]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - net/xfrm/xfrm_state.c
Revert "xfrm: xfrm_state_mtu should return at least 1280 for ipv6"
[mirror_ubuntu-jammy-kernel.git] / net / xfrm / xfrm_state.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * xfrm_state.c
4 *
5 * Changes:
6 * Mitsuru KANDA @USAGI
7 * Kazunori MIYAZAWA @USAGI
8 * Kunihiro Ishiguro <kunihiro@ipinfusion.com>
9 * IPv6 support
10 * YOSHIFUJI Hideaki @USAGI
11 * Split up af-specific functions
12 * Derek Atkins <derek@ihtfp.com>
13 * Add UDP Encapsulation
14 *
15 */
16
17 #include <linux/workqueue.h>
18 #include <net/xfrm.h>
19 #include <linux/pfkeyv2.h>
20 #include <linux/ipsec.h>
21 #include <linux/module.h>
22 #include <linux/cache.h>
23 #include <linux/audit.h>
24 #include <linux/uaccess.h>
25 #include <linux/ktime.h>
26 #include <linux/slab.h>
27 #include <linux/interrupt.h>
28 #include <linux/kernel.h>
29
30 #include <crypto/aead.h>
31
32 #include "xfrm_hash.h"
33
34 #define xfrm_state_deref_prot(table, net) \
35 rcu_dereference_protected((table), lockdep_is_held(&(net)->xfrm.xfrm_state_lock))
36
37 static void xfrm_state_gc_task(struct work_struct *work);
38
39 /* Each xfrm_state may be linked to two tables:
40
41 1. Hash table by (spi,daddr,ah/esp) to find SA by SPI. (input,ctl)
42 2. Hash table by (daddr,family,reqid) to find what SAs exist for given
43 destination/tunnel endpoint. (output)
44 */
45
46 static unsigned int xfrm_state_hashmax __read_mostly = 1 * 1024 * 1024;
47 static struct kmem_cache *xfrm_state_cache __ro_after_init;
48
49 static DECLARE_WORK(xfrm_state_gc_work, xfrm_state_gc_task);
50 static HLIST_HEAD(xfrm_state_gc_list);
51
52 static inline bool xfrm_state_hold_rcu(struct xfrm_state __rcu *x)
53 {
54 return refcount_inc_not_zero(&x->refcnt);
55 }
56
57 static inline unsigned int xfrm_dst_hash(struct net *net,
58 const xfrm_address_t *daddr,
59 const xfrm_address_t *saddr,
60 u32 reqid,
61 unsigned short family)
62 {
63 return __xfrm_dst_hash(daddr, saddr, reqid, family, net->xfrm.state_hmask);
64 }
65
66 static inline unsigned int xfrm_src_hash(struct net *net,
67 const xfrm_address_t *daddr,
68 const xfrm_address_t *saddr,
69 unsigned short family)
70 {
71 return __xfrm_src_hash(daddr, saddr, family, net->xfrm.state_hmask);
72 }
73
74 static inline unsigned int
75 xfrm_spi_hash(struct net *net, const xfrm_address_t *daddr,
76 __be32 spi, u8 proto, unsigned short family)
77 {
78 return __xfrm_spi_hash(daddr, spi, proto, family, net->xfrm.state_hmask);
79 }
80
81 static unsigned int xfrm_seq_hash(struct net *net, u32 seq)
82 {
83 return __xfrm_seq_hash(seq, net->xfrm.state_hmask);
84 }
85
86 static void xfrm_hash_transfer(struct hlist_head *list,
87 struct hlist_head *ndsttable,
88 struct hlist_head *nsrctable,
89 struct hlist_head *nspitable,
90 struct hlist_head *nseqtable,
91 unsigned int nhashmask)
92 {
93 struct hlist_node *tmp;
94 struct xfrm_state *x;
95
96 hlist_for_each_entry_safe(x, tmp, list, bydst) {
97 unsigned int h;
98
99 h = __xfrm_dst_hash(&x->id.daddr, &x->props.saddr,
100 x->props.reqid, x->props.family,
101 nhashmask);
102 hlist_add_head_rcu(&x->bydst, ndsttable + h);
103
104 h = __xfrm_src_hash(&x->id.daddr, &x->props.saddr,
105 x->props.family,
106 nhashmask);
107 hlist_add_head_rcu(&x->bysrc, nsrctable + h);
108
109 if (x->id.spi) {
110 h = __xfrm_spi_hash(&x->id.daddr, x->id.spi,
111 x->id.proto, x->props.family,
112 nhashmask);
113 hlist_add_head_rcu(&x->byspi, nspitable + h);
114 }
115
116 if (x->km.seq) {
117 h = __xfrm_seq_hash(x->km.seq, nhashmask);
118 hlist_add_head_rcu(&x->byseq, nseqtable + h);
119 }
120 }
121 }
122
123 static unsigned long xfrm_hash_new_size(unsigned int state_hmask)
124 {
125 return ((state_hmask + 1) << 1) * sizeof(struct hlist_head);
126 }
127
128 static void xfrm_hash_resize(struct work_struct *work)
129 {
130 struct net *net = container_of(work, struct net, xfrm.state_hash_work);
131 struct hlist_head *ndst, *nsrc, *nspi, *nseq, *odst, *osrc, *ospi, *oseq;
132 unsigned long nsize, osize;
133 unsigned int nhashmask, ohashmask;
134 int i;
135
136 nsize = xfrm_hash_new_size(net->xfrm.state_hmask);
137 ndst = xfrm_hash_alloc(nsize);
138 if (!ndst)
139 return;
140 nsrc = xfrm_hash_alloc(nsize);
141 if (!nsrc) {
142 xfrm_hash_free(ndst, nsize);
143 return;
144 }
145 nspi = xfrm_hash_alloc(nsize);
146 if (!nspi) {
147 xfrm_hash_free(ndst, nsize);
148 xfrm_hash_free(nsrc, nsize);
149 return;
150 }
151 nseq = xfrm_hash_alloc(nsize);
152 if (!nseq) {
153 xfrm_hash_free(ndst, nsize);
154 xfrm_hash_free(nsrc, nsize);
155 xfrm_hash_free(nspi, nsize);
156 return;
157 }
158
159 spin_lock_bh(&net->xfrm.xfrm_state_lock);
160 write_seqcount_begin(&net->xfrm.xfrm_state_hash_generation);
161
162 nhashmask = (nsize / sizeof(struct hlist_head)) - 1U;
163 odst = xfrm_state_deref_prot(net->xfrm.state_bydst, net);
164 for (i = net->xfrm.state_hmask; i >= 0; i--)
165 xfrm_hash_transfer(odst + i, ndst, nsrc, nspi, nseq, nhashmask);
166
167 osrc = xfrm_state_deref_prot(net->xfrm.state_bysrc, net);
168 ospi = xfrm_state_deref_prot(net->xfrm.state_byspi, net);
169 oseq = xfrm_state_deref_prot(net->xfrm.state_byseq, net);
170 ohashmask = net->xfrm.state_hmask;
171
172 rcu_assign_pointer(net->xfrm.state_bydst, ndst);
173 rcu_assign_pointer(net->xfrm.state_bysrc, nsrc);
174 rcu_assign_pointer(net->xfrm.state_byspi, nspi);
175 rcu_assign_pointer(net->xfrm.state_byseq, nseq);
176 net->xfrm.state_hmask = nhashmask;
177
178 write_seqcount_end(&net->xfrm.xfrm_state_hash_generation);
179 spin_unlock_bh(&net->xfrm.xfrm_state_lock);
180
181 osize = (ohashmask + 1) * sizeof(struct hlist_head);
182
183 synchronize_rcu();
184
185 xfrm_hash_free(odst, osize);
186 xfrm_hash_free(osrc, osize);
187 xfrm_hash_free(ospi, osize);
188 xfrm_hash_free(oseq, osize);
189 }
190
191 static DEFINE_SPINLOCK(xfrm_state_afinfo_lock);
192 static struct xfrm_state_afinfo __rcu *xfrm_state_afinfo[NPROTO];
193
194 static DEFINE_SPINLOCK(xfrm_state_gc_lock);
195
196 int __xfrm_state_delete(struct xfrm_state *x);
197
198 int km_query(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *pol);
199 static bool km_is_alive(const struct km_event *c);
200 void km_state_expired(struct xfrm_state *x, int hard, u32 portid);
201
202 int xfrm_register_type(const struct xfrm_type *type, unsigned short family)
203 {
204 struct xfrm_state_afinfo *afinfo = xfrm_state_get_afinfo(family);
205 int err = 0;
206
207 if (!afinfo)
208 return -EAFNOSUPPORT;
209
210 #define X(afi, T, name) do { \
211 WARN_ON((afi)->type_ ## name); \
212 (afi)->type_ ## name = (T); \
213 } while (0)
214
215 switch (type->proto) {
216 case IPPROTO_COMP:
217 X(afinfo, type, comp);
218 break;
219 case IPPROTO_AH:
220 X(afinfo, type, ah);
221 break;
222 case IPPROTO_ESP:
223 X(afinfo, type, esp);
224 break;
225 case IPPROTO_IPIP:
226 X(afinfo, type, ipip);
227 break;
228 case IPPROTO_DSTOPTS:
229 X(afinfo, type, dstopts);
230 break;
231 case IPPROTO_ROUTING:
232 X(afinfo, type, routing);
233 break;
234 case IPPROTO_IPV6:
235 X(afinfo, type, ipip6);
236 break;
237 default:
238 WARN_ON(1);
239 err = -EPROTONOSUPPORT;
240 break;
241 }
242 #undef X
243 rcu_read_unlock();
244 return err;
245 }
246 EXPORT_SYMBOL(xfrm_register_type);
247
248 void xfrm_unregister_type(const struct xfrm_type *type, unsigned short family)
249 {
250 struct xfrm_state_afinfo *afinfo = xfrm_state_get_afinfo(family);
251
252 if (unlikely(afinfo == NULL))
253 return;
254
255 #define X(afi, T, name) do { \
256 WARN_ON((afi)->type_ ## name != (T)); \
257 (afi)->type_ ## name = NULL; \
258 } while (0)
259
260 switch (type->proto) {
261 case IPPROTO_COMP:
262 X(afinfo, type, comp);
263 break;
264 case IPPROTO_AH:
265 X(afinfo, type, ah);
266 break;
267 case IPPROTO_ESP:
268 X(afinfo, type, esp);
269 break;
270 case IPPROTO_IPIP:
271 X(afinfo, type, ipip);
272 break;
273 case IPPROTO_DSTOPTS:
274 X(afinfo, type, dstopts);
275 break;
276 case IPPROTO_ROUTING:
277 X(afinfo, type, routing);
278 break;
279 case IPPROTO_IPV6:
280 X(afinfo, type, ipip6);
281 break;
282 default:
283 WARN_ON(1);
284 break;
285 }
286 #undef X
287 rcu_read_unlock();
288 }
289 EXPORT_SYMBOL(xfrm_unregister_type);
290
291 static const struct xfrm_type *xfrm_get_type(u8 proto, unsigned short family)
292 {
293 const struct xfrm_type *type = NULL;
294 struct xfrm_state_afinfo *afinfo;
295 int modload_attempted = 0;
296
297 retry:
298 afinfo = xfrm_state_get_afinfo(family);
299 if (unlikely(afinfo == NULL))
300 return NULL;
301
302 switch (proto) {
303 case IPPROTO_COMP:
304 type = afinfo->type_comp;
305 break;
306 case IPPROTO_AH:
307 type = afinfo->type_ah;
308 break;
309 case IPPROTO_ESP:
310 type = afinfo->type_esp;
311 break;
312 case IPPROTO_IPIP:
313 type = afinfo->type_ipip;
314 break;
315 case IPPROTO_DSTOPTS:
316 type = afinfo->type_dstopts;
317 break;
318 case IPPROTO_ROUTING:
319 type = afinfo->type_routing;
320 break;
321 case IPPROTO_IPV6:
322 type = afinfo->type_ipip6;
323 break;
324 default:
325 break;
326 }
327
328 if (unlikely(type && !try_module_get(type->owner)))
329 type = NULL;
330
331 rcu_read_unlock();
332
333 if (!type && !modload_attempted) {
334 request_module("xfrm-type-%d-%d", family, proto);
