]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - net/xfrm/xfrm_state.c
Merge tag 'aspeed-5.14-devicetree-2' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-jammy-kernel.git] / net / xfrm / xfrm_state.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * xfrm_state.c
4 *
5 * Changes:
6 * Mitsuru KANDA @USAGI
7 * Kazunori MIYAZAWA @USAGI
8 * Kunihiro Ishiguro <kunihiro@ipinfusion.com>
9 * IPv6 support
10 * YOSHIFUJI Hideaki @USAGI
11 * Split up af-specific functions
12 * Derek Atkins <derek@ihtfp.com>
13 * Add UDP Encapsulation
14 *
15 */
16
17 #include <linux/workqueue.h>
18 #include <net/xfrm.h>
19 #include <linux/pfkeyv2.h>
20 #include <linux/ipsec.h>
21 #include <linux/module.h>
22 #include <linux/cache.h>
23 #include <linux/audit.h>
24 #include <linux/uaccess.h>
25 #include <linux/ktime.h>
26 #include <linux/slab.h>
27 #include <linux/interrupt.h>
28 #include <linux/kernel.h>
29
30 #include <crypto/aead.h>
31
32 #include "xfrm_hash.h"
33
34 #define xfrm_state_deref_prot(table, net) \
35 rcu_dereference_protected((table), lockdep_is_held(&(net)->xfrm.xfrm_state_lock))
36
37 static void xfrm_state_gc_task(struct work_struct *work);
38
39 /* Each xfrm_state may be linked to two tables:
40
41 1. Hash table by (spi,daddr,ah/esp) to find SA by SPI. (input,ctl)
42 2. Hash table by (daddr,family,reqid) to find what SAs exist for given
43 destination/tunnel endpoint. (output)
44 */
45
46 static unsigned int xfrm_state_hashmax __read_mostly = 1 * 1024 * 1024;
47 static struct kmem_cache *xfrm_state_cache __ro_after_init;
48
49 static DECLARE_WORK(xfrm_state_gc_work, xfrm_state_gc_task);
50 static HLIST_HEAD(xfrm_state_gc_list);
51
52 static inline bool xfrm_state_hold_rcu(struct xfrm_state __rcu *x)
53 {
54 return refcount_inc_not_zero(&x->refcnt);
55 }
56
57 static inline unsigned int xfrm_dst_hash(struct net *net,
58 const xfrm_address_t *daddr,
59 const xfrm_address_t *saddr,
60 u32 reqid,
61 unsigned short family)
62 {
63 return __xfrm_dst_hash(daddr, saddr, reqid, family, net->xfrm.state_hmask);
64 }
65
66 static inline unsigned int xfrm_src_hash(struct net *net,
67 const xfrm_address_t *daddr,
68 const xfrm_address_t *saddr,
69 unsigned short family)
70 {
71 return __xfrm_src_hash(daddr, saddr, family, net->xfrm.state_hmask);
72 }
73
74 static inline unsigned int
75 xfrm_spi_hash(struct net *net, const xfrm_address_t *daddr,
76 __be32 spi, u8 proto, unsigned short family)
77 {
78 return __xfrm_spi_hash(daddr, spi, proto, family, net->xfrm.state_hmask);
79 }
80
81 static unsigned int xfrm_seq_hash(struct net *net, u32 seq)
82 {
83 return __xfrm_seq_hash(seq, net->xfrm.state_hmask);
84 }
85
86 static void xfrm_hash_transfer(struct hlist_head *list,
87 struct hlist_head *ndsttable,
88 struct hlist_head *nsrctable,
89 struct hlist_head *nspitable,
90 struct hlist_head *nseqtable,
91 unsigned int nhashmask)
92 {
93 struct hlist_node *tmp;
94 struct xfrm_state *x;
95
96 hlist_for_each_entry_safe(x, tmp, list, bydst) {
97 unsigned int h;
98
99 h = __xfrm_dst_hash(&x->id.daddr, &x->props.saddr,
100 x->props.reqid, x->props.family,
101 nhashmask);
102 hlist_add_head_rcu(&x->bydst, ndsttable + h);
103
104 h = __xfrm_src_hash(&x->id.daddr, &x->props.saddr,
105 x->props.family,
106 nhashmask);
107 hlist_add_head_rcu(&x->bysrc, nsrctable + h);
108
109 if (x->id.spi) {
110 h = __xfrm_spi_hash(&x->id.daddr, x->id.spi,
111 x->id.proto, x->props.family,
112 nhashmask);
113 hlist_add_head_rcu(&x->byspi, nspitable + h);
114 }
115
116 if (x->km.seq) {
117 h = __xfrm_seq_hash(x->km.seq, nhashmask);
118 hlist_add_head_rcu(&x->byseq, nseqtable + h);
119 }
120 }
121 }
122
123 static unsigned long xfrm_hash_new_size(unsigned int state_hmask)
124 {
125 return ((state_hmask + 1) << 1) * sizeof(struct hlist_head);
126 }
127
128 static void xfrm_hash_resize(struct work_struct *work)
129 {
130 struct net *net = container_of(work, struct net, xfrm.state_hash_work);
131 struct hlist_head *ndst, *nsrc, *nspi, *nseq, *odst, *osrc, *ospi, *oseq;
132 unsigned long nsize, osize;
133 unsigned int nhashmask, ohashmask;
134 int i;
135
136 nsize = xfrm_hash_new_size(net->xfrm.state_hmask);
137 ndst = xfrm_hash_alloc(nsize);
138 if (!ndst)
139 return;
140 nsrc = xfrm_hash_alloc(nsize);
141 if (!nsrc) {
142 xfrm_hash_free(ndst, nsize);
143 return;
144 }
145 nspi = xfrm_hash_alloc(nsize);
146 if (!nspi) {
147 xfrm_hash_free(ndst, nsize);
148 xfrm_hash_free(nsrc, nsize);
149 return;
150 }
151 nseq = xfrm_hash_alloc(nsize);
152 if (!nseq) {
153 xfrm_hash_free(ndst, nsize);
154 xfrm_hash_free(nsrc, nsize);
155 xfrm_hash_free(nspi, nsize);
156 return;
157 }
158
159 spin_lock_bh(&net->xfrm.xfrm_state_lock);
160 write_seqcount_begin(&net->xfrm.xfrm_state_hash_generation);
161
162 nhashmask = (nsize / sizeof(struct hlist_head)) - 1U;
163 odst = xfrm_state_deref_prot(net->xfrm.state_bydst, net);
164 for (i = net->xfrm.state_hmask; i >= 0; i--)
165 xfrm_hash_transfer(odst + i, ndst, nsrc, nspi, nseq, nhashmask);
166
167 osrc = xfrm_state_deref_prot(net->xfrm.state_bysrc, net);
168 ospi = xfrm_state_deref_prot(net->xfrm.state_byspi, net);
169 oseq = xfrm_state_deref_prot(net->xfrm.state_byseq, net);
170 ohashmask = net->xfrm.state_hmask;
171
172 rcu_assign_pointer(net->xfrm.state_bydst, ndst);
173 rcu_assign_pointer(net->xfrm.state_bysrc, nsrc);
174 rcu_assign_pointer(net->xfrm.state_byspi, nspi);
175 rcu_assign_pointer(net->xfrm.state_byseq, nseq);
176 net->xfrm.state_hmask = nhashmask;
177
178 write_seqcount_end(&net->xfrm.xfrm_state_hash_generation);
179 spin_unlock_bh(&net->xfrm.xfrm_state_lock);
180
181 osize = (ohashmask + 1) * sizeof(struct hlist_head);
182
183 synchronize_rcu();
184
185 xfrm_hash_free(odst, osize);
186 xfrm_hash_free(osrc, osize);
187 xfrm_hash_free(ospi, osize);
188 xfrm_hash_free(oseq, osize);
189 }
190
191 static DEFINE_SPINLOCK(xfrm_state_afinfo_lock);
192 static struct xfrm_state_afinfo __rcu *xfrm_state_afinfo[NPROTO];
193
194 static DEFINE_SPINLOCK(xfrm_state_gc_lock);
195
196 int __xfrm_state_delete(struct xfrm_state *x);
197
198 int km_query(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *pol);
199 static bool km_is_alive(const struct km_event *c);
200 void km_state_expired(struct xfrm_state *x, int hard, u32 portid);
201
202 int xfrm_register_type(const struct xfrm_type *type, unsigned short family)
203 {
204 struct xfrm_state_afinfo *afinfo = xfrm_state_get_afinfo(family);
205 int err = 0;
206
207 if (!afinfo)
208 return -EAFNOSUPPORT;
209
210 #define X(afi, T, name) do { \
211 WARN_ON((afi)->type_ ## name); \
212 (afi)->type_ ## name = (T); \
213 } while (0)
214
215 switch (type->proto) {
216 case IPPROTO_COMP:
217 X(afinfo, type, comp);
218 break;
219 case IPPROTO_AH:
220 X(afinfo, type, ah);
221 break;
222 case IPPROTO_ESP:
223 X(afinfo, type, esp);
224 break;
225 case IPPROTO_IPIP:
226 X(afinfo, type, ipip);
227 break;
228 case IPPROTO_DSTOPTS:
229 X(afinfo, type, dstopts);
230 break;
231 case IPPROTO_ROUTING:
232 X(afinfo, type, routing);
233 break;
234 case IPPROTO_IPV6:
235 X(afinfo, type, ipip6);
236 break;
237 default:
238 WARN_ON(1);
239 err = -EPROTONOSUPPORT;
240 break;
241 }
242 #undef X
243 rcu_read_unlock();
244 return err;
245 }
246 EXPORT_SYMBOL(xfrm_register_type);
247
248 void xfrm_unregister_type(const struct xfrm_type *type, unsigned short family)
249 {
250 struct xfrm_state_afinfo *afinfo = xfrm_state_get_afinfo(family);
251
252 if (unlikely(afinfo == NULL))
253 return;
254
255 #define X(afi, T, name) do { \
256 WARN_ON((afi)->type_ ## name != (T)); \
257 (afi)->type_ ## name = NULL; \
258 } while (0)
259
260 switch (type->proto) {
261 case IPPROTO_COMP:
262 X(afinfo, type, comp);
263 break;
264 case IPPROTO_AH:
265 X(afinfo, type, ah);
266 break;
267 case IPPROTO_ESP:
268 X(afinfo, type, esp);
269 break;
270 case IPPROTO_IPIP:
271 X(afinfo, type, ipip);
272 break;
273 case IPPROTO_DSTOPTS:
274 X(afinfo, type, dstopts);
275 break;
276 case IPPROTO_ROUTING:
277 X(afinfo, type, routing);
278 break;
279 case IPPROTO_IPV6:
280 X(afinfo, type, ipip6);
281 break;
282 default:
283 WARN_ON(1);
284 break;
285 }
286 #undef X
287 rcu_read_unlock();
288 }
289 EXPORT_SYMBOL(xfrm_unregister_type);
290
291 static const struct xfrm_type *xfrm_get_type(u8 proto, unsigned short family)
292 {
293 const struct xfrm_type *type = NULL;
294 struct xfrm_state_afinfo *afinfo;
295 int modload_attempted = 0;
296
297 retry:
298 afinfo = xfrm_state_get_afinfo(family);
299 if (unlikely(afinfo == NULL))
300 return NULL;
301
302 switch (proto) {
303 case IPPROTO_COMP:
304 type = afinfo->type_comp;
305 break;
306 case IPPROTO_AH:
307 type = afinfo->type_ah;
308 break;
309 case IPPROTO_ESP:
310 type = afinfo->type_esp;
311 break;
312 case IPPROTO_IPIP:
313 type = afinfo->type_ipip;
314 break;
315 case IPPROTO_DSTOPTS:
316 type = afinfo->type_dstopts;
317 break;
318 case IPPROTO_ROUTING:
319 type = afinfo->type_routing;
320 break;
321 case IPPROTO_IPV6:
322 type = afinfo->type_ipip6;
323 break;
324 default:
325 break;
326 }
327
328 if (unlikely(type && !try_module_get(type->owner)))
329 type = NULL;
330
331 rcu_read_unlock();
332
333 if (!type && !modload_attempted) {
334 request_module("xfrm-type-%d-%d", family, proto);
