211_BAND_60GHZ:
87 if (chan < 5)
88 return 56160 + chan * 2160;
89 break;
90 default:
91 ;
92 }
93 return 0; /* not supported */
94 }
95 EXPORT_SYMBOL(ieee80211_channel_to_frequency);
96
97 int ieee80211_frequency_to_channel(int freq)
98 {
99 /* see 802.11 17.3.8.3.2 and Annex J */
100 if (freq == 2484)
101 return 14;
102 else if (freq < 2484)
103 return (freq - 2407) / 5;
104 else if (freq >= 4910 && freq <= 4980)
105 return (freq - 4000) / 5;
106 else if (freq <= 45000) /* DMG band lower limit */
107 return (freq - 5000) / 5;
108 else if (freq >= 58320 && freq <= 64800)
109 return (freq - 56160) / 2160;
110 else
111 return 0;
112 }
113 EXPORT_SYMBOL(ieee80211_frequency_to_channel);
114
115 struct ieee80211_channel *__ieee80211_get_channel(struct wiphy *wiphy,
116 int freq)
117 {
118 enum ieee80211_band band;
119 struct ieee80211_supported_band *sband;
120 int i;
121
122 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
123 sband = wiphy->bands[band];
124
125 if (!sband)
126 continue;
127
128 for (i = 0; i < sband->n_channels; i++) {
129 if (sband->channels[i].center_freq == freq)
130 return &sband->channels[i];
131 }
132 }
133
134 return NULL;
135 }
136 EXPORT_SYMBOL(__ieee80211_get_channel);
137
138 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband,
139 enum ieee80211_band band)
140 {
141 int i, want;
142
143 switch (band) {
144 case IEEE80211_BAND_5GHZ:
145 want = 3;
146 for (i = 0; i < sband->n_bitrates; i++) {
147 if (sband->bitrates[i].bitrate == 60 ||
148 sband->bitrates[i].bitrate == 120 ||
149 sband->bitrates[i].bitrate == 240) {
150 sband->bitrates[i].flags |=
151 IEEE80211_RATE_MANDATORY_A;
152 want--;
153 }
154 }
155 WARN_ON(want);
156 break;
157 case IEEE80211_BAND_2GHZ:
158 want = 7;
159 for (i = 0; i < sband->n_bitrates; i++) {
160 if (sband->bitrates[i].bitrate == 10) {
161 sband->bitrates[i].flags |=
162 IEEE80211_RATE_MANDATORY_B |
163 IEEE80211_RATE_MANDATORY_G;
164 want--;
165 }
166
167 if (sband->bitrates[i].bitrate == 20 ||
168 sband->bitrates[i].bitrate == 55 ||
169 sband->bitrates[i].bitrate == 110 ||
170 sband->bitrates[i].bitrate == 60 ||
171 sband->bitrates[i].bitrate == 120 ||
172 sband->bitrates[i].bitrate == 240) {
173 sband->bitrates[i].flags |=
174 IEEE80211_RATE_MANDATORY_G;
175 want--;
176 }
177
178 if (sband->bitrates[i].bitrate != 10 &&
179 sband->bitrates[i].bitrate != 20 &&
180 sband->bitrates[i].bitrate != 55 &&
181 sband->bitrates[i].bitrate != 110)
182 sband->bitrates[i].flags |=
183 IEEE80211_RATE_ERP_G;
184 }
185 WARN_ON(want != 0 && want != 3 && want != 6);
186 break;
187 case IEEE80211_BAND_60GHZ:
188 /* check for mandatory HT MCS 1..4 */
189 WARN_ON(!sband->ht_cap.ht_supported);
190 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
191 break;
192 case IEEE80211_NUM_BANDS:
193 WARN_ON(1);
194 break;
195 }
196 }
197
198 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
199 {
200 enum ieee80211_band band;
201
202 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
203 if (wiphy->bands[band])
204 set_mandatory_flags_band(wiphy->bands[band], band);
205 }
206
207 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
208 {
209 int i;
210 for (i = 0; i < wiphy->n_cipher_suites; i++)
211 if (cipher == wiphy->cipher_suites[i])
212 return true;
213 return false;
214 }
215
216 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
217 struct key_params *params, int key_idx,
218 bool pairwise, const u8 *mac_addr)
219 {
220 if (key_idx > 5)
221 return -EINVAL;
222
223 if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
224 return -EINVAL;
225
226 if (pairwise && !mac_addr)
227 return -EINVAL;
228
229 /*
230 * Disallow pairwise keys with non-zero index unless it's WEP
231 * or a vendor specific cipher (because current deployments use
232 * pairwise WEP keys with non-zero indices and for vendor specific
233 * ciphers this should be validated in the driver or hardware level
234 * - but 802.11i clearly specifies to use zero)
235 */
236 if (pairwise && key_idx &&
237 ((params->cipher == WLAN_CIPHER_SUITE_TKIP) ||
238 (params->cipher == WLAN_CIPHER_SUITE_CCMP) ||
239 (params->cipher == WLAN_CIPHER_SUITE_AES_CMAC)))
240 return -EINVAL;
241
242 switch (params->cipher) {
243 case WLAN_CIPHER_SUITE_WEP40:
244 if (params->key_len != WLAN_KEY_LEN_WEP40)
245 return -EINVAL;
246 break;
247 case WLAN_CIPHER_SUITE_TKIP:
248 if (params->key_len != WLAN_KEY_LEN_TKIP)
249 return -EINVAL;
250 break;
251 case WLAN_CIPHER_SUITE_CCMP:
252 if (params->key_len != WLAN_KEY_LEN_CCMP)
253 return -EINVAL;
254 break;
255 case WLAN_CIPHER_SUITE_WEP104:
256 if (params->key_len != WLAN_KEY_LEN_WEP104)
257 return -EINVAL;
258 break;
259 case WLAN_CIPHER_SUITE_AES_CMAC:
260 if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
261 return -EINVAL;
262 break;
263 default:
264 /*
265 * We don't know anything about this algorithm,
266 * allow using it -- but the driver must check
267 * all parameters! We still check below whether
268 * or not the driver supports this algorithm,
269 * of course.
