]> git.proxmox.com Git - mirror_ovs.git/blob - ofproto/ofproto-dpif-upcall.c
f76182e9285da2c884c56cad37e81c6925aa48f9
[mirror_ovs.git] / ofproto / ofproto-dpif-upcall.c
1 /* Copyright (c) 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016 Nicira, Inc.
2 *
3 * Licensed under the Apache License, Version 2.0 (the "License");
4 * you may not use this file except in compliance with the License.
5 * You may obtain a copy of the License at:
6 *
7 * http://www.apache.org/licenses/LICENSE-2.0
8 *
9 * Unless required by applicable law or agreed to in writing, software
10 * distributed under the License is distributed on an "AS IS" BASIS,
11 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 * See the License for the specific language governing permissions and
13 * limitations under the License. */
14
15 #include <config.h>
16 #include "ofproto-dpif-upcall.h"
17
18 #include <errno.h>
19 #include <stdbool.h>
20 #include <inttypes.h>
21
22 #include "connmgr.h"
23 #include "coverage.h"
24 #include "cmap.h"
25 #include "dpif.h"
26 #include "openvswitch/dynamic-string.h"
27 #include "fail-open.h"
28 #include "guarded-list.h"
29 #include "latch.h"
30 #include "openvswitch/list.h"
31 #include "netlink.h"
32 #include "openvswitch/ofpbuf.h"
33 #include "ofproto-dpif-ipfix.h"
34 #include "ofproto-dpif-sflow.h"
35 #include "ofproto-dpif-xlate.h"
36 #include "ofproto-dpif-xlate-cache.h"
37 #include "ovs-rcu.h"
38 #include "packets.h"
39 #include "poll-loop.h"
40 #include "seq.h"
41 #include "unixctl.h"
42 #include "openvswitch/vlog.h"
43
44 #define MAX_QUEUE_LENGTH 512
45 #define UPCALL_MAX_BATCH 64
46 #define REVALIDATE_MAX_BATCH 50
47
48 VLOG_DEFINE_THIS_MODULE(ofproto_dpif_upcall);
49
50 COVERAGE_DEFINE(dumped_duplicate_flow);
51 COVERAGE_DEFINE(dumped_new_flow);
52 COVERAGE_DEFINE(handler_duplicate_upcall);
53 COVERAGE_DEFINE(upcall_ukey_contention);
54 COVERAGE_DEFINE(upcall_ukey_replace);
55 COVERAGE_DEFINE(revalidate_missed_dp_flow);
56
57 /* A thread that reads upcalls from dpif, forwards each upcall's packet,
58 * and possibly sets up a kernel flow as a cache. */
59 struct handler {
60 struct udpif *udpif; /* Parent udpif. */
61 pthread_t thread; /* Thread ID. */
62 uint32_t handler_id; /* Handler id. */
63 };
64
65 /* In the absence of a multiple-writer multiple-reader datastructure for
66 * storing udpif_keys ("ukeys"), we use a large number of cmaps, each with its
67 * own lock for writing. */
68 #define N_UMAPS 512 /* per udpif. */
69 struct umap {
70 struct ovs_mutex mutex; /* Take for writing to the following. */
71 struct cmap cmap; /* Datapath flow keys. */
72 };
73
74 /* A thread that processes datapath flows, updates OpenFlow statistics, and
75 * updates or removes them if necessary.
76 *
77 * Revalidator threads operate in two phases: "dump" and "sweep". In between
78 * each phase, all revalidators sync up so that all revalidator threads are
79 * either in one phase or the other, but not a combination.
80 *
81 * During the dump phase, revalidators fetch flows from the datapath and
82 * attribute the statistics to OpenFlow rules. Each datapath flow has a
83 * corresponding ukey which caches the most recently seen statistics. If
84 * a flow needs to be deleted (for example, because it is unused over a
85 * period of time), revalidator threads may delete the flow during the
86 * dump phase. The datapath is not guaranteed to reliably dump all flows
87 * from the datapath, and there is no mapping between datapath flows to
88 * revalidators, so a particular flow may be handled by zero or more
89 * revalidators during a single dump phase. To avoid duplicate attribution
90 * of statistics, ukeys are never deleted during this phase.
91 *
92 * During the sweep phase, each revalidator takes ownership of a different
93 * slice of umaps and sweeps through all ukeys in those umaps to figure out
94 * whether they need to be deleted. During this phase, revalidators may
95 * fetch individual flows which were not dumped during the dump phase to
96 * validate them and attribute statistics.
97 */
98 struct revalidator {
99 struct udpif *udpif; /* Parent udpif. */
100 pthread_t thread; /* Thread ID. */
101 unsigned int id; /* ovsthread_id_self(). */
102 };
103
104 /* An upcall handler for ofproto_dpif.
105 *
106 * udpif keeps records of two kind of logically separate units:
107 *
108 * upcall handling
109 * ---------------
110 *
111 * - An array of 'struct handler's for upcall handling and flow
112 * installation.
113 *
114 * flow revalidation
115 * -----------------
116 *
117 * - Revalidation threads which read the datapath flow table and maintains
118 * them.
119 */
120 struct udpif {
121 struct ovs_list list_node; /* In all_udpifs list. */
122
123 struct dpif *dpif; /* Datapath handle. */
124 struct dpif_backer *backer; /* Opaque dpif_backer pointer. */
125
126 struct handler *handlers; /* Upcall handlers. */
127 size_t n_handlers;
128
129 struct revalidator *revalidators; /* Flow revalidators. */
130 size_t n_revalidators;
131
132 struct latch exit_latch; /* Tells child threads to exit. */
133
134 /* Revalidation. */
135 struct seq *reval_seq; /* Incremented to force revalidation. */
136 bool reval_exit; /* Set by leader on 'exit_latch. */
137 struct ovs_barrier reval_barrier; /* Barrier used by revalidators. */
138 struct dpif_flow_dump *dump; /* DPIF flow dump state. */
139 long long int dump_duration; /* Duration of the last flow dump. */
140 struct seq *dump_seq; /* Increments each dump iteration. */
141 atomic_bool enable_ufid; /* If true, skip dumping flow attrs. */
142
143 /* These variables provide a mechanism for the main thread to pause
144 * all revalidation without having to completely shut the threads down.
145 * 'pause_latch' is shared between the main thread and the lead
146 * revalidator thread, so when it is desirable to halt revalidation, the
147 * main thread will set the latch. 'pause' and 'pause_barrier' are shared
148 * by revalidator threads. The lead revalidator will set 'pause' when it
149 * observes the latch has been set, and this will cause all revalidator
150 * threads to wait on 'pause_barrier' at the beginning of the next
151 * revalidation round. */
152 bool pause; /* Set by leader on 'pause_latch. */
153 struct latch pause_latch; /* Set to force revalidators pause. */
154 struct ovs_barrier pause_barrier; /* Barrier used to pause all */
155 /* revalidators by main thread. */
156
157 /* There are 'N_UMAPS' maps containing 'struct udpif_key' elements.
158 *
159 * During the flow dump phase, revalidators insert into these with a random
160 * distribution. During the garbage collection phase, each revalidator
161 * takes care of garbage collecting a slice of these maps. */
162 struct umap *ukeys;
163
164 /* Datapath flow statistics. */
165 unsigned int max_n_flows;
166 unsigned int avg_n_flows;
167
168 /* Following fields are accessed and modified by different threads. */
169 atomic_uint flow_limit; /* Datapath flow hard limit. */
170
171 /* n_flows_mutex prevents multiple threads updating these concurrently. */
172 atomic_uint n_flows; /* Number of flows in the datapath. */
173 atomic_llong n_flows_timestamp; /* Last time n_flows was updated. */
174 struct ovs_mutex n_flows_mutex;
175
176 /* Following fields are accessed and modified only from the main thread. */
177 struct unixctl_conn **conns; /* Connections waiting on dump_seq. */
178 uint64_t conn_seq; /* Corresponds to 'dump_seq' when
179 conns[n_conns-1] was stored. */
180 size_t n_conns; /* Number of connections waiting. */
181 };
182
183 enum upcall_type {
184 BAD_UPCALL, /* Some kind of bug somewhere. */
185 MISS_UPCALL, /* A flow miss. */
186 SFLOW_UPCALL, /* sFlow sample. */
187 FLOW_SAMPLE_UPCALL, /* Per-flow sampling. */
188 IPFIX_UPCALL /* Per-bridge sampling. */
189 };
190
191 enum reval_result {
192 UKEY_KEEP,
193 UKEY_DELETE,
194 UKEY_MODIFY
195 };
196
197 struct upcall {
198 struct ofproto_dpif *ofproto; /* Parent ofproto. */
199 const struct recirc_id_node *recirc; /* Recirculation context. */
200 bool have_recirc_ref; /* Reference held on recirc ctx? */
201
202 /* The flow and packet are only required to be constant when using
203 * dpif-netdev. If a modification is absolutely necessary, a const cast
204 * may be used with other datapaths. */
205 const struct flow *flow; /* Parsed representation of the packet. */
206 const ovs_u128 *ufid; /* Unique identifier for 'flow'. */
207 unsigned pmd_id; /* Datapath poll mode driver id. */
208 const struct dp_packet *packet; /* Packet associated with this upcall. */
209 ofp_port_t in_port; /* OpenFlow in port, or OFPP_NONE. */
210 uint16_t mru; /* If !0, Maximum receive unit of
211 fragmented IP packet */
212
213 enum dpif_upcall_type type; /* Datapath type of the upcall. */
214 const struct nlattr *userdata; /* Userdata for DPIF_UC_ACTION Upcalls. */
215 const struct nlattr *actions; /* Flow actions in DPIF_UC_ACTION Upcalls. */
216
217 bool xout_initialized; /* True if 'xout' must be uninitialized. */
218 struct xlate_out xout; /* Result of xlate_actions(). */
219 struct ofpbuf odp_actions; /* Datapath actions from xlate_actions(). */
220 struct flow_wildcards wc; /* Dependencies that megaflow must match. */
221 struct ofpbuf put_actions; /* Actions 'put' in the fastpath. */
222
223 struct dpif_ipfix *ipfix; /* IPFIX pointer or NULL. */
224 struct dpif_sflow *sflow; /* SFlow pointer or NULL. */
225
226 struct udpif_key *ukey; /* Revalidator flow cache. */
227 bool ukey_persists; /* Set true to keep 'ukey' beyond the
228 lifetime of this upcall. */
229
230 uint64_t dump_seq; /* udpif->dump_seq at translation time. */
231 uint64_t reval_seq; /* udpif->reval_seq at translation time. */
232
233 /* Not used by the upcall callback interface. */
234 const struct nlattr *key; /* Datapath flow key. */
235 size_t key_len; /* Datapath flow key length. */
236 const struct nlattr *out_tun_key; /* Datapath output tunnel key. */
237
238 uint64_t odp_actions_stub[1024 / 8]; /* Stub for odp_actions. */
239 };
240
241 /* Ukeys must transition through these states using transition_ukey(). */
242 enum ukey_state {
243 UKEY_CREATED = 0,
244 UKEY_VISIBLE, /* Ukey is in umap, datapath flow install is queued. */
245 UKEY_OPERATIONAL, /* Ukey is in umap, datapath flow is installed. */
246 UKEY_EVICTING, /* Ukey is in umap, datapath flow delete is queued. */
247 UKEY_EVICTED, /* Ukey is in umap, datapath flow is deleted. */
248 UKEY_DELETED, /* Ukey removed from umap, ukey free is deferred. */
249 };
250 #define N_UKEY_STATES (UKEY_DELETED + 1)
251
252 /* 'udpif_key's are responsible for tracking the little bit of state udpif
253 * needs to do flow expiration which can't be pulled directly from the
254 * datapath. They may be created by any handler or revalidator thread at any
255 * time, and read by any revalidator during the dump phase. They are however
256 * each owned by a single revalidator which takes care of destroying them
257 * during the garbage-collection phase.
258 *
259 * The mutex within the ukey protects some members of the ukey. The ukey
260 * itself is protected by RCU and is held within a umap in the parent udpif.
261 * Adding or removing a ukey from a umap is only safe when holding the
262 * corresponding umap lock. */
263 struct udpif_key {
264 struct cmap_node cmap_node; /* In parent revalidator 'ukeys' map. */
265
266 /* These elements are read only once created, and therefore aren't
267 * protected by a mutex. */
268 const struct nlattr *key; /* Datapath flow key. */
269 size_t key_len; /* Length of 'key'. */
270 const struct nlattr *mask; /* Datapath flow mask. */
271 size_t mask_len; /* Length of 'mask'. */
272 ovs_u128 ufid; /* Unique flow identifier. */
273 bool ufid_present; /* True if 'ufid' is in datapath. */
274 uint32_t hash; /* Pre-computed hash for 'key'. */
275 unsigned pmd_id; /* Datapath poll mode driver id. */
276
277 struct ovs_mutex mutex; /* Guards the following. */
278 struct dpif_flow_stats stats OVS_GUARDED; /* Last known stats.*/
279 long long int created OVS_GUARDED; /* Estimate of creation time. */
280 uint64_t dump_seq OVS_GUARDED; /* Tracks udpif->dump_seq. */
281 uint64_t reval_seq OVS_GUARDED; /* Tracks udpif->reval_seq. */
282 enum ukey_state state OVS_GUARDED; /* Tracks ukey lifetime. */
283
284 /* Datapath flow actions as nlattrs. Protected by RCU. Read with
285 * ukey_get_actions(), and write with ukey_set_actions(). */
286 OVSRCU_TYPE(struct ofpbuf *) actions;
287
288 struct xlate_cache *xcache OVS_GUARDED; /* Cache for xlate entries that
289 * are affected by this ukey.
