]> git.proxmox.com Git - mirror_ovs.git/blob - ofproto/ofproto-dpif-upcall.c
upcall: Eliminate dead code.
[mirror_ovs.git] / ofproto / ofproto-dpif-upcall.c
1 /* Copyright (c) 2009, 2010, 2011, 2012, 2013, 2014, 2015 Nicira, Inc.
2 *
3 * Licensed under the Apache License, Version 2.0 (the "License");
4 * you may not use this file except in compliance with the License.
5 * You may obtain a copy of the License at:
6 *
7 * http://www.apache.org/licenses/LICENSE-2.0
8 *
9 * Unless required by applicable law or agreed to in writing, software
10 * distributed under the License is distributed on an "AS IS" BASIS,
11 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 * See the License for the specific language governing permissions and
13 * limitations under the License. */
14
15 #include <config.h>
16 #include "ofproto-dpif-upcall.h"
17
18 #include <errno.h>
19 #include <stdbool.h>
20 #include <inttypes.h>
21
22 #include "connmgr.h"
23 #include "coverage.h"
24 #include "cmap.h"
25 #include "dpif.h"
26 #include "dynamic-string.h"
27 #include "fail-open.h"
28 #include "guarded-list.h"
29 #include "latch.h"
30 #include "list.h"
31 #include "netlink.h"
32 #include "ofpbuf.h"
33 #include "ofproto-dpif-ipfix.h"
34 #include "ofproto-dpif-sflow.h"
35 #include "ofproto-dpif-xlate.h"
36 #include "ovs-rcu.h"
37 #include "packets.h"
38 #include "poll-loop.h"
39 #include "seq.h"
40 #include "unixctl.h"
41 #include "openvswitch/vlog.h"
42
43 #define MAX_QUEUE_LENGTH 512
44 #define UPCALL_MAX_BATCH 64
45 #define REVALIDATE_MAX_BATCH 50
46
47 VLOG_DEFINE_THIS_MODULE(ofproto_dpif_upcall);
48
49 COVERAGE_DEFINE(dumped_duplicate_flow);
50 COVERAGE_DEFINE(dumped_new_flow);
51 COVERAGE_DEFINE(handler_duplicate_upcall);
52 COVERAGE_DEFINE(upcall_ukey_contention);
53 COVERAGE_DEFINE(revalidate_missed_dp_flow);
54
55 /* A thread that reads upcalls from dpif, forwards each upcall's packet,
56 * and possibly sets up a kernel flow as a cache. */
57 struct handler {
58 struct udpif *udpif; /* Parent udpif. */
59 pthread_t thread; /* Thread ID. */
60 uint32_t handler_id; /* Handler id. */
61 };
62
63 /* In the absence of a multiple-writer multiple-reader datastructure for
64 * storing ukeys, we use a large number of cmaps, each with its own lock for
65 * writing. */
66 #define N_UMAPS 512 /* per udpif. */
67 struct umap {
68 struct ovs_mutex mutex; /* Take for writing to the following. */
69 struct cmap cmap; /* Datapath flow keys. */
70 };
71
72 /* A thread that processes datapath flows, updates OpenFlow statistics, and
73 * updates or removes them if necessary. */
74 struct revalidator {
75 struct udpif *udpif; /* Parent udpif. */
76 pthread_t thread; /* Thread ID. */
77 unsigned int id; /* ovsthread_id_self(). */
78 };
79
80 /* An upcall handler for ofproto_dpif.
81 *
82 * udpif keeps records of two kind of logically separate units:
83 *
84 * upcall handling
85 * ---------------
86 *
87 * - An array of 'struct handler's for upcall handling and flow
88 * installation.
89 *
90 * flow revalidation
91 * -----------------
92 *
93 * - Revalidation threads which read the datapath flow table and maintains
94 * them.
95 */
96 struct udpif {
97 struct ovs_list list_node; /* In all_udpifs list. */
98
99 struct dpif *dpif; /* Datapath handle. */
100 struct dpif_backer *backer; /* Opaque dpif_backer pointer. */
101
102 struct handler *handlers; /* Upcall handlers. */
103 size_t n_handlers;
104
105 struct revalidator *revalidators; /* Flow revalidators. */
106 size_t n_revalidators;
107
108 struct latch exit_latch; /* Tells child threads to exit. */
109
110 /* Revalidation. */
111 struct seq *reval_seq; /* Incremented to force revalidation. */
112 bool reval_exit; /* Set by leader on 'exit_latch. */
113 struct ovs_barrier reval_barrier; /* Barrier used by revalidators. */
114 struct dpif_flow_dump *dump; /* DPIF flow dump state. */
115 long long int dump_duration; /* Duration of the last flow dump. */
116 struct seq *dump_seq; /* Increments each dump iteration. */
117 atomic_bool enable_ufid; /* If true, skip dumping flow attrs. */
118
119 /* These variables provide a mechanism for the main thread to pause
120 * all revalidation without having to completely shut the threads down.
121 * 'pause_latch' is shared between the main thread and the lead
122 * revalidator thread, so when it is desirable to halt revalidation, the
123 * main thread will set the latch. 'pause' and 'pause_barrier' are shared
124 * by revalidator threads. The lead revalidator will set 'pause' when it
125 * observes the latch has been set, and this will cause all revalidator
126 * threads to wait on 'pause_barrier' at the beginning of the next
127 * revalidation round. */
128 bool pause; /* Set by leader on 'pause_latch. */
129 struct latch pause_latch; /* Set to force revalidators pause. */
130 struct ovs_barrier pause_barrier; /* Barrier used to pause all */
131 /* revalidators by main thread. */
132
133 /* There are 'N_UMAPS' maps containing 'struct udpif_key' elements.
134 *
135 * During the flow dump phase, revalidators insert into these with a random
136 * distribution. During the garbage collection phase, each revalidator
137 * takes care of garbage collecting a slice of these maps. */
138 struct umap *ukeys;
139
140 /* Datapath flow statistics. */
141 unsigned int max_n_flows;
142 unsigned int avg_n_flows;
143
144 /* Following fields are accessed and modified by different threads. */
145 atomic_uint flow_limit; /* Datapath flow hard limit. */
146
147 /* n_flows_mutex prevents multiple threads updating these concurrently. */
148 atomic_uint n_flows; /* Number of flows in the datapath. */
149 atomic_llong n_flows_timestamp; /* Last time n_flows was updated. */
150 struct ovs_mutex n_flows_mutex;
151
152 /* Following fields are accessed and modified only from the main thread. */
153 struct unixctl_conn **conns; /* Connections waiting on dump_seq. */
154 uint64_t conn_seq; /* Corresponds to 'dump_seq' when
155 conns[n_conns-1] was stored. */
156 size_t n_conns; /* Number of connections waiting. */
157 };
158
159 enum upcall_type {
160 BAD_UPCALL, /* Some kind of bug somewhere. */
161 MISS_UPCALL, /* A flow miss. */
162 SFLOW_UPCALL, /* sFlow sample. */
163 FLOW_SAMPLE_UPCALL, /* Per-flow sampling. */
164 IPFIX_UPCALL /* Per-bridge sampling. */
165 };
166
167 enum reval_result {
168 UKEY_KEEP,
169 UKEY_DELETE,
170 UKEY_MODIFY
171 };
172
173 struct upcall {
174 struct ofproto_dpif *ofproto; /* Parent ofproto. */
175 const struct recirc_id_node *recirc; /* Recirculation context. */
176 bool have_recirc_ref; /* Reference held on recirc ctx? */
177
178 /* The flow and packet are only required to be constant when using
179 * dpif-netdev. If a modification is absolutely necessary, a const cast
180 * may be used with other datapaths. */
181 const struct flow *flow; /* Parsed representation of the packet. */
182 const ovs_u128 *ufid; /* Unique identifier for 'flow'. */
183 unsigned pmd_id; /* Datapath poll mode driver id. */
184 const struct dp_packet *packet; /* Packet associated with this upcall. */
185 ofp_port_t in_port; /* OpenFlow in port, or OFPP_NONE. */
186 uint16_t mru; /* If !0, Maximum receive unit of
187 fragmented IP packet */
188
189 enum dpif_upcall_type type; /* Datapath type of the upcall. */
190 const struct nlattr *userdata; /* Userdata for DPIF_UC_ACTION Upcalls. */
191 const struct nlattr *actions; /* Flow actions in DPIF_UC_ACTION Upcalls. */
192
193 bool xout_initialized; /* True if 'xout' must be uninitialized. */
194 struct xlate_out xout; /* Result of xlate_actions(). */
195 struct ofpbuf odp_actions; /* Datapath actions from xlate_actions(). */
196 struct flow_wildcards wc; /* Dependencies that megaflow must match. */
197 struct ofpbuf put_actions; /* Actions 'put' in the fastpath. */
198
199 struct dpif_ipfix *ipfix; /* IPFIX pointer or NULL. */
200 struct dpif_sflow *sflow; /* SFlow pointer or NULL. */
201
202 bool vsp_adjusted; /* 'packet' and 'flow' were adjusted for
203 VLAN splinters if true. */
204
205 struct udpif_key *ukey; /* Revalidator flow cache. */
206 bool ukey_persists; /* Set true to keep 'ukey' beyond the
207 lifetime of this upcall. */
208
209 uint64_t dump_seq; /* udpif->dump_seq at translation time. */
210 uint64_t reval_seq; /* udpif->reval_seq at translation time. */
211
212 /* Not used by the upcall callback interface. */
213 const struct nlattr *key; /* Datapath flow key. */
214 size_t key_len; /* Datapath flow key length. */
215 const struct nlattr *out_tun_key; /* Datapath output tunnel key. */
216
217 uint64_t odp_actions_stub[1024 / 8]; /* Stub for odp_actions. */
218 };
219
220 /* 'udpif_key's are responsible for tracking the little bit of state udpif
221 * needs to do flow expiration which can't be pulled directly from the
222 * datapath. They may be created by any handler or revalidator thread at any
223 * time, and read by any revalidator during the dump phase. They are however
224 * each owned by a single revalidator which takes care of destroying them
225 * during the garbage-collection phase.
226 *
227 * The mutex within the ukey protects some members of the ukey. The ukey
228 * itself is protected by RCU and is held within a umap in the parent udpif.
229 * Adding or removing a ukey from a umap is only safe when holding the
230 * corresponding umap lock. */
231 struct udpif_key {
232 struct cmap_node cmap_node; /* In parent revalidator 'ukeys' map. */
233
234 /* These elements are read only once created, and therefore aren't
235 * protected by a mutex. */
236 const struct nlattr *key; /* Datapath flow key. */
237 size_t key_len; /* Length of 'key'. */
238 const struct nlattr *mask; /* Datapath flow mask. */
239 size_t mask_len; /* Length of 'mask'. */
240 ovs_u128 ufid; /* Unique flow identifier. */
241 bool ufid_present; /* True if 'ufid' is in datapath. */
242 uint32_t hash; /* Pre-computed hash for 'key'. */
243 unsigned pmd_id; /* Datapath poll mode driver id. */
244
245 struct ovs_mutex mutex; /* Guards the following. */
246 struct dpif_flow_stats stats OVS_GUARDED; /* Last known stats.*/
247 long long int created OVS_GUARDED; /* Estimate of creation time. */
248 uint64_t dump_seq OVS_GUARDED; /* Tracks udpif->dump_seq. */
249 uint64_t reval_seq OVS_GUARDED; /* Tracks udpif->reval_seq. */
250 bool flow_exists OVS_GUARDED; /* Ensures flows are only deleted
251 once. */
252 /* Datapath flow actions as nlattrs. Protected by RCU. Read with
253 * ukey_get_actions(), and write with ukey_set_actions(). */
254 OVSRCU_TYPE(struct ofpbuf *) actions;
255
256 struct xlate_cache *xcache OVS_GUARDED; /* Cache for xlate entries that
257 * are affected by this ukey.
