]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - net/wireless/util.c
Merge branch 'am335x-phy-fixes' into omap-for-v5.0/fixes-v2
[mirror_ubuntu-eoan-kernel.git] / net / wireless / util.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Wireless utility functions
4 *
5 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2017 Intel Deutschland GmbH
8 * Copyright (C) 2018 Intel Corporation
9 */
10 #include <linux/export.h>
11 #include <linux/bitops.h>
12 #include <linux/etherdevice.h>
13 #include <linux/slab.h>
14 #include <linux/ieee80211.h>
15 #include <net/cfg80211.h>
16 #include <net/ip.h>
17 #include <net/dsfield.h>
18 #include <linux/if_vlan.h>
19 #include <linux/mpls.h>
20 #include <linux/gcd.h>
21 #include <linux/bitfield.h>
22 #include "core.h"
23 #include "rdev-ops.h"
24
25
26 struct ieee80211_rate *
27 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
28 u32 basic_rates, int bitrate)
29 {
30 struct ieee80211_rate *result = &sband->bitrates[0];
31 int i;
32
33 for (i = 0; i < sband->n_bitrates; i++) {
34 if (!(basic_rates & BIT(i)))
35 continue;
36 if (sband->bitrates[i].bitrate > bitrate)
37 continue;
38 result = &sband->bitrates[i];
39 }
40
41 return result;
42 }
43 EXPORT_SYMBOL(ieee80211_get_response_rate);
44
45 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
46 enum nl80211_bss_scan_width scan_width)
47 {
48 struct ieee80211_rate *bitrates;
49 u32 mandatory_rates = 0;
50 enum ieee80211_rate_flags mandatory_flag;
51 int i;
52
53 if (WARN_ON(!sband))
54 return 1;
55
56 if (sband->band == NL80211_BAND_2GHZ) {
57 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
58 scan_width == NL80211_BSS_CHAN_WIDTH_10)
59 mandatory_flag = IEEE80211_RATE_MANDATORY_G;
60 else
61 mandatory_flag = IEEE80211_RATE_MANDATORY_B;
62 } else {
63 mandatory_flag = IEEE80211_RATE_MANDATORY_A;
64 }
65
66 bitrates = sband->bitrates;
67 for (i = 0; i < sband->n_bitrates; i++)
68 if (bitrates[i].flags & mandatory_flag)
69 mandatory_rates |= BIT(i);
70 return mandatory_rates;
71 }
72 EXPORT_SYMBOL(ieee80211_mandatory_rates);
73
74 int ieee80211_channel_to_frequency(int chan, enum nl80211_band band)
75 {
76 /* see 802.11 17.3.8.3.2 and Annex J
77 * there are overlapping channel numbers in 5GHz and 2GHz bands */
78 if (chan <= 0)
79 return 0; /* not supported */
80 switch (band) {
81 case NL80211_BAND_2GHZ:
82 if (chan == 14)
83 return 2484;
84 else if (chan < 14)
85 return 2407 + chan * 5;
86 break;
87 case NL80211_BAND_5GHZ:
88 if (chan >= 182 && chan <= 196)
89 return 4000 + chan * 5;
90 else
91 return 5000 + chan * 5;
92 break;
93 case NL80211_BAND_60GHZ:
94 if (chan < 7)
95 return 56160 + chan * 2160;
96 break;
97 default:
98 ;
99 }
100 return 0; /* not supported */
101 }
102 EXPORT_SYMBOL(ieee80211_channel_to_frequency);
103
104 int ieee80211_frequency_to_channel(int freq)
105 {
106 /* see 802.11 17.3.8.3.2 and Annex J */
107 if (freq == 2484)
108 return 14;
109 else if (freq < 2484)
110 return (freq - 2407) / 5;
111 else if (freq >= 4910 && freq <= 4980)
112 return (freq - 4000) / 5;
113 else if (freq <= 45000) /* DMG band lower limit */
114 return (freq - 5000) / 5;
115 else if (freq >= 58320 && freq <= 70200)
116 return (freq - 56160) / 2160;
117 else
118 return 0;
119 }
120 EXPORT_SYMBOL(ieee80211_frequency_to_channel);
121
122 struct ieee80211_channel *ieee80211_get_channel(struct wiphy *wiphy, int freq)
123 {
124 enum nl80211_band band;
125 struct ieee80211_supported_band *sband;
126 int i;
127
128 for (band = 0; band < NUM_NL80211_BANDS; band++) {
129 sband = wiphy->bands[band];
130
131 if (!sband)
132 continue;
133
134 for (i = 0; i < sband->n_channels; i++) {
135 if (sband->channels[i].center_freq == freq)
136 return &sband->channels[i];
137 }
138 }
139
140 return NULL;
141 }
142 EXPORT_SYMBOL(ieee80211_get_channel);
143
144 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
145 {
146 int i, want;
147
148 switch (sband->band) {
149 case NL80211_BAND_5GHZ:
150 want = 3;
151 for (i = 0; i < sband->n_bitrates; i++) {
152 if (sband->bitrates[i].bitrate == 60 ||
153 sband->bitrates[i].bitrate == 120 ||
154 sband->bitrates[i].bitrate == 240) {
155 sband->bitrates[i].flags |=
156 IEEE80211_RATE_MANDATORY_A;
157 want--;
158 }
159 }
160 WARN_ON(want);
161 break;
162 case NL80211_BAND_2GHZ:
163 want = 7;
164 for (i = 0; i < sband->n_bitrates; i++) {
165 switch (sband->bitrates[i].bitrate) {
166 case 10:
167 case 20:
168 case 55:
169 case 110:
170 sband->bitrates[i].flags |=
171 IEEE80211_RATE_MANDATORY_B |
172 IEEE80211_RATE_MANDATORY_G;
173 want--;
174 break;
175 case 60:
176 case 120:
177 case 240:
178 sband->bitrates[i].flags |=
179 IEEE80211_RATE_MANDATORY_G;
180 want--;
181 /* fall through */
182 default:
183 sband->bitrates[i].flags |=
184 IEEE80211_RATE_ERP_G;
185 break;
186 }
187 }
188 WARN_ON(want != 0 && want != 3);
189 break;
190 case NL80211_BAND_60GHZ:
191 /* check for mandatory HT MCS 1..4 */
192 WARN_ON(!sband->ht_cap.ht_supported);
193 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
194 break;
195 case NUM_NL80211_BANDS:
196 default:
197 WARN_ON(1);
198 break;
199 }
200 }
201
202 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
203 {
204 enum nl80211_band band;
205
206 for (band = 0; band < NUM_NL80211_BANDS; band++)
207 if (wiphy->bands[band])
208 set_mandatory_flags_band(wiphy->bands[band]);
209 }
210
211 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
212 {
213 int i;
214 for (i = 0; i < wiphy->n_cipher_suites; i++)
215 if (cipher == wiphy->cipher_suites[i])
216 return true;
217 return false;
218 }
219
220 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
221 struct key_params *params, int key_idx,
222 bool pairwise, const u8 *mac_addr)
223 {
224 if (key_idx < 0 || key_idx > 5)
225 return -EINVAL;
226
227 if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
228 return -EINVAL;
229
230 if (pairwise && !mac_addr)
231 return -EINVAL;
232
233 switch (params->cipher) {
234 case WLAN_CIPHER_SUITE_TKIP:
235 case WLAN_CIPHER_SUITE_CCMP:
236 case WLAN_CIPHER_SUITE_CCMP_256:
237 case WLAN_CIPHER_SUITE_GCMP:
238 case WLAN_CIPHER_SUITE_GCMP_256:
239 /* Disallow pairwise keys with non-zero index unless it's WEP
240 * or a vendor specific cipher (because current deployments use
241 * pairwise WEP keys with non-zero indices and for vendor
242 * specific ciphers this should be validated in the driver or
243 * hardware level - but 802.11i clearly specifies to use zero)
244 */
245 if (pairwise && key_idx)
246 return -EINVAL;
247 break;
248 case WLAN_CIPHER_SUITE_AES_CMAC:
249 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
250 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
251 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
252 /* Disallow BIP (group-only) cipher as pairwise cipher */
253 if (pairwise)
254 return -EINVAL;
255 if (key_idx < 4)
256 return -EINVAL;
257 break;
258 case WLAN_CIPHER_SUITE_WEP40:
259 case WLAN_CIPHER_SUITE_WEP104:
260 if (key_idx > 3)
261 return -EINVAL;
262 default:
263 break;
264 }
265
266 switch (params->cipher) {
267 case WLAN_CIPHER_SUITE_WEP40:
268 if (params->key_len != WLAN_KEY_LEN_WEP40)
269 return -EINVAL;
270 break;
271 case WLAN_CIPHER_SUITE_TKIP:
272 if (params->key_len != WLAN_KEY_LEN_TKIP)
273 return -EINVAL;
274 break;
275 case WLAN_CIPHER_SUITE_CCMP:
276 if (params->key_len != WLAN_KEY_LEN_CCMP)
277 return -EINVAL;
278 break;
279 case WLAN_CIPHER_SUITE_CCMP_256:
280 if (params->key_len != WLAN_KEY_LEN_CCMP_256)
281 return -EINVAL;
282 break;
283 case WLAN_CIPHER_SUITE_GCMP:
284 if (params->key_len != WLAN_KEY_LEN_GCMP)
285 return -EINVAL;
286 break;
287 case WLAN_CIPHER_SUITE_GCMP_256:
288 if (params->key_len != WLAN_KEY_LEN_GCMP_256)
289 return -EINVAL;
290 break;
291 case WLAN_CIPHER_SUITE_WEP104:
292 if (params->key_len != WLAN_KEY_LEN_WEP104)
293 return -EINVAL;
294 break;
295 case WLAN_CIPHER_SUITE_AES_CMAC:
296 if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
297 return -EINVAL;
298 break;
299 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
300 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
301 return -EINVAL;
302 break;
303 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
304 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
305 return -EINVAL;
306 break;
307 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
308 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
309 return -EINVAL;
310 break;
311 default:
312 /*
313 * We don't know anything about this algorithm,
314 * allow using it -- but the driver must check
315 * all parameters! We still check below whether
316 * or not the driver supports this algorithm,
317 * of course.
