]> git.proxmox.com Git - mirror_qemu.git/blob - numa.c
memory: exit when hugepage allocation fails if mem-prealloc
[mirror_qemu.git] / numa.c
1 /*
2 * NUMA parameter parsing routines
3 *
4 * Copyright (c) 2014 Fujitsu Ltd.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "sysemu/numa.h"
26 #include "exec/cpu-common.h"
27 #include "qemu/bitmap.h"
28 #include "qom/cpu.h"
29 #include "qemu/error-report.h"
30 #include "include/exec/cpu-common.h" /* for RAM_ADDR_FMT */
31 #include "qapi-visit.h"
32 #include "qapi/opts-visitor.h"
33 #include "qapi/dealloc-visitor.h"
34 #include "hw/boards.h"
35 #include "sysemu/hostmem.h"
36 #include "qmp-commands.h"
37 #include "hw/mem/pc-dimm.h"
38 #include "qemu/option.h"
39 #include "qemu/config-file.h"
40
41 QemuOptsList qemu_numa_opts = {
42 .name = "numa",
43 .implied_opt_name = "type",
44 .head = QTAILQ_HEAD_INITIALIZER(qemu_numa_opts.head),
45 .desc = { { 0 } } /* validated with OptsVisitor */
46 };
47
48 static int have_memdevs = -1;
49 static int max_numa_nodeid; /* Highest specified NUMA node ID, plus one.
50 * For all nodes, nodeid < max_numa_nodeid
51 */
52 int nb_numa_nodes;
53 NodeInfo numa_info[MAX_NODES];
54
55 void numa_set_mem_node_id(ram_addr_t addr, uint64_t size, uint32_t node)
56 {
57 struct numa_addr_range *range;
58
59 /*
60 * Memory-less nodes can come here with 0 size in which case,
61 * there is nothing to do.
62 */
63 if (!size) {
64 return;
65 }
66
67 range = g_malloc0(sizeof(*range));
68 range->mem_start = addr;
69 range->mem_end = addr + size - 1;
70 QLIST_INSERT_HEAD(&numa_info[node].addr, range, entry);
71 }
72
73 void numa_unset_mem_node_id(ram_addr_t addr, uint64_t size, uint32_t node)
74 {
75 struct numa_addr_range *range, *next;
76
77 QLIST_FOREACH_SAFE(range, &numa_info[node].addr, entry, next) {
78 if (addr == range->mem_start && (addr + size - 1) == range->mem_end) {
79 QLIST_REMOVE(range, entry);
80 g_free(range);
81 return;
82 }
83 }
84 }
85
86 static void numa_set_mem_ranges(void)
87 {
88 int i;
89 ram_addr_t mem_start = 0;
90
91 /*
92 * Deduce start address of each node and use it to store
93 * the address range info in numa_info address range list
94 */
95 for (i = 0; i < nb_numa_nodes; i++) {
96 numa_set_mem_node_id(mem_start, numa_info[i].node_mem, i);
97 mem_start += numa_info[i].node_mem;
98 }
99 }
100
101 /*
102 * Check if @addr falls under NUMA @node.
103 */
104 static bool numa_addr_belongs_to_node(ram_addr_t addr, uint32_t node)
105 {
106 struct numa_addr_range *range;
107
108 QLIST_FOREACH(range, &numa_info[node].addr, entry) {
109 if (addr >= range->mem_start && addr <= range->mem_end) {
110 return true;
111 }
112 }
113 return false;
114 }
115
116 /*
117 * Given an address, return the index of the NUMA node to which the
118 * address belongs to.
