]> git.proxmox.com Git - mirror_ovs.git/blob - ofproto/ofproto-dpif-upcall.c
dpif: Pass flow parameter to dpif_execute().
[mirror_ovs.git] / ofproto / ofproto-dpif-upcall.c
1 /* Copyright (c) 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016 Nicira, Inc.
2 *
3 * Licensed under the Apache License, Version 2.0 (the "License");
4 * you may not use this file except in compliance with the License.
5 * You may obtain a copy of the License at:
6 *
7 * http://www.apache.org/licenses/LICENSE-2.0
8 *
9 * Unless required by applicable law or agreed to in writing, software
10 * distributed under the License is distributed on an "AS IS" BASIS,
11 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 * See the License for the specific language governing permissions and
13 * limitations under the License. */
14
15 #include <config.h>
16 #include "ofproto-dpif-upcall.h"
17
18 #include <errno.h>
19 #include <stdbool.h>
20 #include <inttypes.h>
21
22 #include "connmgr.h"
23 #include "coverage.h"
24 #include "cmap.h"
25 #include "dpif.h"
26 #include "openvswitch/dynamic-string.h"
27 #include "fail-open.h"
28 #include "guarded-list.h"
29 #include "latch.h"
30 #include "openvswitch/list.h"
31 #include "netlink.h"
32 #include "openvswitch/ofpbuf.h"
33 #include "ofproto-dpif-ipfix.h"
34 #include "ofproto-dpif-sflow.h"
35 #include "ofproto-dpif-xlate.h"
36 #include "ovs-rcu.h"
37 #include "packets.h"
38 #include "poll-loop.h"
39 #include "seq.h"
40 #include "unixctl.h"
41 #include "openvswitch/vlog.h"
42
43 #define MAX_QUEUE_LENGTH 512
44 #define UPCALL_MAX_BATCH 64
45 #define REVALIDATE_MAX_BATCH 50
46
47 VLOG_DEFINE_THIS_MODULE(ofproto_dpif_upcall);
48
49 COVERAGE_DEFINE(dumped_duplicate_flow);
50 COVERAGE_DEFINE(dumped_new_flow);
51 COVERAGE_DEFINE(handler_duplicate_upcall);
52 COVERAGE_DEFINE(upcall_ukey_contention);
53 COVERAGE_DEFINE(revalidate_missed_dp_flow);
54
55 /* A thread that reads upcalls from dpif, forwards each upcall's packet,
56 * and possibly sets up a kernel flow as a cache. */
57 struct handler {
58 struct udpif *udpif; /* Parent udpif. */
59 pthread_t thread; /* Thread ID. */
60 uint32_t handler_id; /* Handler id. */
61 };
62
63 /* In the absence of a multiple-writer multiple-reader datastructure for
64 * storing udpif_keys ("ukeys"), we use a large number of cmaps, each with its
65 * own lock for writing. */
66 #define N_UMAPS 512 /* per udpif. */
67 struct umap {
68 struct ovs_mutex mutex; /* Take for writing to the following. */
69 struct cmap cmap; /* Datapath flow keys. */
70 };
71
72 /* A thread that processes datapath flows, updates OpenFlow statistics, and
73 * updates or removes them if necessary.
74 *
75 * Revalidator threads operate in two phases: "dump" and "sweep". In between
76 * each phase, all revalidators sync up so that all revalidator threads are
77 * either in one phase or the other, but not a combination.
78 *
79 * During the dump phase, revalidators fetch flows from the datapath and
80 * attribute the statistics to OpenFlow rules. Each datapath flow has a
81 * corresponding ukey which caches the most recently seen statistics. If
82 * a flow needs to be deleted (for example, because it is unused over a
83 * period of time), revalidator threads may delete the flow during the
84 * dump phase. The datapath is not guaranteed to reliably dump all flows
85 * from the datapath, and there is no mapping between datapath flows to
86 * revalidators, so a particular flow may be handled by zero or more
87 * revalidators during a single dump phase. To avoid duplicate attribution
88 * of statistics, ukeys are never deleted during this phase.
89 *
90 * During the sweep phase, each revalidator takes ownership of a different
91 * slice of umaps and sweeps through all ukeys in those umaps to figure out
92 * whether they need to be deleted. During this phase, revalidators may
93 * fetch individual flows which were not dumped during the dump phase to
94 * validate them and attribute statistics.
95 */
96 struct revalidator {
97 struct udpif *udpif; /* Parent udpif. */
98 pthread_t thread; /* Thread ID. */
99 unsigned int id; /* ovsthread_id_self(). */
100 };
101
102 /* An upcall handler for ofproto_dpif.
103 *
104 * udpif keeps records of two kind of logically separate units:
105 *
106 * upcall handling
107 * ---------------
108 *
109 * - An array of 'struct handler's for upcall handling and flow
110 * installation.
111 *
112 * flow revalidation
113 * -----------------
114 *
115 * - Revalidation threads which read the datapath flow table and maintains
116 * them.
117 */
118 struct udpif {
119 struct ovs_list list_node; /* In all_udpifs list. */
120
121 struct dpif *dpif; /* Datapath handle. */
122 struct dpif_backer *backer; /* Opaque dpif_backer pointer. */
123
124 struct handler *handlers; /* Upcall handlers. */
125 size_t n_handlers;
126
127 struct revalidator *revalidators; /* Flow revalidators. */
128 size_t n_revalidators;
129
130 struct latch exit_latch; /* Tells child threads to exit. */
131
132 /* Revalidation. */
133 struct seq *reval_seq; /* Incremented to force revalidation. */
134 bool reval_exit; /* Set by leader on 'exit_latch. */
135 struct ovs_barrier reval_barrier; /* Barrier used by revalidators. */
136 struct dpif_flow_dump *dump; /* DPIF flow dump state. */
137 long long int dump_duration; /* Duration of the last flow dump. */
138 struct seq *dump_seq; /* Increments each dump iteration. */
139 atomic_bool enable_ufid; /* If true, skip dumping flow attrs. */
140
141 /* These variables provide a mechanism for the main thread to pause
142 * all revalidation without having to completely shut the threads down.
143 * 'pause_latch' is shared between the main thread and the lead
144 * revalidator thread, so when it is desirable to halt revalidation, the
145 * main thread will set the latch. 'pause' and 'pause_barrier' are shared
146 * by revalidator threads. The lead revalidator will set 'pause' when it
147 * observes the latch has been set, and this will cause all revalidator
148 * threads to wait on 'pause_barrier' at the beginning of the next
149 * revalidation round. */
150 bool pause; /* Set by leader on 'pause_latch. */
151 struct latch pause_latch; /* Set to force revalidators pause. */
152 struct ovs_barrier pause_barrier; /* Barrier used to pause all */
153 /* revalidators by main thread. */
154
155 /* There are 'N_UMAPS' maps containing 'struct udpif_key' elements.
156 *
157 * During the flow dump phase, revalidators insert into these with a random
158 * distribution. During the garbage collection phase, each revalidator
159 * takes care of garbage collecting a slice of these maps. */
160 struct umap *ukeys;
161
162 /* Datapath flow statistics. */
163 unsigned int max_n_flows;
164 unsigned int avg_n_flows;
165
166 /* Following fields are accessed and modified by different threads. */
167 atomic_uint flow_limit; /* Datapath flow hard limit. */
168
169 /* n_flows_mutex prevents multiple threads updating these concurrently. */
170 atomic_uint n_flows; /* Number of flows in the datapath. */
171 atomic_llong n_flows_timestamp; /* Last time n_flows was updated. */
172 struct ovs_mutex n_flows_mutex;
173
174 /* Following fields are accessed and modified only from the main thread. */
175 struct unixctl_conn **conns; /* Connections waiting on dump_seq. */
176 uint64_t conn_seq; /* Corresponds to 'dump_seq' when
177 conns[n_conns-1] was stored. */
178 size_t n_conns; /* Number of connections waiting. */
179 };
180
181 enum upcall_type {
182 BAD_UPCALL, /* Some kind of bug somewhere. */
183 MISS_UPCALL, /* A flow miss. */
184 SFLOW_UPCALL, /* sFlow sample. */
185 FLOW_SAMPLE_UPCALL, /* Per-flow sampling. */
186 IPFIX_UPCALL /* Per-bridge sampling. */
187 };
188
189 enum reval_result {
190 UKEY_KEEP,
191 UKEY_DELETE,
192 UKEY_MODIFY
193 };
194
195 struct upcall {
196 struct ofproto_dpif *ofproto; /* Parent ofproto. */
197 const struct recirc_id_node *recirc; /* Recirculation context. */
198 bool have_recirc_ref; /* Reference held on recirc ctx? */
199
200 /* The flow and packet are only required to be constant when using
201 * dpif-netdev. If a modification is absolutely necessary, a const cast
202 * may be used with other datapaths. */
203 const struct flow *flow; /* Parsed representation of the packet. */
204 const ovs_u128 *ufid; /* Unique identifier for 'flow'. */
205 unsigned pmd_id; /* Datapath poll mode driver id. */
206 const struct dp_packet *packet; /* Packet associated with this upcall. */
207 ofp_port_t in_port; /* OpenFlow in port, or OFPP_NONE. */
208 uint16_t mru; /* If !0, Maximum receive unit of
209 fragmented IP packet */
210
211 enum dpif_upcall_type type; /* Datapath type of the upcall. */
212 const struct nlattr *userdata; /* Userdata for DPIF_UC_ACTION Upcalls. */
213 const struct nlattr *actions; /* Flow actions in DPIF_UC_ACTION Upcalls. */
214
215 bool xout_initialized; /* True if 'xout' must be uninitialized. */
216 struct xlate_out xout; /* Result of xlate_actions(). */
217 struct ofpbuf odp_actions; /* Datapath actions from xlate_actions(). */
218 struct flow_wildcards wc; /* Dependencies that megaflow must match. */
219 struct ofpbuf put_actions; /* Actions 'put' in the fastpath. */
220
221 struct dpif_ipfix *ipfix; /* IPFIX pointer or NULL. */
222 struct dpif_sflow *sflow; /* SFlow pointer or NULL. */
223
224 struct udpif_key *ukey; /* Revalidator flow cache. */
225 bool ukey_persists; /* Set true to keep 'ukey' beyond the
226 lifetime of this upcall. */
227
228 uint64_t dump_seq; /* udpif->dump_seq at translation time. */
229 uint64_t reval_seq; /* udpif->reval_seq at translation time. */
230
231 /* Not used by the upcall callback interface. */
232 const struct nlattr *key; /* Datapath flow key. */
233 size_t key_len; /* Datapath flow key length. */
234 const struct nlattr *out_tun_key; /* Datapath output tunnel key. */
235
236 uint64_t odp_actions_stub[1024 / 8]; /* Stub for odp_actions. */
237 };
238
239 /* 'udpif_key's are responsible for tracking the little bit of state udpif
240 * needs to do flow expiration which can't be pulled directly from the
241 * datapath. They may be created by any handler or revalidator thread at any
242 * time, and read by any revalidator during the dump phase. They are however
243 * each owned by a single revalidator which takes care of destroying them
244 * during the garbage-collection phase.
245 *
246 * The mutex within the ukey protects some members of the ukey. The ukey
247 * itself is protected by RCU and is held within a umap in the parent udpif.
248 * Adding or removing a ukey from a umap is only safe when holding the
249 * corresponding umap lock. */
250 struct udpif_key {
251 struct cmap_node cmap_node; /* In parent revalidator 'ukeys' map. */
252
253 /* These elements are read only once created, and therefore aren't
254 * protected by a mutex. */
255 const struct nlattr *key; /* Datapath flow key. */
256 size_t key_len; /* Length of 'key'. */
257 const struct nlattr *mask; /* Datapath flow mask. */
258 size_t mask_len; /* Length of 'mask'. */
259 ovs_u128 ufid; /* Unique flow identifier. */
260 bool ufid_present; /* True if 'ufid' is in datapath. */
261 uint32_t hash; /* Pre-computed hash for 'key'. */
262 unsigned pmd_id; /* Datapath poll mode driver id. */
263
264 struct ovs_mutex mutex; /* Guards the following. */
265 struct dpif_flow_stats stats OVS_GUARDED; /* Last known stats.*/
266 long long int created OVS_GUARDED; /* Estimate of creation time. */
267 uint64_t dump_seq OVS_GUARDED; /* Tracks udpif->dump_seq. */
268 uint64_t reval_seq OVS_GUARDED; /* Tracks udpif->reval_seq. */
269 bool flow_exists OVS_GUARDED; /* Ensures flows are only deleted
270 once. */
271 /* Datapath flow actions as nlattrs. Protected by RCU. Read with
272 * ukey_get_actions(), and write with ukey_set_actions(). */
273 OVSRCU_TYPE(struct ofpbuf *) actions;
274
275 struct xlate_cache *xcache OVS_GUARDED; /* Cache for xlate entries that
276 * are affected by this ukey.