318 */
319 break;
320 }
321
322 if (params->seq) {
323 switch (params->cipher) {
324 case WLAN_CIPHER_SUITE_WEP40:
325 case WLAN_CIPHER_SUITE_WEP104:
326 /* These ciphers do not use key sequence */
327 return -EINVAL;
328 case WLAN_CIPHER_SUITE_TKIP:
329 case WLAN_CIPHER_SUITE_CCMP:
330 case WLAN_CIPHER_SUITE_CCMP_256:
331 case WLAN_CIPHER_SUITE_GCMP:
332 case WLAN_CIPHER_SUITE_GCMP_256:
333 case WLAN_CIPHER_SUITE_AES_CMAC:
334 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
335 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
336 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
337 if (params->seq_len != 6)
338 return -EINVAL;
339 break;
340 }
341 }
342
343 if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
344 return -EINVAL;
345
346 return 0;
347 }
348
349 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
350 {
351 unsigned int hdrlen = 24;
352
353 if (ieee80211_is_data(fc)) {
354 if (ieee80211_has_a4(fc))
355 hdrlen = 30;
356 if (ieee80211_is_data_qos(fc)) {
357 hdrlen += IEEE80211_QOS_CTL_LEN;
358 if (ieee80211_has_order(fc))
359 hdrlen += IEEE80211_HT_CTL_LEN;
360 }
361 goto out;
362 }
363
364 if (ieee80211_is_mgmt(fc)) {
365 if (ieee80211_has_order(fc))
366 hdrlen += IEEE80211_HT_CTL_LEN;
367 goto out;
368 }
369
370 if (ieee80211_is_ctl(fc)) {
371 /*
372 * ACK and CTS are 10 bytes, all others 16. To see how
373 * to get this condition consider
374 * subtype mask: 0b0000000011110000 (0x00F0)
375 * ACK subtype: 0b0000000011010000 (0x00D0)
376 * CTS subtype: 0b0000000011000000 (0x00C0)
377 * bits that matter: ^^^ (0x00E0)
378 * value of those: 0b0000000011000000 (0x00C0)
379 */
380 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
381 hdrlen = 10;
382 else
383 hdrlen = 16;
384 }
385 out:
386 return hdrlen;
387 }
388 EXPORT_SYMBOL(ieee80211_hdrlen);
389
390 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
391 {
392 const struct ieee80211_hdr *hdr =
393 (const struct ieee80211_hdr *)skb->data;
394 unsigned int hdrlen;
395
396 if (unlikely(skb->len < 10))
397 return 0;
398 hdrlen = ieee80211_hdrlen(hdr->frame_control);
399 if (unlikely(hdrlen > skb->len))
400 return 0;
401 return hdrlen;
402 }
403 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
404
405 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
406 {
407 int ae = flags & MESH_FLAGS_AE;
408 /* 802.11-2012, 8.2.4.7.3 */
409 switch (ae) {
410 default:
411 case 0:
412 return 6;
413 case MESH_FLAGS_AE_A4:
414 return 12;
415 case MESH_FLAGS_AE_A5_A6:
416 return 18;
417 }
418 }
419
420 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
421 {
422 return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
423 }
424 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
425
426 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
427 const u8 *addr, enum nl80211_iftype iftype,
428 u8 data_offset)
429 {
430 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
431 struct {
432 u8 hdr[ETH_ALEN] __aligned(2);
433 __be16 proto;
434 } payload;
435 struct ethhdr tmp;
436 u16 hdrlen;
437 u8 mesh_flags = 0;
438
439 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
440 return -1;
441
442 hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset;
443 if (skb->len < hdrlen + 8)
444 return -1;
445
446 /* convert IEEE 802.11 header + possible LLC headers into Ethernet
447 * header
448 * IEEE 802.11 address fields:
449 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
450 * 0 0 DA SA BSSID n/a
451 * 0 1 DA BSSID SA n/a
452 * 1 0 BSSID SA DA n/a
453 * 1 1 RA TA DA SA
454 */
455 memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
456 memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
457
458 if (iftype == NL80211_IFTYPE_MESH_POINT)
459 skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
460
461 mesh_flags &= MESH_FLAGS_AE;
462
463 switch (hdr->frame_control &
464 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
465 case cpu_to_le16(IEEE80211_FCTL_TODS):
466 if (unlikely(iftype != NL80211_IFTYPE_AP &&
467 iftype != NL80211_IFTYPE_AP_VLAN &&
468 iftype != NL80211_IFTYPE_P2P_GO))
469 return -1;
470 break;
471 case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
472 if (unlikely(iftype != NL80211_IFTYPE_WDS &&
473 iftype != NL80211_IFTYPE_MESH_POINT &&
474 iftype != NL80211_IFTYPE_AP_VLAN &&
475 iftype != NL80211_IFTYPE_STATION))
476 return -1;
477 if (iftype == NL80211_IFTYPE_MESH_POINT) {
478 if (mesh_flags == MESH_FLAGS_AE_A4)
479 return -1;
480 if (mesh_flags == MESH_FLAGS_AE_A5_A6) {
481 skb_copy_bits(skb, hdrlen +
482 offsetof(struct ieee80211s_hdr, eaddr1),
483 tmp.h_dest, 2 * ETH_ALEN);
484 }
485 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
486 }
487 break;
488 case cpu_to_le16(IEEE80211_FCTL_FROMDS):
489 if ((iftype != NL80211_IFTYPE_STATION &&
490 iftype != NL80211_IFTYPE_P2P_CLIENT &&
491 iftype != NL80211_IFTYPE_MESH_POINT) ||
492 (is_multicast_ether_addr(tmp.h_dest) &&
493 ether_addr_equal(tmp.h_source, addr)))
494 return -1;
495 if (iftype == NL80211_IFTYPE_MESH_POINT) {
496 if (mesh_flags == MESH_FLAGS_AE_A5_A6)
497 return -1;
498 if (mesh_flags == MESH_FLAGS_AE_A4)
499 skb_copy_bits(skb, hdrlen +
500 offsetof(struct ieee80211s_hdr, eaddr1),
501 tmp.h_source, ETH_ALEN);
502 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
503 }
504 break;
505 case cpu_to_le16(0):
506 if (iftype != NL80211_IFTYPE_ADHOC &&
507 iftype != NL80211_IFTYPE_STATION &&
508 iftype != NL80211_IFTYPE_OCB)
509 return -1;
510 break;
511 }
512
513 skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
514 tmp.h_proto = payload.proto;
515
516 if (likely((ether_addr_equal(payload.hdr, rfc1042_header) &&
