]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/wireless/util.c
Merge remote-tracking branches 'asoc/topic/max9878', 'asoc/topic/max98927', 'asoc...
[mirror_ubuntu-bionic-kernel.git] / net / wireless / util.c
1 /*
2 * Wireless utility functions
3 *
4 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2013-2014 Intel Mobile Communications GmbH
6 */
7 #include <linux/export.h>
8 #include <linux/bitops.h>
9 #include <linux/etherdevice.h>
10 #include <linux/slab.h>
11 #include <net/cfg80211.h>
12 #include <net/ip.h>
13 #include <net/dsfield.h>
14 #include <linux/if_vlan.h>
15 #include <linux/mpls.h>
16 #include <linux/gcd.h>
17 #include "core.h"
18 #include "rdev-ops.h"
19
20
21 struct ieee80211_rate *
22 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
23 u32 basic_rates, int bitrate)
24 {
25 struct ieee80211_rate *result = &sband->bitrates[0];
26 int i;
27
28 for (i = 0; i < sband->n_bitrates; i++) {
29 if (!(basic_rates & BIT(i)))
30 continue;
31 if (sband->bitrates[i].bitrate > bitrate)
32 continue;
33 result = &sband->bitrates[i];
34 }
35
36 return result;
37 }
38 EXPORT_SYMBOL(ieee80211_get_response_rate);
39
40 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
41 enum nl80211_bss_scan_width scan_width)
42 {
43 struct ieee80211_rate *bitrates;
44 u32 mandatory_rates = 0;
45 enum ieee80211_rate_flags mandatory_flag;
46 int i;
47
48 if (WARN_ON(!sband))
49 return 1;
50
51 if (sband->band == NL80211_BAND_2GHZ) {
52 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
53 scan_width == NL80211_BSS_CHAN_WIDTH_10)
54 mandatory_flag = IEEE80211_RATE_MANDATORY_G;
55 else
56 mandatory_flag = IEEE80211_RATE_MANDATORY_B;
57 } else {
58 mandatory_flag = IEEE80211_RATE_MANDATORY_A;
59 }
60
61 bitrates = sband->bitrates;
62 for (i = 0; i < sband->n_bitrates; i++)
63 if (bitrates[i].flags & mandatory_flag)
64 mandatory_rates |= BIT(i);
65 return mandatory_rates;
66 }
67 EXPORT_SYMBOL(ieee80211_mandatory_rates);
68
69 int ieee80211_channel_to_frequency(int chan, enum nl80211_band band)
70 {
71 /* see 802.11 17.3.8.3.2 and Annex J
72 * there are overlapping channel numbers in 5GHz and 2GHz bands */
73 if (chan <= 0)
74 return 0; /* not supported */
75 switch (band) {
76 case NL80211_BAND_2GHZ:
77 if (chan == 14)
78 return 2484;
79 else if (chan < 14)
80 return 2407 + chan * 5;
81 break;
82 case NL80211_BAND_5GHZ:
83 if (chan >= 182 && chan <= 196)
84 return 4000 + chan * 5;
85 else
86 return 5000 + chan * 5;
87 break;
88 case NL80211_BAND_60GHZ:
89 if (chan < 5)
90 return 56160 + chan * 2160;
91 break;
92 default:
93 ;
94 }
95 return 0; /* not supported */
96 }
97 EXPORT_SYMBOL(ieee80211_channel_to_frequency);
98
99 int ieee80211_frequency_to_channel(int freq)
100 {
101 /* see 802.11 17.3.8.3.2 and Annex J */
102 if (freq == 2484)
103 return 14;
104 else if (freq < 2484)
105 return (freq - 2407) / 5;
106 else if (freq >= 4910 && freq <= 4980)
107 return (freq - 4000) / 5;
108 else if (freq <= 45000) /* DMG band lower limit */
109 return (freq - 5000) / 5;
110 else if (freq >= 58320 && freq <= 64800)
111 return (freq - 56160) / 2160;
112 else
113 return 0;
114 }
115 EXPORT_SYMBOL(ieee80211_frequency_to_channel);
116
117 struct ieee80211_channel *ieee80211_get_channel(struct wiphy *wiphy, int freq)
118 {
119 enum nl80211_band band;
120 struct ieee80211_supported_band *sband;
121 int i;
122
123 for (band = 0; band < NUM_NL80211_BANDS; band++) {
124 sband = wiphy->bands[band];
125
126 if (!sband)
127 continue;
128
129 for (i = 0; i < sband->n_channels; i++) {
130 if (sband->channels[i].center_freq == freq)
131 return &sband->channels[i];
132 }
133 }
134
135 return NULL;
136 }
137 EXPORT_SYMBOL(ieee80211_get_channel);
138
139 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
140 {
141 int i, want;
142
143 switch (sband->band) {
144 case NL80211_BAND_5GHZ:
145 want = 3;
146 for (i = 0; i < sband->n_bitrates; i++) {
147 if (sband->bitrates[i].bitrate == 60 ||
148 sband->bitrates[i].bitrate == 120 ||
149 sband->bitrates[i].bitrate == 240) {
150 sband->bitrates[i].flags |=
151 IEEE80211_RATE_MANDATORY_A;
152 want--;
153 }
154 }
155 WARN_ON(want);
156 break;
157 case NL80211_BAND_2GHZ:
158 want = 7;
159 for (i = 0; i < sband->n_bitrates; i++) {
160 if (sband->bitrates[i].bitrate == 10) {
161 sband->bitrates[i].flags |=
162 IEEE80211_RATE_MANDATORY_B |
163 IEEE80211_RATE_MANDATORY_G;
164 want--;
165 }
166
167 if (sband->bitrates[i].bitrate == 20 ||
168 sband->bitrates[i].bitrate == 55 ||
169 sband->bitrates[i].bitrate == 110 ||
170 sband->bitrates[i].bitrate == 60 ||
171 sband->bitrates[i].bitrate == 120 ||
172 sband->bitrates[i].bitrate == 240) {
173 sband->bitrates[i].flags |=
174 IEEE80211_RATE_MANDATORY_G;
175 want--;
176 }
177
178 if (sband->bitrates[i].bitrate != 10 &&
179 sband->bitrates[i].bitrate != 20 &&
180 sband->bitrates[i].bitrate != 55 &&
181 sband->bitrates[i].bitrate != 110)
182 sband->bitrates[i].flags |=
183 IEEE80211_RATE_ERP_G;
184 }
185 WARN_ON(want != 0 && want != 3 && want != 6);
186 break;
187 case NL80211_BAND_60GHZ:
188 /* check for mandatory HT MCS 1..4 */
189 WARN_ON(!sband->ht_cap.ht_supported);
190 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
191 break;
192 case NUM_NL80211_BANDS:
193 default:
194 WARN_ON(1);
195 break;
196 }
197 }
198
199 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
200 {
201 enum nl80211_band band;
202
203 for (band = 0; band < NUM_NL80211_BANDS; band++)
204 if (wiphy->bands[band])
205 set_mandatory_flags_band(wiphy->bands[band]);
206 }
207
208 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
209 {
210 int i;
211 for (i = 0; i < wiphy->n_cipher_suites; i++)
212 if (cipher == wiphy->cipher_suites[i])
213 return true;
214 return false;
215 }
216
217 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
218 struct key_params *params, int key_idx,
219 bool pairwise, const u8 *mac_addr)
220 {
221 if (key_idx < 0 || key_idx > 5)
222 return -EINVAL;
223
224 if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
225 return -EINVAL;
226
227 if (pairwise && !mac_addr)
228 return -EINVAL;
229
230 switch (params->cipher) {
231 case WLAN_CIPHER_SUITE_TKIP:
232 case WLAN_CIPHER_SUITE_CCMP:
233 case WLAN_CIPHER_SUITE_CCMP_256:
234 case WLAN_CIPHER_SUITE_GCMP:
235 case WLAN_CIPHER_SUITE_GCMP_256:
236 /* Disallow pairwise keys with non-zero index unless it's WEP
237 * or a vendor specific cipher (because current deployments use
238 * pairwise WEP keys with non-zero indices and for vendor
239 * specific ciphers this should be validated in the driver or
240 * hardware level - but 802.11i clearly specifies to use zero)
241 */
242 if (pairwise && key_idx)
243 return -EINVAL;
244 break;