335 modload_attempted = 1;
336 goto retry;
337 }
338
339 return type;
340 }
341
342 static void xfrm_put_type(const struct xfrm_type *type)
343 {
344 module_put(type->owner);
345 }
346
347 int xfrm_register_type_offload(const struct xfrm_type_offload *type,
348 unsigned short family)
349 {
350 struct xfrm_state_afinfo *afinfo = xfrm_state_get_afinfo(family);
351 int err = 0;
352
353 if (unlikely(afinfo == NULL))
354 return -EAFNOSUPPORT;
355
356 switch (type->proto) {
357 case IPPROTO_ESP:
358 WARN_ON(afinfo->type_offload_esp);
359 afinfo->type_offload_esp = type;
360 break;
361 default:
362 WARN_ON(1);
363 err = -EPROTONOSUPPORT;
364 break;
365 }
366
367 rcu_read_unlock();
368 return err;
369 }
370 EXPORT_SYMBOL(xfrm_register_type_offload);
371
372 void xfrm_unregister_type_offload(const struct xfrm_type_offload *type,
373 unsigned short family)
374 {
375 struct xfrm_state_afinfo *afinfo = xfrm_state_get_afinfo(family);
376
377 if (unlikely(afinfo == NULL))
378 return;
379
380 switch (type->proto) {
381 case IPPROTO_ESP:
382 WARN_ON(afinfo->type_offload_esp != type);
383 afinfo->type_offload_esp = NULL;
384 break;
385 default:
386 WARN_ON(1);
387 break;
388 }
389 rcu_read_unlock();
390 }
391 EXPORT_SYMBOL(xfrm_unregister_type_offload);
392
393 static const struct xfrm_type_offload *
394 xfrm_get_type_offload(u8 proto, unsigned short family, bool try_load)
395 {
396 const struct xfrm_type_offload *type = NULL;
397 struct xfrm_state_afinfo *afinfo;
398
399 retry:
400 afinfo = xfrm_state_get_afinfo(family);
401 if (unlikely(afinfo == NULL))
402 return NULL;
403
404 switch (proto) {
405 case IPPROTO_ESP:
406 type = afinfo->type_offload_esp;
407 break;
408 default:
409 break;
410 }
411
412 if ((type && !try_module_get(type->owner)))
413 type = NULL;
414
415 rcu_read_unlock();
416
417 if (!type && try_load) {
418 request_module("xfrm-offload-%d-%d", family, proto);
419 try_load = false;
420 goto retry;
421 }
422
423 return type;
424 }
425
426 static void xfrm_put_type_offload(const struct xfrm_type_offload *type)
427 {
428 module_put(type->owner);
429 }
430
431 static const struct xfrm_mode xfrm4_mode_map[XFRM_MODE_MAX] = {
432 [XFRM_MODE_BEET] = {
433 .encap = XFRM_MODE_BEET,
434 .flags = XFRM_MODE_FLAG_TUNNEL,
435 .family = AF_INET,
436 },
437 [XFRM_MODE_TRANSPORT] = {
438 .encap = XFRM_MODE_TRANSPORT,
439 .family = AF_INET,
440 },
441 [XFRM_MODE_TUNNEL] = {
442 .encap = XFRM_MODE_TUNNEL,
443 .flags = XFRM_MODE_FLAG_TUNNEL,
444 .family = AF_INET,
445 },
446 };
447
448 static const struct xfrm_mode xfrm6_mode_map[XFRM_MODE_MAX] = {
449 [XFRM_MODE_BEET] = {
450 .encap = XFRM_MODE_BEET,
451 .flags = XFRM_MODE_FLAG_TUNNEL,
452 .family = AF_INET6,
453 },
454 [XFRM_MODE_ROUTEOPTIMIZATION] = {
455 .encap = XFRM_MODE_ROUTEOPTIMIZATION,
456 .family = AF_INET6,
457 },
458 [XFRM_MODE_TRANSPORT] = {
459 .encap = XFRM_MODE_TRANSPORT,
460 .family = AF_INET6,
461 },
462 [XFRM_MODE_TUNNEL] = {
463 .encap = XFRM_MODE_TUNNEL,
464 .flags = XFRM_MODE_FLAG_TUNNEL,
465 .family = AF_INET6,
466 },
467 };
468
469 static const struct xfrm_mode *xfrm_get_mode(unsigned int encap, int family)
470 {
471 const struct xfrm_mode *mode;
472
473 if (unlikely(encap >= XFRM_MODE_MAX))
474 return NULL;
475
476 switch (family) {
477 case AF_INET:
478 mode = &xfrm4_mode_map[encap];
479 if (mode->family == family)
480 return mode;
481 break;
482 case AF_INET6:
483 mode = &xfrm6_mode_map[encap];
484 if (mode->family == family)
485 return mode;
486 break;
487 default:
488 break;
489 }
490
491 return NULL;
492 }
493
494 void xfrm_state_free(struct xfrm_state *x)
495 {
496 kmem_cache_free(xfrm_state_cache, x);
497 }
498 EXPORT_SYMBOL(xfrm_state_free);
499
500 static void ___xfrm_state_destroy(struct xfrm_state *x)
501 {
502 hrtimer_cancel(&x->mtimer);
503 del_timer_sync(&x->rtimer);
504 kfree(x->aead);
505 kfree(x->aalg);
506 kfree(x->ealg);
507 kfree(x->calg);
508 kfree(x->encap);
509 kfree(x->coaddr);
510 kfree(x->replay_esn);
511 kfree(x->preplay_esn);
512 if (x->type_offload)
513 xfrm_put_type_offload(x->type_offload);
514 if (x->type) {
515 x->type->destructor(x);
516 xfrm_put_type(x->type);
517 }
518 if (x->xfrag.page)
519 put_page(x->xfrag.page);
520 xfrm_dev_state_free(x);
521 security_xfrm_state_free(x);
522 xfrm_state_free(x);
523 }
524
525 static void xfrm_state_gc_task(struct work_struct *work)
526 {
527 struct xfrm_state *x;
528 struct hlist_node *tmp;
529 struct hlist_head gc_list;
530
531 spin_lock_bh(&xfrm_state_gc_lock);
532 hlist_move_list(&xfrm_state_gc_list, &gc_list);
533 spin_unlock_bh(&xfrm_state_gc_lock);
534
535 synchronize_rcu();
536
537 hlist_for_each_entry_safe(x, tmp, &gc_list, gclist)
538 ___xfrm_state_destroy(x);
539 }
540
541 static enum hrtimer_restart xfrm_timer_handler(struct hrtimer *me)
542 {
543 struct xfrm_state *x = container_of(me, struct xfrm_state, mtimer);
544 enum hrtimer_restart ret = HRTIMER_NORESTART;
545 time64_t now = ktime_get_real_seconds();
546 time64_t next = TIME64_MAX;
547 int warn = 0;
548 int err = 0;
549
550 spin_lock(&x->lock);
551 if (x->km.state == XFRM_STATE_DEAD)
552 goto out;
553 if (x->km.state == XFRM_STATE_EXPIRED)
554 goto expired;
555 if (x->lft.hard_add_expires_seconds) {
556 long tmo = x->lft.hard_add_expires_seconds +
557 x->curlft.add_time - now;
558 if (tmo <= 0) {
559 if (x->xflags & XFRM_SOFT_EXPIRE) {
560 /* enter hard expire without soft expire first?!
561 * setting a new date could trigger this.
562 * workaround: fix x->curflt.add_time by below:
563 */
564 x->curlft.add_time = now - x->saved_tmo - 1;
565 tmo = x->lft.hard_add_expires_seconds - x->saved_tmo;
566 } else
567 goto expired;
568 }
569 if (tmo < next)
570 next = tmo;
571 }
572 if (x->lft.hard_use_expires_seconds) {
573 long tmo = x->lft.hard_use_expires_seconds +
574 (x->curlft.use_time ? : now) - now;
575 if (tmo <= 0)
576 goto expired;
577 if (tmo < next)
578 next = tmo;
579 }
580 if (x->km.dying)
581 goto resched;
582 if (x->lft.soft_add_expires_seconds) {
583 long tmo = x->lft.soft_add_expires_seconds +
584 x->curlft.add_time - now;
585 if (tmo <= 0) {
586 warn = 1;
587 x->xflags &= ~XFRM_SOFT_EXPIRE;
588 } else if (tmo < next) {
589 next = tmo;
590 x->xflags |= XFRM_SOFT_EXPIRE;
591 x->saved_tmo = tmo;
592 }
593 }
594 if (x->lft.soft_use_expires_seconds) {
595 long tmo = x->lft.soft_use_expires_seconds +
596 (x->curlft.use_time ? : now) - now;
597 if (tmo <= 0)
598 warn = 1;
599 else if (tmo < next)
600 next = tmo;
601 }
602
603 x->km.dying = warn;
604 if (warn)
605 km_state_expired(x, 0, 0);
606 resched:
607 if (next != TIME64_MAX) {
608 hrtimer_forward_now(&x->mtimer, ktime_set(next, 0));
609 ret = HRTIMER_RESTART;
610 }
611
612 goto out;
613
614 expired:
615 if (x->km.state == XFRM_STATE_ACQ && x->id.spi == 0)
616 x->km.state = XFRM_STATE_EXPIRED;
617
618 err = __xfrm_state_delete(x);
619 if (!err)
620 km_state_expired(x, 1, 0);
621
622 xfrm_audit_state_delete(x, err ? 0 : 1, true);
623
624 out:
625 spin_unlock(&x->lock);
626 return ret;
627 }
628
629 static void xfrm_replay_timer_handler(struct timer_list *t);
630
631 struct xfrm_state *xfrm_state_alloc(struct net *net)
632 {
633 struct xfrm_state *x;
634
635 x = kmem_cache_zalloc(xfrm_state_cache, GFP_ATOMIC);
636
637 if (x) {
638 write_pnet(&x->xs_net, net);
639 refcount_set(&x->refcnt, 1);
640 atomic_set(&x->tunnel_users, 0);
641 INIT_LIST_HEAD(&x->km.all);
642 INIT_HLIST_NODE(&x->bydst);
643 INIT_HLIST_NODE(&x->bysrc);
644 INIT_HLIST_NODE(&x->byspi);
645 INIT_HLIST_NODE(&x->byseq);
646 hrtimer_init(&x->mtimer, CLOCK_BOOTTIME, HRTIMER_MODE_ABS_SOFT);
647 x->mtimer.function = xfrm_timer_handler;
648 timer_setup(&x->rtimer, xfrm_replay_timer_handler, 0);
649 x->curlft.add_time = ktime_get_real_seconds();
650 x->lft.soft_byte_limit = XFRM_INF;
651 x->lft.soft_packet_limit = XFRM_INF;
652 x->lft.hard_byte_limit = XFRM_INF;
653 x->lft.hard_packet_limit = XFRM_INF;
654 x->replay_maxage = 0;
655 x->replay_maxdiff = 0;
656 spin_lock_init(&x->lock);
657 }
658 return x;
659 }
660 EXPORT_SYMBOL(xfrm_state_alloc);
661
662 void __xfrm_state_destroy(struct xfrm_state *x, bool sync)
663 {
664 WARN_ON(x->km.state != XFRM_STATE_DEAD);
665
666 if (sync) {
667 synchronize_rcu();
668 ___xfrm_state_destroy(x);
669 } else {
670 spin_lock_bh(&xfrm_state_gc_lock);
671 hlist_add_head(&x->gclist, &xfrm_state_gc_list);
672 spin_unlock_bh(&xfrm_state_gc_lock);
673 schedule_work(&xfrm_state_gc_work);
674 }
675 }
676 EXPORT_SYMBOL(__xfrm_state_destroy);
677
678 int __xfrm_state_delete(struct xfrm_state *x)
679 {
680 struct net *net = xs_net(x);
681 int err = -ESRCH;
682
683 if (x->km.state != XFRM_STATE_DEAD) {
684 x->km.state = XFRM_STATE_DEAD;
685 spin_lock(&net->xfrm.xfrm_state_lock);
686 list_del(&x->km.all);
687 hlist_del_rcu(&x->bydst);
688 hlist_del_rcu(&x->bysrc);
689 if (x->km.seq)
690 hlist_del_rcu(&x->byseq);
691 if (x->id.spi)
692 hlist_del_rcu(&x->byspi);
693 net->xfrm.state_num--;
694 spin_unlock(&net->xfrm.xfrm_state_lock);
695
696 if (x->encap_sk)
697 sock_put(rcu_dereference_raw(x->encap_sk));
698
699 xfrm_dev_state_delete(x);
700
701 /* All xfrm_state objects are created by xfrm_state_alloc.
702 * The xfrm_state_alloc call gives a reference, and that
703 * is what we are dropping here.