277 * Used for stats and learning.*/
278 union {
279 struct odputil_keybuf buf;
280 struct nlattr nla;
281 } keybuf, maskbuf;
282
283 uint32_t key_recirc_id; /* Non-zero if reference is held by the ukey. */
284 struct recirc_refs recircs; /* Action recirc IDs with references held. */
285 };
286
287 /* Datapath operation with optional ukey attached. */
288 struct ukey_op {
289 struct udpif_key *ukey;
290 struct dpif_flow_stats stats; /* Stats for 'op'. */
291 struct dpif_op dop; /* Flow operation. */
292 };
293
294 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
295 static struct ovs_list all_udpifs = OVS_LIST_INITIALIZER(&all_udpifs);
296
297 static size_t recv_upcalls(struct handler *);
298 static int process_upcall(struct udpif *, struct upcall *,
299 struct ofpbuf *odp_actions, struct flow_wildcards *);
300 static void handle_upcalls(struct udpif *, struct upcall *, size_t n_upcalls);
301 static void udpif_stop_threads(struct udpif *);
302 static void udpif_start_threads(struct udpif *, size_t n_handlers,
303 size_t n_revalidators);
304 static void udpif_pause_revalidators(struct udpif *);
305 static void udpif_resume_revalidators(struct udpif *);
306 static void *udpif_upcall_handler(void *);
307 static void *udpif_revalidator(void *);
308 static unsigned long udpif_get_n_flows(struct udpif *);
309 static void revalidate(struct revalidator *);
310 static void revalidator_pause(struct revalidator *);
311 static void revalidator_sweep(struct revalidator *);
312 static void revalidator_purge(struct revalidator *);
313 static void upcall_unixctl_show(struct unixctl_conn *conn, int argc,
314 const char *argv[], void *aux);
315 static void upcall_unixctl_disable_megaflows(struct unixctl_conn *, int argc,
316 const char *argv[], void *aux);
317 static void upcall_unixctl_enable_megaflows(struct unixctl_conn *, int argc,
318 const char *argv[], void *aux);
319 static void upcall_unixctl_disable_ufid(struct unixctl_conn *, int argc,
320 const char *argv[], void *aux);
321 static void upcall_unixctl_enable_ufid(struct unixctl_conn *, int argc,
322 const char *argv[], void *aux);
323 static void upcall_unixctl_set_flow_limit(struct unixctl_conn *conn, int argc,
324 const char *argv[], void *aux);
325 static void upcall_unixctl_dump_wait(struct unixctl_conn *conn, int argc,
326 const char *argv[], void *aux);
327 static void upcall_unixctl_purge(struct unixctl_conn *conn, int argc,
328 const char *argv[], void *aux);
329
330 static struct udpif_key *ukey_create_from_upcall(struct upcall *,
331 struct flow_wildcards *);
332 static int ukey_create_from_dpif_flow(const struct udpif *,
333 const struct dpif_flow *,
334 struct udpif_key **);
335 static void ukey_get_actions(struct udpif_key *, const struct nlattr **actions,
336 size_t *size);
337 static bool ukey_install_start(struct udpif *, struct udpif_key *ukey);
338 static bool ukey_install_finish(struct udpif_key *ukey, int error);
339 static bool ukey_install(struct udpif *udpif, struct udpif_key *ukey);
340 static struct udpif_key *ukey_lookup(struct udpif *udpif,
341 const ovs_u128 *ufid,
342 const unsigned pmd_id);
343 static int ukey_acquire(struct udpif *, const struct dpif_flow *,
344 struct udpif_key **result, int *error);
345 static void ukey_delete__(struct udpif_key *);
346 static void ukey_delete(struct umap *, struct udpif_key *);
347 static enum upcall_type classify_upcall(enum dpif_upcall_type type,
348 const struct nlattr *userdata);
349
350 static int upcall_receive(struct upcall *, const struct dpif_backer *,
351 const struct dp_packet *packet, enum dpif_upcall_type,
352 const struct nlattr *userdata, const struct flow *,
353 const unsigned int mru,
354 const ovs_u128 *ufid, const unsigned pmd_id);
355 static void upcall_uninit(struct upcall *);
356
357 static upcall_callback upcall_cb;
358 static dp_purge_callback dp_purge_cb;
359
360 static atomic_bool enable_megaflows = ATOMIC_VAR_INIT(true);
361 static atomic_bool enable_ufid = ATOMIC_VAR_INIT(true);
362
363 void
364 udpif_init(void)
365 {
366 static struct ovsthread_once once = OVSTHREAD_ONCE_INITIALIZER;
367 if (ovsthread_once_start(&once)) {
368 unixctl_command_register("upcall/show", "", 0, 0, upcall_unixctl_show,
369 NULL);
370 unixctl_command_register("upcall/disable-megaflows", "", 0, 0,
371 upcall_unixctl_disable_megaflows, NULL);
372 unixctl_command_register("upcall/enable-megaflows", "", 0, 0,
373 upcall_unixctl_enable_megaflows, NULL);
374 unixctl_command_register("upcall/disable-ufid", "", 0, 0,
375 upcall_unixctl_disable_ufid, NULL);
376 unixctl_command_register("upcall/enable-ufid", "", 0, 0,
377 upcall_unixctl_enable_ufid, NULL);
378 unixctl_command_register("upcall/set-flow-limit", "", 1, 1,
379 upcall_unixctl_set_flow_limit, NULL);
380 unixctl_command_register("revalidator/wait", "", 0, 0,
381 upcall_unixctl_dump_wait, NULL);
382 unixctl_command_register("revalidator/purge", "", 0, 0,
383 upcall_unixctl_purge, NULL);
384 ovsthread_once_done(&once);
385 }
386 }
387
388 struct udpif *
389 udpif_create(struct dpif_backer *backer, struct dpif *dpif)
390 {
391 struct udpif *udpif = xzalloc(sizeof *udpif);
392
393 udpif->dpif = dpif;
394 udpif->backer = backer;
395 atomic_init(&udpif->flow_limit, MIN(ofproto_flow_limit, 10000));
396 udpif->reval_seq = seq_create();
397 udpif->dump_seq = seq_create();
398 latch_init(&udpif->exit_latch);
399 latch_init(&udpif->pause_latch);
400 ovs_list_push_back(&all_udpifs, &udpif->list_node);
401 atomic_init(&udpif->enable_ufid, false);
402 atomic_init(&udpif->n_flows, 0);
403 atomic_init(&udpif->n_flows_timestamp, LLONG_MIN);
404 ovs_mutex_init(&udpif->n_flows_mutex);
405 udpif->ukeys = xmalloc(N_UMAPS * sizeof *udpif->ukeys);
406 for (int i = 0; i < N_UMAPS; i++) {
407 cmap_init(&udpif->ukeys[i].cmap);
408 ovs_mutex_init(&udpif->ukeys[i].mutex);
409 }
410
411 dpif_register_upcall_cb(dpif, upcall_cb, udpif);
412 dpif_register_dp_purge_cb(dpif, dp_purge_cb, udpif);
413
414 return udpif;
415 }
416
417 void
418 udpif_run(struct udpif *udpif)
419 {
420 if (udpif->conns && udpif->conn_seq != seq_read(udpif->dump_seq)) {
421 int i;
422
423 for (i = 0; i < udpif->n_conns; i++) {
424 unixctl_command_reply(udpif->conns[i], NULL);
425 }
426 free(udpif->conns);
427 udpif->conns = NULL;
428 udpif->n_conns = 0;
429 }
430 }
431
432 void
433 udpif_destroy(struct udpif *udpif)
434 {
435 udpif_stop_threads(udpif);
436
437 for (int i = 0; i < N_UMAPS; i++) {
438 cmap_destroy(&udpif->ukeys[i].cmap);
439 ovs_mutex_destroy(&udpif->ukeys[i].mutex);
440 }
441 free(udpif->ukeys);
442 udpif->ukeys = NULL;
443
444 ovs_list_remove(&udpif->list_node);
445 latch_destroy(&udpif->exit_latch);
446 latch_destroy(&udpif->pause_latch);
447 seq_destroy(udpif->reval_seq);
448 seq_destroy(udpif->dump_seq);
449 ovs_mutex_destroy(&udpif->n_flows_mutex);
450 free(udpif);
451 }
452
453 /* Stops the handler and revalidator threads, must be enclosed in
454 * ovsrcu quiescent state unless when destroying udpif. */
455 static void
456 udpif_stop_threads(struct udpif *udpif)
457 {
458 if (udpif && (udpif->n_handlers != 0 || udpif->n_revalidators != 0)) {
459 size_t i;
460
461 latch_set(&udpif->exit_latch);
462
463 for (i = 0; i < udpif->n_handlers; i++) {
464 struct handler *handler = &udpif->handlers[i];
465
466 xpthread_join(handler->thread, NULL);
467 }
468
469 for (i = 0; i < udpif->n_revalidators; i++) {
470 xpthread_join(udpif->revalidators[i].thread, NULL);
471 }
472
473 dpif_disable_upcall(udpif->dpif);
474
475 for (i = 0; i < udpif->n_revalidators; i++) {
476 struct revalidator *revalidator = &udpif->revalidators[i];
477
478 /* Delete ukeys, and delete all flows from the datapath to prevent
479 * double-counting stats. */
480 revalidator_purge(revalidator);
481 }
482
483 latch_poll(&udpif->exit_latch);
484
485 ovs_barrier_destroy(&udpif->reval_barrier);
486 ovs_barrier_destroy(&udpif->pause_barrier);
487
488 free(udpif->revalidators);
489 udpif->revalidators = NULL;
490 udpif->n_revalidators = 0;
491
492 free(udpif->handlers);
493 udpif->handlers = NULL;
494 udpif->n_handlers = 0;
495 }
496 }
497
498 /* Starts the handler and revalidator threads, must be enclosed in
499 * ovsrcu quiescent state. */
500 static void
501 udpif_start_threads(struct udpif *udpif, size_t n_handlers,
502 size_t n_revalidators)
503 {
504 if (udpif && n_handlers && n_revalidators) {
505 size_t i;
506 bool enable_ufid;
507
508 udpif->n_handlers = n_handlers;
509 udpif->n_revalidators = n_revalidators;
510
511 udpif->handlers = xzalloc(udpif->n_handlers * sizeof *udpif->handlers);
512 for (i = 0; i < udpif->n_handlers; i++) {
513 struct handler *handler = &udpif->handlers[i];
514
515 handler->udpif = udpif;
516 handler->handler_id = i;
517 handler->thread = ovs_thread_create(
518 "handler", udpif_upcall_handler, handler);
519 }
520
521 enable_ufid = ofproto_dpif_get_enable_ufid(udpif->backer);
522 atomic_init(&udpif->enable_ufid, enable_ufid);
523 dpif_enable_upcall(udpif->dpif);
524
525 ovs_barrier_init(&udpif->reval_barrier, udpif->n_revalidators);
526 ovs_barrier_init(&udpif->pause_barrier, udpif->n_revalidators + 1);
527 udpif->reval_exit = false;
528 udpif->pause = false;
529 udpif->revalidators = xzalloc(udpif->n_revalidators
530 * sizeof *udpif->revalidators);
531 for (i = 0; i < udpif->n_revalidators; i++) {
532 struct revalidator *revalidator = &udpif->revalidators[i];
533
534 revalidator->udpif = udpif;
535 revalidator->thread = ovs_thread_create(
536 "revalidator", udpif_revalidator, revalidator);
537 }
538 }
539 }
540
541 /* Pauses all revalidators. Should only be called by the main thread.
542 * When function returns, all revalidators are paused and will proceed
543 * only after udpif_resume_revalidators() is called. */
544 static void
545 udpif_pause_revalidators(struct udpif *udpif)
546 {
547 if (ofproto_dpif_backer_enabled(udpif->backer)) {
548 latch_set(&udpif->pause_latch);
549 ovs_barrier_block(&udpif->pause_barrier);
550 }
551 }
552
553 /* Resumes the pausing of revalidators. Should only be called by the
554 * main thread. */
555 static void
556 udpif_resume_revalidators(struct udpif *udpif)
557 {
558 if (ofproto_dpif_backer_enabled(udpif->backer)) {
559 latch_poll(&udpif->pause_latch);
560 ovs_barrier_block(&udpif->pause_barrier);
561 }
562 }
563
564 /* Tells 'udpif' how many threads it should use to handle upcalls.
