]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/wireless/util.c
Merge tag 'renesas-fixes-for-v4.14' of https://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-bionic-kernel.git] / net / wireless / util.c
1 /*
2 * Wireless utility functions
3 *
4 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2013-2014 Intel Mobile Communications GmbH
6 */
7 #include <linux/export.h>
8 #include <linux/bitops.h>
9 #include <linux/etherdevice.h>
10 #include <linux/slab.h>
11 #include <net/cfg80211.h>
12 #include <net/ip.h>
13 #include <net/dsfield.h>
14 #include <linux/if_vlan.h>
15 #include <linux/mpls.h>
16 #include <linux/gcd.h>
17 #include "core.h"
18 #include "rdev-ops.h"
19
20
21 struct ieee80211_rate *
22 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
23 u32 basic_rates, int bitrate)
24 {
25 struct ieee80211_rate *result = &sband->bitrates[0];
26 int i;
27
28 for (i = 0; i < sband->n_bitrates; i++) {
29 if (!(basic_rates & BIT(i)))
30 continue;
31 if (sband->bitrates[i].bitrate > bitrate)
32 continue;
33 result = &sband->bitrates[i];
34 }
35
36 return result;
37 }
38 EXPORT_SYMBOL(ieee80211_get_response_rate);
39
40 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
41 enum nl80211_bss_scan_width scan_width)
42 {
43 struct ieee80211_rate *bitrates;
44 u32 mandatory_rates = 0;
45 enum ieee80211_rate_flags mandatory_flag;
46 int i;
47
48 if (WARN_ON(!sband))
49 return 1;
50
51 if (sband->band == NL80211_BAND_2GHZ) {
52 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
53 scan_width == NL80211_BSS_CHAN_WIDTH_10)
54 mandatory_flag = IEEE80211_RATE_MANDATORY_G;
55 else
56 mandatory_flag = IEEE80211_RATE_MANDATORY_B;
57 } else {
58 mandatory_flag = IEEE80211_RATE_MANDATORY_A;
59 }
60
61 bitrates = sband->bitrates;
62 for (i = 0; i < sband->n_bitrates; i++)
63 if (bitrates[i].flags & mandatory_flag)
64 mandatory_rates |= BIT(i);
65 return mandatory_rates;
66 }
67 EXPORT_SYMBOL(ieee80211_mandatory_rates);
68
69 int ieee80211_channel_to_frequency(int chan, enum nl80211_band band)
70 {
71 /* see 802.11 17.3.8.3.2 and Annex J
72 * there are overlapping channel numbers in 5GHz and 2GHz bands */
73 if (chan <= 0)
74 return 0; /* not supported */
75 switch (band) {
76 case NL80211_BAND_2GHZ:
77 if (chan == 14)
78 return 2484;
79 else if (chan < 14)
80 return 2407 + chan * 5;
81 break;
82 case NL80211_BAND_5GHZ:
83 if (chan >= 182 && chan <= 196)
84 return 4000 + chan * 5;
85 else
86 return 5000 + chan * 5;
87 break;
88 case NL80211_BAND_60GHZ:
89 if (chan < 5)
90 return 56160 + chan * 2160;
91 break;
92 default:
93 ;
94 }
95 return 0; /* not supported */
96 }
97 EXPORT_SYMBOL(ieee80211_channel_to_frequency);
98
99 int ieee80211_frequency_to_channel(int freq)
100 {
101 /* see 802.11 17.3.8.3.2 and Annex J */
102 if (freq == 2484)
103 return 14;
104 else if (freq < 2484)
105 return (freq - 2407) / 5;
106 else if (freq >= 4910 && freq <= 4980)
107 return (freq - 4000) / 5;
108 else if (freq <= 45000) /* DMG band lower limit */
109 return (freq - 5000) / 5;
110 else if (freq >= 58320 && freq <= 64800)
111 return (freq - 56160) / 2160;
112 else
113 return 0;
114 }
115 EXPORT_SYMBOL(ieee80211_frequency_to_channel);
116
117 struct ieee80211_channel *ieee80211_get_channel(struct wiphy *wiphy, int freq)
118 {
119 enum nl80211_band band;
120 struct ieee80211_supported_band *sband;
121 int i;
122
123 for (band = 0; band < NUM_NL80211_BANDS; band++) {
124 sband = wiphy->bands[band];
125
126 if (!sband)
127 continue;
128
129 for (i = 0; i < sband->n_channels; i++) {
130 if (sband->channels[i].center_freq == freq)
131 return &sband->channels[i];
132 }
133 }
134
135 return NULL;
136 }
137 EXPORT_SYMBOL(ieee80211_get_channel);
138
139 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
140 {
141 int i, want;
142
143 switch (sband->band) {
144 case NL80211_BAND_5GHZ:
145 want = 3;
146 for (i = 0; i < sband->n_bitrates; i++) {
147 if (sband->bitrates[i].bitrate == 60 ||
148 sband->bitrates[i].bitrate == 120 ||
149 sband->bitrates[i].bitrate == 240) {
150 sband->bitrates[i].flags |=
151 IEEE80211_RATE_MANDATORY_A;
152 want--;
153 }
154 }
155 WARN_ON(want);
156 break;
157 case NL80211_BAND_2GHZ:
158 want = 7;
159 for (i = 0; i < sband->n_bitrates; i++) {
160 if (sband->bitrates[i].bitrate == 10) {
161 sband->bitrates[i].flags |=
162 IEEE80211_RATE_MANDATORY_B |
163 IEEE80211_RATE_MANDATORY_G;
164 want--;
165 }
166
167 if (sband->bitrates[i].bitrate == 20 ||
168 sband->bitrates[i].bitrate == 55 ||
169 sband->bitrates[i].bitrate == 110 ||
170 sband->bitrates[i].bitrate == 60 ||
171 sband->bitrates[i].bitrate == 120 ||
172 sband->bitrates[i].bitrate == 240) {
173 sband->bitrates[i].flags |=
174 IEEE80211_RATE_MANDATORY_G;
175 want--;
176 }
177
178 if (sband->bitrates[i].bitrate != 10 &&
179 sband->bitrates[i].bitrate != 20 &&
180 sband->bitrates[i].bitrate != 55 &&
181 sband->bitrates[i].bitrate != 110)
182 sband->bitrates[i].flags |=
183 IEEE80211_RATE_ERP_G;
184 }
185 WARN_ON(want != 0 && want != 3 && want != 6);
186 break;
187 case NL80211_BAND_60GHZ:
188 /* check for mandatory HT MCS 1..4 */
189 WARN_ON(!sband->ht_cap.ht_supported);
190 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
191 break;
192 case NUM_NL80211_BANDS:
193 default:
194 WARN_ON(1);
195 break;
196 }
197 }
198
199 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
200 {
201 enum nl80211_band band;
202
203 for (band = 0; band < NUM_NL80211_BANDS; band++)
204 if (wiphy->bands[band])
205 set_mandatory_flags_band(wiphy->bands[band]);
206 }
207
208 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
209 {
210 int i;
211 for (i = 0; i < wiphy->n_cipher_suites; i++)
212 if (cipher == wiphy->cipher_suites[i])
213 return true;
214 return false;
215 }
216
217 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
218 struct key_params *params, int key_idx,
219 bool pairwise, const u8 *mac_addr)
220 {
221 if (key_idx < 0 || key_idx > 5)
222 return -EINVAL;
223
224 if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
225 return -EINVAL;
226
227 if (pairwise && !mac_addr)
228 return -EINVAL;
229
230 switch (params->cipher) {
231 case WLAN_CIPHER_SUITE_TKIP:
232 case WLAN_CIPHER_SUITE_CCMP:
233 case WLAN_CIPHER_SUITE_CCMP_256:
234 case WLAN_CIPHER_SUITE_GCMP:
235 case WLAN_CIPHER_SUITE_GCMP_256:
236 /* Disallow pairwise keys with non-zero index unless it's WEP
237 * or a vendor specific cipher (because current deployments use
238 * pairwise WEP keys with non-zero indices and for vendor
239 * specific ciphers this should be validated in the driver or
240 * hardware level - but 802.11i clearly specifies to use zero)
241 */
242 if (pairwise && key_idx)
243 return -EINVAL;
244 break;