270 */
271 break;
272 }
273
274 if (params->seq) {
275 switch (params->cipher) {
276 case WLAN_CIPHER_SUITE_WEP40:
277 case WLAN_CIPHER_SUITE_WEP104:
278 /* These ciphers do not use key sequence */
279 return -EINVAL;
280 case WLAN_CIPHER_SUITE_TKIP:
281 case WLAN_CIPHER_SUITE_CCMP:
282 case WLAN_CIPHER_SUITE_AES_CMAC:
283 if (params->seq_len != 6)
284 return -EINVAL;
285 break;
286 }
287 }
288
289 if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
290 return -EINVAL;
291
292 return 0;
293 }
294
295 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
296 {
297 unsigned int hdrlen = 24;
298
299 if (ieee80211_is_data(fc)) {
300 if (ieee80211_has_a4(fc))
301 hdrlen = 30;
302 if (ieee80211_is_data_qos(fc)) {
303 hdrlen += IEEE80211_QOS_CTL_LEN;
304 if (ieee80211_has_order(fc))
305 hdrlen += IEEE80211_HT_CTL_LEN;
306 }
307 goto out;
308 }
309
310 if (ieee80211_is_ctl(fc)) {
311 /*
312 * ACK and CTS are 10 bytes, all others 16. To see how
313 * to get this condition consider
314 * subtype mask: 0b0000000011110000 (0x00F0)
315 * ACK subtype: 0b0000000011010000 (0x00D0)
316 * CTS subtype: 0b0000000011000000 (0x00C0)
317 * bits that matter: ^^^ (0x00E0)
318 * value of those: 0b0000000011000000 (0x00C0)
319 */
320 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
321 hdrlen = 10;
322 else
323 hdrlen = 16;
324 }
325 out:
326 return hdrlen;
327 }
328 EXPORT_SYMBOL(ieee80211_hdrlen);
329
330 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
331 {
332 const struct ieee80211_hdr *hdr =
333 (const struct ieee80211_hdr *)skb->data;
334 unsigned int hdrlen;
335
336 if (unlikely(skb->len < 10))
337 return 0;
338 hdrlen = ieee80211_hdrlen(hdr->frame_control);
339 if (unlikely(hdrlen > skb->len))
340 return 0;
341 return hdrlen;
342 }
343 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
344
345 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
346 {
347 int ae = meshhdr->flags & MESH_FLAGS_AE;
348 /* 802.11-2012, 8.2.4.7.3 */
349 switch (ae) {
350 default:
351 case 0:
352 return 6;
353 case MESH_FLAGS_AE_A4:
354 return 12;
355 case MESH_FLAGS_AE_A5_A6:
356 return 18;
357 }
358 }
359 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
360
361 int ieee80211_data_to_8023(struct sk_buff *skb, const u8 *addr,
362 enum nl80211_iftype iftype)
363 {
364 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
365 u16 hdrlen, ethertype;
366 u8 *payload;
367 u8 dst[ETH_ALEN];
368 u8 src[ETH_ALEN] __aligned(2);
369
370 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
371 return -1;
372
373 hdrlen = ieee80211_hdrlen(hdr->frame_control);
374
375 /* convert IEEE 802.11 header + possible LLC headers into Ethernet
376 * header
377 * IEEE 802.11 address fields:
378 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
379 * 0 0 DA SA BSSID n/a
380 * 0 1 DA BSSID SA n/a
381 * 1 0 BSSID SA DA n/a
382 * 1 1 RA TA DA SA
383 */
384 memcpy(dst, ieee80211_get_DA(hdr), ETH_ALEN);
385 memcpy(src, ieee80211_get_SA(hdr), ETH_ALEN);
386
387 switch (hdr->frame_control &
388 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
389 case cpu_to_le16(IEEE80211_FCTL_TODS):
390 if (unlikely(iftype != NL80211_IFTYPE_AP &&
391 iftype != NL80211_IFTYPE_AP_VLAN &&
392 iftype != NL80211_IFTYPE_P2P_GO))
393 return -1;
394 break;
395 case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
396 if (unlikely(iftype != NL80211_IFTYPE_WDS &&
397 iftype != NL80211_IFTYPE_MESH_POINT &&
398 iftype != NL80211_IFTYPE_AP_VLAN &&
399 iftype != NL80211_IFTYPE_STATION))
400 return -1;
401 if (iftype == NL80211_IFTYPE_MESH_POINT) {
402 struct ieee80211s_hdr *meshdr =
403 (struct ieee80211s_hdr *) (skb->data + hdrlen);
404 /* make sure meshdr->flags is on the linear part */
405 if (!pskb_may_pull(skb, hdrlen + 1))
406 return -1;
407 if (meshdr->flags & MESH_FLAGS_AE_A4)
408 return -1;
409 if (meshdr->flags & MESH_FLAGS_AE_A5_A6) {
410 skb_copy_bits(skb, hdrlen +
411 offsetof(struct ieee80211s_hdr, eaddr1),
412 dst, ETH_ALEN);
413 skb_copy_bits(skb, hdrlen +
414 offsetof(struct ieee80211s_hdr, eaddr2),
415 src, ETH_ALEN);
416 }
417 hdrlen += ieee80211_get_mesh_hdrlen(meshdr);
418 }
419 break;
420 case cpu_to_le16(IEEE80211_FCTL_FROMDS):
421 if ((iftype != NL80211_IFTYPE_STATION &&
422 iftype != NL80211_IFTYPE_P2P_CLIENT &&
423 iftype != NL80211_IFTYPE_MESH_POINT) ||
424 (is_multicast_ether_addr(dst) &&
425 ether_addr_equal(src, addr)))
426 return -1;
427 if (iftype == NL80211_IFTYPE_MESH_POINT) {
428 struct ieee80211s_hdr *meshdr =
