]> git.proxmox.com Git - mirror_ovs.git/blob - ofproto/ofproto-dpif-xlate.c
ofproto: Do not delete datapath flows on exit by default.
[mirror_ovs.git] / ofproto / ofproto-dpif-xlate.c
1 /* Copyright (c) 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2019 Nicira, Inc.
2 *
3 * Licensed under the Apache License, Version 2.0 (the "License");
4 * you may not use this file except in compliance with the License.
5 * You may obtain a copy of the License at:
6 *
7 * http://www.apache.org/licenses/LICENSE-2.0
8 *
9 * Unless required by applicable law or agreed to in writing, software
10 * distributed under the License is distributed on an "AS IS" BASIS,
11 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 * See the License for the specific language governing permissions and
13 * limitations under the License. */
14
15 #include <config.h>
16
17 #include "ofproto/ofproto-dpif-xlate.h"
18
19 #include <errno.h>
20 #include <sys/types.h>
21 #include <netinet/in.h>
22 #include <arpa/inet.h>
23 #include <net/if.h>
24 #include <sys/socket.h>
25
26 #include "bfd.h"
27 #include "bitmap.h"
28 #include "bond.h"
29 #include "bundle.h"
30 #include "byte-order.h"
31 #include "cfm.h"
32 #include "connmgr.h"
33 #include "coverage.h"
34 #include "csum.h"
35 #include "dp-packet.h"
36 #include "dpif.h"
37 #include "in-band.h"
38 #include "lacp.h"
39 #include "learn.h"
40 #include "mac-learning.h"
41 #include "mcast-snooping.h"
42 #include "multipath.h"
43 #include "netdev-vport.h"
44 #include "netlink.h"
45 #include "nx-match.h"
46 #include "odp-execute.h"
47 #include "ofproto/ofproto-dpif-ipfix.h"
48 #include "ofproto/ofproto-dpif-mirror.h"
49 #include "ofproto/ofproto-dpif-monitor.h"
50 #include "ofproto/ofproto-dpif-sflow.h"
51 #include "ofproto/ofproto-dpif-trace.h"
52 #include "ofproto/ofproto-dpif-xlate-cache.h"
53 #include "ofproto/ofproto-dpif.h"
54 #include "ofproto/ofproto-provider.h"
55 #include "openvswitch/dynamic-string.h"
56 #include "openvswitch/meta-flow.h"
57 #include "openvswitch/list.h"
58 #include "openvswitch/ofp-actions.h"
59 #include "openvswitch/ofp-ed-props.h"
60 #include "openvswitch/vlog.h"
61 #include "ovs-lldp.h"
62 #include "ovs-router.h"
63 #include "packets.h"
64 #include "tnl-neigh-cache.h"
65 #include "tnl-ports.h"
66 #include "tunnel.h"
67 #include "util.h"
68 #include "uuid.h"
69
70 COVERAGE_DEFINE(xlate_actions);
71 COVERAGE_DEFINE(xlate_actions_oversize);
72 COVERAGE_DEFINE(xlate_actions_too_many_output);
73
74 VLOG_DEFINE_THIS_MODULE(ofproto_dpif_xlate);
75
76 /* Maximum depth of flow table recursion (due to resubmit actions) in a
77 * flow translation.
78 *
79 * The goal of limiting the depth of resubmits is to ensure that flow
80 * translation eventually terminates. Only resubmits to the same table or an
81 * earlier table count against the maximum depth. This is because resubmits to
82 * strictly monotonically increasing table IDs will eventually terminate, since
83 * any OpenFlow switch has a finite number of tables. OpenFlow tables are most
84 * commonly traversed in numerically increasing order, so this limit has little
85 * effect on conventionally designed OpenFlow pipelines.
86 *
87 * Outputs to patch ports and to groups also count against the depth limit. */
88 #define MAX_DEPTH 64
89
90 /* Maximum number of resubmit actions in a flow translation, whether they are
91 * recursive or not. */
92 #define MAX_RESUBMITS (MAX_DEPTH * MAX_DEPTH)
93
94 /* The structure holds an array of IP addresses assigned to a bridge and the
95 * number of elements in the array. These data are mutable and are evaluated
96 * when ARP or Neighbor Advertisement packets received on a native tunnel
97 * port are xlated. So 'ref_cnt' and RCU are used for synchronization. */
98 struct xbridge_addr {
99 struct in6_addr *addr; /* Array of IP addresses of xbridge. */
100 int n_addr; /* Number of IP addresses. */
101 struct ovs_refcount ref_cnt;
102 };
103
104 struct xbridge {
105 struct hmap_node hmap_node; /* Node in global 'xbridges' map. */
106 struct ofproto_dpif *ofproto; /* Key in global 'xbridges' map. */
107
108 struct ovs_list xbundles; /* Owned xbundles. */
109 struct hmap xports; /* Indexed by ofp_port. */
110
111 char *name; /* Name used in log messages. */
112 struct dpif *dpif; /* Datapath interface. */
113 struct mac_learning *ml; /* Mac learning handle. */
114 struct mcast_snooping *ms; /* Multicast Snooping handle. */
115 struct mbridge *mbridge; /* Mirroring. */
116 struct dpif_sflow *sflow; /* SFlow handle, or null. */
117 struct dpif_ipfix *ipfix; /* Ipfix handle, or null. */
118 struct netflow *netflow; /* Netflow handle, or null. */
119 struct stp *stp; /* STP or null if disabled. */
120 struct rstp *rstp; /* RSTP or null if disabled. */
121
122 bool has_in_band; /* Bridge has in band control? */
123 bool forward_bpdu; /* Bridge forwards STP BPDUs? */
124
125 /* Datapath feature support. */
126 struct dpif_backer_support support;
127
128 struct xbridge_addr *addr;
129 };
130
131 struct xbundle {
132 struct hmap_node hmap_node; /* In global 'xbundles' map. */
133 struct ofbundle *ofbundle; /* Key in global 'xbundles' map. */
134
135 struct ovs_list list_node; /* In parent 'xbridges' list. */
136 struct xbridge *xbridge; /* Parent xbridge. */
137
138 struct ovs_list xports; /* Contains "struct xport"s. */
139
140 char *name; /* Name used in log messages. */
141 struct bond *bond; /* Nonnull iff more than one port. */
142 struct lacp *lacp; /* LACP handle or null. */
143
144 enum port_vlan_mode vlan_mode; /* VLAN mode. */
145 uint16_t qinq_ethtype; /* Ethertype of dot1q-tunnel interface
146 * either 0x8100 or 0x88a8. */
147 int vlan; /* -1=trunk port, else a 12-bit VLAN ID. */
148 unsigned long *trunks; /* Bitmap of trunked VLANs, if 'vlan' == -1.
149 * NULL if all VLANs are trunked. */
150 unsigned long *cvlans; /* Bitmap of allowed customer vlans,
151 * NULL if all VLANs are allowed */
152 enum port_priority_tags_mode use_priority_tags;
153 /* Use 802.1p tag for frames in VLAN 0? */
154 bool floodable; /* No port has OFPUTIL_PC_NO_FLOOD set? */
155 bool protected; /* Protected port mode */
156 };
157
158 struct xport {
159 struct hmap_node hmap_node; /* Node in global 'xports' map. */
160 struct ofport_dpif *ofport; /* Key in global 'xports map. */
161
162 struct hmap_node ofp_node; /* Node in parent xbridge 'xports' map. */
163 ofp_port_t ofp_port; /* Key in parent xbridge 'xports' map. */
164
165 struct hmap_node uuid_node; /* Node in global 'xports_uuid' map. */
166 struct uuid uuid; /* Key in global 'xports_uuid' map. */
167
168 odp_port_t odp_port; /* Datapath port number or ODPP_NONE. */
169
170 struct ovs_list bundle_node; /* In parent xbundle (if it exists). */
171 struct xbundle *xbundle; /* Parent xbundle or null. */
172
173 struct netdev *netdev; /* 'ofport''s netdev. */
174
175 struct xbridge *xbridge; /* Parent bridge. */
176 struct xport *peer; /* Patch port peer or null. */
177
178 enum ofputil_port_config config; /* OpenFlow port configuration. */
179 enum ofputil_port_state state; /* OpenFlow port state. */
180 int stp_port_no; /* STP port number or -1 if not in use. */
181 struct rstp_port *rstp_port; /* RSTP port or null. */
182
183 struct hmap skb_priorities; /* Map of 'skb_priority_to_dscp's. */
184
185 bool may_enable; /* May be enabled in bonds. */
186 bool is_tunnel; /* Is a tunnel port. */
187 enum netdev_pt_mode pt_mode; /* packet_type handling. */
188
189 struct cfm *cfm; /* CFM handle or null. */
190 struct bfd *bfd; /* BFD handle or null. */
191 struct lldp *lldp; /* LLDP handle or null. */
192 };
193
194 struct xlate_ctx {
195 struct xlate_in *xin;
196 struct xlate_out *xout;
197
198 struct xlate_cfg *xcfg;
199 const struct xbridge *xbridge;
200
201 /* Flow at the last commit. */
202 struct flow base_flow;
203
204 /* Tunnel IP destination address as received. This is stored separately
205 * as the base_flow.tunnel is cleared on init to reflect the datapath
206 * behavior. Used to make sure not to send tunneled output to ourselves,
207 * which might lead to an infinite loop. This could happen easily
208 * if a tunnel is marked as 'ip_remote=flow', and the flow does not
209 * actually set the tun_dst field. */
210 struct in6_addr orig_tunnel_ipv6_dst;
211
212 /* Stack for the push and pop actions. See comment above nx_stack_push()
213 * in nx-match.c for info on how the stack is stored. */
214 struct ofpbuf stack;
215
216 /* The rule that we are currently translating, or NULL. */
217 struct rule_dpif *rule;
218
219 /* Flow translation populates this with wildcards relevant in translation.
220 * When 'xin->wc' is nonnull, this is the same pointer. When 'xin->wc' is
221 * null, this is a pointer to a temporary buffer. */
222 struct flow_wildcards *wc;
223
224 /* Output buffer for datapath actions. When 'xin->odp_actions' is nonnull,
225 * this is the same pointer. When 'xin->odp_actions' is null, this points
226 * to a scratch ofpbuf. This allows code to add actions to
227 * 'ctx->odp_actions' without worrying about whether the caller really
228 * wants actions. */
229 struct ofpbuf *odp_actions;
230
231 /* Statistics maintained by xlate_table_action().
232 *
233 * These statistics limit the amount of work that a single flow
234 * translation can perform. The goal of the first of these, 'depth', is
235 * primarily to prevent translation from performing an infinite amount of
236 * work. It counts the current depth of nested "resubmit"s (and a few
237 * other activities); when a resubmit returns, it decreases. Resubmits to
238 * tables in strictly monotonically increasing order don't contribute to
239 * 'depth' because they cannot cause a flow translation to take an infinite
240 * amount of time (because the number of tables is finite). Translation
241 * aborts when 'depth' exceeds MAX_DEPTH.
242 *
243 * 'resubmits', on the other hand, prevents flow translation from
244 * performing an extraordinarily large while still finite amount of work.
245 * It counts the total number of resubmits (and a few other activities)
246 * that have been executed. Returning from a resubmit does not affect this
247 * counter. Thus, this limits the amount of work that a particular
248 * translation can perform. Translation aborts when 'resubmits' exceeds
249 * MAX_RESUBMITS (which is much larger than MAX_DEPTH).
250 */
251 int depth; /* Current resubmit nesting depth. */
252 int resubmits; /* Total number of resubmits. */
253 bool in_action_set; /* Currently translating action_set, if true. */
254 bool in_packet_out; /* Currently translating a packet_out msg, if
255 * true. */
256 bool pending_encap; /* True when waiting to commit a pending
257 * encap action. */
258 bool pending_decap; /* True when waiting to commit a pending
259 * decap action. */
260 struct ofpbuf *encap_data; /* May contain a pointer to an ofpbuf with
261 * context for the datapath encap action.*/
262
263 uint8_t table_id; /* OpenFlow table ID where flow was found. */
264 ovs_be64 rule_cookie; /* Cookie of the rule being translated. */
265 uint32_t orig_skb_priority; /* Priority when packet arrived. */
266 uint32_t sflow_n_outputs; /* Number of output ports. */
267 odp_port_t sflow_odp_port; /* Output port for composing sFlow action. */
268 ofp_port_t nf_output_iface; /* Output interface index for NetFlow. */
269 bool exit; /* No further actions should be processed. */
270 mirror_mask_t mirrors; /* Bitmap of associated mirrors. */
271 int mirror_snaplen; /* Max size of a mirror packet in byte. */
272
273 /* Freezing Translation
274 * ====================
275 *
276 * At some point during translation, the code may recognize the need to halt
277 * and checkpoint the translation in a way that it can be restarted again
278 * later. We call the checkpointing process "freezing" and the restarting
279 * process "thawing".
