]> git.proxmox.com Git - mirror_ovs.git/blob - ofproto/ofproto-dpif-upcall.c
ofproto-dpif-upcall: Remove unused macro MAX_QUEUE_LENGTH.
[mirror_ovs.git] / ofproto / ofproto-dpif-upcall.c
1 /* Copyright (c) 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016 Nicira, Inc.
2 *
3 * Licensed under the Apache License, Version 2.0 (the "License");
4 * you may not use this file except in compliance with the License.
5 * You may obtain a copy of the License at:
6 *
7 * http://www.apache.org/licenses/LICENSE-2.0
8 *
9 * Unless required by applicable law or agreed to in writing, software
10 * distributed under the License is distributed on an "AS IS" BASIS,
11 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 * See the License for the specific language governing permissions and
13 * limitations under the License. */
14
15 #include <config.h>
16 #include "ofproto-dpif-upcall.h"
17
18 #include <errno.h>
19 #include <stdbool.h>
20 #include <inttypes.h>
21
22 #include "connmgr.h"
23 #include "coverage.h"
24 #include "cmap.h"
25 #include "lib/dpif-provider.h"
26 #include "dpif.h"
27 #include "openvswitch/dynamic-string.h"
28 #include "fail-open.h"
29 #include "guarded-list.h"
30 #include "latch.h"
31 #include "openvswitch/list.h"
32 #include "netlink.h"
33 #include "openvswitch/ofpbuf.h"
34 #include "ofproto-dpif-ipfix.h"
35 #include "ofproto-dpif-sflow.h"
36 #include "ofproto-dpif-xlate.h"
37 #include "ofproto-dpif-xlate-cache.h"
38 #include "ofproto-dpif-trace.h"
39 #include "ovs-rcu.h"
40 #include "packets.h"
41 #include "openvswitch/poll-loop.h"
42 #include "seq.h"
43 #include "tunnel.h"
44 #include "unixctl.h"
45 #include "openvswitch/vlog.h"
46 #include "lib/netdev-provider.h"
47
48 #define UPCALL_MAX_BATCH 64
49 #define REVALIDATE_MAX_BATCH 50
50
51 VLOG_DEFINE_THIS_MODULE(ofproto_dpif_upcall);
52
53 COVERAGE_DEFINE(dumped_duplicate_flow);
54 COVERAGE_DEFINE(dumped_new_flow);
55 COVERAGE_DEFINE(handler_duplicate_upcall);
56 COVERAGE_DEFINE(upcall_ukey_contention);
57 COVERAGE_DEFINE(upcall_ukey_replace);
58 COVERAGE_DEFINE(revalidate_missed_dp_flow);
59
60 /* A thread that reads upcalls from dpif, forwards each upcall's packet,
61 * and possibly sets up a kernel flow as a cache. */
62 struct handler {
63 struct udpif *udpif; /* Parent udpif. */
64 pthread_t thread; /* Thread ID. */
65 uint32_t handler_id; /* Handler id. */
66 };
67
68 /* In the absence of a multiple-writer multiple-reader datastructure for
69 * storing udpif_keys ("ukeys"), we use a large number of cmaps, each with its
70 * own lock for writing. */
71 #define N_UMAPS 512 /* per udpif. */
72 struct umap {
73 struct ovs_mutex mutex; /* Take for writing to the following. */
74 struct cmap cmap; /* Datapath flow keys. */
75 };
76
77 /* A thread that processes datapath flows, updates OpenFlow statistics, and
78 * updates or removes them if necessary.
79 *
80 * Revalidator threads operate in two phases: "dump" and "sweep". In between
81 * each phase, all revalidators sync up so that all revalidator threads are
82 * either in one phase or the other, but not a combination.
83 *
84 * During the dump phase, revalidators fetch flows from the datapath and
85 * attribute the statistics to OpenFlow rules. Each datapath flow has a
86 * corresponding ukey which caches the most recently seen statistics. If
87 * a flow needs to be deleted (for example, because it is unused over a
88 * period of time), revalidator threads may delete the flow during the
89 * dump phase. The datapath is not guaranteed to reliably dump all flows
90 * from the datapath, and there is no mapping between datapath flows to
91 * revalidators, so a particular flow may be handled by zero or more
92 * revalidators during a single dump phase. To avoid duplicate attribution
93 * of statistics, ukeys are never deleted during this phase.
94 *
95 * During the sweep phase, each revalidator takes ownership of a different
96 * slice of umaps and sweeps through all ukeys in those umaps to figure out
97 * whether they need to be deleted. During this phase, revalidators may
98 * fetch individual flows which were not dumped during the dump phase to
99 * validate them and attribute statistics.
100 */
101 struct revalidator {
102 struct udpif *udpif; /* Parent udpif. */
103 pthread_t thread; /* Thread ID. */
104 unsigned int id; /* ovsthread_id_self(). */
105 };
106
107 /* An upcall handler for ofproto_dpif.
108 *
109 * udpif keeps records of two kind of logically separate units:
110 *
111 * upcall handling
112 * ---------------
113 *
114 * - An array of 'struct handler's for upcall handling and flow
115 * installation.
116 *
117 * flow revalidation
118 * -----------------
119 *
120 * - Revalidation threads which read the datapath flow table and maintains
121 * them.
122 */
123 struct udpif {
124 struct ovs_list list_node; /* In all_udpifs list. */
125
126 struct dpif *dpif; /* Datapath handle. */
127 struct dpif_backer *backer; /* Opaque dpif_backer pointer. */
128
129 struct handler *handlers; /* Upcall handlers. */
130 size_t n_handlers;
131
132 struct revalidator *revalidators; /* Flow revalidators. */
133 size_t n_revalidators;
134
135 struct latch exit_latch; /* Tells child threads to exit. */
136
137 /* Revalidation. */
138 struct seq *reval_seq; /* Incremented to force revalidation. */
139 bool reval_exit; /* Set by leader on 'exit_latch. */
140 struct ovs_barrier reval_barrier; /* Barrier used by revalidators. */
141 struct dpif_flow_dump *dump; /* DPIF flow dump state. */
142 long long int dump_duration; /* Duration of the last flow dump. */
143 struct seq *dump_seq; /* Increments each dump iteration. */
144 atomic_bool enable_ufid; /* If true, skip dumping flow attrs. */
145
146 /* These variables provide a mechanism for the main thread to pause
147 * all revalidation without having to completely shut the threads down.
148 * 'pause_latch' is shared between the main thread and the lead
149 * revalidator thread, so when it is desirable to halt revalidation, the
150 * main thread will set the latch. 'pause' and 'pause_barrier' are shared
151 * by revalidator threads. The lead revalidator will set 'pause' when it
152 * observes the latch has been set, and this will cause all revalidator
153 * threads to wait on 'pause_barrier' at the beginning of the next
154 * revalidation round. */
155 bool pause; /* Set by leader on 'pause_latch. */
156 struct latch pause_latch; /* Set to force revalidators pause. */
157 struct ovs_barrier pause_barrier; /* Barrier used to pause all */
158 /* revalidators by main thread. */
159
160 /* There are 'N_UMAPS' maps containing 'struct udpif_key' elements.
161 *
162 * During the flow dump phase, revalidators insert into these with a random
163 * distribution. During the garbage collection phase, each revalidator
164 * takes care of garbage collecting a slice of these maps. */
165 struct umap *ukeys;
166
167 /* Datapath flow statistics. */
168 unsigned int max_n_flows;
169 unsigned int avg_n_flows;
170
171 /* Following fields are accessed and modified by different threads. */
172 atomic_uint flow_limit; /* Datapath flow hard limit. */
173
174 /* n_flows_mutex prevents multiple threads updating these concurrently. */
175 atomic_uint n_flows; /* Number of flows in the datapath. */
176 atomic_llong n_flows_timestamp; /* Last time n_flows was updated. */
177 struct ovs_mutex n_flows_mutex;
178
179 /* Following fields are accessed and modified only from the main thread. */
180 struct unixctl_conn **conns; /* Connections waiting on dump_seq. */
181 uint64_t conn_seq; /* Corresponds to 'dump_seq' when
182 conns[n_conns-1] was stored. */
183 size_t n_conns; /* Number of connections waiting. */
184
185 long long int offload_rebalance_time; /* Time of last offload rebalance */
186 };
187
188 enum upcall_type {
189 BAD_UPCALL, /* Some kind of bug somewhere. */
190 MISS_UPCALL, /* A flow miss. */
191 SLOW_PATH_UPCALL, /* Slow path upcall. */
192 SFLOW_UPCALL, /* sFlow sample. */
193 FLOW_SAMPLE_UPCALL, /* Per-flow sampling. */
194 IPFIX_UPCALL, /* Per-bridge sampling. */
195 CONTROLLER_UPCALL /* Destined for the controller. */
196 };
197
198 enum reval_result {
199 UKEY_KEEP,
200 UKEY_DELETE,
201 UKEY_MODIFY
202 };
203
204 struct upcall {
205 struct ofproto_dpif *ofproto; /* Parent ofproto. */
206 const struct recirc_id_node *recirc; /* Recirculation context. */
207 bool have_recirc_ref; /* Reference held on recirc ctx? */
208
209 /* The flow and packet are only required to be constant when using
210 * dpif-netdev. If a modification is absolutely necessary, a const cast
211 * may be used with other datapaths. */
212 const struct flow *flow; /* Parsed representation of the packet. */
213 enum odp_key_fitness fitness; /* Fitness of 'flow' relative to ODP key. */
214 const ovs_u128 *ufid; /* Unique identifier for 'flow'. */
215 unsigned pmd_id; /* Datapath poll mode driver id. */
216 const struct dp_packet *packet; /* Packet associated with this upcall. */
217 ofp_port_t ofp_in_port; /* OpenFlow in port, or OFPP_NONE. */
218 uint16_t mru; /* If !0, Maximum receive unit of
219 fragmented IP packet */
220
221 enum upcall_type type; /* Type of the upcall. */
222 const struct nlattr *actions; /* Flow actions in DPIF_UC_ACTION Upcalls. */
223
224 bool xout_initialized; /* True if 'xout' must be uninitialized. */
225 struct xlate_out xout; /* Result of xlate_actions(). */
226 struct ofpbuf odp_actions; /* Datapath actions from xlate_actions(). */
227 struct flow_wildcards wc; /* Dependencies that megaflow must match. */
228 struct ofpbuf put_actions; /* Actions 'put' in the fastpath. */
229
230 struct dpif_ipfix *ipfix; /* IPFIX pointer or NULL. */
231 struct dpif_sflow *sflow; /* SFlow pointer or NULL. */
232
233 struct udpif_key *ukey; /* Revalidator flow cache. */
234 bool ukey_persists; /* Set true to keep 'ukey' beyond the
235 lifetime of this upcall. */
236
237 uint64_t reval_seq; /* udpif->reval_seq at translation time. */
238
239 /* Not used by the upcall callback interface. */
240 const struct nlattr *key; /* Datapath flow key. */
241 size_t key_len; /* Datapath flow key length. */
242 const struct nlattr *out_tun_key; /* Datapath output tunnel key. */
243
244 struct user_action_cookie cookie;
245
246 uint64_t odp_actions_stub[1024 / 8]; /* Stub for odp_actions. */
247 };
248
249 /* Ukeys must transition through these states using transition_ukey(). */
250 enum ukey_state {
251 UKEY_CREATED = 0,
252 UKEY_VISIBLE, /* Ukey is in umap, datapath flow install is queued. */
253 UKEY_OPERATIONAL, /* Ukey is in umap, datapath flow is installed. */
254 UKEY_EVICTING, /* Ukey is in umap, datapath flow delete is queued. */
255 UKEY_EVICTED, /* Ukey is in umap, datapath flow is deleted. */
256 UKEY_DELETED, /* Ukey removed from umap, ukey free is deferred. */
257 };
258 #define N_UKEY_STATES (UKEY_DELETED + 1)
259
260 /* 'udpif_key's are responsible for tracking the little bit of state udpif
261 * needs to do flow expiration which can't be pulled directly from the
262 * datapath. They may be created by any handler or revalidator thread at any
263 * time, and read by any revalidator during the dump phase. They are however
264 * each owned by a single revalidator which takes care of destroying them
265 * during the garbage-collection phase.
266 *
267 * The mutex within the ukey protects some members of the ukey. The ukey
268 * itself is protected by RCU and is held within a umap in the parent udpif.
269 * Adding or removing a ukey from a umap is only safe when holding the
270 * corresponding umap lock. */
271 struct udpif_key {
272 struct cmap_node cmap_node; /* In parent revalidator 'ukeys' map. */
273
274 /* These elements are read only once created, and therefore aren't
275 * protected by a mutex. */
276 const struct nlattr *key; /* Datapath flow key. */
277 size_t key_len; /* Length of 'key'. */
278 const struct nlattr *mask; /* Datapath flow mask. */
279 size_t mask_len; /* Length of 'mask'. */
280 ovs_u128 ufid; /* Unique flow identifier. */
281 bool ufid_present; /* True if 'ufid' is in datapath. */
282 uint32_t hash; /* Pre-computed hash for 'key'. */
283 unsigned pmd_id; /* Datapath poll mode driver id. */
284
285 struct ovs_mutex mutex; /* Guards the following. */
286 struct dpif_flow_stats stats OVS_GUARDED; /* Last known stats.*/
287 long long int created OVS_GUARDED; /* Estimate of creation time. */
288 uint64_t dump_seq OVS_GUARDED; /* Tracks udpif->dump_seq. */
289 uint64_t reval_seq OVS_GUARDED; /* Tracks udpif->reval_seq. */
290 enum ukey_state state OVS_GUARDED; /* Tracks ukey lifetime. */
291
292 /* 'state' debug information. */
293 unsigned int state_thread OVS_GUARDED; /* Thread that transitions. */
294 const char *state_where OVS_GUARDED; /* transition_ukey() locator. */
295
296 /* Datapath flow actions as nlattrs. Protected by RCU. Read with
297 * ukey_get_actions(), and write with ukey_set_actions(). */
298 OVSRCU_TYPE(struct ofpbuf *) actions;
299
300 struct xlate_cache *xcache OVS_GUARDED; /* Cache for xlate entries that
301 * are affected by this ukey.