258 * Used for stats and learning.*/
259 union {
260 struct odputil_keybuf buf;
261 struct nlattr nla;
262 } keybuf, maskbuf;
263
264 /* Recirculation IDs with references held by the ukey. */
265 unsigned n_recircs;
266 uint32_t recircs[]; /* 'n_recircs' id's for which references are held. */
267 };
268
269 /* Datapath operation with optional ukey attached. */
270 struct ukey_op {
271 struct udpif_key *ukey;
272 struct dpif_flow_stats stats; /* Stats for 'op'. */
273 struct dpif_op dop; /* Flow operation. */
274 };
275
276 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
277 static struct ovs_list all_udpifs = OVS_LIST_INITIALIZER(&all_udpifs);
278
279 static size_t recv_upcalls(struct handler *);
280 static int process_upcall(struct udpif *, struct upcall *,
281 struct ofpbuf *odp_actions, struct flow_wildcards *);
282 static void handle_upcalls(struct udpif *, struct upcall *, size_t n_upcalls);
283 static void udpif_stop_threads(struct udpif *);
284 static void udpif_start_threads(struct udpif *, size_t n_handlers,
285 size_t n_revalidators);
286 static void udpif_pause_revalidators(struct udpif *);
287 static void udpif_resume_revalidators(struct udpif *);
288 static void *udpif_upcall_handler(void *);
289 static void *udpif_revalidator(void *);
290 static unsigned long udpif_get_n_flows(struct udpif *);
291 static void revalidate(struct revalidator *);
292 static void revalidator_pause(struct revalidator *);
293 static void revalidator_sweep(struct revalidator *);
294 static void revalidator_purge(struct revalidator *);
295 static void upcall_unixctl_show(struct unixctl_conn *conn, int argc,
296 const char *argv[], void *aux);
297 static void upcall_unixctl_disable_megaflows(struct unixctl_conn *, int argc,
298 const char *argv[], void *aux);
299 static void upcall_unixctl_enable_megaflows(struct unixctl_conn *, int argc,
300 const char *argv[], void *aux);
301 static void upcall_unixctl_disable_ufid(struct unixctl_conn *, int argc,
302 const char *argv[], void *aux);
303 static void upcall_unixctl_enable_ufid(struct unixctl_conn *, int argc,
304 const char *argv[], void *aux);
305 static void upcall_unixctl_set_flow_limit(struct unixctl_conn *conn, int argc,
306 const char *argv[], void *aux);
307 static void upcall_unixctl_dump_wait(struct unixctl_conn *conn, int argc,
308 const char *argv[], void *aux);
309 static void upcall_unixctl_purge(struct unixctl_conn *conn, int argc,
310 const char *argv[], void *aux);
311
312 static struct udpif_key *ukey_create_from_upcall(struct upcall *,
313 struct flow_wildcards *);
314 static int ukey_create_from_dpif_flow(const struct udpif *,
315 const struct dpif_flow *,
316 struct udpif_key **);
317 static void ukey_get_actions(struct udpif_key *, const struct nlattr **actions,
318 size_t *size);
319 static bool ukey_install_start(struct udpif *, struct udpif_key *ukey);
320 static bool ukey_install_finish(struct udpif_key *ukey, int error);
321 static bool ukey_install(struct udpif *udpif, struct udpif_key *ukey);
322 static struct udpif_key *ukey_lookup(struct udpif *udpif,
323 const ovs_u128 *ufid);
324 static int ukey_acquire(struct udpif *, const struct dpif_flow *,
325 struct udpif_key **result, int *error);
326 static void ukey_delete__(struct udpif_key *);
327 static void ukey_delete(struct umap *, struct udpif_key *);
328 static enum upcall_type classify_upcall(enum dpif_upcall_type type,
329 const struct nlattr *userdata);
330
331 static int upcall_receive(struct upcall *, const struct dpif_backer *,
332 const struct dp_packet *packet, enum dpif_upcall_type,
333 const struct nlattr *userdata, const struct flow *,
334 const unsigned int mru,
335 const ovs_u128 *ufid, const unsigned pmd_id);
336 static void upcall_uninit(struct upcall *);
337
338 static upcall_callback upcall_cb;
339 static dp_purge_callback dp_purge_cb;
340
341 static atomic_bool enable_megaflows = ATOMIC_VAR_INIT(true);
342 static atomic_bool enable_ufid = ATOMIC_VAR_INIT(true);
343
344 void
345 udpif_init(void)
346 {
347 static struct ovsthread_once once = OVSTHREAD_ONCE_INITIALIZER;
348 if (ovsthread_once_start(&once)) {
349 unixctl_command_register("upcall/show", "", 0, 0, upcall_unixctl_show,
350 NULL);
351 unixctl_command_register("upcall/disable-megaflows", "", 0, 0,
352 upcall_unixctl_disable_megaflows, NULL);
353 unixctl_command_register("upcall/enable-megaflows", "", 0, 0,
354 upcall_unixctl_enable_megaflows, NULL);
355 unixctl_command_register("upcall/disable-ufid", "", 0, 0,
356 upcall_unixctl_disable_ufid, NULL);
357 unixctl_command_register("upcall/enable-ufid", "", 0, 0,
358 upcall_unixctl_enable_ufid, NULL);
359 unixctl_command_register("upcall/set-flow-limit", "", 1, 1,
360 upcall_unixctl_set_flow_limit, NULL);
361 unixctl_command_register("revalidator/wait", "", 0, 0,
362 upcall_unixctl_dump_wait, NULL);
363 unixctl_command_register("revalidator/purge", "", 0, 0,
364 upcall_unixctl_purge, NULL);
365 ovsthread_once_done(&once);
366 }
367 }
368
369 struct udpif *
370 udpif_create(struct dpif_backer *backer, struct dpif *dpif)
371 {
372 struct udpif *udpif = xzalloc(sizeof *udpif);
373
374 udpif->dpif = dpif;
375 udpif->backer = backer;
376 atomic_init(&udpif->flow_limit, MIN(ofproto_flow_limit, 10000));
377 udpif->reval_seq = seq_create();
378 udpif->dump_seq = seq_create();
379 latch_init(&udpif->exit_latch);
380 latch_init(&udpif->pause_latch);
381 list_push_back(&all_udpifs, &udpif->list_node);
382 atomic_init(&udpif->enable_ufid, false);
383 atomic_init(&udpif->n_flows, 0);
384 atomic_init(&udpif->n_flows_timestamp, LLONG_MIN);
385 ovs_mutex_init(&udpif->n_flows_mutex);
386 udpif->ukeys = xmalloc(N_UMAPS * sizeof *udpif->ukeys);
387 for (int i = 0; i < N_UMAPS; i++) {
388 cmap_init(&udpif->ukeys[i].cmap);
389 ovs_mutex_init(&udpif->ukeys[i].mutex);
390 }
391
392 dpif_register_upcall_cb(dpif, upcall_cb, udpif);
393 dpif_register_dp_purge_cb(dpif, dp_purge_cb, udpif);
394
395 return udpif;
396 }
397
398 void
399 udpif_run(struct udpif *udpif)
400 {
401 if (udpif->conns && udpif->conn_seq != seq_read(udpif->dump_seq)) {
402 int i;
403
404 for (i = 0; i < udpif->n_conns; i++) {
405 unixctl_command_reply(udpif->conns[i], NULL);
406 }
407 free(udpif->conns);
408 udpif->conns = NULL;
409 udpif->n_conns = 0;
410 }
411 }
412
413 void
414 udpif_destroy(struct udpif *udpif)
415 {
416 udpif_stop_threads(udpif);
417
418 for (int i = 0; i < N_UMAPS; i++) {
419 cmap_destroy(&udpif->ukeys[i].cmap);
420 ovs_mutex_destroy(&udpif->ukeys[i].mutex);
421 }
422 free(udpif->ukeys);
423 udpif->ukeys = NULL;
424
425 list_remove(&udpif->list_node);
426 latch_destroy(&udpif->exit_latch);
427 latch_destroy(&udpif->pause_latch);
428 seq_destroy(udpif->reval_seq);
429 seq_destroy(udpif->dump_seq);
430 ovs_mutex_destroy(&udpif->n_flows_mutex);
431 free(udpif);
432 }
433
434 /* Stops the handler and revalidator threads, must be enclosed in
435 * ovsrcu quiescent state unless when destroying udpif. */
436 static void
437 udpif_stop_threads(struct udpif *udpif)
438 {
439 if (udpif && (udpif->n_handlers != 0 || udpif->n_revalidators != 0)) {
440 size_t i;
441
442 latch_set(&udpif->exit_latch);
443
444 for (i = 0; i < udpif->n_handlers; i++) {
445 struct handler *handler = &udpif->handlers[i];
446
447 xpthread_join(handler->thread, NULL);
448 }
449
450 for (i = 0; i < udpif->n_revalidators; i++) {
451 xpthread_join(udpif->revalidators[i].thread, NULL);
452 }
453
454 dpif_disable_upcall(udpif->dpif);
455
456 for (i = 0; i < udpif->n_revalidators; i++) {
457 struct revalidator *revalidator = &udpif->revalidators[i];
458
459 /* Delete ukeys, and delete all flows from the datapath to prevent
460 * double-counting stats. */
461 revalidator_purge(revalidator);
462 }
463
464 latch_poll(&udpif->exit_latch);
465
466 ovs_barrier_destroy(&udpif->reval_barrier);
467 ovs_barrier_destroy(&udpif->pause_barrier);
468
469 free(udpif->revalidators);
470 udpif->revalidators = NULL;
471 udpif->n_revalidators = 0;
472
473 free(udpif->handlers);
474 udpif->handlers = NULL;
475 udpif->n_handlers = 0;
476 }
477 }
478
479 /* Starts the handler and revalidator threads, must be enclosed in
480 * ovsrcu quiescent state. */
481 static void
482 udpif_start_threads(struct udpif *udpif, size_t n_handlers,
483 size_t n_revalidators)
484 {
485 if (udpif && n_handlers && n_revalidators) {
486 size_t i;
487 bool enable_ufid;
488
489 udpif->n_handlers = n_handlers;
490 udpif->n_revalidators = n_revalidators;
491
492 udpif->handlers = xzalloc(udpif->n_handlers * sizeof *udpif->handlers);
493 for (i = 0; i < udpif->n_handlers; i++) {
494 struct handler *handler = &udpif->handlers[i];
495
496 handler->udpif = udpif;
497 handler->handler_id = i;
498 handler->thread = ovs_thread_create(
499 "handler", udpif_upcall_handler, handler);
500 }
501
502 enable_ufid = ofproto_dpif_get_enable_ufid(udpif->backer);
503 atomic_init(&udpif->enable_ufid, enable_ufid);
504 dpif_enable_upcall(udpif->dpif);
505
506 ovs_barrier_init(&udpif->reval_barrier, udpif->n_revalidators);
507 ovs_barrier_init(&udpif->pause_barrier, udpif->n_revalidators + 1);
508 udpif->reval_exit = false;
509 udpif->pause = false;
510 udpif->revalidators = xzalloc(udpif->n_revalidators
511 * sizeof *udpif->revalidators);
512 for (i = 0; i < udpif->n_revalidators; i++) {
513 struct revalidator *revalidator = &udpif->revalidators[i];
514
515 revalidator->udpif = udpif;
516 revalidator->thread = ovs_thread_create(
517 "revalidator", udpif_revalidator, revalidator);
518 }
519 }
520 }
521
522 /* Pauses all revalidators. Should only be called by the main thread.
523 * When function returns, all revalidators are paused and will proceed
524 * only after udpif_resume_revalidators() is called. */
525 static void
526 udpif_pause_revalidators(struct udpif *udpif)
527 {
528 if (ofproto_dpif_backer_enabled(udpif->backer)) {
529 latch_set(&udpif->pause_latch);
530 ovs_barrier_block(&udpif->pause_barrier);
531 }
532 }
533
534 /* Resumes the pausing of revalidators. Should only be called by the
535 * main thread. */
536 static void
537 udpif_resume_revalidators(struct udpif *udpif)
538 {
539 if (ofproto_dpif_backer_enabled(udpif->backer)) {
540 latch_poll(&udpif->pause_latch);
541 ovs_barrier_block(&udpif->pause_barrier);
542 }
543 }
544
545 /* Tells 'udpif' how many threads it should use to handle upcalls.