290 * Used for stats and learning.*/
291 union {
292 struct odputil_keybuf buf;
293 struct nlattr nla;
294 } keybuf, maskbuf;
295
296 uint32_t key_recirc_id; /* Non-zero if reference is held by the ukey. */
297 struct recirc_refs recircs; /* Action recirc IDs with references held. */
298 };
299
300 /* Datapath operation with optional ukey attached. */
301 struct ukey_op {
302 struct udpif_key *ukey;
303 struct dpif_flow_stats stats; /* Stats for 'op'. */
304 struct dpif_op dop; /* Flow operation. */
305 };
306
307 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
308 static struct ovs_list all_udpifs = OVS_LIST_INITIALIZER(&all_udpifs);
309
310 static size_t recv_upcalls(struct handler *);
311 static int process_upcall(struct udpif *, struct upcall *,
312 struct ofpbuf *odp_actions, struct flow_wildcards *);
313 static void handle_upcalls(struct udpif *, struct upcall *, size_t n_upcalls);
314 static void udpif_stop_threads(struct udpif *);
315 static void udpif_start_threads(struct udpif *, size_t n_handlers,
316 size_t n_revalidators);
317 static void udpif_pause_revalidators(struct udpif *);
318 static void udpif_resume_revalidators(struct udpif *);
319 static void *udpif_upcall_handler(void *);
320 static void *udpif_revalidator(void *);
321 static unsigned long udpif_get_n_flows(struct udpif *);
322 static void revalidate(struct revalidator *);
323 static void revalidator_pause(struct revalidator *);
324 static void revalidator_sweep(struct revalidator *);
325 static void revalidator_purge(struct revalidator *);
326 static void upcall_unixctl_show(struct unixctl_conn *conn, int argc,
327 const char *argv[], void *aux);
328 static void upcall_unixctl_disable_megaflows(struct unixctl_conn *, int argc,
329 const char *argv[], void *aux);
330 static void upcall_unixctl_enable_megaflows(struct unixctl_conn *, int argc,
331 const char *argv[], void *aux);
332 static void upcall_unixctl_disable_ufid(struct unixctl_conn *, int argc,
333 const char *argv[], void *aux);
334 static void upcall_unixctl_enable_ufid(struct unixctl_conn *, int argc,
335 const char *argv[], void *aux);
336 static void upcall_unixctl_set_flow_limit(struct unixctl_conn *conn, int argc,
337 const char *argv[], void *aux);
338 static void upcall_unixctl_dump_wait(struct unixctl_conn *conn, int argc,
339 const char *argv[], void *aux);
340 static void upcall_unixctl_purge(struct unixctl_conn *conn, int argc,
341 const char *argv[], void *aux);
342
343 static struct udpif_key *ukey_create_from_upcall(struct upcall *,
344 struct flow_wildcards *);
345 static int ukey_create_from_dpif_flow(const struct udpif *,
346 const struct dpif_flow *,
347 struct udpif_key **);
348 static void ukey_get_actions(struct udpif_key *, const struct nlattr **actions,
349 size_t *size);
350 static bool ukey_install__(struct udpif *, struct udpif_key *ukey)
351 OVS_TRY_LOCK(true, ukey->mutex);
352 static bool ukey_install(struct udpif *udpif, struct udpif_key *ukey);
353 static void transition_ukey(struct udpif_key *ukey, enum ukey_state dst)
354 OVS_REQUIRES(ukey->mutex);
355 static struct udpif_key *ukey_lookup(struct udpif *udpif,
356 const ovs_u128 *ufid,
357 const unsigned pmd_id);
358 static int ukey_acquire(struct udpif *, const struct dpif_flow *,
359 struct udpif_key **result, int *error);
360 static void ukey_delete__(struct udpif_key *);
361 static void ukey_delete(struct umap *, struct udpif_key *);
362 static enum upcall_type classify_upcall(enum dpif_upcall_type type,
363 const struct nlattr *userdata);
364
365 static void put_op_init(struct ukey_op *op, struct udpif_key *ukey,
366 enum dpif_flow_put_flags flags);
367 static void delete_op_init(struct udpif *udpif, struct ukey_op *op,
368 struct udpif_key *ukey);
369
370 static int upcall_receive(struct upcall *, const struct dpif_backer *,
371 const struct dp_packet *packet, enum dpif_upcall_type,
372 const struct nlattr *userdata, const struct flow *,
373 const unsigned int mru,
374 const ovs_u128 *ufid, const unsigned pmd_id);
375 static void upcall_uninit(struct upcall *);
376
377 static upcall_callback upcall_cb;
378 static dp_purge_callback dp_purge_cb;
379
380 static atomic_bool enable_megaflows = ATOMIC_VAR_INIT(true);
381 static atomic_bool enable_ufid = ATOMIC_VAR_INIT(true);
382
383 void
384 udpif_init(void)
385 {
386 static struct ovsthread_once once = OVSTHREAD_ONCE_INITIALIZER;
387 if (ovsthread_once_start(&once)) {
388 unixctl_command_register("upcall/show", "", 0, 0, upcall_unixctl_show,
389 NULL);
390 unixctl_command_register("upcall/disable-megaflows", "", 0, 0,
391 upcall_unixctl_disable_megaflows, NULL);
392 unixctl_command_register("upcall/enable-megaflows", "", 0, 0,
393 upcall_unixctl_enable_megaflows, NULL);
394 unixctl_command_register("upcall/disable-ufid", "", 0, 0,
395 upcall_unixctl_disable_ufid, NULL);
396 unixctl_command_register("upcall/enable-ufid", "", 0, 0,
397 upcall_unixctl_enable_ufid, NULL);
398 unixctl_command_register("upcall/set-flow-limit", "", 1, 1,
399 upcall_unixctl_set_flow_limit, NULL);
400 unixctl_command_register("revalidator/wait", "", 0, 0,
401 upcall_unixctl_dump_wait, NULL);
402 unixctl_command_register("revalidator/purge", "", 0, 0,
403 upcall_unixctl_purge, NULL);
404 ovsthread_once_done(&once);
405 }
406 }
407
408 struct udpif *
409 udpif_create(struct dpif_backer *backer, struct dpif *dpif)
410 {
411 struct udpif *udpif = xzalloc(sizeof *udpif);
412
413 udpif->dpif = dpif;
414 udpif->backer = backer;
415 atomic_init(&udpif->flow_limit, MIN(ofproto_flow_limit, 10000));
416 udpif->reval_seq = seq_create();
417 udpif->dump_seq = seq_create();
418 latch_init(&udpif->exit_latch);
419 latch_init(&udpif->pause_latch);
420 ovs_list_push_back(&all_udpifs, &udpif->list_node);
421 atomic_init(&udpif->enable_ufid, false);
422 atomic_init(&udpif->n_flows, 0);
423 atomic_init(&udpif->n_flows_timestamp, LLONG_MIN);
424 ovs_mutex_init(&udpif->n_flows_mutex);
425 udpif->ukeys = xmalloc(N_UMAPS * sizeof *udpif->ukeys);
426 for (int i = 0; i < N_UMAPS; i++) {
427 cmap_init(&udpif->ukeys[i].cmap);
428 ovs_mutex_init(&udpif->ukeys[i].mutex);
429 }
430
431 dpif_register_upcall_cb(dpif, upcall_cb, udpif);
432 dpif_register_dp_purge_cb(dpif, dp_purge_cb, udpif);
433
434 return udpif;
435 }
436
437 void
438 udpif_run(struct udpif *udpif)
439 {
440 if (udpif->conns && udpif->conn_seq != seq_read(udpif->dump_seq)) {
441 int i;
442
443 for (i = 0; i < udpif->n_conns; i++) {
444 unixctl_command_reply(udpif->conns[i], NULL);
445 }
446 free(udpif->conns);
447 udpif->conns = NULL;
448 udpif->n_conns = 0;
449 }
450 }
451
452 void
453 udpif_destroy(struct udpif *udpif)
454 {
455 udpif_stop_threads(udpif);
456
457 dpif_register_dp_purge_cb(udpif->dpif, NULL, udpif);
458 dpif_register_upcall_cb(udpif->dpif, NULL, udpif);
459
460 for (int i = 0; i < N_UMAPS; i++) {
461 cmap_destroy(&udpif->ukeys[i].cmap);
462 ovs_mutex_destroy(&udpif->ukeys[i].mutex);
463 }
464 free(udpif->ukeys);
465 udpif->ukeys = NULL;
466
467 ovs_list_remove(&udpif->list_node);
468 latch_destroy(&udpif->exit_latch);
469 latch_destroy(&udpif->pause_latch);
470 seq_destroy(udpif->reval_seq);
471 seq_destroy(udpif->dump_seq);
472 ovs_mutex_destroy(&udpif->n_flows_mutex);
473 free(udpif);
474 }
475
476 /* Stops the handler and revalidator threads, must be enclosed in
477 * ovsrcu quiescent state unless when destroying udpif. */
478 static void
479 udpif_stop_threads(struct udpif *udpif)
480 {
481 if (udpif && (udpif->n_handlers != 0 || udpif->n_revalidators != 0)) {
482 size_t i;
483
484 latch_set(&udpif->exit_latch);
485
486 for (i = 0; i < udpif->n_handlers; i++) {
487 struct handler *handler = &udpif->handlers[i];
488
489 xpthread_join(handler->thread, NULL);
490 }
491
492 for (i = 0; i < udpif->n_revalidators; i++) {
493 xpthread_join(udpif->revalidators[i].thread, NULL);
494 }
495
496 dpif_disable_upcall(udpif->dpif);
497
498 for (i = 0; i < udpif->n_revalidators; i++) {
499 struct revalidator *revalidator = &udpif->revalidators[i];
500
501 /* Delete ukeys, and delete all flows from the datapath to prevent
502 * double-counting stats. */
503 revalidator_purge(revalidator);
504 }
505
506 latch_poll(&udpif->exit_latch);
507
508 ovs_barrier_destroy(&udpif->reval_barrier);
509 ovs_barrier_destroy(&udpif->pause_barrier);
510
511 free(udpif->revalidators);
512 udpif->revalidators = NULL;
513 udpif->n_revalidators = 0;
514
515 free(udpif->handlers);
516 udpif->handlers = NULL;
517 udpif->n_handlers = 0;
518 }
519 }
520
521 /* Starts the handler and revalidator threads, must be enclosed in
522 * ovsrcu quiescent state. */
523 static void
524 udpif_start_threads(struct udpif *udpif, size_t n_handlers,
525 size_t n_revalidators)
526 {
527 if (udpif && n_handlers && n_revalidators) {
528 size_t i;
529 bool enable_ufid;
530
531 udpif->n_handlers = n_handlers;
532 udpif->n_revalidators = n_revalidators;
533
534 udpif->handlers = xzalloc(udpif->n_handlers * sizeof *udpif->handlers);
535 for (i = 0; i < udpif->n_handlers; i++) {
536 struct handler *handler = &udpif->handlers[i];
537
538 handler->udpif = udpif;
539 handler->handler_id = i;
540 handler->thread = ovs_thread_create(
541 "handler", udpif_upcall_handler, handler);
542 }
543
544 enable_ufid = ofproto_dpif_get_enable_ufid(udpif->backer);
545 atomic_init(&udpif->enable_ufid, enable_ufid);
546 dpif_enable_upcall(udpif->dpif);
547
548 ovs_barrier_init(&udpif->reval_barrier, udpif->n_revalidators);
549 ovs_barrier_init(&udpif->pause_barrier, udpif->n_revalidators + 1);
550 udpif->reval_exit = false;
551 udpif->pause = false;
552 udpif->revalidators = xzalloc(udpif->n_revalidators
553 * sizeof *udpif->revalidators);
554 for (i = 0; i < udpif->n_revalidators; i++) {
555 struct revalidator *revalidator = &udpif->revalidators[i];
556
557 revalidator->udpif = udpif;
558 revalidator->thread = ovs_thread_create(
559 "revalidator", udpif_revalidator, revalidator);
560 }
561 }
562 }
563
564 /* Pauses all revalidators. Should only be called by the main thread.
565 * When function returns, all revalidators are paused and will proceed
566 * only after udpif_resume_revalidators() is called. */
567 static void
568 udpif_pause_revalidators(struct udpif *udpif)
569 {
570 if (ofproto_dpif_backer_enabled(udpif->backer)) {
571 latch_set(&udpif->pause_latch);
572 ovs_barrier_block(&udpif->pause_barrier);
573 }
574 }
575
576 /* Resumes the pausing of revalidators. Should only be called by the
577 * main thread. */
578 static void
579 udpif_resume_revalidators(struct udpif *udpif)
580 {
581 if (ofproto_dpif_backer_enabled(udpif->backer)) {
582 latch_poll(&udpif->pause_latch);
583 ovs_barrier_block(&udpif->pause_barrier);
584 }
585 }
586
587 /* Tells 'udpif' how many threads it should use to handle upcalls.
