]> git.proxmox.com Git - ovs.git/blob - ofproto/ofproto-dpif-upcall.c
connmgr: Make treatment of active and passive connections more uniform.
[ovs.git] / ofproto / ofproto-dpif-upcall.c
1 /* Copyright (c) 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016 Nicira, Inc.
2 *
3 * Licensed under the Apache License, Version 2.0 (the "License");
4 * you may not use this file except in compliance with the License.
5 * You may obtain a copy of the License at:
6 *
7 * http://www.apache.org/licenses/LICENSE-2.0
8 *
9 * Unless required by applicable law or agreed to in writing, software
10 * distributed under the License is distributed on an "AS IS" BASIS,
11 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 * See the License for the specific language governing permissions and
13 * limitations under the License. */
14
15 #include <config.h>
16 #include "ofproto-dpif-upcall.h"
17
18 #include <errno.h>
19 #include <stdbool.h>
20 #include <inttypes.h>
21
22 #include "connmgr.h"
23 #include "coverage.h"
24 #include "cmap.h"
25 #include "lib/dpif-provider.h"
26 #include "dpif.h"
27 #include "openvswitch/dynamic-string.h"
28 #include "fail-open.h"
29 #include "guarded-list.h"
30 #include "latch.h"
31 #include "openvswitch/list.h"
32 #include "netlink.h"
33 #include "openvswitch/ofpbuf.h"
34 #include "ofproto-dpif-ipfix.h"
35 #include "ofproto-dpif-sflow.h"
36 #include "ofproto-dpif-xlate.h"
37 #include "ofproto-dpif-xlate-cache.h"
38 #include "ofproto-dpif-trace.h"
39 #include "ovs-rcu.h"
40 #include "packets.h"
41 #include "openvswitch/poll-loop.h"
42 #include "seq.h"
43 #include "tunnel.h"
44 #include "unixctl.h"
45 #include "openvswitch/vlog.h"
46 #include "lib/netdev-provider.h"
47
48 #define MAX_QUEUE_LENGTH 512
49 #define UPCALL_MAX_BATCH 64
50 #define REVALIDATE_MAX_BATCH 50
51
52 VLOG_DEFINE_THIS_MODULE(ofproto_dpif_upcall);
53
54 COVERAGE_DEFINE(dumped_duplicate_flow);
55 COVERAGE_DEFINE(dumped_new_flow);
56 COVERAGE_DEFINE(handler_duplicate_upcall);
57 COVERAGE_DEFINE(upcall_ukey_contention);
58 COVERAGE_DEFINE(upcall_ukey_replace);
59 COVERAGE_DEFINE(revalidate_missed_dp_flow);
60
61 /* A thread that reads upcalls from dpif, forwards each upcall's packet,
62 * and possibly sets up a kernel flow as a cache. */
63 struct handler {
64 struct udpif *udpif; /* Parent udpif. */
65 pthread_t thread; /* Thread ID. */
66 uint32_t handler_id; /* Handler id. */
67 };
68
69 /* In the absence of a multiple-writer multiple-reader datastructure for
70 * storing udpif_keys ("ukeys"), we use a large number of cmaps, each with its
71 * own lock for writing. */
72 #define N_UMAPS 512 /* per udpif. */
73 struct umap {
74 struct ovs_mutex mutex; /* Take for writing to the following. */
75 struct cmap cmap; /* Datapath flow keys. */
76 };
77
78 /* A thread that processes datapath flows, updates OpenFlow statistics, and
79 * updates or removes them if necessary.
80 *
81 * Revalidator threads operate in two phases: "dump" and "sweep". In between
82 * each phase, all revalidators sync up so that all revalidator threads are
83 * either in one phase or the other, but not a combination.
84 *
85 * During the dump phase, revalidators fetch flows from the datapath and
86 * attribute the statistics to OpenFlow rules. Each datapath flow has a
87 * corresponding ukey which caches the most recently seen statistics. If
88 * a flow needs to be deleted (for example, because it is unused over a
89 * period of time), revalidator threads may delete the flow during the
90 * dump phase. The datapath is not guaranteed to reliably dump all flows
91 * from the datapath, and there is no mapping between datapath flows to
92 * revalidators, so a particular flow may be handled by zero or more
93 * revalidators during a single dump phase. To avoid duplicate attribution
94 * of statistics, ukeys are never deleted during this phase.
95 *
96 * During the sweep phase, each revalidator takes ownership of a different
97 * slice of umaps and sweeps through all ukeys in those umaps to figure out
98 * whether they need to be deleted. During this phase, revalidators may
99 * fetch individual flows which were not dumped during the dump phase to
100 * validate them and attribute statistics.
101 */
102 struct revalidator {
103 struct udpif *udpif; /* Parent udpif. */
104 pthread_t thread; /* Thread ID. */
105 unsigned int id; /* ovsthread_id_self(). */
106 };
107
108 /* An upcall handler for ofproto_dpif.
109 *
110 * udpif keeps records of two kind of logically separate units:
111 *
112 * upcall handling
113 * ---------------
114 *
115 * - An array of 'struct handler's for upcall handling and flow
116 * installation.
117 *
118 * flow revalidation
119 * -----------------
120 *
121 * - Revalidation threads which read the datapath flow table and maintains
122 * them.
123 */
124 struct udpif {
125 struct ovs_list list_node; /* In all_udpifs list. */
126
127 struct dpif *dpif; /* Datapath handle. */
128 struct dpif_backer *backer; /* Opaque dpif_backer pointer. */
129
130 struct handler *handlers; /* Upcall handlers. */
131 size_t n_handlers;
132
133 struct revalidator *revalidators; /* Flow revalidators. */
134 size_t n_revalidators;
135
136 struct latch exit_latch; /* Tells child threads to exit. */
137
138 /* Revalidation. */
139 struct seq *reval_seq; /* Incremented to force revalidation. */
140 bool reval_exit; /* Set by leader on 'exit_latch. */
141 struct ovs_barrier reval_barrier; /* Barrier used by revalidators. */
142 struct dpif_flow_dump *dump; /* DPIF flow dump state. */
143 long long int dump_duration; /* Duration of the last flow dump. */
144 struct seq *dump_seq; /* Increments each dump iteration. */
145 atomic_bool enable_ufid; /* If true, skip dumping flow attrs. */
146
147 /* These variables provide a mechanism for the main thread to pause
148 * all revalidation without having to completely shut the threads down.
149 * 'pause_latch' is shared between the main thread and the lead
150 * revalidator thread, so when it is desirable to halt revalidation, the
151 * main thread will set the latch. 'pause' and 'pause_barrier' are shared
152 * by revalidator threads. The lead revalidator will set 'pause' when it
153 * observes the latch has been set, and this will cause all revalidator
154 * threads to wait on 'pause_barrier' at the beginning of the next
155 * revalidation round. */
156 bool pause; /* Set by leader on 'pause_latch. */
157 struct latch pause_latch; /* Set to force revalidators pause. */
158 struct ovs_barrier pause_barrier; /* Barrier used to pause all */
159 /* revalidators by main thread. */
160
161 /* There are 'N_UMAPS' maps containing 'struct udpif_key' elements.
162 *
163 * During the flow dump phase, revalidators insert into these with a random
164 * distribution. During the garbage collection phase, each revalidator
165 * takes care of garbage collecting a slice of these maps. */
166 struct umap *ukeys;
167
168 /* Datapath flow statistics. */
169 unsigned int max_n_flows;
170 unsigned int avg_n_flows;
171
172 /* Following fields are accessed and modified by different threads. */
173 atomic_uint flow_limit; /* Datapath flow hard limit. */
174
175 /* n_flows_mutex prevents multiple threads updating these concurrently. */
176 atomic_uint n_flows; /* Number of flows in the datapath. */
177 atomic_llong n_flows_timestamp; /* Last time n_flows was updated. */
178 struct ovs_mutex n_flows_mutex;
179
180 /* Following fields are accessed and modified only from the main thread. */
181 struct unixctl_conn **conns; /* Connections waiting on dump_seq. */
182 uint64_t conn_seq; /* Corresponds to 'dump_seq' when
183 conns[n_conns-1] was stored. */
184 size_t n_conns; /* Number of connections waiting. */
185
186 long long int offload_rebalance_time; /* Time of last offload rebalance */
187 };
188
189 enum upcall_type {
190 BAD_UPCALL, /* Some kind of bug somewhere. */
191 MISS_UPCALL, /* A flow miss. */
192 SLOW_PATH_UPCALL, /* Slow path upcall. */
193 SFLOW_UPCALL, /* sFlow sample. */
194 FLOW_SAMPLE_UPCALL, /* Per-flow sampling. */
195 IPFIX_UPCALL, /* Per-bridge sampling. */
196 CONTROLLER_UPCALL /* Destined for the controller. */
197 };
198
199 enum reval_result {
200 UKEY_KEEP,
201 UKEY_DELETE,
202 UKEY_MODIFY
203 };
204
205 struct upcall {
206 struct ofproto_dpif *ofproto; /* Parent ofproto. */
207 const struct recirc_id_node *recirc; /* Recirculation context. */
208 bool have_recirc_ref; /* Reference held on recirc ctx? */
209
210 /* The flow and packet are only required to be constant when using
211 * dpif-netdev. If a modification is absolutely necessary, a const cast
212 * may be used with other datapaths. */
213 const struct flow *flow; /* Parsed representation of the packet. */
214 enum odp_key_fitness fitness; /* Fitness of 'flow' relative to ODP key. */
215 const ovs_u128 *ufid; /* Unique identifier for 'flow'. */
216 unsigned pmd_id; /* Datapath poll mode driver id. */
217 const struct dp_packet *packet; /* Packet associated with this upcall. */
218 ofp_port_t ofp_in_port; /* OpenFlow in port, or OFPP_NONE. */
219 uint16_t mru; /* If !0, Maximum receive unit of
220 fragmented IP packet */
221
222 enum upcall_type type; /* Type of the upcall. */
223 const struct nlattr *actions; /* Flow actions in DPIF_UC_ACTION Upcalls. */
224
225 bool xout_initialized; /* True if 'xout' must be uninitialized. */
226 struct xlate_out xout; /* Result of xlate_actions(). */
227 struct ofpbuf odp_actions; /* Datapath actions from xlate_actions(). */
228 struct flow_wildcards wc; /* Dependencies that megaflow must match. */
229 struct ofpbuf put_actions; /* Actions 'put' in the fastpath. */
230
231 struct dpif_ipfix *ipfix; /* IPFIX pointer or NULL. */
232 struct dpif_sflow *sflow; /* SFlow pointer or NULL. */
233
234 struct udpif_key *ukey; /* Revalidator flow cache. */
235 bool ukey_persists; /* Set true to keep 'ukey' beyond the
236 lifetime of this upcall. */
237
238 uint64_t reval_seq; /* udpif->reval_seq at translation time. */
239
240 /* Not used by the upcall callback interface. */
241 const struct nlattr *key; /* Datapath flow key. */
242 size_t key_len; /* Datapath flow key length. */
243 const struct nlattr *out_tun_key; /* Datapath output tunnel key. */
244
245 struct user_action_cookie cookie;
246
247 uint64_t odp_actions_stub[1024 / 8]; /* Stub for odp_actions. */
248 };
249
250 /* Ukeys must transition through these states using transition_ukey(). */
251 enum ukey_state {
252 UKEY_CREATED = 0,
253 UKEY_VISIBLE, /* Ukey is in umap, datapath flow install is queued. */
254 UKEY_OPERATIONAL, /* Ukey is in umap, datapath flow is installed. */
255 UKEY_EVICTING, /* Ukey is in umap, datapath flow delete is queued. */
256 UKEY_EVICTED, /* Ukey is in umap, datapath flow is deleted. */
257 UKEY_DELETED, /* Ukey removed from umap, ukey free is deferred. */
258 };
259 #define N_UKEY_STATES (UKEY_DELETED + 1)
260
261 /* 'udpif_key's are responsible for tracking the little bit of state udpif
262 * needs to do flow expiration which can't be pulled directly from the
263 * datapath. They may be created by any handler or revalidator thread at any
264 * time, and read by any revalidator during the dump phase. They are however
265 * each owned by a single revalidator which takes care of destroying them
266 * during the garbage-collection phase.
267 *
268 * The mutex within the ukey protects some members of the ukey. The ukey
269 * itself is protected by RCU and is held within a umap in the parent udpif.
270 * Adding or removing a ukey from a umap is only safe when holding the
271 * corresponding umap lock. */
272 struct udpif_key {
273 struct cmap_node cmap_node; /* In parent revalidator 'ukeys' map. */
274
275 /* These elements are read only once created, and therefore aren't
276 * protected by a mutex. */
277 const struct nlattr *key; /* Datapath flow key. */
278 size_t key_len; /* Length of 'key'. */
279 const struct nlattr *mask; /* Datapath flow mask. */
280 size_t mask_len; /* Length of 'mask'. */
281 ovs_u128 ufid; /* Unique flow identifier. */
282 bool ufid_present; /* True if 'ufid' is in datapath. */
283 uint32_t hash; /* Pre-computed hash for 'key'. */
284 unsigned pmd_id; /* Datapath poll mode driver id. */
285
286 struct ovs_mutex mutex; /* Guards the following. */
287 struct dpif_flow_stats stats OVS_GUARDED; /* Last known stats.*/
288 long long int created OVS_GUARDED; /* Estimate of creation time. */
289 uint64_t dump_seq OVS_GUARDED; /* Tracks udpif->dump_seq. */
290 uint64_t reval_seq OVS_GUARDED; /* Tracks udpif->reval_seq. */
291 enum ukey_state state OVS_GUARDED; /* Tracks ukey lifetime. */
292
293 /* 'state' debug information. */
294 unsigned int state_thread OVS_GUARDED; /* Thread that transitions. */
295 const char *state_where OVS_GUARDED; /* transition_ukey() locator. */
296
297 /* Datapath flow actions as nlattrs. Protected by RCU. Read with
298 * ukey_get_actions(), and write with ukey_set_actions(). */
299 OVSRCU_TYPE(struct ofpbuf *) actions;
300
301 struct xlate_cache *xcache OVS_GUARDED; /* Cache for xlate entries that
302 * are affected by this ukey.
