]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/wireless/util.c
Merge branch 'v4.13/sps' into v4.13/drivers
[mirror_ubuntu-artful-kernel.git] / net / wireless / util.c
1 /*
2 * Wireless utility functions
3 *
4 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2013-2014 Intel Mobile Communications GmbH
6 */
7 #include <linux/export.h>
8 #include <linux/bitops.h>
9 #include <linux/etherdevice.h>
10 #include <linux/slab.h>
11 #include <net/cfg80211.h>
12 #include <net/ip.h>
13 #include <net/dsfield.h>
14 #include <linux/if_vlan.h>
15 #include <linux/mpls.h>
16 #include <linux/gcd.h>
17 #include "core.h"
18 #include "rdev-ops.h"
19
20
21 struct ieee80211_rate *
22 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
23 u32 basic_rates, int bitrate)
24 {
25 struct ieee80211_rate *result = &sband->bitrates[0];
26 int i;
27
28 for (i = 0; i < sband->n_bitrates; i++) {
29 if (!(basic_rates & BIT(i)))
30 continue;
31 if (sband->bitrates[i].bitrate > bitrate)
32 continue;
33 result = &sband->bitrates[i];
34 }
35
36 return result;
37 }
38 EXPORT_SYMBOL(ieee80211_get_response_rate);
39
40 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
41 enum nl80211_bss_scan_width scan_width)
42 {
43 struct ieee80211_rate *bitrates;
44 u32 mandatory_rates = 0;
45 enum ieee80211_rate_flags mandatory_flag;
46 int i;
47
48 if (WARN_ON(!sband))
49 return 1;
50
51 if (sband->band == NL80211_BAND_2GHZ) {
52 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
53 scan_width == NL80211_BSS_CHAN_WIDTH_10)
54 mandatory_flag = IEEE80211_RATE_MANDATORY_G;
55 else
56 mandatory_flag = IEEE80211_RATE_MANDATORY_B;
57 } else {
58 mandatory_flag = IEEE80211_RATE_MANDATORY_A;
59 }
60
61 bitrates = sband->bitrates;
62 for (i = 0; i < sband->n_bitrates; i++)
63 if (bitrates[i].flags & mandatory_flag)
64 mandatory_rates |= BIT(i);
65 return mandatory_rates;
66 }
67 EXPORT_SYMBOL(ieee80211_mandatory_rates);
68
69 int ieee80211_channel_to_frequency(int chan, enum nl80211_band band)
70 {
71 /* see 802.11 17.3.8.3.2 and Annex J
72 * there are overlapping channel numbers in 5GHz and 2GHz bands */
73 if (chan <= 0)
74 return 0; /* not supported */
75 switch (band) {
76 case NL80211_BAND_2GHZ:
77 if (chan == 14)
78 return 2484;
79 else if (chan < 14)
80 return 2407 + chan * 5;
81 break;
82 case NL80211_BAND_5GHZ:
83 if (chan >= 182 && chan <= 196)
84 return 4000 + chan * 5;
85 else
86 return 5000 + chan * 5;
87 break;
88 case NL80211_BAND_60GHZ:
89 if (chan < 5)
90 return 56160 + chan * 2160;
91 break;
92 default:
93 ;
94 }
95 return 0; /* not supported */
96 }
97 EXPORT_SYMBOL(ieee80211_channel_to_frequency);
98
99 int ieee80211_frequency_to_channel(int freq)
100 {
101 /* see 802.11 17.3.8.3.2 and Annex J */
102 if (freq == 2484)
103 return 14;
104 else if (freq < 2484)
105 return (freq - 2407) / 5;
106 else if (freq >= 4910 && freq <= 4980)
107 return (freq - 4000) / 5;
108 else if (freq <= 45000) /* DMG band lower limit */
109 return (freq - 5000) / 5;
110 else if (freq >= 58320 && freq <= 64800)
111 return (freq - 56160) / 2160;
112 else
113 return 0;
114 }
115 EXPORT_SYMBOL(ieee80211_frequency_to_channel);
116
117 struct ieee80211_channel *ieee80211_get_channel(struct wiphy *wiphy, int freq)
118 {
119 enum nl80211_band band;
120 struct ieee80211_supported_band *sband;
121 int i;
122
123 for (band = 0; band < NUM_NL80211_BANDS; band++) {
124 sband = wiphy->bands[band];
125
126 if (!sband)
127 continue;
128
129 for (i = 0; i < sband->n_channels; i++) {
130 if (sband->channels[i].center_freq == freq)
131 return &sband->channels[i];
132 }
133 }
134
135 return NULL;
136 }
137 EXPORT_SYMBOL(ieee80211_get_channel);
138
139 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
140 {
141 int i, want;
142
143 switch (sband->band) {
144 case NL80211_BAND_5GHZ:
145 want = 3;
146 for (i = 0; i < sband->n_bitrates; i++) {
147 if (sband->bitrates[i].bitrate == 60 ||
148 sband->bitrates[i].bitrate == 120 ||
149 sband->bitrates[i].bitrate == 240) {
150 sband->bitrates[i].flags |=
151 IEEE80211_RATE_MANDATORY_A;
152 want--;
153 }
154 }
155 WARN_ON(want);
156 break;
157 case NL80211_BAND_2GHZ:
158 want = 7;
159 for (i = 0; i < sband->n_bitrates; i++) {
160 if (sband->bitrates[i].bitrate == 10) {
161 sband->bitrates[i].flags |=
162 IEEE80211_RATE_MANDATORY_B |
163 IEEE80211_RATE_MANDATORY_G;
164 want--;
165 }
166
167 if (sband->bitrates[i].bitrate == 20 ||
168 sband->bitrates[i].bitrate == 55 ||
169 sband->bitrates[i].bitrate == 110 ||
170 sband->bitrates[i].bitrate == 60 ||
171 sband->bitrates[i].bitrate == 120 ||
172 sband->bitrates[i].bitrate == 240) {
173 sband->bitrates[i].flags |=
174 IEEE80211_RATE_MANDATORY_G;
175 want--;
176 }
177
178 if (sband->bitrates[i].bitrate != 10 &&
179 sband->bitrates[i].bitrate != 20 &&
180 sband->bitrates[i].bitrate != 55 &&
181 sband->bitrates[i].bitrate != 110)
182 sband->bitrates[i].flags |=
183 IEEE80211_RATE_ERP_G;
184 }
185 WARN_ON(want != 0 && want != 3 && want != 6);
186 break;
187 case NL80211_BAND_60GHZ:
188 /* check for mandatory HT MCS 1..4 */
189 WARN_ON(!sband->ht_cap.ht_supported);
190 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
191 break;
192 case NUM_NL80211_BANDS:
193 default:
194 WARN_ON(1);
195 break;
196 }
197 }
198
199 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
200 {
201 enum nl80211_band band;
202
203 for (band = 0; band < NUM_NL80211_BANDS; band++)
204 if (wiphy->bands[band])
205 set_mandatory_flags_band(wiphy->bands[band]);
206 }
207
208 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
209 {
210 int i;
211 for (i = 0; i < wiphy->n_cipher_suites; i++)
212 if (cipher == wiphy->cipher_suites[i])
213 return true;
214 return false;
215 }
216
217 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
218 struct key_params *params, int key_idx,
219 bool pairwise, const u8 *mac_addr)
220 {
221 if (key_idx < 0 || key_idx > 5)
222 return -EINVAL;
223
224 if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
225 return -EINVAL;
226
227 if (pairwise && !mac_addr)
228 return -EINVAL;
229
230 switch (params->cipher) {
231 case WLAN_CIPHER_SUITE_TKIP:
232 case WLAN_CIPHER_SUITE_CCMP:
233 case WLAN_CIPHER_SUITE_CCMP_256:
234 case WLAN_CIPHER_SUITE_GCMP:
235 case WLAN_CIPHER_SUITE_GCMP_256:
236 /* Disallow pairwise keys with non-zero index unless it's WEP
237 * or a vendor specific cipher (because current deployments use
238 * pairwise WEP keys with non-zero indices and for vendor
239 * specific ciphers this should be validated in the driver or
240 * hardware level - but 802.11i clearly specifies to use zero)
241 */
242 if (pairwise && key_idx)
243 return -EINVAL;
244 break;
245 case WLAN_CIPHER_SUITE_AES_CMAC:
246 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
247 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
248 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
249 /* Disallow BIP (group-only) cipher as pairwise cipher */
250 if (pairwise)
251 return -EINVAL;
252 if (key_idx < 4)
253 return -EINVAL;
254 break;
255 case WLAN_CIPHER_SUITE_WEP40:
256 case WLAN_CIPHER_SUITE_WEP104:
257 if (key_idx > 3)
258 return -EINVAL;
259 default:
260 break;
261 }
262
263 switch (params->cipher) {
264 case WLAN_CIPHER_SUITE_WEP40:
265 if (params->key_len != WLAN_KEY_LEN_WEP40)
266 return -EINVAL;
267 break;
268 case WLAN_CIPHER_SUITE_TKIP:
269 if (params->key_len != WLAN_KEY_LEN_TKIP)
270 return -EINVAL;
271 break;
272 case WLAN_CIPHER_SUITE_CCMP:
273 if (params->key_len != WLAN_KEY_LEN_CCMP)
274 return -EINVAL;
275 break;
276 case WLAN_CIPHER_SUITE_CCMP_256:
277 if (params->key_len != WLAN_KEY_LEN_CCMP_256)
278 return -EINVAL;
279 break;
280 case WLAN_CIPHER_SUITE_GCMP:
281 if (params->key_len != WLAN_KEY_LEN_GCMP)
282 return -EINVAL;
283 break;
284 case WLAN_CIPHER_SUITE_GCMP_256:
285 if (params->key_len != WLAN_KEY_LEN_GCMP_256)
286 return -EINVAL;
287 break;
288 case WLAN_CIPHER_SUITE_WEP104:
289 if (params->key_len != WLAN_KEY_LEN_WEP104)
290 return -EINVAL;
291 break;
292 case WLAN_CIPHER_SUITE_AES_CMAC:
293 if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
294 return -EINVAL;
295 break;
296 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
297 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
298 return -EINVAL;
299 break;
300 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
301 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
302 return -EINVAL;
303 break;
304 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
305 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
306 return -EINVAL;
307 break;
308 default:
309 /*
310 * We don't know anything about this algorithm,
311 * allow using it -- but the driver must check
312 * all parameters! We still check below whether
313 * or not the driver supports this algorithm,
314 * of course.
315 */
316 break;
317 }
318
319 if (params->seq) {
320 switch (params->cipher) {
321 case WLAN_CIPHER_SUITE_WEP40:
322 case WLAN_CIPHER_SUITE_WEP104:
323 /* These ciphers do not use key sequence */
324 return -EINVAL;
325 case WLAN_CIPHER_SUITE_TKIP:
326 case WLAN_CIPHER_SUITE_CCMP:
327 case WLAN_CIPHER_SUITE_CCMP_256:
328 case WLAN_CIPHER_SUITE_GCMP:
329 case WLAN_CIPHER_SUITE_GCMP_256:
330 case WLAN_CIPHER_SUITE_AES_CMAC:
331 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
332 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
333 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
334 if (params->seq_len != 6)
335 return -EINVAL;
336 break;
337 }
338 }
339
340 if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
341 return -EINVAL;
342
343 return 0;
344 }
345
346 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
347 {
348 unsigned int hdrlen = 24;
349
350 if (ieee80211_is_data(fc)) {
351 if (ieee80211_has_a4(fc))
352 hdrlen = 30;
353 if (ieee80211_is_data_qos(fc)) {
354 hdrlen += IEEE80211_QOS_CTL_LEN;
355 if (ieee80211_has_order(fc))
356 hdrlen += IEEE80211_HT_CTL_LEN;
357 }
358 goto out;
359 }
360
361 if (ieee80211_is_mgmt(fc)) {
362 if (ieee80211_has_order(fc))
363 hdrlen += IEEE80211_HT_CTL_LEN;
364 goto out;
365 }
366
367 if (ieee80211_is_ctl(fc)) {
368 /*
369 * ACK and CTS are 10 bytes, all others 16. To see how
370 * to get this condition consider
371 * subtype mask: 0b0000000011110000 (0x00F0)
372 * ACK subtype: 0b0000000011010000 (0x00D0)
373 * CTS subtype: 0b0000000011000000 (0x00C0)
374 * bits that matter: ^^^ (0x00E0)
375 * value of those: 0b0000000011000000 (0x00C0)
376 */
377 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
378 hdrlen = 10;
379 else
380 hdrlen = 16;
381 }
382 out:
383 return hdrlen;
384 }
385 EXPORT_SYMBOL(ieee80211_hdrlen);
386
387 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
388 {
389 const struct ieee80211_hdr *hdr =
390 (const struct ieee80211_hdr *)skb->data;
391 unsigned int hdrlen;
392
393 if (unlikely(skb->len < 10))
394 return 0;
395 hdrlen = ieee80211_hdrlen(hdr->frame_control);
396 if (unlikely(hdrlen > skb->len))
397 return 0;
398 return hdrlen;
399 }
400 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
401
402 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
403 {
404 int ae = flags & MESH_FLAGS_AE;
405 /* 802.11-2012, 8.2.4.7.3 */
406 switch (ae) {
407 default:
408 case 0:
409 return 6;
410 case MESH_FLAGS_AE_A4:
411 return 12;
412 case MESH_FLAGS_AE_A5_A6:
413 return 18;
414 }
415 }
416
417 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
418 {
419 return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
420 }
421 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
422
423 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
424 const u8 *addr, enum nl80211_iftype iftype)
425 {
426 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
427 struct {
428 u8 hdr[ETH_ALEN] __aligned(2);
429 __be16 proto;
430 } payload;
431 struct ethhdr tmp;
432 u16 hdrlen;
433 u8 mesh_flags = 0;
434
435 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
436 return -1;
437
438 hdrlen = ieee80211_hdrlen(hdr->frame_control);
439 if (skb->len < hdrlen + 8)
440 return -1;
441
442 /* convert IEEE 802.11 header + possible LLC headers into Ethernet
443 * header
444 * IEEE 802.11 address fields:
445 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
446 * 0 0 DA SA BSSID n/a
447 * 0 1 DA BSSID SA n/a
448 * 1 0 BSSID SA DA n/a
449 * 1 1 RA TA DA SA
450 */
451 memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
452 memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
453
454 if (iftype == NL80211_IFTYPE_MESH_POINT)
455 skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
456
457 switch (hdr->frame_control &
458 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
459 case cpu_to_le16(IEEE80211_FCTL_TODS):
460 if (unlikely(iftype != NL80211_IFTYPE_AP &&
461 iftype != NL80211_IFTYPE_AP_VLAN &&
462 iftype != NL80211_IFTYPE_P2P_GO))
463 return -1;
464 break;
465 case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
466 if (unlikely(iftype != NL80211_IFTYPE_WDS &&
467 iftype != NL80211_IFTYPE_MESH_POINT &&
468 iftype != NL80211_IFTYPE_AP_VLAN &&
469 iftype != NL80211_IFTYPE_STATION))
470 return -1;
471 if (iftype == NL80211_IFTYPE_MESH_POINT) {
472 if (mesh_flags & MESH_FLAGS_AE_A4)
473 return -1;
474 if (mesh_flags & MESH_FLAGS_AE_A5_A6) {
475 skb_copy_bits(skb, hdrlen +
476 offsetof(struct ieee80211s_hdr, eaddr1),
477 tmp.h_dest, 2 * ETH_ALEN);
478 }