245 case WLAN_CIPHER_SUITE_AES_CMAC:
246 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
247 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
248 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
249 /* Disallow BIP (group-only) cipher as pairwise cipher */
250 if (pairwise)
251 return -EINVAL;
252 if (key_idx < 4)
253 return -EINVAL;
254 break;
255 case WLAN_CIPHER_SUITE_WEP40:
256 case WLAN_CIPHER_SUITE_WEP104:
257 if (key_idx > 3)
258 return -EINVAL;
259 default:
260 break;
261 }
262
263 switch (params->cipher) {
264 case WLAN_CIPHER_SUITE_WEP40:
265 if (params->key_len != WLAN_KEY_LEN_WEP40)
266 return -EINVAL;
267 break;
268 case WLAN_CIPHER_SUITE_TKIP:
269 if (params->key_len != WLAN_KEY_LEN_TKIP)
270 return -EINVAL;
271 break;
272 case WLAN_CIPHER_SUITE_CCMP:
273 if (params->key_len != WLAN_KEY_LEN_CCMP)
274 return -EINVAL;
275 break;
276 case WLAN_CIPHER_SUITE_CCMP_256:
277 if (params->key_len != WLAN_KEY_LEN_CCMP_256)
278 return -EINVAL;
279 break;
280 case WLAN_CIPHER_SUITE_GCMP:
281 if (params->key_len != WLAN_KEY_LEN_GCMP)
282 return -EINVAL;
283 break;
284 case WLAN_CIPHER_SUITE_GCMP_256:
285 if (params->key_len != WLAN_KEY_LEN_GCMP_256)
286 return -EINVAL;
287 break;
288 case WLAN_CIPHER_SUITE_WEP104:
289 if (params->key_len != WLAN_KEY_LEN_WEP104)
290 return -EINVAL;
291 break;
292 case WLAN_CIPHER_SUITE_AES_CMAC:
293 if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
294 return -EINVAL;
295 break;
296 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
297 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
298 return -EINVAL;
299 break;
300 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
301 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
302 return -EINVAL;
303 break;
304 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
305 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
306 return -EINVAL;
307 break;
308 default:
309 /*
310 * We don't know anything about this algorithm,
311 * allow using it -- but the driver must check
312 * all parameters! We still check below whether
313 * or not the driver supports this algorithm,
314 * of course.
315 */
316 break;
317 }
318
319 if (params->seq) {
320 switch (params->cipher) {
321 case WLAN_CIPHER_SUITE_WEP40:
322 case WLAN_CIPHER_SUITE_WEP104:
323 /* These ciphers do not use key sequence */
324 return -EINVAL;
325 case WLAN_CIPHER_SUITE_TKIP:
326 case WLAN_CIPHER_SUITE_CCMP:
327 case WLAN_CIPHER_SUITE_CCMP_256:
328 case WLAN_CIPHER_SUITE_GCMP:
329 case WLAN_CIPHER_SUITE_GCMP_256:
330 case WLAN_CIPHER_SUITE_AES_CMAC:
331 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
332 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
333 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
334 if (params->seq_len != 6)
335 return -EINVAL;
336 break;
337 }
338 }
339
340 if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
341 return -EINVAL;
342
343 return 0;
344 }
345
346 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
347 {
348 unsigned int hdrlen = 24;
349
350 if (ieee80211_is_data(fc)) {
351 if (ieee80211_has_a4(fc))
352 hdrlen = 30;
353 if (ieee80211_is_data_qos(fc)) {
354 hdrlen += IEEE80211_QOS_CTL_LEN;
355 if (ieee80211_has_order(fc))
356 hdrlen += IEEE80211_HT_CTL_LEN;
357 }
358 goto out;
359 }
360
361 if (ieee80211_is_mgmt(fc)) {
362 if (ieee80211_has_order(fc))
363 hdrlen += IEEE80211_HT_CTL_LEN;
364 goto out;
365 }
366
367 if (ieee80211_is_ctl(fc)) {
368 /*
369 * ACK and CTS are 10 bytes, all others 16. To see how
370 * to get this condition consider
371 * subtype mask: 0b0000000011110000 (0x00F0)
372 * ACK subtype: 0b0000000011010000 (0x00D0)
373 * CTS subtype: 0b0000000011000000 (0x00C0)
374 * bits that matter: ^^^ (0x00E0)
375 * value of those: 0b0000000011000000 (0x00C0)
376 */
377 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
378 hdrlen = 10;
379 else
380 hdrlen = 16;
381 }
382 out:
383 return hdrlen;
384 }
385 EXPORT_SYMBOL(ieee80211_hdrlen);
386
387 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
388 {
389 const struct ieee80211_hdr *hdr =
390 (const struct ieee80211_hdr *)skb->data;
391 unsigned int hdrlen;
392
393 if (unlikely(skb->len < 10))
394 return 0;
395 hdrlen = ieee80211_hdrlen(hdr->frame_control);
396 if (unlikely(hdrlen > skb->len))
397 return 0;
398 return hdrlen;
399 }
400 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
401
402 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
403 {
404 int ae = flags & MESH_FLAGS_AE;
405 /* 802.11-2012, 8.2.4.7.3 */
406 switch (ae) {
407 default:
408 case 0:
409 return 6;
410 case MESH_FLAGS_AE_A4:
411 return 12;
412 case MESH_FLAGS_AE_A5_A6:
413 return 18;
414 }
415 }
416
417 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
418 {
419 return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
420 }
421 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
422
423 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
424 const u8 *addr, enum nl80211_iftype iftype)
425 {
426 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
427 struct {
428 u8 hdr[ETH_ALEN] __aligned(2);
429 __be16 proto;
430 } payload;
431 struct ethhdr tmp;
432 u16 hdrlen;
433 u8 mesh_flags = 0;
434
435 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
436 return -1;
437
438 hdrlen = ieee80211_hdrlen(hdr->frame_control);
439 if (skb->len < hdrlen + 8)
440 return -1;
441
442 /* convert IEEE 802.11 header + possible LLC headers into Ethernet
443 * header
444 * IEEE 802.11 address fields:
445 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
446 * 0 0 DA SA BSSID n/a
447 * 0 1 DA BSSID SA n/a
448 * 1 0 BSSID SA DA n/a
449 * 1 1 RA TA DA SA
450 */
451 memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
452 memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
453
454 if (iftype == NL80211_IFTYPE_MESH_POINT)
455 skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
456
457 mesh_flags &= MESH_FLAGS_AE;
458
459 switch (hdr->frame_control &
460 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
461 case cpu_to_le16(IEEE80211_FCTL_TODS):
462 if (unlikely(iftype != NL80211_IFTYPE_AP &&
463 iftype != NL80211_IFTYPE_AP_VLAN &&
464 iftype != NL80211_IFTYPE_P2P_GO))
465 return -1;
466 break;
467 case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
468 if (unlikely(iftype != NL80211_IFTYPE_WDS &&
469 iftype != NL80211_IFTYPE_MESH_POINT &&
470 iftype != NL80211_IFTYPE_AP_VLAN &&
471 iftype != NL80211_IFTYPE_STATION))
472 return -1;
473 if (iftype == NL80211_IFTYPE_MESH_POINT) {
474 if (mesh_flags == MESH_FLAGS_AE_A4)
475 return -1;
476 if (mesh_flags == MESH_FLAGS_AE_A5_A6) {
477 skb_copy_bits(skb, hdrlen +
478 offsetof(struct ieee80211s_hdr, eaddr1),