588 * 'n_handlers' and 'n_revalidators' can never be zero. 'udpif''s
589 * datapath handle must have packet reception enabled before starting
590 * threads. */
591 void
592 udpif_set_threads(struct udpif *udpif, size_t n_handlers,
593 size_t n_revalidators)
594 {
595 ovs_assert(udpif);
596 ovs_assert(n_handlers && n_revalidators);
597
598 ovsrcu_quiesce_start();
599 if (udpif->n_handlers != n_handlers
600 || udpif->n_revalidators != n_revalidators) {
601 udpif_stop_threads(udpif);
602 }
603
604 if (!udpif->handlers && !udpif->revalidators) {
605 int error;
606
607 error = dpif_handlers_set(udpif->dpif, n_handlers);
608 if (error) {
609 VLOG_ERR("failed to configure handlers in dpif %s: %s",
610 dpif_name(udpif->dpif), ovs_strerror(error));
611 return;
612 }
613
614 udpif_start_threads(udpif, n_handlers, n_revalidators);
615 }
616 ovsrcu_quiesce_end();
617 }
618
619 /* Waits for all ongoing upcall translations to complete. This ensures that
620 * there are no transient references to any removed ofprotos (or other
621 * objects). In particular, this should be called after an ofproto is removed
622 * (e.g. via xlate_remove_ofproto()) but before it is destroyed. */
623 void
624 udpif_synchronize(struct udpif *udpif)
625 {
626 /* This is stronger than necessary. It would be sufficient to ensure
627 * (somehow) that each handler and revalidator thread had passed through
628 * its main loop once. */
629 size_t n_handlers = udpif->n_handlers;
630 size_t n_revalidators = udpif->n_revalidators;
631
632 ovsrcu_quiesce_start();
633 udpif_stop_threads(udpif);
634 udpif_start_threads(udpif, n_handlers, n_revalidators);
635 ovsrcu_quiesce_end();
636 }
637
638 /* Notifies 'udpif' that something changed which may render previous
639 * xlate_actions() results invalid. */
640 void
641 udpif_revalidate(struct udpif *udpif)
642 {
643 seq_change(udpif->reval_seq);
644 }
645
646 /* Returns a seq which increments every time 'udpif' pulls stats from the
647 * datapath. Callers can use this to get a sense of when might be a good time
648 * to do periodic work which relies on relatively up to date statistics. */
649 struct seq *
650 udpif_dump_seq(struct udpif *udpif)
651 {
652 return udpif->dump_seq;
653 }
654
655 void
656 udpif_get_memory_usage(struct udpif *udpif, struct simap *usage)
657 {
658 size_t i;
659
660 simap_increase(usage, "handlers", udpif->n_handlers);
661
662 simap_increase(usage, "revalidators", udpif->n_revalidators);
663 for (i = 0; i < N_UMAPS; i++) {
664 simap_increase(usage, "udpif keys", cmap_count(&udpif->ukeys[i].cmap));
665 }
666 }
667
668 /* Remove flows from a single datapath. */
669 void
670 udpif_flush(struct udpif *udpif)
671 {
672 size_t n_handlers, n_revalidators;
673
674 n_handlers = udpif->n_handlers;
675 n_revalidators = udpif->n_revalidators;
676
677 ovsrcu_quiesce_start();
678
679 udpif_stop_threads(udpif);
680 dpif_flow_flush(udpif->dpif);
681 udpif_start_threads(udpif, n_handlers, n_revalidators);
682
683 ovsrcu_quiesce_end();
684 }
685
686 /* Removes all flows from all datapaths. */
687 static void
688 udpif_flush_all_datapaths(void)
689 {
690 struct udpif *udpif;
691
692 LIST_FOR_EACH (udpif, list_node, &all_udpifs) {
693 udpif_flush(udpif);
694 }
695 }
696
697 static bool
698 udpif_use_ufid(struct udpif *udpif)
699 {
700 bool enable;
701
702 atomic_read_relaxed(&enable_ufid, &enable);
703 return enable && ofproto_dpif_get_enable_ufid(udpif->backer);
704 }
705
706 \f
707 static unsigned long
708 udpif_get_n_flows(struct udpif *udpif)
709 {
710 long long int time, now;
711 unsigned long flow_count;
712
713 now = time_msec();
714 atomic_read_relaxed(&udpif->n_flows_timestamp, &time);
715 if (time < now - 100 && !ovs_mutex_trylock(&udpif->n_flows_mutex)) {
716 struct dpif_dp_stats stats;
717
718 atomic_store_relaxed(&udpif->n_flows_timestamp, now);
719 dpif_get_dp_stats(udpif->dpif, &stats);
720 flow_count = stats.n_flows;
721 atomic_store_relaxed(&udpif->n_flows, flow_count);
722 ovs_mutex_unlock(&udpif->n_flows_mutex);
723 } else {
724 atomic_read_relaxed(&udpif->n_flows, &flow_count);
725 }
726 return flow_count;
727 }
728
729 /* The upcall handler thread tries to read a batch of UPCALL_MAX_BATCH
730 * upcalls from dpif, processes the batch and installs corresponding flows
731 * in dpif. */
732 static void *
733 udpif_upcall_handler(void *arg)
734 {
735 struct handler *handler = arg;
736 struct udpif *udpif = handler->udpif;
737
738 while (!latch_is_set(&handler->udpif->exit_latch)) {
739 if (recv_upcalls(handler)) {
740 poll_immediate_wake();
741 } else {
742 dpif_recv_wait(udpif->dpif, handler->handler_id);
743 latch_wait(&udpif->exit_latch);
744 }
745 poll_block();
746 }
747
748 return NULL;
749 }
750
751 static size_t
752 recv_upcalls(struct handler *handler)
753 {
754 struct udpif *udpif = handler->udpif;
755 uint64_t recv_stubs[UPCALL_MAX_BATCH][512 / 8];
756 struct ofpbuf recv_bufs[UPCALL_MAX_BATCH];
757 struct dpif_upcall dupcalls[UPCALL_MAX_BATCH];
758 struct upcall upcalls[UPCALL_MAX_BATCH];
759 struct flow flows[UPCALL_MAX_BATCH];
760 size_t n_upcalls, i;
761
762 n_upcalls = 0;
763 while (n_upcalls < UPCALL_MAX_BATCH) {
764 struct ofpbuf *recv_buf = &recv_bufs[n_upcalls];
765 struct dpif_upcall *dupcall = &dupcalls[n_upcalls];
766 struct upcall *upcall = &upcalls[n_upcalls];
767 struct flow *flow = &flows[n_upcalls];
768 unsigned int mru;
769 int error;
770
771 ofpbuf_use_stub(recv_buf, recv_stubs[n_upcalls],
772 sizeof recv_stubs[n_upcalls]);
773 if (dpif_recv(udpif->dpif, handler->handler_id, dupcall, recv_buf)) {
774 ofpbuf_uninit(recv_buf);
775 break;
776 }
777
778 if (odp_flow_key_to_flow(dupcall->key, dupcall->key_len, flow)
779 == ODP_FIT_ERROR) {
780 goto free_dupcall;
781 }
782
783 if (dupcall->mru) {
784 mru = nl_attr_get_u16(dupcall->mru);
785 } else {
786 mru = 0;
787 }
788
789 error = upcall_receive(upcall, udpif->backer, &dupcall->packet,
790 dupcall->type, dupcall->userdata, flow, mru,
791 &dupcall->ufid, PMD_ID_NULL);
792 if (error) {
793 if (error == ENODEV) {
794 /* Received packet on datapath port for which we couldn't
795 * associate an ofproto. This can happen if a port is removed
796 * while traffic is being received. Print a rate-limited
797 * message in case it happens frequently. */
798 dpif_flow_put(udpif->dpif, DPIF_FP_CREATE, dupcall->key,
799 dupcall->key_len, NULL, 0, NULL, 0,
800 &dupcall->ufid, PMD_ID_NULL, NULL);
801 VLOG_INFO_RL(&rl, "received packet on unassociated datapath "
802 "port %"PRIu32, flow->in_port.odp_port);
803 }
804 goto free_dupcall;
805 }
806
807 upcall->key = dupcall->key;
808 upcall->key_len = dupcall->key_len;
809 upcall->ufid = &dupcall->ufid;
810
811 upcall->out_tun_key = dupcall->out_tun_key;
812 upcall->actions = dupcall->actions;
813
814 pkt_metadata_from_flow(&dupcall->packet.md, flow);
815 flow_extract(&dupcall->packet, flow);
816
817 error = process_upcall(udpif, upcall,
818 &upcall->odp_actions, &upcall->wc);
819 if (error) {
820 goto cleanup;
821 }
822
823 n_upcalls++;
824 continue;
825
826 cleanup:
827 upcall_uninit(upcall);
828 free_dupcall:
829 dp_packet_uninit(&dupcall->packet);
830 ofpbuf_uninit(recv_buf);
831 }
832
833 if (n_upcalls) {
834 handle_upcalls(handler->udpif, upcalls, n_upcalls);
835 for (i = 0; i < n_upcalls; i++) {
836 dp_packet_uninit(&dupcalls[i].packet);
837 ofpbuf_uninit(&recv_bufs[i]);
838 upcall_uninit(&upcalls[i]);
839 }
840 }
841
842 return n_upcalls;
843 }
844
845 static void *
846 udpif_revalidator(void *arg)
847 {
848 /* Used by all revalidators. */
849 struct revalidator *revalidator = arg;
850 struct udpif *udpif = revalidator->udpif;
851 bool leader = revalidator == &udpif->revalidators[0];
852
853 /* Used only by the leader. */
854 long long int start_time = 0;
855 uint64_t last_reval_seq = 0;
856 size_t n_flows = 0;
857
858 revalidator->id = ovsthread_id_self();
859 for (;;) {
860 if (leader) {
861 uint64_t reval_seq;
862
863 recirc_run(); /* Recirculation cleanup. */
864
865 reval_seq = seq_read(udpif->reval_seq);
866 last_reval_seq = reval_seq;
867
868 n_flows = udpif_get_n_flows(udpif);
869 udpif->max_n_flows = MAX(n_flows, udpif->max_n_flows);
870 udpif->avg_n_flows = (udpif->avg_n_flows + n_flows) / 2;
871
872 /* Only the leader checks the pause latch to prevent a race where
873 * some threads think it's false and proceed to block on
874 * reval_barrier and others think it's true and block indefinitely
875 * on the pause_barrier */
876 udpif->pause = latch_is_set(&udpif->pause_latch);
877
878 /* Only the leader checks the exit latch to prevent a race where
879 * some threads think it's true and exit and others think it's
880 * false and block indefinitely on the reval_barrier */
881 udpif->reval_exit = latch_is_set(&udpif->exit_latch);
882
883 start_time = time_msec();
884 if (!udpif->reval_exit) {
885 bool terse_dump;
886
887 terse_dump = udpif_use_ufid(udpif);
888 udpif->dump = dpif_flow_dump_create(udpif->dpif, terse_dump);
889 }
890 }
891
892 /* Wait for the leader to start the flow dump. */
893 ovs_barrier_block(&udpif->reval_barrier);
894 if (udpif->pause) {
895 revalidator_pause(revalidator);
896 }
897
898 if (udpif->reval_exit) {
899 break;
900 }
901 revalidate(revalidator);
902
903 /* Wait for all flows to have been dumped before we garbage collect. */
904 ovs_barrier_block(&udpif->reval_barrier);
905 revalidator_sweep(revalidator);
906
907 /* Wait for all revalidators to finish garbage collection. */
908 ovs_barrier_block(&udpif->reval_barrier);
909
910 if (leader) {
911 unsigned int flow_limit;
912 long long int duration;
913
914 atomic_read_relaxed(&udpif->flow_limit, &flow_limit);
915
916 dpif_flow_dump_destroy(udpif->dump);
917 seq_change(udpif->dump_seq);
918
919 duration = MAX(time_msec() - start_time, 1);
920 udpif->dump_duration = duration;
921 if (duration > 2000) {
922 flow_limit /= duration / 1000;
923 } else if (duration > 1300) {
924 flow_limit = flow_limit * 3 / 4;
925 } else if (duration < 1000 && n_flows > 2000
926 && flow_limit < n_flows * 1000 / duration) {
927 flow_limit += 1000;
928 }
929 flow_limit = MIN(ofproto_flow_limit, MAX(flow_limit, 1000));
930 atomic_store_relaxed(&udpif->flow_limit, flow_limit);
931
932 if (duration > 2000) {
933 VLOG_INFO("Spent an unreasonably long %lldms dumping flows",
934 duration);
935 }
936
937 poll_timer_wait_until(start_time + MIN(ofproto_max_idle, 500));
938 seq_wait(udpif->reval_seq, last_reval_seq);
939 latch_wait(&udpif->exit_latch);
940 latch_wait(&udpif->pause_latch);
941 poll_block();
942
943 if (!latch_is_set(&udpif->pause_latch) &&
944 !latch_is_set(&udpif->exit_latch)) {
945 long long int now = time_msec();
946 /* Block again if we are woken up within 5ms of the last start
947 * time. */
948 start_time += 5;
949
950 if (now < start_time) {
951 poll_timer_wait_until(start_time);
952 latch_wait(&udpif->exit_latch);
953 latch_wait(&udpif->pause_latch);
954 poll_block();
955 }
956 }
957 }
958 }
959
960 return NULL;
961 }
962 \f
963 static enum upcall_type
964 classify_upcall(enum dpif_upcall_type type, const struct nlattr *userdata)
965 {
966 union user_action_cookie cookie;
967 size_t userdata_len;
968
969 /* First look at the upcall type. */
970 switch (type) {
971 case DPIF_UC_ACTION:
972 break;
973
974 case DPIF_UC_MISS:
975 return MISS_UPCALL;
976