704 */
705 xfrm_state_put(x);
706 err = 0;
707 }
708
709 return err;
710 }
711 EXPORT_SYMBOL(__xfrm_state_delete);
712
713 int xfrm_state_delete(struct xfrm_state *x)
714 {
715 int err;
716
717 spin_lock_bh(&x->lock);
718 err = __xfrm_state_delete(x);
719 spin_unlock_bh(&x->lock);
720
721 return err;
722 }
723 EXPORT_SYMBOL(xfrm_state_delete);
724
725 #ifdef CONFIG_SECURITY_NETWORK_XFRM
726 static inline int
727 xfrm_state_flush_secctx_check(struct net *net, u8 proto, bool task_valid)
728 {
729 int i, err = 0;
730
731 for (i = 0; i <= net->xfrm.state_hmask; i++) {
732 struct xfrm_state *x;
733
734 hlist_for_each_entry(x, net->xfrm.state_bydst+i, bydst) {
735 if (xfrm_id_proto_match(x->id.proto, proto) &&
736 (err = security_xfrm_state_delete(x)) != 0) {
737 xfrm_audit_state_delete(x, 0, task_valid);
738 return err;
739 }
740 }
741 }
742
743 return err;
744 }
745
746 static inline int
747 xfrm_dev_state_flush_secctx_check(struct net *net, struct net_device *dev, bool task_valid)
748 {
749 int i, err = 0;
750
751 for (i = 0; i <= net->xfrm.state_hmask; i++) {
752 struct xfrm_state *x;
753 struct xfrm_state_offload *xso;
754
755 hlist_for_each_entry(x, net->xfrm.state_bydst+i, bydst) {
756 xso = &x->xso;
757
758 if (xso->dev == dev &&
759 (err = security_xfrm_state_delete(x)) != 0) {
760 xfrm_audit_state_delete(x, 0, task_valid);
761 return err;
762 }
763 }
764 }
765
766 return err;
767 }
768 #else
769 static inline int
770 xfrm_state_flush_secctx_check(struct net *net, u8 proto, bool task_valid)
771 {
772 return 0;
773 }
774
775 static inline int
776 xfrm_dev_state_flush_secctx_check(struct net *net, struct net_device *dev, bool task_valid)
777 {
778 return 0;
779 }
780 #endif
781
782 int xfrm_state_flush(struct net *net, u8 proto, bool task_valid, bool sync)
783 {
784 int i, err = 0, cnt = 0;
785
786 spin_lock_bh(&net->xfrm.xfrm_state_lock);
787 err = xfrm_state_flush_secctx_check(net, proto, task_valid);
788 if (err)
789 goto out;
790
791 err = -ESRCH;
792 for (i = 0; i <= net->xfrm.state_hmask; i++) {
793 struct xfrm_state *x;
794 restart:
795 hlist_for_each_entry(x, net->xfrm.state_bydst+i, bydst) {
796 if (!xfrm_state_kern(x) &&
797 xfrm_id_proto_match(x->id.proto, proto)) {
798 xfrm_state_hold(x);
799 spin_unlock_bh(&net->xfrm.xfrm_state_lock);
800
801 err = xfrm_state_delete(x);
802 xfrm_audit_state_delete(x, err ? 0 : 1,
803 task_valid);
804 if (sync)
805 xfrm_state_put_sync(x);
806 else
807 xfrm_state_put(x);
808 if (!err)
809 cnt++;
810
811 spin_lock_bh(&net->xfrm.xfrm_state_lock);
812 goto restart;
813 }
814 }
815 }
816 out:
817 spin_unlock_bh(&net->xfrm.xfrm_state_lock);
818 if (cnt)
819 err = 0;
820
821 return err;
822 }
823 EXPORT_SYMBOL(xfrm_state_flush);
824
825 int xfrm_dev_state_flush(struct net *net, struct net_device *dev, bool task_valid)
826 {
827 int i, err = 0, cnt = 0;
828
829 spin_lock_bh(&net->xfrm.xfrm_state_lock);
830 err = xfrm_dev_state_flush_secctx_check(net, dev, task_valid);
831 if (err)
832 goto out;
833
834 err = -ESRCH;
835 for (i = 0; i <= net->xfrm.state_hmask; i++) {
836 struct xfrm_state *x;
837 struct xfrm_state_offload *xso;
838 restart:
839 hlist_for_each_entry(x, net->xfrm.state_bydst+i, bydst) {
840 xso = &x->xso;
841
842 if (!xfrm_state_kern(x) && xso->dev == dev) {
843 xfrm_state_hold(x);
844 spin_unlock_bh(&net->xfrm.xfrm_state_lock);
845
846 err = xfrm_state_delete(x);
847 xfrm_audit_state_delete(x, err ? 0 : 1,
848 task_valid);
849 xfrm_state_put(x);
850 if (!err)
851 cnt++;
852
853 spin_lock_bh(&net->xfrm.xfrm_state_lock);
854 goto restart;
855 }
856 }
857 }
858 if (cnt)
859 err = 0;
860
861 out:
862 spin_unlock_bh(&net->xfrm.xfrm_state_lock);
863 return err;
864 }
865 EXPORT_SYMBOL(xfrm_dev_state_flush);
866
867 void xfrm_sad_getinfo(struct net *net, struct xfrmk_sadinfo *si)
868 {
869 spin_lock_bh(&net->xfrm.xfrm_state_lock);
870 si->sadcnt = net->xfrm.state_num;
871 si->sadhcnt = net->xfrm.state_hmask + 1;
872 si->sadhmcnt = xfrm_state_hashmax;
873 spin_unlock_bh(&net->xfrm.xfrm_state_lock);
874 }
875 EXPORT_SYMBOL(xfrm_sad_getinfo);
876
877 static void
878 __xfrm4_init_tempsel(struct xfrm_selector *sel, const struct flowi *fl)
879 {
880 const struct flowi4 *fl4 = &fl->u.ip4;
881
882 sel->daddr.a4 = fl4->daddr;
883 sel->saddr.a4 = fl4->saddr;
884 sel->dport = xfrm_flowi_dport(fl, &fl4->uli);
885 sel->dport_mask = htons(0xffff);
886 sel->sport = xfrm_flowi_sport(fl, &fl4->uli);
887 sel->sport_mask = htons(0xffff);
888 sel->family = AF_INET;
889 sel->prefixlen_d = 32;
890 sel->prefixlen_s = 32;
891 sel->proto = fl4->flowi4_proto;
892 sel->ifindex = fl4->flowi4_oif;
893 }
894
895 static void
896 __xfrm6_init_tempsel(struct xfrm_selector *sel, const struct flowi *fl)
897 {
898 const struct flowi6 *fl6 = &fl->u.ip6;
899
900 /* Initialize temporary selector matching only to current session. */
901 *(struct in6_addr *)&sel->daddr = fl6->daddr;
902 *(struct in6_addr *)&sel->saddr = fl6->saddr;
903 sel->dport = xfrm_flowi_dport(fl, &fl6->uli);
904 sel->dport_mask = htons(0xffff);
905 sel->sport = xfrm_flowi_sport(fl, &fl6->uli);
906 sel->sport_mask = htons(0xffff);
907 sel->family = AF_INET6;
908 sel->prefixlen_d = 128;
909 sel->prefixlen_s = 128;
910 sel->proto = fl6->flowi6_proto;
911 sel->ifindex = fl6->flowi6_oif;
912 }
913
914 static void
915 xfrm_init_tempstate(struct xfrm_state *x, const struct flowi *fl,
916 const struct xfrm_tmpl *tmpl,
917 const xfrm_address_t *daddr, const xfrm_address_t *saddr,
918 unsigned short family)
919 {
920 switch (family) {
921 case AF_INET:
922 __xfrm4_init_tempsel(&x->sel, fl);
923 break;
924 case AF_INET6:
925 __xfrm6_init_tempsel(&x->sel, fl);
926 break;
927 }
928
929 x->id = tmpl->id;
930
931 switch (tmpl->encap_family) {
932 case AF_INET:
933 if (x->id.daddr.a4 == 0)
934 x->id.daddr.a4 = daddr->a4;
935 x->props.saddr = tmpl->saddr;
936 if (x->props.saddr.a4 == 0)
937 x->props.saddr.a4 = saddr->a4;
938 break;
939 case AF_INET6:
940 if (ipv6_addr_any((struct in6_addr *)&x->id.daddr))
941 memcpy(&x->id.daddr, daddr, sizeof(x->sel.daddr));
942 memcpy(&x->props.saddr, &tmpl->saddr, sizeof(x->props.saddr));
943 if (ipv6_addr_any((struct in6_addr *)&x->props.saddr))
944 memcpy(&x->props.saddr, saddr, sizeof(x->props.saddr));
945 break;
946 }
947
948 x->props.mode = tmpl->mode;
949 x->props.reqid = tmpl->reqid;
950 x->props.family = tmpl->encap_family;
951 }
952
953 static struct xfrm_state *__xfrm_state_lookup(struct net *net, u32 mark,
954 const xfrm_address_t *daddr,
955 __be32 spi, u8 proto,
956 unsigned short family)
957 {
958 unsigned int h = xfrm_spi_hash(net, daddr, spi, proto, family);
959 struct xfrm_state *x;
960
961 hlist_for_each_entry_rcu(x, net->xfrm.state_byspi + h, byspi) {
962 if (x->props.family != family ||
963 x->id.spi != spi ||
964 x->id.proto != proto ||
965 !xfrm_addr_equal(&x->id.daddr, daddr, family))
966 continue;
967
968 if ((mark & x->mark.m) != x->mark.v)
969 continue;
970 if (!xfrm_state_hold_rcu(x))
971 continue;
972 return x;
973 }
974
975 return NULL;
976 }
977
978 static struct xfrm_state *__xfrm_state_lookup_byaddr(struct net *net, u32 mark,
979 const xfrm_address_t *daddr,
980 const xfrm_address_t *saddr,
981 u8 proto, unsigned short family)
982 {
983 unsigned int h = xfrm_src_hash(net, daddr, saddr, family);
984 struct xfrm_state *x;
985
986 hlist_for_each_entry_rcu(x, net->xfrm.state_bysrc + h, bysrc) {
987 if (x->props.family != family ||
988 x->id.proto != proto ||
989 !xfrm_addr_equal(&x->id.daddr, daddr, family) ||
990 !xfrm_addr_equal(&x->props.saddr, saddr, family))
991 continue;
992
993 if ((mark & x->mark.m) != x->mark.v)
994 continue;
995 if (!xfrm_state_hold_rcu(x))
996 continue;
997 return x;
998 }
999
1000 return NULL;
1001 }
1002
1003 static inline struct xfrm_state *
1004 __xfrm_state_locate(struct xfrm_state *x, int use_spi, int family)
1005 {
1006 struct net *net = xs_net(x);
1007 u32 mark = x->mark.v & x->mark.m;
1008
1009 if (use_spi)
1010 return __xfrm_state_lookup(net, mark, &x->id.daddr,
1011 x->id.spi, x->id.proto, family);
1012 else
1013 return __xfrm_state_lookup_byaddr(net, mark,
1014 &x->id.daddr,
1015 &x->props.saddr,
1016 x->id.proto, family);
1017 }
1018
1019 static void xfrm_hash_grow_check(struct net *net, int have_hash_collision)
1020 {
1021 if (have_hash_collision &&
1022 (net->xfrm.state_hmask + 1) < xfrm_state_hashmax &&
1023 net->xfrm.state_num > net->xfrm.state_hmask)
1024 schedule_work(&net->xfrm.state_hash_work);
1025 }
1026
1027 static void xfrm_state_look_at(struct xfrm_policy *pol, struct xfrm_state *x,
1028 const struct flowi *fl, unsigned short family,
1029 struct xfrm_state **best, int *acq_in_progress,
1030 int *error)
1031 {
1032 /* Resolution logic:
1033 * 1. There is a valid state with matching selector. Done.
1034 * 2. Valid state with inappropriate selector. Skip.
1035 *
1036 * Entering area of "sysdeps".
1037 *
1038 * 3. If state is not valid, selector is temporary, it selects
1039 * only session which triggered previous resolution. Key
1040 * manager will do something to install a state with proper
1041 * selector.
1042 */
1043 if (x->km.state == XFRM_STATE_VALID) {
1044 if ((x->sel.family &&
1045 (x->sel.family != family ||
1046 !xfrm_selector_match(&x->sel, fl, family))) ||
1047 !security_xfrm_state_pol_flow_match(x, pol,
1048 &fl->u.__fl_common))
1049 return;
1050
1051 if (!*best ||
1052 (*best)->km.dying > x->km.dying ||
1053 ((*best)->km.dying == x->km.dying &&
1054 (*best)->curlft.add_time < x->curlft.add_time))
1055 *best = x;
1056 } else if (x->km.state == XFRM_STATE_ACQ) {
1057 *acq_in_progress = 1;
1058 } else if (x->km.state == XFRM_STATE_ERROR ||
1059 x->km.state == XFRM_STATE_EXPIRED) {
1060 if ((!x->sel.family ||
1061 (x->sel.family == family &&
1062 xfrm_selector_match(&x->sel, fl, family))) &&
1063 security_xfrm_state_pol_flow_match(x, pol,
1064 &fl->u.__fl_common))
1065 *error = -ESRCH;
1066 }
1067 }
1068
1069 struct xfrm_state *
1070 xfrm_state_find(const xfrm_address_t *daddr, const xfrm_address_t *saddr,
1071 const struct flowi *fl, struct xfrm_tmpl *tmpl,
1072 struct xfrm_policy *pol, int *err,
1073 unsigned short family, u32 if_id)
1074 {
1075 static xfrm_address_t saddr_wildcard = { };
1076 struct net *net = xp_net(pol);
1077 unsigned int h, h_wildcard;
1078 struct xfrm_state *x, *x0, *to_put;
1079 int acquire_in_progress = 0;
1080 int error = 0;
1081 struct xfrm_state *best = NULL;
1082 u32 mark = pol->mark.v & pol->mark.m;
1083 unsigned short encap_family = tmpl->encap_family;
1084 unsigned int sequence;
1085 struct km_event c;
1086
1087 to_put = NULL;
1088
1089 sequence = read_seqcount_begin(&net->xfrm.xfrm_state_hash_generation);
1090
1091 rcu_read_lock();
1092 h = xfrm_dst_hash(net, daddr, saddr, tmpl->reqid, encap_family);
1093 hlist_for_each_entry_rcu(x, net->xfrm.state_bydst + h, bydst) {
1094 if (x->props.family == encap_family &&
1095 x->props.reqid == tmpl->reqid &&
1096 (mark & x->mark.m) == x->mark.v &&
1097 x->if_id == if_id &&
1098 !(x->props.flags & XFRM_STATE_WILDRECV) &&
1099 xfrm_state_addr_check(x, daddr, saddr, encap_family) &&
1100 tmpl->mode == x->props.mode &&
1101 tmpl->id.proto == x->id.proto &&
1102 (tmpl->id.spi == x->id.spi || !tmpl->id.spi))
1103 xfrm_state_look_at(pol, x, fl, family,
1104 &best, &acquire_in_progress, &error);
1105 }
1106 if (best || acquire_in_progress)
1107 goto found;
1108
1109 h_wildcard = xfrm_dst_hash(net, daddr, &saddr_wildcard, tmpl->reqid, encap_family);
1110 hlist_for_each_entry_rcu(x, net->xfrm.state_bydst + h_wildcard, bydst) {
1111 if (x->props.family == encap_family &&
1112 x->props.reqid == tmpl->reqid &&
1113 (mark & x->mark.m) == x->mark.v &&
1114 x->if_id == if_id &&
1115 !(x->props.flags & XFRM_STATE_WILDRECV) &&
1116 xfrm_addr_equal(&x->id.daddr, daddr, encap_family) &&
1117 tmpl->mode == x->props.mode &&
1118 tmpl->id.proto == x->id.proto &&
1119 (tmpl->id.spi == x->id.spi || !tmpl->id.spi))
1120 xfrm_state_look_at(pol, x, fl, family,
1121 &best, &acquire_in_progress, &error);
1122 }
1123
1124 found:
1125 x = best;
1126 if (!x && !error && !acquire_in_progress) {
1127 if (tmpl->id.spi &&
1128 (x0 = __xfrm_state_lookup(net, mark, daddr, tmpl->id.spi,
1129 tmpl->id.proto, encap_family)) != NULL) {
1130 to_put = x0;
1131 error = -EEXIST;
1132 goto out;
1133 }
1134
1135 c.net = net;
1136 /* If the KMs have no listeners (yet...), avoid allocating an SA
1137 * for each and every packet - garbage collection might not
1138 * handle the flood.