303 * Used for stats and learning.*/
304 union {
305 struct odputil_keybuf buf;
306 struct nlattr nla;
307 } keybuf, maskbuf;
308
309 uint32_t key_recirc_id; /* Non-zero if reference is held by the ukey. */
310 struct recirc_refs recircs; /* Action recirc IDs with references held. */
311
312 #define OFFL_REBAL_INTVL_MSEC 3000 /* dynamic offload rebalance freq */
313 struct netdev *in_netdev; /* in_odp_port's netdev */
314 bool offloaded; /* True if flow is offloaded */
315 uint64_t flow_pps_rate; /* Packets-Per-Second rate */
316 long long int flow_time; /* last pps update time */
317 uint64_t flow_packets; /* #pkts seen in interval */
318 uint64_t flow_backlog_packets; /* prev-mode #pkts (offl or kernel) */
319 };
320
321 /* Datapath operation with optional ukey attached. */
322 struct ukey_op {
323 struct udpif_key *ukey;
324 struct dpif_flow_stats stats; /* Stats for 'op'. */
325 struct dpif_op dop; /* Flow operation. */
326 };
327
328 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
329 static struct ovs_list all_udpifs = OVS_LIST_INITIALIZER(&all_udpifs);
330
331 static size_t recv_upcalls(struct handler *);
332 static int process_upcall(struct udpif *, struct upcall *,
333 struct ofpbuf *odp_actions, struct flow_wildcards *);
334 static void handle_upcalls(struct udpif *, struct upcall *, size_t n_upcalls);
335 static void udpif_stop_threads(struct udpif *);
336 static void udpif_start_threads(struct udpif *, size_t n_handlers,
337 size_t n_revalidators);
338 static void udpif_pause_revalidators(struct udpif *);
339 static void udpif_resume_revalidators(struct udpif *);
340 static void *udpif_upcall_handler(void *);
341 static void *udpif_revalidator(void *);
342 static unsigned long udpif_get_n_flows(struct udpif *);
343 static void revalidate(struct revalidator *);
344 static void revalidator_pause(struct revalidator *);
345 static void revalidator_sweep(struct revalidator *);
346 static void revalidator_purge(struct revalidator *);
347 static void upcall_unixctl_show(struct unixctl_conn *conn, int argc,
348 const char *argv[], void *aux);
349 static void upcall_unixctl_disable_megaflows(struct unixctl_conn *, int argc,
350 const char *argv[], void *aux);
351 static void upcall_unixctl_enable_megaflows(struct unixctl_conn *, int argc,
352 const char *argv[], void *aux);
353 static void upcall_unixctl_disable_ufid(struct unixctl_conn *, int argc,
354 const char *argv[], void *aux);
355 static void upcall_unixctl_enable_ufid(struct unixctl_conn *, int argc,
356 const char *argv[], void *aux);
357 static void upcall_unixctl_set_flow_limit(struct unixctl_conn *conn, int argc,
358 const char *argv[], void *aux);
359 static void upcall_unixctl_dump_wait(struct unixctl_conn *conn, int argc,
360 const char *argv[], void *aux);
361 static void upcall_unixctl_purge(struct unixctl_conn *conn, int argc,
362 const char *argv[], void *aux);
363
364 static struct udpif_key *ukey_create_from_upcall(struct upcall *,
365 struct flow_wildcards *);
366 static int ukey_create_from_dpif_flow(const struct udpif *,
367 const struct dpif_flow *,
368 struct udpif_key **);
369 static void ukey_get_actions(struct udpif_key *, const struct nlattr **actions,
370 size_t *size);
371 static bool ukey_install__(struct udpif *, struct udpif_key *ukey)
372 OVS_TRY_LOCK(true, ukey->mutex);
373 static bool ukey_install(struct udpif *udpif, struct udpif_key *ukey);
374 static void transition_ukey_at(struct udpif_key *ukey, enum ukey_state dst,
375 const char *where)
376 OVS_REQUIRES(ukey->mutex);
377 #define transition_ukey(UKEY, DST) \
378 transition_ukey_at(UKEY, DST, OVS_SOURCE_LOCATOR)
379 static struct udpif_key *ukey_lookup(struct udpif *udpif,
380 const ovs_u128 *ufid,
381 const unsigned pmd_id);
382 static int ukey_acquire(struct udpif *, const struct dpif_flow *,
383 struct udpif_key **result, int *error);
384 static void ukey_delete__(struct udpif_key *);
385 static void ukey_delete(struct umap *, struct udpif_key *);
386 static enum upcall_type classify_upcall(enum dpif_upcall_type type,
387 const struct nlattr *userdata,
388 struct user_action_cookie *cookie);
389
390 static void put_op_init(struct ukey_op *op, struct udpif_key *ukey,
391 enum dpif_flow_put_flags flags);
392 static void delete_op_init(struct udpif *udpif, struct ukey_op *op,
393 struct udpif_key *ukey);
394
395 static int upcall_receive(struct upcall *, const struct dpif_backer *,
396 const struct dp_packet *packet, enum dpif_upcall_type,
397 const struct nlattr *userdata, const struct flow *,
398 const unsigned int mru,
399 const ovs_u128 *ufid, const unsigned pmd_id);
400 static void upcall_uninit(struct upcall *);
401
402 static void udpif_flow_rebalance(struct udpif *udpif);
403 static int udpif_flow_program(struct udpif *udpif, struct udpif_key *ukey,
404 enum dpif_offload_type offload_type);
405 static int udpif_flow_unprogram(struct udpif *udpif, struct udpif_key *ukey,
406 enum dpif_offload_type offload_type);
407
408 static upcall_callback upcall_cb;
409 static dp_purge_callback dp_purge_cb;
410
411 static atomic_bool enable_megaflows = ATOMIC_VAR_INIT(true);
412 static atomic_bool enable_ufid = ATOMIC_VAR_INIT(true);
413
414 void
415 udpif_init(void)
416 {
417 static struct ovsthread_once once = OVSTHREAD_ONCE_INITIALIZER;
418 if (ovsthread_once_start(&once)) {
419 unixctl_command_register("upcall/show", "", 0, 0, upcall_unixctl_show,
420 NULL);
421 unixctl_command_register("upcall/disable-megaflows", "", 0, 0,
422 upcall_unixctl_disable_megaflows, NULL);
423 unixctl_command_register("upcall/enable-megaflows", "", 0, 0,
424 upcall_unixctl_enable_megaflows, NULL);
425 unixctl_command_register("upcall/disable-ufid", "", 0, 0,
426 upcall_unixctl_disable_ufid, NULL);
427 unixctl_command_register("upcall/enable-ufid", "", 0, 0,
428 upcall_unixctl_enable_ufid, NULL);
429 unixctl_command_register("upcall/set-flow-limit", "flow-limit-number",
430 1, 1, upcall_unixctl_set_flow_limit, NULL);
431 unixctl_command_register("revalidator/wait", "", 0, 0,
432 upcall_unixctl_dump_wait, NULL);
433 unixctl_command_register("revalidator/purge", "", 0, 0,
434 upcall_unixctl_purge, NULL);
435 ovsthread_once_done(&once);
436 }
437 }
438
439 struct udpif *
440 udpif_create(struct dpif_backer *backer, struct dpif *dpif)
441 {
442 struct udpif *udpif = xzalloc(sizeof *udpif);
443
444 udpif->dpif = dpif;
445 udpif->backer = backer;
446 atomic_init(&udpif->flow_limit, MIN(ofproto_flow_limit, 10000));
447 udpif->reval_seq = seq_create();
448 udpif->dump_seq = seq_create();
449 latch_init(&udpif->exit_latch);
450 latch_init(&udpif->pause_latch);
451 ovs_list_push_back(&all_udpifs, &udpif->list_node);
452 atomic_init(&udpif->enable_ufid, false);
453 atomic_init(&udpif->n_flows, 0);
454 atomic_init(&udpif->n_flows_timestamp, LLONG_MIN);
455 ovs_mutex_init(&udpif->n_flows_mutex);
456 udpif->ukeys = xmalloc(N_UMAPS * sizeof *udpif->ukeys);
457 for (int i = 0; i < N_UMAPS; i++) {
458 cmap_init(&udpif->ukeys[i].cmap);
459 ovs_mutex_init(&udpif->ukeys[i].mutex);
460 }
461
462 dpif_register_upcall_cb(dpif, upcall_cb, udpif);
463 dpif_register_dp_purge_cb(dpif, dp_purge_cb, udpif);
464
465 return udpif;
466 }
467
468 void
469 udpif_run(struct udpif *udpif)
470 {
471 if (udpif->conns && udpif->conn_seq != seq_read(udpif->dump_seq)) {
472 int i;
473
474 for (i = 0; i < udpif->n_conns; i++) {
475 unixctl_command_reply(udpif->conns[i], NULL);
476 }
477 free(udpif->conns);
478 udpif->conns = NULL;
479 udpif->n_conns = 0;
480 }
481 }
482
483 void
484 udpif_destroy(struct udpif *udpif)
485 {
486 udpif_stop_threads(udpif);
487
488 dpif_register_dp_purge_cb(udpif->dpif, NULL, udpif);
489 dpif_register_upcall_cb(udpif->dpif, NULL, udpif);
490
491 for (int i = 0; i < N_UMAPS; i++) {
492 cmap_destroy(&udpif->ukeys[i].cmap);
493 ovs_mutex_destroy(&udpif->ukeys[i].mutex);
494 }
495 free(udpif->ukeys);
496 udpif->ukeys = NULL;
497
498 ovs_list_remove(&udpif->list_node);
499 latch_destroy(&udpif->exit_latch);
500 latch_destroy(&udpif->pause_latch);
501 seq_destroy(udpif->reval_seq);
502 seq_destroy(udpif->dump_seq);
503 ovs_mutex_destroy(&udpif->n_flows_mutex);
504 free(udpif);
505 }
506
507 /* Stops the handler and revalidator threads. */
508 static void
509 udpif_stop_threads(struct udpif *udpif)
510 {
511 if (udpif && (udpif->n_handlers != 0 || udpif->n_revalidators != 0)) {
512 size_t i;
513
514 /* Tell the threads to exit. */
515 latch_set(&udpif->exit_latch);
516
517 /* Wait for the threads to exit. Quiesce because this can take a long
518 * time.. */
519 ovsrcu_quiesce_start();
520 for (i = 0; i < udpif->n_handlers; i++) {
521 xpthread_join(udpif->handlers[i].thread, NULL);
522 }
523 for (i = 0; i < udpif->n_revalidators; i++) {
524 xpthread_join(udpif->revalidators[i].thread, NULL);
525 }
526 dpif_disable_upcall(udpif->dpif);
527 ovsrcu_quiesce_end();
528
529 /* Delete ukeys, and delete all flows from the datapath to prevent
530 * double-counting stats. */
531 for (i = 0; i < udpif->n_revalidators; i++) {
532 revalidator_purge(&udpif->revalidators[i]);
533 }
534
535 latch_poll(&udpif->exit_latch);
536
537 ovs_barrier_destroy(&udpif->reval_barrier);
538 ovs_barrier_destroy(&udpif->pause_barrier);
539
540 free(udpif->revalidators);
541 udpif->revalidators = NULL;
542 udpif->n_revalidators = 0;
543
544 free(udpif->handlers);
545 udpif->handlers = NULL;
546 udpif->n_handlers = 0;
547 }
548 }
549
550 /* Starts the handler and revalidator threads. */
551 static void
552 udpif_start_threads(struct udpif *udpif, size_t n_handlers_,
553 size_t n_revalidators_)
554 {
555 if (udpif && n_handlers_ && n_revalidators_) {
556 /* Creating a thread can take a significant amount of time on some
557 * systems, even hundred of milliseconds, so quiesce around it. */
558 ovsrcu_quiesce_start();
559
560 udpif->n_handlers = n_handlers_;
561 udpif->n_revalidators = n_revalidators_;
562
563 udpif->handlers = xzalloc(udpif->n_handlers * sizeof *udpif->handlers);
564 for (size_t i = 0; i < udpif->n_handlers; i++) {
565 struct handler *handler = &udpif->handlers[i];
566
567 handler->udpif = udpif;
568 handler->handler_id = i;
569 handler->thread = ovs_thread_create(
570 "handler", udpif_upcall_handler, handler);
571 }
572
573 atomic_init(&udpif->enable_ufid, udpif->backer->rt_support.ufid);
574 dpif_enable_upcall(udpif->dpif);
575
576 ovs_barrier_init(&udpif->reval_barrier, udpif->n_revalidators);
577 ovs_barrier_init(&udpif->pause_barrier, udpif->n_revalidators + 1);
578 udpif->reval_exit = false;
579 udpif->pause = false;
580 udpif->offload_rebalance_time = time_msec();
581 udpif->revalidators = xzalloc(udpif->n_revalidators
582 * sizeof *udpif->revalidators);
583 for (size_t i = 0; i < udpif->n_revalidators; i++) {
584 struct revalidator *revalidator = &udpif->revalidators[i];
585
586 revalidator->udpif = udpif;
587 revalidator->thread = ovs_thread_create(
588 "revalidator", udpif_revalidator, revalidator);
589 }
590 ovsrcu_quiesce_end();
591 }
592 }
593
594 /* Pauses all revalidators. Should only be called by the main thread.
595 * When function returns, all revalidators are paused and will proceed
596 * only after udpif_resume_revalidators() is called. */
597 static void
598 udpif_pause_revalidators(struct udpif *udpif)
599 {
600 if (udpif->backer->recv_set_enable) {
601 latch_set(&udpif->pause_latch);
602 ovs_barrier_block(&udpif->pause_barrier);
603 }
604 }
605
606 /* Resumes the pausing of revalidators. Should only be called by the
607 * main thread. */
608 static void
609 udpif_resume_revalidators(struct udpif *udpif)
610 {
611 if (udpif->backer->recv_set_enable) {
612 latch_poll(&udpif->pause_latch);
613 ovs_barrier_block(&udpif->pause_barrier);
614 }
615 }
616
617 /* Tells 'udpif' how many threads it should use to handle upcalls.
618 * 'n_handlers_' and 'n_revalidators_' can never be zero. 'udpif''s
619 * datapath handle must have packet reception enabled before starting
620 * threads. */
621 void
622 udpif_set_threads(struct udpif *udpif, size_t n_handlers_,
623 size_t n_revalidators_)
624 {
625 ovs_assert(udpif);
626 ovs_assert(n_handlers_ && n_revalidators_);
627
628 if (udpif->n_handlers != n_handlers_
629 || udpif->n_revalidators != n_revalidators_) {
630 udpif_stop_threads(udpif);
631 }
632
633 if (!udpif->handlers && !udpif->revalidators) {
634 int error;
635
636 error = dpif_handlers_set(udpif->dpif, n_handlers_);
637 if (error) {
638 VLOG_ERR("failed to configure handlers in dpif %s: %s",
639 dpif_name(udpif->dpif), ovs_strerror(error));
640 return;
641 }
642
643 udpif_start_threads(udpif, n_handlers_, n_revalidators_);
644 }
645 }
646
647 /* Waits for all ongoing upcall translations to complete. This ensures that
648 * there are no transient references to any removed ofprotos (or other
649 * objects). In particular, this should be called after an ofproto is removed
650 * (e.g. via xlate_remove_ofproto()) but before it is destroyed. */
651 void
652 udpif_synchronize(struct udpif *udpif)
653 {
654 /* This is stronger than necessary. It would be sufficient to ensure
655 * (somehow) that each handler and revalidator thread had passed through
656 * its main loop once. */
657 size_t n_handlers_ = udpif->n_handlers;
658 size_t n_revalidators_ = udpif->n_revalidators;
659
660 udpif_stop_threads(udpif);
661 udpif_start_threads(udpif, n_handlers_, n_revalidators_);
662 }
663
664 /* Notifies 'udpif' that something changed which may render previous
665 * xlate_actions() results invalid. */
666 void
667 udpif_revalidate(struct udpif *udpif)
668 {
669 seq_change(udpif->reval_seq);
670 }
671
672 /* Returns a seq which increments every time 'udpif' pulls stats from the