479 tmp.h_dest, 2 * ETH_ALEN);
480 }
481 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
482 }
483 break;
484 case cpu_to_le16(IEEE80211_FCTL_FROMDS):
485 if ((iftype != NL80211_IFTYPE_STATION &&
486 iftype != NL80211_IFTYPE_P2P_CLIENT &&
487 iftype != NL80211_IFTYPE_MESH_POINT) ||
488 (is_multicast_ether_addr(tmp.h_dest) &&
489 ether_addr_equal(tmp.h_source, addr)))
490 return -1;
491 if (iftype == NL80211_IFTYPE_MESH_POINT) {
492 if (mesh_flags == MESH_FLAGS_AE_A5_A6)
493 return -1;
494 if (mesh_flags == MESH_FLAGS_AE_A4)
495 skb_copy_bits(skb, hdrlen +
496 offsetof(struct ieee80211s_hdr, eaddr1),
497 tmp.h_source, ETH_ALEN);
498 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
499 }
500 break;
501 case cpu_to_le16(0):
502 if (iftype != NL80211_IFTYPE_ADHOC &&
503 iftype != NL80211_IFTYPE_STATION &&
504 iftype != NL80211_IFTYPE_OCB)
505 return -1;
506 break;
507 }
508
509 skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
510 tmp.h_proto = payload.proto;
511
512 if (likely((ether_addr_equal(payload.hdr, rfc1042_header) &&
513 tmp.h_proto != htons(ETH_P_AARP) &&
514 tmp.h_proto != htons(ETH_P_IPX)) ||
515 ether_addr_equal(payload.hdr, bridge_tunnel_header)))
516 /* remove RFC1042 or Bridge-Tunnel encapsulation and
517 * replace EtherType */
518 hdrlen += ETH_ALEN + 2;
519 else
520 tmp.h_proto = htons(skb->len - hdrlen);
521
522 pskb_pull(skb, hdrlen);
523
524 if (!ehdr)
525 ehdr = skb_push(skb, sizeof(struct ethhdr));
526 memcpy(ehdr, &tmp, sizeof(tmp));
527
528 return 0;
529 }
530 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
531
532 int ieee80211_data_from_8023(struct sk_buff *skb, const u8 *addr,
533 enum nl80211_iftype iftype,
534 const u8 *bssid, bool qos)
535 {
536 struct ieee80211_hdr hdr;
537 u16 hdrlen, ethertype;
538 __le16 fc;
539 const u8 *encaps_data;
540 int encaps_len, skip_header_bytes;
541 int nh_pos, h_pos;
542 int head_need;
543
544 if (unlikely(skb->len < ETH_HLEN))
545 return -EINVAL;
546
547 nh_pos = skb_network_header(skb) - skb->data;
548 h_pos = skb_transport_header(skb) - skb->data;
549
550 /* convert Ethernet header to proper 802.11 header (based on
551 * operation mode) */
552 ethertype = (skb->data[12] << 8) | skb->data[13];
553 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA);
554
555 switch (iftype) {
556 case NL80211_IFTYPE_AP:
557 case NL80211_IFTYPE_AP_VLAN:
558 case NL80211_IFTYPE_P2P_GO:
559 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS);
560 /* DA BSSID SA */
561 memcpy(hdr.addr1, skb->data, ETH_ALEN);
562 memcpy(hdr.addr2, addr, ETH_ALEN);
563 memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN);
564 hdrlen = 24;
565 break;
566 case NL80211_IFTYPE_STATION:
567 case NL80211_IFTYPE_P2P_CLIENT:
568 fc |= cpu_to_le16(IEEE80211_FCTL_TODS);
569 /* BSSID SA DA */
570 memcpy(hdr.addr1, bssid, ETH_ALEN);
571 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
572 memcpy(hdr.addr3, skb->data, ETH_ALEN);
573 hdrlen = 24;
574 break;
575 case NL80211_IFTYPE_OCB:
576 case NL80211_IFTYPE_ADHOC:
577 /* DA SA BSSID */
578 memcpy(hdr.addr1, skb->data, ETH_ALEN);
579 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
580 memcpy(hdr.addr3, bssid, ETH_ALEN);
581 hdrlen = 24;
582 break;
583 default:
584 return -EOPNOTSUPP;
585 }
586
587 if (qos) {
588 fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
589 hdrlen += 2;
590 }
591
592 hdr.frame_control = fc;
593 hdr.duration_id = 0;
594 hdr.seq_ctrl = 0;
595
596 skip_header_bytes = ETH_HLEN;
597 if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) {
598 encaps_data = bridge_tunnel_header;
599 encaps_len = sizeof(bridge_tunnel_header);
600 skip_header_bytes -= 2;
601 } else if (ethertype >= ETH_P_802_3_MIN) {
602 encaps_data = rfc1042_header;
603 encaps_len = sizeof(rfc1042_header);
604 skip_header_bytes -= 2;
605 } else {
606 encaps_data = NULL;
607 encaps_len = 0;
608 }
609
610 skb_pull(skb, skip_header_bytes);
611 nh_pos -= skip_header_bytes;
612 h_pos -= skip_header_bytes;
613
614 head_need = hdrlen + encaps_len - skb_headroom(skb);
615
616 if (head_need > 0 || skb_cloned(skb)) {
617 head_need = max(head_need, 0);
618 if (head_need)
619 skb_orphan(skb);
620
621 if (pskb_expand_head(skb, head_need, 0, GFP_ATOMIC))
622 return -ENOMEM;
623 }
624
625 if (encaps_data) {
626 memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len);
627 nh_pos += encaps_len;
628 h_pos += encaps_len;
629 }
630
631 memcpy(skb_push(skb, hdrlen), &hdr, hdrlen);
632
633 nh_pos += hdrlen;
634 h_pos += hdrlen;
635
636 /* Update skb pointers to various headers since this modified frame
637 * is going to go through Linux networking code that may potentially
638 * need things like pointer to IP header. */
639 skb_reset_mac_header(skb);
640 skb_set_network_header(skb, nh_pos);
641 skb_set_transport_header(skb, h_pos);
642
643 return 0;
644 }
645 EXPORT_SYMBOL(ieee80211_data_from_8023);
646
647 static void
648 __frame_add_frag(struct sk_buff *skb, struct page *page,
649 void *ptr, int len, int size)
650 {
651 struct skb_shared_info *sh = skb_shinfo(skb);
652 int page_offset;
653
654 page_ref_inc(page);
655 page_offset = ptr - page_address(page);
656 skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
657 }
658
659 static void
660 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
661 int offset, int len)
662 {
663 struct skb_shared_info *sh = skb_shinfo(skb);
664 const skb_frag_t *frag = &sh->frags[0];
665 struct page *frag_page;
666 void *frag_ptr;
667 int frag_len, frag_size;
668 int head_size = skb->len - skb->data_len;
669 int cur_len;
670
671 frag_page = virt_to_head_page(skb->head);
672 frag_ptr = skb->data;
673 frag_size = head_size;
674
675 while (offset >= frag_size) {
676 offset -= frag_size;
677 frag_page = skb_frag_page(frag);
678 frag_ptr = skb_frag_address(frag);
679 frag_size = skb_frag_size(frag);
680 frag++;
681 }
682
683 frag_ptr += offset;
684 frag_len = frag_size - offset;
685
686 cur_len = min(len, frag_len);
687
688 __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
689 len -= cur_len;
690
691 while (len > 0) {
692 frag_len = skb_frag_size(frag);
693 cur_len = min(len, frag_len);
694 __frame_add_frag(frame, skb_frag_page(frag),
695 skb_frag_address(frag), cur_len, frag_len);
696 len -= cur_len;
697 frag++;
698 }
699 }
700
701 static struct sk_buff *
702 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
703 int offset, int len, bool reuse_frag)
704 {
705 struct sk_buff *frame;
706 int cur_len = len;
707
708 if (skb->len - offset < len)
709 return NULL;
710
711 /*
712 * When reusing framents, copy some data to the head to simplify
713 * ethernet header handling and speed up protocol header processing
714 * in the stack later.
