]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - net/wireless/util.c
Merge branch 'net-phy-mscc-miim-reduce-waiting-time-between-MDIO-transactions'
[mirror_ubuntu-hirsute-kernel.git] / net / wireless / util.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Wireless utility functions
4 *
5 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2017 Intel Deutschland GmbH
8 * Copyright (C) 2018-2019 Intel Corporation
9 */
10 #include <linux/export.h>
11 #include <linux/bitops.h>
12 #include <linux/etherdevice.h>
13 #include <linux/slab.h>
14 #include <linux/ieee80211.h>
15 #include <net/cfg80211.h>
16 #include <net/ip.h>
17 #include <net/dsfield.h>
18 #include <linux/if_vlan.h>
19 #include <linux/mpls.h>
20 #include <linux/gcd.h>
21 #include <linux/bitfield.h>
22 #include <linux/nospec.h>
23 #include "core.h"
24 #include "rdev-ops.h"
25
26
27 struct ieee80211_rate *
28 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
29 u32 basic_rates, int bitrate)
30 {
31 struct ieee80211_rate *result = &sband->bitrates[0];
32 int i;
33
34 for (i = 0; i < sband->n_bitrates; i++) {
35 if (!(basic_rates & BIT(i)))
36 continue;
37 if (sband->bitrates[i].bitrate > bitrate)
38 continue;
39 result = &sband->bitrates[i];
40 }
41
42 return result;
43 }
44 EXPORT_SYMBOL(ieee80211_get_response_rate);
45
46 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
47 enum nl80211_bss_scan_width scan_width)
48 {
49 struct ieee80211_rate *bitrates;
50 u32 mandatory_rates = 0;
51 enum ieee80211_rate_flags mandatory_flag;
52 int i;
53
54 if (WARN_ON(!sband))
55 return 1;
56
57 if (sband->band == NL80211_BAND_2GHZ) {
58 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
59 scan_width == NL80211_BSS_CHAN_WIDTH_10)
60 mandatory_flag = IEEE80211_RATE_MANDATORY_G;
61 else
62 mandatory_flag = IEEE80211_RATE_MANDATORY_B;
63 } else {
64 mandatory_flag = IEEE80211_RATE_MANDATORY_A;
65 }
66
67 bitrates = sband->bitrates;
68 for (i = 0; i < sband->n_bitrates; i++)
69 if (bitrates[i].flags & mandatory_flag)
70 mandatory_rates |= BIT(i);
71 return mandatory_rates;
72 }
73 EXPORT_SYMBOL(ieee80211_mandatory_rates);
74
75 int ieee80211_channel_to_frequency(int chan, enum nl80211_band band)
76 {
77 /* see 802.11 17.3.8.3.2 and Annex J
78 * there are overlapping channel numbers in 5GHz and 2GHz bands */
79 if (chan <= 0)
80 return 0; /* not supported */
81 switch (band) {
82 case NL80211_BAND_2GHZ:
83 if (chan == 14)
84 return 2484;
85 else if (chan < 14)
86 return 2407 + chan * 5;
87 break;
88 case NL80211_BAND_5GHZ:
89 if (chan >= 182 && chan <= 196)
90 return 4000 + chan * 5;
91 else
92 return 5000 + chan * 5;
93 break;
94 case NL80211_BAND_6GHZ:
95 /* see 802.11ax D4.1 27.3.22.2 */
96 if (chan <= 253)
97 return 5940 + chan * 5;
98 break;
99 case NL80211_BAND_60GHZ:
100 if (chan < 7)
101 return 56160 + chan * 2160;
102 break;
103 default:
104 ;
105 }
106 return 0; /* not supported */
107 }
108 EXPORT_SYMBOL(ieee80211_channel_to_frequency);
109
110 int ieee80211_frequency_to_channel(int freq)
111 {
112 /* see 802.11 17.3.8.3.2 and Annex J */
113 if (freq == 2484)
114 return 14;
115 else if (freq < 2484)
116 return (freq - 2407) / 5;
117 else if (freq >= 4910 && freq <= 4980)
118 return (freq - 4000) / 5;
119 else if (freq < 5945)
120 return (freq - 5000) / 5;
121 else if (freq <= 45000) /* DMG band lower limit */
122 /* see 802.11ax D4.1 27.3.22.2 */
123 return (freq - 5940) / 5;
124 else if (freq >= 58320 && freq <= 70200)
125 return (freq - 56160) / 2160;
126 else
127 return 0;
128 }
129 EXPORT_SYMBOL(ieee80211_frequency_to_channel);
130
131 struct ieee80211_channel *ieee80211_get_channel(struct wiphy *wiphy, int freq)
132 {
133 enum nl80211_band band;
134 struct ieee80211_supported_band *sband;
135 int i;
136
137 for (band = 0; band < NUM_NL80211_BANDS; band++) {
138 sband = wiphy->bands[band];
139
140 if (!sband)
141 continue;
142
143 for (i = 0; i < sband->n_channels; i++) {
144 if (sband->channels[i].center_freq == freq)
145 return &sband->channels[i];
146 }
147 }
148
149 return NULL;
150 }
151 EXPORT_SYMBOL(ieee80211_get_channel);
152
153 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
154 {
155 int i, want;
156
157 switch (sband->band) {
158 case NL80211_BAND_5GHZ:
159 case NL80211_BAND_6GHZ:
160 want = 3;
161 for (i = 0; i < sband->n_bitrates; i++) {
162 if (sband->bitrates[i].bitrate == 60 ||
163 sband->bitrates[i].bitrate == 120 ||
164 sband->bitrates[i].bitrate == 240) {
165 sband->bitrates[i].flags |=
166 IEEE80211_RATE_MANDATORY_A;
167 want--;
168 }
169 }
170 WARN_ON(want);
171 break;
172 case NL80211_BAND_2GHZ:
173 want = 7;
174 for (i = 0; i < sband->n_bitrates; i++) {
175 switch (sband->bitrates[i].bitrate) {
176 case 10:
177 case 20:
178 case 55:
179 case 110:
180 sband->bitrates[i].flags |=
181 IEEE80211_RATE_MANDATORY_B |
182 IEEE80211_RATE_MANDATORY_G;
183 want--;
184 break;
185 case 60:
186 case 120:
187 case 240:
188 sband->bitrates[i].flags |=
189 IEEE80211_RATE_MANDATORY_G;
190 want--;
191 /* fall through */
192 default:
193 sband->bitrates[i].flags |=
194 IEEE80211_RATE_ERP_G;
195 break;
196 }
197 }
198 WARN_ON(want != 0 && want != 3);
199 break;
200 case NL80211_BAND_60GHZ:
201 /* check for mandatory HT MCS 1..4 */
202 WARN_ON(!sband->ht_cap.ht_supported);
203 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
204 break;
205 case NUM_NL80211_BANDS:
206 default:
207 WARN_ON(1);
208 break;
209 }
210 }
211
212 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
213 {
214 enum nl80211_band band;
215
216 for (band = 0; band < NUM_NL80211_BANDS; band++)
217 if (wiphy->bands[band])
218 set_mandatory_flags_band(wiphy->bands[band]);
219 }
220
221 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
222 {
223 int i;
224 for (i = 0; i < wiphy->n_cipher_suites; i++)
225 if (cipher == wiphy->cipher_suites[i])
226 return true;
227 return false;
228 }
229
230 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
231 struct key_params *params, int key_idx,
232 bool pairwise, const u8 *mac_addr)
233 {
234 int max_key_idx = 5;
235
236 if (wiphy_ext_feature_isset(&rdev->wiphy,
237 NL80211_EXT_FEATURE_BEACON_PROTECTION))
238 max_key_idx = 7;
239 if (key_idx < 0 || key_idx > max_key_idx)
240 return -EINVAL;
241
242 if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
243 return -EINVAL;
244
245 if (pairwise && !mac_addr)
246 return -EINVAL;
247
248 switch (params->cipher) {
249 case WLAN_CIPHER_SUITE_TKIP:
250 /* Extended Key ID can only be used with CCMP/GCMP ciphers */
251 if ((pairwise && key_idx) ||
252 params->mode != NL80211_KEY_RX_TX)
253 return -EINVAL;
254 break;
255 case WLAN_CIPHER_SUITE_CCMP:
256 case WLAN_CIPHER_SUITE_CCMP_256:
257 case WLAN_CIPHER_SUITE_GCMP:
258 case WLAN_CIPHER_SUITE_GCMP_256:
259 /* IEEE802.11-2016 allows only 0 and - when supporting
260 * Extended Key ID - 1 as index for pairwise keys.