280 *
281 * The use cases for freezing are:
282 *
283 * - "Recirculation", where the translation process discovers that it
284 * doesn't have enough information to complete translation without
285 * actually executing the actions that have already been translated,
286 * which provides the additionally needed information. In these
287 * situations, translation freezes translation and assigns the frozen
288 * data a unique "recirculation ID", which it associates with the data
289 * in a table in userspace (see ofproto-dpif-rid.h). It also adds a
290 * OVS_ACTION_ATTR_RECIRC action specifying that ID to the datapath
291 * actions. When a packet hits that action, the datapath looks its
292 * flow up again using the ID. If there's a miss, it comes back to
293 * userspace, which find the recirculation table entry for the ID,
294 * thaws the associated frozen data, and continues translation from
295 * that point given the additional information that is now known.
296 *
297 * The archetypal example is MPLS. As MPLS is implemented in
298 * OpenFlow, the protocol that follows the last MPLS label becomes
299 * known only when that label is popped by an OpenFlow action. That
300 * means that Open vSwitch can't extract the headers beyond the MPLS
301 * labels until the pop action is executed. Thus, at that point
302 * translation uses the recirculation process to extract the headers
303 * beyond the MPLS labels.
304 *
305 * (OVS also uses OVS_ACTION_ATTR_RECIRC to implement hashing for
306 * output to bonds. OVS pre-populates all the datapath flows for bond
307 * output in the datapath, though, which means that the elaborate
308 * process of coming back to userspace for a second round of
309 * translation isn't needed, and so bonds don't follow the above
310 * process.)
311 *
312 * - "Continuation". A continuation is a way for an OpenFlow controller
313 * to interpose on a packet's traversal of the OpenFlow tables. When
314 * the translation process encounters a "controller" action with the
315 * "pause" flag, it freezes translation, serializes the frozen data,
316 * and sends it to an OpenFlow controller. The controller then
317 * examines and possibly modifies the frozen data and eventually sends
318 * it back to the switch, which thaws it and continues translation.
319 *
320 * The main problem of freezing translation is preserving state, so that
321 * when the translation is thawed later it resumes from where it left off,
322 * without disruption. In particular, actions must be preserved as follows:
323 *
324 * - If we're freezing because an action needed more information, the
325 * action that prompted it.
326 *
327 * - Any actions remaining to be translated within the current flow.
328 *
329 * - If translation was frozen within a NXAST_RESUBMIT, then any actions
330 * following the resubmit action. Resubmit actions can be nested, so
331 * this has to go all the way up the control stack.
332 *
333 * - The OpenFlow 1.1+ action set.
334 *
335 * State that actions and flow table lookups can depend on, such as the
336 * following, must also be preserved:
337 *
338 * - Metadata fields (input port, registers, OF1.1+ metadata, ...).
339 *
340 * - The stack used by NXAST_STACK_PUSH and NXAST_STACK_POP actions.
341 *
342 * - The table ID and cookie of the flow being translated at each level
343 * of the control stack, because these can become visible through
344 * OFPAT_CONTROLLER actions (and other ways).
345 *
346 * Translation allows for the control of this state preservation via these
347 * members. When a need to freeze translation is identified, the
348 * translation process:
349 *
350 * 1. Sets 'freezing' to true.
351 *
352 * 2. Sets 'exit' to true to tell later steps that we're exiting from the
353 * translation process.
354 *
355 * 3. Adds an OFPACT_UNROLL_XLATE action to 'frozen_actions', and points
356 * frozen_actions.header to the action to make it easy to find it later.
357 * This action holds the current table ID and cookie so that they can be
358 * restored during a post-recirculation upcall translation.
359 *
360 * 4. Adds the action that prompted recirculation and any actions following
361 * it within the same flow to 'frozen_actions', so that they can be
362 * executed during a post-recirculation upcall translation.
363 *
364 * 5. Returns.
365 *
366 * 6. The action that prompted recirculation might be nested in a stack of
367 * nested "resubmit"s that have actions remaining. Each of these notices
368 * that we're exiting and freezing and responds by adding more
369 * OFPACT_UNROLL_XLATE actions to 'frozen_actions', as necessary,
370 * followed by any actions that were yet unprocessed.
371 *
372 * If we're freezing because of recirculation, the caller generates a
373 * recirculation ID and associates all the state produced by this process
374 * with it. For post-recirculation upcall translation, the caller passes it
375 * back in for the new translation to execute. The process yielded a set of
376 * ofpacts that can be translated directly, so it is not much of a special
377 * case at that point.
378 */
379 bool freezing;
380 bool recirc_update_dp_hash; /* Generated recirculation will be preceded
381 * by datapath HASH action to get an updated
382 * dp_hash after recirculation. */
383 uint32_t dp_hash_alg;
384 uint32_t dp_hash_basis;
385 struct ofpbuf frozen_actions;
386 const struct ofpact_controller *pause;
387
388 /* True if a packet was but is no longer MPLS (due to an MPLS pop action).
389 * This is a trigger for recirculation in cases where translating an action
390 * or looking up a flow requires access to the fields of the packet after
391 * the MPLS label stack that was originally present. */
392 bool was_mpls;
393
394 /* True if conntrack has been performed on this packet during processing
395 * on the current bridge. This is used to determine whether conntrack
396 * state from the datapath should be honored after thawing. */
397 bool conntracked;
398
399 /* Pointer to an embedded NAT action in a conntrack action, or NULL. */
400 struct ofpact_nat *ct_nat_action;
401
402 /* OpenFlow 1.1+ action set.
403 *
404 * 'action_set' accumulates "struct ofpact"s added by OFPACT_WRITE_ACTIONS.
405 * When translation is otherwise complete, ofpacts_execute_action_set()
406 * converts it to a set of "struct ofpact"s that can be translated into
407 * datapath actions. */
408 bool action_set_has_group; /* Action set contains OFPACT_GROUP? */
409 struct ofpbuf action_set; /* Action set. */
410
411 enum xlate_error error; /* Translation failed. */
412 };
413
414 /* Structure to track VLAN manipulation */
415 struct xvlan_single {
416 uint16_t tpid;
417 uint16_t vid;
418 uint16_t pcp;
419 };
420
421 struct xvlan {
422 struct xvlan_single v[FLOW_MAX_VLAN_HEADERS];
423 };
424
425 const char *xlate_strerror(enum xlate_error error)
426 {
427 switch (error) {
428 case XLATE_OK:
429 return "OK";
430 case XLATE_BRIDGE_NOT_FOUND:
431 return "Bridge not found";
432 case XLATE_RECURSION_TOO_DEEP:
433 return "Recursion too deep";
434 case XLATE_TOO_MANY_RESUBMITS:
435 return "Too many resubmits";
436 case XLATE_STACK_TOO_DEEP:
437 return "Stack too deep";
438 case XLATE_NO_RECIRCULATION_CONTEXT:
439 return "No recirculation context";
440 case XLATE_RECIRCULATION_CONFLICT:
441 return "Recirculation conflict";
442 case XLATE_TOO_MANY_MPLS_LABELS:
443 return "Too many MPLS labels";
444 case XLATE_INVALID_TUNNEL_METADATA:
445 return "Invalid tunnel metadata";
446 case XLATE_UNSUPPORTED_PACKET_TYPE:
447 return "Unsupported packet type";
448 case XLATE_CONGESTION_DROP:
449 return "Congestion Drop";
450 case XLATE_FORWARDING_DISABLED:
451 return "Forwarding is disabled";
452 case XLATE_MAX:
453 break;
454 }
455 return "Unknown error";
456 }
457
458 static void xlate_action_set(struct xlate_ctx *ctx);
459 static void xlate_commit_actions(struct xlate_ctx *ctx);
460
461 static void
462 patch_port_output(struct xlate_ctx *ctx, const struct xport *in_dev,
463 struct xport *out_dev);
464
465 static void
466 ctx_trigger_freeze(struct xlate_ctx *ctx)
467 {
468 ctx->exit = true;
469 ctx->freezing = true;
470 }
471
472 static void
473 ctx_trigger_recirculate_with_hash(struct xlate_ctx *ctx, uint32_t type,
474 uint32_t basis)
475 {
476 ctx->exit = true;
477 ctx->freezing = true;
478 ctx->recirc_update_dp_hash = true;
479 ctx->dp_hash_alg = type;
480 ctx->dp_hash_basis = basis;
481 }
482
483 static bool
484 ctx_first_frozen_action(const struct xlate_ctx *ctx)
485 {
486 return !ctx->frozen_actions.size;
487 }
488
489 static void
490 ctx_cancel_freeze(struct xlate_ctx *ctx)
491 {
492 if (ctx->freezing) {
493 ctx->freezing = false;
494 ctx->recirc_update_dp_hash = false;
495 ofpbuf_clear(&ctx->frozen_actions);
496 ctx->frozen_actions.header = NULL;
497 ctx->pause = NULL;
498 }
499 }
500
501 static void finish_freezing(struct xlate_ctx *ctx);
502
503 /* A controller may use OFPP_NONE as the ingress port to indicate that
504 * it did not arrive on a "real" port. 'ofpp_none_bundle' exists for
505 * when an input bundle is needed for validation (e.g., mirroring or
506 * OFPP_NORMAL processing). It is not connected to an 'ofproto' or have
507 * any 'port' structs, so care must be taken when dealing with it. */
508 static struct xbundle ofpp_none_bundle = {
509 .name = "OFPP_NONE",
510 .vlan_mode = PORT_VLAN_TRUNK
511 };
512
513 /* Node in 'xport''s 'skb_priorities' map. Used to maintain a map from
514 * 'priority' (the datapath's term for QoS queue) to the dscp bits which all
515 * traffic egressing the 'ofport' with that priority should be marked with. */
516 struct skb_priority_to_dscp {
517 struct hmap_node hmap_node; /* Node in 'ofport_dpif''s 'skb_priorities'. */
518 uint32_t skb_priority; /* Priority of this queue (see struct flow). */
519
520 uint8_t dscp; /* DSCP bits to mark outgoing traffic with. */
521 };
522
523 /* Xlate config contains hash maps of all bridges, bundles and ports.
524 * Xcfgp contains the pointer to the current xlate configuration.