977 case DPIF_N_UC_TYPES:
978 default:
979 VLOG_WARN_RL(&rl, "upcall has unexpected type %"PRIu32, type);
980 return BAD_UPCALL;
981 }
982
983 /* "action" upcalls need a closer look. */
984 if (!userdata) {
985 VLOG_WARN_RL(&rl, "action upcall missing cookie");
986 return BAD_UPCALL;
987 }
988 userdata_len = nl_attr_get_size(userdata);
989 if (userdata_len < sizeof cookie.type
990 || userdata_len > sizeof cookie) {
991 VLOG_WARN_RL(&rl, "action upcall cookie has unexpected size %"PRIuSIZE,
992 userdata_len);
993 return BAD_UPCALL;
994 }
995 memset(&cookie, 0, sizeof cookie);
996 memcpy(&cookie, nl_attr_get(userdata), userdata_len);
997 if (userdata_len == MAX(8, sizeof cookie.sflow)
998 && cookie.type == USER_ACTION_COOKIE_SFLOW) {
999 return SFLOW_UPCALL;
1000 } else if (userdata_len == MAX(8, sizeof cookie.slow_path)
1001 && cookie.type == USER_ACTION_COOKIE_SLOW_PATH) {
1002 return MISS_UPCALL;
1003 } else if (userdata_len == MAX(8, sizeof cookie.flow_sample)
1004 && cookie.type == USER_ACTION_COOKIE_FLOW_SAMPLE) {
1005 return FLOW_SAMPLE_UPCALL;
1006 } else if (userdata_len == MAX(8, sizeof cookie.ipfix)
1007 && cookie.type == USER_ACTION_COOKIE_IPFIX) {
1008 return IPFIX_UPCALL;
1009 } else {
1010 VLOG_WARN_RL(&rl, "invalid user cookie of type %"PRIu16
1011 " and size %"PRIuSIZE, cookie.type, userdata_len);
1012 return BAD_UPCALL;
1013 }
1014 }
1015
1016 /* Calculates slow path actions for 'xout'. 'buf' must statically be
1017 * initialized with at least 128 bytes of space. */
1018 static void
1019 compose_slow_path(struct udpif *udpif, struct xlate_out *xout,
1020 const struct flow *flow, odp_port_t odp_in_port,
1021 struct ofpbuf *buf)
1022 {
1023 union user_action_cookie cookie;
1024 odp_port_t port;
1025 uint32_t pid;
1026
1027 cookie.type = USER_ACTION_COOKIE_SLOW_PATH;
1028 cookie.slow_path.unused = 0;
1029 cookie.slow_path.reason = xout->slow;
1030
1031 port = xout->slow & (SLOW_CFM | SLOW_BFD | SLOW_LACP | SLOW_STP)
1032 ? ODPP_NONE
1033 : odp_in_port;
1034 pid = dpif_port_get_pid(udpif->dpif, port, flow_hash_5tuple(flow, 0));
1035 odp_put_userspace_action(pid, &cookie, sizeof cookie.slow_path,
1036 ODPP_NONE, false, buf);
1037 }
1038
1039 /* If there is no error, the upcall must be destroyed with upcall_uninit()
1040 * before quiescing, as the referred objects are guaranteed to exist only
1041 * until the calling thread quiesces. Otherwise, do not call upcall_uninit()
1042 * since the 'upcall->put_actions' remains uninitialized. */
1043 static int
1044 upcall_receive(struct upcall *upcall, const struct dpif_backer *backer,
1045 const struct dp_packet *packet, enum dpif_upcall_type type,
1046 const struct nlattr *userdata, const struct flow *flow,
1047 const unsigned int mru,
1048 const ovs_u128 *ufid, const unsigned pmd_id)
1049 {
1050 int error;
1051
1052 error = xlate_lookup(backer, flow, &upcall->ofproto, &upcall->ipfix,
1053 &upcall->sflow, NULL, &upcall->in_port);
1054 if (error) {
1055 return error;
1056 }
1057
1058 upcall->recirc = NULL;
1059 upcall->have_recirc_ref = false;
1060 upcall->flow = flow;
1061 upcall->packet = packet;
1062 upcall->ufid = ufid;
1063 upcall->pmd_id = pmd_id;
1064 upcall->type = type;
1065 upcall->userdata = userdata;
1066 ofpbuf_use_stub(&upcall->odp_actions, upcall->odp_actions_stub,
1067 sizeof upcall->odp_actions_stub);
1068 ofpbuf_init(&upcall->put_actions, 0);
1069
1070 upcall->xout_initialized = false;
1071 upcall->ukey_persists = false;
1072
1073 upcall->ukey = NULL;
1074 upcall->key = NULL;
1075 upcall->key_len = 0;
1076 upcall->mru = mru;
1077
1078 upcall->out_tun_key = NULL;
1079 upcall->actions = NULL;
1080
1081 return 0;
1082 }
1083
1084 static void
1085 upcall_xlate(struct udpif *udpif, struct upcall *upcall,
1086 struct ofpbuf *odp_actions, struct flow_wildcards *wc)
1087 {
1088 struct dpif_flow_stats stats;
1089 struct xlate_in xin;
1090
1091 stats.n_packets = 1;
1092 stats.n_bytes = dp_packet_size(upcall->packet);
1093 stats.used = time_msec();
1094 stats.tcp_flags = ntohs(upcall->flow->tcp_flags);
1095
1096 xlate_in_init(&xin, upcall->ofproto,
1097 ofproto_dpif_get_tables_version(upcall->ofproto),
1098 upcall->flow, upcall->in_port, NULL,
1099 stats.tcp_flags, upcall->packet, wc, odp_actions);
1100
1101 if (upcall->type == DPIF_UC_MISS) {
1102 xin.resubmit_stats = &stats;
1103
1104 if (xin.frozen_state) {
1105 /* We may install a datapath flow only if we get a reference to the
1106 * recirculation context (otherwise we could have recirculation
1107 * upcalls using recirculation ID for which no context can be
1108 * found). We may still execute the flow's actions even if we
1109 * don't install the flow. */
1110 upcall->recirc = recirc_id_node_from_state(xin.frozen_state);
1111 upcall->have_recirc_ref = recirc_id_node_try_ref_rcu(upcall->recirc);
1112 }
1113 } else {
1114 /* For non-miss upcalls, we are either executing actions (one of which
1115 * is an userspace action) for an upcall, in which case the stats have
1116 * already been taken care of, or there's a flow in the datapath which
1117 * this packet was accounted to. Presumably the revalidators will deal
1118 * with pushing its stats eventually. */
1119 }
1120
1121 upcall->dump_seq = seq_read(udpif->dump_seq);
1122 upcall->reval_seq = seq_read(udpif->reval_seq);
1123
1124 xlate_actions(&xin, &upcall->xout);
1125 if (wc) {
1126 /* Convert the input port wildcard from OFP to ODP format. There's no
1127 * real way to do this for arbitrary bitmasks since the numbering spaces
1128 * aren't the same. However, flow translation always exact matches the
1129 * whole thing, so we can do the same here. */
1130 WC_MASK_FIELD(wc, in_port.odp_port);
1131 }
1132
1133 upcall->xout_initialized = true;
1134
1135 if (!upcall->xout.slow) {
1136 ofpbuf_use_const(&upcall->put_actions,
1137 odp_actions->data, odp_actions->size);
1138 } else {
1139 /* upcall->put_actions already initialized by upcall_receive(). */
1140 compose_slow_path(udpif, &upcall->xout, upcall->flow,
1141 upcall->flow->in_port.odp_port,
1142 &upcall->put_actions);
1143 }
1144
1145 /* This function is also called for slow-pathed flows. As we are only
1146 * going to create new datapath flows for actual datapath misses, there is
1147 * no point in creating a ukey otherwise. */
1148 if (upcall->type == DPIF_UC_MISS) {
1149 upcall->ukey = ukey_create_from_upcall(upcall, wc);
1150 }
1151 }
1152
1153 static void
1154 upcall_uninit(struct upcall *upcall)
1155 {
1156 if (upcall) {
1157 if (upcall->xout_initialized) {
1158 xlate_out_uninit(&upcall->xout);
1159 }
1160 ofpbuf_uninit(&upcall->odp_actions);
1161 ofpbuf_uninit(&upcall->put_actions);
1162 if (upcall->ukey) {
1163 if (!upcall->ukey_persists) {
1164 ukey_delete__(upcall->ukey);
1165 }
1166 } else if (upcall->have_recirc_ref) {
1167 /* The reference was transferred to the ukey if one was created. */
1168 recirc_id_node_unref(upcall->recirc);
1169 }
1170 }
1171 }
1172
1173 /* If there are less flows than the limit, and this is a miss upcall which
1174 *
1175 * - Has no recirc_id, OR
1176 * - Has a recirc_id and we can get a reference on the recirc ctx,
1177 *
1178 * Then we should install the flow (true). Otherwise, return false. */
1179 static bool
1180 should_install_flow(struct udpif *udpif, struct upcall *upcall)
1181 {
1182 unsigned int flow_limit;
1183
1184 if (upcall->type != DPIF_UC_MISS) {
1185 return false;
1186 } else if (upcall->recirc && !upcall->have_recirc_ref) {
1187 VLOG_DBG_RL(&rl, "upcall: no reference for recirc flow");
1188 return false;
1189 }
1190
1191 atomic_read_relaxed(&udpif->flow_limit, &flow_limit);
1192 if (udpif_get_n_flows(udpif) >= flow_limit) {
1193 VLOG_WARN_RL(&rl, "upcall: datapath flow limit reached");
1194 return false;
1195 }
1196
1197 return true;
1198 }
1199
1200 static int
1201 upcall_cb(const struct dp_packet *packet, const struct flow *flow, ovs_u128 *ufid,
1202 unsigned pmd_id, enum dpif_upcall_type type,
1203 const struct nlattr *userdata, struct ofpbuf *actions,
1204 struct flow_wildcards *wc, struct ofpbuf *put_actions, void *aux)
1205 {
1206 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 1);
1207 struct udpif *udpif = aux;
1208 struct upcall upcall;
1209 bool megaflow;
1210 int error;
1211
1212 atomic_read_relaxed(&enable_megaflows, &megaflow);
1213
1214 error = upcall_receive(&upcall, udpif->backer, packet, type, userdata,
1215 flow, 0, ufid, pmd_id);
1216 if (error) {
1217 return error;
1218 }
1219
1220 error = process_upcall(udpif, &upcall, actions, wc);
1221 if (error) {
1222 goto out;
1223 }
1224
1225 if (upcall.xout.slow && put_actions) {
1226 ofpbuf_put(put_actions, upcall.put_actions.data,
1227 upcall.put_actions.size);
1228 }
1229
1230 if (OVS_UNLIKELY(!megaflow)) {
1231 flow_wildcards_init_for_packet(wc, flow);
1232 }
1233
1234 if (!should_install_flow(udpif, &upcall)) {
1235 error = ENOSPC;
1236 goto out;
1237 }
1238
1239 if (upcall.ukey && !ukey_install(udpif, upcall.ukey)) {
1240 VLOG_WARN_RL(&rl, "upcall_cb failure: ukey installation fails");
1241 error = ENOSPC;
1242 }
1243 out:
1244 if (!error) {
1245 upcall.ukey_persists = true;
1246 }
1247 upcall_uninit(&upcall);
1248 return error;
1249 }
1250
1251 static int
1252 process_upcall(struct udpif *udpif, struct upcall *upcall,
1253 struct ofpbuf *odp_actions, struct flow_wildcards *wc)
1254 {
1255 const struct nlattr *userdata = upcall->userdata;
1256 const struct dp_packet *packet = upcall->packet;
1257 const struct flow *flow = upcall->flow;
1258
1259 switch (classify_upcall(upcall->type, userdata)) {
1260 case MISS_UPCALL:
1261 upcall_xlate(udpif, upcall, odp_actions, wc);
1262 return 0;
1263
1264 case SFLOW_UPCALL:
1265 if (upcall->sflow) {
1266 union user_action_cookie cookie;
1267 const struct nlattr *actions;
1268 size_t actions_len = 0;
1269 struct dpif_sflow_actions sflow_actions;
1270 memset(&sflow_actions, 0, sizeof sflow_actions);
1271 memset(&cookie, 0, sizeof cookie);
1272 memcpy(&cookie, nl_attr_get(userdata), sizeof cookie.sflow);
1273 if (upcall->actions) {
1274 /* Actions were passed up from datapath. */
1275 actions = nl_attr_get(upcall->actions);
1276 actions_len = nl_attr_get_size(upcall->actions);
1277 if (actions && actions_len) {
1278 dpif_sflow_read_actions(flow, actions, actions_len,
1279 &sflow_actions);
1280 }
1281 }
1282 if (actions_len == 0) {
1283 /* Lookup actions in userspace cache. */
1284 struct udpif_key *ukey = ukey_lookup(udpif, upcall->ufid,
1285 upcall->pmd_id);
1286 if (ukey) {
1287 ukey_get_actions(ukey, &actions, &actions_len);
1288 dpif_sflow_read_actions(flow, actions, actions_len,
1289 &sflow_actions);
1290 }
1291 }
1292 dpif_sflow_received(upcall->sflow, packet, flow,
1293 flow->in_port.odp_port, &cookie,
1294 actions_len > 0 ? &sflow_actions : NULL);
1295 }
1296 break;
1297
1298 case IPFIX_UPCALL:
1299 if (upcall->ipfix) {
1300 union user_action_cookie cookie;
1301 struct flow_tnl output_tunnel_key;
1302
1303 memset(&cookie, 0, sizeof cookie);
1304 memcpy(&cookie, nl_attr_get(userdata), sizeof cookie.ipfix);
1305
1306 if (upcall->out_tun_key) {
1307 odp_tun_key_from_attr(upcall->out_tun_key, &output_tunnel_key);
1308 }
1309 dpif_ipfix_bridge_sample(upcall->ipfix, packet, flow,
1310 flow->in_port.odp_port,
1311 cookie.ipfix.output_odp_port,
1312 upcall->out_tun_key ?
