]> git.proxmox.com Git - mirror_qemu.git/blob - numa.c
numa: add '-numa cpu,...' option for property based node mapping
[mirror_qemu.git] / numa.c
1 /*
2 * NUMA parameter parsing routines
3 *
4 * Copyright (c) 2014 Fujitsu Ltd.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "sysemu/numa.h"
27 #include "exec/cpu-common.h"
28 #include "exec/ramlist.h"
29 #include "qemu/bitmap.h"
30 #include "qom/cpu.h"
31 #include "qemu/error-report.h"
32 #include "include/exec/cpu-common.h" /* for RAM_ADDR_FMT */
33 #include "qapi-visit.h"
34 #include "qapi/opts-visitor.h"
35 #include "hw/boards.h"
36 #include "sysemu/hostmem.h"
37 #include "qmp-commands.h"
38 #include "hw/mem/pc-dimm.h"
39 #include "qemu/option.h"
40 #include "qemu/config-file.h"
41
42 QemuOptsList qemu_numa_opts = {
43 .name = "numa",
44 .implied_opt_name = "type",
45 .head = QTAILQ_HEAD_INITIALIZER(qemu_numa_opts.head),
46 .desc = { { 0 } } /* validated with OptsVisitor */
47 };
48
49 static int have_memdevs = -1;
50 static int max_numa_nodeid; /* Highest specified NUMA node ID, plus one.
51 * For all nodes, nodeid < max_numa_nodeid
52 */
53 int nb_numa_nodes;
54 bool have_numa_distance;
55 NodeInfo numa_info[MAX_NODES];
56
57 void numa_set_mem_node_id(ram_addr_t addr, uint64_t size, uint32_t node)
58 {
59 struct numa_addr_range *range;
60
61 /*
62 * Memory-less nodes can come here with 0 size in which case,
63 * there is nothing to do.
64 */
65 if (!size) {
66 return;
67 }
68
69 range = g_malloc0(sizeof(*range));
70 range->mem_start = addr;
71 range->mem_end = addr + size - 1;
72 QLIST_INSERT_HEAD(&numa_info[node].addr, range, entry);
73 }
74
75 void numa_unset_mem_node_id(ram_addr_t addr, uint64_t size, uint32_t node)
76 {
77 struct numa_addr_range *range, *next;
78
79 QLIST_FOREACH_SAFE(range, &numa_info[node].addr, entry, next) {
80 if (addr == range->mem_start && (addr + size - 1) == range->mem_end) {
81 QLIST_REMOVE(range, entry);
82 g_free(range);
83 return;
84 }
85 }
86 }
87
88 static void numa_set_mem_ranges(void)
89 {
90 int i;
91 ram_addr_t mem_start = 0;
92
93 /*
94 * Deduce start address of each node and use it to store
95 * the address range info in numa_info address range list
96 */
97 for (i = 0; i < nb_numa_nodes; i++) {
98 numa_set_mem_node_id(mem_start, numa_info[i].node_mem, i);
99 mem_start += numa_info[i].node_mem;
100 }
101 }
102
103 /*
104 * Check if @addr falls under NUMA @node.
105 */
106 static bool numa_addr_belongs_to_node(ram_addr_t addr, uint32_t node)
107 {
108 struct numa_addr_range *range;
109
110 QLIST_FOREACH(range, &numa_info[node].addr, entry) {
111 if (addr >= range->mem_start && addr <= range->mem_end) {
112 return true;
113 }
114 }
115 return false;
116 }
117
118 /*
119 * Given an address, return the index of the NUMA node to which the
120 * address belongs to.
