]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/wireless/util.c
Merge tag 'nfs-for-4.15-2' of git://git.linux-nfs.org/projects/anna/linux-nfs
[mirror_ubuntu-bionic-kernel.git] / net / wireless / util.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Wireless utility functions
4 *
5 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 */
8 #include <linux/export.h>
9 #include <linux/bitops.h>
10 #include <linux/etherdevice.h>
11 #include <linux/slab.h>
12 #include <net/cfg80211.h>
13 #include <net/ip.h>
14 #include <net/dsfield.h>
15 #include <linux/if_vlan.h>
16 #include <linux/mpls.h>
17 #include <linux/gcd.h>
18 #include "core.h"
19 #include "rdev-ops.h"
20
21
22 struct ieee80211_rate *
23 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
24 u32 basic_rates, int bitrate)
25 {
26 struct ieee80211_rate *result = &sband->bitrates[0];
27 int i;
28
29 for (i = 0; i < sband->n_bitrates; i++) {
30 if (!(basic_rates & BIT(i)))
31 continue;
32 if (sband->bitrates[i].bitrate > bitrate)
33 continue;
34 result = &sband->bitrates[i];
35 }
36
37 return result;
38 }
39 EXPORT_SYMBOL(ieee80211_get_response_rate);
40
41 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
42 enum nl80211_bss_scan_width scan_width)
43 {
44 struct ieee80211_rate *bitrates;
45 u32 mandatory_rates = 0;
46 enum ieee80211_rate_flags mandatory_flag;
47 int i;
48
49 if (WARN_ON(!sband))
50 return 1;
51
52 if (sband->band == NL80211_BAND_2GHZ) {
53 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
54 scan_width == NL80211_BSS_CHAN_WIDTH_10)
55 mandatory_flag = IEEE80211_RATE_MANDATORY_G;
56 else
57 mandatory_flag = IEEE80211_RATE_MANDATORY_B;
58 } else {
59 mandatory_flag = IEEE80211_RATE_MANDATORY_A;
60 }
61
62 bitrates = sband->bitrates;
63 for (i = 0; i < sband->n_bitrates; i++)
64 if (bitrates[i].flags & mandatory_flag)
65 mandatory_rates |= BIT(i);
66 return mandatory_rates;
67 }
68 EXPORT_SYMBOL(ieee80211_mandatory_rates);
69
70 int ieee80211_channel_to_frequency(int chan, enum nl80211_band band)
71 {
72 /* see 802.11 17.3.8.3.2 and Annex J
73 * there are overlapping channel numbers in 5GHz and 2GHz bands */
74 if (chan <= 0)
75 return 0; /* not supported */
76 switch (band) {
77 case NL80211_BAND_2GHZ:
78 if (chan == 14)
79 return 2484;
80 else if (chan < 14)
81 return 2407 + chan * 5;
82 break;
83 case NL80211_BAND_5GHZ:
84 if (chan >= 182 && chan <= 196)
85 return 4000 + chan * 5;
86 else
87 return 5000 + chan * 5;
88 break;
89 case NL80211_BAND_60GHZ:
90 if (chan < 5)
91 return 56160 + chan * 2160;
92 break;
93 default:
94 ;
95 }
96 return 0; /* not supported */
97 }
98 EXPORT_SYMBOL(ieee80211_channel_to_frequency);
99
100 int ieee80211_frequency_to_channel(int freq)
101 {
102 /* see 802.11 17.3.8.3.2 and Annex J */
103 if (freq == 2484)
104 return 14;
105 else if (freq < 2484)
106 return (freq - 2407) / 5;
107 else if (freq >= 4910 && freq <= 4980)
108 return (freq - 4000) / 5;
109 else if (freq <= 45000) /* DMG band lower limit */
110 return (freq - 5000) / 5;
111 else if (freq >= 58320 && freq <= 64800)
112 return (freq - 56160) / 2160;
113 else
114 return 0;
115 }
116 EXPORT_SYMBOL(ieee80211_frequency_to_channel);
117
118 struct ieee80211_channel *ieee80211_get_channel(struct wiphy *wiphy, int freq)
119 {
120 enum nl80211_band band;
121 struct ieee80211_supported_band *sband;
122 int i;
123
124 for (band = 0; band < NUM_NL80211_BANDS; band++) {
125 sband = wiphy->bands[band];
126
127 if (!sband)
128 continue;
129
130 for (i = 0; i < sband->n_channels; i++) {
131 if (sband->channels[i].center_freq == freq)
132 return &sband->channels[i];
133 }
134 }
135
136 return NULL;
137 }
138 EXPORT_SYMBOL(ieee80211_get_channel);
139
140 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
141 {
142 int i, want;
143
144 switch (sband->band) {
145 case NL80211_BAND_5GHZ:
146 want = 3;
147 for (i = 0; i < sband->n_bitrates; i++) {
148 if (sband->bitrates[i].bitrate == 60 ||
149 sband->bitrates[i].bitrate == 120 ||
150 sband->bitrates[i].bitrate == 240) {
151 sband->bitrates[i].flags |=
152 IEEE80211_RATE_MANDATORY_A;
153 want--;
154 }
155 }
156 WARN_ON(want);
157 break;
158 case NL80211_BAND_2GHZ:
159 want = 7;
160 for (i = 0; i < sband->n_bitrates; i++) {
161 switch (sband->bitrates[i].bitrate) {
162 case 10:
163 case 20:
164 case 55:
165 case 110:
166 sband->bitrates[i].flags |=
167 IEEE80211_RATE_MANDATORY_B |
168 IEEE80211_RATE_MANDATORY_G;
169 want--;
170 break;
171 case 60:
172 case 120:
173 case 240:
174 sband->bitrates[i].flags |=
175 IEEE80211_RATE_MANDATORY_G;
176 want--;
177 /* fall through */
178 default:
179 sband->bitrates[i].flags |=
180 IEEE80211_RATE_ERP_G;
181 break;
182 }
183 }
184 WARN_ON(want != 0 && want != 3);
185 break;
186 case NL80211_BAND_60GHZ:
187 /* check for mandatory HT MCS 1..4 */
188 WARN_ON(!sband->ht_cap.ht_supported);
189 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
190 break;
191 case NUM_NL80211_BANDS:
192 default:
193 WARN_ON(1);
194 break;
195 }
196 }
197
198 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
199 {
200 enum nl80211_band band;
201
202 for (band = 0; band < NUM_NL80211_BANDS; band++)
203 if (wiphy->bands[band])
204 set_mandatory_flags_band(wiphy->bands[band]);
205 }
206
207 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
208 {
209 int i;
210 for (i = 0; i < wiphy->n_cipher_suites; i++)
211 if (cipher == wiphy->cipher_suites[i])
212 return true;
213 return false;
214 }
215
216 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
217 struct key_params *params, int key_idx,