715 */
716 if (reuse_frag)
717 cur_len = min_t(int, len, 32);
718
719 /*
720 * Allocate and reserve two bytes more for payload
721 * alignment since sizeof(struct ethhdr) is 14.
722 */
723 frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
724 if (!frame)
725 return NULL;
726
727 skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
728 skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
729
730 len -= cur_len;
731 if (!len)
732 return frame;
733
734 offset += cur_len;
735 __ieee80211_amsdu_copy_frag(skb, frame, offset, len);
736
737 return frame;
738 }
739
740 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
741 const u8 *addr, enum nl80211_iftype iftype,
742 const unsigned int extra_headroom,
743 const u8 *check_da, const u8 *check_sa)
744 {
745 unsigned int hlen = ALIGN(extra_headroom, 4);
746 struct sk_buff *frame = NULL;
747 u16 ethertype;
748 u8 *payload;
749 int offset = 0, remaining;
750 struct ethhdr eth;
751 bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
752 bool reuse_skb = false;
753 bool last = false;
754
755 while (!last) {
756 unsigned int subframe_len;
757 int len;
758 u8 padding;
759
760 skb_copy_bits(skb, offset, &eth, sizeof(eth));
761 len = ntohs(eth.h_proto);
762 subframe_len = sizeof(struct ethhdr) + len;
763 padding = (4 - subframe_len) & 0x3;
764
765 /* the last MSDU has no padding */
766 remaining = skb->len - offset;
767 if (subframe_len > remaining)
768 goto purge;
769
770 offset += sizeof(struct ethhdr);
771 last = remaining <= subframe_len + padding;
772
773 /* FIXME: should we really accept multicast DA? */
774 if ((check_da && !is_multicast_ether_addr(eth.h_dest) &&
775 !ether_addr_equal(check_da, eth.h_dest)) ||
776 (check_sa && !ether_addr_equal(check_sa, eth.h_source))) {
777 offset += len + padding;
778 continue;
779 }
780
781 /* reuse skb for the last subframe */
782 if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
783 skb_pull(skb, offset);
784 frame = skb;
785 reuse_skb = true;
786 } else {
787 frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
788 reuse_frag);
789 if (!frame)
790 goto purge;
791
792 offset += len + padding;
793 }
794
795 skb_reset_network_header(frame);
796 frame->dev = skb->dev;
797 frame->priority = skb->priority;
798
799 payload = frame->data;
800 ethertype = (payload[6] << 8) | payload[7];
801 if (likely((ether_addr_equal(payload, rfc1042_header) &&
802 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
803 ether_addr_equal(payload, bridge_tunnel_header))) {
804 eth.h_proto = htons(ethertype);
805 skb_pull(frame, ETH_ALEN + 2);
806 }
807
808 memcpy(skb_push(frame, sizeof(eth)), &eth, sizeof(eth));
809 __skb_queue_tail(list, frame);
810 }
811
812 if (!reuse_skb)
813 dev_kfree_skb(skb);
814
815 return;
816
817 purge:
818 __skb_queue_purge(list);
819 dev_kfree_skb(skb);
820 }
821 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
822
823 /* Given a data frame determine the 802.1p/1d tag to use. */
824 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
825 struct cfg80211_qos_map *qos_map)
826 {
827 unsigned int dscp;
828 unsigned char vlan_priority;
829
830 /* skb->priority values from 256->263 are magic values to
831 * directly indicate a specific 802.1d priority. This is used
832 * to allow 802.1d priority to be passed directly in from VLAN
833 * tags, etc.
