]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/wireless/util.c
Revert "mac80211: allow using AP_LINK_PS with mac80211-generated TIM IE"
[mirror_ubuntu-artful-kernel.git] / net / wireless / util.c
1 /*
2 * Wireless utility functions
3 *
4 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2013-2014 Intel Mobile Communications GmbH
6 */
7 #include <linux/export.h>
8 #include <linux/bitops.h>
9 #include <linux/etherdevice.h>
10 #include <linux/slab.h>
11 #include <net/cfg80211.h>
12 #include <net/ip.h>
13 #include <net/dsfield.h>
14 #include <linux/if_vlan.h>
15 #include <linux/mpls.h>
16 #include "core.h"
17 #include "rdev-ops.h"
18
19
20 struct ieee80211_rate *
21 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
22 u32 basic_rates, int bitrate)
23 {
24 struct ieee80211_rate *result = &sband->bitrates[0];
25 int i;
26
27 for (i = 0; i < sband->n_bitrates; i++) {
28 if (!(basic_rates & BIT(i)))
29 continue;
30 if (sband->bitrates[i].bitrate > bitrate)
31 continue;
32 result = &sband->bitrates[i];
33 }
34
35 return result;
36 }
37 EXPORT_SYMBOL(ieee80211_get_response_rate);
38
39 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
40 enum nl80211_bss_scan_width scan_width)
41 {
42 struct ieee80211_rate *bitrates;
43 u32 mandatory_rates = 0;
44 enum ieee80211_rate_flags mandatory_flag;
45 int i;
46
47 if (WARN_ON(!sband))
48 return 1;
49
50 if (sband->band == NL80211_BAND_2GHZ) {
51 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
52 scan_width == NL80211_BSS_CHAN_WIDTH_10)
53 mandatory_flag = IEEE80211_RATE_MANDATORY_G;
54 else
55 mandatory_flag = IEEE80211_RATE_MANDATORY_B;
56 } else {
57 mandatory_flag = IEEE80211_RATE_MANDATORY_A;
58 }
59
60 bitrates = sband->bitrates;
61 for (i = 0; i < sband->n_bitrates; i++)
62 if (bitrates[i].flags & mandatory_flag)
63 mandatory_rates |= BIT(i);
64 return mandatory_rates;
65 }
66 EXPORT_SYMBOL(ieee80211_mandatory_rates);
67
68 int ieee80211_channel_to_frequency(int chan, enum nl80211_band band)
69 {
70 /* see 802.11 17.3.8.3.2 and Annex J
71 * there are overlapping channel numbers in 5GHz and 2GHz bands */
72 if (chan <= 0)
73 return 0; /* not supported */
74 switch (band) {
75 case NL80211_BAND_2GHZ:
76 if (chan == 14)
77 return 2484;
78 else if (chan < 14)
79 return 2407 + chan * 5;
80 break;
81 case NL80211_BAND_5GHZ:
82 if (chan >= 182 && chan <= 196)
83 return 4000 + chan * 5;
84 else
85 return 5000 + chan * 5;
86 break;
87 case NL80211_BAND_60GHZ:
88 if (chan < 5)
89 return 56160 + chan * 2160;
90 break;
91 default:
92 ;
93 }
94 return 0; /* not supported */
95 }
96 EXPORT_SYMBOL(ieee80211_channel_to_frequency);
97
98 int ieee80211_frequency_to_channel(int freq)
99 {
100 /* see 802.11 17.3.8.3.2 and Annex J */
101 if (freq == 2484)
102 return 14;
103 else if (freq < 2484)
104 return (freq - 2407) / 5;
105 else if (freq >= 4910 && freq <= 4980)
106 return (freq - 4000) / 5;
107 else if (freq <= 45000) /* DMG band lower limit */
108 return (freq - 5000) / 5;
109 else if (freq >= 58320 && freq <= 64800)
110 return (freq - 56160) / 2160;
111 else
112 return 0;
113 }
114 EXPORT_SYMBOL(ieee80211_frequency_to_channel);
115
116 struct ieee80211_channel *__ieee80211_get_channel(struct wiphy *wiphy,
117 int freq)
118 {
119 enum nl80211_band band;
120 struct ieee80211_supported_band *sband;
121 int i;
122
123 for (band = 0; band < NUM_NL80211_BANDS; band++) {
124 sband = wiphy->bands[band];
125
126 if (!sband)
127 continue;
128
129 for (i = 0; i < sband->n_channels; i++) {
130 if (sband->channels[i].center_freq == freq)
131 return &sband->channels[i];
132 }
133 }
134
135 return NULL;
136 }
137 EXPORT_SYMBOL(__ieee80211_get_channel);
138
139 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband,
140 enum nl80211_band band)
141 {
142 int i, want;
143
144 switch (band) {
145 case NL80211_BAND_5GHZ:
146 want = 3;
147 for (i = 0; i < sband->n_bitrates; i++) {
148 if (sband->bitrates[i].bitrate == 60 ||
149 sband->bitrates[i].bitrate == 120 ||
150 sband->bitrates[i].bitrate == 240) {
151 sband->bitrates[i].flags |=
152 IEEE80211_RATE_MANDATORY_A;
153 want--;
154 }
155 }
156 WARN_ON(want);
157 break;
158 case NL80211_BAND_2GHZ:
159 want = 7;
160 for (i = 0; i < sband->n_bitrates; i++) {
161 if (sband->bitrates[i].bitrate == 10) {
162 sband->bitrates[i].flags |=
163 IEEE80211_RATE_MANDATORY_B |
164 IEEE80211_RATE_MANDATORY_G;
165 want--;
166 }
167
168 if (sband->bitrates[i].bitrate == 20 ||
169 sband->bitrates[i].bitrate == 55 ||
170 sband->bitrates[i].bitrate == 110 ||
171 sband->bitrates[i].bitrate == 60 ||
172 sband->bitrates[i].bitrate == 120 ||
173 sband->bitrates[i].bitrate == 240) {
174 sband->bitrates[i].flags |=
175 IEEE80211_RATE_MANDATORY_G;
176 want--;
177 }
178
179 if (sband->bitrates[i].bitrate != 10 &&
180 sband->bitrates[i].bitrate != 20 &&
181 sband->bitrates[i].bitrate != 55 &&
182 sband->bitrates[i].bitrate != 110)
183 sband->bitrates[i].flags |=
184 IEEE80211_RATE_ERP_G;
185 }
186 WARN_ON(want != 0 && want != 3 && want != 6);
187 break;
188 case NL80211_BAND_60GHZ:
189 /* check for mandatory HT MCS 1..4 */
190 WARN_ON(!sband->ht_cap.ht_supported);
191 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
192 break;
193 case NUM_NL80211_BANDS:
194 WARN_ON(1);
195 break;
196 }
197 }
198
199 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
200 {
201 enum nl80211_band band;
202
203 for (band = 0; band < NUM_NL80211_BANDS; band++)
204 if (wiphy->bands[band])
205 set_mandatory_flags_band(wiphy->bands[band], band);
206 }
207
208 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
209 {
210 int i;
211 for (i = 0; i < wiphy->n_cipher_suites; i++)
212 if (cipher == wiphy->cipher_suites[i])
213 return true;
214 return false;
215 }
216
217 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
218 struct key_params *params, int key_idx,
219 bool pairwise, const u8 *mac_addr)