1139 */
1140 if (!km_is_alive(&c)) {
1141 error = -ESRCH;
1142 goto out;
1143 }
1144
1145 x = xfrm_state_alloc(net);
1146 if (x == NULL) {
1147 error = -ENOMEM;
1148 goto out;
1149 }
1150 /* Initialize temporary state matching only
1151 * to current session. */
1152 xfrm_init_tempstate(x, fl, tmpl, daddr, saddr, family);
1153 memcpy(&x->mark, &pol->mark, sizeof(x->mark));
1154 x->if_id = if_id;
1155
1156 error = security_xfrm_state_alloc_acquire(x, pol->security, fl->flowi_secid);
1157 if (error) {
1158 x->km.state = XFRM_STATE_DEAD;
1159 to_put = x;
1160 x = NULL;
1161 goto out;
1162 }
1163
1164 if (km_query(x, tmpl, pol) == 0) {
1165 spin_lock_bh(&net->xfrm.xfrm_state_lock);
1166 x->km.state = XFRM_STATE_ACQ;
1167 list_add(&x->km.all, &net->xfrm.state_all);
1168 hlist_add_head_rcu(&x->bydst, net->xfrm.state_bydst + h);
1169 h = xfrm_src_hash(net, daddr, saddr, encap_family);
1170 hlist_add_head_rcu(&x->bysrc, net->xfrm.state_bysrc + h);
1171 if (x->id.spi) {
1172 h = xfrm_spi_hash(net, &x->id.daddr, x->id.spi, x->id.proto, encap_family);
1173 hlist_add_head_rcu(&x->byspi, net->xfrm.state_byspi + h);
1174 }
1175 if (x->km.seq) {
1176 h = xfrm_seq_hash(net, x->km.seq);
1177 hlist_add_head_rcu(&x->byseq, net->xfrm.state_byseq + h);
1178 }
1179 x->lft.hard_add_expires_seconds = net->xfrm.sysctl_acq_expires;
1180 hrtimer_start(&x->mtimer,
1181 ktime_set(net->xfrm.sysctl_acq_expires, 0),
1182 HRTIMER_MODE_REL_SOFT);
1183 net->xfrm.state_num++;
1184 xfrm_hash_grow_check(net, x->bydst.next != NULL);
1185 spin_unlock_bh(&net->xfrm.xfrm_state_lock);
1186 } else {
1187 x->km.state = XFRM_STATE_DEAD;
1188 to_put = x;
1189 x = NULL;
1190 error = -ESRCH;
1191 }
1192 }
1193 out:
1194 if (x) {
1195 if (!xfrm_state_hold_rcu(x)) {
1196 *err = -EAGAIN;
1197 x = NULL;
1198 }
1199 } else {
1200 *err = acquire_in_progress ? -EAGAIN : error;
1201 }
1202 rcu_read_unlock();
1203 if (to_put)
1204 xfrm_state_put(to_put);
1205
1206 if (read_seqcount_retry(&net->xfrm.xfrm_state_hash_generation, sequence)) {
1207 *err = -EAGAIN;
1208 if (x) {
1209 xfrm_state_put(x);
1210 x = NULL;
1211 }
1212 }
1213
1214 return x;
1215 }
1216
1217 struct xfrm_state *
1218 xfrm_stateonly_find(struct net *net, u32 mark, u32 if_id,
1219 xfrm_address_t *daddr, xfrm_address_t *saddr,
1220 unsigned short family, u8 mode, u8 proto, u32 reqid)
1221 {
1222 unsigned int h;
1223 struct xfrm_state *rx = NULL, *x = NULL;
1224
1225 spin_lock_bh(&net->xfrm.xfrm_state_lock);
1226 h = xfrm_dst_hash(net, daddr, saddr, reqid, family);
1227 hlist_for_each_entry(x, net->xfrm.state_bydst+h, bydst) {
1228 if (x->props.family == family &&
1229 x->props.reqid == reqid &&
1230 (mark & x->mark.m) == x->mark.v &&
1231 x->if_id == if_id &&
1232 !(x->props.flags & XFRM_STATE_WILDRECV) &&
1233 xfrm_state_addr_check(x, daddr, saddr, family) &&
1234 mode == x->props.mode &&
1235 proto == x->id.proto &&
1236 x->km.state == XFRM_STATE_VALID) {
1237 rx = x;
1238 break;
1239 }
1240 }
1241
1242 if (rx)
1243 xfrm_state_hold(rx);
1244 spin_unlock_bh(&net->xfrm.xfrm_state_lock);
1245
1246
1247 return rx;
1248 }
1249 EXPORT_SYMBOL(xfrm_stateonly_find);
1250
1251 struct xfrm_state *xfrm_state_lookup_byspi(struct net *net, __be32 spi,
1252 unsigned short family)
1253 {
1254 struct xfrm_state *x;
1255 struct xfrm_state_walk *w;
1256
1257 spin_lock_bh(&net->xfrm.xfrm_state_lock);
1258 list_for_each_entry(w, &net->xfrm.state_all, all) {
1259 x = container_of(w, struct xfrm_state, km);
1260 if (x->props.family != family ||
1261 x->id.spi != spi)
1262 continue;
1263
1264 xfrm_state_hold(x);
1265 spin_unlock_bh(&net->xfrm.xfrm_state_lock);
1266 return x;
1267 }
1268 spin_unlock_bh(&net->xfrm.xfrm_state_lock);
1269 return NULL;
1270 }
1271 EXPORT_SYMBOL(xfrm_state_lookup_byspi);
1272
1273 static void __xfrm_state_insert(struct xfrm_state *x)
1274 {
1275 struct net *net = xs_net(x);
1276 unsigned int h;
1277
1278 list_add(&x->km.all, &net->xfrm.state_all);
1279
1280 h = xfrm_dst_hash(net, &x->id.daddr, &x->props.saddr,
1281 x->props.reqid, x->props.family);
1282 hlist_add_head_rcu(&x->bydst, net->xfrm.state_bydst + h);
1283
1284 h = xfrm_src_hash(net, &x->id.daddr, &x->props.saddr, x->props.family);
1285 hlist_add_head_rcu(&x->bysrc, net->xfrm.state_bysrc + h);
1286
1287 if (x->id.spi) {
1288 h = xfrm_spi_hash(net, &x->id.daddr, x->id.spi, x->id.proto,
1289 x->props.family);
1290
1291 hlist_add_head_rcu(&x->byspi, net->xfrm.state_byspi + h);
1292 }
1293
1294 if (x->km.seq) {
1295 h = xfrm_seq_hash(net, x->km.seq);
1296
1297 hlist_add_head_rcu(&x->byseq, net->xfrm.state_byseq + h);
1298 }
1299
1300 hrtimer_start(&x->mtimer, ktime_set(1, 0), HRTIMER_MODE_REL_SOFT);
1301 if (x->replay_maxage)
1302 mod_timer(&x->rtimer, jiffies + x->replay_maxage);
1303
1304 net->xfrm.state_num++;
1305
1306 xfrm_hash_grow_check(net, x->bydst.next != NULL);
1307 }
1308
1309 /* net->xfrm.xfrm_state_lock is held */
1310 static void __xfrm_state_bump_genids(struct xfrm_state *xnew)
1311 {
1312 struct net *net = xs_net(xnew);
1313 unsigned short family = xnew->props.family;
1314 u32 reqid = xnew->props.reqid;
1315 struct xfrm_state *x;
1316 unsigned int h;
1317 u32 mark = xnew->mark.v & xnew->mark.m;
1318 u32 if_id = xnew->if_id;
1319
1320 h = xfrm_dst_hash(net, &xnew->id.daddr, &xnew->props.saddr, reqid, family);
1321 hlist_for_each_entry(x, net->xfrm.state_bydst+h, bydst) {
1322 if (x->props.family == family &&
1323 x->props.reqid == reqid &&
1324 x->if_id == if_id &&
1325 (mark & x->mark.m) == x->mark.v &&
1326 xfrm_addr_equal(&x->id.daddr, &xnew->id.daddr, family) &&
1327 xfrm_addr_equal(&x->props.saddr, &xnew->props.saddr, family))
1328 x->genid++;
1329 }
1330 }
1331
1332 void xfrm_state_insert(struct xfrm_state *x)
1333 {
1334 struct net *net = xs_net(x);
1335
1336 spin_lock_bh(&net->xfrm.xfrm_state_lock);
1337 __xfrm_state_bump_genids(x);
1338 __xfrm_state_insert(x);
1339 spin_unlock_bh(&net->xfrm.xfrm_state_lock);
1340 }
1341 EXPORT_SYMBOL(xfrm_state_insert);
1342
1343 /* net->xfrm.xfrm_state_lock is held */
1344 static struct xfrm_state *__find_acq_core(struct net *net,
1345 const struct xfrm_mark *m,
1346 unsigned short family, u8 mode,
1347 u32 reqid, u32 if_id, u8 proto,
1348 const xfrm_address_t *daddr,
1349 const xfrm_address_t *saddr,
1350 int create)
1351 {
1352 unsigned int h = xfrm_dst_hash(net, daddr, saddr, reqid, family);
1353 struct xfrm_state *x;
1354 u32 mark = m->v & m->m;
1355
1356 hlist_for_each_entry(x, net->xfrm.state_bydst+h, bydst) {
1357 if (x->props.reqid != reqid ||
1358 x->props.mode != mode ||
1359 x->props.family != family ||
1360 x->km.state != XFRM_STATE_ACQ ||
1361 x->id.spi != 0 ||
1362 x->id.proto != proto ||
1363 (mark & x->mark.m) != x->mark.v ||
1364 !xfrm_addr_equal(&x->id.daddr, daddr, family) ||
1365 !xfrm_addr_equal(&x->props.saddr, saddr, family))
1366 continue;
1367
1368 xfrm_state_hold(x);
1369 return x;
1370 }
1371
1372 if (!create)
1373 return NULL;
1374
1375 x = xfrm_state_alloc(net);
1376 if (likely(x)) {
1377 switch (family) {
1378 case AF_INET:
1379 x->sel.daddr.a4 = daddr->a4;
1380 x->sel.saddr.a4 = saddr->a4;
1381 x->sel.prefixlen_d = 32;
1382 x->sel.prefixlen_s = 32;
1383 x->props.saddr.a4 = saddr->a4;
1384 x->id.daddr.a4 = daddr->a4;
1385 break;
1386
1387 case AF_INET6:
1388 x->sel.daddr.in6 = daddr->in6;
1389 x->sel.saddr.in6 = saddr->in6;
1390 x->sel.prefixlen_d = 128;
1391 x->sel.prefixlen_s = 128;
1392 x->props.saddr.in6 = saddr->in6;
1393 x->id.daddr.in6 = daddr->in6;
1394 break;
1395 }
1396
1397 x->km.state = XFRM_STATE_ACQ;
1398 x->id.proto = proto;
1399 x->props.family = family;
1400 x->props.mode = mode;
1401 x->props.reqid = reqid;
1402 x->if_id = if_id;
1403 x->mark.v = m->v;
1404 x->mark.m = m->m;
1405 x->lft.hard_add_expires_seconds = net->xfrm.sysctl_acq_expires;
1406 xfrm_state_hold(x);
1407 hrtimer_start(&x->mtimer,
1408 ktime_set(net->xfrm.sysctl_acq_expires, 0),
1409 HRTIMER_MODE_REL_SOFT);
1410 list_add(&x->km.all, &net->xfrm.state_all);
1411 hlist_add_head_rcu(&x->bydst, net->xfrm.state_bydst + h);
1412 h = xfrm_src_hash(net, daddr, saddr, family);
1413 hlist_add_head_rcu(&x->bysrc, net->xfrm.state_bysrc + h);
1414
1415 net->xfrm.state_num++;
1416
1417 xfrm_hash_grow_check(net, x->bydst.next != NULL);
1418 }
1419
1420 return x;
1421 }
1422
1423 static struct xfrm_state *__xfrm_find_acq_byseq(struct net *net, u32 mark, u32 seq);
1424
1425 int xfrm_state_add(struct xfrm_state *x)
1426 {
1427 struct net *net = xs_net(x);
1428 struct xfrm_state *x1, *to_put;
1429 int family;
1430 int err;
1431 u32 mark = x->mark.v & x->mark.m;
1432 int use_spi = xfrm_id_proto_match(x->id.proto, IPSEC_PROTO_ANY);
1433
1434 family = x->props.family;
1435
1436 to_put = NULL;
1437
1438 spin_lock_bh(&net->xfrm.xfrm_state_lock);
1439
1440 x1 = __xfrm_state_locate(x, use_spi, family);
1441 if (x1) {
1442 to_put = x1;
1443 x1 = NULL;
1444 err = -EEXIST;
1445 goto out;
1446 }
1447
1448 if (use_spi && x->km.seq) {
1449 x1 = __xfrm_find_acq_byseq(net, mark, x->km.seq);
1450 if (x1 && ((x1->id.proto != x->id.proto) ||
1451 !xfrm_addr_equal(&x1->id.daddr, &x->id.daddr, family))) {
1452 to_put = x1;
1453 x1 = NULL;
1454 }
1455 }
1456
1457 if (use_spi && !x1)
1458 x1 = __find_acq_core(net, &x->mark, family, x->props.mode,
1459 x->props.reqid, x->if_id, x->id.proto,
1460 &x->id.daddr, &x->props.saddr, 0);
1461
1462 __xfrm_state_bump_genids(x);
1463 __xfrm_state_insert(x);
1464 err = 0;
1465
1466 out:
1467 spin_unlock_bh(&net->xfrm.xfrm_state_lock);
1468
1469 if (x1) {
1470 xfrm_state_delete(x1);