546 * 'n_handlers' and 'n_revalidators' can never be zero. 'udpif''s
547 * datapath handle must have packet reception enabled before starting
548 * threads. */
549 void
550 udpif_set_threads(struct udpif *udpif, size_t n_handlers,
551 size_t n_revalidators)
552 {
553 ovs_assert(udpif);
554 ovs_assert(n_handlers && n_revalidators);
555
556 ovsrcu_quiesce_start();
557 if (udpif->n_handlers != n_handlers
558 || udpif->n_revalidators != n_revalidators) {
559 udpif_stop_threads(udpif);
560 }
561
562 if (!udpif->handlers && !udpif->revalidators) {
563 int error;
564
565 error = dpif_handlers_set(udpif->dpif, n_handlers);
566 if (error) {
567 VLOG_ERR("failed to configure handlers in dpif %s: %s",
568 dpif_name(udpif->dpif), ovs_strerror(error));
569 return;
570 }
571
572 udpif_start_threads(udpif, n_handlers, n_revalidators);
573 }
574 ovsrcu_quiesce_end();
575 }
576
577 /* Waits for all ongoing upcall translations to complete. This ensures that
578 * there are no transient references to any removed ofprotos (or other
579 * objects). In particular, this should be called after an ofproto is removed
580 * (e.g. via xlate_remove_ofproto()) but before it is destroyed. */
581 void
582 udpif_synchronize(struct udpif *udpif)
583 {
584 /* This is stronger than necessary. It would be sufficient to ensure
585 * (somehow) that each handler and revalidator thread had passed through
586 * its main loop once. */
587 size_t n_handlers = udpif->n_handlers;
588 size_t n_revalidators = udpif->n_revalidators;
589
590 ovsrcu_quiesce_start();
591 udpif_stop_threads(udpif);
592 udpif_start_threads(udpif, n_handlers, n_revalidators);
593 ovsrcu_quiesce_end();
594 }
595
596 /* Notifies 'udpif' that something changed which may render previous
597 * xlate_actions() results invalid. */
598 void
599 udpif_revalidate(struct udpif *udpif)
600 {
601 seq_change(udpif->reval_seq);
602 }
603
604 /* Returns a seq which increments every time 'udpif' pulls stats from the
605 * datapath. Callers can use this to get a sense of when might be a good time
606 * to do periodic work which relies on relatively up to date statistics. */
607 struct seq *
608 udpif_dump_seq(struct udpif *udpif)
609 {
610 return udpif->dump_seq;
611 }
612
613 void
614 udpif_get_memory_usage(struct udpif *udpif, struct simap *usage)
615 {
616 size_t i;
617
618 simap_increase(usage, "handlers", udpif->n_handlers);
619
620 simap_increase(usage, "revalidators", udpif->n_revalidators);
621 for (i = 0; i < N_UMAPS; i++) {
622 simap_increase(usage, "udpif keys", cmap_count(&udpif->ukeys[i].cmap));
623 }
624 }
625
626 /* Remove flows from a single datapath. */
627 void
628 udpif_flush(struct udpif *udpif)
629 {
630 size_t n_handlers, n_revalidators;
631
632 n_handlers = udpif->n_handlers;
633 n_revalidators = udpif->n_revalidators;
634
635 ovsrcu_quiesce_start();
636
637 udpif_stop_threads(udpif);
638 dpif_flow_flush(udpif->dpif);
639 udpif_start_threads(udpif, n_handlers, n_revalidators);
640
641 ovsrcu_quiesce_end();
642 }
643
644 /* Removes all flows from all datapaths. */
645 static void
646 udpif_flush_all_datapaths(void)
647 {
648 struct udpif *udpif;
649
650 LIST_FOR_EACH (udpif, list_node, &all_udpifs) {
651 udpif_flush(udpif);
652 }
653 }
654
655 static bool
656 udpif_use_ufid(struct udpif *udpif)
657 {
658 bool enable;
659
660 atomic_read_relaxed(&enable_ufid, &enable);
661 return enable && ofproto_dpif_get_enable_ufid(udpif->backer);
662 }
663
664 \f
665 static unsigned long
666 udpif_get_n_flows(struct udpif *udpif)
667 {
668 long long int time, now;
669 unsigned long flow_count;
670
671 now = time_msec();
672 atomic_read_relaxed(&udpif->n_flows_timestamp, &time);
673 if (time < now - 100 && !ovs_mutex_trylock(&udpif->n_flows_mutex)) {
674 struct dpif_dp_stats stats;
675
676 atomic_store_relaxed(&udpif->n_flows_timestamp, now);
677 dpif_get_dp_stats(udpif->dpif, &stats);
678 flow_count = stats.n_flows;
679 atomic_store_relaxed(&udpif->n_flows, flow_count);
680 ovs_mutex_unlock(&udpif->n_flows_mutex);
681 } else {
682 atomic_read_relaxed(&udpif->n_flows, &flow_count);
683 }
684 return flow_count;
685 }
686
687 /* The upcall handler thread tries to read a batch of UPCALL_MAX_BATCH
688 * upcalls from dpif, processes the batch and installs corresponding flows
689 * in dpif. */
690 static void *
691 udpif_upcall_handler(void *arg)
692 {
693 struct handler *handler = arg;
694 struct udpif *udpif = handler->udpif;
695
696 while (!latch_is_set(&handler->udpif->exit_latch)) {
697 if (recv_upcalls(handler)) {
698 poll_immediate_wake();
699 } else {
700 dpif_recv_wait(udpif->dpif, handler->handler_id);
701 latch_wait(&udpif->exit_latch);
702 }
703 poll_block();
704 }
705
706 return NULL;
707 }
708
709 static size_t
710 recv_upcalls(struct handler *handler)
711 {
712 struct udpif *udpif = handler->udpif;
713 uint64_t recv_stubs[UPCALL_MAX_BATCH][512 / 8];
714 struct ofpbuf recv_bufs[UPCALL_MAX_BATCH];
715 struct dpif_upcall dupcalls[UPCALL_MAX_BATCH];
716 struct upcall upcalls[UPCALL_MAX_BATCH];
717 struct flow flows[UPCALL_MAX_BATCH];
718 size_t n_upcalls, i;
719
720 n_upcalls = 0;
721 while (n_upcalls < UPCALL_MAX_BATCH) {
722 struct ofpbuf *recv_buf = &recv_bufs[n_upcalls];
723 struct dpif_upcall *dupcall = &dupcalls[n_upcalls];
724 struct upcall *upcall = &upcalls[n_upcalls];
725 struct flow *flow = &flows[n_upcalls];
726 unsigned int mru;
727 int error;
728
729 ofpbuf_use_stub(recv_buf, recv_stubs[n_upcalls],
730 sizeof recv_stubs[n_upcalls]);
731 if (dpif_recv(udpif->dpif, handler->handler_id, dupcall, recv_buf)) {
732 ofpbuf_uninit(recv_buf);
733 break;
734 }
735
736 if (odp_flow_key_to_flow(dupcall->key, dupcall->key_len, flow)
737 == ODP_FIT_ERROR) {
738 goto free_dupcall;
739 }
740
741 if (dupcall->mru) {
742 mru = nl_attr_get_u16(dupcall->mru);
743 } else {
744 mru = 0;
745 }
746
747 error = upcall_receive(upcall, udpif->backer, &dupcall->packet,
748 dupcall->type, dupcall->userdata, flow, mru,
749 &dupcall->ufid, PMD_ID_NULL);
750 if (error) {
751 if (error == ENODEV) {
752 /* Received packet on datapath port for which we couldn't
753 * associate an ofproto. This can happen if a port is removed
754 * while traffic is being received. Print a rate-limited
755 * message in case it happens frequently. */
756 dpif_flow_put(udpif->dpif, DPIF_FP_CREATE, dupcall->key,
757 dupcall->key_len, NULL, 0, NULL, 0,
758 &dupcall->ufid, PMD_ID_NULL, NULL);
759 VLOG_INFO_RL(&rl, "received packet on unassociated datapath "
760 "port %"PRIu32, flow->in_port.odp_port);
761 }
762 goto free_dupcall;
763 }
764
765 upcall->key = dupcall->key;
766 upcall->key_len = dupcall->key_len;
767 upcall->ufid = &dupcall->ufid;
768
769 upcall->out_tun_key = dupcall->out_tun_key;
770 upcall->actions = dupcall->actions;
771
772 if (vsp_adjust_flow(upcall->ofproto, flow, &dupcall->packet)) {
773 upcall->vsp_adjusted = true;
774 }
775
776 pkt_metadata_from_flow(&dupcall->packet.md, flow);
777 flow_extract(&dupcall->packet, flow);
778
779 error = process_upcall(udpif, upcall,
780 &upcall->odp_actions, &upcall->wc);
781 if (error) {
782 goto cleanup;
783 }
784
785 n_upcalls++;
786 continue;
787
788 cleanup:
789 upcall_uninit(upcall);
790 free_dupcall:
791 dp_packet_uninit(&dupcall->packet);
792 ofpbuf_uninit(recv_buf);
793 }
794
795 if (n_upcalls) {
796 handle_upcalls(handler->udpif, upcalls, n_upcalls);
797 for (i = 0; i < n_upcalls; i++) {
798 dp_packet_uninit(&dupcalls[i].packet);
799 ofpbuf_uninit(&recv_bufs[i]);
800 upcall_uninit(&upcalls[i]);
801 }
802 }
803
804 return n_upcalls;
805 }
806
807 static void *
808 udpif_revalidator(void *arg)
809 {
810 /* Used by all revalidators. */
811 struct revalidator *revalidator = arg;
812 struct udpif *udpif = revalidator->udpif;
813 bool leader = revalidator == &udpif->revalidators[0];
814
815 /* Used only by the leader. */
816 long long int start_time = 0;
817 uint64_t last_reval_seq = 0;
818 size_t n_flows = 0;
819
820 revalidator->id = ovsthread_id_self();
821 for (;;) {
822 if (leader) {
823 uint64_t reval_seq;
824
825 recirc_run(); /* Recirculation cleanup. */
826
827 reval_seq = seq_read(udpif->reval_seq);
828 last_reval_seq = reval_seq;
829
830 n_flows = udpif_get_n_flows(udpif);
831 udpif->max_n_flows = MAX(n_flows, udpif->max_n_flows);
832 udpif->avg_n_flows = (udpif->avg_n_flows + n_flows) / 2;
833
834 /* Only the leader checks the pause latch to prevent a race where
835 * some threads think it's false and proceed to block on
836 * reval_barrier and others think it's true and block indefinitely
837 * on the pause_barrier */
838 udpif->pause = latch_is_set(&udpif->pause_latch);
839
840 /* Only the leader checks the exit latch to prevent a race where
841 * some threads think it's true and exit and others think it's
842 * false and block indefinitely on the reval_barrier */
843 udpif->reval_exit = latch_is_set(&udpif->exit_latch);
844
845 start_time = time_msec();
846 if (!udpif->reval_exit) {
847 bool terse_dump;
848
849 terse_dump = udpif_use_ufid(udpif);
850 udpif->dump = dpif_flow_dump_create(udpif->dpif, terse_dump);
851 }
852 }
853
854 /* Wait for the leader to start the flow dump. */
855 ovs_barrier_block(&udpif->reval_barrier);
856 if (udpif->pause) {
857 revalidator_pause(revalidator);
858 }
859
860 if (udpif->reval_exit) {
861 break;
862 }
863 revalidate(revalidator);
864
865 /* Wait for all flows to have been dumped before we garbage collect. */
866 ovs_barrier_block(&udpif->reval_barrier);
867 revalidator_sweep(revalidator);
868
869 /* Wait for all revalidators to finish garbage collection. */
870 ovs_barrier_block(&udpif->reval_barrier);
871
872 if (leader) {
873 unsigned int flow_limit;
874 long long int duration;
875
876 atomic_read_relaxed(&udpif->flow_limit, &flow_limit);
877
878 dpif_flow_dump_destroy(udpif->dump);
879 seq_change(udpif->dump_seq);
880
881 duration = MAX(time_msec() - start_time, 1);
882 udpif->dump_duration = duration;
883 if (duration > 2000) {
884 flow_limit /= duration / 1000;
885 } else if (duration > 1300) {
886 flow_limit = flow_limit * 3 / 4;
887 } else if (duration < 1000 && n_flows > 2000
888 && flow_limit < n_flows * 1000 / duration) {
889 flow_limit += 1000;
890 }
891 flow_limit = MIN(ofproto_flow_limit, MAX(flow_limit, 1000));
892 atomic_store_relaxed(&udpif->flow_limit, flow_limit);
893
894 if (duration > 2000) {
895 VLOG_INFO("Spent an unreasonably long %lldms dumping flows",
896 duration);
897 }
898
899 poll_timer_wait_until(start_time + MIN(ofproto_max_idle, 500));
900 seq_wait(udpif->reval_seq, last_reval_seq);
901 latch_wait(&udpif->exit_latch);
902 latch_wait(&udpif->pause_latch);
903 poll_block();
904 }
905 }
906
907 return NULL;
908 }
909 \f
910 static enum upcall_type
911 classify_upcall(enum dpif_upcall_type type, const struct nlattr *userdata)
912 {
913 union user_action_cookie cookie;
914 size_t userdata_len;
915
916 /* First look at the upcall type. */
917 switch (type) {
918 case DPIF_UC_ACTION:
919 break;
920
921 case DPIF_UC_MISS:
922 return MISS_UPCALL;
923
924 case DPIF_N_UC_TYPES:
925 default:
926 VLOG_WARN_RL(&rl, "upcall has unexpected type %"PRIu32, type);
927 return BAD_UPCALL;
928 }
929
930 /* "action" upcalls need a closer look. */
931 if (!userdata) {
932 VLOG_WARN_RL(&rl, "action upcall missing cookie");