220 {
221 if (key_idx < 0 || key_idx > 5)
222 return -EINVAL;
223
224 if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
225 return -EINVAL;
226
227 if (pairwise && !mac_addr)
228 return -EINVAL;
229
230 switch (params->cipher) {
231 case WLAN_CIPHER_SUITE_TKIP:
232 case WLAN_CIPHER_SUITE_CCMP:
233 case WLAN_CIPHER_SUITE_CCMP_256:
234 case WLAN_CIPHER_SUITE_GCMP:
235 case WLAN_CIPHER_SUITE_GCMP_256:
236 /* Disallow pairwise keys with non-zero index unless it's WEP
237 * or a vendor specific cipher (because current deployments use
238 * pairwise WEP keys with non-zero indices and for vendor
239 * specific ciphers this should be validated in the driver or
240 * hardware level - but 802.11i clearly specifies to use zero)
241 */
242 if (pairwise && key_idx)
243 return -EINVAL;
244 break;
245 case WLAN_CIPHER_SUITE_AES_CMAC:
246 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
247 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
248 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
249 /* Disallow BIP (group-only) cipher as pairwise cipher */
250 if (pairwise)
251 return -EINVAL;
252 if (key_idx < 4)
253 return -EINVAL;
254 break;
255 case WLAN_CIPHER_SUITE_WEP40:
256 case WLAN_CIPHER_SUITE_WEP104:
257 if (key_idx > 3)
258 return -EINVAL;
259 default:
260 break;
261 }
262
263 switch (params->cipher) {
264 case WLAN_CIPHER_SUITE_WEP40:
265 if (params->key_len != WLAN_KEY_LEN_WEP40)
266 return -EINVAL;
267 break;
268 case WLAN_CIPHER_SUITE_TKIP:
269 if (params->key_len != WLAN_KEY_LEN_TKIP)
270 return -EINVAL;
271 break;
272 case WLAN_CIPHER_SUITE_CCMP:
273 if (params->key_len != WLAN_KEY_LEN_CCMP)
274 return -EINVAL;
275 break;
276 case WLAN_CIPHER_SUITE_CCMP_256:
277 if (params->key_len != WLAN_KEY_LEN_CCMP_256)
278 return -EINVAL;
279 break;
280 case WLAN_CIPHER_SUITE_GCMP:
281 if (params->key_len != WLAN_KEY_LEN_GCMP)
282 return -EINVAL;
283 break;
284 case WLAN_CIPHER_SUITE_GCMP_256:
285 if (params->key_len != WLAN_KEY_LEN_GCMP_256)
286 return -EINVAL;
287 break;
288 case WLAN_CIPHER_SUITE_WEP104:
289 if (params->key_len != WLAN_KEY_LEN_WEP104)
290 return -EINVAL;
291 break;
292 case WLAN_CIPHER_SUITE_AES_CMAC:
293 if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
294 return -EINVAL;
295 break;
296 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
297 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
298 return -EINVAL;
299 break;
300 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
301 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
302 return -EINVAL;
303 break;
304 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
305 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
306 return -EINVAL;
307 break;
308 default:
309 /*
310 * We don't know anything about this algorithm,
311 * allow using it -- but the driver must check
312 * all parameters! We still check below whether
313 * or not the driver supports this algorithm,
314 * of course.
315 */
316 break;
317 }
318
319 if (params->seq) {
320 switch (params->cipher) {
321 case WLAN_CIPHER_SUITE_WEP40:
322 case WLAN_CIPHER_SUITE_WEP104:
323 /* These ciphers do not use key sequence */
324 return -EINVAL;
325 case WLAN_CIPHER_SUITE_TKIP:
326 case WLAN_CIPHER_SUITE_CCMP:
327 case WLAN_CIPHER_SUITE_CCMP_256:
328 case WLAN_CIPHER_SUITE_GCMP:
329 case WLAN_CIPHER_SUITE_GCMP_256:
330 case WLAN_CIPHER_SUITE_AES_CMAC:
331 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
332 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
333 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
334 if (params->seq_len != 6)
335 return -EINVAL;
336 break;
337 }
338 }
339
340 if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
341 return -EINVAL;
342
343 return 0;
344 }
345
346 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
347 {
348 unsigned int hdrlen = 24;
349
350 if (ieee80211_is_data(fc)) {
351 if (ieee80211_has_a4(fc))
352 hdrlen = 30;
353 if (ieee80211_is_data_qos(fc)) {
354 hdrlen += IEEE80211_QOS_CTL_LEN;
355 if (ieee80211_has_order(fc))
356 hdrlen += IEEE80211_HT_CTL_LEN;
357 }
358 goto out;
359 }
360
361 if (ieee80211_is_mgmt(fc)) {
362 if (ieee80211_has_order(fc))
363 hdrlen += IEEE80211_HT_CTL_LEN;
364 goto out;
365 }
366
367 if (ieee80211_is_ctl(fc)) {
368 /*
369 * ACK and CTS are 10 bytes, all others 16. To see how
370 * to get this condition consider
371 * subtype mask: 0b0000000011110000 (0x00F0)
372 * ACK subtype: 0b0000000011010000 (0x00D0)
373 * CTS subtype: 0b0000000011000000 (0x00C0)
374 * bits that matter: ^^^ (0x00E0)
375 * value of those: 0b0000000011000000 (0x00C0)
376 */
377 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
378 hdrlen = 10;
379 else
380 hdrlen = 16;
381 }
382 out:
383 return hdrlen;
384 }
385 EXPORT_SYMBOL(ieee80211_hdrlen);
386
387 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
388 {
389 const struct ieee80211_hdr *hdr =
390 (const struct ieee80211_hdr *)skb->data;
391 unsigned int hdrlen;
392
393 if (unlikely(skb->len < 10))
394 return 0;
395 hdrlen = ieee80211_hdrlen(hdr->frame_control);
396 if (unlikely(hdrlen > skb->len))
397 return 0;
398 return hdrlen;
399 }
400 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
401
402 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
403 {
404 int ae = flags & MESH_FLAGS_AE;
405 /* 802.11-2012, 8.2.4.7.3 */
406 switch (ae) {
407 default:
408 case 0:
409 return 6;
410 case MESH_FLAGS_AE_A4:
411 return 12;
412 case MESH_FLAGS_AE_A5_A6:
413 return 18;
414 }
415 }
416
417 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
418 {
419 return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
420 }
421 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
422
423 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
424 const u8 *addr, enum nl80211_iftype iftype)
425 {
426 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