525 * When the main thread needs to change the configuration, it copies xcfgp to
526 * new_xcfg and edits new_xcfg. This enables the use of RCU locking which
527 * does not block handler and revalidator threads. */
528 struct xlate_cfg {
529 struct hmap xbridges;
530 struct hmap xbundles;
531 struct hmap xports;
532 struct hmap xports_uuid;
533 };
534 static OVSRCU_TYPE(struct xlate_cfg *) xcfgp = OVSRCU_INITIALIZER(NULL);
535 static struct xlate_cfg *new_xcfg = NULL;
536
537 typedef void xlate_actions_handler(const struct ofpact *, size_t ofpacts_len,
538 struct xlate_ctx *, bool, bool);
539 static bool may_receive(const struct xport *, struct xlate_ctx *);
540 static void do_xlate_actions(const struct ofpact *, size_t ofpacts_len,
541 struct xlate_ctx *, bool, bool);
542 static void clone_xlate_actions(const struct ofpact *, size_t ofpacts_len,
543 struct xlate_ctx *, bool, bool);
544 static void xlate_normal(struct xlate_ctx *);
545 static void xlate_normal_flood(struct xlate_ctx *ct,
546 struct xbundle *in_xbundle, struct xvlan *);
547 static void xlate_table_action(struct xlate_ctx *, ofp_port_t in_port,
548 uint8_t table_id, bool may_packet_in,
549 bool honor_table_miss, bool with_ct_orig,
550 bool is_last_action, xlate_actions_handler *);
551
552 static bool input_vid_is_valid(const struct xlate_ctx *,
553 uint16_t vid, struct xbundle *);
554 static void xvlan_copy(struct xvlan *dst, const struct xvlan *src);
555 static void xvlan_pop(struct xvlan *src);
556 static void xvlan_push_uninit(struct xvlan *src);
557 static void xvlan_extract(const struct flow *, struct xvlan *);
558 static void xvlan_put(struct flow *, const struct xvlan *,
559 enum port_priority_tags_mode);
560 static void xvlan_input_translate(const struct xbundle *,
561 const struct xvlan *in,
562 struct xvlan *xvlan);
563 static void xvlan_output_translate(const struct xbundle *,
564 const struct xvlan *xvlan,
565 struct xvlan *out);
566 static void output_normal(struct xlate_ctx *, const struct xbundle *,
567 const struct xvlan *);
568
569 /* Optional bond recirculation parameter to compose_output_action(). */
570 struct xlate_bond_recirc {
571 uint32_t recirc_id; /* !0 Use recirculation instead of output. */
572 uint8_t hash_alg; /* !0 Compute hash for recirc before. */
573 uint32_t hash_basis; /* Compute hash for recirc before. */
574 };
575
576 static void compose_output_action(struct xlate_ctx *, ofp_port_t ofp_port,
577 const struct xlate_bond_recirc *xr,
578 bool is_last_action, bool truncate);
579
580 static struct xbridge *xbridge_lookup(struct xlate_cfg *,
581 const struct ofproto_dpif *);
582 static struct xbridge *xbridge_lookup_by_uuid(struct xlate_cfg *,
583 const struct uuid *);
584 static struct xbundle *xbundle_lookup(struct xlate_cfg *,
585 const struct ofbundle *);
586 static struct xport *xport_lookup(struct xlate_cfg *,
587 const struct ofport_dpif *);
588 static struct xport *xport_lookup_by_uuid(struct xlate_cfg *,
589 const struct uuid *);
590 static struct xport *get_ofp_port(const struct xbridge *, ofp_port_t ofp_port);
591 static struct skb_priority_to_dscp *get_skb_priority(const struct xport *,
592 uint32_t skb_priority);
593 static void clear_skb_priorities(struct xport *);
594 static size_t count_skb_priorities(const struct xport *);
595 static bool dscp_from_skb_priority(const struct xport *, uint32_t skb_priority,
596 uint8_t *dscp);
597
598 static void xlate_xbridge_init(struct xlate_cfg *, struct xbridge *);
599 static void xlate_xbundle_init(struct xlate_cfg *, struct xbundle *);
600 static void xlate_xport_init(struct xlate_cfg *, struct xport *);
601 static void xlate_xbridge_set(struct xbridge *, struct dpif *,
602 const struct mac_learning *, struct stp *,
603 struct rstp *, const struct mcast_snooping *,
604 const struct mbridge *,
605 const struct dpif_sflow *,
606 const struct dpif_ipfix *,
607 const struct netflow *,
608 bool forward_bpdu, bool has_in_band,
609 const struct dpif_backer_support *,
610 const struct xbridge_addr *);
611 static void xlate_xbundle_set(struct xbundle *xbundle,
612 enum port_vlan_mode vlan_mode,
613 uint16_t qinq_ethtype, int vlan,
614 unsigned long *trunks, unsigned long *cvlans,
615 enum port_priority_tags_mode,
616 const struct bond *bond, const struct lacp *lacp,
617 bool floodable, bool protected);
618 static void xlate_xport_set(struct xport *xport, odp_port_t odp_port,
619 const struct netdev *netdev, const struct cfm *cfm,
620 const struct bfd *bfd, const struct lldp *lldp,
621 int stp_port_no, const struct rstp_port *rstp_port,
622 enum ofputil_port_config config,
623 enum ofputil_port_state state, bool is_tunnel,
624 bool may_enable);
625 static void xlate_xbridge_remove(struct xlate_cfg *, struct xbridge *);
626 static void xlate_xbundle_remove(struct xlate_cfg *, struct xbundle *);
627 static void xlate_xport_remove(struct xlate_cfg *, struct xport *);
628 static void xlate_xbridge_copy(struct xbridge *);
629 static void xlate_xbundle_copy(struct xbridge *, struct xbundle *);
630 static void xlate_xport_copy(struct xbridge *, struct xbundle *,
631 struct xport *);
632 static void xlate_xcfg_free(struct xlate_cfg *);
633 \f
634 /* Tracing helpers. */
635
636 /* If tracing is enabled in 'ctx', creates a new trace node and appends it to
637 * the list of nodes maintained in ctx->xin. The new node has type 'type' and
638 * its text is created from 'format' by treating it as a printf format string.
639 * Returns the list of nodes embedded within the new trace node; ordinarily,
640 * the calleer can ignore this, but it is useful if the caller needs to nest
641 * more trace nodes within the new node.
642 *
643 * If tracing is not enabled, does nothing and returns NULL. */
644 static struct ovs_list * OVS_PRINTF_FORMAT(3, 4)
645 xlate_report(const struct xlate_ctx *ctx, enum oftrace_node_type type,
646 const char *format, ...)
647 {
648 struct ovs_list *subtrace = NULL;
649 if (OVS_UNLIKELY(ctx->xin->trace)) {
650 va_list args;
651 va_start(args, format);
652 char *text = xvasprintf(format, args);
653 subtrace = &oftrace_report(ctx->xin->trace, type, text)->subs;
654 va_end(args);
655 free(text);
656 }
657 return subtrace;
658 }
659
660 /* This is like xlate_report() for errors that are serious enough that we
661 * should log them even if we are not tracing. */
662 static void OVS_PRINTF_FORMAT(2, 3)
663 xlate_report_error(const struct xlate_ctx *ctx, const char *format, ...)
664 {
665 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
666 if (!OVS_UNLIKELY(ctx->xin->trace)
667 && (!ctx->xin->packet || VLOG_DROP_WARN(&rl))) {
668 return;
669 }
670
671 struct ds s = DS_EMPTY_INITIALIZER;
672 va_list args;
673 va_start(args, format);
674 ds_put_format_valist(&s, format, args);
675 va_end(args);
676
677 if (ctx->xin->trace) {
678 oftrace_report(ctx->xin->trace, OFT_ERROR, ds_cstr(&s));
679 } else {
680 ds_put_format(&s, " on bridge %s while processing ",
681 ctx->xbridge->name);
682 flow_format(&s, &ctx->base_flow, NULL);
683 VLOG_WARN("%s", ds_cstr(&s));
684 }
685 ds_destroy(&s);
686 }
687
688 /* This is like xlate_report() for messages that should be logged
689 at the info level (even when not tracing). */
690 static void OVS_PRINTF_FORMAT(2, 3)
691 xlate_report_info(const struct xlate_ctx *ctx, const char *format, ...)
692 {
693 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
694 if (!OVS_UNLIKELY(ctx->xin->trace)
695 && (!ctx->xin->packet || VLOG_DROP_INFO(&rl))) {
696 return;
697 }
698
699 struct ds s = DS_EMPTY_INITIALIZER;
700 va_list args;
701 va_start(args, format);
702 ds_put_format_valist(&s, format, args);
703 va_end(args);
704
705 if (ctx->xin->trace) {
706 oftrace_report(ctx->xin->trace, OFT_WARN, ds_cstr(&s));
707 } else {
708 ds_put_format(&s, " on bridge %s while processing ",
709 ctx->xbridge->name);
710 flow_format(&s, &ctx->base_flow, NULL);
711 VLOG_INFO("%s", ds_cstr(&s));
712 }
713 ds_destroy(&s);
714 }
715
716 /* This is like xlate_report() for messages that should be logged at debug
717 * level (even if we are not tracing) because they can be valuable for
718 * debugging. */
719 static void OVS_PRINTF_FORMAT(3, 4)
720 xlate_report_debug(const struct xlate_ctx *ctx, enum oftrace_node_type type,
721 const char *format, ...)
722 {
723 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(30, 300);
724 if (!OVS_UNLIKELY(ctx->xin->trace)
725 && (!ctx->xin->packet || VLOG_DROP_DBG(&rl))) {
726 return;
727 }
728
729 struct ds s = DS_EMPTY_INITIALIZER;
730 va_list args;
731 va_start(args, format);
732 ds_put_format_valist(&s, format, args);
733 va_end(args);
734
735 if (ctx->xin->trace) {
736 oftrace_report(ctx->xin->trace, type, ds_cstr(&s));
737 } else {
738 VLOG_DBG("bridge %s: %s", ctx->xbridge->name, ds_cstr(&s));
739 }
740 ds_destroy(&s);
741 }
742
743 /* If tracing is enabled in 'ctx', appends a node of the given 'type' to the
744 * trace, whose text is 'title' followed by a formatted version of the
745 * 'ofpacts_len' OpenFlow actions in 'ofpacts'.
746 *
747 * If tracing is not enabled, does nothing. */
748 static void
749 xlate_report_actions(const struct xlate_ctx *ctx, enum oftrace_node_type type,
750 const char *title,
751 const struct ofpact *ofpacts, size_t ofpacts_len)
752 {
753 if (OVS_UNLIKELY(ctx->xin->trace)) {
754 struct ds s = DS_EMPTY_INITIALIZER;
755 ds_put_format(&s, "%s: ", title);
756 struct ofpact_format_params fp = { .s = &s };
757 ofpacts_format(ofpacts, ofpacts_len, &fp);
758 oftrace_report(ctx->xin->trace, type, ds_cstr(&s));
759 ds_destroy(&s);
760 }
761 }
762
763 /* If tracing is enabled in 'ctx', appends a node of type OFT_DETAIL to the
764 * trace, whose the message is a formatted version of the OpenFlow action set.
765 * 'verb' should be "was" or "is", depending on whether the action set reported
766 * is the new action set or the old one.
767 *
768 * If tracing is not enabled, does nothing. */
769 static void
770 xlate_report_action_set(const struct xlate_ctx *ctx, const char *verb)
771 {
772 if (OVS_UNLIKELY(ctx->xin->trace)) {
773 struct ofpbuf action_list;
774 ofpbuf_init(&action_list, 0);
775 ofpacts_execute_action_set(&action_list, &ctx->action_set);
776 if (action_list.size) {
777 struct ds s = DS_EMPTY_INITIALIZER;
778 struct ofpact_format_params fp = { .s = &s };
779 ofpacts_format(action_list.data, action_list.size, &fp);
780 xlate_report(ctx, OFT_DETAIL, "action set %s: %s",
781 verb, ds_cstr(&s));
782 ds_destroy(&s);
783 } else {
784 xlate_report(ctx, OFT_DETAIL, "action set %s empty", verb);
785 }
786 ofpbuf_uninit(&action_list);
787 }
788 }
789
790
791 /* If tracing is enabled in 'ctx', appends a node representing 'rule' (in
792 * OpenFlow table 'table_id') to the trace and makes this node the parent for
793 * future trace nodes. The caller should save ctx->xin->trace before calling
794 * this function, then after tracing all of the activities under the table,
795 * restore its previous value.
796 *
797 * If tracing is not enabled, does nothing. */
798 static void
799 xlate_report_table(const struct xlate_ctx *ctx, struct rule_dpif *rule,
800 uint8_t table_id)
801 {
802 if (OVS_LIKELY(!ctx->xin->trace)) {
803 return;
804 }
805
806 struct ds s = DS_EMPTY_INITIALIZER;
807 ds_put_format(&s, "%2d. ", table_id);
808 if (rule == ctx->xin->ofproto->miss_rule) {
809 ds_put_cstr(&s, "No match, and a \"packet-in\" is called for.");
810 } else if (rule == ctx->xin->ofproto->no_packet_in_rule) {
811 ds_put_cstr(&s, "No match.");
812 } else if (rule == ctx->xin->ofproto->drop_frags_rule) {
813 ds_put_cstr(&s, "Packets are IP fragments and "
814 "the fragment handling mode is \"drop\".");
815 } else {
816 minimatch_format(&rule->up.cr.match,
817 ofproto_get_tun_tab(&ctx->xin->ofproto->up),
818 NULL, &s, OFP_DEFAULT_PRIORITY);
819 if (ds_last(&s) != ' ') {
820 ds_put_cstr(&s, ", ");
821 }
822 ds_put_format(&s, "priority %d", rule->up.cr.priority);
823 if (rule->up.flow_cookie) {
824 ds_put_format(&s, ", cookie %#"PRIx64,
825 ntohll(rule->up.flow_cookie));
826 }
827 }
828 ctx->xin->trace = &oftrace_report(ctx->xin->trace, OFT_TABLE,
829 ds_cstr(&s))->subs;
830 ds_destroy(&s);
831 }
832
833 /* If tracing is enabled in 'ctx', adds an OFT_DETAIL trace node to 'ctx'
834 * reporting the value of subfield 'sf'.