429 (struct ieee80211s_hdr *) (skb->data + hdrlen);
430 /* make sure meshdr->flags is on the linear part */
431 if (!pskb_may_pull(skb, hdrlen + 1))
432 return -1;
433 if (meshdr->flags & MESH_FLAGS_AE_A5_A6)
434 return -1;
435 if (meshdr->flags & MESH_FLAGS_AE_A4)
436 skb_copy_bits(skb, hdrlen +
437 offsetof(struct ieee80211s_hdr, eaddr1),
438 src, ETH_ALEN);
439 hdrlen += ieee80211_get_mesh_hdrlen(meshdr);
440 }
441 break;
442 case cpu_to_le16(0):
443 if (iftype != NL80211_IFTYPE_ADHOC &&
444 iftype != NL80211_IFTYPE_STATION)
445 return -1;
446 break;
447 }
448
449 if (!pskb_may_pull(skb, hdrlen + 8))
450 return -1;
451
452 payload = skb->data + hdrlen;
453 ethertype = (payload[6] << 8) | payload[7];
454
455 if (likely((ether_addr_equal(payload, rfc1042_header) &&
456 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
457 ether_addr_equal(payload, bridge_tunnel_header))) {
458 /* remove RFC1042 or Bridge-Tunnel encapsulation and
459 * replace EtherType */
460 skb_pull(skb, hdrlen + 6);
461 memcpy(skb_push(skb, ETH_ALEN), src, ETH_ALEN);
462 memcpy(skb_push(skb, ETH_ALEN), dst, ETH_ALEN);
463 } else {
464 struct ethhdr *ehdr;
465 __be16 len;
466
467 skb_pull(skb, hdrlen);
468 len = htons(skb->len);
469 ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr));
470 memcpy(ehdr->h_dest, dst, ETH_ALEN);
471 memcpy(ehdr->h_source, src, ETH_ALEN);
472 ehdr->h_proto = len;
473 }
474 return 0;
475 }
476 EXPORT_SYMBOL(ieee80211_data_to_8023);
477
478 int ieee80211_data_from_8023(struct sk_buff *skb, const u8 *addr,
479 enum nl80211_iftype iftype, u8 *bssid, bool qos)
480 {
481 struct ieee80211_hdr hdr;
482 u16 hdrlen, ethertype;
483 __le16 fc;
484 const u8 *encaps_data;
485 int encaps_len, skip_header_bytes;
486 int nh_pos, h_pos;
487 int head_need;
488
489 if (unlikely(skb->len < ETH_HLEN))
490 return -EINVAL;
491
492 nh_pos = skb_network_header(skb) - skb->data;
493 h_pos = skb_transport_header(skb) - skb->data;
494
495 /* convert Ethernet header to proper 802.11 header (based on
496 * operation mode) */
497 ethertype = (skb->data[12] << 8) | skb->data[13];
498 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA);
499
500 switch (iftype) {
501 case NL80211_IFTYPE_AP:
502 case NL80211_IFTYPE_AP_VLAN:
503 case NL80211_IFTYPE_P2P_GO:
504 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS);
505 /* DA BSSID SA */
506 memcpy(hdr.addr1, skb->data, ETH_ALEN);
507 memcpy(hdr.addr2, addr, ETH_ALEN);
508 memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN);
509 hdrlen = 24;
510 break;
511 case NL80211_IFTYPE_STATION:
512 case NL80211_IFTYPE_P2P_CLIENT:
513 fc |= cpu_to_le16(IEEE80211_FCTL_TODS);
514 /* BSSID SA DA */
515 memcpy(hdr.addr1, bssid, ETH_ALEN);
516 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
517 memcpy(hdr.addr3, skb->data, ETH_ALEN);
518 hdrlen = 24;
519 break;
520 case NL80211_IFTYPE_ADHOC:
521 /* DA SA BSSID */
522 memcpy(hdr.addr1, skb->data, ETH_ALEN);
523 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
524 memcpy(hdr.addr3, bssid, ETH_ALEN);
525 hdrlen = 24;
526 break;
527 default:
528 return -EOPNOTSUPP;
529 }
530
531 if (qos) {
532 fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
533 hdrlen += 2;
534 }
535
536 hdr.frame_control = fc;
537 hdr.duration_id = 0;
538 hdr.seq_ctrl = 0;
539
540 skip_header_bytes = ETH_HLEN;
541 if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) {
542 encaps_data = bridge_tunnel_header;
543 encaps_len = sizeof(bridge_tunnel_header);
544 skip_header_bytes -= 2;
545 } else if (ethertype >= ETH_P_802_3_MIN) {
546 encaps_data = rfc1042_header;
547 encaps_len = sizeof(rfc1042_header);
548 skip_header_bytes -= 2;
549 } else {
550 encaps_data = NULL;
551 encaps_len = 0;
552 }
553
554 skb_pull(skb, skip_header_bytes);
555 nh_pos -= skip_header_bytes;
556 h_pos -= skip_header_bytes;
557
558 head_need = hdrlen + encaps_len - skb_headroom(skb);
559
560 if (head_need > 0 || skb_cloned(skb)) {
561 head_need = max(head_need, 0);
562 if (head_need)
563 skb_orphan(skb);
564
565 if (pskb_expand_head(skb, head_need, 0, GFP_ATOMIC))
566 return -ENOMEM;
567
568 skb->truesize += head_need;
569 }
570
571 if (encaps_data) {
572 memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len);
573 nh_pos += encaps_len;
574 h_pos += encaps_len;
575 }
576
577 memcpy(skb_push(skb, hdrlen), &hdr, hdrlen);
578
579 nh_pos += hdrlen;
580 h_pos += hdrlen;
581
582 /* Update skb pointers to various headers since this modified frame
583 * is going to go through Linux networking code that may potentially