565 * 'n_handlers' and 'n_revalidators' can never be zero. 'udpif''s
566 * datapath handle must have packet reception enabled before starting
567 * threads. */
568 void
569 udpif_set_threads(struct udpif *udpif, size_t n_handlers,
570 size_t n_revalidators)
571 {
572 ovs_assert(udpif);
573 ovs_assert(n_handlers && n_revalidators);
574
575 ovsrcu_quiesce_start();
576 if (udpif->n_handlers != n_handlers
577 || udpif->n_revalidators != n_revalidators) {
578 udpif_stop_threads(udpif);
579 }
580
581 if (!udpif->handlers && !udpif->revalidators) {
582 int error;
583
584 error = dpif_handlers_set(udpif->dpif, n_handlers);
585 if (error) {
586 VLOG_ERR("failed to configure handlers in dpif %s: %s",
587 dpif_name(udpif->dpif), ovs_strerror(error));
588 return;
589 }
590
591 udpif_start_threads(udpif, n_handlers, n_revalidators);
592 }
593 ovsrcu_quiesce_end();
594 }
595
596 /* Waits for all ongoing upcall translations to complete. This ensures that
597 * there are no transient references to any removed ofprotos (or other
598 * objects). In particular, this should be called after an ofproto is removed
599 * (e.g. via xlate_remove_ofproto()) but before it is destroyed. */
600 void
601 udpif_synchronize(struct udpif *udpif)
602 {
603 /* This is stronger than necessary. It would be sufficient to ensure
604 * (somehow) that each handler and revalidator thread had passed through
605 * its main loop once. */
606 size_t n_handlers = udpif->n_handlers;
607 size_t n_revalidators = udpif->n_revalidators;
608
609 ovsrcu_quiesce_start();
610 udpif_stop_threads(udpif);
611 udpif_start_threads(udpif, n_handlers, n_revalidators);
612 ovsrcu_quiesce_end();
613 }
614
615 /* Notifies 'udpif' that something changed which may render previous
616 * xlate_actions() results invalid. */
617 void
618 udpif_revalidate(struct udpif *udpif)
619 {
620 seq_change(udpif->reval_seq);
621 }
622
623 /* Returns a seq which increments every time 'udpif' pulls stats from the
624 * datapath. Callers can use this to get a sense of when might be a good time
625 * to do periodic work which relies on relatively up to date statistics. */
626 struct seq *
627 udpif_dump_seq(struct udpif *udpif)
628 {
629 return udpif->dump_seq;
630 }
631
632 void
633 udpif_get_memory_usage(struct udpif *udpif, struct simap *usage)
634 {
635 size_t i;
636
637 simap_increase(usage, "handlers", udpif->n_handlers);
638
639 simap_increase(usage, "revalidators", udpif->n_revalidators);
640 for (i = 0; i < N_UMAPS; i++) {
641 simap_increase(usage, "udpif keys", cmap_count(&udpif->ukeys[i].cmap));
642 }
643 }
644
645 /* Remove flows from a single datapath. */
646 void
647 udpif_flush(struct udpif *udpif)
648 {
649 size_t n_handlers, n_revalidators;
650
651 n_handlers = udpif->n_handlers;
652 n_revalidators = udpif->n_revalidators;
653
654 ovsrcu_quiesce_start();
655
656 udpif_stop_threads(udpif);
657 dpif_flow_flush(udpif->dpif);
658 udpif_start_threads(udpif, n_handlers, n_revalidators);
659
660 ovsrcu_quiesce_end();
661 }
662
663 /* Removes all flows from all datapaths. */
664 static void
665 udpif_flush_all_datapaths(void)
666 {
667 struct udpif *udpif;
668
669 LIST_FOR_EACH (udpif, list_node, &all_udpifs) {
670 udpif_flush(udpif);
671 }
672 }
673
674 static bool
675 udpif_use_ufid(struct udpif *udpif)
676 {
677 bool enable;
678
679 atomic_read_relaxed(&enable_ufid, &enable);
680 return enable && ofproto_dpif_get_enable_ufid(udpif->backer);
681 }
682
683 \f
684 static unsigned long
685 udpif_get_n_flows(struct udpif *udpif)
686 {
687 long long int time, now;
688 unsigned long flow_count;
689
690 now = time_msec();
691 atomic_read_relaxed(&udpif->n_flows_timestamp, &time);
692 if (time < now - 100 && !ovs_mutex_trylock(&udpif->n_flows_mutex)) {
693 struct dpif_dp_stats stats;
694
695 atomic_store_relaxed(&udpif->n_flows_timestamp, now);
696 dpif_get_dp_stats(udpif->dpif, &stats);
697 flow_count = stats.n_flows;
698 atomic_store_relaxed(&udpif->n_flows, flow_count);
699 ovs_mutex_unlock(&udpif->n_flows_mutex);
700 } else {
701 atomic_read_relaxed(&udpif->n_flows, &flow_count);
702 }
703 return flow_count;
704 }
705
706 /* The upcall handler thread tries to read a batch of UPCALL_MAX_BATCH
707 * upcalls from dpif, processes the batch and installs corresponding flows
708 * in dpif. */
709 static void *
710 udpif_upcall_handler(void *arg)
711 {
712 struct handler *handler = arg;
713 struct udpif *udpif = handler->udpif;
714
715 while (!latch_is_set(&handler->udpif->exit_latch)) {
716 if (recv_upcalls(handler)) {
717 poll_immediate_wake();
718 } else {
719 dpif_recv_wait(udpif->dpif, handler->handler_id);
720 latch_wait(&udpif->exit_latch);
721 }
722 poll_block();
723 }
724
725 return NULL;
726 }
727
728 static size_t
729 recv_upcalls(struct handler *handler)
730 {
731 struct udpif *udpif = handler->udpif;
732 uint64_t recv_stubs[UPCALL_MAX_BATCH][512 / 8];
733 struct ofpbuf recv_bufs[UPCALL_MAX_BATCH];
734 struct dpif_upcall dupcalls[UPCALL_MAX_BATCH];
735 struct upcall upcalls[UPCALL_MAX_BATCH];
736 struct flow flows[UPCALL_MAX_BATCH];
737 size_t n_upcalls, i;
738
739 n_upcalls = 0;
740 while (n_upcalls < UPCALL_MAX_BATCH) {
741 struct ofpbuf *recv_buf = &recv_bufs[n_upcalls];
742 struct dpif_upcall *dupcall = &dupcalls[n_upcalls];
743 struct upcall *upcall = &upcalls[n_upcalls];
744 struct flow *flow = &flows[n_upcalls];
745 unsigned int mru;
746 int error;
747
748 ofpbuf_use_stub(recv_buf, recv_stubs[n_upcalls],
749 sizeof recv_stubs[n_upcalls]);
750 if (dpif_recv(udpif->dpif, handler->handler_id, dupcall, recv_buf)) {
751 ofpbuf_uninit(recv_buf);
752 break;
753 }
754
755 if (odp_flow_key_to_flow(dupcall->key, dupcall->key_len, flow)
756 == ODP_FIT_ERROR) {
757 goto free_dupcall;
758 }
759
760 if (dupcall->mru) {
761 mru = nl_attr_get_u16(dupcall->mru);
762 } else {
763 mru = 0;
764 }
765
766 error = upcall_receive(upcall, udpif->backer, &dupcall->packet,
767 dupcall->type, dupcall->userdata, flow, mru,
768 &dupcall->ufid, PMD_ID_NULL);
769 if (error) {
770 if (error == ENODEV) {
771 /* Received packet on datapath port for which we couldn't
772 * associate an ofproto. This can happen if a port is removed
773 * while traffic is being received. Print a rate-limited
774 * message in case it happens frequently. */
775 dpif_flow_put(udpif->dpif, DPIF_FP_CREATE, dupcall->key,
776 dupcall->key_len, NULL, 0, NULL, 0,
777 &dupcall->ufid, PMD_ID_NULL, NULL);
778 VLOG_INFO_RL(&rl, "received packet on unassociated datapath "
779 "port %"PRIu32, flow->in_port.odp_port);
780 }
781 goto free_dupcall;
782 }
783
784 upcall->key = dupcall->key;
785 upcall->key_len = dupcall->key_len;
786 upcall->ufid = &dupcall->ufid;
787
788 upcall->out_tun_key = dupcall->out_tun_key;
789 upcall->actions = dupcall->actions;
790
791 pkt_metadata_from_flow(&dupcall->packet.md, flow);
792 flow_extract(&dupcall->packet, flow);
793
794 error = process_upcall(udpif, upcall,
795 &upcall->odp_actions, &upcall->wc);
796 if (error) {
797 goto cleanup;
798 }
799
800 n_upcalls++;
801 continue;
802
803 cleanup:
804 upcall_uninit(upcall);
805 free_dupcall:
806 dp_packet_uninit(&dupcall->packet);
807 ofpbuf_uninit(recv_buf);
808 }
809
810 if (n_upcalls) {
811 handle_upcalls(handler->udpif, upcalls, n_upcalls);
812 for (i = 0; i < n_upcalls; i++) {
813 dp_packet_uninit(&dupcalls[i].packet);
814 ofpbuf_uninit(&recv_bufs[i]);
815 upcall_uninit(&upcalls[i]);
816 }
817 }
818
819 return n_upcalls;
820 }
821
822 static void *
823 udpif_revalidator(void *arg)
824 {
825 /* Used by all revalidators. */
826 struct revalidator *revalidator = arg;
827 struct udpif *udpif = revalidator->udpif;
828 bool leader = revalidator == &udpif->revalidators[0];
829
830 /* Used only by the leader. */
831 long long int start_time = 0;
832 uint64_t last_reval_seq = 0;
833 size_t n_flows = 0;
834
835 revalidator->id = ovsthread_id_self();
836 for (;;) {
837 if (leader) {
838 uint64_t reval_seq;
839
840 recirc_run(); /* Recirculation cleanup. */
841
842 reval_seq = seq_read(udpif->reval_seq);
843 last_reval_seq = reval_seq;
844
845 n_flows = udpif_get_n_flows(udpif);
846 udpif->max_n_flows = MAX(n_flows, udpif->max_n_flows);
847 udpif->avg_n_flows = (udpif->avg_n_flows + n_flows) / 2;
848
849 /* Only the leader checks the pause latch to prevent a race where
850 * some threads think it's false and proceed to block on
851 * reval_barrier and others think it's true and block indefinitely
852 * on the pause_barrier */
853 udpif->pause = latch_is_set(&udpif->pause_latch);
854
855 /* Only the leader checks the exit latch to prevent a race where
856 * some threads think it's true and exit and others think it's
857 * false and block indefinitely on the reval_barrier */
858 udpif->reval_exit = latch_is_set(&udpif->exit_latch);
859
860 start_time = time_msec();
861 if (!udpif->reval_exit) {
862 bool terse_dump;
863
864 terse_dump = udpif_use_ufid(udpif);
865 udpif->dump = dpif_flow_dump_create(udpif->dpif, terse_dump);
866 }
867 }
868
869 /* Wait for the leader to start the flow dump. */
870 ovs_barrier_block(&udpif->reval_barrier);
871 if (udpif->pause) {
872 revalidator_pause(revalidator);
873 }
874
875 if (udpif->reval_exit) {
876 break;
877 }
878 revalidate(revalidator);
879
880 /* Wait for all flows to have been dumped before we garbage collect. */
881 ovs_barrier_block(&udpif->reval_barrier);
882 revalidator_sweep(revalidator);
883
884 /* Wait for all revalidators to finish garbage collection. */
885 ovs_barrier_block(&udpif->reval_barrier);
886
887 if (leader) {
888 unsigned int flow_limit;
889 long long int duration;
890
891 atomic_read_relaxed(&udpif->flow_limit, &flow_limit);
892
893 dpif_flow_dump_destroy(udpif->dump);
894 seq_change(udpif->dump_seq);
895
896 duration = MAX(time_msec() - start_time, 1);
897 udpif->dump_duration = duration;
898 if (duration > 2000) {
899 flow_limit /= duration / 1000;
900 } else if (duration > 1300) {
901 flow_limit = flow_limit * 3 / 4;
902 } else if (duration < 1000 && n_flows > 2000
903 && flow_limit < n_flows * 1000 / duration) {
904 flow_limit += 1000;
905 }
906 flow_limit = MIN(ofproto_flow_limit, MAX(flow_limit, 1000));
907 atomic_store_relaxed(&udpif->flow_limit, flow_limit);
908
909 if (duration > 2000) {
910 VLOG_INFO("Spent an unreasonably long %lldms dumping flows",
911 duration);
912 }
913
914 poll_timer_wait_until(start_time + MIN(ofproto_max_idle, 500));
915 seq_wait(udpif->reval_seq, last_reval_seq);
916 latch_wait(&udpif->exit_latch);
917 latch_wait(&udpif->pause_latch);
918 poll_block();
919 }
920 }
921
922 return NULL;
923 }
924 \f
925 static enum upcall_type
926 classify_upcall(enum dpif_upcall_type type, const struct nlattr *userdata)
927 {
928 union user_action_cookie cookie;