218 bool pairwise, const u8 *mac_addr)
219 {
220 if (key_idx < 0 || key_idx > 5)
221 return -EINVAL;
222
223 if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
224 return -EINVAL;
225
226 if (pairwise && !mac_addr)
227 return -EINVAL;
228
229 switch (params->cipher) {
230 case WLAN_CIPHER_SUITE_TKIP:
231 case WLAN_CIPHER_SUITE_CCMP:
232 case WLAN_CIPHER_SUITE_CCMP_256:
233 case WLAN_CIPHER_SUITE_GCMP:
234 case WLAN_CIPHER_SUITE_GCMP_256:
235 /* Disallow pairwise keys with non-zero index unless it's WEP
236 * or a vendor specific cipher (because current deployments use
237 * pairwise WEP keys with non-zero indices and for vendor
238 * specific ciphers this should be validated in the driver or
239 * hardware level - but 802.11i clearly specifies to use zero)
240 */
241 if (pairwise && key_idx)
242 return -EINVAL;
243 break;
244 case WLAN_CIPHER_SUITE_AES_CMAC:
245 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
246 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
247 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
248 /* Disallow BIP (group-only) cipher as pairwise cipher */
249 if (pairwise)
250 return -EINVAL;
251 if (key_idx < 4)
252 return -EINVAL;
253 break;
254 case WLAN_CIPHER_SUITE_WEP40:
255 case WLAN_CIPHER_SUITE_WEP104:
256 if (key_idx > 3)
257 return -EINVAL;
258 default:
259 break;
260 }
261
262 switch (params->cipher) {
263 case WLAN_CIPHER_SUITE_WEP40:
264 if (params->key_len != WLAN_KEY_LEN_WEP40)
265 return -EINVAL;
266 break;
267 case WLAN_CIPHER_SUITE_TKIP:
268 if (params->key_len != WLAN_KEY_LEN_TKIP)
269 return -EINVAL;
270 break;
271 case WLAN_CIPHER_SUITE_CCMP:
272 if (params->key_len != WLAN_KEY_LEN_CCMP)
273 return -EINVAL;
274 break;
275 case WLAN_CIPHER_SUITE_CCMP_256:
276 if (params->key_len != WLAN_KEY_LEN_CCMP_256)
277 return -EINVAL;
278 break;
279 case WLAN_CIPHER_SUITE_GCMP:
280 if (params->key_len != WLAN_KEY_LEN_GCMP)
281 return -EINVAL;
282 break;
283 case WLAN_CIPHER_SUITE_GCMP_256:
284 if (params->key_len != WLAN_KEY_LEN_GCMP_256)
285 return -EINVAL;
286 break;
287 case WLAN_CIPHER_SUITE_WEP104:
288 if (params->key_len != WLAN_KEY_LEN_WEP104)
289 return -EINVAL;
290 break;
291 case WLAN_CIPHER_SUITE_AES_CMAC:
292 if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
293 return -EINVAL;
294 break;
295 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
296 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
297 return -EINVAL;
298 break;
299 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
300 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
301 return -EINVAL;
302 break;
303 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
304 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
305 return -EINVAL;
306 break;
307 default:
308 /*
309 * We don't know anything about this algorithm,
310 * allow using it -- but the driver must check
311 * all parameters! We still check below whether
312 * or not the driver supports this algorithm,
313 * of course.
314 */
315 break;
316 }
317
318 if (params->seq) {
319 switch (params->cipher) {
320 case WLAN_CIPHER_SUITE_WEP40:
321 case WLAN_CIPHER_SUITE_WEP104:
322 /* These ciphers do not use key sequence */
323 return -EINVAL;
324 case WLAN_CIPHER_SUITE_TKIP:
325 case WLAN_CIPHER_SUITE_CCMP:
326 case WLAN_CIPHER_SUITE_CCMP_256:
327 case WLAN_CIPHER_SUITE_GCMP:
328 case WLAN_CIPHER_SUITE_GCMP_256:
329 case WLAN_CIPHER_SUITE_AES_CMAC:
330 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
331 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
332 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
333 if (params->seq_len != 6)
334 return -EINVAL;
335 break;
336 }
337 }
338
339 if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
340 return -EINVAL;
341
342 return 0;
343 }
344
345 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
346 {
347 unsigned int hdrlen = 24;
348
349 if (ieee80211_is_data(fc)) {
350 if (ieee80211_has_a4(fc))
351 hdrlen = 30;
352 if (ieee80211_is_data_qos(fc)) {
353 hdrlen += IEEE80211_QOS_CTL_LEN;
354 if (ieee80211_has_order(fc))
355 hdrlen += IEEE80211_HT_CTL_LEN;
356 }
357 goto out;
358 }
359
360 if (ieee80211_is_mgmt(fc)) {
361 if (ieee80211_has_order(fc))
362 hdrlen += IEEE80211_HT_CTL_LEN;
363 goto out;
364 }
365
366 if (ieee80211_is_ctl(fc)) {
367 /*
368 * ACK and CTS are 10 bytes, all others 16. To see how
369 * to get this condition consider
370 * subtype mask: 0b0000000011110000 (0x00F0)
371 * ACK subtype: 0b0000000011010000 (0x00D0)
372 * CTS subtype: 0b0000000011000000 (0x00C0)
373 * bits that matter: ^^^ (0x00E0)
374 * value of those: 0b0000000011000000 (0x00C0)
375 */
376 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
377 hdrlen = 10;
378 else
379 hdrlen = 16;
380 }
381 out:
382 return hdrlen;
383 }
384 EXPORT_SYMBOL(ieee80211_hdrlen);
385
386 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
387 {
388 const struct ieee80211_hdr *hdr =
389 (const struct ieee80211_hdr *)skb->data;
390 unsigned int hdrlen;
391
392 if (unlikely(skb->len < 10))
393 return 0;
394 hdrlen = ieee80211_hdrlen(hdr->frame_control);
395 if (unlikely(hdrlen > skb->len))
396 return 0;
397 return hdrlen;
398 }
399 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
400
401 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
402 {
403 int ae = flags & MESH_FLAGS_AE;
404 /* 802.11-2012, 8.2.4.7.3 */
405 switch (ae) {
406 default:
407 case 0:
408 return 6;
409 case MESH_FLAGS_AE_A4:
410 return 12;
411 case MESH_FLAGS_AE_A5_A6:
412 return 18;
413 }
414 }
415
416 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