835 *
836 * If tracing is not enabled, does nothing. */
837 static void
838 xlate_report_subfield(const struct xlate_ctx *ctx,
839 const struct mf_subfield *sf)
840 {
841 if (OVS_UNLIKELY(ctx->xin->trace)) {
842 struct ds s = DS_EMPTY_INITIALIZER;
843 mf_format_subfield(sf, &s);
844 ds_put_cstr(&s, " is now ");
845
846 if (sf->ofs == 0 && sf->n_bits >= sf->field->n_bits) {
847 union mf_value value;
848 mf_get_value(sf->field, &ctx->xin->flow, &value);
849 mf_format(sf->field, &value, NULL, NULL, &s);
850 } else {
851 union mf_subvalue cst;
852 mf_read_subfield(sf, &ctx->xin->flow, &cst);
853 ds_put_hex(&s, &cst, sizeof cst);
854 }
855
856 xlate_report(ctx, OFT_DETAIL, "%s", ds_cstr(&s));
857
858 ds_destroy(&s);
859 }
860 }
861 \f
862 static void
863 xlate_xbridge_init(struct xlate_cfg *xcfg, struct xbridge *xbridge)
864 {
865 ovs_list_init(&xbridge->xbundles);
866 hmap_init(&xbridge->xports);
867 hmap_insert(&xcfg->xbridges, &xbridge->hmap_node,
868 hash_pointer(xbridge->ofproto, 0));
869 }
870
871 static void
872 xlate_xbundle_init(struct xlate_cfg *xcfg, struct xbundle *xbundle)
873 {
874 ovs_list_init(&xbundle->xports);
875 ovs_list_insert(&xbundle->xbridge->xbundles, &xbundle->list_node);
876 hmap_insert(&xcfg->xbundles, &xbundle->hmap_node,
877 hash_pointer(xbundle->ofbundle, 0));
878 }
879
880 static void
881 xlate_xport_init(struct xlate_cfg *xcfg, struct xport *xport)
882 {
883 hmap_init(&xport->skb_priorities);
884 hmap_insert(&xcfg->xports, &xport->hmap_node,
885 hash_pointer(xport->ofport, 0));
886 hmap_insert(&xport->xbridge->xports, &xport->ofp_node,
887 hash_ofp_port(xport->ofp_port));
888 hmap_insert(&xcfg->xports_uuid, &xport->uuid_node,
889 uuid_hash(&xport->uuid));
890 }
891
892 static struct xbridge_addr *
893 xbridge_addr_create(struct xbridge *xbridge)
894 {
895 struct xbridge_addr *xbridge_addr = xbridge->addr;
896 struct in6_addr *addr = NULL, *mask = NULL;
897 struct netdev *dev;
898 int err, n_addr = 0;
899
900 err = netdev_open(xbridge->name, NULL, &dev);
901 if (!err) {
902 err = netdev_get_addr_list(dev, &addr, &mask, &n_addr);
903 if (!err) {
904 if (!xbridge->addr ||
905 n_addr != xbridge->addr->n_addr ||
906 (xbridge->addr->addr && memcmp(addr, xbridge->addr->addr,
907 sizeof(*addr) * n_addr))) {
908 xbridge_addr = xzalloc(sizeof *xbridge_addr);
909 xbridge_addr->addr = addr;
910 xbridge_addr->n_addr = n_addr;
911 ovs_refcount_init(&xbridge_addr->ref_cnt);
912 } else {
913 free(addr);
914 }
915 free(mask);
916 }
917 netdev_close(dev);
918 }
919
920 return xbridge_addr;
921 }
922
923 static struct xbridge_addr *
924 xbridge_addr_ref(const struct xbridge_addr *addr_)
925 {
926 struct xbridge_addr *addr = CONST_CAST(struct xbridge_addr *, addr_);
927 if (addr) {
928 ovs_refcount_ref(&addr->ref_cnt);
929 }
930 return addr;
931 }
932
933 static void
934 xbridge_addr_unref(struct xbridge_addr *addr)
935 {
936 if (addr && ovs_refcount_unref_relaxed(&addr->ref_cnt) == 1) {
937 free(addr->addr);
938 free(addr);
939 }
940 }
941
942 static void
943 xlate_xbridge_set(struct xbridge *xbridge,
944 struct dpif *dpif,
945 const struct mac_learning *ml, struct stp *stp,
946 struct rstp *rstp, const struct mcast_snooping *ms,
947 const struct mbridge *mbridge,
948 const struct dpif_sflow *sflow,
949 const struct dpif_ipfix *ipfix,
950 const struct netflow *netflow,
951 bool forward_bpdu, bool has_in_band,
952 const struct dpif_backer_support *support,
953 const struct xbridge_addr *addr)
954 {
955 if (xbridge->ml != ml) {
956 mac_learning_unref(xbridge->ml);
957 xbridge->ml = mac_learning_ref(ml);
958 }
959
960 if (xbridge->ms != ms) {
961 mcast_snooping_unref(xbridge->ms);
962 xbridge->ms = mcast_snooping_ref(ms);
963 }
964
965 if (xbridge->mbridge != mbridge) {
966 mbridge_unref(xbridge->mbridge);
967 xbridge->mbridge = mbridge_ref(mbridge);
968 }
969
970 if (xbridge->sflow != sflow) {
971 dpif_sflow_unref(xbridge->sflow);
972 xbridge->sflow = dpif_sflow_ref(sflow);
973 }
974
975 if (xbridge->ipfix != ipfix) {
976 dpif_ipfix_unref(xbridge->ipfix);
977 xbridge->ipfix = dpif_ipfix_ref(ipfix);
978 }
979
980 if (xbridge->stp != stp) {
981 stp_unref(xbridge->stp);
982 xbridge->stp = stp_ref(stp);
983 }
984
985 if (xbridge->rstp != rstp) {
986 rstp_unref(xbridge->rstp);
987 xbridge->rstp = rstp_ref(rstp);
988 }
989
990 if (xbridge->netflow != netflow) {
991 netflow_unref(xbridge->netflow);
992 xbridge->netflow = netflow_ref(netflow);
993 }
994
995 if (xbridge->addr != addr) {
996 xbridge_addr_unref(xbridge->addr);
997 xbridge->addr = xbridge_addr_ref(addr);
998 }
999
1000 xbridge->dpif = dpif;
1001 xbridge->forward_bpdu = forward_bpdu;
1002 xbridge->has_in_band = has_in_band;
1003 xbridge->support = *support;
1004 }
1005
1006 static void
1007 xlate_xbundle_set(struct xbundle *xbundle,
1008 enum port_vlan_mode vlan_mode, uint16_t qinq_ethtype,
1009 int vlan, unsigned long *trunks, unsigned long *cvlans,
1010 enum port_priority_tags_mode use_priority_tags,
1011 const struct bond *bond, const struct lacp *lacp,
1012 bool floodable, bool protected)
1013 {
1014 ovs_assert(xbundle->xbridge);
1015
1016 xbundle->vlan_mode = vlan_mode;
1017 xbundle->qinq_ethtype = qinq_ethtype;
1018 xbundle->vlan = vlan;
1019 xbundle->trunks = trunks;
1020 xbundle->cvlans = cvlans;
1021 xbundle->use_priority_tags = use_priority_tags;
1022 xbundle->floodable = floodable;
1023 xbundle->protected = protected;
1024
1025 if (xbundle->bond != bond) {
1026 bond_unref(xbundle->bond);
1027 xbundle->bond = bond_ref(bond);
1028 }
1029
1030 if (xbundle->lacp != lacp) {
1031 lacp_unref(xbundle->lacp);
1032 xbundle->lacp = lacp_ref(lacp);
1033 }
1034 }
1035
1036 static void
1037 xlate_xport_set(struct xport *xport, odp_port_t odp_port,
1038 const struct netdev *netdev, const struct cfm *cfm,
1039 const struct bfd *bfd, const struct lldp *lldp, int stp_port_no,
1040 const struct rstp_port* rstp_port,
1041 enum ofputil_port_config config, enum ofputil_port_state state,
1042 bool is_tunnel, bool may_enable)
1043 {
1044 xport->config = config;
1045 xport->state = state;
1046 xport->stp_port_no = stp_port_no;
1047 xport->is_tunnel = is_tunnel;
1048 xport->pt_mode = netdev_get_pt_mode(netdev);
1049 xport->may_enable = may_enable;
1050 xport->odp_port = odp_port;
1051
1052 if (xport->rstp_port != rstp_port) {
1053 rstp_port_unref(xport->rstp_port);
1054 xport->rstp_port = rstp_port_ref(rstp_port);
1055 }
1056
1057 if (xport->cfm != cfm) {
1058 cfm_unref(xport->cfm);
1059 xport->cfm = cfm_ref(cfm);
1060 }
1061
1062 if (xport->bfd != bfd) {
1063 bfd_unref(xport->bfd);
1064 xport->bfd = bfd_ref(bfd);
1065 }
1066
1067 if (xport->lldp != lldp) {
1068 lldp_unref(xport->lldp);
1069 xport->lldp = lldp_ref(lldp);
1070 }
1071
1072 if (xport->netdev != netdev) {
1073 netdev_close(xport->netdev);
1074 xport->netdev = netdev_ref(netdev);
1075 }
1076 }
1077
1078 static void
1079 xlate_xbridge_copy(struct xbridge *xbridge)
1080 {
1081 struct xbundle *xbundle;
1082 struct xport *xport;
1083 struct xbridge *new_xbridge = xzalloc(sizeof *xbridge);
1084 new_xbridge->ofproto = xbridge->ofproto;
1085 new_xbridge->name = xstrdup(xbridge->name);
1086 xlate_xbridge_init(new_xcfg, new_xbridge);
1087
1088 xlate_xbridge_set(new_xbridge,
1089 xbridge->dpif, xbridge->ml, xbridge->stp,
1090 xbridge->rstp, xbridge->ms, xbridge->mbridge,
1091 xbridge->sflow, xbridge->ipfix, xbridge->netflow,
1092 xbridge->forward_bpdu, xbridge->has_in_band,
1093 &xbridge->support, xbridge->addr);
1094 LIST_FOR_EACH (xbundle, list_node, &xbridge->xbundles) {
1095 xlate_xbundle_copy(new_xbridge, xbundle);
1096 }
1097
1098 /* Copy xports which are not part of a xbundle */
1099 HMAP_FOR_EACH (xport, ofp_node, &xbridge->xports) {
1100 if (!xport->xbundle) {
1101 xlate_xport_copy(new_xbridge, NULL, xport);
1102 }
1103 }
1104 }
1105
1106 static void
1107 xlate_xbundle_copy(struct xbridge *xbridge, struct xbundle *xbundle)
1108 {
1109 struct xport *xport;
1110 struct xbundle *new_xbundle = xzalloc(sizeof *xbundle);
1111 new_xbundle->ofbundle = xbundle->ofbundle;
1112 new_xbundle->xbridge = xbridge;
1113 new_xbundle->name = xstrdup(xbundle->name);
1114 xlate_xbundle_init(new_xcfg, new_xbundle);
1115
1116 xlate_xbundle_set(new_xbundle, xbundle->vlan_mode, xbundle->qinq_ethtype,
1117 xbundle->vlan, xbundle->trunks, xbundle->cvlans,
1118 xbundle->use_priority_tags, xbundle->bond, xbundle->lacp,
1119 xbundle->floodable, xbundle->protected);
1120 LIST_FOR_EACH (xport, bundle_node, &xbundle->xports) {
1121 xlate_xport_copy(xbridge, new_xbundle, xport);
1122 }
1123 }
1124
1125 static void
1126 xlate_xport_copy(struct xbridge *xbridge, struct xbundle *xbundle,
1127 struct xport *xport)
1128 {
1129 struct skb_priority_to_dscp *pdscp, *new_pdscp;
1130 struct xport *new_xport = xzalloc(sizeof *xport);
1131 new_xport->ofport = xport->ofport;
1132 new_xport->ofp_port = xport->ofp_port;
1133 new_xport->xbridge = xbridge;
1134 new_xport->uuid = xport->uuid;
1135 xlate_xport_init(new_xcfg, new_xport);
1136
1137 xlate_xport_set(new_xport, xport->odp_port, xport->netdev, xport->cfm,
1138 xport->bfd, xport->lldp, xport->stp_port_no,
1139 xport->rstp_port, xport->config, xport->state,
1140 xport->is_tunnel, xport->may_enable);
1141
1142 if (xport->peer) {
1143 struct xport *peer = xport_lookup(new_xcfg, xport->peer->ofport);
1144 if (peer) {
1145 new_xport->peer = peer;
1146 new_xport->peer->peer = new_xport;
1147 }
1148 }
1149
1150 if (xbundle) {
1151 new_xport->xbundle = xbundle;
1152 ovs_list_insert(&new_xport->xbundle->xports, &new_xport->bundle_node);
1153 }
1154
1155 HMAP_FOR_EACH (pdscp, hmap_node, &xport->skb_priorities) {
1156 new_pdscp = xmalloc(sizeof *pdscp);
1157 new_pdscp->skb_priority = pdscp->skb_priority;
1158 new_pdscp->dscp = pdscp->dscp;
1159 hmap_insert(&new_xport->skb_priorities, &new_pdscp->hmap_node,
1160 hash_int(new_pdscp->skb_priority, 0));
1161 }
1162 }
1163
1164 /* Sets the current xlate configuration to new_xcfg and frees the old xlate
1165 * configuration in xcfgp.