584 * need things like pointer to IP header. */
585 skb_set_mac_header(skb, 0);
586 skb_set_network_header(skb, nh_pos);
587 skb_set_transport_header(skb, h_pos);
588
589 return 0;
590 }
591 EXPORT_SYMBOL(ieee80211_data_from_8023);
592
593
594 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
595 const u8 *addr, enum nl80211_iftype iftype,
596 const unsigned int extra_headroom,
597 bool has_80211_header)
598 {
599 struct sk_buff *frame = NULL;
600 u16 ethertype;
601 u8 *payload;
602 const struct ethhdr *eth;
603 int remaining, err;
604 u8 dst[ETH_ALEN], src[ETH_ALEN];
605
606 if (has_80211_header) {
607 err = ieee80211_data_to_8023(skb, addr, iftype);
608 if (err)
609 goto out;
610
611 /* skip the wrapping header */
612 eth = (struct ethhdr *) skb_pull(skb, sizeof(struct ethhdr));
613 if (!eth)
614 goto out;
615 } else {
616 eth = (struct ethhdr *) skb->data;
617 }
618
619 while (skb != frame) {
620 u8 padding;
621 __be16 len = eth->h_proto;
622 unsigned int subframe_len = sizeof(struct ethhdr) + ntohs(len);
623
624 remaining = skb->len;
625 memcpy(dst, eth->h_dest, ETH_ALEN);
626 memcpy(src, eth->h_source, ETH_ALEN);
627
628 padding = (4 - subframe_len) & 0x3;
629 /* the last MSDU has no padding */
630 if (subframe_len > remaining)
631 goto purge;
632
633 skb_pull(skb, sizeof(struct ethhdr));
634 /* reuse skb for the last subframe */
635 if (remaining <= subframe_len + padding)
636 frame = skb;
637 else {
638 unsigned int hlen = ALIGN(extra_headroom, 4);
639 /*
640 * Allocate and reserve two bytes more for payload
641 * alignment since sizeof(struct ethhdr) is 14.
642 */
643 frame = dev_alloc_skb(hlen + subframe_len + 2);
644 if (!frame)
645 goto purge;
646
647 skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
648 memcpy(skb_put(frame, ntohs(len)), skb->data,
649 ntohs(len));
650
651 eth = (struct ethhdr *)skb_pull(skb, ntohs(len) +
652 padding);
653 if (!eth) {
654 dev_kfree_skb(frame);
655 goto purge;
656 }
657 }
658
659 skb_reset_network_header(frame);
660 frame->dev = skb->dev;
661 frame->priority = skb->priority;
662
663 payload = frame->data;
664 ethertype = (payload[6] << 8) | payload[7];
665
666 if (likely((ether_addr_equal(payload, rfc1042_header) &&
667 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
668 ether_addr_equal(payload, bridge_tunnel_header))) {
669 /* remove RFC1042 or Bridge-Tunnel
670 * encapsulation and replace EtherType */
671 skb_pull(frame, 6);
672 memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN);
673 memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN);
674 } else {
675 memcpy(skb_push(frame, sizeof(__be16)), &len,
676 sizeof(__be16));
677 memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN);
678 memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN);
679 }
680 __skb_queue_tail(list, frame);
681 }
682
683 return;
684
685 purge:
686 __skb_queue_purge(list);
687 out:
688 dev_kfree_skb(skb);
689 }
690 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
691
692 /* Given a data frame determine the 802.1p/1d tag to use. */
693 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
694 struct cfg80211_qos_map *qos_map)
695 {
696 unsigned int dscp;
697 unsigned char vlan_priority;
698
699 /* skb->priority values from 256->263 are magic values to
700 * directly indicate a specific 802.1d priority. This is used
701 * to allow 802.1d priority to be passed directly in from VLAN
702 * tags, etc.
703 */
704 if (skb->priority >= 256 && skb->priority <= 263)
705 return skb->priority - 256;
706
707 if (vlan_tx_tag_present(skb)) {
708 vlan_priority = (vlan_tx_tag_get(skb) & VLAN_PRIO_MASK)
709 >> VLAN_PRIO_SHIFT;
710 if (vlan_priority > 0)
711 return vlan_priority;
712 }
713
714 switch (skb->protocol) {
715 case htons(ETH_P_IP):
716 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
717 break;
718 case htons(ETH_P_IPV6):
719 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
720 break;
721 case htons(ETH_P_MPLS_UC):
722 case htons(ETH_P_MPLS_MC): {
723 struct mpls_label mpls_tmp, *mpls;
724
725 mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
726 sizeof(*mpls), &mpls_tmp);
727 if (!mpls)
728 return 0;
729
730 return (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
731 >> MPLS_LS_TC_SHIFT;
732 }
733 case htons(ETH_P_80221):
734 /* 802.21 is always network control traffic */
735 return 7;
736 default:
737 return 0;
738 }
739
740 if (qos_map) {
741 unsigned int i, tmp_dscp = dscp >> 2;
742
743 for (i = 0; i < qos_map->num_des; i++) {