417 {
418 return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
419 }
420 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
421
422 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
423 const u8 *addr, enum nl80211_iftype iftype)
424 {
425 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
426 struct {
427 u8 hdr[ETH_ALEN] __aligned(2);
428 __be16 proto;
429 } payload;
430 struct ethhdr tmp;
431 u16 hdrlen;
432 u8 mesh_flags = 0;
433
434 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
435 return -1;
436
437 hdrlen = ieee80211_hdrlen(hdr->frame_control);
438 if (skb->len < hdrlen + 8)
439 return -1;
440
441 /* convert IEEE 802.11 header + possible LLC headers into Ethernet
442 * header
443 * IEEE 802.11 address fields:
444 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
445 * 0 0 DA SA BSSID n/a
446 * 0 1 DA BSSID SA n/a
447 * 1 0 BSSID SA DA n/a
448 * 1 1 RA TA DA SA
449 */
450 memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
451 memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
452
453 if (iftype == NL80211_IFTYPE_MESH_POINT)
454 skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
455
456 mesh_flags &= MESH_FLAGS_AE;
457
458 switch (hdr->frame_control &
459 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
460 case cpu_to_le16(IEEE80211_FCTL_TODS):
461 if (unlikely(iftype != NL80211_IFTYPE_AP &&
462 iftype != NL80211_IFTYPE_AP_VLAN &&
463 iftype != NL80211_IFTYPE_P2P_GO))
464 return -1;
465 break;
466 case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
467 if (unlikely(iftype != NL80211_IFTYPE_WDS &&
468 iftype != NL80211_IFTYPE_MESH_POINT &&
469 iftype != NL80211_IFTYPE_AP_VLAN &&
470 iftype != NL80211_IFTYPE_STATION))
471 return -1;
472 if (iftype == NL80211_IFTYPE_MESH_POINT) {
473 if (mesh_flags == MESH_FLAGS_AE_A4)
474 return -1;
475 if (mesh_flags == MESH_FLAGS_AE_A5_A6) {
476 skb_copy_bits(skb, hdrlen +
477 offsetof(struct ieee80211s_hdr, eaddr1),
478 tmp.h_dest, 2 * ETH_ALEN);
479 }
480 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
481 }
482 break;
483 case cpu_to_le16(IEEE80211_FCTL_FROMDS):
484 if ((iftype != NL80211_IFTYPE_STATION &&
485 iftype != NL80211_IFTYPE_P2P_CLIENT &&
486 iftype != NL80211_IFTYPE_MESH_POINT) ||
487 (is_multicast_ether_addr(tmp.h_dest) &&
488 ether_addr_equal(tmp.h_source, addr)))
489 return -1;
490 if (iftype == NL80211_IFTYPE_MESH_POINT) {
491 if (mesh_flags == MESH_FLAGS_AE_A5_A6)
492 return -1;
493 if (mesh_flags == MESH_FLAGS_AE_A4)
494 skb_copy_bits(skb, hdrlen +
495 offsetof(struct ieee80211s_hdr, eaddr1),
496 tmp.h_source, ETH_ALEN);
497 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
498 }
499 break;
500 case cpu_to_le16(0):
501 if (iftype != NL80211_IFTYPE_ADHOC &&
502 iftype != NL80211_IFTYPE_STATION &&
503 iftype != NL80211_IFTYPE_OCB)
504 return -1;
505 break;
506 }
507
508 skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
509 tmp.h_proto = payload.proto;
510
511 if (likely((ether_addr_equal(payload.hdr, rfc1042_header) &&
512 tmp.h_proto != htons(ETH_P_AARP) &&
513 tmp.h_proto != htons(ETH_P_IPX)) ||
514 ether_addr_equal(payload.hdr, bridge_tunnel_header)))
515 /* remove RFC1042 or Bridge-Tunnel encapsulation and
516 * replace EtherType */
517 hdrlen += ETH_ALEN + 2;
518 else
519 tmp.h_proto = htons(skb->len - hdrlen);
520
521 pskb_pull(skb, hdrlen);
522
523 if (!ehdr)
524 ehdr = skb_push(skb, sizeof(struct ethhdr));
525 memcpy(ehdr, &tmp, sizeof(tmp));
526
527 return 0;
528 }
529 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
530
531 static void
532 __frame_add_frag(struct sk_buff *skb, struct page *page,
533 void *ptr, int len, int size)
534 {
535 struct skb_shared_info *sh = skb_shinfo(skb);
536 int page_offset;
537
538 page_ref_inc(page);
539 page_offset = ptr - page_address(page);
540 skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
541 }
542
543 static void
544 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
545 int offset, int len)
546 {
547 struct skb_shared_info *sh = skb_shinfo(skb);
548 const skb_frag_t *frag = &sh->frags[0];
549 struct page *frag_page;
550 void *frag_ptr;
551 int frag_len, frag_size;
552 int head_size = skb->len - skb->data_len;
553 int cur_len;
554
555 frag_page = virt_to_head_page(skb->head);
556 frag_ptr = skb->data;
557 frag_size = head_size;
558
559 while (offset >= frag_size) {
560 offset -= frag_size;
561 frag_page = skb_frag_page(frag);
562 frag_ptr = skb_frag_address(frag);
563 frag_size = skb_frag_size(frag);
564 frag++;
565 }
566
567 frag_ptr += offset;
568 frag_len = frag_size - offset;
569
570 cur_len = min(len, frag_len);
571
572 __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
573 len -= cur_len;
574
575 while (len > 0) {
576 frag_len = skb_frag_size(frag);
577 cur_len = min(len, frag_len);
578 __frame_add_frag(frame, skb_frag_page(frag),
579 skb_frag_address(frag), cur_len, frag_len);
580 len -= cur_len;
581 frag++;
582 }
583 }
584
585 static struct sk_buff *
586 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
587 int offset, int len, bool reuse_frag)
588 {
589 struct sk_buff *frame;
590 int cur_len = len;
591
592 if (skb->len - offset < len)
593 return NULL;
594
595 /*
596 * When reusing framents, copy some data to the head to simplify
597 * ethernet header handling and speed up protocol header processing
598 * in the stack later.
599 */
600 if (reuse_frag)
601 cur_len = min_t(int, len, 32);
602
603 /*
604 * Allocate and reserve two bytes more for payload
605 * alignment since sizeof(struct ethhdr) is 14.