302 * Used for stats and learning.*/
303 union {
304 struct odputil_keybuf buf;
305 struct nlattr nla;
306 } keybuf, maskbuf;
307
308 uint32_t key_recirc_id; /* Non-zero if reference is held by the ukey. */
309 struct recirc_refs recircs; /* Action recirc IDs with references held. */
310
311 #define OFFL_REBAL_INTVL_MSEC 3000 /* dynamic offload rebalance freq */
312 struct netdev *in_netdev; /* in_odp_port's netdev */
313 bool offloaded; /* True if flow is offloaded */
314 uint64_t flow_pps_rate; /* Packets-Per-Second rate */
315 long long int flow_time; /* last pps update time */
316 uint64_t flow_packets; /* #pkts seen in interval */
317 uint64_t flow_backlog_packets; /* prev-mode #pkts (offl or kernel) */
318 };
319
320 /* Datapath operation with optional ukey attached. */
321 struct ukey_op {
322 struct udpif_key *ukey;
323 struct dpif_flow_stats stats; /* Stats for 'op'. */
324 struct dpif_op dop; /* Flow operation. */
325 };
326
327 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
328 static struct ovs_list all_udpifs = OVS_LIST_INITIALIZER(&all_udpifs);
329
330 static size_t recv_upcalls(struct handler *);
331 static int process_upcall(struct udpif *, struct upcall *,
332 struct ofpbuf *odp_actions, struct flow_wildcards *);
333 static void handle_upcalls(struct udpif *, struct upcall *, size_t n_upcalls);
334 static void udpif_stop_threads(struct udpif *);
335 static void udpif_start_threads(struct udpif *, size_t n_handlers,
336 size_t n_revalidators);
337 static void udpif_pause_revalidators(struct udpif *);
338 static void udpif_resume_revalidators(struct udpif *);
339 static void *udpif_upcall_handler(void *);
340 static void *udpif_revalidator(void *);
341 static unsigned long udpif_get_n_flows(struct udpif *);
342 static void revalidate(struct revalidator *);
343 static void revalidator_pause(struct revalidator *);
344 static void revalidator_sweep(struct revalidator *);
345 static void revalidator_purge(struct revalidator *);
346 static void upcall_unixctl_show(struct unixctl_conn *conn, int argc,
347 const char *argv[], void *aux);
348 static void upcall_unixctl_disable_megaflows(struct unixctl_conn *, int argc,
349 const char *argv[], void *aux);
350 static void upcall_unixctl_enable_megaflows(struct unixctl_conn *, int argc,
351 const char *argv[], void *aux);
352 static void upcall_unixctl_disable_ufid(struct unixctl_conn *, int argc,
353 const char *argv[], void *aux);
354 static void upcall_unixctl_enable_ufid(struct unixctl_conn *, int argc,
355 const char *argv[], void *aux);
356 static void upcall_unixctl_set_flow_limit(struct unixctl_conn *conn, int argc,
357 const char *argv[], void *aux);
358 static void upcall_unixctl_dump_wait(struct unixctl_conn *conn, int argc,
359 const char *argv[], void *aux);
360 static void upcall_unixctl_purge(struct unixctl_conn *conn, int argc,
361 const char *argv[], void *aux);
362
363 static struct udpif_key *ukey_create_from_upcall(struct upcall *,
364 struct flow_wildcards *);
365 static int ukey_create_from_dpif_flow(const struct udpif *,
366 const struct dpif_flow *,
367 struct udpif_key **);
368 static void ukey_get_actions(struct udpif_key *, const struct nlattr **actions,
369 size_t *size);
370 static bool ukey_install__(struct udpif *, struct udpif_key *ukey)
371 OVS_TRY_LOCK(true, ukey->mutex);
372 static bool ukey_install(struct udpif *udpif, struct udpif_key *ukey);
373 static void transition_ukey_at(struct udpif_key *ukey, enum ukey_state dst,
374 const char *where)
375 OVS_REQUIRES(ukey->mutex);
376 #define transition_ukey(UKEY, DST) \
377 transition_ukey_at(UKEY, DST, OVS_SOURCE_LOCATOR)
378 static struct udpif_key *ukey_lookup(struct udpif *udpif,
379 const ovs_u128 *ufid,
380 const unsigned pmd_id);
381 static int ukey_acquire(struct udpif *, const struct dpif_flow *,
382 struct udpif_key **result, int *error);
383 static void ukey_delete__(struct udpif_key *);
384 static void ukey_delete(struct umap *, struct udpif_key *);
385 static enum upcall_type classify_upcall(enum dpif_upcall_type type,
386 const struct nlattr *userdata,
387 struct user_action_cookie *cookie);
388
389 static void put_op_init(struct ukey_op *op, struct udpif_key *ukey,
390 enum dpif_flow_put_flags flags);
391 static void delete_op_init(struct udpif *udpif, struct ukey_op *op,
392 struct udpif_key *ukey);
393
394 static int upcall_receive(struct upcall *, const struct dpif_backer *,
395 const struct dp_packet *packet, enum dpif_upcall_type,
396 const struct nlattr *userdata, const struct flow *,
397 const unsigned int mru,
398 const ovs_u128 *ufid, const unsigned pmd_id);
399 static void upcall_uninit(struct upcall *);
400
401 static void udpif_flow_rebalance(struct udpif *udpif);
402 static int udpif_flow_program(struct udpif *udpif, struct udpif_key *ukey,
403 enum dpif_offload_type offload_type);
404 static int udpif_flow_unprogram(struct udpif *udpif, struct udpif_key *ukey,
405 enum dpif_offload_type offload_type);
406
407 static upcall_callback upcall_cb;
408 static dp_purge_callback dp_purge_cb;
409
410 static atomic_bool enable_megaflows = ATOMIC_VAR_INIT(true);
411 static atomic_bool enable_ufid = ATOMIC_VAR_INIT(true);
412
413 void
414 udpif_init(void)
415 {
416 static struct ovsthread_once once = OVSTHREAD_ONCE_INITIALIZER;
417 if (ovsthread_once_start(&once)) {
418 unixctl_command_register("upcall/show", "", 0, 0, upcall_unixctl_show,
419 NULL);
420 unixctl_command_register("upcall/disable-megaflows", "", 0, 0,
421 upcall_unixctl_disable_megaflows, NULL);
422 unixctl_command_register("upcall/enable-megaflows", "", 0, 0,
423 upcall_unixctl_enable_megaflows, NULL);
424 unixctl_command_register("upcall/disable-ufid", "", 0, 0,
425 upcall_unixctl_disable_ufid, NULL);
426 unixctl_command_register("upcall/enable-ufid", "", 0, 0,
427 upcall_unixctl_enable_ufid, NULL);
428 unixctl_command_register("upcall/set-flow-limit", "flow-limit-number",
429 1, 1, upcall_unixctl_set_flow_limit, NULL);
430 unixctl_command_register("revalidator/wait", "", 0, 0,
431 upcall_unixctl_dump_wait, NULL);
432 unixctl_command_register("revalidator/purge", "", 0, 0,
433 upcall_unixctl_purge, NULL);
434 ovsthread_once_done(&once);
435 }
436 }
437
438 struct udpif *
439 udpif_create(struct dpif_backer *backer, struct dpif *dpif)
440 {
441 struct udpif *udpif = xzalloc(sizeof *udpif);
442
443 udpif->dpif = dpif;
444 udpif->backer = backer;
445 atomic_init(&udpif->flow_limit, MIN(ofproto_flow_limit, 10000));
446 udpif->reval_seq = seq_create();
447 udpif->dump_seq = seq_create();
448 latch_init(&udpif->exit_latch);
449 latch_init(&udpif->pause_latch);
450 ovs_list_push_back(&all_udpifs, &udpif->list_node);
451 atomic_init(&udpif->enable_ufid, false);
452 atomic_init(&udpif->n_flows, 0);
453 atomic_init(&udpif->n_flows_timestamp, LLONG_MIN);
454 ovs_mutex_init(&udpif->n_flows_mutex);
455 udpif->ukeys = xmalloc(N_UMAPS * sizeof *udpif->ukeys);
456 for (int i = 0; i < N_UMAPS; i++) {
457 cmap_init(&udpif->ukeys[i].cmap);
458 ovs_mutex_init(&udpif->ukeys[i].mutex);
459 }
460
461 dpif_register_upcall_cb(dpif, upcall_cb, udpif);
462 dpif_register_dp_purge_cb(dpif, dp_purge_cb, udpif);
463
464 return udpif;
465 }
466
467 void
468 udpif_run(struct udpif *udpif)
469 {
470 if (udpif->conns && udpif->conn_seq != seq_read(udpif->dump_seq)) {
471 int i;
472
473 for (i = 0; i < udpif->n_conns; i++) {
474 unixctl_command_reply(udpif->conns[i], NULL);
475 }
476 free(udpif->conns);
477 udpif->conns = NULL;
478 udpif->n_conns = 0;
479 }
480 }
481
482 void
483 udpif_destroy(struct udpif *udpif)
484 {
485 udpif_stop_threads(udpif);
486
487 dpif_register_dp_purge_cb(udpif->dpif, NULL, udpif);
488 dpif_register_upcall_cb(udpif->dpif, NULL, udpif);
489
490 for (int i = 0; i < N_UMAPS; i++) {
491 cmap_destroy(&udpif->ukeys[i].cmap);
492 ovs_mutex_destroy(&udpif->ukeys[i].mutex);
493 }
494 free(udpif->ukeys);
495 udpif->ukeys = NULL;
496
497 ovs_list_remove(&udpif->list_node);
498 latch_destroy(&udpif->exit_latch);
499 latch_destroy(&udpif->pause_latch);
500 seq_destroy(udpif->reval_seq);
501 seq_destroy(udpif->dump_seq);
502 ovs_mutex_destroy(&udpif->n_flows_mutex);
503 free(udpif);
504 }
505
506 /* Stops the handler and revalidator threads. */
507 static void
508 udpif_stop_threads(struct udpif *udpif)
509 {
510 if (udpif && (udpif->n_handlers != 0 || udpif->n_revalidators != 0)) {
511 size_t i;
512
513 /* Tell the threads to exit. */
514 latch_set(&udpif->exit_latch);
515
516 /* Wait for the threads to exit. Quiesce because this can take a long
517 * time.. */
518 ovsrcu_quiesce_start();
519 for (i = 0; i < udpif->n_handlers; i++) {
520 xpthread_join(udpif->handlers[i].thread, NULL);
521 }
522 for (i = 0; i < udpif->n_revalidators; i++) {
523 xpthread_join(udpif->revalidators[i].thread, NULL);
524 }
525 dpif_disable_upcall(udpif->dpif);
526 ovsrcu_quiesce_end();
527
528 /* Delete ukeys, and delete all flows from the datapath to prevent
529 * double-counting stats. */
530 for (i = 0; i < udpif->n_revalidators; i++) {
531 revalidator_purge(&udpif->revalidators[i]);
532 }
533
534 latch_poll(&udpif->exit_latch);
535
536 ovs_barrier_destroy(&udpif->reval_barrier);
537 ovs_barrier_destroy(&udpif->pause_barrier);
538
539 free(udpif->revalidators);
540 udpif->revalidators = NULL;
541 udpif->n_revalidators = 0;
542
543 free(udpif->handlers);
544 udpif->handlers = NULL;
545 udpif->n_handlers = 0;
546 }
547 }
548
549 /* Starts the handler and revalidator threads. */
550 static void
551 udpif_start_threads(struct udpif *udpif, size_t n_handlers_,
552 size_t n_revalidators_)
553 {
554 if (udpif && n_handlers_ && n_revalidators_) {
555 /* Creating a thread can take a significant amount of time on some
556 * systems, even hundred of milliseconds, so quiesce around it. */
557 ovsrcu_quiesce_start();
558
559 udpif->n_handlers = n_handlers_;
560 udpif->n_revalidators = n_revalidators_;
561
562 udpif->handlers = xzalloc(udpif->n_handlers * sizeof *udpif->handlers);
563 for (size_t i = 0; i < udpif->n_handlers; i++) {
564 struct handler *handler = &udpif->handlers[i];
565
566 handler->udpif = udpif;
567 handler->handler_id = i;
568 handler->thread = ovs_thread_create(
569 "handler", udpif_upcall_handler, handler);
570 }
571
572 atomic_init(&udpif->enable_ufid, udpif->backer->rt_support.ufid);
573 dpif_enable_upcall(udpif->dpif);
574
575 ovs_barrier_init(&udpif->reval_barrier, udpif->n_revalidators);
576 ovs_barrier_init(&udpif->pause_barrier, udpif->n_revalidators + 1);
577 udpif->reval_exit = false;
578 udpif->pause = false;
579 udpif->offload_rebalance_time = time_msec();
580 udpif->revalidators = xzalloc(udpif->n_revalidators
581 * sizeof *udpif->revalidators);
582 for (size_t i = 0; i < udpif->n_revalidators; i++) {
583 struct revalidator *revalidator = &udpif->revalidators[i];
584
585 revalidator->udpif = udpif;
586 revalidator->thread = ovs_thread_create(
587 "revalidator", udpif_revalidator, revalidator);
588 }
589 ovsrcu_quiesce_end();
590 }
591 }
592
593 /* Pauses all revalidators. Should only be called by the main thread.
594 * When function returns, all revalidators are paused and will proceed
595 * only after udpif_resume_revalidators() is called. */
596 static void
597 udpif_pause_revalidators(struct udpif *udpif)
598 {
599 if (udpif->backer->recv_set_enable) {
600 latch_set(&udpif->pause_latch);
601 ovs_barrier_block(&udpif->pause_barrier);
602 }
603 }
604
605 /* Resumes the pausing of revalidators. Should only be called by the
606 * main thread. */
607 static void
608 udpif_resume_revalidators(struct udpif *udpif)
609 {
610 if (udpif->backer->recv_set_enable) {
611 latch_poll(&udpif->pause_latch);
612 ovs_barrier_block(&udpif->pause_barrier);
613 }
614 }
615
616 /* Tells 'udpif' how many threads it should use to handle upcalls.
617 * 'n_handlers_' and 'n_revalidators_' can never be zero. 'udpif''s
618 * datapath handle must have packet reception enabled before starting
619 * threads. */
620 void
621 udpif_set_threads(struct udpif *udpif, size_t n_handlers_,
622 size_t n_revalidators_)
623 {
624 ovs_assert(udpif);
625 ovs_assert(n_handlers_ && n_revalidators_);
626
627 if (udpif->n_handlers != n_handlers_
628 || udpif->n_revalidators != n_revalidators_) {
629 udpif_stop_threads(udpif);
630 }
631
632 if (!udpif->handlers && !udpif->revalidators) {
633 int error;
634
635 error = dpif_handlers_set(udpif->dpif, n_handlers_);
636 if (error) {
637 VLOG_ERR("failed to configure handlers in dpif %s: %s",
638 dpif_name(udpif->dpif), ovs_strerror(error));
639 return;
640 }
641
642 udpif_start_threads(udpif, n_handlers_, n_revalidators_);
643 }
644 }
645
646 /* Waits for all ongoing upcall translations to complete. This ensures that
647 * there are no transient references to any removed ofprotos (or other
648 * objects). In particular, this should be called after an ofproto is removed
649 * (e.g. via xlate_remove_ofproto()) but before it is destroyed. */
650 void
651 udpif_synchronize(struct udpif *udpif)
652 {
653 /* This is stronger than necessary. It would be sufficient to ensure
654 * (somehow) that each handler and revalidator thread had passed through
655 * its main loop once. */
656 size_t n_handlers_ = udpif->n_handlers;
657 size_t n_revalidators_ = udpif->n_revalidators;
658
659 udpif_stop_threads(udpif);
660 udpif_start_threads(udpif, n_handlers_, n_revalidators_);
661 }
662
663 /* Notifies 'udpif' that something changed which may render previous
664 * xlate_actions() results invalid. */
665 void
666 udpif_revalidate(struct udpif *udpif)
667 {
668 seq_change(udpif->reval_seq);
669 }
670
671 /* Returns a seq which increments every time 'udpif' pulls stats from the