1313 &output_tunnel_key : NULL);
1314 }
1315 break;
1316
1317 case FLOW_SAMPLE_UPCALL:
1318 if (upcall->ipfix) {
1319 union user_action_cookie cookie;
1320 struct flow_tnl output_tunnel_key;
1321
1322 memset(&cookie, 0, sizeof cookie);
1323 memcpy(&cookie, nl_attr_get(userdata), sizeof cookie.flow_sample);
1324
1325 if (upcall->out_tun_key) {
1326 odp_tun_key_from_attr(upcall->out_tun_key, &output_tunnel_key);
1327 }
1328
1329 /* The flow reflects exactly the contents of the packet.
1330 * Sample the packet using it. */
1331 dpif_ipfix_flow_sample(upcall->ipfix, packet, flow,
1332 &cookie, flow->in_port.odp_port,
1333 upcall->out_tun_key ?
1334 &output_tunnel_key : NULL);
1335 }
1336 break;
1337
1338 case BAD_UPCALL:
1339 break;
1340 }
1341
1342 return EAGAIN;
1343 }
1344
1345 static void
1346 handle_upcalls(struct udpif *udpif, struct upcall *upcalls,
1347 size_t n_upcalls)
1348 {
1349 struct dpif_op *opsp[UPCALL_MAX_BATCH * 2];
1350 struct ukey_op ops[UPCALL_MAX_BATCH * 2];
1351 size_t n_ops, n_opsp, i;
1352
1353 /* Handle the packets individually in order of arrival.
1354 *
1355 * - For SLOW_CFM, SLOW_LACP, SLOW_STP, and SLOW_BFD, translation is what
1356 * processes received packets for these protocols.
1357 *
1358 * - For SLOW_CONTROLLER, translation sends the packet to the OpenFlow
1359 * controller.
1360 *
1361 * The loop fills 'ops' with an array of operations to execute in the
1362 * datapath. */
1363 n_ops = 0;
1364 for (i = 0; i < n_upcalls; i++) {
1365 struct upcall *upcall = &upcalls[i];
1366 const struct dp_packet *packet = upcall->packet;
1367 struct ukey_op *op;
1368
1369 if (should_install_flow(udpif, upcall)) {
1370 struct udpif_key *ukey = upcall->ukey;
1371
1372 if (ukey_install(udpif, ukey)) {
1373 upcall->ukey_persists = true;
1374 put_op_init(&ops[n_ops++], ukey, DPIF_FP_CREATE);
1375 }
1376 }
1377
1378 if (upcall->odp_actions.size) {
1379 op = &ops[n_ops++];
1380 op->ukey = NULL;
1381 op->dop.type = DPIF_OP_EXECUTE;
1382 op->dop.u.execute.packet = CONST_CAST(struct dp_packet *, packet);
1383 op->dop.u.execute.flow = upcall->flow;
1384 odp_key_to_pkt_metadata(upcall->key, upcall->key_len,
1385 &op->dop.u.execute.packet->md);
1386 op->dop.u.execute.actions = upcall->odp_actions.data;
1387 op->dop.u.execute.actions_len = upcall->odp_actions.size;
1388 op->dop.u.execute.needs_help = (upcall->xout.slow & SLOW_ACTION) != 0;
1389 op->dop.u.execute.probe = false;
1390 op->dop.u.execute.mtu = upcall->mru;
1391 }
1392 }
1393
1394 /* Execute batch. */
1395 n_opsp = 0;
1396 for (i = 0; i < n_ops; i++) {
1397 opsp[n_opsp++] = &ops[i].dop;
1398 }
1399 dpif_operate(udpif->dpif, opsp, n_opsp);
1400 for (i = 0; i < n_ops; i++) {
1401 struct udpif_key *ukey = ops[i].ukey;
1402
1403 if (ukey) {
1404 ovs_mutex_lock(&ukey->mutex);
1405 if (ops[i].dop.error) {
1406 transition_ukey(ukey, UKEY_EVICTED);
1407 } else {
1408 transition_ukey(ukey, UKEY_OPERATIONAL);
1409 }
1410 ovs_mutex_unlock(&ukey->mutex);
1411 }
1412 }
1413 }
1414
1415 static uint32_t
1416 get_ukey_hash(const ovs_u128 *ufid, const unsigned pmd_id)
1417 {
1418 return hash_2words(ufid->u32[0], pmd_id);
1419 }
1420
1421 static struct udpif_key *
1422 ukey_lookup(struct udpif *udpif, const ovs_u128 *ufid, const unsigned pmd_id)
1423 {
1424 struct udpif_key *ukey;
1425 int idx = get_ukey_hash(ufid, pmd_id) % N_UMAPS;
1426 struct cmap *cmap = &udpif->ukeys[idx].cmap;
1427
1428 CMAP_FOR_EACH_WITH_HASH (ukey, cmap_node,
1429 get_ukey_hash(ufid, pmd_id), cmap) {
1430 if (ovs_u128_equals(ukey->ufid, *ufid)) {
1431 return ukey;
1432 }
1433 }
1434 return NULL;
1435 }
1436
1437 /* Provides safe lockless access of RCU protected 'ukey->actions'. Callers may
1438 * alternatively access the field directly if they take 'ukey->mutex'. */
1439 static void
1440 ukey_get_actions(struct udpif_key *ukey, const struct nlattr **actions, size_t *size)
1441 {
1442 const struct ofpbuf *buf = ovsrcu_get(struct ofpbuf *, &ukey->actions);
1443 *actions = buf->data;
1444 *size = buf->size;
1445 }
1446
1447 static void
1448 ukey_set_actions(struct udpif_key *ukey, const struct ofpbuf *actions)
1449 {
1450 ovsrcu_postpone(ofpbuf_delete,
1451 ovsrcu_get_protected(struct ofpbuf *, &ukey->actions));
1452 ovsrcu_set(&ukey->actions, ofpbuf_clone(actions));
1453 }
1454
1455 static struct udpif_key *
1456 ukey_create__(const struct nlattr *key, size_t key_len,
1457 const struct nlattr *mask, size_t mask_len,
1458 bool ufid_present, const ovs_u128 *ufid,
1459 const unsigned pmd_id, const struct ofpbuf *actions,
1460 uint64_t dump_seq, uint64_t reval_seq, long long int used,
1461 uint32_t key_recirc_id, struct xlate_out *xout)
1462 OVS_NO_THREAD_SAFETY_ANALYSIS
1463 {
1464 struct udpif_key *ukey = xmalloc(sizeof *ukey);
1465
1466 memcpy(&ukey->keybuf, key, key_len);
1467 ukey->key = &ukey->keybuf.nla;
1468 ukey->key_len = key_len;
1469 memcpy(&ukey->maskbuf, mask, mask_len);
1470 ukey->mask = &ukey->maskbuf.nla;
1471 ukey->mask_len = mask_len;
1472 ukey->ufid_present = ufid_present;
1473 ukey->ufid = *ufid;
1474 ukey->pmd_id = pmd_id;
1475 ukey->hash = get_ukey_hash(&ukey->ufid, pmd_id);
1476
1477 ovsrcu_init(&ukey->actions, NULL);
1478 ukey_set_actions(ukey, actions);
1479
1480 ovs_mutex_init(&ukey->mutex);
1481 ukey->dump_seq = dump_seq;
1482 ukey->reval_seq = reval_seq;
1483 ukey->state = UKEY_CREATED;
1484 ukey->created = time_msec();
1485 memset(&ukey->stats, 0, sizeof ukey->stats);
1486 ukey->stats.used = used;
1487 ukey->xcache = NULL;
1488
1489 ukey->key_recirc_id = key_recirc_id;
1490 recirc_refs_init(&ukey->recircs);
1491 if (xout) {
1492 /* Take ownership of the action recirc id references. */
1493 recirc_refs_swap(&ukey->recircs, &xout->recircs);
1494 }
1495
1496 return ukey;
1497 }
1498
1499 static struct udpif_key *
1500 ukey_create_from_upcall(struct upcall *upcall, struct flow_wildcards *wc)
1501 {
1502 struct odputil_keybuf keystub, maskstub;
1503 struct ofpbuf keybuf, maskbuf;
1504 bool megaflow;
1505 struct odp_flow_key_parms odp_parms = {
1506 .flow = upcall->flow,
1507 .mask = &wc->masks,
1508 };
1509
1510 odp_parms.support = ofproto_dpif_get_support(upcall->ofproto)->odp;
1511 if (upcall->key_len) {
1512 ofpbuf_use_const(&keybuf, upcall->key, upcall->key_len);
1513 } else {
1514 /* dpif-netdev doesn't provide a netlink-formatted flow key in the
1515 * upcall, so convert the upcall's flow here. */
1516 ofpbuf_use_stack(&keybuf, &keystub, sizeof keystub);
1517 odp_flow_key_from_flow(&odp_parms, &keybuf);
1518 }
1519
1520 atomic_read_relaxed(&enable_megaflows, &megaflow);
1521 ofpbuf_use_stack(&maskbuf, &maskstub, sizeof maskstub);
1522 if (megaflow) {
1523 odp_parms.key_buf = &keybuf;
1524 odp_flow_key_from_mask(&odp_parms, &maskbuf);
1525 }
1526
1527 return ukey_create__(keybuf.data, keybuf.size, maskbuf.data, maskbuf.size,
1528 true, upcall->ufid, upcall->pmd_id,
1529 &upcall->put_actions, upcall->dump_seq,
1530 upcall->reval_seq, 0,
1531 upcall->have_recirc_ref ? upcall->recirc->id : 0,
1532 &upcall->xout);
1533 }
1534
1535 static int
1536 ukey_create_from_dpif_flow(const struct udpif *udpif,
1537 const struct dpif_flow *flow,
1538 struct udpif_key **ukey)
1539 {
1540 struct dpif_flow full_flow;
1541 struct ofpbuf actions;
1542 uint64_t dump_seq, reval_seq;
1543 uint64_t stub[DPIF_FLOW_BUFSIZE / 8];
1544 const struct nlattr *a;
1545 unsigned int left;
1546
1547 if (!flow->key_len || !flow->actions_len) {
1548 struct ofpbuf buf;
1549 int err;
1550
1551 /* If the key or actions were not provided by the datapath, fetch the
1552 * full flow. */
1553 ofpbuf_use_stack(&buf, &stub, sizeof stub);
1554 err = dpif_flow_get(udpif->dpif, flow->key, flow->key_len,
1555 flow->ufid_present ? &flow->ufid : NULL,
1556 flow->pmd_id, &buf, &full_flow);
1557 if (err) {
1558 return err;
1559 }
1560 flow = &full_flow;
1561 }
1562
1563 /* Check the flow actions for recirculation action. As recirculation
1564 * relies on OVS userspace internal state, we need to delete all old
1565 * datapath flows with either a non-zero recirc_id in the key, or any
1566 * recirculation actions upon OVS restart. */
1567 NL_ATTR_FOR_EACH_UNSAFE (a, left, flow->key, flow->key_len) {
1568 if (nl_attr_type(a) == OVS_KEY_ATTR_RECIRC_ID
1569 && nl_attr_get_u32(a) != 0) {
1570 return EINVAL;
1571 }
1572 }
1573 NL_ATTR_FOR_EACH_UNSAFE (a, left, flow->actions, flow->actions_len) {
1574 if (nl_attr_type(a) == OVS_ACTION_ATTR_RECIRC) {
1575 return EINVAL;
1576 }
1577 }
1578
1579 dump_seq = seq_read(udpif->dump_seq);
1580 reval_seq = seq_read(udpif->reval_seq);
1581 ofpbuf_use_const(&actions, &flow->actions, flow->actions_len);
1582 *ukey = ukey_create__(flow->key, flow->key_len,
1583 flow->mask, flow->mask_len, flow->ufid_present,
1584 &flow->ufid, flow->pmd_id, &actions, dump_seq,
1585 reval_seq, flow->stats.used, 0, NULL);
1586
1587 return 0;
1588 }
1589
1590 static bool
1591 try_ukey_replace(struct umap *umap, struct udpif_key *old_ukey,
1592 struct udpif_key *new_ukey)
1593 OVS_REQUIRES(umap->mutex)
1594 OVS_TRY_LOCK(true, new_ukey->mutex)
1595 {
1596 bool replaced = false;
1597
1598 if (!ovs_mutex_trylock(&old_ukey->mutex)) {
1599 if (old_ukey->state == UKEY_EVICTED) {
1600 /* The flow was deleted during the current revalidator dump,
1601 * but its ukey won't be fully cleaned up until the sweep phase.
1602 * In the mean time, we are receiving upcalls for this traffic.