119 */
120 uint32_t numa_get_node(ram_addr_t addr, Error **errp)
121 {
122 uint32_t i;
123
124 /* For non NUMA configurations, check if the addr falls under node 0 */
125 if (!nb_numa_nodes) {
126 if (numa_addr_belongs_to_node(addr, 0)) {
127 return 0;
128 }
129 }
130
131 for (i = 0; i < nb_numa_nodes; i++) {
132 if (numa_addr_belongs_to_node(addr, i)) {
133 return i;
134 }
135 }
136
137 error_setg(errp, "Address 0x" RAM_ADDR_FMT " doesn't belong to any "
138 "NUMA node", addr);
139 return -1;
140 }
141
142 static void numa_node_parse(NumaNodeOptions *node, QemuOpts *opts, Error **errp)
143 {
144 uint16_t nodenr;
145 uint16List *cpus = NULL;
146
147 if (node->has_nodeid) {
148 nodenr = node->nodeid;
149 } else {
150 nodenr = nb_numa_nodes;
151 }
152
153 if (nodenr >= MAX_NODES) {
154 error_setg(errp, "Max number of NUMA nodes reached: %"
155 PRIu16 "", nodenr);
156 return;
157 }
158
159 if (numa_info[nodenr].present) {
160 error_setg(errp, "Duplicate NUMA nodeid: %" PRIu16, nodenr);
161 return;
162 }
163
164 for (cpus = node->cpus; cpus; cpus = cpus->next) {
165 if (cpus->value >= max_cpus) {
166 error_setg(errp,
167 "CPU index (%" PRIu16 ")"
168 " should be smaller than maxcpus (%d)",
169 cpus->value, max_cpus);
170 return;
171 }
172 bitmap_set(numa_info[nodenr].node_cpu, cpus->value, 1);
173 }
174
175 if (node->has_mem && node->has_memdev) {
176 error_setg(errp, "qemu: cannot specify both mem= and memdev=");
177 return;
178 }
179
180 if (have_memdevs == -1) {
181 have_memdevs = node->has_memdev;
182 }
183 if (node->has_memdev != have_memdevs) {
184 error_setg(errp, "qemu: memdev option must be specified for either "
185 "all or no nodes");
186 return;
187 }
188
189 if (node->has_mem) {
190 uint64_t mem_size = node->mem;
191 const char *mem_str = qemu_opt_get(opts, "mem");
192 /* Fix up legacy suffix-less format */
193 if (g_ascii_isdigit(mem_str[strlen(mem_str) - 1])) {
194 mem_size <<= 20;
195 }
196 numa_info[nodenr].node_mem = mem_size;
197 }
198 if (node->has_memdev) {
199 Object *o;
200 o = object_resolve_path_type(node->memdev, TYPE_MEMORY_BACKEND, NULL);
201 if (!o) {
202 error_setg(errp, "memdev=%s is ambiguous", node->memdev);
203 return;
204 }
205
206 object_ref(o);
207 numa_info[nodenr].node_mem = object_property_get_int(o, "size", NULL);
208 numa_info[nodenr].node_memdev = MEMORY_BACKEND(o);
209 }
210 numa_info[nodenr].present = true;
211 max_numa_nodeid = MAX(max_numa_nodeid, nodenr + 1);
212 }
213
214 static int parse_numa(void *opaque, QemuOpts *opts, Error **errp)
215 {
216 NumaOptions *object = NULL;
217 Error *err = NULL;
218
219 {
220 OptsVisitor *ov = opts_visitor_new(opts);
221 visit_type_NumaOptions(opts_get_visitor(ov), &object, NULL, &err);
222 opts_visitor_cleanup(ov);
223 }
224
225 if (err) {
226 goto error;
227 }
228
229 switch (object->type) {
230 case NUMA_OPTIONS_KIND_NODE:
231 numa_node_parse(object->u.node, opts, &err);
232 if (err) {
233 goto error;
234 }
235 nb_numa_nodes++;
236 break;
237 default:
238 abort();
239 }
240
241 return 0;
242
243 error:
244 error_report_err(err);
245
246 if (object) {
247 QapiDeallocVisitor *dv = qapi_dealloc_visitor_new();
248 visit_type_NumaOptions(qapi_dealloc_get_visitor(dv),
249 &object, NULL, NULL);
250 qapi_dealloc_visitor_cleanup(dv);
251 }
252
253 return -1;
254 }
255
256 static char *enumerate_cpus(unsigned long *cpus, int max_cpus)
257 {
258 int cpu;
259 bool first = true;
260 GString *s = g_string_new(NULL);
261
262 for (cpu = find_first_bit(cpus, max_cpus);
263 cpu < max_cpus;
264 cpu = find_next_bit(cpus, max_cpus, cpu + 1)) {
265 g_string_append_printf(s, "%s%d", first ? "" : " ", cpu);
266 first = false;
267 }
268 return g_string_free(s, FALSE);
269 }
270
271 static void validate_numa_cpus(void)
272 {
273 int i;
274 DECLARE_BITMAP(seen_cpus, MAX_CPUMASK_BITS);
275
276 bitmap_zero(seen_cpus, MAX_CPUMASK_BITS);
277 for (i = 0; i < nb_numa_nodes; i++) {
278 if (bitmap_intersects(seen_cpus, numa_info[i].node_cpu,
279 MAX_CPUMASK_BITS)) {
280 bitmap_and(seen_cpus, seen_cpus,