672 * datapath. Callers can use this to get a sense of when might be a good time
673 * to do periodic work which relies on relatively up to date statistics. */
674 struct seq *
675 udpif_dump_seq(struct udpif *udpif)
676 {
677 return udpif->dump_seq;
678 }
679
680 void
681 udpif_get_memory_usage(struct udpif *udpif, struct simap *usage)
682 {
683 size_t i;
684
685 simap_increase(usage, "handlers", udpif->n_handlers);
686
687 simap_increase(usage, "revalidators", udpif->n_revalidators);
688 for (i = 0; i < N_UMAPS; i++) {
689 simap_increase(usage, "udpif keys", cmap_count(&udpif->ukeys[i].cmap));
690 }
691 }
692
693 /* Remove flows from a single datapath. */
694 void
695 udpif_flush(struct udpif *udpif)
696 {
697 size_t n_handlers_ = udpif->n_handlers;
698 size_t n_revalidators_ = udpif->n_revalidators;
699
700 udpif_stop_threads(udpif);
701 dpif_flow_flush(udpif->dpif);
702 udpif_start_threads(udpif, n_handlers_, n_revalidators_);
703 }
704
705 /* Removes all flows from all datapaths. */
706 static void
707 udpif_flush_all_datapaths(void)
708 {
709 struct udpif *udpif;
710
711 LIST_FOR_EACH (udpif, list_node, &all_udpifs) {
712 udpif_flush(udpif);
713 }
714 }
715
716 static bool
717 udpif_use_ufid(struct udpif *udpif)
718 {
719 bool enable;
720
721 atomic_read_relaxed(&enable_ufid, &enable);
722 return enable && udpif->backer->rt_support.ufid;
723 }
724
725 \f
726 static unsigned long
727 udpif_get_n_flows(struct udpif *udpif)
728 {
729 long long int time, now;
730 unsigned long flow_count;
731
732 now = time_msec();
733 atomic_read_relaxed(&udpif->n_flows_timestamp, &time);
734 if (time < now - 100 && !ovs_mutex_trylock(&udpif->n_flows_mutex)) {
735 struct dpif_dp_stats stats;
736
737 atomic_store_relaxed(&udpif->n_flows_timestamp, now);
738 dpif_get_dp_stats(udpif->dpif, &stats);
739 flow_count = stats.n_flows;
740 atomic_store_relaxed(&udpif->n_flows, flow_count);
741 ovs_mutex_unlock(&udpif->n_flows_mutex);
742 } else {
743 atomic_read_relaxed(&udpif->n_flows, &flow_count);
744 }
745 return flow_count;
746 }
747
748 /* The upcall handler thread tries to read a batch of UPCALL_MAX_BATCH
749 * upcalls from dpif, processes the batch and installs corresponding flows
750 * in dpif. */
751 static void *
752 udpif_upcall_handler(void *arg)
753 {
754 struct handler *handler = arg;
755 struct udpif *udpif = handler->udpif;
756
757 while (!latch_is_set(&handler->udpif->exit_latch)) {
758 if (recv_upcalls(handler)) {
759 poll_immediate_wake();
760 } else {
761 dpif_recv_wait(udpif->dpif, handler->handler_id);
762 latch_wait(&udpif->exit_latch);
763 }
764 poll_block();
765 }
766
767 return NULL;
768 }
769
770 static size_t
771 recv_upcalls(struct handler *handler)
772 {
773 struct udpif *udpif = handler->udpif;
774 uint64_t recv_stubs[UPCALL_MAX_BATCH][512 / 8];
775 struct ofpbuf recv_bufs[UPCALL_MAX_BATCH];
776 struct dpif_upcall dupcalls[UPCALL_MAX_BATCH];
777 struct upcall upcalls[UPCALL_MAX_BATCH];
778 struct flow flows[UPCALL_MAX_BATCH];
779 size_t n_upcalls, i;
780
781 n_upcalls = 0;
782 while (n_upcalls < UPCALL_MAX_BATCH) {
783 struct ofpbuf *recv_buf = &recv_bufs[n_upcalls];
784 struct dpif_upcall *dupcall = &dupcalls[n_upcalls];
785 struct upcall *upcall = &upcalls[n_upcalls];
786 struct flow *flow = &flows[n_upcalls];
787 unsigned int mru;
788 int error;
789
790 ofpbuf_use_stub(recv_buf, recv_stubs[n_upcalls],
791 sizeof recv_stubs[n_upcalls]);
792 if (dpif_recv(udpif->dpif, handler->handler_id, dupcall, recv_buf)) {
793 ofpbuf_uninit(recv_buf);
794 break;
795 }
796
797 upcall->fitness = odp_flow_key_to_flow(dupcall->key, dupcall->key_len,
798 flow, NULL);
799 if (upcall->fitness == ODP_FIT_ERROR) {
800 goto free_dupcall;
801 }
802
803 if (dupcall->mru) {
804 mru = nl_attr_get_u16(dupcall->mru);
805 } else {
806 mru = 0;
807 }
808
809 error = upcall_receive(upcall, udpif->backer, &dupcall->packet,
810 dupcall->type, dupcall->userdata, flow, mru,
811 &dupcall->ufid, PMD_ID_NULL);
812 if (error) {
813 if (error == ENODEV) {
814 /* Received packet on datapath port for which we couldn't
815 * associate an ofproto. This can happen if a port is removed
816 * while traffic is being received. Print a rate-limited
817 * message in case it happens frequently. */
818 dpif_flow_put(udpif->dpif, DPIF_FP_CREATE, dupcall->key,
819 dupcall->key_len, NULL, 0, NULL, 0,
820 &dupcall->ufid, PMD_ID_NULL, NULL);
821 VLOG_INFO_RL(&rl, "received packet on unassociated datapath "
822 "port %"PRIu32, flow->in_port.odp_port);
823 }
824 goto free_dupcall;
825 }
826
827 upcall->key = dupcall->key;
828 upcall->key_len = dupcall->key_len;
829 upcall->ufid = &dupcall->ufid;
830
831 upcall->out_tun_key = dupcall->out_tun_key;
832 upcall->actions = dupcall->actions;
833
834 pkt_metadata_from_flow(&dupcall->packet.md, flow);
835 flow_extract(&dupcall->packet, flow);
836
837 error = process_upcall(udpif, upcall,
838 &upcall->odp_actions, &upcall->wc);
839 if (error) {
840 goto cleanup;
841 }
842
843 n_upcalls++;
844 continue;
845
846 cleanup:
847 upcall_uninit(upcall);
848 free_dupcall:
849 dp_packet_uninit(&dupcall->packet);
850 ofpbuf_uninit(recv_buf);
851 }
852
853 if (n_upcalls) {
854 handle_upcalls(handler->udpif, upcalls, n_upcalls);
855 for (i = 0; i < n_upcalls; i++) {
856 dp_packet_uninit(&dupcalls[i].packet);
857 ofpbuf_uninit(&recv_bufs[i]);
858 upcall_uninit(&upcalls[i]);
859 }
860 }
861
862 return n_upcalls;
863 }
864
865 static void
866 udpif_run_flow_rebalance(struct udpif *udpif)
867 {
868 long long int now = 0;
869
870 /* Don't rebalance if OFFL_REBAL_INTVL_MSEC have not elapsed */
871 now = time_msec();
872 if (now < udpif->offload_rebalance_time + OFFL_REBAL_INTVL_MSEC) {
873 return;
874 }
875
876 if (!netdev_any_oor()) {
877 return;
878 }
879
880 VLOG_DBG("Offload rebalance: Found OOR netdevs");
881 udpif->offload_rebalance_time = now;
882 udpif_flow_rebalance(udpif);
883 }
884
885 static void *
886 udpif_revalidator(void *arg)
887 {
888 /* Used by all revalidators. */
889 struct revalidator *revalidator = arg;
890 struct udpif *udpif = revalidator->udpif;
891 bool leader = revalidator == &udpif->revalidators[0];
892
893 /* Used only by the leader. */
894 long long int start_time = 0;
895 uint64_t last_reval_seq = 0;
896 size_t n_flows = 0;
897
898 revalidator->id = ovsthread_id_self();
899 for (;;) {
900 if (leader) {
901 uint64_t reval_seq;
902
903 recirc_run(); /* Recirculation cleanup. */
904
905 reval_seq = seq_read(udpif->reval_seq);
906 last_reval_seq = reval_seq;
907
908 n_flows = udpif_get_n_flows(udpif);
909 udpif->max_n_flows = MAX(n_flows, udpif->max_n_flows);
910 udpif->avg_n_flows = (udpif->avg_n_flows + n_flows) / 2;
911
912 /* Only the leader checks the pause latch to prevent a race where
913 * some threads think it's false and proceed to block on
914 * reval_barrier and others think it's true and block indefinitely
915 * on the pause_barrier */
916 udpif->pause = latch_is_set(&udpif->pause_latch);
917
918 /* Only the leader checks the exit latch to prevent a race where
919 * some threads think it's true and exit and others think it's
920 * false and block indefinitely on the reval_barrier */
921 udpif->reval_exit = latch_is_set(&udpif->exit_latch);
922
923 start_time = time_msec();
924 if (!udpif->reval_exit) {
925 bool terse_dump;
926
927 terse_dump = udpif_use_ufid(udpif);
928 udpif->dump = dpif_flow_dump_create(udpif->dpif, terse_dump,
929 NULL);
930 }
931 }
932
933 /* Wait for the leader to start the flow dump. */
934 ovs_barrier_block(&udpif->reval_barrier);
935 if (udpif->pause) {
936 revalidator_pause(revalidator);
937 }
938
939 if (udpif->reval_exit) {
940 break;
941 }
942 revalidate(revalidator);
943
944 /* Wait for all flows to have been dumped before we garbage collect. */
945 ovs_barrier_block(&udpif->reval_barrier);
946 revalidator_sweep(revalidator);
947
948 /* Wait for all revalidators to finish garbage collection. */
949 ovs_barrier_block(&udpif->reval_barrier);
950
951 if (leader) {
952 unsigned int flow_limit;
953 long long int duration;
954
955 atomic_read_relaxed(&udpif->flow_limit, &flow_limit);
956
957 dpif_flow_dump_destroy(udpif->dump);
958 seq_change(udpif->dump_seq);
959 if (netdev_is_offload_rebalance_policy_enabled()) {
960 udpif_run_flow_rebalance(udpif);
961 }
962
963 duration = MAX(time_msec() - start_time, 1);
964 udpif->dump_duration = duration;
965 if (duration > 2000) {
966 flow_limit /= duration / 1000;
967 } else if (duration > 1300) {
968 flow_limit = flow_limit * 3 / 4;
969 } else if (duration < 1000 &&
970 flow_limit < n_flows * 1000 / duration) {
971 flow_limit += 1000;
972 }
973 flow_limit = MIN(ofproto_flow_limit, MAX(flow_limit, 1000));
974 atomic_store_relaxed(&udpif->flow_limit, flow_limit);
975
976 if (duration > 2000) {
977 VLOG_INFO("Spent an unreasonably long %lldms dumping flows",
978 duration);
979 }
980
981 poll_timer_wait_until(start_time + MIN(ofproto_max_idle, 500));
982 seq_wait(udpif->reval_seq, last_reval_seq);
983 latch_wait(&udpif->exit_latch);
984 latch_wait(&udpif->pause_latch);
985 poll_block();
986
987 if (!latch_is_set(&udpif->pause_latch) &&
988 !latch_is_set(&udpif->exit_latch)) {
989 long long int now = time_msec();
990 /* Block again if we are woken up within 5ms of the last start
991 * time. */
992 start_time += 5;
993
994 if (now < start_time) {
995 poll_timer_wait_until(start_time);
996 latch_wait(&udpif->exit_latch);
997 latch_wait(&udpif->pause_latch);
998 poll_block();
999 }
1000 }
1001 }
1002 }
1003
1004 return NULL;
1005 }
1006 \f
1007 static enum upcall_type
1008 classify_upcall(enum dpif_upcall_type type, const struct nlattr *userdata,
1009 struct user_action_cookie *cookie)
1010 {
1011 /* First look at the upcall type. */
1012 switch (type) {
1013 case DPIF_UC_ACTION:
1014 break;
1015
1016 case DPIF_UC_MISS:
1017 return MISS_UPCALL;
1018
1019 case DPIF_N_UC_TYPES:
1020 default:
1021 VLOG_WARN_RL(&rl, "upcall has unexpected type %"PRIu32, type);
1022 return BAD_UPCALL;
1023 }
1024
1025 /* "action" upcalls need a closer look. */
1026 if (!userdata) {
1027 VLOG_WARN_RL(&rl, "action upcall missing cookie");
1028 return BAD_UPCALL;
1029 }
1030
1031 size_t userdata_len = nl_attr_get_size(userdata);
1032 if (userdata_len != sizeof *cookie) {
1033 VLOG_WARN_RL(&rl, "action upcall cookie has unexpected size %"PRIuSIZE,
1034 userdata_len);
1035 return BAD_UPCALL;
1036 }
1037 memcpy(cookie, nl_attr_get(userdata), sizeof *cookie);
1038 if (cookie->type == USER_ACTION_COOKIE_SFLOW) {
1039 return SFLOW_UPCALL;
1040 } else if (cookie->type == USER_ACTION_COOKIE_SLOW_PATH) {
1041 return SLOW_PATH_UPCALL;
1042 } else if (cookie->type == USER_ACTION_COOKIE_FLOW_SAMPLE) {
1043 return FLOW_SAMPLE_UPCALL;
1044 } else if (cookie->type == USER_ACTION_COOKIE_IPFIX) {
1045 return IPFIX_UPCALL;
1046 } else if (cookie->type == USER_ACTION_COOKIE_CONTROLLER) {
1047 return CONTROLLER_UPCALL;
1048 } else {
1049 VLOG_WARN_RL(&rl, "invalid user cookie of type %"PRIu16
1050 " and size %"PRIuSIZE, cookie->type, userdata_len);
1051 return BAD_UPCALL;
1052 }
1053 }
1054
1055 /* Calculates slow path actions for 'xout'. 'buf' must statically be
1056 * initialized with at least 128 bytes of space. */
1057 static void
1058 compose_slow_path(struct udpif *udpif, struct xlate_out *xout,
1059 odp_port_t odp_in_port, ofp_port_t ofp_in_port,
1060 struct ofpbuf *buf, uint32_t meter_id,
1061 struct uuid *ofproto_uuid)
1062 {
1063 struct user_action_cookie cookie;
1064 odp_port_t port;
1065 uint32_t pid;
1066
1067 cookie.type = USER_ACTION_COOKIE_SLOW_PATH;
1068 cookie.ofp_in_port = ofp_in_port;
1069 cookie.ofproto_uuid = *ofproto_uuid;
1070 cookie.slow_path.reason = xout->slow;
1071
1072 port = xout->slow & (SLOW_CFM | SLOW_BFD | SLOW_LACP | SLOW_STP)
1073 ? ODPP_NONE
1074 : odp_in_port;
1075 pid = dpif_port_get_pid(udpif->dpif, port);
1076
1077 size_t offset;
1078 size_t ac_offset;
1079 if (meter_id != UINT32_MAX) {
1080 /* If slowpath meter is configured, generate clone(meter, userspace)
1081 * action. */
1082 offset = nl_msg_start_nested(buf, OVS_ACTION_ATTR_SAMPLE);
1083 nl_msg_put_u32(buf, OVS_SAMPLE_ATTR_PROBABILITY, UINT32_MAX);
1084 ac_offset = nl_msg_start_nested(buf, OVS_SAMPLE_ATTR_ACTIONS);
1085 nl_msg_put_u32(buf, OVS_ACTION_ATTR_METER, meter_id);
1086 }
1087
1088 odp_put_userspace_action(pid, &cookie, sizeof cookie,
1089 ODPP_NONE, false, buf);
1090
1091 if (meter_id != UINT32_MAX) {
1092 nl_msg_end_nested(buf, ac_offset);
1093 nl_msg_end_nested(buf, offset);
1094 }
1095 }
1096
1097 /* If there is no error, the upcall must be destroyed with upcall_uninit()
1098 * before quiescing, as the referred objects are guaranteed to exist only
1099 * until the calling thread quiesces. Otherwise, do not call upcall_uninit()
1100 * since the 'upcall->put_actions' remains uninitialized. */
1101 static int
1102 upcall_receive(struct upcall *upcall, const struct dpif_backer *backer,
1103 const struct dp_packet *packet, enum dpif_upcall_type type,
1104 const struct nlattr *userdata, const struct flow *flow,
1105 const unsigned int mru,
1106 const ovs_u128 *ufid, const unsigned pmd_id)
1107 {
1108 int error;
1109
1110 upcall->type = classify_upcall(type, userdata, &upcall->cookie);
1111 if (upcall->type == BAD_UPCALL) {
1112 return EAGAIN;
1113 } else if (upcall->type == MISS_UPCALL) {
1114 error = xlate_lookup(backer, flow, &upcall->ofproto, &upcall->ipfix,
1115 &upcall->sflow, NULL, &upcall->ofp_in_port);
1116 if (error) {
1117 return error;
1118 }
1119 } else {
1120 struct ofproto_dpif *ofproto
1121 = ofproto_dpif_lookup_by_uuid(&upcall->cookie.ofproto_uuid);
1122 if (!ofproto) {
1123 VLOG_INFO_RL(&rl, "upcall could not find ofproto");