1166 *
1167 * This needs to be called after editing the xlate configuration.
1168 *
1169 * Functions that edit the new xlate configuration are
1170 * xlate_<ofproto/bundle/ofport>_set and xlate_<ofproto/bundle/ofport>_remove.
1171 *
1172 * A sample workflow:
1173 *
1174 * xlate_txn_start();
1175 * ...
1176 * edit_xlate_configuration();
1177 * ...
1178 * xlate_txn_commit();
1179 *
1180 * The ovsrcu_synchronize() call here also ensures that the upcall threads
1181 * retain no references to anything in the previous configuration.
1182 */
1183 void
1184 xlate_txn_commit(void)
1185 {
1186 struct xlate_cfg *xcfg = ovsrcu_get(struct xlate_cfg *, &xcfgp);
1187
1188 ovsrcu_set(&xcfgp, new_xcfg);
1189 ovsrcu_synchronize();
1190 xlate_xcfg_free(xcfg);
1191 new_xcfg = NULL;
1192 }
1193
1194 /* Copies the current xlate configuration in xcfgp to new_xcfg.
1195 *
1196 * This needs to be called prior to editing the xlate configuration. */
1197 void
1198 xlate_txn_start(void)
1199 {
1200 struct xbridge *xbridge;
1201 struct xlate_cfg *xcfg;
1202
1203 ovs_assert(!new_xcfg);
1204
1205 new_xcfg = xmalloc(sizeof *new_xcfg);
1206 hmap_init(&new_xcfg->xbridges);
1207 hmap_init(&new_xcfg->xbundles);
1208 hmap_init(&new_xcfg->xports);
1209 hmap_init(&new_xcfg->xports_uuid);
1210
1211 xcfg = ovsrcu_get(struct xlate_cfg *, &xcfgp);
1212 if (!xcfg) {
1213 return;
1214 }
1215
1216 HMAP_FOR_EACH (xbridge, hmap_node, &xcfg->xbridges) {
1217 xlate_xbridge_copy(xbridge);
1218 }
1219 }
1220
1221
1222 static void
1223 xlate_xcfg_free(struct xlate_cfg *xcfg)
1224 {
1225 struct xbridge *xbridge, *next_xbridge;
1226
1227 if (!xcfg) {
1228 return;
1229 }
1230
1231 HMAP_FOR_EACH_SAFE (xbridge, next_xbridge, hmap_node, &xcfg->xbridges) {
1232 xlate_xbridge_remove(xcfg, xbridge);
1233 }
1234
1235 hmap_destroy(&xcfg->xbridges);
1236 hmap_destroy(&xcfg->xbundles);
1237 hmap_destroy(&xcfg->xports);
1238 hmap_destroy(&xcfg->xports_uuid);
1239 free(xcfg);
1240 }
1241
1242 void
1243 xlate_ofproto_set(struct ofproto_dpif *ofproto, const char *name,
1244 struct dpif *dpif,
1245 const struct mac_learning *ml, struct stp *stp,
1246 struct rstp *rstp, const struct mcast_snooping *ms,
1247 const struct mbridge *mbridge,
1248 const struct dpif_sflow *sflow,
1249 const struct dpif_ipfix *ipfix,
1250 const struct netflow *netflow,
1251 bool forward_bpdu, bool has_in_band,
1252 const struct dpif_backer_support *support)
1253 {
1254 struct xbridge *xbridge;
1255 struct xbridge_addr *xbridge_addr, *old_addr;
1256
1257 ovs_assert(new_xcfg);
1258
1259 xbridge = xbridge_lookup(new_xcfg, ofproto);
1260 if (!xbridge) {
1261 xbridge = xzalloc(sizeof *xbridge);
1262 xbridge->ofproto = ofproto;
1263
1264 xlate_xbridge_init(new_xcfg, xbridge);
1265 }
1266
1267 free(xbridge->name);
1268 xbridge->name = xstrdup(name);
1269
1270 xbridge_addr = xbridge_addr_create(xbridge);
1271 old_addr = xbridge->addr;
1272
1273 xlate_xbridge_set(xbridge, dpif, ml, stp, rstp, ms, mbridge, sflow, ipfix,
1274 netflow, forward_bpdu, has_in_band, support,
1275 xbridge_addr);
1276
1277 if (xbridge_addr != old_addr) {
1278 xbridge_addr_unref(xbridge_addr);
1279 }
1280 }
1281
1282 static void
1283 xlate_xbridge_remove(struct xlate_cfg *xcfg, struct xbridge *xbridge)
1284 {
1285 struct xbundle *xbundle, *next_xbundle;
1286 struct xport *xport, *next_xport;
1287
1288 if (!xbridge) {
1289 return;
1290 }
1291
1292 HMAP_FOR_EACH_SAFE (xport, next_xport, ofp_node, &xbridge->xports) {
1293 xlate_xport_remove(xcfg, xport);
1294 }
1295
1296 LIST_FOR_EACH_SAFE (xbundle, next_xbundle, list_node, &xbridge->xbundles) {
1297 xlate_xbundle_remove(xcfg, xbundle);
1298 }
1299
1300 hmap_remove(&xcfg->xbridges, &xbridge->hmap_node);
1301 mac_learning_unref(xbridge->ml);
1302 mcast_snooping_unref(xbridge->ms);
1303 mbridge_unref(xbridge->mbridge);
1304 dpif_sflow_unref(xbridge->sflow);
1305 dpif_ipfix_unref(xbridge->ipfix);
1306 netflow_unref(xbridge->netflow);
1307 stp_unref(xbridge->stp);
1308 rstp_unref(xbridge->rstp);
1309 xbridge_addr_unref(xbridge->addr);
1310 hmap_destroy(&xbridge->xports);
1311 free(xbridge->name);
1312 free(xbridge);
1313 }
1314
1315 void
1316 xlate_remove_ofproto(struct ofproto_dpif *ofproto)
1317 {
1318 struct xbridge *xbridge;
1319
1320 ovs_assert(new_xcfg);
1321
1322 xbridge = xbridge_lookup(new_xcfg, ofproto);
1323 xlate_xbridge_remove(new_xcfg, xbridge);
1324 }
1325
1326 void
1327 xlate_bundle_set(struct ofproto_dpif *ofproto, struct ofbundle *ofbundle,
1328 const char *name, enum port_vlan_mode vlan_mode,
1329 uint16_t qinq_ethtype, int vlan,
1330 unsigned long *trunks, unsigned long *cvlans,
1331 enum port_priority_tags_mode use_priority_tags,
1332 const struct bond *bond, const struct lacp *lacp,
1333 bool floodable, bool protected)
1334 {
1335 struct xbundle *xbundle;
1336
1337 ovs_assert(new_xcfg);
1338
1339 xbundle = xbundle_lookup(new_xcfg, ofbundle);
1340 if (!xbundle) {
1341 xbundle = xzalloc(sizeof *xbundle);
1342 xbundle->ofbundle = ofbundle;
1343 xbundle->xbridge = xbridge_lookup(new_xcfg, ofproto);
1344
1345 xlate_xbundle_init(new_xcfg, xbundle);
1346 }
1347
1348 free(xbundle->name);
1349 xbundle->name = xstrdup(name);
1350
1351 xlate_xbundle_set(xbundle, vlan_mode, qinq_ethtype, vlan, trunks, cvlans,
1352 use_priority_tags, bond, lacp, floodable, protected);
1353 }
1354
1355 static void
1356 xlate_xbundle_remove(struct xlate_cfg *xcfg, struct xbundle *xbundle)
1357 {
1358 struct xport *xport;
1359
1360 if (!xbundle) {
1361 return;
1362 }
1363
1364 LIST_FOR_EACH_POP (xport, bundle_node, &xbundle->xports) {
1365 xport->xbundle = NULL;
1366 }
1367
1368 hmap_remove(&xcfg->xbundles, &xbundle->hmap_node);
1369 ovs_list_remove(&xbundle->list_node);
1370 bond_unref(xbundle->bond);
1371 lacp_unref(xbundle->lacp);
1372 free(xbundle->name);
1373 free(xbundle);
1374 }
1375
1376 void
1377 xlate_bundle_remove(struct ofbundle *ofbundle)
1378 {
1379 struct xbundle *xbundle;
1380
1381 ovs_assert(new_xcfg);
1382
1383 xbundle = xbundle_lookup(new_xcfg, ofbundle);
1384 xlate_xbundle_remove(new_xcfg, xbundle);
1385 }
1386
1387 void
1388 xlate_ofport_set(struct ofproto_dpif *ofproto, struct ofbundle *ofbundle,
1389 struct ofport_dpif *ofport, ofp_port_t ofp_port,
1390 odp_port_t odp_port, const struct netdev *netdev,
1391 const struct cfm *cfm, const struct bfd *bfd,
1392 const struct lldp *lldp, struct ofport_dpif *peer,
1393 int stp_port_no, const struct rstp_port *rstp_port,
1394 const struct ofproto_port_queue *qdscp_list, size_t n_qdscp,
1395 enum ofputil_port_config config,
1396 enum ofputil_port_state state, bool is_tunnel,
1397 bool may_enable)
1398 {
1399 size_t i;
1400 struct xport *xport;
1401
1402 ovs_assert(new_xcfg);
1403
1404 xport = xport_lookup(new_xcfg, ofport);
1405 if (!xport) {
1406 xport = xzalloc(sizeof *xport);
1407 xport->ofport = ofport;
1408 xport->xbridge = xbridge_lookup(new_xcfg, ofproto);
1409 xport->ofp_port = ofp_port;
1410 uuid_generate(&xport->uuid);
1411
1412 xlate_xport_init(new_xcfg, xport);
1413 }
1414
1415 ovs_assert(xport->ofp_port == ofp_port);
1416
1417 xlate_xport_set(xport, odp_port, netdev, cfm, bfd, lldp,
1418 stp_port_no, rstp_port, config, state, is_tunnel,
1419 may_enable);
1420
1421 if (xport->peer) {
1422 xport->peer->peer = NULL;
1423 }
1424 xport->peer = xport_lookup(new_xcfg, peer);
1425 if (xport->peer) {
1426 xport->peer->peer = xport;
1427 }
1428
1429 if (xport->xbundle) {
1430 ovs_list_remove(&xport->bundle_node);
1431 }
1432 xport->xbundle = xbundle_lookup(new_xcfg, ofbundle);
1433 if (xport->xbundle) {
1434 ovs_list_insert(&xport->xbundle->xports, &xport->bundle_node);
1435 }
1436
1437 clear_skb_priorities(xport);
1438 for (i = 0; i < n_qdscp; i++) {
1439 struct skb_priority_to_dscp *pdscp;
1440 uint32_t skb_priority;
1441
1442 if (dpif_queue_to_priority(xport->xbridge->dpif, qdscp_list[i].queue,
1443 &skb_priority)) {
1444 continue;
1445 }
1446
1447 pdscp = xmalloc(sizeof *pdscp);
1448 pdscp->skb_priority = skb_priority;
1449 pdscp->dscp = (qdscp_list[i].dscp << 2) & IP_DSCP_MASK;
1450 hmap_insert(&xport->skb_priorities, &pdscp->hmap_node,
1451 hash_int(pdscp->skb_priority, 0));
1452 }
1453 }
1454
1455 static void
1456 xlate_xport_remove(struct xlate_cfg *xcfg, struct xport *xport)
1457 {
1458 if (!xport) {
1459 return;
1460 }
1461
1462 if (xport->peer) {
1463 xport->peer->peer = NULL;
1464 xport->peer = NULL;
1465 }
1466
1467 if (xport->xbundle) {
1468 ovs_list_remove(&xport->bundle_node);
1469 }
1470
1471 clear_skb_priorities(xport);
1472 hmap_destroy(&xport->skb_priorities);
1473
1474 hmap_remove(&xcfg->xports, &xport->hmap_node);