1471 xfrm_state_put(x1);
1472 }
1473
1474 if (to_put)
1475 xfrm_state_put(to_put);
1476
1477 return err;
1478 }
1479 EXPORT_SYMBOL(xfrm_state_add);
1480
1481 #ifdef CONFIG_XFRM_MIGRATE
1482 static inline int clone_security(struct xfrm_state *x, struct xfrm_sec_ctx *security)
1483 {
1484 struct xfrm_user_sec_ctx *uctx;
1485 int size = sizeof(*uctx) + security->ctx_len;
1486 int err;
1487
1488 uctx = kmalloc(size, GFP_KERNEL);
1489 if (!uctx)
1490 return -ENOMEM;
1491
1492 uctx->exttype = XFRMA_SEC_CTX;
1493 uctx->len = size;
1494 uctx->ctx_doi = security->ctx_doi;
1495 uctx->ctx_alg = security->ctx_alg;
1496 uctx->ctx_len = security->ctx_len;
1497 memcpy(uctx + 1, security->ctx_str, security->ctx_len);
1498 err = security_xfrm_state_alloc(x, uctx);
1499 kfree(uctx);
1500 if (err)
1501 return err;
1502
1503 return 0;
1504 }
1505
1506 static struct xfrm_state *xfrm_state_clone(struct xfrm_state *orig,
1507 struct xfrm_encap_tmpl *encap)
1508 {
1509 struct net *net = xs_net(orig);
1510 struct xfrm_state *x = xfrm_state_alloc(net);
1511 if (!x)
1512 goto out;
1513
1514 memcpy(&x->id, &orig->id, sizeof(x->id));
1515 memcpy(&x->sel, &orig->sel, sizeof(x->sel));
1516 memcpy(&x->lft, &orig->lft, sizeof(x->lft));
1517 x->props.mode = orig->props.mode;
1518 x->props.replay_window = orig->props.replay_window;
1519 x->props.reqid = orig->props.reqid;
1520 x->props.family = orig->props.family;
1521 x->props.saddr = orig->props.saddr;
1522
1523 if (orig->aalg) {
1524 x->aalg = xfrm_algo_auth_clone(orig->aalg);
1525 if (!x->aalg)
1526 goto error;
1527 }
1528 x->props.aalgo = orig->props.aalgo;
1529
1530 if (orig->aead) {
1531 x->aead = xfrm_algo_aead_clone(orig->aead);
1532 x->geniv = orig->geniv;
1533 if (!x->aead)
1534 goto error;
1535 }
1536 if (orig->ealg) {
1537 x->ealg = xfrm_algo_clone(orig->ealg);
1538 if (!x->ealg)
1539 goto error;
1540 }
1541 x->props.ealgo = orig->props.ealgo;
1542
1543 if (orig->calg) {
1544 x->calg = xfrm_algo_clone(orig->calg);
1545 if (!x->calg)
1546 goto error;
1547 }
1548 x->props.calgo = orig->props.calgo;
1549
1550 if (encap || orig->encap) {
1551 if (encap)
1552 x->encap = kmemdup(encap, sizeof(*x->encap),
1553 GFP_KERNEL);
1554 else
1555 x->encap = kmemdup(orig->encap, sizeof(*x->encap),
1556 GFP_KERNEL);
1557
1558 if (!x->encap)
1559 goto error;
1560 }
1561
1562 if (orig->security)
1563 if (clone_security(x, orig->security))
1564 goto error;
1565
1566 if (orig->coaddr) {
1567 x->coaddr = kmemdup(orig->coaddr, sizeof(*x->coaddr),
1568 GFP_KERNEL);
1569 if (!x->coaddr)
1570 goto error;
1571 }
1572
1573 if (orig->replay_esn) {
1574 if (xfrm_replay_clone(x, orig))
1575 goto error;
1576 }
1577
1578 memcpy(&x->mark, &orig->mark, sizeof(x->mark));
1579 memcpy(&x->props.smark, &orig->props.smark, sizeof(x->props.smark));
1580
1581 if (xfrm_init_state(x) < 0)
1582 goto error;
1583
1584 x->props.flags = orig->props.flags;
1585 x->props.extra_flags = orig->props.extra_flags;
1586
1587 x->if_id = orig->if_id;
1588 x->tfcpad = orig->tfcpad;
1589 x->replay_maxdiff = orig->replay_maxdiff;
1590 x->replay_maxage = orig->replay_maxage;
1591 memcpy(&x->curlft, &orig->curlft, sizeof(x->curlft));
1592 x->km.state = orig->km.state;
1593 x->km.seq = orig->km.seq;
1594 x->replay = orig->replay;
1595 x->preplay = orig->preplay;
1596
1597 return x;
1598
1599 error:
1600 xfrm_state_put(x);
1601 out:
1602 return NULL;
1603 }
1604
1605 struct xfrm_state *xfrm_migrate_state_find(struct xfrm_migrate *m, struct net *net)
1606 {
1607 unsigned int h;
1608 struct xfrm_state *x = NULL;
1609
1610 spin_lock_bh(&net->xfrm.xfrm_state_lock);
1611
1612 if (m->reqid) {
1613 h = xfrm_dst_hash(net, &m->old_daddr, &m->old_saddr,
1614 m->reqid, m->old_family);
1615 hlist_for_each_entry(x, net->xfrm.state_bydst+h, bydst) {
1616 if (x->props.mode != m->mode ||
1617 x->id.proto != m->proto)
1618 continue;
1619 if (m->reqid && x->props.reqid != m->reqid)
1620 continue;
1621 if (!xfrm_addr_equal(&x->id.daddr, &m->old_daddr,
1622 m->old_family) ||
1623 !xfrm_addr_equal(&x->props.saddr, &m->old_saddr,
1624 m->old_family))
1625 continue;
1626 xfrm_state_hold(x);
1627 break;
1628 }
1629 } else {
1630 h = xfrm_src_hash(net, &m->old_daddr, &m->old_saddr,
1631 m->old_family);
1632 hlist_for_each_entry(x, net->xfrm.state_bysrc+h, bysrc) {
1633 if (x->props.mode != m->mode ||
1634 x->id.proto != m->proto)
1635 continue;
1636 if (!xfrm_addr_equal(&x->id.daddr, &m->old_daddr,
1637 m->old_family) ||
1638 !xfrm_addr_equal(&x->props.saddr, &m->old_saddr,
1639 m->old_family))
1640 continue;
1641 xfrm_state_hold(x);
1642 break;
1643 }
1644 }
1645
1646 spin_unlock_bh(&net->xfrm.xfrm_state_lock);
1647
1648 return x;
1649 }
1650 EXPORT_SYMBOL(xfrm_migrate_state_find);
1651
1652 struct xfrm_state *xfrm_state_migrate(struct xfrm_state *x,
1653 struct xfrm_migrate *m,
1654 struct xfrm_encap_tmpl *encap)
1655 {
1656 struct xfrm_state *xc;
1657
1658 xc = xfrm_state_clone(x, encap);
1659 if (!xc)
1660 return NULL;
1661
1662 memcpy(&xc->id.daddr, &m->new_daddr, sizeof(xc->id.daddr));
1663 memcpy(&xc->props.saddr, &m->new_saddr, sizeof(xc->props.saddr));
1664
1665 /* add state */
1666 if (xfrm_addr_equal(&x->id.daddr, &m->new_daddr, m->new_family)) {
1667 /* a care is needed when the destination address of the
1668 state is to be updated as it is a part of triplet */
1669 xfrm_state_insert(xc);
1670 } else {
1671 if (xfrm_state_add(xc) < 0)
1672 goto error;
1673 }
1674
1675 return xc;
1676 error:
1677 xfrm_state_put(xc);
1678 return NULL;
1679 }
1680 EXPORT_SYMBOL(xfrm_state_migrate);
1681 #endif
1682
1683 int xfrm_state_update(struct xfrm_state *x)
1684 {
1685 struct xfrm_state *x1, *to_put;
1686 int err;
1687 int use_spi = xfrm_id_proto_match(x->id.proto, IPSEC_PROTO_ANY);
1688 struct net *net = xs_net(x);
1689
1690 to_put = NULL;
1691
1692 spin_lock_bh(&net->xfrm.xfrm_state_lock);
1693 x1 = __xfrm_state_locate(x, use_spi, x->props.family);
1694
1695 err = -ESRCH;
1696 if (!x1)
1697 goto out;
1698
1699 if (xfrm_state_kern(x1)) {
1700 to_put = x1;
1701 err = -EEXIST;
1702 goto out;
1703 }
1704
1705 if (x1->km.state == XFRM_STATE_ACQ) {
1706 __xfrm_state_insert(x);
1707 x = NULL;
1708 }
1709 err = 0;
1710
1711 out:
1712 spin_unlock_bh(&net->xfrm.xfrm_state_lock);
1713
1714 if (to_put)
1715 xfrm_state_put(to_put);
1716
1717 if (err)
1718 return err;
1719
1720 if (!x) {
1721 xfrm_state_delete(x1);
1722 xfrm_state_put(x1);
1723 return 0;
1724 }
1725
1726 err = -EINVAL;
1727 spin_lock_bh(&x1->lock);
1728 if (likely(x1->km.state == XFRM_STATE_VALID)) {
1729 if (x->encap && x1->encap &&
1730 x->encap->encap_type == x1->encap->encap_type)
1731 memcpy(x1->encap, x->encap, sizeof(*x1->encap));
1732 else if (x->encap || x1->encap)
1733 goto fail;
1734
1735 if (x->coaddr && x1->coaddr) {
1736 memcpy(x1->coaddr, x->coaddr, sizeof(*x1->coaddr));
1737 }
1738 if (!use_spi && memcmp(&x1->sel, &x->sel, sizeof(x1->sel)))
1739 memcpy(&x1->sel, &x->sel, sizeof(x1->sel));
1740 memcpy(&x1->lft, &x->lft, sizeof(x1->lft));
1741 x1->km.dying = 0;
1742
1743 hrtimer_start(&x1->mtimer, ktime_set(1, 0),
1744 HRTIMER_MODE_REL_SOFT);
1745 if (x1->curlft.use_time)
1746 xfrm_state_check_expire(x1);
1747
1748 if (x->props.smark.m || x->props.smark.v || x->if_id) {
1749 spin_lock_bh(&net->xfrm.xfrm_state_lock);
1750
1751 if (x->props.smark.m || x->props.smark.v)
1752 x1->props.smark = x->props.smark;
1753
1754 if (x->if_id)
1755 x1->if_id = x->if_id;
1756
1757 __xfrm_state_bump_genids(x1);
1758 spin_unlock_bh(&net->xfrm.xfrm_state_lock);
1759 }
1760
1761 err = 0;
1762 x->km.state = XFRM_STATE_DEAD;
1763 __xfrm_state_put(x);
1764 }
1765
1766 fail:
1767 spin_unlock_bh(&x1->lock);
1768
1769 xfrm_state_put(x1);
1770
1771 return err;
1772 }
1773 EXPORT_SYMBOL(xfrm_state_update);
1774
1775 int xfrm_state_check_expire(struct xfrm_state *x)
1776 {
1777 if (!x->curlft.use_time)
1778 x->curlft.use_time = ktime_get_real_seconds();
1779
1780 if (x->curlft.bytes >= x->lft.hard_byte_limit ||
1781 x->curlft.packets >= x->lft.hard_packet_limit) {
1782 x->km.state = XFRM_STATE_EXPIRED;
1783 hrtimer_start(&x->mtimer, 0, HRTIMER_MODE_REL_SOFT);
1784 return -EINVAL;
1785 }
1786
1787 if (!x->km.dying &&
1788 (x->curlft.bytes >= x->lft.soft_byte_limit ||
1789 x->curlft.packets >= x->lft.soft_packet_limit)) {
1790 x->km.dying = 1;
1791 km_state_expired(x, 0, 0);
1792 }
1793 return 0;
1794 }
1795 EXPORT_SYMBOL(xfrm_state_check_expire);
1796
1797 struct xfrm_state *
1798 xfrm_state_lookup(struct net *net, u32 mark, const xfrm_address_t *daddr, __be32 spi,
1799 u8 proto, unsigned short family)
1800 {
1801 struct xfrm_state *x;
1802
1803 rcu_read_lock();
1804 x = __xfrm_state_lookup(net, mark, daddr, spi, proto, family);
1805 rcu_read_unlock();
1806 return x;
1807 }
1808 EXPORT_SYMBOL(xfrm_state_lookup);
1809
1810 struct xfrm_state *
1811 xfrm_state_lookup_byaddr(struct net *net, u32 mark,
1812 const xfrm_address_t *daddr, const xfrm_address_t *saddr,
1813 u8 proto, unsigned short family)
1814 {
1815 struct xfrm_state *x;
1816
1817 spin_lock_bh(&net->xfrm.xfrm_state_lock);
1818 x = __xfrm_state_lookup_byaddr(net, mark, daddr, saddr, proto, family);
1819 spin_unlock_bh(&net->xfrm.xfrm_state_lock);
1820 return x;
1821 }
1822 EXPORT_SYMBOL(xfrm_state_lookup_byaddr);
1823
1824 struct xfrm_state *
1825 xfrm_find_acq(struct net *net, const struct xfrm_mark *mark, u8 mode, u32 reqid,
1826 u32 if_id, u8 proto, const xfrm_address_t *daddr,
1827 const xfrm_address_t *saddr, int create, unsigned short family)
1828 {
1829 struct xfrm_state *x;
1830