933 return BAD_UPCALL;
934 }
935 userdata_len = nl_attr_get_size(userdata);
936 if (userdata_len < sizeof cookie.type
937 || userdata_len > sizeof cookie) {
938 VLOG_WARN_RL(&rl, "action upcall cookie has unexpected size %"PRIuSIZE,
939 userdata_len);
940 return BAD_UPCALL;
941 }
942 memset(&cookie, 0, sizeof cookie);
943 memcpy(&cookie, nl_attr_get(userdata), userdata_len);
944 if (userdata_len == MAX(8, sizeof cookie.sflow)
945 && cookie.type == USER_ACTION_COOKIE_SFLOW) {
946 return SFLOW_UPCALL;
947 } else if (userdata_len == MAX(8, sizeof cookie.slow_path)
948 && cookie.type == USER_ACTION_COOKIE_SLOW_PATH) {
949 return MISS_UPCALL;
950 } else if (userdata_len == MAX(8, sizeof cookie.flow_sample)
951 && cookie.type == USER_ACTION_COOKIE_FLOW_SAMPLE) {
952 return FLOW_SAMPLE_UPCALL;
953 } else if (userdata_len == MAX(8, sizeof cookie.ipfix)
954 && cookie.type == USER_ACTION_COOKIE_IPFIX) {
955 return IPFIX_UPCALL;
956 } else {
957 VLOG_WARN_RL(&rl, "invalid user cookie of type %"PRIu16
958 " and size %"PRIuSIZE, cookie.type, userdata_len);
959 return BAD_UPCALL;
960 }
961 }
962
963 /* Calculates slow path actions for 'xout'. 'buf' must statically be
964 * initialized with at least 128 bytes of space. */
965 static void
966 compose_slow_path(struct udpif *udpif, struct xlate_out *xout,
967 const struct flow *flow, odp_port_t odp_in_port,
968 struct ofpbuf *buf)
969 {
970 union user_action_cookie cookie;
971 odp_port_t port;
972 uint32_t pid;
973
974 cookie.type = USER_ACTION_COOKIE_SLOW_PATH;
975 cookie.slow_path.unused = 0;
976 cookie.slow_path.reason = xout->slow;
977
978 port = xout->slow & (SLOW_CFM | SLOW_BFD | SLOW_LACP | SLOW_STP)
979 ? ODPP_NONE
980 : odp_in_port;
981 pid = dpif_port_get_pid(udpif->dpif, port, flow_hash_5tuple(flow, 0));
982 odp_put_userspace_action(pid, &cookie, sizeof cookie.slow_path,
983 ODPP_NONE, false, buf);
984 }
985
986 /* If there is no error, the upcall must be destroyed with upcall_uninit()
987 * before quiescing, as the referred objects are guaranteed to exist only
988 * until the calling thread quiesces. Otherwise, do not call upcall_uninit()
989 * since the 'upcall->put_actions' remains uninitialized. */
990 static int
991 upcall_receive(struct upcall *upcall, const struct dpif_backer *backer,
992 const struct dp_packet *packet, enum dpif_upcall_type type,
993 const struct nlattr *userdata, const struct flow *flow,
994 const unsigned int mru,
995 const ovs_u128 *ufid, const unsigned pmd_id)
996 {
997 int error;
998
999 error = xlate_lookup(backer, flow, &upcall->ofproto, &upcall->ipfix,
1000 &upcall->sflow, NULL, &upcall->in_port);
1001 if (error) {
1002 return error;
1003 }
1004
1005 upcall->recirc = NULL;
1006 upcall->have_recirc_ref = false;
1007 upcall->flow = flow;
1008 upcall->packet = packet;
1009 upcall->ufid = ufid;
1010 upcall->pmd_id = pmd_id;
1011 upcall->type = type;
1012 upcall->userdata = userdata;
1013 ofpbuf_use_stub(&upcall->odp_actions, upcall->odp_actions_stub,
1014 sizeof upcall->odp_actions_stub);
1015 ofpbuf_init(&upcall->put_actions, 0);
1016
1017 upcall->xout_initialized = false;
1018 upcall->vsp_adjusted = false;
1019 upcall->ukey_persists = false;
1020
1021 upcall->ukey = NULL;
1022 upcall->key = NULL;
1023 upcall->key_len = 0;
1024 upcall->mru = mru;
1025
1026 upcall->out_tun_key = NULL;
1027 upcall->actions = NULL;
1028
1029 return 0;
1030 }
1031
1032 static void
1033 upcall_xlate(struct udpif *udpif, struct upcall *upcall,
1034 struct ofpbuf *odp_actions, struct flow_wildcards *wc)
1035 {
1036 struct dpif_flow_stats stats;
1037 struct xlate_in xin;
1038
1039 stats.n_packets = 1;
1040 stats.n_bytes = dp_packet_size(upcall->packet);
1041 stats.used = time_msec();
1042 stats.tcp_flags = ntohs(upcall->flow->tcp_flags);
1043
1044 xlate_in_init(&xin, upcall->ofproto, upcall->flow, upcall->in_port, NULL,
1045 stats.tcp_flags, upcall->packet, wc, odp_actions);
1046
1047 if (upcall->type == DPIF_UC_MISS) {
1048 xin.resubmit_stats = &stats;
1049
1050 if (xin.recirc) {
1051 /* We may install a datapath flow only if we get a reference to the
1052 * recirculation context (otherwise we could have recirculation
1053 * upcalls using recirculation ID for which no context can be
1054 * found). We may still execute the flow's actions even if we
1055 * don't install the flow. */
1056 upcall->recirc = xin.recirc;
1057 upcall->have_recirc_ref = recirc_id_node_try_ref_rcu(xin.recirc);
1058 }
1059 } else {
1060 /* For non-miss upcalls, we are either executing actions (one of which
1061 * is an userspace action) for an upcall, in which case the stats have
1062 * already been taken care of, or there's a flow in the datapath which
1063 * this packet was accounted to. Presumably the revalidators will deal
1064 * with pushing its stats eventually. */
1065 }
1066
1067 upcall->dump_seq = seq_read(udpif->dump_seq);
1068 upcall->reval_seq = seq_read(udpif->reval_seq);
1069 xlate_actions(&xin, &upcall->xout);
1070 upcall->xout_initialized = true;
1071
1072 /* Special case for fail-open mode.
1073 *
1074 * If we are in fail-open mode, but we are connected to a controller too,
1075 * then we should send the packet up to the controller in the hope that it
1076 * will try to set up a flow and thereby allow us to exit fail-open.
1077 *
1078 * See the top-level comment in fail-open.c for more information.
1079 *
1080 * Copy packets before they are modified by execution. */
1081 if (upcall->xout.fail_open) {
1082 const struct dp_packet *packet = upcall->packet;
1083 struct ofproto_packet_in *pin;
1084
1085 pin = xmalloc(sizeof *pin);
1086 pin->up.packet = xmemdup(dp_packet_data(packet), dp_packet_size(packet));
1087 pin->up.packet_len = dp_packet_size(packet);
1088 pin->up.reason = OFPR_NO_MATCH;
1089 pin->up.table_id = 0;
1090 pin->up.cookie = OVS_BE64_MAX;
1091 flow_get_metadata(upcall->flow, &pin->up.flow_metadata);
1092 pin->send_len = 0; /* Not used for flow table misses. */
1093 pin->miss_type = OFPROTO_PACKET_IN_NO_MISS;
1094 ofproto_dpif_send_packet_in(upcall->ofproto, pin);
1095 }
1096
1097 if (!upcall->xout.slow) {
1098 ofpbuf_use_const(&upcall->put_actions,
1099 odp_actions->data, odp_actions->size);
1100 } else {
1101 ofpbuf_init(&upcall->put_actions, 0);
1102 compose_slow_path(udpif, &upcall->xout, upcall->flow,
1103 upcall->flow->in_port.odp_port,
1104 &upcall->put_actions);
1105 }
1106
1107 /* This function is also called for slow-pathed flows. As we are only
1108 * going to create new datapath flows for actual datapath misses, there is
1109 * no point in creating a ukey otherwise. */
1110 if (upcall->type == DPIF_UC_MISS) {
1111 upcall->ukey = ukey_create_from_upcall(upcall, wc);
1112 }
1113 }
1114
1115 static void
1116 upcall_uninit(struct upcall *upcall)
1117 {
1118 if (upcall) {
1119 if (upcall->xout_initialized) {
1120 xlate_out_uninit(&upcall->xout);
1121 }
1122 ofpbuf_uninit(&upcall->odp_actions);
1123 ofpbuf_uninit(&upcall->put_actions);
1124 if (upcall->ukey) {
1125 if (!upcall->ukey_persists) {
1126 ukey_delete__(upcall->ukey);
1127 }
1128 } else if (upcall->have_recirc_ref) {
1129 /* The reference was transferred to the ukey if one was created. */
1130 recirc_id_node_unref(upcall->recirc);
1131 }
1132 }
1133 }
1134
1135 static int
1136 upcall_cb(const struct dp_packet *packet, const struct flow *flow, ovs_u128 *ufid,
1137 unsigned pmd_id, enum dpif_upcall_type type,
1138 const struct nlattr *userdata, struct ofpbuf *actions,
1139 struct flow_wildcards *wc, struct ofpbuf *put_actions, void *aux)
1140 {
1141 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 1);
1142 struct udpif *udpif = aux;
1143 unsigned int flow_limit;
1144 struct upcall upcall;
1145 bool megaflow;
1146 int error;
1147
1148 atomic_read_relaxed(&enable_megaflows, &megaflow);
1149 atomic_read_relaxed(&udpif->flow_limit, &flow_limit);
1150
1151 error = upcall_receive(&upcall, udpif->backer, packet, type, userdata,
1152 flow, 0, ufid, pmd_id);
1153 if (error) {
1154 return error;
1155 }
1156
1157 error = process_upcall(udpif, &upcall, actions, wc);
1158 if (error) {
1159 goto out;
1160 }
1161
1162 if (upcall.xout.slow && put_actions) {
1163 ofpbuf_put(put_actions, upcall.put_actions.data,
1164 upcall.put_actions.size);
1165 }
1166
1167 if (OVS_UNLIKELY(!megaflow)) {
1168 flow_wildcards_init_for_packet(wc, flow);
1169 }
1170
1171 if (udpif_get_n_flows(udpif) >= flow_limit) {
1172 VLOG_WARN_RL(&rl, "upcall_cb failure: datapath flow limit reached");
1173 error = ENOSPC;
1174 goto out;
1175 }
1176
1177 /* Prevent miss flow installation if the key has recirculation ID but we
1178 * were not able to get a reference on it. */
1179 if (type == DPIF_UC_MISS && upcall.recirc && !upcall.have_recirc_ref) {
1180 VLOG_WARN_RL(&rl, "upcall_cb failure: no reference for recirc flow");
1181 error = ENOSPC;
1182 goto out;
1183 }
1184
1185 if (upcall.ukey && !ukey_install(udpif, upcall.ukey)) {
1186 VLOG_WARN_RL(&rl, "upcall_cb failure: ukey installation fails");
1187 error = ENOSPC;
1188 }
1189 out:
1190 if (!error) {
1191 upcall.ukey_persists = true;
1192 }
1193 upcall_uninit(&upcall);
1194 return error;
1195 }
1196
1197 static int
1198 process_upcall(struct udpif *udpif, struct upcall *upcall,
1199 struct ofpbuf *odp_actions, struct flow_wildcards *wc)
1200 {
1201 const struct nlattr *userdata = upcall->userdata;
1202 const struct dp_packet *packet = upcall->packet;
1203 const struct flow *flow = upcall->flow;
1204
1205 switch (classify_upcall(upcall->type, userdata)) {
1206 case MISS_UPCALL:
1207 upcall_xlate(udpif, upcall, odp_actions, wc);
1208 return 0;
1209
1210 case SFLOW_UPCALL:
1211 if (upcall->sflow) {
1212 union user_action_cookie cookie;
1213 const struct nlattr *actions;
1214 size_t actions_len = 0;
1215 struct dpif_sflow_actions sflow_actions;
1216 memset(&sflow_actions, 0, sizeof sflow_actions);
1217 memset(&cookie, 0, sizeof cookie);
1218 memcpy(&cookie, nl_attr_get(userdata), sizeof cookie.sflow);
1219 if (upcall->actions) {
1220 /* Actions were passed up from datapath. */
1221 actions = nl_attr_get(upcall->actions);
1222 actions_len = nl_attr_get_size(upcall->actions);
1223 if (actions && actions_len) {
1224 dpif_sflow_read_actions(flow, actions, actions_len,
1225 &sflow_actions);
1226 }
1227 }
1228 if (actions_len == 0) {
1229 /* Lookup actions in userspace cache. */
1230 struct udpif_key *ukey = ukey_lookup(udpif, upcall->ufid);
1231 if (ukey) {
1232 ukey_get_actions(ukey, &actions, &actions_len);
1233 dpif_sflow_read_actions(flow, actions, actions_len,
1234 &sflow_actions);
1235 }
1236 }
1237 dpif_sflow_received(upcall->sflow, packet, flow,
1238 flow->in_port.odp_port, &cookie,
1239 actions_len > 0 ? &sflow_actions : NULL);
1240 }
1241 break;
1242
1243 case IPFIX_UPCALL:
1244 if (upcall->ipfix) {
1245 union user_action_cookie cookie;
1246 struct flow_tnl output_tunnel_key;
1247
1248 memset(&cookie, 0, sizeof cookie);
1249 memcpy(&cookie, nl_attr_get(userdata), sizeof cookie.ipfix);
1250
1251 if (upcall->out_tun_key) {
1252 odp_tun_key_from_attr(upcall->out_tun_key, false,
1253 &output_tunnel_key);
1254 }
1255 dpif_ipfix_bridge_sample(upcall->ipfix, packet, flow,
1256 flow->in_port.odp_port,
1257 cookie.ipfix.output_odp_port,
1258 upcall->out_tun_key ?