1475 hmap_remove(&xcfg->xports_uuid, &xport->uuid_node);
1476 hmap_remove(&xport->xbridge->xports, &xport->ofp_node);
1477
1478 netdev_close(xport->netdev);
1479 rstp_port_unref(xport->rstp_port);
1480 cfm_unref(xport->cfm);
1481 bfd_unref(xport->bfd);
1482 lldp_unref(xport->lldp);
1483 free(xport);
1484 }
1485
1486 void
1487 xlate_ofport_remove(struct ofport_dpif *ofport)
1488 {
1489 struct xport *xport;
1490
1491 ovs_assert(new_xcfg);
1492
1493 xport = xport_lookup(new_xcfg, ofport);
1494 if (xport) {
1495 tnl_neigh_flush(netdev_get_name(xport->netdev));
1496 }
1497 xlate_xport_remove(new_xcfg, xport);
1498 }
1499
1500 static struct ofproto_dpif *
1501 xlate_lookup_ofproto_(const struct dpif_backer *backer,
1502 const struct flow *flow,
1503 ofp_port_t *ofp_in_port, const struct xport **xportp,
1504 char **errorp)
1505 {
1506 struct xlate_cfg *xcfg = ovsrcu_get(struct xlate_cfg *, &xcfgp);
1507 const struct xport *xport;
1508
1509 /* If packet is recirculated, xport can be retrieved from frozen state. */
1510 if (flow->recirc_id) {
1511 const struct recirc_id_node *recirc_id_node;
1512
1513 recirc_id_node = recirc_id_node_find(flow->recirc_id);
1514
1515 if (OVS_UNLIKELY(!recirc_id_node)) {
1516 if (errorp) {
1517 *errorp = xasprintf("no recirculation data for recirc_id "
1518 "%"PRIu32, flow->recirc_id);
1519 }
1520 return NULL;
1521 }
1522
1523 /* If recirculation was initiated due to bond (in_port = OFPP_NONE)
1524 * then frozen state is static and xport_uuid is not defined, so xport
1525 * cannot be restored from frozen state. */
1526 if (recirc_id_node->state.metadata.in_port != OFPP_NONE) {
1527 struct uuid xport_uuid = recirc_id_node->state.xport_uuid;
1528 xport = xport_lookup_by_uuid(xcfg, &xport_uuid);
1529 if (xport && xport->xbridge && xport->xbridge->ofproto) {
1530 goto out;
1531 }
1532 }
1533 }
1534
1535 xport = xport_lookup(xcfg, tnl_port_should_receive(flow)
1536 ? tnl_port_receive(flow)
1537 : odp_port_to_ofport(backer, flow->in_port.odp_port));
1538 if (OVS_UNLIKELY(!xport)) {
1539 if (errorp) {
1540 *errorp = (tnl_port_should_receive(flow)
1541 ? xstrdup("no OpenFlow tunnel port for this packet")
1542 : xasprintf("no OpenFlow tunnel port for datapath "
1543 "port %"PRIu32, flow->in_port.odp_port));
1544 }
1545 return NULL;
1546 }
1547
1548 out:
1549 if (errorp) {
1550 *errorp = NULL;
1551 }
1552 *xportp = xport;
1553 if (ofp_in_port) {
1554 *ofp_in_port = xport->ofp_port;
1555 }
1556 return xport->xbridge->ofproto;
1557 }
1558
1559 /* Given a datapath and flow metadata ('backer', and 'flow' respectively)
1560 * returns the corresponding struct ofproto_dpif and OpenFlow port number. */
1561 struct ofproto_dpif *
1562 xlate_lookup_ofproto(const struct dpif_backer *backer, const struct flow *flow,
1563 ofp_port_t *ofp_in_port, char **errorp)
1564 {
1565 const struct xport *xport;
1566
1567 return xlate_lookup_ofproto_(backer, flow, ofp_in_port, &xport, errorp);
1568 }
1569
1570 /* Given a datapath and flow metadata ('backer', and 'flow' respectively),
1571 * optionally populates 'ofprotop' with the ofproto_dpif, 'ofp_in_port' with the
1572 * openflow in_port, and 'ipfix', 'sflow', and 'netflow' with the appropriate
1573 * handles for those protocols if they're enabled. Caller may use the returned
1574 * pointers until quiescing, for longer term use additional references must
1575 * be taken.
1576 *
1577 * Returns 0 if successful, ENODEV if the parsed flow has no associated ofproto.
1578 */
1579 int
1580 xlate_lookup(const struct dpif_backer *backer, const struct flow *flow,
1581 struct ofproto_dpif **ofprotop, struct dpif_ipfix **ipfix,
1582 struct dpif_sflow **sflow, struct netflow **netflow,
1583 ofp_port_t *ofp_in_port)
1584 {
1585 struct ofproto_dpif *ofproto;
1586 const struct xport *xport;
1587
1588 ofproto = xlate_lookup_ofproto_(backer, flow, ofp_in_port, &xport, NULL);
1589
1590 if (!ofproto) {
1591 return ENODEV;
1592 }
1593
1594 if (ofprotop) {
1595 *ofprotop = ofproto;
1596 }
1597
1598 if (ipfix) {
1599 *ipfix = xport ? xport->xbridge->ipfix : NULL;
1600 }
1601
1602 if (sflow) {
1603 *sflow = xport ? xport->xbridge->sflow : NULL;
1604 }
1605
1606 if (netflow) {
1607 *netflow = xport ? xport->xbridge->netflow : NULL;
1608 }
1609
1610 return 0;
1611 }
1612
1613 static struct xbridge *
1614 xbridge_lookup(struct xlate_cfg *xcfg, const struct ofproto_dpif *ofproto)
1615 {
1616 struct hmap *xbridges;
1617 struct xbridge *xbridge;
1618
1619 if (!ofproto || !xcfg) {
1620 return NULL;
1621 }
1622
1623 xbridges = &xcfg->xbridges;
1624
1625 HMAP_FOR_EACH_IN_BUCKET (xbridge, hmap_node, hash_pointer(ofproto, 0),
1626 xbridges) {
1627 if (xbridge->ofproto == ofproto) {
1628 return xbridge;
1629 }
1630 }
1631 return NULL;
1632 }
1633
1634 static struct xbridge *
1635 xbridge_lookup_by_uuid(struct xlate_cfg *xcfg, const struct uuid *uuid)
1636 {
1637 struct xbridge *xbridge;
1638
1639 HMAP_FOR_EACH (xbridge, hmap_node, &xcfg->xbridges) {
1640 if (uuid_equals(&xbridge->ofproto->uuid, uuid)) {
1641 return xbridge;
1642 }
1643 }
1644 return NULL;
1645 }
1646
1647 static struct xbundle *
1648 xbundle_lookup(struct xlate_cfg *xcfg, const struct ofbundle *ofbundle)
1649 {
1650 struct hmap *xbundles;
1651 struct xbundle *xbundle;
1652
1653 if (!ofbundle || !xcfg) {
1654 return NULL;
1655 }
1656
1657 xbundles = &xcfg->xbundles;
1658
1659 HMAP_FOR_EACH_IN_BUCKET (xbundle, hmap_node, hash_pointer(ofbundle, 0),
1660 xbundles) {
1661 if (xbundle->ofbundle == ofbundle) {
1662 return xbundle;
1663 }
1664 }
1665 return NULL;
1666 }
1667
1668 static struct xport *
1669 xport_lookup(struct xlate_cfg *xcfg, const struct ofport_dpif *ofport)
1670 {
1671 struct hmap *xports;
1672 struct xport *xport;
1673
1674 if (!ofport || !xcfg) {
1675 return NULL;
1676 }
1677
1678 xports = &xcfg->xports;
1679
1680 HMAP_FOR_EACH_IN_BUCKET (xport, hmap_node, hash_pointer(ofport, 0),
1681 xports) {
1682 if (xport->ofport == ofport) {
1683 return xport;
1684 }
1685 }
1686 return NULL;
1687 }
1688
1689 static struct xport *
1690 xport_lookup_by_uuid(struct xlate_cfg *xcfg, const struct uuid *uuid)
1691 {
1692 struct hmap *xports;
1693 struct xport *xport;
1694
1695 if (uuid_is_zero(uuid) || !xcfg) {
1696 return NULL;
1697 }
1698
1699 xports = &xcfg->xports_uuid;
1700
1701 HMAP_FOR_EACH_IN_BUCKET (xport, uuid_node, uuid_hash(uuid), xports) {
1702 if (uuid_equals(&xport->uuid, uuid)) {
1703 return xport;
1704 }
1705 }
1706 return NULL;
1707 }
1708
1709 static struct stp_port *
1710 xport_get_stp_port(const struct xport *xport)
1711 {
1712 return xport->xbridge->stp && xport->stp_port_no != -1
1713 ? stp_get_port(xport->xbridge->stp, xport->stp_port_no)
1714 : NULL;
1715 }
1716
1717 static bool
1718 xport_stp_learn_state(const struct xport *xport)
1719 {
1720 struct stp_port *sp = xport_get_stp_port(xport);
1721 return sp
1722 ? stp_learn_in_state(stp_port_get_state(sp))
1723 : true;
1724 }
1725
1726 static bool
1727 xport_stp_forward_state(const struct xport *xport)
1728 {
1729 struct stp_port *sp = xport_get_stp_port(xport);
1730 return sp
1731 ? stp_forward_in_state(stp_port_get_state(sp))
1732 : true;
1733 }
1734
1735 static bool
1736 xport_stp_should_forward_bpdu(const struct xport *xport)
1737 {
1738 struct stp_port *sp = xport_get_stp_port(xport);
1739 return stp_should_forward_bpdu(sp ? stp_port_get_state(sp) : STP_DISABLED);
1740 }
1741
1742 /* Returns true if STP should process 'flow'. Sets fields in 'wc' that
1743 * were used to make the determination.*/
1744 static bool
1745 stp_should_process_flow(const struct flow *flow, struct flow_wildcards *wc)
1746 {
1747 /* is_stp() also checks dl_type, but dl_type is always set in 'wc'. */
1748 memset(&wc->masks.dl_dst, 0xff, sizeof wc->masks.dl_dst);
1749 return is_stp(flow);
1750 }
1751
1752 static void
1753 stp_process_packet(const struct xport *xport, const struct dp_packet *packet)
1754 {
1755 struct stp_port *sp = xport_get_stp_port(xport);
1756 struct dp_packet payload = *packet;
1757 struct eth_header *eth = dp_packet_data(&payload);
1758
1759 /* Sink packets on ports that have STP disabled when the bridge has
1760 * STP enabled. */
1761 if (!sp || stp_port_get_state(sp) == STP_DISABLED) {
1762 return;
1763 }
1764
1765 /* Trim off padding on payload. */
1766 if (dp_packet_size(&payload) > ntohs(eth->eth_type) + ETH_HEADER_LEN) {
1767 dp_packet_set_size(&payload, ntohs(eth->eth_type) + ETH_HEADER_LEN);
1768 }
1769
1770 if (dp_packet_try_pull(&payload, ETH_HEADER_LEN + LLC_HEADER_LEN)) {
1771 stp_received_bpdu(sp, dp_packet_data(&payload), dp_packet_size(&payload));
1772 }
1773 }
1774
1775 static enum rstp_state