245 case WLAN_CIPHER_SUITE_AES_CMAC:
246 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
247 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
248 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
249 /* Disallow BIP (group-only) cipher as pairwise cipher */
250 if (pairwise)
251 return -EINVAL;
252 if (key_idx < 4)
253 return -EINVAL;
254 break;
255 case WLAN_CIPHER_SUITE_WEP40:
256 case WLAN_CIPHER_SUITE_WEP104:
257 if (key_idx > 3)
258 return -EINVAL;
259 default:
260 break;
261 }
262
263 switch (params->cipher) {
264 case WLAN_CIPHER_SUITE_WEP40:
265 if (params->key_len != WLAN_KEY_LEN_WEP40)
266 return -EINVAL;
267 break;
268 case WLAN_CIPHER_SUITE_TKIP:
269 if (params->key_len != WLAN_KEY_LEN_TKIP)
270 return -EINVAL;
271 break;
272 case WLAN_CIPHER_SUITE_CCMP:
273 if (params->key_len != WLAN_KEY_LEN_CCMP)
274 return -EINVAL;
275 break;
276 case WLAN_CIPHER_SUITE_CCMP_256:
277 if (params->key_len != WLAN_KEY_LEN_CCMP_256)
278 return -EINVAL;
279 break;
280 case WLAN_CIPHER_SUITE_GCMP:
281 if (params->key_len != WLAN_KEY_LEN_GCMP)
282 return -EINVAL;
283 break;
284 case WLAN_CIPHER_SUITE_GCMP_256:
285 if (params->key_len != WLAN_KEY_LEN_GCMP_256)
286 return -EINVAL;
287 break;
288 case WLAN_CIPHER_SUITE_WEP104:
289 if (params->key_len != WLAN_KEY_LEN_WEP104)
290 return -EINVAL;
291 break;
292 case WLAN_CIPHER_SUITE_AES_CMAC:
293 if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
294 return -EINVAL;
295 break;
296 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
297 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
298 return -EINVAL;
299 break;
300 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
301 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
302 return -EINVAL;
303 break;
304 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
305 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
306 return -EINVAL;
307 break;
308 default:
309 /*
310 * We don't know anything about this algorithm,
311 * allow using it -- but the driver must check
312 * all parameters! We still check below whether
313 * or not the driver supports this algorithm,
314 * of course.
315 */
316 break;
317 }
318
319 if (params->seq) {
320 switch (params->cipher) {
321 case WLAN_CIPHER_SUITE_WEP40:
322 case WLAN_CIPHER_SUITE_WEP104:
323 /* These ciphers do not use key sequence */
324 return -EINVAL;
325 case WLAN_CIPHER_SUITE_TKIP:
326 case WLAN_CIPHER_SUITE_CCMP:
327 case WLAN_CIPHER_SUITE_CCMP_256:
328 case WLAN_CIPHER_SUITE_GCMP:
329 case WLAN_CIPHER_SUITE_GCMP_256:
330 case WLAN_CIPHER_SUITE_AES_CMAC:
331 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
332 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
333 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
334 if (params->seq_len != 6)
335 return -EINVAL;
336 break;
337 }
338 }
339
340 if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
341 return -EINVAL;
342
343 return 0;
344 }
345
346 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
347 {
348 unsigned int hdrlen = 24;
349
350 if (ieee80211_is_data(fc)) {
351 if (ieee80211_has_a4(fc))
352 hdrlen = 30;
353 if (ieee80211_is_data_qos(fc)) {
354 hdrlen += IEEE80211_QOS_CTL_LEN;
355 if (ieee80211_has_order(fc))
356 hdrlen += IEEE80211_HT_CTL_LEN;
357 }
358 goto out;
359 }
360
361 if (ieee80211_is_mgmt(fc)) {
362 if (ieee80211_has_order(fc))
363 hdrlen += IEEE80211_HT_CTL_LEN;
364 goto out;
365 }
366
367 if (ieee80211_is_ctl(fc)) {
368 /*
369 * ACK and CTS are 10 bytes, all others 16. To see how
370 * to get this condition consider
371 * subtype mask: 0b0000000011110000 (0x00F0)
372 * ACK subtype: 0b0000000011010000 (0x00D0)
373 * CTS subtype: 0b0000000011000000 (0x00C0)
374 * bits that matter: ^^^ (0x00E0)
375 * value of those: 0b0000000011000000 (0x00C0)
376 */
377 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
378 hdrlen = 10;
379 else
380 hdrlen = 16;
381 }
382 out:
383 return hdrlen;
384 }
385 EXPORT_SYMBOL(ieee80211_hdrlen);
386
387 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
388 {
389 const struct ieee80211_hdr *hdr =
390 (const struct ieee80211_hdr *)skb->data;
391 unsigned int hdrlen;
392
393 if (unlikely(skb->len < 10))
394 return 0;
395 hdrlen = ieee80211_hdrlen(hdr->frame_control);
396 if (unlikely(hdrlen > skb->len))
397 return 0;
398 return hdrlen;
399 }
400 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
401
402 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
403 {
404 int ae = flags & MESH_FLAGS_AE;
405 /* 802.11-2012, 8.2.4.7.3 */
406 switch (ae) {
407 default:
408 case 0:
409 return 6;
410 case MESH_FLAGS_AE_A4:
411 return 12;
412 case MESH_FLAGS_AE_A5_A6:
413 return 18;
414 }
415 }
416
417 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
418 {
419 return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
420 }
421 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
422
423 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
424 const u8 *addr, enum nl80211_iftype iftype)
425 {
426 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
427 struct {
428 u8 hdr[ETH_ALEN] __aligned(2);
429 __be16 proto;
430 } payload;
431 struct ethhdr tmp;
432 u16 hdrlen;
433 u8 mesh_flags = 0;
434
435 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
436 return -1;
437
438 hdrlen = ieee80211_hdrlen(hdr->frame_control);
439 if (skb->len < hdrlen + 8)
440 return -1;
441
442 /* convert IEEE 802.11 header + possible LLC headers into Ethernet
443 * header
444 * IEEE 802.11 address fields:
445 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
446 * 0 0 DA SA BSSID n/a
447 * 0 1 DA BSSID SA n/a
448 * 1 0 BSSID SA DA n/a
449 * 1 1 RA TA DA SA
450 */
451 memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
452 memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
453
454 if (iftype == NL80211_IFTYPE_MESH_POINT)
455 skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
456
457 switch (hdr->frame_control &
458 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
459 case cpu_to_le16(IEEE80211_FCTL_TODS):
460 if (unlikely(iftype != NL80211_IFTYPE_AP &&
461 iftype != NL80211_IFTYPE_AP_VLAN &&
462 iftype != NL80211_IFTYPE_P2P_GO))
463 return -1;
464 break;
465 case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
466 if (unlikely(iftype != NL80211_IFTYPE_WDS &&
467 iftype != NL80211_IFTYPE_MESH_POINT &&
468 iftype != NL80211_IFTYPE_AP_VLAN &&
469 iftype != NL80211_IFTYPE_STATION))
470 return -1;
471 if (iftype == NL80211_IFTYPE_MESH_POINT) {
472 if (mesh_flags & MESH_FLAGS_AE_A4)
473 return -1;
474 if (mesh_flags & MESH_FLAGS_AE_A5_A6) {
475 skb_copy_bits(skb, hdrlen +
476 offsetof(struct ieee80211s_hdr, eaddr1),
477 tmp.h_dest, 2 * ETH_ALEN);
478 }