517 tmp.h_proto != htons(ETH_P_AARP) &&
518 tmp.h_proto != htons(ETH_P_IPX)) ||
519 ether_addr_equal(payload.hdr, bridge_tunnel_header)))
520 /* remove RFC1042 or Bridge-Tunnel encapsulation and
521 * replace EtherType */
522 hdrlen += ETH_ALEN + 2;
523 else
524 tmp.h_proto = htons(skb->len - hdrlen);
525
526 pskb_pull(skb, hdrlen);
527
528 if (!ehdr)
529 ehdr = skb_push(skb, sizeof(struct ethhdr));
530 memcpy(ehdr, &tmp, sizeof(tmp));
531
532 return 0;
533 }
534 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
535
536 static void
537 __frame_add_frag(struct sk_buff *skb, struct page *page,
538 void *ptr, int len, int size)
539 {
540 struct skb_shared_info *sh = skb_shinfo(skb);
541 int page_offset;
542
543 page_ref_inc(page);
544 page_offset = ptr - page_address(page);
545 skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
546 }
547
548 static void
549 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
550 int offset, int len)
551 {
552 struct skb_shared_info *sh = skb_shinfo(skb);
553 const skb_frag_t *frag = &sh->frags[0];
554 struct page *frag_page;
555 void *frag_ptr;
556 int frag_len, frag_size;
557 int head_size = skb->len - skb->data_len;
558 int cur_len;
559
560 frag_page = virt_to_head_page(skb->head);
561 frag_ptr = skb->data;
562 frag_size = head_size;
563
564 while (offset >= frag_size) {
565 offset -= frag_size;
566 frag_page = skb_frag_page(frag);
567 frag_ptr = skb_frag_address(frag);
568 frag_size = skb_frag_size(frag);
569 frag++;
570 }
571
572 frag_ptr += offset;
573 frag_len = frag_size - offset;
574
575 cur_len = min(len, frag_len);
576
577 __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
578 len -= cur_len;
579
580 while (len > 0) {
581 frag_len = skb_frag_size(frag);
582 cur_len = min(len, frag_len);
583 __frame_add_frag(frame, skb_frag_page(frag),
584 skb_frag_address(frag), cur_len, frag_len);
585 len -= cur_len;
586 frag++;
587 }
588 }
589
590 static struct sk_buff *
591 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
592 int offset, int len, bool reuse_frag)
593 {
594 struct sk_buff *frame;
595 int cur_len = len;
596
597 if (skb->len - offset < len)
598 return NULL;
599
600 /*
601 * When reusing framents, copy some data to the head to simplify
602 * ethernet header handling and speed up protocol header processing
603 * in the stack later.
604 */
605 if (reuse_frag)
606 cur_len = min_t(int, len, 32);
607
608 /*
609 * Allocate and reserve two bytes more for payload
610 * alignment since sizeof(struct ethhdr) is 14.
611 */
612 frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
613 if (!frame)
614 return NULL;
615
616 skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
617 skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
618
619 len -= cur_len;
620 if (!len)
621 return frame;
622
623 offset += cur_len;
624 __ieee80211_amsdu_copy_frag(skb, frame, offset, len);
625
626 return frame;
627 }
628
629 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
630 const u8 *addr, enum nl80211_iftype iftype,
631 const unsigned int extra_headroom,
632 const u8 *check_da, const u8 *check_sa)
633 {
634 unsigned int hlen = ALIGN(extra_headroom, 4);
635 struct sk_buff *frame = NULL;
636 u16 ethertype;
637 u8 *payload;
638 int offset = 0, remaining;
639 struct ethhdr eth;
640 bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
641 bool reuse_skb = false;
642 bool last = false;
643
644 while (!last) {
645 unsigned int subframe_len;
646 int len;
647 u8 padding;
648
649 skb_copy_bits(skb, offset, &eth, sizeof(eth));
650 len = ntohs(eth.h_proto);
651 subframe_len = sizeof(struct ethhdr) + len;
652 padding = (4 - subframe_len) & 0x3;
653
654 /* the last MSDU has no padding */
655 remaining = skb->len - offset;
656 if (subframe_len > remaining)
657 goto purge;
658
659 offset += sizeof(struct ethhdr);
660 last = remaining <= subframe_len + padding;
661
662 /* FIXME: should we really accept multicast DA? */
663 if ((check_da && !is_multicast_ether_addr(eth.h_dest) &&
664 !ether_addr_equal(check_da, eth.h_dest)) ||
665 (check_sa && !ether_addr_equal(check_sa, eth.h_source))) {
666 offset += len + padding;
667 continue;
668 }
669
670 /* reuse skb for the last subframe */
671 if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
672 skb_pull(skb, offset);
673 frame = skb;
674 reuse_skb = true;
675 } else {
676 frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
677 reuse_frag);
678 if (!frame)
679 goto purge;
680
681 offset += len + padding;
682 }
683
684 skb_reset_network_header(frame);
685 frame->dev = skb->dev;
686 frame->priority = skb->priority;
687
688 payload = frame->data;
689 ethertype = (payload[6] << 8) | payload[7];
690 if (likely((ether_addr_equal(payload, rfc1042_header) &&
691 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
692 ether_addr_equal(payload, bridge_tunnel_header))) {
693 eth.h_proto = htons(ethertype);
694 skb_pull(frame, ETH_ALEN + 2);
695 }
696
697 memcpy(skb_push(frame, sizeof(eth)), &eth, sizeof(eth));
698 __skb_queue_tail(list, frame);
699 }
700
701 if (!reuse_skb)
702 dev_kfree_skb(skb);
703
704 return;
705
706 purge:
707 __skb_queue_purge(list);
708 dev_kfree_skb(skb);
709 }
710 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
711
712 /* Given a data frame determine the 802.1p/1d tag to use. */
713 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
714 struct cfg80211_qos_map *qos_map)
715 {
716 unsigned int dscp;
717 unsigned char vlan_priority;
718
719 /* skb->priority values from 256->263 are magic values to
720 * directly indicate a specific 802.1d priority. This is used
721 * to allow 802.1d priority to be passed directly in from VLAN
722 * tags, etc.