1603 * Expedite the (new) flow install by replacing the ukey. */
1604 ovs_mutex_lock(&new_ukey->mutex);
1605 cmap_replace(&umap->cmap, &old_ukey->cmap_node,
1606 &new_ukey->cmap_node, new_ukey->hash);
1607 ovsrcu_postpone(ukey_delete__, old_ukey);
1608 transition_ukey(old_ukey, UKEY_DELETED);
1609 transition_ukey(new_ukey, UKEY_VISIBLE);
1610 replaced = true;
1611 }
1612 ovs_mutex_unlock(&old_ukey->mutex);
1613 }
1614
1615 if (replaced) {
1616 COVERAGE_INC(upcall_ukey_replace);
1617 } else {
1618 COVERAGE_INC(handler_duplicate_upcall);
1619 }
1620 return replaced;
1621 }
1622
1623 /* Attempts to insert a ukey into the shared ukey maps.
1624 *
1625 * On success, returns true, installs the ukey and returns it in a locked
1626 * state. Otherwise, returns false. */
1627 static bool
1628 ukey_install__(struct udpif *udpif, struct udpif_key *new_ukey)
1629 OVS_TRY_LOCK(true, new_ukey->mutex)
1630 {
1631 struct umap *umap;
1632 struct udpif_key *old_ukey;
1633 uint32_t idx;
1634 bool locked = false;
1635
1636 idx = new_ukey->hash % N_UMAPS;
1637 umap = &udpif->ukeys[idx];
1638 ovs_mutex_lock(&umap->mutex);
1639 old_ukey = ukey_lookup(udpif, &new_ukey->ufid, new_ukey->pmd_id);
1640 if (old_ukey) {
1641 /* Uncommon case: A ukey is already installed with the same UFID. */
1642 if (old_ukey->key_len == new_ukey->key_len
1643 && !memcmp(old_ukey->key, new_ukey->key, new_ukey->key_len)) {
1644 locked = try_ukey_replace(umap, old_ukey, new_ukey);
1645 } else {
1646 struct ds ds = DS_EMPTY_INITIALIZER;
1647
1648 odp_format_ufid(&old_ukey->ufid, &ds);
1649 ds_put_cstr(&ds, " ");
1650 odp_flow_key_format(old_ukey->key, old_ukey->key_len, &ds);
1651 ds_put_cstr(&ds, "\n");
1652 odp_format_ufid(&new_ukey->ufid, &ds);
1653 ds_put_cstr(&ds, " ");
1654 odp_flow_key_format(new_ukey->key, new_ukey->key_len, &ds);
1655
1656 VLOG_WARN_RL(&rl, "Conflicting ukey for flows:\n%s", ds_cstr(&ds));
1657 ds_destroy(&ds);
1658 }
1659 } else {
1660 ovs_mutex_lock(&new_ukey->mutex);
1661 cmap_insert(&umap->cmap, &new_ukey->cmap_node, new_ukey->hash);
1662 transition_ukey(new_ukey, UKEY_VISIBLE);
1663 locked = true;
1664 }
1665 ovs_mutex_unlock(&umap->mutex);
1666
1667 return locked;
1668 }
1669
1670 static void
1671 transition_ukey(struct udpif_key *ukey, enum ukey_state dst)
1672 OVS_REQUIRES(ukey->mutex)
1673 {
1674 ovs_assert(dst >= ukey->state);
1675 if (ukey->state == dst) {
1676 return;
1677 }
1678
1679 /* Valid state transitions:
1680 * UKEY_CREATED -> UKEY_VISIBLE
1681 * Ukey is now visible in the umap.
1682 * UKEY_VISIBLE -> UKEY_OPERATIONAL
1683 * A handler has installed the flow, and the flow is in the datapath.
1684 * UKEY_VISIBLE -> UKEY_EVICTING
1685 * A handler installs the flow, then revalidator sweeps the ukey before
1686 * the flow is dumped. Most likely the flow was installed; start trying
1687 * to delete it.
1688 * UKEY_VISIBLE -> UKEY_EVICTED
1689 * A handler attempts to install the flow, but the datapath rejects it.
1690 * Consider that the datapath has already destroyed it.
1691 * UKEY_OPERATIONAL -> UKEY_EVICTING
1692 * A revalidator decides to evict the datapath flow.
1693 * UKEY_EVICTING -> UKEY_EVICTED
1694 * A revalidator has evicted the datapath flow.
1695 * UKEY_EVICTED -> UKEY_DELETED
1696 * A revalidator has removed the ukey from the umap and is deleting it.
1697 */
1698 if (ukey->state == dst - 1 || (ukey->state == UKEY_VISIBLE &&
1699 dst < UKEY_DELETED)) {
1700 ukey->state = dst;
1701 } else {
1702 struct ds ds = DS_EMPTY_INITIALIZER;
1703
1704 odp_format_ufid(&ukey->ufid, &ds);
1705 VLOG_WARN_RL(&rl, "Invalid state transition for ukey %s: %d -> %d",
1706 ds_cstr(&ds), ukey->state, dst);
1707 ds_destroy(&ds);
1708 }
1709 }
1710
1711 static bool
1712 ukey_install(struct udpif *udpif, struct udpif_key *ukey)
1713 {
1714 bool installed;
1715
1716 installed = ukey_install__(udpif, ukey);
1717 if (installed) {
1718 ovs_mutex_unlock(&ukey->mutex);
1719 }
1720
1721 return installed;
1722 }
1723
1724 /* Searches for a ukey in 'udpif->ukeys' that matches 'flow' and attempts to
1725 * lock the ukey. If the ukey does not exist, create it.
1726 *
1727 * Returns 0 on success, setting *result to the matching ukey and returning it
1728 * in a locked state. Otherwise, returns an errno and clears *result. EBUSY
1729 * indicates that another thread is handling this flow. Other errors indicate
1730 * an unexpected condition creating a new ukey.
1731 *
1732 * *error is an output parameter provided to appease the threadsafety analyser,
1733 * and its value matches the return value. */
1734 static int
1735 ukey_acquire(struct udpif *udpif, const struct dpif_flow *flow,
1736 struct udpif_key **result, int *error)
1737 OVS_TRY_LOCK(0, (*result)->mutex)
1738 {
1739 struct udpif_key *ukey;
1740 int retval;
1741
1742 ukey = ukey_lookup(udpif, &flow->ufid, flow->pmd_id);
1743 if (ukey) {
1744 retval = ovs_mutex_trylock(&ukey->mutex);
1745 } else {
1746 /* Usually we try to avoid installing flows from revalidator threads,
1747 * because locking on a umap may cause handler threads to block.
1748 * However there are certain cases, like when ovs-vswitchd is
1749 * restarted, where it is desirable to handle flows that exist in the
1750 * datapath gracefully (ie, don't just clear the datapath). */
1751 bool install;
1752
1753 retval = ukey_create_from_dpif_flow(udpif, flow, &ukey);
1754 if (retval) {
1755 goto done;
1756 }
1757 install = ukey_install__(udpif, ukey);
1758 if (install) {
1759 retval = 0;
1760 } else {
1761 ukey_delete__(ukey);
1762 retval = EBUSY;
1763 }
1764 }
1765
1766 done:
1767 *error = retval;
1768 if (retval) {
1769 *result = NULL;
1770 } else {
1771 *result = ukey;
1772 }
1773 return retval;
1774 }
1775
1776 static void
1777 ukey_delete__(struct udpif_key *ukey)
1778 OVS_NO_THREAD_SAFETY_ANALYSIS
1779 {
1780 if (ukey) {
1781 if (ukey->key_recirc_id) {
1782 recirc_free_id(ukey->key_recirc_id);
1783 }
1784 recirc_refs_unref(&ukey->recircs);
1785 xlate_cache_delete(ukey->xcache);
1786 ofpbuf_delete(ovsrcu_get(struct ofpbuf *, &ukey->actions));
1787 ovs_mutex_destroy(&ukey->mutex);
1788 free(ukey);
1789 }
1790 }
1791
1792 static void
1793 ukey_delete(struct umap *umap, struct udpif_key *ukey)
1794 OVS_REQUIRES(umap->mutex)
1795 {
1796 ovs_mutex_lock(&ukey->mutex);
1797 cmap_remove(&umap->cmap, &ukey->cmap_node, ukey->hash);
1798 ovsrcu_postpone(ukey_delete__, ukey);
1799 transition_ukey(ukey, UKEY_DELETED);
1800 ovs_mutex_unlock(&ukey->mutex);
1801 }
1802
1803 static bool
1804 should_revalidate(const struct udpif *udpif, uint64_t packets,
1805 long long int used)
1806 {
1807 long long int metric, now, duration;
1808
1809 if (udpif->dump_duration < 200) {
1810 /* We are likely to handle full revalidation for the flows. */
1811 return true;
1812 }
1813
1814 /* Calculate the mean time between seeing these packets. If this
1815 * exceeds the threshold, then delete the flow rather than performing
1816 * costly revalidation for flows that aren't being hit frequently.
1817 *
1818 * This is targeted at situations where the dump_duration is high (~1s),
1819 * and revalidation is triggered by a call to udpif_revalidate(). In
1820 * these situations, revalidation of all flows causes fluctuations in the
1821 * flow_limit due to the interaction with the dump_duration and max_idle.
1822 * This tends to result in deletion of low-throughput flows anyway, so
1823 * skip the revalidation and just delete those flows. */
1824 packets = MAX(packets, 1);
1825 now = MAX(used, time_msec());
1826 duration = now - used;
1827 metric = duration / packets;
1828
1829 if (metric < 200) {
1830 /* The flow is receiving more than ~5pps, so keep it. */
1831 return true;
1832 }
1833 return false;
1834 }
1835
1836 /* Verifies that the datapath actions of 'ukey' are still correct, and pushes
1837 * 'stats' for it.
1838 *
1839 * Returns a recommended action for 'ukey', options include:
1840 * UKEY_DELETE The ukey should be deleted.
1841 * UKEY_KEEP The ukey is fine as is.
1842 * UKEY_MODIFY The ukey's actions should be changed but is otherwise
1843 * fine. Callers should change the actions to those found
1844 * in the caller supplied 'odp_actions' buffer. The
1845 * recirculation references can be found in 'recircs' and
1846 * must be handled by the caller.
1847 *
1848 * If the result is UKEY_MODIFY, then references to all recirc_ids used by the
1849 * new flow will be held within 'recircs' (which may be none).
1850 *
1851 * The caller is responsible for both initializing 'recircs' prior this call,
1852 * and ensuring any references are eventually freed.
1853 */
1854 static enum reval_result
1855 revalidate_ukey(struct udpif *udpif, struct udpif_key *ukey,
1856 const struct dpif_flow_stats *stats,
1857 struct ofpbuf *odp_actions, uint64_t reval_seq,
1858 struct recirc_refs *recircs)
1859 OVS_REQUIRES(ukey->mutex)
1860 {
1861 struct xlate_out xout, *xoutp;
1862 struct netflow *netflow;
1863 struct ofproto_dpif *ofproto;
1864 struct dpif_flow_stats push;
1865 struct flow flow;
1866 struct flow_wildcards dp_mask, wc;
1867 enum reval_result result;
1868 ofp_port_t ofp_in_port;
1869 struct xlate_in xin;
1870 long long int last_used;
1871 int error;
1872 bool need_revalidate;
1873
1874 result = UKEY_DELETE;
1875 xoutp = NULL;
1876 netflow = NULL;
1877
1878 ofpbuf_clear(odp_actions);
1879 need_revalidate = (ukey->reval_seq != reval_seq);
1880 last_used = ukey->stats.used;
1881 push.used = stats->used;
1882 push.tcp_flags = stats->tcp_flags;
1883 push.n_packets = (stats->n_packets > ukey->stats.n_packets
1884 ? stats->n_packets - ukey->stats.n_packets
1885 : 0);
1886 push.n_bytes = (stats->n_bytes > ukey->stats.n_bytes
1887 ? stats->n_bytes - ukey->stats.n_bytes
1888 : 0);
1889
1890 if (need_revalidate && last_used
1891 && !should_revalidate(udpif, push.n_packets, last_used)) {
1892 goto exit;
1893 }
1894
1895 /* We will push the stats, so update the ukey stats cache. */
1896 ukey->stats = *stats;
1897 if (!push.n_packets && !need_revalidate) {
1898 result = UKEY_KEEP;
1899 goto exit;
1900 }
1901
1902 if (ukey->xcache && !need_revalidate) {
1903 xlate_push_stats(ukey->xcache, &push);
1904 result = UKEY_KEEP;
1905 goto exit;
1906 }
1907
1908 if (odp_flow_key_to_flow(ukey->key, ukey->key_len, &flow)
1909 == ODP_FIT_ERROR) {
1910 goto exit;
1911 }
1912
1913 error = xlate_lookup(udpif->backer, &flow, &ofproto, NULL, NULL, &netflow,
1914 &ofp_in_port);
1915 if (error) {
1916 goto exit;
1917 }
1918
1919 if (need_revalidate) {
1920 xlate_cache_clear(ukey->xcache);
1921 }
1922 if (!ukey->xcache) {
1923 ukey->xcache = xlate_cache_new();
1924 }
1925
1926 xlate_in_init(&xin, ofproto, ofproto_dpif_get_tables_version(ofproto),
1927 &flow, ofp_in_port, NULL, push.tcp_flags,
1928 NULL, need_revalidate ? &wc : NULL, odp_actions);
1929 if (push.n_packets) {
1930 xin.resubmit_stats = &push;
1931 xin.allow_side_effects = true;
1932 }
1933 xin.xcache = ukey->xcache;
1934 xlate_actions(&xin, &xout);
1935 xoutp = &xout;
1936
1937 if (!need_revalidate) {
1938 result = UKEY_KEEP;
1939 goto exit;
1940 }
1941
1942 if (xout.slow) {
1943 ofpbuf_clear(odp_actions);
1944 compose_slow_path(udpif, &xout, &flow, flow.in_port.odp_port,
1945 odp_actions);
1946 }
1947
1948 if (odp_flow_key_to_mask(ukey->mask, ukey->mask_len, &dp_mask, &flow)
1949 == ODP_FIT_ERROR) {
1950 goto exit;
1951 }
1952
1953 /* Do not modify if any bit is wildcarded by the installed datapath flow,
1954 * but not the newly revalidated wildcard mask (wc), i.e., if revalidation
1955 * tells that the datapath flow is now too generic and must be narrowed
1956 * down. Note that we do not know if the datapath has ignored any of the
1957 * wildcarded bits, so we may be overtly conservative here. */
1958 if (flow_wildcards_has_extra(&dp_mask, &wc)) {
1959 goto exit;
1960 }
1961
1962 if (!ofpbuf_equal(odp_actions,
1963 ovsrcu_get(struct ofpbuf *, &ukey->actions))) {
1964 /* The datapath mask was OK, but the actions seem to have changed.