261 * @NL80211_KEY_NO_TX is only allowed for pairwise keys when
262 * the driver supports Extended Key ID.
263 * @NL80211_KEY_SET_TX can't be set when installing and
264 * validating a key.
265 */
266 if ((params->mode == NL80211_KEY_NO_TX && !pairwise) ||
267 params->mode == NL80211_KEY_SET_TX)
268 return -EINVAL;
269 if (wiphy_ext_feature_isset(&rdev->wiphy,
270 NL80211_EXT_FEATURE_EXT_KEY_ID)) {
271 if (pairwise && (key_idx < 0 || key_idx > 1))
272 return -EINVAL;
273 } else if (pairwise && key_idx) {
274 return -EINVAL;
275 }
276 break;
277 case WLAN_CIPHER_SUITE_AES_CMAC:
278 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
279 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
280 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
281 /* Disallow BIP (group-only) cipher as pairwise cipher */
282 if (pairwise)
283 return -EINVAL;
284 if (key_idx < 4)
285 return -EINVAL;
286 break;
287 case WLAN_CIPHER_SUITE_WEP40:
288 case WLAN_CIPHER_SUITE_WEP104:
289 if (key_idx > 3)
290 return -EINVAL;
291 default:
292 break;
293 }
294
295 switch (params->cipher) {
296 case WLAN_CIPHER_SUITE_WEP40:
297 if (params->key_len != WLAN_KEY_LEN_WEP40)
298 return -EINVAL;
299 break;
300 case WLAN_CIPHER_SUITE_TKIP:
301 if (params->key_len != WLAN_KEY_LEN_TKIP)
302 return -EINVAL;
303 break;
304 case WLAN_CIPHER_SUITE_CCMP:
305 if (params->key_len != WLAN_KEY_LEN_CCMP)
306 return -EINVAL;
307 break;
308 case WLAN_CIPHER_SUITE_CCMP_256:
309 if (params->key_len != WLAN_KEY_LEN_CCMP_256)
310 return -EINVAL;
311 break;
312 case WLAN_CIPHER_SUITE_GCMP:
313 if (params->key_len != WLAN_KEY_LEN_GCMP)
314 return -EINVAL;
315 break;
316 case WLAN_CIPHER_SUITE_GCMP_256:
317 if (params->key_len != WLAN_KEY_LEN_GCMP_256)
318 return -EINVAL;
319 break;
320 case WLAN_CIPHER_SUITE_WEP104:
321 if (params->key_len != WLAN_KEY_LEN_WEP104)
322 return -EINVAL;
323 break;
324 case WLAN_CIPHER_SUITE_AES_CMAC:
325 if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
326 return -EINVAL;
327 break;
328 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
329 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
330 return -EINVAL;
331 break;
332 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
333 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
334 return -EINVAL;
335 break;
336 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
337 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
338 return -EINVAL;
339 break;
340 default:
341 /*
342 * We don't know anything about this algorithm,
343 * allow using it -- but the driver must check
344 * all parameters! We still check below whether
345 * or not the driver supports this algorithm,
346 * of course.
347 */
348 break;
349 }
350
351 if (params->seq) {
352 switch (params->cipher) {
353 case WLAN_CIPHER_SUITE_WEP40:
354 case WLAN_CIPHER_SUITE_WEP104:
355 /* These ciphers do not use key sequence */
356 return -EINVAL;
357 case WLAN_CIPHER_SUITE_TKIP:
358 case WLAN_CIPHER_SUITE_CCMP:
359 case WLAN_CIPHER_SUITE_CCMP_256:
360 case WLAN_CIPHER_SUITE_GCMP:
361 case WLAN_CIPHER_SUITE_GCMP_256:
362 case WLAN_CIPHER_SUITE_AES_CMAC:
363 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
364 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
365 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
366 if (params->seq_len != 6)
367 return -EINVAL;
368 break;
369 }
370 }
371
372 if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
373 return -EINVAL;
374
375 return 0;
376 }
377
378 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
379 {
380 unsigned int hdrlen = 24;
381
382 if (ieee80211_is_data(fc)) {
383 if (ieee80211_has_a4(fc))
384 hdrlen = 30;
385 if (ieee80211_is_data_qos(fc)) {
386 hdrlen += IEEE80211_QOS_CTL_LEN;
387 if (ieee80211_has_order(fc))
388 hdrlen += IEEE80211_HT_CTL_LEN;
389 }
390 goto out;
391 }
392
393 if (ieee80211_is_mgmt(fc)) {
394 if (ieee80211_has_order(fc))
395 hdrlen += IEEE80211_HT_CTL_LEN;
396 goto out;
397 }
398
399 if (ieee80211_is_ctl(fc)) {
400 /*
401 * ACK and CTS are 10 bytes, all others 16. To see how
402 * to get this condition consider
403 * subtype mask: 0b0000000011110000 (0x00F0)
404 * ACK subtype: 0b0000000011010000 (0x00D0)
405 * CTS subtype: 0b0000000011000000 (0x00C0)
406 * bits that matter: ^^^ (0x00E0)
407 * value of those: 0b0000000011000000 (0x00C0)
408 */
409 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
410 hdrlen = 10;
411 else
412 hdrlen = 16;
413 }
414 out:
415 return hdrlen;
416 }
417 EXPORT_SYMBOL(ieee80211_hdrlen);
418
419 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
420 {
421 const struct ieee80211_hdr *hdr =
422 (const struct ieee80211_hdr *)skb->data;
423 unsigned int hdrlen;
424
425 if (unlikely(skb->len < 10))
426 return 0;
427 hdrlen = ieee80211_hdrlen(hdr->frame_control);
428 if (unlikely(hdrlen > skb->len))
429 return 0;
430 return hdrlen;
431 }
432 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
433
434 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
435 {
436 int ae = flags & MESH_FLAGS_AE;
437 /* 802.11-2012, 8.2.4.7.3 */
438 switch (ae) {
439 default:
440 case 0:
441 return 6;
442 case MESH_FLAGS_AE_A4:
443 return 12;
444 case MESH_FLAGS_AE_A5_A6:
445 return 18;
446 }
447 }
448
449 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
450 {
451 return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
452 }
453 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
454
455 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
456 const u8 *addr, enum nl80211_iftype iftype,
457 u8 data_offset)
458 {
459 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
460 struct {
461 u8 hdr[ETH_ALEN] __aligned(2);
462 __be16 proto;
463 } payload;
464 struct ethhdr tmp;
465 u16 hdrlen;
466 u8 mesh_flags = 0;
467
468 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
469 return -1;
470
471 hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset;
472 if (skb->len < hdrlen + 8)
473 return -1;
474
475 /* convert IEEE 802.11 header + possible LLC headers into Ethernet
476 * header
477 * IEEE 802.11 address fields:
478 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
479 * 0 0 DA SA BSSID n/a
480 * 0 1 DA BSSID SA n/a
481 * 1 0 BSSID SA DA n/a
482 * 1 1 RA TA DA SA
483 */
484 memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
485 memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
486
487 if (iftype == NL80211_IFTYPE_MESH_POINT)
488 skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
489
490 mesh_flags &= MESH_FLAGS_AE;
491
492 switch (hdr->frame_control &
493 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
494 case cpu_to_le16(IEEE80211_FCTL_TODS):
495 if (unlikely(iftype != NL80211_IFTYPE_AP &&
496 iftype != NL80211_IFTYPE_AP_VLAN &&
497 iftype != NL80211_IFTYPE_P2P_GO))
498 return -1;
499 break;
500 case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
501 if (unlikely(iftype != NL80211_IFTYPE_WDS &&
502 iftype != NL80211_IFTYPE_MESH_POINT &&
503 iftype != NL80211_IFTYPE_AP_VLAN &&
504 iftype != NL80211_IFTYPE_STATION))