281 numa_info[i].node_cpu, MAX_CPUMASK_BITS);
282 error_report("CPU(s) present in multiple NUMA nodes: %s",
283 enumerate_cpus(seen_cpus, max_cpus));
284 exit(EXIT_FAILURE);
285 }
286 bitmap_or(seen_cpus, seen_cpus,
287 numa_info[i].node_cpu, MAX_CPUMASK_BITS);
288 }
289
290 if (!bitmap_full(seen_cpus, max_cpus)) {
291 char *msg;
292 bitmap_complement(seen_cpus, seen_cpus, max_cpus);
293 msg = enumerate_cpus(seen_cpus, max_cpus);
294 error_report("warning: CPU(s) not present in any NUMA nodes: %s", msg);
295 error_report("warning: All CPU(s) up to maxcpus should be described "
296 "in NUMA config");
297 g_free(msg);
298 }
299 }
300
301 void parse_numa_opts(MachineClass *mc)
302 {
303 int i;
304
305 if (qemu_opts_foreach(qemu_find_opts("numa"), parse_numa, NULL, NULL)) {
306 exit(1);
307 }
308
309 assert(max_numa_nodeid <= MAX_NODES);
310
311 /* No support for sparse NUMA node IDs yet: */
312 for (i = max_numa_nodeid - 1; i >= 0; i--) {
313 /* Report large node IDs first, to make mistakes easier to spot */
314 if (!numa_info[i].present) {
315 error_report("numa: Node ID missing: %d", i);
316 exit(1);
317 }
318 }
319
320 /* This must be always true if all nodes are present: */
321 assert(nb_numa_nodes == max_numa_nodeid);
322
323 if (nb_numa_nodes > 0) {
324 uint64_t numa_total;
325
326 if (nb_numa_nodes > MAX_NODES) {
327 nb_numa_nodes = MAX_NODES;
328 }
329
330 /* If no memory size is given for any node, assume the default case
331 * and distribute the available memory equally across all nodes
332 */
333 for (i = 0; i < nb_numa_nodes; i++) {
334 if (numa_info[i].node_mem != 0) {
335 break;
336 }
337 }
338 if (i == nb_numa_nodes) {
339 uint64_t usedmem = 0;
340
341 /* On Linux, each node's border has to be 8MB aligned,
342 * the final node gets the rest.
343 */
344 for (i = 0; i < nb_numa_nodes - 1; i++) {
345 numa_info[i].node_mem = (ram_size / nb_numa_nodes) &
346 ~((1 << 23UL) - 1);
347 usedmem += numa_info[i].node_mem;
348 }
349 numa_info[i].node_mem = ram_size - usedmem;
350 }
351
352 numa_total = 0;
353 for (i = 0; i < nb_numa_nodes; i++) {
354 numa_total += numa_info[i].node_mem;
355 }
356 if (numa_total != ram_size) {
357 error_report("total memory for NUMA nodes (0x%" PRIx64 ")"
358 " should equal RAM size (0x" RAM_ADDR_FMT ")",
359 numa_total, ram_size);
360 exit(1);
361 }
362
363 for (i = 0; i < nb_numa_nodes; i++) {
364 QLIST_INIT(&numa_info[i].addr);
365 }
366
367 numa_set_mem_ranges();
368
369 for (i = 0; i < nb_numa_nodes; i++) {
370 if (!bitmap_empty(numa_info[i].node_cpu, MAX_CPUMASK_BITS)) {
371 break;
372 }
373 }
374 /* Historically VCPUs were assigned in round-robin order to NUMA
375 * nodes. However it causes issues with guest not handling it nice
376 * in case where cores/threads from a multicore CPU appear on
377 * different nodes. So allow boards to override default distribution
378 * rule grouping VCPUs by socket so that VCPUs from the same socket
379 * would be on the same node.
380 */
381 if (i == nb_numa_nodes) {
382 for (i = 0; i < max_cpus; i++) {
383 unsigned node_id = i % nb_numa_nodes;
384 if (mc->cpu_index_to_socket_id) {
385 node_id = mc->cpu_index_to_socket_id(i) % nb_numa_nodes;
386 }
387
388 set_bit(i, numa_info[node_id].node_cpu);
389 }
390 }
391
392 validate_numa_cpus();
393 } else {
394 numa_set_mem_node_id(0, ram_size, 0);
395 }
396 }
397
398 void numa_post_machine_init(void)
399 {
400 CPUState *cpu;
401 int i;
402
403 CPU_FOREACH(cpu) {
404 for (i = 0; i < nb_numa_nodes; i++) {
405 if (test_bit(cpu->cpu_index, numa_info[i].node_cpu)) {
406 cpu->numa_node = i;
407 }
408 }
409 }
410 }
411
412 static void allocate_system_memory_nonnuma(MemoryRegion *mr, Object *owner,
413 const char *name,
414 uint64_t ram_size)
415 {
416 if (mem_path) {
417 #ifdef __linux__
418 Error *err = NULL;
419 memory_region_init_ram_from_file(mr, owner, name, ram_size, false,
420 mem_path, &err);
421 if (err) {
422 error_report_err(err);
423 if (mem_prealloc) {
424 exit(1);
425 }
426
427 /* Legacy behavior: if allocation failed, fall back to
428 * regular RAM allocation.