673 * datapath. Callers can use this to get a sense of when might be a good time
674 * to do periodic work which relies on relatively up to date statistics. */
675 struct seq *
676 udpif_dump_seq(struct udpif *udpif)
677 {
678 return udpif->dump_seq;
679 }
680
681 void
682 udpif_get_memory_usage(struct udpif *udpif, struct simap *usage)
683 {
684 size_t i;
685
686 simap_increase(usage, "handlers", udpif->n_handlers);
687
688 simap_increase(usage, "revalidators", udpif->n_revalidators);
689 for (i = 0; i < N_UMAPS; i++) {
690 simap_increase(usage, "udpif keys", cmap_count(&udpif->ukeys[i].cmap));
691 }
692 }
693
694 /* Remove flows from a single datapath. */
695 void
696 udpif_flush(struct udpif *udpif)
697 {
698 size_t n_handlers_ = udpif->n_handlers;
699 size_t n_revalidators_ = udpif->n_revalidators;
700
701 udpif_stop_threads(udpif);
702 dpif_flow_flush(udpif->dpif);
703 udpif_start_threads(udpif, n_handlers_, n_revalidators_);
704 }
705
706 /* Removes all flows from all datapaths. */
707 static void
708 udpif_flush_all_datapaths(void)
709 {
710 struct udpif *udpif;
711
712 LIST_FOR_EACH (udpif, list_node, &all_udpifs) {
713 udpif_flush(udpif);
714 }
715 }
716
717 static bool
718 udpif_use_ufid(struct udpif *udpif)
719 {
720 bool enable;
721
722 atomic_read_relaxed(&enable_ufid, &enable);
723 return enable && udpif->backer->rt_support.ufid;
724 }
725
726 \f
727 static unsigned long
728 udpif_get_n_flows(struct udpif *udpif)
729 {
730 long long int time, now;
731 unsigned long flow_count;
732
733 now = time_msec();
734 atomic_read_relaxed(&udpif->n_flows_timestamp, &time);
735 if (time < now - 100 && !ovs_mutex_trylock(&udpif->n_flows_mutex)) {
736 struct dpif_dp_stats stats;
737
738 atomic_store_relaxed(&udpif->n_flows_timestamp, now);
739 dpif_get_dp_stats(udpif->dpif, &stats);
740 flow_count = stats.n_flows;
741 atomic_store_relaxed(&udpif->n_flows, flow_count);
742 ovs_mutex_unlock(&udpif->n_flows_mutex);
743 } else {
744 atomic_read_relaxed(&udpif->n_flows, &flow_count);
745 }
746 return flow_count;
747 }
748
749 /* The upcall handler thread tries to read a batch of UPCALL_MAX_BATCH
750 * upcalls from dpif, processes the batch and installs corresponding flows
751 * in dpif. */
752 static void *
753 udpif_upcall_handler(void *arg)
754 {
755 struct handler *handler = arg;
756 struct udpif *udpif = handler->udpif;
757
758 while (!latch_is_set(&handler->udpif->exit_latch)) {
759 if (recv_upcalls(handler)) {
760 poll_immediate_wake();
761 } else {
762 dpif_recv_wait(udpif->dpif, handler->handler_id);
763 latch_wait(&udpif->exit_latch);
764 }
765 poll_block();
766 }
767
768 return NULL;
769 }
770
771 static size_t
772 recv_upcalls(struct handler *handler)
773 {
774 struct udpif *udpif = handler->udpif;
775 uint64_t recv_stubs[UPCALL_MAX_BATCH][512 / 8];
776 struct ofpbuf recv_bufs[UPCALL_MAX_BATCH];
777 struct dpif_upcall dupcalls[UPCALL_MAX_BATCH];
778 struct upcall upcalls[UPCALL_MAX_BATCH];
779 struct flow flows[UPCALL_MAX_BATCH];
780 size_t n_upcalls, i;
781
782 n_upcalls = 0;
783 while (n_upcalls < UPCALL_MAX_BATCH) {
784 struct ofpbuf *recv_buf = &recv_bufs[n_upcalls];
785 struct dpif_upcall *dupcall = &dupcalls[n_upcalls];
786 struct upcall *upcall = &upcalls[n_upcalls];
787 struct flow *flow = &flows[n_upcalls];
788 unsigned int mru;
789 int error;
790
791 ofpbuf_use_stub(recv_buf, recv_stubs[n_upcalls],
792 sizeof recv_stubs[n_upcalls]);
793 if (dpif_recv(udpif->dpif, handler->handler_id, dupcall, recv_buf)) {
794 ofpbuf_uninit(recv_buf);
795 break;
796 }
797
798 upcall->fitness = odp_flow_key_to_flow(dupcall->key, dupcall->key_len,
799 flow);
800 if (upcall->fitness == ODP_FIT_ERROR) {
801 goto free_dupcall;
802 }
803
804 if (dupcall->mru) {
805 mru = nl_attr_get_u16(dupcall->mru);
806 } else {
807 mru = 0;
808 }
809
810 error = upcall_receive(upcall, udpif->backer, &dupcall->packet,
811 dupcall->type, dupcall->userdata, flow, mru,
812 &dupcall->ufid, PMD_ID_NULL);
813 if (error) {
814 if (error == ENODEV) {
815 /* Received packet on datapath port for which we couldn't
816 * associate an ofproto. This can happen if a port is removed
817 * while traffic is being received. Print a rate-limited
818 * message in case it happens frequently. */
819 dpif_flow_put(udpif->dpif, DPIF_FP_CREATE, dupcall->key,
820 dupcall->key_len, NULL, 0, NULL, 0,
821 &dupcall->ufid, PMD_ID_NULL, NULL);
822 VLOG_INFO_RL(&rl, "received packet on unassociated datapath "
823 "port %"PRIu32, flow->in_port.odp_port);
824 }
825 goto free_dupcall;
826 }
827
828 upcall->key = dupcall->key;
829 upcall->key_len = dupcall->key_len;
830 upcall->ufid = &dupcall->ufid;
831
832 upcall->out_tun_key = dupcall->out_tun_key;
833 upcall->actions = dupcall->actions;
834
835 pkt_metadata_from_flow(&dupcall->packet.md, flow);
836 flow_extract(&dupcall->packet, flow);
837
838 error = process_upcall(udpif, upcall,
839 &upcall->odp_actions, &upcall->wc);
840 if (error) {
841 goto cleanup;
842 }
843
844 n_upcalls++;
845 continue;
846
847 cleanup:
848 upcall_uninit(upcall);
849 free_dupcall:
850 dp_packet_uninit(&dupcall->packet);
851 ofpbuf_uninit(recv_buf);
852 }
853
854 if (n_upcalls) {
855 handle_upcalls(handler->udpif, upcalls, n_upcalls);
856 for (i = 0; i < n_upcalls; i++) {
857 dp_packet_uninit(&dupcalls[i].packet);
858 ofpbuf_uninit(&recv_bufs[i]);
859 upcall_uninit(&upcalls[i]);
860 }
861 }
862
863 return n_upcalls;
864 }
865
866 static void
867 udpif_run_flow_rebalance(struct udpif *udpif)
868 {
869 long long int now = 0;
870
871 /* Don't rebalance if OFFL_REBAL_INTVL_MSEC have not elapsed */
872 now = time_msec();
873 if (now < udpif->offload_rebalance_time + OFFL_REBAL_INTVL_MSEC) {
874 return;
875 }
876
877 if (!netdev_any_oor()) {
878 return;
879 }
880
881 VLOG_DBG("Offload rebalance: Found OOR netdevs");
882 udpif->offload_rebalance_time = now;
883 udpif_flow_rebalance(udpif);
884 }
885
886 static void *
887 udpif_revalidator(void *arg)
888 {
889 /* Used by all revalidators. */
890 struct revalidator *revalidator = arg;
891 struct udpif *udpif = revalidator->udpif;
892 bool leader = revalidator == &udpif->revalidators[0];
893
894 /* Used only by the leader. */
895 long long int start_time = 0;
896 uint64_t last_reval_seq = 0;
897 size_t n_flows = 0;
898
899 revalidator->id = ovsthread_id_self();
900 for (;;) {
901 if (leader) {
902 uint64_t reval_seq;
903
904 recirc_run(); /* Recirculation cleanup. */
905
906 reval_seq = seq_read(udpif->reval_seq);
907 last_reval_seq = reval_seq;
908
909 n_flows = udpif_get_n_flows(udpif);
910 udpif->max_n_flows = MAX(n_flows, udpif->max_n_flows);
911 udpif->avg_n_flows = (udpif->avg_n_flows + n_flows) / 2;
912
913 /* Only the leader checks the pause latch to prevent a race where
914 * some threads think it's false and proceed to block on
915 * reval_barrier and others think it's true and block indefinitely
916 * on the pause_barrier */
917 udpif->pause = latch_is_set(&udpif->pause_latch);
918
919 /* Only the leader checks the exit latch to prevent a race where
920 * some threads think it's true and exit and others think it's
921 * false and block indefinitely on the reval_barrier */
922 udpif->reval_exit = latch_is_set(&udpif->exit_latch);
923
924 start_time = time_msec();
925 if (!udpif->reval_exit) {
926 bool terse_dump;
927
928 terse_dump = udpif_use_ufid(udpif);
929 udpif->dump = dpif_flow_dump_create(udpif->dpif, terse_dump,
930 NULL);
931 }
932 }
933
934 /* Wait for the leader to start the flow dump. */
935 ovs_barrier_block(&udpif->reval_barrier);
936 if (udpif->pause) {
937 revalidator_pause(revalidator);
938 }
939
940 if (udpif->reval_exit) {
941 break;
942 }
943 revalidate(revalidator);
944
945 /* Wait for all flows to have been dumped before we garbage collect. */
946 ovs_barrier_block(&udpif->reval_barrier);
947 revalidator_sweep(revalidator);
948
949 /* Wait for all revalidators to finish garbage collection. */
950 ovs_barrier_block(&udpif->reval_barrier);
951
952 if (leader) {
953 unsigned int flow_limit;
954 long long int duration;
955
956 atomic_read_relaxed(&udpif->flow_limit, &flow_limit);
957
958 dpif_flow_dump_destroy(udpif->dump);
959 seq_change(udpif->dump_seq);
960 if (netdev_is_offload_rebalance_policy_enabled()) {
961 udpif_run_flow_rebalance(udpif);
962 }
963
964 duration = MAX(time_msec() - start_time, 1);
965 udpif->dump_duration = duration;
966 if (duration > 2000) {
967 flow_limit /= duration / 1000;
968 } else if (duration > 1300) {
969 flow_limit = flow_limit * 3 / 4;
970 } else if (duration < 1000 &&
971 flow_limit < n_flows * 1000 / duration) {
972 flow_limit += 1000;
973 }
974 flow_limit = MIN(ofproto_flow_limit, MAX(flow_limit, 1000));
975 atomic_store_relaxed(&udpif->flow_limit, flow_limit);
976
977 if (duration > 2000) {
978 VLOG_INFO("Spent an unreasonably long %lldms dumping flows",
979 duration);
980 }
981
982 poll_timer_wait_until(start_time + MIN(ofproto_max_idle, 500));
983 seq_wait(udpif->reval_seq, last_reval_seq);
984 latch_wait(&udpif->exit_latch);
985 latch_wait(&udpif->pause_latch);
986 poll_block();
987
988 if (!latch_is_set(&udpif->pause_latch) &&
989 !latch_is_set(&udpif->exit_latch)) {
990 long long int now = time_msec();
991 /* Block again if we are woken up within 5ms of the last start
992 * time. */
993 start_time += 5;
994
995 if (now < start_time) {
996 poll_timer_wait_until(start_time);
997 latch_wait(&udpif->exit_latch);
998 latch_wait(&udpif->pause_latch);
999 poll_block();
1000 }
1001 }
1002 }
1003 }
1004
1005 return NULL;
1006 }
1007 \f
1008 static enum upcall_type
1009 classify_upcall(enum dpif_upcall_type type, const struct nlattr *userdata,
1010 struct user_action_cookie *cookie)
1011 {
1012 /* First look at the upcall type. */
1013 switch (type) {
1014 case DPIF_UC_ACTION:
1015 break;
1016
1017 case DPIF_UC_MISS:
1018 return MISS_UPCALL;
1019
1020 case DPIF_N_UC_TYPES:
1021 default:
1022 VLOG_WARN_RL(&rl, "upcall has unexpected type %"PRIu32, type);
1023 return BAD_UPCALL;
1024 }
1025
1026 /* "action" upcalls need a closer look. */
1027 if (!userdata) {
1028 VLOG_WARN_RL(&rl, "action upcall missing cookie");
1029 return BAD_UPCALL;
1030 }
1031
1032 size_t userdata_len = nl_attr_get_size(userdata);
1033 if (userdata_len != sizeof *cookie) {
1034 VLOG_WARN_RL(&rl, "action upcall cookie has unexpected size %"PRIuSIZE,
1035 userdata_len);
1036 return BAD_UPCALL;
1037 }
1038 memcpy(cookie, nl_attr_get(userdata), sizeof *cookie);
1039 if (cookie->type == USER_ACTION_COOKIE_SFLOW) {
1040 return SFLOW_UPCALL;
1041 } else if (cookie->type == USER_ACTION_COOKIE_SLOW_PATH) {
1042 return SLOW_PATH_UPCALL;
1043 } else if (cookie->type == USER_ACTION_COOKIE_FLOW_SAMPLE) {
1044 return FLOW_SAMPLE_UPCALL;
1045 } else if (cookie->type == USER_ACTION_COOKIE_IPFIX) {
1046 return IPFIX_UPCALL;
1047 } else if (cookie->type == USER_ACTION_COOKIE_CONTROLLER) {
1048 return CONTROLLER_UPCALL;
1049 } else {
1050 VLOG_WARN_RL(&rl, "invalid user cookie of type %"PRIu16
1051 " and size %"PRIuSIZE, cookie->type, userdata_len);
1052 return BAD_UPCALL;
1053 }
1054 }
1055
1056 /* Calculates slow path actions for 'xout'. 'buf' must statically be
1057 * initialized with at least 128 bytes of space. */
1058 static void
1059 compose_slow_path(struct udpif *udpif, struct xlate_out *xout,
1060 odp_port_t odp_in_port, ofp_port_t ofp_in_port,
1061 struct ofpbuf *buf, uint32_t meter_id,
1062 struct uuid *ofproto_uuid)
1063 {
1064 struct user_action_cookie cookie;
1065 odp_port_t port;
1066 uint32_t pid;
1067
1068 cookie.type = USER_ACTION_COOKIE_SLOW_PATH;
1069 cookie.ofp_in_port = ofp_in_port;
1070 cookie.ofproto_uuid = *ofproto_uuid;
1071 cookie.slow_path.reason = xout->slow;
1072
1073 port = xout->slow & (SLOW_CFM | SLOW_BFD | SLOW_LACP | SLOW_STP)
1074 ? ODPP_NONE
1075 : odp_in_port;
1076 pid = dpif_port_get_pid(udpif->dpif, port);
1077
1078 size_t offset;
1079 size_t ac_offset;
1080 if (meter_id != UINT32_MAX) {
1081 /* If slowpath meter is configured, generate clone(meter, userspace)
1082 * action. */
1083 offset = nl_msg_start_nested(buf, OVS_ACTION_ATTR_SAMPLE);
1084 nl_msg_put_u32(buf, OVS_SAMPLE_ATTR_PROBABILITY, UINT32_MAX);
1085 ac_offset = nl_msg_start_nested(buf, OVS_SAMPLE_ATTR_ACTIONS);
1086 nl_msg_put_u32(buf, OVS_ACTION_ATTR_METER, meter_id);
1087 }
1088
1089 odp_put_userspace_action(pid, &cookie, sizeof cookie,
1090 ODPP_NONE, false, buf);
1091
1092 if (meter_id != UINT32_MAX) {
1093 nl_msg_end_nested(buf, ac_offset);
1094 nl_msg_end_nested(buf, offset);
1095 }
1096 }
1097
1098 /* If there is no error, the upcall must be destroyed with upcall_uninit()
1099 * before quiescing, as the referred objects are guaranteed to exist only
1100 * until the calling thread quiesces. Otherwise, do not call upcall_uninit()
1101 * since the 'upcall->put_actions' remains uninitialized. */
1102 static int
1103 upcall_receive(struct upcall *upcall, const struct dpif_backer *backer,
1104 const struct dp_packet *packet, enum dpif_upcall_type type,
1105 const struct nlattr *userdata, const struct flow *flow,
1106 const unsigned int mru,
1107 const ovs_u128 *ufid, const unsigned pmd_id)
1108 {
1109 int error;
1110
1111 upcall->type = classify_upcall(type, userdata, &upcall->cookie);
1112 if (upcall->type == BAD_UPCALL) {
1113 return EAGAIN;
1114 } else if (upcall->type == MISS_UPCALL) {
1115 error = xlate_lookup(backer, flow, &upcall->ofproto, &upcall->ipfix,
1116 &upcall->sflow, NULL, &upcall->ofp_in_port);
1117 if (error) {
1118 return error;
1119 }
1120 } else {
1121 struct ofproto_dpif *ofproto
1122 = ofproto_dpif_lookup_by_uuid(&upcall->cookie.ofproto_uuid);