505 return -1;
506 if (iftype == NL80211_IFTYPE_MESH_POINT) {
507 if (mesh_flags == MESH_FLAGS_AE_A4)
508 return -1;
509 if (mesh_flags == MESH_FLAGS_AE_A5_A6) {
510 skb_copy_bits(skb, hdrlen +
511 offsetof(struct ieee80211s_hdr, eaddr1),
512 tmp.h_dest, 2 * ETH_ALEN);
513 }
514 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
515 }
516 break;
517 case cpu_to_le16(IEEE80211_FCTL_FROMDS):
518 if ((iftype != NL80211_IFTYPE_STATION &&
519 iftype != NL80211_IFTYPE_P2P_CLIENT &&
520 iftype != NL80211_IFTYPE_MESH_POINT) ||
521 (is_multicast_ether_addr(tmp.h_dest) &&
522 ether_addr_equal(tmp.h_source, addr)))
523 return -1;
524 if (iftype == NL80211_IFTYPE_MESH_POINT) {
525 if (mesh_flags == MESH_FLAGS_AE_A5_A6)
526 return -1;
527 if (mesh_flags == MESH_FLAGS_AE_A4)
528 skb_copy_bits(skb, hdrlen +
529 offsetof(struct ieee80211s_hdr, eaddr1),
530 tmp.h_source, ETH_ALEN);
531 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
532 }
533 break;
534 case cpu_to_le16(0):
535 if (iftype != NL80211_IFTYPE_ADHOC &&
536 iftype != NL80211_IFTYPE_STATION &&
537 iftype != NL80211_IFTYPE_OCB)
538 return -1;
539 break;
540 }
541
542 skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
543 tmp.h_proto = payload.proto;
544
545 if (likely((ether_addr_equal(payload.hdr, rfc1042_header) &&
546 tmp.h_proto != htons(ETH_P_AARP) &&
547 tmp.h_proto != htons(ETH_P_IPX)) ||
548 ether_addr_equal(payload.hdr, bridge_tunnel_header)))
549 /* remove RFC1042 or Bridge-Tunnel encapsulation and
550 * replace EtherType */
551 hdrlen += ETH_ALEN + 2;
552 else
553 tmp.h_proto = htons(skb->len - hdrlen);
554
555 pskb_pull(skb, hdrlen);
556
557 if (!ehdr)
558 ehdr = skb_push(skb, sizeof(struct ethhdr));
559 memcpy(ehdr, &tmp, sizeof(tmp));
560
561 return 0;
562 }
563 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
564
565 static void
566 __frame_add_frag(struct sk_buff *skb, struct page *page,
567 void *ptr, int len, int size)
568 {
569 struct skb_shared_info *sh = skb_shinfo(skb);
570 int page_offset;
571
572 get_page(page);
573 page_offset = ptr - page_address(page);
574 skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
575 }
576
577 static void
578 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
579 int offset, int len)
580 {
581 struct skb_shared_info *sh = skb_shinfo(skb);
582 const skb_frag_t *frag = &sh->frags[0];
583 struct page *frag_page;
584 void *frag_ptr;
585 int frag_len, frag_size;
586 int head_size = skb->len - skb->data_len;
587 int cur_len;
588
589 frag_page = virt_to_head_page(skb->head);
590 frag_ptr = skb->data;
591 frag_size = head_size;
592
593 while (offset >= frag_size) {
594 offset -= frag_size;
595 frag_page = skb_frag_page(frag);
596 frag_ptr = skb_frag_address(frag);
597 frag_size = skb_frag_size(frag);
598 frag++;
599 }
600
601 frag_ptr += offset;
602 frag_len = frag_size - offset;
603
604 cur_len = min(len, frag_len);
605
606 __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
607 len -= cur_len;
608
609 while (len > 0) {
610 frag_len = skb_frag_size(frag);
611 cur_len = min(len, frag_len);
612 __frame_add_frag(frame, skb_frag_page(frag),
613 skb_frag_address(frag), cur_len, frag_len);
614 len -= cur_len;
615 frag++;
616 }
617 }
618
619 static struct sk_buff *
620 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
621 int offset, int len, bool reuse_frag)
622 {
623 struct sk_buff *frame;
624 int cur_len = len;
625
626 if (skb->len - offset < len)
627 return NULL;
628
629 /*
630 * When reusing framents, copy some data to the head to simplify
631 * ethernet header handling and speed up protocol header processing
632 * in the stack later.
633 */
634 if (reuse_frag)
635 cur_len = min_t(int, len, 32);
636
637 /*
638 * Allocate and reserve two bytes more for payload
639 * alignment since sizeof(struct ethhdr) is 14.
640 */
641 frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
642 if (!frame)
643 return NULL;
644
645 skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
646 skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
647
648 len -= cur_len;
649 if (!len)
650 return frame;
651
652 offset += cur_len;
653 __ieee80211_amsdu_copy_frag(skb, frame, offset, len);
654
655 return frame;
656 }
657
658 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
659 const u8 *addr, enum nl80211_iftype iftype,
660 const unsigned int extra_headroom,
661 const u8 *check_da, const u8 *check_sa)
662 {
663 unsigned int hlen = ALIGN(extra_headroom, 4);
664 struct sk_buff *frame = NULL;
665 u16 ethertype;
666 u8 *payload;
667 int offset = 0, remaining;
668 struct ethhdr eth;
669 bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
670 bool reuse_skb = false;
671 bool last = false;
672
673 while (!last) {
674 unsigned int subframe_len;
675 int len;
676 u8 padding;
677
678 skb_copy_bits(skb, offset, &eth, sizeof(eth));
679 len = ntohs(eth.h_proto);
680 subframe_len = sizeof(struct ethhdr) + len;
681 padding = (4 - subframe_len) & 0x3;
682
683 /* the last MSDU has no padding */
684 remaining = skb->len - offset;
685 if (subframe_len > remaining)
686 goto purge;
687
688 offset += sizeof(struct ethhdr);
689 last = remaining <= subframe_len + padding;
690
691 /* FIXME: should we really accept multicast DA? */
692 if ((check_da && !is_multicast_ether_addr(eth.h_dest) &&
693 !ether_addr_equal(check_da, eth.h_dest)) ||
694 (check_sa && !ether_addr_equal(check_sa, eth.h_source))) {
695 offset += len + padding;
696 continue;
697 }
698
699 /* reuse skb for the last subframe */
700 if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
701 skb_pull(skb, offset);
702 frame = skb;
703 reuse_skb = true;
704 } else {
705 frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
706 reuse_frag);
707 if (!frame)
708 goto purge;
709
710 offset += len + padding;
711 }
712
713 skb_reset_network_header(frame);
714 frame->dev = skb->dev;
715 frame->priority = skb->priority;
716
717 payload = frame->data;
718 ethertype = (payload[6] << 8) | payload[7];
719 if (likely((ether_addr_equal(payload, rfc1042_header) &&
720 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
721 ether_addr_equal(payload, bridge_tunnel_header))) {
722 eth.h_proto = htons(ethertype);
723 skb_pull(frame, ETH_ALEN + 2);
724 }
725
726 memcpy(skb_push(frame, sizeof(eth)), &eth, sizeof(eth));
727 __skb_queue_tail(list, frame);
728 }
729
730 if (!reuse_skb)
731 dev_kfree_skb(skb);
732
733 return;
734
735 purge:
736 __skb_queue_purge(list);
737 dev_kfree_skb(skb);
738 }
739 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
740
741 /* Given a data frame determine the 802.1p/1d tag to use. */
742 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
743 struct cfg80211_qos_map *qos_map)
744 {
745 unsigned int dscp;
746 unsigned char vlan_priority;
747 unsigned int ret;
748
749 /* skb->priority values from 256->263 are magic values to
750 * directly indicate a specific 802.1d priority. This is used
751 * to allow 802.1d priority to be passed directly in from VLAN
752 * tags, etc.