834 */
835 if (skb->priority >= 256 && skb->priority <= 263)
836 return skb->priority - 256;
837
838 if (skb_vlan_tag_present(skb)) {
839 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
840 >> VLAN_PRIO_SHIFT;
841 if (vlan_priority > 0)
842 return vlan_priority;
843 }
844
845 switch (skb->protocol) {
846 case htons(ETH_P_IP):
847 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
848 break;
849 case htons(ETH_P_IPV6):
850 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
851 break;
852 case htons(ETH_P_MPLS_UC):
853 case htons(ETH_P_MPLS_MC): {
854 struct mpls_label mpls_tmp, *mpls;
855
856 mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
857 sizeof(*mpls), &mpls_tmp);
858 if (!mpls)
859 return 0;
860
861 return (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
862 >> MPLS_LS_TC_SHIFT;
863 }
864 case htons(ETH_P_80221):
865 /* 802.21 is always network control traffic */
866 return 7;
867 default:
868 return 0;
869 }
870
871 if (qos_map) {
872 unsigned int i, tmp_dscp = dscp >> 2;
873
874 for (i = 0; i < qos_map->num_des; i++) {
875 if (tmp_dscp == qos_map->dscp_exception[i].dscp)
876 return qos_map->dscp_exception[i].up;
877 }
878
879 for (i = 0; i < 8; i++) {
880 if (tmp_dscp >= qos_map->up[i].low &&
881 tmp_dscp <= qos_map->up[i].high)
882 return i;
883 }
884 }
885
886 return dscp >> 5;
887 }
888 EXPORT_SYMBOL(cfg80211_classify8021d);
889
890 const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie)
891 {
892 const struct cfg80211_bss_ies *ies;
893
894 ies = rcu_dereference(bss->ies);
895 if (!ies)
896 return NULL;
897
898 return cfg80211_find_ie(ie, ies->data, ies->len);
899 }
900 EXPORT_SYMBOL(ieee80211_bss_get_ie);
901
902 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
903 {
904 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
905 struct net_device *dev = wdev->netdev;
906 int i;
907
908 if (!wdev->connect_keys)
909 return;
910
911 for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) {
912 if (!wdev->connect_keys->params[i].cipher)
913 continue;
914 if (rdev_add_key(rdev, dev, i, false, NULL,
915 &wdev->connect_keys->params[i])) {
916 netdev_err(dev, "failed to set key %d\n", i);
917 continue;
918 }
919 if (wdev->connect_keys->def == i &&
920 rdev_set_default_key(rdev, dev, i, true, true)) {
921 netdev_err(dev, "failed to set defkey %d\n", i);
922 continue;
923 }
924 }
925
926 kzfree(wdev->connect_keys);
927 wdev->connect_keys = NULL;
928 }
929
930 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
931 {
932 struct cfg80211_event *ev;
933 unsigned long flags;
934
935 spin_lock_irqsave(&wdev->event_lock, flags);
936 while (!list_empty(&wdev->event_list)) {
937 ev = list_first_entry(&wdev->event_list,
938 struct cfg80211_event, list);
939 list_del(&ev->list);
940 spin_unlock_irqrestore(&wdev->event_lock, flags);
941
942 wdev_lock(wdev);
943 switch (ev->type) {
944 case EVENT_CONNECT_RESULT:
945 __cfg80211_connect_result(
946 wdev->netdev,
947 &ev->cr,
948 ev->cr.status == WLAN_STATUS_SUCCESS);
949 break;
950 case EVENT_ROAMED:
951 __cfg80211_roamed(wdev, &ev->rm);
952 break;
953 case EVENT_DISCONNECTED:
954 __cfg80211_disconnected(wdev->netdev,
955 ev->dc.ie, ev->dc.ie_len,
956 ev->dc.reason,
957 !ev->dc.locally_generated);
958 break;
959 case EVENT_IBSS_JOINED:
960 __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
961 ev->ij.channel);
962 break;
963 case EVENT_STOPPED:
964 __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
965 break;
966 }
967 wdev_unlock(wdev);
968
969 kfree(ev);
970
971 spin_lock_irqsave(&wdev->event_lock, flags);
972 }
973 spin_unlock_irqrestore(&wdev->event_lock, flags);
974 }
975
976 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
977 {
978 struct wireless_dev *wdev;
979
980 ASSERT_RTNL();
981
982 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
983 cfg80211_process_wdev_events(wdev);
984 }
985
986 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
987 struct net_device *dev, enum nl80211_iftype ntype,
988 struct vif_params *params)
989 {
990 int err;
991 enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
992
993 ASSERT_RTNL();
994
995 /* don't support changing VLANs, you just re-create them */
996 if (otype == NL80211_IFTYPE_AP_VLAN)
997 return -EOPNOTSUPP;
998
999 /* cannot change into P2P device or NAN */
1000 if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
1001 ntype == NL80211_IFTYPE_NAN)
1002 return -EOPNOTSUPP;
1003
1004 if (!rdev->ops->change_virtual_intf ||
1005 !(rdev->wiphy.interface_modes & (1 << ntype)))
1006 return -EOPNOTSUPP;
1007
1008 /* if it's part of a bridge, reject changing type to station/ibss */
1009 if ((dev->priv_flags & IFF_BRIDGE_PORT) &&
1010 (ntype == NL80211_IFTYPE_ADHOC ||
1011 ntype == NL80211_IFTYPE_STATION ||
1012 ntype == NL80211_IFTYPE_P2P_CLIENT))
1013 return -EBUSY;
1014
1015 if (ntype != otype) {
1016 dev->ieee80211_ptr->use_4addr = false;
1017 dev->ieee80211_ptr->mesh_id_up_len = 0;
1018 wdev_lock(dev->ieee80211_ptr);
1019 rdev_set_qos_map(rdev, dev, NULL);
1020 wdev_unlock(dev->ieee80211_ptr);
1021
1022 switch (otype) {
1023 case NL80211_IFTYPE_AP:
1024 cfg80211_stop_ap(rdev, dev, true);
1025 break;
1026 case NL80211_IFTYPE_ADHOC:
1027 cfg80211_leave_ibss(rdev, dev, false);
1028 break;
1029 case NL80211_IFTYPE_STATION:
1030 case NL80211_IFTYPE_P2P_CLIENT:
1031 wdev_lock(dev->ieee80211_ptr);
1032 cfg80211_disconnect(rdev, dev,
1033 WLAN_REASON_DEAUTH_LEAVING, true);
1034 wdev_unlock(dev->ieee80211_ptr);
1035 break;
1036 case NL80211_IFTYPE_MESH_POINT:
1037 /* mesh should be handled? */
1038 break;
1039 default:
1040 break;
1041 }
1042
1043 cfg80211_process_rdev_events(rdev);
1044 }
1045
1046 err = rdev_change_virtual_intf(rdev, dev, ntype, params);
1047
1048 WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
1049
1050 if (!err && params && params->use_4addr != -1)
1051 dev->ieee80211_ptr->use_4addr = params->use_4addr;
1052
1053 if (!err) {
1054 dev->priv_flags &= ~IFF_DONT_BRIDGE;
1055 switch (ntype) {
1056 case NL80211_IFTYPE_STATION:
1057 if (dev->ieee80211_ptr->use_4addr)
1058 break;
1059 /* fall through */
1060 case NL80211_IFTYPE_OCB:
1061 case NL80211_IFTYPE_P2P_CLIENT:
1062 case NL80211_IFTYPE_ADHOC:
1063 dev->priv_flags |= IFF_DONT_BRIDGE;
1064 break;
1065 case NL80211_IFTYPE_P2P_GO:
1066 case NL80211_IFTYPE_AP:
1067 case NL80211_IFTYPE_AP_VLAN:
1068 case NL80211_IFTYPE_WDS:
1069 case NL80211_IFTYPE_MESH_POINT:
1070 /* bridging OK */
1071 break;
1072 case NL80211_IFTYPE_MONITOR:
1073 /* monitor can't bridge anyway */
1074 break;
1075 case NL80211_IFTYPE_UNSPECIFIED:
1076 case NUM_NL80211_IFTYPES:
1077 /* not happening */