479 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
480 }
481 break;
482 case cpu_to_le16(IEEE80211_FCTL_FROMDS):
483 if ((iftype != NL80211_IFTYPE_STATION &&
484 iftype != NL80211_IFTYPE_P2P_CLIENT &&
485 iftype != NL80211_IFTYPE_MESH_POINT) ||
486 (is_multicast_ether_addr(tmp.h_dest) &&
487 ether_addr_equal(tmp.h_source, addr)))
488 return -1;
489 if (iftype == NL80211_IFTYPE_MESH_POINT) {
490 if (mesh_flags & MESH_FLAGS_AE_A5_A6)
491 return -1;
492 if (mesh_flags & MESH_FLAGS_AE_A4)
493 skb_copy_bits(skb, hdrlen +
494 offsetof(struct ieee80211s_hdr, eaddr1),
495 tmp.h_source, ETH_ALEN);
496 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
497 }
498 break;
499 case cpu_to_le16(0):
500 if (iftype != NL80211_IFTYPE_ADHOC &&
501 iftype != NL80211_IFTYPE_STATION &&
502 iftype != NL80211_IFTYPE_OCB)
503 return -1;
504 break;
505 }
506
507 skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
508 tmp.h_proto = payload.proto;
509
510 if (likely((ether_addr_equal(payload.hdr, rfc1042_header) &&
511 tmp.h_proto != htons(ETH_P_AARP) &&
512 tmp.h_proto != htons(ETH_P_IPX)) ||
513 ether_addr_equal(payload.hdr, bridge_tunnel_header)))
514 /* remove RFC1042 or Bridge-Tunnel encapsulation and
515 * replace EtherType */
516 hdrlen += ETH_ALEN + 2;
517 else
518 tmp.h_proto = htons(skb->len - hdrlen);
519
520 pskb_pull(skb, hdrlen);
521
522 if (!ehdr)
523 ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr));
524 memcpy(ehdr, &tmp, sizeof(tmp));
525
526 return 0;
527 }
528 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
529
530 int ieee80211_data_from_8023(struct sk_buff *skb, const u8 *addr,
531 enum nl80211_iftype iftype,
532 const u8 *bssid, bool qos)
533 {
534 struct ieee80211_hdr hdr;
535 u16 hdrlen, ethertype;
536 __le16 fc;
537 const u8 *encaps_data;
538 int encaps_len, skip_header_bytes;
539 int nh_pos, h_pos;
540 int head_need;
541
542 if (unlikely(skb->len < ETH_HLEN))
543 return -EINVAL;
544
545 nh_pos = skb_network_header(skb) - skb->data;
546 h_pos = skb_transport_header(skb) - skb->data;
547
548 /* convert Ethernet header to proper 802.11 header (based on
549 * operation mode) */
550 ethertype = (skb->data[12] << 8) | skb->data[13];
551 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA);
552
553 switch (iftype) {
554 case NL80211_IFTYPE_AP:
555 case NL80211_IFTYPE_AP_VLAN:
556 case NL80211_IFTYPE_P2P_GO:
557 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS);
558 /* DA BSSID SA */
559 memcpy(hdr.addr1, skb->data, ETH_ALEN);
560 memcpy(hdr.addr2, addr, ETH_ALEN);
561 memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN);
562 hdrlen = 24;
563 break;
564 case NL80211_IFTYPE_STATION:
565 case NL80211_IFTYPE_P2P_CLIENT:
566 fc |= cpu_to_le16(IEEE80211_FCTL_TODS);
567 /* BSSID SA DA */
568 memcpy(hdr.addr1, bssid, ETH_ALEN);
569 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
570 memcpy(hdr.addr3, skb->data, ETH_ALEN);
571 hdrlen = 24;
572 break;
573 case NL80211_IFTYPE_OCB:
574 case NL80211_IFTYPE_ADHOC:
575 /* DA SA BSSID */
576 memcpy(hdr.addr1, skb->data, ETH_ALEN);
577 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
578 memcpy(hdr.addr3, bssid, ETH_ALEN);
579 hdrlen = 24;
580 break;
581 default:
582 return -EOPNOTSUPP;
583 }
584
585 if (qos) {
586 fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
587 hdrlen += 2;
588 }
589
590 hdr.frame_control = fc;
591 hdr.duration_id = 0;
592 hdr.seq_ctrl = 0;
593
594 skip_header_bytes = ETH_HLEN;
595 if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) {
596 encaps_data = bridge_tunnel_header;
597 encaps_len = sizeof(bridge_tunnel_header);
598 skip_header_bytes -= 2;
599 } else if (ethertype >= ETH_P_802_3_MIN) {
600 encaps_data = rfc1042_header;
601 encaps_len = sizeof(rfc1042_header);
602 skip_header_bytes -= 2;
603 } else {
604 encaps_data = NULL;
605 encaps_len = 0;
606 }
607
608 skb_pull(skb, skip_header_bytes);
609 nh_pos -= skip_header_bytes;
610 h_pos -= skip_header_bytes;
611
612 head_need = hdrlen + encaps_len - skb_headroom(skb);
613
614 if (head_need > 0 || skb_cloned(skb)) {
615 head_need = max(head_need, 0);
616 if (head_need)
617 skb_orphan(skb);
618
619 if (pskb_expand_head(skb, head_need, 0, GFP_ATOMIC))
620 return -ENOMEM;
621 }
622
623 if (encaps_data) {
624 memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len);
625 nh_pos += encaps_len;
626 h_pos += encaps_len;
627 }
628
629 memcpy(skb_push(skb, hdrlen), &hdr, hdrlen);
630
631 nh_pos += hdrlen;
632 h_pos += hdrlen;
633
634 /* Update skb pointers to various headers since this modified frame
635 * is going to go through Linux networking code that may potentially
636 * need things like pointer to IP header. */
637 skb_reset_mac_header(skb);
638 skb_set_network_header(skb, nh_pos);
639 skb_set_transport_header(skb, h_pos);
640
641 return 0;
642 }
643 EXPORT_SYMBOL(ieee80211_data_from_8023);
644
645 static void
646 __frame_add_frag(struct sk_buff *skb, struct page *page,
647 void *ptr, int len, int size)
648 {
649 struct skb_shared_info *sh = skb_shinfo(skb);
650 int page_offset;
651
652 page_ref_inc(page);
653 page_offset = ptr - page_address(page);
654 skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
655 }
656
657 static void
658 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
659 int offset, int len)
660 {
661 struct skb_shared_info *sh = skb_shinfo(skb);
662 const skb_frag_t *frag = &sh->frags[-1];
663 struct page *frag_page;
664 void *frag_ptr;
665 int frag_len, frag_size;
666 int head_size = skb->len - skb->data_len;
667 int cur_len;
668
669 frag_page = virt_to_head_page(skb->head);
670 frag_ptr = skb->data;
671 frag_size = head_size;
672
673 while (offset >= frag_size) {
674 offset -= frag_size;
675 frag++;
676 frag_page = skb_frag_page(frag);
677 frag_ptr = skb_frag_address(frag);
678 frag_size = skb_frag_size(frag);
679 }
680
681 frag_ptr += offset;
682 frag_len = frag_size - offset;
683
684 cur_len = min(len, frag_len);
685
686 __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
687 len -= cur_len;
688
689 while (len > 0) {
690 frag++;
691 frag_len = skb_frag_size(frag);
692 cur_len = min(len, frag_len);
693 __frame_add_frag(frame, skb_frag_page(frag),
694 skb_frag_address(frag), cur_len, frag_len);
695 len -= cur_len;
696 }
697 }
698
699 static struct sk_buff *
700 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
701 int offset, int len, bool reuse_frag)
702 {
703 struct sk_buff *frame;
704 int cur_len = len;
705
706 if (skb->len - offset < len)
707 return NULL;
708
709 /*
710 * When reusing framents, copy some data to the head to simplify
711 * ethernet header handling and speed up protocol header processing
712 * in the stack later.