744 if (tmp_dscp == qos_map->dscp_exception[i].dscp)
745 return qos_map->dscp_exception[i].up;
746 }
747
748 for (i = 0; i < 8; i++) {
749 if (tmp_dscp >= qos_map->up[i].low &&
750 tmp_dscp <= qos_map->up[i].high)
751 return i;
752 }
753 }
754
755 return dscp >> 5;
756 }
757 EXPORT_SYMBOL(cfg80211_classify8021d);
758
759 const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie)
760 {
761 const struct cfg80211_bss_ies *ies;
762
763 ies = rcu_dereference(bss->ies);
764 if (!ies)
765 return NULL;
766
767 return cfg80211_find_ie(ie, ies->data, ies->len);
768 }
769 EXPORT_SYMBOL(ieee80211_bss_get_ie);
770
771 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
772 {
773 struct cfg80211_registered_device *rdev = wiphy_to_dev(wdev->wiphy);
774 struct net_device *dev = wdev->netdev;
775 int i;
776
777 if (!wdev->connect_keys)
778 return;
779
780 for (i = 0; i < 6; i++) {
781 if (!wdev->connect_keys->params[i].cipher)
782 continue;
783 if (rdev_add_key(rdev, dev, i, false, NULL,
784 &wdev->connect_keys->params[i])) {
785 netdev_err(dev, "failed to set key %d\n", i);
786 continue;
787 }
788 if (wdev->connect_keys->def == i)
789 if (rdev_set_default_key(rdev, dev, i, true, true)) {
790 netdev_err(dev, "failed to set defkey %d\n", i);
791 continue;
792 }
793 if (wdev->connect_keys->defmgmt == i)
794 if (rdev_set_default_mgmt_key(rdev, dev, i))
795 netdev_err(dev, "failed to set mgtdef %d\n", i);
796 }
797
798 kfree(wdev->connect_keys);
799 wdev->connect_keys = NULL;
800 }
801
802 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
803 {
804 struct cfg80211_event *ev;
805 unsigned long flags;
806 const u8 *bssid = NULL;
807
808 spin_lock_irqsave(&wdev->event_lock, flags);
809 while (!list_empty(&wdev->event_list)) {
810 ev = list_first_entry(&wdev->event_list,
811 struct cfg80211_event, list);
812 list_del(&ev->list);
813 spin_unlock_irqrestore(&wdev->event_lock, flags);
814
815 wdev_lock(wdev);
816 switch (ev->type) {
817 case EVENT_CONNECT_RESULT:
818 if (!is_zero_ether_addr(ev->cr.bssid))
819 bssid = ev->cr.bssid;
820 __cfg80211_connect_result(
821 wdev->netdev, bssid,
822 ev->cr.req_ie, ev->cr.req_ie_len,
823 ev->cr.resp_ie, ev->cr.resp_ie_len,
824 ev->cr.status,
825 ev->cr.status == WLAN_STATUS_SUCCESS,
826 NULL);
827 break;
828 case EVENT_ROAMED:
829 __cfg80211_roamed(wdev, ev->rm.bss, ev->rm.req_ie,
830 ev->rm.req_ie_len, ev->rm.resp_ie,
831 ev->rm.resp_ie_len);
832 break;
833 case EVENT_DISCONNECTED:
834 __cfg80211_disconnected(wdev->netdev,
835 ev->dc.ie, ev->dc.ie_len,
836 ev->dc.reason, true);
837 break;
838 case EVENT_IBSS_JOINED:
839 __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
840 ev->ij.channel);
841 break;
842 }
843 wdev_unlock(wdev);
844
845 kfree(ev);
846
847 spin_lock_irqsave(&wdev->event_lock, flags);
848 }
849 spin_unlock_irqrestore(&wdev->event_lock, flags);
850 }
851
852 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
853 {
854 struct wireless_dev *wdev;
855
856 ASSERT_RTNL();
857
858 list_for_each_entry(wdev, &rdev->wdev_list, list)
859 cfg80211_process_wdev_events(wdev);
860 }
861
862 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
863 struct net_device *dev, enum nl80211_iftype ntype,
864 u32 *flags, struct vif_params *params)
865 {
866 int err;
867 enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
868
869 ASSERT_RTNL();
870
871 /* don't support changing VLANs, you just re-create them */
872 if (otype == NL80211_IFTYPE_AP_VLAN)
873 return -EOPNOTSUPP;
874
875 /* cannot change into P2P device type */
876 if (ntype == NL80211_IFTYPE_P2P_DEVICE)
877 return -EOPNOTSUPP;
878
879 if (!rdev->ops->change_virtual_intf ||
880 !(rdev->wiphy.interface_modes & (1 << ntype)))
881 return -EOPNOTSUPP;
882
883 /* if it's part of a bridge, reject changing type to station/ibss */
884 if ((dev->priv_flags & IFF_BRIDGE_PORT) &&
885 (ntype == NL80211_IFTYPE_ADHOC ||
886 ntype == NL80211_IFTYPE_STATION ||
887 ntype == NL80211_IFTYPE_P2P_CLIENT))
888 return -EBUSY;
889
890 if (ntype != otype && netif_running(dev)) {
891 dev->ieee80211_ptr->use_4addr = false;
892 dev->ieee80211_ptr->mesh_id_up_len = 0;
893 wdev_lock(dev->ieee80211_ptr);
894 rdev_set_qos_map(rdev, dev, NULL);
895 wdev_unlock(dev->ieee80211_ptr);
896
897 switch (otype) {
898 case NL80211_IFTYPE_AP:
899 cfg80211_stop_ap(rdev, dev, true);
900 break;
901 case NL80211_IFTYPE_ADHOC:
902 cfg80211_leave_ibss(rdev, dev, false);
903 break;
904 case NL80211_IFTYPE_STATION:
905 case NL80211_IFTYPE_P2P_CLIENT:
906 wdev_lock(dev->ieee80211_ptr);