121 */
122 uint32_t numa_get_node(ram_addr_t addr, Error **errp)
123 {
124 uint32_t i;
125
126 /* For non NUMA configurations, check if the addr falls under node 0 */
127 if (!nb_numa_nodes) {
128 if (numa_addr_belongs_to_node(addr, 0)) {
129 return 0;
130 }
131 }
132
133 for (i = 0; i < nb_numa_nodes; i++) {
134 if (numa_addr_belongs_to_node(addr, i)) {
135 return i;
136 }
137 }
138
139 error_setg(errp, "Address 0x" RAM_ADDR_FMT " doesn't belong to any "
140 "NUMA node", addr);
141 return -1;
142 }
143
144 static void parse_numa_node(MachineState *ms, NumaNodeOptions *node,
145 QemuOpts *opts, Error **errp)
146 {
147 uint16_t nodenr;
148 uint16List *cpus = NULL;
149 MachineClass *mc = MACHINE_GET_CLASS(ms);
150
151 if (node->has_nodeid) {
152 nodenr = node->nodeid;
153 } else {
154 nodenr = nb_numa_nodes;
155 }
156
157 if (nodenr >= MAX_NODES) {
158 error_setg(errp, "Max number of NUMA nodes reached: %"
159 PRIu16 "", nodenr);
160 return;
161 }
162
163 if (numa_info[nodenr].present) {
164 error_setg(errp, "Duplicate NUMA nodeid: %" PRIu16, nodenr);
165 return;
166 }
167
168 if (!mc->cpu_index_to_instance_props) {
169 error_report("NUMA is not supported by this machine-type");
170 exit(1);
171 }
172 for (cpus = node->cpus; cpus; cpus = cpus->next) {
173 CpuInstanceProperties props;
174 if (cpus->value >= max_cpus) {
175 error_setg(errp,
176 "CPU index (%" PRIu16 ")"
177 " should be smaller than maxcpus (%d)",
178 cpus->value, max_cpus);
179 return;
180 }
181 props = mc->cpu_index_to_instance_props(ms, cpus->value);
182 props.node_id = nodenr;
183 props.has_node_id = true;
184 machine_set_cpu_numa_node(ms, &props, &error_fatal);
185 }
186
187 if (node->has_mem && node->has_memdev) {
188 error_setg(errp, "qemu: cannot specify both mem= and memdev=");
189 return;
190 }
191
192 if (have_memdevs == -1) {
193 have_memdevs = node->has_memdev;
194 }
195 if (node->has_memdev != have_memdevs) {
196 error_setg(errp, "qemu: memdev option must be specified for either "
197 "all or no nodes");
198 return;
199 }
200
201 if (node->has_mem) {
202 uint64_t mem_size = node->mem;
203 const char *mem_str = qemu_opt_get(opts, "mem");
204 /* Fix up legacy suffix-less format */
205 if (g_ascii_isdigit(mem_str[strlen(mem_str) - 1])) {
206 mem_size <<= 20;
207 }
208 numa_info[nodenr].node_mem = mem_size;
209 }
210 if (node->has_memdev) {
211 Object *o;
212 o = object_resolve_path_type(node->memdev, TYPE_MEMORY_BACKEND, NULL);
213 if (!o) {
214 error_setg(errp, "memdev=%s is ambiguous", node->memdev);
215 return;
216 }
217
218 object_ref(o);
219 numa_info[nodenr].node_mem = object_property_get_int(o, "size", NULL);
220 numa_info[nodenr].node_memdev = MEMORY_BACKEND(o);
221 }
222 numa_info[nodenr].present = true;
223 max_numa_nodeid = MAX(max_numa_nodeid, nodenr + 1);
224 }
225
226 static void parse_numa_distance(NumaDistOptions *dist, Error **errp)
227 {
228 uint16_t src = dist->src;
229 uint16_t dst = dist->dst;
230 uint8_t val = dist->val;
231
232 if (src >= MAX_NODES || dst >= MAX_NODES) {
233 error_setg(errp,
234 "Invalid node %" PRIu16
235 ", max possible could be %" PRIu16,
236 MAX(src, dst), MAX_NODES);
237 return;
238 }
239
240 if (!numa_info[src].present || !numa_info[dst].present) {
241 error_setg(errp, "Source/Destination NUMA node is missing. "
242 "Please use '-numa node' option to declare it first.");
243 return;
244 }
245
246 if (val < NUMA_DISTANCE_MIN) {
247 error_setg(errp, "NUMA distance (%" PRIu8 ") is invalid, "