713 */
714 if (reuse_frag)
715 cur_len = min_t(int, len, 32);
716
717 /*
718 * Allocate and reserve two bytes more for payload
719 * alignment since sizeof(struct ethhdr) is 14.
720 */
721 frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
722 if (!frame)
723 return NULL;
724
725 skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
726 skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
727
728 len -= cur_len;
729 if (!len)
730 return frame;
731
732 offset += cur_len;
733 __ieee80211_amsdu_copy_frag(skb, frame, offset, len);
734
735 return frame;
736 }
737
738 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
739 const u8 *addr, enum nl80211_iftype iftype,
740 const unsigned int extra_headroom,
741 const u8 *check_da, const u8 *check_sa)
742 {
743 unsigned int hlen = ALIGN(extra_headroom, 4);
744 struct sk_buff *frame = NULL;
745 u16 ethertype;
746 u8 *payload;
747 int offset = 0, remaining;
748 struct ethhdr eth;
749 bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
750 bool reuse_skb = false;
751 bool last = false;
752
753 while (!last) {
754 unsigned int subframe_len;
755 int len;
756 u8 padding;
757
758 skb_copy_bits(skb, offset, &eth, sizeof(eth));
759 len = ntohs(eth.h_proto);
760 subframe_len = sizeof(struct ethhdr) + len;
761 padding = (4 - subframe_len) & 0x3;
762
763 /* the last MSDU has no padding */
764 remaining = skb->len - offset;
765 if (subframe_len > remaining)
766 goto purge;
767
768 offset += sizeof(struct ethhdr);
769 last = remaining <= subframe_len + padding;
770
771 /* FIXME: should we really accept multicast DA? */
772 if ((check_da && !is_multicast_ether_addr(eth.h_dest) &&
773 !ether_addr_equal(check_da, eth.h_dest)) ||
774 (check_sa && !ether_addr_equal(check_sa, eth.h_source))) {
775 offset += len + padding;
776 continue;
777 }
778
779 /* reuse skb for the last subframe */
780 if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
781 skb_pull(skb, offset);
782 frame = skb;
783 reuse_skb = true;
784 } else {
785 frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
786 reuse_frag);
787 if (!frame)
788 goto purge;
789
790 offset += len + padding;
791 }
792
793 skb_reset_network_header(frame);
794 frame->dev = skb->dev;
795 frame->priority = skb->priority;
796
797 payload = frame->data;
798 ethertype = (payload[6] << 8) | payload[7];
799 if (likely((ether_addr_equal(payload, rfc1042_header) &&
800 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
801 ether_addr_equal(payload, bridge_tunnel_header))) {
802 eth.h_proto = htons(ethertype);
803 skb_pull(frame, ETH_ALEN + 2);
804 }
805
806 memcpy(skb_push(frame, sizeof(eth)), &eth, sizeof(eth));
807 __skb_queue_tail(list, frame);
808 }
809
810 if (!reuse_skb)
811 dev_kfree_skb(skb);
812
813 return;
814
815 purge:
816 __skb_queue_purge(list);
817 dev_kfree_skb(skb);
818 }
819 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
820
821 /* Given a data frame determine the 802.1p/1d tag to use. */
822 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
823 struct cfg80211_qos_map *qos_map)
824 {
825 unsigned int dscp;
826 unsigned char vlan_priority;
827
828 /* skb->priority values from 256->263 are magic values to
829 * directly indicate a specific 802.1d priority. This is used
830 * to allow 802.1d priority to be passed directly in from VLAN
831 * tags, etc.