1776 xport_get_rstp_port_state(const struct xport *xport)
1777 {
1778 return xport->rstp_port
1779 ? rstp_port_get_state(xport->rstp_port)
1780 : RSTP_DISABLED;
1781 }
1782
1783 static bool
1784 xport_rstp_learn_state(const struct xport *xport)
1785 {
1786 return xport->xbridge->rstp && xport->rstp_port
1787 ? rstp_learn_in_state(xport_get_rstp_port_state(xport))
1788 : true;
1789 }
1790
1791 static bool
1792 xport_rstp_forward_state(const struct xport *xport)
1793 {
1794 return xport->xbridge->rstp && xport->rstp_port
1795 ? rstp_forward_in_state(xport_get_rstp_port_state(xport))
1796 : true;
1797 }
1798
1799 static bool
1800 xport_rstp_should_manage_bpdu(const struct xport *xport)
1801 {
1802 return rstp_should_manage_bpdu(xport_get_rstp_port_state(xport));
1803 }
1804
1805 static void
1806 rstp_process_packet(const struct xport *xport, const struct dp_packet *packet)
1807 {
1808 struct dp_packet payload = *packet;
1809 struct eth_header *eth = dp_packet_data(&payload);
1810
1811 /* Sink packets on ports that have no RSTP. */
1812 if (!xport->rstp_port) {
1813 return;
1814 }
1815
1816 /* Trim off padding on payload. */
1817 if (dp_packet_size(&payload) > ntohs(eth->eth_type) + ETH_HEADER_LEN) {
1818 dp_packet_set_size(&payload, ntohs(eth->eth_type) + ETH_HEADER_LEN);
1819 }
1820
1821 int len = ETH_HEADER_LEN + LLC_HEADER_LEN;
1822 if (eth->eth_type == htons(ETH_TYPE_VLAN)) {
1823 len += VLAN_HEADER_LEN;
1824 }
1825 if (dp_packet_try_pull(&payload, len)) {
1826 rstp_port_received_bpdu(xport->rstp_port, dp_packet_data(&payload),
1827 dp_packet_size(&payload));
1828 }
1829 }
1830
1831 static struct xport *
1832 get_ofp_port(const struct xbridge *xbridge, ofp_port_t ofp_port)
1833 {
1834 struct xport *xport;
1835
1836 HMAP_FOR_EACH_IN_BUCKET (xport, ofp_node, hash_ofp_port(ofp_port),
1837 &xbridge->xports) {
1838 if (xport->ofp_port == ofp_port) {
1839 return xport;
1840 }
1841 }
1842 return NULL;
1843 }
1844
1845 static odp_port_t
1846 ofp_port_to_odp_port(const struct xbridge *xbridge, ofp_port_t ofp_port)
1847 {
1848 const struct xport *xport = get_ofp_port(xbridge, ofp_port);
1849 return xport ? xport->odp_port : ODPP_NONE;
1850 }
1851
1852 static bool
1853 odp_port_is_alive(const struct xlate_ctx *ctx, ofp_port_t ofp_port)
1854 {
1855 struct xport *xport = get_ofp_port(ctx->xbridge, ofp_port);
1856 return xport && xport->may_enable;
1857 }
1858
1859 static struct ofputil_bucket *
1860 group_first_live_bucket(const struct xlate_ctx *, const struct group_dpif *,
1861 int depth);
1862
1863 static bool
1864 group_is_alive(const struct xlate_ctx *ctx, uint32_t group_id, int depth)
1865 {
1866 struct group_dpif *group;
1867
1868 group = group_dpif_lookup(ctx->xbridge->ofproto, group_id,
1869 ctx->xin->tables_version, false);
1870 if (group) {
1871 return group_first_live_bucket(ctx, group, depth) != NULL;
1872 }
1873
1874 return false;
1875 }
1876
1877 #define MAX_LIVENESS_RECURSION 128 /* Arbitrary limit */
1878
1879 static bool
1880 bucket_is_alive(const struct xlate_ctx *ctx,
1881 struct ofputil_bucket *bucket, int depth)
1882 {
1883 if (depth >= MAX_LIVENESS_RECURSION) {
1884 xlate_report_error(ctx, "bucket chaining exceeded %d links",
1885 MAX_LIVENESS_RECURSION);
1886 return false;
1887 }
1888
1889 return (!ofputil_bucket_has_liveness(bucket)
1890 || (bucket->watch_port != OFPP_ANY
1891 && odp_port_is_alive(ctx, bucket->watch_port))
1892 || (bucket->watch_group != OFPG_ANY
1893 && group_is_alive(ctx, bucket->watch_group, depth + 1)));
1894 }
1895
1896 static void
1897 xlate_report_bucket_not_live(const struct xlate_ctx *ctx,
1898 const struct ofputil_bucket *bucket)
1899 {
1900 if (OVS_UNLIKELY(ctx->xin->trace)) {
1901 struct ds s = DS_EMPTY_INITIALIZER;
1902 if (bucket->watch_port != OFPP_ANY) {
1903 ds_put_cstr(&s, "port ");
1904 ofputil_format_port(bucket->watch_port, NULL, &s);
1905 }
1906 if (bucket->watch_group != OFPG_ANY) {
1907 if (s.length) {
1908 ds_put_cstr(&s, " and ");
1909 }
1910 ds_put_format(&s, "port %"PRIu32, bucket->watch_group);
1911 }
1912
1913 xlate_report(ctx, OFT_DETAIL, "bucket %"PRIu32": not live due to %s",
1914 bucket->bucket_id, ds_cstr(&s));
1915
1916 ds_destroy(&s);
1917 }
1918 }
1919
1920 static struct ofputil_bucket *
1921 group_first_live_bucket(const struct xlate_ctx *ctx,
1922 const struct group_dpif *group, int depth)
1923 {
1924 struct ofputil_bucket *bucket;
1925 LIST_FOR_EACH (bucket, list_node, &group->up.buckets) {
1926 if (bucket_is_alive(ctx, bucket, depth)) {
1927 return bucket;
1928 }
1929 xlate_report_bucket_not_live(ctx, bucket);
1930 }
1931
1932 return NULL;
1933 }
1934
1935 static struct ofputil_bucket *
1936 group_best_live_bucket(const struct xlate_ctx *ctx,
1937 const struct group_dpif *group,
1938 uint32_t basis)
1939 {
1940 struct ofputil_bucket *best_bucket = NULL;
1941 uint32_t best_score = 0;
1942
1943 struct ofputil_bucket *bucket;
1944 LIST_FOR_EACH (bucket, list_node, &group->up.buckets) {
1945 if (bucket_is_alive(ctx, bucket, 0)) {
1946 uint32_t score =
1947 (hash_int(bucket->bucket_id, basis) & 0xffff) * bucket->weight;
1948 if (score >= best_score) {
1949 best_bucket = bucket;
1950 best_score = score;
1951 }
1952 xlate_report(ctx, OFT_DETAIL, "bucket %"PRIu32": score %"PRIu32,
1953 bucket->bucket_id, score);
1954 } else {
1955 xlate_report_bucket_not_live(ctx, bucket);
1956 }
1957 }
1958
1959 return best_bucket;
1960 }
1961
1962 static bool
1963 xbundle_trunks_vlan(const struct xbundle *bundle, uint16_t vlan)
1964 {
1965 return (bundle->vlan_mode != PORT_VLAN_ACCESS
1966 && (!bundle->trunks || bitmap_is_set(bundle->trunks, vlan)));
1967 }
1968
1969 static bool
1970 xbundle_allows_cvlan(const struct xbundle *bundle, uint16_t vlan)
1971 {
1972 return (!bundle->cvlans || bitmap_is_set(bundle->cvlans, vlan));
1973 }
1974
1975 static bool
1976 xbundle_includes_vlan(const struct xbundle *xbundle, const struct xvlan *xvlan)
1977 {
1978 switch (xbundle->vlan_mode) {
1979 case PORT_VLAN_ACCESS:
1980 return xvlan->v[0].vid == xbundle->vlan && xvlan->v[1].vid == 0;
1981
1982 case PORT_VLAN_TRUNK:
1983 case PORT_VLAN_NATIVE_UNTAGGED:
1984 case PORT_VLAN_NATIVE_TAGGED:
1985 return xbundle_trunks_vlan(xbundle, xvlan->v[0].vid);
1986
1987 case PORT_VLAN_DOT1Q_TUNNEL:
1988 return xvlan->v[0].vid == xbundle->vlan &&
1989 xbundle_allows_cvlan(xbundle, xvlan->v[1].vid);
1990
1991 default:
1992 OVS_NOT_REACHED();
1993 }
1994 }
1995
1996 static mirror_mask_t
1997 xbundle_mirror_out(const struct xbridge *xbridge, struct xbundle *xbundle)
1998 {
1999 return xbundle != &ofpp_none_bundle
2000 ? mirror_bundle_out(xbridge->mbridge, xbundle->ofbundle)
2001 : 0;
2002 }
2003
2004 static mirror_mask_t
2005 xbundle_mirror_src(const struct xbridge *xbridge, struct xbundle *xbundle)
2006 {
2007 return xbundle != &ofpp_none_bundle
2008 ? mirror_bundle_src(xbridge->mbridge, xbundle->ofbundle)
2009 : 0;
2010 }
2011
2012 static mirror_mask_t
2013 xbundle_mirror_dst(const struct xbridge *xbridge, struct xbundle *xbundle)
2014 {
2015 return xbundle != &ofpp_none_bundle
2016 ? mirror_bundle_dst(xbridge->mbridge, xbundle->ofbundle)
2017 : 0;
2018 }
2019
2020 static struct xbundle *
2021 lookup_input_bundle__(const struct xbridge *xbridge,
2022 ofp_port_t in_port, struct xport **in_xportp)
2023 {
2024 struct xport *xport;
2025
2026 /* Find the port and bundle for the received packet. */
2027 xport = get_ofp_port(xbridge, in_port);
2028 if (in_xportp) {
2029 *in_xportp = xport;
2030 }
2031 if (xport && xport->xbundle) {
2032 return xport->xbundle;
2033 }
2034
2035 /* Special-case OFPP_NONE (OF1.0) and OFPP_CONTROLLER (OF1.1+),
2036 * which a controller may use as the ingress port for traffic that
2037 * it is sourcing. */
2038 if (in_port == OFPP_CONTROLLER || in_port == OFPP_NONE) {
2039 return &ofpp_none_bundle;
2040 }
2041 return NULL;
2042 }
2043
2044 static struct xbundle *
2045 lookup_input_bundle(const struct xlate_ctx *ctx,
2046 ofp_port_t in_port, struct xport **in_xportp)
2047 {
2048 struct xbundle *xbundle = lookup_input_bundle__(ctx->xbridge,
2049 in_port, in_xportp);
2050 if (!xbundle) {
2051 /* Odd. A few possible reasons here:
2052 *
2053 * - We deleted a port but there are still a few packets queued up
2054 * from it.
2055 *
2056 * - Someone externally added a port (e.g. "ovs-dpctl add-if") that
2057 * we don't know about.
2058 *
2059 * - The ofproto client didn't configure the port as part of a bundle.
2060 * This is particularly likely to happen if a packet was received on
2061 * the port after it was created, but before the client had a chance
2062 * to configure its bundle.