1965 * Let's modify it in place. */
1966 result = UKEY_MODIFY;
1967 /* Transfer recirc action ID references to the caller. */
1968 recirc_refs_swap(recircs, &xoutp->recircs);
1969 goto exit;
1970 }
1971
1972 result = UKEY_KEEP;
1973
1974 exit:
1975 if (result != UKEY_DELETE) {
1976 ukey->reval_seq = reval_seq;
1977 }
1978 if (netflow && result == UKEY_DELETE) {
1979 netflow_flow_clear(netflow, &flow);
1980 }
1981 xlate_out_uninit(xoutp);
1982 return result;
1983 }
1984
1985 static void
1986 delete_op_init__(struct udpif *udpif, struct ukey_op *op,
1987 const struct dpif_flow *flow)
1988 {
1989 op->ukey = NULL;
1990 op->dop.type = DPIF_OP_FLOW_DEL;
1991 op->dop.u.flow_del.key = flow->key;
1992 op->dop.u.flow_del.key_len = flow->key_len;
1993 op->dop.u.flow_del.ufid = flow->ufid_present ? &flow->ufid : NULL;
1994 op->dop.u.flow_del.pmd_id = flow->pmd_id;
1995 op->dop.u.flow_del.stats = &op->stats;
1996 op->dop.u.flow_del.terse = udpif_use_ufid(udpif);
1997 }
1998
1999 static void
2000 delete_op_init(struct udpif *udpif, struct ukey_op *op, struct udpif_key *ukey)
2001 {
2002 op->ukey = ukey;
2003 op->dop.type = DPIF_OP_FLOW_DEL;
2004 op->dop.u.flow_del.key = ukey->key;
2005 op->dop.u.flow_del.key_len = ukey->key_len;
2006 op->dop.u.flow_del.ufid = ukey->ufid_present ? &ukey->ufid : NULL;
2007 op->dop.u.flow_del.pmd_id = ukey->pmd_id;
2008 op->dop.u.flow_del.stats = &op->stats;
2009 op->dop.u.flow_del.terse = udpif_use_ufid(udpif);
2010 }
2011
2012 static void
2013 put_op_init(struct ukey_op *op, struct udpif_key *ukey,
2014 enum dpif_flow_put_flags flags)
2015 {
2016 op->ukey = ukey;
2017 op->dop.type = DPIF_OP_FLOW_PUT;
2018 op->dop.u.flow_put.flags = flags;
2019 op->dop.u.flow_put.key = ukey->key;
2020 op->dop.u.flow_put.key_len = ukey->key_len;
2021 op->dop.u.flow_put.mask = ukey->mask;
2022 op->dop.u.flow_put.mask_len = ukey->mask_len;
2023 op->dop.u.flow_put.ufid = ukey->ufid_present ? &ukey->ufid : NULL;
2024 op->dop.u.flow_put.pmd_id = ukey->pmd_id;
2025 op->dop.u.flow_put.stats = NULL;
2026 ukey_get_actions(ukey, &op->dop.u.flow_put.actions,
2027 &op->dop.u.flow_put.actions_len);
2028 }
2029
2030 /* Executes datapath operations 'ops' and attributes stats retrieved from the
2031 * datapath as part of those operations. */
2032 static void
2033 push_dp_ops(struct udpif *udpif, struct ukey_op *ops, size_t n_ops)
2034 {
2035 struct dpif_op *opsp[REVALIDATE_MAX_BATCH];
2036 size_t i;
2037
2038 ovs_assert(n_ops <= REVALIDATE_MAX_BATCH);
2039 for (i = 0; i < n_ops; i++) {
2040 opsp[i] = &ops[i].dop;
2041 }
2042 dpif_operate(udpif->dpif, opsp, n_ops);
2043
2044 for (i = 0; i < n_ops; i++) {
2045 struct ukey_op *op = &ops[i];
2046 struct dpif_flow_stats *push, *stats, push_buf;
2047
2048 stats = op->dop.u.flow_del.stats;
2049 push = &push_buf;
2050
2051 if (op->dop.type != DPIF_OP_FLOW_DEL) {
2052 /* Only deleted flows need their stats pushed. */
2053 continue;
2054 }
2055
2056 if (op->dop.error) {
2057 /* flow_del error, 'stats' is unusable. */
2058 continue;
2059 }
2060
2061 if (op->ukey) {
2062 ovs_mutex_lock(&op->ukey->mutex);
2063 transition_ukey(op->ukey, UKEY_EVICTED);
2064 push->used = MAX(stats->used, op->ukey->stats.used);
2065 push->tcp_flags = stats->tcp_flags | op->ukey->stats.tcp_flags;
2066 push->n_packets = stats->n_packets - op->ukey->stats.n_packets;
2067 push->n_bytes = stats->n_bytes - op->ukey->stats.n_bytes;
2068 ovs_mutex_unlock(&op->ukey->mutex);
2069 } else {
2070 push = stats;
2071 }
2072
2073 if (push->n_packets || netflow_exists()) {
2074 const struct nlattr *key = op->dop.u.flow_del.key;
2075 size_t key_len = op->dop.u.flow_del.key_len;
2076 struct ofproto_dpif *ofproto;
2077 struct netflow *netflow;
2078 ofp_port_t ofp_in_port;
2079 struct flow flow;
2080 int error;
2081
2082 if (op->ukey) {
2083 ovs_mutex_lock(&op->ukey->mutex);
2084 if (op->ukey->xcache) {
2085 xlate_push_stats(op->ukey->xcache, push);
2086 ovs_mutex_unlock(&op->ukey->mutex);
2087 continue;
2088 }
2089 ovs_mutex_unlock(&op->ukey->mutex);
2090 key = op->ukey->key;
2091 key_len = op->ukey->key_len;
2092 }
2093
2094 if (odp_flow_key_to_flow(key, key_len, &flow)
2095 == ODP_FIT_ERROR) {
2096 continue;
2097 }
2098
2099 error = xlate_lookup(udpif->backer, &flow, &ofproto, NULL, NULL,
2100 &netflow, &ofp_in_port);
2101 if (!error) {
2102 struct xlate_in xin;
2103
2104 xlate_in_init(&xin, ofproto,
2105 ofproto_dpif_get_tables_version(ofproto),
2106 &flow, ofp_in_port, NULL,
2107 push->tcp_flags, NULL, NULL, NULL);
2108 xin.resubmit_stats = push->n_packets ? push : NULL;
2109 xin.allow_side_effects = push->n_packets > 0;
2110 xlate_actions_for_side_effects(&xin);
2111
2112 if (netflow) {
2113 netflow_flow_clear(netflow, &flow);
2114 }
2115 }
2116 }
2117 }
2118 }
2119
2120 /* Executes datapath operations 'ops', attributes stats retrieved from the
2121 * datapath, and deletes ukeys corresponding to deleted flows. */
2122 static void
2123 push_ukey_ops(struct udpif *udpif, struct umap *umap,
2124 struct ukey_op *ops, size_t n_ops)
2125 {
2126 int i;
2127
2128 push_dp_ops(udpif, ops, n_ops);
2129 ovs_mutex_lock(&umap->mutex);
2130 for (i = 0; i < n_ops; i++) {
2131 if (ops[i].dop.type == DPIF_OP_FLOW_DEL) {
2132 ukey_delete(umap, ops[i].ukey);
2133 }
2134 }
2135 ovs_mutex_unlock(&umap->mutex);
2136 }
2137
2138 static void
2139 log_unexpected_flow(const struct dpif_flow *flow, int error)
2140 {
2141 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(10, 60);
2142 struct ds ds = DS_EMPTY_INITIALIZER;
2143
2144 ds_put_format(&ds, "Failed to acquire udpif_key corresponding to "
2145 "unexpected flow (%s): ", ovs_strerror(error));
2146 odp_format_ufid(&flow->ufid, &ds);
2147 VLOG_WARN_RL(&rl, "%s", ds_cstr(&ds));
2148 ds_destroy(&ds);
2149 }
2150
2151 static void
2152 reval_op_init(struct ukey_op *op, enum reval_result result,
2153 struct udpif *udpif, struct udpif_key *ukey,
2154 struct recirc_refs *recircs, struct ofpbuf *odp_actions)
2155 OVS_REQUIRES(ukey->mutex)
2156 {
2157 if (result == UKEY_DELETE) {
2158 delete_op_init(udpif, op, ukey);
2159 transition_ukey(ukey, UKEY_EVICTING);
2160 } else if (result == UKEY_MODIFY) {
2161 /* Store the new recircs. */
2162 recirc_refs_swap(&ukey->recircs, recircs);
2163 /* Release old recircs. */
2164 recirc_refs_unref(recircs);
2165 /* ukey->key_recirc_id remains, as the key is the same as before. */
2166
2167 ukey_set_actions(ukey, odp_actions);
2168 put_op_init(op, ukey, DPIF_FP_MODIFY);
2169 }
2170 }
2171
2172 static void
2173 revalidate(struct revalidator *revalidator)
2174 {
2175 uint64_t odp_actions_stub[1024 / 8];
2176 struct ofpbuf odp_actions = OFPBUF_STUB_INITIALIZER(odp_actions_stub);
2177
2178 struct udpif *udpif = revalidator->udpif;
2179 struct dpif_flow_dump_thread *dump_thread;
2180 uint64_t dump_seq, reval_seq;
2181 unsigned int flow_limit;
2182
2183 dump_seq = seq_read(udpif->dump_seq);
2184 reval_seq = seq_read(udpif->reval_seq);
2185 atomic_read_relaxed(&udpif->flow_limit, &flow_limit);
2186 dump_thread = dpif_flow_dump_thread_create(udpif->dump);
2187 for (;;) {
2188 struct ukey_op ops[REVALIDATE_MAX_BATCH];
2189 int n_ops = 0;
2190
2191 struct dpif_flow flows[REVALIDATE_MAX_BATCH];
2192 const struct dpif_flow *f;
2193 int n_dumped;
2194
2195 long long int max_idle;
2196 long long int now;
2197 size_t n_dp_flows;
2198 bool kill_them_all;
2199
2200 n_dumped = dpif_flow_dump_next(dump_thread, flows, ARRAY_SIZE(flows));
2201 if (!n_dumped) {
2202 break;
2203 }
2204
2205 now = time_msec();
2206
2207 /* In normal operation we want to keep flows around until they have
2208 * been idle for 'ofproto_max_idle' milliseconds. However:
2209 *
2210 * - If the number of datapath flows climbs above 'flow_limit',
2211 * drop that down to 100 ms to try to bring the flows down to
2212 * the limit.