606 */
607 frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
608 if (!frame)
609 return NULL;
610
611 skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
612 skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
613
614 len -= cur_len;
615 if (!len)
616 return frame;
617
618 offset += cur_len;
619 __ieee80211_amsdu_copy_frag(skb, frame, offset, len);
620
621 return frame;
622 }
623
624 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
625 const u8 *addr, enum nl80211_iftype iftype,
626 const unsigned int extra_headroom,
627 const u8 *check_da, const u8 *check_sa)
628 {
629 unsigned int hlen = ALIGN(extra_headroom, 4);
630 struct sk_buff *frame = NULL;
631 u16 ethertype;
632 u8 *payload;
633 int offset = 0, remaining;
634 struct ethhdr eth;
635 bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
636 bool reuse_skb = false;
637 bool last = false;
638
639 while (!last) {
640 unsigned int subframe_len;
641 int len;
642 u8 padding;
643
644 skb_copy_bits(skb, offset, &eth, sizeof(eth));
645 len = ntohs(eth.h_proto);
646 subframe_len = sizeof(struct ethhdr) + len;
647 padding = (4 - subframe_len) & 0x3;
648
649 /* the last MSDU has no padding */
650 remaining = skb->len - offset;
651 if (subframe_len > remaining)
652 goto purge;
653
654 offset += sizeof(struct ethhdr);
655 last = remaining <= subframe_len + padding;
656
657 /* FIXME: should we really accept multicast DA? */
658 if ((check_da && !is_multicast_ether_addr(eth.h_dest) &&
659 !ether_addr_equal(check_da, eth.h_dest)) ||
660 (check_sa && !ether_addr_equal(check_sa, eth.h_source))) {
661 offset += len + padding;
662 continue;
663 }
664
665 /* reuse skb for the last subframe */
666 if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
667 skb_pull(skb, offset);
668 frame = skb;
669 reuse_skb = true;
670 } else {
671 frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
672 reuse_frag);
673 if (!frame)
674 goto purge;
675
676 offset += len + padding;
677 }
678
679 skb_reset_network_header(frame);
680 frame->dev = skb->dev;
681 frame->priority = skb->priority;
682
683 payload = frame->data;
684 ethertype = (payload[6] << 8) | payload[7];
685 if (likely((ether_addr_equal(payload, rfc1042_header) &&
686 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
687 ether_addr_equal(payload, bridge_tunnel_header))) {
688 eth.h_proto = htons(ethertype);
689 skb_pull(frame, ETH_ALEN + 2);
690 }
691
692 memcpy(skb_push(frame, sizeof(eth)), &eth, sizeof(eth));
693 __skb_queue_tail(list, frame);
694 }
695
696 if (!reuse_skb)
697 dev_kfree_skb(skb);
698
699 return;
700
701 purge:
702 __skb_queue_purge(list);
703 dev_kfree_skb(skb);
704 }
705 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
706
707 /* Given a data frame determine the 802.1p/1d tag to use. */
708 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
709 struct cfg80211_qos_map *qos_map)
710 {
711 unsigned int dscp;
712 unsigned char vlan_priority;
713
714 /* skb->priority values from 256->263 are magic values to
715 * directly indicate a specific 802.1d priority. This is used
716 * to allow 802.1d priority to be passed directly in from VLAN
717 * tags, etc.
718 */
719 if (skb->priority >= 256 && skb->priority <= 263)
720 return skb->priority - 256;
721
722 if (skb_vlan_tag_present(skb)) {
723 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
724 >> VLAN_PRIO_SHIFT;
725 if (vlan_priority > 0)
726 return vlan_priority;
727 }
728
729 switch (skb->protocol) {
730 case htons(ETH_P_IP):
731 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
732 break;
733 case htons(ETH_P_IPV6):
734 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
735 break;
736 case htons(ETH_P_MPLS_UC):
737 case htons(ETH_P_MPLS_MC): {
738 struct mpls_label mpls_tmp, *mpls;
739
740 mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
741 sizeof(*mpls), &mpls_tmp);
742 if (!mpls)
743 return 0;
744
745 return (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
746 >> MPLS_LS_TC_SHIFT;
747 }
748 case htons(ETH_P_80221):
749 /* 802.21 is always network control traffic */
750 return 7;
751 default:
752 return 0;
753 }
754
755 if (qos_map) {
756 unsigned int i, tmp_dscp = dscp >> 2;
757
758 for (i = 0; i < qos_map->num_des; i++) {
759 if (tmp_dscp == qos_map->dscp_exception[i].dscp)
760 return qos_map->dscp_exception[i].up;
761 }
762
763 for (i = 0; i < 8; i++) {
764 if (tmp_dscp >= qos_map->up[i].low &&
765 tmp_dscp <= qos_map->up[i].high)
766 return i;
767 }
768 }
769
770 return dscp >> 5;
771 }
772 EXPORT_SYMBOL(cfg80211_classify8021d);
773
774 const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie)
775 {
776 const struct cfg80211_bss_ies *ies;
777
778 ies = rcu_dereference(bss->ies);
779 if (!ies)
780 return NULL;
781
782 return cfg80211_find_ie(ie, ies->data, ies->len);
783 }
784 EXPORT_SYMBOL(ieee80211_bss_get_ie);
785
786 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
787 {
788 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
789 struct net_device *dev = wdev->netdev;
790 int i;
791
792 if (!wdev->connect_keys)
793 return;
794
795 for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) {
796 if (!wdev->connect_keys->params[i].cipher)
797 continue;
798 if (rdev_add_key(rdev, dev, i, false, NULL,
799 &wdev->connect_keys->params[i])) {
800 netdev_err(dev, "failed to set key %d\n", i);
801 continue;
802 }
803 if (wdev->connect_keys->def == i &&
804 rdev_set_default_key(rdev, dev, i, true, true)) {
805 netdev_err(dev, "failed to set defkey %d\n", i);
806 continue;
807 }
808 }
809
810 kzfree(wdev->connect_keys);
811 wdev->connect_keys = NULL;
812 }
813
814 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
815 {
816 struct cfg80211_event *ev;
817 unsigned long flags;
818
819 spin_lock_irqsave(&wdev->event_lock, flags);
820 while (!list_empty(&wdev->event_list)) {
821 ev = list_first_entry(&wdev->event_list,
822 struct cfg80211_event, list);
823 list_del(&ev->list);
824 spin_unlock_irqrestore(&wdev->event_lock, flags);
825
826 wdev_lock(wdev);