335 modload_attempted = 1;
336 goto retry;
337 }
338
339 return type;
340 }
341
342 static void xfrm_put_type(const struct xfrm_type *type)
343 {
344 module_put(type->owner);
345 }
346
347 int xfrm_register_type_offload(const struct xfrm_type_offload *type,
348 unsigned short family)
349 {
350 struct xfrm_state_afinfo *afinfo = xfrm_state_get_afinfo(family);
351 int err = 0;
352
353 if (unlikely(afinfo == NULL))
354 return -EAFNOSUPPORT;
355
356 switch (type->proto) {
357 case IPPROTO_ESP:
358 WARN_ON(afinfo->type_offload_esp);
359 afinfo->type_offload_esp = type;
360 break;
361 default:
362 WARN_ON(1);
363 err = -EPROTONOSUPPORT;
364 break;
365 }
366
367 rcu_read_unlock();
368 return err;
369 }
370 EXPORT_SYMBOL(xfrm_register_type_offload);
371
372 void xfrm_unregister_type_offload(const struct xfrm_type_offload *type,
373 unsigned short family)
374 {
375 struct xfrm_state_afinfo *afinfo = xfrm_state_get_afinfo(family);
376
377 if (unlikely(afinfo == NULL))
378 return;
379
380 switch (type->proto) {
381 case IPPROTO_ESP:
382 WARN_ON(afinfo->type_offload_esp != type);
383 afinfo->type_offload_esp = NULL;
384 break;
385 default:
386 WARN_ON(1);
387 break;
388 }
389 rcu_read_unlock();
390 }
391 EXPORT_SYMBOL(xfrm_unregister_type_offload);
392
393 static const struct xfrm_type_offload *
394 xfrm_get_type_offload(u8 proto, unsigned short family, bool try_load)
395 {
396 const struct xfrm_type_offload *type = NULL;
397 struct xfrm_state_afinfo *afinfo;
398
399 retry:
400 afinfo = xfrm_state_get_afinfo(family);
401 if (unlikely(afinfo == NULL))
402 return NULL;
403
404 switch (proto) {
405 case IPPROTO_ESP:
406 type = afinfo->type_offload_esp;
407 break;
408 default:
409 break;
410 }
411
412 if ((type && !try_module_get(type->owner)))
413 type = NULL;
414
415 rcu_read_unlock();
416
417 if (!type && try_load) {
418 request_module("xfrm-offload-%d-%d", family, proto);
419 try_load = false;
420 goto retry;
421 }
422
423 return type;
424 }
425
426 static void xfrm_put_type_offload(const struct xfrm_type_offload *type)
427 {
428 module_put(type->owner);
429 }
430
431 static const struct xfrm_mode xfrm4_mode_map[XFRM_MODE_MAX] = {
432 [XFRM_MODE_BEET] = {
433 .encap = XFRM_MODE_BEET,
434 .flags = XFRM_MODE_FLAG_TUNNEL,
435 .family = AF_INET,
436 },
437 [XFRM_MODE_TRANSPORT] = {
438 .encap = XFRM_MODE_TRANSPORT,
439 .family = AF_INET,
440 },
441 [XFRM_MODE_TUNNEL] = {
442 .encap = XFRM_MODE_TUNNEL,
443 .flags = XFRM_MODE_FLAG_TUNNEL,
444 .family = AF_INET,
445 },
446 };
447
448 static const struct xfrm_mode xfrm6_mode_map[XFRM_MODE_MAX] = {
449 [XFRM_MODE_BEET] = {
450 .encap = XFRM_MODE_BEET,
451 .flags = XFRM_MODE_FLAG_TUNNEL,
452 .family = AF_INET6,
453 },
454 [XFRM_MODE_ROUTEOPTIMIZATION] = {
455 .encap = XFRM_MODE_ROUTEOPTIMIZATION,
456 .family = AF_INET6,
457 },
458 [XFRM_MODE_TRANSPORT] = {
459 .encap = XFRM_MODE_TRANSPORT,
460 .family = AF_INET6,
461 },
462 [XFRM_MODE_TUNNEL] = {
463 .encap = XFRM_MODE_TUNNEL,
464 .flags = XFRM_MODE_FLAG_TUNNEL,
465 .family = AF_INET6,
466 },
467 };
468
469 static const struct xfrm_mode *xfrm_get_mode(unsigned int encap, int family)
470 {
471 const struct xfrm_mode *mode;
472
473 if (unlikely(encap >= XFRM_MODE_MAX))
474 return NULL;
475
476 switch (family) {
477 case AF_INET:
478 mode = &xfrm4_mode_map[encap];
479 if (mode->family == family)
480 return mode;
481 break;
482 case AF_INET6:
483 mode = &xfrm6_mode_map[encap];
484 if (mode->family == family)
485 return mode;
486 break;
487 default:
488 break;
489 }
490
491 return NULL;
492 }
493
494 void xfrm_state_free(struct xfrm_state *x)
495 {
496 kmem_cache_free(xfrm_state_cache, x);
497 }
498 EXPORT_SYMBOL(xfrm_state_free);
499
500 static void ___xfrm_state_destroy(struct xfrm_state *x)
501 {
502 hrtimer_cancel(&x->mtimer);
503 del_timer_sync(&x->rtimer);
504 kfree(x->aead);
505 kfree(x->aalg);
506 kfree(x->ealg);
507 kfree(x->calg);
508 kfree(x->encap);
509 kfree(x->coaddr);
510 kfree(x->replay_esn);
511 kfree(x->preplay_esn);
512 if (x->type_offload)
513 xfrm_put_type_offload(x->type_offload);
514 if (x->type) {
515 x->type->destructor(x);
516 xfrm_put_type(x->type);
517 }
518 if (x->xfrag.page)
519 put_page(x->xfrag.page);
520 xfrm_dev_state_free(x);
521 security_xfrm_state_free(x);
522 xfrm_state_free(x);
523 }
524
525 static void xfrm_state_gc_task(struct work_struct *work)
526 {
527 struct xfrm_state *x;
528 struct hlist_node *tmp;
529 struct hlist_head gc_list;
530
531 spin_lock_bh(&xfrm_state_gc_lock);
532 hlist_move_list(&xfrm_state_gc_list, &gc_list);
533 spin_unlock_bh(&xfrm_state_gc_lock);
534
535 synchronize_rcu();
536
537 hlist_for_each_entry_safe(x, tmp, &gc_list, gclist)
538 ___xfrm_state_destroy(x);
539 }
540
541 static enum hrtimer_restart xfrm_timer_handler(struct hrtimer *me)
542 {
543 struct xfrm_state *x = container_of(me, struct xfrm_state, mtimer);
544 enum hrtimer_restart ret = HRTIMER_NORESTART;
545 time64_t now = ktime_get_real_seconds();
546 time64_t next = TIME64_MAX;
547 int warn = 0;
548 int err = 0;
549
550 spin_lock(&x->lock);
551 if (x->km.state == XFRM_STATE_DEAD)
552 goto out;
553 if (x->km.state == XFRM_STATE_EXPIRED)
554 goto expired;
555 if (x->lft.hard_add_expires_seconds) {
556 long tmo = x->lft.hard_add_expires_seconds +
557 x->curlft.add_time - now;
558 if (tmo <= 0) {
559 if (x->xflags & XFRM_SOFT_EXPIRE) {
560 /* enter hard expire without soft expire first?!
561 * setting a new date could trigger this.
562 * workaround: fix x->curflt.add_time by below:
563 */
564 x->curlft.add_time = now - x->saved_tmo - 1;
565 tmo = x->lft.hard_add_expires_seconds - x->saved_tmo;
566 } else
567 goto expired;
568 }
569 if (tmo < next)
570 next = tmo;
571 }
572 if (x->lft.hard_use_expires_seconds) {
573 long tmo = x->lft.hard_use_expires_seconds +
574 (x->curlft.use_time ? : now) - now;
575 if (tmo <= 0)
576 goto expired;
577 if (tmo < next)
578 next = tmo;
579 }
580 if (x->km.dying)
581 goto resched;
582 if (x->lft.soft_add_expires_seconds) {
583 long tmo = x->lft.soft_add_expires_seconds +
584 x->curlft.add_time - now;
585 if (tmo <= 0) {
586 warn = 1;
587 x->xflags &= ~XFRM_SOFT_EXPIRE;
588 } else if (tmo < next) {
589 next = tmo;
590 x->xflags |= XFRM_SOFT_EXPIRE;
591 x->saved_tmo = tmo;
592 }
593 }
594 if (x->lft.soft_use_expires_seconds) {
595 long tmo = x->lft.soft_use_expires_seconds +
596 (x->curlft.use_time ? : now) - now;
597 if (tmo <= 0)
598 warn = 1;
599 else if (tmo < next)
600 next = tmo;
601 }
602
603 x->km.dying = warn;
604 if (warn)
605 km_state_expired(x, 0, 0);
606 resched:
607 if (next != TIME64_MAX) {
608 hrtimer_forward_now(&x->mtimer, ktime_set(next, 0));
609 ret = HRTIMER_RESTART;
610 }
611
612 goto out;
613
614 expired:
615 if (x->km.state == XFRM_STATE_ACQ && x->id.spi == 0)
616 x->km.state = XFRM_STATE_EXPIRED;
617
618 err = __xfrm_state_delete(x);
619 if (!err)
620 km_state_expired(x, 1, 0);
621
622 xfrm_audit_state_delete(x, err ? 0 : 1, true);
623
624 out:
625 spin_unlock(&x->lock);
626 return ret;
627 }
628
629 static void xfrm_replay_timer_handler(struct timer_list *t);
630
631 struct xfrm_state *xfrm_state_alloc(struct net *net)
632 {
633 struct xfrm_state *x;
634
635 x = kmem_cache_zalloc(xfrm_state_cache, GFP_ATOMIC);
636
637 if (x) {
638 write_pnet(&x->xs_net, net);
639 refcount_set(&x->refcnt, 1);
640 atomic_set(&x->tunnel_users, 0);
641 INIT_LIST_HEAD(&x->km.all);
642 INIT_HLIST_NODE(&x->bydst);
643 INIT_HLIST_NODE(&x->bysrc);
644 INIT_HLIST_NODE(&x->byspi);
645 INIT_HLIST_NODE(&x->byseq);
646 hrtimer_init(&x->mtimer, CLOCK_BOOTTIME, HRTIMER_MODE_ABS_SOFT);
647 x->mtimer.function = xfrm_timer_handler;
648 timer_setup(&x->rtimer, xfrm_replay_timer_handler, 0);
649 x->curlft.add_time = ktime_get_real_seconds();
650 x->lft.soft_byte_limit = XFRM_INF;
651 x->lft.soft_packet_limit = XFRM_INF;
652 x->lft.hard_byte_limit = XFRM_INF;
653 x->lft.hard_packet_limit = XFRM_INF;
654 x->replay_maxage = 0;
655 x->replay_maxdiff = 0;
656 spin_lock_init(&x->lock);
657 }
658 return x;
659 }
660 EXPORT_SYMBOL(xfrm_state_alloc);
661
662 void __xfrm_state_destroy(struct xfrm_state *x, bool sync)
663 {
664 WARN_ON(x->km.state != XFRM_STATE_DEAD);
665
666 if (sync) {
667 synchronize_rcu();
668 ___xfrm_state_destroy(x);
669 } else {
670 spin_lock_bh(&xfrm_state_gc_lock);
671 hlist_add_head(&x->gclist, &xfrm_state_gc_list);
672 spin_unlock_bh(&xfrm_state_gc_lock);
673 schedule_work(&xfrm_state_gc_work);
674 }
675 }
676 EXPORT_SYMBOL(__xfrm_state_destroy);
677
678 int __xfrm_state_delete(struct xfrm_state *x)
679 {
680 struct net *net = xs_net(x);
681 int err = -ESRCH;
682
683 if (x->km.state != XFRM_STATE_DEAD) {
684 x->km.state = XFRM_STATE_DEAD;
685 spin_lock(&net->xfrm.xfrm_state_lock);
686 list_del(&x->km.all);
687 hlist_del_rcu(&x->bydst);
688 hlist_del_rcu(&x->bysrc);
689 if (x->km.seq)
690 hlist_del_rcu(&x->byseq);
691 if (x->id.spi)
692 hlist_del_rcu(&x->byspi);
693 net->xfrm.state_num--;
694 spin_unlock(&net->xfrm.xfrm_state_lock);
695
696 if (x->encap_sk)
697 sock_put(rcu_dereference_raw(x->encap_sk));
698
699 xfrm_dev_state_delete(x);
700
701 /* All xfrm_state objects are created by xfrm_state_alloc.
702 * The xfrm_state_alloc call gives a reference, and that
703 * is what we are dropping here.