1259 &output_tunnel_key : NULL);
1260 }
1261 break;
1262
1263 case FLOW_SAMPLE_UPCALL:
1264 if (upcall->ipfix) {
1265 union user_action_cookie cookie;
1266
1267 memset(&cookie, 0, sizeof cookie);
1268 memcpy(&cookie, nl_attr_get(userdata), sizeof cookie.flow_sample);
1269
1270 /* The flow reflects exactly the contents of the packet.
1271 * Sample the packet using it. */
1272 dpif_ipfix_flow_sample(upcall->ipfix, packet, flow,
1273 cookie.flow_sample.collector_set_id,
1274 cookie.flow_sample.probability,
1275 cookie.flow_sample.obs_domain_id,
1276 cookie.flow_sample.obs_point_id);
1277 }
1278 break;
1279
1280 case BAD_UPCALL:
1281 break;
1282 }
1283
1284 return EAGAIN;
1285 }
1286
1287 static void
1288 handle_upcalls(struct udpif *udpif, struct upcall *upcalls,
1289 size_t n_upcalls)
1290 {
1291 struct dpif_op *opsp[UPCALL_MAX_BATCH * 2];
1292 struct ukey_op ops[UPCALL_MAX_BATCH * 2];
1293 unsigned int flow_limit;
1294 size_t n_ops, n_opsp, i;
1295 bool may_put;
1296
1297 atomic_read_relaxed(&udpif->flow_limit, &flow_limit);
1298
1299 may_put = udpif_get_n_flows(udpif) < flow_limit;
1300
1301 /* Handle the packets individually in order of arrival.
1302 *
1303 * - For SLOW_CFM, SLOW_LACP, SLOW_STP, and SLOW_BFD, translation is what
1304 * processes received packets for these protocols.
1305 *
1306 * - For SLOW_CONTROLLER, translation sends the packet to the OpenFlow
1307 * controller.
1308 *
1309 * The loop fills 'ops' with an array of operations to execute in the
1310 * datapath. */
1311 n_ops = 0;
1312 for (i = 0; i < n_upcalls; i++) {
1313 struct upcall *upcall = &upcalls[i];
1314 const struct dp_packet *packet = upcall->packet;
1315 struct ukey_op *op;
1316
1317 if (upcall->vsp_adjusted) {
1318 /* This packet was received on a VLAN splinter port. We added a
1319 * VLAN to the packet to make the packet resemble the flow, but the
1320 * actions were composed assuming that the packet contained no
1321 * VLAN. So, we must remove the VLAN header from the packet before
1322 * trying to execute the actions. */
1323 if (upcall->odp_actions.size) {
1324 eth_pop_vlan(CONST_CAST(struct dp_packet *, upcall->packet));
1325 }
1326
1327 /* Remove the flow vlan tags inserted by vlan splinter logic
1328 * to ensure megaflow masks generated match the data path flow. */
1329 CONST_CAST(struct flow *, upcall->flow)->vlan_tci = 0;
1330 }
1331
1332 /* Do not install a flow into the datapath if:
1333 *
1334 * - The datapath already has too many flows.
1335 *
1336 * - We received this packet via some flow installed in the kernel
1337 * already.
1338 *
1339 * - Upcall was a recirculation but we do not have a reference to
1340 * to the recirculation ID. */
1341 if (may_put && upcall->type == DPIF_UC_MISS &&
1342 (!upcall->recirc || upcall->have_recirc_ref)) {
1343 struct udpif_key *ukey = upcall->ukey;
1344
1345 upcall->ukey_persists = true;
1346 op = &ops[n_ops++];
1347
1348 op->ukey = ukey;
1349 op->dop.type = DPIF_OP_FLOW_PUT;
1350 op->dop.u.flow_put.flags = DPIF_FP_CREATE;
1351 op->dop.u.flow_put.key = ukey->key;
1352 op->dop.u.flow_put.key_len = ukey->key_len;
1353 op->dop.u.flow_put.mask = ukey->mask;
1354 op->dop.u.flow_put.mask_len = ukey->mask_len;
1355 op->dop.u.flow_put.ufid = upcall->ufid;
1356 op->dop.u.flow_put.stats = NULL;
1357 ukey_get_actions(ukey, &op->dop.u.flow_put.actions,
1358 &op->dop.u.flow_put.actions_len);
1359 }
1360
1361 if (upcall->odp_actions.size) {
1362 op = &ops[n_ops++];
1363 op->ukey = NULL;
1364 op->dop.type = DPIF_OP_EXECUTE;
1365 op->dop.u.execute.packet = CONST_CAST(struct dp_packet *, packet);
1366 odp_key_to_pkt_metadata(upcall->key, upcall->key_len,
1367 &op->dop.u.execute.packet->md);
1368 op->dop.u.execute.actions = upcall->odp_actions.data;
1369 op->dop.u.execute.actions_len = upcall->odp_actions.size;
1370 op->dop.u.execute.needs_help = (upcall->xout.slow & SLOW_ACTION) != 0;
1371 op->dop.u.execute.probe = false;
1372 op->dop.u.execute.mtu = upcall->mru;
1373 }
1374 }
1375
1376 /* Execute batch.
1377 *
1378 * We install ukeys before installing the flows, locking them for exclusive
1379 * access by this thread for the period of installation. This ensures that
1380 * other threads won't attempt to delete the flows as we are creating them.
1381 */
1382 n_opsp = 0;
1383 for (i = 0; i < n_ops; i++) {
1384 struct udpif_key *ukey = ops[i].ukey;
1385
1386 if (ukey) {
1387 /* If we can't install the ukey, don't install the flow. */
1388 if (!ukey_install_start(udpif, ukey)) {
1389 ukey_delete__(ukey);
1390 ops[i].ukey = NULL;
1391 continue;
1392 }
1393 }
1394 opsp[n_opsp++] = &ops[i].dop;
1395 }
1396 dpif_operate(udpif->dpif, opsp, n_opsp);
1397 for (i = 0; i < n_ops; i++) {
1398 if (ops[i].ukey) {
1399 ukey_install_finish(ops[i].ukey, ops[i].dop.error);
1400 }
1401 }
1402 }
1403
1404 static uint32_t
1405 get_ufid_hash(const ovs_u128 *ufid)
1406 {
1407 return ufid->u32[0];
1408 }
1409
1410 static struct udpif_key *
1411 ukey_lookup(struct udpif *udpif, const ovs_u128 *ufid)
1412 {
1413 struct udpif_key *ukey;
1414 int idx = get_ufid_hash(ufid) % N_UMAPS;
1415 struct cmap *cmap = &udpif->ukeys[idx].cmap;
1416
1417 CMAP_FOR_EACH_WITH_HASH (ukey, cmap_node, get_ufid_hash(ufid), cmap) {
1418 if (ovs_u128_equals(&ukey->ufid, ufid)) {
1419 return ukey;
1420 }
1421 }
1422 return NULL;
1423 }
1424
1425 /* Provides safe lockless access of RCU protected 'ukey->actions'. Callers may
1426 * alternatively access the field directly if they take 'ukey->mutex'. */
1427 static void
1428 ukey_get_actions(struct udpif_key *ukey, const struct nlattr **actions, size_t *size)
1429 {
1430 const struct ofpbuf *buf = ovsrcu_get(struct ofpbuf *, &ukey->actions);
1431 *actions = buf->data;
1432 *size = buf->size;
1433 }
1434
1435 static void
1436 ukey_set_actions(struct udpif_key *ukey, const struct ofpbuf *actions)
1437 {
1438 ovsrcu_postpone(ofpbuf_delete,
1439 ovsrcu_get_protected(struct ofpbuf *, &ukey->actions));
1440 ovsrcu_set(&ukey->actions, ofpbuf_clone(actions));
1441 }
1442
1443 static struct udpif_key *
1444 ukey_create__(const struct nlattr *key, size_t key_len,
1445 const struct nlattr *mask, size_t mask_len,
1446 bool ufid_present, const ovs_u128 *ufid,
1447 const unsigned pmd_id, const struct ofpbuf *actions,
1448 uint64_t dump_seq, uint64_t reval_seq, long long int used,
1449 const struct recirc_id_node *key_recirc, struct xlate_out *xout)
1450 OVS_NO_THREAD_SAFETY_ANALYSIS
1451 {
1452 unsigned n_recircs = (key_recirc ? 1 : 0) + (xout ? xout->n_recircs : 0);
1453 struct udpif_key *ukey = xmalloc(sizeof *ukey +
1454 n_recircs * sizeof *ukey->recircs);
1455
1456 memcpy(&ukey->keybuf, key, key_len);
1457 ukey->key = &ukey->keybuf.nla;
1458 ukey->key_len = key_len;
1459 memcpy(&ukey->maskbuf, mask, mask_len);
1460 ukey->mask = &ukey->maskbuf.nla;
1461 ukey->mask_len = mask_len;
1462 ukey->ufid_present = ufid_present;
1463 ukey->ufid = *ufid;
1464 ukey->pmd_id = pmd_id;
1465 ukey->hash = get_ufid_hash(&ukey->ufid);
1466
1467 ovsrcu_init(&ukey->actions, NULL);
1468 ukey_set_actions(ukey, actions);
1469
1470 ovs_mutex_init(&ukey->mutex);
1471 ukey->dump_seq = dump_seq;
1472 ukey->reval_seq = reval_seq;
1473 ukey->flow_exists = false;
1474 ukey->created = time_msec();
1475 memset(&ukey->stats, 0, sizeof ukey->stats);
1476 ukey->stats.used = used;
1477 ukey->xcache = NULL;
1478
1479 ukey->n_recircs = n_recircs;
1480 if (key_recirc) {
1481 ukey->recircs[0] = key_recirc->id;
1482 }
1483 if (xout && xout->n_recircs) {
1484 const uint32_t *act_recircs = xlate_out_get_recircs(xout);
1485
1486 memcpy(ukey->recircs + (key_recirc ? 1 : 0), act_recircs,
1487 xout->n_recircs * sizeof *ukey->recircs);
1488 xlate_out_take_recircs(xout);
1489 }
1490 return ukey;
1491 }
1492
1493 static struct udpif_key *
1494 ukey_create_from_upcall(struct upcall *upcall, struct flow_wildcards *wc)
1495 {
1496 struct odputil_keybuf keystub, maskstub;
1497 struct ofpbuf keybuf, maskbuf;
1498 bool megaflow;
1499 struct odp_flow_key_parms odp_parms = {
1500 .flow = upcall->flow,
1501 .mask = &wc->masks,
1502 };
1503
1504 odp_parms.support = ofproto_dpif_get_support(upcall->ofproto)->odp;
1505 if (upcall->key_len) {
1506 ofpbuf_use_const(&keybuf, upcall->key, upcall->key_len);
1507 } else {
1508 /* dpif-netdev doesn't provide a netlink-formatted flow key in the
1509 * upcall, so convert the upcall's flow here. */
1510 ofpbuf_use_stack(&keybuf, &keystub, sizeof keystub);
1511 odp_parms.odp_in_port = upcall->flow->in_port.odp_port;
1512 odp_flow_key_from_flow(&odp_parms, &keybuf);
1513 }
1514
1515 atomic_read_relaxed(&enable_megaflows, &megaflow);
1516 ofpbuf_use_stack(&maskbuf, &maskstub, sizeof maskstub);
1517 if (megaflow) {
1518 odp_parms.odp_in_port = ODPP_NONE;
1519 odp_parms.key_buf = &keybuf;
1520
1521 odp_flow_key_from_mask(&odp_parms, &maskbuf);
1522 }
1523
1524 return ukey_create__(keybuf.data, keybuf.size, maskbuf.data, maskbuf.size,
1525 true, upcall->ufid, upcall->pmd_id,
1526 &upcall->put_actions, upcall->dump_seq,
1527 upcall->reval_seq, 0,
1528 upcall->have_recirc_ref ? upcall->recirc : NULL,
1529 &upcall->xout);
1530 }
1531
1532 static int
1533 ukey_create_from_dpif_flow(const struct udpif *udpif,
1534 const struct dpif_flow *flow,
1535 struct udpif_key **ukey)
1536 {
1537 struct dpif_flow full_flow;
1538 struct ofpbuf actions;
1539 uint64_t dump_seq, reval_seq;
1540 uint64_t stub[DPIF_FLOW_BUFSIZE / 8];
1541 const struct nlattr *a;
1542 unsigned int left;
1543
1544 if (!flow->key_len || !flow->actions_len) {
1545 struct ofpbuf buf;
1546 int err;
1547
1548 /* If the key or actions were not provided by the datapath, fetch the
1549 * full flow. */
1550 ofpbuf_use_stack(&buf, &stub, sizeof stub);
1551 err = dpif_flow_get(udpif->dpif, NULL, 0, &flow->ufid,
1552 flow->pmd_id, &buf, &full_flow);
1553 if (err) {
1554 return err;
1555 }
1556 flow = &full_flow;
1557 }
1558
1559 /* Check the flow actions for recirculation action. As recirculation
1560 * relies on OVS userspace internal state, we need to delete all old
1561 * datapath flows with recirculation upon OVS restart. */
1562 NL_ATTR_FOR_EACH_UNSAFE (a, left, flow->actions, flow->actions_len) {
1563 if (nl_attr_type(a) == OVS_ACTION_ATTR_RECIRC) {
1564 return EINVAL;
1565 }
1566 }
1567
1568 dump_seq = seq_read(udpif->dump_seq);
1569 reval_seq = seq_read(udpif->reval_seq);
1570 ofpbuf_use_const(&actions, &flow->actions, flow->actions_len);
1571 *ukey = ukey_create__(flow->key, flow->key_len,
1572 flow->mask, flow->mask_len, flow->ufid_present,
1573 &flow->ufid, flow->pmd_id, &actions, dump_seq,
1574 reval_seq, flow->stats.used, NULL, NULL);
1575
1576 return 0;
1577 }
1578
1579 /* Attempts to insert a ukey into the shared ukey maps.