827 switch (ev->type) {
828 case EVENT_CONNECT_RESULT:
829 __cfg80211_connect_result(
830 wdev->netdev,
831 &ev->cr,
832 ev->cr.status == WLAN_STATUS_SUCCESS);
833 break;
834 case EVENT_ROAMED:
835 __cfg80211_roamed(wdev, &ev->rm);
836 break;
837 case EVENT_DISCONNECTED:
838 __cfg80211_disconnected(wdev->netdev,
839 ev->dc.ie, ev->dc.ie_len,
840 ev->dc.reason,
841 !ev->dc.locally_generated);
842 break;
843 case EVENT_IBSS_JOINED:
844 __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
845 ev->ij.channel);
846 break;
847 case EVENT_STOPPED:
848 __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
849 break;
850 case EVENT_PORT_AUTHORIZED:
851 __cfg80211_port_authorized(wdev, ev->pa.bssid);
852 break;
853 }
854 wdev_unlock(wdev);
855
856 kfree(ev);
857
858 spin_lock_irqsave(&wdev->event_lock, flags);
859 }
860 spin_unlock_irqrestore(&wdev->event_lock, flags);
861 }
862
863 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
864 {
865 struct wireless_dev *wdev;
866
867 ASSERT_RTNL();
868
869 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
870 cfg80211_process_wdev_events(wdev);
871 }
872
873 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
874 struct net_device *dev, enum nl80211_iftype ntype,
875 struct vif_params *params)
876 {
877 int err;
878 enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
879
880 ASSERT_RTNL();
881
882 /* don't support changing VLANs, you just re-create them */
883 if (otype == NL80211_IFTYPE_AP_VLAN)
884 return -EOPNOTSUPP;
885
886 /* cannot change into P2P device or NAN */
887 if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
888 ntype == NL80211_IFTYPE_NAN)
889 return -EOPNOTSUPP;
890
891 if (!rdev->ops->change_virtual_intf ||
892 !(rdev->wiphy.interface_modes & (1 << ntype)))
893 return -EOPNOTSUPP;
894
895 /* if it's part of a bridge, reject changing type to station/ibss */
896 if ((dev->priv_flags & IFF_BRIDGE_PORT) &&
897 (ntype == NL80211_IFTYPE_ADHOC ||
898 ntype == NL80211_IFTYPE_STATION ||
899 ntype == NL80211_IFTYPE_P2P_CLIENT))
900 return -EBUSY;
901
902 if (ntype != otype) {
903 dev->ieee80211_ptr->use_4addr = false;
904 dev->ieee80211_ptr->mesh_id_up_len = 0;
905 wdev_lock(dev->ieee80211_ptr);
906 rdev_set_qos_map(rdev, dev, NULL);
907 wdev_unlock(dev->ieee80211_ptr);
908
909 switch (otype) {
910 case NL80211_IFTYPE_AP:
911 cfg80211_stop_ap(rdev, dev, true);
912 break;
913 case NL80211_IFTYPE_ADHOC:
914 cfg80211_leave_ibss(rdev, dev, false);
915 break;
916 case NL80211_IFTYPE_STATION:
917 case NL80211_IFTYPE_P2P_CLIENT:
918 wdev_lock(dev->ieee80211_ptr);
919 cfg80211_disconnect(rdev, dev,
920 WLAN_REASON_DEAUTH_LEAVING, true);
921 wdev_unlock(dev->ieee80211_ptr);
922 break;
923 case NL80211_IFTYPE_MESH_POINT:
924 /* mesh should be handled? */
925 break;
926 default:
927 break;
928 }
929
930 cfg80211_process_rdev_events(rdev);
931 }
932
933 err = rdev_change_virtual_intf(rdev, dev, ntype, params);
934
935 WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
936
937 if (!err && params && params->use_4addr != -1)
938 dev->ieee80211_ptr->use_4addr = params->use_4addr;
939
940 if (!err) {
941 dev->priv_flags &= ~IFF_DONT_BRIDGE;
942 switch (ntype) {
943 case NL80211_IFTYPE_STATION:
944 if (dev->ieee80211_ptr->use_4addr)
945 break;
946 /* fall through */
947 case NL80211_IFTYPE_OCB:
948 case NL80211_IFTYPE_P2P_CLIENT:
949 case NL80211_IFTYPE_ADHOC:
950 dev->priv_flags |= IFF_DONT_BRIDGE;
951 break;
952 case NL80211_IFTYPE_P2P_GO:
953 case NL80211_IFTYPE_AP:
954 case NL80211_IFTYPE_AP_VLAN:
955 case NL80211_IFTYPE_WDS:
956 case NL80211_IFTYPE_MESH_POINT:
957 /* bridging OK */
958 break;
959 case NL80211_IFTYPE_MONITOR:
960 /* monitor can't bridge anyway */
961 break;
962 case NL80211_IFTYPE_UNSPECIFIED:
963 case NUM_NL80211_IFTYPES:
964 /* not happening */
965 break;
966 case NL80211_IFTYPE_P2P_DEVICE:
967 case NL80211_IFTYPE_NAN:
968 WARN_ON(1);
969 break;
970 }
971 }
972
973 if (!err && ntype != otype && netif_running(dev)) {
974 cfg80211_update_iface_num(rdev, ntype, 1);
975 cfg80211_update_iface_num(rdev, otype, -1);
976 }
977
978 return err;
979 }
980
981 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
982 {
983 int modulation, streams, bitrate;
984
985 /* the formula below does only work for MCS values smaller than 32 */
986 if (WARN_ON_ONCE(rate->mcs >= 32))
987 return 0;
988
989 modulation = rate->mcs & 7;
990 streams = (rate->mcs >> 3) + 1;
991
992 bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
993
994 if (modulation < 4)
995 bitrate *= (modulation + 1);
996 else if (modulation == 4)
997 bitrate *= (modulation + 2);
998 else
999 bitrate *= (modulation + 3);
1000
1001 bitrate *= streams;
1002
1003 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1004 bitrate = (bitrate / 9) * 10;
1005
1006 /* do NOT round down here */
1007 return (bitrate + 50000) / 100000;
1008 }
1009
1010 static u32 cfg80211_calculate_bitrate_60g(struct rate_info *rate)
1011 {
1012 static const u32 __mcs2bitrate[] = {
1013 /* control PHY */
1014 [0] = 275,
1015 /* SC PHY */
1016 [1] = 3850,
1017 [2] = 7700,
1018 [3] = 9625,
1019 [4] = 11550,
1020 [5] = 12512, /* 1251.25 mbps */
1021 [6] = 15400,
1022 [7] = 19250,
1023 [8] = 23100,
1024 [9] = 25025,
1025 [10] = 30800,
1026 [11] = 38500,
1027 [12] = 46200,
1028 /* OFDM PHY */
1029 [13] = 6930,
1030 [14] = 8662, /* 866.25 mbps */
1031 [15] = 13860,
1032 [16] = 17325,
1033 [17] = 20790,
1034 [18] = 27720,
1035 [19] = 34650,
1036 [20] = 41580,
1037 [21] = 45045,
1038 [22] = 51975,
1039 [23] = 62370,
1040 [24] = 67568, /* 6756.75 mbps */
1041 /* LP-SC PHY */
1042 [25] = 6260,
1043 [26] = 8340,
1044 [27] = 11120,
1045 [28] = 12510,
1046 [29] = 16680,
1047 [30] = 22240,
1048 [31] = 25030,
1049 };
1050
1051 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1052 return 0;
1053
1054 return __mcs2bitrate[rate->mcs];
1055 }
1056
1057 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1058 {
1059 static const u32 base[4][10] = {
1060 { 6500000,
1061 13000000,
1062 19500000,
1063 26000000,