1124 return ENODEV;
1125 }
1126 upcall->ofproto = ofproto;
1127 upcall->ipfix = ofproto->ipfix;
1128 upcall->sflow = ofproto->sflow;
1129 upcall->ofp_in_port = upcall->cookie.ofp_in_port;
1130 }
1131
1132 upcall->recirc = NULL;
1133 upcall->have_recirc_ref = false;
1134 upcall->flow = flow;
1135 upcall->packet = packet;
1136 upcall->ufid = ufid;
1137 upcall->pmd_id = pmd_id;
1138 ofpbuf_use_stub(&upcall->odp_actions, upcall->odp_actions_stub,
1139 sizeof upcall->odp_actions_stub);
1140 ofpbuf_init(&upcall->put_actions, 0);
1141
1142 upcall->xout_initialized = false;
1143 upcall->ukey_persists = false;
1144
1145 upcall->ukey = NULL;
1146 upcall->key = NULL;
1147 upcall->key_len = 0;
1148 upcall->mru = mru;
1149
1150 upcall->out_tun_key = NULL;
1151 upcall->actions = NULL;
1152
1153 return 0;
1154 }
1155
1156 static void
1157 upcall_xlate(struct udpif *udpif, struct upcall *upcall,
1158 struct ofpbuf *odp_actions, struct flow_wildcards *wc)
1159 {
1160 struct dpif_flow_stats stats;
1161 enum xlate_error xerr;
1162 struct xlate_in xin;
1163 struct ds output;
1164
1165 stats.n_packets = 1;
1166 stats.n_bytes = dp_packet_size(upcall->packet);
1167 stats.used = time_msec();
1168 stats.tcp_flags = ntohs(upcall->flow->tcp_flags);
1169
1170 xlate_in_init(&xin, upcall->ofproto,
1171 ofproto_dpif_get_tables_version(upcall->ofproto),
1172 upcall->flow, upcall->ofp_in_port, NULL,
1173 stats.tcp_flags, upcall->packet, wc, odp_actions);
1174
1175 if (upcall->type == MISS_UPCALL) {
1176 xin.resubmit_stats = &stats;
1177
1178 if (xin.frozen_state) {
1179 /* We may install a datapath flow only if we get a reference to the
1180 * recirculation context (otherwise we could have recirculation
1181 * upcalls using recirculation ID for which no context can be
1182 * found). We may still execute the flow's actions even if we
1183 * don't install the flow. */
1184 upcall->recirc = recirc_id_node_from_state(xin.frozen_state);
1185 upcall->have_recirc_ref = recirc_id_node_try_ref_rcu(upcall->recirc);
1186 }
1187 } else {
1188 /* For non-miss upcalls, we are either executing actions (one of which
1189 * is an userspace action) for an upcall, in which case the stats have
1190 * already been taken care of, or there's a flow in the datapath which
1191 * this packet was accounted to. Presumably the revalidators will deal
1192 * with pushing its stats eventually. */
1193 }
1194
1195 upcall->reval_seq = seq_read(udpif->reval_seq);
1196
1197 xerr = xlate_actions(&xin, &upcall->xout);
1198
1199 /* Translate again and log the ofproto trace for
1200 * these two error types. */
1201 if (xerr == XLATE_RECURSION_TOO_DEEP ||
1202 xerr == XLATE_TOO_MANY_RESUBMITS) {
1203 static struct vlog_rate_limit rll = VLOG_RATE_LIMIT_INIT(1, 1);
1204
1205 /* This is a huge log, so be conservative. */
1206 if (!VLOG_DROP_WARN(&rll)) {
1207 ds_init(&output);
1208 ofproto_trace(upcall->ofproto, upcall->flow,
1209 upcall->packet, NULL, 0, NULL, &output);
1210 VLOG_WARN("%s", ds_cstr(&output));
1211 ds_destroy(&output);
1212 }
1213 }
1214
1215 if (wc) {
1216 /* Convert the input port wildcard from OFP to ODP format. There's no
1217 * real way to do this for arbitrary bitmasks since the numbering spaces
1218 * aren't the same. However, flow translation always exact matches the
1219 * whole thing, so we can do the same here. */
1220 WC_MASK_FIELD(wc, in_port.odp_port);
1221 }
1222
1223 upcall->xout_initialized = true;
1224
1225 if (upcall->fitness == ODP_FIT_TOO_LITTLE) {
1226 upcall->xout.slow |= SLOW_MATCH;
1227 }
1228 if (!upcall->xout.slow) {
1229 ofpbuf_use_const(&upcall->put_actions,
1230 odp_actions->data, odp_actions->size);
1231 } else {
1232 /* upcall->put_actions already initialized by upcall_receive(). */
1233 compose_slow_path(udpif, &upcall->xout,
1234 upcall->flow->in_port.odp_port, upcall->ofp_in_port,
1235 &upcall->put_actions,
1236 upcall->ofproto->up.slowpath_meter_id,
1237 &upcall->ofproto->uuid);
1238 }
1239
1240 /* This function is also called for slow-pathed flows. As we are only
1241 * going to create new datapath flows for actual datapath misses, there is
1242 * no point in creating a ukey otherwise. */
1243 if (upcall->type == MISS_UPCALL) {
1244 upcall->ukey = ukey_create_from_upcall(upcall, wc);
1245 }
1246 }
1247
1248 static void
1249 upcall_uninit(struct upcall *upcall)
1250 {
1251 if (upcall) {
1252 if (upcall->xout_initialized) {
1253 xlate_out_uninit(&upcall->xout);
1254 }
1255 ofpbuf_uninit(&upcall->odp_actions);
1256 ofpbuf_uninit(&upcall->put_actions);
1257 if (upcall->ukey) {
1258 if (!upcall->ukey_persists) {
1259 ukey_delete__(upcall->ukey);
1260 }
1261 } else if (upcall->have_recirc_ref) {
1262 /* The reference was transferred to the ukey if one was created. */
1263 recirc_id_node_unref(upcall->recirc);
1264 }
1265 }
1266 }
1267
1268 /* If there are less flows than the limit, and this is a miss upcall which
1269 *
1270 * - Has no recirc_id, OR
1271 * - Has a recirc_id and we can get a reference on the recirc ctx,
1272 *
1273 * Then we should install the flow (true). Otherwise, return false. */
1274 static bool
1275 should_install_flow(struct udpif *udpif, struct upcall *upcall)
1276 {
1277 unsigned int flow_limit;
1278
1279 if (upcall->type != MISS_UPCALL) {
1280 return false;
1281 } else if (upcall->recirc && !upcall->have_recirc_ref) {
1282 VLOG_DBG_RL(&rl, "upcall: no reference for recirc flow");
1283 return false;
1284 }
1285
1286 atomic_read_relaxed(&udpif->flow_limit, &flow_limit);
1287 if (udpif_get_n_flows(udpif) >= flow_limit) {
1288 VLOG_WARN_RL(&rl, "upcall: datapath flow limit reached");
1289 return false;
1290 }
1291
1292 return true;
1293 }
1294
1295 static int
1296 upcall_cb(const struct dp_packet *packet, const struct flow *flow, ovs_u128 *ufid,
1297 unsigned pmd_id, enum dpif_upcall_type type,
1298 const struct nlattr *userdata, struct ofpbuf *actions,
1299 struct flow_wildcards *wc, struct ofpbuf *put_actions, void *aux)
1300 {
1301 struct udpif *udpif = aux;
1302 struct upcall upcall;
1303 bool megaflow;
1304 int error;
1305
1306 atomic_read_relaxed(&enable_megaflows, &megaflow);
1307
1308 error = upcall_receive(&upcall, udpif->backer, packet, type, userdata,
1309 flow, 0, ufid, pmd_id);
1310 if (error) {
1311 return error;
1312 }
1313
1314 upcall.fitness = ODP_FIT_PERFECT;
1315 error = process_upcall(udpif, &upcall, actions, wc);
1316 if (error) {
1317 goto out;
1318 }
1319
1320 if (upcall.xout.slow && put_actions) {
1321 ofpbuf_put(put_actions, upcall.put_actions.data,
1322 upcall.put_actions.size);
1323 }
1324
1325 if (OVS_UNLIKELY(!megaflow && wc)) {
1326 flow_wildcards_init_for_packet(wc, flow);
1327 }
1328
1329 if (!should_install_flow(udpif, &upcall)) {
1330 error = ENOSPC;
1331 goto out;
1332 }
1333
1334 if (upcall.ukey && !ukey_install(udpif, upcall.ukey)) {
1335 static struct vlog_rate_limit rll = VLOG_RATE_LIMIT_INIT(1, 1);
1336 VLOG_WARN_RL(&rll, "upcall_cb failure: ukey installation fails");
1337 error = ENOSPC;
1338 }
1339 out:
1340 if (!error) {
1341 upcall.ukey_persists = true;
1342 }
1343 upcall_uninit(&upcall);
1344 return error;
1345 }
1346
1347 static size_t
1348 dpif_get_actions(struct udpif *udpif, struct upcall *upcall,
1349 const struct nlattr **actions)
1350 {
1351 size_t actions_len = 0;
1352
1353 if (upcall->actions) {
1354 /* Actions were passed up from datapath. */
1355 *actions = nl_attr_get(upcall->actions);
1356 actions_len = nl_attr_get_size(upcall->actions);
1357 }
1358
1359 if (actions_len == 0) {
1360 /* Lookup actions in userspace cache. */
1361 struct udpif_key *ukey = ukey_lookup(udpif, upcall->ufid,
1362 upcall->pmd_id);
1363 if (ukey) {
1364 ukey_get_actions(ukey, actions, &actions_len);
1365 }
1366 }
1367
1368 return actions_len;
1369 }
1370
1371 static size_t
1372 dpif_read_actions(struct udpif *udpif, struct upcall *upcall,
1373 const struct flow *flow, enum upcall_type type,
1374 void *upcall_data)
1375 {
1376 const struct nlattr *actions = NULL;
1377 size_t actions_len = dpif_get_actions(udpif, upcall, &actions);
1378
1379 if (!actions || !actions_len) {
1380 return 0;
1381 }
1382
1383 switch (type) {
1384 case SFLOW_UPCALL:
1385 dpif_sflow_read_actions(flow, actions, actions_len, upcall_data, true);
1386 break;
1387 case FLOW_SAMPLE_UPCALL:
1388 case IPFIX_UPCALL:
1389 dpif_ipfix_read_actions(flow, actions, actions_len, upcall_data);
1390 break;
1391 case BAD_UPCALL:
1392 case MISS_UPCALL:
1393 case SLOW_PATH_UPCALL:
1394 case CONTROLLER_UPCALL:
1395 default:
1396 break;
1397 }
1398
1399 return actions_len;
1400 }
1401
1402 static int
1403 process_upcall(struct udpif *udpif, struct upcall *upcall,
1404 struct ofpbuf *odp_actions, struct flow_wildcards *wc)
1405 {
1406 const struct dp_packet *packet = upcall->packet;
1407 const struct flow *flow = upcall->flow;
1408 size_t actions_len = 0;
1409
1410 switch (upcall->type) {
1411 case MISS_UPCALL:
1412 case SLOW_PATH_UPCALL:
1413 upcall_xlate(udpif, upcall, odp_actions, wc);
1414 return 0;
1415
1416 case SFLOW_UPCALL:
1417 if (upcall->sflow) {
1418 struct dpif_sflow_actions sflow_actions;
1419
1420 memset(&sflow_actions, 0, sizeof sflow_actions);
1421
1422 actions_len = dpif_read_actions(udpif, upcall, flow,
1423 upcall->type, &sflow_actions);
1424 dpif_sflow_received(upcall->sflow, packet, flow,
1425 flow->in_port.odp_port, &upcall->cookie,
1426 actions_len > 0 ? &sflow_actions : NULL);
1427 }
1428 break;
1429
1430 case IPFIX_UPCALL:
1431 case FLOW_SAMPLE_UPCALL:
1432 if (upcall->ipfix) {
1433 struct flow_tnl output_tunnel_key;
1434 struct dpif_ipfix_actions ipfix_actions;
1435
1436 memset(&ipfix_actions, 0, sizeof ipfix_actions);
1437
1438 if (upcall->out_tun_key) {
1439 odp_tun_key_from_attr(upcall->out_tun_key, &output_tunnel_key,
1440 NULL);
1441 }
1442
1443 actions_len = dpif_read_actions(udpif, upcall, flow,
1444 upcall->type, &ipfix_actions);
1445 if (upcall->type == IPFIX_UPCALL) {
1446 dpif_ipfix_bridge_sample(upcall->ipfix, packet, flow,
1447 flow->in_port.odp_port,
1448 upcall->cookie.ipfix.output_odp_port,
1449 upcall->out_tun_key ?
1450 &output_tunnel_key : NULL,
1451 actions_len > 0 ?
1452 &ipfix_actions: NULL);
1453 } else {
1454 /* The flow reflects exactly the contents of the packet.
1455 * Sample the packet using it. */
1456 dpif_ipfix_flow_sample(upcall->ipfix, packet, flow,
1457 &upcall->cookie, flow->in_port.odp_port,
1458 upcall->out_tun_key ?
1459 &output_tunnel_key : NULL,
1460 actions_len > 0 ? &ipfix_actions: NULL);
1461 }
1462 }
1463 break;
1464
1465 case CONTROLLER_UPCALL:
1466 {
1467 struct user_action_cookie *cookie = &upcall->cookie;
1468
1469 if (cookie->controller.dont_send) {
1470 return 0;
1471 }
1472
1473 uint32_t recirc_id = cookie->controller.recirc_id;
1474 if (!recirc_id) {
1475 break;
1476 }
1477
1478 const struct recirc_id_node *recirc_node
1479 = recirc_id_node_find(recirc_id);
1480 if (!recirc_node) {
1481 break;
1482 }
1483
1484 const struct frozen_state *state = &recirc_node->state;
1485
1486 struct ofproto_async_msg *am = xmalloc(sizeof *am);
1487 *am = (struct ofproto_async_msg) {
1488 .controller_id = cookie->controller.controller_id,
1489 .oam = OAM_PACKET_IN,
1490 .pin = {
1491 .up = {
1492 .base = {
1493 .packet = xmemdup(dp_packet_data(packet),
1494 dp_packet_size(packet)),
1495 .packet_len = dp_packet_size(packet),
1496 .reason = cookie->controller.reason,
1497 .table_id = state->table_id,
1498 .cookie = get_32aligned_be64(
1499 &cookie->controller.rule_cookie),
1500 .userdata = (recirc_node->state.userdata_len
1501 ? xmemdup(recirc_node->state.userdata,
1502 recirc_node->state.userdata_len)
1503 : NULL),
1504 .userdata_len = recirc_node->state.userdata_len,
1505 },
1506 },
1507 .max_len = cookie->controller.max_len,
1508 },
1509 };
1510
1511 if (cookie->controller.continuation) {
1512 am->pin.up.stack = (state->stack_size
1513 ? xmemdup(state->stack, state->stack_size)
1514 : NULL),
1515 am->pin.up.stack_size = state->stack_size,
1516 am->pin.up.mirrors = state->mirrors,
1517 am->pin.up.conntracked = state->conntracked,
1518 am->pin.up.actions = (state->ofpacts_len
1519 ? xmemdup(state->ofpacts,
1520 state->ofpacts_len) : NULL),
1521 am->pin.up.actions_len = state->ofpacts_len,
1522 am->pin.up.action_set = (state->action_set_len
1523 ? xmemdup(state->action_set,
1524 state->action_set_len)
1525 : NULL),
1526 am->pin.up.action_set_len = state->action_set_len,
1527 am->pin.up.bridge = upcall->ofproto->uuid;
1528 am->pin.up.odp_port = upcall->packet->md.in_port.odp_port;
1529 }
1530
1531 /* We don't want to use the upcall 'flow', since it may be
1532 * more specific than the point at which the "controller"
1533 * action was specified. */
1534 struct flow frozen_flow;
1535
1536 frozen_flow = *flow;
1537 if (!state->conntracked) {
1538 flow_clear_conntrack(&frozen_flow);
1539 }
1540
1541 frozen_metadata_to_flow(&state->metadata, &frozen_flow);
1542 flow_get_metadata(&frozen_flow, &am->pin.up.base.flow_metadata);
1543
1544 ofproto_dpif_send_async_msg(upcall->ofproto, am);
1545 }
1546 break;
1547
1548 case BAD_UPCALL:
1549 break;
1550 }
1551
1552 return EAGAIN;
1553 }
1554
1555 static void
1556 handle_upcalls(struct udpif *udpif, struct upcall *upcalls,
1557 size_t n_upcalls)
1558 {
1559 struct dpif_op *opsp[UPCALL_MAX_BATCH * 2];
1560 struct ukey_op ops[UPCALL_MAX_BATCH * 2];
1561 size_t n_ops, n_opsp, i;
1562
1563 /* Handle the packets individually in order of arrival.
1564 *
1565 * - For SLOW_CFM, SLOW_LACP, SLOW_STP, SLOW_BFD, and SLOW_LLDP,
1566 * translation is what processes received packets for these
1567 * protocols.
1568 *
1569 * - For SLOW_ACTION, translation executes the actions directly.