832 */
833 if (skb->priority >= 256 && skb->priority <= 263)
834 return skb->priority - 256;
835
836 if (skb_vlan_tag_present(skb)) {
837 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
838 >> VLAN_PRIO_SHIFT;
839 if (vlan_priority > 0)
840 return vlan_priority;
841 }
842
843 switch (skb->protocol) {
844 case htons(ETH_P_IP):
845 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
846 break;
847 case htons(ETH_P_IPV6):
848 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
849 break;
850 case htons(ETH_P_MPLS_UC):
851 case htons(ETH_P_MPLS_MC): {
852 struct mpls_label mpls_tmp, *mpls;
853
854 mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
855 sizeof(*mpls), &mpls_tmp);
856 if (!mpls)
857 return 0;
858
859 return (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
860 >> MPLS_LS_TC_SHIFT;
861 }
862 case htons(ETH_P_80221):
863 /* 802.21 is always network control traffic */
864 return 7;
865 default:
866 return 0;
867 }
868
869 if (qos_map) {
870 unsigned int i, tmp_dscp = dscp >> 2;
871
872 for (i = 0; i < qos_map->num_des; i++) {
873 if (tmp_dscp == qos_map->dscp_exception[i].dscp)
874 return qos_map->dscp_exception[i].up;
875 }
876
877 for (i = 0; i < 8; i++) {
878 if (tmp_dscp >= qos_map->up[i].low &&
879 tmp_dscp <= qos_map->up[i].high)
880 return i;
881 }
882 }
883
884 return dscp >> 5;
885 }
886 EXPORT_SYMBOL(cfg80211_classify8021d);
887
888 const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie)
889 {
890 const struct cfg80211_bss_ies *ies;
891
892 ies = rcu_dereference(bss->ies);
893 if (!ies)
894 return NULL;
895
896 return cfg80211_find_ie(ie, ies->data, ies->len);
897 }
898 EXPORT_SYMBOL(ieee80211_bss_get_ie);
899
900 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
901 {
902 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
903 struct net_device *dev = wdev->netdev;
904 int i;
905
906 if (!wdev->connect_keys)
907 return;
908
909 for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) {
910 if (!wdev->connect_keys->params[i].cipher)
911 continue;
912 if (rdev_add_key(rdev, dev, i, false, NULL,
913 &wdev->connect_keys->params[i])) {
914 netdev_err(dev, "failed to set key %d\n", i);
915 continue;
916 }
917 if (wdev->connect_keys->def == i)
918 if (rdev_set_default_key(rdev, dev, i, true, true)) {
919 netdev_err(dev, "failed to set defkey %d\n", i);
920 continue;
921 }
922 }
923
924 kzfree(wdev->connect_keys);
925 wdev->connect_keys = NULL;
926 }
927
928 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
929 {
930 struct cfg80211_event *ev;
931 unsigned long flags;
932 const u8 *bssid = NULL;
933
934 spin_lock_irqsave(&wdev->event_lock, flags);
935 while (!list_empty(&wdev->event_list)) {
936 ev = list_first_entry(&wdev->event_list,
937 struct cfg80211_event, list);
938 list_del(&ev->list);
939 spin_unlock_irqrestore(&wdev->event_lock, flags);
940
941 wdev_lock(wdev);
942 switch (ev->type) {
943 case EVENT_CONNECT_RESULT:
944 if (!is_zero_ether_addr(ev->cr.bssid))
945 bssid = ev->cr.bssid;
946 __cfg80211_connect_result(
947 wdev->netdev, bssid,
948 ev->cr.req_ie, ev->cr.req_ie_len,
949 ev->cr.resp_ie, ev->cr.resp_ie_len,
950 ev->cr.status,
951 ev->cr.status == WLAN_STATUS_SUCCESS,
952 ev->cr.bss, ev->cr.timeout_reason);
953 break;
954 case EVENT_ROAMED:
955 __cfg80211_roamed(wdev, ev->rm.bss, ev->rm.req_ie,
956 ev->rm.req_ie_len, ev->rm.resp_ie,
957 ev->rm.resp_ie_len);
958 break;
959 case EVENT_DISCONNECTED:
960 __cfg80211_disconnected(wdev->netdev,
961 ev->dc.ie, ev->dc.ie_len,
962 ev->dc.reason,
963 !ev->dc.locally_generated);
964 break;
965 case EVENT_IBSS_JOINED:
966 __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
967 ev->ij.channel);
968 break;
969 case EVENT_STOPPED:
970 __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
971 break;
972 }
973 wdev_unlock(wdev);
974
975 kfree(ev);
976
977 spin_lock_irqsave(&wdev->event_lock, flags);
978 }
979 spin_unlock_irqrestore(&wdev->event_lock, flags);
980 }
981
982 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
983 {
984 struct wireless_dev *wdev;
985
986 ASSERT_RTNL();
987
988 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
989 cfg80211_process_wdev_events(wdev);
990 }
991
992 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
993 struct net_device *dev, enum nl80211_iftype ntype,
994 u32 *flags, struct vif_params *params)
995 {
996 int err;
997 enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
998
999 ASSERT_RTNL();
1000
1001 /* don't support changing VLANs, you just re-create them */
1002 if (otype == NL80211_IFTYPE_AP_VLAN)
1003 return -EOPNOTSUPP;
1004
1005 /* cannot change into P2P device or NAN */
1006 if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
1007 ntype == NL80211_IFTYPE_NAN)
1008 return -EOPNOTSUPP;
1009
1010 if (!rdev->ops->change_virtual_intf ||
1011 !(rdev->wiphy.interface_modes & (1 << ntype)))
1012 return -EOPNOTSUPP;
1013
1014 /* if it's part of a bridge, reject changing type to station/ibss */
1015 if ((dev->priv_flags & IFF_BRIDGE_PORT) &&
1016 (ntype == NL80211_IFTYPE_ADHOC ||
1017 ntype == NL80211_IFTYPE_STATION ||
1018 ntype == NL80211_IFTYPE_P2P_CLIENT))
1019 return -EBUSY;
1020
1021 if (ntype != otype) {
1022 dev->ieee80211_ptr->use_4addr = false;
1023 dev->ieee80211_ptr->mesh_id_up_len = 0;
1024 wdev_lock(dev->ieee80211_ptr);
1025 rdev_set_qos_map(rdev, dev, NULL);
1026 wdev_unlock(dev->ieee80211_ptr);
1027
1028 switch (otype) {
1029 case NL80211_IFTYPE_AP:
1030 cfg80211_stop_ap(rdev, dev, true);
1031 break;
1032 case NL80211_IFTYPE_ADHOC:
1033 cfg80211_leave_ibss(rdev, dev, false);
1034 break;
1035 case NL80211_IFTYPE_STATION:
1036 case NL80211_IFTYPE_P2P_CLIENT:
1037 wdev_lock(dev->ieee80211_ptr);
1038 cfg80211_disconnect(rdev, dev,
1039 WLAN_REASON_DEAUTH_LEAVING, true);
1040 wdev_unlock(dev->ieee80211_ptr);
1041 break;
1042 case NL80211_IFTYPE_MESH_POINT:
1043 /* mesh should be handled? */
1044 break;
1045 default:
1046 break;
1047 }
1048
1049 cfg80211_process_rdev_events(rdev);
1050 }
1051
1052 err = rdev_change_virtual_intf(rdev, dev, ntype, flags, params);
1053
1054 WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
1055
1056 if (!err && params && params->use_4addr != -1)
1057 dev->ieee80211_ptr->use_4addr = params->use_4addr;
1058
1059 if (!err) {
1060 dev->priv_flags &= ~IFF_DONT_BRIDGE;
1061 switch (ntype) {
1062 case NL80211_IFTYPE_STATION:
1063 if (dev->ieee80211_ptr->use_4addr)
1064 break;
1065 /* fall through */
1066 case NL80211_IFTYPE_OCB:
1067 case NL80211_IFTYPE_P2P_CLIENT:
1068 case NL80211_IFTYPE_ADHOC:
1069 dev->priv_flags |= IFF_DONT_BRIDGE;
1070 break;
1071 case NL80211_IFTYPE_P2P_GO:
1072 case NL80211_IFTYPE_AP:
1073 case NL80211_IFTYPE_AP_VLAN:
1074 case NL80211_IFTYPE_WDS:
1075 case NL80211_IFTYPE_MESH_POINT:
1076 /* bridging OK */
1077 break;
1078 case NL80211_IFTYPE_MONITOR:
1079 /* monitor can't bridge anyway */
1080 break;
1081 case NL80211_IFTYPE_UNSPECIFIED:
1082 case NUM_NL80211_IFTYPES:
1083 /* not happening */
1084 break;
1085 case NL80211_IFTYPE_P2P_DEVICE:
1086 case NL80211_IFTYPE_NAN:
1087 WARN_ON(1);
1088 break;
1089 }
1090 }
1091
1092 if (!err && ntype != otype && netif_running(dev)) {
1093 cfg80211_update_iface_num(rdev, ntype, 1);
1094 cfg80211_update_iface_num(rdev, otype, -1);
1095 }
1096
1097 return err;
1098 }
1099
1100 static u32 cfg80211_calculate_bitrate_60g(struct rate_info *rate)
1101 {
1102 static const u32 __mcs2bitrate[] = {
1103 /* control PHY */
1104 [0] = 275,
1105 /* SC PHY */
1106 [1] = 3850,
1107 [2] = 7700,
1108 [3] = 9625,
1109 [4] = 11550,
1110 [5] = 12512, /* 1251.25 mbps */
1111 [6] = 15400,
1112 [7] = 19250,
1113 [8] = 23100,
1114 [9] = 25025,
1115 [10] = 30800,
1116 [11] = 38500,
1117 [12] = 46200,
1118 /* OFDM PHY */
1119 [13] = 6930,
1120 [14] = 8662, /* 866.25 mbps */
1121 [15] = 13860,
1122 [16] = 17325,
1123 [17] = 20790,
1124 [18] = 27720,
1125 [19] = 34650,
1126 [20] = 41580,
1127 [21] = 45045,
1128 [22] = 51975,
1129 [23] = 62370,
1130 [24] = 67568, /* 6756.75 mbps */
1131 /* LP-SC PHY */
1132 [25] = 6260,
1133 [26] = 8340,
1134 [27] = 11120,
1135 [28] = 12510,
1136 [29] = 16680,
1137 [30] = 22240,
1138 [31] = 25030,
1139 };
1140
1141 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1142 return 0;
1143
1144 return __mcs2bitrate[rate->mcs];
1145 }
1146
1147 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1148 {
1149 static const u32 base[4][10] = {
1150 { 6500000,
1151 13000000,
1152 19500000,
1153 26000000,
1154 39000000,
1155 52000000,
1156 58500000,
1157 65000000,
1158 78000000,
1159 /* not in the spec, but some devices use this: */
1160 86500000,
1161 },
1162 { 13500000,
1163 27000000,
1164 40500000,
1165 54000000,
1166 81000000,
1167 108000000,
1168 121500000,
1169 135000000,
1170 162000000,
1171 180000000,
1172 },
1173 { 29300000,
1174 58500000,
1175 87800000,
1176 117000000,
1177 175500000,
1178 234000000,
1179 263300000,
1180 292500000,
1181 351000000,
1182 390000000,
1183 },
1184 { 58500000,
1185 117000000,
1186 175500000,
1187 234000000,
1188 351000000,
1189 468000000,
1190 526500000,
1191 585000000,
1192 702000000,
1193 780000000,
1194 },
1195 };
1196 u32 bitrate;
1197 int idx;
1198
1199 if (WARN_ON_ONCE(rate->mcs > 9))
1200 return 0;
1201
1202 switch (rate->bw) {
1203 case RATE_INFO_BW_160:
1204 idx = 3;
1205 break;
1206 case RATE_INFO_BW_80:
1207 idx = 2;
1208 break;
1209 case RATE_INFO_BW_40:
1210 idx = 1;
1211 break;
1212 case RATE_INFO_BW_5:
1213 case RATE_INFO_BW_10:
1214 default:
1215 WARN_ON(1);
1216 /* fall through */
1217 case RATE_INFO_BW_20:
1218 idx = 0;
1219 }
1220
1221 bitrate = base[idx][rate->mcs];
1222 bitrate *= rate->nss;
1223
1224 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1225 bitrate = (bitrate / 9) * 10;
1226
1227 /* do NOT round down here */
1228 return (bitrate + 50000) / 100000;
1229 }
1230
1231 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1232 {
1233 int modulation, streams, bitrate;
1234
1235 if (!(rate->flags & RATE_INFO_FLAGS_MCS) &&
1236 !(rate->flags & RATE_INFO_FLAGS_VHT_MCS))
1237 return rate->legacy;
1238 if (rate->flags & RATE_INFO_FLAGS_60G)
1239 return cfg80211_calculate_bitrate_60g(rate);
1240 if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1241 return cfg80211_calculate_bitrate_vht(rate);
1242
1243 /* the formula below does only work for MCS values smaller than 32 */
1244 if (WARN_ON_ONCE(rate->mcs >= 32))
1245 return 0;
1246
1247 modulation = rate->mcs & 7;
1248 streams = (rate->mcs >> 3) + 1;
1249
1250 bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1251
1252 if (modulation < 4)
1253 bitrate *= (modulation + 1);
1254 else if (modulation == 4)
1255 bitrate *= (modulation + 2);
1256 else
1257 bitrate *= (modulation + 3);
1258
1259 bitrate *= streams;
1260
1261 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1262 bitrate = (bitrate / 9) * 10;
1263
1264 /* do NOT round down here */
1265 return (bitrate + 50000) / 100000;
1266 }
1267 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1268
1269 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1270 enum ieee80211_p2p_attr_id attr,
1271 u8 *buf, unsigned int bufsize)
1272 {
1273 u8 *out = buf;
1274 u16 attr_remaining = 0;
1275 bool desired_attr = false;
1276 u16 desired_len = 0;
1277
1278 while (len > 0) {
1279 unsigned int iedatalen;
1280 unsigned int copy;
1281 const u8 *iedata;
1282
1283 if (len < 2)
1284 return -EILSEQ;
1285 iedatalen = ies[1];
1286 if (iedatalen + 2 > len)
1287 return -EILSEQ;
1288
1289 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1290 goto cont;
1291
1292 if (iedatalen < 4)
1293 goto cont;
1294
1295 iedata = ies + 2;
1296
1297 /* check WFA OUI, P2P subtype */
1298 if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1299 iedata[2] != 0x9a || iedata[3] != 0x09)
1300 goto cont;
1301
1302 iedatalen -= 4;
1303 iedata += 4;
1304
1305 /* check attribute continuation into this IE */
1306 copy = min_t(unsigned int, attr_remaining, iedatalen);
1307 if (copy && desired_attr) {
1308 desired_len += copy;
1309 if (out) {
1310 memcpy(out, iedata, min(bufsize, copy));
1311 out += min(bufsize, copy);
1312 bufsize -= min(bufsize, copy);
1313 }
1314
1315
1316 if (copy == attr_remaining)
1317 return desired_len;
1318 }
1319
1320 attr_remaining -= copy;
1321 if (attr_remaining)
1322 goto cont;
1323
1324 iedatalen -= copy;
1325 iedata += copy;
1326
1327 while (iedatalen > 0) {
1328 u16 attr_len;
1329
1330 /* P2P attribute ID & size must fit */
1331 if (iedatalen < 3)
1332 return -EILSEQ;
1333 desired_attr = iedata[0] == attr;
1334 attr_len = get_unaligned_le16(iedata + 1);
1335 iedatalen -= 3;
1336 iedata += 3;
1337
1338 copy = min_t(unsigned int, attr_len, iedatalen);
1339
1340 if (desired_attr) {
1341 desired_len += copy;
1342 if (out) {
1343 memcpy(out, iedata, min(bufsize, copy));
1344 out += min(bufsize, copy);
1345 bufsize -= min(bufsize, copy);
1346 }
1347
1348 if (copy == attr_len)
1349 return desired_len;
1350 }
1351
1352 iedata += copy;
1353 iedatalen -= copy;
1354 attr_remaining = attr_len - copy;
1355 }
1356
1357 cont:
1358 len -= ies[1] + 2;
1359 ies += ies[1] + 2;
1360 }
1361
1362 if (attr_remaining && desired_attr)
1363 return -EILSEQ;
1364
1365 return -ENOENT;
1366 }
1367 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1368
1369 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id)
1370 {
1371 int i;
1372
1373 for (i = 0; i < n_ids; i++)
1374 if (ids[i] == id)