723 */
724 if (skb->priority >= 256 && skb->priority <= 263)
725 return skb->priority - 256;
726
727 if (skb_vlan_tag_present(skb)) {
728 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
729 >> VLAN_PRIO_SHIFT;
730 if (vlan_priority > 0)
731 return vlan_priority;
732 }
733
734 switch (skb->protocol) {
735 case htons(ETH_P_IP):
736 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
737 break;
738 case htons(ETH_P_IPV6):
739 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
740 break;
741 case htons(ETH_P_MPLS_UC):
742 case htons(ETH_P_MPLS_MC): {
743 struct mpls_label mpls_tmp, *mpls;
744
745 mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
746 sizeof(*mpls), &mpls_tmp);
747 if (!mpls)
748 return 0;
749
750 return (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
751 >> MPLS_LS_TC_SHIFT;
752 }
753 case htons(ETH_P_80221):
754 /* 802.21 is always network control traffic */
755 return 7;
756 default:
757 return 0;
758 }
759
760 if (qos_map) {
761 unsigned int i, tmp_dscp = dscp >> 2;
762
763 for (i = 0; i < qos_map->num_des; i++) {
764 if (tmp_dscp == qos_map->dscp_exception[i].dscp)
765 return qos_map->dscp_exception[i].up;
766 }
767
768 for (i = 0; i < 8; i++) {
769 if (tmp_dscp >= qos_map->up[i].low &&
770 tmp_dscp <= qos_map->up[i].high)
771 return i;
772 }
773 }
774
775 return dscp >> 5;
776 }
777 EXPORT_SYMBOL(cfg80211_classify8021d);
778
779 const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie)
780 {
781 const struct cfg80211_bss_ies *ies;
782
783 ies = rcu_dereference(bss->ies);
784 if (!ies)
785 return NULL;
786
787 return cfg80211_find_ie(ie, ies->data, ies->len);
788 }
789 EXPORT_SYMBOL(ieee80211_bss_get_ie);
790
791 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
792 {
793 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
794 struct net_device *dev = wdev->netdev;
795 int i;
796
797 if (!wdev->connect_keys)
798 return;
799
800 for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) {
801 if (!wdev->connect_keys->params[i].cipher)
802 continue;
803 if (rdev_add_key(rdev, dev, i, false, NULL,
804 &wdev->connect_keys->params[i])) {
805 netdev_err(dev, "failed to set key %d\n", i);
806 continue;
807 }
808 if (wdev->connect_keys->def == i &&
809 rdev_set_default_key(rdev, dev, i, true, true)) {
810 netdev_err(dev, "failed to set defkey %d\n", i);
811 continue;
812 }
813 }
814
815 kzfree(wdev->connect_keys);
816 wdev->connect_keys = NULL;
817 }
818
819 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
820 {
821 struct cfg80211_event *ev;
822 unsigned long flags;
823
824 spin_lock_irqsave(&wdev->event_lock, flags);
825 while (!list_empty(&wdev->event_list)) {
826 ev = list_first_entry(&wdev->event_list,
827 struct cfg80211_event, list);
828 list_del(&ev->list);
829 spin_unlock_irqrestore(&wdev->event_lock, flags);
830
831 wdev_lock(wdev);
832 switch (ev->type) {
833 case EVENT_CONNECT_RESULT:
834 __cfg80211_connect_result(
835 wdev->netdev,
836 &ev->cr,
837 ev->cr.status == WLAN_STATUS_SUCCESS);
838 break;
839 case EVENT_ROAMED:
840 __cfg80211_roamed(wdev, &ev->rm);
841 break;
842 case EVENT_DISCONNECTED:
843 __cfg80211_disconnected(wdev->netdev,
844 ev->dc.ie, ev->dc.ie_len,
845 ev->dc.reason,
846 !ev->dc.locally_generated);
847 break;
848 case EVENT_IBSS_JOINED:
849 __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
850 ev->ij.channel);
851 break;
852 case EVENT_STOPPED:
853 __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
854 break;
855 case EVENT_PORT_AUTHORIZED:
856 __cfg80211_port_authorized(wdev, ev->pa.bssid);
857 break;
858 }
859 wdev_unlock(wdev);
860
861 kfree(ev);
862
863 spin_lock_irqsave(&wdev->event_lock, flags);
864 }
865 spin_unlock_irqrestore(&wdev->event_lock, flags);
866 }
867
868 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
869 {
870 struct wireless_dev *wdev;
871
872 ASSERT_RTNL();
873
874 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
875 cfg80211_process_wdev_events(wdev);
876 }
877
878 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
879 struct net_device *dev, enum nl80211_iftype ntype,
880 struct vif_params *params)
881 {
882 int err;
883 enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
884
885 ASSERT_RTNL();
886
887 /* don't support changing VLANs, you just re-create them */
888 if (otype == NL80211_IFTYPE_AP_VLAN)
889 return -EOPNOTSUPP;
890
891 /* cannot change into P2P device or NAN */
892 if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
893 ntype == NL80211_IFTYPE_NAN)
894 return -EOPNOTSUPP;
895
896 if (!rdev->ops->change_virtual_intf ||
897 !(rdev->wiphy.interface_modes & (1 << ntype)))
898 return -EOPNOTSUPP;
899
900 /* if it's part of a bridge, reject changing type to station/ibss */
901 if ((dev->priv_flags & IFF_BRIDGE_PORT) &&
902 (ntype == NL80211_IFTYPE_ADHOC ||
903 ntype == NL80211_IFTYPE_STATION ||
904 ntype == NL80211_IFTYPE_P2P_CLIENT))
905 return -EBUSY;
906
907 if (ntype != otype) {
908 dev->ieee80211_ptr->use_4addr = false;
909 dev->ieee80211_ptr->mesh_id_up_len = 0;
910 wdev_lock(dev->ieee80211_ptr);
911 rdev_set_qos_map(rdev, dev, NULL);
912 wdev_unlock(dev->ieee80211_ptr);
913
914 switch (otype) {
915 case NL80211_IFTYPE_AP:
916 cfg80211_stop_ap(rdev, dev, true);
917 break;
918 case NL80211_IFTYPE_ADHOC:
919 cfg80211_leave_ibss(rdev, dev, false);
920 break;
921 case NL80211_IFTYPE_STATION:
922 case NL80211_IFTYPE_P2P_CLIENT:
923 wdev_lock(dev->ieee80211_ptr);
924 cfg80211_disconnect(rdev, dev,
925 WLAN_REASON_DEAUTH_LEAVING, true);
926 wdev_unlock(dev->ieee80211_ptr);
927 break;
928 case NL80211_IFTYPE_MESH_POINT:
929 /* mesh should be handled? */
930 break;
931 default:
932 break;
933 }
934
935 cfg80211_process_rdev_events(rdev);
936 }
937
938 err = rdev_change_virtual_intf(rdev, dev, ntype, params);
939
940 WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
941
942 if (!err && params && params->use_4addr != -1)
943 dev->ieee80211_ptr->use_4addr = params->use_4addr;
944
945 if (!err) {
946 dev->priv_flags &= ~IFF_DONT_BRIDGE;
947 switch (ntype) {
948 case NL80211_IFTYPE_STATION:
949 if (dev->ieee80211_ptr->use_4addr)
950 break;
951 /* fall through */
952 case NL80211_IFTYPE_OCB:
953 case NL80211_IFTYPE_P2P_CLIENT:
954 case NL80211_IFTYPE_ADHOC:
955 dev->priv_flags |= IFF_DONT_BRIDGE;
956 break;
957 case NL80211_IFTYPE_P2P_GO:
958 case NL80211_IFTYPE_AP:
959 case NL80211_IFTYPE_AP_VLAN:
960 case NL80211_IFTYPE_WDS:
961 case NL80211_IFTYPE_MESH_POINT:
962 /* bridging OK */
963 break;
964 case NL80211_IFTYPE_MONITOR:
965 /* monitor can't bridge anyway */
966 break;
967 case NL80211_IFTYPE_UNSPECIFIED:
968 case NUM_NL80211_IFTYPES:
969 /* not happening */
970 break;
971 case NL80211_IFTYPE_P2P_DEVICE:
972 case NL80211_IFTYPE_NAN:
973 WARN_ON(1);
974 break;
975 }
976 }
977
978 if (!err && ntype != otype && netif_running(dev)) {
979 cfg80211_update_iface_num(rdev, ntype, 1);
980 cfg80211_update_iface_num(rdev, otype, -1);
981 }
982
983 return err;
984 }
985
986 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
987 {
988 int modulation, streams, bitrate;
989
990 /* the formula below does only work for MCS values smaller than 32 */
991 if (WARN_ON_ONCE(rate->mcs >= 32))
992 return 0;
993
994 modulation = rate->mcs & 7;
995 streams = (rate->mcs >> 3) + 1;
996
997 bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
998
999 if (modulation < 4)
1000 bitrate *= (modulation + 1);
1001 else if (modulation == 4)
1002 bitrate *= (modulation + 2);
1003 else
1004 bitrate *= (modulation + 3);
1005
1006 bitrate *= streams;
1007