1078 break;
1079 case NL80211_IFTYPE_P2P_DEVICE:
1080 case NL80211_IFTYPE_NAN:
1081 WARN_ON(1);
1082 break;
1083 }
1084 }
1085
1086 if (!err && ntype != otype && netif_running(dev)) {
1087 cfg80211_update_iface_num(rdev, ntype, 1);
1088 cfg80211_update_iface_num(rdev, otype, -1);
1089 }
1090
1091 return err;
1092 }
1093
1094 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
1095 {
1096 int modulation, streams, bitrate;
1097
1098 /* the formula below does only work for MCS values smaller than 32 */
1099 if (WARN_ON_ONCE(rate->mcs >= 32))
1100 return 0;
1101
1102 modulation = rate->mcs & 7;
1103 streams = (rate->mcs >> 3) + 1;
1104
1105 bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1106
1107 if (modulation < 4)
1108 bitrate *= (modulation + 1);
1109 else if (modulation == 4)
1110 bitrate *= (modulation + 2);
1111 else
1112 bitrate *= (modulation + 3);
1113
1114 bitrate *= streams;
1115
1116 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1117 bitrate = (bitrate / 9) * 10;
1118
1119 /* do NOT round down here */
1120 return (bitrate + 50000) / 100000;
1121 }
1122
1123 static u32 cfg80211_calculate_bitrate_60g(struct rate_info *rate)
1124 {
1125 static const u32 __mcs2bitrate[] = {
1126 /* control PHY */
1127 [0] = 275,
1128 /* SC PHY */
1129 [1] = 3850,
1130 [2] = 7700,
1131 [3] = 9625,
1132 [4] = 11550,
1133 [5] = 12512, /* 1251.25 mbps */
1134 [6] = 15400,
1135 [7] = 19250,
1136 [8] = 23100,
1137 [9] = 25025,
1138 [10] = 30800,
1139 [11] = 38500,
1140 [12] = 46200,
1141 /* OFDM PHY */
1142 [13] = 6930,
1143 [14] = 8662, /* 866.25 mbps */
1144 [15] = 13860,
1145 [16] = 17325,
1146 [17] = 20790,
1147 [18] = 27720,
1148 [19] = 34650,
1149 [20] = 41580,
1150 [21] = 45045,
1151 [22] = 51975,
1152 [23] = 62370,
1153 [24] = 67568, /* 6756.75 mbps */
1154 /* LP-SC PHY */
1155 [25] = 6260,
1156 [26] = 8340,
1157 [27] = 11120,
1158 [28] = 12510,
1159 [29] = 16680,
1160 [30] = 22240,
1161 [31] = 25030,
1162 };
1163
1164 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1165 return 0;
1166
1167 return __mcs2bitrate[rate->mcs];
1168 }
1169
1170 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1171 {
1172 static const u32 base[4][10] = {
1173 { 6500000,
1174 13000000,
1175 19500000,
1176 26000000,
1177 39000000,
1178 52000000,
1179 58500000,
1180 65000000,
1181 78000000,
1182 /* not in the spec, but some devices use this: */
1183 86500000,
1184 },
1185 { 13500000,
1186 27000000,
1187 40500000,
1188 54000000,
1189 81000000,
1190 108000000,
1191 121500000,
1192 135000000,
1193 162000000,
1194 180000000,
1195 },
1196 { 29300000,
1197 58500000,
1198 87800000,
1199 117000000,
1200 175500000,
1201 234000000,
1202 263300000,
1203 292500000,
1204 351000000,
1205 390000000,
1206 },
1207 { 58500000,
1208 117000000,
1209 175500000,
1210 234000000,
1211 351000000,
1212 468000000,
1213 526500000,
1214 585000000,
1215 702000000,
1216 780000000,
1217 },
1218 };
1219 u32 bitrate;
1220 int idx;
1221
1222 if (rate->mcs > 9)
1223 goto warn;
1224
1225 switch (rate->bw) {
1226 case RATE_INFO_BW_160:
1227 idx = 3;
1228 break;
1229 case RATE_INFO_BW_80:
1230 idx = 2;
1231 break;
1232 case RATE_INFO_BW_40:
1233 idx = 1;
1234 break;
1235 case RATE_INFO_BW_5:
1236 case RATE_INFO_BW_10:
1237 default:
1238 goto warn;
1239 case RATE_INFO_BW_20:
1240 idx = 0;
1241 }
1242
1243 bitrate = base[idx][rate->mcs];
1244 bitrate *= rate->nss;
1245
1246 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1247 bitrate = (bitrate / 9) * 10;
1248
1249 /* do NOT round down here */
1250 return (bitrate + 50000) / 100000;
1251 warn:
1252 WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1253 rate->bw, rate->mcs, rate->nss);
1254 return 0;
1255 }
1256
1257 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1258 {
1259 if (rate->flags & RATE_INFO_FLAGS_MCS)
1260 return cfg80211_calculate_bitrate_ht(rate);
1261 if (rate->flags & RATE_INFO_FLAGS_60G)
1262 return cfg80211_calculate_bitrate_60g(rate);
1263 if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1264 return cfg80211_calculate_bitrate_vht(rate);
1265
1266 return rate->legacy;
1267 }
1268 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1269
1270 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1271 enum ieee80211_p2p_attr_id attr,
1272 u8 *buf, unsigned int bufsize)
1273 {
1274 u8 *out = buf;
1275 u16 attr_remaining = 0;
1276 bool desired_attr = false;
1277 u16 desired_len = 0;
1278
1279 while (len > 0) {
1280 unsigned int iedatalen;
1281 unsigned int copy;
1282 const u8 *iedata;
1283
1284 if (len < 2)
1285 return -EILSEQ;
1286 iedatalen = ies[1];
1287 if (iedatalen + 2 > len)
1288 return -EILSEQ;
1289
1290 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1291 goto cont;
1292
1293 if (iedatalen < 4)
1294 goto cont;
1295
1296 iedata = ies + 2;
1297
1298 /* check WFA OUI, P2P subtype */
1299 if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1300 iedata[2] != 0x9a || iedata[3] != 0x09)
1301 goto cont;
1302
1303 iedatalen -= 4;
1304 iedata += 4;
1305
1306 /* check attribute continuation into this IE */
1307 copy = min_t(unsigned int, attr_remaining, iedatalen);
1308 if (copy && desired_attr) {
1309 desired_len += copy;
1310 if (out) {
1311 memcpy(out, iedata, min(bufsize, copy));
1312 out += min(bufsize, copy);
1313 bufsize -= min(bufsize, copy);
1314 }
1315
1316
1317 if (copy == attr_remaining)
1318 return desired_len;
1319 }
1320
1321 attr_remaining -= copy;
1322 if (attr_remaining)
1323 goto cont;
1324
1325 iedatalen -= copy;
1326 iedata += copy;
1327
1328 while (iedatalen > 0) {
1329 u16 attr_len;
1330
1331 /* P2P attribute ID & size must fit */
1332 if (iedatalen < 3)
1333 return -EILSEQ;
1334 desired_attr = iedata[0] == attr;
1335 attr_len = get_unaligned_le16(iedata + 1);
1336 iedatalen -= 3;
1337 iedata += 3;
1338
1339 copy = min_t(unsigned int, attr_len, iedatalen);
1340
1341 if (desired_attr) {
1342 desired_len += copy;
1343 if (out) {
1344 memcpy(out, iedata, min(bufsize, copy));
1345 out += min(bufsize, copy);
1346 bufsize -= min(bufsize, copy);
1347 }
1348
1349 if (copy == attr_len)
1350 return desired_len;
1351 }
1352
1353 iedata += copy;
1354 iedatalen -= copy;
1355 attr_remaining = attr_len - copy;
1356 }
1357
1358 cont:
1359 len -= ies[1] + 2;
1360 ies += ies[1] + 2;
1361 }
1362
1363 if (attr_remaining && desired_attr)
1364 return -EILSEQ;
1365
1366 return -ENOENT;
1367 }
1368 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1369
1370 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id)
1371 {
1372 int i;
1373
1374 for (i = 0; i < n_ids; i++)
1375 if (ids[i] == id)
1376 return true;
1377 return false;
1378 }
1379