1570 *
1571 * The loop fills 'ops' with an array of operations to execute in the
1572 * datapath. */
1573 n_ops = 0;
1574 for (i = 0; i < n_upcalls; i++) {
1575 struct upcall *upcall = &upcalls[i];
1576 const struct dp_packet *packet = upcall->packet;
1577 struct ukey_op *op;
1578
1579 if (should_install_flow(udpif, upcall)) {
1580 struct udpif_key *ukey = upcall->ukey;
1581
1582 if (ukey_install(udpif, ukey)) {
1583 upcall->ukey_persists = true;
1584 put_op_init(&ops[n_ops++], ukey, DPIF_FP_CREATE);
1585 }
1586 }
1587
1588 if (upcall->odp_actions.size) {
1589 op = &ops[n_ops++];
1590 op->ukey = NULL;
1591 op->dop.type = DPIF_OP_EXECUTE;
1592 op->dop.execute.packet = CONST_CAST(struct dp_packet *, packet);
1593 op->dop.execute.flow = upcall->flow;
1594 odp_key_to_dp_packet(upcall->key, upcall->key_len,
1595 op->dop.execute.packet);
1596 op->dop.execute.actions = upcall->odp_actions.data;
1597 op->dop.execute.actions_len = upcall->odp_actions.size;
1598 op->dop.execute.needs_help = (upcall->xout.slow & SLOW_ACTION) != 0;
1599 op->dop.execute.probe = false;
1600 op->dop.execute.mtu = upcall->mru;
1601 }
1602 }
1603
1604 /* Execute batch. */
1605 n_opsp = 0;
1606 for (i = 0; i < n_ops; i++) {
1607 opsp[n_opsp++] = &ops[i].dop;
1608 }
1609 dpif_operate(udpif->dpif, opsp, n_opsp, DPIF_OFFLOAD_AUTO);
1610 for (i = 0; i < n_ops; i++) {
1611 struct udpif_key *ukey = ops[i].ukey;
1612
1613 if (ukey) {
1614 ovs_mutex_lock(&ukey->mutex);
1615 if (ops[i].dop.error) {
1616 transition_ukey(ukey, UKEY_EVICTED);
1617 } else if (ukey->state < UKEY_OPERATIONAL) {
1618 transition_ukey(ukey, UKEY_OPERATIONAL);
1619 }
1620 ovs_mutex_unlock(&ukey->mutex);
1621 }
1622 }
1623 }
1624
1625 static uint32_t
1626 get_ukey_hash(const ovs_u128 *ufid, const unsigned pmd_id)
1627 {
1628 return hash_2words(ufid->u32[0], pmd_id);
1629 }
1630
1631 static struct udpif_key *
1632 ukey_lookup(struct udpif *udpif, const ovs_u128 *ufid, const unsigned pmd_id)
1633 {
1634 struct udpif_key *ukey;
1635 int idx = get_ukey_hash(ufid, pmd_id) % N_UMAPS;
1636 struct cmap *cmap = &udpif->ukeys[idx].cmap;
1637
1638 CMAP_FOR_EACH_WITH_HASH (ukey, cmap_node,
1639 get_ukey_hash(ufid, pmd_id), cmap) {
1640 if (ovs_u128_equals(ukey->ufid, *ufid)) {
1641 return ukey;
1642 }
1643 }
1644 return NULL;
1645 }
1646
1647 /* Provides safe lockless access of RCU protected 'ukey->actions'. Callers may
1648 * alternatively access the field directly if they take 'ukey->mutex'. */
1649 static void
1650 ukey_get_actions(struct udpif_key *ukey, const struct nlattr **actions, size_t *size)
1651 {
1652 const struct ofpbuf *buf = ovsrcu_get(struct ofpbuf *, &ukey->actions);
1653 *actions = buf->data;
1654 *size = buf->size;
1655 }
1656
1657 static void
1658 ukey_set_actions(struct udpif_key *ukey, const struct ofpbuf *actions)
1659 {
1660 struct ofpbuf *old_actions = ovsrcu_get_protected(struct ofpbuf *,
1661 &ukey->actions);
1662
1663 if (old_actions) {
1664 ovsrcu_postpone(ofpbuf_delete, old_actions);
1665 }
1666
1667 ovsrcu_set(&ukey->actions, ofpbuf_clone(actions));
1668 }
1669
1670 static struct udpif_key *
1671 ukey_create__(const struct nlattr *key, size_t key_len,
1672 const struct nlattr *mask, size_t mask_len,
1673 bool ufid_present, const ovs_u128 *ufid,
1674 const unsigned pmd_id, const struct ofpbuf *actions,
1675 uint64_t reval_seq, long long int used,
1676 uint32_t key_recirc_id, struct xlate_out *xout)
1677 OVS_NO_THREAD_SAFETY_ANALYSIS
1678 {
1679 struct udpif_key *ukey = xmalloc(sizeof *ukey);
1680
1681 memcpy(&ukey->keybuf, key, key_len);
1682 ukey->key = &ukey->keybuf.nla;
1683 ukey->key_len = key_len;
1684 memcpy(&ukey->maskbuf, mask, mask_len);
1685 ukey->mask = &ukey->maskbuf.nla;
1686 ukey->mask_len = mask_len;
1687 ukey->ufid_present = ufid_present;
1688 ukey->ufid = *ufid;
1689 ukey->pmd_id = pmd_id;
1690 ukey->hash = get_ukey_hash(&ukey->ufid, pmd_id);
1691
1692 ovsrcu_init(&ukey->actions, NULL);
1693 ukey_set_actions(ukey, actions);
1694
1695 ovs_mutex_init(&ukey->mutex);
1696 ukey->dump_seq = 0; /* Not yet dumped */
1697 ukey->reval_seq = reval_seq;
1698 ukey->state = UKEY_CREATED;
1699 ukey->state_thread = ovsthread_id_self();
1700 ukey->state_where = OVS_SOURCE_LOCATOR;
1701 ukey->created = ukey->flow_time = time_msec();
1702 memset(&ukey->stats, 0, sizeof ukey->stats);
1703 ukey->stats.used = used;
1704 ukey->xcache = NULL;
1705
1706 ukey->offloaded = false;
1707 ukey->in_netdev = NULL;
1708 ukey->flow_packets = ukey->flow_backlog_packets = 0;
1709
1710 ukey->key_recirc_id = key_recirc_id;
1711 recirc_refs_init(&ukey->recircs);
1712 if (xout) {
1713 /* Take ownership of the action recirc id references. */
1714 recirc_refs_swap(&ukey->recircs, &xout->recircs);
1715 }
1716
1717 return ukey;
1718 }
1719
1720 static struct udpif_key *
1721 ukey_create_from_upcall(struct upcall *upcall, struct flow_wildcards *wc)
1722 {
1723 struct odputil_keybuf keystub, maskstub;
1724 struct ofpbuf keybuf, maskbuf;
1725 bool megaflow;
1726 struct odp_flow_key_parms odp_parms = {
1727 .flow = upcall->flow,
1728 .mask = wc ? &wc->masks : NULL,
1729 };
1730
1731 odp_parms.support = upcall->ofproto->backer->rt_support.odp;
1732 if (upcall->key_len) {
1733 ofpbuf_use_const(&keybuf, upcall->key, upcall->key_len);
1734 } else {
1735 /* dpif-netdev doesn't provide a netlink-formatted flow key in the
1736 * upcall, so convert the upcall's flow here. */
1737 ofpbuf_use_stack(&keybuf, &keystub, sizeof keystub);
1738 odp_flow_key_from_flow(&odp_parms, &keybuf);
1739 }
1740
1741 atomic_read_relaxed(&enable_megaflows, &megaflow);
1742 ofpbuf_use_stack(&maskbuf, &maskstub, sizeof maskstub);
1743 if (megaflow && wc) {
1744 odp_parms.key_buf = &keybuf;
1745 odp_flow_key_from_mask(&odp_parms, &maskbuf);
1746 }
1747
1748 return ukey_create__(keybuf.data, keybuf.size, maskbuf.data, maskbuf.size,
1749 true, upcall->ufid, upcall->pmd_id,
1750 &upcall->put_actions, upcall->reval_seq, 0,
1751 upcall->have_recirc_ref ? upcall->recirc->id : 0,
1752 &upcall->xout);
1753 }
1754
1755 static int
1756 ukey_create_from_dpif_flow(const struct udpif *udpif,
1757 const struct dpif_flow *flow,
1758 struct udpif_key **ukey)
1759 {
1760 struct dpif_flow full_flow;
1761 struct ofpbuf actions;
1762 uint64_t reval_seq;
1763 uint64_t stub[DPIF_FLOW_BUFSIZE / 8];
1764 const struct nlattr *a;
1765 unsigned int left;
1766
1767 if (!flow->key_len || !flow->actions_len) {
1768 struct ofpbuf buf;
1769 int err;
1770
1771 /* If the key or actions were not provided by the datapath, fetch the
1772 * full flow. */
1773 ofpbuf_use_stack(&buf, &stub, sizeof stub);
1774 err = dpif_flow_get(udpif->dpif, flow->key, flow->key_len,
1775 flow->ufid_present ? &flow->ufid : NULL,
1776 flow->pmd_id, &buf, &full_flow);
1777 if (err) {
1778 return err;
1779 }
1780 flow = &full_flow;
1781 }
1782
1783 /* Check the flow actions for recirculation action. As recirculation
1784 * relies on OVS userspace internal state, we need to delete all old
1785 * datapath flows with either a non-zero recirc_id in the key, or any
1786 * recirculation actions upon OVS restart. */
1787 NL_ATTR_FOR_EACH (a, left, flow->key, flow->key_len) {
1788 if (nl_attr_type(a) == OVS_KEY_ATTR_RECIRC_ID
1789 && nl_attr_get_u32(a) != 0) {
1790 return EINVAL;
1791 }
1792 }
1793 NL_ATTR_FOR_EACH (a, left, flow->actions, flow->actions_len) {
1794 if (nl_attr_type(a) == OVS_ACTION_ATTR_RECIRC) {
1795 return EINVAL;
1796 }
1797 }
1798
1799 reval_seq = seq_read(udpif->reval_seq) - 1; /* Ensure revalidation. */
1800 ofpbuf_use_const(&actions, &flow->actions, flow->actions_len);
1801 *ukey = ukey_create__(flow->key, flow->key_len,
1802 flow->mask, flow->mask_len, flow->ufid_present,
1803 &flow->ufid, flow->pmd_id, &actions,
1804 reval_seq, flow->stats.used, 0, NULL);
1805
1806 return 0;
1807 }
1808
1809 static bool
1810 try_ukey_replace(struct umap *umap, struct udpif_key *old_ukey,
1811 struct udpif_key *new_ukey)
1812 OVS_REQUIRES(umap->mutex)
1813 OVS_TRY_LOCK(true, new_ukey->mutex)
1814 {
1815 bool replaced = false;
1816
1817 if (!ovs_mutex_trylock(&old_ukey->mutex)) {
1818 if (old_ukey->state == UKEY_EVICTED) {
1819 /* The flow was deleted during the current revalidator dump,
1820 * but its ukey won't be fully cleaned up until the sweep phase.
1821 * In the mean time, we are receiving upcalls for this traffic.
1822 * Expedite the (new) flow install by replacing the ukey. */
1823 ovs_mutex_lock(&new_ukey->mutex);
1824 cmap_replace(&umap->cmap, &old_ukey->cmap_node,
1825 &new_ukey->cmap_node, new_ukey->hash);
1826 ovsrcu_postpone(ukey_delete__, old_ukey);
1827 transition_ukey(old_ukey, UKEY_DELETED);
1828 transition_ukey(new_ukey, UKEY_VISIBLE);
1829 replaced = true;
1830 }
1831 ovs_mutex_unlock(&old_ukey->mutex);
1832 }
1833
1834 if (replaced) {
1835 COVERAGE_INC(upcall_ukey_replace);
1836 } else {
1837 COVERAGE_INC(handler_duplicate_upcall);
1838 }
1839 return replaced;
1840 }
1841
1842 /* Attempts to insert a ukey into the shared ukey maps.
1843 *
1844 * On success, returns true, installs the ukey and returns it in a locked
1845 * state. Otherwise, returns false. */
1846 static bool
1847 ukey_install__(struct udpif *udpif, struct udpif_key *new_ukey)
1848 OVS_TRY_LOCK(true, new_ukey->mutex)
1849 {
1850 struct umap *umap;
1851 struct udpif_key *old_ukey;
1852 uint32_t idx;
1853 bool locked = false;
1854
1855 idx = new_ukey->hash % N_UMAPS;
1856 umap = &udpif->ukeys[idx];
1857 ovs_mutex_lock(&umap->mutex);
1858 old_ukey = ukey_lookup(udpif, &new_ukey->ufid, new_ukey->pmd_id);
1859 if (old_ukey) {
1860 /* Uncommon case: A ukey is already installed with the same UFID. */
1861 if (old_ukey->key_len == new_ukey->key_len
1862 && !memcmp(old_ukey->key, new_ukey->key, new_ukey->key_len)) {
1863 locked = try_ukey_replace(umap, old_ukey, new_ukey);
1864 } else {
1865 struct ds ds = DS_EMPTY_INITIALIZER;
1866
1867 odp_format_ufid(&old_ukey->ufid, &ds);
1868 ds_put_cstr(&ds, " ");
1869 odp_flow_key_format(old_ukey->key, old_ukey->key_len, &ds);
1870 ds_put_cstr(&ds, "\n");
1871 odp_format_ufid(&new_ukey->ufid, &ds);
1872 ds_put_cstr(&ds, " ");
1873 odp_flow_key_format(new_ukey->key, new_ukey->key_len, &ds);
1874
1875 VLOG_WARN_RL(&rl, "Conflicting ukey for flows:\n%s", ds_cstr(&ds));
1876 ds_destroy(&ds);
1877 }
1878 } else {
1879 ovs_mutex_lock(&new_ukey->mutex);
1880 cmap_insert(&umap->cmap, &new_ukey->cmap_node, new_ukey->hash);
1881 transition_ukey(new_ukey, UKEY_VISIBLE);
1882 locked = true;
1883 }
1884 ovs_mutex_unlock(&umap->mutex);
1885
1886 return locked;
1887 }
1888
1889 static void
1890 transition_ukey_at(struct udpif_key *ukey, enum ukey_state dst,
1891 const char *where)
1892 OVS_REQUIRES(ukey->mutex)
1893 {
1894 if (dst < ukey->state) {
1895 VLOG_ABORT("Invalid ukey transition %d->%d (last transitioned from "
1896 "thread %u at %s)", ukey->state, dst, ukey->state_thread,
1897 ukey->state_where);
1898 }
1899 if (ukey->state == dst && dst == UKEY_OPERATIONAL) {
1900 return;
1901 }
1902
1903 /* Valid state transitions:
1904 * UKEY_CREATED -> UKEY_VISIBLE
1905 * Ukey is now visible in the umap.
1906 * UKEY_VISIBLE -> UKEY_OPERATIONAL
1907 * A handler has installed the flow, and the flow is in the datapath.
1908 * UKEY_VISIBLE -> UKEY_EVICTING
1909 * A handler installs the flow, then revalidator sweeps the ukey before
1910 * the flow is dumped. Most likely the flow was installed; start trying
1911 * to delete it.
1912 * UKEY_VISIBLE -> UKEY_EVICTED
1913 * A handler attempts to install the flow, but the datapath rejects it.
1914 * Consider that the datapath has already destroyed it.
1915 * UKEY_OPERATIONAL -> UKEY_EVICTING
1916 * A revalidator decides to evict the datapath flow.
1917 * UKEY_EVICTING -> UKEY_EVICTED
1918 * A revalidator has evicted the datapath flow.
1919 * UKEY_EVICTED -> UKEY_DELETED
1920 * A revalidator has removed the ukey from the umap and is deleting it.
1921 */
1922 if (ukey->state == dst - 1 || (ukey->state == UKEY_VISIBLE &&
1923 dst < UKEY_DELETED)) {
1924 ukey->state = dst;
1925 } else {
1926 struct ds ds = DS_EMPTY_INITIALIZER;
1927
1928 odp_format_ufid(&ukey->ufid, &ds);
1929 VLOG_WARN_RL(&rl, "Invalid state transition for ukey %s: %d -> %d",
1930 ds_cstr(&ds), ukey->state, dst);
1931 ds_destroy(&ds);
1932 }
1933 ukey->state_thread = ovsthread_id_self();
1934 ukey->state_where = where;
1935 }
1936
1937 static bool
1938 ukey_install(struct udpif *udpif, struct udpif_key *ukey)
1939 {
1940 bool installed;
1941
1942 installed = ukey_install__(udpif, ukey);
1943 if (installed) {
1944 ovs_mutex_unlock(&ukey->mutex);
1945 }
1946
1947 return installed;
1948 }
1949
1950 /* Searches for a ukey in 'udpif->ukeys' that matches 'flow' and attempts to
1951 * lock the ukey. If the ukey does not exist, create it.
1952 *
1953 * Returns 0 on success, setting *result to the matching ukey and returning it
1954 * in a locked state. Otherwise, returns an errno and clears *result. EBUSY
1955 * indicates that another thread is handling this flow. Other errors indicate
1956 * an unexpected condition creating a new ukey.
1957 *
1958 * *error is an output parameter provided to appease the threadsafety analyser,
1959 * and its value matches the return value. */
1960 static int
1961 ukey_acquire(struct udpif *udpif, const struct dpif_flow *flow,
1962 struct udpif_key **result, int *error)
1963 OVS_TRY_LOCK(0, (*result)->mutex)
1964 {
1965 struct udpif_key *ukey;
1966 int retval;
1967
1968 ukey = ukey_lookup(udpif, &flow->ufid, flow->pmd_id);
1969 if (ukey) {
1970 retval = ovs_mutex_trylock(&ukey->mutex);
1971 } else {
1972 /* Usually we try to avoid installing flows from revalidator threads,
1973 * because locking on a umap may cause handler threads to block.
1974 * However there are certain cases, like when ovs-vswitchd is
1975 * restarted, where it is desirable to handle flows that exist in the
1976 * datapath gracefully (ie, don't just clear the datapath). */
1977 bool install;
1978
1979 retval = ukey_create_from_dpif_flow(udpif, flow, &ukey);
1980 if (retval) {
1981 goto done;
1982 }
1983 install = ukey_install__(udpif, ukey);
1984 if (install) {
1985 retval = 0;
1986 } else {
1987 ukey_delete__(ukey);
1988 retval = EBUSY;
1989 }
1990 }
1991
1992 done:
1993 *error = retval;
1994 if (retval) {
1995 *result = NULL;
1996 } else {
1997 *result = ukey;
1998 }
1999 return retval;
2000 }
2001
2002 static void
2003 ukey_delete__(struct udpif_key *ukey)
2004 OVS_NO_THREAD_SAFETY_ANALYSIS
2005 {
2006 if (ukey) {
2007 if (ukey->key_recirc_id) {
2008 recirc_free_id(ukey->key_recirc_id);
2009 }
2010 recirc_refs_unref(&ukey->recircs);
2011 xlate_cache_delete(ukey->xcache);
2012 ofpbuf_delete(ovsrcu_get(struct ofpbuf *, &ukey->actions));
2013 ovs_mutex_destroy(&ukey->mutex);
2014 free(ukey);
2015 }
2016 }
2017
2018 static void
2019 ukey_delete(struct umap *umap, struct udpif_key *ukey)
2020 OVS_REQUIRES(umap->mutex)
2021 {
2022 ovs_mutex_lock(&ukey->mutex);
2023 if (ukey->state < UKEY_DELETED) {
2024 cmap_remove(&umap->cmap, &ukey->cmap_node, ukey->hash);
2025 ovsrcu_postpone(ukey_delete__, ukey);
2026 transition_ukey(ukey, UKEY_DELETED);
2027 }
2028 ovs_mutex_unlock(&ukey->mutex);
2029 }
2030
2031 static bool
2032 should_revalidate(const struct udpif *udpif, uint64_t packets,
2033 long long int used)
2034 {
2035 long long int metric, now, duration;
2036
2037 if (!used) {
2038 /* Always revalidate the first time a flow is dumped. */
2039 return true;
2040 }
2041
2042 if (udpif->dump_duration < 200) {
2043 /* We are likely to handle full revalidation for the flows. */
2044 return true;
2045 }
2046
2047 /* Calculate the mean time between seeing these packets. If this
2048 * exceeds the threshold, then delete the flow rather than performing
2049 * costly revalidation for flows that aren't being hit frequently.
2050 *
2051 * This is targeted at situations where the dump_duration is high (~1s),
2052 * and revalidation is triggered by a call to udpif_revalidate(). In
2053 * these situations, revalidation of all flows causes fluctuations in the
2054 * flow_limit due to the interaction with the dump_duration and max_idle.