1831 spin_lock_bh(&net->xfrm.xfrm_state_lock);
1832 x = __find_acq_core(net, mark, family, mode, reqid, if_id, proto, daddr, saddr, create);
1833 spin_unlock_bh(&net->xfrm.xfrm_state_lock);
1834
1835 return x;
1836 }
1837 EXPORT_SYMBOL(xfrm_find_acq);
1838
1839 #ifdef CONFIG_XFRM_SUB_POLICY
1840 #if IS_ENABLED(CONFIG_IPV6)
1841 /* distribution counting sort function for xfrm_state and xfrm_tmpl */
1842 static void
1843 __xfrm6_sort(void **dst, void **src, int n,
1844 int (*cmp)(const void *p), int maxclass)
1845 {
1846 int count[XFRM_MAX_DEPTH] = { };
1847 int class[XFRM_MAX_DEPTH];
1848 int i;
1849
1850 for (i = 0; i < n; i++) {
1851 int c = cmp(src[i]);
1852
1853 class[i] = c;
1854 count[c]++;
1855 }
1856
1857 for (i = 2; i < maxclass; i++)
1858 count[i] += count[i - 1];
1859
1860 for (i = 0; i < n; i++) {
1861 dst[count[class[i] - 1]++] = src[i];
1862 src[i] = NULL;
1863 }
1864 }
1865
1866 /* Rule for xfrm_state:
1867 *
1868 * rule 1: select IPsec transport except AH
1869 * rule 2: select MIPv6 RO or inbound trigger
1870 * rule 3: select IPsec transport AH
1871 * rule 4: select IPsec tunnel
1872 * rule 5: others
1873 */
1874 static int __xfrm6_state_sort_cmp(const void *p)
1875 {
1876 const struct xfrm_state *v = p;
1877
1878 switch (v->props.mode) {
1879 case XFRM_MODE_TRANSPORT:
1880 if (v->id.proto != IPPROTO_AH)
1881 return 1;
1882 else
1883 return 3;
1884 #if IS_ENABLED(CONFIG_IPV6_MIP6)
1885 case XFRM_MODE_ROUTEOPTIMIZATION:
1886 case XFRM_MODE_IN_TRIGGER:
1887 return 2;
1888 #endif
1889 case XFRM_MODE_TUNNEL:
1890 case XFRM_MODE_BEET:
1891 return 4;
1892 }
1893 return 5;
1894 }
1895
1896 /* Rule for xfrm_tmpl:
1897 *
1898 * rule 1: select IPsec transport
1899 * rule 2: select MIPv6 RO or inbound trigger
1900 * rule 3: select IPsec tunnel
1901 * rule 4: others
1902 */
1903 static int __xfrm6_tmpl_sort_cmp(const void *p)
1904 {
1905 const struct xfrm_tmpl *v = p;
1906
1907 switch (v->mode) {
1908 case XFRM_MODE_TRANSPORT:
1909 return 1;
1910 #if IS_ENABLED(CONFIG_IPV6_MIP6)
1911 case XFRM_MODE_ROUTEOPTIMIZATION:
1912 case XFRM_MODE_IN_TRIGGER:
1913 return 2;
1914 #endif
1915 case XFRM_MODE_TUNNEL:
1916 case XFRM_MODE_BEET:
1917 return 3;
1918 }
1919 return 4;
1920 }
1921 #else
1922 static inline int __xfrm6_state_sort_cmp(const void *p) { return 5; }
1923 static inline int __xfrm6_tmpl_sort_cmp(const void *p) { return 4; }
1924
1925 static inline void
1926 __xfrm6_sort(void **dst, void **src, int n,
1927 int (*cmp)(const void *p), int maxclass)
1928 {
1929 int i;
1930
1931 for (i = 0; i < n; i++)
1932 dst[i] = src[i];
1933 }
1934 #endif /* CONFIG_IPV6 */
1935
1936 void
1937 xfrm_tmpl_sort(struct xfrm_tmpl **dst, struct xfrm_tmpl **src, int n,
1938 unsigned short family)
1939 {
1940 int i;
1941
1942 if (family == AF_INET6)
1943 __xfrm6_sort((void **)dst, (void **)src, n,
1944 __xfrm6_tmpl_sort_cmp, 5);
1945 else
1946 for (i = 0; i < n; i++)
1947 dst[i] = src[i];
1948 }
1949
1950 void
1951 xfrm_state_sort(struct xfrm_state **dst, struct xfrm_state **src, int n,
1952 unsigned short family)
1953 {
1954 int i;
1955
1956 if (family == AF_INET6)
1957 __xfrm6_sort((void **)dst, (void **)src, n,
1958 __xfrm6_state_sort_cmp, 6);
1959 else
1960 for (i = 0; i < n; i++)
1961 dst[i] = src[i];
1962 }
1963 #endif
1964
1965 /* Silly enough, but I'm lazy to build resolution list */
1966
1967 static struct xfrm_state *__xfrm_find_acq_byseq(struct net *net, u32 mark, u32 seq)
1968 {
1969 unsigned int h = xfrm_seq_hash(net, seq);
1970 struct xfrm_state *x;
1971
1972 hlist_for_each_entry_rcu(x, net->xfrm.state_byseq + h, byseq) {
1973 if (x->km.seq == seq &&
1974 (mark & x->mark.m) == x->mark.v &&
1975 x->km.state == XFRM_STATE_ACQ) {
1976 xfrm_state_hold(x);
1977 return x;
1978 }
1979 }
1980
1981 return NULL;
1982 }
1983
1984 struct xfrm_state *xfrm_find_acq_byseq(struct net *net, u32 mark, u32 seq)
1985 {
1986 struct xfrm_state *x;
1987
1988 spin_lock_bh(&net->xfrm.xfrm_state_lock);
1989 x = __xfrm_find_acq_byseq(net, mark, seq);
1990 spin_unlock_bh(&net->xfrm.xfrm_state_lock);
1991 return x;
1992 }
1993 EXPORT_SYMBOL(xfrm_find_acq_byseq);
1994
1995 u32 xfrm_get_acqseq(void)
1996 {
1997 u32 res;
1998 static atomic_t acqseq;
1999
2000 do {
2001 res = atomic_inc_return(&acqseq);
2002 } while (!res);
2003
2004 return res;
2005 }
2006 EXPORT_SYMBOL(xfrm_get_acqseq);
2007
2008 int verify_spi_info(u8 proto, u32 min, u32 max)
2009 {
2010 switch (proto) {
2011 case IPPROTO_AH:
2012 case IPPROTO_ESP:
2013 break;
2014
2015 case IPPROTO_COMP:
2016 /* IPCOMP spi is 16-bits. */
2017 if (max >= 0x10000)
2018 return -EINVAL;
2019 break;
2020
2021 default:
2022 return -EINVAL;
2023 }
2024
2025 if (min > max)
2026 return -EINVAL;
2027
2028 return 0;
2029 }
2030 EXPORT_SYMBOL(verify_spi_info);
2031
2032 int xfrm_alloc_spi(struct xfrm_state *x, u32 low, u32 high)
2033 {
2034 struct net *net = xs_net(x);
2035 unsigned int h;
2036 struct xfrm_state *x0;
2037 int err = -ENOENT;
2038 __be32 minspi = htonl(low);
2039 __be32 maxspi = htonl(high);
2040 __be32 newspi = 0;
2041 u32 mark = x->mark.v & x->mark.m;
2042
2043 spin_lock_bh(&x->lock);
2044 if (x->km.state == XFRM_STATE_DEAD)
2045 goto unlock;
2046
2047 err = 0;
2048 if (x->id.spi)
2049 goto unlock;
2050
2051 err = -ENOENT;
2052
2053 if (minspi == maxspi) {
2054 x0 = xfrm_state_lookup(net, mark, &x->id.daddr, minspi, x->id.proto, x->props.family);
2055 if (x0) {
2056 xfrm_state_put(x0);
2057 goto unlock;
2058 }
2059 newspi = minspi;
2060 } else {
2061 u32 spi = 0;
2062 for (h = 0; h < high-low+1; h++) {
2063 spi = low + prandom_u32()%(high-low+1);
2064 x0 = xfrm_state_lookup(net, mark, &x->id.daddr, htonl(spi), x->id.proto, x->props.family);
2065 if (x0 == NULL) {
2066 newspi = htonl(spi);
2067 break;
2068 }
2069 xfrm_state_put(x0);
2070 }
2071 }
2072 if (newspi) {
2073 spin_lock_bh(&net->xfrm.xfrm_state_lock);
2074 x->id.spi = newspi;
2075 h = xfrm_spi_hash(net, &x->id.daddr, x->id.spi, x->id.proto, x->props.family);
2076 hlist_add_head_rcu(&x->byspi, net->xfrm.state_byspi + h);
2077 spin_unlock_bh(&net->xfrm.xfrm_state_lock);
2078
2079 err = 0;
2080 }
2081
2082 unlock:
2083 spin_unlock_bh(&x->lock);
2084
2085 return err;
2086 }
2087 EXPORT_SYMBOL(xfrm_alloc_spi);
2088
2089 static bool __xfrm_state_filter_match(struct xfrm_state *x,
2090 struct xfrm_address_filter *filter)
2091 {
2092 if (filter) {
2093 if ((filter->family == AF_INET ||
2094 filter->family == AF_INET6) &&
2095 x->props.family != filter->family)
2096 return false;
2097
2098 return addr_match(&x->props.saddr, &filter->saddr,
2099 filter->splen) &&
2100 addr_match(&x->id.daddr, &filter->daddr,
2101 filter->dplen);
2102 }
2103 return true;
2104 }
2105
2106 int xfrm_state_walk(struct net *net, struct xfrm_state_walk *walk,
2107 int (*func)(struct xfrm_state *, int, void*),
2108 void *data)
2109 {
2110 struct xfrm_state *state;
2111 struct xfrm_state_walk *x;
2112 int err = 0;
2113
2114 if (walk->seq != 0 && list_empty(&walk->all))
2115 return 0;
2116
2117 spin_lock_bh(&net->xfrm.xfrm_state_lock);
2118 if (list_empty(&walk->all))
2119 x = list_first_entry(&net->xfrm.state_all, struct xfrm_state_walk, all);
2120 else
2121 x = list_first_entry(&walk->all, struct xfrm_state_walk, all);
2122 list_for_each_entry_from(x, &net->xfrm.state_all, all) {
2123 if (x->state == XFRM_STATE_DEAD)
2124 continue;
2125 state = container_of(x, struct xfrm_state, km);
2126 if (!xfrm_id_proto_match(state->id.proto, walk->proto))
2127 continue;
2128 if (!__xfrm_state_filter_match(state, walk->filter))
2129 continue;
2130 err = func(state, walk->seq, data);
2131 if (err) {
2132 list_move_tail(&walk->all, &x->all);
2133 goto out;
2134 }
2135 walk->seq++;
2136 }
2137 if (walk->seq == 0) {
2138 err = -ENOENT;
2139 goto out;
2140 }
2141 list_del_init(&walk->all);
2142 out:
2143 spin_unlock_bh(&net->xfrm.xfrm_state_lock);
2144 return err;
2145 }
2146 EXPORT_SYMBOL(xfrm_state_walk);
2147
2148 void xfrm_state_walk_init(struct xfrm_state_walk *walk, u8 proto,
2149 struct xfrm_address_filter *filter)
2150 {
2151 INIT_LIST_HEAD(&walk->all);
2152 walk->proto = proto;
2153 walk->state = XFRM_STATE_DEAD;
2154 walk->seq = 0;
2155 walk->filter = filter;
2156 }
2157 EXPORT_SYMBOL(xfrm_state_walk_init);
2158
2159 void xfrm_state_walk_done(struct xfrm_state_walk *walk, struct net *net)
2160 {
2161 kfree(walk->filter);
2162
2163 if (list_empty(&walk->all))
2164 return;
2165
2166 spin_lock_bh(&net->xfrm.xfrm_state_lock);
2167 list_del(&walk->all);
2168 spin_unlock_bh(&net->xfrm.xfrm_state_lock);
2169 }
2170 EXPORT_SYMBOL(xfrm_state_walk_done);
2171
2172 static void xfrm_replay_timer_handler(struct timer_list *t)
2173 {
2174 struct xfrm_state *x = from_timer(x, t, rtimer);
2175
2176 spin_lock(&x->lock);
2177
2178 if (x->km.state == XFRM_STATE_VALID) {
2179 if (xfrm_aevent_is_on(xs_net(x)))
2180 xfrm_replay_notify(x, XFRM_REPLAY_TIMEOUT);
2181 else
2182 x->xflags |= XFRM_TIME_DEFER;
2183 }
2184
2185 spin_unlock(&x->lock);
2186 }
2187
2188 static LIST_HEAD(xfrm_km_list);
2189
2190 void km_policy_notify(struct xfrm_policy *xp, int dir, const struct km_event *c)
2191 {
2192 struct xfrm_mgr *km;
2193
2194 rcu_read_lock();
2195 list_for_each_entry_rcu(km, &xfrm_km_list, list)
2196 if (km->notify_policy)
2197 km->notify_policy(xp, dir, c);
2198 rcu_read_unlock();
2199 }
2200
2201 void km_state_notify(struct xfrm_state *x, const struct km_event *c)
2202 {
2203 struct xfrm_mgr *km;
2204 rcu_read_lock();
2205 list_for_each_entry_rcu(km, &xfrm_km_list, list)
2206 if (km->notify)
2207 km->notify(x, c);
2208 rcu_read_unlock();