429 */
430 memory_region_init_ram(mr, owner, name, ram_size, &error_fatal);
431 }
432 #else
433 fprintf(stderr, "-mem-path not supported on this host\n");
434 exit(1);
435 #endif
436 } else {
437 memory_region_init_ram(mr, owner, name, ram_size, &error_fatal);
438 }
439 vmstate_register_ram_global(mr);
440 }
441
442 void memory_region_allocate_system_memory(MemoryRegion *mr, Object *owner,
443 const char *name,
444 uint64_t ram_size)
445 {
446 uint64_t addr = 0;
447 int i;
448
449 if (nb_numa_nodes == 0 || !have_memdevs) {
450 allocate_system_memory_nonnuma(mr, owner, name, ram_size);
451 return;
452 }
453
454 memory_region_init(mr, owner, name, ram_size);
455 for (i = 0; i < MAX_NODES; i++) {
456 uint64_t size = numa_info[i].node_mem;
457 HostMemoryBackend *backend = numa_info[i].node_memdev;
458 if (!backend) {
459 continue;
460 }
461 MemoryRegion *seg = host_memory_backend_get_memory(backend,
462 &error_fatal);
463
464 if (memory_region_is_mapped(seg)) {
465 char *path = object_get_canonical_path_component(OBJECT(backend));
466 error_report("memory backend %s is used multiple times. Each "
467 "-numa option must use a different memdev value.",
468 path);
469 exit(1);
470 }
471
472 memory_region_add_subregion(mr, addr, seg);
473 vmstate_register_ram_global(seg);
474 addr += size;
475 }
476 }
477
478 static void numa_stat_memory_devices(uint64_t node_mem[])
479 {
480 MemoryDeviceInfoList *info_list = NULL;
481 MemoryDeviceInfoList **prev = &info_list;
482 MemoryDeviceInfoList *info;
483
484 qmp_pc_dimm_device_list(qdev_get_machine(), &prev);
485 for (info = info_list; info; info = info->next) {
486 MemoryDeviceInfo *value = info->value;
487
488 if (value) {
489 switch (value->type) {
490 case MEMORY_DEVICE_INFO_KIND_DIMM:
491 node_mem[value->u.dimm->node] += value->u.dimm->size;
492 break;
493 default:
494 break;
495 }
496 }
497 }
498 qapi_free_MemoryDeviceInfoList(info_list);
499 }
500
501 void query_numa_node_mem(uint64_t node_mem[])
502 {
503 int i;
504
505 if (nb_numa_nodes <= 0) {
506 return;
507 }
508
509 numa_stat_memory_devices(node_mem);
510 for (i = 0; i < nb_numa_nodes; i++) {
511 node_mem[i] += numa_info[i].node_mem;
512 }
513 }
514
515 static int query_memdev(Object *obj, void *opaque)
516 {
517 MemdevList **list = opaque;
518 MemdevList *m = NULL;
519
520 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
521 m = g_malloc0(sizeof(*m));
522
523 m->value = g_malloc0(sizeof(*m->value));
524
525 m->value->size = object_property_get_int(obj, "size",
526 &error_abort);
527 m->value->merge = object_property_get_bool(obj, "merge",
528 &error_abort);
529 m->value->dump = object_property_get_bool(obj, "dump",
530 &error_abort);
531 m->value->prealloc = object_property_get_bool(obj,
532 "prealloc",
533 &error_abort);
534 m->value->policy = object_property_get_enum(obj,
535 "policy",
536 "HostMemPolicy",
537 &error_abort);
538 object_property_get_uint16List(obj, "host-nodes",
539 &m->value->host_nodes,
540 &error_abort);
541
542 m->next = *list;
543 *list = m;
544 }
545
546 return 0;
547 }
548
549 MemdevList *qmp_query_memdev(Error **errp)
550 {
551 Object *obj = object_get_objects_root();
552 MemdevList *list = NULL;
553
554 object_child_foreach(obj, query_memdev, &list);
555 return list;
556 }