479 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
480 }
481 break;
482 case cpu_to_le16(IEEE80211_FCTL_FROMDS):
483 if ((iftype != NL80211_IFTYPE_STATION &&
484 iftype != NL80211_IFTYPE_P2P_CLIENT &&
485 iftype != NL80211_IFTYPE_MESH_POINT) ||
486 (is_multicast_ether_addr(tmp.h_dest) &&
487 ether_addr_equal(tmp.h_source, addr)))
488 return -1;
489 if (iftype == NL80211_IFTYPE_MESH_POINT) {
490 if (mesh_flags & MESH_FLAGS_AE_A5_A6)
491 return -1;
492 if (mesh_flags & MESH_FLAGS_AE_A4)
493 skb_copy_bits(skb, hdrlen +
494 offsetof(struct ieee80211s_hdr, eaddr1),
495 tmp.h_source, ETH_ALEN);
496 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
497 }
498 break;
499 case cpu_to_le16(0):
500 if (iftype != NL80211_IFTYPE_ADHOC &&
501 iftype != NL80211_IFTYPE_STATION &&
502 iftype != NL80211_IFTYPE_OCB)
503 return -1;
504 break;
505 }
506
507 skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
508 tmp.h_proto = payload.proto;
509
510 if (likely((ether_addr_equal(payload.hdr, rfc1042_header) &&
511 tmp.h_proto != htons(ETH_P_AARP) &&
512 tmp.h_proto != htons(ETH_P_IPX)) ||
513 ether_addr_equal(payload.hdr, bridge_tunnel_header)))
514 /* remove RFC1042 or Bridge-Tunnel encapsulation and
515 * replace EtherType */
516 hdrlen += ETH_ALEN + 2;
517 else
518 tmp.h_proto = htons(skb->len - hdrlen);
519
520 pskb_pull(skb, hdrlen);
521
522 if (!ehdr)
523 ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr));
524 memcpy(ehdr, &tmp, sizeof(tmp));
525
526 return 0;
527 }
528 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
529
530 int ieee80211_data_from_8023(struct sk_buff *skb, const u8 *addr,
531 enum nl80211_iftype iftype,
532 const u8 *bssid, bool qos)
533 {
534 struct ieee80211_hdr hdr;
535 u16 hdrlen, ethertype;
536 __le16 fc;
537 const u8 *encaps_data;
538 int encaps_len, skip_header_bytes;
539 int nh_pos, h_pos;
540 int head_need;
541
542 if (unlikely(skb->len < ETH_HLEN))
543 return -EINVAL;
544
545 nh_pos = skb_network_header(skb) - skb->data;
546 h_pos = skb_transport_header(skb) - skb->data;
547
548 /* convert Ethernet header to proper 802.11 header (based on
549 * operation mode) */
550 ethertype = (skb->data[12] << 8) | skb->data[13];
551 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA);
552
553 switch (iftype) {
554 case NL80211_IFTYPE_AP:
555 case NL80211_IFTYPE_AP_VLAN:
556 case NL80211_IFTYPE_P2P_GO:
557 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS);
558 /* DA BSSID SA */
559 memcpy(hdr.addr1, skb->data, ETH_ALEN);
560 memcpy(hdr.addr2, addr, ETH_ALEN);
561 memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN);
562 hdrlen = 24;
563 break;
564 case NL80211_IFTYPE_STATION:
565 case NL80211_IFTYPE_P2P_CLIENT:
566 fc |= cpu_to_le16(IEEE80211_FCTL_TODS);
567 /* BSSID SA DA */
568 memcpy(hdr.addr1, bssid, ETH_ALEN);
569 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
570 memcpy(hdr.addr3, skb->data, ETH_ALEN);
571 hdrlen = 24;
572 break;
573 case NL80211_IFTYPE_OCB:
574 case NL80211_IFTYPE_ADHOC:
575 /* DA SA BSSID */
576 memcpy(hdr.addr1, skb->data, ETH_ALEN);
577 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
578 memcpy(hdr.addr3, bssid, ETH_ALEN);
579 hdrlen = 24;
580 break;
581 default:
582 return -EOPNOTSUPP;
583 }
584
585 if (qos) {
586 fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
587 hdrlen += 2;
588 }
589
590 hdr.frame_control = fc;
591 hdr.duration_id = 0;
592 hdr.seq_ctrl = 0;
593
594 skip_header_bytes = ETH_HLEN;
595 if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) {
596 encaps_data = bridge_tunnel_header;
597 encaps_len = sizeof(bridge_tunnel_header);
598 skip_header_bytes -= 2;
599 } else if (ethertype >= ETH_P_802_3_MIN) {
600 encaps_data = rfc1042_header;
601 encaps_len = sizeof(rfc1042_header);
602 skip_header_bytes -= 2;
603 } else {
604 encaps_data = NULL;
605 encaps_len = 0;
606 }
607
608 skb_pull(skb, skip_header_bytes);
609 nh_pos -= skip_header_bytes;
610 h_pos -= skip_header_bytes;
611
612 head_need = hdrlen + encaps_len - skb_headroom(skb);
613
614 if (head_need > 0 || skb_cloned(skb)) {
615 head_need = max(head_need, 0);
616 if (head_need)
617 skb_orphan(skb);
618
619 if (pskb_expand_head(skb, head_need, 0, GFP_ATOMIC))
620 return -ENOMEM;
621 }
622
623 if (encaps_data) {
624 memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len);
625 nh_pos += encaps_len;
626 h_pos += encaps_len;
627 }
628
629 memcpy(skb_push(skb, hdrlen), &hdr, hdrlen);
630
631 nh_pos += hdrlen;
632 h_pos += hdrlen;
633
634 /* Update skb pointers to various headers since this modified frame
635 * is going to go through Linux networking code that may potentially
636 * need things like pointer to IP header. */
637 skb_reset_mac_header(skb);
638 skb_set_network_header(skb, nh_pos);
639 skb_set_transport_header(skb, h_pos);
640
641 return 0;
642 }
643 EXPORT_SYMBOL(ieee80211_data_from_8023);
644
645 static void
646 __frame_add_frag(struct sk_buff *skb, struct page *page,
647 void *ptr, int len, int size)
648 {
649 struct skb_shared_info *sh = skb_shinfo(skb);
650 int page_offset;
651
652 page_ref_inc(page);
653 page_offset = ptr - page_address(page);
654 skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
655 }
656
657 static void
658 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
659 int offset, int len)
660 {
661 struct skb_shared_info *sh = skb_shinfo(skb);
662 const skb_frag_t *frag = &sh->frags[0];
663 struct page *frag_page;
664 void *frag_ptr;
665 int frag_len, frag_size;
666 int head_size = skb->len - skb->data_len;
667 int cur_len;
668
669 frag_page = virt_to_head_page(skb->head);
670 frag_ptr = skb->data;
671 frag_size = head_size;
672
673 while (offset >= frag_size) {
674 offset -= frag_size;
675 frag_page = skb_frag_page(frag);
676 frag_ptr = skb_frag_address(frag);
677 frag_size = skb_frag_size(frag);
678 frag++;
679 }
680
681 frag_ptr += offset;
682 frag_len = frag_size - offset;
683
684 cur_len = min(len, frag_len);
685
686 __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
687 len -= cur_len;
688
689 while (len > 0) {
690 frag_len = skb_frag_size(frag);
691 cur_len = min(len, frag_len);
692 __frame_add_frag(frame, skb_frag_page(frag),
693 skb_frag_address(frag), cur_len, frag_len);
694 len -= cur_len;
695 frag++;
696 }
697 }
698
699 static struct sk_buff *
700 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
701 int offset, int len, bool reuse_frag)
702 {
703 struct sk_buff *frame;
704 int cur_len = len;
705
706 if (skb->len - offset < len)
707 return NULL;
708
709 /*
710 * When reusing framents, copy some data to the head to simplify
711 * ethernet header handling and speed up protocol header processing
712 * in the stack later.