2209 }
2210
2211 EXPORT_SYMBOL(km_policy_notify);
2212 EXPORT_SYMBOL(km_state_notify);
2213
2214 void km_state_expired(struct xfrm_state *x, int hard, u32 portid)
2215 {
2216 struct km_event c;
2217
2218 c.data.hard = hard;
2219 c.portid = portid;
2220 c.event = XFRM_MSG_EXPIRE;
2221 km_state_notify(x, &c);
2222 }
2223
2224 EXPORT_SYMBOL(km_state_expired);
2225 /*
2226 * We send to all registered managers regardless of failure
2227 * We are happy with one success
2228 */
2229 int km_query(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *pol)
2230 {
2231 int err = -EINVAL, acqret;
2232 struct xfrm_mgr *km;
2233
2234 rcu_read_lock();
2235 list_for_each_entry_rcu(km, &xfrm_km_list, list) {
2236 acqret = km->acquire(x, t, pol);
2237 if (!acqret)
2238 err = acqret;
2239 }
2240 rcu_read_unlock();
2241 return err;
2242 }
2243 EXPORT_SYMBOL(km_query);
2244
2245 int km_new_mapping(struct xfrm_state *x, xfrm_address_t *ipaddr, __be16 sport)
2246 {
2247 int err = -EINVAL;
2248 struct xfrm_mgr *km;
2249
2250 rcu_read_lock();
2251 list_for_each_entry_rcu(km, &xfrm_km_list, list) {
2252 if (km->new_mapping)
2253 err = km->new_mapping(x, ipaddr, sport);
2254 if (!err)
2255 break;
2256 }
2257 rcu_read_unlock();
2258 return err;
2259 }
2260 EXPORT_SYMBOL(km_new_mapping);
2261
2262 void km_policy_expired(struct xfrm_policy *pol, int dir, int hard, u32 portid)
2263 {
2264 struct km_event c;
2265
2266 c.data.hard = hard;
2267 c.portid = portid;
2268 c.event = XFRM_MSG_POLEXPIRE;
2269 km_policy_notify(pol, dir, &c);
2270 }
2271 EXPORT_SYMBOL(km_policy_expired);
2272
2273 #ifdef CONFIG_XFRM_MIGRATE
2274 int km_migrate(const struct xfrm_selector *sel, u8 dir, u8 type,
2275 const struct xfrm_migrate *m, int num_migrate,
2276 const struct xfrm_kmaddress *k,
2277 const struct xfrm_encap_tmpl *encap)
2278 {
2279 int err = -EINVAL;
2280 int ret;
2281 struct xfrm_mgr *km;
2282
2283 rcu_read_lock();
2284 list_for_each_entry_rcu(km, &xfrm_km_list, list) {
2285 if (km->migrate) {
2286 ret = km->migrate(sel, dir, type, m, num_migrate, k,
2287 encap);
2288 if (!ret)
2289 err = ret;
2290 }
2291 }
2292 rcu_read_unlock();
2293 return err;
2294 }
2295 EXPORT_SYMBOL(km_migrate);
2296 #endif
2297
2298 int km_report(struct net *net, u8 proto, struct xfrm_selector *sel, xfrm_address_t *addr)
2299 {
2300 int err = -EINVAL;
2301 int ret;
2302 struct xfrm_mgr *km;
2303
2304 rcu_read_lock();
2305 list_for_each_entry_rcu(km, &xfrm_km_list, list) {
2306 if (km->report) {
2307 ret = km->report(net, proto, sel, addr);
2308 if (!ret)
2309 err = ret;
2310 }
2311 }
2312 rcu_read_unlock();
2313 return err;
2314 }
2315 EXPORT_SYMBOL(km_report);
2316
2317 static bool km_is_alive(const struct km_event *c)
2318 {
2319 struct xfrm_mgr *km;
2320 bool is_alive = false;
2321
2322 rcu_read_lock();
2323 list_for_each_entry_rcu(km, &xfrm_km_list, list) {
2324 if (km->is_alive && km->is_alive(c)) {
2325 is_alive = true;
2326 break;
2327 }
2328 }
2329 rcu_read_unlock();
2330
2331 return is_alive;
2332 }
2333
2334 #if IS_ENABLED(CONFIG_XFRM_USER_COMPAT)
2335 static DEFINE_SPINLOCK(xfrm_translator_lock);
2336 static struct xfrm_translator __rcu *xfrm_translator;
2337
2338 struct xfrm_translator *xfrm_get_translator(void)
2339 {
2340 struct xfrm_translator *xtr;
2341
2342 rcu_read_lock();
2343 xtr = rcu_dereference(xfrm_translator);
2344 if (unlikely(!xtr))
2345 goto out;
2346 if (!try_module_get(xtr->owner))
2347 xtr = NULL;
2348 out:
2349 rcu_read_unlock();
2350 return xtr;
2351 }
2352 EXPORT_SYMBOL_GPL(xfrm_get_translator);
2353
2354 void xfrm_put_translator(struct xfrm_translator *xtr)
2355 {
2356 module_put(xtr->owner);
2357 }
2358 EXPORT_SYMBOL_GPL(xfrm_put_translator);
2359
2360 int xfrm_register_translator(struct xfrm_translator *xtr)
2361 {
2362 int err = 0;
2363
2364 spin_lock_bh(&xfrm_translator_lock);
2365 if (unlikely(xfrm_translator != NULL))
2366 err = -EEXIST;
2367 else
2368 rcu_assign_pointer(xfrm_translator, xtr);
2369 spin_unlock_bh(&xfrm_translator_lock);
2370
2371 return err;
2372 }
2373 EXPORT_SYMBOL_GPL(xfrm_register_translator);
2374
2375 int xfrm_unregister_translator(struct xfrm_translator *xtr)
2376 {
2377 int err = 0;
2378
2379 spin_lock_bh(&xfrm_translator_lock);
2380 if (likely(xfrm_translator != NULL)) {
2381 if (rcu_access_pointer(xfrm_translator) != xtr)
2382 err = -EINVAL;
2383 else
2384 RCU_INIT_POINTER(xfrm_translator, NULL);
2385 }
2386 spin_unlock_bh(&xfrm_translator_lock);
2387 synchronize_rcu();
2388
2389 return err;
2390 }
2391 EXPORT_SYMBOL_GPL(xfrm_unregister_translator);
2392 #endif
2393
2394 int xfrm_user_policy(struct sock *sk, int optname, sockptr_t optval, int optlen)
2395 {
2396 int err;
2397 u8 *data;
2398 struct xfrm_mgr *km;
2399 struct xfrm_policy *pol = NULL;
2400
2401 if (sockptr_is_null(optval) && !optlen) {
2402 xfrm_sk_policy_insert(sk, XFRM_POLICY_IN, NULL);
2403 xfrm_sk_policy_insert(sk, XFRM_POLICY_OUT, NULL);
2404 __sk_dst_reset(sk);
2405 return 0;
2406 }
2407
2408 if (optlen <= 0 || optlen > PAGE_SIZE)
2409 return -EMSGSIZE;
2410
2411 data = memdup_sockptr(optval, optlen);
2412 if (IS_ERR(data))
2413 return PTR_ERR(data);
2414
2415 if (in_compat_syscall()) {
2416 struct xfrm_translator *xtr = xfrm_get_translator();
2417
2418 if (!xtr) {
2419 kfree(data);
2420 return -EOPNOTSUPP;
2421 }
2422
2423 err = xtr->xlate_user_policy_sockptr(&data, optlen);
2424 xfrm_put_translator(xtr);
2425 if (err) {
2426 kfree(data);
2427 return err;
2428 }
2429 }
2430
2431 err = -EINVAL;
2432 rcu_read_lock();
2433 list_for_each_entry_rcu(km, &xfrm_km_list, list) {
2434 pol = km->compile_policy(sk, optname, data,
2435 optlen, &err);
2436 if (err >= 0)
2437 break;
2438 }
2439 rcu_read_unlock();
2440
2441 if (err >= 0) {
2442 xfrm_sk_policy_insert(sk, err, pol);
2443 xfrm_pol_put(pol);
2444 __sk_dst_reset(sk);
2445 err = 0;
2446 }
2447
2448 kfree(data);
2449 return err;
2450 }
2451 EXPORT_SYMBOL(xfrm_user_policy);
2452
2453 static DEFINE_SPINLOCK(xfrm_km_lock);
2454
2455 int xfrm_register_km(struct xfrm_mgr *km)
2456 {
2457 spin_lock_bh(&xfrm_km_lock);
2458 list_add_tail_rcu(&km->list, &xfrm_km_list);
2459 spin_unlock_bh(&xfrm_km_lock);
2460 return 0;
2461 }
2462 EXPORT_SYMBOL(xfrm_register_km);
2463
2464 int xfrm_unregister_km(struct xfrm_mgr *km)
2465 {
2466 spin_lock_bh(&xfrm_km_lock);
2467 list_del_rcu(&km->list);
2468 spin_unlock_bh(&xfrm_km_lock);
2469 synchronize_rcu();
2470 return 0;
2471 }
2472 EXPORT_SYMBOL(xfrm_unregister_km);
2473
2474 int xfrm_state_register_afinfo(struct xfrm_state_afinfo *afinfo)
2475 {
2476 int err = 0;
2477
2478 if (WARN_ON(afinfo->family >= NPROTO))
2479 return -EAFNOSUPPORT;
2480
2481 spin_lock_bh(&xfrm_state_afinfo_lock);
2482 if (unlikely(xfrm_state_afinfo[afinfo->family] != NULL))
2483 err = -EEXIST;
2484 else
2485 rcu_assign_pointer(xfrm_state_afinfo[afinfo->family], afinfo);
2486 spin_unlock_bh(&xfrm_state_afinfo_lock);
2487 return err;
2488 }
2489 EXPORT_SYMBOL(xfrm_state_register_afinfo);
2490
2491 int xfrm_state_unregister_afinfo(struct xfrm_state_afinfo *afinfo)
2492 {
2493 int err = 0, family = afinfo->family;
2494
2495 if (WARN_ON(family >= NPROTO))
2496 return -EAFNOSUPPORT;
2497
2498 spin_lock_bh(&xfrm_state_afinfo_lock);
2499 if (likely(xfrm_state_afinfo[afinfo->family] != NULL)) {
2500 if (rcu_access_pointer(xfrm_state_afinfo[family]) != afinfo)
2501 err = -EINVAL;
2502 else
2503 RCU_INIT_POINTER(xfrm_state_afinfo[afinfo->family], NULL);
2504 }
2505 spin_unlock_bh(&xfrm_state_afinfo_lock);
2506 synchronize_rcu();
2507 return err;
2508 }
2509 EXPORT_SYMBOL(xfrm_state_unregister_afinfo);
2510
2511 struct xfrm_state_afinfo *xfrm_state_afinfo_get_rcu(unsigned int family)
2512 {
2513 if (unlikely(family >= NPROTO))
2514 return NULL;
2515
2516 return rcu_dereference(xfrm_state_afinfo[family]);
2517 }
2518 EXPORT_SYMBOL_GPL(xfrm_state_afinfo_get_rcu);
2519
2520 struct xfrm_state_afinfo *xfrm_state_get_afinfo(unsigned int family)
2521 {
2522 struct xfrm_state_afinfo *afinfo;
2523 if (unlikely(family >= NPROTO))
2524 return NULL;
2525 rcu_read_lock();
2526 afinfo = rcu_dereference(xfrm_state_afinfo[family]);
2527 if (unlikely(!afinfo))
2528 rcu_read_unlock();
2529 return afinfo;
2530 }
2531
2532 void xfrm_flush_gc(void)
2533 {
2534 flush_work(&xfrm_state_gc_work);
2535 }
2536 EXPORT_SYMBOL(xfrm_flush_gc);
2537
2538 /* Temporarily located here until net/xfrm/xfrm_tunnel.c is created */
2539 void xfrm_state_delete_tunnel(struct xfrm_state *x)
2540 {
2541 if (x->tunnel) {
2542 struct xfrm_state *t = x->tunnel;
2543
2544 if (atomic_read(&t->tunnel_users) == 2)
2545 xfrm_state_delete(t);
2546 atomic_dec(&t->tunnel_users);
2547 xfrm_state_put_sync(t);
2548 x->tunnel = NULL;
2549 }
2550 }
2551 EXPORT_SYMBOL(xfrm_state_delete_tunnel);
2552
2553 u32 __xfrm_state_mtu(struct xfrm_state *x, int mtu)
2554 {
2555 const struct xfrm_type *type = READ_ONCE(x->type);
2556 struct crypto_aead *aead;
2557 u32 blksize, net_adj = 0;
2558
2559 if (x->km.state != XFRM_STATE_VALID ||
2560 !type || type->proto != IPPROTO_ESP)
2561 return mtu - x->props.header_len;
2562
2563 aead = x->data;
2564 blksize = ALIGN(crypto_aead_blocksize(aead), 4);
2565
2566 switch (x->props.mode) {
2567 case XFRM_MODE_TRANSPORT:
2568 case XFRM_MODE_BEET:
2569 if (x->props.family == AF_INET)
2570 net_adj = sizeof(struct iphdr);
2571 else if (x->props.family == AF_INET6)
2572 net_adj = sizeof(struct ipv6hdr);
2573 break;
2574 case XFRM_MODE_TUNNEL:
2575 break;
2576 default:
2577 WARN_ON_ONCE(1);
2578 break;
2579 }
2580
2581 return ((mtu - x->props.header_len - crypto_aead_authsize(aead) -