929 size_t userdata_len;
930
931 /* First look at the upcall type. */
932 switch (type) {
933 case DPIF_UC_ACTION:
934 break;
935
936 case DPIF_UC_MISS:
937 return MISS_UPCALL;
938
939 case DPIF_N_UC_TYPES:
940 default:
941 VLOG_WARN_RL(&rl, "upcall has unexpected type %"PRIu32, type);
942 return BAD_UPCALL;
943 }
944
945 /* "action" upcalls need a closer look. */
946 if (!userdata) {
947 VLOG_WARN_RL(&rl, "action upcall missing cookie");
948 return BAD_UPCALL;
949 }
950 userdata_len = nl_attr_get_size(userdata);
951 if (userdata_len < sizeof cookie.type
952 || userdata_len > sizeof cookie) {
953 VLOG_WARN_RL(&rl, "action upcall cookie has unexpected size %"PRIuSIZE,
954 userdata_len);
955 return BAD_UPCALL;
956 }
957 memset(&cookie, 0, sizeof cookie);
958 memcpy(&cookie, nl_attr_get(userdata), userdata_len);
959 if (userdata_len == MAX(8, sizeof cookie.sflow)
960 && cookie.type == USER_ACTION_COOKIE_SFLOW) {
961 return SFLOW_UPCALL;
962 } else if (userdata_len == MAX(8, sizeof cookie.slow_path)
963 && cookie.type == USER_ACTION_COOKIE_SLOW_PATH) {
964 return MISS_UPCALL;
965 } else if (userdata_len == MAX(8, sizeof cookie.flow_sample)
966 && cookie.type == USER_ACTION_COOKIE_FLOW_SAMPLE) {
967 return FLOW_SAMPLE_UPCALL;
968 } else if (userdata_len == MAX(8, sizeof cookie.ipfix)
969 && cookie.type == USER_ACTION_COOKIE_IPFIX) {
970 return IPFIX_UPCALL;
971 } else {
972 VLOG_WARN_RL(&rl, "invalid user cookie of type %"PRIu16
973 " and size %"PRIuSIZE, cookie.type, userdata_len);
974 return BAD_UPCALL;
975 }
976 }
977
978 /* Calculates slow path actions for 'xout'. 'buf' must statically be
979 * initialized with at least 128 bytes of space. */
980 static void
981 compose_slow_path(struct udpif *udpif, struct xlate_out *xout,
982 const struct flow *flow, odp_port_t odp_in_port,
983 struct ofpbuf *buf)
984 {
985 union user_action_cookie cookie;
986 odp_port_t port;
987 uint32_t pid;
988
989 cookie.type = USER_ACTION_COOKIE_SLOW_PATH;
990 cookie.slow_path.unused = 0;
991 cookie.slow_path.reason = xout->slow;
992
993 port = xout->slow & (SLOW_CFM | SLOW_BFD | SLOW_LACP | SLOW_STP)
994 ? ODPP_NONE
995 : odp_in_port;
996 pid = dpif_port_get_pid(udpif->dpif, port, flow_hash_5tuple(flow, 0));
997 odp_put_userspace_action(pid, &cookie, sizeof cookie.slow_path,
998 ODPP_NONE, false, buf);
999 }
1000
1001 /* If there is no error, the upcall must be destroyed with upcall_uninit()
1002 * before quiescing, as the referred objects are guaranteed to exist only
1003 * until the calling thread quiesces. Otherwise, do not call upcall_uninit()
1004 * since the 'upcall->put_actions' remains uninitialized. */
1005 static int
1006 upcall_receive(struct upcall *upcall, const struct dpif_backer *backer,
1007 const struct dp_packet *packet, enum dpif_upcall_type type,
1008 const struct nlattr *userdata, const struct flow *flow,
1009 const unsigned int mru,
1010 const ovs_u128 *ufid, const unsigned pmd_id)
1011 {
1012 int error;
1013
1014 error = xlate_lookup(backer, flow, &upcall->ofproto, &upcall->ipfix,
1015 &upcall->sflow, NULL, &upcall->in_port);
1016 if (error) {
1017 return error;
1018 }
1019
1020 upcall->recirc = NULL;
1021 upcall->have_recirc_ref = false;
1022 upcall->flow = flow;
1023 upcall->packet = packet;
1024 upcall->ufid = ufid;
1025 upcall->pmd_id = pmd_id;
1026 upcall->type = type;
1027 upcall->userdata = userdata;
1028 ofpbuf_use_stub(&upcall->odp_actions, upcall->odp_actions_stub,
1029 sizeof upcall->odp_actions_stub);
1030 ofpbuf_init(&upcall->put_actions, 0);
1031
1032 upcall->xout_initialized = false;
1033 upcall->ukey_persists = false;
1034
1035 upcall->ukey = NULL;
1036 upcall->key = NULL;
1037 upcall->key_len = 0;
1038 upcall->mru = mru;
1039
1040 upcall->out_tun_key = NULL;
1041 upcall->actions = NULL;
1042
1043 return 0;
1044 }
1045
1046 static void
1047 upcall_xlate(struct udpif *udpif, struct upcall *upcall,
1048 struct ofpbuf *odp_actions, struct flow_wildcards *wc)
1049 {
1050 struct dpif_flow_stats stats;
1051 struct xlate_in xin;
1052
1053 stats.n_packets = 1;
1054 stats.n_bytes = dp_packet_size(upcall->packet);
1055 stats.used = time_msec();
1056 stats.tcp_flags = ntohs(upcall->flow->tcp_flags);
1057
1058 xlate_in_init(&xin, upcall->ofproto, upcall->flow, upcall->in_port, NULL,
1059 stats.tcp_flags, upcall->packet, wc, odp_actions);
1060
1061 if (upcall->type == DPIF_UC_MISS) {
1062 xin.resubmit_stats = &stats;
1063
1064 if (xin.frozen_state) {
1065 /* We may install a datapath flow only if we get a reference to the
1066 * recirculation context (otherwise we could have recirculation
1067 * upcalls using recirculation ID for which no context can be
1068 * found). We may still execute the flow's actions even if we
1069 * don't install the flow. */
1070 upcall->recirc = recirc_id_node_from_state(xin.frozen_state);
1071 upcall->have_recirc_ref = recirc_id_node_try_ref_rcu(upcall->recirc);
1072 }
1073 } else {
1074 /* For non-miss upcalls, we are either executing actions (one of which
1075 * is an userspace action) for an upcall, in which case the stats have
1076 * already been taken care of, or there's a flow in the datapath which
1077 * this packet was accounted to. Presumably the revalidators will deal
1078 * with pushing its stats eventually. */
1079 }
1080
1081 upcall->dump_seq = seq_read(udpif->dump_seq);
1082 upcall->reval_seq = seq_read(udpif->reval_seq);
1083 xlate_actions(&xin, &upcall->xout);
1084 upcall->xout_initialized = true;
1085
1086 if (!upcall->xout.slow) {
1087 ofpbuf_use_const(&upcall->put_actions,
1088 odp_actions->data, odp_actions->size);
1089 } else {
1090 /* upcall->put_actions already initialized by upcall_receive(). */
1091 compose_slow_path(udpif, &upcall->xout, upcall->flow,
1092 upcall->flow->in_port.odp_port,
1093 &upcall->put_actions);
1094 }
1095
1096 /* This function is also called for slow-pathed flows. As we are only
1097 * going to create new datapath flows for actual datapath misses, there is
1098 * no point in creating a ukey otherwise. */
1099 if (upcall->type == DPIF_UC_MISS) {
1100 upcall->ukey = ukey_create_from_upcall(upcall, wc);
1101 }
1102 }
1103
1104 static void
1105 upcall_uninit(struct upcall *upcall)
1106 {
1107 if (upcall) {
1108 if (upcall->xout_initialized) {
1109 xlate_out_uninit(&upcall->xout);
1110 }
1111 ofpbuf_uninit(&upcall->odp_actions);
1112 ofpbuf_uninit(&upcall->put_actions);
1113 if (upcall->ukey) {
1114 if (!upcall->ukey_persists) {
1115 ukey_delete__(upcall->ukey);
1116 }
1117 } else if (upcall->have_recirc_ref) {
1118 /* The reference was transferred to the ukey if one was created. */
1119 recirc_id_node_unref(upcall->recirc);
1120 }
1121 }
1122 }
1123
1124 static int
1125 upcall_cb(const struct dp_packet *packet, const struct flow *flow, ovs_u128 *ufid,
1126 unsigned pmd_id, enum dpif_upcall_type type,
1127 const struct nlattr *userdata, struct ofpbuf *actions,
1128 struct flow_wildcards *wc, struct ofpbuf *put_actions, void *aux)
1129 {
1130 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 1);
1131 struct udpif *udpif = aux;
1132 unsigned int flow_limit;
1133 struct upcall upcall;
1134 bool megaflow;
1135 int error;
1136
1137 atomic_read_relaxed(&enable_megaflows, &megaflow);
1138 atomic_read_relaxed(&udpif->flow_limit, &flow_limit);
1139
1140 error = upcall_receive(&upcall, udpif->backer, packet, type, userdata,
1141 flow, 0, ufid, pmd_id);
1142 if (error) {
1143 return error;
1144 }
1145
1146 error = process_upcall(udpif, &upcall, actions, wc);
1147 if (error) {
1148 goto out;
1149 }
1150
1151 if (upcall.xout.slow && put_actions) {
1152 ofpbuf_put(put_actions, upcall.put_actions.data,
1153 upcall.put_actions.size);
1154 }
1155
1156 if (OVS_UNLIKELY(!megaflow)) {
1157 flow_wildcards_init_for_packet(wc, flow);
1158 }
1159
1160 if (udpif_get_n_flows(udpif) >= flow_limit) {
1161 VLOG_WARN_RL(&rl, "upcall_cb failure: datapath flow limit reached");
1162 error = ENOSPC;
1163 goto out;
1164 }
1165
1166 /* Prevent miss flow installation if the key has recirculation ID but we
1167 * were not able to get a reference on it. */
1168 if (type == DPIF_UC_MISS && upcall.recirc && !upcall.have_recirc_ref) {
1169 VLOG_WARN_RL(&rl, "upcall_cb failure: no reference for recirc flow");
1170 error = ENOSPC;
1171 goto out;
1172 }
1173
1174 if (upcall.ukey && !ukey_install(udpif, upcall.ukey)) {
1175 VLOG_WARN_RL(&rl, "upcall_cb failure: ukey installation fails");
1176 error = ENOSPC;
1177 }
1178 out:
1179 if (!error) {
1180 upcall.ukey_persists = true;
1181 }
1182 upcall_uninit(&upcall);
1183 return error;
1184 }
1185
1186 static int
1187 process_upcall(struct udpif *udpif, struct upcall *upcall,
1188 struct ofpbuf *odp_actions, struct flow_wildcards *wc)
1189 {
1190 const struct nlattr *userdata = upcall->userdata;
1191 const struct dp_packet *packet = upcall->packet;
1192 const struct flow *flow = upcall->flow;
1193
1194 switch (classify_upcall(upcall->type, userdata)) {
1195 case MISS_UPCALL:
1196 upcall_xlate(udpif, upcall, odp_actions, wc);
1197 return 0;
1198
1199 case SFLOW_UPCALL:
1200 if (upcall->sflow) {
1201 union user_action_cookie cookie;
1202 const struct nlattr *actions;
1203 size_t actions_len = 0;
1204 struct dpif_sflow_actions sflow_actions;
1205 memset(&sflow_actions, 0, sizeof sflow_actions);
1206 memset(&cookie, 0, sizeof cookie);
1207 memcpy(&cookie, nl_attr_get(userdata), sizeof cookie.sflow);
1208 if (upcall->actions) {
1209 /* Actions were passed up from datapath. */
1210 actions = nl_attr_get(upcall->actions);
1211 actions_len = nl_attr_get_size(upcall->actions);
1212 if (actions && actions_len) {
1213 dpif_sflow_read_actions(flow, actions, actions_len,
1214 &sflow_actions);
1215 }
1216 }
1217 if (actions_len == 0) {
1218 /* Lookup actions in userspace cache. */
1219 struct udpif_key *ukey = ukey_lookup(udpif, upcall->ufid,
1220 upcall->pmd_id);
1221 if (ukey) {
1222 ukey_get_actions(ukey, &actions, &actions_len);
1223 dpif_sflow_read_actions(flow, actions, actions_len,
1224 &sflow_actions);
1225 }
1226 }
1227 dpif_sflow_received(upcall->sflow, packet, flow,
1228 flow->in_port.odp_port, &cookie,
1229 actions_len > 0 ? &sflow_actions : NULL);
1230 }
1231 break;
1232
1233 case IPFIX_UPCALL:
1234 if (upcall->ipfix) {
1235 union user_action_cookie cookie;
1236 struct flow_tnl output_tunnel_key;
1237
1238 memset(&cookie, 0, sizeof cookie);
1239 memcpy(&cookie, nl_attr_get(userdata), sizeof cookie.ipfix);
1240
1241 if (upcall->out_tun_key) {
1242 odp_tun_key_from_attr(upcall->out_tun_key, false,
1243 &output_tunnel_key);
1244 }
1245 dpif_ipfix_bridge_sample(upcall->ipfix, packet, flow,
1246 flow->in_port.odp_port,
1247 cookie.ipfix.output_odp_port,
1248 upcall->out_tun_key ?