753 */
754 if (skb->priority >= 256 && skb->priority <= 263) {
755 ret = skb->priority - 256;
756 goto out;
757 }
758
759 if (skb_vlan_tag_present(skb)) {
760 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
761 >> VLAN_PRIO_SHIFT;
762 if (vlan_priority > 0) {
763 ret = vlan_priority;
764 goto out;
765 }
766 }
767
768 switch (skb->protocol) {
769 case htons(ETH_P_IP):
770 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
771 break;
772 case htons(ETH_P_IPV6):
773 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
774 break;
775 case htons(ETH_P_MPLS_UC):
776 case htons(ETH_P_MPLS_MC): {
777 struct mpls_label mpls_tmp, *mpls;
778
779 mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
780 sizeof(*mpls), &mpls_tmp);
781 if (!mpls)
782 return 0;
783
784 ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
785 >> MPLS_LS_TC_SHIFT;
786 goto out;
787 }
788 case htons(ETH_P_80221):
789 /* 802.21 is always network control traffic */
790 return 7;
791 default:
792 return 0;
793 }
794
795 if (qos_map) {
796 unsigned int i, tmp_dscp = dscp >> 2;
797
798 for (i = 0; i < qos_map->num_des; i++) {
799 if (tmp_dscp == qos_map->dscp_exception[i].dscp) {
800 ret = qos_map->dscp_exception[i].up;
801 goto out;
802 }
803 }
804
805 for (i = 0; i < 8; i++) {
806 if (tmp_dscp >= qos_map->up[i].low &&
807 tmp_dscp <= qos_map->up[i].high) {
808 ret = i;
809 goto out;
810 }
811 }
812 }
813
814 ret = dscp >> 5;
815 out:
816 return array_index_nospec(ret, IEEE80211_NUM_TIDS);
817 }
818 EXPORT_SYMBOL(cfg80211_classify8021d);
819
820 const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id)
821 {
822 const struct cfg80211_bss_ies *ies;
823
824 ies = rcu_dereference(bss->ies);
825 if (!ies)
826 return NULL;
827
828 return cfg80211_find_elem(id, ies->data, ies->len);
829 }
830 EXPORT_SYMBOL(ieee80211_bss_get_elem);
831
832 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
833 {
834 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
835 struct net_device *dev = wdev->netdev;
836 int i;
837
838 if (!wdev->connect_keys)
839 return;
840
841 for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) {
842 if (!wdev->connect_keys->params[i].cipher)
843 continue;
844 if (rdev_add_key(rdev, dev, i, false, NULL,
845 &wdev->connect_keys->params[i])) {
846 netdev_err(dev, "failed to set key %d\n", i);
847 continue;
848 }
849 if (wdev->connect_keys->def == i &&
850 rdev_set_default_key(rdev, dev, i, true, true)) {
851 netdev_err(dev, "failed to set defkey %d\n", i);
852 continue;
853 }
854 }
855
856 kzfree(wdev->connect_keys);
857 wdev->connect_keys = NULL;
858 }
859
860 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
861 {
862 struct cfg80211_event *ev;
863 unsigned long flags;
864
865 spin_lock_irqsave(&wdev->event_lock, flags);
866 while (!list_empty(&wdev->event_list)) {
867 ev = list_first_entry(&wdev->event_list,
868 struct cfg80211_event, list);
869 list_del(&ev->list);
870 spin_unlock_irqrestore(&wdev->event_lock, flags);
871
872 wdev_lock(wdev);
873 switch (ev->type) {
874 case EVENT_CONNECT_RESULT:
875 __cfg80211_connect_result(
876 wdev->netdev,
877 &ev->cr,
878 ev->cr.status == WLAN_STATUS_SUCCESS);
879 break;
880 case EVENT_ROAMED:
881 __cfg80211_roamed(wdev, &ev->rm);
882 break;
883 case EVENT_DISCONNECTED:
884 __cfg80211_disconnected(wdev->netdev,
885 ev->dc.ie, ev->dc.ie_len,
886 ev->dc.reason,
887 !ev->dc.locally_generated);
888 break;
889 case EVENT_IBSS_JOINED:
890 __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
891 ev->ij.channel);
892 break;
893 case EVENT_STOPPED:
894 __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
895 break;
896 case EVENT_PORT_AUTHORIZED:
897 __cfg80211_port_authorized(wdev, ev->pa.bssid);
898 break;
899 }
900 wdev_unlock(wdev);
901
902 kfree(ev);
903
904 spin_lock_irqsave(&wdev->event_lock, flags);
905 }
906 spin_unlock_irqrestore(&wdev->event_lock, flags);
907 }
908
909 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
910 {
911 struct wireless_dev *wdev;
912
913 ASSERT_RTNL();
914
915 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
916 cfg80211_process_wdev_events(wdev);
917 }
918
919 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
920 struct net_device *dev, enum nl80211_iftype ntype,
921 struct vif_params *params)
922 {
923 int err;
924 enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
925
926 ASSERT_RTNL();
927
928 /* don't support changing VLANs, you just re-create them */
929 if (otype == NL80211_IFTYPE_AP_VLAN)
930 return -EOPNOTSUPP;
931
932 /* cannot change into P2P device or NAN */
933 if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
934 ntype == NL80211_IFTYPE_NAN)
935 return -EOPNOTSUPP;
936
937 if (!rdev->ops->change_virtual_intf ||
938 !(rdev->wiphy.interface_modes & (1 << ntype)))
939 return -EOPNOTSUPP;
940
941 /* if it's part of a bridge, reject changing type to station/ibss */
942 if (netif_is_bridge_port(dev) &&
943 (ntype == NL80211_IFTYPE_ADHOC ||
944 ntype == NL80211_IFTYPE_STATION ||
945 ntype == NL80211_IFTYPE_P2P_CLIENT))
946 return -EBUSY;
947
948 if (ntype != otype) {
949 dev->ieee80211_ptr->use_4addr = false;
950 dev->ieee80211_ptr->mesh_id_up_len = 0;
951 wdev_lock(dev->ieee80211_ptr);
952 rdev_set_qos_map(rdev, dev, NULL);
953 wdev_unlock(dev->ieee80211_ptr);
954
955 switch (otype) {
956 case NL80211_IFTYPE_AP:
957 cfg80211_stop_ap(rdev, dev, true);
958 break;
959 case NL80211_IFTYPE_ADHOC:
960 cfg80211_leave_ibss(rdev, dev, false);
961 break;
962 case NL80211_IFTYPE_STATION:
963 case NL80211_IFTYPE_P2P_CLIENT:
964 wdev_lock(dev->ieee80211_ptr);
965 cfg80211_disconnect(rdev, dev,
966 WLAN_REASON_DEAUTH_LEAVING, true);
967 wdev_unlock(dev->ieee80211_ptr);
968 break;
969 case NL80211_IFTYPE_MESH_POINT:
970 /* mesh should be handled? */
971 break;
972 default:
973 break;
974 }
975
976 cfg80211_process_rdev_events(rdev);
977 cfg80211_mlme_purge_registrations(dev->ieee80211_ptr);
978 }
979
980 err = rdev_change_virtual_intf(rdev, dev, ntype, params);
981
982 WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
983
984 if (!err && params && params->use_4addr != -1)
985 dev->ieee80211_ptr->use_4addr = params->use_4addr;
986
987 if (!err) {
988 dev->priv_flags &= ~IFF_DONT_BRIDGE;
989 switch (ntype) {
990 case NL80211_IFTYPE_STATION:
991 if (dev->ieee80211_ptr->use_4addr)
992 break;
993 /* fall through */
994 case NL80211_IFTYPE_OCB:
995 case NL80211_IFTYPE_P2P_CLIENT:
996 case NL80211_IFTYPE_ADHOC:
997 dev->priv_flags |= IFF_DONT_BRIDGE;
998 break;
999 case NL80211_IFTYPE_P2P_GO:
1000 case NL80211_IFTYPE_AP:
1001 case NL80211_IFTYPE_AP_VLAN:
1002 case NL80211_IFTYPE_WDS:
1003 case NL80211_IFTYPE_MESH_POINT:
1004 /* bridging OK */
1005 break;
1006 case NL80211_IFTYPE_MONITOR:
1007 /* monitor can't bridge anyway */
1008 break;
1009 case NL80211_IFTYPE_UNSPECIFIED:
1010 case NUM_NL80211_IFTYPES:
1011 /* not happening */
1012 break;
1013 case NL80211_IFTYPE_P2P_DEVICE:
1014 case NL80211_IFTYPE_NAN:
1015 WARN_ON(1);
1016 break;
1017 }
1018 }
1019
1020 if (!err && ntype != otype && netif_running(dev)) {
1021 cfg80211_update_iface_num(rdev, ntype, 1);
1022 cfg80211_update_iface_num(rdev, otype, -1);
1023 }
1024
1025 return err;
1026 }
1027
1028 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
1029 {
1030 int modulation, streams, bitrate;
1031
1032 /* the formula below does only work for MCS values smaller than 32 */
1033 if (WARN_ON_ONCE(rate->mcs >= 32))
1034 return 0;
1035
1036 modulation = rate->mcs & 7;
1037 streams = (rate->mcs >> 3) + 1;
1038
1039 bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1040
1041 if (modulation < 4)
1042 bitrate *= (modulation + 1);
1043 else if (modulation == 4)
1044 bitrate *= (modulation + 2);
1045 else
1046 bitrate *= (modulation + 3);
1047
1048 bitrate *= streams;
1049
1050 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1051 bitrate = (bitrate / 9) * 10;
1052
1053 /* do NOT round down here */
1054 return (bitrate + 50000) / 100000;
1055 }
1056