1580 *
1581 * On success, returns true, installs the ukey and returns it in a locked
1582 * state. Otherwise, returns false. */
1583 static bool
1584 ukey_install_start(struct udpif *udpif, struct udpif_key *new_ukey)
1585 OVS_TRY_LOCK(true, new_ukey->mutex)
1586 {
1587 struct umap *umap;
1588 struct udpif_key *old_ukey;
1589 uint32_t idx;
1590 bool locked = false;
1591
1592 idx = new_ukey->hash % N_UMAPS;
1593 umap = &udpif->ukeys[idx];
1594 ovs_mutex_lock(&umap->mutex);
1595 old_ukey = ukey_lookup(udpif, &new_ukey->ufid);
1596 if (old_ukey) {
1597 /* Uncommon case: A ukey is already installed with the same UFID. */
1598 if (old_ukey->key_len == new_ukey->key_len
1599 && !memcmp(old_ukey->key, new_ukey->key, new_ukey->key_len)) {
1600 COVERAGE_INC(handler_duplicate_upcall);
1601 } else {
1602 struct ds ds = DS_EMPTY_INITIALIZER;
1603
1604 odp_format_ufid(&old_ukey->ufid, &ds);
1605 ds_put_cstr(&ds, " ");
1606 odp_flow_key_format(old_ukey->key, old_ukey->key_len, &ds);
1607 ds_put_cstr(&ds, "\n");
1608 odp_format_ufid(&new_ukey->ufid, &ds);
1609 ds_put_cstr(&ds, " ");
1610 odp_flow_key_format(new_ukey->key, new_ukey->key_len, &ds);
1611
1612 VLOG_WARN_RL(&rl, "Conflicting ukey for flows:\n%s", ds_cstr(&ds));
1613 ds_destroy(&ds);
1614 }
1615 } else {
1616 ovs_mutex_lock(&new_ukey->mutex);
1617 cmap_insert(&umap->cmap, &new_ukey->cmap_node, new_ukey->hash);
1618 locked = true;
1619 }
1620 ovs_mutex_unlock(&umap->mutex);
1621
1622 return locked;
1623 }
1624
1625 static void
1626 ukey_install_finish__(struct udpif_key *ukey) OVS_REQUIRES(ukey->mutex)
1627 {
1628 ukey->flow_exists = true;
1629 }
1630
1631 static bool
1632 ukey_install_finish(struct udpif_key *ukey, int error)
1633 OVS_RELEASES(ukey->mutex)
1634 {
1635 if (!error) {
1636 ukey_install_finish__(ukey);
1637 }
1638 ovs_mutex_unlock(&ukey->mutex);
1639
1640 return !error;
1641 }
1642
1643 static bool
1644 ukey_install(struct udpif *udpif, struct udpif_key *ukey)
1645 {
1646 /* The usual way to keep 'ukey->flow_exists' in sync with the datapath is
1647 * to call ukey_install_start(), install the corresponding datapath flow,
1648 * then call ukey_install_finish(). The netdev interface using upcall_cb()
1649 * doesn't provide a function to separately finish the flow installation,
1650 * so we perform the operations together here.
1651 *
1652 * This is fine currently, as revalidator threads will only delete this
1653 * ukey during revalidator_sweep() and only if the dump_seq is mismatched.
1654 * It is unlikely for a revalidator thread to advance dump_seq and reach
1655 * the next GC phase between ukey creation and flow installation. */
1656 return ukey_install_start(udpif, ukey) && ukey_install_finish(ukey, 0);
1657 }
1658
1659 /* Searches for a ukey in 'udpif->ukeys' that matches 'flow' and attempts to
1660 * lock the ukey. If the ukey does not exist, create it.
1661 *
1662 * Returns 0 on success, setting *result to the matching ukey and returning it
1663 * in a locked state. Otherwise, returns an errno and clears *result. EBUSY
1664 * indicates that another thread is handling this flow. Other errors indicate
1665 * an unexpected condition creating a new ukey.
1666 *
1667 * *error is an output parameter provided to appease the threadsafety analyser,
1668 * and its value matches the return value. */
1669 static int
1670 ukey_acquire(struct udpif *udpif, const struct dpif_flow *flow,
1671 struct udpif_key **result, int *error)
1672 OVS_TRY_LOCK(0, (*result)->mutex)
1673 {
1674 struct udpif_key *ukey;
1675 int retval;
1676
1677 ukey = ukey_lookup(udpif, &flow->ufid);
1678 if (ukey) {
1679 retval = ovs_mutex_trylock(&ukey->mutex);
1680 } else {
1681 /* Usually we try to avoid installing flows from revalidator threads,
1682 * because locking on a umap may cause handler threads to block.
1683 * However there are certain cases, like when ovs-vswitchd is
1684 * restarted, where it is desirable to handle flows that exist in the
1685 * datapath gracefully (ie, don't just clear the datapath). */
1686 bool install;
1687
1688 retval = ukey_create_from_dpif_flow(udpif, flow, &ukey);
1689 if (retval) {
1690 goto done;
1691 }
1692 install = ukey_install_start(udpif, ukey);
1693 if (install) {
1694 ukey_install_finish__(ukey);
1695 retval = 0;
1696 } else {
1697 ukey_delete__(ukey);
1698 retval = EBUSY;
1699 }
1700 }
1701
1702 done:
1703 *error = retval;
1704 if (retval) {
1705 *result = NULL;
1706 } else {
1707 *result = ukey;
1708 }
1709 return retval;
1710 }
1711
1712 static void
1713 ukey_delete__(struct udpif_key *ukey)
1714 OVS_NO_THREAD_SAFETY_ANALYSIS
1715 {
1716 if (ukey) {
1717 for (int i = 0; i < ukey->n_recircs; i++) {
1718 recirc_free_id(ukey->recircs[i]);
1719 }
1720 xlate_cache_delete(ukey->xcache);
1721 ofpbuf_delete(ovsrcu_get(struct ofpbuf *, &ukey->actions));
1722 ovs_mutex_destroy(&ukey->mutex);
1723 free(ukey);
1724 }
1725 }
1726
1727 static void
1728 ukey_delete(struct umap *umap, struct udpif_key *ukey)
1729 OVS_REQUIRES(umap->mutex)
1730 {
1731 cmap_remove(&umap->cmap, &ukey->cmap_node, ukey->hash);
1732 ovsrcu_postpone(ukey_delete__, ukey);
1733 }
1734
1735 static bool
1736 should_revalidate(const struct udpif *udpif, uint64_t packets,
1737 long long int used)
1738 {
1739 long long int metric, now, duration;
1740
1741 if (udpif->dump_duration < 200) {
1742 /* We are likely to handle full revalidation for the flows. */
1743 return true;
1744 }
1745
1746 /* Calculate the mean time between seeing these packets. If this
1747 * exceeds the threshold, then delete the flow rather than performing
1748 * costly revalidation for flows that aren't being hit frequently.
1749 *
1750 * This is targeted at situations where the dump_duration is high (~1s),
1751 * and revalidation is triggered by a call to udpif_revalidate(). In
1752 * these situations, revalidation of all flows causes fluctuations in the
1753 * flow_limit due to the interaction with the dump_duration and max_idle.
1754 * This tends to result in deletion of low-throughput flows anyway, so
1755 * skip the revalidation and just delete those flows. */
1756 packets = MAX(packets, 1);
1757 now = MAX(used, time_msec());
1758 duration = now - used;
1759 metric = duration / packets;
1760
1761 if (metric < 200) {
1762 /* The flow is receiving more than ~5pps, so keep it. */
1763 return true;
1764 }
1765 return false;
1766 }
1767
1768 /* Verifies that the datapath actions of 'ukey' are still correct, and pushes
1769 * 'stats' for it.
1770 *
1771 * Returns a recommended action for 'ukey', options include:
1772 * UKEY_DELETE The ukey should be deleted.
1773 * UKEY_KEEP The ukey is fine as is.
1774 * UKEY_MODIFY The ukey's actions should be changed but is otherwise
1775 * fine. Callers should change the actions to those found
1776 * in the caller supplied 'odp_actions' buffer. */
1777 static enum reval_result
1778 revalidate_ukey(struct udpif *udpif, struct udpif_key *ukey,
1779 const struct dpif_flow_stats *stats,
1780 struct ofpbuf *odp_actions, uint64_t reval_seq)
1781 OVS_REQUIRES(ukey->mutex)
1782 {
1783 struct xlate_out xout, *xoutp;
1784 struct netflow *netflow;
1785 struct ofproto_dpif *ofproto;
1786 struct dpif_flow_stats push;
1787 struct flow flow;
1788 struct flow_wildcards dp_mask, wc;
1789 enum reval_result result;
1790 ofp_port_t ofp_in_port;
1791 struct xlate_in xin;
1792 long long int last_used;
1793 int error;
1794 bool need_revalidate;
1795
1796 result = UKEY_DELETE;
1797 xoutp = NULL;
1798 netflow = NULL;
1799
1800 ofpbuf_clear(odp_actions);
1801 need_revalidate = (ukey->reval_seq != reval_seq);
1802 last_used = ukey->stats.used;
1803 push.used = stats->used;
1804 push.tcp_flags = stats->tcp_flags;
1805 push.n_packets = (stats->n_packets > ukey->stats.n_packets
1806 ? stats->n_packets - ukey->stats.n_packets
1807 : 0);
1808 push.n_bytes = (stats->n_bytes > ukey->stats.n_bytes
1809 ? stats->n_bytes - ukey->stats.n_bytes
1810 : 0);
1811
1812 if (need_revalidate && last_used
1813 && !should_revalidate(udpif, push.n_packets, last_used)) {
1814 goto exit;
1815 }
1816
1817 /* We will push the stats, so update the ukey stats cache. */
1818 ukey->stats = *stats;
1819 if (!push.n_packets && !need_revalidate) {
1820 result = UKEY_KEEP;
1821 goto exit;
1822 }
1823
1824 if (ukey->xcache && !need_revalidate) {
1825 xlate_push_stats(ukey->xcache, &push);
1826 result = UKEY_KEEP;
1827 goto exit;
1828 }
1829
1830 if (odp_flow_key_to_flow(ukey->key, ukey->key_len, &flow)
1831 == ODP_FIT_ERROR) {
1832 goto exit;
1833 }
1834
1835 error = xlate_lookup(udpif->backer, &flow, &ofproto, NULL, NULL, &netflow,
1836 &ofp_in_port);
1837 if (error) {
1838 goto exit;
1839 }
1840
1841 if (need_revalidate) {
1842 xlate_cache_clear(ukey->xcache);
1843 }
1844 if (!ukey->xcache) {
1845 ukey->xcache = xlate_cache_new();
1846 }
1847
1848 xlate_in_init(&xin, ofproto, &flow, ofp_in_port, NULL, push.tcp_flags,
1849 NULL, need_revalidate ? &wc : NULL, odp_actions);
1850 if (push.n_packets) {
1851 xin.resubmit_stats = &push;
1852 xin.may_learn = true;
1853 }
1854 xin.xcache = ukey->xcache;
1855 xlate_actions(&xin, &xout);
1856 xoutp = &xout;
1857
1858 if (!need_revalidate) {
1859 result = UKEY_KEEP;
1860 goto exit;
1861 }
1862
1863 if (xout.slow) {
1864 ofpbuf_clear(odp_actions);
1865 compose_slow_path(udpif, &xout, &flow, flow.in_port.odp_port,
1866 odp_actions);
1867 }
1868
1869 if (odp_flow_key_to_mask(ukey->mask, ukey->mask_len, ukey->key,
1870 ukey->key_len, &dp_mask.masks, &flow)
1871 == ODP_FIT_ERROR) {
1872 goto exit;
1873 }
1874
1875 /* Do not modify if any bit is wildcarded by the installed datapath flow,
1876 * but not the newly revalidated wildcard mask (wc), i.e., if revalidation
1877 * tells that the datapath flow is now too generic and must be narrowed
1878 * down. Note that we do not know if the datapath has ignored any of the
1879 * wildcarded bits, so we may be overtly conservative here. */
1880 if (flow_wildcards_has_extra(&dp_mask, &wc)) {
1881 goto exit;
1882 }
1883
1884 if (!ofpbuf_equal(odp_actions,
1885 ovsrcu_get(struct ofpbuf *, &ukey->actions))) {
1886 /* The datapath mask was OK, but the actions seem to have changed.