1123 if (!ofproto) {
1124 VLOG_INFO_RL(&rl, "upcall could not find ofproto");
1125 return ENODEV;
1126 }
1127 upcall->ofproto = ofproto;
1128 upcall->ipfix = ofproto->ipfix;
1129 upcall->sflow = ofproto->sflow;
1130 upcall->ofp_in_port = upcall->cookie.ofp_in_port;
1131 }
1132
1133 upcall->recirc = NULL;
1134 upcall->have_recirc_ref = false;
1135 upcall->flow = flow;
1136 upcall->packet = packet;
1137 upcall->ufid = ufid;
1138 upcall->pmd_id = pmd_id;
1139 ofpbuf_use_stub(&upcall->odp_actions, upcall->odp_actions_stub,
1140 sizeof upcall->odp_actions_stub);
1141 ofpbuf_init(&upcall->put_actions, 0);
1142
1143 upcall->xout_initialized = false;
1144 upcall->ukey_persists = false;
1145
1146 upcall->ukey = NULL;
1147 upcall->key = NULL;
1148 upcall->key_len = 0;
1149 upcall->mru = mru;
1150
1151 upcall->out_tun_key = NULL;
1152 upcall->actions = NULL;
1153
1154 return 0;
1155 }
1156
1157 static void
1158 upcall_xlate(struct udpif *udpif, struct upcall *upcall,
1159 struct ofpbuf *odp_actions, struct flow_wildcards *wc)
1160 {
1161 struct dpif_flow_stats stats;
1162 enum xlate_error xerr;
1163 struct xlate_in xin;
1164 struct ds output;
1165
1166 stats.n_packets = 1;
1167 stats.n_bytes = dp_packet_size(upcall->packet);
1168 stats.used = time_msec();
1169 stats.tcp_flags = ntohs(upcall->flow->tcp_flags);
1170
1171 xlate_in_init(&xin, upcall->ofproto,
1172 ofproto_dpif_get_tables_version(upcall->ofproto),
1173 upcall->flow, upcall->ofp_in_port, NULL,
1174 stats.tcp_flags, upcall->packet, wc, odp_actions);
1175
1176 if (upcall->type == MISS_UPCALL) {
1177 xin.resubmit_stats = &stats;
1178
1179 if (xin.frozen_state) {
1180 /* We may install a datapath flow only if we get a reference to the
1181 * recirculation context (otherwise we could have recirculation
1182 * upcalls using recirculation ID for which no context can be
1183 * found). We may still execute the flow's actions even if we
1184 * don't install the flow. */
1185 upcall->recirc = recirc_id_node_from_state(xin.frozen_state);
1186 upcall->have_recirc_ref = recirc_id_node_try_ref_rcu(upcall->recirc);
1187 }
1188 } else {
1189 /* For non-miss upcalls, we are either executing actions (one of which
1190 * is an userspace action) for an upcall, in which case the stats have
1191 * already been taken care of, or there's a flow in the datapath which
1192 * this packet was accounted to. Presumably the revalidators will deal
1193 * with pushing its stats eventually. */
1194 }
1195
1196 upcall->reval_seq = seq_read(udpif->reval_seq);
1197
1198 xerr = xlate_actions(&xin, &upcall->xout);
1199
1200 /* Translate again and log the ofproto trace for
1201 * these two error types. */
1202 if (xerr == XLATE_RECURSION_TOO_DEEP ||
1203 xerr == XLATE_TOO_MANY_RESUBMITS) {
1204 static struct vlog_rate_limit rll = VLOG_RATE_LIMIT_INIT(1, 1);
1205
1206 /* This is a huge log, so be conservative. */
1207 if (!VLOG_DROP_WARN(&rll)) {
1208 ds_init(&output);
1209 ofproto_trace(upcall->ofproto, upcall->flow,
1210 upcall->packet, NULL, 0, NULL, &output);
1211 VLOG_WARN("%s", ds_cstr(&output));
1212 ds_destroy(&output);
1213 }
1214 }
1215
1216 if (wc) {
1217 /* Convert the input port wildcard from OFP to ODP format. There's no
1218 * real way to do this for arbitrary bitmasks since the numbering spaces
1219 * aren't the same. However, flow translation always exact matches the
1220 * whole thing, so we can do the same here. */
1221 WC_MASK_FIELD(wc, in_port.odp_port);
1222 }
1223
1224 upcall->xout_initialized = true;
1225
1226 if (upcall->fitness == ODP_FIT_TOO_LITTLE) {
1227 upcall->xout.slow |= SLOW_MATCH;
1228 }
1229 if (!upcall->xout.slow) {
1230 ofpbuf_use_const(&upcall->put_actions,
1231 odp_actions->data, odp_actions->size);
1232 } else {
1233 /* upcall->put_actions already initialized by upcall_receive(). */
1234 compose_slow_path(udpif, &upcall->xout,
1235 upcall->flow->in_port.odp_port, upcall->ofp_in_port,
1236 &upcall->put_actions,
1237 upcall->ofproto->up.slowpath_meter_id,
1238 &upcall->ofproto->uuid);
1239 }
1240
1241 /* This function is also called for slow-pathed flows. As we are only
1242 * going to create new datapath flows for actual datapath misses, there is
1243 * no point in creating a ukey otherwise. */
1244 if (upcall->type == MISS_UPCALL) {
1245 upcall->ukey = ukey_create_from_upcall(upcall, wc);
1246 }
1247 }
1248
1249 static void
1250 upcall_uninit(struct upcall *upcall)
1251 {
1252 if (upcall) {
1253 if (upcall->xout_initialized) {
1254 xlate_out_uninit(&upcall->xout);
1255 }
1256 ofpbuf_uninit(&upcall->odp_actions);
1257 ofpbuf_uninit(&upcall->put_actions);
1258 if (upcall->ukey) {
1259 if (!upcall->ukey_persists) {
1260 ukey_delete__(upcall->ukey);
1261 }
1262 } else if (upcall->have_recirc_ref) {
1263 /* The reference was transferred to the ukey if one was created. */
1264 recirc_id_node_unref(upcall->recirc);
1265 }
1266 }
1267 }
1268
1269 /* If there are less flows than the limit, and this is a miss upcall which
1270 *
1271 * - Has no recirc_id, OR
1272 * - Has a recirc_id and we can get a reference on the recirc ctx,
1273 *
1274 * Then we should install the flow (true). Otherwise, return false. */
1275 static bool
1276 should_install_flow(struct udpif *udpif, struct upcall *upcall)
1277 {
1278 unsigned int flow_limit;
1279
1280 if (upcall->type != MISS_UPCALL) {
1281 return false;
1282 } else if (upcall->recirc && !upcall->have_recirc_ref) {
1283 VLOG_DBG_RL(&rl, "upcall: no reference for recirc flow");
1284 return false;
1285 }
1286
1287 atomic_read_relaxed(&udpif->flow_limit, &flow_limit);
1288 if (udpif_get_n_flows(udpif) >= flow_limit) {
1289 VLOG_WARN_RL(&rl, "upcall: datapath flow limit reached");
1290 return false;
1291 }
1292
1293 return true;
1294 }
1295
1296 static int
1297 upcall_cb(const struct dp_packet *packet, const struct flow *flow, ovs_u128 *ufid,
1298 unsigned pmd_id, enum dpif_upcall_type type,
1299 const struct nlattr *userdata, struct ofpbuf *actions,
1300 struct flow_wildcards *wc, struct ofpbuf *put_actions, void *aux)
1301 {
1302 struct udpif *udpif = aux;
1303 struct upcall upcall;
1304 bool megaflow;
1305 int error;
1306
1307 atomic_read_relaxed(&enable_megaflows, &megaflow);
1308
1309 error = upcall_receive(&upcall, udpif->backer, packet, type, userdata,
1310 flow, 0, ufid, pmd_id);
1311 if (error) {
1312 return error;
1313 }
1314
1315 upcall.fitness = ODP_FIT_PERFECT;
1316 error = process_upcall(udpif, &upcall, actions, wc);
1317 if (error) {
1318 goto out;
1319 }
1320
1321 if (upcall.xout.slow && put_actions) {
1322 ofpbuf_put(put_actions, upcall.put_actions.data,
1323 upcall.put_actions.size);
1324 }
1325
1326 if (OVS_UNLIKELY(!megaflow && wc)) {
1327 flow_wildcards_init_for_packet(wc, flow);
1328 }
1329
1330 if (!should_install_flow(udpif, &upcall)) {
1331 error = ENOSPC;
1332 goto out;
1333 }
1334
1335 if (upcall.ukey && !ukey_install(udpif, upcall.ukey)) {
1336 static struct vlog_rate_limit rll = VLOG_RATE_LIMIT_INIT(1, 1);
1337 VLOG_WARN_RL(&rll, "upcall_cb failure: ukey installation fails");
1338 error = ENOSPC;
1339 }
1340 out:
1341 if (!error) {
1342 upcall.ukey_persists = true;
1343 }
1344 upcall_uninit(&upcall);
1345 return error;
1346 }
1347
1348 static size_t
1349 dpif_get_actions(struct udpif *udpif, struct upcall *upcall,
1350 const struct nlattr **actions)
1351 {
1352 size_t actions_len = 0;
1353
1354 if (upcall->actions) {
1355 /* Actions were passed up from datapath. */
1356 *actions = nl_attr_get(upcall->actions);
1357 actions_len = nl_attr_get_size(upcall->actions);
1358 }
1359
1360 if (actions_len == 0) {
1361 /* Lookup actions in userspace cache. */
1362 struct udpif_key *ukey = ukey_lookup(udpif, upcall->ufid,
1363 upcall->pmd_id);
1364 if (ukey) {
1365 ukey_get_actions(ukey, actions, &actions_len);
1366 }
1367 }
1368
1369 return actions_len;
1370 }
1371
1372 static size_t
1373 dpif_read_actions(struct udpif *udpif, struct upcall *upcall,
1374 const struct flow *flow, enum upcall_type type,
1375 void *upcall_data)
1376 {
1377 const struct nlattr *actions = NULL;
1378 size_t actions_len = dpif_get_actions(udpif, upcall, &actions);
1379
1380 if (!actions || !actions_len) {
1381 return 0;
1382 }
1383
1384 switch (type) {
1385 case SFLOW_UPCALL:
1386 dpif_sflow_read_actions(flow, actions, actions_len, upcall_data, true);
1387 break;
1388 case FLOW_SAMPLE_UPCALL:
1389 case IPFIX_UPCALL:
1390 dpif_ipfix_read_actions(flow, actions, actions_len, upcall_data);
1391 break;
1392 case BAD_UPCALL:
1393 case MISS_UPCALL:
1394 case SLOW_PATH_UPCALL:
1395 case CONTROLLER_UPCALL:
1396 default:
1397 break;
1398 }
1399
1400 return actions_len;
1401 }
1402
1403 static int
1404 process_upcall(struct udpif *udpif, struct upcall *upcall,
1405 struct ofpbuf *odp_actions, struct flow_wildcards *wc)
1406 {
1407 const struct dp_packet *packet = upcall->packet;
1408 const struct flow *flow = upcall->flow;
1409 size_t actions_len = 0;
1410
1411 switch (upcall->type) {
1412 case MISS_UPCALL:
1413 case SLOW_PATH_UPCALL:
1414 upcall_xlate(udpif, upcall, odp_actions, wc);
1415 return 0;
1416
1417 case SFLOW_UPCALL:
1418 if (upcall->sflow) {
1419 struct dpif_sflow_actions sflow_actions;
1420
1421 memset(&sflow_actions, 0, sizeof sflow_actions);
1422
1423 actions_len = dpif_read_actions(udpif, upcall, flow,
1424 upcall->type, &sflow_actions);
1425 dpif_sflow_received(upcall->sflow, packet, flow,
1426 flow->in_port.odp_port, &upcall->cookie,
1427 actions_len > 0 ? &sflow_actions : NULL);
1428 }
1429 break;
1430
1431 case IPFIX_UPCALL:
1432 case FLOW_SAMPLE_UPCALL:
1433 if (upcall->ipfix) {
1434 struct flow_tnl output_tunnel_key;
1435 struct dpif_ipfix_actions ipfix_actions;
1436
1437 memset(&ipfix_actions, 0, sizeof ipfix_actions);
1438
1439 if (upcall->out_tun_key) {
1440 odp_tun_key_from_attr(upcall->out_tun_key, &output_tunnel_key);
1441 }
1442
1443 actions_len = dpif_read_actions(udpif, upcall, flow,
1444 upcall->type, &ipfix_actions);
1445 if (upcall->type == IPFIX_UPCALL) {
1446 dpif_ipfix_bridge_sample(upcall->ipfix, packet, flow,
1447 flow->in_port.odp_port,
1448 upcall->cookie.ipfix.output_odp_port,
1449 upcall->out_tun_key ?
1450 &output_tunnel_key : NULL,
1451 actions_len > 0 ?
1452 &ipfix_actions: NULL);
1453 } else {
1454 /* The flow reflects exactly the contents of the packet.
1455 * Sample the packet using it. */
1456 dpif_ipfix_flow_sample(upcall->ipfix, packet, flow,
1457 &upcall->cookie, flow->in_port.odp_port,
1458 upcall->out_tun_key ?
1459 &output_tunnel_key : NULL,
1460 actions_len > 0 ? &ipfix_actions: NULL);
1461 }
1462 }
1463 break;
1464
1465 case CONTROLLER_UPCALL:
1466 {
1467 struct user_action_cookie *cookie = &upcall->cookie;
1468
1469 if (cookie->controller.dont_send) {
1470 return 0;
1471 }
1472
1473 uint32_t recirc_id = cookie->controller.recirc_id;
1474 if (!recirc_id) {
1475 break;
1476 }
1477
1478 const struct recirc_id_node *recirc_node
1479 = recirc_id_node_find(recirc_id);
1480 if (!recirc_node) {
1481 break;
1482 }
1483
1484 const struct frozen_state *state = &recirc_node->state;
1485
1486 struct ofproto_async_msg *am = xmalloc(sizeof *am);
1487 *am = (struct ofproto_async_msg) {
1488 .controller_id = cookie->controller.controller_id,
1489 .oam = OAM_PACKET_IN,
1490 .pin = {
1491 .up = {
1492 .base = {
1493 .packet = xmemdup(dp_packet_data(packet),
1494 dp_packet_size(packet)),
1495 .packet_len = dp_packet_size(packet),
1496 .reason = cookie->controller.reason,
1497 .table_id = state->table_id,
1498 .cookie = get_32aligned_be64(
1499 &cookie->controller.rule_cookie),
1500 .userdata = (recirc_node->state.userdata_len
1501 ? xmemdup(recirc_node->state.userdata,
1502 recirc_node->state.userdata_len)
1503 : NULL),
1504 .userdata_len = recirc_node->state.userdata_len,
1505 },
1506 },
1507 .max_len = cookie->controller.max_len,
1508 },
1509 };
1510
1511 if (cookie->controller.continuation) {
1512 am->pin.up.stack = (state->stack_size
1513 ? xmemdup(state->stack, state->stack_size)
1514 : NULL),
1515 am->pin.up.stack_size = state->stack_size,
1516 am->pin.up.mirrors = state->mirrors,
1517 am->pin.up.conntracked = state->conntracked,
1518 am->pin.up.actions = (state->ofpacts_len
1519 ? xmemdup(state->ofpacts,
1520 state->ofpacts_len) : NULL),
1521 am->pin.up.actions_len = state->ofpacts_len,
1522 am->pin.up.action_set = (state->action_set_len
1523 ? xmemdup(state->action_set,
1524 state->action_set_len)
1525 : NULL),
1526 am->pin.up.action_set_len = state->action_set_len,
1527 am->pin.up.bridge = upcall->ofproto->uuid;
1528 }
1529
1530 /* We don't want to use the upcall 'flow', since it may be
1531 * more specific than the point at which the "controller"
1532 * action was specified. */
1533 struct flow frozen_flow;
1534
1535 frozen_flow = *flow;
1536 if (!state->conntracked) {
1537 flow_clear_conntrack(&frozen_flow);
1538 }
1539
1540 frozen_metadata_to_flow(&state->metadata, &frozen_flow);
1541 flow_get_metadata(&frozen_flow, &am->pin.up.base.flow_metadata);
1542
1543 ofproto_dpif_send_async_msg(upcall->ofproto, am);
1544 }
1545 break;
1546
1547 case BAD_UPCALL:
1548 break;
1549 }
1550
1551 return EAGAIN;
1552 }
1553
1554 static void
1555 handle_upcalls(struct udpif *udpif, struct upcall *upcalls,
1556 size_t n_upcalls)
1557 {
1558 struct dpif_op *opsp[UPCALL_MAX_BATCH * 2];
1559 struct ukey_op ops[UPCALL_MAX_BATCH * 2];
1560 size_t n_ops, n_opsp, i;
1561
1562 /* Handle the packets individually in order of arrival.
1563 *
1564 * - For SLOW_CFM, SLOW_LACP, SLOW_STP, SLOW_BFD, and SLOW_LLDP,
1565 * translation is what processes received packets for these
1566 * protocols.
1567 *
1568 * - For SLOW_ACTION, translation executes the actions directly.