248 "it shouldn't be less than %d.",
249 val, NUMA_DISTANCE_MIN);
250 return;
251 }
252
253 if (src == dst && val != NUMA_DISTANCE_MIN) {
254 error_setg(errp, "Local distance of node %d should be %d.",
255 src, NUMA_DISTANCE_MIN);
256 return;
257 }
258
259 numa_info[src].distance[dst] = val;
260 have_numa_distance = true;
261 }
262
263 static int parse_numa(void *opaque, QemuOpts *opts, Error **errp)
264 {
265 NumaOptions *object = NULL;
266 MachineState *ms = opaque;
267 Error *err = NULL;
268
269 {
270 Visitor *v = opts_visitor_new(opts);
271 visit_type_NumaOptions(v, NULL, &object, &err);
272 visit_free(v);
273 }
274
275 if (err) {
276 goto end;
277 }
278
279 switch (object->type) {
280 case NUMA_OPTIONS_TYPE_NODE:
281 parse_numa_node(ms, &object->u.node, opts, &err);
282 if (err) {
283 goto end;
284 }
285 nb_numa_nodes++;
286 break;
287 case NUMA_OPTIONS_TYPE_DIST:
288 parse_numa_distance(&object->u.dist, &err);
289 if (err) {
290 goto end;
291 }
292 break;
293 case NUMA_OPTIONS_TYPE_CPU:
294 if (!object->u.cpu.has_node_id) {
295 error_setg(&err, "Missing mandatory node-id property");
296 goto end;
297 }
298 if (!numa_info[object->u.cpu.node_id].present) {
299 error_setg(&err, "Invalid node-id=%" PRId64 ", NUMA node must be "
300 "defined with -numa node,nodeid=ID before it's used with "
301 "-numa cpu,node-id=ID", object->u.cpu.node_id);
302 goto end;
303 }
304
305 machine_set_cpu_numa_node(ms, qapi_NumaCpuOptions_base(&object->u.cpu),
306 &err);
307 break;
308 default:
309 abort();
310 }
311
312 end:
313 qapi_free_NumaOptions(object);
314 if (err) {
315 error_report_err(err);
316 return -1;
317 }
318
319 return 0;
320 }
321
322 /* If all node pair distances are symmetric, then only distances
323 * in one direction are enough. If there is even one asymmetric
324 * pair, though, then all distances must be provided. The
325 * distance from a node to itself is always NUMA_DISTANCE_MIN,
326 * so providing it is never necessary.
327 */
328 static void validate_numa_distance(void)
329 {
330 int src, dst;
331 bool is_asymmetrical = false;
332
333 for (src = 0; src < nb_numa_nodes; src++) {
334 for (dst = src; dst < nb_numa_nodes; dst++) {
335 if (numa_info[src].distance[dst] == 0 &&
336 numa_info[dst].distance[src] == 0) {
337 if (src != dst) {
338 error_report("The distance between node %d and %d is "
339 "missing, at least one distance value "
340 "between each nodes should be provided.",
341 src, dst);
342 exit(EXIT_FAILURE);
343 }
344 }
345
346 if (numa_info[src].distance[dst] != 0 &&
347 numa_info[dst].distance[src] != 0 &&
348 numa_info[src].distance[dst] !=
349 numa_info[dst].distance[src]) {
350 is_asymmetrical = true;
351 }
352 }
353 }
354
355 if (is_asymmetrical) {
356 for (src = 0; src < nb_numa_nodes; src++) {
357 for (dst = 0; dst < nb_numa_nodes; dst++) {
358 if (src != dst && numa_info[src].distance[dst] == 0) {
359 error_report("At least one asymmetrical pair of "
360 "distances is given, please provide distances "
361 "for both directions of all node pairs.");
362 exit(EXIT_FAILURE);
363 }
364 }
365 }
366 }
367 }
368
369 static void complete_init_numa_distance(void)
370 {
371 int src, dst;
372
373 /* Fixup NUMA distance by symmetric policy because if it is an
374 * asymmetric distance table, it should be a complete table and
375 * there would not be any missing distance except local node, which
376 * is verified by validate_numa_distance above.