907 cfg80211_disconnect(rdev, dev,
908 WLAN_REASON_DEAUTH_LEAVING, true);
909 wdev_unlock(dev->ieee80211_ptr);
910 break;
911 case NL80211_IFTYPE_MESH_POINT:
912 /* mesh should be handled? */
913 break;
914 default:
915 break;
916 }
917
918 cfg80211_process_rdev_events(rdev);
919 }
920
921 err = rdev_change_virtual_intf(rdev, dev, ntype, flags, params);
922
923 WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
924
925 if (!err && params && params->use_4addr != -1)
926 dev->ieee80211_ptr->use_4addr = params->use_4addr;
927
928 if (!err) {
929 dev->priv_flags &= ~IFF_DONT_BRIDGE;
930 switch (ntype) {
931 case NL80211_IFTYPE_STATION:
932 if (dev->ieee80211_ptr->use_4addr)
933 break;
934 /* fall through */
935 case NL80211_IFTYPE_P2P_CLIENT:
936 case NL80211_IFTYPE_ADHOC:
937 dev->priv_flags |= IFF_DONT_BRIDGE;
938 break;
939 case NL80211_IFTYPE_P2P_GO:
940 case NL80211_IFTYPE_AP:
941 case NL80211_IFTYPE_AP_VLAN:
942 case NL80211_IFTYPE_WDS:
943 case NL80211_IFTYPE_MESH_POINT:
944 /* bridging OK */
945 break;
946 case NL80211_IFTYPE_MONITOR:
947 /* monitor can't bridge anyway */
948 break;
949 case NL80211_IFTYPE_UNSPECIFIED:
950 case NUM_NL80211_IFTYPES:
951 /* not happening */
952 break;
953 case NL80211_IFTYPE_P2P_DEVICE:
954 WARN_ON(1);
955 break;
956 }
957 }
958
959 if (!err && ntype != otype && netif_running(dev)) {
960 cfg80211_update_iface_num(rdev, ntype, 1);
961 cfg80211_update_iface_num(rdev, otype, -1);
962 }
963
964 return err;
965 }
966
967 static u32 cfg80211_calculate_bitrate_60g(struct rate_info *rate)
968 {
969 static const u32 __mcs2bitrate[] = {
970 /* control PHY */
971 [0] = 275,
972 /* SC PHY */
973 [1] = 3850,
974 [2] = 7700,
975 [3] = 9625,
976 [4] = 11550,
977 [5] = 12512, /* 1251.25 mbps */
978 [6] = 15400,
979 [7] = 19250,
980 [8] = 23100,
981 [9] = 25025,
982 [10] = 30800,
983 [11] = 38500,
984 [12] = 46200,
985 /* OFDM PHY */
986 [13] = 6930,
987 [14] = 8662, /* 866.25 mbps */
988 [15] = 13860,
989 [16] = 17325,
990 [17] = 20790,
991 [18] = 27720,
992 [19] = 34650,
993 [20] = 41580,
994 [21] = 45045,
995 [22] = 51975,
996 [23] = 62370,
997 [24] = 67568, /* 6756.75 mbps */
998 /* LP-SC PHY */
999 [25] = 6260,
1000 [26] = 8340,
1001 [27] = 11120,
1002 [28] = 12510,
1003 [29] = 16680,
1004 [30] = 22240,
1005 [31] = 25030,
1006 };
1007
1008 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1009 return 0;
1010
1011 return __mcs2bitrate[rate->mcs];
1012 }
1013
1014 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1015 {
1016 static const u32 base[4][10] = {
1017 { 6500000,
1018 13000000,
1019 19500000,
1020 26000000,
1021 39000000,
1022 52000000,
1023 58500000,
1024 65000000,
1025 78000000,
1026 0,
1027 },
1028 { 13500000,
1029 27000000,
1030 40500000,
1031 54000000,
1032 81000000,
1033 108000000,
1034 121500000,
1035 135000000,
1036 162000000,
1037 180000000,
1038 },
1039 { 29300000,
1040 58500000,
1041 87800000,
1042 117000000,
1043 175500000,
1044 234000000,
1045 263300000,
1046 292500000,
1047 351000000,
1048 390000000,
1049 },
1050 { 58500000,
1051 117000000,
1052 175500000,
1053 234000000,
1054 351000000,
1055 468000000,
1056 526500000,
1057 585000000,
1058 702000000,
1059 780000000,
1060 },
1061 };
1062 u32 bitrate;
1063 int idx;
1064
1065 if (WARN_ON_ONCE(rate->mcs > 9))
1066 return 0;
1067
1068 idx = rate->flags & (RATE_INFO_FLAGS_160_MHZ_WIDTH |
1069 RATE_INFO_FLAGS_80P80_MHZ_WIDTH) ? 3 :
1070 rate->flags & RATE_INFO_FLAGS_80_MHZ_WIDTH ? 2 :
1071 rate->flags & RATE_INFO_FLAGS_40_MHZ_WIDTH ? 1 : 0;
1072
1073 bitrate = base[idx][rate->mcs];
1074 bitrate *= rate->nss;
1075
1076 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1077 bitrate = (bitrate / 9) * 10;
1078
1079 /* do NOT round down here */
1080 return (bitrate + 50000) / 100000;
1081 }
1082
1083 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1084 {
1085 int modulation, streams, bitrate;
1086
1087 if (!(rate->flags & RATE_INFO_FLAGS_MCS) &&
1088 !(rate->flags & RATE_INFO_FLAGS_VHT_MCS))
1089 return rate->legacy;
1090 if (rate->flags & RATE_INFO_FLAGS_60G)
1091 return cfg80211_calculate_bitrate_60g(rate);
1092 if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1093 return cfg80211_calculate_bitrate_vht(rate);
1094
1095 /* the formula below does only work for MCS values smaller than 32 */
1096 if (WARN_ON_ONCE(rate->mcs >= 32))
1097 return 0;
1098
1099 modulation = rate->mcs & 7;
1100 streams = (rate->mcs >> 3) + 1;
1101
1102 bitrate = (rate->flags & RATE_INFO_FLAGS_40_MHZ_WIDTH) ?