2582 net_adj) & ~(blksize - 1)) + net_adj - 2;
2583 }
2584 EXPORT_SYMBOL_GPL(__xfrm_state_mtu);
2585
2586 u32 xfrm_state_mtu(struct xfrm_state *x, int mtu)
2587 {
2588 mtu = __xfrm_state_mtu(x, mtu);
2589
2590 if (x->props.family == AF_INET6 && mtu < IPV6_MIN_MTU)
2591 return IPV6_MIN_MTU;
2592
2593 return mtu;
2594 }
2595
2596 int __xfrm_init_state(struct xfrm_state *x, bool init_replay, bool offload)
2597 {
2598 const struct xfrm_mode *inner_mode;
2599 const struct xfrm_mode *outer_mode;
2600 int family = x->props.family;
2601 int err;
2602
2603 if (family == AF_INET &&
2604 xs_net(x)->ipv4.sysctl_ip_no_pmtu_disc)
2605 x->props.flags |= XFRM_STATE_NOPMTUDISC;
2606
2607 err = -EPROTONOSUPPORT;
2608
2609 if (x->sel.family != AF_UNSPEC) {
2610 inner_mode = xfrm_get_mode(x->props.mode, x->sel.family);
2611 if (inner_mode == NULL)
2612 goto error;
2613
2614 if (!(inner_mode->flags & XFRM_MODE_FLAG_TUNNEL) &&
2615 family != x->sel.family)
2616 goto error;
2617
2618 x->inner_mode = *inner_mode;
2619 } else {
2620 const struct xfrm_mode *inner_mode_iaf;
2621 int iafamily = AF_INET;
2622
2623 inner_mode = xfrm_get_mode(x->props.mode, x->props.family);
2624 if (inner_mode == NULL)
2625 goto error;
2626
2627 if (!(inner_mode->flags & XFRM_MODE_FLAG_TUNNEL))
2628 goto error;
2629
2630 x->inner_mode = *inner_mode;
2631
2632 if (x->props.family == AF_INET)
2633 iafamily = AF_INET6;
2634
2635 inner_mode_iaf = xfrm_get_mode(x->props.mode, iafamily);
2636 if (inner_mode_iaf) {
2637 if (inner_mode_iaf->flags & XFRM_MODE_FLAG_TUNNEL)
2638 x->inner_mode_iaf = *inner_mode_iaf;
2639 }
2640 }
2641
2642 x->type = xfrm_get_type(x->id.proto, family);
2643 if (x->type == NULL)
2644 goto error;
2645
2646 x->type_offload = xfrm_get_type_offload(x->id.proto, family, offload);
2647
2648 err = x->type->init_state(x);
2649 if (err)
2650 goto error;
2651
2652 outer_mode = xfrm_get_mode(x->props.mode, family);
2653 if (!outer_mode) {
2654 err = -EPROTONOSUPPORT;
2655 goto error;
2656 }
2657
2658 x->outer_mode = *outer_mode;
2659 if (init_replay) {
2660 err = xfrm_init_replay(x);
2661 if (err)
2662 goto error;
2663 }
2664
2665 error:
2666 return err;
2667 }
2668
2669 EXPORT_SYMBOL(__xfrm_init_state);
2670
2671 int xfrm_init_state(struct xfrm_state *x)
2672 {
2673 int err;
2674
2675 err = __xfrm_init_state(x, true, false);
2676 if (!err)
2677 x->km.state = XFRM_STATE_VALID;
2678
2679 return err;
2680 }
2681
2682 EXPORT_SYMBOL(xfrm_init_state);
2683
2684 int __net_init xfrm_state_init(struct net *net)
2685 {
2686 unsigned int sz;
2687
2688 if (net_eq(net, &init_net))
2689 xfrm_state_cache = KMEM_CACHE(xfrm_state,
2690 SLAB_HWCACHE_ALIGN | SLAB_PANIC);
2691
2692 INIT_LIST_HEAD(&net->xfrm.state_all);
2693
2694 sz = sizeof(struct hlist_head) * 8;
2695
2696 net->xfrm.state_bydst = xfrm_hash_alloc(sz);
2697 if (!net->xfrm.state_bydst)
2698 goto out_bydst;
2699 net->xfrm.state_bysrc = xfrm_hash_alloc(sz);
2700 if (!net->xfrm.state_bysrc)
2701 goto out_bysrc;
2702 net->xfrm.state_byspi = xfrm_hash_alloc(sz);
2703 if (!net->xfrm.state_byspi)
2704 goto out_byspi;
2705 net->xfrm.state_byseq = xfrm_hash_alloc(sz);
2706 if (!net->xfrm.state_byseq)
2707 goto out_byseq;
2708 net->xfrm.state_hmask = ((sz / sizeof(struct hlist_head)) - 1);
2709
2710 net->xfrm.state_num = 0;
2711 INIT_WORK(&net->xfrm.state_hash_work, xfrm_hash_resize);
2712 spin_lock_init(&net->xfrm.xfrm_state_lock);
2713 seqcount_spinlock_init(&net->xfrm.xfrm_state_hash_generation,
2714 &net->xfrm.xfrm_state_lock);
2715 return 0;
2716
2717 out_byseq:
2718 xfrm_hash_free(net->xfrm.state_byspi, sz);
2719 out_byspi:
2720 xfrm_hash_free(net->xfrm.state_bysrc, sz);
2721 out_bysrc:
2722 xfrm_hash_free(net->xfrm.state_bydst, sz);
2723 out_bydst:
2724 return -ENOMEM;
2725 }
2726
2727 void xfrm_state_fini(struct net *net)
2728 {
2729 unsigned int sz;
2730
2731 flush_work(&net->xfrm.state_hash_work);
2732 flush_work(&xfrm_state_gc_work);
2733 xfrm_state_flush(net, 0, false, true);
2734
2735 WARN_ON(!list_empty(&net->xfrm.state_all));
2736
2737 sz = (net->xfrm.state_hmask + 1) * sizeof(struct hlist_head);
2738 WARN_ON(!hlist_empty(net->xfrm.state_byseq));
2739 xfrm_hash_free(net->xfrm.state_byseq, sz);
2740 WARN_ON(!hlist_empty(net->xfrm.state_byspi));
2741 xfrm_hash_free(net->xfrm.state_byspi, sz);
2742 WARN_ON(!hlist_empty(net->xfrm.state_bysrc));
2743 xfrm_hash_free(net->xfrm.state_bysrc, sz);
2744 WARN_ON(!hlist_empty(net->xfrm.state_bydst));
2745 xfrm_hash_free(net->xfrm.state_bydst, sz);
2746 }
2747
2748 #ifdef CONFIG_AUDITSYSCALL
2749 static void xfrm_audit_helper_sainfo(struct xfrm_state *x,
2750 struct audit_buffer *audit_buf)
2751 {
2752 struct xfrm_sec_ctx *ctx = x->security;
2753 u32 spi = ntohl(x->id.spi);
2754
2755 if (ctx)
2756 audit_log_format(audit_buf, " sec_alg=%u sec_doi=%u sec_obj=%s",
2757 ctx->ctx_alg, ctx->ctx_doi, ctx->ctx_str);
2758
2759 switch (x->props.family) {
2760 case AF_INET:
2761 audit_log_format(audit_buf, " src=%pI4 dst=%pI4",
2762 &x->props.saddr.a4, &x->id.daddr.a4);
2763 break;
2764 case AF_INET6:
2765 audit_log_format(audit_buf, " src=%pI6 dst=%pI6",
2766 x->props.saddr.a6, x->id.daddr.a6);
2767 break;
2768 }
2769
2770 audit_log_format(audit_buf, " spi=%u(0x%x)", spi, spi);
2771 }
2772
2773 static void xfrm_audit_helper_pktinfo(struct sk_buff *skb, u16 family,
2774 struct audit_buffer *audit_buf)
2775 {
2776 const struct iphdr *iph4;
2777 const struct ipv6hdr *iph6;
2778
2779 switch (family) {
2780 case AF_INET:
2781 iph4 = ip_hdr(skb);
2782 audit_log_format(audit_buf, " src=%pI4 dst=%pI4",
2783 &iph4->saddr, &iph4->daddr);
2784 break;
2785 case AF_INET6:
2786 iph6 = ipv6_hdr(skb);
2787 audit_log_format(audit_buf,
2788 " src=%pI6 dst=%pI6 flowlbl=0x%x%02x%02x",
2789 &iph6->saddr, &iph6->daddr,
2790 iph6->flow_lbl[0] & 0x0f,
2791 iph6->flow_lbl[1],
2792 iph6->flow_lbl[2]);
2793 break;
2794 }
2795 }
2796
2797 void xfrm_audit_state_add(struct xfrm_state *x, int result, bool task_valid)
2798 {
2799 struct audit_buffer *audit_buf;
2800
2801 audit_buf = xfrm_audit_start("SAD-add");
2802 if (audit_buf == NULL)
2803 return;
2804 xfrm_audit_helper_usrinfo(task_valid, audit_buf);
2805 xfrm_audit_helper_sainfo(x, audit_buf);
2806 audit_log_format(audit_buf, " res=%u", result);
2807 audit_log_end(audit_buf);
2808 }
2809 EXPORT_SYMBOL_GPL(xfrm_audit_state_add);
2810
2811 void xfrm_audit_state_delete(struct xfrm_state *x, int result, bool task_valid)
2812 {
2813 struct audit_buffer *audit_buf;
2814
2815 audit_buf = xfrm_audit_start("SAD-delete");
2816 if (audit_buf == NULL)
2817 return;
2818 xfrm_audit_helper_usrinfo(task_valid, audit_buf);
2819 xfrm_audit_helper_sainfo(x, audit_buf);
2820 audit_log_format(audit_buf, " res=%u", result);
2821 audit_log_end(audit_buf);
2822 }
2823 EXPORT_SYMBOL_GPL(xfrm_audit_state_delete);
2824
2825 void xfrm_audit_state_replay_overflow(struct xfrm_state *x,
2826 struct sk_buff *skb)
2827 {
2828 struct audit_buffer *audit_buf;
2829 u32 spi;
2830
2831 audit_buf = xfrm_audit_start("SA-replay-overflow");
2832 if (audit_buf == NULL)
2833 return;
2834 xfrm_audit_helper_pktinfo(skb, x->props.family, audit_buf);
2835 /* don't record the sequence number because it's inherent in this kind
2836 * of audit message */
2837 spi = ntohl(x->id.spi);
2838 audit_log_format(audit_buf, " spi=%u(0x%x)", spi, spi);
2839 audit_log_end(audit_buf);
2840 }
2841 EXPORT_SYMBOL_GPL(xfrm_audit_state_replay_overflow);
2842
2843 void xfrm_audit_state_replay(struct xfrm_state *x,
2844 struct sk_buff *skb, __be32 net_seq)
2845 {
2846 struct audit_buffer *audit_buf;
2847 u32 spi;
2848
2849 audit_buf = xfrm_audit_start("SA-replayed-pkt");
2850 if (audit_buf == NULL)
2851 return;
2852 xfrm_audit_helper_pktinfo(skb, x->props.family, audit_buf);
2853 spi = ntohl(x->id.spi);
2854 audit_log_format(audit_buf, " spi=%u(0x%x) seqno=%u",
2855 spi, spi, ntohl(net_seq));
2856 audit_log_end(audit_buf);
2857 }
2858 EXPORT_SYMBOL_GPL(xfrm_audit_state_replay);
2859
2860 void xfrm_audit_state_notfound_simple(struct sk_buff *skb, u16 family)
2861 {
2862 struct audit_buffer *audit_buf;
2863
2864 audit_buf = xfrm_audit_start("SA-notfound");
2865 if (audit_buf == NULL)
2866 return;
2867 xfrm_audit_helper_pktinfo(skb, family, audit_buf);
2868 audit_log_end(audit_buf);
2869 }
2870 EXPORT_SYMBOL_GPL(xfrm_audit_state_notfound_simple);
2871
2872 void xfrm_audit_state_notfound(struct sk_buff *skb, u16 family,
2873 __be32 net_spi, __be32 net_seq)
2874 {
2875 struct audit_buffer *audit_buf;
2876 u32 spi;
2877
2878 audit_buf = xfrm_audit_start("SA-notfound");
2879 if (audit_buf == NULL)
2880 return;
2881 xfrm_audit_helper_pktinfo(skb, family, audit_buf);
2882 spi = ntohl(net_spi);
2883 audit_log_format(audit_buf, " spi=%u(0x%x) seqno=%u",
2884 spi, spi, ntohl(net_seq));
2885 audit_log_end(audit_buf);
2886 }
2887 EXPORT_SYMBOL_GPL(xfrm_audit_state_notfound);
2888
2889 void xfrm_audit_state_icvfail(struct xfrm_state *x,
2890 struct sk_buff *skb, u8 proto)
2891 {
2892 struct audit_buffer *audit_buf;
2893 __be32 net_spi;
2894 __be32 net_seq;
2895
2896 audit_buf = xfrm_audit_start("SA-icv-failure");
2897 if (audit_buf == NULL)
2898 return;
2899 xfrm_audit_helper_pktinfo(skb, x->props.family, audit_buf);
2900 if (xfrm_parse_spi(skb, proto, &net_spi, &net_seq) == 0) {
2901 u32 spi = ntohl(net_spi);
2902 audit_log_format(audit_buf, " spi=%u(0x%x) seqno=%u",
2903 spi, spi, ntohl(net_seq));
2904 }
2905 audit_log_end(audit_buf);
2906 }
2907 EXPORT_SYMBOL_GPL(xfrm_audit_state_icvfail);
2908 #endif /* CONFIG_AUDITSYSCALL */