1249 &output_tunnel_key : NULL);
1250 }
1251 break;
1252
1253 case FLOW_SAMPLE_UPCALL:
1254 if (upcall->ipfix) {
1255 union user_action_cookie cookie;
1256
1257 memset(&cookie, 0, sizeof cookie);
1258 memcpy(&cookie, nl_attr_get(userdata), sizeof cookie.flow_sample);
1259
1260 /* The flow reflects exactly the contents of the packet.
1261 * Sample the packet using it. */
1262 dpif_ipfix_flow_sample(upcall->ipfix, packet, flow,
1263 cookie.flow_sample.collector_set_id,
1264 cookie.flow_sample.probability,
1265 cookie.flow_sample.obs_domain_id,
1266 cookie.flow_sample.obs_point_id);
1267 }
1268 break;
1269
1270 case BAD_UPCALL:
1271 break;
1272 }
1273
1274 return EAGAIN;
1275 }
1276
1277 static void
1278 handle_upcalls(struct udpif *udpif, struct upcall *upcalls,
1279 size_t n_upcalls)
1280 {
1281 struct dpif_op *opsp[UPCALL_MAX_BATCH * 2];
1282 struct ukey_op ops[UPCALL_MAX_BATCH * 2];
1283 unsigned int flow_limit;
1284 size_t n_ops, n_opsp, i;
1285 bool may_put;
1286
1287 atomic_read_relaxed(&udpif->flow_limit, &flow_limit);
1288
1289 may_put = udpif_get_n_flows(udpif) < flow_limit;
1290
1291 /* Handle the packets individually in order of arrival.
1292 *
1293 * - For SLOW_CFM, SLOW_LACP, SLOW_STP, and SLOW_BFD, translation is what
1294 * processes received packets for these protocols.
1295 *
1296 * - For SLOW_CONTROLLER, translation sends the packet to the OpenFlow
1297 * controller.
1298 *
1299 * The loop fills 'ops' with an array of operations to execute in the
1300 * datapath. */
1301 n_ops = 0;
1302 for (i = 0; i < n_upcalls; i++) {
1303 struct upcall *upcall = &upcalls[i];
1304 const struct dp_packet *packet = upcall->packet;
1305 struct ukey_op *op;
1306
1307 /* Do not install a flow into the datapath if:
1308 *
1309 * - The datapath already has too many flows.
1310 *
1311 * - We received this packet via some flow installed in the kernel
1312 * already.
1313 *
1314 * - Upcall was a recirculation but we do not have a reference to
1315 * to the recirculation ID. */
1316 if (may_put && upcall->type == DPIF_UC_MISS &&
1317 (!upcall->recirc || upcall->have_recirc_ref)) {
1318 struct udpif_key *ukey = upcall->ukey;
1319
1320 upcall->ukey_persists = true;
1321 op = &ops[n_ops++];
1322
1323 op->ukey = ukey;
1324 op->dop.type = DPIF_OP_FLOW_PUT;
1325 op->dop.u.flow_put.flags = DPIF_FP_CREATE;
1326 op->dop.u.flow_put.key = ukey->key;
1327 op->dop.u.flow_put.key_len = ukey->key_len;
1328 op->dop.u.flow_put.mask = ukey->mask;
1329 op->dop.u.flow_put.mask_len = ukey->mask_len;
1330 op->dop.u.flow_put.ufid = upcall->ufid;
1331 op->dop.u.flow_put.stats = NULL;
1332 ukey_get_actions(ukey, &op->dop.u.flow_put.actions,
1333 &op->dop.u.flow_put.actions_len);
1334 }
1335
1336 if (upcall->odp_actions.size) {
1337 op = &ops[n_ops++];
1338 op->ukey = NULL;
1339 op->dop.type = DPIF_OP_EXECUTE;
1340 op->dop.u.execute.packet = CONST_CAST(struct dp_packet *, packet);
1341 op->dop.u.execute.flow = upcall->flow;
1342 odp_key_to_pkt_metadata(upcall->key, upcall->key_len,
1343 &op->dop.u.execute.packet->md);
1344 op->dop.u.execute.actions = upcall->odp_actions.data;
1345 op->dop.u.execute.actions_len = upcall->odp_actions.size;
1346 op->dop.u.execute.needs_help = (upcall->xout.slow & SLOW_ACTION) != 0;
1347 op->dop.u.execute.probe = false;
1348 op->dop.u.execute.mtu = upcall->mru;
1349 }
1350 }
1351
1352 /* Execute batch.
1353 *
1354 * We install ukeys before installing the flows, locking them for exclusive
1355 * access by this thread for the period of installation. This ensures that
1356 * other threads won't attempt to delete the flows as we are creating them.
1357 */
1358 n_opsp = 0;
1359 for (i = 0; i < n_ops; i++) {
1360 struct udpif_key *ukey = ops[i].ukey;
1361
1362 if (ukey) {
1363 /* If we can't install the ukey, don't install the flow. */
1364 if (!ukey_install_start(udpif, ukey)) {
1365 ukey_delete__(ukey);
1366 ops[i].ukey = NULL;
1367 continue;
1368 }
1369 }
1370 opsp[n_opsp++] = &ops[i].dop;
1371 }
1372 dpif_operate(udpif->dpif, opsp, n_opsp);
1373 for (i = 0; i < n_ops; i++) {
1374 if (ops[i].ukey) {
1375 ukey_install_finish(ops[i].ukey, ops[i].dop.error);
1376 }
1377 }
1378 }
1379
1380 static uint32_t
1381 get_ukey_hash(const ovs_u128 *ufid, const unsigned pmd_id)
1382 {
1383 return hash_2words(ufid->u32[0], pmd_id);
1384 }
1385
1386 static struct udpif_key *
1387 ukey_lookup(struct udpif *udpif, const ovs_u128 *ufid, const unsigned pmd_id)
1388 {
1389 struct udpif_key *ukey;
1390 int idx = get_ukey_hash(ufid, pmd_id) % N_UMAPS;
1391 struct cmap *cmap = &udpif->ukeys[idx].cmap;
1392
1393 CMAP_FOR_EACH_WITH_HASH (ukey, cmap_node,
1394 get_ukey_hash(ufid, pmd_id), cmap) {
1395 if (ovs_u128_equals(ukey->ufid, *ufid)) {
1396 return ukey;
1397 }
1398 }
1399 return NULL;
1400 }
1401
1402 /* Provides safe lockless access of RCU protected 'ukey->actions'. Callers may
1403 * alternatively access the field directly if they take 'ukey->mutex'. */
1404 static void
1405 ukey_get_actions(struct udpif_key *ukey, const struct nlattr **actions, size_t *size)
1406 {
1407 const struct ofpbuf *buf = ovsrcu_get(struct ofpbuf *, &ukey->actions);
1408 *actions = buf->data;
1409 *size = buf->size;
1410 }
1411
1412 static void
1413 ukey_set_actions(struct udpif_key *ukey, const struct ofpbuf *actions)
1414 {
1415 ovsrcu_postpone(ofpbuf_delete,
1416 ovsrcu_get_protected(struct ofpbuf *, &ukey->actions));
1417 ovsrcu_set(&ukey->actions, ofpbuf_clone(actions));
1418 }
1419
1420 static struct udpif_key *
1421 ukey_create__(const struct nlattr *key, size_t key_len,
1422 const struct nlattr *mask, size_t mask_len,
1423 bool ufid_present, const ovs_u128 *ufid,
1424 const unsigned pmd_id, const struct ofpbuf *actions,
1425 uint64_t dump_seq, uint64_t reval_seq, long long int used,
1426 uint32_t key_recirc_id, struct xlate_out *xout)
1427 OVS_NO_THREAD_SAFETY_ANALYSIS
1428 {
1429 struct udpif_key *ukey = xmalloc(sizeof *ukey);
1430
1431 memcpy(&ukey->keybuf, key, key_len);
1432 ukey->key = &ukey->keybuf.nla;
1433 ukey->key_len = key_len;
1434 memcpy(&ukey->maskbuf, mask, mask_len);
1435 ukey->mask = &ukey->maskbuf.nla;
1436 ukey->mask_len = mask_len;
1437 ukey->ufid_present = ufid_present;
1438 ukey->ufid = *ufid;
1439 ukey->pmd_id = pmd_id;
1440 ukey->hash = get_ukey_hash(&ukey->ufid, pmd_id);
1441
1442 ovsrcu_init(&ukey->actions, NULL);
1443 ukey_set_actions(ukey, actions);
1444
1445 ovs_mutex_init(&ukey->mutex);
1446 ukey->dump_seq = dump_seq;
1447 ukey->reval_seq = reval_seq;
1448 ukey->flow_exists = false;
1449 ukey->created = time_msec();
1450 memset(&ukey->stats, 0, sizeof ukey->stats);
1451 ukey->stats.used = used;
1452 ukey->xcache = NULL;
1453
1454 ukey->key_recirc_id = key_recirc_id;
1455 recirc_refs_init(&ukey->recircs);
1456 if (xout) {
1457 /* Take ownership of the action recirc id references. */
1458 recirc_refs_swap(&ukey->recircs, &xout->recircs);
1459 }
1460
1461 return ukey;
1462 }
1463
1464 static struct udpif_key *
1465 ukey_create_from_upcall(struct upcall *upcall, struct flow_wildcards *wc)
1466 {
1467 struct odputil_keybuf keystub, maskstub;
1468 struct ofpbuf keybuf, maskbuf;
1469 bool megaflow;
1470 struct odp_flow_key_parms odp_parms = {
1471 .flow = upcall->flow,
1472 .mask = &wc->masks,
1473 };
1474
1475 odp_parms.support = ofproto_dpif_get_support(upcall->ofproto)->odp;
1476 if (upcall->key_len) {
1477 ofpbuf_use_const(&keybuf, upcall->key, upcall->key_len);
1478 } else {
1479 /* dpif-netdev doesn't provide a netlink-formatted flow key in the
1480 * upcall, so convert the upcall's flow here. */
1481 ofpbuf_use_stack(&keybuf, &keystub, sizeof keystub);
1482 odp_parms.odp_in_port = upcall->flow->in_port.odp_port;
1483 odp_flow_key_from_flow(&odp_parms, &keybuf);
1484 }
1485
1486 atomic_read_relaxed(&enable_megaflows, &megaflow);
1487 ofpbuf_use_stack(&maskbuf, &maskstub, sizeof maskstub);
1488 if (megaflow) {
1489 odp_parms.odp_in_port = ODPP_NONE;
1490 odp_parms.key_buf = &keybuf;
1491
1492 odp_flow_key_from_mask(&odp_parms, &maskbuf);
1493 }
1494
1495 return ukey_create__(keybuf.data, keybuf.size, maskbuf.data, maskbuf.size,
1496 true, upcall->ufid, upcall->pmd_id,
1497 &upcall->put_actions, upcall->dump_seq,
1498 upcall->reval_seq, 0,
1499 upcall->have_recirc_ref ? upcall->recirc->id : 0,
1500 &upcall->xout);
1501 }
1502
1503 static int
1504 ukey_create_from_dpif_flow(const struct udpif *udpif,
1505 const struct dpif_flow *flow,
1506 struct udpif_key **ukey)
1507 {
1508 struct dpif_flow full_flow;
1509 struct ofpbuf actions;
1510 uint64_t dump_seq, reval_seq;
1511 uint64_t stub[DPIF_FLOW_BUFSIZE / 8];
1512 const struct nlattr *a;
1513 unsigned int left;
1514
1515 if (!flow->key_len || !flow->actions_len) {
1516 struct ofpbuf buf;
1517 int err;
1518
1519 /* If the key or actions were not provided by the datapath, fetch the
1520 * full flow. */
1521 ofpbuf_use_stack(&buf, &stub, sizeof stub);
1522 err = dpif_flow_get(udpif->dpif, flow->key, flow->key_len,
1523 flow->ufid_present ? &flow->ufid : NULL,
1524 flow->pmd_id, &buf, &full_flow);
1525 if (err) {
1526 return err;
1527 }
1528 flow = &full_flow;
1529 }
1530
1531 /* Check the flow actions for recirculation action. As recirculation
1532 * relies on OVS userspace internal state, we need to delete all old
1533 * datapath flows with either a non-zero recirc_id in the key, or any
1534 * recirculation actions upon OVS restart. */
1535 NL_ATTR_FOR_EACH_UNSAFE (a, left, flow->key, flow->key_len) {
1536 if (nl_attr_type(a) == OVS_KEY_ATTR_RECIRC_ID
1537 && nl_attr_get_u32(a) != 0) {
1538 return EINVAL;
1539 }
1540 }
1541 NL_ATTR_FOR_EACH_UNSAFE (a, left, flow->actions, flow->actions_len) {
1542 if (nl_attr_type(a) == OVS_ACTION_ATTR_RECIRC) {
1543 return EINVAL;
1544 }
1545 }
1546
1547 dump_seq = seq_read(udpif->dump_seq);
1548 reval_seq = seq_read(udpif->reval_seq);
1549 ofpbuf_use_const(&actions, &flow->actions, flow->actions_len);
1550 *ukey = ukey_create__(flow->key, flow->key_len,
1551 flow->mask, flow->mask_len, flow->ufid_present,
1552 &flow->ufid, flow->pmd_id, &actions, dump_seq,
1553 reval_seq, flow->stats.used, 0, NULL);
1554
1555 return 0;
1556 }
1557
1558 /* Attempts to insert a ukey into the shared ukey maps.