704 */
705 xfrm_state_put(x);
706 err = 0;
707 }
708
709 return err;
710 }
711 EXPORT_SYMBOL(__xfrm_state_delete);
712
713 int xfrm_state_delete(struct xfrm_state *x)
714 {
715 int err;
716
717 spin_lock_bh(&x->lock);
718 err = __xfrm_state_delete(x);
719 spin_unlock_bh(&x->lock);
720
721 return err;
722 }
723 EXPORT_SYMBOL(xfrm_state_delete);
724
725 #ifdef CONFIG_SECURITY_NETWORK_XFRM
726 static inline int
727 xfrm_state_flush_secctx_check(struct net *net, u8 proto, bool task_valid)
728 {
729 int i, err = 0;
730
731 for (i = 0; i <= net->xfrm.state_hmask; i++) {
732 struct xfrm_state *x;
733
734 hlist_for_each_entry(x, net->xfrm.state_bydst+i, bydst) {
735 if (xfrm_id_proto_match(x->id.proto, proto) &&
736 (err = security_xfrm_state_delete(x)) != 0) {
737 xfrm_audit_state_delete(x, 0, task_valid);
738 return err;
739 }
740 }
741 }
742
743 return err;
744 }
745
746 static inline int
747 xfrm_dev_state_flush_secctx_check(struct net *net, struct net_device *dev, bool task_valid)
748 {
749 int i, err = 0;
750
751 for (i = 0; i <= net->xfrm.state_hmask; i++) {
752 struct xfrm_state *x;
753 struct xfrm_state_offload *xso;
754
755 hlist_for_each_entry(x, net->xfrm.state_bydst+i, bydst) {
756 xso = &x->xso;
757
758 if (xso->dev == dev &&
759 (err = security_xfrm_state_delete(x)) != 0) {
760 xfrm_audit_state_delete(x, 0, task_valid);
761 return err;
762 }
763 }
764 }
765
766 return err;
767 }
768 #else
769 static inline int
770 xfrm_state_flush_secctx_check(struct net *net, u8 proto, bool task_valid)
771 {
772 return 0;
773 }
774
775 static inline int
776 xfrm_dev_state_flush_secctx_check(struct net *net, struct net_device *dev, bool task_valid)
777 {
778 return 0;
779 }
780 #endif
781
782 int xfrm_state_flush(struct net *net, u8 proto, bool task_valid, bool sync)
783 {
784 int i, err = 0, cnt = 0;
785
786 spin_lock_bh(&net->xfrm.xfrm_state_lock);
787 err = xfrm_state_flush_secctx_check(net, proto, task_valid);
788 if (err)
789 goto out;
790
791 err = -ESRCH;
792 for (i = 0; i <= net->xfrm.state_hmask; i++) {
793 struct xfrm_state *x;
794 restart:
795 hlist_for_each_entry(x, net->xfrm.state_bydst+i, bydst) {
796 if (!xfrm_state_kern(x) &&
797 xfrm_id_proto_match(x->id.proto, proto)) {
798 xfrm_state_hold(x);
799 spin_unlock_bh(&net->xfrm.xfrm_state_lock);
800
801 err = xfrm_state_delete(x);
802 xfrm_audit_state_delete(x, err ? 0 : 1,
803 task_valid);
804 if (sync)
805 xfrm_state_put_sync(x);
806 else
807 xfrm_state_put(x);
808 if (!err)
809 cnt++;
810
811 spin_lock_bh(&net->xfrm.xfrm_state_lock);
812 goto restart;
813 }
814 }
815 }
816 out:
817 spin_unlock_bh(&net->xfrm.xfrm_state_lock);
818 if (cnt)
819 err = 0;
820
821 return err;
822 }
823 EXPORT_SYMBOL(xfrm_state_flush);
824
825 int xfrm_dev_state_flush(struct net *net, struct net_device *dev, bool task_valid)
826 {
827 int i, err = 0, cnt = 0;
828
829 spin_lock_bh(&net->xfrm.xfrm_state_lock);
830 err = xfrm_dev_state_flush_secctx_check(net, dev, task_valid);
831 if (err)
832 goto out;
833
834 err = -ESRCH;
835 for (i = 0; i <= net->xfrm.state_hmask; i++) {
836 struct xfrm_state *x;
837 struct xfrm_state_offload *xso;
838 restart:
839 hlist_for_each_entry(x, net->xfrm.state_bydst+i, bydst) {
840 xso = &x->xso;
841
842 if (!xfrm_state_kern(x) && xso->dev == dev) {
843 xfrm_state_hold(x);
844 spin_unlock_bh(&net->xfrm.xfrm_state_lock);
845
846 err = xfrm_state_delete(x);
847 xfrm_audit_state_delete(x, err ? 0 : 1,
848 task_valid);
849 xfrm_state_put(x);
850 if (!err)
851 cnt++;
852
853 spin_lock_bh(&net->xfrm.xfrm_state_lock);
854 goto restart;
855 }
856 }
857 }
858 if (cnt)
859 err = 0;
860
861 out:
862 spin_unlock_bh(&net->xfrm.xfrm_state_lock);
863 return err;
864 }
865 EXPORT_SYMBOL(xfrm_dev_state_flush);
866
867 void xfrm_sad_getinfo(struct net *net, struct xfrmk_sadinfo *si)
868 {
869 spin_lock_bh(&net->xfrm.xfrm_state_lock);
870 si->sadcnt = net->xfrm.state_num;
871 si->sadhcnt = net->xfrm.state_hmask + 1;
872 si->sadhmcnt = xfrm_state_hashmax;
873 spin_unlock_bh(&net->xfrm.xfrm_state_lock);
874 }
875 EXPORT_SYMBOL(xfrm_sad_getinfo);
876
877 static void
878 __xfrm4_init_tempsel(struct xfrm_selector *sel, const struct flowi *fl)
879 {
880 const struct flowi4 *fl4 = &fl->u.ip4;
881
882 sel->daddr.a4 = fl4->daddr;
883 sel->saddr.a4 = fl4->saddr;
884 sel->dport = xfrm_flowi_dport(fl, &fl4->uli);
885 sel->dport_mask = htons(0xffff);
886 sel->sport = xfrm_flowi_sport(fl, &fl4->uli);
887 sel->sport_mask = htons(0xffff);
888 sel->family = AF_INET;
889 sel->prefixlen_d = 32;
890 sel->prefixlen_s = 32;
891 sel->proto = fl4->flowi4_proto;
892 sel->ifindex = fl4->flowi4_oif;
893 }
894
895 static void
896 __xfrm6_init_tempsel(struct xfrm_selector *sel, const struct flowi *fl)
897 {
898 const struct flowi6 *fl6 = &fl->u.ip6;
899
900 /* Initialize temporary selector matching only to current session. */
901 *(struct in6_addr *)&sel->daddr = fl6->daddr;
902 *(struct in6_addr *)&sel->saddr = fl6->saddr;
903 sel->dport = xfrm_flowi_dport(fl, &fl6->uli);
904 sel->dport_mask = htons(0xffff);
905 sel->sport = xfrm_flowi_sport(fl, &fl6->uli);
906 sel->sport_mask = htons(0xffff);
907 sel->family = AF_INET6;
908 sel->prefixlen_d = 128;
909 sel->prefixlen_s = 128;
910 sel->proto = fl6->flowi6_proto;
911 sel->ifindex = fl6->flowi6_oif;
912 }
913
914 static void
915 xfrm_init_tempstate(struct xfrm_state *x, const struct flowi *fl,
916 const struct xfrm_tmpl *tmpl,
917 const xfrm_address_t *daddr, const xfrm_address_t *saddr,
918 unsigned short family)
919 {
920 switch (family) {
921 case AF_INET:
922 __xfrm4_init_tempsel(&x->sel, fl);
923 break;
924 case AF_INET6:
925 __xfrm6_init_tempsel(&x->sel, fl);
926 break;
927 }
928
929 x->id = tmpl->id;
930
931 switch (tmpl->encap_family) {
932 case AF_INET:
933 if (x->id.daddr.a4 == 0)
934 x->id.daddr.a4 = daddr->a4;
935 x->props.saddr = tmpl->saddr;
936 if (x->props.saddr.a4 == 0)
937 x->props.saddr.a4 = saddr->a4;
938 break;
939 case AF_INET6:
940 if (ipv6_addr_any((struct in6_addr *)&x->id.daddr))
941 memcpy(&x->id.daddr, daddr, sizeof(x->sel.daddr));
942 memcpy(&x->props.saddr, &tmpl->saddr, sizeof(x->props.saddr));
943 if (ipv6_addr_any((struct in6_addr *)&x->props.saddr))
944 memcpy(&x->props.saddr, saddr, sizeof(x->props.saddr));
945 break;
946 }
947
948 x->props.mode = tmpl->mode;
949 x->props.reqid = tmpl->reqid;
950 x->props.family = tmpl->encap_family;
951 }
952
953 static struct xfrm_state *__xfrm_state_lookup(struct net *net, u32 mark,
954 const xfrm_address_t *daddr,
955 __be32 spi, u8 proto,
956 unsigned short family)
957 {
958 unsigned int h = xfrm_spi_hash(net, daddr, spi, proto, family);
959 struct xfrm_state *x;
960
961 hlist_for_each_entry_rcu(x, net->xfrm.state_byspi + h, byspi) {
962 if (x->props.family != family ||
963 x->id.spi != spi ||
964 x->id.proto != proto ||
965 !xfrm_addr_equal(&x->id.daddr, daddr, family))
966 continue;
967
968 if ((mark & x->mark.m) != x->mark.v)
969 continue;
970 if (!xfrm_state_hold_rcu(x))
971 continue;
972 return x;
973 }
974
975 return NULL;
976 }
977
978 static struct xfrm_state *__xfrm_state_lookup_byaddr(struct net *net, u32 mark,
979 const xfrm_address_t *daddr,
980 const xfrm_address_t *saddr,
981 u8 proto, unsigned short family)
982 {
983 unsigned int h = xfrm_src_hash(net, daddr, saddr, family);
984 struct xfrm_state *x;
985
986 hlist_for_each_entry_rcu(x, net->xfrm.state_bysrc + h, bysrc) {
987 if (x->props.family != family ||
988 x->id.proto != proto ||
989 !xfrm_addr_equal(&x->id.daddr, daddr, family) ||
990 !xfrm_addr_equal(&x->props.saddr, saddr, family))
991 continue;
992
993 if ((mark & x->mark.m) != x->mark.v)
994 continue;
995 if (!xfrm_state_hold_rcu(x))
996 continue;
997 return x;
998 }
999
1000 return NULL;
1001 }
1002
1003 static inline struct xfrm_state *
1004 __xfrm_state_locate(struct xfrm_state *x, int use_spi, int family)
1005 {
1006 struct net *net = xs_net(x);
1007 u32 mark = x->mark.v & x->mark.m;
1008
1009 if (use_spi)
1010 return __xfrm_state_lookup(net, mark, &x->id.daddr,
1011 x->id.spi, x->id.proto, family);
1012 else
1013 return __xfrm_state_lookup_byaddr(net, mark,
1014 &x->id.daddr,
1015 &x->props.saddr,
1016 x->id.proto, family);
1017 }
1018
1019 static void xfrm_hash_grow_check(struct net *net, int have_hash_collision)
1020 {
1021 if (have_hash_collision &&
1022 (net->xfrm.state_hmask + 1) < xfrm_state_hashmax &&
1023 net->xfrm.state_num > net->xfrm.state_hmask)
1024 schedule_work(&net->xfrm.state_hash_work);
1025 }
1026
1027 static void xfrm_state_look_at(struct xfrm_policy *pol, struct xfrm_state *x,
1028 const struct flowi *fl, unsigned short family,
1029 struct xfrm_state **best, int *acq_in_progress,
1030 int *error)
1031 {
1032 /* Resolution logic:
1033 * 1. There is a valid state with matching selector. Done.
1034 * 2. Valid state with inappropriate selector. Skip.
1035 *
1036 * Entering area of "sysdeps".
1037 *
1038 * 3. If state is not valid, selector is temporary, it selects
1039 * only session which triggered previous resolution. Key
1040 * manager will do something to install a state with proper
1041 * selector.
1042 */
1043 if (x->km.state == XFRM_STATE_VALID) {
1044 if ((x->sel.family &&
1045 (x->sel.family != family ||
1046 !xfrm_selector_match(&x->sel, fl, family))) ||
1047 !security_xfrm_state_pol_flow_match(x, pol,
1048 &fl->u.__fl_common))
1049 return;
1050
1051 if (!*best ||
1052 (*best)->km.dying > x->km.dying ||
1053 ((*best)->km.dying == x->km.dying &&
1054 (*best)->curlft.add_time < x->curlft.add_time))
1055 *best = x;
1056 } else if (x->km.state == XFRM_STATE_ACQ) {
1057 *acq_in_progress = 1;
1058 } else if (x->km.state == XFRM_STATE_ERROR ||
1059 x->km.state == XFRM_STATE_EXPIRED) {
1060 if ((!x->sel.family ||
1061 (x->sel.family == family &&
1062 xfrm_selector_match(&x->sel, fl, family))) &&
1063 security_xfrm_state_pol_flow_match(x, pol,
1064 &fl->u.__fl_common))
1065 *error = -ESRCH;
1066 }
1067 }
1068
1069 struct xfrm_state *
1070 xfrm_state_find(const xfrm_address_t *daddr, const xfrm_address_t *saddr,
1071 const struct flowi *fl, struct xfrm_tmpl *tmpl,
1072 struct xfrm_policy *pol, int *err,
1073 unsigned short family, u32 if_id)
1074 {
1075 static xfrm_address_t saddr_wildcard = { };
1076 struct net *net = xp_net(pol);
1077 unsigned int h, h_wildcard;
1078 struct xfrm_state *x, *x0, *to_put;
1079 int acquire_in_progress = 0;
1080 int error = 0;
1081 struct xfrm_state *best = NULL;
1082 u32 mark = pol->mark.v & pol->mark.m;
1083 unsigned short encap_family = tmpl->encap_family;
1084 unsigned int sequence;
1085 struct km_event c;
1086
1087 to_put = NULL;
1088
1089 sequence = read_seqcount_begin(&net->xfrm.xfrm_state_hash_generation);
1090
1091 rcu_read_lock();
1092 h = xfrm_dst_hash(net, daddr, saddr, tmpl->reqid, encap_family);
1093 hlist_for_each_entry_rcu(x, net->xfrm.state_bydst + h, bydst) {
1094 if (x->props.family == encap_family &&
1095 x->props.reqid == tmpl->reqid &&
1096 (mark & x->mark.m) == x->mark.v &&
1097 x->if_id == if_id &&
1098 !(x->props.flags & XFRM_STATE_WILDRECV) &&
1099 xfrm_state_addr_check(x, daddr, saddr, encap_family) &&
1100 tmpl->mode == x->props.mode &&
1101 tmpl->id.proto == x->id.proto &&
1102 (tmpl->id.spi == x->id.spi || !tmpl->id.spi))
1103 xfrm_state_look_at(pol, x, fl, family,
1104 &best, &acquire_in_progress, &error);
1105 }
1106 if (best || acquire_in_progress)
1107 goto found;
1108
1109 h_wildcard = xfrm_dst_hash(net, daddr, &saddr_wildcard, tmpl->reqid, encap_family);
1110 hlist_for_each_entry_rcu(x, net->xfrm.state_bydst + h_wildcard, bydst) {
1111 if (x->props.family == encap_family &&
1112 x->props.reqid == tmpl->reqid &&
1113 (mark & x->mark.m) == x->mark.v &&
1114 x->if_id == if_id &&
1115 !(x->props.flags & XFRM_STATE_WILDRECV) &&
1116 xfrm_addr_equal(&x->id.daddr, daddr, encap_family) &&
1117 tmpl->mode == x->props.mode &&
1118 tmpl->id.proto == x->id.proto &&
1119 (tmpl->id.spi == x->id.spi || !tmpl->id.spi))
1120 xfrm_state_look_at(pol, x, fl, family,
1121 &best, &acquire_in_progress, &error);
1122 }
1123
1124 found:
1125 x = best;
1126 if (!x && !error && !acquire_in_progress) {
1127 if (tmpl->id.spi &&
1128 (x0 = __xfrm_state_lookup(net, mark, daddr, tmpl->id.spi,
1129 tmpl->id.proto, encap_family)) != NULL) {
1130 to_put = x0;
1131 error = -EEXIST;
1132 goto out;
1133 }
1134
1135 c.net = net;
1136 /* If the KMs have no listeners (yet...), avoid allocating an SA
1137 * for each and every packet - garbage collection might not
1138 * handle the flood.