1103 13500000 : 6500000;
1104
1105 if (modulation < 4)
1106 bitrate *= (modulation + 1);
1107 else if (modulation == 4)
1108 bitrate *= (modulation + 2);
1109 else
1110 bitrate *= (modulation + 3);
1111
1112 bitrate *= streams;
1113
1114 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1115 bitrate = (bitrate / 9) * 10;
1116
1117 /* do NOT round down here */
1118 return (bitrate + 50000) / 100000;
1119 }
1120 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1121
1122 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1123 enum ieee80211_p2p_attr_id attr,
1124 u8 *buf, unsigned int bufsize)
1125 {
1126 u8 *out = buf;
1127 u16 attr_remaining = 0;
1128 bool desired_attr = false;
1129 u16 desired_len = 0;
1130
1131 while (len > 0) {
1132 unsigned int iedatalen;
1133 unsigned int copy;
1134 const u8 *iedata;
1135
1136 if (len < 2)
1137 return -EILSEQ;
1138 iedatalen = ies[1];
1139 if (iedatalen + 2 > len)
1140 return -EILSEQ;
1141
1142 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1143 goto cont;
1144
1145 if (iedatalen < 4)
1146 goto cont;
1147
1148 iedata = ies + 2;
1149
1150 /* check WFA OUI, P2P subtype */
1151 if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1152 iedata[2] != 0x9a || iedata[3] != 0x09)
1153 goto cont;
1154
1155 iedatalen -= 4;
1156 iedata += 4;
1157
1158 /* check attribute continuation into this IE */
1159 copy = min_t(unsigned int, attr_remaining, iedatalen);
1160 if (copy && desired_attr) {
1161 desired_len += copy;
1162 if (out) {
1163 memcpy(out, iedata, min(bufsize, copy));
1164 out += min(bufsize, copy);
1165 bufsize -= min(bufsize, copy);
1166 }
1167
1168
1169 if (copy == attr_remaining)
1170 return desired_len;
1171 }
1172
1173 attr_remaining -= copy;
1174 if (attr_remaining)
1175 goto cont;
1176
1177 iedatalen -= copy;
1178 iedata += copy;
1179
1180 while (iedatalen > 0) {
1181 u16 attr_len;
1182
1183 /* P2P attribute ID & size must fit */
1184 if (iedatalen < 3)
1185 return -EILSEQ;
1186 desired_attr = iedata[0] == attr;
1187 attr_len = get_unaligned_le16(iedata + 1);
1188 iedatalen -= 3;
1189 iedata += 3;
1190
1191 copy = min_t(unsigned int, attr_len, iedatalen);
1192
1193 if (desired_attr) {
1194 desired_len += copy;
1195 if (out) {
1196 memcpy(out, iedata, min(bufsize, copy));
1197 out += min(bufsize, copy);
1198 bufsize -= min(bufsize, copy);
1199 }
1200
1201 if (copy == attr_len)
1202 return desired_len;
1203 }
1204
1205 iedata += copy;
1206 iedatalen -= copy;
1207 attr_remaining = attr_len - copy;
1208 }
1209
1210 cont:
1211 len -= ies[1] + 2;
1212 ies += ies[1] + 2;
1213 }
1214
1215 if (attr_remaining && desired_attr)
1216 return -EILSEQ;
1217
1218 return -ENOENT;
1219 }
1220 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1221
1222 bool ieee80211_operating_class_to_band(u8 operating_class,
1223 enum ieee80211_band *band)
1224 {
1225 switch (operating_class) {
1226 case 112:
1227 case 115 ... 127:
1228 *band = IEEE80211_BAND_5GHZ;
1229 return true;
1230 case 81:
1231 case 82:
1232 case 83:
1233 case 84:
1234 *band = IEEE80211_BAND_2GHZ;
1235 return true;
1236 case 180:
1237 *band = IEEE80211_BAND_60GHZ;
1238 return true;
1239 }
1240
1241 return false;
1242 }
1243 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1244
1245 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1246 u32 beacon_int)
1247 {
1248 struct wireless_dev *wdev;
1249 int res = 0;
1250
1251 if (!beacon_int)
1252 return -EINVAL;
1253
1254 list_for_each_entry(wdev, &rdev->wdev_list, list) {
1255 if (!wdev->beacon_interval)
1256 continue;
1257 if (wdev->beacon_interval != beacon_int) {
1258 res = -EINVAL;
1259 break;
1260 }
1261 }
1262
1263 return res;
1264 }
1265
1266 int cfg80211_check_combinations(struct wiphy *wiphy,
1267 const int num_different_channels,
1268 const u8 radar_detect,
1269 const int iftype_num[NUM_NL80211_IFTYPES])
1270 {
1271 int i, j, iftype;
1272 int num_interfaces = 0;
1273 u32 used_iftypes = 0;
1274
1275 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1276 num_interfaces += iftype_num[iftype];
1277 if (iftype_num[iftype] > 0 &&
1278 !(wiphy->software_iftypes & BIT(iftype)))
1279 used_iftypes |= BIT(iftype);
1280 }
1281
1282 for (i = 0; i < wiphy->n_iface_combinations; i++) {
1283 const struct ieee80211_iface_combination *c;
1284 struct ieee80211_iface_limit *limits;
1285 u32 all_iftypes = 0;
1286
1287 c = &wiphy->iface_combinations[i];
1288
1289 if (num_interfaces > c->max_interfaces)
1290 continue;
1291 if (num_different_channels > c->num_different_channels)
1292 continue;
1293
1294 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1295 GFP_KERNEL);
1296 if (!limits)
1297 return -ENOMEM;
1298
1299 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1300 if (wiphy->software_iftypes & BIT(iftype))
1301 continue;
1302 for (j = 0; j < c->n_limits; j++) {
1303 all_iftypes |= limits[j].types;
1304 if (!(limits[j].types & BIT(iftype)))
1305 continue;
1306 if (limits[j].max < iftype_num[iftype])
1307 goto cont;
1308 limits[j].max -= iftype_num[iftype];
1309 }
1310 }
1311
1312 if (radar_detect && !(c->radar_detect_widths & radar_detect))
1313 goto cont;
1314
1315 /* Finally check that all iftypes that we're currently
1316 * using are actually part of this combination. If they
1317 * aren't then we can't use this combination and have
1318 * to continue to the next.
1319 */
1320 if ((all_iftypes & used_iftypes) != used_iftypes)
1321 goto cont;
1322
1323 /* This combination covered all interface types and
1324 * supported the requested numbers, so we're good.