427 struct {
428 u8 hdr[ETH_ALEN] __aligned(2);
429 __be16 proto;
430 } payload;
431 struct ethhdr tmp;
432 u16 hdrlen;
433 u8 mesh_flags = 0;
434
435 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
436 return -1;
437
438 hdrlen = ieee80211_hdrlen(hdr->frame_control);
439 if (skb->len < hdrlen + 8)
440 return -1;
441
442 /* convert IEEE 802.11 header + possible LLC headers into Ethernet
443 * header
444 * IEEE 802.11 address fields:
445 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
446 * 0 0 DA SA BSSID n/a
447 * 0 1 DA BSSID SA n/a
448 * 1 0 BSSID SA DA n/a
449 * 1 1 RA TA DA SA
450 */
451 memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
452 memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
453
454 if (iftype == NL80211_IFTYPE_MESH_POINT)
455 skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
456
457 switch (hdr->frame_control &
458 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
459 case cpu_to_le16(IEEE80211_FCTL_TODS):
460 if (unlikely(iftype != NL80211_IFTYPE_AP &&
461 iftype != NL80211_IFTYPE_AP_VLAN &&
462 iftype != NL80211_IFTYPE_P2P_GO))
463 return -1;
464 break;
465 case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
466 if (unlikely(iftype != NL80211_IFTYPE_WDS &&
467 iftype != NL80211_IFTYPE_MESH_POINT &&
468 iftype != NL80211_IFTYPE_AP_VLAN &&
469 iftype != NL80211_IFTYPE_STATION))
470 return -1;
471 if (iftype == NL80211_IFTYPE_MESH_POINT) {
472 if (mesh_flags & MESH_FLAGS_AE_A4)
473 return -1;
474 if (mesh_flags & MESH_FLAGS_AE_A5_A6) {
475 skb_copy_bits(skb, hdrlen +
476 offsetof(struct ieee80211s_hdr, eaddr1),
477 tmp.h_dest, 2 * ETH_ALEN);
478 }
479 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
480 }
481 break;
482 case cpu_to_le16(IEEE80211_FCTL_FROMDS):
483 if ((iftype != NL80211_IFTYPE_STATION &&
484 iftype != NL80211_IFTYPE_P2P_CLIENT &&
485 iftype != NL80211_IFTYPE_MESH_POINT) ||
486 (is_multicast_ether_addr(tmp.h_dest) &&
487 ether_addr_equal(tmp.h_source, addr)))
488 return -1;
489 if (iftype == NL80211_IFTYPE_MESH_POINT) {
490 if (mesh_flags & MESH_FLAGS_AE_A5_A6)
491 return -1;
492 if (mesh_flags & MESH_FLAGS_AE_A4)
493 skb_copy_bits(skb, hdrlen +
494 offsetof(struct ieee80211s_hdr, eaddr1),
495 tmp.h_source, ETH_ALEN);
496 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
497 }
498 break;
499 case cpu_to_le16(0):
500 if (iftype != NL80211_IFTYPE_ADHOC &&
501 iftype != NL80211_IFTYPE_STATION &&
502 iftype != NL80211_IFTYPE_OCB)
503 return -1;
504 break;
505 }
506
507 skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
508 tmp.h_proto = payload.proto;
509
510 if (likely((ether_addr_equal(payload.hdr, rfc1042_header) &&
511 tmp.h_proto != htons(ETH_P_AARP) &&
512 tmp.h_proto != htons(ETH_P_IPX)) ||
513 ether_addr_equal(payload.hdr, bridge_tunnel_header)))
514 /* remove RFC1042 or Bridge-Tunnel encapsulation and
515 * replace EtherType */
516 hdrlen += ETH_ALEN + 2;
517 else
518 tmp.h_proto = htons(skb->len - hdrlen);
519
520 pskb_pull(skb, hdrlen);
521
522 if (!ehdr)
523 ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr));
524 memcpy(ehdr, &tmp, sizeof(tmp));
525
526 return 0;
527 }
528 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
529
530 int ieee80211_data_from_8023(struct sk_buff *skb, const u8 *addr,
531 enum nl80211_iftype iftype,
532 const u8 *bssid, bool qos)
533 {
534 struct ieee80211_hdr hdr;
535 u16 hdrlen, ethertype;
536 __le16 fc;
537 const u8 *encaps_data;
538 int encaps_len, skip_header_bytes;
539 int nh_pos, h_pos;
540 int head_need;
541
542 if (unlikely(skb->len < ETH_HLEN))
543 return -EINVAL;
544
545 nh_pos = skb_network_header(skb) - skb->data;
546 h_pos = skb_transport_header(skb) - skb->data;
547
548 /* convert Ethernet header to proper 802.11 header (based on
549 * operation mode) */
550 ethertype = (skb->data[12] << 8) | skb->data[13];
551 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA);
552
553 switch (iftype) {
554 case NL80211_IFTYPE_AP:
555 case NL80211_IFTYPE_AP_VLAN:
556 case NL80211_IFTYPE_P2P_GO:
557 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS);
558 /* DA BSSID SA */
559 memcpy(hdr.addr1, skb->data, ETH_ALEN);
560 memcpy(hdr.addr2, addr, ETH_ALEN);
561 memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN);
562 hdrlen = 24;
563 break;
564 case NL80211_IFTYPE_STATION:
565 case NL80211_IFTYPE_P2P_CLIENT:
566 fc |= cpu_to_le16(IEEE80211_FCTL_TODS);
567 /* BSSID SA DA */
568 memcpy(hdr.addr1, bssid, ETH_ALEN);
569 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
570 memcpy(hdr.addr3, skb->data, ETH_ALEN);
571 hdrlen = 24;
572 break;
573 case NL80211_IFTYPE_OCB:
574 case NL80211_IFTYPE_ADHOC:
575 /* DA SA BSSID */
576 memcpy(hdr.addr1, skb->data, ETH_ALEN);
577 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
578 memcpy(hdr.addr3, bssid, ETH_ALEN);
579 hdrlen = 24;
580 break;
581 default:
582 return -EOPNOTSUPP;
583 }
584
585 if (qos) {
586 fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
587 hdrlen += 2;
588 }
589
590 hdr.frame_control = fc;
591 hdr.duration_id = 0;
592 hdr.seq_ctrl = 0;
593
594 skip_header_bytes = ETH_HLEN;
595 if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) {
596 encaps_data = bridge_tunnel_header;
597 encaps_len = sizeof(bridge_tunnel_header);
598 skip_header_bytes -= 2;
599 } else if (ethertype >= ETH_P_802_3_MIN) {
600 encaps_data = rfc1042_header;
601 encaps_len = sizeof(rfc1042_header);
602 skip_header_bytes -= 2;
603 } else {
604 encaps_data = NULL;
605 encaps_len = 0;
606 }
607
608 skb_pull(skb, skip_header_bytes);
609 nh_pos -= skip_header_bytes;
610 h_pos -= skip_header_bytes;
611
612 head_need = hdrlen + encaps_len - skb_headroom(skb);
613
614 if (head_need > 0 || skb_cloned(skb)) {
615 head_need = max(head_need, 0);
616 if (head_need)
617 skb_orphan(skb);
618
619 if (pskb_expand_head(skb, head_need, 0, GFP_ATOMIC))