1064 39000000,
1065 52000000,
1066 58500000,
1067 65000000,
1068 78000000,
1069 /* not in the spec, but some devices use this: */
1070 86500000,
1071 },
1072 { 13500000,
1073 27000000,
1074 40500000,
1075 54000000,
1076 81000000,
1077 108000000,
1078 121500000,
1079 135000000,
1080 162000000,
1081 180000000,
1082 },
1083 { 29300000,
1084 58500000,
1085 87800000,
1086 117000000,
1087 175500000,
1088 234000000,
1089 263300000,
1090 292500000,
1091 351000000,
1092 390000000,
1093 },
1094 { 58500000,
1095 117000000,
1096 175500000,
1097 234000000,
1098 351000000,
1099 468000000,
1100 526500000,
1101 585000000,
1102 702000000,
1103 780000000,
1104 },
1105 };
1106 u32 bitrate;
1107 int idx;
1108
1109 if (rate->mcs > 9)
1110 goto warn;
1111
1112 switch (rate->bw) {
1113 case RATE_INFO_BW_160:
1114 idx = 3;
1115 break;
1116 case RATE_INFO_BW_80:
1117 idx = 2;
1118 break;
1119 case RATE_INFO_BW_40:
1120 idx = 1;
1121 break;
1122 case RATE_INFO_BW_5:
1123 case RATE_INFO_BW_10:
1124 default:
1125 goto warn;
1126 case RATE_INFO_BW_20:
1127 idx = 0;
1128 }
1129
1130 bitrate = base[idx][rate->mcs];
1131 bitrate *= rate->nss;
1132
1133 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1134 bitrate = (bitrate / 9) * 10;
1135
1136 /* do NOT round down here */
1137 return (bitrate + 50000) / 100000;
1138 warn:
1139 WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1140 rate->bw, rate->mcs, rate->nss);
1141 return 0;
1142 }
1143
1144 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1145 {
1146 if (rate->flags & RATE_INFO_FLAGS_MCS)
1147 return cfg80211_calculate_bitrate_ht(rate);
1148 if (rate->flags & RATE_INFO_FLAGS_60G)
1149 return cfg80211_calculate_bitrate_60g(rate);
1150 if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1151 return cfg80211_calculate_bitrate_vht(rate);
1152
1153 return rate->legacy;
1154 }
1155 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1156
1157 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1158 enum ieee80211_p2p_attr_id attr,
1159 u8 *buf, unsigned int bufsize)
1160 {
1161 u8 *out = buf;
1162 u16 attr_remaining = 0;
1163 bool desired_attr = false;
1164 u16 desired_len = 0;
1165
1166 while (len > 0) {
1167 unsigned int iedatalen;
1168 unsigned int copy;
1169 const u8 *iedata;
1170
1171 if (len < 2)
1172 return -EILSEQ;
1173 iedatalen = ies[1];
1174 if (iedatalen + 2 > len)
1175 return -EILSEQ;
1176
1177 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1178 goto cont;
1179
1180 if (iedatalen < 4)
1181 goto cont;
1182
1183 iedata = ies + 2;
1184
1185 /* check WFA OUI, P2P subtype */
1186 if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1187 iedata[2] != 0x9a || iedata[3] != 0x09)
1188 goto cont;
1189
1190 iedatalen -= 4;
1191 iedata += 4;
1192
1193 /* check attribute continuation into this IE */
1194 copy = min_t(unsigned int, attr_remaining, iedatalen);
1195 if (copy && desired_attr) {
1196 desired_len += copy;
1197 if (out) {
1198 memcpy(out, iedata, min(bufsize, copy));
1199 out += min(bufsize, copy);
1200 bufsize -= min(bufsize, copy);
1201 }
1202
1203
1204 if (copy == attr_remaining)
1205 return desired_len;
1206 }
1207
1208 attr_remaining -= copy;
1209 if (attr_remaining)
1210 goto cont;
1211
1212 iedatalen -= copy;
1213 iedata += copy;
1214
1215 while (iedatalen > 0) {
1216 u16 attr_len;
1217
1218 /* P2P attribute ID & size must fit */
1219 if (iedatalen < 3)
1220 return -EILSEQ;
1221 desired_attr = iedata[0] == attr;
1222 attr_len = get_unaligned_le16(iedata + 1);
1223 iedatalen -= 3;
1224 iedata += 3;
1225
1226 copy = min_t(unsigned int, attr_len, iedatalen);
1227
1228 if (desired_attr) {
1229 desired_len += copy;
1230 if (out) {
1231 memcpy(out, iedata, min(bufsize, copy));
1232 out += min(bufsize, copy);
1233 bufsize -= min(bufsize, copy);
1234 }
1235
1236 if (copy == attr_len)
1237 return desired_len;
1238 }
1239
1240 iedata += copy;
1241 iedatalen -= copy;
1242 attr_remaining = attr_len - copy;
1243 }
1244
1245 cont:
1246 len -= ies[1] + 2;
1247 ies += ies[1] + 2;
1248 }
1249
1250 if (attr_remaining && desired_attr)
1251 return -EILSEQ;
1252
1253 return -ENOENT;
1254 }
1255 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1256
1257 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
1258 {
1259 int i;
1260
1261 /* Make sure array values are legal */
1262 if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
1263 return false;
1264
1265 i = 0;
1266 while (i < n_ids) {
1267 if (ids[i] == WLAN_EID_EXTENSION) {
1268 if (id_ext && (ids[i + 1] == id))
1269 return true;
1270
1271 i += 2;
1272 continue;
1273 }
1274
1275 if (ids[i] == id && !id_ext)
1276 return true;
1277
1278 i++;
1279 }
1280 return false;
1281 }
1282
1283 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1284 {
1285 /* we assume a validly formed IEs buffer */
1286 u8 len = ies[pos + 1];
1287
1288 pos += 2 + len;
1289
1290 /* the IE itself must have 255 bytes for fragments to follow */
1291 if (len < 255)
1292 return pos;
1293
1294 while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1295 len = ies[pos + 1];
1296 pos += 2 + len;
1297 }
1298
1299 return pos;
1300 }
1301
1302 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1303 const u8 *ids, int n_ids,
1304 const u8 *after_ric, int n_after_ric,
1305 size_t offset)
1306 {
1307 size_t pos = offset;
1308
1309 while (pos < ielen) {
1310 u8 ext = 0;
1311
1312 if (ies[pos] == WLAN_EID_EXTENSION)
1313 ext = 2;
1314 if ((pos + ext) >= ielen)
1315 break;
1316
1317 if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext],
1318 ies[pos] == WLAN_EID_EXTENSION))
1319 break;
1320
1321 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1322 pos = skip_ie(ies, ielen, pos);
1323
1324 while (pos < ielen) {
1325 if (ies[pos] == WLAN_EID_EXTENSION)
1326 ext = 2;
1327 else
1328 ext = 0;
1329
1330 if ((pos + ext) >= ielen)
1331 break;
1332
1333 if (!ieee80211_id_in_list(after_ric,
1334 n_after_ric,
1335 ies[pos + ext],
1336 ext == 2))
1337 pos = skip_ie(ies, ielen, pos);
1338 }
1339 } else {