1887 * Let's modify it in place. */
1888 result = UKEY_MODIFY;
1889 goto exit;
1890 }
1891
1892 result = UKEY_KEEP;
1893
1894 exit:
1895 if (result != UKEY_DELETE) {
1896 ukey->reval_seq = reval_seq;
1897 }
1898 if (netflow && result == UKEY_DELETE) {
1899 netflow_flow_clear(netflow, &flow);
1900 }
1901 xlate_out_uninit(xoutp);
1902 return result;
1903 }
1904
1905 static void
1906 delete_op_init__(struct udpif *udpif, struct ukey_op *op,
1907 const struct dpif_flow *flow)
1908 {
1909 op->ukey = NULL;
1910 op->dop.type = DPIF_OP_FLOW_DEL;
1911 op->dop.u.flow_del.key = flow->key;
1912 op->dop.u.flow_del.key_len = flow->key_len;
1913 op->dop.u.flow_del.ufid = flow->ufid_present ? &flow->ufid : NULL;
1914 op->dop.u.flow_del.pmd_id = flow->pmd_id;
1915 op->dop.u.flow_del.stats = &op->stats;
1916 op->dop.u.flow_del.terse = udpif_use_ufid(udpif);
1917 }
1918
1919 static void
1920 delete_op_init(struct udpif *udpif, struct ukey_op *op, struct udpif_key *ukey)
1921 {
1922 op->ukey = ukey;
1923 op->dop.type = DPIF_OP_FLOW_DEL;
1924 op->dop.u.flow_del.key = ukey->key;
1925 op->dop.u.flow_del.key_len = ukey->key_len;
1926 op->dop.u.flow_del.ufid = ukey->ufid_present ? &ukey->ufid : NULL;
1927 op->dop.u.flow_del.pmd_id = ukey->pmd_id;
1928 op->dop.u.flow_del.stats = &op->stats;
1929 op->dop.u.flow_del.terse = udpif_use_ufid(udpif);
1930 }
1931
1932 static void
1933 modify_op_init(struct ukey_op *op, struct udpif_key *ukey)
1934 {
1935 op->ukey = ukey;
1936 op->dop.type = DPIF_OP_FLOW_PUT;
1937 op->dop.u.flow_put.flags = DPIF_FP_MODIFY;
1938 op->dop.u.flow_put.key = ukey->key;
1939 op->dop.u.flow_put.key_len = ukey->key_len;
1940 op->dop.u.flow_put.mask = ukey->mask;
1941 op->dop.u.flow_put.mask_len = ukey->mask_len;
1942 op->dop.u.flow_put.ufid = &ukey->ufid;
1943 op->dop.u.flow_put.pmd_id = ukey->pmd_id;
1944 op->dop.u.flow_put.stats = NULL;
1945 ukey_get_actions(ukey, &op->dop.u.flow_put.actions,
1946 &op->dop.u.flow_put.actions_len);
1947 }
1948
1949 static void
1950 push_ukey_ops__(struct udpif *udpif, struct ukey_op *ops, size_t n_ops)
1951 {
1952 struct dpif_op *opsp[REVALIDATE_MAX_BATCH];
1953 size_t i;
1954
1955 ovs_assert(n_ops <= REVALIDATE_MAX_BATCH);
1956 for (i = 0; i < n_ops; i++) {
1957 opsp[i] = &ops[i].dop;
1958 }
1959 dpif_operate(udpif->dpif, opsp, n_ops);
1960
1961 for (i = 0; i < n_ops; i++) {
1962 struct ukey_op *op = &ops[i];
1963 struct dpif_flow_stats *push, *stats, push_buf;
1964
1965 stats = op->dop.u.flow_del.stats;
1966 push = &push_buf;
1967
1968 if (op->dop.type != DPIF_OP_FLOW_DEL) {
1969 /* Only deleted flows need their stats pushed. */
1970 continue;
1971 }
1972
1973 if (op->dop.error) {
1974 /* flow_del error, 'stats' is unusable. */
1975 continue;
1976 }
1977
1978 if (op->ukey) {
1979 ovs_mutex_lock(&op->ukey->mutex);
1980 push->used = MAX(stats->used, op->ukey->stats.used);
1981 push->tcp_flags = stats->tcp_flags | op->ukey->stats.tcp_flags;
1982 push->n_packets = stats->n_packets - op->ukey->stats.n_packets;
1983 push->n_bytes = stats->n_bytes - op->ukey->stats.n_bytes;
1984 ovs_mutex_unlock(&op->ukey->mutex);
1985 } else {
1986 push = stats;
1987 }
1988
1989 if (push->n_packets || netflow_exists()) {
1990 const struct nlattr *key = op->dop.u.flow_del.key;
1991 size_t key_len = op->dop.u.flow_del.key_len;
1992 struct ofproto_dpif *ofproto;
1993 struct netflow *netflow;
1994 ofp_port_t ofp_in_port;
1995 struct flow flow;
1996 int error;
1997
1998 if (op->ukey) {
1999 ovs_mutex_lock(&op->ukey->mutex);
2000 if (op->ukey->xcache) {
2001 xlate_push_stats(op->ukey->xcache, push);
2002 ovs_mutex_unlock(&op->ukey->mutex);
2003 continue;
2004 }
2005 ovs_mutex_unlock(&op->ukey->mutex);
2006 key = op->ukey->key;
2007 key_len = op->ukey->key_len;
2008 }
2009
2010 if (odp_flow_key_to_flow(key, key_len, &flow)
2011 == ODP_FIT_ERROR) {
2012 continue;
2013 }
2014
2015 error = xlate_lookup(udpif->backer, &flow, &ofproto, NULL, NULL,
2016 &netflow, &ofp_in_port);
2017 if (!error) {
2018 struct xlate_in xin;
2019
2020 xlate_in_init(&xin, ofproto, &flow, ofp_in_port, NULL,
2021 push->tcp_flags, NULL, NULL, NULL);
2022 xin.resubmit_stats = push->n_packets ? push : NULL;
2023 xin.may_learn = push->n_packets > 0;
2024 xlate_actions_for_side_effects(&xin);
2025
2026 if (netflow) {
2027 netflow_flow_clear(netflow, &flow);
2028 }
2029 }
2030 }
2031 }
2032 }
2033
2034 static void
2035 push_ukey_ops(struct udpif *udpif, struct umap *umap,
2036 struct ukey_op *ops, size_t n_ops)
2037 {
2038 int i;
2039
2040 push_ukey_ops__(udpif, ops, n_ops);
2041 ovs_mutex_lock(&umap->mutex);
2042 for (i = 0; i < n_ops; i++) {
2043 ukey_delete(umap, ops[i].ukey);
2044 }
2045 ovs_mutex_unlock(&umap->mutex);
2046 }
2047
2048 static void
2049 log_unexpected_flow(const struct dpif_flow *flow, int error)
2050 {
2051 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(10, 60);
2052 struct ds ds = DS_EMPTY_INITIALIZER;
2053
2054 ds_put_format(&ds, "Failed to acquire udpif_key corresponding to "
2055 "unexpected flow (%s): ", ovs_strerror(error));
2056 odp_format_ufid(&flow->ufid, &ds);
2057 VLOG_WARN_RL(&rl, "%s", ds_cstr(&ds));
2058 }
2059
2060 static void
2061 revalidate(struct revalidator *revalidator)
2062 {
2063 uint64_t odp_actions_stub[1024 / 8];
2064 struct ofpbuf odp_actions = OFPBUF_STUB_INITIALIZER(odp_actions_stub);
2065
2066 struct udpif *udpif = revalidator->udpif;
2067 struct dpif_flow_dump_thread *dump_thread;
2068 uint64_t dump_seq, reval_seq;
2069 unsigned int flow_limit;
2070
2071 dump_seq = seq_read(udpif->dump_seq);
2072 reval_seq = seq_read(udpif->reval_seq);
2073 atomic_read_relaxed(&udpif->flow_limit, &flow_limit);
2074 dump_thread = dpif_flow_dump_thread_create(udpif->dump);
2075 for (;;) {
2076 struct ukey_op ops[REVALIDATE_MAX_BATCH];
2077 int n_ops = 0;
2078
2079 struct dpif_flow flows[REVALIDATE_MAX_BATCH];
2080 const struct dpif_flow *f;
2081 int n_dumped;
2082
2083 long long int max_idle;
2084 long long int now;
2085 size_t n_dp_flows;
2086 bool kill_them_all;
2087
2088 n_dumped = dpif_flow_dump_next(dump_thread, flows, ARRAY_SIZE(flows));
2089 if (!n_dumped) {
2090 break;
2091 }
2092
2093 now = time_msec();
2094
2095 /* In normal operation we want to keep flows around until they have
2096 * been idle for 'ofproto_max_idle' milliseconds. However:
2097 *
2098 * - If the number of datapath flows climbs above 'flow_limit',
2099 * drop that down to 100 ms to try to bring the flows down to
2100 * the limit.