1008 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1009 bitrate = (bitrate / 9) * 10;
1010
1011 /* do NOT round down here */
1012 return (bitrate + 50000) / 100000;
1013 }
1014
1015 static u32 cfg80211_calculate_bitrate_60g(struct rate_info *rate)
1016 {
1017 static const u32 __mcs2bitrate[] = {
1018 /* control PHY */
1019 [0] = 275,
1020 /* SC PHY */
1021 [1] = 3850,
1022 [2] = 7700,
1023 [3] = 9625,
1024 [4] = 11550,
1025 [5] = 12512, /* 1251.25 mbps */
1026 [6] = 15400,
1027 [7] = 19250,
1028 [8] = 23100,
1029 [9] = 25025,
1030 [10] = 30800,
1031 [11] = 38500,
1032 [12] = 46200,
1033 /* OFDM PHY */
1034 [13] = 6930,
1035 [14] = 8662, /* 866.25 mbps */
1036 [15] = 13860,
1037 [16] = 17325,
1038 [17] = 20790,
1039 [18] = 27720,
1040 [19] = 34650,
1041 [20] = 41580,
1042 [21] = 45045,
1043 [22] = 51975,
1044 [23] = 62370,
1045 [24] = 67568, /* 6756.75 mbps */
1046 /* LP-SC PHY */
1047 [25] = 6260,
1048 [26] = 8340,
1049 [27] = 11120,
1050 [28] = 12510,
1051 [29] = 16680,
1052 [30] = 22240,
1053 [31] = 25030,
1054 };
1055
1056 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1057 return 0;
1058
1059 return __mcs2bitrate[rate->mcs];
1060 }
1061
1062 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1063 {
1064 static const u32 base[4][10] = {
1065 { 6500000,
1066 13000000,
1067 19500000,
1068 26000000,
1069 39000000,
1070 52000000,
1071 58500000,
1072 65000000,
1073 78000000,
1074 /* not in the spec, but some devices use this: */
1075 86500000,
1076 },
1077 { 13500000,
1078 27000000,
1079 40500000,
1080 54000000,
1081 81000000,
1082 108000000,
1083 121500000,
1084 135000000,
1085 162000000,
1086 180000000,
1087 },
1088 { 29300000,
1089 58500000,
1090 87800000,
1091 117000000,
1092 175500000,
1093 234000000,
1094 263300000,
1095 292500000,
1096 351000000,
1097 390000000,
1098 },
1099 { 58500000,
1100 117000000,
1101 175500000,
1102 234000000,
1103 351000000,
1104 468000000,
1105 526500000,
1106 585000000,
1107 702000000,
1108 780000000,
1109 },
1110 };
1111 u32 bitrate;
1112 int idx;
1113
1114 if (rate->mcs > 9)
1115 goto warn;
1116
1117 switch (rate->bw) {
1118 case RATE_INFO_BW_160:
1119 idx = 3;
1120 break;
1121 case RATE_INFO_BW_80:
1122 idx = 2;
1123 break;
1124 case RATE_INFO_BW_40:
1125 idx = 1;
1126 break;
1127 case RATE_INFO_BW_5:
1128 case RATE_INFO_BW_10:
1129 default:
1130 goto warn;
1131 case RATE_INFO_BW_20:
1132 idx = 0;
1133 }
1134
1135 bitrate = base[idx][rate->mcs];
1136 bitrate *= rate->nss;
1137
1138 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1139 bitrate = (bitrate / 9) * 10;
1140
1141 /* do NOT round down here */
1142 return (bitrate + 50000) / 100000;
1143 warn:
1144 WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1145 rate->bw, rate->mcs, rate->nss);
1146 return 0;
1147 }
1148
1149 static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate)
1150 {
1151 #define SCALE 2048
1152 u16 mcs_divisors[12] = {
1153 34133, /* 16.666666... */
1154 17067, /* 8.333333... */
1155 11378, /* 5.555555... */
1156 8533, /* 4.166666... */
1157 5689, /* 2.777777... */
1158 4267, /* 2.083333... */
1159 3923, /* 1.851851... */
1160 3413, /* 1.666666... */
1161 2844, /* 1.388888... */
1162 2560, /* 1.250000... */
1163 2276, /* 1.111111... */
1164 2048, /* 1.000000... */
1165 };
1166 u32 rates_160M[3] = { 960777777, 907400000, 816666666 };
1167 u32 rates_969[3] = { 480388888, 453700000, 408333333 };
1168 u32 rates_484[3] = { 229411111, 216666666, 195000000 };
1169 u32 rates_242[3] = { 114711111, 108333333, 97500000 };
1170 u32 rates_106[3] = { 40000000, 37777777, 34000000 };
1171 u32 rates_52[3] = { 18820000, 17777777, 16000000 };
1172 u32 rates_26[3] = { 9411111, 8888888, 8000000 };
1173 u64 tmp;
1174 u32 result;
1175
1176 if (WARN_ON_ONCE(rate->mcs > 11))
1177 return 0;
1178
1179 if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2))
1180 return 0;
1181 if (WARN_ON_ONCE(rate->he_ru_alloc >
1182 NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1183 return 0;
1184 if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1185 return 0;
1186
1187 if (rate->bw == RATE_INFO_BW_160)
1188 result = rates_160M[rate->he_gi];
1189 else if (rate->bw == RATE_INFO_BW_80 ||
1190 (rate->bw == RATE_INFO_BW_HE_RU &&
1191 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996))
1192 result = rates_969[rate->he_gi];
1193 else if (rate->bw == RATE_INFO_BW_40 ||
1194 (rate->bw == RATE_INFO_BW_HE_RU &&
1195 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484))
1196 result = rates_484[rate->he_gi];
1197 else if (rate->bw == RATE_INFO_BW_20 ||
1198 (rate->bw == RATE_INFO_BW_HE_RU &&
1199 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242))
1200 result = rates_242[rate->he_gi];
1201 else if (rate->bw == RATE_INFO_BW_HE_RU &&
1202 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106)
1203 result = rates_106[rate->he_gi];
1204 else if (rate->bw == RATE_INFO_BW_HE_RU &&
1205 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52)
1206 result = rates_52[rate->he_gi];
1207 else if (rate->bw == RATE_INFO_BW_HE_RU &&
1208 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26)
1209 result = rates_26[rate->he_gi];
1210 else if (WARN(1, "invalid HE MCS: bw:%d, ru:%d\n",
1211 rate->bw, rate->he_ru_alloc))
1212 return 0;
1213
1214 /* now scale to the appropriate MCS */
1215 tmp = result;
1216 tmp *= SCALE;
1217 do_div(tmp, mcs_divisors[rate->mcs]);
1218 result = tmp;
1219
1220 /* and take NSS, DCM into account */
1221 result = (result * rate->nss) / 8;
1222 if (rate->he_dcm)
1223 result /= 2;
1224
1225 return result;
1226 }
1227
1228 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1229 {
1230 if (rate->flags & RATE_INFO_FLAGS_MCS)
1231 return cfg80211_calculate_bitrate_ht(rate);
1232 if (rate->flags & RATE_INFO_FLAGS_60G)
1233 return cfg80211_calculate_bitrate_60g(rate);
1234 if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1235 return cfg80211_calculate_bitrate_vht(rate);
1236 if (rate->flags & RATE_INFO_FLAGS_HE_MCS)
1237 return cfg80211_calculate_bitrate_he(rate);
1238
1239 return rate->legacy;
1240 }
1241 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1242
1243 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1244 enum ieee80211_p2p_attr_id attr,
1245 u8 *buf, unsigned int bufsize)
1246 {
1247 u8 *out = buf;
1248 u16 attr_remaining = 0;
1249 bool desired_attr = false;
1250 u16 desired_len = 0;
1251
1252 while (len > 0) {
1253 unsigned int iedatalen;
1254 unsigned int copy;
1255 const u8 *iedata;
1256
1257 if (len < 2)
1258 return -EILSEQ;
1259 iedatalen = ies[1];
1260 if (iedatalen + 2 > len)
1261 return -EILSEQ;
1262
1263 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1264 goto cont;
1265
1266 if (iedatalen < 4)
1267 goto cont;
1268
1269 iedata = ies + 2;
1270
1271 /* check WFA OUI, P2P subtype */
1272 if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1273 iedata[2] != 0x9a || iedata[3] != 0x09)
1274 goto cont;
1275
1276 iedatalen -= 4;
1277 iedata += 4;
1278
1279 /* check attribute continuation into this IE */
1280 copy = min_t(unsigned int, attr_remaining, iedatalen);
1281 if (copy && desired_attr) {
1282 desired_len += copy;
1283 if (out) {
1284 memcpy(out, iedata, min(bufsize, copy));
1285 out += min(bufsize, copy);
1286 bufsize -= min(bufsize, copy);
1287 }
1288
1289
1290 if (copy == attr_remaining)
1291 return desired_len;
1292 }
1293
1294 attr_remaining -= copy;
1295 if (attr_remaining)
1296 goto cont;
1297
1298 iedatalen -= copy;
1299 iedata += copy;
1300
1301 while (iedatalen > 0) {
1302 u16 attr_len;
1303
1304 /* P2P attribute ID & size must fit */