1569 *
1570 * The loop fills 'ops' with an array of operations to execute in the
1571 * datapath. */
1572 n_ops = 0;
1573 for (i = 0; i < n_upcalls; i++) {
1574 struct upcall *upcall = &upcalls[i];
1575 const struct dp_packet *packet = upcall->packet;
1576 struct ukey_op *op;
1577
1578 if (should_install_flow(udpif, upcall)) {
1579 struct udpif_key *ukey = upcall->ukey;
1580
1581 if (ukey_install(udpif, ukey)) {
1582 upcall->ukey_persists = true;
1583 put_op_init(&ops[n_ops++], ukey, DPIF_FP_CREATE);
1584 }
1585 }
1586
1587 if (upcall->odp_actions.size) {
1588 op = &ops[n_ops++];
1589 op->ukey = NULL;
1590 op->dop.type = DPIF_OP_EXECUTE;
1591 op->dop.execute.packet = CONST_CAST(struct dp_packet *, packet);
1592 op->dop.execute.flow = upcall->flow;
1593 odp_key_to_dp_packet(upcall->key, upcall->key_len,
1594 op->dop.execute.packet);
1595 op->dop.execute.actions = upcall->odp_actions.data;
1596 op->dop.execute.actions_len = upcall->odp_actions.size;
1597 op->dop.execute.needs_help = (upcall->xout.slow & SLOW_ACTION) != 0;
1598 op->dop.execute.probe = false;
1599 op->dop.execute.mtu = upcall->mru;
1600 }
1601 }
1602
1603 /* Execute batch. */
1604 n_opsp = 0;
1605 for (i = 0; i < n_ops; i++) {
1606 opsp[n_opsp++] = &ops[i].dop;
1607 }
1608 dpif_operate(udpif->dpif, opsp, n_opsp, DPIF_OFFLOAD_AUTO);
1609 for (i = 0; i < n_ops; i++) {
1610 struct udpif_key *ukey = ops[i].ukey;
1611
1612 if (ukey) {
1613 ovs_mutex_lock(&ukey->mutex);
1614 if (ops[i].dop.error) {
1615 transition_ukey(ukey, UKEY_EVICTED);
1616 } else if (ukey->state < UKEY_OPERATIONAL) {
1617 transition_ukey(ukey, UKEY_OPERATIONAL);
1618 }
1619 ovs_mutex_unlock(&ukey->mutex);
1620 }
1621 }
1622 }
1623
1624 static uint32_t
1625 get_ukey_hash(const ovs_u128 *ufid, const unsigned pmd_id)
1626 {
1627 return hash_2words(ufid->u32[0], pmd_id);
1628 }
1629
1630 static struct udpif_key *
1631 ukey_lookup(struct udpif *udpif, const ovs_u128 *ufid, const unsigned pmd_id)
1632 {
1633 struct udpif_key *ukey;
1634 int idx = get_ukey_hash(ufid, pmd_id) % N_UMAPS;
1635 struct cmap *cmap = &udpif->ukeys[idx].cmap;
1636
1637 CMAP_FOR_EACH_WITH_HASH (ukey, cmap_node,
1638 get_ukey_hash(ufid, pmd_id), cmap) {
1639 if (ovs_u128_equals(ukey->ufid, *ufid)) {
1640 return ukey;
1641 }
1642 }
1643 return NULL;
1644 }
1645
1646 /* Provides safe lockless access of RCU protected 'ukey->actions'. Callers may
1647 * alternatively access the field directly if they take 'ukey->mutex'. */
1648 static void
1649 ukey_get_actions(struct udpif_key *ukey, const struct nlattr **actions, size_t *size)
1650 {
1651 const struct ofpbuf *buf = ovsrcu_get(struct ofpbuf *, &ukey->actions);
1652 *actions = buf->data;
1653 *size = buf->size;
1654 }
1655
1656 static void
1657 ukey_set_actions(struct udpif_key *ukey, const struct ofpbuf *actions)
1658 {
1659 struct ofpbuf *old_actions = ovsrcu_get_protected(struct ofpbuf *,
1660 &ukey->actions);
1661
1662 if (old_actions) {
1663 ovsrcu_postpone(ofpbuf_delete, old_actions);
1664 }
1665
1666 ovsrcu_set(&ukey->actions, ofpbuf_clone(actions));
1667 }
1668
1669 static struct udpif_key *
1670 ukey_create__(const struct nlattr *key, size_t key_len,
1671 const struct nlattr *mask, size_t mask_len,
1672 bool ufid_present, const ovs_u128 *ufid,
1673 const unsigned pmd_id, const struct ofpbuf *actions,
1674 uint64_t reval_seq, long long int used,
1675 uint32_t key_recirc_id, struct xlate_out *xout)
1676 OVS_NO_THREAD_SAFETY_ANALYSIS
1677 {
1678 struct udpif_key *ukey = xmalloc(sizeof *ukey);
1679
1680 memcpy(&ukey->keybuf, key, key_len);
1681 ukey->key = &ukey->keybuf.nla;
1682 ukey->key_len = key_len;
1683 memcpy(&ukey->maskbuf, mask, mask_len);
1684 ukey->mask = &ukey->maskbuf.nla;
1685 ukey->mask_len = mask_len;
1686 ukey->ufid_present = ufid_present;
1687 ukey->ufid = *ufid;
1688 ukey->pmd_id = pmd_id;
1689 ukey->hash = get_ukey_hash(&ukey->ufid, pmd_id);
1690
1691 ovsrcu_init(&ukey->actions, NULL);
1692 ukey_set_actions(ukey, actions);
1693
1694 ovs_mutex_init(&ukey->mutex);
1695 ukey->dump_seq = 0; /* Not yet dumped */
1696 ukey->reval_seq = reval_seq;
1697 ukey->state = UKEY_CREATED;
1698 ukey->state_thread = ovsthread_id_self();
1699 ukey->state_where = OVS_SOURCE_LOCATOR;
1700 ukey->created = ukey->flow_time = time_msec();
1701 memset(&ukey->stats, 0, sizeof ukey->stats);
1702 ukey->stats.used = used;
1703 ukey->xcache = NULL;
1704
1705 ukey->offloaded = false;
1706 ukey->in_netdev = NULL;
1707 ukey->flow_packets = ukey->flow_backlog_packets = 0;
1708
1709 ukey->key_recirc_id = key_recirc_id;
1710 recirc_refs_init(&ukey->recircs);
1711 if (xout) {
1712 /* Take ownership of the action recirc id references. */
1713 recirc_refs_swap(&ukey->recircs, &xout->recircs);
1714 }
1715
1716 return ukey;
1717 }
1718
1719 static struct udpif_key *
1720 ukey_create_from_upcall(struct upcall *upcall, struct flow_wildcards *wc)
1721 {
1722 struct odputil_keybuf keystub, maskstub;
1723 struct ofpbuf keybuf, maskbuf;
1724 bool megaflow;
1725 struct odp_flow_key_parms odp_parms = {
1726 .flow = upcall->flow,
1727 .mask = wc ? &wc->masks : NULL,
1728 };
1729
1730 odp_parms.support = upcall->ofproto->backer->rt_support.odp;
1731 if (upcall->key_len) {
1732 ofpbuf_use_const(&keybuf, upcall->key, upcall->key_len);
1733 } else {
1734 /* dpif-netdev doesn't provide a netlink-formatted flow key in the
1735 * upcall, so convert the upcall's flow here. */
1736 ofpbuf_use_stack(&keybuf, &keystub, sizeof keystub);
1737 odp_flow_key_from_flow(&odp_parms, &keybuf);
1738 }
1739
1740 atomic_read_relaxed(&enable_megaflows, &megaflow);
1741 ofpbuf_use_stack(&maskbuf, &maskstub, sizeof maskstub);
1742 if (megaflow && wc) {
1743 odp_parms.key_buf = &keybuf;
1744 odp_flow_key_from_mask(&odp_parms, &maskbuf);
1745 }
1746
1747 return ukey_create__(keybuf.data, keybuf.size, maskbuf.data, maskbuf.size,
1748 true, upcall->ufid, upcall->pmd_id,
1749 &upcall->put_actions, upcall->reval_seq, 0,
1750 upcall->have_recirc_ref ? upcall->recirc->id : 0,
1751 &upcall->xout);
1752 }
1753
1754 static int
1755 ukey_create_from_dpif_flow(const struct udpif *udpif,
1756 const struct dpif_flow *flow,
1757 struct udpif_key **ukey)
1758 {
1759 struct dpif_flow full_flow;
1760 struct ofpbuf actions;
1761 uint64_t reval_seq;
1762 uint64_t stub[DPIF_FLOW_BUFSIZE / 8];
1763 const struct nlattr *a;
1764 unsigned int left;
1765
1766 if (!flow->key_len || !flow->actions_len) {
1767 struct ofpbuf buf;
1768 int err;
1769
1770 /* If the key or actions were not provided by the datapath, fetch the
1771 * full flow. */
1772 ofpbuf_use_stack(&buf, &stub, sizeof stub);
1773 err = dpif_flow_get(udpif->dpif, flow->key, flow->key_len,
1774 flow->ufid_present ? &flow->ufid : NULL,
1775 flow->pmd_id, &buf, &full_flow);
1776 if (err) {
1777 return err;
1778 }
1779 flow = &full_flow;
1780 }
1781
1782 /* Check the flow actions for recirculation action. As recirculation
1783 * relies on OVS userspace internal state, we need to delete all old
1784 * datapath flows with either a non-zero recirc_id in the key, or any
1785 * recirculation actions upon OVS restart. */
1786 NL_ATTR_FOR_EACH (a, left, flow->key, flow->key_len) {
1787 if (nl_attr_type(a) == OVS_KEY_ATTR_RECIRC_ID
1788 && nl_attr_get_u32(a) != 0) {
1789 return EINVAL;
1790 }
1791 }
1792 NL_ATTR_FOR_EACH (a, left, flow->actions, flow->actions_len) {
1793 if (nl_attr_type(a) == OVS_ACTION_ATTR_RECIRC) {
1794 return EINVAL;
1795 }
1796 }
1797
1798 reval_seq = seq_read(udpif->reval_seq) - 1; /* Ensure revalidation. */
1799 ofpbuf_use_const(&actions, &flow->actions, flow->actions_len);
1800 *ukey = ukey_create__(flow->key, flow->key_len,
1801 flow->mask, flow->mask_len, flow->ufid_present,
1802 &flow->ufid, flow->pmd_id, &actions,
1803 reval_seq, flow->stats.used, 0, NULL);
1804
1805 return 0;
1806 }
1807
1808 static bool
1809 try_ukey_replace(struct umap *umap, struct udpif_key *old_ukey,
1810 struct udpif_key *new_ukey)
1811 OVS_REQUIRES(umap->mutex)
1812 OVS_TRY_LOCK(true, new_ukey->mutex)
1813 {
1814 bool replaced = false;
1815
1816 if (!ovs_mutex_trylock(&old_ukey->mutex)) {
1817 if (old_ukey->state == UKEY_EVICTED) {
1818 /* The flow was deleted during the current revalidator dump,
1819 * but its ukey won't be fully cleaned up until the sweep phase.
1820 * In the mean time, we are receiving upcalls for this traffic.
1821 * Expedite the (new) flow install by replacing the ukey. */
1822 ovs_mutex_lock(&new_ukey->mutex);
1823 cmap_replace(&umap->cmap, &old_ukey->cmap_node,
1824 &new_ukey->cmap_node, new_ukey->hash);
1825 ovsrcu_postpone(ukey_delete__, old_ukey);
1826 transition_ukey(old_ukey, UKEY_DELETED);
1827 transition_ukey(new_ukey, UKEY_VISIBLE);
1828 replaced = true;
1829 }
1830 ovs_mutex_unlock(&old_ukey->mutex);
1831 }
1832
1833 if (replaced) {
1834 COVERAGE_INC(upcall_ukey_replace);
1835 } else {
1836 COVERAGE_INC(handler_duplicate_upcall);
1837 }
1838 return replaced;
1839 }
1840
1841 /* Attempts to insert a ukey into the shared ukey maps.
1842 *
1843 * On success, returns true, installs the ukey and returns it in a locked
1844 * state. Otherwise, returns false. */
1845 static bool
1846 ukey_install__(struct udpif *udpif, struct udpif_key *new_ukey)
1847 OVS_TRY_LOCK(true, new_ukey->mutex)
1848 {
1849 struct umap *umap;
1850 struct udpif_key *old_ukey;
1851 uint32_t idx;
1852 bool locked = false;
1853
1854 idx = new_ukey->hash % N_UMAPS;
1855 umap = &udpif->ukeys[idx];
1856 ovs_mutex_lock(&umap->mutex);
1857 old_ukey = ukey_lookup(udpif, &new_ukey->ufid, new_ukey->pmd_id);
1858 if (old_ukey) {
1859 /* Uncommon case: A ukey is already installed with the same UFID. */
1860 if (old_ukey->key_len == new_ukey->key_len
1861 && !memcmp(old_ukey->key, new_ukey->key, new_ukey->key_len)) {
1862 locked = try_ukey_replace(umap, old_ukey, new_ukey);
1863 } else {
1864 struct ds ds = DS_EMPTY_INITIALIZER;
1865
1866 odp_format_ufid(&old_ukey->ufid, &ds);
1867 ds_put_cstr(&ds, " ");
1868 odp_flow_key_format(old_ukey->key, old_ukey->key_len, &ds);
1869 ds_put_cstr(&ds, "\n");
1870 odp_format_ufid(&new_ukey->ufid, &ds);
1871 ds_put_cstr(&ds, " ");
1872 odp_flow_key_format(new_ukey->key, new_ukey->key_len, &ds);
1873
1874 VLOG_WARN_RL(&rl, "Conflicting ukey for flows:\n%s", ds_cstr(&ds));
1875 ds_destroy(&ds);
1876 }
1877 } else {
1878 ovs_mutex_lock(&new_ukey->mutex);
1879 cmap_insert(&umap->cmap, &new_ukey->cmap_node, new_ukey->hash);
1880 transition_ukey(new_ukey, UKEY_VISIBLE);
1881 locked = true;
1882 }
1883 ovs_mutex_unlock(&umap->mutex);
1884
1885 return locked;
1886 }
1887
1888 static void
1889 transition_ukey_at(struct udpif_key *ukey, enum ukey_state dst,
1890 const char *where)
1891 OVS_REQUIRES(ukey->mutex)
1892 {
1893 if (dst < ukey->state) {
1894 VLOG_ABORT("Invalid ukey transition %d->%d (last transitioned from "
1895 "thread %u at %s)", ukey->state, dst, ukey->state_thread,
1896 ukey->state_where);
1897 }
1898 if (ukey->state == dst && dst == UKEY_OPERATIONAL) {
1899 return;
1900 }
1901
1902 /* Valid state transitions:
1903 * UKEY_CREATED -> UKEY_VISIBLE
1904 * Ukey is now visible in the umap.
1905 * UKEY_VISIBLE -> UKEY_OPERATIONAL
1906 * A handler has installed the flow, and the flow is in the datapath.
1907 * UKEY_VISIBLE -> UKEY_EVICTING
1908 * A handler installs the flow, then revalidator sweeps the ukey before
1909 * the flow is dumped. Most likely the flow was installed; start trying
1910 * to delete it.
1911 * UKEY_VISIBLE -> UKEY_EVICTED
1912 * A handler attempts to install the flow, but the datapath rejects it.
1913 * Consider that the datapath has already destroyed it.
1914 * UKEY_OPERATIONAL -> UKEY_EVICTING
1915 * A revalidator decides to evict the datapath flow.
1916 * UKEY_EVICTING -> UKEY_EVICTED
1917 * A revalidator has evicted the datapath flow.
1918 * UKEY_EVICTED -> UKEY_DELETED
1919 * A revalidator has removed the ukey from the umap and is deleting it.
1920 */
1921 if (ukey->state == dst - 1 || (ukey->state == UKEY_VISIBLE &&
1922 dst < UKEY_DELETED)) {
1923 ukey->state = dst;
1924 } else {
1925 struct ds ds = DS_EMPTY_INITIALIZER;
1926
1927 odp_format_ufid(&ukey->ufid, &ds);
1928 VLOG_WARN_RL(&rl, "Invalid state transition for ukey %s: %d -> %d",
1929 ds_cstr(&ds), ukey->state, dst);
1930 ds_destroy(&ds);
1931 }
1932 ukey->state_thread = ovsthread_id_self();
1933 ukey->state_where = where;
1934 }
1935
1936 static bool
1937 ukey_install(struct udpif *udpif, struct udpif_key *ukey)
1938 {
1939 bool installed;
1940
1941 installed = ukey_install__(udpif, ukey);
1942 if (installed) {
1943 ovs_mutex_unlock(&ukey->mutex);
1944 }
1945
1946 return installed;
1947 }
1948
1949 /* Searches for a ukey in 'udpif->ukeys' that matches 'flow' and attempts to
1950 * lock the ukey. If the ukey does not exist, create it.
1951 *
1952 * Returns 0 on success, setting *result to the matching ukey and returning it
1953 * in a locked state. Otherwise, returns an errno and clears *result. EBUSY
1954 * indicates that another thread is handling this flow. Other errors indicate
1955 * an unexpected condition creating a new ukey.
1956 *
1957 * *error is an output parameter provided to appease the threadsafety analyser,
1958 * and its value matches the return value. */
1959 static int
1960 ukey_acquire(struct udpif *udpif, const struct dpif_flow *flow,
1961 struct udpif_key **result, int *error)
1962 OVS_TRY_LOCK(0, (*result)->mutex)
1963 {
1964 struct udpif_key *ukey;
1965 int retval;
1966
1967 ukey = ukey_lookup(udpif, &flow->ufid, flow->pmd_id);
1968 if (ukey) {
1969 retval = ovs_mutex_trylock(&ukey->mutex);
1970 } else {
1971 /* Usually we try to avoid installing flows from revalidator threads,
1972 * because locking on a umap may cause handler threads to block.
1973 * However there are certain cases, like when ovs-vswitchd is
1974 * restarted, where it is desirable to handle flows that exist in the
1975 * datapath gracefully (ie, don't just clear the datapath). */
1976 bool install;
1977
1978 retval = ukey_create_from_dpif_flow(udpif, flow, &ukey);
1979 if (retval) {
1980 goto done;
1981 }
1982 install = ukey_install__(udpif, ukey);
1983 if (install) {
1984 retval = 0;
1985 } else {
1986 ukey_delete__(ukey);
1987 retval = EBUSY;
1988 }
1989 }
1990
1991 done:
1992 *error = retval;
1993 if (retval) {
1994 *result = NULL;
1995 } else {
1996 *result = ukey;
1997 }
1998 return retval;
1999 }
2000
2001 static void
2002 ukey_delete__(struct udpif_key *ukey)
2003 OVS_NO_THREAD_SAFETY_ANALYSIS
2004 {
2005 if (ukey) {
2006 if (ukey->key_recirc_id) {
2007 recirc_free_id(ukey->key_recirc_id);
2008 }
2009 recirc_refs_unref(&ukey->recircs);
2010 xlate_cache_delete(ukey->xcache);
2011 ofpbuf_delete(ovsrcu_get(struct ofpbuf *, &ukey->actions));
2012 ovs_mutex_destroy(&ukey->mutex);
2013 free(ukey);
2014 }
2015 }
2016
2017 static void
2018 ukey_delete(struct umap *umap, struct udpif_key *ukey)
2019 OVS_REQUIRES(umap->mutex)
2020 {
2021 ovs_mutex_lock(&ukey->mutex);
2022 if (ukey->state < UKEY_DELETED) {
2023 cmap_remove(&umap->cmap, &ukey->cmap_node, ukey->hash);
2024 ovsrcu_postpone(ukey_delete__, ukey);
2025 transition_ukey(ukey, UKEY_DELETED);
2026 }
2027 ovs_mutex_unlock(&ukey->mutex);
2028 }
2029
2030 static bool
2031 should_revalidate(const struct udpif *udpif, uint64_t packets,
2032 long long int used)
2033 {
2034 long long int metric, now, duration;
2035
2036 if (!used) {
2037 /* Always revalidate the first time a flow is dumped. */
2038 return true;
2039 }
2040
2041 if (udpif->dump_duration < 200) {
2042 /* We are likely to handle full revalidation for the flows. */
2043 return true;
2044 }
2045
2046 /* Calculate the mean time between seeing these packets. If this
2047 * exceeds the threshold, then delete the flow rather than performing
2048 * costly revalidation for flows that aren't being hit frequently.
2049 *
2050 * This is targeted at situations where the dump_duration is high (~1s),
2051 * and revalidation is triggered by a call to udpif_revalidate(). In
2052 * these situations, revalidation of all flows causes fluctuations in the
2053 * flow_limit due to the interaction with the dump_duration and max_idle.