1375 return true;
1376 return false;
1377 }
1378
1379 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1380 {
1381 /* we assume a validly formed IEs buffer */
1382 u8 len = ies[pos + 1];
1383
1384 pos += 2 + len;
1385
1386 /* the IE itself must have 255 bytes for fragments to follow */
1387 if (len < 255)
1388 return pos;
1389
1390 while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1391 len = ies[pos + 1];
1392 pos += 2 + len;
1393 }
1394
1395 return pos;
1396 }
1397
1398 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1399 const u8 *ids, int n_ids,
1400 const u8 *after_ric, int n_after_ric,
1401 size_t offset)
1402 {
1403 size_t pos = offset;
1404
1405 while (pos < ielen && ieee80211_id_in_list(ids, n_ids, ies[pos])) {
1406 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1407 pos = skip_ie(ies, ielen, pos);
1408
1409 while (pos < ielen &&
1410 !ieee80211_id_in_list(after_ric, n_after_ric,
1411 ies[pos]))
1412 pos = skip_ie(ies, ielen, pos);
1413 } else {
1414 pos = skip_ie(ies, ielen, pos);
1415 }
1416 }
1417
1418 return pos;
1419 }
1420 EXPORT_SYMBOL(ieee80211_ie_split_ric);
1421
1422 bool ieee80211_operating_class_to_band(u8 operating_class,
1423 enum nl80211_band *band)
1424 {
1425 switch (operating_class) {
1426 case 112:
1427 case 115 ... 127:
1428 case 128 ... 130:
1429 *band = NL80211_BAND_5GHZ;
1430 return true;
1431 case 81:
1432 case 82:
1433 case 83:
1434 case 84:
1435 *band = NL80211_BAND_2GHZ;
1436 return true;
1437 case 180:
1438 *band = NL80211_BAND_60GHZ;
1439 return true;
1440 }
1441
1442 return false;
1443 }
1444 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1445
1446 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1447 u8 *op_class)
1448 {
1449 u8 vht_opclass;
1450 u16 freq = chandef->center_freq1;
1451
1452 if (freq >= 2412 && freq <= 2472) {
1453 if (chandef->width > NL80211_CHAN_WIDTH_40)
1454 return false;
1455
1456 /* 2.407 GHz, channels 1..13 */
1457 if (chandef->width == NL80211_CHAN_WIDTH_40) {
1458 if (freq > chandef->chan->center_freq)
1459 *op_class = 83; /* HT40+ */
1460 else
1461 *op_class = 84; /* HT40- */
1462 } else {
1463 *op_class = 81;
1464 }
1465
1466 return true;
1467 }
1468
1469 if (freq == 2484) {
1470 if (chandef->width > NL80211_CHAN_WIDTH_40)
1471 return false;
1472
1473 *op_class = 82; /* channel 14 */
1474 return true;
1475 }
1476
1477 switch (chandef->width) {
1478 case NL80211_CHAN_WIDTH_80:
1479 vht_opclass = 128;
1480 break;
1481 case NL80211_CHAN_WIDTH_160:
1482 vht_opclass = 129;
1483 break;
1484 case NL80211_CHAN_WIDTH_80P80:
1485 vht_opclass = 130;
1486 break;
1487 case NL80211_CHAN_WIDTH_10:
1488 case NL80211_CHAN_WIDTH_5:
1489 return false; /* unsupported for now */
1490 default:
1491 vht_opclass = 0;
1492 break;
1493 }
1494
1495 /* 5 GHz, channels 36..48 */
1496 if (freq >= 5180 && freq <= 5240) {
1497 if (vht_opclass) {
1498 *op_class = vht_opclass;
1499 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1500 if (freq > chandef->chan->center_freq)
1501 *op_class = 116;
1502 else
1503 *op_class = 117;
1504 } else {
1505 *op_class = 115;
1506 }
1507
1508 return true;
1509 }
1510
1511 /* 5 GHz, channels 52..64 */
1512 if (freq >= 5260 && freq <= 5320) {
1513 if (vht_opclass) {
1514 *op_class = vht_opclass;
1515 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1516 if (freq > chandef->chan->center_freq)
1517 *op_class = 119;
1518 else
1519 *op_class = 120;
1520 } else {
1521 *op_class = 118;
1522 }
1523
1524 return true;
1525 }
1526
1527 /* 5 GHz, channels 100..144 */
1528 if (freq >= 5500 && freq <= 5720) {
1529 if (vht_opclass) {
1530 *op_class = vht_opclass;
1531 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1532 if (freq > chandef->chan->center_freq)
1533 *op_class = 122;
1534 else
1535 *op_class = 123;
1536 } else {
1537 *op_class = 121;
1538 }
1539
1540 return true;
1541 }
1542
1543 /* 5 GHz, channels 149..169 */
1544 if (freq >= 5745 && freq <= 5845) {
1545 if (vht_opclass) {
1546 *op_class = vht_opclass;
1547 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1548 if (freq > chandef->chan->center_freq)
1549 *op_class = 126;
1550 else
1551 *op_class = 127;
1552 } else if (freq <= 5805) {
1553 *op_class = 124;
1554 } else {
1555 *op_class = 125;
1556 }
1557
1558 return true;
1559 }
1560
1561 /* 56.16 GHz, channel 1..4 */
1562 if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 4) {
1563 if (chandef->width >= NL80211_CHAN_WIDTH_40)
1564 return false;
1565
1566 *op_class = 180;
1567 return true;
1568 }
1569
1570 /* not supported yet */
1571 return false;
1572 }
1573 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1574
1575 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
1576 u32 *beacon_int_gcd,
1577 bool *beacon_int_different)
1578 {
1579 struct wireless_dev *wdev;
1580
1581 *beacon_int_gcd = 0;
1582 *beacon_int_different = false;
1583
1584 list_for_each_entry(wdev, &wiphy->wdev_list, list) {
1585 if (!wdev->beacon_interval)
1586 continue;
1587
1588 if (!*beacon_int_gcd) {
1589 *beacon_int_gcd = wdev->beacon_interval;
1590 continue;
1591 }
1592
1593 if (wdev->beacon_interval == *beacon_int_gcd)
1594 continue;
1595
1596 *beacon_int_different = true;
1597 *beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval);
1598 }
1599
1600 if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
1601 if (*beacon_int_gcd)
1602 *beacon_int_different = true;
1603 *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
1604 }
1605 }
1606
1607 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1608 enum nl80211_iftype iftype, u32 beacon_int)
1609 {
1610 /*
1611 * This is just a basic pre-condition check; if interface combinations
1612 * are possible the driver must already be checking those with a call
1613 * to cfg80211_check_combinations(), in which case we'll validate more
1614 * through the cfg80211_calculate_bi_data() call and code in
1615 * cfg80211_iter_combinations().
1616 */
1617
1618 if (beacon_int < 10 || beacon_int > 10000)
1619 return -EINVAL;
1620
1621 return 0;
1622 }
1623
1624 int cfg80211_iter_combinations(struct wiphy *wiphy,
1625 struct iface_combination_params *params,
1626 void (*iter)(const struct ieee80211_iface_combination *c,
1627 void *data),
1628 void *data)
1629 {
1630 const struct ieee80211_regdomain *regdom;
1631 enum nl80211_dfs_regions region = 0;
1632 int i, j, iftype;
1633 int num_interfaces = 0;
1634 u32 used_iftypes = 0;
1635 u32 beacon_int_gcd;
1636 bool beacon_int_different;
1637
1638 /*
1639 * This is a bit strange, since the iteration used to rely only on
1640 * the data given by the driver, but here it now relies on context,
1641 * in form of the currently operating interfaces.