377 */
378 for (src = 0; src < nb_numa_nodes; src++) {
379 for (dst = 0; dst < nb_numa_nodes; dst++) {
380 if (numa_info[src].distance[dst] == 0) {
381 if (src == dst) {
382 numa_info[src].distance[dst] = NUMA_DISTANCE_MIN;
383 } else {
384 numa_info[src].distance[dst] = numa_info[dst].distance[src];
385 }
386 }
387 }
388 }
389 }
390
391 void numa_legacy_auto_assign_ram(MachineClass *mc, NodeInfo *nodes,
392 int nb_nodes, ram_addr_t size)
393 {
394 int i;
395 uint64_t usedmem = 0;
396
397 /* Align each node according to the alignment
398 * requirements of the machine class
399 */
400
401 for (i = 0; i < nb_nodes - 1; i++) {
402 nodes[i].node_mem = (size / nb_nodes) &
403 ~((1 << mc->numa_mem_align_shift) - 1);
404 usedmem += nodes[i].node_mem;
405 }
406 nodes[i].node_mem = size - usedmem;
407 }
408
409 void numa_default_auto_assign_ram(MachineClass *mc, NodeInfo *nodes,
410 int nb_nodes, ram_addr_t size)
411 {
412 int i;
413 uint64_t usedmem = 0, node_mem;
414 uint64_t granularity = size / nb_nodes;
415 uint64_t propagate = 0;
416
417 for (i = 0; i < nb_nodes - 1; i++) {
418 node_mem = (granularity + propagate) &
419 ~((1 << mc->numa_mem_align_shift) - 1);
420 propagate = granularity + propagate - node_mem;
421 nodes[i].node_mem = node_mem;
422 usedmem += node_mem;
423 }
424 nodes[i].node_mem = size - usedmem;
425 }
426
427 void parse_numa_opts(MachineState *ms)
428 {
429 int i;
430 const CPUArchIdList *possible_cpus;
431 MachineClass *mc = MACHINE_GET_CLASS(ms);
432
433 if (qemu_opts_foreach(qemu_find_opts("numa"), parse_numa, ms, NULL)) {
434 exit(1);
435 }
436
437 assert(max_numa_nodeid <= MAX_NODES);
438
439 /* No support for sparse NUMA node IDs yet: */
440 for (i = max_numa_nodeid - 1; i >= 0; i--) {
441 /* Report large node IDs first, to make mistakes easier to spot */
442 if (!numa_info[i].present) {
443 error_report("numa: Node ID missing: %d", i);
444 exit(1);
445 }
446 }
447
448 /* This must be always true if all nodes are present: */
449 assert(nb_numa_nodes == max_numa_nodeid);
450
451 if (nb_numa_nodes > 0) {
452 uint64_t numa_total;
453
454 if (nb_numa_nodes > MAX_NODES) {
455 nb_numa_nodes = MAX_NODES;
456 }
457
458 /* If no memory size is given for any node, assume the default case
459 * and distribute the available memory equally across all nodes
460 */
461 for (i = 0; i < nb_numa_nodes; i++) {
462 if (numa_info[i].node_mem != 0) {
463 break;
464 }
465 }
466 if (i == nb_numa_nodes) {
467 assert(mc->numa_auto_assign_ram);
468 mc->numa_auto_assign_ram(mc, numa_info, nb_numa_nodes, ram_size);
469 }
470
471 numa_total = 0;
472 for (i = 0; i < nb_numa_nodes; i++) {