2054 * This tends to result in deletion of low-throughput flows anyway, so
2055 * skip the revalidation and just delete those flows. */
2056 packets = MAX(packets, 1);
2057 now = MAX(used, time_msec());
2058 duration = now - used;
2059 metric = duration / packets;
2060
2061 if (metric < 200) {
2062 /* The flow is receiving more than ~5pps, so keep it. */
2063 return true;
2064 }
2065 return false;
2066 }
2067
2068 struct reval_context {
2069 /* Optional output parameters */
2070 struct flow_wildcards *wc;
2071 struct ofpbuf *odp_actions;
2072 struct netflow **netflow;
2073 struct xlate_cache *xcache;
2074
2075 /* Required output parameters */
2076 struct xlate_out xout;
2077 struct flow flow;
2078 };
2079
2080 /* Translates 'key' into a flow, populating 'ctx' as it goes along.
2081 *
2082 * Returns 0 on success, otherwise a positive errno value.
2083 *
2084 * The caller is responsible for uninitializing ctx->xout on success.
2085 */
2086 static int
2087 xlate_key(struct udpif *udpif, const struct nlattr *key, unsigned int len,
2088 const struct dpif_flow_stats *push, struct reval_context *ctx)
2089 {
2090 struct ofproto_dpif *ofproto;
2091 ofp_port_t ofp_in_port;
2092 enum odp_key_fitness fitness;
2093 struct xlate_in xin;
2094 int error;
2095
2096 fitness = odp_flow_key_to_flow(key, len, &ctx->flow);
2097 if (fitness == ODP_FIT_ERROR) {
2098 return EINVAL;
2099 }
2100
2101 error = xlate_lookup(udpif->backer, &ctx->flow, &ofproto, NULL, NULL,
2102 ctx->netflow, &ofp_in_port);
2103 if (error) {
2104 return error;
2105 }
2106
2107 xlate_in_init(&xin, ofproto, ofproto_dpif_get_tables_version(ofproto),
2108 &ctx->flow, ofp_in_port, NULL, push->tcp_flags,
2109 NULL, ctx->wc, ctx->odp_actions);
2110 if (push->n_packets) {
2111 xin.resubmit_stats = push;
2112 xin.allow_side_effects = true;
2113 }
2114 xin.xcache = ctx->xcache;
2115 xlate_actions(&xin, &ctx->xout);
2116 if (fitness == ODP_FIT_TOO_LITTLE) {
2117 ctx->xout.slow |= SLOW_MATCH;
2118 }
2119
2120 return 0;
2121 }
2122
2123 static int
2124 xlate_ukey(struct udpif *udpif, const struct udpif_key *ukey,
2125 uint16_t tcp_flags, struct reval_context *ctx)
2126 {
2127 struct dpif_flow_stats push = {
2128 .tcp_flags = tcp_flags,
2129 };
2130 return xlate_key(udpif, ukey->key, ukey->key_len, &push, ctx);
2131 }
2132
2133 static int
2134 populate_xcache(struct udpif *udpif, struct udpif_key *ukey,
2135 uint16_t tcp_flags)
2136 OVS_REQUIRES(ukey->mutex)
2137 {
2138 struct reval_context ctx = {
2139 .odp_actions = NULL,
2140 .netflow = NULL,
2141 .wc = NULL,
2142 };
2143 int error;
2144
2145 ovs_assert(!ukey->xcache);
2146 ukey->xcache = ctx.xcache = xlate_cache_new();
2147 error = xlate_ukey(udpif, ukey, tcp_flags, &ctx);
2148 if (error) {
2149 return error;
2150 }
2151 xlate_out_uninit(&ctx.xout);
2152
2153 return 0;
2154 }
2155
2156 static enum reval_result
2157 revalidate_ukey__(struct udpif *udpif, const struct udpif_key *ukey,
2158 uint16_t tcp_flags, struct ofpbuf *odp_actions,
2159 struct recirc_refs *recircs, struct xlate_cache *xcache)
2160 {
2161 struct xlate_out *xoutp;
2162 struct netflow *netflow;
2163 struct flow_wildcards dp_mask, wc;
2164 enum reval_result result;
2165 struct reval_context ctx = {
2166 .odp_actions = odp_actions,
2167 .netflow = &netflow,
2168 .xcache = xcache,
2169 .wc = &wc,
2170 };
2171
2172 result = UKEY_DELETE;
2173 xoutp = NULL;
2174 netflow = NULL;
2175
2176 if (xlate_ukey(udpif, ukey, tcp_flags, &ctx)) {
2177 goto exit;
2178 }
2179 xoutp = &ctx.xout;
2180
2181 if (xoutp->avoid_caching) {
2182 goto exit;
2183 }
2184
2185 if (xoutp->slow) {
2186 struct ofproto_dpif *ofproto;
2187 ofp_port_t ofp_in_port;
2188
2189 ofproto = xlate_lookup_ofproto(udpif->backer, &ctx.flow, &ofp_in_port);
2190
2191 ofpbuf_clear(odp_actions);
2192
2193 if (!ofproto) {
2194 goto exit;
2195 }
2196
2197 compose_slow_path(udpif, xoutp, ctx.flow.in_port.odp_port,
2198 ofp_in_port, odp_actions,
2199 ofproto->up.slowpath_meter_id, &ofproto->uuid);
2200 }
2201
2202 if (odp_flow_key_to_mask(ukey->mask, ukey->mask_len, &dp_mask, &ctx.flow)
2203 == ODP_FIT_ERROR) {
2204 goto exit;
2205 }
2206
2207 /* Do not modify if any bit is wildcarded by the installed datapath flow,
2208 * but not the newly revalidated wildcard mask (wc), i.e., if revalidation
2209 * tells that the datapath flow is now too generic and must be narrowed
2210 * down. Note that we do not know if the datapath has ignored any of the
2211 * wildcarded bits, so we may be overly conservative here. */
2212 if (flow_wildcards_has_extra(&dp_mask, ctx.wc)) {
2213 goto exit;
2214 }
2215
2216 if (!ofpbuf_equal(odp_actions,
2217 ovsrcu_get(struct ofpbuf *, &ukey->actions))) {
2218 /* The datapath mask was OK, but the actions seem to have changed.
2219 * Let's modify it in place. */
2220 result = UKEY_MODIFY;
2221 /* Transfer recirc action ID references to the caller. */
2222 recirc_refs_swap(recircs, &xoutp->recircs);
2223 goto exit;
2224 }
2225
2226 result = UKEY_KEEP;
2227
2228 exit:
2229 if (netflow && result == UKEY_DELETE) {
2230 netflow_flow_clear(netflow, &ctx.flow);
2231 }
2232 xlate_out_uninit(xoutp);
2233 return result;
2234 }
2235
2236 /* Verifies that the datapath actions of 'ukey' are still correct, and pushes
2237 * 'stats' for it.
2238 *
2239 * Returns a recommended action for 'ukey', options include:
2240 * UKEY_DELETE The ukey should be deleted.
2241 * UKEY_KEEP The ukey is fine as is.
2242 * UKEY_MODIFY The ukey's actions should be changed but is otherwise
2243 * fine. Callers should change the actions to those found
2244 * in the caller supplied 'odp_actions' buffer. The
2245 * recirculation references can be found in 'recircs' and
2246 * must be handled by the caller.
2247 *
2248 * If the result is UKEY_MODIFY, then references to all recirc_ids used by the
2249 * new flow will be held within 'recircs' (which may be none).
2250 *
2251 * The caller is responsible for both initializing 'recircs' prior this call,
2252 * and ensuring any references are eventually freed.
2253 */
2254 static enum reval_result
2255 revalidate_ukey(struct udpif *udpif, struct udpif_key *ukey,
2256 const struct dpif_flow_stats *stats,
2257 struct ofpbuf *odp_actions, uint64_t reval_seq,
2258 struct recirc_refs *recircs)
2259 OVS_REQUIRES(ukey->mutex)
2260 {
2261 bool need_revalidate = ukey->reval_seq != reval_seq;
2262 enum reval_result result = UKEY_DELETE;
2263 struct dpif_flow_stats push;
2264
2265 ofpbuf_clear(odp_actions);
2266
2267 push.used = stats->used;
2268 push.tcp_flags = stats->tcp_flags;
2269 push.n_packets = (stats->n_packets > ukey->stats.n_packets
2270 ? stats->n_packets - ukey->stats.n_packets
2271 : 0);
2272 push.n_bytes = (stats->n_bytes > ukey->stats.n_bytes
2273 ? stats->n_bytes - ukey->stats.n_bytes
2274 : 0);
2275
2276 if (need_revalidate) {
2277 if (should_revalidate(udpif, push.n_packets, ukey->stats.used)) {
2278 if (!ukey->xcache) {
2279 ukey->xcache = xlate_cache_new();
2280 } else {
2281 xlate_cache_clear(ukey->xcache);
2282 }
2283 result = revalidate_ukey__(udpif, ukey, push.tcp_flags,
2284 odp_actions, recircs, ukey->xcache);
2285 } /* else delete; too expensive to revalidate */
2286 } else if (!push.n_packets || ukey->xcache
2287 || !populate_xcache(udpif, ukey, push.tcp_flags)) {
2288 result = UKEY_KEEP;
2289 }
2290
2291 /* Stats for deleted flows will be attributed upon flow deletion. Skip. */
2292 if (result != UKEY_DELETE) {
2293 xlate_push_stats(ukey->xcache, &push);
2294 ukey->stats = *stats;
2295 ukey->reval_seq = reval_seq;
2296 }
2297
2298 return result;
2299 }
2300
2301 static void
2302 delete_op_init__(struct udpif *udpif, struct ukey_op *op,
2303 const struct dpif_flow *flow)
2304 {
2305 op->ukey = NULL;
2306 op->dop.type = DPIF_OP_FLOW_DEL;
2307 op->dop.flow_del.key = flow->key;
2308 op->dop.flow_del.key_len = flow->key_len;
2309 op->dop.flow_del.ufid = flow->ufid_present ? &flow->ufid : NULL;
2310 op->dop.flow_del.pmd_id = flow->pmd_id;
2311 op->dop.flow_del.stats = &op->stats;
2312 op->dop.flow_del.terse = udpif_use_ufid(udpif);
2313 }
2314
2315 static void
2316 delete_op_init(struct udpif *udpif, struct ukey_op *op, struct udpif_key *ukey)
2317 {
2318 op->ukey = ukey;
2319 op->dop.type = DPIF_OP_FLOW_DEL;
2320 op->dop.flow_del.key = ukey->key;
2321 op->dop.flow_del.key_len = ukey->key_len;
2322 op->dop.flow_del.ufid = ukey->ufid_present ? &ukey->ufid : NULL;
2323 op->dop.flow_del.pmd_id = ukey->pmd_id;
2324 op->dop.flow_del.stats = &op->stats;
2325 op->dop.flow_del.terse = udpif_use_ufid(udpif);
2326 }
2327
2328 static void
2329 put_op_init(struct ukey_op *op, struct udpif_key *ukey,
2330 enum dpif_flow_put_flags flags)
2331 {
2332 op->ukey = ukey;
2333 op->dop.type = DPIF_OP_FLOW_PUT;
2334 op->dop.flow_put.flags = flags;
2335 op->dop.flow_put.key = ukey->key;
2336 op->dop.flow_put.key_len = ukey->key_len;
2337 op->dop.flow_put.mask = ukey->mask;
2338 op->dop.flow_put.mask_len = ukey->mask_len;
2339 op->dop.flow_put.ufid = ukey->ufid_present ? &ukey->ufid : NULL;
2340 op->dop.flow_put.pmd_id = ukey->pmd_id;
2341 op->dop.flow_put.stats = NULL;
2342 ukey_get_actions(ukey, &op->dop.flow_put.actions,
2343 &op->dop.flow_put.actions_len);
2344 }
2345
2346 /* Executes datapath operations 'ops' and attributes stats retrieved from the
2347 * datapath as part of those operations. */
2348 static void
2349 push_dp_ops(struct udpif *udpif, struct ukey_op *ops, size_t n_ops)
2350 {
2351 struct dpif_op *opsp[REVALIDATE_MAX_BATCH];
2352 size_t i;
2353
2354 ovs_assert(n_ops <= REVALIDATE_MAX_BATCH);
2355 for (i = 0; i < n_ops; i++) {
2356 opsp[i] = &ops[i].dop;
2357 }
2358 dpif_operate(udpif->dpif, opsp, n_ops, DPIF_OFFLOAD_AUTO);
2359
2360 for (i = 0; i < n_ops; i++) {
2361 struct ukey_op *op = &ops[i];
2362 struct dpif_flow_stats *push, *stats, push_buf;
2363
2364 stats = op->dop.flow_del.stats;
2365 push = &push_buf;
2366
2367 if (op->dop.type != DPIF_OP_FLOW_DEL) {
2368 /* Only deleted flows need their stats pushed. */
2369 continue;
2370 }
2371
2372 if (op->dop.error) {
2373 /* flow_del error, 'stats' is unusable. */
2374 if (op->ukey) {
2375 ovs_mutex_lock(&op->ukey->mutex);
2376 transition_ukey(op->ukey, UKEY_EVICTED);
2377 ovs_mutex_unlock(&op->ukey->mutex);
2378 }
2379 continue;
2380 }
2381
2382 if (op->ukey) {
2383 ovs_mutex_lock(&op->ukey->mutex);
2384 transition_ukey(op->ukey, UKEY_EVICTED);
2385 push->used = MAX(stats->used, op->ukey->stats.used);
2386 push->tcp_flags = stats->tcp_flags | op->ukey->stats.tcp_flags;
2387 push->n_packets = stats->n_packets - op->ukey->stats.n_packets;
2388 push->n_bytes = stats->n_bytes - op->ukey->stats.n_bytes;
2389 ovs_mutex_unlock(&op->ukey->mutex);
2390 } else {
2391 push = stats;
2392 }
2393
2394 if (push->n_packets || netflow_exists()) {
2395 const struct nlattr *key = op->dop.flow_del.key;
2396 size_t key_len = op->dop.flow_del.key_len;
2397 struct netflow *netflow;
2398 struct reval_context ctx = {
2399 .netflow = &netflow,
2400 };
2401 int error;
2402
2403 if (op->ukey) {
2404 ovs_mutex_lock(&op->ukey->mutex);
2405 if (op->ukey->xcache) {
2406 xlate_push_stats(op->ukey->xcache, push);
2407 ovs_mutex_unlock(&op->ukey->mutex);
2408 continue;
2409 }
2410 ovs_mutex_unlock(&op->ukey->mutex);
2411 key = op->ukey->key;
2412 key_len = op->ukey->key_len;
2413 }
2414
2415 error = xlate_key(udpif, key, key_len, push, &ctx);
2416 if (error) {
2417 static struct vlog_rate_limit rll = VLOG_RATE_LIMIT_INIT(1, 5);
2418 VLOG_WARN_RL(&rll, "xlate_key failed (%s)!",
2419 ovs_strerror(error));
2420 } else {
2421 xlate_out_uninit(&ctx.xout);
2422 if (netflow) {
2423 netflow_flow_clear(netflow, &ctx.flow);
2424 }
2425 }
2426 }
2427 }
2428 }
2429
2430 /* Executes datapath operations 'ops', attributes stats retrieved from the
2431 * datapath, and deletes ukeys corresponding to deleted flows. */
2432 static void
2433 push_ukey_ops(struct udpif *udpif, struct umap *umap,
2434 struct ukey_op *ops, size_t n_ops)
2435 {
2436 int i;
2437
2438 push_dp_ops(udpif, ops, n_ops);
2439 ovs_mutex_lock(&umap->mutex);
2440 for (i = 0; i < n_ops; i++) {
2441 if (ops[i].dop.type == DPIF_OP_FLOW_DEL) {
2442 ukey_delete(umap, ops[i].ukey);
2443 }
2444 }
2445 ovs_mutex_unlock(&umap->mutex);
2446 }
2447
2448 static void
2449 log_unexpected_flow(const struct dpif_flow *flow, int error)
2450 {
2451 struct ds ds = DS_EMPTY_INITIALIZER;
2452
2453 ds_put_format(&ds, "Failed to acquire udpif_key corresponding to "
2454 "unexpected flow (%s): ", ovs_strerror(error));
2455 odp_format_ufid(&flow->ufid, &ds);
2456
2457 static struct vlog_rate_limit rll = VLOG_RATE_LIMIT_INIT(10, 60);
2458 VLOG_WARN_RL(&rll, "%s", ds_cstr(&ds));
2459
2460 ds_destroy(&ds);
2461 }
2462
2463 static void
2464 reval_op_init(struct ukey_op *op, enum reval_result result,
2465 struct udpif *udpif, struct udpif_key *ukey,
2466 struct recirc_refs *recircs, struct ofpbuf *odp_actions)
2467 OVS_REQUIRES(ukey->mutex)
2468 {
2469 if (result == UKEY_DELETE) {
2470 delete_op_init(udpif, op, ukey);
2471 transition_ukey(ukey, UKEY_EVICTING);
2472 } else if (result == UKEY_MODIFY) {
2473 /* Store the new recircs. */
2474 recirc_refs_swap(&ukey->recircs, recircs);
2475 /* Release old recircs. */
2476 recirc_refs_unref(recircs);
2477 /* ukey->key_recirc_id remains, as the key is the same as before. */
2478
2479 ukey_set_actions(ukey, odp_actions);
2480 put_op_init(op, ukey, DPIF_FP_MODIFY);
2481 }
2482 }
2483
2484 static void
2485 ukey_netdev_unref(struct udpif_key *ukey)
2486 {
2487 if (!ukey->in_netdev) {
2488 return;
2489 }
2490 netdev_close(ukey->in_netdev);
2491 ukey->in_netdev = NULL;
2492 }
2493
2494 /*
2495 * Given a udpif_key, get its input port (netdev) by parsing the flow keys
2496 * and actions. The flow may not contain flow attributes if it is a terse
2497 * dump; read its attributes from the ukey and then parse the flow to get
2498 * the port info. Save them in udpif_key.