1340 pos = skip_ie(ies, ielen, pos);
1341 }
1342 }
1343
1344 return pos;
1345 }
1346 EXPORT_SYMBOL(ieee80211_ie_split_ric);
1347
1348 bool ieee80211_operating_class_to_band(u8 operating_class,
1349 enum nl80211_band *band)
1350 {
1351 switch (operating_class) {
1352 case 112:
1353 case 115 ... 127:
1354 case 128 ... 130:
1355 *band = NL80211_BAND_5GHZ;
1356 return true;
1357 case 81:
1358 case 82:
1359 case 83:
1360 case 84:
1361 *band = NL80211_BAND_2GHZ;
1362 return true;
1363 case 180:
1364 *band = NL80211_BAND_60GHZ;
1365 return true;
1366 }
1367
1368 return false;
1369 }
1370 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1371
1372 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1373 u8 *op_class)
1374 {
1375 u8 vht_opclass;
1376 u16 freq = chandef->center_freq1;
1377
1378 if (freq >= 2412 && freq <= 2472) {
1379 if (chandef->width > NL80211_CHAN_WIDTH_40)
1380 return false;
1381
1382 /* 2.407 GHz, channels 1..13 */
1383 if (chandef->width == NL80211_CHAN_WIDTH_40) {
1384 if (freq > chandef->chan->center_freq)
1385 *op_class = 83; /* HT40+ */
1386 else
1387 *op_class = 84; /* HT40- */
1388 } else {
1389 *op_class = 81;
1390 }
1391
1392 return true;
1393 }
1394
1395 if (freq == 2484) {
1396 if (chandef->width > NL80211_CHAN_WIDTH_40)
1397 return false;
1398
1399 *op_class = 82; /* channel 14 */
1400 return true;
1401 }
1402
1403 switch (chandef->width) {
1404 case NL80211_CHAN_WIDTH_80:
1405 vht_opclass = 128;
1406 break;
1407 case NL80211_CHAN_WIDTH_160:
1408 vht_opclass = 129;
1409 break;
1410 case NL80211_CHAN_WIDTH_80P80:
1411 vht_opclass = 130;
1412 break;
1413 case NL80211_CHAN_WIDTH_10:
1414 case NL80211_CHAN_WIDTH_5:
1415 return false; /* unsupported for now */
1416 default:
1417 vht_opclass = 0;
1418 break;
1419 }
1420
1421 /* 5 GHz, channels 36..48 */
1422 if (freq >= 5180 && freq <= 5240) {
1423 if (vht_opclass) {
1424 *op_class = vht_opclass;
1425 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1426 if (freq > chandef->chan->center_freq)
1427 *op_class = 116;
1428 else
1429 *op_class = 117;
1430 } else {
1431 *op_class = 115;
1432 }
1433
1434 return true;
1435 }
1436
1437 /* 5 GHz, channels 52..64 */
1438 if (freq >= 5260 && freq <= 5320) {
1439 if (vht_opclass) {
1440 *op_class = vht_opclass;
1441 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1442 if (freq > chandef->chan->center_freq)
1443 *op_class = 119;
1444 else
1445 *op_class = 120;
1446 } else {
1447 *op_class = 118;
1448 }
1449
1450 return true;
1451 }
1452
1453 /* 5 GHz, channels 100..144 */
1454 if (freq >= 5500 && freq <= 5720) {
1455 if (vht_opclass) {
1456 *op_class = vht_opclass;
1457 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1458 if (freq > chandef->chan->center_freq)
1459 *op_class = 122;
1460 else
1461 *op_class = 123;
1462 } else {
1463 *op_class = 121;
1464 }
1465
1466 return true;
1467 }
1468
1469 /* 5 GHz, channels 149..169 */
1470 if (freq >= 5745 && freq <= 5845) {
1471 if (vht_opclass) {
1472 *op_class = vht_opclass;
1473 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1474 if (freq > chandef->chan->center_freq)
1475 *op_class = 126;
1476 else
1477 *op_class = 127;
1478 } else if (freq <= 5805) {
1479 *op_class = 124;
1480 } else {
1481 *op_class = 125;
1482 }
1483
1484 return true;
1485 }
1486
1487 /* 56.16 GHz, channel 1..4 */
1488 if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 4) {
1489 if (chandef->width >= NL80211_CHAN_WIDTH_40)
1490 return false;
1491
1492 *op_class = 180;
1493 return true;
1494 }
1495
1496 /* not supported yet */
1497 return false;
1498 }
1499 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1500
1501 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
1502 u32 *beacon_int_gcd,
1503 bool *beacon_int_different)
1504 {
1505 struct wireless_dev *wdev;
1506
1507 *beacon_int_gcd = 0;
1508 *beacon_int_different = false;
1509
1510 list_for_each_entry(wdev, &wiphy->wdev_list, list) {
1511 if (!wdev->beacon_interval)
1512 continue;
1513
1514 if (!*beacon_int_gcd) {
1515 *beacon_int_gcd = wdev->beacon_interval;
1516 continue;
1517 }
1518
1519 if (wdev->beacon_interval == *beacon_int_gcd)
1520 continue;
1521
1522 *beacon_int_different = true;
1523 *beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval);
1524 }
1525
1526 if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
1527 if (*beacon_int_gcd)
1528 *beacon_int_different = true;
1529 *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
1530 }
1531 }
1532
1533 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1534 enum nl80211_iftype iftype, u32 beacon_int)
1535 {
1536 /*
1537 * This is just a basic pre-condition check; if interface combinations
1538 * are possible the driver must already be checking those with a call
1539 * to cfg80211_check_combinations(), in which case we'll validate more
1540 * through the cfg80211_calculate_bi_data() call and code in
1541 * cfg80211_iter_combinations().
1542 */
1543
1544 if (beacon_int < 10 || beacon_int > 10000)
1545 return -EINVAL;
1546
1547 return 0;
1548 }
1549
1550 int cfg80211_iter_combinations(struct wiphy *wiphy,
1551 struct iface_combination_params *params,
1552 void (*iter)(const struct ieee80211_iface_combination *c,
1553 void *data),
1554 void *data)
1555 {
1556 const struct ieee80211_regdomain *regdom;
1557 enum nl80211_dfs_regions region = 0;
1558 int i, j, iftype;
1559 int num_interfaces = 0;
1560 u32 used_iftypes = 0;
1561 u32 beacon_int_gcd;
1562 bool beacon_int_different;
1563
1564 /*
1565 * This is a bit strange, since the iteration used to rely only on
1566 * the data given by the driver, but here it now relies on context,
1567 * in form of the currently operating interfaces.
1568 * This is OK for all current users, and saves us from having to
1569 * push the GCD calculations into all the drivers.
1570 * In the future, this should probably rely more on data that's in
1571 * cfg80211 already - the only thing not would appear to be any new
1572 * interfaces (while being brought up) and channel/radar data.