1559 *
1560 * On success, returns true, installs the ukey and returns it in a locked
1561 * state. Otherwise, returns false. */
1562 static bool
1563 ukey_install_start(struct udpif *udpif, struct udpif_key *new_ukey)
1564 OVS_TRY_LOCK(true, new_ukey->mutex)
1565 {
1566 struct umap *umap;
1567 struct udpif_key *old_ukey;
1568 uint32_t idx;
1569 bool locked = false;
1570
1571 idx = new_ukey->hash % N_UMAPS;
1572 umap = &udpif->ukeys[idx];
1573 ovs_mutex_lock(&umap->mutex);
1574 old_ukey = ukey_lookup(udpif, &new_ukey->ufid, new_ukey->pmd_id);
1575 if (old_ukey) {
1576 /* Uncommon case: A ukey is already installed with the same UFID. */
1577 if (old_ukey->key_len == new_ukey->key_len
1578 && !memcmp(old_ukey->key, new_ukey->key, new_ukey->key_len)) {
1579 COVERAGE_INC(handler_duplicate_upcall);
1580 } else {
1581 struct ds ds = DS_EMPTY_INITIALIZER;
1582
1583 odp_format_ufid(&old_ukey->ufid, &ds);
1584 ds_put_cstr(&ds, " ");
1585 odp_flow_key_format(old_ukey->key, old_ukey->key_len, &ds);
1586 ds_put_cstr(&ds, "\n");
1587 odp_format_ufid(&new_ukey->ufid, &ds);
1588 ds_put_cstr(&ds, " ");
1589 odp_flow_key_format(new_ukey->key, new_ukey->key_len, &ds);
1590
1591 VLOG_WARN_RL(&rl, "Conflicting ukey for flows:\n%s", ds_cstr(&ds));
1592 ds_destroy(&ds);
1593 }
1594 } else {
1595 ovs_mutex_lock(&new_ukey->mutex);
1596 cmap_insert(&umap->cmap, &new_ukey->cmap_node, new_ukey->hash);
1597 locked = true;
1598 }
1599 ovs_mutex_unlock(&umap->mutex);
1600
1601 return locked;
1602 }
1603
1604 static void
1605 ukey_install_finish__(struct udpif_key *ukey) OVS_REQUIRES(ukey->mutex)
1606 {
1607 ukey->flow_exists = true;
1608 }
1609
1610 static bool
1611 ukey_install_finish(struct udpif_key *ukey, int error)
1612 OVS_RELEASES(ukey->mutex)
1613 {
1614 if (!error) {
1615 ukey_install_finish__(ukey);
1616 }
1617 ovs_mutex_unlock(&ukey->mutex);
1618
1619 return !error;
1620 }
1621
1622 static bool
1623 ukey_install(struct udpif *udpif, struct udpif_key *ukey)
1624 {
1625 /* The usual way to keep 'ukey->flow_exists' in sync with the datapath is
1626 * to call ukey_install_start(), install the corresponding datapath flow,
1627 * then call ukey_install_finish(). The netdev interface using upcall_cb()
1628 * doesn't provide a function to separately finish the flow installation,
1629 * so we perform the operations together here.
1630 *
1631 * This is fine currently, as revalidator threads will only delete this
1632 * ukey during revalidator_sweep() and only if the dump_seq is mismatched.
1633 * It is unlikely for a revalidator thread to advance dump_seq and reach
1634 * the next GC phase between ukey creation and flow installation. */
1635 return ukey_install_start(udpif, ukey) && ukey_install_finish(ukey, 0);
1636 }
1637
1638 /* Searches for a ukey in 'udpif->ukeys' that matches 'flow' and attempts to
1639 * lock the ukey. If the ukey does not exist, create it.
1640 *
1641 * Returns 0 on success, setting *result to the matching ukey and returning it
1642 * in a locked state. Otherwise, returns an errno and clears *result. EBUSY
1643 * indicates that another thread is handling this flow. Other errors indicate
1644 * an unexpected condition creating a new ukey.
1645 *
1646 * *error is an output parameter provided to appease the threadsafety analyser,
1647 * and its value matches the return value. */
1648 static int
1649 ukey_acquire(struct udpif *udpif, const struct dpif_flow *flow,
1650 struct udpif_key **result, int *error)
1651 OVS_TRY_LOCK(0, (*result)->mutex)
1652 {
1653 struct udpif_key *ukey;
1654 int retval;
1655
1656 ukey = ukey_lookup(udpif, &flow->ufid, flow->pmd_id);
1657 if (ukey) {
1658 retval = ovs_mutex_trylock(&ukey->mutex);
1659 } else {
1660 /* Usually we try to avoid installing flows from revalidator threads,
1661 * because locking on a umap may cause handler threads to block.
1662 * However there are certain cases, like when ovs-vswitchd is
1663 * restarted, where it is desirable to handle flows that exist in the
1664 * datapath gracefully (ie, don't just clear the datapath). */
1665 bool install;
1666
1667 retval = ukey_create_from_dpif_flow(udpif, flow, &ukey);
1668 if (retval) {
1669 goto done;
1670 }
1671 install = ukey_install_start(udpif, ukey);
1672 if (install) {
1673 ukey_install_finish__(ukey);
1674 retval = 0;
1675 } else {
1676 ukey_delete__(ukey);
1677 retval = EBUSY;
1678 }
1679 }
1680
1681 done:
1682 *error = retval;
1683 if (retval) {
1684 *result = NULL;
1685 } else {
1686 *result = ukey;
1687 }
1688 return retval;
1689 }
1690
1691 static void
1692 ukey_delete__(struct udpif_key *ukey)
1693 OVS_NO_THREAD_SAFETY_ANALYSIS
1694 {
1695 if (ukey) {
1696 if (ukey->key_recirc_id) {
1697 recirc_free_id(ukey->key_recirc_id);
1698 }
1699 recirc_refs_unref(&ukey->recircs);
1700 xlate_cache_delete(ukey->xcache);
1701 ofpbuf_delete(ovsrcu_get(struct ofpbuf *, &ukey->actions));
1702 ovs_mutex_destroy(&ukey->mutex);
1703 free(ukey);
1704 }
1705 }
1706
1707 static void
1708 ukey_delete(struct umap *umap, struct udpif_key *ukey)
1709 OVS_REQUIRES(umap->mutex)
1710 {
1711 cmap_remove(&umap->cmap, &ukey->cmap_node, ukey->hash);
1712 ovsrcu_postpone(ukey_delete__, ukey);
1713 }
1714
1715 static bool
1716 should_revalidate(const struct udpif *udpif, uint64_t packets,
1717 long long int used)
1718 {
1719 long long int metric, now, duration;
1720
1721 if (udpif->dump_duration < 200) {
1722 /* We are likely to handle full revalidation for the flows. */
1723 return true;
1724 }
1725
1726 /* Calculate the mean time between seeing these packets. If this
1727 * exceeds the threshold, then delete the flow rather than performing
1728 * costly revalidation for flows that aren't being hit frequently.
1729 *
1730 * This is targeted at situations where the dump_duration is high (~1s),
1731 * and revalidation is triggered by a call to udpif_revalidate(). In
1732 * these situations, revalidation of all flows causes fluctuations in the
1733 * flow_limit due to the interaction with the dump_duration and max_idle.
1734 * This tends to result in deletion of low-throughput flows anyway, so
1735 * skip the revalidation and just delete those flows. */
1736 packets = MAX(packets, 1);
1737 now = MAX(used, time_msec());
1738 duration = now - used;
1739 metric = duration / packets;
1740
1741 if (metric < 200) {
1742 /* The flow is receiving more than ~5pps, so keep it. */
1743 return true;
1744 }
1745 return false;
1746 }
1747
1748 /* Verifies that the datapath actions of 'ukey' are still correct, and pushes
1749 * 'stats' for it.
1750 *
1751 * Returns a recommended action for 'ukey', options include:
1752 * UKEY_DELETE The ukey should be deleted.
1753 * UKEY_KEEP The ukey is fine as is.
1754 * UKEY_MODIFY The ukey's actions should be changed but is otherwise
1755 * fine. Callers should change the actions to those found
1756 * in the caller supplied 'odp_actions' buffer. The
1757 * recirculation references can be found in 'recircs' and
1758 * must be handled by the caller.
1759 *
1760 * If the result is UKEY_MODIFY, then references to all recirc_ids used by the
1761 * new flow will be held within 'recircs' (which may be none).
1762 *
1763 * The caller is responsible for both initializing 'recircs' prior this call,
1764 * and ensuring any references are eventually freed.
1765 */
1766 static enum reval_result
1767 revalidate_ukey(struct udpif *udpif, struct udpif_key *ukey,
1768 const struct dpif_flow_stats *stats,
1769 struct ofpbuf *odp_actions, uint64_t reval_seq,
1770 struct recirc_refs *recircs)
1771 OVS_REQUIRES(ukey->mutex)
1772 {
1773 struct xlate_out xout, *xoutp;
1774 struct netflow *netflow;
1775 struct ofproto_dpif *ofproto;
1776 struct dpif_flow_stats push;
1777 struct flow flow;
1778 struct flow_wildcards dp_mask, wc;
1779 enum reval_result result;
1780 ofp_port_t ofp_in_port;
1781 struct xlate_in xin;
1782 long long int last_used;
1783 int error;
1784 bool need_revalidate;
1785
1786 result = UKEY_DELETE;
1787 xoutp = NULL;
1788 netflow = NULL;
1789
1790 ofpbuf_clear(odp_actions);
1791 need_revalidate = (ukey->reval_seq != reval_seq);
1792 last_used = ukey->stats.used;
1793 push.used = stats->used;
1794 push.tcp_flags = stats->tcp_flags;
1795 push.n_packets = (stats->n_packets > ukey->stats.n_packets
1796 ? stats->n_packets - ukey->stats.n_packets
1797 : 0);
1798 push.n_bytes = (stats->n_bytes > ukey->stats.n_bytes
1799 ? stats->n_bytes - ukey->stats.n_bytes
1800 : 0);
1801
1802 if (need_revalidate && last_used
1803 && !should_revalidate(udpif, push.n_packets, last_used)) {
1804 goto exit;
1805 }
1806
1807 /* We will push the stats, so update the ukey stats cache. */
1808 ukey->stats = *stats;
1809 if (!push.n_packets && !need_revalidate) {
1810 result = UKEY_KEEP;
1811 goto exit;
1812 }
1813
1814 if (ukey->xcache && !need_revalidate) {
1815 xlate_push_stats(ukey->xcache, &push);
1816 result = UKEY_KEEP;
1817 goto exit;
1818 }
1819
1820 if (odp_flow_key_to_flow(ukey->key, ukey->key_len, &flow)
1821 == ODP_FIT_ERROR) {
1822 goto exit;
1823 }
1824
1825 error = xlate_lookup(udpif->backer, &flow, &ofproto, NULL, NULL, &netflow,
1826 &ofp_in_port);
1827 if (error) {
1828 goto exit;
1829 }
1830
1831 if (need_revalidate) {
1832 xlate_cache_clear(ukey->xcache);
1833 }
1834 if (!ukey->xcache) {
1835 ukey->xcache = xlate_cache_new();
1836 }
1837
1838 xlate_in_init(&xin, ofproto, &flow, ofp_in_port, NULL, push.tcp_flags,
1839 NULL, need_revalidate ? &wc : NULL, odp_actions);
1840 if (push.n_packets) {
1841 xin.resubmit_stats = &push;
1842 xin.may_learn = true;
1843 }
1844 xin.xcache = ukey->xcache;
1845 xlate_actions(&xin, &xout);
1846 xoutp = &xout;
1847
1848 if (!need_revalidate) {
1849 result = UKEY_KEEP;
1850 goto exit;
1851 }
1852
1853 if (xout.slow) {
1854 ofpbuf_clear(odp_actions);
1855 compose_slow_path(udpif, &xout, &flow, flow.in_port.odp_port,
1856 odp_actions);
1857 }
1858
1859 if (odp_flow_key_to_mask(ukey->mask, ukey->mask_len, ukey->key,
1860 ukey->key_len, &dp_mask, &flow)
1861 == ODP_FIT_ERROR) {
1862 goto exit;
1863 }
1864
1865 /* Do not modify if any bit is wildcarded by the installed datapath flow,
1866 * but not the newly revalidated wildcard mask (wc), i.e., if revalidation
1867 * tells that the datapath flow is now too generic and must be narrowed
1868 * down. Note that we do not know if the datapath has ignored any of the
1869 * wildcarded bits, so we may be overtly conservative here. */
1870 if (flow_wildcards_has_extra(&dp_mask, &wc)) {
1871 goto exit;
1872 }
1873
1874 if (!ofpbuf_equal(odp_actions,
1875 ovsrcu_get(struct ofpbuf *, &ukey->actions))) {
1876 /* The datapath mask was OK, but the actions seem to have changed.