2499 */
2500 static void
2501 ukey_to_flow_netdev(struct udpif *udpif, struct udpif_key *ukey)
2502 {
2503 const struct dpif *dpif = udpif->dpif;
2504 const struct dpif_class *dpif_class = dpif->dpif_class;
2505 const struct nlattr *k;
2506 unsigned int left;
2507
2508 /* Remove existing references to netdev */
2509 ukey_netdev_unref(ukey);
2510
2511 /* Find the input port and get a reference to its netdev */
2512 NL_ATTR_FOR_EACH (k, left, ukey->key, ukey->key_len) {
2513 enum ovs_key_attr type = nl_attr_type(k);
2514
2515 if (type == OVS_KEY_ATTR_IN_PORT) {
2516 ukey->in_netdev = netdev_ports_get(nl_attr_get_odp_port(k),
2517 dpif_class);
2518 } else if (type == OVS_KEY_ATTR_TUNNEL) {
2519 struct flow_tnl tnl;
2520 enum odp_key_fitness res;
2521
2522 if (ukey->in_netdev) {
2523 netdev_close(ukey->in_netdev);
2524 ukey->in_netdev = NULL;
2525 }
2526 res = odp_tun_key_from_attr(k, &tnl);
2527 if (res != ODP_FIT_ERROR) {
2528 ukey->in_netdev = flow_get_tunnel_netdev(&tnl);
2529 break;
2530 }
2531 }
2532 }
2533 }
2534
2535 static uint64_t
2536 udpif_flow_packet_delta(struct udpif_key *ukey, const struct dpif_flow *f)
2537 {
2538 return f->stats.n_packets + ukey->flow_backlog_packets -
2539 ukey->flow_packets;
2540 }
2541
2542 static long long int
2543 udpif_flow_time_delta(struct udpif *udpif, struct udpif_key *ukey)
2544 {
2545 return (udpif->dpif->current_ms - ukey->flow_time) / 1000;
2546 }
2547
2548 /*
2549 * Save backlog packet count while switching modes
2550 * between offloaded and kernel datapaths.
2551 */
2552 static void
2553 udpif_set_ukey_backlog_packets(struct udpif_key *ukey)
2554 {
2555 ukey->flow_backlog_packets = ukey->flow_packets;
2556 }
2557
2558 /* Gather pps-rate for the given dpif_flow and save it in its ukey */
2559 static void
2560 udpif_update_flow_pps(struct udpif *udpif, struct udpif_key *ukey,
2561 const struct dpif_flow *f)
2562 {
2563 uint64_t pps;
2564
2565 /* Update pps-rate only when we are close to rebalance interval */
2566 if (udpif->dpif->current_ms - ukey->flow_time < OFFL_REBAL_INTVL_MSEC) {
2567 return;
2568 }
2569
2570 ukey->offloaded = f->attrs.offloaded;
2571 pps = udpif_flow_packet_delta(ukey, f) /
2572 udpif_flow_time_delta(udpif, ukey);
2573 ukey->flow_pps_rate = pps;
2574 ukey->flow_packets = ukey->flow_backlog_packets + f->stats.n_packets;
2575 ukey->flow_time = udpif->dpif->current_ms;
2576 }
2577
2578 static void
2579 revalidate(struct revalidator *revalidator)
2580 {
2581 uint64_t odp_actions_stub[1024 / 8];
2582 struct ofpbuf odp_actions = OFPBUF_STUB_INITIALIZER(odp_actions_stub);
2583
2584 struct udpif *udpif = revalidator->udpif;
2585 struct dpif_flow_dump_thread *dump_thread;
2586 uint64_t dump_seq, reval_seq;
2587 unsigned int flow_limit;
2588
2589 dump_seq = seq_read(udpif->dump_seq);
2590 reval_seq = seq_read(udpif->reval_seq);
2591 atomic_read_relaxed(&udpif->flow_limit, &flow_limit);
2592 dump_thread = dpif_flow_dump_thread_create(udpif->dump);
2593 for (;;) {
2594 struct ukey_op ops[REVALIDATE_MAX_BATCH];
2595 int n_ops = 0;
2596
2597 struct dpif_flow flows[REVALIDATE_MAX_BATCH];
2598 const struct dpif_flow *f;
2599 int n_dumped;
2600
2601 long long int max_idle;
2602 long long int now;
2603 size_t n_dp_flows;
2604 bool kill_them_all;
2605
2606 n_dumped = dpif_flow_dump_next(dump_thread, flows, ARRAY_SIZE(flows));
2607 if (!n_dumped) {
2608 break;
2609 }
2610
2611 now = time_msec();
2612
2613 /* In normal operation we want to keep flows around until they have
2614 * been idle for 'ofproto_max_idle' milliseconds. However:
2615 *
2616 * - If the number of datapath flows climbs above 'flow_limit',
2617 * drop that down to 100 ms to try to bring the flows down to
2618 * the limit.
2619 *
2620 * - If the number of datapath flows climbs above twice
2621 * 'flow_limit', delete all the datapath flows as an emergency
2622 * measure. (We reassess this condition for the next batch of
2623 * datapath flows, so we will recover before all the flows are
2624 * gone.) */
2625 n_dp_flows = udpif_get_n_flows(udpif);
2626 kill_them_all = n_dp_flows > flow_limit * 2;
2627 max_idle = n_dp_flows > flow_limit ? 100 : ofproto_max_idle;
2628
2629 udpif->dpif->current_ms = time_msec();
2630 for (f = flows; f < &flows[n_dumped]; f++) {
2631 long long int used = f->stats.used;
2632 struct recirc_refs recircs = RECIRC_REFS_EMPTY_INITIALIZER;
2633 enum reval_result result;
2634 struct udpif_key *ukey;
2635 bool already_dumped;
2636 int error;
2637
2638 if (ukey_acquire(udpif, f, &ukey, &error)) {
2639 if (error == EBUSY) {
2640 /* Another thread is processing this flow, so don't bother
2641 * processing it.*/
2642 COVERAGE_INC(upcall_ukey_contention);
2643 } else {
2644 log_unexpected_flow(f, error);
2645 if (error != ENOENT) {
2646 delete_op_init__(udpif, &ops[n_ops++], f);
2647 }
2648 }
2649 continue;
2650 }
2651
2652 already_dumped = ukey->dump_seq == dump_seq;
2653 if (already_dumped) {
2654 /* The flow has already been handled during this flow dump
2655 * operation. Skip it. */
2656 if (ukey->xcache) {
2657 COVERAGE_INC(dumped_duplicate_flow);
2658 } else {
2659 COVERAGE_INC(dumped_new_flow);
2660 }
2661 ovs_mutex_unlock(&ukey->mutex);
2662 continue;
2663 }
2664
2665 if (ukey->state <= UKEY_OPERATIONAL) {
2666 /* The flow is now confirmed to be in the datapath. */
2667 transition_ukey(ukey, UKEY_OPERATIONAL);
2668 } else {
2669 VLOG_INFO("Unexpected ukey transition from state %d "
2670 "(last transitioned from thread %u at %s)",
2671 ukey->state, ukey->state_thread, ukey->state_where);
2672 ovs_mutex_unlock(&ukey->mutex);
2673 continue;
2674 }
2675
2676 if (!used) {
2677 used = ukey->created;
2678 }
2679 if (kill_them_all || (used && used < now - max_idle)) {
2680 result = UKEY_DELETE;
2681 } else {
2682 result = revalidate_ukey(udpif, ukey, &f->stats, &odp_actions,
2683 reval_seq, &recircs);
2684 }
2685 ukey->dump_seq = dump_seq;
2686
2687 if (netdev_is_offload_rebalance_policy_enabled() &&
2688 result != UKEY_DELETE) {
2689 udpif_update_flow_pps(udpif, ukey, f);
2690 }
2691
2692 if (result != UKEY_KEEP) {
2693 /* Takes ownership of 'recircs'. */
2694 reval_op_init(&ops[n_ops++], result, udpif, ukey, &recircs,
2695 &odp_actions);
2696 }
2697 ovs_mutex_unlock(&ukey->mutex);
2698 }
2699
2700 if (n_ops) {
2701 /* Push datapath ops but defer ukey deletion to 'sweep' phase. */
2702 push_dp_ops(udpif, ops, n_ops);
2703 }
2704 ovsrcu_quiesce();
2705 }
2706 dpif_flow_dump_thread_destroy(dump_thread);
2707 ofpbuf_uninit(&odp_actions);
2708 }
2709
2710 /* Pauses the 'revalidator', can only proceed after main thread
2711 * calls udpif_resume_revalidators(). */
2712 static void
2713 revalidator_pause(struct revalidator *revalidator)
2714 {
2715 /* The first block is for sync'ing the pause with main thread. */
2716 ovs_barrier_block(&revalidator->udpif->pause_barrier);
2717 /* The second block is for pausing until main thread resumes. */
2718 ovs_barrier_block(&revalidator->udpif->pause_barrier);
2719 }
2720
2721 static void
2722 revalidator_sweep__(struct revalidator *revalidator, bool purge)
2723 {
2724 struct udpif *udpif;
2725 uint64_t dump_seq, reval_seq;
2726 int slice;
2727
2728 udpif = revalidator->udpif;
2729 dump_seq = seq_read(udpif->dump_seq);
2730 reval_seq = seq_read(udpif->reval_seq);
2731 slice = revalidator - udpif->revalidators;
2732 ovs_assert(slice < udpif->n_revalidators);
2733
2734 for (int i = slice; i < N_UMAPS; i += udpif->n_revalidators) {
2735 uint64_t odp_actions_stub[1024 / 8];
2736 struct ofpbuf odp_actions = OFPBUF_STUB_INITIALIZER(odp_actions_stub);
2737
2738 struct ukey_op ops[REVALIDATE_MAX_BATCH];
2739 struct udpif_key *ukey;
2740 struct umap *umap = &udpif->ukeys[i];
2741 size_t n_ops = 0;
2742
2743 CMAP_FOR_EACH(ukey, cmap_node, &umap->cmap) {
2744 enum ukey_state ukey_state;
2745
2746 /* Handler threads could be holding a ukey lock while it installs a
2747 * new flow, so don't hang around waiting for access to it. */
2748 if (ovs_mutex_trylock(&ukey->mutex)) {
2749 continue;
2750 }
2751 ukey_state = ukey->state;
2752 if (ukey_state == UKEY_OPERATIONAL
2753 || (ukey_state == UKEY_VISIBLE && purge)) {
2754 struct recirc_refs recircs = RECIRC_REFS_EMPTY_INITIALIZER;
2755 bool seq_mismatch = (ukey->dump_seq != dump_seq
2756 && ukey->reval_seq != reval_seq);
2757 enum reval_result result;
2758
2759 if (purge) {
2760 result = UKEY_DELETE;
2761 } else if (!seq_mismatch) {
2762 result = UKEY_KEEP;
2763 } else {
2764 struct dpif_flow_stats stats;
2765 COVERAGE_INC(revalidate_missed_dp_flow);
2766 memset(&stats, 0, sizeof stats);
2767 result = revalidate_ukey(udpif, ukey, &stats, &odp_actions,
2768 reval_seq, &recircs);
2769 }
2770 if (result != UKEY_KEEP) {
2771 /* Clears 'recircs' if filled by revalidate_ukey(). */
2772 reval_op_init(&ops[n_ops++], result, udpif, ukey, &recircs,
2773 &odp_actions);
2774 }
2775 }
2776 ovs_mutex_unlock(&ukey->mutex);
2777
2778 if (ukey_state == UKEY_EVICTED) {
2779 /* The common flow deletion case involves deletion of the flow
2780 * during the dump phase and ukey deletion here. */
2781 ovs_mutex_lock(&umap->mutex);
2782 ukey_delete(umap, ukey);
2783 ovs_mutex_unlock(&umap->mutex);
2784 }
2785
2786 if (n_ops == REVALIDATE_MAX_BATCH) {
2787 /* Update/delete missed flows and clean up corresponding ukeys
2788 * if necessary. */
2789 push_ukey_ops(udpif, umap, ops, n_ops);
2790 n_ops = 0;
2791 }
2792 }
2793
2794 if (n_ops) {
2795 push_ukey_ops(udpif, umap, ops, n_ops);
2796 }
2797
2798 ofpbuf_uninit(&odp_actions);
2799 ovsrcu_quiesce();
2800 }
2801 }
2802
2803 static void
2804 revalidator_sweep(struct revalidator *revalidator)
2805 {
2806 revalidator_sweep__(revalidator, false);
2807 }
2808
2809 static void
2810 revalidator_purge(struct revalidator *revalidator)
2811 {
2812 revalidator_sweep__(revalidator, true);
2813 }
2814
2815 /* In reaction to dpif purge, purges all 'ukey's with same 'pmd_id'. */
2816 static void
2817 dp_purge_cb(void *aux, unsigned pmd_id)
2818 OVS_NO_THREAD_SAFETY_ANALYSIS
2819 {
2820 struct udpif *udpif = aux;
2821 size_t i;
2822
2823 udpif_pause_revalidators(udpif);
2824 for (i = 0; i < N_UMAPS; i++) {
2825 struct ukey_op ops[REVALIDATE_MAX_BATCH];
2826 struct udpif_key *ukey;
2827 struct umap *umap = &udpif->ukeys[i];
2828 size_t n_ops = 0;
2829
2830 CMAP_FOR_EACH(ukey, cmap_node, &umap->cmap) {
2831 if (ukey->pmd_id == pmd_id) {
2832 delete_op_init(udpif, &ops[n_ops++], ukey);
2833 transition_ukey(ukey, UKEY_EVICTING);
2834
2835 if (n_ops == REVALIDATE_MAX_BATCH) {
2836 push_ukey_ops(udpif, umap, ops, n_ops);
2837 n_ops = 0;
2838 }
2839 }
2840 }
2841
2842 if (n_ops) {
2843 push_ukey_ops(udpif, umap, ops, n_ops);
2844 }
2845
2846 ovsrcu_quiesce();
2847 }
2848 udpif_resume_revalidators(udpif);
2849 }
2850 \f
2851 static void
2852 upcall_unixctl_show(struct unixctl_conn *conn, int argc OVS_UNUSED,
2853 const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED)
2854 {
2855 struct ds ds = DS_EMPTY_INITIALIZER;
2856 struct udpif *udpif;
2857
2858 LIST_FOR_EACH (udpif, list_node, &all_udpifs) {
2859 unsigned int flow_limit;
2860 bool ufid_enabled;
2861 size_t i;
2862
2863 atomic_read_relaxed(&udpif->flow_limit, &flow_limit);
2864 ufid_enabled = udpif_use_ufid(udpif);
2865
2866 ds_put_format(&ds, "%s:\n", dpif_name(udpif->dpif));
2867 ds_put_format(&ds, " flows : (current %lu)"
2868 " (avg %u) (max %u) (limit %u)\n", udpif_get_n_flows(udpif),
2869 udpif->avg_n_flows, udpif->max_n_flows, flow_limit);
2870 ds_put_format(&ds, " dump duration : %lldms\n", udpif->dump_duration);
2871 ds_put_format(&ds, " ufid enabled : ");
2872 if (ufid_enabled) {
2873 ds_put_format(&ds, "true\n");
2874 } else {
2875 ds_put_format(&ds, "false\n");
2876 }
2877 ds_put_char(&ds, '\n');
2878
2879 for (i = 0; i < n_revalidators; i++) {
2880 struct revalidator *revalidator = &udpif->revalidators[i];
2881 int j, elements = 0;
2882
2883 for (j = i; j < N_UMAPS; j += n_revalidators) {
2884 elements += cmap_count(&udpif->ukeys[j].cmap);
2885 }
2886 ds_put_format(&ds, " %u: (keys %d)\n", revalidator->id, elements);
2887 }
2888 }
2889
2890 unixctl_command_reply(conn, ds_cstr(&ds));
2891 ds_destroy(&ds);
2892 }
2893
2894 /* Disable using the megaflows.
2895 *
2896 * This command is only needed for advanced debugging, so it's not
2897 * documented in the man page. */
2898 static void
2899 upcall_unixctl_disable_megaflows(struct unixctl_conn *conn,
2900 int argc OVS_UNUSED,
2901 const char *argv[] OVS_UNUSED,
2902 void *aux OVS_UNUSED)
2903 {
2904 atomic_store_relaxed(&enable_megaflows, false);
2905 udpif_flush_all_datapaths();
2906 unixctl_command_reply(conn, "megaflows disabled");
2907 }
2908
2909 /* Re-enable using megaflows.