1325 */
1326 kfree(limits);
1327 return 0;
1328 cont:
1329 kfree(limits);
1330 }
1331
1332 return -EBUSY;
1333 }
1334 EXPORT_SYMBOL(cfg80211_check_combinations);
1335
1336 int cfg80211_can_use_iftype_chan(struct cfg80211_registered_device *rdev,
1337 struct wireless_dev *wdev,
1338 enum nl80211_iftype iftype,
1339 struct ieee80211_channel *chan,
1340 enum cfg80211_chan_mode chanmode,
1341 u8 radar_detect)
1342 {
1343 struct wireless_dev *wdev_iter;
1344 int num[NUM_NL80211_IFTYPES];
1345 struct ieee80211_channel
1346 *used_channels[CFG80211_MAX_NUM_DIFFERENT_CHANNELS];
1347 struct ieee80211_channel *ch;
1348 enum cfg80211_chan_mode chmode;
1349 int num_different_channels = 0;
1350 int total = 1;
1351 int i;
1352
1353 ASSERT_RTNL();
1354
1355 if (WARN_ON(hweight32(radar_detect) > 1))
1356 return -EINVAL;
1357
1358 if (WARN_ON(iftype >= NUM_NL80211_IFTYPES))
1359 return -EINVAL;
1360
1361 /* Always allow software iftypes */
1362 if (rdev->wiphy.software_iftypes & BIT(iftype)) {
1363 if (radar_detect)
1364 return -EINVAL;
1365 return 0;
1366 }
1367
1368 memset(num, 0, sizeof(num));
1369 memset(used_channels, 0, sizeof(used_channels));
1370
1371 num[iftype] = 1;
1372
1373 /* TODO: We'll probably not need this anymore, since this
1374 * should only be called with CHAN_MODE_UNDEFINED. There are
1375 * still a couple of pending calls where other chanmodes are
1376 * used, but we should get rid of them.
1377 */
1378 switch (chanmode) {
1379 case CHAN_MODE_UNDEFINED:
1380 break;
1381 case CHAN_MODE_SHARED:
1382 WARN_ON(!chan);
1383 used_channels[0] = chan;
1384 num_different_channels++;
1385 break;
1386 case CHAN_MODE_EXCLUSIVE:
1387 num_different_channels++;
1388 break;
1389 }
1390
1391 list_for_each_entry(wdev_iter, &rdev->wdev_list, list) {
1392 if (wdev_iter == wdev)
1393 continue;
1394 if (wdev_iter->iftype == NL80211_IFTYPE_P2P_DEVICE) {
1395 if (!wdev_iter->p2p_started)
1396 continue;
1397 } else if (wdev_iter->netdev) {
1398 if (!netif_running(wdev_iter->netdev))
1399 continue;
1400 } else {
1401 WARN_ON(1);
1402 }
1403
1404 if (rdev->wiphy.software_iftypes & BIT(wdev_iter->iftype))
1405 continue;
1406
1407 /*
1408 * We may be holding the "wdev" mutex, but now need to lock
1409 * wdev_iter. This is OK because once we get here wdev_iter
1410 * is not wdev (tested above), but we need to use the nested
1411 * locking for lockdep.
1412 */
1413 mutex_lock_nested(&wdev_iter->mtx, 1);
1414 __acquire(wdev_iter->mtx);
1415 cfg80211_get_chan_state(wdev_iter, &ch, &chmode, &radar_detect);
1416 wdev_unlock(wdev_iter);
1417
1418 switch (chmode) {
1419 case CHAN_MODE_UNDEFINED:
1420 break;
1421 case CHAN_MODE_SHARED:
1422 for (i = 0; i < CFG80211_MAX_NUM_DIFFERENT_CHANNELS; i++)
1423 if (!used_channels[i] || used_channels[i] == ch)
1424 break;
1425
1426 if (i == CFG80211_MAX_NUM_DIFFERENT_CHANNELS)
1427 return -EBUSY;
1428
1429 if (used_channels[i] == NULL) {
1430 used_channels[i] = ch;
1431 num_different_channels++;
1432 }
1433 break;
1434 case CHAN_MODE_EXCLUSIVE:
1435 num_different_channels++;
1436 break;
1437 }
1438
1439 num[wdev_iter->iftype]++;
1440 total++;
1441 }
1442
1443 if (total == 1 && !radar_detect)
1444 return 0;
1445
1446 return cfg80211_check_combinations(&rdev->wiphy, num_different_channels,
1447 radar_detect, num);
1448 }
1449
1450 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1451 const u8 *rates, unsigned int n_rates,
1452 u32 *mask)
1453 {
1454 int i, j;
1455
1456 if (!sband)
1457 return -EINVAL;
1458
1459 if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1460 return -EINVAL;
1461
1462 *mask = 0;
1463
1464 for (i = 0; i < n_rates; i++) {
1465 int rate = (rates[i] & 0x7f) * 5;
1466 bool found = false;
1467
1468 for (j = 0; j < sband->n_bitrates; j++) {
1469 if (sband->bitrates[j].bitrate == rate) {
1470 found = true;
1471 *mask |= BIT(j);
1472 break;
1473 }
1474 }
1475 if (!found)
1476 return -EINVAL;
1477 }
1478
1479 /*
1480 * mask must have at least one bit set here since we
1481 * didn't accept a 0-length rates array nor allowed
1482 * entries in the array that didn't exist
1483 */
1484
1485 return 0;
1486 }
1487
1488 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
1489 {
1490 enum ieee80211_band band;
1491 unsigned int n_channels = 0;
1492
1493 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1494 if (wiphy->bands[band])
1495 n_channels += wiphy->bands[band]->n_channels;
1496
1497 return n_channels;
1498 }
1499 EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
1500
1501 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
1502 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
1503 const unsigned char rfc1042_header[] __aligned(2) =
1504 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
1505 EXPORT_SYMBOL(rfc1042_header);
1506
1507 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
1508 const unsigned char bridge_tunnel_header[] __aligned(2) =
1509 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
1510 EXPORT_SYMBOL(bridge_tunnel_header);