620 return -ENOMEM;
621
622 skb->truesize += head_need;
623 }
624
625 if (encaps_data) {
626 memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len);
627 nh_pos += encaps_len;
628 h_pos += encaps_len;
629 }
630
631 memcpy(skb_push(skb, hdrlen), &hdr, hdrlen);
632
633 nh_pos += hdrlen;
634 h_pos += hdrlen;
635
636 /* Update skb pointers to various headers since this modified frame
637 * is going to go through Linux networking code that may potentially
638 * need things like pointer to IP header. */
639 skb_reset_mac_header(skb);
640 skb_set_network_header(skb, nh_pos);
641 skb_set_transport_header(skb, h_pos);
642
643 return 0;
644 }
645 EXPORT_SYMBOL(ieee80211_data_from_8023);
646
647 static void
648 __frame_add_frag(struct sk_buff *skb, struct page *page,
649 void *ptr, int len, int size)
650 {
651 struct skb_shared_info *sh = skb_shinfo(skb);
652 int page_offset;
653
654 page_ref_inc(page);
655 page_offset = ptr - page_address(page);
656 skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
657 }
658
659 static void
660 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
661 int offset, int len)
662 {
663 struct skb_shared_info *sh = skb_shinfo(skb);
664 const skb_frag_t *frag = &sh->frags[-1];
665 struct page *frag_page;
666 void *frag_ptr;
667 int frag_len, frag_size;
668 int head_size = skb->len - skb->data_len;
669 int cur_len;
670
671 frag_page = virt_to_head_page(skb->head);
672 frag_ptr = skb->data;
673 frag_size = head_size;
674
675 while (offset >= frag_size) {
676 offset -= frag_size;
677 frag++;
678 frag_page = skb_frag_page(frag);
679 frag_ptr = skb_frag_address(frag);
680 frag_size = skb_frag_size(frag);
681 }
682
683 frag_ptr += offset;
684 frag_len = frag_size - offset;
685
686 cur_len = min(len, frag_len);
687
688 __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
689 len -= cur_len;
690
691 while (len > 0) {
692 frag++;
693 frag_len = skb_frag_size(frag);
694 cur_len = min(len, frag_len);
695 __frame_add_frag(frame, skb_frag_page(frag),
696 skb_frag_address(frag), cur_len, frag_len);
697 len -= cur_len;
698 }
699 }
700
701 static struct sk_buff *
702 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
703 int offset, int len, bool reuse_frag)
704 {
705 struct sk_buff *frame;
706 int cur_len = len;
707
708 if (skb->len - offset < len)
709 return NULL;
710
711 /*
712 * When reusing framents, copy some data to the head to simplify
713 * ethernet header handling and speed up protocol header processing
714 * in the stack later.
715 */
716 if (reuse_frag)
717 cur_len = min_t(int, len, 32);
718
719 /*
720 * Allocate and reserve two bytes more for payload
721 * alignment since sizeof(struct ethhdr) is 14.
722 */
723 frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
724 if (!frame)
725 return NULL;
726
727 skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
728 skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
729
730 len -= cur_len;
731 if (!len)
732 return frame;
733
734 offset += cur_len;
735 __ieee80211_amsdu_copy_frag(skb, frame, offset, len);
736
737 return frame;
738 }
739
740 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
741 const u8 *addr, enum nl80211_iftype iftype,
742 const unsigned int extra_headroom,
743 const u8 *check_da, const u8 *check_sa)
744 {
745 unsigned int hlen = ALIGN(extra_headroom, 4);
746 struct sk_buff *frame = NULL;
747 u16 ethertype;
748 u8 *payload;
749 int offset = 0, remaining;
750 struct ethhdr eth;
751 bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
752 bool reuse_skb = false;
753 bool last = false;
754
755 while (!last) {
756 unsigned int subframe_len;
757 int len;
758 u8 padding;
759
760 skb_copy_bits(skb, offset, &eth, sizeof(eth));
761 len = ntohs(eth.h_proto);
762 subframe_len = sizeof(struct ethhdr) + len;
763 padding = (4 - subframe_len) & 0x3;
764
765 /* the last MSDU has no padding */
766 remaining = skb->len - offset;
767 if (subframe_len > remaining)
768 goto purge;
769
770 offset += sizeof(struct ethhdr);
771 last = remaining <= subframe_len + padding;
772
773 /* FIXME: should we really accept multicast DA? */
774 if ((check_da && !is_multicast_ether_addr(eth.h_dest) &&
775 !ether_addr_equal(check_da, eth.h_dest)) ||
776 (check_sa && !ether_addr_equal(check_sa, eth.h_source))) {
777 offset += len + padding;
778 continue;
779 }
780
781 /* reuse skb for the last subframe */
782 if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
783 skb_pull(skb, offset);
784 frame = skb;
785 reuse_skb = true;
786 } else {
787 frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
788 reuse_frag);
789 if (!frame)
790 goto purge;
791
792 offset += len + padding;
793 }
794
795 skb_reset_network_header(frame);
796 frame->dev = skb->dev;
797 frame->priority = skb->priority;
798
799 payload = frame->data;
800 ethertype = (payload[6] << 8) | payload[7];
801 if (likely((ether_addr_equal(payload, rfc1042_header) &&
802 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
803 ether_addr_equal(payload, bridge_tunnel_header))) {
804 eth.h_proto = htons(ethertype);
805 skb_pull(frame, ETH_ALEN + 2);
806 }
807
808 memcpy(skb_push(frame, sizeof(eth)), &eth, sizeof(eth));
809 __skb_queue_tail(list, frame);
810 }
811
812 if (!reuse_skb)
813 dev_kfree_skb(skb);
814
815 return;
816
817 purge:
818 __skb_queue_purge(list);
819 dev_kfree_skb(skb);
820 }
821 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
822
823 /* Given a data frame determine the 802.1p/1d tag to use. */
824 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
825 struct cfg80211_qos_map *qos_map)
826 {
827 unsigned int dscp;
828 unsigned char vlan_priority;
829
830 /* skb->priority values from 256->263 are magic values to
831 * directly indicate a specific 802.1d priority. This is used
832 * to allow 802.1d priority to be passed directly in from VLAN
833 * tags, etc.