1057 static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate)
1058 {
1059 static const u32 __mcs2bitrate[] = {
1060 /* control PHY */
1061 [0] = 275,
1062 /* SC PHY */
1063 [1] = 3850,
1064 [2] = 7700,
1065 [3] = 9625,
1066 [4] = 11550,
1067 [5] = 12512, /* 1251.25 mbps */
1068 [6] = 15400,
1069 [7] = 19250,
1070 [8] = 23100,
1071 [9] = 25025,
1072 [10] = 30800,
1073 [11] = 38500,
1074 [12] = 46200,
1075 /* OFDM PHY */
1076 [13] = 6930,
1077 [14] = 8662, /* 866.25 mbps */
1078 [15] = 13860,
1079 [16] = 17325,
1080 [17] = 20790,
1081 [18] = 27720,
1082 [19] = 34650,
1083 [20] = 41580,
1084 [21] = 45045,
1085 [22] = 51975,
1086 [23] = 62370,
1087 [24] = 67568, /* 6756.75 mbps */
1088 /* LP-SC PHY */
1089 [25] = 6260,
1090 [26] = 8340,
1091 [27] = 11120,
1092 [28] = 12510,
1093 [29] = 16680,
1094 [30] = 22240,
1095 [31] = 25030,
1096 };
1097
1098 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1099 return 0;
1100
1101 return __mcs2bitrate[rate->mcs];
1102 }
1103
1104 static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate)
1105 {
1106 static const u32 __mcs2bitrate[] = {
1107 /* control PHY */
1108 [0] = 275,
1109 /* SC PHY */
1110 [1] = 3850,
1111 [2] = 7700,
1112 [3] = 9625,
1113 [4] = 11550,
1114 [5] = 12512, /* 1251.25 mbps */
1115 [6] = 13475,
1116 [7] = 15400,
1117 [8] = 19250,
1118 [9] = 23100,
1119 [10] = 25025,
1120 [11] = 26950,
1121 [12] = 30800,
1122 [13] = 38500,
1123 [14] = 46200,
1124 [15] = 50050,
1125 [16] = 53900,
1126 [17] = 57750,
1127 [18] = 69300,
1128 [19] = 75075,
1129 [20] = 80850,
1130 };
1131
1132 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1133 return 0;
1134
1135 return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch;
1136 }
1137
1138 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1139 {
1140 static const u32 base[4][10] = {
1141 { 6500000,
1142 13000000,
1143 19500000,
1144 26000000,
1145 39000000,
1146 52000000,
1147 58500000,
1148 65000000,
1149 78000000,
1150 /* not in the spec, but some devices use this: */
1151 86500000,
1152 },
1153 { 13500000,
1154 27000000,
1155 40500000,
1156 54000000,
1157 81000000,
1158 108000000,
1159 121500000,
1160 135000000,
1161 162000000,
1162 180000000,
1163 },
1164 { 29300000,
1165 58500000,
1166 87800000,
1167 117000000,
1168 175500000,
1169 234000000,
1170 263300000,
1171 292500000,
1172 351000000,
1173 390000000,
1174 },
1175 { 58500000,
1176 117000000,
1177 175500000,
1178 234000000,
1179 351000000,
1180 468000000,
1181 526500000,
1182 585000000,
1183 702000000,
1184 780000000,
1185 },
1186 };
1187 u32 bitrate;
1188 int idx;
1189
1190 if (rate->mcs > 9)
1191 goto warn;
1192
1193 switch (rate->bw) {
1194 case RATE_INFO_BW_160:
1195 idx = 3;
1196 break;
1197 case RATE_INFO_BW_80:
1198 idx = 2;
1199 break;
1200 case RATE_INFO_BW_40:
1201 idx = 1;
1202 break;
1203 case RATE_INFO_BW_5:
1204 case RATE_INFO_BW_10:
1205 default:
1206 goto warn;
1207 case RATE_INFO_BW_20:
1208 idx = 0;
1209 }
1210
1211 bitrate = base[idx][rate->mcs];
1212 bitrate *= rate->nss;
1213
1214 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1215 bitrate = (bitrate / 9) * 10;
1216
1217 /* do NOT round down here */
1218 return (bitrate + 50000) / 100000;
1219 warn:
1220 WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1221 rate->bw, rate->mcs, rate->nss);
1222 return 0;
1223 }
1224
1225 static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate)
1226 {
1227 #define SCALE 2048
1228 u16 mcs_divisors[12] = {
1229 34133, /* 16.666666... */
1230 17067, /* 8.333333... */
1231 11378, /* 5.555555... */
1232 8533, /* 4.166666... */
1233 5689, /* 2.777777... */
1234 4267, /* 2.083333... */
1235 3923, /* 1.851851... */
1236 3413, /* 1.666666... */
1237 2844, /* 1.388888... */
1238 2560, /* 1.250000... */
1239 2276, /* 1.111111... */
1240 2048, /* 1.000000... */
1241 };
1242 u32 rates_160M[3] = { 960777777, 907400000, 816666666 };
1243 u32 rates_969[3] = { 480388888, 453700000, 408333333 };
1244 u32 rates_484[3] = { 229411111, 216666666, 195000000 };
1245 u32 rates_242[3] = { 114711111, 108333333, 97500000 };
1246 u32 rates_106[3] = { 40000000, 37777777, 34000000 };
1247 u32 rates_52[3] = { 18820000, 17777777, 16000000 };
1248 u32 rates_26[3] = { 9411111, 8888888, 8000000 };
1249 u64 tmp;
1250 u32 result;
1251
1252 if (WARN_ON_ONCE(rate->mcs > 11))
1253 return 0;
1254
1255 if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2))
1256 return 0;
1257 if (WARN_ON_ONCE(rate->he_ru_alloc >
1258 NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1259 return 0;
1260 if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1261 return 0;
1262
1263 if (rate->bw == RATE_INFO_BW_160)
1264 result = rates_160M[rate->he_gi];
1265 else if (rate->bw == RATE_INFO_BW_80 ||
1266 (rate->bw == RATE_INFO_BW_HE_RU &&
1267 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996))
1268 result = rates_969[rate->he_gi];
1269 else if (rate->bw == RATE_INFO_BW_40 ||
1270 (rate->bw == RATE_INFO_BW_HE_RU &&
1271 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484))
1272 result = rates_484[rate->he_gi];
1273 else if (rate->bw == RATE_INFO_BW_20 ||
1274 (rate->bw == RATE_INFO_BW_HE_RU &&
1275 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242))
1276 result = rates_242[rate->he_gi];
1277 else if (rate->bw == RATE_INFO_BW_HE_RU &&
1278 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106)
1279 result = rates_106[rate->he_gi];
1280 else if (rate->bw == RATE_INFO_BW_HE_RU &&
1281 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52)
1282 result = rates_52[rate->he_gi];
1283 else if (rate->bw == RATE_INFO_BW_HE_RU &&
1284 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26)
1285 result = rates_26[rate->he_gi];
1286 else {
1287 WARN(1, "invalid HE MCS: bw:%d, ru:%d\n",
1288 rate->bw, rate->he_ru_alloc);
1289 return 0;
1290 }
1291
1292 /* now scale to the appropriate MCS */
1293 tmp = result;
1294 tmp *= SCALE;
1295 do_div(tmp, mcs_divisors[rate->mcs]);
1296 result = tmp;
1297
1298 /* and take NSS, DCM into account */
1299 result = (result * rate->nss) / 8;
1300 if (rate->he_dcm)
1301 result /= 2;
1302
1303 return result / 10000;
1304 }
1305
1306 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1307 {
1308 if (rate->flags & RATE_INFO_FLAGS_MCS)
1309 return cfg80211_calculate_bitrate_ht(rate);
1310 if (rate->flags & RATE_INFO_FLAGS_DMG)
1311 return cfg80211_calculate_bitrate_dmg(rate);
1312 if (rate->flags & RATE_INFO_FLAGS_EDMG)
1313 return cfg80211_calculate_bitrate_edmg(rate);
1314 if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1315 return cfg80211_calculate_bitrate_vht(rate);
1316 if (rate->flags & RATE_INFO_FLAGS_HE_MCS)
1317 return cfg80211_calculate_bitrate_he(rate);
1318
1319 return rate->legacy;
1320 }
1321 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1322
1323 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1324 enum ieee80211_p2p_attr_id attr,
1325 u8 *buf, unsigned int bufsize)
1326 {
1327 u8 *out = buf;
1328 u16 attr_remaining = 0;
1329 bool desired_attr = false;
1330 u16 desired_len = 0;
1331
1332 while (len > 0) {
1333 unsigned int iedatalen;
1334 unsigned int copy;
1335 const u8 *iedata;
1336
1337 if (len < 2)
1338 return -EILSEQ;
1339 iedatalen = ies[1];
1340 if (iedatalen + 2 > len)
1341 return -EILSEQ;
1342
1343 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1344 goto cont;
1345
1346 if (iedatalen < 4)
1347 goto cont;
1348
1349 iedata = ies + 2;
1350
1351 /* check WFA OUI, P2P subtype */
1352 if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1353 iedata[2] != 0x9a || iedata[3] != 0x09)
1354 goto cont;
1355
1356 iedatalen -= 4;
1357 iedata += 4;
1358
1359 /* check attribute continuation into this IE */
1360 copy = min_t(unsigned int, attr_remaining, iedatalen);
1361 if (copy && desired_attr) {
1362 desired_len += copy;
1363 if (out) {
1364 memcpy(out, iedata, min(bufsize, copy));
1365 out += min(bufsize, copy);
1366 bufsize -= min(bufsize, copy);
1367 }
1368
1369
1370 if (copy == attr_remaining)