1305 if (iedatalen < 3)
1306 return -EILSEQ;
1307 desired_attr = iedata[0] == attr;
1308 attr_len = get_unaligned_le16(iedata + 1);
1309 iedatalen -= 3;
1310 iedata += 3;
1311
1312 copy = min_t(unsigned int, attr_len, iedatalen);
1313
1314 if (desired_attr) {
1315 desired_len += copy;
1316 if (out) {
1317 memcpy(out, iedata, min(bufsize, copy));
1318 out += min(bufsize, copy);
1319 bufsize -= min(bufsize, copy);
1320 }
1321
1322 if (copy == attr_len)
1323 return desired_len;
1324 }
1325
1326 iedata += copy;
1327 iedatalen -= copy;
1328 attr_remaining = attr_len - copy;
1329 }
1330
1331 cont:
1332 len -= ies[1] + 2;
1333 ies += ies[1] + 2;
1334 }
1335
1336 if (attr_remaining && desired_attr)
1337 return -EILSEQ;
1338
1339 return -ENOENT;
1340 }
1341 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1342
1343 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
1344 {
1345 int i;
1346
1347 /* Make sure array values are legal */
1348 if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
1349 return false;
1350
1351 i = 0;
1352 while (i < n_ids) {
1353 if (ids[i] == WLAN_EID_EXTENSION) {
1354 if (id_ext && (ids[i + 1] == id))
1355 return true;
1356
1357 i += 2;
1358 continue;
1359 }
1360
1361 if (ids[i] == id && !id_ext)
1362 return true;
1363
1364 i++;
1365 }
1366 return false;
1367 }
1368
1369 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1370 {
1371 /* we assume a validly formed IEs buffer */
1372 u8 len = ies[pos + 1];
1373
1374 pos += 2 + len;
1375
1376 /* the IE itself must have 255 bytes for fragments to follow */
1377 if (len < 255)
1378 return pos;
1379
1380 while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1381 len = ies[pos + 1];
1382 pos += 2 + len;
1383 }
1384
1385 return pos;
1386 }
1387
1388 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1389 const u8 *ids, int n_ids,
1390 const u8 *after_ric, int n_after_ric,
1391 size_t offset)
1392 {
1393 size_t pos = offset;
1394
1395 while (pos < ielen) {
1396 u8 ext = 0;
1397
1398 if (ies[pos] == WLAN_EID_EXTENSION)
1399 ext = 2;
1400 if ((pos + ext) >= ielen)
1401 break;
1402
1403 if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext],
1404 ies[pos] == WLAN_EID_EXTENSION))
1405 break;
1406
1407 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1408 pos = skip_ie(ies, ielen, pos);
1409
1410 while (pos < ielen) {
1411 if (ies[pos] == WLAN_EID_EXTENSION)
1412 ext = 2;
1413 else
1414 ext = 0;
1415
1416 if ((pos + ext) >= ielen)
1417 break;
1418
1419 if (!ieee80211_id_in_list(after_ric,
1420 n_after_ric,
1421 ies[pos + ext],
1422 ext == 2))
1423 pos = skip_ie(ies, ielen, pos);
1424 else
1425 break;
1426 }
1427 } else {
1428 pos = skip_ie(ies, ielen, pos);
1429 }
1430 }
1431
1432 return pos;
1433 }
1434 EXPORT_SYMBOL(ieee80211_ie_split_ric);
1435
1436 bool ieee80211_operating_class_to_band(u8 operating_class,
1437 enum nl80211_band *band)
1438 {
1439 switch (operating_class) {
1440 case 112:
1441 case 115 ... 127:
1442 case 128 ... 130:
1443 *band = NL80211_BAND_5GHZ;
1444 return true;
1445 case 81:
1446 case 82:
1447 case 83:
1448 case 84:
1449 *band = NL80211_BAND_2GHZ;
1450 return true;
1451 case 180:
1452 *band = NL80211_BAND_60GHZ;
1453 return true;
1454 }
1455
1456 return false;
1457 }
1458 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1459
1460 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1461 u8 *op_class)
1462 {
1463 u8 vht_opclass;
1464 u32 freq = chandef->center_freq1;
1465
1466 if (freq >= 2412 && freq <= 2472) {
1467 if (chandef->width > NL80211_CHAN_WIDTH_40)
1468 return false;
1469
1470 /* 2.407 GHz, channels 1..13 */
1471 if (chandef->width == NL80211_CHAN_WIDTH_40) {
1472 if (freq > chandef->chan->center_freq)
1473 *op_class = 83; /* HT40+ */
1474 else
1475 *op_class = 84; /* HT40- */
1476 } else {
1477 *op_class = 81;
1478 }
1479
1480 return true;
1481 }
1482
1483 if (freq == 2484) {
1484 if (chandef->width > NL80211_CHAN_WIDTH_40)
1485 return false;
1486
1487 *op_class = 82; /* channel 14 */
1488 return true;
1489 }
1490
1491 switch (chandef->width) {
1492 case NL80211_CHAN_WIDTH_80:
1493 vht_opclass = 128;
1494 break;
1495 case NL80211_CHAN_WIDTH_160:
1496 vht_opclass = 129;
1497 break;
1498 case NL80211_CHAN_WIDTH_80P80:
1499 vht_opclass = 130;
1500 break;
1501 case NL80211_CHAN_WIDTH_10:
1502 case NL80211_CHAN_WIDTH_5:
1503 return false; /* unsupported for now */
1504 default:
1505 vht_opclass = 0;
1506 break;
1507 }
1508
1509 /* 5 GHz, channels 36..48 */
1510 if (freq >= 5180 && freq <= 5240) {
1511 if (vht_opclass) {
1512 *op_class = vht_opclass;
1513 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1514 if (freq > chandef->chan->center_freq)
1515 *op_class = 116;
1516 else
1517 *op_class = 117;
1518 } else {
1519 *op_class = 115;
1520 }
1521
1522 return true;
1523 }
1524
1525 /* 5 GHz, channels 52..64 */
1526 if (freq >= 5260 && freq <= 5320) {
1527 if (vht_opclass) {
1528 *op_class = vht_opclass;
1529 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1530 if (freq > chandef->chan->center_freq)
1531 *op_class = 119;
1532 else
1533 *op_class = 120;
1534 } else {
1535 *op_class = 118;
1536 }
1537
1538 return true;
1539 }
1540
1541 /* 5 GHz, channels 100..144 */
1542 if (freq >= 5500 && freq <= 5720) {
1543 if (vht_opclass) {
1544 *op_class = vht_opclass;
1545 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1546 if (freq > chandef->chan->center_freq)
1547 *op_class = 122;
1548 else
1549 *op_class = 123;
1550 } else {
1551 *op_class = 121;
1552 }
1553
1554 return true;
1555 }
1556
1557 /* 5 GHz, channels 149..169 */
1558 if (freq >= 5745 && freq <= 5845) {
1559 if (vht_opclass) {
1560 *op_class = vht_opclass;
1561 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1562 if (freq > chandef->chan->center_freq)
1563 *op_class = 126;
1564 else
1565 *op_class = 127;
1566 } else if (freq <= 5805) {
1567 *op_class = 124;
1568 } else {
1569 *op_class = 125;
1570 }
1571
1572 return true;
1573 }
1574
1575 /* 56.16 GHz, channel 1..4 */
1576 if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) {
1577 if (chandef->width >= NL80211_CHAN_WIDTH_40)
1578 return false;
1579
1580 *op_class = 180;
1581 return true;
1582 }
1583
1584 /* not supported yet */
1585 return false;
1586 }
1587 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1588
1589 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
1590 u32 *beacon_int_gcd,
1591 bool *beacon_int_different)
1592 {
1593 struct wireless_dev *wdev;
1594
1595 *beacon_int_gcd = 0;
1596 *beacon_int_different = false;
1597
1598 list_for_each_entry(wdev, &wiphy->wdev_list, list) {
1599 if (!wdev->beacon_interval)
1600 continue;
1601
1602 if (!*beacon_int_gcd) {
1603 *beacon_int_gcd = wdev->beacon_interval;
1604 continue;
1605 }
1606
1607 if (wdev->beacon_interval == *beacon_int_gcd)
1608 continue;
1609
1610 *beacon_int_different = true;
1611 *beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval);
1612 }
1613
1614 if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
1615 if (*beacon_int_gcd)
1616 *beacon_int_different = true;
1617 *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
1618 }
1619 }
1620
1621 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1622 enum nl80211_iftype iftype, u32 beacon_int)
1623 {
1624 /*
1625 * This is just a basic pre-condition check; if interface combinations
1626 * are possible the driver must already be checking those with a call
1627 * to cfg80211_check_combinations(), in which case we'll validate more
1628 * through the cfg80211_calculate_bi_data() call and code in
1629 * cfg80211_iter_combinations().