834 */
835 if (skb->priority >= 256 && skb->priority <= 263)
836 return skb->priority - 256;
837
838 if (skb_vlan_tag_present(skb)) {
839 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
840 >> VLAN_PRIO_SHIFT;
841 if (vlan_priority > 0)
842 return vlan_priority;
843 }
844
845 switch (skb->protocol) {
846 case htons(ETH_P_IP):
847 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
848 break;
849 case htons(ETH_P_IPV6):
850 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
851 break;
852 case htons(ETH_P_MPLS_UC):
853 case htons(ETH_P_MPLS_MC): {
854 struct mpls_label mpls_tmp, *mpls;
855
856 mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
857 sizeof(*mpls), &mpls_tmp);
858 if (!mpls)
859 return 0;
860
861 return (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
862 >> MPLS_LS_TC_SHIFT;
863 }
864 case htons(ETH_P_80221):
865 /* 802.21 is always network control traffic */
866 return 7;
867 default:
868 return 0;
869 }
870
871 if (qos_map) {
872 unsigned int i, tmp_dscp = dscp >> 2;
873
874 for (i = 0; i < qos_map->num_des; i++) {
875 if (tmp_dscp == qos_map->dscp_exception[i].dscp)
876 return qos_map->dscp_exception[i].up;
877 }
878
879 for (i = 0; i < 8; i++) {
880 if (tmp_dscp >= qos_map->up[i].low &&
881 tmp_dscp <= qos_map->up[i].high)
882 return i;
883 }
884 }
885
886 return dscp >> 5;
887 }
888 EXPORT_SYMBOL(cfg80211_classify8021d);
889
890 const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie)
891 {
892 const struct cfg80211_bss_ies *ies;
893
894 ies = rcu_dereference(bss->ies);
895 if (!ies)
896 return NULL;
897
898 return cfg80211_find_ie(ie, ies->data, ies->len);
899 }
900 EXPORT_SYMBOL(ieee80211_bss_get_ie);
901
902 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
903 {
904 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
905 struct net_device *dev = wdev->netdev;
906 int i;
907
908 if (!wdev->connect_keys)
909 return;
910
911 for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) {
912 if (!wdev->connect_keys->params[i].cipher)
913 continue;
914 if (rdev_add_key(rdev, dev, i, false, NULL,
915 &wdev->connect_keys->params[i])) {
916 netdev_err(dev, "failed to set key %d\n", i);
917 continue;
918 }
919 if (wdev->connect_keys->def == i)
920 if (rdev_set_default_key(rdev, dev, i, true, true)) {
921 netdev_err(dev, "failed to set defkey %d\n", i);
922 continue;
923 }
924 }
925
926 kzfree(wdev->connect_keys);
927 wdev->connect_keys = NULL;
928 }
929
930 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
931 {
932 struct cfg80211_event *ev;
933 unsigned long flags;
934 const u8 *bssid = NULL;
935
936 spin_lock_irqsave(&wdev->event_lock, flags);
937 while (!list_empty(&wdev->event_list)) {
938 ev = list_first_entry(&wdev->event_list,
939 struct cfg80211_event, list);
940 list_del(&ev->list);
941 spin_unlock_irqrestore(&wdev->event_lock, flags);
942
943 wdev_lock(wdev);
944 switch (ev->type) {
945 case EVENT_CONNECT_RESULT:
946 if (!is_zero_ether_addr(ev->cr.bssid))
947 bssid = ev->cr.bssid;
948 __cfg80211_connect_result(
949 wdev->netdev, bssid,
950 ev->cr.req_ie, ev->cr.req_ie_len,
951 ev->cr.resp_ie, ev->cr.resp_ie_len,
952 ev->cr.status,
953 ev->cr.status == WLAN_STATUS_SUCCESS,
954 ev->cr.bss);
955 break;
956 case EVENT_ROAMED:
957 __cfg80211_roamed(wdev, ev->rm.bss, ev->rm.req_ie,
958 ev->rm.req_ie_len, ev->rm.resp_ie,
959 ev->rm.resp_ie_len);
960 break;
961 case EVENT_DISCONNECTED:
962 __cfg80211_disconnected(wdev->netdev,
963 ev->dc.ie, ev->dc.ie_len,
964 ev->dc.reason,
965 !ev->dc.locally_generated);
966 break;
967 case EVENT_IBSS_JOINED:
968 __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
969 ev->ij.channel);
970 break;
971 case EVENT_STOPPED:
972 __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
973 break;
974 }
975 wdev_unlock(wdev);
976
977 kfree(ev);
978
979 spin_lock_irqsave(&wdev->event_lock, flags);
980 }
981 spin_unlock_irqrestore(&wdev->event_lock, flags);
982 }
983
984 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
985 {
986 struct wireless_dev *wdev;
987
988 ASSERT_RTNL();
989
990 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
991 cfg80211_process_wdev_events(wdev);
992 }
993
994 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
995 struct net_device *dev, enum nl80211_iftype ntype,
996 u32 *flags, struct vif_params *params)
997 {
998 int err;
999 enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
1000
1001 ASSERT_RTNL();
1002
1003 /* don't support changing VLANs, you just re-create them */
1004 if (otype == NL80211_IFTYPE_AP_VLAN)
1005 return -EOPNOTSUPP;
1006
1007 /* cannot change into P2P device or NAN */
1008 if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
1009 ntype == NL80211_IFTYPE_NAN)
1010 return -EOPNOTSUPP;
1011
1012 if (!rdev->ops->change_virtual_intf ||
1013 !(rdev->wiphy.interface_modes & (1 << ntype)))
1014 return -EOPNOTSUPP;
1015
1016 /* if it's part of a bridge, reject changing type to station/ibss */
1017 if ((dev->priv_flags & IFF_BRIDGE_PORT) &&
1018 (ntype == NL80211_IFTYPE_ADHOC ||
1019 ntype == NL80211_IFTYPE_STATION ||
1020 ntype == NL80211_IFTYPE_P2P_CLIENT))
1021 return -EBUSY;
1022
1023 if (ntype != otype) {
1024 dev->ieee80211_ptr->use_4addr = false;
1025 dev->ieee80211_ptr->mesh_id_up_len = 0;
1026 wdev_lock(dev->ieee80211_ptr);
1027 rdev_set_qos_map(rdev, dev, NULL);
1028 wdev_unlock(dev->ieee80211_ptr);
1029
1030 switch (otype) {
1031 case NL80211_IFTYPE_AP:
1032 cfg80211_stop_ap(rdev, dev, true);
1033 break;
1034 case NL80211_IFTYPE_ADHOC:
1035 cfg80211_leave_ibss(rdev, dev, false);
1036 break;
1037 case NL80211_IFTYPE_STATION:
1038 case NL80211_IFTYPE_P2P_CLIENT:
1039 wdev_lock(dev->ieee80211_ptr);
1040 cfg80211_disconnect(rdev, dev,
1041 WLAN_REASON_DEAUTH_LEAVING, true);
1042 wdev_unlock(dev->ieee80211_ptr);
1043 break;
1044 case NL80211_IFTYPE_MESH_POINT:
1045 /* mesh should be handled? */
1046 break;
1047 default:
1048 break;
1049 }
1050