1642 * This is OK for all current users, and saves us from having to
1643 * push the GCD calculations into all the drivers.
1644 * In the future, this should probably rely more on data that's in
1645 * cfg80211 already - the only thing not would appear to be any new
1646 * interfaces (while being brought up) and channel/radar data.
1647 */
1648 cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
1649 &beacon_int_gcd, &beacon_int_different);
1650
1651 if (params->radar_detect) {
1652 rcu_read_lock();
1653 regdom = rcu_dereference(cfg80211_regdomain);
1654 if (regdom)
1655 region = regdom->dfs_region;
1656 rcu_read_unlock();
1657 }
1658
1659 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1660 num_interfaces += params->iftype_num[iftype];
1661 if (params->iftype_num[iftype] > 0 &&
1662 !(wiphy->software_iftypes & BIT(iftype)))
1663 used_iftypes |= BIT(iftype);
1664 }
1665
1666 for (i = 0; i < wiphy->n_iface_combinations; i++) {
1667 const struct ieee80211_iface_combination *c;
1668 struct ieee80211_iface_limit *limits;
1669 u32 all_iftypes = 0;
1670
1671 c = &wiphy->iface_combinations[i];
1672
1673 if (num_interfaces > c->max_interfaces)
1674 continue;
1675 if (params->num_different_channels > c->num_different_channels)
1676 continue;
1677
1678 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1679 GFP_KERNEL);
1680 if (!limits)
1681 return -ENOMEM;
1682
1683 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1684 if (wiphy->software_iftypes & BIT(iftype))
1685 continue;
1686 for (j = 0; j < c->n_limits; j++) {
1687 all_iftypes |= limits[j].types;
1688 if (!(limits[j].types & BIT(iftype)))
1689 continue;
1690 if (limits[j].max < params->iftype_num[iftype])
1691 goto cont;
1692 limits[j].max -= params->iftype_num[iftype];
1693 }
1694 }
1695
1696 if (params->radar_detect !=
1697 (c->radar_detect_widths & params->radar_detect))
1698 goto cont;
1699
1700 if (params->radar_detect && c->radar_detect_regions &&
1701 !(c->radar_detect_regions & BIT(region)))
1702 goto cont;
1703
1704 /* Finally check that all iftypes that we're currently
1705 * using are actually part of this combination. If they
1706 * aren't then we can't use this combination and have
1707 * to continue to the next.
1708 */
1709 if ((all_iftypes & used_iftypes) != used_iftypes)
1710 goto cont;
1711
1712 if (beacon_int_gcd) {
1713 if (c->beacon_int_min_gcd &&
1714 beacon_int_gcd < c->beacon_int_min_gcd)
1715 goto cont;
1716 if (!c->beacon_int_min_gcd && beacon_int_different)
1717 goto cont;
1718 }
1719
1720 /* This combination covered all interface types and
1721 * supported the requested numbers, so we're good.
1722 */
1723
1724 (*iter)(c, data);
1725 cont:
1726 kfree(limits);
1727 }
1728
1729 return 0;
1730 }
1731 EXPORT_SYMBOL(cfg80211_iter_combinations);
1732
1733 static void
1734 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
1735 void *data)
1736 {
1737 int *num = data;
1738 (*num)++;
1739 }
1740
1741 int cfg80211_check_combinations(struct wiphy *wiphy,
1742 struct iface_combination_params *params)
1743 {
1744 int err, num = 0;
1745
1746 err = cfg80211_iter_combinations(wiphy, params,
1747 cfg80211_iter_sum_ifcombs, &num);
1748 if (err)
1749 return err;
1750 if (num == 0)
1751 return -EBUSY;
1752
1753 return 0;
1754 }
1755 EXPORT_SYMBOL(cfg80211_check_combinations);
1756
1757 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1758 const u8 *rates, unsigned int n_rates,
1759 u32 *mask)
1760 {
1761 int i, j;
1762
1763 if (!sband)
1764 return -EINVAL;
1765
1766 if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1767 return -EINVAL;
1768
1769 *mask = 0;
1770
1771 for (i = 0; i < n_rates; i++) {
1772 int rate = (rates[i] & 0x7f) * 5;
1773 bool found = false;
1774
1775 for (j = 0; j < sband->n_bitrates; j++) {
1776 if (sband->bitrates[j].bitrate == rate) {
1777 found = true;
1778 *mask |= BIT(j);
1779 break;
1780 }
1781 }
1782 if (!found)
1783 return -EINVAL;
1784 }
1785
1786 /*
1787 * mask must have at least one bit set here since we
1788 * didn't accept a 0-length rates array nor allowed
1789 * entries in the array that didn't exist
1790 */
1791
1792 return 0;
1793 }
1794
1795 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
1796 {
1797 enum nl80211_band band;
1798 unsigned int n_channels = 0;
1799
1800 for (band = 0; band < NUM_NL80211_BANDS; band++)
1801 if (wiphy->bands[band])
1802 n_channels += wiphy->bands[band]->n_channels;
1803
1804 return n_channels;
1805 }
1806 EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
1807
1808 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
1809 struct station_info *sinfo)
1810 {
1811 struct cfg80211_registered_device *rdev;
1812 struct wireless_dev *wdev;
1813
1814 wdev = dev->ieee80211_ptr;
1815 if (!wdev)
1816 return -EOPNOTSUPP;
1817
1818 rdev = wiphy_to_rdev(wdev->wiphy);
1819 if (!rdev->ops->get_station)
1820 return -EOPNOTSUPP;
1821
1822 return rdev_get_station(rdev, dev, mac_addr, sinfo);
1823 }
1824 EXPORT_SYMBOL(cfg80211_get_station);
1825
1826 void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
1827 {
1828 int i;
1829
1830 if (!f)
1831 return;
1832
1833 kfree(f->serv_spec_info);
1834 kfree(f->srf_bf);
1835 kfree(f->srf_macs);
1836 for (i = 0; i < f->num_rx_filters; i++)
1837 kfree(f->rx_filters[i].filter);
1838
1839 for (i = 0; i < f->num_tx_filters; i++)
1840 kfree(f->tx_filters[i].filter);
1841
1842 kfree(f->rx_filters);
1843 kfree(f->tx_filters);
1844 kfree(f);
1845 }
1846 EXPORT_SYMBOL(cfg80211_free_nan_func);
1847
1848 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
1849 u32 center_freq_khz, u32 bw_khz)
1850 {
1851 u32 start_freq_khz, end_freq_khz;
1852
1853 start_freq_khz = center_freq_khz - (bw_khz / 2);
1854 end_freq_khz = center_freq_khz + (bw_khz / 2);
1855
1856 if (start_freq_khz >= freq_range->start_freq_khz &&
1857 end_freq_khz <= freq_range->end_freq_khz)
1858 return true;
1859
1860 return false;
1861 }
1862
1863 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
1864 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
1865 const unsigned char rfc1042_header[] __aligned(2) =
1866 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
1867 EXPORT_SYMBOL(rfc1042_header);
1868
1869 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
1870 const unsigned char bridge_tunnel_header[] __aligned(2) =
1871 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
1872 EXPORT_SYMBOL(bridge_tunnel_header);