713 */
714 if (reuse_frag)
715 cur_len = min_t(int, len, 32);
716
717 /*
718 * Allocate and reserve two bytes more for payload
719 * alignment since sizeof(struct ethhdr) is 14.
720 */
721 frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
722 if (!frame)
723 return NULL;
724
725 skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
726 skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
727
728 len -= cur_len;
729 if (!len)
730 return frame;
731
732 offset += cur_len;
733 __ieee80211_amsdu_copy_frag(skb, frame, offset, len);
734
735 return frame;
736 }
737
738 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
739 const u8 *addr, enum nl80211_iftype iftype,
740 const unsigned int extra_headroom,
741 const u8 *check_da, const u8 *check_sa)
742 {
743 unsigned int hlen = ALIGN(extra_headroom, 4);
744 struct sk_buff *frame = NULL;
745 u16 ethertype;
746 u8 *payload;
747 int offset = 0, remaining;
748 struct ethhdr eth;
749 bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
750 bool reuse_skb = false;
751 bool last = false;
752
753 while (!last) {
754 unsigned int subframe_len;
755 int len;
756 u8 padding;
757
758 skb_copy_bits(skb, offset, &eth, sizeof(eth));
759 len = ntohs(eth.h_proto);
760 subframe_len = sizeof(struct ethhdr) + len;
761 padding = (4 - subframe_len) & 0x3;
762
763 /* the last MSDU has no padding */
764 remaining = skb->len - offset;
765 if (subframe_len > remaining)
766 goto purge;
767
768 offset += sizeof(struct ethhdr);
769 last = remaining <= subframe_len + padding;
770
771 /* FIXME: should we really accept multicast DA? */
772 if ((check_da && !is_multicast_ether_addr(eth.h_dest) &&
773 !ether_addr_equal(check_da, eth.h_dest)) ||
774 (check_sa && !ether_addr_equal(check_sa, eth.h_source))) {
775 offset += len + padding;
776 continue;
777 }
778
779 /* reuse skb for the last subframe */
780 if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
781 skb_pull(skb, offset);
782 frame = skb;
783 reuse_skb = true;
784 } else {
785 frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
786 reuse_frag);
787 if (!frame)
788 goto purge;
789
790 offset += len + padding;
791 }
792
793 skb_reset_network_header(frame);
794 frame->dev = skb->dev;
795 frame->priority = skb->priority;
796
797 payload = frame->data;
798 ethertype = (payload[6] << 8) | payload[7];
799 if (likely((ether_addr_equal(payload, rfc1042_header) &&
800 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
801 ether_addr_equal(payload, bridge_tunnel_header))) {
802 eth.h_proto = htons(ethertype);
803 skb_pull(frame, ETH_ALEN + 2);
804 }
805
806 memcpy(skb_push(frame, sizeof(eth)), &eth, sizeof(eth));
807 __skb_queue_tail(list, frame);
808 }
809
810 if (!reuse_skb)
811 dev_kfree_skb(skb);
812
813 return;
814
815 purge:
816 __skb_queue_purge(list);
817 dev_kfree_skb(skb);
818 }
819 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
820
821 /* Given a data frame determine the 802.1p/1d tag to use. */
822 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
823 struct cfg80211_qos_map *qos_map)
824 {
825 unsigned int dscp;
826 unsigned char vlan_priority;
827
828 /* skb->priority values from 256->263 are magic values to
829 * directly indicate a specific 802.1d priority. This is used
830 * to allow 802.1d priority to be passed directly in from VLAN
831 * tags, etc.