1371 return desired_len;
1372 }
1373
1374 attr_remaining -= copy;
1375 if (attr_remaining)
1376 goto cont;
1377
1378 iedatalen -= copy;
1379 iedata += copy;
1380
1381 while (iedatalen > 0) {
1382 u16 attr_len;
1383
1384 /* P2P attribute ID & size must fit */
1385 if (iedatalen < 3)
1386 return -EILSEQ;
1387 desired_attr = iedata[0] == attr;
1388 attr_len = get_unaligned_le16(iedata + 1);
1389 iedatalen -= 3;
1390 iedata += 3;
1391
1392 copy = min_t(unsigned int, attr_len, iedatalen);
1393
1394 if (desired_attr) {
1395 desired_len += copy;
1396 if (out) {
1397 memcpy(out, iedata, min(bufsize, copy));
1398 out += min(bufsize, copy);
1399 bufsize -= min(bufsize, copy);
1400 }
1401
1402 if (copy == attr_len)
1403 return desired_len;
1404 }
1405
1406 iedata += copy;
1407 iedatalen -= copy;
1408 attr_remaining = attr_len - copy;
1409 }
1410
1411 cont:
1412 len -= ies[1] + 2;
1413 ies += ies[1] + 2;
1414 }
1415
1416 if (attr_remaining && desired_attr)
1417 return -EILSEQ;
1418
1419 return -ENOENT;
1420 }
1421 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1422
1423 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
1424 {
1425 int i;
1426
1427 /* Make sure array values are legal */
1428 if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
1429 return false;
1430
1431 i = 0;
1432 while (i < n_ids) {
1433 if (ids[i] == WLAN_EID_EXTENSION) {
1434 if (id_ext && (ids[i + 1] == id))
1435 return true;
1436
1437 i += 2;
1438 continue;
1439 }
1440
1441 if (ids[i] == id && !id_ext)
1442 return true;
1443
1444 i++;
1445 }
1446 return false;
1447 }
1448
1449 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1450 {
1451 /* we assume a validly formed IEs buffer */
1452 u8 len = ies[pos + 1];
1453
1454 pos += 2 + len;
1455
1456 /* the IE itself must have 255 bytes for fragments to follow */
1457 if (len < 255)
1458 return pos;
1459
1460 while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1461 len = ies[pos + 1];
1462 pos += 2 + len;
1463 }
1464
1465 return pos;
1466 }
1467
1468 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1469 const u8 *ids, int n_ids,
1470 const u8 *after_ric, int n_after_ric,
1471 size_t offset)
1472 {
1473 size_t pos = offset;
1474
1475 while (pos < ielen) {
1476 u8 ext = 0;
1477
1478 if (ies[pos] == WLAN_EID_EXTENSION)
1479 ext = 2;
1480 if ((pos + ext) >= ielen)
1481 break;
1482
1483 if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext],
1484 ies[pos] == WLAN_EID_EXTENSION))
1485 break;
1486
1487 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1488 pos = skip_ie(ies, ielen, pos);
1489
1490 while (pos < ielen) {
1491 if (ies[pos] == WLAN_EID_EXTENSION)
1492 ext = 2;
1493 else
1494 ext = 0;
1495
1496 if ((pos + ext) >= ielen)
1497 break;
1498
1499 if (!ieee80211_id_in_list(after_ric,
1500 n_after_ric,
1501 ies[pos + ext],
1502 ext == 2))
1503 pos = skip_ie(ies, ielen, pos);
1504 else
1505 break;
1506 }
1507 } else {
1508 pos = skip_ie(ies, ielen, pos);
1509 }
1510 }
1511
1512 return pos;
1513 }
1514 EXPORT_SYMBOL(ieee80211_ie_split_ric);
1515
1516 bool ieee80211_operating_class_to_band(u8 operating_class,
1517 enum nl80211_band *band)
1518 {
1519 switch (operating_class) {
1520 case 112:
1521 case 115 ... 127:
1522 case 128 ... 130:
1523 *band = NL80211_BAND_5GHZ;
1524 return true;
1525 case 131 ... 135:
1526 *band = NL80211_BAND_6GHZ;
1527 return true;
1528 case 81:
1529 case 82:
1530 case 83:
1531 case 84:
1532 *band = NL80211_BAND_2GHZ;
1533 return true;
1534 case 180:
1535 *band = NL80211_BAND_60GHZ;
1536 return true;
1537 }
1538
1539 return false;
1540 }
1541 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1542
1543 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1544 u8 *op_class)
1545 {
1546 u8 vht_opclass;
1547 u32 freq = chandef->center_freq1;
1548
1549 if (freq >= 2412 && freq <= 2472) {
1550 if (chandef->width > NL80211_CHAN_WIDTH_40)
1551 return false;
1552
1553 /* 2.407 GHz, channels 1..13 */
1554 if (chandef->width == NL80211_CHAN_WIDTH_40) {
1555 if (freq > chandef->chan->center_freq)
1556 *op_class = 83; /* HT40+ */
1557 else
1558 *op_class = 84; /* HT40- */
1559 } else {
1560 *op_class = 81;
1561 }
1562
1563 return true;
1564 }
1565
1566 if (freq == 2484) {
1567 /* channel 14 is only for IEEE 802.11b */
1568 if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT)
1569 return false;
1570
1571 *op_class = 82; /* channel 14 */
1572 return true;
1573 }
1574
1575 switch (chandef->width) {
1576 case NL80211_CHAN_WIDTH_80:
1577 vht_opclass = 128;
1578 break;
1579 case NL80211_CHAN_WIDTH_160:
1580 vht_opclass = 129;
1581 break;
1582 case NL80211_CHAN_WIDTH_80P80:
1583 vht_opclass = 130;
1584 break;
1585 case NL80211_CHAN_WIDTH_10:
1586 case NL80211_CHAN_WIDTH_5:
1587 return false; /* unsupported for now */
1588 default:
1589 vht_opclass = 0;
1590 break;
1591 }
1592
1593 /* 5 GHz, channels 36..48 */
1594 if (freq >= 5180 && freq <= 5240) {
1595 if (vht_opclass) {
1596 *op_class = vht_opclass;
1597 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1598 if (freq > chandef->chan->center_freq)
1599 *op_class = 116;
1600 else
1601 *op_class = 117;
1602 } else {
1603 *op_class = 115;
1604 }
1605
1606 return true;
1607 }
1608
1609 /* 5 GHz, channels 52..64 */
1610 if (freq >= 5260 && freq <= 5320) {
1611 if (vht_opclass) {
1612 *op_class = vht_opclass;
1613 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1614 if (freq > chandef->chan->center_freq)
1615 *op_class = 119;
1616 else
1617 *op_class = 120;
1618 } else {
1619 *op_class = 118;
1620 }
1621
1622 return true;
1623 }
1624
1625 /* 5 GHz, channels 100..144 */
1626 if (freq >= 5500 && freq <= 5720) {
1627 if (vht_opclass) {
1628 *op_class = vht_opclass;
1629 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1630 if (freq > chandef->chan->center_freq)
1631 *op_class = 122;
1632 else
1633 *op_class = 123;
1634 } else {
1635 *op_class = 121;
1636 }
1637
1638 return true;
1639 }
1640
1641 /* 5 GHz, channels 149..169 */
1642 if (freq >= 5745 && freq <= 5845) {
1643 if (vht_opclass) {
1644 *op_class = vht_opclass;
1645 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1646 if (freq > chandef->chan->center_freq)
1647 *op_class = 126;
1648 else
1649 *op_class = 127;
1650 } else if (freq <= 5805) {
1651 *op_class = 124;
1652 } else {
1653 *op_class = 125;
1654 }
1655
1656 return true;
1657 }
1658
1659 /* 56.16 GHz, channel 1..4 */
1660 if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) {
1661 if (chandef->width >= NL80211_CHAN_WIDTH_40)
1662 return false;
1663
1664 *op_class = 180;
1665 return true;
1666 }
1667
1668 /* not supported yet */
1669 return false;
1670 }
1671 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1672
1673 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
1674 u32 *beacon_int_gcd,
1675 bool *beacon_int_different)
1676 {
1677 struct wireless_dev *wdev;
1678
1679 *beacon_int_gcd = 0;
1680 *beacon_int_different = false;
1681
1682 list_for_each_entry(wdev, &wiphy->wdev_list, list) {
1683 if (!wdev->beacon_interval)
1684 continue;
1685
1686 if (!*beacon_int_gcd) {
1687 *beacon_int_gcd = wdev->beacon_interval;
1688 continue;
1689 }
1690
1691 if (wdev->beacon_interval == *beacon_int_gcd)
1692 continue;
1693
1694 *beacon_int_different = true;
1695 *beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval);
1696 }
1697
1698 if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
1699 if (*beacon_int_gcd)
1700 *beacon_int_different = true;
1701 *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
1702 }
1703 }
1704
1705 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1706 enum nl80211_iftype iftype, u32 beacon_int)
1707 {
1708 /*
1709 * This is just a basic pre-condition check; if interface combinations
1710 * are possible the driver must already be checking those with a call
1711 * to cfg80211_check_combinations(), in which case we'll validate more
1712 * through the cfg80211_calculate_bi_data() call and code in
1713 * cfg80211_iter_combinations().