1630 */
1631
1632 if (beacon_int < 10 || beacon_int > 10000)
1633 return -EINVAL;
1634
1635 return 0;
1636 }
1637
1638 int cfg80211_iter_combinations(struct wiphy *wiphy,
1639 struct iface_combination_params *params,
1640 void (*iter)(const struct ieee80211_iface_combination *c,
1641 void *data),
1642 void *data)
1643 {
1644 const struct ieee80211_regdomain *regdom;
1645 enum nl80211_dfs_regions region = 0;
1646 int i, j, iftype;
1647 int num_interfaces = 0;
1648 u32 used_iftypes = 0;
1649 u32 beacon_int_gcd;
1650 bool beacon_int_different;
1651
1652 /*
1653 * This is a bit strange, since the iteration used to rely only on
1654 * the data given by the driver, but here it now relies on context,
1655 * in form of the currently operating interfaces.
1656 * This is OK for all current users, and saves us from having to
1657 * push the GCD calculations into all the drivers.
1658 * In the future, this should probably rely more on data that's in
1659 * cfg80211 already - the only thing not would appear to be any new
1660 * interfaces (while being brought up) and channel/radar data.
1661 */
1662 cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
1663 &beacon_int_gcd, &beacon_int_different);
1664
1665 if (params->radar_detect) {
1666 rcu_read_lock();
1667 regdom = rcu_dereference(cfg80211_regdomain);
1668 if (regdom)
1669 region = regdom->dfs_region;
1670 rcu_read_unlock();
1671 }
1672
1673 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1674 num_interfaces += params->iftype_num[iftype];
1675 if (params->iftype_num[iftype] > 0 &&
1676 !(wiphy->software_iftypes & BIT(iftype)))
1677 used_iftypes |= BIT(iftype);
1678 }
1679
1680 for (i = 0; i < wiphy->n_iface_combinations; i++) {
1681 const struct ieee80211_iface_combination *c;
1682 struct ieee80211_iface_limit *limits;
1683 u32 all_iftypes = 0;
1684
1685 c = &wiphy->iface_combinations[i];
1686
1687 if (num_interfaces > c->max_interfaces)
1688 continue;
1689 if (params->num_different_channels > c->num_different_channels)
1690 continue;
1691
1692 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1693 GFP_KERNEL);
1694 if (!limits)
1695 return -ENOMEM;
1696
1697 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1698 if (wiphy->software_iftypes & BIT(iftype))
1699 continue;
1700 for (j = 0; j < c->n_limits; j++) {
1701 all_iftypes |= limits[j].types;
1702 if (!(limits[j].types & BIT(iftype)))
1703 continue;
1704 if (limits[j].max < params->iftype_num[iftype])
1705 goto cont;
1706 limits[j].max -= params->iftype_num[iftype];
1707 }
1708 }
1709
1710 if (params->radar_detect !=
1711 (c->radar_detect_widths & params->radar_detect))
1712 goto cont;
1713
1714 if (params->radar_detect && c->radar_detect_regions &&
1715 !(c->radar_detect_regions & BIT(region)))
1716 goto cont;
1717
1718 /* Finally check that all iftypes that we're currently
1719 * using are actually part of this combination. If they
1720 * aren't then we can't use this combination and have
1721 * to continue to the next.
1722 */
1723 if ((all_iftypes & used_iftypes) != used_iftypes)
1724 goto cont;
1725
1726 if (beacon_int_gcd) {
1727 if (c->beacon_int_min_gcd &&
1728 beacon_int_gcd < c->beacon_int_min_gcd)
1729 goto cont;
1730 if (!c->beacon_int_min_gcd && beacon_int_different)
1731 goto cont;
1732 }
1733
1734 /* This combination covered all interface types and
1735 * supported the requested numbers, so we're good.