832 */
833 if (skb->priority >= 256 && skb->priority <= 263)
834 return skb->priority - 256;
835
836 if (skb_vlan_tag_present(skb)) {
837 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
838 >> VLAN_PRIO_SHIFT;
839 if (vlan_priority > 0)
840 return vlan_priority;
841 }
842
843 switch (skb->protocol) {
844 case htons(ETH_P_IP):
845 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
846 break;
847 case htons(ETH_P_IPV6):
848 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
849 break;
850 case htons(ETH_P_MPLS_UC):
851 case htons(ETH_P_MPLS_MC): {
852 struct mpls_label mpls_tmp, *mpls;
853
854 mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
855 sizeof(*mpls), &mpls_tmp);
856 if (!mpls)
857 return 0;
858
859 return (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
860 >> MPLS_LS_TC_SHIFT;
861 }
862 case htons(ETH_P_80221):
863 /* 802.21 is always network control traffic */
864 return 7;
865 default:
866 return 0;
867 }
868
869 if (qos_map) {
870 unsigned int i, tmp_dscp = dscp >> 2;
871
872 for (i = 0; i < qos_map->num_des; i++) {
873 if (tmp_dscp == qos_map->dscp_exception[i].dscp)
874 return qos_map->dscp_exception[i].up;
875 }
876
877 for (i = 0; i < 8; i++) {
878 if (tmp_dscp >= qos_map->up[i].low &&
879 tmp_dscp <= qos_map->up[i].high)
880 return i;
881 }
882 }
883
884 return dscp >> 5;
885 }
886 EXPORT_SYMBOL(cfg80211_classify8021d);
887
888 const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie)
889 {
890 const struct cfg80211_bss_ies *ies;
891
892 ies = rcu_dereference(bss->ies);
893 if (!ies)
894 return NULL;
895
896 return cfg80211_find_ie(ie, ies->data, ies->len);
897 }
898 EXPORT_SYMBOL(ieee80211_bss_get_ie);
899
900 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
901 {
902 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
903 struct net_device *dev = wdev->netdev;
904 int i;
905
906 if (!wdev->connect_keys)
907 return;
908
909 for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) {
910 if (!wdev->connect_keys->params[i].cipher)
911 continue;
912 if (rdev_add_key(rdev, dev, i, false, NULL,
913 &wdev->connect_keys->params[i])) {
914 netdev_err(dev, "failed to set key %d\n", i);
915 continue;
916 }
917 if (wdev->connect_keys->def == i &&
918 rdev_set_default_key(rdev, dev, i, true, true)) {
919 netdev_err(dev, "failed to set defkey %d\n", i);
920 continue;
921 }
922 }
923
924 kzfree(wdev->connect_keys);
925 wdev->connect_keys = NULL;
926 }
927
928 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
929 {
930 struct cfg80211_event *ev;
931 unsigned long flags;
932
933 spin_lock_irqsave(&wdev->event_lock, flags);
934 while (!list_empty(&wdev->event_list)) {
935 ev = list_first_entry(&wdev->event_list,
936 struct cfg80211_event, list);
937 list_del(&ev->list);
938 spin_unlock_irqrestore(&wdev->event_lock, flags);
939
940 wdev_lock(wdev);
941 switch (ev->type) {
942 case EVENT_CONNECT_RESULT:
943 __cfg80211_connect_result(
944 wdev->netdev,
945 &ev->cr,
946 ev->cr.status == WLAN_STATUS_SUCCESS);
947 break;
948 case EVENT_ROAMED:
949 __cfg80211_roamed(wdev, &ev->rm);
950 break;
951 case EVENT_DISCONNECTED:
952 __cfg80211_disconnected(wdev->netdev,
953 ev->dc.ie, ev->dc.ie_len,
954 ev->dc.reason,
955 !ev->dc.locally_generated);
956 break;
957 case EVENT_IBSS_JOINED:
958 __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
959 ev->ij.channel);
960 break;
961 case EVENT_STOPPED:
962 __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
963 break;
964 }
965 wdev_unlock(wdev);
966
967 kfree(ev);
968
969 spin_lock_irqsave(&wdev->event_lock, flags);
970 }
971 spin_unlock_irqrestore(&wdev->event_lock, flags);
972 }
973
974 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
975 {
976 struct wireless_dev *wdev;
977
978 ASSERT_RTNL();
979
980 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
981 cfg80211_process_wdev_events(wdev);
982 }
983
984 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
985 struct net_device *dev, enum nl80211_iftype ntype,
986 struct vif_params *params)
987 {
988 int err;
989 enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
990
991 ASSERT_RTNL();
992
993 /* don't support changing VLANs, you just re-create them */
994 if (otype == NL80211_IFTYPE_AP_VLAN)
995 return -EOPNOTSUPP;
996
997 /* cannot change into P2P device or NAN */
998 if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
999 ntype == NL80211_IFTYPE_NAN)
1000 return -EOPNOTSUPP;
1001
1002 if (!rdev->ops->change_virtual_intf ||
1003 !(rdev->wiphy.interface_modes & (1 << ntype)))
1004 return -EOPNOTSUPP;
1005
1006 /* if it's part of a bridge, reject changing type to station/ibss */
1007 if ((dev->priv_flags & IFF_BRIDGE_PORT) &&
1008 (ntype == NL80211_IFTYPE_ADHOC ||
1009 ntype == NL80211_IFTYPE_STATION ||
1010 ntype == NL80211_IFTYPE_P2P_CLIENT))
1011 return -EBUSY;
1012
1013 if (ntype != otype) {
1014 dev->ieee80211_ptr->use_4addr = false;
1015 dev->ieee80211_ptr->mesh_id_up_len = 0;
1016 wdev_lock(dev->ieee80211_ptr);
1017 rdev_set_qos_map(rdev, dev, NULL);
1018 wdev_unlock(dev->ieee80211_ptr);
1019
1020 switch (otype) {
1021 case NL80211_IFTYPE_AP:
1022 cfg80211_stop_ap(rdev, dev, true);
1023 break;
1024 case NL80211_IFTYPE_ADHOC:
1025 cfg80211_leave_ibss(rdev, dev, false);
1026 break;
1027 case NL80211_IFTYPE_STATION:
1028 case NL80211_IFTYPE_P2P_CLIENT:
1029 wdev_lock(dev->ieee80211_ptr);
1030 cfg80211_disconnect(rdev, dev,
1031 WLAN_REASON_DEAUTH_LEAVING, true);
1032 wdev_unlock(dev->ieee80211_ptr);
1033 break;
1034 case NL80211_IFTYPE_MESH_POINT:
1035 /* mesh should be handled? */
1036 break;
1037 default:
1038 break;
1039 }
1040
1041 cfg80211_process_rdev_events(rdev);
1042 }
1043
1044 err = rdev_change_virtual_intf(rdev, dev, ntype, params);
1045
1046 WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
1047
1048 if (!err && params && params->use_4addr != -1)
1049 dev->ieee80211_ptr->use_4addr = params->use_4addr;
1050
1051 if (!err) {
1052 dev->priv_flags &= ~IFF_DONT_BRIDGE;
1053 switch (ntype) {
1054 case NL80211_IFTYPE_STATION:
1055 if (dev->ieee80211_ptr->use_4addr)
1056 break;
1057 /* fall through */
1058 case NL80211_IFTYPE_OCB:
1059 case NL80211_IFTYPE_P2P_CLIENT:
1060 case NL80211_IFTYPE_ADHOC:
1061 dev->priv_flags |= IFF_DONT_BRIDGE;
1062 break;
1063 case NL80211_IFTYPE_P2P_GO:
1064 case NL80211_IFTYPE_AP:
1065 case NL80211_IFTYPE_AP_VLAN:
1066 case NL80211_IFTYPE_WDS:
1067 case NL80211_IFTYPE_MESH_POINT:
1068 /* bridging OK */
1069 break;
1070 case NL80211_IFTYPE_MONITOR:
1071 /* monitor can't bridge anyway */
1072 break;
1073 case NL80211_IFTYPE_UNSPECIFIED:
1074 case NUM_NL80211_IFTYPES:
1075 /* not happening */
1076 break;
1077 case NL80211_IFTYPE_P2P_DEVICE:
1078 case NL80211_IFTYPE_NAN:
1079 WARN_ON(1);
1080 break;
1081 }
1082 }
1083
1084 if (!err && ntype != otype && netif_running(dev)) {
1085 cfg80211_update_iface_num(rdev, ntype, 1);
1086 cfg80211_update_iface_num(rdev, otype, -1);
1087 }
1088
1089 return err;
1090 }
1091
1092 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
1093 {
1094 int modulation, streams, bitrate;
1095
1096 /* the formula below does only work for MCS values smaller than 32 */
1097 if (WARN_ON_ONCE(rate->mcs >= 32))
1098 return 0;
1099
1100 modulation = rate->mcs & 7;
1101 streams = (rate->mcs >> 3) + 1;
1102
1103 bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1104
1105 if (modulation < 4)
1106 bitrate *= (modulation + 1);
1107 else if (modulation == 4)
1108 bitrate *= (modulation + 2);
1109 else
1110 bitrate *= (modulation + 3);
1111
1112 bitrate *= streams;
1113
1114 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1115 bitrate = (bitrate / 9) * 10;
1116
1117 /* do NOT round down here */
1118 return (bitrate + 50000) / 100000;
1119 }
1120
1121 static u32 cfg80211_calculate_bitrate_60g(struct rate_info *rate)
1122 {
1123 static const u32 __mcs2bitrate[] = {
1124 /* control PHY */
1125 [0] = 275,
1126 /* SC PHY */
1127 [1] = 3850,
1128 [2] = 7700,
1129 [3] = 9625,
1130 [4] = 11550,
1131 [5] = 12512, /* 1251.25 mbps */
1132 [6] = 15400,
1133 [7] = 19250,
1134 [8] = 23100,
1135 [9] = 25025,
1136 [10] = 30800,
1137 [11] = 38500,
1138 [12] = 46200,
1139 /* OFDM PHY */
1140 [13] = 6930,
1141 [14] = 8662, /* 866.25 mbps */
1142 [15] = 13860,
1143 [16] = 17325,
1144 [17] = 20790,
1145 [18] = 27720,
1146 [19] = 34650,
1147 [20] = 41580,
1148 [21] = 45045,
1149 [22] = 51975,
1150 [23] = 62370,
1151 [24] = 67568, /* 6756.75 mbps */
1152 /* LP-SC PHY */
1153 [25] = 6260,
1154 [26] = 8340,
1155 [27] = 11120,
1156 [28] = 12510,
1157 [29] = 16680,
1158 [30] = 22240,
1159 [31] = 25030,
1160 };
1161
1162 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1163 return 0;
1164
1165 return __mcs2bitrate[rate->mcs];
1166 }
1167
1168 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1169 {
1170 static const u32 base[4][10] = {
1171 { 6500000,
1172 13000000,
1173 19500000,
1174 26000000,
1175 39000000,
1176 52000000,
1177 58500000,
1178 65000000,
1179 78000000,
1180 /* not in the spec, but some devices use this: */
1181 86500000,
1182 },
1183 { 13500000,
1184 27000000,
1185 40500000,
1186 54000000,
1187 81000000,
1188 108000000,
1189 121500000,
1190 135000000,
1191 162000000,
1192 180000000,
1193 },
1194 { 29300000,
1195 58500000,
1196 87800000,
1197 117000000,
1198 175500000,
1199 234000000,
1200 263300000,
1201 292500000,
1202 351000000,
1203 390000000,
1204 },
1205 { 58500000,
1206 117000000,
1207 175500000,
1208 234000000,
1209 351000000,
1210 468000000,
1211 526500000,
1212 585000000,
1213 702000000,
1214 780000000,
1215 },
1216 };
1217 u32 bitrate;
1218 int idx;
1219
1220 if (WARN_ON_ONCE(rate->mcs > 9))
1221 return 0;
1222
1223 switch (rate->bw) {
1224 case RATE_INFO_BW_160:
1225 idx = 3;
1226 break;
1227 case RATE_INFO_BW_80:
1228 idx = 2;
1229 break;
1230 case RATE_INFO_BW_40:
1231 idx = 1;
1232 break;
1233 case RATE_INFO_BW_5:
1234 case RATE_INFO_BW_10:
1235 default:
1236 WARN_ON(1);
1237 /* fall through */
1238 case RATE_INFO_BW_20:
1239 idx = 0;
1240 }
1241
1242 bitrate = base[idx][rate->mcs];
1243 bitrate *= rate->nss;
1244
1245 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1246 bitrate = (bitrate / 9) * 10;
1247
1248 /* do NOT round down here */
1249 return (bitrate + 50000) / 100000;
1250 }
1251
1252 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1253 {
1254 if (rate->flags & RATE_INFO_FLAGS_MCS)
1255 return cfg80211_calculate_bitrate_ht(rate);
1256 if (rate->flags & RATE_INFO_FLAGS_60G)
1257 return cfg80211_calculate_bitrate_60g(rate);
1258 if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1259 return cfg80211_calculate_bitrate_vht(rate);
1260
1261 return rate->legacy;
1262 }
1263 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1264
1265 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1266 enum ieee80211_p2p_attr_id attr,
1267 u8 *buf, unsigned int bufsize)
1268 {
1269 u8 *out = buf;
1270 u16 attr_remaining = 0;
1271 bool desired_attr = false;
1272 u16 desired_len = 0;
1273
1274 while (len > 0) {
1275 unsigned int iedatalen;
1276 unsigned int copy;
1277 const u8 *iedata;
1278
1279 if (len < 2)
1280 return -EILSEQ;
1281 iedatalen = ies[1];
1282 if (iedatalen + 2 > len)
1283 return -EILSEQ;
1284
1285 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1286 goto cont;
1287
1288 if (iedatalen < 4)
1289 goto cont;
1290
1291 iedata = ies + 2;
1292
1293 /* check WFA OUI, P2P subtype */
1294 if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1295 iedata[2] != 0x9a || iedata[3] != 0x09)
1296 goto cont;
1297
1298 iedatalen -= 4;
1299 iedata += 4;
1300
1301 /* check attribute continuation into this IE */
1302 copy = min_t(unsigned int, attr_remaining, iedatalen);
1303 if (copy && desired_attr) {
1304 desired_len += copy;
1305 if (out) {
1306 memcpy(out, iedata, min(bufsize, copy));
1307 out += min(bufsize, copy);
1308 bufsize -= min(bufsize, copy);
1309 }
1310
1311
1312 if (copy == attr_remaining)
1313 return desired_len;
1314 }
1315
1316 attr_remaining -= copy;
1317 if (attr_remaining)
1318 goto cont;
1319
1320 iedatalen -= copy;
1321 iedata += copy;
1322
1323 while (iedatalen > 0) {
1324 u16 attr_len;
1325
1326 /* P2P attribute ID & size must fit */
1327 if (iedatalen < 3)
1328 return -EILSEQ;
1329 desired_attr = iedata[0] == attr;
1330 attr_len = get_unaligned_le16(iedata + 1);
1331 iedatalen -= 3;
1332 iedata += 3;
1333
1334 copy = min_t(unsigned int, attr_len, iedatalen);
1335
1336 if (desired_attr) {
1337 desired_len += copy;
1338 if (out) {
1339 memcpy(out, iedata, min(bufsize, copy));
1340 out += min(bufsize, copy);
1341 bufsize -= min(bufsize, copy);
1342 }
1343
1344 if (copy == attr_len)
1345 return desired_len;
1346 }
1347
1348 iedata += copy;
1349 iedatalen -= copy;
1350 attr_remaining = attr_len - copy;
1351 }
1352
1353 cont:
1354 len -= ies[1] + 2;
1355 ies += ies[1] + 2;
1356 }
1357
1358 if (attr_remaining && desired_attr)
1359 return -EILSEQ;
1360
1361 return -ENOENT;
1362 }
1363 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1364
1365 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id)
1366 {
1367 int i;
1368
1369 for (i = 0; i < n_ids; i++)
1370 if (ids[i] == id)
1371 return true;
1372 return false;
1373 }
1374