1051 cfg80211_process_rdev_events(rdev);
1052 }
1053
1054 err = rdev_change_virtual_intf(rdev, dev, ntype, flags, params);
1055
1056 WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
1057
1058 if (!err && params && params->use_4addr != -1)
1059 dev->ieee80211_ptr->use_4addr = params->use_4addr;
1060
1061 if (!err) {
1062 dev->priv_flags &= ~IFF_DONT_BRIDGE;
1063 switch (ntype) {
1064 case NL80211_IFTYPE_STATION:
1065 if (dev->ieee80211_ptr->use_4addr)
1066 break;
1067 /* fall through */
1068 case NL80211_IFTYPE_OCB:
1069 case NL80211_IFTYPE_P2P_CLIENT:
1070 case NL80211_IFTYPE_ADHOC:
1071 dev->priv_flags |= IFF_DONT_BRIDGE;
1072 break;
1073 case NL80211_IFTYPE_P2P_GO:
1074 case NL80211_IFTYPE_AP:
1075 case NL80211_IFTYPE_AP_VLAN:
1076 case NL80211_IFTYPE_WDS:
1077 case NL80211_IFTYPE_MESH_POINT:
1078 /* bridging OK */
1079 break;
1080 case NL80211_IFTYPE_MONITOR:
1081 /* monitor can't bridge anyway */
1082 break;
1083 case NL80211_IFTYPE_UNSPECIFIED:
1084 case NUM_NL80211_IFTYPES:
1085 /* not happening */
1086 break;
1087 case NL80211_IFTYPE_P2P_DEVICE:
1088 case NL80211_IFTYPE_NAN:
1089 WARN_ON(1);
1090 break;
1091 }
1092 }
1093
1094 if (!err && ntype != otype && netif_running(dev)) {
1095 cfg80211_update_iface_num(rdev, ntype, 1);
1096 cfg80211_update_iface_num(rdev, otype, -1);
1097 }
1098
1099 return err;
1100 }
1101
1102 static u32 cfg80211_calculate_bitrate_60g(struct rate_info *rate)
1103 {
1104 static const u32 __mcs2bitrate[] = {
1105 /* control PHY */
1106 [0] = 275,
1107 /* SC PHY */
1108 [1] = 3850,
1109 [2] = 7700,
1110 [3] = 9625,
1111 [4] = 11550,
1112 [5] = 12512, /* 1251.25 mbps */
1113 [6] = 15400,
1114 [7] = 19250,
1115 [8] = 23100,
1116 [9] = 25025,
1117 [10] = 30800,
1118 [11] = 38500,
1119 [12] = 46200,
1120 /* OFDM PHY */
1121 [13] = 6930,
1122 [14] = 8662, /* 866.25 mbps */
1123 [15] = 13860,
1124 [16] = 17325,
1125 [17] = 20790,
1126 [18] = 27720,
1127 [19] = 34650,
1128 [20] = 41580,
1129 [21] = 45045,
1130 [22] = 51975,
1131 [23] = 62370,
1132 [24] = 67568, /* 6756.75 mbps */
1133 /* LP-SC PHY */
1134 [25] = 6260,
1135 [26] = 8340,
1136 [27] = 11120,
1137 [28] = 12510,
1138 [29] = 16680,
1139 [30] = 22240,
1140 [31] = 25030,
1141 };
1142
1143 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1144 return 0;
1145
1146 return __mcs2bitrate[rate->mcs];
1147 }
1148
1149 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1150 {
1151 static const u32 base[4][10] = {
1152 { 6500000,
1153 13000000,
1154 19500000,
1155 26000000,
1156 39000000,
1157 52000000,
1158 58500000,
1159 65000000,
1160 78000000,
1161 0,
1162 },
1163 { 13500000,
1164 27000000,
1165 40500000,
1166 54000000,
1167 81000000,
1168 108000000,
1169 121500000,
1170 135000000,
1171 162000000,
1172 180000000,
1173 },
1174 { 29300000,
1175 58500000,
1176 87800000,
1177 117000000,
1178 175500000,
1179 234000000,
1180 263300000,
1181 292500000,
1182 351000000,
1183 390000000,
1184 },
1185 { 58500000,
1186 117000000,
1187 175500000,
1188 234000000,
1189 351000000,
1190 468000000,
1191 526500000,
1192 585000000,
1193 702000000,
1194 780000000,
1195 },
1196 };
1197 u32 bitrate;
1198 int idx;
1199
1200 if (WARN_ON_ONCE(rate->mcs > 9))
1201 return 0;
1202
1203 switch (rate->bw) {
1204 case RATE_INFO_BW_160:
1205 idx = 3;
1206 break;
1207 case RATE_INFO_BW_80:
1208 idx = 2;
1209 break;
1210 case RATE_INFO_BW_40:
1211 idx = 1;
1212 break;
1213 case RATE_INFO_BW_5:
1214 case RATE_INFO_BW_10:
1215 default:
1216 WARN_ON(1);
1217 /* fall through */
1218 case RATE_INFO_BW_20:
1219 idx = 0;
1220 }
1221
1222 bitrate = base[idx][rate->mcs];
1223 bitrate *= rate->nss;
1224
1225 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1226 bitrate = (bitrate / 9) * 10;
1227
1228 /* do NOT round down here */
1229 return (bitrate + 50000) / 100000;
1230 }
1231
1232 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1233 {
1234 int modulation, streams, bitrate;
1235
1236 if (!(rate->flags & RATE_INFO_FLAGS_MCS) &&
1237 !(rate->flags & RATE_INFO_FLAGS_VHT_MCS))
1238 return rate->legacy;
1239 if (rate->flags & RATE_INFO_FLAGS_60G)
1240 return cfg80211_calculate_bitrate_60g(rate);
1241 if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1242 return cfg80211_calculate_bitrate_vht(rate);
1243
1244 /* the formula below does only work for MCS values smaller than 32 */
1245 if (WARN_ON_ONCE(rate->mcs >= 32))
1246 return 0;
1247
1248 modulation = rate->mcs & 7;
1249 streams = (rate->mcs >> 3) + 1;
1250
1251 bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1252
1253 if (modulation < 4)
1254 bitrate *= (modulation + 1);
1255 else if (modulation == 4)
1256 bitrate *= (modulation + 2);
1257 else
1258 bitrate *= (modulation + 3);
1259
1260 bitrate *= streams;
1261
1262 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1263 bitrate = (bitrate / 9) * 10;
1264
1265 /* do NOT round down here */
1266 return (bitrate + 50000) / 100000;
1267 }
1268 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1269
1270 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1271 enum ieee80211_p2p_attr_id attr,
1272 u8 *buf, unsigned int bufsize)
1273 {
1274 u8 *out = buf;
1275 u16 attr_remaining = 0;
1276 bool desired_attr = false;
1277 u16 desired_len = 0;
1278
1279 while (len > 0) {
1280 unsigned int iedatalen;
1281 unsigned int copy;
1282 const u8 *iedata;
1283
1284 if (len < 2)
1285 return -EILSEQ;
1286 iedatalen = ies[1];
1287 if (iedatalen + 2 > len)
1288 return -EILSEQ;
1289
1290 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1291 goto cont;
1292
1293 if (iedatalen < 4)
1294 goto cont;
1295
1296 iedata = ies + 2;
1297
1298 /* check WFA OUI, P2P subtype */
1299 if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1300 iedata[2] != 0x9a || iedata[3] != 0x09)
1301 goto cont;
1302
1303 iedatalen -= 4;
1304 iedata += 4;
1305
1306 /* check attribute continuation into this IE */
1307 copy = min_t(unsigned int, attr_remaining, iedatalen);
1308 if (copy && desired_attr) {