1877 * Let's modify it in place. */
1878 result = UKEY_MODIFY;
1879 /* Transfer recirc action ID references to the caller. */
1880 recirc_refs_swap(recircs, &xoutp->recircs);
1881 goto exit;
1882 }
1883
1884 result = UKEY_KEEP;
1885
1886 exit:
1887 if (result != UKEY_DELETE) {
1888 ukey->reval_seq = reval_seq;
1889 }
1890 if (netflow && result == UKEY_DELETE) {
1891 netflow_flow_clear(netflow, &flow);
1892 }
1893 xlate_out_uninit(xoutp);
1894 return result;
1895 }
1896
1897 static void
1898 delete_op_init__(struct udpif *udpif, struct ukey_op *op,
1899 const struct dpif_flow *flow)
1900 {
1901 op->ukey = NULL;
1902 op->dop.type = DPIF_OP_FLOW_DEL;
1903 op->dop.u.flow_del.key = flow->key;
1904 op->dop.u.flow_del.key_len = flow->key_len;
1905 op->dop.u.flow_del.ufid = flow->ufid_present ? &flow->ufid : NULL;
1906 op->dop.u.flow_del.pmd_id = flow->pmd_id;
1907 op->dop.u.flow_del.stats = &op->stats;
1908 op->dop.u.flow_del.terse = udpif_use_ufid(udpif);
1909 }
1910
1911 static void
1912 delete_op_init(struct udpif *udpif, struct ukey_op *op, struct udpif_key *ukey)
1913 {
1914 op->ukey = ukey;
1915 op->dop.type = DPIF_OP_FLOW_DEL;
1916 op->dop.u.flow_del.key = ukey->key;
1917 op->dop.u.flow_del.key_len = ukey->key_len;
1918 op->dop.u.flow_del.ufid = ukey->ufid_present ? &ukey->ufid : NULL;
1919 op->dop.u.flow_del.pmd_id = ukey->pmd_id;
1920 op->dop.u.flow_del.stats = &op->stats;
1921 op->dop.u.flow_del.terse = udpif_use_ufid(udpif);
1922 }
1923
1924 static void
1925 modify_op_init(struct ukey_op *op, struct udpif_key *ukey)
1926 {
1927 op->ukey = ukey;
1928 op->dop.type = DPIF_OP_FLOW_PUT;
1929 op->dop.u.flow_put.flags = DPIF_FP_MODIFY;
1930 op->dop.u.flow_put.key = ukey->key;
1931 op->dop.u.flow_put.key_len = ukey->key_len;
1932 op->dop.u.flow_put.mask = ukey->mask;
1933 op->dop.u.flow_put.mask_len = ukey->mask_len;
1934 op->dop.u.flow_put.ufid = ukey->ufid_present ? &ukey->ufid : NULL;
1935 op->dop.u.flow_put.pmd_id = ukey->pmd_id;
1936 op->dop.u.flow_put.stats = NULL;
1937 ukey_get_actions(ukey, &op->dop.u.flow_put.actions,
1938 &op->dop.u.flow_put.actions_len);
1939 }
1940
1941 /* Executes datapath operations 'ops' and attributes stats retrieved from the
1942 * datapath as part of those operations. */
1943 static void
1944 push_dp_ops(struct udpif *udpif, struct ukey_op *ops, size_t n_ops)
1945 {
1946 struct dpif_op *opsp[REVALIDATE_MAX_BATCH];
1947 size_t i;
1948
1949 ovs_assert(n_ops <= REVALIDATE_MAX_BATCH);
1950 for (i = 0; i < n_ops; i++) {
1951 opsp[i] = &ops[i].dop;
1952 }
1953 dpif_operate(udpif->dpif, opsp, n_ops);
1954
1955 for (i = 0; i < n_ops; i++) {
1956 struct ukey_op *op = &ops[i];
1957 struct dpif_flow_stats *push, *stats, push_buf;
1958
1959 stats = op->dop.u.flow_del.stats;
1960 push = &push_buf;
1961
1962 if (op->dop.type != DPIF_OP_FLOW_DEL) {
1963 /* Only deleted flows need their stats pushed. */
1964 continue;
1965 }
1966
1967 if (op->dop.error) {
1968 /* flow_del error, 'stats' is unusable. */
1969 continue;
1970 }
1971
1972 if (op->ukey) {
1973 ovs_mutex_lock(&op->ukey->mutex);
1974 push->used = MAX(stats->used, op->ukey->stats.used);
1975 push->tcp_flags = stats->tcp_flags | op->ukey->stats.tcp_flags;
1976 push->n_packets = stats->n_packets - op->ukey->stats.n_packets;
1977 push->n_bytes = stats->n_bytes - op->ukey->stats.n_bytes;
1978 ovs_mutex_unlock(&op->ukey->mutex);
1979 } else {
1980 push = stats;
1981 }
1982
1983 if (push->n_packets || netflow_exists()) {
1984 const struct nlattr *key = op->dop.u.flow_del.key;
1985 size_t key_len = op->dop.u.flow_del.key_len;
1986 struct ofproto_dpif *ofproto;
1987 struct netflow *netflow;
1988 ofp_port_t ofp_in_port;
1989 struct flow flow;
1990 int error;
1991
1992 if (op->ukey) {
1993 ovs_mutex_lock(&op->ukey->mutex);
1994 if (op->ukey->xcache) {
1995 xlate_push_stats(op->ukey->xcache, push);
1996 ovs_mutex_unlock(&op->ukey->mutex);
1997 continue;
1998 }
1999 ovs_mutex_unlock(&op->ukey->mutex);
2000 key = op->ukey->key;
2001 key_len = op->ukey->key_len;
2002 }
2003
2004 if (odp_flow_key_to_flow(key, key_len, &flow)
2005 == ODP_FIT_ERROR) {
2006 continue;
2007 }
2008
2009 error = xlate_lookup(udpif->backer, &flow, &ofproto, NULL, NULL,
2010 &netflow, &ofp_in_port);
2011 if (!error) {
2012 struct xlate_in xin;
2013
2014 xlate_in_init(&xin, ofproto, &flow, ofp_in_port, NULL,
2015 push->tcp_flags, NULL, NULL, NULL);
2016 xin.resubmit_stats = push->n_packets ? push : NULL;
2017 xin.may_learn = push->n_packets > 0;
2018 xlate_actions_for_side_effects(&xin);
2019
2020 if (netflow) {
2021 netflow_flow_clear(netflow, &flow);
2022 }
2023 }
2024 }
2025 }
2026 }
2027
2028 /* Executes datapath operations 'ops', attributes stats retrieved from the
2029 * datapath, and deletes ukeys corresponding to deleted flows. */
2030 static void
2031 push_ukey_ops(struct udpif *udpif, struct umap *umap,
2032 struct ukey_op *ops, size_t n_ops)
2033 {
2034 int i;
2035
2036 push_dp_ops(udpif, ops, n_ops);
2037 ovs_mutex_lock(&umap->mutex);
2038 for (i = 0; i < n_ops; i++) {
2039 if (ops[i].dop.type == DPIF_OP_FLOW_DEL) {
2040 ukey_delete(umap, ops[i].ukey);
2041 }
2042 }
2043 ovs_mutex_unlock(&umap->mutex);
2044 }
2045
2046 static void
2047 log_unexpected_flow(const struct dpif_flow *flow, int error)
2048 {
2049 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(10, 60);
2050 struct ds ds = DS_EMPTY_INITIALIZER;
2051
2052 ds_put_format(&ds, "Failed to acquire udpif_key corresponding to "
2053 "unexpected flow (%s): ", ovs_strerror(error));
2054 odp_format_ufid(&flow->ufid, &ds);
2055 VLOG_WARN_RL(&rl, "%s", ds_cstr(&ds));
2056 }
2057
2058 static void
2059 reval_op_init(struct ukey_op *op, enum reval_result result,
2060 struct udpif *udpif, struct udpif_key *ukey,
2061 struct recirc_refs *recircs, struct ofpbuf *odp_actions)
2062 {
2063 if (result == UKEY_DELETE) {
2064 delete_op_init(udpif, op, ukey);
2065 } else if (result == UKEY_MODIFY) {
2066 /* Store the new recircs. */
2067 recirc_refs_swap(&ukey->recircs, recircs);
2068 /* Release old recircs. */
2069 recirc_refs_unref(recircs);
2070 /* ukey->key_recirc_id remains, as the key is the same as before. */
2071
2072 ukey_set_actions(ukey, odp_actions);
2073 modify_op_init(op, ukey);
2074 }
2075 }
2076
2077 static void
2078 revalidate(struct revalidator *revalidator)
2079 {
2080 uint64_t odp_actions_stub[1024 / 8];
2081 struct ofpbuf odp_actions = OFPBUF_STUB_INITIALIZER(odp_actions_stub);
2082
2083 struct udpif *udpif = revalidator->udpif;
2084 struct dpif_flow_dump_thread *dump_thread;
2085 uint64_t dump_seq, reval_seq;
2086 unsigned int flow_limit;
2087
2088 dump_seq = seq_read(udpif->dump_seq);
2089 reval_seq = seq_read(udpif->reval_seq);
2090 atomic_read_relaxed(&udpif->flow_limit, &flow_limit);
2091 dump_thread = dpif_flow_dump_thread_create(udpif->dump);
2092 for (;;) {
2093 struct ukey_op ops[REVALIDATE_MAX_BATCH];
2094 int n_ops = 0;
2095
2096 struct dpif_flow flows[REVALIDATE_MAX_BATCH];
2097 const struct dpif_flow *f;
2098 int n_dumped;
2099
2100 long long int max_idle;
2101 long long int now;
2102 size_t n_dp_flows;
2103 bool kill_them_all;
2104
2105 n_dumped = dpif_flow_dump_next(dump_thread, flows, ARRAY_SIZE(flows));
2106 if (!n_dumped) {
2107 break;
2108 }
2109
2110 now = time_msec();
2111
2112 /* In normal operation we want to keep flows around until they have
2113 * been idle for 'ofproto_max_idle' milliseconds. However:
2114 *
2115 * - If the number of datapath flows climbs above 'flow_limit',
2116 * drop that down to 100 ms to try to bring the flows down to
2117 * the limit.