473 numa_total += numa_info[i].node_mem;
474 }
475 if (numa_total != ram_size) {
476 error_report("total memory for NUMA nodes (0x%" PRIx64 ")"
477 " should equal RAM size (0x" RAM_ADDR_FMT ")",
478 numa_total, ram_size);
479 exit(1);
480 }
481
482 for (i = 0; i < nb_numa_nodes; i++) {
483 QLIST_INIT(&numa_info[i].addr);
484 }
485
486 numa_set_mem_ranges();
487
488 /* assign CPUs to nodes using board provided default mapping */
489 if (!mc->cpu_index_to_instance_props || !mc->possible_cpu_arch_ids) {
490 error_report("default CPUs to NUMA node mapping isn't supported");
491 exit(1);
492 }
493
494 possible_cpus = mc->possible_cpu_arch_ids(ms);
495 for (i = 0; i < possible_cpus->len; i++) {
496 if (possible_cpus->cpus[i].props.has_node_id) {
497 break;
498 }
499 }
500
501 /* no CPUs are assigned to NUMA nodes */
502 if (i == possible_cpus->len) {
503 for (i = 0; i < max_cpus; i++) {
504 CpuInstanceProperties props;
505 /* fetch default mapping from board and enable it */
506 props = mc->cpu_index_to_instance_props(ms, i);
507 props.has_node_id = true;
508
509 machine_set_cpu_numa_node(ms, &props, &error_fatal);
510 }
511 }
512
513 /* QEMU needs at least all unique node pair distances to build
514 * the whole NUMA distance table. QEMU treats the distance table
515 * as symmetric by default, i.e. distance A->B == distance B->A.
516 * Thus, QEMU is able to complete the distance table
517 * initialization even though only distance A->B is provided and
518 * distance B->A is not. QEMU knows the distance of a node to
519 * itself is always 10, so A->A distances may be omitted. When
520 * the distances of two nodes of a pair differ, i.e. distance
521 * A->B != distance B->A, then that means the distance table is
522 * asymmetric. In this case, the distances for both directions
523 * of all node pairs are required.
524 */
525 if (have_numa_distance) {
526 /* Validate enough NUMA distance information was provided. */
527 validate_numa_distance();
528
529 /* Validation succeeded, now fill in any missing distances. */
530 complete_init_numa_distance();
531 }
532 } else {
533 numa_set_mem_node_id(0, ram_size, 0);
534 }
535 }
536
537 static void allocate_system_memory_nonnuma(MemoryRegion *mr, Object *owner,
538 const char *name,
539 uint64_t ram_size)
540 {
541 if (mem_path) {
542 #ifdef __linux__
543 Error *err = NULL;
544 memory_region_init_ram_from_file(mr, owner, name, ram_size, false,
545 mem_path, &err);
546 if (err) {
547 error_report_err(err);
548 if (mem_prealloc) {
549 exit(1);
550 }
551
552 /* Legacy behavior: if allocation failed, fall back to
553 * regular RAM allocation.