1139 */
1140 if (!km_is_alive(&c)) {
1141 error = -ESRCH;
1142 goto out;
1143 }
1144
1145 x = xfrm_state_alloc(net);
1146 if (x == NULL) {
1147 error = -ENOMEM;
1148 goto out;
1149 }
1150 /* Initialize temporary state matching only
1151 * to current session. */
1152 xfrm_init_tempstate(x, fl, tmpl, daddr, saddr, family);
1153 memcpy(&x->mark, &pol->mark, sizeof(x->mark));
1154 x->if_id = if_id;
1155
1156 error = security_xfrm_state_alloc_acquire(x, pol->security, fl->flowi_secid);
1157 if (error) {
1158 x->km.state = XFRM_STATE_DEAD;
1159 to_put = x;
1160 x = NULL;
1161 goto out;
1162 }
1163
1164 if (km_query(x, tmpl, pol) == 0) {
1165 spin_lock_bh(&net->xfrm.xfrm_state_lock);
1166 x->km.state = XFRM_STATE_ACQ;
1167 list_add(&x->km.all, &net->xfrm.state_all);
1168 hlist_add_head_rcu(&x->bydst, net->xfrm.state_bydst + h);
1169 h = xfrm_src_hash(net, daddr, saddr, encap_family);
1170 hlist_add_head_rcu(&x->bysrc, net->xfrm.state_bysrc + h);
1171 if (x->id.spi) {
1172 h = xfrm_spi_hash(net, &x->id.daddr, x->id.spi, x->id.proto, encap_family);
1173 hlist_add_head_rcu(&x->byspi, net->xfrm.state_byspi + h);
1174 }
1175 if (x->km.seq) {
1176 h = xfrm_seq_hash(net, x->km.seq);
1177 hlist_add_head_rcu(&x->byseq, net->xfrm.state_byseq + h);
1178 }
1179 x->lft.hard_add_expires_seconds = net->xfrm.sysctl_acq_expires;
1180 hrtimer_start(&x->mtimer,
1181 ktime_set(net->xfrm.sysctl_acq_expires, 0),
1182 HRTIMER_MODE_REL_SOFT);
1183 net->xfrm.state_num++;
1184 xfrm_hash_grow_check(net, x->bydst.next != NULL);
1185 spin_unlock_bh(&net->xfrm.xfrm_state_lock);
1186 } else {
1187 x->km.state = XFRM_STATE_DEAD;
1188 to_put = x;
1189 x = NULL;
1190 error = -ESRCH;
1191 }
1192 }
1193 out:
1194 if (x) {
1195 if (!xfrm_state_hold_rcu(x)) {
1196 *err = -EAGAIN;
1197 x = NULL;
1198 }
1199 } else {
1200 *err = acquire_in_progress ? -EAGAIN : error;
1201 }
1202 rcu_read_unlock();
1203 if (to_put)
1204 xfrm_state_put(to_put);
1205
1206 if (read_seqcount_retry(&net->xfrm.xfrm_state_hash_generation, sequence)) {
1207 *err = -EAGAIN;
1208 if (x) {
1209 xfrm_state_put(x);
1210 x = NULL;
1211 }
1212 }
1213
1214 return x;
1215 }
1216
1217 struct xfrm_state *
1218 xfrm_stateonly_find(struct net *net, u32 mark, u32 if_id,
1219 xfrm_address_t *daddr, xfrm_address_t *saddr,
1220 unsigned short family, u8 mode, u8 proto, u32 reqid)
1221 {
1222 unsigned int h;
1223 struct xfrm_state *rx = NULL, *x = NULL;
1224
1225 spin_lock_bh(&net->xfrm.xfrm_state_lock);
1226 h = xfrm_dst_hash(net, daddr, saddr, reqid, family);
1227 hlist_for_each_entry(x, net->xfrm.state_bydst+h, bydst) {
1228 if (x->props.family == family &&
1229 x->props.reqid == reqid &&
1230 (mark & x->mark.m) == x->mark.v &&
1231 x->if_id == if_id &&
1232 !(x->props.flags & XFRM_STATE_WILDRECV) &&
1233 xfrm_state_addr_check(x, daddr, saddr, family) &&
1234 mode == x->props.mode &&
1235 proto == x->id.proto &&
1236 x->km.state == XFRM_STATE_VALID) {
1237 rx = x;
1238 break;
1239 }
1240 }
1241
1242 if (rx)
1243 xfrm_state_hold(rx);
1244 spin_unlock_bh(&net->xfrm.xfrm_state_lock);
1245
1246
1247 return rx;
1248 }
1249 EXPORT_SYMBOL(xfrm_stateonly_find);
1250
1251 struct xfrm_state *xfrm_state_lookup_byspi(struct net *net, __be32 spi,
1252 unsigned short family)
1253 {
1254 struct xfrm_state *x;
1255 struct xfrm_state_walk *w;
1256
1257 spin_lock_bh(&net->xfrm.xfrm_state_lock);
1258 list_for_each_entry(w, &net->xfrm.state_all, all) {
1259 x = container_of(w, struct xfrm_state, km);
1260 if (x->props.family != family ||
1261 x->id.spi != spi)
1262 continue;
1263
1264 xfrm_state_hold(x);
1265 spin_unlock_bh(&net->xfrm.xfrm_state_lock);
1266 return x;
1267 }
1268 spin_unlock_bh(&net->xfrm.xfrm_state_lock);
1269 return NULL;
1270 }
1271 EXPORT_SYMBOL(xfrm_state_lookup_byspi);
1272
1273 static void __xfrm_state_insert(struct xfrm_state *x)
1274 {
1275 struct net *net = xs_net(x);
1276 unsigned int h;
1277
1278 list_add(&x->km.all, &net->xfrm.state_all);
1279
1280 h = xfrm_dst_hash(net, &x->id.daddr, &x->props.saddr,
1281 x->props.reqid, x->props.family);
1282 hlist_add_head_rcu(&x->bydst, net->xfrm.state_bydst + h);
1283
1284 h = xfrm_src_hash(net, &x->id.daddr, &x->props.saddr, x->props.family);
1285 hlist_add_head_rcu(&x->bysrc, net->xfrm.state_bysrc + h);
1286
1287 if (x->id.spi) {
1288 h = xfrm_spi_hash(net, &x->id.daddr, x->id.spi, x->id.proto,
1289 x->props.family);
1290
1291 hlist_add_head_rcu(&x->byspi, net->xfrm.state_byspi + h);
1292 }
1293
1294 if (x->km.seq) {
1295 h = xfrm_seq_hash(net, x->km.seq);
1296
1297 hlist_add_head_rcu(&x->byseq, net->xfrm.state_byseq + h);
1298 }
1299
1300 hrtimer_start(&x->mtimer, ktime_set(1, 0), HRTIMER_MODE_REL_SOFT);
1301 if (x->replay_maxage)
1302 mod_timer(&x->rtimer, jiffies + x->replay_maxage);
1303
1304 net->xfrm.state_num++;
1305
1306 xfrm_hash_grow_check(net, x->bydst.next != NULL);
1307 }
1308
1309 /* net->xfrm.xfrm_state_lock is held */
1310 static void __xfrm_state_bump_genids(struct xfrm_state *xnew)
1311 {
1312 struct net *net = xs_net(xnew);
1313 unsigned short family = xnew->props.family;
1314 u32 reqid = xnew->props.reqid;
1315 struct xfrm_state *x;
1316 unsigned int h;
1317 u32 mark = xnew->mark.v & xnew->mark.m;
1318 u32 if_id = xnew->if_id;
1319
1320 h = xfrm_dst_hash(net, &xnew->id.daddr, &xnew->props.saddr, reqid, family);
1321 hlist_for_each_entry(x, net->xfrm.state_bydst+h, bydst) {
1322 if (x->props.family == family &&
1323 x->props.reqid == reqid &&
1324 x->if_id == if_id &&
1325 (mark & x->mark.m) == x->mark.v &&
1326 xfrm_addr_equal(&x->id.daddr, &xnew->id.daddr, family) &&
1327 xfrm_addr_equal(&x->props.saddr, &xnew->props.saddr, family))
1328 x->genid++;
1329 }
1330 }
1331
1332 void xfrm_state_insert(struct xfrm_state *x)
1333 {
1334 struct net *net = xs_net(x);
1335
1336 spin_lock_bh(&net->xfrm.xfrm_state_lock);
1337 __xfrm_state_bump_genids(x);
1338 __xfrm_state_insert(x);
1339 spin_unlock_bh(&net->xfrm.xfrm_state_lock);
1340 }
1341 EXPORT_SYMBOL(xfrm_state_insert);
1342
1343 /* net->xfrm.xfrm_state_lock is held */
1344 static struct xfrm_state *__find_acq_core(struct net *net,
1345 const struct xfrm_mark *m,
1346 unsigned short family, u8 mode,
1347 u32 reqid, u32 if_id, u8 proto,
1348 const xfrm_address_t *daddr,
1349 const xfrm_address_t *saddr,
1350 int create)
1351 {
1352 unsigned int h = xfrm_dst_hash(net, daddr, saddr, reqid, family);
1353 struct xfrm_state *x;
1354 u32 mark = m->v & m->m;
1355
1356 hlist_for_each_entry(x, net->xfrm.state_bydst+h, bydst) {
1357 if (x->props.reqid != reqid ||
1358 x->props.mode != mode ||
1359 x->props.family != family ||
1360 x->km.state != XFRM_STATE_ACQ ||
1361 x->id.spi != 0 ||
1362 x->id.proto != proto ||
1363 (mark & x->mark.m) != x->mark.v ||
1364 !xfrm_addr_equal(&x->id.daddr, daddr, family) ||
1365 !xfrm_addr_equal(&x->props.saddr, saddr, family))
1366 continue;
1367
1368 xfrm_state_hold(x);
1369 return x;
1370 }
1371
1372 if (!create)
1373 return NULL;
1374
1375 x = xfrm_state_alloc(net);
1376 if (likely(x)) {
1377 switch (family) {
1378 case AF_INET:
1379 x->sel.daddr.a4 = daddr->a4;
1380 x->sel.saddr.a4 = saddr->a4;
1381 x->sel.prefixlen_d = 32;
1382 x->sel.prefixlen_s = 32;
1383 x->props.saddr.a4 = saddr->a4;
1384 x->id.daddr.a4 = daddr->a4;
1385 break;
1386
1387 case AF_INET6:
1388 x->sel.daddr.in6 = daddr->in6;
1389 x->sel.saddr.in6 = saddr->in6;
1390 x->sel.prefixlen_d = 128;
1391 x->sel.prefixlen_s = 128;
1392 x->props.saddr.in6 = saddr->in6;
1393 x->id.daddr.in6 = daddr->in6;
1394 break;
1395 }
1396
1397 x->km.state = XFRM_STATE_ACQ;
1398 x->id.proto = proto;
1399 x->props.family = family;
1400 x->props.mode = mode;
1401 x->props.reqid = reqid;
1402 x->if_id = if_id;
1403 x->mark.v = m->v;
1404 x->mark.m = m->m;
1405 x->lft.hard_add_expires_seconds = net->xfrm.sysctl_acq_expires;
1406 xfrm_state_hold(x);
1407 hrtimer_start(&x->mtimer,
1408 ktime_set(net->xfrm.sysctl_acq_expires, 0),
1409 HRTIMER_MODE_REL_SOFT);
1410 list_add(&x->km.all, &net->xfrm.state_all);
1411 hlist_add_head_rcu(&x->bydst, net->xfrm.state_bydst + h);
1412 h = xfrm_src_hash(net, daddr, saddr, family);
1413 hlist_add_head_rcu(&x->bysrc, net->xfrm.state_bysrc + h);
1414
1415 net->xfrm.state_num++;
1416
1417 xfrm_hash_grow_check(net, x->bydst.next != NULL);
1418 }
1419
1420 return x;
1421 }
1422
1423 static struct xfrm_state *__xfrm_find_acq_byseq(struct net *net, u32 mark, u32 seq);
1424
1425 int xfrm_state_add(struct xfrm_state *x)
1426 {
1427 struct net *net = xs_net(x);
1428 struct xfrm_state *x1, *to_put;
1429 int family;
1430 int err;
1431 u32 mark = x->mark.v & x->mark.m;
1432 int use_spi = xfrm_id_proto_match(x->id.proto, IPSEC_PROTO_ANY);
1433
1434 family = x->props.family;
1435
1436 to_put = NULL;
1437
1438 spin_lock_bh(&net->xfrm.xfrm_state_lock);
1439
1440 x1 = __xfrm_state_locate(x, use_spi, family);
1441 if (x1) {
1442 to_put = x1;
1443 x1 = NULL;
1444 err = -EEXIST;
1445 goto out;
1446 }
1447
1448 if (use_spi && x->km.seq) {
1449 x1 = __xfrm_find_acq_byseq(net, mark, x->km.seq);
1450 if (x1 && ((x1->id.proto != x->id.proto) ||
1451 !xfrm_addr_equal(&x1->id.daddr, &x->id.daddr, family))) {
1452 to_put = x1;
1453 x1 = NULL;
1454 }
1455 }
1456
1457 if (use_spi && !x1)
1458 x1 = __find_acq_core(net, &x->mark, family, x->props.mode,
1459 x->props.reqid, x->if_id, x->id.proto,
1460 &x->id.daddr, &x->props.saddr, 0);
1461
1462 __xfrm_state_bump_genids(x);
1463 __xfrm_state_insert(x);
1464 err = 0;
1465
1466 out:
1467 spin_unlock_bh(&net->xfrm.xfrm_state_lock);
1468
1469 if (x1) {
1470 xfrm_state_delete(x1);
1471 xfrm_state_put(x1);
1472 }
1473
1474 if (to_put)
1475 xfrm_state_put(to_put);