1309 desired_len += copy;
1310 if (out) {
1311 memcpy(out, iedata, min(bufsize, copy));
1312 out += min(bufsize, copy);
1313 bufsize -= min(bufsize, copy);
1314 }
1315
1316
1317 if (copy == attr_remaining)
1318 return desired_len;
1319 }
1320
1321 attr_remaining -= copy;
1322 if (attr_remaining)
1323 goto cont;
1324
1325 iedatalen -= copy;
1326 iedata += copy;
1327
1328 while (iedatalen > 0) {
1329 u16 attr_len;
1330
1331 /* P2P attribute ID & size must fit */
1332 if (iedatalen < 3)
1333 return -EILSEQ;
1334 desired_attr = iedata[0] == attr;
1335 attr_len = get_unaligned_le16(iedata + 1);
1336 iedatalen -= 3;
1337 iedata += 3;
1338
1339 copy = min_t(unsigned int, attr_len, iedatalen);
1340
1341 if (desired_attr) {
1342 desired_len += copy;
1343 if (out) {
1344 memcpy(out, iedata, min(bufsize, copy));
1345 out += min(bufsize, copy);
1346 bufsize -= min(bufsize, copy);
1347 }
1348
1349 if (copy == attr_len)
1350 return desired_len;
1351 }
1352
1353 iedata += copy;
1354 iedatalen -= copy;
1355 attr_remaining = attr_len - copy;
1356 }
1357
1358 cont:
1359 len -= ies[1] + 2;
1360 ies += ies[1] + 2;
1361 }
1362
1363 if (attr_remaining && desired_attr)
1364 return -EILSEQ;
1365
1366 return -ENOENT;
1367 }
1368 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1369
1370 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id)
1371 {
1372 int i;
1373
1374 for (i = 0; i < n_ids; i++)
1375 if (ids[i] == id)
1376 return true;
1377 return false;
1378 }
1379
1380 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1381 const u8 *ids, int n_ids,
1382 const u8 *after_ric, int n_after_ric,
1383 size_t offset)
1384 {
1385 size_t pos = offset;
1386
1387 while (pos < ielen && ieee80211_id_in_list(ids, n_ids, ies[pos])) {
1388 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1389 pos += 2 + ies[pos + 1];
1390
1391 while (pos < ielen &&
1392 !ieee80211_id_in_list(after_ric, n_after_ric,
1393 ies[pos]))
1394 pos += 2 + ies[pos + 1];
1395 } else {
1396 pos += 2 + ies[pos + 1];
1397 }
1398 }
1399
1400 return pos;
1401 }
1402 EXPORT_SYMBOL(ieee80211_ie_split_ric);
1403
1404 bool ieee80211_operating_class_to_band(u8 operating_class,
1405 enum nl80211_band *band)
1406 {
1407 switch (operating_class) {
1408 case 112:
1409 case 115 ... 127:
1410 case 128 ... 130:
1411 *band = NL80211_BAND_5GHZ;
1412 return true;
1413 case 81:
1414 case 82:
1415 case 83:
1416 case 84:
1417 *band = NL80211_BAND_2GHZ;
1418 return true;
1419 case 180:
1420 *band = NL80211_BAND_60GHZ;
1421 return true;
1422 }
1423
1424 return false;
1425 }
1426 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1427
1428 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1429 u8 *op_class)
1430 {
1431 u8 vht_opclass;
1432 u16 freq = chandef->center_freq1;
1433
1434 if (freq >= 2412 && freq <= 2472) {
1435 if (chandef->width > NL80211_CHAN_WIDTH_40)
1436 return false;
1437
1438 /* 2.407 GHz, channels 1..13 */
1439 if (chandef->width == NL80211_CHAN_WIDTH_40) {
1440 if (freq > chandef->chan->center_freq)
1441 *op_class = 83; /* HT40+ */
1442 else
1443 *op_class = 84; /* HT40- */
1444 } else {
1445 *op_class = 81;
1446 }
1447
1448 return true;
1449 }
1450
1451 if (freq == 2484) {
1452 if (chandef->width > NL80211_CHAN_WIDTH_40)
1453 return false;
1454
1455 *op_class = 82; /* channel 14 */
1456 return true;
1457 }
1458
1459 switch (chandef->width) {
1460 case NL80211_CHAN_WIDTH_80:
1461 vht_opclass = 128;
1462 break;
1463 case NL80211_CHAN_WIDTH_160:
1464 vht_opclass = 129;
1465 break;
1466 case NL80211_CHAN_WIDTH_80P80:
1467 vht_opclass = 130;
1468 break;
1469 case NL80211_CHAN_WIDTH_10:
1470 case NL80211_CHAN_WIDTH_5:
1471 return false; /* unsupported for now */
1472 default:
1473 vht_opclass = 0;
1474 break;
1475 }
1476
1477 /* 5 GHz, channels 36..48 */
1478 if (freq >= 5180 && freq <= 5240) {
1479 if (vht_opclass) {
1480 *op_class = vht_opclass;
1481 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1482 if (freq > chandef->chan->center_freq)
1483 *op_class = 116;
1484 else
1485 *op_class = 117;
1486 } else {
1487 *op_class = 115;
1488 }
1489
1490 return true;
1491 }
1492
1493 /* 5 GHz, channels 52..64 */
1494 if (freq >= 5260 && freq <= 5320) {
1495 if (vht_opclass) {
1496 *op_class = vht_opclass;
1497 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1498 if (freq > chandef->chan->center_freq)
1499 *op_class = 119;
1500 else
1501 *op_class = 120;
1502 } else {
1503 *op_class = 118;
1504 }
1505
1506 return true;
1507 }
1508
1509 /* 5 GHz, channels 100..144 */
1510 if (freq >= 5500 && freq <= 5720) {
1511 if (vht_opclass) {
1512 *op_class = vht_opclass;
1513 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1514 if (freq > chandef->chan->center_freq)
1515 *op_class = 122;
1516 else
1517 *op_class = 123;
1518 } else {
1519 *op_class = 121;
1520 }
1521
1522 return true;
1523 }
1524
1525 /* 5 GHz, channels 149..169 */
1526 if (freq >= 5745 && freq <= 5845) {
1527 if (vht_opclass) {
1528 *op_class = vht_opclass;
1529 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1530 if (freq > chandef->chan->center_freq)
1531 *op_class = 126;
1532 else
1533 *op_class = 127;
1534 } else if (freq <= 5805) {
1535 *op_class = 124;
1536 } else {
1537 *op_class = 125;
1538 }
1539
1540 return true;
1541 }
1542
1543 /* 56.16 GHz, channel 1..4 */
1544 if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 4) {
1545 if (chandef->width >= NL80211_CHAN_WIDTH_40)
1546 return false;
1547
1548 *op_class = 180;
1549 return true;
1550 }
1551
1552 /* not supported yet */
1553 return false;
1554 }
1555 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1556
1557 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1558 u32 beacon_int)
1559 {
1560 struct wireless_dev *wdev;
1561 int res = 0;
1562
1563 if (beacon_int < 10 || beacon_int > 10000)
1564 return -EINVAL;
1565
1566 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
1567 if (!wdev->beacon_interval)
1568 continue;