1714 */
1715
1716 if (beacon_int < 10 || beacon_int > 10000)
1717 return -EINVAL;
1718
1719 return 0;
1720 }
1721
1722 int cfg80211_iter_combinations(struct wiphy *wiphy,
1723 struct iface_combination_params *params,
1724 void (*iter)(const struct ieee80211_iface_combination *c,
1725 void *data),
1726 void *data)
1727 {
1728 const struct ieee80211_regdomain *regdom;
1729 enum nl80211_dfs_regions region = 0;
1730 int i, j, iftype;
1731 int num_interfaces = 0;
1732 u32 used_iftypes = 0;
1733 u32 beacon_int_gcd;
1734 bool beacon_int_different;
1735
1736 /*
1737 * This is a bit strange, since the iteration used to rely only on
1738 * the data given by the driver, but here it now relies on context,
1739 * in form of the currently operating interfaces.
1740 * This is OK for all current users, and saves us from having to
1741 * push the GCD calculations into all the drivers.
1742 * In the future, this should probably rely more on data that's in
1743 * cfg80211 already - the only thing not would appear to be any new
1744 * interfaces (while being brought up) and channel/radar data.
1745 */
1746 cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
1747 &beacon_int_gcd, &beacon_int_different);
1748
1749 if (params->radar_detect) {
1750 rcu_read_lock();
1751 regdom = rcu_dereference(cfg80211_regdomain);
1752 if (regdom)
1753 region = regdom->dfs_region;
1754 rcu_read_unlock();
1755 }
1756
1757 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1758 num_interfaces += params->iftype_num[iftype];
1759 if (params->iftype_num[iftype] > 0 &&
1760 !cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
1761 used_iftypes |= BIT(iftype);
1762 }
1763
1764 for (i = 0; i < wiphy->n_iface_combinations; i++) {
1765 const struct ieee80211_iface_combination *c;
1766 struct ieee80211_iface_limit *limits;
1767 u32 all_iftypes = 0;
1768
1769 c = &wiphy->iface_combinations[i];
1770
1771 if (num_interfaces > c->max_interfaces)
1772 continue;
1773 if (params->num_different_channels > c->num_different_channels)
1774 continue;
1775
1776 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1777 GFP_KERNEL);
1778 if (!limits)
1779 return -ENOMEM;
1780
1781 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1782 if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
1783 continue;
1784 for (j = 0; j < c->n_limits; j++) {
1785 all_iftypes |= limits[j].types;
1786 if (!(limits[j].types & BIT(iftype)))
1787 continue;
1788 if (limits[j].max < params->iftype_num[iftype])
1789 goto cont;
1790 limits[j].max -= params->iftype_num[iftype];
1791 }
1792 }
1793
1794 if (params->radar_detect !=
1795 (c->radar_detect_widths & params->radar_detect))
1796 goto cont;
1797
1798 if (params->radar_detect && c->radar_detect_regions &&
1799 !(c->radar_detect_regions & BIT(region)))
1800 goto cont;
1801
1802 /* Finally check that all iftypes that we're currently
1803 * using are actually part of this combination. If they
1804 * aren't then we can't use this combination and have
1805 * to continue to the next.
1806 */
1807 if ((all_iftypes & used_iftypes) != used_iftypes)
1808 goto cont;
1809
1810 if (beacon_int_gcd) {
1811 if (c->beacon_int_min_gcd &&
1812 beacon_int_gcd < c->beacon_int_min_gcd)
1813 goto cont;
1814 if (!c->beacon_int_min_gcd && beacon_int_different)
1815 goto cont;
1816 }
1817
1818 /* This combination covered all interface types and
1819 * supported the requested numbers, so we're good.