1476
1477 return err;
1478 }
1479 EXPORT_SYMBOL(xfrm_state_add);
1480
1481 #ifdef CONFIG_XFRM_MIGRATE
1482 static inline int clone_security(struct xfrm_state *x, struct xfrm_sec_ctx *security)
1483 {
1484 struct xfrm_user_sec_ctx *uctx;
1485 int size = sizeof(*uctx) + security->ctx_len;
1486 int err;
1487
1488 uctx = kmalloc(size, GFP_KERNEL);
1489 if (!uctx)
1490 return -ENOMEM;
1491
1492 uctx->exttype = XFRMA_SEC_CTX;
1493 uctx->len = size;
1494 uctx->ctx_doi = security->ctx_doi;
1495 uctx->ctx_alg = security->ctx_alg;
1496 uctx->ctx_len = security->ctx_len;
1497 memcpy(uctx + 1, security->ctx_str, security->ctx_len);
1498 err = security_xfrm_state_alloc(x, uctx);
1499 kfree(uctx);
1500 if (err)
1501 return err;
1502
1503 return 0;
1504 }
1505
1506 static struct xfrm_state *xfrm_state_clone(struct xfrm_state *orig,
1507 struct xfrm_encap_tmpl *encap)
1508 {
1509 struct net *net = xs_net(orig);
1510 struct xfrm_state *x = xfrm_state_alloc(net);
1511 if (!x)
1512 goto out;
1513
1514 memcpy(&x->id, &orig->id, sizeof(x->id));
1515 memcpy(&x->sel, &orig->sel, sizeof(x->sel));
1516 memcpy(&x->lft, &orig->lft, sizeof(x->lft));
1517 x->props.mode = orig->props.mode;
1518 x->props.replay_window = orig->props.replay_window;
1519 x->props.reqid = orig->props.reqid;
1520 x->props.family = orig->props.family;
1521 x->props.saddr = orig->props.saddr;
1522
1523 if (orig->aalg) {
1524 x->aalg = xfrm_algo_auth_clone(orig->aalg);
1525 if (!x->aalg)
1526 goto error;
1527 }
1528 x->props.aalgo = orig->props.aalgo;
1529
1530 if (orig->aead) {
1531 x->aead = xfrm_algo_aead_clone(orig->aead);
1532 x->geniv = orig->geniv;
1533 if (!x->aead)
1534 goto error;
1535 }
1536 if (orig->ealg) {
1537 x->ealg = xfrm_algo_clone(orig->ealg);
1538 if (!x->ealg)
1539 goto error;
1540 }
1541 x->props.ealgo = orig->props.ealgo;
1542
1543 if (orig->calg) {
1544 x->calg = xfrm_algo_clone(orig->calg);
1545 if (!x->calg)
1546 goto error;
1547 }
1548 x->props.calgo = orig->props.calgo;
1549
1550 if (encap || orig->encap) {
1551 if (encap)
1552 x->encap = kmemdup(encap, sizeof(*x->encap),
1553 GFP_KERNEL);
1554 else
1555 x->encap = kmemdup(orig->encap, sizeof(*x->encap),
1556 GFP_KERNEL);
1557
1558 if (!x->encap)
1559 goto error;
1560 }
1561
1562 if (orig->security)
1563 if (clone_security(x, orig->security))
1564 goto error;
1565
1566 if (orig->coaddr) {
1567 x->coaddr = kmemdup(orig->coaddr, sizeof(*x->coaddr),
1568 GFP_KERNEL);
1569 if (!x->coaddr)
1570 goto error;
1571 }
1572
1573 if (orig->replay_esn) {
1574 if (xfrm_replay_clone(x, orig))
1575 goto error;
1576 }
1577
1578 memcpy(&x->mark, &orig->mark, sizeof(x->mark));
1579 memcpy(&x->props.smark, &orig->props.smark, sizeof(x->props.smark));
1580
1581 if (xfrm_init_state(x) < 0)
1582 goto error;
1583
1584 x->props.flags = orig->props.flags;
1585 x->props.extra_flags = orig->props.extra_flags;
1586
1587 x->if_id = orig->if_id;
1588 x->tfcpad = orig->tfcpad;
1589 x->replay_maxdiff = orig->replay_maxdiff;
1590 x->replay_maxage = orig->replay_maxage;
1591 memcpy(&x->curlft, &orig->curlft, sizeof(x->curlft));
1592 x->km.state = orig->km.state;
1593 x->km.seq = orig->km.seq;
1594 x->replay = orig->replay;
1595 x->preplay = orig->preplay;
1596 x->mapping_maxage = orig->mapping_maxage;
1597 x->new_mapping = 0;
1598 x->new_mapping_sport = 0;
1599
1600 return x;
1601
1602 error:
1603 xfrm_state_put(x);
1604 out:
1605 return NULL;
1606 }
1607
1608 struct xfrm_state *xfrm_migrate_state_find(struct xfrm_migrate *m, struct net *net)
1609 {
1610 unsigned int h;
1611 struct xfrm_state *x = NULL;
1612
1613 spin_lock_bh(&net->xfrm.xfrm_state_lock);
1614
1615 if (m->reqid) {
1616 h = xfrm_dst_hash(net, &m->old_daddr, &m->old_saddr,
1617 m->reqid, m->old_family);
1618 hlist_for_each_entry(x, net->xfrm.state_bydst+h, bydst) {
1619 if (x->props.mode != m->mode ||
1620 x->id.proto != m->proto)
1621 continue;
1622 if (m->reqid && x->props.reqid != m->reqid)
1623 continue;
1624 if (!xfrm_addr_equal(&x->id.daddr, &m->old_daddr,
1625 m->old_family) ||
1626 !xfrm_addr_equal(&x->props.saddr, &m->old_saddr,
1627 m->old_family))
1628 continue;
1629 xfrm_state_hold(x);
1630 break;
1631 }
1632 } else {
1633 h = xfrm_src_hash(net, &m->old_daddr, &m->old_saddr,
1634 m->old_family);
1635 hlist_for_each_entry(x, net->xfrm.state_bysrc+h, bysrc) {
1636 if (x->props.mode != m->mode ||
1637 x->id.proto != m->proto)
1638 continue;
1639 if (!xfrm_addr_equal(&x->id.daddr, &m->old_daddr,
1640 m->old_family) ||
1641 !xfrm_addr_equal(&x->props.saddr, &m->old_saddr,
1642 m->old_family))
1643 continue;
1644 xfrm_state_hold(x);
1645 break;
1646 }
1647 }
1648
1649 spin_unlock_bh(&net->xfrm.xfrm_state_lock);
1650
1651 return x;
1652 }
1653 EXPORT_SYMBOL(xfrm_migrate_state_find);
1654
1655 struct xfrm_state *xfrm_state_migrate(struct xfrm_state *x,
1656 struct xfrm_migrate *m,
1657 struct xfrm_encap_tmpl *encap)
1658 {
1659 struct xfrm_state *xc;
1660
1661 xc = xfrm_state_clone(x, encap);
1662 if (!xc)
1663 return NULL;
1664
1665 memcpy(&xc->id.daddr, &m->new_daddr, sizeof(xc->id.daddr));
1666 memcpy(&xc->props.saddr, &m->new_saddr, sizeof(xc->props.saddr));
1667
1668 /* add state */
1669 if (xfrm_addr_equal(&x->id.daddr, &m->new_daddr, m->new_family)) {
1670 /* a care is needed when the destination address of the
1671 state is to be updated as it is a part of triplet */
1672 xfrm_state_insert(xc);
1673 } else {
1674 if (xfrm_state_add(xc) < 0)
1675 goto error;
1676 }
1677
1678 return xc;
1679 error:
1680 xfrm_state_put(xc);
1681 return NULL;
1682 }
1683 EXPORT_SYMBOL(xfrm_state_migrate);
1684 #endif
1685
1686 int xfrm_state_update(struct xfrm_state *x)
1687 {
1688 struct xfrm_state *x1, *to_put;
1689 int err;
1690 int use_spi = xfrm_id_proto_match(x->id.proto, IPSEC_PROTO_ANY);
1691 struct net *net = xs_net(x);
1692
1693 to_put = NULL;
1694
1695 spin_lock_bh(&net->xfrm.xfrm_state_lock);
1696 x1 = __xfrm_state_locate(x, use_spi, x->props.family);
1697
1698 err = -ESRCH;
1699 if (!x1)
1700 goto out;
1701
1702 if (xfrm_state_kern(x1)) {
1703 to_put = x1;
1704 err = -EEXIST;
1705 goto out;
1706 }
1707
1708 if (x1->km.state == XFRM_STATE_ACQ) {
1709 __xfrm_state_insert(x);
1710 x = NULL;
1711 }
1712 err = 0;
1713
1714 out:
1715 spin_unlock_bh(&net->xfrm.xfrm_state_lock);
1716
1717 if (to_put)
1718 xfrm_state_put(to_put);
1719
1720 if (err)
1721 return err;
1722
1723 if (!x) {
1724 xfrm_state_delete(x1);
1725 xfrm_state_put(x1);
1726 return 0;
1727 }
1728
1729 err = -EINVAL;
1730 spin_lock_bh(&x1->lock);
1731 if (likely(x1->km.state == XFRM_STATE_VALID)) {
1732 if (x->encap && x1->encap &&
1733 x->encap->encap_type == x1->encap->encap_type)
1734 memcpy(x1->encap, x->encap, sizeof(*x1->encap));
1735 else if (x->encap || x1->encap)
1736 goto fail;
1737
1738 if (x->coaddr && x1->coaddr) {
1739 memcpy(x1->coaddr, x->coaddr, sizeof(*x1->coaddr));
1740 }
1741 if (!use_spi && memcmp(&x1->sel, &x->sel, sizeof(x1->sel)))
1742 memcpy(&x1->sel, &x->sel, sizeof(x1->sel));
1743 memcpy(&x1->lft, &x->lft, sizeof(x1->lft));
1744 x1->km.dying = 0;
1745
1746 hrtimer_start(&x1->mtimer, ktime_set(1, 0),
1747 HRTIMER_MODE_REL_SOFT);
1748 if (x1->curlft.use_time)
1749 xfrm_state_check_expire(x1);
1750
1751 if (x->props.smark.m || x->props.smark.v || x->if_id) {
1752 spin_lock_bh(&net->xfrm.xfrm_state_lock);
1753
1754 if (x->props.smark.m || x->props.smark.v)
1755 x1->props.smark = x->props.smark;
1756
1757 if (x->if_id)
1758 x1->if_id = x->if_id;
1759
1760 __xfrm_state_bump_genids(x1);
1761 spin_unlock_bh(&net->xfrm.xfrm_state_lock);
1762 }
1763
1764 err = 0;
1765 x->km.state = XFRM_STATE_DEAD;
1766 __xfrm_state_put(x);
1767 }
1768
1769 fail:
1770 spin_unlock_bh(&x1->lock);
1771
1772 xfrm_state_put(x1);
1773
1774 return err;
1775 }
1776 EXPORT_SYMBOL(xfrm_state_update);
1777
1778 int xfrm_state_check_expire(struct xfrm_state *x)
1779 {
1780 if (!x->curlft.use_time)
1781 x->curlft.use_time = ktime_get_real_seconds();
1782
1783 if (x->curlft.bytes >= x->lft.hard_byte_limit ||
1784 x->curlft.packets >= x->lft.hard_packet_limit) {
1785 x->km.state = XFRM_STATE_EXPIRED;
1786 hrtimer_start(&x->mtimer, 0, HRTIMER_MODE_REL_SOFT);
1787 return -EINVAL;
1788 }
1789
1790 if (!x->km.dying &&
1791 (x->curlft.bytes >= x->lft.soft_byte_limit ||
1792 x->curlft.packets >= x->lft.soft_packet_limit)) {
1793 x->km.dying = 1;
1794 km_state_expired(x, 0, 0);
1795 }
1796 return 0;
1797 }
1798 EXPORT_SYMBOL(xfrm_state_check_expire);
1799
1800 struct xfrm_state *
1801 xfrm_state_lookup(struct net *net, u32 mark, const xfrm_address_t *daddr, __be32 spi,
1802 u8 proto, unsigned short family)
1803 {
1804 struct xfrm_state *x;
1805
1806 rcu_read_lock();
1807 x = __xfrm_state_lookup(net, mark, daddr, spi, proto, family);
1808 rcu_read_unlock();
1809 return x;
1810 }
1811 EXPORT_SYMBOL(xfrm_state_lookup);
1812
1813 struct xfrm_state *
1814 xfrm_state_lookup_byaddr(struct net *net, u32 mark,
1815 const xfrm_address_t *daddr, const xfrm_address_t *saddr,
1816 u8 proto, unsigned short family)
1817 {
1818 struct xfrm_state *x;
1819
1820 spin_lock_bh(&net->xfrm.xfrm_state_lock);
1821 x = __xfrm_state_lookup_byaddr(net, mark, daddr, saddr, proto, family);
1822 spin_unlock_bh(&net->xfrm.xfrm_state_lock);
1823 return x;
1824 }
1825 EXPORT_SYMBOL(xfrm_state_lookup_byaddr);
1826
1827 struct xfrm_state *
1828 xfrm_find_acq(struct net *net, const struct xfrm_mark *mark, u8 mode, u32 reqid,
1829 u32 if_id, u8 proto, const xfrm_address_t *daddr,
1830 const xfrm_address_t *saddr, int create, unsigned short family)
1831 {
1832 struct xfrm_state *x;
1833
1834 spin_lock_bh(&net->xfrm.xfrm_state_lock);