1569 if (wdev->beacon_interval != beacon_int) {
1570 res = -EINVAL;
1571 break;
1572 }
1573 }
1574
1575 return res;
1576 }
1577
1578 int cfg80211_iter_combinations(struct wiphy *wiphy,
1579 const int num_different_channels,
1580 const u8 radar_detect,
1581 const int iftype_num[NUM_NL80211_IFTYPES],
1582 void (*iter)(const struct ieee80211_iface_combination *c,
1583 void *data),
1584 void *data)
1585 {
1586 const struct ieee80211_regdomain *regdom;
1587 enum nl80211_dfs_regions region = 0;
1588 int i, j, iftype;
1589 int num_interfaces = 0;
1590 u32 used_iftypes = 0;
1591
1592 if (radar_detect) {
1593 rcu_read_lock();
1594 regdom = rcu_dereference(cfg80211_regdomain);
1595 if (regdom)
1596 region = regdom->dfs_region;
1597 rcu_read_unlock();
1598 }
1599
1600 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1601 num_interfaces += iftype_num[iftype];
1602 if (iftype_num[iftype] > 0 &&
1603 !(wiphy->software_iftypes & BIT(iftype)))
1604 used_iftypes |= BIT(iftype);
1605 }
1606
1607 for (i = 0; i < wiphy->n_iface_combinations; i++) {
1608 const struct ieee80211_iface_combination *c;
1609 struct ieee80211_iface_limit *limits;
1610 u32 all_iftypes = 0;
1611
1612 c = &wiphy->iface_combinations[i];
1613
1614 if (num_interfaces > c->max_interfaces)
1615 continue;
1616 if (num_different_channels > c->num_different_channels)
1617 continue;
1618
1619 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1620 GFP_KERNEL);
1621 if (!limits)
1622 return -ENOMEM;
1623
1624 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1625 if (wiphy->software_iftypes & BIT(iftype))
1626 continue;
1627 for (j = 0; j < c->n_limits; j++) {
1628 all_iftypes |= limits[j].types;
1629 if (!(limits[j].types & BIT(iftype)))
1630 continue;
1631 if (limits[j].max < iftype_num[iftype])
1632 goto cont;
1633 limits[j].max -= iftype_num[iftype];
1634 }
1635 }
1636
1637 if (radar_detect != (c->radar_detect_widths & radar_detect))
1638 goto cont;
1639
1640 if (radar_detect && c->radar_detect_regions &&
1641 !(c->radar_detect_regions & BIT(region)))
1642 goto cont;
1643
1644 /* Finally check that all iftypes that we're currently
1645 * using are actually part of this combination. If they
1646 * aren't then we can't use this combination and have
1647 * to continue to the next.
1648 */
1649 if ((all_iftypes & used_iftypes) != used_iftypes)
1650 goto cont;
1651
1652 /* This combination covered all interface types and
1653 * supported the requested numbers, so we're good.
1654 */
1655
1656 (*iter)(c, data);
1657 cont:
1658 kfree(limits);
1659 }
1660
1661 return 0;
1662 }
1663 EXPORT_SYMBOL(cfg80211_iter_combinations);
1664
1665 static void
1666 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
1667 void *data)
1668 {
1669 int *num = data;
1670 (*num)++;
1671 }
1672
1673 int cfg80211_check_combinations(struct wiphy *wiphy,
1674 const int num_different_channels,
1675 const u8 radar_detect,
1676 const int iftype_num[NUM_NL80211_IFTYPES])
1677 {
1678 int err, num = 0;
1679
1680 err = cfg80211_iter_combinations(wiphy, num_different_channels,
1681 radar_detect, iftype_num,
1682 cfg80211_iter_sum_ifcombs, &num);
1683 if (err)
1684 return err;
1685 if (num == 0)
1686 return -EBUSY;
1687
1688 return 0;
1689 }
1690 EXPORT_SYMBOL(cfg80211_check_combinations);
1691
1692 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1693 const u8 *rates, unsigned int n_rates,
1694 u32 *mask)
1695 {
1696 int i, j;
1697
1698 if (!sband)
1699 return -EINVAL;
1700
1701 if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1702 return -EINVAL;
1703
1704 *mask = 0;
1705
1706 for (i = 0; i < n_rates; i++) {
1707 int rate = (rates[i] & 0x7f) * 5;
1708 bool found = false;
1709
1710 for (j = 0; j < sband->n_bitrates; j++) {
1711 if (sband->bitrates[j].bitrate == rate) {
1712 found = true;
1713 *mask |= BIT(j);
1714 break;
1715 }
1716 }
1717 if (!found)
1718 return -EINVAL;
1719 }
1720
1721 /*
1722 * mask must have at least one bit set here since we
1723 * didn't accept a 0-length rates array nor allowed
1724 * entries in the array that didn't exist
1725 */
1726
1727 return 0;
1728 }
1729
1730 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
1731 {
1732 enum nl80211_band band;
1733 unsigned int n_channels = 0;
1734
1735 for (band = 0; band < NUM_NL80211_BANDS; band++)
1736 if (wiphy->bands[band])
1737 n_channels += wiphy->bands[band]->n_channels;
1738
1739 return n_channels;
1740 }
1741 EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
1742
1743 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
1744 struct station_info *sinfo)
1745 {
1746 struct cfg80211_registered_device *rdev;
1747 struct wireless_dev *wdev;
1748
1749 wdev = dev->ieee80211_ptr;
1750 if (!wdev)
1751 return -EOPNOTSUPP;
1752
1753 rdev = wiphy_to_rdev(wdev->wiphy);
1754 if (!rdev->ops->get_station)
1755 return -EOPNOTSUPP;
1756
1757 return rdev_get_station(rdev, dev, mac_addr, sinfo);
1758 }
1759 EXPORT_SYMBOL(cfg80211_get_station);
1760
1761 void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
1762 {
1763 int i;
1764
1765 if (!f)
1766 return;
1767
1768 kfree(f->serv_spec_info);
1769 kfree(f->srf_bf);
1770 kfree(f->srf_macs);
1771 for (i = 0; i < f->num_rx_filters; i++)
1772 kfree(f->rx_filters[i].filter);
1773
1774 for (i = 0; i < f->num_tx_filters; i++)
1775 kfree(f->tx_filters[i].filter);
1776
1777 kfree(f->rx_filters);
1778 kfree(f->tx_filters);
1779 kfree(f);
1780 }
1781 EXPORT_SYMBOL(cfg80211_free_nan_func);
1782
1783 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
1784 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
1785 const unsigned char rfc1042_header[] __aligned(2) =
1786 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
1787 EXPORT_SYMBOL(rfc1042_header);
1788
1789 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
1790 const unsigned char bridge_tunnel_header[] __aligned(2) =
1791 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
1792 EXPORT_SYMBOL(bridge_tunnel_header);