2055 * This tends to result in deletion of low-throughput flows anyway, so
2056 * skip the revalidation and just delete those flows. */
2057 packets = MAX(packets, 1);
2058 now = MAX(used, time_msec());
2059 duration = now - used;
2060 metric = duration / packets;
2061
2062 if (metric < 200) {
2063 /* The flow is receiving more than ~5pps, so keep it. */
2064 return true;
2065 }
2066 return false;
2067 }
2068
2069 struct reval_context {
2070 /* Optional output parameters */
2071 struct flow_wildcards *wc;
2072 struct ofpbuf *odp_actions;
2073 struct netflow **netflow;
2074 struct xlate_cache *xcache;
2075
2076 /* Required output parameters */
2077 struct xlate_out xout;
2078 struct flow flow;
2079 };
2080
2081 /* Translates 'key' into a flow, populating 'ctx' as it goes along.
2082 *
2083 * Returns 0 on success, otherwise a positive errno value.
2084 *
2085 * The caller is responsible for uninitializing ctx->xout on success.
2086 */
2087 static int
2088 xlate_key(struct udpif *udpif, const struct nlattr *key, unsigned int len,
2089 const struct dpif_flow_stats *push, struct reval_context *ctx)
2090 {
2091 struct ofproto_dpif *ofproto;
2092 ofp_port_t ofp_in_port;
2093 enum odp_key_fitness fitness;
2094 struct xlate_in xin;
2095 int error;
2096
2097 fitness = odp_flow_key_to_flow(key, len, &ctx->flow, NULL);
2098 if (fitness == ODP_FIT_ERROR) {
2099 return EINVAL;
2100 }
2101
2102 error = xlate_lookup(udpif->backer, &ctx->flow, &ofproto, NULL, NULL,
2103 ctx->netflow, &ofp_in_port);
2104 if (error) {
2105 return error;
2106 }
2107
2108 xlate_in_init(&xin, ofproto, ofproto_dpif_get_tables_version(ofproto),
2109 &ctx->flow, ofp_in_port, NULL, push->tcp_flags,
2110 NULL, ctx->wc, ctx->odp_actions);
2111 if (push->n_packets) {
2112 xin.resubmit_stats = push;
2113 xin.allow_side_effects = true;
2114 }
2115 xin.xcache = ctx->xcache;
2116 xlate_actions(&xin, &ctx->xout);
2117 if (fitness == ODP_FIT_TOO_LITTLE) {
2118 ctx->xout.slow |= SLOW_MATCH;
2119 }
2120
2121 return 0;
2122 }
2123
2124 static int
2125 xlate_ukey(struct udpif *udpif, const struct udpif_key *ukey,
2126 uint16_t tcp_flags, struct reval_context *ctx)
2127 {
2128 struct dpif_flow_stats push = {
2129 .tcp_flags = tcp_flags,
2130 };
2131 return xlate_key(udpif, ukey->key, ukey->key_len, &push, ctx);
2132 }
2133
2134 static int
2135 populate_xcache(struct udpif *udpif, struct udpif_key *ukey,
2136 uint16_t tcp_flags)
2137 OVS_REQUIRES(ukey->mutex)
2138 {
2139 struct reval_context ctx = {
2140 .odp_actions = NULL,
2141 .netflow = NULL,
2142 .wc = NULL,
2143 };
2144 int error;
2145
2146 ovs_assert(!ukey->xcache);
2147 ukey->xcache = ctx.xcache = xlate_cache_new();
2148 error = xlate_ukey(udpif, ukey, tcp_flags, &ctx);
2149 if (error) {
2150 return error;
2151 }
2152 xlate_out_uninit(&ctx.xout);
2153
2154 return 0;
2155 }
2156
2157 static enum reval_result
2158 revalidate_ukey__(struct udpif *udpif, const struct udpif_key *ukey,
2159 uint16_t tcp_flags, struct ofpbuf *odp_actions,
2160 struct recirc_refs *recircs, struct xlate_cache *xcache)
2161 {
2162 struct xlate_out *xoutp;
2163 struct netflow *netflow;
2164 struct flow_wildcards dp_mask, wc;
2165 enum reval_result result;
2166 struct reval_context ctx = {
2167 .odp_actions = odp_actions,
2168 .netflow = &netflow,
2169 .xcache = xcache,
2170 .wc = &wc,
2171 };
2172
2173 result = UKEY_DELETE;
2174 xoutp = NULL;
2175 netflow = NULL;
2176
2177 if (xlate_ukey(udpif, ukey, tcp_flags, &ctx)) {
2178 goto exit;
2179 }
2180 xoutp = &ctx.xout;
2181
2182 if (xoutp->avoid_caching) {
2183 goto exit;
2184 }
2185
2186 if (xoutp->slow) {
2187 struct ofproto_dpif *ofproto;
2188 ofp_port_t ofp_in_port;
2189
2190 ofproto = xlate_lookup_ofproto(udpif->backer, &ctx.flow, &ofp_in_port,
2191 NULL);
2192
2193 ofpbuf_clear(odp_actions);
2194
2195 if (!ofproto) {
2196 goto exit;
2197 }
2198
2199 compose_slow_path(udpif, xoutp, ctx.flow.in_port.odp_port,
2200 ofp_in_port, odp_actions,
2201 ofproto->up.slowpath_meter_id, &ofproto->uuid);
2202 }
2203
2204 if (odp_flow_key_to_mask(ukey->mask, ukey->mask_len, &dp_mask, &ctx.flow,
2205 NULL)
2206 == ODP_FIT_ERROR) {
2207 goto exit;
2208 }
2209
2210 /* Do not modify if any bit is wildcarded by the installed datapath flow,
2211 * but not the newly revalidated wildcard mask (wc), i.e., if revalidation
2212 * tells that the datapath flow is now too generic and must be narrowed
2213 * down. Note that we do not know if the datapath has ignored any of the
2214 * wildcarded bits, so we may be overly conservative here. */
2215 if (flow_wildcards_has_extra(&dp_mask, ctx.wc)) {
2216 goto exit;
2217 }
2218
2219 if (!ofpbuf_equal(odp_actions,
2220 ovsrcu_get(struct ofpbuf *, &ukey->actions))) {
2221 /* The datapath mask was OK, but the actions seem to have changed.
2222 * Let's modify it in place. */
2223 result = UKEY_MODIFY;
2224 /* Transfer recirc action ID references to the caller. */
2225 recirc_refs_swap(recircs, &xoutp->recircs);
2226 goto exit;
2227 }
2228
2229 result = UKEY_KEEP;
2230
2231 exit:
2232 if (netflow && result == UKEY_DELETE) {
2233 netflow_flow_clear(netflow, &ctx.flow);
2234 }
2235 xlate_out_uninit(xoutp);
2236 return result;
2237 }
2238
2239 /* Verifies that the datapath actions of 'ukey' are still correct, and pushes
2240 * 'stats' for it.
2241 *
2242 * Returns a recommended action for 'ukey', options include:
2243 * UKEY_DELETE The ukey should be deleted.
2244 * UKEY_KEEP The ukey is fine as is.
2245 * UKEY_MODIFY The ukey's actions should be changed but is otherwise
2246 * fine. Callers should change the actions to those found
2247 * in the caller supplied 'odp_actions' buffer. The
2248 * recirculation references can be found in 'recircs' and
2249 * must be handled by the caller.
2250 *
2251 * If the result is UKEY_MODIFY, then references to all recirc_ids used by the
2252 * new flow will be held within 'recircs' (which may be none).
2253 *
2254 * The caller is responsible for both initializing 'recircs' prior this call,
2255 * and ensuring any references are eventually freed.
2256 */
2257 static enum reval_result
2258 revalidate_ukey(struct udpif *udpif, struct udpif_key *ukey,
2259 const struct dpif_flow_stats *stats,
2260 struct ofpbuf *odp_actions, uint64_t reval_seq,
2261 struct recirc_refs *recircs)
2262 OVS_REQUIRES(ukey->mutex)
2263 {
2264 bool need_revalidate = ukey->reval_seq != reval_seq;
2265 enum reval_result result = UKEY_DELETE;
2266 struct dpif_flow_stats push;
2267
2268 ofpbuf_clear(odp_actions);
2269
2270 push.used = stats->used;
2271 push.tcp_flags = stats->tcp_flags;
2272 push.n_packets = (stats->n_packets > ukey->stats.n_packets
2273 ? stats->n_packets - ukey->stats.n_packets
2274 : 0);
2275 push.n_bytes = (stats->n_bytes > ukey->stats.n_bytes
2276 ? stats->n_bytes - ukey->stats.n_bytes
2277 : 0);
2278
2279 if (need_revalidate) {
2280 if (should_revalidate(udpif, push.n_packets, ukey->stats.used)) {
2281 if (!ukey->xcache) {
2282 ukey->xcache = xlate_cache_new();
2283 } else {
2284 xlate_cache_clear(ukey->xcache);
2285 }
2286 result = revalidate_ukey__(udpif, ukey, push.tcp_flags,
2287 odp_actions, recircs, ukey->xcache);
2288 } /* else delete; too expensive to revalidate */
2289 } else if (!push.n_packets || ukey->xcache
2290 || !populate_xcache(udpif, ukey, push.tcp_flags)) {
2291 result = UKEY_KEEP;
2292 }
2293
2294 /* Stats for deleted flows will be attributed upon flow deletion. Skip. */
2295 if (result != UKEY_DELETE) {
2296 xlate_push_stats(ukey->xcache, &push);
2297 ukey->stats = *stats;
2298 ukey->reval_seq = reval_seq;
2299 }
2300
2301 return result;
2302 }
2303
2304 static void
2305 delete_op_init__(struct udpif *udpif, struct ukey_op *op,
2306 const struct dpif_flow *flow)
2307 {
2308 op->ukey = NULL;
2309 op->dop.type = DPIF_OP_FLOW_DEL;
2310 op->dop.flow_del.key = flow->key;
2311 op->dop.flow_del.key_len = flow->key_len;
2312 op->dop.flow_del.ufid = flow->ufid_present ? &flow->ufid : NULL;
2313 op->dop.flow_del.pmd_id = flow->pmd_id;
2314 op->dop.flow_del.stats = &op->stats;
2315 op->dop.flow_del.terse = udpif_use_ufid(udpif);
2316 }
2317
2318 static void
2319 delete_op_init(struct udpif *udpif, struct ukey_op *op, struct udpif_key *ukey)
2320 {
2321 op->ukey = ukey;
2322 op->dop.type = DPIF_OP_FLOW_DEL;
2323 op->dop.flow_del.key = ukey->key;
2324 op->dop.flow_del.key_len = ukey->key_len;
2325 op->dop.flow_del.ufid = ukey->ufid_present ? &ukey->ufid : NULL;
2326 op->dop.flow_del.pmd_id = ukey->pmd_id;
2327 op->dop.flow_del.stats = &op->stats;
2328 op->dop.flow_del.terse = udpif_use_ufid(udpif);
2329 }
2330
2331 static void
2332 put_op_init(struct ukey_op *op, struct udpif_key *ukey,
2333 enum dpif_flow_put_flags flags)
2334 {
2335 op->ukey = ukey;
2336 op->dop.type = DPIF_OP_FLOW_PUT;
2337 op->dop.flow_put.flags = flags;
2338 op->dop.flow_put.key = ukey->key;
2339 op->dop.flow_put.key_len = ukey->key_len;
2340 op->dop.flow_put.mask = ukey->mask;
2341 op->dop.flow_put.mask_len = ukey->mask_len;
2342 op->dop.flow_put.ufid = ukey->ufid_present ? &ukey->ufid : NULL;
2343 op->dop.flow_put.pmd_id = ukey->pmd_id;
2344 op->dop.flow_put.stats = NULL;
2345 ukey_get_actions(ukey, &op->dop.flow_put.actions,
2346 &op->dop.flow_put.actions_len);
2347 }
2348
2349 /* Executes datapath operations 'ops' and attributes stats retrieved from the
2350 * datapath as part of those operations. */
2351 static void
2352 push_dp_ops(struct udpif *udpif, struct ukey_op *ops, size_t n_ops)
2353 {
2354 struct dpif_op *opsp[REVALIDATE_MAX_BATCH];
2355 size_t i;
2356
2357 ovs_assert(n_ops <= REVALIDATE_MAX_BATCH);
2358 for (i = 0; i < n_ops; i++) {
2359 opsp[i] = &ops[i].dop;
2360 }
2361 dpif_operate(udpif->dpif, opsp, n_ops, DPIF_OFFLOAD_AUTO);
2362
2363 for (i = 0; i < n_ops; i++) {
2364 struct ukey_op *op = &ops[i];
2365 struct dpif_flow_stats *push, *stats, push_buf;
2366
2367 stats = op->dop.flow_del.stats;
2368 push = &push_buf;
2369
2370 if (op->dop.type != DPIF_OP_FLOW_DEL) {
2371 /* Only deleted flows need their stats pushed. */
2372 continue;
2373 }
2374
2375 if (op->dop.error) {
2376 /* flow_del error, 'stats' is unusable. */
2377 if (op->ukey) {
2378 ovs_mutex_lock(&op->ukey->mutex);
2379 transition_ukey(op->ukey, UKEY_EVICTED);
2380 ovs_mutex_unlock(&op->ukey->mutex);
2381 }
2382 continue;
2383 }
2384
2385 if (op->ukey) {
2386 ovs_mutex_lock(&op->ukey->mutex);
2387 transition_ukey(op->ukey, UKEY_EVICTED);
2388 push->used = MAX(stats->used, op->ukey->stats.used);
2389 push->tcp_flags = stats->tcp_flags | op->ukey->stats.tcp_flags;
2390 push->n_packets = stats->n_packets - op->ukey->stats.n_packets;
2391 push->n_bytes = stats->n_bytes - op->ukey->stats.n_bytes;
2392 ovs_mutex_unlock(&op->ukey->mutex);
2393 } else {
2394 push = stats;
2395 }
2396
2397 if (push->n_packets || netflow_exists()) {
2398 const struct nlattr *key = op->dop.flow_del.key;
2399 size_t key_len = op->dop.flow_del.key_len;
2400 struct netflow *netflow;
2401 struct reval_context ctx = {
2402 .netflow = &netflow,
2403 };
2404 int error;
2405
2406 if (op->ukey) {
2407 ovs_mutex_lock(&op->ukey->mutex);
2408 if (op->ukey->xcache) {
2409 xlate_push_stats(op->ukey->xcache, push);
2410 ovs_mutex_unlock(&op->ukey->mutex);
2411 continue;
2412 }
2413 ovs_mutex_unlock(&op->ukey->mutex);
2414 key = op->ukey->key;
2415 key_len = op->ukey->key_len;
2416 }
2417
2418 error = xlate_key(udpif, key, key_len, push, &ctx);
2419 if (error) {
2420 static struct vlog_rate_limit rll = VLOG_RATE_LIMIT_INIT(1, 5);
2421 VLOG_WARN_RL(&rll, "xlate_key failed (%s)!",
2422 ovs_strerror(error));
2423 } else {
2424 xlate_out_uninit(&ctx.xout);
2425 if (netflow) {
2426 netflow_flow_clear(netflow, &ctx.flow);
2427 }
2428 }
2429 }
2430 }
2431 }
2432
2433 /* Executes datapath operations 'ops', attributes stats retrieved from the
2434 * datapath, and deletes ukeys corresponding to deleted flows. */
2435 static void
2436 push_ukey_ops(struct udpif *udpif, struct umap *umap,
2437 struct ukey_op *ops, size_t n_ops)
2438 {
2439 int i;
2440
2441 push_dp_ops(udpif, ops, n_ops);
2442 ovs_mutex_lock(&umap->mutex);
2443 for (i = 0; i < n_ops; i++) {
2444 if (ops[i].dop.type == DPIF_OP_FLOW_DEL) {
2445 ukey_delete(umap, ops[i].ukey);
2446 }
2447 }
2448 ovs_mutex_unlock(&umap->mutex);
2449 }
2450
2451 static void
2452 log_unexpected_flow(const struct dpif_flow *flow, int error)
2453 {
2454 struct ds ds = DS_EMPTY_INITIALIZER;
2455
2456 ds_put_format(&ds, "Failed to acquire udpif_key corresponding to "
2457 "unexpected flow (%s): ", ovs_strerror(error));
2458 odp_format_ufid(&flow->ufid, &ds);
2459
2460 static struct vlog_rate_limit rll = VLOG_RATE_LIMIT_INIT(10, 60);
2461 VLOG_WARN_RL(&rll, "%s", ds_cstr(&ds));
2462
2463 ds_destroy(&ds);
2464 }
2465
2466 static void
2467 reval_op_init(struct ukey_op *op, enum reval_result result,
2468 struct udpif *udpif, struct udpif_key *ukey,
2469 struct recirc_refs *recircs, struct ofpbuf *odp_actions)
2470 OVS_REQUIRES(ukey->mutex)
2471 {
2472 if (result == UKEY_DELETE) {
2473 delete_op_init(udpif, op, ukey);
2474 transition_ukey(ukey, UKEY_EVICTING);
2475 } else if (result == UKEY_MODIFY) {
2476 /* Store the new recircs. */
2477 recirc_refs_swap(&ukey->recircs, recircs);
2478 /* Release old recircs. */
2479 recirc_refs_unref(recircs);
2480 /* ukey->key_recirc_id remains, as the key is the same as before. */
2481
2482 ukey_set_actions(ukey, odp_actions);
2483 put_op_init(op, ukey, DPIF_FP_MODIFY);
2484 }
2485 }
2486
2487 static void
2488 ukey_netdev_unref(struct udpif_key *ukey)
2489 {
2490 if (!ukey->in_netdev) {
2491 return;
2492 }
2493 netdev_close(ukey->in_netdev);
2494 ukey->in_netdev = NULL;
2495 }
2496
2497 /*
2498 * Given a udpif_key, get its input port (netdev) by parsing the flow keys
2499 * and actions. The flow may not contain flow attributes if it is a terse
2500 * dump; read its attributes from the ukey and then parse the flow to get
2501 * the port info. Save them in udpif_key.