1835 x = __find_acq_core(net, mark, family, mode, reqid, if_id, proto, daddr, saddr, create);
1836 spin_unlock_bh(&net->xfrm.xfrm_state_lock);
1837
1838 return x;
1839 }
1840 EXPORT_SYMBOL(xfrm_find_acq);
1841
1842 #ifdef CONFIG_XFRM_SUB_POLICY
1843 #if IS_ENABLED(CONFIG_IPV6)
1844 /* distribution counting sort function for xfrm_state and xfrm_tmpl */
1845 static void
1846 __xfrm6_sort(void **dst, void **src, int n,
1847 int (*cmp)(const void *p), int maxclass)
1848 {
1849 int count[XFRM_MAX_DEPTH] = { };
1850 int class[XFRM_MAX_DEPTH];
1851 int i;
1852
1853 for (i = 0; i < n; i++) {
1854 int c = cmp(src[i]);
1855
1856 class[i] = c;
1857 count[c]++;
1858 }
1859
1860 for (i = 2; i < maxclass; i++)
1861 count[i] += count[i - 1];
1862
1863 for (i = 0; i < n; i++) {
1864 dst[count[class[i] - 1]++] = src[i];
1865 src[i] = NULL;
1866 }
1867 }
1868
1869 /* Rule for xfrm_state:
1870 *
1871 * rule 1: select IPsec transport except AH
1872 * rule 2: select MIPv6 RO or inbound trigger
1873 * rule 3: select IPsec transport AH
1874 * rule 4: select IPsec tunnel
1875 * rule 5: others
1876 */
1877 static int __xfrm6_state_sort_cmp(const void *p)
1878 {
1879 const struct xfrm_state *v = p;
1880
1881 switch (v->props.mode) {
1882 case XFRM_MODE_TRANSPORT:
1883 if (v->id.proto != IPPROTO_AH)
1884 return 1;
1885 else
1886 return 3;
1887 #if IS_ENABLED(CONFIG_IPV6_MIP6)
1888 case XFRM_MODE_ROUTEOPTIMIZATION:
1889 case XFRM_MODE_IN_TRIGGER:
1890 return 2;
1891 #endif
1892 case XFRM_MODE_TUNNEL:
1893 case XFRM_MODE_BEET:
1894 return 4;
1895 }
1896 return 5;
1897 }
1898
1899 /* Rule for xfrm_tmpl:
1900 *
1901 * rule 1: select IPsec transport
1902 * rule 2: select MIPv6 RO or inbound trigger
1903 * rule 3: select IPsec tunnel
1904 * rule 4: others
1905 */
1906 static int __xfrm6_tmpl_sort_cmp(const void *p)
1907 {
1908 const struct xfrm_tmpl *v = p;
1909
1910 switch (v->mode) {
1911 case XFRM_MODE_TRANSPORT:
1912 return 1;
1913 #if IS_ENABLED(CONFIG_IPV6_MIP6)
1914 case XFRM_MODE_ROUTEOPTIMIZATION:
1915 case XFRM_MODE_IN_TRIGGER:
1916 return 2;
1917 #endif
1918 case XFRM_MODE_TUNNEL:
1919 case XFRM_MODE_BEET:
1920 return 3;
1921 }
1922 return 4;
1923 }
1924 #else
1925 static inline int __xfrm6_state_sort_cmp(const void *p) { return 5; }
1926 static inline int __xfrm6_tmpl_sort_cmp(const void *p) { return 4; }
1927
1928 static inline void
1929 __xfrm6_sort(void **dst, void **src, int n,
1930 int (*cmp)(const void *p), int maxclass)
1931 {
1932 int i;
1933
1934 for (i = 0; i < n; i++)
1935 dst[i] = src[i];
1936 }
1937 #endif /* CONFIG_IPV6 */
1938
1939 void
1940 xfrm_tmpl_sort(struct xfrm_tmpl **dst, struct xfrm_tmpl **src, int n,
1941 unsigned short family)
1942 {
1943 int i;
1944
1945 if (family == AF_INET6)
1946 __xfrm6_sort((void **)dst, (void **)src, n,
1947 __xfrm6_tmpl_sort_cmp, 5);
1948 else
1949 for (i = 0; i < n; i++)
1950 dst[i] = src[i];
1951 }
1952
1953 void
1954 xfrm_state_sort(struct xfrm_state **dst, struct xfrm_state **src, int n,
1955 unsigned short family)
1956 {
1957 int i;
1958
1959 if (family == AF_INET6)
1960 __xfrm6_sort((void **)dst, (void **)src, n,
1961 __xfrm6_state_sort_cmp, 6);
1962 else
1963 for (i = 0; i < n; i++)
1964 dst[i] = src[i];
1965 }
1966 #endif
1967
1968 /* Silly enough, but I'm lazy to build resolution list */
1969
1970 static struct xfrm_state *__xfrm_find_acq_byseq(struct net *net, u32 mark, u32 seq)
1971 {
1972 unsigned int h = xfrm_seq_hash(net, seq);
1973 struct xfrm_state *x;
1974
1975 hlist_for_each_entry_rcu(x, net->xfrm.state_byseq + h, byseq) {
1976 if (x->km.seq == seq &&
1977 (mark & x->mark.m) == x->mark.v &&
1978 x->km.state == XFRM_STATE_ACQ) {
1979 xfrm_state_hold(x);
1980 return x;
1981 }
1982 }
1983
1984 return NULL;
1985 }
1986
1987 struct xfrm_state *xfrm_find_acq_byseq(struct net *net, u32 mark, u32 seq)
1988 {
1989 struct xfrm_state *x;
1990
1991 spin_lock_bh(&net->xfrm.xfrm_state_lock);
1992 x = __xfrm_find_acq_byseq(net, mark, seq);
1993 spin_unlock_bh(&net->xfrm.xfrm_state_lock);
1994 return x;
1995 }
1996 EXPORT_SYMBOL(xfrm_find_acq_byseq);
1997
1998 u32 xfrm_get_acqseq(void)
1999 {
2000 u32 res;
2001 static atomic_t acqseq;
2002
2003 do {
2004 res = atomic_inc_return(&acqseq);
2005 } while (!res);
2006
2007 return res;
2008 }
2009 EXPORT_SYMBOL(xfrm_get_acqseq);
2010
2011 int verify_spi_info(u8 proto, u32 min, u32 max)
2012 {
2013 switch (proto) {
2014 case IPPROTO_AH:
2015 case IPPROTO_ESP:
2016 break;
2017
2018 case IPPROTO_COMP:
2019 /* IPCOMP spi is 16-bits. */
2020 if (max >= 0x10000)
2021 return -EINVAL;
2022 break;
2023
2024 default:
2025 return -EINVAL;
2026 }
2027
2028 if (min > max)
2029 return -EINVAL;
2030
2031 return 0;
2032 }
2033 EXPORT_SYMBOL(verify_spi_info);
2034
2035 int xfrm_alloc_spi(struct xfrm_state *x, u32 low, u32 high)
2036 {
2037 struct net *net = xs_net(x);
2038 unsigned int h;
2039 struct xfrm_state *x0;
2040 int err = -ENOENT;
2041 __be32 minspi = htonl(low);
2042 __be32 maxspi = htonl(high);
2043 __be32 newspi = 0;
2044 u32 mark = x->mark.v & x->mark.m;
2045
2046 spin_lock_bh(&x->lock);
2047 if (x->km.state == XFRM_STATE_DEAD)
2048 goto unlock;
2049
2050 err = 0;
2051 if (x->id.spi)
2052 goto unlock;
2053
2054 err = -ENOENT;
2055
2056 if (minspi == maxspi) {
2057 x0 = xfrm_state_lookup(net, mark, &x->id.daddr, minspi, x->id.proto, x->props.family);
2058 if (x0) {
2059 xfrm_state_put(x0);
2060 goto unlock;
2061 }
2062 newspi = minspi;
2063 } else {
2064 u32 spi = 0;
2065 for (h = 0; h < high-low+1; h++) {
2066 spi = low + prandom_u32()%(high-low+1);
2067 x0 = xfrm_state_lookup(net, mark, &x->id.daddr, htonl(spi), x->id.proto, x->props.family);
2068 if (x0 == NULL) {
2069 newspi = htonl(spi);
2070 break;
2071 }
2072 xfrm_state_put(x0);
2073 }
2074 }
2075 if (newspi) {
2076 spin_lock_bh(&net->xfrm.xfrm_state_lock);
2077 x->id.spi = newspi;
2078 h = xfrm_spi_hash(net, &x->id.daddr, x->id.spi, x->id.proto, x->props.family);
2079 hlist_add_head_rcu(&x->byspi, net->xfrm.state_byspi + h);
2080 spin_unlock_bh(&net->xfrm.xfrm_state_lock);
2081
2082 err = 0;
2083 }
2084
2085 unlock:
2086 spin_unlock_bh(&x->lock);
2087
2088 return err;
2089 }
2090 EXPORT_SYMBOL(xfrm_alloc_spi);
2091
2092 static bool __xfrm_state_filter_match(struct xfrm_state *x,
2093 struct xfrm_address_filter *filter)
2094 {
2095 if (filter) {
2096 if ((filter->family == AF_INET ||
2097 filter->family == AF_INET6) &&
2098 x->props.family != filter->family)
2099 return false;
2100
2101 return addr_match(&x->props.saddr, &filter->saddr,
2102 filter->splen) &&
2103 addr_match(&x->id.daddr, &filter->daddr,
2104 filter->dplen);
2105 }
2106 return true;
2107 }
2108
2109 int xfrm_state_walk(struct net *net, struct xfrm_state_walk *walk,
2110 int (*func)(struct xfrm_state *, int, void*),
2111 void *data)
2112 {
2113 struct xfrm_state *state;
2114 struct xfrm_state_walk *x;
2115 int err = 0;
2116
2117 if (walk->seq != 0 && list_empty(&walk->all))
2118 return 0;
2119
2120 spin_lock_bh(&net->xfrm.xfrm_state_lock);
2121 if (list_empty(&walk->all))
2122 x = list_first_entry(&net->xfrm.state_all, struct xfrm_state_walk, all);
2123 else
2124 x = list_first_entry(&walk->all, struct xfrm_state_walk, all);
2125 list_for_each_entry_from(x, &net->xfrm.state_all, all) {
2126 if (x->state == XFRM_STATE_DEAD)
2127 continue;
2128 state = container_of(x, struct xfrm_state, km);
2129 if (!xfrm_id_proto_match(state->id.proto, walk->proto))
2130 continue;
2131 if (!__xfrm_state_filter_match(state, walk->filter))
2132 continue;
2133 err = func(state, walk->seq, data);
2134 if (err) {
2135 list_move_tail(&walk->all, &x->all);
2136 goto out;
2137 }
2138 walk->seq++;
2139 }
2140 if (walk->seq == 0) {
2141 err = -ENOENT;
2142 goto out;
2143 }
2144 list_del_init(&walk->all);
2145 out:
2146 spin_unlock_bh(&net->xfrm.xfrm_state_lock);
2147 return err;
2148 }
2149 EXPORT_SYMBOL(xfrm_state_walk);
2150
2151 void xfrm_state_walk_init(struct xfrm_state_walk *walk, u8 proto,
2152 struct xfrm_address_filter *filter)
2153 {
2154 INIT_LIST_HEAD(&walk->all);
2155 walk->proto = proto;
2156 walk->state = XFRM_STATE_DEAD;
2157 walk->seq = 0;
2158 walk->filter = filter;
2159 }
2160 EXPORT_SYMBOL(xfrm_state_walk_init);
2161
2162 void xfrm_state_walk_done(struct xfrm_state_walk *walk, struct net *net)
2163 {
2164 kfree(walk->filter);
2165
2166 if (list_empty(&walk->all))
2167 return;
2168
2169 spin_lock_bh(&net->xfrm.xfrm_state_lock);
2170 list_del(&walk->all);
2171 spin_unlock_bh(&net->xfrm.xfrm_state_lock);
2172 }
2173 EXPORT_SYMBOL(xfrm_state_walk_done);
2174
2175 static void xfrm_replay_timer_handler(struct timer_list *t)
2176 {
2177 struct xfrm_state *x = from_timer(x, t, rtimer);
2178
2179 spin_lock(&x->lock);
2180
2181 if (x->km.state == XFRM_STATE_VALID) {
2182 if (xfrm_aevent_is_on(xs_net(x)))
2183 xfrm_replay_notify(x, XFRM_REPLAY_TIMEOUT);
2184 else
2185 x->xflags |= XFRM_TIME_DEFER;
2186 }
2187
2188 spin_unlock(&x->lock);
2189 }
2190
2191 static LIST_HEAD(xfrm_km_list);
2192
2193 void km_policy_notify(struct xfrm_policy *xp, int dir, const struct km_event *c)
2194 {
2195 struct xfrm_mgr *km;
2196
2197 rcu_read_lock();
2198 list_for_each_entry_rcu(km, &xfrm_km_list, list)
2199 if (km->notify_policy)
2200 km->notify_policy(xp, dir, c);
2201 rcu_read_unlock();
2202 }
2203
2204 void km_state_notify(struct xfrm_state *x, const struct km_event *c)
2205 {
2206 struct xfrm_mgr *km;
2207 rcu_read_lock();
2208 list_for_each_entry_rcu(km, &xfrm_km_list, list)
2209 if (km->notify)
2210 km->notify(x, c);
2211 rcu_read_unlock();
2212 }
2213
2214 EXPORT_SYMBOL(km_policy_notify);
2215 EXPORT_SYMBOL(km_state_notify);
2216