1736 */
1737
1738 (*iter)(c, data);
1739 cont:
1740 kfree(limits);
1741 }
1742
1743 return 0;
1744 }
1745 EXPORT_SYMBOL(cfg80211_iter_combinations);
1746
1747 static void
1748 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
1749 void *data)
1750 {
1751 int *num = data;
1752 (*num)++;
1753 }
1754
1755 int cfg80211_check_combinations(struct wiphy *wiphy,
1756 struct iface_combination_params *params)
1757 {
1758 int err, num = 0;
1759
1760 err = cfg80211_iter_combinations(wiphy, params,
1761 cfg80211_iter_sum_ifcombs, &num);
1762 if (err)
1763 return err;
1764 if (num == 0)
1765 return -EBUSY;
1766
1767 return 0;
1768 }
1769 EXPORT_SYMBOL(cfg80211_check_combinations);
1770
1771 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1772 const u8 *rates, unsigned int n_rates,
1773 u32 *mask)
1774 {
1775 int i, j;
1776
1777 if (!sband)
1778 return -EINVAL;
1779
1780 if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1781 return -EINVAL;
1782
1783 *mask = 0;
1784
1785 for (i = 0; i < n_rates; i++) {
1786 int rate = (rates[i] & 0x7f) * 5;
1787 bool found = false;
1788
1789 for (j = 0; j < sband->n_bitrates; j++) {
1790 if (sband->bitrates[j].bitrate == rate) {
1791 found = true;
1792 *mask |= BIT(j);
1793 break;
1794 }
1795 }
1796 if (!found)
1797 return -EINVAL;
1798 }
1799
1800 /*
1801 * mask must have at least one bit set here since we
1802 * didn't accept a 0-length rates array nor allowed
1803 * entries in the array that didn't exist
1804 */
1805
1806 return 0;
1807 }
1808
1809 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
1810 {
1811 enum nl80211_band band;
1812 unsigned int n_channels = 0;
1813
1814 for (band = 0; band < NUM_NL80211_BANDS; band++)
1815 if (wiphy->bands[band])
1816 n_channels += wiphy->bands[band]->n_channels;
1817
1818 return n_channels;
1819 }
1820 EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
1821
1822 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
1823 struct station_info *sinfo)
1824 {
1825 struct cfg80211_registered_device *rdev;
1826 struct wireless_dev *wdev;
1827
1828 wdev = dev->ieee80211_ptr;
1829 if (!wdev)
1830 return -EOPNOTSUPP;
1831
1832 rdev = wiphy_to_rdev(wdev->wiphy);
1833 if (!rdev->ops->get_station)
1834 return -EOPNOTSUPP;
1835
1836 memset(sinfo, 0, sizeof(*sinfo));
1837
1838 return rdev_get_station(rdev, dev, mac_addr, sinfo);
1839 }
1840 EXPORT_SYMBOL(cfg80211_get_station);
1841
1842 void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
1843 {
1844 int i;
1845
1846 if (!f)
1847 return;
1848
1849 kfree(f->serv_spec_info);
1850 kfree(f->srf_bf);
1851 kfree(f->srf_macs);
1852 for (i = 0; i < f->num_rx_filters; i++)
1853 kfree(f->rx_filters[i].filter);
1854
1855 for (i = 0; i < f->num_tx_filters; i++)
1856 kfree(f->tx_filters[i].filter);
1857
1858 kfree(f->rx_filters);
1859 kfree(f->tx_filters);
1860 kfree(f);
1861 }
1862 EXPORT_SYMBOL(cfg80211_free_nan_func);
1863
1864 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
1865 u32 center_freq_khz, u32 bw_khz)
1866 {
1867 u32 start_freq_khz, end_freq_khz;
1868
1869 start_freq_khz = center_freq_khz - (bw_khz / 2);
1870 end_freq_khz = center_freq_khz + (bw_khz / 2);
1871
1872 if (start_freq_khz >= freq_range->start_freq_khz &&
1873 end_freq_khz <= freq_range->end_freq_khz)
1874 return true;
1875
1876 return false;
1877 }
1878
1879 int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp)
1880 {
1881 sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1,
1882 sizeof(*(sinfo->pertid)),
1883 gfp);
1884 if (!sinfo->pertid)
1885 return -ENOMEM;
1886
1887 return 0;
1888 }
1889 EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats);
1890
1891 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
1892 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
1893 const unsigned char rfc1042_header[] __aligned(2) =
1894 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
1895 EXPORT_SYMBOL(rfc1042_header);
1896
1897 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
1898 const unsigned char bridge_tunnel_header[] __aligned(2) =
1899 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
1900 EXPORT_SYMBOL(bridge_tunnel_header);
1901
1902 /* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */
1903 struct iapp_layer2_update {
1904 u8 da[ETH_ALEN]; /* broadcast */
1905 u8 sa[ETH_ALEN]; /* STA addr */
1906 __be16 len; /* 6 */
1907 u8 dsap; /* 0 */
1908 u8 ssap; /* 0 */
1909 u8 control;
1910 u8 xid_info[3];
1911 } __packed;
1912
1913 void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr)
1914 {
1915 struct iapp_layer2_update *msg;
1916 struct sk_buff *skb;
1917
1918 /* Send Level 2 Update Frame to update forwarding tables in layer 2
1919 * bridge devices */
1920
1921 skb = dev_alloc_skb(sizeof(*msg));
1922 if (!skb)
1923 return;
1924 msg = skb_put(skb, sizeof(*msg));
1925
1926 /* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID)
1927 * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */
1928
1929 eth_broadcast_addr(msg->da);
1930 ether_addr_copy(msg->sa, addr);
1931 msg->len = htons(6);
1932 msg->dsap = 0;
1933 msg->ssap = 0x01; /* NULL LSAP, CR Bit: Response */
1934 msg->control = 0xaf; /* XID response lsb.1111F101.
1935 * F=0 (no poll command; unsolicited frame) */
1936 msg->xid_info[0] = 0x81; /* XID format identifier */
1937 msg->xid_info[1] = 1; /* LLC types/classes: Type 1 LLC */
1938 msg->xid_info[2] = 0; /* XID sender's receive window size (RW) */
1939
1940 skb->dev = dev;
1941 skb->protocol = eth_type_trans(skb, dev);
1942 memset(skb->cb, 0, sizeof(skb->cb));
1943 netif_rx_ni(skb);
1944 }
1945 EXPORT_SYMBOL(cfg80211_send_layer2_update);
1946
1947 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
1948 enum ieee80211_vht_chanwidth bw,
1949 int mcs, bool ext_nss_bw_capable)
1950 {
1951 u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map);
1952 int max_vht_nss = 0;
1953 int ext_nss_bw;
1954 int supp_width;
1955 int i, mcs_encoding;
1956
1957 if (map == 0xffff)
1958 return 0;
1959
1960 if (WARN_ON(mcs > 9))
1961 return 0;
1962 if (mcs <= 7)
1963 mcs_encoding = 0;
1964 else if (mcs == 8)
1965 mcs_encoding = 1;
1966 else
1967 mcs_encoding = 2;
1968
1969 /* find max_vht_nss for the given MCS */
1970 for (i = 7; i >= 0; i--) {
1971 int supp = (map >> (2 * i)) & 3;
1972
1973 if (supp == 3)
1974 continue;
1975
1976 if (supp >= mcs_encoding) {
1977 max_vht_nss = i;
1978 break;
1979 }
1980 }
1981
1982 if (!(cap->supp_mcs.tx_mcs_map &
1983 cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE)))
1984 return max_vht_nss;
1985
1986 ext_nss_bw = le32_get_bits(cap->vht_cap_info,
1987 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK);
1988 supp_width = le32_get_bits(cap->vht_cap_info,
1989 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK);
1990
1991 /* if not capable, treat ext_nss_bw as 0 */
1992 if (!ext_nss_bw_capable)
1993 ext_nss_bw = 0;
1994
1995 /* This is invalid */
1996 if (supp_width == 3)
1997 return 0;
1998
1999 /* This is an invalid combination so pretend nothing is supported */
2000 if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2))
2001 return 0;
2002
2003 /*
2004 * Cover all the special cases according to IEEE 802.11-2016
2005 * Table 9-250. All other cases are either factor of 1 or not
2006 * valid/supported.
2007 */
2008 switch (bw) {
2009 case IEEE80211_VHT_CHANWIDTH_USE_HT:
2010 case IEEE80211_VHT_CHANWIDTH_80MHZ:
2011 if ((supp_width == 1 || supp_width == 2) &&
2012 ext_nss_bw == 3)
2013 return 2 * max_vht_nss;
2014 break;
2015 case IEEE80211_VHT_CHANWIDTH_160MHZ:
2016 if (supp_width == 0 &&
2017 (ext_nss_bw == 1 || ext_nss_bw == 2))
2018 return max_vht_nss / 2;
2019 if (supp_width == 0 &&
2020 ext_nss_bw == 3)
2021 return (3 * max_vht_nss) / 4;
2022 if (supp_width == 1 &&
2023 ext_nss_bw == 3)
2024 return 2 * max_vht_nss;
2025 break;
2026 case IEEE80211_VHT_CHANWIDTH_80P80MHZ:
2027 if (supp_width == 0 && ext_nss_bw == 1)
2028 return 0; /* not possible */
2029 if (supp_width == 0 &&
2030 ext_nss_bw == 2)
2031 return max_vht_nss / 2;
2032 if (supp_width == 0 &&
2033 ext_nss_bw == 3)
2034 return (3 * max_vht_nss) / 4;
2035 if (supp_width == 1 &&
2036 ext_nss_bw == 0)
2037 return 0; /* not possible */
2038 if (supp_width == 1 &&
2039 ext_nss_bw == 1)
2040 return max_vht_nss / 2;
2041 if (supp_width == 1 &&
2042 ext_nss_bw == 2)
2043 return (3 * max_vht_nss) / 4;
2044 break;
2045 }
2046
2047 /* not covered or invalid combination received */
2048 return max_vht_nss;
2049 }
2050 EXPORT_SYMBOL(ieee80211_get_vht_max_nss);