2502 */
2503 static void
2504 ukey_to_flow_netdev(struct udpif *udpif, struct udpif_key *ukey)
2505 {
2506 const struct dpif *dpif = udpif->dpif;
2507 const struct dpif_class *dpif_class = dpif->dpif_class;
2508 const struct nlattr *k;
2509 unsigned int left;
2510
2511 /* Remove existing references to netdev */
2512 ukey_netdev_unref(ukey);
2513
2514 /* Find the input port and get a reference to its netdev */
2515 NL_ATTR_FOR_EACH (k, left, ukey->key, ukey->key_len) {
2516 enum ovs_key_attr type = nl_attr_type(k);
2517
2518 if (type == OVS_KEY_ATTR_IN_PORT) {
2519 ukey->in_netdev = netdev_ports_get(nl_attr_get_odp_port(k),
2520 dpif_class);
2521 } else if (type == OVS_KEY_ATTR_TUNNEL) {
2522 struct flow_tnl tnl;
2523 enum odp_key_fitness res;
2524
2525 if (ukey->in_netdev) {
2526 netdev_close(ukey->in_netdev);
2527 ukey->in_netdev = NULL;
2528 }
2529 res = odp_tun_key_from_attr(k, &tnl, NULL);
2530 if (res != ODP_FIT_ERROR) {
2531 ukey->in_netdev = flow_get_tunnel_netdev(&tnl);
2532 break;
2533 }
2534 }
2535 }
2536 }
2537
2538 static uint64_t
2539 udpif_flow_packet_delta(struct udpif_key *ukey, const struct dpif_flow *f)
2540 {
2541 return f->stats.n_packets + ukey->flow_backlog_packets -
2542 ukey->flow_packets;
2543 }
2544
2545 static long long int
2546 udpif_flow_time_delta(struct udpif *udpif, struct udpif_key *ukey)
2547 {
2548 return (udpif->dpif->current_ms - ukey->flow_time) / 1000;
2549 }
2550
2551 /*
2552 * Save backlog packet count while switching modes
2553 * between offloaded and kernel datapaths.
2554 */
2555 static void
2556 udpif_set_ukey_backlog_packets(struct udpif_key *ukey)
2557 {
2558 ukey->flow_backlog_packets = ukey->flow_packets;
2559 }
2560
2561 /* Gather pps-rate for the given dpif_flow and save it in its ukey */
2562 static void
2563 udpif_update_flow_pps(struct udpif *udpif, struct udpif_key *ukey,
2564 const struct dpif_flow *f)
2565 {
2566 uint64_t pps;
2567
2568 /* Update pps-rate only when we are close to rebalance interval */
2569 if (udpif->dpif->current_ms - ukey->flow_time < OFFL_REBAL_INTVL_MSEC) {
2570 return;
2571 }
2572
2573 ukey->offloaded = f->attrs.offloaded;
2574 pps = udpif_flow_packet_delta(ukey, f) /
2575 udpif_flow_time_delta(udpif, ukey);
2576 ukey->flow_pps_rate = pps;
2577 ukey->flow_packets = ukey->flow_backlog_packets + f->stats.n_packets;
2578 ukey->flow_time = udpif->dpif->current_ms;
2579 }
2580
2581 static void
2582 revalidate(struct revalidator *revalidator)
2583 {
2584 uint64_t odp_actions_stub[1024 / 8];
2585 struct ofpbuf odp_actions = OFPBUF_STUB_INITIALIZER(odp_actions_stub);
2586
2587 struct udpif *udpif = revalidator->udpif;
2588 struct dpif_flow_dump_thread *dump_thread;
2589 uint64_t dump_seq, reval_seq;
2590 unsigned int flow_limit;
2591
2592 dump_seq = seq_read(udpif->dump_seq);
2593 reval_seq = seq_read(udpif->reval_seq);
2594 atomic_read_relaxed(&udpif->flow_limit, &flow_limit);
2595 dump_thread = dpif_flow_dump_thread_create(udpif->dump);
2596 for (;;) {
2597 struct ukey_op ops[REVALIDATE_MAX_BATCH];
2598 int n_ops = 0;
2599
2600 struct dpif_flow flows[REVALIDATE_MAX_BATCH];
2601 const struct dpif_flow *f;
2602 int n_dumped;
2603
2604 long long int max_idle;
2605 long long int now;
2606 size_t n_dp_flows;
2607 bool kill_them_all;
2608
2609 n_dumped = dpif_flow_dump_next(dump_thread, flows, ARRAY_SIZE(flows));
2610 if (!n_dumped) {
2611 break;
2612 }
2613
2614 now = time_msec();
2615
2616 /* In normal operation we want to keep flows around until they have
2617 * been idle for 'ofproto_max_idle' milliseconds. However:
2618 *
2619 * - If the number of datapath flows climbs above 'flow_limit',
2620 * drop that down to 100 ms to try to bring the flows down to
2621 * the limit.
2622 *
2623 * - If the number of datapath flows climbs above twice
2624 * 'flow_limit', delete all the datapath flows as an emergency
2625 * measure. (We reassess this condition for the next batch of
2626 * datapath flows, so we will recover before all the flows are
2627 * gone.) */
2628 n_dp_flows = udpif_get_n_flows(udpif);
2629 kill_them_all = n_dp_flows > flow_limit * 2;
2630 max_idle = n_dp_flows > flow_limit ? 100 : ofproto_max_idle;
2631
2632 udpif->dpif->current_ms = time_msec();
2633 for (f = flows; f < &flows[n_dumped]; f++) {
2634 long long int used = f->stats.used;
2635 struct recirc_refs recircs = RECIRC_REFS_EMPTY_INITIALIZER;
2636 enum reval_result result;
2637 struct udpif_key *ukey;
2638 bool already_dumped;
2639 int error;
2640
2641 if (ukey_acquire(udpif, f, &ukey, &error)) {
2642 if (error == EBUSY) {
2643 /* Another thread is processing this flow, so don't bother
2644 * processing it.*/
2645 COVERAGE_INC(upcall_ukey_contention);
2646 } else {
2647 log_unexpected_flow(f, error);
2648 if (error != ENOENT) {
2649 delete_op_init__(udpif, &ops[n_ops++], f);
2650 }
2651 }
2652 continue;
2653 }
2654
2655 already_dumped = ukey->dump_seq == dump_seq;
2656 if (already_dumped) {
2657 /* The flow has already been handled during this flow dump
2658 * operation. Skip it. */
2659 if (ukey->xcache) {
2660 COVERAGE_INC(dumped_duplicate_flow);
2661 } else {
2662 COVERAGE_INC(dumped_new_flow);
2663 }
2664 ovs_mutex_unlock(&ukey->mutex);
2665 continue;
2666 }
2667
2668 if (ukey->state <= UKEY_OPERATIONAL) {
2669 /* The flow is now confirmed to be in the datapath. */
2670 transition_ukey(ukey, UKEY_OPERATIONAL);
2671 } else {
2672 VLOG_INFO("Unexpected ukey transition from state %d "
2673 "(last transitioned from thread %u at %s)",
2674 ukey->state, ukey->state_thread, ukey->state_where);
2675 ovs_mutex_unlock(&ukey->mutex);
2676 continue;
2677 }
2678
2679 if (!used) {
2680 used = ukey->created;
2681 }
2682 if (kill_them_all || (used && used < now - max_idle)) {
2683 result = UKEY_DELETE;
2684 } else {
2685 result = revalidate_ukey(udpif, ukey, &f->stats, &odp_actions,
2686 reval_seq, &recircs);
2687 }
2688 ukey->dump_seq = dump_seq;
2689
2690 if (netdev_is_offload_rebalance_policy_enabled() &&
2691 result != UKEY_DELETE) {
2692 udpif_update_flow_pps(udpif, ukey, f);
2693 }
2694
2695 if (result != UKEY_KEEP) {
2696 /* Takes ownership of 'recircs'. */
2697 reval_op_init(&ops[n_ops++], result, udpif, ukey, &recircs,
2698 &odp_actions);
2699 }
2700 ovs_mutex_unlock(&ukey->mutex);
2701 }
2702
2703 if (n_ops) {
2704 /* Push datapath ops but defer ukey deletion to 'sweep' phase. */
2705 push_dp_ops(udpif, ops, n_ops);
2706 }
2707 ovsrcu_quiesce();
2708 }
2709 dpif_flow_dump_thread_destroy(dump_thread);
2710 ofpbuf_uninit(&odp_actions);
2711 }
2712
2713 /* Pauses the 'revalidator', can only proceed after main thread
2714 * calls udpif_resume_revalidators(). */
2715 static void
2716 revalidator_pause(struct revalidator *revalidator)
2717 {
2718 /* The first block is for sync'ing the pause with main thread. */
2719 ovs_barrier_block(&revalidator->udpif->pause_barrier);
2720 /* The second block is for pausing until main thread resumes. */
2721 ovs_barrier_block(&revalidator->udpif->pause_barrier);
2722 }
2723
2724 static void
2725 revalidator_sweep__(struct revalidator *revalidator, bool purge)
2726 {
2727 struct udpif *udpif;
2728 uint64_t dump_seq, reval_seq;
2729 int slice;
2730
2731 udpif = revalidator->udpif;
2732 dump_seq = seq_read(udpif->dump_seq);
2733 reval_seq = seq_read(udpif->reval_seq);
2734 slice = revalidator - udpif->revalidators;
2735 ovs_assert(slice < udpif->n_revalidators);
2736
2737 for (int i = slice; i < N_UMAPS; i += udpif->n_revalidators) {
2738 uint64_t odp_actions_stub[1024 / 8];
2739 struct ofpbuf odp_actions = OFPBUF_STUB_INITIALIZER(odp_actions_stub);
2740
2741 struct ukey_op ops[REVALIDATE_MAX_BATCH];
2742 struct udpif_key *ukey;
2743 struct umap *umap = &udpif->ukeys[i];
2744 size_t n_ops = 0;
2745
2746 CMAP_FOR_EACH(ukey, cmap_node, &umap->cmap) {
2747 enum ukey_state ukey_state;
2748
2749 /* Handler threads could be holding a ukey lock while it installs a
2750 * new flow, so don't hang around waiting for access to it. */
2751 if (ovs_mutex_trylock(&ukey->mutex)) {
2752 continue;
2753 }
2754 ukey_state = ukey->state;
2755 if (ukey_state == UKEY_OPERATIONAL
2756 || (ukey_state == UKEY_VISIBLE && purge)) {
2757 struct recirc_refs recircs = RECIRC_REFS_EMPTY_INITIALIZER;
2758 bool seq_mismatch = (ukey->dump_seq != dump_seq
2759 && ukey->reval_seq != reval_seq);
2760 enum reval_result result;
2761
2762 if (purge) {
2763 result = UKEY_DELETE;
2764 } else if (!seq_mismatch) {
2765 result = UKEY_KEEP;
2766 } else {
2767 struct dpif_flow_stats stats;
2768 COVERAGE_INC(revalidate_missed_dp_flow);
2769 memset(&stats, 0, sizeof stats);
2770 result = revalidate_ukey(udpif, ukey, &stats, &odp_actions,
2771 reval_seq, &recircs);
2772 }
2773 if (result != UKEY_KEEP) {
2774 /* Clears 'recircs' if filled by revalidate_ukey(). */
2775 reval_op_init(&ops[n_ops++], result, udpif, ukey, &recircs,
2776 &odp_actions);
2777 }
2778 }
2779 ovs_mutex_unlock(&ukey->mutex);
2780
2781 if (ukey_state == UKEY_EVICTED) {
2782 /* The common flow deletion case involves deletion of the flow
2783 * during the dump phase and ukey deletion here. */
2784 ovs_mutex_lock(&umap->mutex);
2785 ukey_delete(umap, ukey);
2786 ovs_mutex_unlock(&umap->mutex);
2787 }
2788
2789 if (n_ops == REVALIDATE_MAX_BATCH) {
2790 /* Update/delete missed flows and clean up corresponding ukeys
2791 * if necessary. */
2792 push_ukey_ops(udpif, umap, ops, n_ops);
2793 n_ops = 0;
2794 }
2795 }
2796
2797 if (n_ops) {
2798 push_ukey_ops(udpif, umap, ops, n_ops);
2799 }
2800
2801 ofpbuf_uninit(&odp_actions);
2802 ovsrcu_quiesce();
2803 }
2804 }
2805
2806 static void
2807 revalidator_sweep(struct revalidator *revalidator)
2808 {
2809 revalidator_sweep__(revalidator, false);
2810 }
2811
2812 static void
2813 revalidator_purge(struct revalidator *revalidator)
2814 {
2815 revalidator_sweep__(revalidator, true);
2816 }
2817
2818 /* In reaction to dpif purge, purges all 'ukey's with same 'pmd_id'. */
2819 static void
2820 dp_purge_cb(void *aux, unsigned pmd_id)
2821 OVS_NO_THREAD_SAFETY_ANALYSIS
2822 {
2823 struct udpif *udpif = aux;
2824 size_t i;
2825
2826 udpif_pause_revalidators(udpif);
2827 for (i = 0; i < N_UMAPS; i++) {
2828 struct ukey_op ops[REVALIDATE_MAX_BATCH];
2829 struct udpif_key *ukey;
2830 struct umap *umap = &udpif->ukeys[i];
2831 size_t n_ops = 0;
2832
2833 CMAP_FOR_EACH(ukey, cmap_node, &umap->cmap) {
2834 if (ukey->pmd_id == pmd_id) {
2835 delete_op_init(udpif, &ops[n_ops++], ukey);
2836 transition_ukey(ukey, UKEY_EVICTING);
2837
2838 if (n_ops == REVALIDATE_MAX_BATCH) {
2839 push_ukey_ops(udpif, umap, ops, n_ops);
2840 n_ops = 0;
2841 }
2842 }
2843 }
2844
2845 if (n_ops) {
2846 push_ukey_ops(udpif, umap, ops, n_ops);
2847 }
2848
2849 ovsrcu_quiesce();
2850 }
2851 udpif_resume_revalidators(udpif);
2852 }
2853 \f
2854 static void
2855 upcall_unixctl_show(struct unixctl_conn *conn, int argc OVS_UNUSED,
2856 const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED)
2857 {
2858 struct ds ds = DS_EMPTY_INITIALIZER;
2859 struct udpif *udpif;
2860
2861 LIST_FOR_EACH (udpif, list_node, &all_udpifs) {
2862 unsigned int flow_limit;
2863 bool ufid_enabled;
2864 size_t i;
2865
2866 atomic_read_relaxed(&udpif->flow_limit, &flow_limit);
2867 ufid_enabled = udpif_use_ufid(udpif);
2868
2869 ds_put_format(&ds, "%s:\n", dpif_name(udpif->dpif));
2870 ds_put_format(&ds, " flows : (current %lu)"
2871 " (avg %u) (max %u) (limit %u)\n", udpif_get_n_flows(udpif),
2872 udpif->avg_n_flows, udpif->max_n_flows, flow_limit);
2873 ds_put_format(&ds, " dump duration : %lldms\n", udpif->dump_duration);
2874 ds_put_format(&ds, " ufid enabled : ");
2875 if (ufid_enabled) {
2876 ds_put_format(&ds, "true\n");
2877 } else {
2878 ds_put_format(&ds, "false\n");
2879 }
2880 ds_put_char(&ds, '\n');
2881
2882 for (i = 0; i < n_revalidators; i++) {
2883 struct revalidator *revalidator = &udpif->revalidators[i];
2884 int j, elements = 0;
2885
2886 for (j = i; j < N_UMAPS; j += n_revalidators) {
2887 elements += cmap_count(&udpif->ukeys[j].cmap);
2888 }
2889 ds_put_format(&ds, " %u: (keys %d)\n", revalidator->id, elements);
2890 }
2891 }
2892
2893 unixctl_command_reply(conn, ds_cstr(&ds));
2894 ds_destroy(&ds);
2895 }
2896
2897 /* Disable using the megaflows.
2898 *
2899 * This command is only needed for advanced debugging, so it's not
2900 * documented in the man page. */
2901 static void
2902 upcall_unixctl_disable_megaflows(struct unixctl_conn *conn,
2903 int argc OVS_UNUSED,
2904 const char *argv[] OVS_UNUSED,
2905 void *aux OVS_UNUSED)
2906 {
2907 atomic_store_relaxed(&enable_megaflows, false);
2908 udpif_flush_all_datapaths();
2909 unixctl_command_reply(conn, "megaflows disabled");
2910 }
2911
2912 /* Re-enable using megaflows.