2101 *
2102 * - If the number of datapath flows climbs above twice
2103 * 'flow_limit', delete all the datapath flows as an emergency
2104 * measure. (We reassess this condition for the next batch of
2105 * datapath flows, so we will recover before all the flows are
2106 * gone.) */
2107 n_dp_flows = udpif_get_n_flows(udpif);
2108 kill_them_all = n_dp_flows > flow_limit * 2;
2109 max_idle = n_dp_flows > flow_limit ? 100 : ofproto_max_idle;
2110
2111 for (f = flows; f < &flows[n_dumped]; f++) {
2112 long long int used = f->stats.used;
2113 enum reval_result result;
2114 struct udpif_key *ukey;
2115 bool already_dumped;
2116 int error;
2117
2118 if (ukey_acquire(udpif, f, &ukey, &error)) {
2119 if (error == EBUSY) {
2120 /* Another thread is processing this flow, so don't bother
2121 * processing it.*/
2122 COVERAGE_INC(upcall_ukey_contention);
2123 } else {
2124 log_unexpected_flow(f, error);
2125 if (error != ENOENT) {
2126 delete_op_init__(udpif, &ops[n_ops++], f);
2127 }
2128 }
2129 continue;
2130 }
2131
2132 already_dumped = ukey->dump_seq == dump_seq;
2133 if (already_dumped) {
2134 /* The flow has already been handled during this flow dump
2135 * operation. Skip it. */
2136 if (ukey->xcache) {
2137 COVERAGE_INC(dumped_duplicate_flow);
2138 } else {
2139 COVERAGE_INC(dumped_new_flow);
2140 }
2141 ovs_mutex_unlock(&ukey->mutex);
2142 continue;
2143 }
2144
2145 if (!used) {
2146 used = ukey->created;
2147 }
2148 if (kill_them_all || (used && used < now - max_idle)) {
2149 result = UKEY_DELETE;
2150 } else {
2151 result = revalidate_ukey(udpif, ukey, &f->stats, &odp_actions,
2152 reval_seq);
2153 }
2154 ukey->dump_seq = dump_seq;
2155 ukey->flow_exists = result != UKEY_DELETE;
2156
2157 if (result == UKEY_DELETE) {
2158 delete_op_init(udpif, &ops[n_ops++], ukey);
2159 } else if (result == UKEY_MODIFY) {
2160 ukey_set_actions(ukey, &odp_actions);
2161 modify_op_init(&ops[n_ops++], ukey);
2162 }
2163 ovs_mutex_unlock(&ukey->mutex);
2164 }
2165
2166 if (n_ops) {
2167 push_ukey_ops__(udpif, ops, n_ops);
2168 }
2169 ovsrcu_quiesce();
2170 }
2171 dpif_flow_dump_thread_destroy(dump_thread);
2172 ofpbuf_uninit(&odp_actions);
2173 }
2174
2175 /* Pauses the 'revalidator', can only proceed after main thread
2176 * calls udpif_resume_revalidators(). */
2177 static void
2178 revalidator_pause(struct revalidator *revalidator)
2179 {
2180 /* The first block is for sync'ing the pause with main thread. */
2181 ovs_barrier_block(&revalidator->udpif->pause_barrier);
2182 /* The second block is for pausing until main thread resumes. */
2183 ovs_barrier_block(&revalidator->udpif->pause_barrier);
2184 }
2185
2186 static void
2187 revalidator_sweep__(struct revalidator *revalidator, bool purge)
2188 {
2189 struct udpif *udpif;
2190 uint64_t dump_seq, reval_seq;
2191 int slice;
2192
2193 udpif = revalidator->udpif;
2194 dump_seq = seq_read(udpif->dump_seq);
2195 reval_seq = seq_read(udpif->reval_seq);
2196 slice = revalidator - udpif->revalidators;
2197 ovs_assert(slice < udpif->n_revalidators);
2198
2199 for (int i = slice; i < N_UMAPS; i += udpif->n_revalidators) {
2200 uint64_t odp_actions_stub[1024 / 8];
2201 struct ofpbuf odp_actions = OFPBUF_STUB_INITIALIZER(odp_actions_stub);
2202
2203 struct ukey_op ops[REVALIDATE_MAX_BATCH];
2204 struct udpif_key *ukey;
2205 struct umap *umap = &udpif->ukeys[i];
2206 size_t n_ops = 0;
2207
2208 CMAP_FOR_EACH(ukey, cmap_node, &umap->cmap) {
2209 bool flow_exists, seq_mismatch;
2210 enum reval_result result;
2211
2212 /* Handler threads could be holding a ukey lock while it installs a
2213 * new flow, so don't hang around waiting for access to it. */
2214 if (ovs_mutex_trylock(&ukey->mutex)) {
2215 continue;
2216 }
2217 flow_exists = ukey->flow_exists;
2218 seq_mismatch = (ukey->dump_seq != dump_seq
2219 && ukey->reval_seq != reval_seq);
2220
2221 if (purge) {
2222 result = UKEY_DELETE;
2223 } else if (!seq_mismatch) {
2224 result = UKEY_KEEP;
2225 } else {
2226 struct dpif_flow_stats stats;
2227 COVERAGE_INC(revalidate_missed_dp_flow);
2228 memset(&stats, 0, sizeof stats);
2229 result = revalidate_ukey(udpif, ukey, &stats, &odp_actions,
2230 reval_seq);
2231 }
2232 ovs_mutex_unlock(&ukey->mutex);
2233
2234 if (result == UKEY_DELETE) {
2235 delete_op_init(udpif, &ops[n_ops++], ukey);
2236 } else if (result == UKEY_MODIFY) {
2237 ukey_set_actions(ukey, &odp_actions);
2238 modify_op_init(&ops[n_ops++], ukey);
2239 }
2240
2241 if (n_ops == REVALIDATE_MAX_BATCH) {
2242 push_ukey_ops(udpif, umap, ops, n_ops);
2243 n_ops = 0;
2244 }
2245
2246 if (!flow_exists) {
2247 ovs_mutex_lock(&umap->mutex);
2248 ukey_delete(umap, ukey);
2249 ovs_mutex_unlock(&umap->mutex);
2250 }
2251 }
2252
2253 if (n_ops) {
2254 push_ukey_ops(udpif, umap, ops, n_ops);
2255 }
2256
2257 ofpbuf_uninit(&odp_actions);
2258 ovsrcu_quiesce();
2259 }
2260 }
2261
2262 static void
2263 revalidator_sweep(struct revalidator *revalidator)
2264 {
2265 revalidator_sweep__(revalidator, false);
2266 }
2267
2268 static void
2269 revalidator_purge(struct revalidator *revalidator)
2270 {
2271 revalidator_sweep__(revalidator, true);
2272 }
2273
2274 /* In reaction to dpif purge, purges all 'ukey's with same 'pmd_id'. */
2275 static void
2276 dp_purge_cb(void *aux, unsigned pmd_id)
2277 {
2278 struct udpif *udpif = aux;
2279 size_t i;
2280
2281 udpif_pause_revalidators(udpif);
2282 for (i = 0; i < N_UMAPS; i++) {
2283 struct ukey_op ops[REVALIDATE_MAX_BATCH];
2284 struct udpif_key *ukey;
2285 struct umap *umap = &udpif->ukeys[i];
2286 size_t n_ops = 0;
2287
2288 CMAP_FOR_EACH(ukey, cmap_node, &umap->cmap) {
2289 if (ukey->pmd_id == pmd_id) {
2290 delete_op_init(udpif, &ops[n_ops++], ukey);
2291 if (n_ops == REVALIDATE_MAX_BATCH) {
2292 push_ukey_ops(udpif, umap, ops, n_ops);
2293 n_ops = 0;
2294 }
2295 }
2296 }
2297
2298 if (n_ops) {
2299 push_ukey_ops(udpif, umap, ops, n_ops);
2300 }
2301
2302 ovsrcu_quiesce();
2303 }
2304 udpif_resume_revalidators(udpif);
2305 }
2306 \f
2307 static void
2308 upcall_unixctl_show(struct unixctl_conn *conn, int argc OVS_UNUSED,
2309 const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED)
2310 {
2311 struct ds ds = DS_EMPTY_INITIALIZER;
2312 struct udpif *udpif;
2313
2314 LIST_FOR_EACH (udpif, list_node, &all_udpifs) {
2315 unsigned int flow_limit;
2316 bool ufid_enabled;
2317 size_t i;
2318
2319 atomic_read_relaxed(&udpif->flow_limit, &flow_limit);
2320 ufid_enabled = udpif_use_ufid(udpif);
2321
2322 ds_put_format(&ds, "%s:\n", dpif_name(udpif->dpif));
2323 ds_put_format(&ds, "\tflows : (current %lu)"
2324 " (avg %u) (max %u) (limit %u)\n", udpif_get_n_flows(udpif),
2325 udpif->avg_n_flows, udpif->max_n_flows, flow_limit);
2326 ds_put_format(&ds, "\tdump duration : %lldms\n", udpif->dump_duration);
2327 ds_put_format(&ds, "\tufid enabled : ");
2328 if (ufid_enabled) {
2329 ds_put_format(&ds, "true\n");
2330 } else {
2331 ds_put_format(&ds, "false\n");
2332 }
2333 ds_put_char(&ds, '\n');
2334
2335 for (i = 0; i < n_revalidators; i++) {
2336 struct revalidator *revalidator = &udpif->revalidators[i];
2337 int j, elements = 0;
2338
2339 for (j = i; j < N_UMAPS; j += n_revalidators) {
2340 elements += cmap_count(&udpif->ukeys[j].cmap);
2341 }
2342 ds_put_format(&ds, "\t%u: (keys %d)\n", revalidator->id, elements);
2343 }
2344 }
2345
2346 unixctl_command_reply(conn, ds_cstr(&ds));
2347 ds_destroy(&ds);
2348 }
2349
2350 /* Disable using the megaflows.
2351 *
2352 * This command is only needed for advanced debugging, so it's not
2353 * documented in the man page. */
2354 static void
2355 upcall_unixctl_disable_megaflows(struct unixctl_conn *conn,
2356 int argc OVS_UNUSED,
2357 const char *argv[] OVS_UNUSED,
2358 void *aux OVS_UNUSED)
2359 {
2360 atomic_store_relaxed(&enable_megaflows, false);
2361 udpif_flush_all_datapaths();
2362 unixctl_command_reply(conn, "megaflows disabled");
2363 }
2364
2365 /* Re-enable using megaflows.
2366 *
2367 * This command is only needed for advanced debugging, so it's not
2368 * documented in the man page. */
2369 static void
2370 upcall_unixctl_enable_megaflows(struct unixctl_conn *conn,
2371 int argc OVS_UNUSED,
2372 const char *argv[] OVS_UNUSED,
2373 void *aux OVS_UNUSED)
2374 {
2375 atomic_store_relaxed(&enable_megaflows, true);
2376 udpif_flush_all_datapaths();
2377 unixctl_command_reply(conn, "megaflows enabled");
2378 }
2379
2380 /* Disable skipping flow attributes during flow dump.
2381 *
2382 * This command is only needed for advanced debugging, so it's not
2383 * documented in the man page. */
2384 static void
2385 upcall_unixctl_disable_ufid(struct unixctl_conn *conn, int argc OVS_UNUSED,
2386 const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED)
2387 {
2388 atomic_store_relaxed(&enable_ufid, false);
2389 unixctl_command_reply(conn, "Datapath dumping tersely using UFID disabled");
2390 }
2391
2392 /* Re-enable skipping flow attributes during flow dump.
2393 *
2394 * This command is only needed for advanced debugging, so it's not documented
2395 * in the man page. */
2396 static void
2397 upcall_unixctl_enable_ufid(struct unixctl_conn *conn, int argc OVS_UNUSED,
2398 const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED)
2399 {
2400 atomic_store_relaxed(&enable_ufid, true);
2401 unixctl_command_reply(conn, "Datapath dumping tersely using UFID enabled "
2402 "for supported datapaths");
2403 }
2404
2405 /* Set the flow limit.
2406 *
2407 * This command is only needed for advanced debugging, so it's not
2408 * documented in the man page. */
2409 static void
2410 upcall_unixctl_set_flow_limit(struct unixctl_conn *conn,
2411 int argc OVS_UNUSED,
2412 const char *argv[] OVS_UNUSED,
2413 void *aux OVS_UNUSED)
2414 {
2415 struct ds ds = DS_EMPTY_INITIALIZER;
2416 struct udpif *udpif;
2417 unsigned int flow_limit = atoi(argv[1]);
2418
2419 LIST_FOR_EACH (udpif, list_node, &all_udpifs) {
2420 atomic_store_relaxed(&udpif->flow_limit, flow_limit);
2421 }
2422 ds_put_format(&ds, "set flow_limit to %u\n", flow_limit);
2423 unixctl_command_reply(conn, ds_cstr(&ds));
2424 ds_destroy(&ds);
2425 }
2426
2427 static void
2428 upcall_unixctl_dump_wait(struct unixctl_conn *conn,
2429 int argc OVS_UNUSED,
2430 const char *argv[] OVS_UNUSED,
2431 void *aux OVS_UNUSED)
2432 {
2433 if (list_is_singleton(&all_udpifs)) {
2434 struct udpif *udpif = NULL;
2435 size_t len;
2436
2437 udpif = OBJECT_CONTAINING(list_front(&all_udpifs), udpif, list_node);
2438 len = (udpif->n_conns + 1) * sizeof *udpif->conns;
2439 udpif->conn_seq = seq_read(udpif->dump_seq);
2440 udpif->conns = xrealloc(udpif->conns, len);
2441 udpif->conns[udpif->n_conns++] = conn;
2442 } else {
2443 unixctl_command_reply_error(conn, "can't wait on multiple udpifs.");
2444 }
2445 }
2446
2447 static void
2448 upcall_unixctl_purge(struct unixctl_conn *conn, int argc OVS_UNUSED,
2449 const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED)
2450 {
2451 struct udpif *udpif;
2452
2453 LIST_FOR_EACH (udpif, list_node, &all_udpifs) {
2454 int n;
2455
2456 for (n = 0; n < udpif->n_revalidators; n++) {
2457 revalidator_purge(&udpif->revalidators[n]);
2458 }
2459 }
2460 unixctl_command_reply(conn, "");
2461 }