2910 *
2911 * This command is only needed for advanced debugging, so it's not
2912 * documented in the man page. */
2913 static void
2914 upcall_unixctl_enable_megaflows(struct unixctl_conn *conn,
2915 int argc OVS_UNUSED,
2916 const char *argv[] OVS_UNUSED,
2917 void *aux OVS_UNUSED)
2918 {
2919 atomic_store_relaxed(&enable_megaflows, true);
2920 udpif_flush_all_datapaths();
2921 unixctl_command_reply(conn, "megaflows enabled");
2922 }
2923
2924 /* Disable skipping flow attributes during flow dump.
2925 *
2926 * This command is only needed for advanced debugging, so it's not
2927 * documented in the man page. */
2928 static void
2929 upcall_unixctl_disable_ufid(struct unixctl_conn *conn, int argc OVS_UNUSED,
2930 const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED)
2931 {
2932 atomic_store_relaxed(&enable_ufid, false);
2933 unixctl_command_reply(conn, "Datapath dumping tersely using UFID disabled");
2934 }
2935
2936 /* Re-enable skipping flow attributes during flow dump.
2937 *
2938 * This command is only needed for advanced debugging, so it's not documented
2939 * in the man page. */
2940 static void
2941 upcall_unixctl_enable_ufid(struct unixctl_conn *conn, int argc OVS_UNUSED,
2942 const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED)
2943 {
2944 atomic_store_relaxed(&enable_ufid, true);
2945 unixctl_command_reply(conn, "Datapath dumping tersely using UFID enabled "
2946 "for supported datapaths");
2947 }
2948
2949 /* Set the flow limit.
2950 *
2951 * This command is only needed for advanced debugging, so it's not
2952 * documented in the man page. */
2953 static void
2954 upcall_unixctl_set_flow_limit(struct unixctl_conn *conn,
2955 int argc OVS_UNUSED,
2956 const char *argv[],
2957 void *aux OVS_UNUSED)
2958 {
2959 struct ds ds = DS_EMPTY_INITIALIZER;
2960 struct udpif *udpif;
2961 unsigned int flow_limit = atoi(argv[1]);
2962
2963 LIST_FOR_EACH (udpif, list_node, &all_udpifs) {
2964 atomic_store_relaxed(&udpif->flow_limit, flow_limit);
2965 }
2966 ds_put_format(&ds, "set flow_limit to %u\n", flow_limit);
2967 unixctl_command_reply(conn, ds_cstr(&ds));
2968 ds_destroy(&ds);
2969 }
2970
2971 static void
2972 upcall_unixctl_dump_wait(struct unixctl_conn *conn,
2973 int argc OVS_UNUSED,
2974 const char *argv[] OVS_UNUSED,
2975 void *aux OVS_UNUSED)
2976 {
2977 if (ovs_list_is_singleton(&all_udpifs)) {
2978 struct udpif *udpif = NULL;
2979 size_t len;
2980
2981 udpif = OBJECT_CONTAINING(ovs_list_front(&all_udpifs), udpif, list_node);
2982 len = (udpif->n_conns + 1) * sizeof *udpif->conns;
2983 udpif->conn_seq = seq_read(udpif->dump_seq);
2984 udpif->conns = xrealloc(udpif->conns, len);
2985 udpif->conns[udpif->n_conns++] = conn;
2986 } else {
2987 unixctl_command_reply_error(conn, "can't wait on multiple udpifs.");
2988 }
2989 }
2990
2991 static void
2992 upcall_unixctl_purge(struct unixctl_conn *conn, int argc OVS_UNUSED,
2993 const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED)
2994 {
2995 struct udpif *udpif;
2996
2997 LIST_FOR_EACH (udpif, list_node, &all_udpifs) {
2998 int n;
2999
3000 for (n = 0; n < udpif->n_revalidators; n++) {
3001 revalidator_purge(&udpif->revalidators[n]);
3002 }
3003 }
3004 unixctl_command_reply(conn, "");
3005 }
3006
3007 /* Flows are sorted in the following order:
3008 * netdev, flow state (offloaded/kernel path), flow_pps_rate.
3009 */
3010 static int
3011 flow_compare_rebalance(const void *elem1, const void *elem2)
3012 {
3013 const struct udpif_key *f1 = *(struct udpif_key **)elem1;
3014 const struct udpif_key *f2 = *(struct udpif_key **)elem2;
3015 int64_t diff;
3016
3017 if (f1->in_netdev < f2->in_netdev) {
3018 return -1;
3019 } else if (f1->in_netdev > f2->in_netdev) {
3020 return 1;
3021 }
3022
3023 if (f1->offloaded != f2->offloaded) {
3024 return f2->offloaded - f1->offloaded;
3025 }
3026
3027 diff = (f1->offloaded == true) ?
3028 f1->flow_pps_rate - f2->flow_pps_rate :
3029 f2->flow_pps_rate - f1->flow_pps_rate;
3030
3031 return (diff < 0) ? -1 : 1;
3032 }
3033
3034 /* Insert flows from pending array during rebalancing */
3035 static int
3036 rebalance_insert_pending(struct udpif *udpif, struct udpif_key **pending_flows,
3037 int pending_count, int insert_count,
3038 uint64_t rate_threshold)
3039 {
3040 int count = 0;
3041
3042 for (int i = 0; i < pending_count; i++) {
3043 struct udpif_key *flow = pending_flows[i];
3044 int err;
3045
3046 /* Stop offloading pending flows if the insert count is
3047 * reached and the flow rate is less than the threshold
3048 */
3049 if (count >= insert_count && flow->flow_pps_rate < rate_threshold) {
3050 break;
3051 }
3052
3053 /* Offload the flow to netdev */
3054 err = udpif_flow_program(udpif, flow, DPIF_OFFLOAD_ALWAYS);
3055
3056 if (err == ENOSPC) {
3057 /* Stop if we are out of resources */
3058 break;
3059 }
3060
3061 if (err) {
3062 continue;
3063 }
3064
3065 /* Offload succeeded; delete it from the kernel datapath */
3066 udpif_flow_unprogram(udpif, flow, DPIF_OFFLOAD_NEVER);
3067
3068 /* Change the state of the flow, adjust dpif counters */
3069 flow->offloaded = true;
3070
3071 udpif_set_ukey_backlog_packets(flow);
3072 count++;
3073 }
3074
3075 return count;
3076 }
3077
3078 /* Remove flows from offloaded array during rebalancing */
3079 static void
3080 rebalance_remove_offloaded(struct udpif *udpif,
3081 struct udpif_key **offloaded_flows,
3082 int offload_count)
3083 {
3084 for (int i = 0; i < offload_count; i++) {
3085 struct udpif_key *flow = offloaded_flows[i];
3086 int err;
3087
3088 /* Install the flow into kernel path first */
3089 err = udpif_flow_program(udpif, flow, DPIF_OFFLOAD_NEVER);
3090 if (err) {
3091 continue;
3092 }
3093
3094 /* Success; now remove offloaded flow from netdev */
3095 err = udpif_flow_unprogram(udpif, flow, DPIF_OFFLOAD_ALWAYS);
3096 if (err) {
3097 udpif_flow_unprogram(udpif, flow, DPIF_OFFLOAD_NEVER);
3098 continue;
3099 }
3100 udpif_set_ukey_backlog_packets(flow);
3101 flow->offloaded = false;
3102 }
3103 }
3104
3105 /*
3106 * Rebalance offloaded flows on a netdev that's in OOR state.
3107 *
3108 * The rebalancing is done in two phases. In the first phase, we check if
3109 * the pending flows can be offloaded (if some resources became available
3110 * in the meantime) by trying to offload each pending flow. If all pending
3111 * flows get successfully offloaded, the OOR state is cleared on the netdev
3112 * and there's nothing to rebalance.
3113 *
3114 * If some of the pending flows could not be offloaded, i.e, we still see
3115 * the OOR error, then we move to the second phase of rebalancing. In this
3116 * phase, the rebalancer compares pps-rate of an offloaded flow with the
3117 * least pps-rate with that of a pending flow with the highest pps-rate from
3118 * their respective sorted arrays. If pps-rate of the offloaded flow is less
3119 * than the pps-rate of the pending flow, then it deletes the offloaded flow
3120 * from the HW/netdev and adds it to kernel datapath and then offloads pending
3121 * to HW/netdev. This process is repeated for every pair of offloaded and
3122 * pending flows in the ordered list. The process stops when we encounter an
3123 * offloaded flow that has a higher pps-rate than the corresponding pending
3124 * flow. The entire rebalancing process is repeated in the next iteration.
3125 */
3126 static bool
3127 rebalance_device(struct udpif *udpif, struct udpif_key **offloaded_flows,
3128 int offload_count, struct udpif_key **pending_flows,
3129 int pending_count)
3130 {
3131
3132 /* Phase 1 */
3133 int num_inserted = rebalance_insert_pending(udpif, pending_flows,
3134 pending_count, pending_count,
3135 0);
3136 if (num_inserted) {
3137 VLOG_DBG("Offload rebalance: Phase1: inserted %d pending flows",
3138 num_inserted);
3139 }
3140
3141 /* Adjust pending array */
3142 pending_flows = &pending_flows[num_inserted];
3143 pending_count -= num_inserted;
3144
3145 if (!pending_count) {
3146 /*
3147 * Successfully offloaded all pending flows. The device
3148 * is no longer in OOR state; done rebalancing this device.
3149 */
3150 return false;
3151 }
3152
3153 /*
3154 * Phase 2; determine how many offloaded flows to churn.
3155 */
3156 #define OFFL_REBAL_MAX_CHURN 1024
3157 int churn_count = 0;
3158 while (churn_count < OFFL_REBAL_MAX_CHURN && churn_count < offload_count
3159 && churn_count < pending_count) {
3160 if (pending_flows[churn_count]->flow_pps_rate <=
3161 offloaded_flows[churn_count]->flow_pps_rate)
3162 break;
3163 churn_count++;
3164 }
3165
3166 if (churn_count) {
3167 VLOG_DBG("Offload rebalance: Phase2: removing %d offloaded flows",
3168 churn_count);
3169 }
3170
3171 /* Bail early if nothing to churn */
3172 if (!churn_count) {
3173 return true;
3174 }
3175
3176 /* Remove offloaded flows */
3177 rebalance_remove_offloaded(udpif, offloaded_flows, churn_count);
3178
3179 /* Adjust offloaded array */
3180 offloaded_flows = &offloaded_flows[churn_count];
3181 offload_count -= churn_count;
3182
3183 /* Replace offloaded flows with pending flows */
3184 num_inserted = rebalance_insert_pending(udpif, pending_flows,
3185 pending_count, churn_count,
3186 offload_count ?
3187 offloaded_flows[0]->flow_pps_rate :
3188 0);
3189 if (num_inserted) {
3190 VLOG_DBG("Offload rebalance: Phase2: inserted %d pending flows",
3191 num_inserted);
3192 }
3193
3194 return true;
3195 }
3196
3197 static struct udpif_key **
3198 udpif_add_oor_flows(struct udpif_key **sort_flows, size_t *total_flow_count,
3199 size_t *alloc_flow_count, struct udpif_key *ukey)
3200 {
3201 if (*total_flow_count >= *alloc_flow_count) {
3202 sort_flows = x2nrealloc(sort_flows, alloc_flow_count, sizeof ukey);
3203 }
3204 sort_flows[(*total_flow_count)++] = ukey;
3205 return sort_flows;
3206 }
3207
3208 /*
3209 * Build sort_flows[] initially with flows that
3210 * reference an 'OOR' netdev as their input port.
3211 */
3212 static struct udpif_key **
3213 udpif_build_oor_flows(struct udpif_key **sort_flows, size_t *total_flow_count,
3214 size_t *alloc_flow_count, struct udpif_key *ukey,
3215 int *oor_netdev_count)
3216 {
3217 struct netdev *netdev;
3218 int count;
3219
3220 /* Input netdev must be available for the flow */
3221 netdev = ukey->in_netdev;
3222 if (!netdev) {
3223 return sort_flows;
3224 }
3225
3226 /* Is the in-netdev for this flow in OOR state ? */
3227 if (!netdev_get_hw_info(netdev, HW_INFO_TYPE_OOR)) {
3228 ukey_netdev_unref(ukey);
3229 return sort_flows;
3230 }
3231
3232 /* Add the flow to sort_flows[] */
3233 sort_flows = udpif_add_oor_flows(sort_flows, total_flow_count,
3234 alloc_flow_count, ukey);
3235 if (ukey->offloaded) {
3236 count = netdev_get_hw_info(netdev, HW_INFO_TYPE_OFFL_COUNT);
3237 ovs_assert(count >= 0);
3238 if (count++ == 0) {
3239 (*oor_netdev_count)++;
3240 }
3241 netdev_set_hw_info(netdev, HW_INFO_TYPE_OFFL_COUNT, count);
3242 } else {
3243 count = netdev_get_hw_info(netdev, HW_INFO_TYPE_PEND_COUNT);
3244 ovs_assert(count >= 0);
3245 netdev_set_hw_info(netdev, HW_INFO_TYPE_PEND_COUNT, ++count);
3246 }
3247
3248 return sort_flows;
3249 }
3250
3251 /*
3252 * Rebalance offloaded flows on HW netdevs that are in OOR state.
3253 */
3254 static void
3255 udpif_flow_rebalance(struct udpif *udpif)
3256 {
3257 struct udpif_key **sort_flows = NULL;
3258 size_t alloc_flow_count = 0;
3259 size_t total_flow_count = 0;
3260 int oor_netdev_count = 0;
3261 int offload_index = 0;
3262 int pending_index;
3263
3264 /* Collect flows (offloaded and pending) that reference OOR netdevs */
3265 for (size_t i = 0; i < N_UMAPS; i++) {
3266 struct udpif_key *ukey;
3267 struct umap *umap = &udpif->ukeys[i];
3268
3269 CMAP_FOR_EACH (ukey, cmap_node, &umap->cmap) {
3270 ukey_to_flow_netdev(udpif, ukey);
3271 sort_flows = udpif_build_oor_flows(sort_flows, &total_flow_count,
3272 &alloc_flow_count, ukey,
3273 &oor_netdev_count);
3274 }
3275 }
3276
3277 /* Sort flows by OOR netdevs, state (offloaded/pending) and pps-rate */
3278 qsort(sort_flows, total_flow_count, sizeof(struct udpif_key *),
3279 flow_compare_rebalance);
3280
3281 /*
3282 * We now have flows referencing OOR netdevs, that are sorted. We also
3283 * have a count of offloaded and pending flows on each of the netdevs
3284 * that are in OOR state. Now rebalance each oor-netdev.
3285 */
3286 while (oor_netdev_count) {
3287 struct netdev *netdev;
3288 int offload_count;
3289 int pending_count;
3290 bool oor;
3291
3292 netdev = sort_flows[offload_index]->in_netdev;
3293 ovs_assert(netdev_get_hw_info(netdev, HW_INFO_TYPE_OOR) == true);
3294 VLOG_DBG("Offload rebalance: netdev: %s is OOR", netdev->name);
3295
3296 offload_count = netdev_get_hw_info(netdev, HW_INFO_TYPE_OFFL_COUNT);
3297 pending_count = netdev_get_hw_info(netdev, HW_INFO_TYPE_PEND_COUNT);
3298 pending_index = offload_index + offload_count;
3299
3300 oor = rebalance_device(udpif,
3301 &sort_flows[offload_index], offload_count,
3302 &sort_flows[pending_index], pending_count);
3303 netdev_set_hw_info(netdev, HW_INFO_TYPE_OOR, oor);
3304
3305 offload_index = pending_index + pending_count;
3306 netdev_set_hw_info(netdev, HW_INFO_TYPE_OFFL_COUNT, 0);
3307 netdev_set_hw_info(netdev, HW_INFO_TYPE_PEND_COUNT, 0);
3308 oor_netdev_count--;
3309 }
3310
3311 for (int i = 0; i < total_flow_count; i++) {
3312 struct udpif_key *ukey = sort_flows[i];
3313 ukey_netdev_unref(ukey);
3314 }
3315 free(sort_flows);
3316 }
3317
3318 static int
3319 udpif_flow_program(struct udpif *udpif, struct udpif_key *ukey,
3320 enum dpif_offload_type offload_type)
3321 {
3322 struct dpif_op *opsp;
3323 struct ukey_op uop;
3324
3325 opsp = &uop.dop;
3326 put_op_init(&uop, ukey, DPIF_FP_CREATE);
3327 dpif_operate(udpif->dpif, &opsp, 1, offload_type);
3328
3329 return opsp->error;
3330 }
3331
3332 static int
3333 udpif_flow_unprogram(struct udpif *udpif, struct udpif_key *ukey,
3334 enum dpif_offload_type offload_type)
3335 {
3336 struct dpif_op *opsp;
3337 struct ukey_op uop;
3338
3339 opsp = &uop.dop;
3340 delete_op_init(udpif, &uop, ukey);
3341 dpif_operate(udpif->dpif, &opsp, 1, offload_type);
3342
3343 return opsp->error;
3344 }