1375 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1376 {
1377 /* we assume a validly formed IEs buffer */
1378 u8 len = ies[pos + 1];
1379
1380 pos += 2 + len;
1381
1382 /* the IE itself must have 255 bytes for fragments to follow */
1383 if (len < 255)
1384 return pos;
1385
1386 while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1387 len = ies[pos + 1];
1388 pos += 2 + len;
1389 }
1390
1391 return pos;
1392 }
1393
1394 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1395 const u8 *ids, int n_ids,
1396 const u8 *after_ric, int n_after_ric,
1397 size_t offset)
1398 {
1399 size_t pos = offset;
1400
1401 while (pos < ielen && ieee80211_id_in_list(ids, n_ids, ies[pos])) {
1402 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1403 pos = skip_ie(ies, ielen, pos);
1404
1405 while (pos < ielen &&
1406 !ieee80211_id_in_list(after_ric, n_after_ric,
1407 ies[pos]))
1408 pos = skip_ie(ies, ielen, pos);
1409 } else {
1410 pos = skip_ie(ies, ielen, pos);
1411 }
1412 }
1413
1414 return pos;
1415 }
1416 EXPORT_SYMBOL(ieee80211_ie_split_ric);
1417
1418 bool ieee80211_operating_class_to_band(u8 operating_class,
1419 enum nl80211_band *band)
1420 {
1421 switch (operating_class) {
1422 case 112:
1423 case 115 ... 127:
1424 case 128 ... 130:
1425 *band = NL80211_BAND_5GHZ;
1426 return true;
1427 case 81:
1428 case 82:
1429 case 83:
1430 case 84:
1431 *band = NL80211_BAND_2GHZ;
1432 return true;
1433 case 180:
1434 *band = NL80211_BAND_60GHZ;
1435 return true;
1436 }
1437
1438 return false;
1439 }
1440 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1441
1442 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1443 u8 *op_class)
1444 {
1445 u8 vht_opclass;
1446 u16 freq = chandef->center_freq1;
1447
1448 if (freq >= 2412 && freq <= 2472) {
1449 if (chandef->width > NL80211_CHAN_WIDTH_40)
1450 return false;
1451
1452 /* 2.407 GHz, channels 1..13 */
1453 if (chandef->width == NL80211_CHAN_WIDTH_40) {
1454 if (freq > chandef->chan->center_freq)
1455 *op_class = 83; /* HT40+ */
1456 else
1457 *op_class = 84; /* HT40- */
1458 } else {
1459 *op_class = 81;
1460 }
1461
1462 return true;
1463 }
1464
1465 if (freq == 2484) {
1466 if (chandef->width > NL80211_CHAN_WIDTH_40)
1467 return false;
1468
1469 *op_class = 82; /* channel 14 */
1470 return true;
1471 }
1472
1473 switch (chandef->width) {
1474 case NL80211_CHAN_WIDTH_80:
1475 vht_opclass = 128;
1476 break;
1477 case NL80211_CHAN_WIDTH_160:
1478 vht_opclass = 129;
1479 break;
1480 case NL80211_CHAN_WIDTH_80P80:
1481 vht_opclass = 130;
1482 break;
1483 case NL80211_CHAN_WIDTH_10:
1484 case NL80211_CHAN_WIDTH_5:
1485 return false; /* unsupported for now */
1486 default:
1487 vht_opclass = 0;
1488 break;
1489 }
1490
1491 /* 5 GHz, channels 36..48 */
1492 if (freq >= 5180 && freq <= 5240) {
1493 if (vht_opclass) {
1494 *op_class = vht_opclass;
1495 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1496 if (freq > chandef->chan->center_freq)
1497 *op_class = 116;
1498 else
1499 *op_class = 117;
1500 } else {
1501 *op_class = 115;
1502 }
1503
1504 return true;
1505 }
1506
1507 /* 5 GHz, channels 52..64 */
1508 if (freq >= 5260 && freq <= 5320) {
1509 if (vht_opclass) {
1510 *op_class = vht_opclass;
1511 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1512 if (freq > chandef->chan->center_freq)
1513 *op_class = 119;
1514 else
1515 *op_class = 120;
1516 } else {
1517 *op_class = 118;
1518 }
1519
1520 return true;
1521 }
1522
1523 /* 5 GHz, channels 100..144 */
1524 if (freq >= 5500 && freq <= 5720) {
1525 if (vht_opclass) {
1526 *op_class = vht_opclass;
1527 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1528 if (freq > chandef->chan->center_freq)
1529 *op_class = 122;
1530 else
1531 *op_class = 123;
1532 } else {
1533 *op_class = 121;
1534 }
1535
1536 return true;
1537 }
1538
1539 /* 5 GHz, channels 149..169 */
1540 if (freq >= 5745 && freq <= 5845) {
1541 if (vht_opclass) {
1542 *op_class = vht_opclass;
1543 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1544 if (freq > chandef->chan->center_freq)
1545 *op_class = 126;
1546 else
1547 *op_class = 127;
1548 } else if (freq <= 5805) {
1549 *op_class = 124;
1550 } else {
1551 *op_class = 125;
1552 }
1553
1554 return true;
1555 }
1556
1557 /* 56.16 GHz, channel 1..4 */
1558 if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 4) {
1559 if (chandef->width >= NL80211_CHAN_WIDTH_40)
1560 return false;
1561
1562 *op_class = 180;
1563 return true;
1564 }
1565
1566 /* not supported yet */
1567 return false;
1568 }
1569 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1570
1571 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
1572 u32 *beacon_int_gcd,
1573 bool *beacon_int_different)
1574 {
1575 struct wireless_dev *wdev;
1576
1577 *beacon_int_gcd = 0;
1578 *beacon_int_different = false;
1579
1580 list_for_each_entry(wdev, &wiphy->wdev_list, list) {
1581 if (!wdev->beacon_interval)
1582 continue;
1583
1584 if (!*beacon_int_gcd) {
1585 *beacon_int_gcd = wdev->beacon_interval;
1586 continue;
1587 }
1588
1589 if (wdev->beacon_interval == *beacon_int_gcd)
1590 continue;
1591
1592 *beacon_int_different = true;
1593 *beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval);
1594 }
1595
1596 if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
1597 if (*beacon_int_gcd)
1598 *beacon_int_different = true;
1599 *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
1600 }
1601 }
1602
1603 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1604 enum nl80211_iftype iftype, u32 beacon_int)
1605 {
1606 /*
1607 * This is just a basic pre-condition check; if interface combinations
1608 * are possible the driver must already be checking those with a call
1609 * to cfg80211_check_combinations(), in which case we'll validate more
1610 * through the cfg80211_calculate_bi_data() call and code in
1611 * cfg80211_iter_combinations().
1612 */
1613
1614 if (beacon_int < 10 || beacon_int > 10000)
1615 return -EINVAL;
1616
1617 return 0;
1618 }
1619
1620 int cfg80211_iter_combinations(struct wiphy *wiphy,
1621 struct iface_combination_params *params,
1622 void (*iter)(const struct ieee80211_iface_combination *c,
1623 void *data),
1624 void *data)
1625 {
1626 const struct ieee80211_regdomain *regdom;
1627 enum nl80211_dfs_regions region = 0;
1628 int i, j, iftype;
1629 int num_interfaces = 0;
1630 u32 used_iftypes = 0;
1631 u32 beacon_int_gcd;
1632 bool beacon_int_different;
1633
1634 /*
1635 * This is a bit strange, since the iteration used to rely only on
1636 * the data given by the driver, but here it now relies on context,
1637 * in form of the currently operating interfaces.