1573 */
1574 cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
1575 &beacon_int_gcd, &beacon_int_different);
1576
1577 if (params->radar_detect) {
1578 rcu_read_lock();
1579 regdom = rcu_dereference(cfg80211_regdomain);
1580 if (regdom)
1581 region = regdom->dfs_region;
1582 rcu_read_unlock();
1583 }
1584
1585 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1586 num_interfaces += params->iftype_num[iftype];
1587 if (params->iftype_num[iftype] > 0 &&
1588 !(wiphy->software_iftypes & BIT(iftype)))
1589 used_iftypes |= BIT(iftype);
1590 }
1591
1592 for (i = 0; i < wiphy->n_iface_combinations; i++) {
1593 const struct ieee80211_iface_combination *c;
1594 struct ieee80211_iface_limit *limits;
1595 u32 all_iftypes = 0;
1596
1597 c = &wiphy->iface_combinations[i];
1598
1599 if (num_interfaces > c->max_interfaces)
1600 continue;
1601 if (params->num_different_channels > c->num_different_channels)
1602 continue;
1603
1604 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1605 GFP_KERNEL);
1606 if (!limits)
1607 return -ENOMEM;
1608
1609 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1610 if (wiphy->software_iftypes & BIT(iftype))
1611 continue;
1612 for (j = 0; j < c->n_limits; j++) {
1613 all_iftypes |= limits[j].types;
1614 if (!(limits[j].types & BIT(iftype)))
1615 continue;
1616 if (limits[j].max < params->iftype_num[iftype])
1617 goto cont;
1618 limits[j].max -= params->iftype_num[iftype];
1619 }
1620 }
1621
1622 if (params->radar_detect !=
1623 (c->radar_detect_widths & params->radar_detect))
1624 goto cont;
1625
1626 if (params->radar_detect && c->radar_detect_regions &&
1627 !(c->radar_detect_regions & BIT(region)))
1628 goto cont;
1629
1630 /* Finally check that all iftypes that we're currently
1631 * using are actually part of this combination. If they
1632 * aren't then we can't use this combination and have
1633 * to continue to the next.
1634 */
1635 if ((all_iftypes & used_iftypes) != used_iftypes)
1636 goto cont;
1637
1638 if (beacon_int_gcd) {
1639 if (c->beacon_int_min_gcd &&
1640 beacon_int_gcd < c->beacon_int_min_gcd)
1641 goto cont;
1642 if (!c->beacon_int_min_gcd && beacon_int_different)
1643 goto cont;
1644 }
1645
1646 /* This combination covered all interface types and
1647 * supported the requested numbers, so we're good.
1648 */
1649
1650 (*iter)(c, data);
1651 cont:
1652 kfree(limits);
1653 }
1654
1655 return 0;
1656 }
1657 EXPORT_SYMBOL(cfg80211_iter_combinations);
1658
1659 static void
1660 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
1661 void *data)
1662 {
1663 int *num = data;
1664 (*num)++;
1665 }
1666
1667 int cfg80211_check_combinations(struct wiphy *wiphy,
1668 struct iface_combination_params *params)
1669 {
1670 int err, num = 0;
1671
1672 err = cfg80211_iter_combinations(wiphy, params,
1673 cfg80211_iter_sum_ifcombs, &num);
1674 if (err)
1675 return err;
1676 if (num == 0)
1677 return -EBUSY;
1678
1679 return 0;
1680 }
1681 EXPORT_SYMBOL(cfg80211_check_combinations);
1682
1683 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1684 const u8 *rates, unsigned int n_rates,
1685 u32 *mask)
1686 {
1687 int i, j;
1688
1689 if (!sband)
1690 return -EINVAL;
1691
1692 if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1693 return -EINVAL;
1694
1695 *mask = 0;
1696
1697 for (i = 0; i < n_rates; i++) {
1698 int rate = (rates[i] & 0x7f) * 5;
1699 bool found = false;
1700
1701 for (j = 0; j < sband->n_bitrates; j++) {
1702 if (sband->bitrates[j].bitrate == rate) {
1703 found = true;
1704 *mask |= BIT(j);
1705 break;
1706 }
1707 }
1708 if (!found)
1709 return -EINVAL;
1710 }
1711
1712 /*
1713 * mask must have at least one bit set here since we
1714 * didn't accept a 0-length rates array nor allowed
1715 * entries in the array that didn't exist
1716 */
1717
1718 return 0;
1719 }
1720
1721 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
1722 {
1723 enum nl80211_band band;
1724 unsigned int n_channels = 0;
1725
1726 for (band = 0; band < NUM_NL80211_BANDS; band++)
1727 if (wiphy->bands[band])
1728 n_channels += wiphy->bands[band]->n_channels;
1729
1730 return n_channels;
1731 }
1732 EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
1733
1734 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
1735 struct station_info *sinfo)
1736 {
1737 struct cfg80211_registered_device *rdev;
1738 struct wireless_dev *wdev;
1739
1740 wdev = dev->ieee80211_ptr;
1741 if (!wdev)
1742 return -EOPNOTSUPP;
1743
1744 rdev = wiphy_to_rdev(wdev->wiphy);
1745 if (!rdev->ops->get_station)
1746 return -EOPNOTSUPP;
1747
1748 return rdev_get_station(rdev, dev, mac_addr, sinfo);
1749 }
1750 EXPORT_SYMBOL(cfg80211_get_station);
1751
1752 void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
1753 {
1754 int i;
1755
1756 if (!f)
1757 return;
1758
1759 kfree(f->serv_spec_info);
1760 kfree(f->srf_bf);
1761 kfree(f->srf_macs);
1762 for (i = 0; i < f->num_rx_filters; i++)
1763 kfree(f->rx_filters[i].filter);
1764
1765 for (i = 0; i < f->num_tx_filters; i++)
1766 kfree(f->tx_filters[i].filter);
1767
1768 kfree(f->rx_filters);
1769 kfree(f->tx_filters);
1770 kfree(f);
1771 }
1772 EXPORT_SYMBOL(cfg80211_free_nan_func);
1773
1774 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
1775 u32 center_freq_khz, u32 bw_khz)
1776 {
1777 u32 start_freq_khz, end_freq_khz;
1778
1779 start_freq_khz = center_freq_khz - (bw_khz / 2);
1780 end_freq_khz = center_freq_khz + (bw_khz / 2);
1781
1782 if (start_freq_khz >= freq_range->start_freq_khz &&
1783 end_freq_khz <= freq_range->end_freq_khz)
1784 return true;
1785
1786 return false;
1787 }
1788
1789 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
1790 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
1791 const unsigned char rfc1042_header[] __aligned(2) =
1792 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
1793 EXPORT_SYMBOL(rfc1042_header);
1794
1795 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
1796 const unsigned char bridge_tunnel_header[] __aligned(2) =
1797 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
1798 EXPORT_SYMBOL(bridge_tunnel_header);