2118 *
2119 * - If the number of datapath flows climbs above twice
2120 * 'flow_limit', delete all the datapath flows as an emergency
2121 * measure. (We reassess this condition for the next batch of
2122 * datapath flows, so we will recover before all the flows are
2123 * gone.) */
2124 n_dp_flows = udpif_get_n_flows(udpif);
2125 kill_them_all = n_dp_flows > flow_limit * 2;
2126 max_idle = n_dp_flows > flow_limit ? 100 : ofproto_max_idle;
2127
2128 for (f = flows; f < &flows[n_dumped]; f++) {
2129 long long int used = f->stats.used;
2130 struct recirc_refs recircs = RECIRC_REFS_EMPTY_INITIALIZER;
2131 enum reval_result result;
2132 struct udpif_key *ukey;
2133 bool already_dumped;
2134 int error;
2135
2136 if (ukey_acquire(udpif, f, &ukey, &error)) {
2137 if (error == EBUSY) {
2138 /* Another thread is processing this flow, so don't bother
2139 * processing it.*/
2140 COVERAGE_INC(upcall_ukey_contention);
2141 } else {
2142 log_unexpected_flow(f, error);
2143 if (error != ENOENT) {
2144 delete_op_init__(udpif, &ops[n_ops++], f);
2145 }
2146 }
2147 continue;
2148 }
2149
2150 already_dumped = ukey->dump_seq == dump_seq;
2151 if (already_dumped) {
2152 /* The flow has already been handled during this flow dump
2153 * operation. Skip it. */
2154 if (ukey->xcache) {
2155 COVERAGE_INC(dumped_duplicate_flow);
2156 } else {
2157 COVERAGE_INC(dumped_new_flow);
2158 }
2159 ovs_mutex_unlock(&ukey->mutex);
2160 continue;
2161 }
2162
2163 if (!used) {
2164 used = ukey->created;
2165 }
2166 if (kill_them_all || (used && used < now - max_idle)) {
2167 result = UKEY_DELETE;
2168 } else {
2169 result = revalidate_ukey(udpif, ukey, &f->stats, &odp_actions,
2170 reval_seq, &recircs);
2171 }
2172 ukey->dump_seq = dump_seq;
2173 ukey->flow_exists = result != UKEY_DELETE;
2174
2175 if (result != UKEY_KEEP) {
2176 /* Takes ownership of 'recircs'. */
2177 reval_op_init(&ops[n_ops++], result, udpif, ukey, &recircs,
2178 &odp_actions);
2179 }
2180 ovs_mutex_unlock(&ukey->mutex);
2181 }
2182
2183 if (n_ops) {
2184 /* Push datapath ops but defer ukey deletion to 'sweep' phase. */
2185 push_dp_ops(udpif, ops, n_ops);
2186 }
2187 ovsrcu_quiesce();
2188 }
2189 dpif_flow_dump_thread_destroy(dump_thread);
2190 ofpbuf_uninit(&odp_actions);
2191 }
2192
2193 /* Pauses the 'revalidator', can only proceed after main thread
2194 * calls udpif_resume_revalidators(). */
2195 static void
2196 revalidator_pause(struct revalidator *revalidator)
2197 {
2198 /* The first block is for sync'ing the pause with main thread. */
2199 ovs_barrier_block(&revalidator->udpif->pause_barrier);
2200 /* The second block is for pausing until main thread resumes. */
2201 ovs_barrier_block(&revalidator->udpif->pause_barrier);
2202 }
2203
2204 static void
2205 revalidator_sweep__(struct revalidator *revalidator, bool purge)
2206 {
2207 struct udpif *udpif;
2208 uint64_t dump_seq, reval_seq;
2209 int slice;
2210
2211 udpif = revalidator->udpif;
2212 dump_seq = seq_read(udpif->dump_seq);
2213 reval_seq = seq_read(udpif->reval_seq);
2214 slice = revalidator - udpif->revalidators;
2215 ovs_assert(slice < udpif->n_revalidators);
2216
2217 for (int i = slice; i < N_UMAPS; i += udpif->n_revalidators) {
2218 uint64_t odp_actions_stub[1024 / 8];
2219 struct ofpbuf odp_actions = OFPBUF_STUB_INITIALIZER(odp_actions_stub);
2220
2221 struct ukey_op ops[REVALIDATE_MAX_BATCH];
2222 struct udpif_key *ukey;
2223 struct umap *umap = &udpif->ukeys[i];
2224 size_t n_ops = 0;
2225
2226 CMAP_FOR_EACH(ukey, cmap_node, &umap->cmap) {
2227 bool flow_exists;
2228
2229 /* Handler threads could be holding a ukey lock while it installs a
2230 * new flow, so don't hang around waiting for access to it. */
2231 if (ovs_mutex_trylock(&ukey->mutex)) {
2232 continue;
2233 }
2234 flow_exists = ukey->flow_exists;
2235 if (flow_exists) {
2236 struct recirc_refs recircs = RECIRC_REFS_EMPTY_INITIALIZER;
2237 bool seq_mismatch = (ukey->dump_seq != dump_seq
2238 && ukey->reval_seq != reval_seq);
2239 enum reval_result result;
2240
2241 if (purge) {
2242 result = UKEY_DELETE;
2243 } else if (!seq_mismatch) {
2244 result = UKEY_KEEP;
2245 } else {
2246 struct dpif_flow_stats stats;
2247 COVERAGE_INC(revalidate_missed_dp_flow);
2248 memset(&stats, 0, sizeof stats);
2249 result = revalidate_ukey(udpif, ukey, &stats, &odp_actions,
2250 reval_seq, &recircs);
2251 }
2252 if (result != UKEY_KEEP) {
2253 /* Clears 'recircs' if filled by revalidate_ukey(). */
2254 reval_op_init(&ops[n_ops++], result, udpif, ukey, &recircs,
2255 &odp_actions);
2256 }
2257 }
2258 ovs_mutex_unlock(&ukey->mutex);
2259
2260 if (!flow_exists) {
2261 /* The common flow deletion case involves deletion of the flow
2262 * during the dump phase and ukey deletion here. */
2263 ovs_mutex_lock(&umap->mutex);
2264 ukey_delete(umap, ukey);
2265 ovs_mutex_unlock(&umap->mutex);
2266 }
2267
2268 if (n_ops == REVALIDATE_MAX_BATCH) {
2269 /* Update/delete missed flows and clean up corresponding ukeys
2270 * if necessary. */
2271 push_ukey_ops(udpif, umap, ops, n_ops);
2272 n_ops = 0;
2273 }
2274 }
2275
2276 if (n_ops) {
2277 push_ukey_ops(udpif, umap, ops, n_ops);
2278 }
2279
2280 ofpbuf_uninit(&odp_actions);
2281 ovsrcu_quiesce();
2282 }
2283 }
2284
2285 static void
2286 revalidator_sweep(struct revalidator *revalidator)
2287 {
2288 revalidator_sweep__(revalidator, false);
2289 }
2290
2291 static void
2292 revalidator_purge(struct revalidator *revalidator)
2293 {
2294 revalidator_sweep__(revalidator, true);
2295 }
2296
2297 /* In reaction to dpif purge, purges all 'ukey's with same 'pmd_id'. */
2298 static void
2299 dp_purge_cb(void *aux, unsigned pmd_id)
2300 {
2301 struct udpif *udpif = aux;
2302 size_t i;
2303
2304 udpif_pause_revalidators(udpif);
2305 for (i = 0; i < N_UMAPS; i++) {
2306 struct ukey_op ops[REVALIDATE_MAX_BATCH];
2307 struct udpif_key *ukey;
2308 struct umap *umap = &udpif->ukeys[i];
2309 size_t n_ops = 0;
2310
2311 CMAP_FOR_EACH(ukey, cmap_node, &umap->cmap) {
2312 if (ukey->pmd_id == pmd_id) {
2313 delete_op_init(udpif, &ops[n_ops++], ukey);
2314 if (n_ops == REVALIDATE_MAX_BATCH) {
2315 push_ukey_ops(udpif, umap, ops, n_ops);
2316 n_ops = 0;
2317 }
2318 }
2319 }
2320
2321 if (n_ops) {
2322 push_ukey_ops(udpif, umap, ops, n_ops);
2323 }
2324
2325 ovsrcu_quiesce();
2326 }
2327 udpif_resume_revalidators(udpif);
2328 }
2329 \f
2330 static void
2331 upcall_unixctl_show(struct unixctl_conn *conn, int argc OVS_UNUSED,
2332 const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED)
2333 {
2334 struct ds ds = DS_EMPTY_INITIALIZER;
2335 struct udpif *udpif;
2336
2337 LIST_FOR_EACH (udpif, list_node, &all_udpifs) {
2338 unsigned int flow_limit;
2339 bool ufid_enabled;
2340 size_t i;
2341
2342 atomic_read_relaxed(&udpif->flow_limit, &flow_limit);
2343 ufid_enabled = udpif_use_ufid(udpif);
2344
2345 ds_put_format(&ds, "%s:\n", dpif_name(udpif->dpif));
2346 ds_put_format(&ds, "\tflows : (current %lu)"
2347 " (avg %u) (max %u) (limit %u)\n", udpif_get_n_flows(udpif),
2348 udpif->avg_n_flows, udpif->max_n_flows, flow_limit);
2349 ds_put_format(&ds, "\tdump duration : %lldms\n", udpif->dump_duration);
2350 ds_put_format(&ds, "\tufid enabled : ");
2351 if (ufid_enabled) {
2352 ds_put_format(&ds, "true\n");
2353 } else {
2354 ds_put_format(&ds, "false\n");
2355 }
2356 ds_put_char(&ds, '\n');
2357
2358 for (i = 0; i < n_revalidators; i++) {
2359 struct revalidator *revalidator = &udpif->revalidators[i];
2360 int j, elements = 0;
2361
2362 for (j = i; j < N_UMAPS; j += n_revalidators) {
2363 elements += cmap_count(&udpif->ukeys[j].cmap);
2364 }
2365 ds_put_format(&ds, "\t%u: (keys %d)\n", revalidator->id, elements);
2366 }
2367 }
2368
2369 unixctl_command_reply(conn, ds_cstr(&ds));
2370 ds_destroy(&ds);
2371 }
2372
2373 /* Disable using the megaflows.
2374 *
2375 * This command is only needed for advanced debugging, so it's not
2376 * documented in the man page. */
2377 static void
2378 upcall_unixctl_disable_megaflows(struct unixctl_conn *conn,
2379 int argc OVS_UNUSED,
2380 const char *argv[] OVS_UNUSED,
2381 void *aux OVS_UNUSED)
2382 {
2383 atomic_store_relaxed(&enable_megaflows, false);
2384 udpif_flush_all_datapaths();
2385 unixctl_command_reply(conn, "megaflows disabled");
2386 }
2387
2388 /* Re-enable using megaflows.
2389 *
2390 * This command is only needed for advanced debugging, so it's not
2391 * documented in the man page. */
2392 static void
2393 upcall_unixctl_enable_megaflows(struct unixctl_conn *conn,
2394 int argc OVS_UNUSED,
2395 const char *argv[] OVS_UNUSED,
2396 void *aux OVS_UNUSED)
2397 {
2398 atomic_store_relaxed(&enable_megaflows, true);
2399 udpif_flush_all_datapaths();
2400 unixctl_command_reply(conn, "megaflows enabled");
2401 }
2402
2403 /* Disable skipping flow attributes during flow dump.
2404 *
2405 * This command is only needed for advanced debugging, so it's not
2406 * documented in the man page. */
2407 static void
2408 upcall_unixctl_disable_ufid(struct unixctl_conn *conn, int argc OVS_UNUSED,
2409 const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED)
2410 {
2411 atomic_store_relaxed(&enable_ufid, false);
2412 unixctl_command_reply(conn, "Datapath dumping tersely using UFID disabled");
2413 }
2414
2415 /* Re-enable skipping flow attributes during flow dump.
2416 *
2417 * This command is only needed for advanced debugging, so it's not documented
2418 * in the man page. */
2419 static void
2420 upcall_unixctl_enable_ufid(struct unixctl_conn *conn, int argc OVS_UNUSED,
2421 const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED)
2422 {
2423 atomic_store_relaxed(&enable_ufid, true);
2424 unixctl_command_reply(conn, "Datapath dumping tersely using UFID enabled "
2425 "for supported datapaths");
2426 }
2427
2428 /* Set the flow limit.
2429 *
2430 * This command is only needed for advanced debugging, so it's not
2431 * documented in the man page. */
2432 static void
2433 upcall_unixctl_set_flow_limit(struct unixctl_conn *conn,
2434 int argc OVS_UNUSED,
2435 const char *argv[] OVS_UNUSED,
2436 void *aux OVS_UNUSED)
2437 {
2438 struct ds ds = DS_EMPTY_INITIALIZER;
2439 struct udpif *udpif;
2440 unsigned int flow_limit = atoi(argv[1]);
2441
2442 LIST_FOR_EACH (udpif, list_node, &all_udpifs) {
2443 atomic_store_relaxed(&udpif->flow_limit, flow_limit);
2444 }
2445 ds_put_format(&ds, "set flow_limit to %u\n", flow_limit);
2446 unixctl_command_reply(conn, ds_cstr(&ds));
2447 ds_destroy(&ds);
2448 }
2449
2450 static void
2451 upcall_unixctl_dump_wait(struct unixctl_conn *conn,
2452 int argc OVS_UNUSED,
2453 const char *argv[] OVS_UNUSED,
2454 void *aux OVS_UNUSED)
2455 {
2456 if (ovs_list_is_singleton(&all_udpifs)) {
2457 struct udpif *udpif = NULL;
2458 size_t len;
2459
2460 udpif = OBJECT_CONTAINING(ovs_list_front(&all_udpifs), udpif, list_node);
2461 len = (udpif->n_conns + 1) * sizeof *udpif->conns;
2462 udpif->conn_seq = seq_read(udpif->dump_seq);
2463 udpif->conns = xrealloc(udpif->conns, len);
2464 udpif->conns[udpif->n_conns++] = conn;
2465 } else {
2466 unixctl_command_reply_error(conn, "can't wait on multiple udpifs.");
2467 }
2468 }
2469
2470 static void
2471 upcall_unixctl_purge(struct unixctl_conn *conn, int argc OVS_UNUSED,
2472 const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED)
2473 {
2474 struct udpif *udpif;
2475
2476 LIST_FOR_EACH (udpif, list_node, &all_udpifs) {
2477 int n;
2478
2479 for (n = 0; n < udpif->n_revalidators; n++) {
2480 revalidator_purge(&udpif->revalidators[n]);
2481 }
2482 }
2483 unixctl_command_reply(conn, "");
2484 }