2913 *
2914 * This command is only needed for advanced debugging, so it's not
2915 * documented in the man page. */
2916 static void
2917 upcall_unixctl_enable_megaflows(struct unixctl_conn *conn,
2918 int argc OVS_UNUSED,
2919 const char *argv[] OVS_UNUSED,
2920 void *aux OVS_UNUSED)
2921 {
2922 atomic_store_relaxed(&enable_megaflows, true);
2923 udpif_flush_all_datapaths();
2924 unixctl_command_reply(conn, "megaflows enabled");
2925 }
2926
2927 /* Disable skipping flow attributes during flow dump.
2928 *
2929 * This command is only needed for advanced debugging, so it's not
2930 * documented in the man page. */
2931 static void
2932 upcall_unixctl_disable_ufid(struct unixctl_conn *conn, int argc OVS_UNUSED,
2933 const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED)
2934 {
2935 atomic_store_relaxed(&enable_ufid, false);
2936 unixctl_command_reply(conn, "Datapath dumping tersely using UFID disabled");
2937 }
2938
2939 /* Re-enable skipping flow attributes during flow dump.
2940 *
2941 * This command is only needed for advanced debugging, so it's not documented
2942 * in the man page. */
2943 static void
2944 upcall_unixctl_enable_ufid(struct unixctl_conn *conn, int argc OVS_UNUSED,
2945 const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED)
2946 {
2947 atomic_store_relaxed(&enable_ufid, true);
2948 unixctl_command_reply(conn, "Datapath dumping tersely using UFID enabled "
2949 "for supported datapaths");
2950 }
2951
2952 /* Set the flow limit.
2953 *
2954 * This command is only needed for advanced debugging, so it's not
2955 * documented in the man page. */
2956 static void
2957 upcall_unixctl_set_flow_limit(struct unixctl_conn *conn,
2958 int argc OVS_UNUSED,
2959 const char *argv[],
2960 void *aux OVS_UNUSED)
2961 {
2962 struct ds ds = DS_EMPTY_INITIALIZER;
2963 struct udpif *udpif;
2964 unsigned int flow_limit = atoi(argv[1]);
2965
2966 LIST_FOR_EACH (udpif, list_node, &all_udpifs) {
2967 atomic_store_relaxed(&udpif->flow_limit, flow_limit);
2968 }
2969 ds_put_format(&ds, "set flow_limit to %u\n", flow_limit);
2970 unixctl_command_reply(conn, ds_cstr(&ds));
2971 ds_destroy(&ds);
2972 }
2973
2974 static void
2975 upcall_unixctl_dump_wait(struct unixctl_conn *conn,
2976 int argc OVS_UNUSED,
2977 const char *argv[] OVS_UNUSED,
2978 void *aux OVS_UNUSED)
2979 {
2980 if (ovs_list_is_singleton(&all_udpifs)) {
2981 struct udpif *udpif = NULL;
2982 size_t len;
2983
2984 udpif = OBJECT_CONTAINING(ovs_list_front(&all_udpifs), udpif, list_node);
2985 len = (udpif->n_conns + 1) * sizeof *udpif->conns;
2986 udpif->conn_seq = seq_read(udpif->dump_seq);
2987 udpif->conns = xrealloc(udpif->conns, len);
2988 udpif->conns[udpif->n_conns++] = conn;
2989 } else {
2990 unixctl_command_reply_error(conn, "can't wait on multiple udpifs.");
2991 }
2992 }
2993
2994 static void
2995 upcall_unixctl_purge(struct unixctl_conn *conn, int argc OVS_UNUSED,
2996 const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED)
2997 {
2998 struct udpif *udpif;
2999
3000 LIST_FOR_EACH (udpif, list_node, &all_udpifs) {
3001 int n;
3002
3003 for (n = 0; n < udpif->n_revalidators; n++) {
3004 revalidator_purge(&udpif->revalidators[n]);
3005 }
3006 }
3007 unixctl_command_reply(conn, "");
3008 }
3009
3010 /* Flows are sorted in the following order:
3011 * netdev, flow state (offloaded/kernel path), flow_pps_rate.
3012 */
3013 static int
3014 flow_compare_rebalance(const void *elem1, const void *elem2)
3015 {
3016 const struct udpif_key *f1 = *(struct udpif_key **)elem1;
3017 const struct udpif_key *f2 = *(struct udpif_key **)elem2;
3018 int64_t diff;
3019
3020 if (f1->in_netdev < f2->in_netdev) {
3021 return -1;
3022 } else if (f1->in_netdev > f2->in_netdev) {
3023 return 1;
3024 }
3025
3026 if (f1->offloaded != f2->offloaded) {
3027 return f2->offloaded - f1->offloaded;
3028 }
3029
3030 diff = (f1->offloaded == true) ?
3031 f1->flow_pps_rate - f2->flow_pps_rate :
3032 f2->flow_pps_rate - f1->flow_pps_rate;
3033
3034 return (diff < 0) ? -1 : 1;
3035 }
3036
3037 /* Insert flows from pending array during rebalancing */
3038 static int
3039 rebalance_insert_pending(struct udpif *udpif, struct udpif_key **pending_flows,
3040 int pending_count, int insert_count,
3041 uint64_t rate_threshold)
3042 {
3043 int count = 0;
3044
3045 for (int i = 0; i < pending_count; i++) {
3046 struct udpif_key *flow = pending_flows[i];
3047 int err;
3048
3049 /* Stop offloading pending flows if the insert count is
3050 * reached and the flow rate is less than the threshold
3051 */
3052 if (count >= insert_count && flow->flow_pps_rate < rate_threshold) {
3053 break;
3054 }
3055
3056 /* Offload the flow to netdev */
3057 err = udpif_flow_program(udpif, flow, DPIF_OFFLOAD_ALWAYS);
3058
3059 if (err == ENOSPC) {
3060 /* Stop if we are out of resources */
3061 break;
3062 }
3063
3064 if (err) {
3065 continue;
3066 }
3067
3068 /* Offload succeeded; delete it from the kernel datapath */
3069 udpif_flow_unprogram(udpif, flow, DPIF_OFFLOAD_NEVER);
3070
3071 /* Change the state of the flow, adjust dpif counters */
3072 flow->offloaded = true;
3073
3074 udpif_set_ukey_backlog_packets(flow);
3075 count++;
3076 }
3077
3078 return count;
3079 }
3080
3081 /* Remove flows from offloaded array during rebalancing */
3082 static void
3083 rebalance_remove_offloaded(struct udpif *udpif,
3084 struct udpif_key **offloaded_flows,
3085 int offload_count)
3086 {
3087 for (int i = 0; i < offload_count; i++) {
3088 struct udpif_key *flow = offloaded_flows[i];
3089 int err;
3090
3091 /* Install the flow into kernel path first */
3092 err = udpif_flow_program(udpif, flow, DPIF_OFFLOAD_NEVER);
3093 if (err) {
3094 continue;
3095 }
3096
3097 /* Success; now remove offloaded flow from netdev */
3098 err = udpif_flow_unprogram(udpif, flow, DPIF_OFFLOAD_ALWAYS);
3099 if (err) {
3100 udpif_flow_unprogram(udpif, flow, DPIF_OFFLOAD_NEVER);
3101 continue;
3102 }
3103 udpif_set_ukey_backlog_packets(flow);
3104 flow->offloaded = false;
3105 }
3106 }
3107
3108 /*
3109 * Rebalance offloaded flows on a netdev that's in OOR state.
3110 *
3111 * The rebalancing is done in two phases. In the first phase, we check if
3112 * the pending flows can be offloaded (if some resources became available
3113 * in the meantime) by trying to offload each pending flow. If all pending
3114 * flows get successfully offloaded, the OOR state is cleared on the netdev
3115 * and there's nothing to rebalance.
3116 *
3117 * If some of the pending flows could not be offloaded, i.e, we still see
3118 * the OOR error, then we move to the second phase of rebalancing. In this
3119 * phase, the rebalancer compares pps-rate of an offloaded flow with the
3120 * least pps-rate with that of a pending flow with the highest pps-rate from
3121 * their respective sorted arrays. If pps-rate of the offloaded flow is less
3122 * than the pps-rate of the pending flow, then it deletes the offloaded flow
3123 * from the HW/netdev and adds it to kernel datapath and then offloads pending
3124 * to HW/netdev. This process is repeated for every pair of offloaded and
3125 * pending flows in the ordered list. The process stops when we encounter an
3126 * offloaded flow that has a higher pps-rate than the corresponding pending
3127 * flow. The entire rebalancing process is repeated in the next iteration.
3128 */
3129 static bool
3130 rebalance_device(struct udpif *udpif, struct udpif_key **offloaded_flows,
3131 int offload_count, struct udpif_key **pending_flows,
3132 int pending_count)
3133 {
3134
3135 /* Phase 1 */
3136 int num_inserted = rebalance_insert_pending(udpif, pending_flows,
3137 pending_count, pending_count,
3138 0);
3139 if (num_inserted) {
3140 VLOG_DBG("Offload rebalance: Phase1: inserted %d pending flows",
3141 num_inserted);
3142 }
3143
3144 /* Adjust pending array */
3145 pending_flows = &pending_flows[num_inserted];
3146 pending_count -= num_inserted;
3147
3148 if (!pending_count) {
3149 /*
3150 * Successfully offloaded all pending flows. The device
3151 * is no longer in OOR state; done rebalancing this device.
3152 */
3153 return false;
3154 }
3155
3156 /*
3157 * Phase 2; determine how many offloaded flows to churn.
3158 */
3159 #define OFFL_REBAL_MAX_CHURN 1024
3160 int churn_count = 0;
3161 while (churn_count < OFFL_REBAL_MAX_CHURN && churn_count < offload_count
3162 && churn_count < pending_count) {
3163 if (pending_flows[churn_count]->flow_pps_rate <=
3164 offloaded_flows[churn_count]->flow_pps_rate)
3165 break;
3166 churn_count++;
3167 }
3168
3169 if (churn_count) {
3170 VLOG_DBG("Offload rebalance: Phase2: removing %d offloaded flows",
3171 churn_count);
3172 }
3173
3174 /* Bail early if nothing to churn */
3175 if (!churn_count) {
3176 return true;
3177 }
3178
3179 /* Remove offloaded flows */
3180 rebalance_remove_offloaded(udpif, offloaded_flows, churn_count);
3181
3182 /* Adjust offloaded array */
3183 offloaded_flows = &offloaded_flows[churn_count];
3184 offload_count -= churn_count;
3185
3186 /* Replace offloaded flows with pending flows */
3187 num_inserted = rebalance_insert_pending(udpif, pending_flows,
3188 pending_count, churn_count,
3189 offload_count ?
3190 offloaded_flows[0]->flow_pps_rate :
3191 0);
3192 if (num_inserted) {
3193 VLOG_DBG("Offload rebalance: Phase2: inserted %d pending flows",
3194 num_inserted);
3195 }
3196
3197 return true;
3198 }
3199
3200 static struct udpif_key **
3201 udpif_add_oor_flows(struct udpif_key **sort_flows, size_t *total_flow_count,
3202 size_t *alloc_flow_count, struct udpif_key *ukey)
3203 {
3204 if (*total_flow_count >= *alloc_flow_count) {
3205 sort_flows = x2nrealloc(sort_flows, alloc_flow_count, sizeof ukey);
3206 }
3207 sort_flows[(*total_flow_count)++] = ukey;
3208 return sort_flows;
3209 }
3210
3211 /*
3212 * Build sort_flows[] initially with flows that
3213 * reference an 'OOR' netdev as their input port.
3214 */
3215 static struct udpif_key **
3216 udpif_build_oor_flows(struct udpif_key **sort_flows, size_t *total_flow_count,
3217 size_t *alloc_flow_count, struct udpif_key *ukey,
3218 int *oor_netdev_count)
3219 {
3220 struct netdev *netdev;
3221 int count;
3222
3223 /* Input netdev must be available for the flow */
3224 netdev = ukey->in_netdev;
3225 if (!netdev) {
3226 return sort_flows;
3227 }
3228
3229 /* Is the in-netdev for this flow in OOR state ? */
3230 if (!netdev_get_hw_info(netdev, HW_INFO_TYPE_OOR)) {
3231 ukey_netdev_unref(ukey);
3232 return sort_flows;
3233 }
3234
3235 /* Add the flow to sort_flows[] */
3236 sort_flows = udpif_add_oor_flows(sort_flows, total_flow_count,
3237 alloc_flow_count, ukey);
3238 if (ukey->offloaded) {
3239 count = netdev_get_hw_info(netdev, HW_INFO_TYPE_OFFL_COUNT);
3240 ovs_assert(count >= 0);
3241 if (count++ == 0) {
3242 (*oor_netdev_count)++;
3243 }
3244 netdev_set_hw_info(netdev, HW_INFO_TYPE_OFFL_COUNT, count);
3245 } else {
3246 count = netdev_get_hw_info(netdev, HW_INFO_TYPE_PEND_COUNT);
3247 ovs_assert(count >= 0);
3248 netdev_set_hw_info(netdev, HW_INFO_TYPE_PEND_COUNT, ++count);
3249 }
3250
3251 return sort_flows;
3252 }
3253
3254 /*
3255 * Rebalance offloaded flows on HW netdevs that are in OOR state.
3256 */
3257 static void
3258 udpif_flow_rebalance(struct udpif *udpif)
3259 {
3260 struct udpif_key **sort_flows = NULL;
3261 size_t alloc_flow_count = 0;
3262 size_t total_flow_count = 0;
3263 int oor_netdev_count = 0;
3264 int offload_index = 0;
3265 int pending_index;
3266
3267 /* Collect flows (offloaded and pending) that reference OOR netdevs */
3268 for (size_t i = 0; i < N_UMAPS; i++) {
3269 struct udpif_key *ukey;
3270 struct umap *umap = &udpif->ukeys[i];
3271
3272 CMAP_FOR_EACH (ukey, cmap_node, &umap->cmap) {
3273 ukey_to_flow_netdev(udpif, ukey);
3274 sort_flows = udpif_build_oor_flows(sort_flows, &total_flow_count,
3275 &alloc_flow_count, ukey,
3276 &oor_netdev_count);
3277 }
3278 }
3279
3280 /* Sort flows by OOR netdevs, state (offloaded/pending) and pps-rate */
3281 qsort(sort_flows, total_flow_count, sizeof(struct udpif_key *),
3282 flow_compare_rebalance);
3283
3284 /*
3285 * We now have flows referencing OOR netdevs, that are sorted. We also
3286 * have a count of offloaded and pending flows on each of the netdevs
3287 * that are in OOR state. Now rebalance each oor-netdev.
3288 */
3289 while (oor_netdev_count) {
3290 struct netdev *netdev;
3291 int offload_count;
3292 int pending_count;
3293 bool oor;
3294
3295 netdev = sort_flows[offload_index]->in_netdev;
3296 ovs_assert(netdev_get_hw_info(netdev, HW_INFO_TYPE_OOR) == true);
3297 VLOG_DBG("Offload rebalance: netdev: %s is OOR", netdev->name);
3298
3299 offload_count = netdev_get_hw_info(netdev, HW_INFO_TYPE_OFFL_COUNT);
3300 pending_count = netdev_get_hw_info(netdev, HW_INFO_TYPE_PEND_COUNT);
3301 pending_index = offload_index + offload_count;
3302
3303 oor = rebalance_device(udpif,
3304 &sort_flows[offload_index], offload_count,
3305 &sort_flows[pending_index], pending_count);
3306 netdev_set_hw_info(netdev, HW_INFO_TYPE_OOR, oor);
3307
3308 offload_index = pending_index + pending_count;
3309 netdev_set_hw_info(netdev, HW_INFO_TYPE_OFFL_COUNT, 0);
3310 netdev_set_hw_info(netdev, HW_INFO_TYPE_PEND_COUNT, 0);
3311 oor_netdev_count--;
3312 }
3313
3314 for (int i = 0; i < total_flow_count; i++) {
3315 struct udpif_key *ukey = sort_flows[i];
3316 ukey_netdev_unref(ukey);
3317 }
3318 free(sort_flows);
3319 }
3320
3321 static int
3322 udpif_flow_program(struct udpif *udpif, struct udpif_key *ukey,
3323 enum dpif_offload_type offload_type)
3324 {
3325 struct dpif_op *opsp;
3326 struct ukey_op uop;
3327
3328 opsp = &uop.dop;
3329 put_op_init(&uop, ukey, DPIF_FP_CREATE);
3330 dpif_operate(udpif->dpif, &opsp, 1, offload_type);
3331
3332 return opsp->error;
3333 }
3334
3335 static int
3336 udpif_flow_unprogram(struct udpif *udpif, struct udpif_key *ukey,
3337 enum dpif_offload_type offload_type)
3338 {
3339 struct dpif_op *opsp;
3340 struct ukey_op uop;
3341
3342 opsp = &uop.dop;
3343 delete_op_init(udpif, &uop, ukey);
3344 dpif_operate(udpif->dpif, &opsp, 1, offload_type);
3345
3346 return opsp->error;
3347 }