2213 *
2214 * - If the number of datapath flows climbs above twice
2215 * 'flow_limit', delete all the datapath flows as an emergency
2216 * measure. (We reassess this condition for the next batch of
2217 * datapath flows, so we will recover before all the flows are
2218 * gone.) */
2219 n_dp_flows = udpif_get_n_flows(udpif);
2220 kill_them_all = n_dp_flows > flow_limit * 2;
2221 max_idle = n_dp_flows > flow_limit ? 100 : ofproto_max_idle;
2222
2223 for (f = flows; f < &flows[n_dumped]; f++) {
2224 long long int used = f->stats.used;
2225 struct recirc_refs recircs = RECIRC_REFS_EMPTY_INITIALIZER;
2226 enum reval_result result;
2227 struct udpif_key *ukey;
2228 bool already_dumped;
2229 int error;
2230
2231 if (ukey_acquire(udpif, f, &ukey, &error)) {
2232 if (error == EBUSY) {
2233 /* Another thread is processing this flow, so don't bother
2234 * processing it.*/
2235 COVERAGE_INC(upcall_ukey_contention);
2236 } else {
2237 log_unexpected_flow(f, error);
2238 if (error != ENOENT) {
2239 delete_op_init__(udpif, &ops[n_ops++], f);
2240 }
2241 }
2242 continue;
2243 }
2244
2245 already_dumped = ukey->dump_seq == dump_seq;
2246 if (already_dumped) {
2247 /* The flow has already been handled during this flow dump
2248 * operation. Skip it. */
2249 if (ukey->xcache) {
2250 COVERAGE_INC(dumped_duplicate_flow);
2251 } else {
2252 COVERAGE_INC(dumped_new_flow);
2253 }
2254 ovs_mutex_unlock(&ukey->mutex);
2255 continue;
2256 }
2257
2258 /* The flow is now confirmed to be in the datapath. */
2259 transition_ukey(ukey, UKEY_OPERATIONAL);
2260
2261 if (!used) {
2262 used = ukey->created;
2263 }
2264 if (kill_them_all || (used && used < now - max_idle)) {
2265 result = UKEY_DELETE;
2266 } else {
2267 result = revalidate_ukey(udpif, ukey, &f->stats, &odp_actions,
2268 reval_seq, &recircs);
2269 }
2270 ukey->dump_seq = dump_seq;
2271
2272 if (result != UKEY_KEEP) {
2273 /* Takes ownership of 'recircs'. */
2274 reval_op_init(&ops[n_ops++], result, udpif, ukey, &recircs,
2275 &odp_actions);
2276 }
2277 ovs_mutex_unlock(&ukey->mutex);
2278 }
2279
2280 if (n_ops) {
2281 /* Push datapath ops but defer ukey deletion to 'sweep' phase. */
2282 push_dp_ops(udpif, ops, n_ops);
2283 }
2284 ovsrcu_quiesce();
2285 }
2286 dpif_flow_dump_thread_destroy(dump_thread);
2287 ofpbuf_uninit(&odp_actions);
2288 }
2289
2290 /* Pauses the 'revalidator', can only proceed after main thread
2291 * calls udpif_resume_revalidators(). */
2292 static void
2293 revalidator_pause(struct revalidator *revalidator)
2294 {
2295 /* The first block is for sync'ing the pause with main thread. */
2296 ovs_barrier_block(&revalidator->udpif->pause_barrier);
2297 /* The second block is for pausing until main thread resumes. */
2298 ovs_barrier_block(&revalidator->udpif->pause_barrier);
2299 }
2300
2301 static void
2302 revalidator_sweep__(struct revalidator *revalidator, bool purge)
2303 {
2304 struct udpif *udpif;
2305 uint64_t dump_seq, reval_seq;
2306 int slice;
2307
2308 udpif = revalidator->udpif;
2309 dump_seq = seq_read(udpif->dump_seq);
2310 reval_seq = seq_read(udpif->reval_seq);
2311 slice = revalidator - udpif->revalidators;
2312 ovs_assert(slice < udpif->n_revalidators);
2313
2314 for (int i = slice; i < N_UMAPS; i += udpif->n_revalidators) {
2315 uint64_t odp_actions_stub[1024 / 8];
2316 struct ofpbuf odp_actions = OFPBUF_STUB_INITIALIZER(odp_actions_stub);
2317
2318 struct ukey_op ops[REVALIDATE_MAX_BATCH];
2319 struct udpif_key *ukey;
2320 struct umap *umap = &udpif->ukeys[i];
2321 size_t n_ops = 0;
2322
2323 CMAP_FOR_EACH(ukey, cmap_node, &umap->cmap) {
2324 enum ukey_state ukey_state;
2325
2326 /* Handler threads could be holding a ukey lock while it installs a
2327 * new flow, so don't hang around waiting for access to it. */
2328 if (ovs_mutex_trylock(&ukey->mutex)) {
2329 continue;
2330 }
2331 ukey_state = ukey->state;
2332 if (ukey_state == UKEY_OPERATIONAL
2333 || (ukey_state == UKEY_VISIBLE && purge)) {
2334 struct recirc_refs recircs = RECIRC_REFS_EMPTY_INITIALIZER;
2335 bool seq_mismatch = (ukey->dump_seq != dump_seq
2336 && ukey->reval_seq != reval_seq);
2337 enum reval_result result;
2338
2339 if (purge) {
2340 result = UKEY_DELETE;
2341 } else if (!seq_mismatch) {
2342 result = UKEY_KEEP;
2343 } else {
2344 struct dpif_flow_stats stats;
2345 COVERAGE_INC(revalidate_missed_dp_flow);
2346 memset(&stats, 0, sizeof stats);
2347 result = revalidate_ukey(udpif, ukey, &stats, &odp_actions,
2348 reval_seq, &recircs);
2349 }
2350 if (result != UKEY_KEEP) {
2351 /* Clears 'recircs' if filled by revalidate_ukey(). */
2352 reval_op_init(&ops[n_ops++], result, udpif, ukey, &recircs,
2353 &odp_actions);
2354 }
2355 }
2356 ovs_mutex_unlock(&ukey->mutex);
2357
2358 if (ukey_state == UKEY_EVICTED) {
2359 /* The common flow deletion case involves deletion of the flow
2360 * during the dump phase and ukey deletion here. */
2361 ovs_mutex_lock(&umap->mutex);
2362 ukey_delete(umap, ukey);
2363 ovs_mutex_unlock(&umap->mutex);
2364 }
2365
2366 if (n_ops == REVALIDATE_MAX_BATCH) {
2367 /* Update/delete missed flows and clean up corresponding ukeys
2368 * if necessary. */
2369 push_ukey_ops(udpif, umap, ops, n_ops);
2370 n_ops = 0;
2371 }
2372 }
2373
2374 if (n_ops) {
2375 push_ukey_ops(udpif, umap, ops, n_ops);
2376 }
2377
2378 ofpbuf_uninit(&odp_actions);
2379 ovsrcu_quiesce();
2380 }
2381 }
2382
2383 static void
2384 revalidator_sweep(struct revalidator *revalidator)
2385 {
2386 revalidator_sweep__(revalidator, false);
2387 }
2388
2389 static void
2390 revalidator_purge(struct revalidator *revalidator)
2391 {
2392 revalidator_sweep__(revalidator, true);
2393 }
2394
2395 /* In reaction to dpif purge, purges all 'ukey's with same 'pmd_id'. */
2396 static void
2397 dp_purge_cb(void *aux, unsigned pmd_id)
2398 OVS_NO_THREAD_SAFETY_ANALYSIS
2399 {
2400 struct udpif *udpif = aux;
2401 size_t i;
2402
2403 udpif_pause_revalidators(udpif);
2404 for (i = 0; i < N_UMAPS; i++) {
2405 struct ukey_op ops[REVALIDATE_MAX_BATCH];
2406 struct udpif_key *ukey;
2407 struct umap *umap = &udpif->ukeys[i];
2408 size_t n_ops = 0;
2409
2410 CMAP_FOR_EACH(ukey, cmap_node, &umap->cmap) {
2411 if (ukey->pmd_id == pmd_id) {
2412 delete_op_init(udpif, &ops[n_ops++], ukey);
2413 transition_ukey(ukey, UKEY_EVICTING);
2414
2415 if (n_ops == REVALIDATE_MAX_BATCH) {
2416 push_ukey_ops(udpif, umap, ops, n_ops);
2417 n_ops = 0;
2418 }
2419 }
2420 }
2421
2422 if (n_ops) {
2423 push_ukey_ops(udpif, umap, ops, n_ops);
2424 }
2425
2426 ovsrcu_quiesce();
2427 }
2428 udpif_resume_revalidators(udpif);
2429 }
2430 \f
2431 static void
2432 upcall_unixctl_show(struct unixctl_conn *conn, int argc OVS_UNUSED,
2433 const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED)
2434 {
2435 struct ds ds = DS_EMPTY_INITIALIZER;
2436 struct udpif *udpif;
2437
2438 LIST_FOR_EACH (udpif, list_node, &all_udpifs) {
2439 unsigned int flow_limit;
2440 bool ufid_enabled;
2441 size_t i;
2442
2443 atomic_read_relaxed(&udpif->flow_limit, &flow_limit);
2444 ufid_enabled = udpif_use_ufid(udpif);
2445
2446 ds_put_format(&ds, "%s:\n", dpif_name(udpif->dpif));
2447 ds_put_format(&ds, "\tflows : (current %lu)"
2448 " (avg %u) (max %u) (limit %u)\n", udpif_get_n_flows(udpif),
2449 udpif->avg_n_flows, udpif->max_n_flows, flow_limit);
2450 ds_put_format(&ds, "\tdump duration : %lldms\n", udpif->dump_duration);
2451 ds_put_format(&ds, "\tufid enabled : ");
2452 if (ufid_enabled) {
2453 ds_put_format(&ds, "true\n");
2454 } else {
2455 ds_put_format(&ds, "false\n");
2456 }
2457 ds_put_char(&ds, '\n');
2458
2459 for (i = 0; i < n_revalidators; i++) {
2460 struct revalidator *revalidator = &udpif->revalidators[i];
2461 int j, elements = 0;
2462
2463 for (j = i; j < N_UMAPS; j += n_revalidators) {
2464 elements += cmap_count(&udpif->ukeys[j].cmap);
2465 }
2466 ds_put_format(&ds, "\t%u: (keys %d)\n", revalidator->id, elements);
2467 }
2468 }
2469
2470 unixctl_command_reply(conn, ds_cstr(&ds));
2471 ds_destroy(&ds);
2472 }
2473
2474 /* Disable using the megaflows.
2475 *
2476 * This command is only needed for advanced debugging, so it's not
2477 * documented in the man page. */
2478 static void
2479 upcall_unixctl_disable_megaflows(struct unixctl_conn *conn,
2480 int argc OVS_UNUSED,
2481 const char *argv[] OVS_UNUSED,
2482 void *aux OVS_UNUSED)
2483 {
2484 atomic_store_relaxed(&enable_megaflows, false);
2485 udpif_flush_all_datapaths();
2486 unixctl_command_reply(conn, "megaflows disabled");
2487 }
2488
2489 /* Re-enable using megaflows.
2490 *
2491 * This command is only needed for advanced debugging, so it's not
2492 * documented in the man page. */
2493 static void
2494 upcall_unixctl_enable_megaflows(struct unixctl_conn *conn,
2495 int argc OVS_UNUSED,
2496 const char *argv[] OVS_UNUSED,
2497 void *aux OVS_UNUSED)
2498 {
2499 atomic_store_relaxed(&enable_megaflows, true);
2500 udpif_flush_all_datapaths();
2501 unixctl_command_reply(conn, "megaflows enabled");
2502 }
2503
2504 /* Disable skipping flow attributes during flow dump.
2505 *
2506 * This command is only needed for advanced debugging, so it's not
2507 * documented in the man page. */
2508 static void
2509 upcall_unixctl_disable_ufid(struct unixctl_conn *conn, int argc OVS_UNUSED,
2510 const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED)
2511 {
2512 atomic_store_relaxed(&enable_ufid, false);
2513 unixctl_command_reply(conn, "Datapath dumping tersely using UFID disabled");
2514 }
2515
2516 /* Re-enable skipping flow attributes during flow dump.
2517 *
2518 * This command is only needed for advanced debugging, so it's not documented
2519 * in the man page. */
2520 static void
2521 upcall_unixctl_enable_ufid(struct unixctl_conn *conn, int argc OVS_UNUSED,
2522 const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED)
2523 {
2524 atomic_store_relaxed(&enable_ufid, true);
2525 unixctl_command_reply(conn, "Datapath dumping tersely using UFID enabled "
2526 "for supported datapaths");
2527 }
2528
2529 /* Set the flow limit.
2530 *
2531 * This command is only needed for advanced debugging, so it's not
2532 * documented in the man page. */
2533 static void
2534 upcall_unixctl_set_flow_limit(struct unixctl_conn *conn,
2535 int argc OVS_UNUSED,
2536 const char *argv[] OVS_UNUSED,
2537 void *aux OVS_UNUSED)
2538 {
2539 struct ds ds = DS_EMPTY_INITIALIZER;
2540 struct udpif *udpif;
2541 unsigned int flow_limit = atoi(argv[1]);
2542
2543 LIST_FOR_EACH (udpif, list_node, &all_udpifs) {
2544 atomic_store_relaxed(&udpif->flow_limit, flow_limit);
2545 }
2546 ds_put_format(&ds, "set flow_limit to %u\n", flow_limit);
2547 unixctl_command_reply(conn, ds_cstr(&ds));
2548 ds_destroy(&ds);
2549 }
2550
2551 static void
2552 upcall_unixctl_dump_wait(struct unixctl_conn *conn,
2553 int argc OVS_UNUSED,
2554 const char *argv[] OVS_UNUSED,
2555 void *aux OVS_UNUSED)
2556 {
2557 if (ovs_list_is_singleton(&all_udpifs)) {
2558 struct udpif *udpif = NULL;
2559 size_t len;
2560
2561 udpif = OBJECT_CONTAINING(ovs_list_front(&all_udpifs), udpif, list_node);
2562 len = (udpif->n_conns + 1) * sizeof *udpif->conns;
2563 udpif->conn_seq = seq_read(udpif->dump_seq);
2564 udpif->conns = xrealloc(udpif->conns, len);
2565 udpif->conns[udpif->n_conns++] = conn;
2566 } else {
2567 unixctl_command_reply_error(conn, "can't wait on multiple udpifs.");
2568 }
2569 }
2570
2571 static void
2572 upcall_unixctl_purge(struct unixctl_conn *conn, int argc OVS_UNUSED,
2573 const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED)
2574 {
2575 struct udpif *udpif;
2576
2577 LIST_FOR_EACH (udpif, list_node, &all_udpifs) {
2578 int n;
2579
2580 for (n = 0; n < udpif->n_revalidators; n++) {
2581 revalidator_purge(&udpif->revalidators[n]);
2582 }
2583 }
2584 unixctl_command_reply(conn, "");
2585 }