1380 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1381 {
1382 /* we assume a validly formed IEs buffer */
1383 u8 len = ies[pos + 1];
1384
1385 pos += 2 + len;
1386
1387 /* the IE itself must have 255 bytes for fragments to follow */
1388 if (len < 255)
1389 return pos;
1390
1391 while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1392 len = ies[pos + 1];
1393 pos += 2 + len;
1394 }
1395
1396 return pos;
1397 }
1398
1399 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1400 const u8 *ids, int n_ids,
1401 const u8 *after_ric, int n_after_ric,
1402 size_t offset)
1403 {
1404 size_t pos = offset;
1405
1406 while (pos < ielen && ieee80211_id_in_list(ids, n_ids, ies[pos])) {
1407 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1408 pos = skip_ie(ies, ielen, pos);
1409
1410 while (pos < ielen &&
1411 !ieee80211_id_in_list(after_ric, n_after_ric,
1412 ies[pos]))
1413 pos = skip_ie(ies, ielen, pos);
1414 } else {
1415 pos = skip_ie(ies, ielen, pos);
1416 }
1417 }
1418
1419 return pos;
1420 }
1421 EXPORT_SYMBOL(ieee80211_ie_split_ric);
1422
1423 bool ieee80211_operating_class_to_band(u8 operating_class,
1424 enum nl80211_band *band)
1425 {
1426 switch (operating_class) {
1427 case 112:
1428 case 115 ... 127:
1429 case 128 ... 130:
1430 *band = NL80211_BAND_5GHZ;
1431 return true;
1432 case 81:
1433 case 82:
1434 case 83:
1435 case 84:
1436 *band = NL80211_BAND_2GHZ;
1437 return true;
1438 case 180:
1439 *band = NL80211_BAND_60GHZ;
1440 return true;
1441 }
1442
1443 return false;
1444 }
1445 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1446
1447 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1448 u8 *op_class)
1449 {
1450 u8 vht_opclass;
1451 u16 freq = chandef->center_freq1;
1452
1453 if (freq >= 2412 && freq <= 2472) {
1454 if (chandef->width > NL80211_CHAN_WIDTH_40)
1455 return false;
1456
1457 /* 2.407 GHz, channels 1..13 */
1458 if (chandef->width == NL80211_CHAN_WIDTH_40) {
1459 if (freq > chandef->chan->center_freq)
1460 *op_class = 83; /* HT40+ */
1461 else
1462 *op_class = 84; /* HT40- */
1463 } else {
1464 *op_class = 81;
1465 }
1466
1467 return true;
1468 }
1469
1470 if (freq == 2484) {
1471 if (chandef->width > NL80211_CHAN_WIDTH_40)
1472 return false;
1473
1474 *op_class = 82; /* channel 14 */
1475 return true;
1476 }
1477
1478 switch (chandef->width) {
1479 case NL80211_CHAN_WIDTH_80:
1480 vht_opclass = 128;
1481 break;
1482 case NL80211_CHAN_WIDTH_160:
1483 vht_opclass = 129;
1484 break;
1485 case NL80211_CHAN_WIDTH_80P80:
1486 vht_opclass = 130;
1487 break;
1488 case NL80211_CHAN_WIDTH_10:
1489 case NL80211_CHAN_WIDTH_5:
1490 return false; /* unsupported for now */
1491 default:
1492 vht_opclass = 0;
1493 break;
1494 }
1495
1496 /* 5 GHz, channels 36..48 */
1497 if (freq >= 5180 && freq <= 5240) {
1498 if (vht_opclass) {
1499 *op_class = vht_opclass;
1500 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1501 if (freq > chandef->chan->center_freq)
1502 *op_class = 116;
1503 else
1504 *op_class = 117;
1505 } else {
1506 *op_class = 115;
1507 }
1508
1509 return true;
1510 }
1511
1512 /* 5 GHz, channels 52..64 */
1513 if (freq >= 5260 && freq <= 5320) {
1514 if (vht_opclass) {
1515 *op_class = vht_opclass;
1516 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1517 if (freq > chandef->chan->center_freq)
1518 *op_class = 119;
1519 else
1520 *op_class = 120;
1521 } else {
1522 *op_class = 118;
1523 }
1524
1525 return true;
1526 }
1527
1528 /* 5 GHz, channels 100..144 */
1529 if (freq >= 5500 && freq <= 5720) {
1530 if (vht_opclass) {
1531 *op_class = vht_opclass;
1532 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1533 if (freq > chandef->chan->center_freq)
1534 *op_class = 122;
1535 else
1536 *op_class = 123;
1537 } else {
1538 *op_class = 121;
1539 }
1540
1541 return true;
1542 }
1543
1544 /* 5 GHz, channels 149..169 */
1545 if (freq >= 5745 && freq <= 5845) {
1546 if (vht_opclass) {
1547 *op_class = vht_opclass;
1548 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1549 if (freq > chandef->chan->center_freq)
1550 *op_class = 126;
1551 else
1552 *op_class = 127;
1553 } else if (freq <= 5805) {
1554 *op_class = 124;
1555 } else {
1556 *op_class = 125;
1557 }
1558
1559 return true;
1560 }
1561
1562 /* 56.16 GHz, channel 1..4 */
1563 if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 4) {
1564 if (chandef->width >= NL80211_CHAN_WIDTH_40)
1565 return false;
1566
1567 *op_class = 180;
1568 return true;
1569 }
1570
1571 /* not supported yet */
1572 return false;
1573 }
1574 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1575
1576 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
1577 u32 *beacon_int_gcd,
1578 bool *beacon_int_different)
1579 {
1580 struct wireless_dev *wdev;
1581
1582 *beacon_int_gcd = 0;
1583 *beacon_int_different = false;
1584
1585 list_for_each_entry(wdev, &wiphy->wdev_list, list) {
1586 if (!wdev->beacon_interval)
1587 continue;
1588
1589 if (!*beacon_int_gcd) {
1590 *beacon_int_gcd = wdev->beacon_interval;
1591 continue;
1592 }
1593
1594 if (wdev->beacon_interval == *beacon_int_gcd)
1595 continue;
1596
1597 *beacon_int_different = true;
1598 *beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval);
1599 }
1600
1601 if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
1602 if (*beacon_int_gcd)
1603 *beacon_int_different = true;
1604 *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
1605 }
1606 }
1607
1608 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1609 enum nl80211_iftype iftype, u32 beacon_int)
1610 {
1611 /*
1612 * This is just a basic pre-condition check; if interface combinations
1613 * are possible the driver must already be checking those with a call
1614 * to cfg80211_check_combinations(), in which case we'll validate more
1615 * through the cfg80211_calculate_bi_data() call and code in
1616 * cfg80211_iter_combinations().
1617 */
1618
1619 if (beacon_int < 10 || beacon_int > 10000)
1620 return -EINVAL;
1621
1622 return 0;
1623 }
1624
1625 int cfg80211_iter_combinations(struct wiphy *wiphy,
1626 struct iface_combination_params *params,
1627 void (*iter)(const struct ieee80211_iface_combination *c,
1628 void *data),
1629 void *data)
1630 {
1631 const struct ieee80211_regdomain *regdom;
1632 enum nl80211_dfs_regions region = 0;
1633 int i, j, iftype;
1634 int num_interfaces = 0;
1635 u32 used_iftypes = 0;
1636 u32 beacon_int_gcd;
1637 bool beacon_int_different;
1638
1639 /*
1640 * This is a bit strange, since the iteration used to rely only on
1641 * the data given by the driver, but here it now relies on context,
1642 * in form of the currently operating interfaces.