1820 */
1821
1822 (*iter)(c, data);
1823 cont:
1824 kfree(limits);
1825 }
1826
1827 return 0;
1828 }
1829 EXPORT_SYMBOL(cfg80211_iter_combinations);
1830
1831 static void
1832 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
1833 void *data)
1834 {
1835 int *num = data;
1836 (*num)++;
1837 }
1838
1839 int cfg80211_check_combinations(struct wiphy *wiphy,
1840 struct iface_combination_params *params)
1841 {
1842 int err, num = 0;
1843
1844 err = cfg80211_iter_combinations(wiphy, params,
1845 cfg80211_iter_sum_ifcombs, &num);
1846 if (err)
1847 return err;
1848 if (num == 0)
1849 return -EBUSY;
1850
1851 return 0;
1852 }
1853 EXPORT_SYMBOL(cfg80211_check_combinations);
1854
1855 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1856 const u8 *rates, unsigned int n_rates,
1857 u32 *mask)
1858 {
1859 int i, j;
1860
1861 if (!sband)
1862 return -EINVAL;
1863
1864 if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1865 return -EINVAL;
1866
1867 *mask = 0;
1868
1869 for (i = 0; i < n_rates; i++) {
1870 int rate = (rates[i] & 0x7f) * 5;
1871 bool found = false;
1872
1873 for (j = 0; j < sband->n_bitrates; j++) {
1874 if (sband->bitrates[j].bitrate == rate) {
1875 found = true;
1876 *mask |= BIT(j);
1877 break;
1878 }
1879 }
1880 if (!found)
1881 return -EINVAL;
1882 }
1883
1884 /*
1885 * mask must have at least one bit set here since we
1886 * didn't accept a 0-length rates array nor allowed
1887 * entries in the array that didn't exist
1888 */
1889
1890 return 0;
1891 }
1892
1893 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
1894 {
1895 enum nl80211_band band;
1896 unsigned int n_channels = 0;
1897
1898 for (band = 0; band < NUM_NL80211_BANDS; band++)
1899 if (wiphy->bands[band])
1900 n_channels += wiphy->bands[band]->n_channels;
1901
1902 return n_channels;
1903 }
1904 EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
1905
1906 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
1907 struct station_info *sinfo)
1908 {
1909 struct cfg80211_registered_device *rdev;
1910 struct wireless_dev *wdev;
1911
1912 wdev = dev->ieee80211_ptr;
1913 if (!wdev)
1914 return -EOPNOTSUPP;
1915
1916 rdev = wiphy_to_rdev(wdev->wiphy);
1917 if (!rdev->ops->get_station)
1918 return -EOPNOTSUPP;
1919
1920 memset(sinfo, 0, sizeof(*sinfo));
1921
1922 return rdev_get_station(rdev, dev, mac_addr, sinfo);
1923 }
1924 EXPORT_SYMBOL(cfg80211_get_station);
1925
1926 void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
1927 {
1928 int i;
1929
1930 if (!f)
1931 return;
1932
1933 kfree(f->serv_spec_info);
1934 kfree(f->srf_bf);
1935 kfree(f->srf_macs);
1936 for (i = 0; i < f->num_rx_filters; i++)
1937 kfree(f->rx_filters[i].filter);
1938
1939 for (i = 0; i < f->num_tx_filters; i++)
1940 kfree(f->tx_filters[i].filter);
1941
1942 kfree(f->rx_filters);
1943 kfree(f->tx_filters);
1944 kfree(f);
1945 }
1946 EXPORT_SYMBOL(cfg80211_free_nan_func);
1947
1948 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
1949 u32 center_freq_khz, u32 bw_khz)
1950 {
1951 u32 start_freq_khz, end_freq_khz;
1952
1953 start_freq_khz = center_freq_khz - (bw_khz / 2);
1954 end_freq_khz = center_freq_khz + (bw_khz / 2);
1955
1956 if (start_freq_khz >= freq_range->start_freq_khz &&
1957 end_freq_khz <= freq_range->end_freq_khz)
1958 return true;
1959
1960 return false;
1961 }
1962
1963 int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp)
1964 {
1965 sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1,
1966 sizeof(*(sinfo->pertid)),
1967 gfp);
1968 if (!sinfo->pertid)
1969 return -ENOMEM;
1970
1971 return 0;
1972 }
1973 EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats);
1974
1975 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
1976 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
1977 const unsigned char rfc1042_header[] __aligned(2) =
1978 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
1979 EXPORT_SYMBOL(rfc1042_header);
1980
1981 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
1982 const unsigned char bridge_tunnel_header[] __aligned(2) =
1983 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
1984 EXPORT_SYMBOL(bridge_tunnel_header);
1985
1986 /* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */
1987 struct iapp_layer2_update {
1988 u8 da[ETH_ALEN]; /* broadcast */
1989 u8 sa[ETH_ALEN]; /* STA addr */
1990 __be16 len; /* 6 */
1991 u8 dsap; /* 0 */
1992 u8 ssap; /* 0 */
1993 u8 control;
1994 u8 xid_info[3];
1995 } __packed;
1996
1997 void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr)
1998 {
1999 struct iapp_layer2_update *msg;
2000 struct sk_buff *skb;
2001
2002 /* Send Level 2 Update Frame to update forwarding tables in layer 2
2003 * bridge devices */
2004
2005 skb = dev_alloc_skb(sizeof(*msg));
2006 if (!skb)
2007 return;
2008 msg = skb_put(skb, sizeof(*msg));
2009
2010 /* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID)
2011 * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */
2012
2013 eth_broadcast_addr(msg->da);
2014 ether_addr_copy(msg->sa, addr);
2015 msg->len = htons(6);
2016 msg->dsap = 0;
2017 msg->ssap = 0x01; /* NULL LSAP, CR Bit: Response */
2018 msg->control = 0xaf; /* XID response lsb.1111F101.
2019 * F=0 (no poll command; unsolicited frame) */
2020 msg->xid_info[0] = 0x81; /* XID format identifier */
2021 msg->xid_info[1] = 1; /* LLC types/classes: Type 1 LLC */
2022 msg->xid_info[2] = 0; /* XID sender's receive window size (RW) */
2023
2024 skb->dev = dev;
2025 skb->protocol = eth_type_trans(skb, dev);
2026 memset(skb->cb, 0, sizeof(skb->cb));
2027 netif_rx_ni(skb);
2028 }
2029 EXPORT_SYMBOL(cfg80211_send_layer2_update);
2030
2031 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
2032 enum ieee80211_vht_chanwidth bw,
2033 int mcs, bool ext_nss_bw_capable)
2034 {
2035 u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map);
2036 int max_vht_nss = 0;
2037 int ext_nss_bw;
2038 int supp_width;
2039 int i, mcs_encoding;
2040
2041 if (map == 0xffff)
2042 return 0;
2043
2044 if (WARN_ON(mcs > 9))
2045 return 0;
2046 if (mcs <= 7)
2047 mcs_encoding = 0;
2048 else if (mcs == 8)
2049 mcs_encoding = 1;
2050 else
2051 mcs_encoding = 2;
2052
2053 /* find max_vht_nss for the given MCS */
2054 for (i = 7; i >= 0; i--) {
2055 int supp = (map >> (2 * i)) & 3;
2056
2057 if (supp == 3)
2058 continue;
2059
2060 if (supp >= mcs_encoding) {
2061 max_vht_nss = i + 1;
2062 break;
2063 }
2064 }
2065
2066 if (!(cap->supp_mcs.tx_mcs_map &
2067 cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE)))
2068 return max_vht_nss;
2069
2070 ext_nss_bw = le32_get_bits(cap->vht_cap_info,
2071 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK);
2072 supp_width = le32_get_bits(cap->vht_cap_info,
2073 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK);
2074
2075 /* if not capable, treat ext_nss_bw as 0 */
2076 if (!ext_nss_bw_capable)
2077 ext_nss_bw = 0;
2078
2079 /* This is invalid */
2080 if (supp_width == 3)
2081 return 0;
2082
2083 /* This is an invalid combination so pretend nothing is supported */
2084 if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2))
2085 return 0;
2086
2087 /*
2088 * Cover all the special cases according to IEEE 802.11-2016
2089 * Table 9-250. All other cases are either factor of 1 or not
2090 * valid/supported.
2091 */
2092 switch (bw) {
2093 case IEEE80211_VHT_CHANWIDTH_USE_HT:
2094 case IEEE80211_VHT_CHANWIDTH_80MHZ:
2095 if ((supp_width == 1 || supp_width == 2) &&
2096 ext_nss_bw == 3)
2097 return 2 * max_vht_nss;
2098 break;
2099 case IEEE80211_VHT_CHANWIDTH_160MHZ:
2100 if (supp_width == 0 &&
2101 (ext_nss_bw == 1 || ext_nss_bw == 2))
2102 return max_vht_nss / 2;
2103 if (supp_width == 0 &&
2104 ext_nss_bw == 3)
2105 return (3 * max_vht_nss) / 4;
2106 if (supp_width == 1 &&
2107 ext_nss_bw == 3)
2108 return 2 * max_vht_nss;
2109 break;
2110 case IEEE80211_VHT_CHANWIDTH_80P80MHZ:
2111 if (supp_width == 0 && ext_nss_bw == 1)
2112 return 0; /* not possible */
2113 if (supp_width == 0 &&
2114 ext_nss_bw == 2)
2115 return max_vht_nss / 2;
2116 if (supp_width == 0 &&
2117 ext_nss_bw == 3)
2118 return (3 * max_vht_nss) / 4;
2119 if (supp_width == 1 &&
2120 ext_nss_bw == 0)
2121 return 0; /* not possible */
2122 if (supp_width == 1 &&
2123 ext_nss_bw == 1)
2124 return max_vht_nss / 2;
2125 if (supp_width == 1 &&
2126 ext_nss_bw == 2)
2127 return (3 * max_vht_nss) / 4;
2128 break;
2129 }
2130
2131 /* not covered or invalid combination received */
2132 return max_vht_nss;
2133 }
2134 EXPORT_SYMBOL(ieee80211_get_vht_max_nss);
2135
2136 bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype,
2137 bool is_4addr, u8 check_swif)
2138
2139 {
2140 bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN;
2141
2142 switch (check_swif) {
2143 case 0:
2144 if (is_vlan && is_4addr)
2145 return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2146 return wiphy->interface_modes & BIT(iftype);
2147 case 1:
2148 if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan)
2149 return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2150 return wiphy->software_iftypes & BIT(iftype);
2151 default:
2152 break;
2153 }
2154
2155 return false;
2156 }
2157 EXPORT_SYMBOL(cfg80211_iftype_allowed);