2217 void km_state_expired(struct xfrm_state *x, int hard, u32 portid)
2218 {
2219 struct km_event c;
2220
2221 c.data.hard = hard;
2222 c.portid = portid;
2223 c.event = XFRM_MSG_EXPIRE;
2224 km_state_notify(x, &c);
2225 }
2226
2227 EXPORT_SYMBOL(km_state_expired);
2228 /*
2229 * We send to all registered managers regardless of failure
2230 * We are happy with one success
2231 */
2232 int km_query(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *pol)
2233 {
2234 int err = -EINVAL, acqret;
2235 struct xfrm_mgr *km;
2236
2237 rcu_read_lock();
2238 list_for_each_entry_rcu(km, &xfrm_km_list, list) {
2239 acqret = km->acquire(x, t, pol);
2240 if (!acqret)
2241 err = acqret;
2242 }
2243 rcu_read_unlock();
2244 return err;
2245 }
2246 EXPORT_SYMBOL(km_query);
2247
2248 static int __km_new_mapping(struct xfrm_state *x, xfrm_address_t *ipaddr, __be16 sport)
2249 {
2250 int err = -EINVAL;
2251 struct xfrm_mgr *km;
2252
2253 rcu_read_lock();
2254 list_for_each_entry_rcu(km, &xfrm_km_list, list) {
2255 if (km->new_mapping)
2256 err = km->new_mapping(x, ipaddr, sport);
2257 if (!err)
2258 break;
2259 }
2260 rcu_read_unlock();
2261 return err;
2262 }
2263
2264 int km_new_mapping(struct xfrm_state *x, xfrm_address_t *ipaddr, __be16 sport)
2265 {
2266 int ret = 0;
2267
2268 if (x->mapping_maxage) {
2269 if ((jiffies / HZ - x->new_mapping) > x->mapping_maxage ||
2270 x->new_mapping_sport != sport) {
2271 x->new_mapping_sport = sport;
2272 x->new_mapping = jiffies / HZ;
2273 ret = __km_new_mapping(x, ipaddr, sport);
2274 }
2275 } else {
2276 ret = __km_new_mapping(x, ipaddr, sport);
2277 }
2278
2279 return ret;
2280 }
2281 EXPORT_SYMBOL(km_new_mapping);
2282
2283 void km_policy_expired(struct xfrm_policy *pol, int dir, int hard, u32 portid)
2284 {
2285 struct km_event c;
2286
2287 c.data.hard = hard;
2288 c.portid = portid;
2289 c.event = XFRM_MSG_POLEXPIRE;
2290 km_policy_notify(pol, dir, &c);
2291 }
2292 EXPORT_SYMBOL(km_policy_expired);
2293
2294 #ifdef CONFIG_XFRM_MIGRATE
2295 int km_migrate(const struct xfrm_selector *sel, u8 dir, u8 type,
2296 const struct xfrm_migrate *m, int num_migrate,
2297 const struct xfrm_kmaddress *k,
2298 const struct xfrm_encap_tmpl *encap)
2299 {
2300 int err = -EINVAL;
2301 int ret;
2302 struct xfrm_mgr *km;
2303
2304 rcu_read_lock();
2305 list_for_each_entry_rcu(km, &xfrm_km_list, list) {
2306 if (km->migrate) {
2307 ret = km->migrate(sel, dir, type, m, num_migrate, k,
2308 encap);
2309 if (!ret)
2310 err = ret;
2311 }
2312 }
2313 rcu_read_unlock();
2314 return err;
2315 }
2316 EXPORT_SYMBOL(km_migrate);
2317 #endif
2318
2319 int km_report(struct net *net, u8 proto, struct xfrm_selector *sel, xfrm_address_t *addr)
2320 {
2321 int err = -EINVAL;
2322 int ret;
2323 struct xfrm_mgr *km;
2324
2325 rcu_read_lock();
2326 list_for_each_entry_rcu(km, &xfrm_km_list, list) {
2327 if (km->report) {
2328 ret = km->report(net, proto, sel, addr);
2329 if (!ret)
2330 err = ret;
2331 }
2332 }
2333 rcu_read_unlock();
2334 return err;
2335 }
2336 EXPORT_SYMBOL(km_report);
2337
2338 static bool km_is_alive(const struct km_event *c)
2339 {
2340 struct xfrm_mgr *km;
2341 bool is_alive = false;
2342
2343 rcu_read_lock();
2344 list_for_each_entry_rcu(km, &xfrm_km_list, list) {
2345 if (km->is_alive && km->is_alive(c)) {
2346 is_alive = true;
2347 break;
2348 }
2349 }
2350 rcu_read_unlock();
2351
2352 return is_alive;
2353 }
2354
2355 #if IS_ENABLED(CONFIG_XFRM_USER_COMPAT)
2356 static DEFINE_SPINLOCK(xfrm_translator_lock);
2357 static struct xfrm_translator __rcu *xfrm_translator;
2358
2359 struct xfrm_translator *xfrm_get_translator(void)
2360 {
2361 struct xfrm_translator *xtr;
2362
2363 rcu_read_lock();
2364 xtr = rcu_dereference(xfrm_translator);
2365 if (unlikely(!xtr))
2366 goto out;
2367 if (!try_module_get(xtr->owner))
2368 xtr = NULL;
2369 out:
2370 rcu_read_unlock();
2371 return xtr;
2372 }
2373 EXPORT_SYMBOL_GPL(xfrm_get_translator);
2374
2375 void xfrm_put_translator(struct xfrm_translator *xtr)
2376 {
2377 module_put(xtr->owner);
2378 }
2379 EXPORT_SYMBOL_GPL(xfrm_put_translator);
2380
2381 int xfrm_register_translator(struct xfrm_translator *xtr)
2382 {
2383 int err = 0;
2384
2385 spin_lock_bh(&xfrm_translator_lock);
2386 if (unlikely(xfrm_translator != NULL))
2387 err = -EEXIST;
2388 else
2389 rcu_assign_pointer(xfrm_translator, xtr);
2390 spin_unlock_bh(&xfrm_translator_lock);
2391
2392 return err;
2393 }
2394 EXPORT_SYMBOL_GPL(xfrm_register_translator);
2395
2396 int xfrm_unregister_translator(struct xfrm_translator *xtr)
2397 {
2398 int err = 0;
2399
2400 spin_lock_bh(&xfrm_translator_lock);
2401 if (likely(xfrm_translator != NULL)) {
2402 if (rcu_access_pointer(xfrm_translator) != xtr)
2403 err = -EINVAL;
2404 else
2405 RCU_INIT_POINTER(xfrm_translator, NULL);
2406 }
2407 spin_unlock_bh(&xfrm_translator_lock);
2408 synchronize_rcu();
2409
2410 return err;
2411 }
2412 EXPORT_SYMBOL_GPL(xfrm_unregister_translator);
2413 #endif
2414
2415 int xfrm_user_policy(struct sock *sk, int optname, sockptr_t optval, int optlen)
2416 {
2417 int err;
2418 u8 *data;
2419 struct xfrm_mgr *km;
2420 struct xfrm_policy *pol = NULL;
2421
2422 if (sockptr_is_null(optval) && !optlen) {
2423 xfrm_sk_policy_insert(sk, XFRM_POLICY_IN, NULL);
2424 xfrm_sk_policy_insert(sk, XFRM_POLICY_OUT, NULL);
2425 __sk_dst_reset(sk);
2426 return 0;
2427 }
2428
2429 if (optlen <= 0 || optlen > PAGE_SIZE)
2430 return -EMSGSIZE;
2431
2432 data = memdup_sockptr(optval, optlen);
2433 if (IS_ERR(data))
2434 return PTR_ERR(data);
2435
2436 if (in_compat_syscall()) {
2437 struct xfrm_translator *xtr = xfrm_get_translator();
2438
2439 if (!xtr) {
2440 kfree(data);
2441 return -EOPNOTSUPP;
2442 }
2443
2444 err = xtr->xlate_user_policy_sockptr(&data, optlen);
2445 xfrm_put_translator(xtr);
2446 if (err) {
2447 kfree(data);
2448 return err;
2449 }
2450 }
2451
2452 err = -EINVAL;
2453 rcu_read_lock();
2454 list_for_each_entry_rcu(km, &xfrm_km_list, list) {
2455 pol = km->compile_policy(sk, optname, data,
2456 optlen, &err);
2457 if (err >= 0)
2458 break;
2459 }
2460 rcu_read_unlock();
2461
2462 if (err >= 0) {
2463 xfrm_sk_policy_insert(sk, err, pol);
2464 xfrm_pol_put(pol);
2465 __sk_dst_reset(sk);
2466 err = 0;
2467 }
2468
2469 kfree(data);
2470 return err;
2471 }
2472 EXPORT_SYMBOL(xfrm_user_policy);
2473
2474 static DEFINE_SPINLOCK(xfrm_km_lock);
2475
2476 int xfrm_register_km(struct xfrm_mgr *km)
2477 {
2478 spin_lock_bh(&xfrm_km_lock);
2479 list_add_tail_rcu(&km->list, &xfrm_km_list);
2480 spin_unlock_bh(&xfrm_km_lock);
2481 return 0;
2482 }
2483 EXPORT_SYMBOL(xfrm_register_km);
2484
2485 int xfrm_unregister_km(struct xfrm_mgr *km)
2486 {
2487 spin_lock_bh(&xfrm_km_lock);
2488 list_del_rcu(&km->list);
2489 spin_unlock_bh(&xfrm_km_lock);
2490 synchronize_rcu();
2491 return 0;
2492 }
2493 EXPORT_SYMBOL(xfrm_unregister_km);
2494
2495 int xfrm_state_register_afinfo(struct xfrm_state_afinfo *afinfo)
2496 {
2497 int err = 0;
2498
2499 if (WARN_ON(afinfo->family >= NPROTO))
2500 return -EAFNOSUPPORT;
2501
2502 spin_lock_bh(&xfrm_state_afinfo_lock);
2503 if (unlikely(xfrm_state_afinfo[afinfo->family] != NULL))
2504 err = -EEXIST;
2505 else
2506 rcu_assign_pointer(xfrm_state_afinfo[afinfo->family], afinfo);
2507 spin_unlock_bh(&xfrm_state_afinfo_lock);
2508 return err;
2509 }
2510 EXPORT_SYMBOL(xfrm_state_register_afinfo);
2511
2512 int xfrm_state_unregister_afinfo(struct xfrm_state_afinfo *afinfo)
2513 {
2514 int err = 0, family = afinfo->family;
2515
2516 if (WARN_ON(family >= NPROTO))
2517 return -EAFNOSUPPORT;
2518
2519 spin_lock_bh(&xfrm_state_afinfo_lock);
2520 if (likely(xfrm_state_afinfo[afinfo->family] != NULL)) {
2521 if (rcu_access_pointer(xfrm_state_afinfo[family]) != afinfo)
2522 err = -EINVAL;
2523 else
2524 RCU_INIT_POINTER(xfrm_state_afinfo[afinfo->family], NULL);
2525 }
2526 spin_unlock_bh(&xfrm_state_afinfo_lock);
2527 synchronize_rcu();
2528 return err;
2529 }
2530 EXPORT_SYMBOL(xfrm_state_unregister_afinfo);
2531
2532 struct xfrm_state_afinfo *xfrm_state_afinfo_get_rcu(unsigned int family)
2533 {
2534 if (unlikely(family >= NPROTO))
2535 return NULL;
2536
2537 return rcu_dereference(xfrm_state_afinfo[family]);
2538 }
2539 EXPORT_SYMBOL_GPL(xfrm_state_afinfo_get_rcu);
2540
2541 struct xfrm_state_afinfo *xfrm_state_get_afinfo(unsigned int family)
2542 {
2543 struct xfrm_state_afinfo *afinfo;
2544 if (unlikely(family >= NPROTO))
2545 return NULL;
2546 rcu_read_lock();
2547 afinfo = rcu_dereference(xfrm_state_afinfo[family]);
2548 if (unlikely(!afinfo))
2549 rcu_read_unlock();
2550 return afinfo;
2551 }
2552
2553 void xfrm_flush_gc(void)
2554 {
2555 flush_work(&xfrm_state_gc_work);
2556 }
2557 EXPORT_SYMBOL(xfrm_flush_gc);
2558
2559 /* Temporarily located here until net/xfrm/xfrm_tunnel.c is created */
2560 void xfrm_state_delete_tunnel(struct xfrm_state *x)
2561 {
2562 if (x->tunnel) {
2563 struct xfrm_state *t = x->tunnel;
2564
2565 if (atomic_read(&t->tunnel_users) == 2)
2566 xfrm_state_delete(t);
2567 atomic_dec(&t->tunnel_users);
2568 xfrm_state_put_sync(t);
2569 x->tunnel = NULL;
2570 }
2571 }
2572 EXPORT_SYMBOL(xfrm_state_delete_tunnel);
2573
2574 u32 xfrm_state_mtu(struct xfrm_state *x, int mtu)
2575 {
2576 const struct xfrm_type *type = READ_ONCE(x->type);
2577 struct crypto_aead *aead;
2578 u32 blksize, net_adj = 0;
2579
2580 if (x->km.state != XFRM_STATE_VALID ||
2581 !type || type->proto != IPPROTO_ESP)
2582 return mtu - x->props.header_len;
2583
2584 aead = x->data;
2585 blksize = ALIGN(crypto_aead_blocksize(aead), 4);
2586
2587 switch (x->props.mode) {
2588 case XFRM_MODE_TRANSPORT:
2589 case XFRM_MODE_BEET:
2590 if (x->props.family == AF_INET)