1643 * This is OK for all current users, and saves us from having to
1644 * push the GCD calculations into all the drivers.
1645 * In the future, this should probably rely more on data that's in
1646 * cfg80211 already - the only thing not would appear to be any new
1647 * interfaces (while being brought up) and channel/radar data.
1648 */
1649 cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
1650 &beacon_int_gcd, &beacon_int_different);
1651
1652 if (params->radar_detect) {
1653 rcu_read_lock();
1654 regdom = rcu_dereference(cfg80211_regdomain);
1655 if (regdom)
1656 region = regdom->dfs_region;
1657 rcu_read_unlock();
1658 }
1659
1660 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1661 num_interfaces += params->iftype_num[iftype];
1662 if (params->iftype_num[iftype] > 0 &&
1663 !(wiphy->software_iftypes & BIT(iftype)))
1664 used_iftypes |= BIT(iftype);
1665 }
1666
1667 for (i = 0; i < wiphy->n_iface_combinations; i++) {
1668 const struct ieee80211_iface_combination *c;
1669 struct ieee80211_iface_limit *limits;
1670 u32 all_iftypes = 0;
1671
1672 c = &wiphy->iface_combinations[i];
1673
1674 if (num_interfaces > c->max_interfaces)
1675 continue;
1676 if (params->num_different_channels > c->num_different_channels)
1677 continue;
1678
1679 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1680 GFP_KERNEL);
1681 if (!limits)
1682 return -ENOMEM;
1683
1684 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1685 if (wiphy->software_iftypes & BIT(iftype))
1686 continue;
1687 for (j = 0; j < c->n_limits; j++) {
1688 all_iftypes |= limits[j].types;
1689 if (!(limits[j].types & BIT(iftype)))
1690 continue;
1691 if (limits[j].max < params->iftype_num[iftype])
1692 goto cont;
1693 limits[j].max -= params->iftype_num[iftype];
1694 }
1695 }
1696
1697 if (params->radar_detect !=
1698 (c->radar_detect_widths & params->radar_detect))
1699 goto cont;
1700
1701 if (params->radar_detect && c->radar_detect_regions &&
1702 !(c->radar_detect_regions & BIT(region)))
1703 goto cont;
1704
1705 /* Finally check that all iftypes that we're currently
1706 * using are actually part of this combination. If they
1707 * aren't then we can't use this combination and have
1708 * to continue to the next.
1709 */
1710 if ((all_iftypes & used_iftypes) != used_iftypes)
1711 goto cont;
1712
1713 if (beacon_int_gcd) {
1714 if (c->beacon_int_min_gcd &&
1715 beacon_int_gcd < c->beacon_int_min_gcd)
1716 goto cont;
1717 if (!c->beacon_int_min_gcd && beacon_int_different)
1718 goto cont;
1719 }
1720
1721 /* This combination covered all interface types and
1722 * supported the requested numbers, so we're good.
1723 */
1724
1725 (*iter)(c, data);
1726 cont:
1727 kfree(limits);
1728 }
1729
1730 return 0;
1731 }
1732 EXPORT_SYMBOL(cfg80211_iter_combinations);
1733
1734 static void
1735 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
1736 void *data)
1737 {
1738 int *num = data;
1739 (*num)++;
1740 }
1741
1742 int cfg80211_check_combinations(struct wiphy *wiphy,
1743 struct iface_combination_params *params)
1744 {
1745 int err, num = 0;
1746
1747 err = cfg80211_iter_combinations(wiphy, params,
1748 cfg80211_iter_sum_ifcombs, &num);
1749 if (err)
1750 return err;
1751 if (num == 0)
1752 return -EBUSY;
1753
1754 return 0;
1755 }
1756 EXPORT_SYMBOL(cfg80211_check_combinations);
1757
1758 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1759 const u8 *rates, unsigned int n_rates,
1760 u32 *mask)
1761 {
1762 int i, j;
1763
1764 if (!sband)
1765 return -EINVAL;
1766
1767 if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1768 return -EINVAL;
1769
1770 *mask = 0;
1771
1772 for (i = 0; i < n_rates; i++) {
1773 int rate = (rates[i] & 0x7f) * 5;
1774 bool found = false;
1775
1776 for (j = 0; j < sband->n_bitrates; j++) {
1777 if (sband->bitrates[j].bitrate == rate) {
1778 found = true;
1779 *mask |= BIT(j);
1780 break;
1781 }
1782 }
1783 if (!found)
1784 return -EINVAL;
1785 }
1786
1787 /*
1788 * mask must have at least one bit set here since we
1789 * didn't accept a 0-length rates array nor allowed
1790 * entries in the array that didn't exist
1791 */
1792
1793 return 0;
1794 }
1795
1796 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
1797 {
1798 enum nl80211_band band;
1799 unsigned int n_channels = 0;
1800
1801 for (band = 0; band < NUM_NL80211_BANDS; band++)
1802 if (wiphy->bands[band])
1803 n_channels += wiphy->bands[band]->n_channels;
1804
1805 return n_channels;
1806 }
1807 EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
1808
1809 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
1810 struct station_info *sinfo)
1811 {
1812 struct cfg80211_registered_device *rdev;
1813 struct wireless_dev *wdev;
1814
1815 wdev = dev->ieee80211_ptr;
1816 if (!wdev)
1817 return -EOPNOTSUPP;
1818
1819 rdev = wiphy_to_rdev(wdev->wiphy);
1820 if (!rdev->ops->get_station)
1821 return -EOPNOTSUPP;
1822
1823 return rdev_get_station(rdev, dev, mac_addr, sinfo);
1824 }
1825 EXPORT_SYMBOL(cfg80211_get_station);
1826
1827 void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
1828 {
1829 int i;
1830
1831 if (!f)
1832 return;
1833
1834 kfree(f->serv_spec_info);
1835 kfree(f->srf_bf);
1836 kfree(f->srf_macs);
1837 for (i = 0; i < f->num_rx_filters; i++)
1838 kfree(f->rx_filters[i].filter);
1839
1840 for (i = 0; i < f->num_tx_filters; i++)
1841 kfree(f->tx_filters[i].filter);
1842
1843 kfree(f->rx_filters);
1844 kfree(f->tx_filters);
1845 kfree(f);
1846 }
1847 EXPORT_SYMBOL(cfg80211_free_nan_func);
1848
1849 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
1850 u32 center_freq_khz, u32 bw_khz)
1851 {
1852 u32 start_freq_khz, end_freq_khz;
1853
1854 start_freq_khz = center_freq_khz - (bw_khz / 2);
1855 end_freq_khz = center_freq_khz + (bw_khz / 2);
1856
1857 if (start_freq_khz >= freq_range->start_freq_khz &&
1858 end_freq_khz <= freq_range->end_freq_khz)
1859 return true;
1860
1861 return false;
1862 }
1863
1864 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
1865 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
1866 const unsigned char rfc1042_header[] __aligned(2) =
1867 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
1868 EXPORT_SYMBOL(rfc1042_header);
1869
1870 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
1871 const unsigned char bridge_tunnel_header[] __aligned(2) =
1872 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
1873 EXPORT_SYMBOL(bridge_tunnel_header);