1638 * This is OK for all current users, and saves us from having to
1639 * push the GCD calculations into all the drivers.
1640 * In the future, this should probably rely more on data that's in
1641 * cfg80211 already - the only thing not would appear to be any new
1642 * interfaces (while being brought up) and channel/radar data.
1643 */
1644 cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
1645 &beacon_int_gcd, &beacon_int_different);
1646
1647 if (params->radar_detect) {
1648 rcu_read_lock();
1649 regdom = rcu_dereference(cfg80211_regdomain);
1650 if (regdom)
1651 region = regdom->dfs_region;
1652 rcu_read_unlock();
1653 }
1654
1655 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1656 num_interfaces += params->iftype_num[iftype];
1657 if (params->iftype_num[iftype] > 0 &&
1658 !(wiphy->software_iftypes & BIT(iftype)))
1659 used_iftypes |= BIT(iftype);
1660 }
1661
1662 for (i = 0; i < wiphy->n_iface_combinations; i++) {
1663 const struct ieee80211_iface_combination *c;
1664 struct ieee80211_iface_limit *limits;
1665 u32 all_iftypes = 0;
1666
1667 c = &wiphy->iface_combinations[i];
1668
1669 if (num_interfaces > c->max_interfaces)
1670 continue;
1671 if (params->num_different_channels > c->num_different_channels)
1672 continue;
1673
1674 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1675 GFP_KERNEL);
1676 if (!limits)
1677 return -ENOMEM;
1678
1679 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1680 if (wiphy->software_iftypes & BIT(iftype))
1681 continue;
1682 for (j = 0; j < c->n_limits; j++) {
1683 all_iftypes |= limits[j].types;
1684 if (!(limits[j].types & BIT(iftype)))
1685 continue;
1686 if (limits[j].max < params->iftype_num[iftype])
1687 goto cont;
1688 limits[j].max -= params->iftype_num[iftype];
1689 }
1690 }
1691
1692 if (params->radar_detect !=
1693 (c->radar_detect_widths & params->radar_detect))
1694 goto cont;
1695
1696 if (params->radar_detect && c->radar_detect_regions &&
1697 !(c->radar_detect_regions & BIT(region)))
1698 goto cont;
1699
1700 /* Finally check that all iftypes that we're currently
1701 * using are actually part of this combination. If they
1702 * aren't then we can't use this combination and have
1703 * to continue to the next.
1704 */
1705 if ((all_iftypes & used_iftypes) != used_iftypes)
1706 goto cont;
1707
1708 if (beacon_int_gcd) {
1709 if (c->beacon_int_min_gcd &&
1710 beacon_int_gcd < c->beacon_int_min_gcd)
1711 goto cont;
1712 if (!c->beacon_int_min_gcd && beacon_int_different)
1713 goto cont;
1714 }
1715
1716 /* This combination covered all interface types and
1717 * supported the requested numbers, so we're good.
1718 */
1719
1720 (*iter)(c, data);
1721 cont:
1722 kfree(limits);
1723 }
1724
1725 return 0;
1726 }
1727 EXPORT_SYMBOL(cfg80211_iter_combinations);
1728
1729 static void
1730 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
1731 void *data)
1732 {
1733 int *num = data;
1734 (*num)++;
1735 }
1736
1737 int cfg80211_check_combinations(struct wiphy *wiphy,
1738 struct iface_combination_params *params)
1739 {
1740 int err, num = 0;
1741
1742 err = cfg80211_iter_combinations(wiphy, params,
1743 cfg80211_iter_sum_ifcombs, &num);
1744 if (err)
1745 return err;
1746 if (num == 0)
1747 return -EBUSY;
1748
1749 return 0;
1750 }
1751 EXPORT_SYMBOL(cfg80211_check_combinations);
1752
1753 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1754 const u8 *rates, unsigned int n_rates,
1755 u32 *mask)
1756 {
1757 int i, j;
1758
1759 if (!sband)
1760 return -EINVAL;
1761
1762 if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1763 return -EINVAL;
1764
1765 *mask = 0;
1766
1767 for (i = 0; i < n_rates; i++) {
1768 int rate = (rates[i] & 0x7f) * 5;
1769 bool found = false;
1770
1771 for (j = 0; j < sband->n_bitrates; j++) {
1772 if (sband->bitrates[j].bitrate == rate) {
1773 found = true;
1774 *mask |= BIT(j);
1775 break;
1776 }
1777 }
1778 if (!found)
1779 return -EINVAL;
1780 }
1781
1782 /*
1783 * mask must have at least one bit set here since we
1784 * didn't accept a 0-length rates array nor allowed
1785 * entries in the array that didn't exist
1786 */
1787
1788 return 0;
1789 }
1790
1791 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
1792 {
1793 enum nl80211_band band;
1794 unsigned int n_channels = 0;
1795
1796 for (band = 0; band < NUM_NL80211_BANDS; band++)
1797 if (wiphy->bands[band])
1798 n_channels += wiphy->bands[band]->n_channels;
1799
1800 return n_channels;
1801 }
1802 EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
1803
1804 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
1805 struct station_info *sinfo)
1806 {
1807 struct cfg80211_registered_device *rdev;
1808 struct wireless_dev *wdev;
1809
1810 wdev = dev->ieee80211_ptr;
1811 if (!wdev)
1812 return -EOPNOTSUPP;
1813
1814 rdev = wiphy_to_rdev(wdev->wiphy);
1815 if (!rdev->ops->get_station)
1816 return -EOPNOTSUPP;
1817
1818 return rdev_get_station(rdev, dev, mac_addr, sinfo);
1819 }
1820 EXPORT_SYMBOL(cfg80211_get_station);
1821
1822 void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
1823 {
1824 int i;
1825
1826 if (!f)
1827 return;
1828
1829 kfree(f->serv_spec_info);
1830 kfree(f->srf_bf);
1831 kfree(f->srf_macs);
1832 for (i = 0; i < f->num_rx_filters; i++)
1833 kfree(f->rx_filters[i].filter);
1834
1835 for (i = 0; i < f->num_tx_filters; i++)
1836 kfree(f->tx_filters[i].filter);
1837
1838 kfree(f->rx_filters);
1839 kfree(f->tx_filters);
1840 kfree(f);
1841 }
1842 EXPORT_SYMBOL(cfg80211_free_nan_func);
1843
1844 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
1845 u32 center_freq_khz, u32 bw_khz)
1846 {
1847 u32 start_freq_khz, end_freq_khz;
1848
1849 start_freq_khz = center_freq_khz - (bw_khz / 2);
1850 end_freq_khz = center_freq_khz + (bw_khz / 2);
1851
1852 if (start_freq_khz >= freq_range->start_freq_khz &&
1853 end_freq_khz <= freq_range->end_freq_khz)
1854 return true;
1855
1856 return false;
1857 }
1858
1859 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
1860 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
1861 const unsigned char rfc1042_header[] __aligned(2) =
1862 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
1863 EXPORT_SYMBOL(rfc1042_header);
1864
1865 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
1866 const unsigned char bridge_tunnel_header[] __aligned(2) =
1867 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
1868 EXPORT_SYMBOL(bridge_tunnel_header);