2591 net_adj = sizeof(struct iphdr);
2592 else if (x->props.family == AF_INET6)
2593 net_adj = sizeof(struct ipv6hdr);
2594 break;
2595 case XFRM_MODE_TUNNEL:
2596 break;
2597 default:
2598 WARN_ON_ONCE(1);
2599 break;
2600 }
2601
2602 return ((mtu - x->props.header_len - crypto_aead_authsize(aead) -
2603 net_adj) & ~(blksize - 1)) + net_adj - 2;
2604 }
2605 EXPORT_SYMBOL_GPL(xfrm_state_mtu);
2606
2607 int __xfrm_init_state(struct xfrm_state *x, bool init_replay, bool offload)
2608 {
2609 const struct xfrm_mode *inner_mode;
2610 const struct xfrm_mode *outer_mode;
2611 int family = x->props.family;
2612 int err;
2613
2614 if (family == AF_INET &&
2615 xs_net(x)->ipv4.sysctl_ip_no_pmtu_disc)
2616 x->props.flags |= XFRM_STATE_NOPMTUDISC;
2617
2618 err = -EPROTONOSUPPORT;
2619
2620 if (x->sel.family != AF_UNSPEC) {
2621 inner_mode = xfrm_get_mode(x->props.mode, x->sel.family);
2622 if (inner_mode == NULL)
2623 goto error;
2624
2625 if (!(inner_mode->flags & XFRM_MODE_FLAG_TUNNEL) &&
2626 family != x->sel.family)
2627 goto error;
2628
2629 x->inner_mode = *inner_mode;
2630 } else {
2631 const struct xfrm_mode *inner_mode_iaf;
2632 int iafamily = AF_INET;
2633
2634 inner_mode = xfrm_get_mode(x->props.mode, x->props.family);
2635 if (inner_mode == NULL)
2636 goto error;
2637
2638 if (!(inner_mode->flags & XFRM_MODE_FLAG_TUNNEL))
2639 goto error;
2640
2641 x->inner_mode = *inner_mode;
2642
2643 if (x->props.family == AF_INET)
2644 iafamily = AF_INET6;
2645
2646 inner_mode_iaf = xfrm_get_mode(x->props.mode, iafamily);
2647 if (inner_mode_iaf) {
2648 if (inner_mode_iaf->flags & XFRM_MODE_FLAG_TUNNEL)
2649 x->inner_mode_iaf = *inner_mode_iaf;
2650 }
2651 }
2652
2653 x->type = xfrm_get_type(x->id.proto, family);
2654 if (x->type == NULL)
2655 goto error;
2656
2657 x->type_offload = xfrm_get_type_offload(x->id.proto, family, offload);
2658
2659 err = x->type->init_state(x);
2660 if (err)
2661 goto error;
2662
2663 outer_mode = xfrm_get_mode(x->props.mode, family);
2664 if (!outer_mode) {
2665 err = -EPROTONOSUPPORT;
2666 goto error;
2667 }
2668
2669 x->outer_mode = *outer_mode;
2670 if (init_replay) {
2671 err = xfrm_init_replay(x);
2672 if (err)
2673 goto error;
2674 }
2675
2676 error:
2677 return err;
2678 }
2679
2680 EXPORT_SYMBOL(__xfrm_init_state);
2681
2682 int xfrm_init_state(struct xfrm_state *x)
2683 {
2684 int err;
2685
2686 err = __xfrm_init_state(x, true, false);
2687 if (!err)
2688 x->km.state = XFRM_STATE_VALID;
2689
2690 return err;
2691 }
2692
2693 EXPORT_SYMBOL(xfrm_init_state);
2694
2695 int __net_init xfrm_state_init(struct net *net)
2696 {
2697 unsigned int sz;
2698
2699 if (net_eq(net, &init_net))
2700 xfrm_state_cache = KMEM_CACHE(xfrm_state,
2701 SLAB_HWCACHE_ALIGN | SLAB_PANIC);
2702
2703 INIT_LIST_HEAD(&net->xfrm.state_all);
2704
2705 sz = sizeof(struct hlist_head) * 8;
2706
2707 net->xfrm.state_bydst = xfrm_hash_alloc(sz);
2708 if (!net->xfrm.state_bydst)
2709 goto out_bydst;
2710 net->xfrm.state_bysrc = xfrm_hash_alloc(sz);
2711 if (!net->xfrm.state_bysrc)
2712 goto out_bysrc;
2713 net->xfrm.state_byspi = xfrm_hash_alloc(sz);
2714 if (!net->xfrm.state_byspi)
2715 goto out_byspi;
2716 net->xfrm.state_byseq = xfrm_hash_alloc(sz);
2717 if (!net->xfrm.state_byseq)
2718 goto out_byseq;
2719 net->xfrm.state_hmask = ((sz / sizeof(struct hlist_head)) - 1);
2720
2721 net->xfrm.state_num = 0;
2722 INIT_WORK(&net->xfrm.state_hash_work, xfrm_hash_resize);
2723 spin_lock_init(&net->xfrm.xfrm_state_lock);
2724 seqcount_spinlock_init(&net->xfrm.xfrm_state_hash_generation,
2725 &net->xfrm.xfrm_state_lock);
2726 return 0;
2727
2728 out_byseq:
2729 xfrm_hash_free(net->xfrm.state_byspi, sz);
2730 out_byspi:
2731 xfrm_hash_free(net->xfrm.state_bysrc, sz);
2732 out_bysrc:
2733 xfrm_hash_free(net->xfrm.state_bydst, sz);
2734 out_bydst:
2735 return -ENOMEM;
2736 }
2737
2738 void xfrm_state_fini(struct net *net)
2739 {
2740 unsigned int sz;
2741
2742 flush_work(&net->xfrm.state_hash_work);
2743 flush_work(&xfrm_state_gc_work);
2744 xfrm_state_flush(net, 0, false, true);
2745
2746 WARN_ON(!list_empty(&net->xfrm.state_all));
2747
2748 sz = (net->xfrm.state_hmask + 1) * sizeof(struct hlist_head);
2749 WARN_ON(!hlist_empty(net->xfrm.state_byseq));
2750 xfrm_hash_free(net->xfrm.state_byseq, sz);
2751 WARN_ON(!hlist_empty(net->xfrm.state_byspi));
2752 xfrm_hash_free(net->xfrm.state_byspi, sz);
2753 WARN_ON(!hlist_empty(net->xfrm.state_bysrc));
2754 xfrm_hash_free(net->xfrm.state_bysrc, sz);
2755 WARN_ON(!hlist_empty(net->xfrm.state_bydst));
2756 xfrm_hash_free(net->xfrm.state_bydst, sz);
2757 }
2758
2759 #ifdef CONFIG_AUDITSYSCALL
2760 static void xfrm_audit_helper_sainfo(struct xfrm_state *x,
2761 struct audit_buffer *audit_buf)
2762 {
2763 struct xfrm_sec_ctx *ctx = x->security;
2764 u32 spi = ntohl(x->id.spi);
2765
2766 if (ctx)
2767 audit_log_format(audit_buf, " sec_alg=%u sec_doi=%u sec_obj=%s",
2768 ctx->ctx_alg, ctx->ctx_doi, ctx->ctx_str);
2769
2770 switch (x->props.family) {
2771 case AF_INET:
2772 audit_log_format(audit_buf, " src=%pI4 dst=%pI4",
2773 &x->props.saddr.a4, &x->id.daddr.a4);
2774 break;
2775 case AF_INET6:
2776 audit_log_format(audit_buf, " src=%pI6 dst=%pI6",
2777 x->props.saddr.a6, x->id.daddr.a6);
2778 break;
2779 }
2780
2781 audit_log_format(audit_buf, " spi=%u(0x%x)", spi, spi);
2782 }
2783
2784 static void xfrm_audit_helper_pktinfo(struct sk_buff *skb, u16 family,
2785 struct audit_buffer *audit_buf)
2786 {
2787 const struct iphdr *iph4;
2788 const struct ipv6hdr *iph6;
2789
2790 switch (family) {
2791 case AF_INET:
2792 iph4 = ip_hdr(skb);
2793 audit_log_format(audit_buf, " src=%pI4 dst=%pI4",
2794 &iph4->saddr, &iph4->daddr);
2795 break;
2796 case AF_INET6:
2797 iph6 = ipv6_hdr(skb);
2798 audit_log_format(audit_buf,
2799 " src=%pI6 dst=%pI6 flowlbl=0x%x%02x%02x",
2800 &iph6->saddr, &iph6->daddr,
2801 iph6->flow_lbl[0] & 0x0f,
2802 iph6->flow_lbl[1],
2803 iph6->flow_lbl[2]);
2804 break;
2805 }
2806 }
2807
2808 void xfrm_audit_state_add(struct xfrm_state *x, int result, bool task_valid)
2809 {
2810 struct audit_buffer *audit_buf;
2811
2812 audit_buf = xfrm_audit_start("SAD-add");
2813 if (audit_buf == NULL)
2814 return;
2815 xfrm_audit_helper_usrinfo(task_valid, audit_buf);
2816 xfrm_audit_helper_sainfo(x, audit_buf);
2817 audit_log_format(audit_buf, " res=%u", result);
2818 audit_log_end(audit_buf);
2819 }
2820 EXPORT_SYMBOL_GPL(xfrm_audit_state_add);
2821
2822 void xfrm_audit_state_delete(struct xfrm_state *x, int result, bool task_valid)
2823 {
2824 struct audit_buffer *audit_buf;
2825
2826 audit_buf = xfrm_audit_start("SAD-delete");
2827 if (audit_buf == NULL)
2828 return;
2829 xfrm_audit_helper_usrinfo(task_valid, audit_buf);
2830 xfrm_audit_helper_sainfo(x, audit_buf);
2831 audit_log_format(audit_buf, " res=%u", result);
2832 audit_log_end(audit_buf);
2833 }
2834 EXPORT_SYMBOL_GPL(xfrm_audit_state_delete);
2835
2836 void xfrm_audit_state_replay_overflow(struct xfrm_state *x,
2837 struct sk_buff *skb)
2838 {
2839 struct audit_buffer *audit_buf;
2840 u32 spi;
2841
2842 audit_buf = xfrm_audit_start("SA-replay-overflow");
2843 if (audit_buf == NULL)
2844 return;
2845 xfrm_audit_helper_pktinfo(skb, x->props.family, audit_buf);
2846 /* don't record the sequence number because it's inherent in this kind
2847 * of audit message */
2848 spi = ntohl(x->id.spi);
2849 audit_log_format(audit_buf, " spi=%u(0x%x)", spi, spi);
2850 audit_log_end(audit_buf);
2851 }
2852 EXPORT_SYMBOL_GPL(xfrm_audit_state_replay_overflow);
2853
2854 void xfrm_audit_state_replay(struct xfrm_state *x,
2855 struct sk_buff *skb, __be32 net_seq)
2856 {
2857 struct audit_buffer *audit_buf;
2858 u32 spi;
2859
2860 audit_buf = xfrm_audit_start("SA-replayed-pkt");
2861 if (audit_buf == NULL)
2862 return;
2863 xfrm_audit_helper_pktinfo(skb, x->props.family, audit_buf);
2864 spi = ntohl(x->id.spi);
2865 audit_log_format(audit_buf, " spi=%u(0x%x) seqno=%u",
2866 spi, spi, ntohl(net_seq));
2867 audit_log_end(audit_buf);
2868 }
2869 EXPORT_SYMBOL_GPL(xfrm_audit_state_replay);
2870
2871 void xfrm_audit_state_notfound_simple(struct sk_buff *skb, u16 family)
2872 {
2873 struct audit_buffer *audit_buf;
2874
2875 audit_buf = xfrm_audit_start("SA-notfound");
2876 if (audit_buf == NULL)
2877 return;
2878 xfrm_audit_helper_pktinfo(skb, family, audit_buf);
2879 audit_log_end(audit_buf);
2880 }
2881 EXPORT_SYMBOL_GPL(xfrm_audit_state_notfound_simple);
2882
2883 void xfrm_audit_state_notfound(struct sk_buff *skb, u16 family,
2884 __be32 net_spi, __be32 net_seq)
2885 {
2886 struct audit_buffer *audit_buf;
2887 u32 spi;
2888
2889 audit_buf = xfrm_audit_start("SA-notfound");
2890 if (audit_buf == NULL)
2891 return;
2892 xfrm_audit_helper_pktinfo(skb, family, audit_buf);
2893 spi = ntohl(net_spi);
2894 audit_log_format(audit_buf, " spi=%u(0x%x) seqno=%u",
2895 spi, spi, ntohl(net_seq));
2896 audit_log_end(audit_buf);
2897 }
2898 EXPORT_SYMBOL_GPL(xfrm_audit_state_notfound);
2899
2900 void xfrm_audit_state_icvfail(struct xfrm_state *x,
2901 struct sk_buff *skb, u8 proto)
2902 {
2903 struct audit_buffer *audit_buf;
2904 __be32 net_spi;
2905 __be32 net_seq;
2906
2907 audit_buf = xfrm_audit_start("SA-icv-failure");
2908 if (audit_buf == NULL)
2909 return;
2910 xfrm_audit_helper_pktinfo(skb, x->props.family, audit_buf);
2911 if (xfrm_parse_spi(skb, proto, &net_spi, &net_seq) == 0) {
2912 u32 spi = ntohl(net_spi);
2913 audit_log_format(audit_buf, " spi=%u(0x%x) seqno=%u",
2914 spi, spi, ntohl(net_seq));
2915 }
2916 audit_log_end(audit_buf);
2917 }
2918 EXPORT_SYMBOL_GPL(xfrm_audit_state_icvfail);
2919 #endif /* CONFIG_AUDITSYSCALL */