554 */
555 memory_region_init_ram(mr, owner, name, ram_size, &error_fatal);
556 }
557 #else
558 fprintf(stderr, "-mem-path not supported on this host\n");
559 exit(1);
560 #endif
561 } else {
562 memory_region_init_ram(mr, owner, name, ram_size, &error_fatal);
563 }
564 vmstate_register_ram_global(mr);
565 }
566
567 void memory_region_allocate_system_memory(MemoryRegion *mr, Object *owner,
568 const char *name,
569 uint64_t ram_size)
570 {
571 uint64_t addr = 0;
572 int i;
573
574 if (nb_numa_nodes == 0 || !have_memdevs) {
575 allocate_system_memory_nonnuma(mr, owner, name, ram_size);
576 return;
577 }
578
579 memory_region_init(mr, owner, name, ram_size);
580 for (i = 0; i < MAX_NODES; i++) {
581 uint64_t size = numa_info[i].node_mem;
582 HostMemoryBackend *backend = numa_info[i].node_memdev;
583 if (!backend) {
584 continue;
585 }
586 MemoryRegion *seg = host_memory_backend_get_memory(backend,
587 &error_fatal);
588
589 if (memory_region_is_mapped(seg)) {
590 char *path = object_get_canonical_path_component(OBJECT(backend));
591 error_report("memory backend %s is used multiple times. Each "
592 "-numa option must use a different memdev value.",
593 path);
594 exit(1);
595 }
596
597 host_memory_backend_set_mapped(backend, true);
598 memory_region_add_subregion(mr, addr, seg);
599 vmstate_register_ram_global(seg);
600 addr += size;
601 }
602 }
603
604 static void numa_stat_memory_devices(uint64_t node_mem[])
605 {
606 MemoryDeviceInfoList *info_list = NULL;
607 MemoryDeviceInfoList **prev = &info_list;
608 MemoryDeviceInfoList *info;
609
610 qmp_pc_dimm_device_list(qdev_get_machine(), &prev);
611 for (info = info_list; info; info = info->next) {
612 MemoryDeviceInfo *value = info->value;
613
614 if (value) {
615 switch (value->type) {
616 case MEMORY_DEVICE_INFO_KIND_DIMM:
617 node_mem[value->u.dimm.data->node] += value->u.dimm.data->size;
618 break;
619 default:
620 break;
621 }
622 }
623 }
624 qapi_free_MemoryDeviceInfoList(info_list);
625 }
626
627 void query_numa_node_mem(uint64_t node_mem[])
628 {
629 int i;
630
631 if (nb_numa_nodes <= 0) {
632 return;
633 }
634
635 numa_stat_memory_devices(node_mem);
636 for (i = 0; i < nb_numa_nodes; i++) {
637 node_mem[i] += numa_info[i].node_mem;
638 }
639 }
640
641 static int query_memdev(Object *obj, void *opaque)
642 {
643 MemdevList **list = opaque;
644 MemdevList *m = NULL;
645
646 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
647 m = g_malloc0(sizeof(*m));
648
649 m->value = g_malloc0(sizeof(*m->value));
650
651 m->value->id = object_property_get_str(obj, "id", NULL);
652 m->value->has_id = !!m->value->id;
653
654 m->value->size = object_property_get_int(obj, "size",
655 &error_abort);
656 m->value->merge = object_property_get_bool(obj, "merge",
657 &error_abort);
658 m->value->dump = object_property_get_bool(obj, "dump",
659 &error_abort);
660 m->value->prealloc = object_property_get_bool(obj,
661 "prealloc",
662 &error_abort);
663 m->value->policy = object_property_get_enum(obj,
664 "policy",
665 "HostMemPolicy",
666 &error_abort);
667 object_property_get_uint16List(obj, "host-nodes",
668 &m->value->host_nodes,
669 &error_abort);
670
671 m->next = *list;
672 *list = m;
673 }
674
675 return 0;
676 }
677
678 MemdevList *qmp_query_memdev(Error **errp)
679 {
680 Object *obj = object_get_objects_root();
681 MemdevList *list = NULL;
682
683 object_child_foreach(obj, query_memdev, &list);
684 return list;
685 }
686
687 void ram_block_notifier_add(RAMBlockNotifier *n)
688 {
689 QLIST_INSERT_HEAD(&ram_list.ramblock_notifiers, n, next);
690 }
691
692 void ram_block_notifier_remove(RAMBlockNotifier *n)
693 {
694 QLIST_REMOVE(n, next);
695 }
696
697 void ram_block_notify_add(void *host, size_t size)
698 {
699 RAMBlockNotifier *notifier;
700
701 QLIST_FOREACH(notifier, &ram_list.ramblock_notifiers, next) {
702 notifier->ram_block_added(notifier, host, size);
703 }
704 }
705
706 void ram_block_notify_remove(void *host, size_t size)
707 {
708 RAMBlockNotifier *notifier;
709
710 QLIST_FOREACH(notifier, &ram_list.ramblock_notifiers, next) {
711 notifier->ram_block_removed(notifier, host, size);
712 }
713 }