2063 */
2064 xlate_report_error(ctx, "received packet on unknown port %"PRIu32,
2065 in_port);
2066 }
2067 return xbundle;
2068 }
2069
2070 /* Mirrors the packet represented by 'ctx' to appropriate mirror destinations,
2071 * given the packet is ingressing or egressing on 'xbundle', which has ingress
2072 * or egress (as appropriate) mirrors 'mirrors'. */
2073 static void
2074 mirror_packet(struct xlate_ctx *ctx, struct xbundle *xbundle,
2075 mirror_mask_t mirrors)
2076 {
2077 struct xvlan in_xvlan;
2078 struct xvlan xvlan;
2079
2080 /* Figure out what VLAN the packet is in (because mirrors can select
2081 * packets on basis of VLAN). */
2082 xvlan_extract(&ctx->xin->flow, &in_xvlan);
2083 if (!input_vid_is_valid(ctx, in_xvlan.v[0].vid, xbundle)) {
2084 return;
2085 }
2086 xvlan_input_translate(xbundle, &in_xvlan, &xvlan);
2087
2088 const struct xbridge *xbridge = ctx->xbridge;
2089
2090 /* Don't mirror to destinations that we've already mirrored to. */
2091 mirrors &= ~ctx->mirrors;
2092 if (!mirrors) {
2093 return;
2094 }
2095
2096 /* 'mirrors' is a bit-mask of candidates for mirroring. Iterate through
2097 * the candidates, adding the ones that really should be mirrored to
2098 * 'used_mirrors', as long as some candidates remain. */
2099 mirror_mask_t used_mirrors = 0;
2100 while (mirrors) {
2101 const unsigned long *vlans;
2102 mirror_mask_t dup_mirrors;
2103 struct ofbundle *out;
2104 int out_vlan;
2105 int snaplen;
2106
2107 /* Get the details of the mirror represented by the rightmost 1-bit. */
2108 ovs_assert(mirror_get(xbridge->mbridge, raw_ctz(mirrors),
2109 &vlans, &dup_mirrors,
2110 &out, &snaplen, &out_vlan));
2111
2112
2113 /* If this mirror selects on the basis of VLAN, and it does not select
2114 * 'vlan', then discard this mirror and go on to the next one. */
2115 if (vlans) {
2116 ctx->wc->masks.vlans[0].tci |= htons(VLAN_CFI | VLAN_VID_MASK);
2117 }
2118 if (vlans && !bitmap_is_set(vlans, xvlan.v[0].vid)) {
2119 mirrors = zero_rightmost_1bit(mirrors);
2120 continue;
2121 }
2122
2123 /* We sent a packet to this mirror. */
2124 used_mirrors |= rightmost_1bit(mirrors);
2125
2126 /* Record the mirror, and the mirrors that output to the same
2127 * destination, so that we don't mirror to them again. This must be
2128 * done now to ensure that output_normal(), below, doesn't recursively
2129 * output to the same mirrors. */
2130 ctx->mirrors |= dup_mirrors;
2131 ctx->mirror_snaplen = snaplen;
2132
2133 /* Send the packet to the mirror. */
2134 if (out) {
2135 struct xbundle *out_xbundle = xbundle_lookup(ctx->xcfg, out);
2136 if (out_xbundle) {
2137 output_normal(ctx, out_xbundle, &xvlan);
2138 }
2139 } else if (xvlan.v[0].vid != out_vlan
2140 && !eth_addr_is_reserved(ctx->xin->flow.dl_dst)) {
2141 struct xbundle *xb;
2142 uint16_t old_vid = xvlan.v[0].vid;
2143
2144 xvlan.v[0].vid = out_vlan;
2145 LIST_FOR_EACH (xb, list_node, &xbridge->xbundles) {
2146 if (xbundle_includes_vlan(xb, &xvlan)
2147 && !xbundle_mirror_out(xbridge, xb)) {
2148 output_normal(ctx, xb, &xvlan);
2149 }
2150 }
2151 xvlan.v[0].vid = old_vid;
2152 }
2153
2154 /* output_normal() could have recursively output (to different
2155 * mirrors), so make sure that we don't send duplicates. */
2156 mirrors &= ~ctx->mirrors;
2157 ctx->mirror_snaplen = 0;
2158 }
2159
2160 if (used_mirrors) {
2161 if (ctx->xin->resubmit_stats) {
2162 mirror_update_stats(xbridge->mbridge, used_mirrors,
2163 ctx->xin->resubmit_stats->n_packets,
2164 ctx->xin->resubmit_stats->n_bytes);
2165 }
2166 if (ctx->xin->xcache) {
2167 struct xc_entry *entry;
2168
2169 entry = xlate_cache_add_entry(ctx->xin->xcache, XC_MIRROR);
2170 entry->mirror.mbridge = mbridge_ref(xbridge->mbridge);
2171 entry->mirror.mirrors = used_mirrors;
2172 }
2173 }
2174 }
2175
2176 static void
2177 mirror_ingress_packet(struct xlate_ctx *ctx)
2178 {
2179 if (mbridge_has_mirrors(ctx->xbridge->mbridge)) {
2180 struct xbundle *xbundle = lookup_input_bundle(
2181 ctx, ctx->xin->flow.in_port.ofp_port, NULL);
2182 if (xbundle) {
2183 mirror_packet(ctx, xbundle,
2184 xbundle_mirror_src(ctx->xbridge, xbundle));
2185 }
2186 }
2187 }
2188
2189 /* Checks whether a packet with the given 'vid' may ingress on 'in_xbundle'.
2190 * If so, returns true. Otherwise, returns false.
2191 *
2192 * 'vid' should be the VID obtained from the 802.1Q header that was received as
2193 * part of a packet (specify 0 if there was no 802.1Q header), in the range
2194 * 0...4095. */
2195 static bool
2196 input_vid_is_valid(const struct xlate_ctx *ctx,
2197 uint16_t vid, struct xbundle *in_xbundle)
2198 {
2199 /* Allow any VID on the OFPP_NONE port. */
2200 if (in_xbundle == &ofpp_none_bundle) {
2201 return true;
2202 }
2203
2204 switch (in_xbundle->vlan_mode) {
2205 case PORT_VLAN_ACCESS:
2206 if (vid) {
2207 xlate_report_error(ctx, "dropping VLAN %"PRIu16" tagged "
2208 "packet received on port %s configured as VLAN "
2209 "%d access port", vid, in_xbundle->name,
2210 in_xbundle->vlan);
2211 return false;
2212 }
2213 return true;
2214
2215 case PORT_VLAN_NATIVE_UNTAGGED:
2216 case PORT_VLAN_NATIVE_TAGGED:
2217 if (!vid) {
2218 /* Port must always carry its native VLAN. */
2219 return true;
2220 }
2221 /* Fall through. */
2222 case PORT_VLAN_TRUNK:
2223 if (!xbundle_trunks_vlan(in_xbundle, vid)) {
2224 xlate_report_error(ctx, "dropping VLAN %"PRIu16" packet "
2225 "received on port %s not configured for "
2226 "trunking VLAN %"PRIu16,
2227 vid, in_xbundle->name, vid);
2228 return false;
2229 }
2230 return true;
2231
2232 case PORT_VLAN_DOT1Q_TUNNEL:
2233 if (!xbundle_allows_cvlan(in_xbundle, vid)) {
2234 xlate_report_error(ctx, "dropping VLAN %"PRIu16" packet received "
2235 "on dot1q-tunnel port %s that excludes this "
2236 "VLAN", vid, in_xbundle->name);
2237 return false;
2238 }
2239 return true;
2240
2241 default:
2242 OVS_NOT_REACHED();
2243 }
2244
2245 }
2246
2247 static void
2248 xvlan_copy(struct xvlan *dst, const struct xvlan *src)
2249 {
2250 *dst = *src;
2251 }
2252
2253 static void
2254 xvlan_pop(struct xvlan *src)
2255 {
2256 memmove(&src->v[0], &src->v[1], sizeof(src->v) - sizeof(src->v[0]));
2257 memset(&src->v[FLOW_MAX_VLAN_HEADERS - 1], 0,
2258 sizeof(src->v[FLOW_MAX_VLAN_HEADERS - 1]));
2259 }
2260
2261 static void
2262 xvlan_push_uninit(struct xvlan *src)
2263 {
2264 memmove(&src->v[1], &src->v[0], sizeof(src->v) - sizeof(src->v[0]));
2265 memset(&src->v[0], 0, sizeof(src->v[0]));
2266 }
2267
2268 /* Extract VLAN information (headers) from flow */
2269 static void
2270 xvlan_extract(const struct flow *flow, struct xvlan *xvlan)
2271 {
2272 int i;
2273 memset(xvlan, 0, sizeof(*xvlan));
2274 for (i = 0; i < FLOW_MAX_VLAN_HEADERS; i++) {
2275 if (!eth_type_vlan(flow->vlans[i].tpid) ||
2276 !(flow->vlans[i].tci & htons(VLAN_CFI))) {
2277 break;
2278 }
2279 xvlan->v[i].tpid = ntohs(flow->vlans[i].tpid);
2280 xvlan->v[i].vid = vlan_tci_to_vid(flow->vlans[i].tci);
2281 xvlan->v[i].pcp = ntohs(flow->vlans[i].tci) & VLAN_PCP_MASK;
2282 }
2283 }
2284
2285 /* Put VLAN information (headers) to flow */
2286 static void
2287 xvlan_put(struct flow *flow, const struct xvlan *xvlan,
2288 enum port_priority_tags_mode use_priority_tags)
2289 {
2290 ovs_be16 tci;
2291 int i;
2292 for (i = 0; i < FLOW_MAX_VLAN_HEADERS; i++) {
2293 tci = htons(xvlan->v[i].vid | (xvlan->v[i].pcp & VLAN_PCP_MASK));
2294 if (tci || ((use_priority_tags == PORT_PRIORITY_TAGS_ALWAYS) &&
2295 xvlan->v[i].tpid)) {
2296 tci |= htons(VLAN_CFI);
2297 flow->vlans[i].tpid = xvlan->v[i].tpid ?
2298 htons(xvlan->v[i].tpid) :
2299 htons(ETH_TYPE_VLAN_8021Q);
2300 }
2301 flow->vlans[i].tci = tci;
2302 }
2303 }
2304
2305 /* Given 'in_xvlan', extracted from the input 802.1Q headers received as part
2306 * of a packet, and 'in_xbundle', the bundle on which the packet was received,
2307 * returns the VLANs of the packet during bridge internal processing. */
2308 static void
2309 xvlan_input_translate(const struct xbundle *in_xbundle,
2310 const struct xvlan *in_xvlan, struct xvlan *xvlan)
2311 {
2312
2313 switch (in_xbundle->vlan_mode) {
2314 case PORT_VLAN_ACCESS:
2315 memset(xvlan, 0, sizeof(*xvlan));
2316 xvlan->v[0].tpid = in_xvlan->v[0].tpid ? in_xvlan->v[0].tpid :
2317 ETH_TYPE_VLAN_8021Q;
2318 xvlan->v[0].vid = in_xbundle->vlan;
2319 xvlan->v[0].pcp = in_xvlan->v[0].pcp;
2320 break;
2321
2322 case PORT_VLAN_TRUNK:
2323 xvlan_copy(xvlan, in_xvlan);
2324 break;
2325
2326 case PORT_VLAN_NATIVE_UNTAGGED:
2327 case PORT_VLAN_NATIVE_TAGGED:
2328 xvlan_copy(xvlan, in_xvlan);
2329 if (!in_xvlan->v[0].vid) {
2330 xvlan->v[0].tpid = in_xvlan->v[0].tpid ? in_xvlan->v[0].tpid :
2331 ETH_TYPE_VLAN_8021Q;
2332 xvlan->v[0].vid = in_xbundle->vlan;
2333 xvlan->v[0].pcp = in_xvlan->v[0].pcp;
2334 }
2335 break;
2336
2337 case PORT_VLAN_DOT1Q_TUNNEL:
2338 xvlan_copy(xvlan, in_xvlan);
2339 xvlan_push_uninit(xvlan);
2340 xvlan->v[0].tpid = in_xbundle->qinq_ethtype;
2341 xvlan->v[0].vid = in_xbundle->vlan;
2342 xvlan->v[0].pcp = 0;
2343 break;
2344
2345 default:
2346 OVS_NOT_REACHED();
2347 }
2348 }
2349
2350 /* Given 'xvlan', the VLANs of a packet during internal processing, and
2351 * 'out_xbundle', a bundle on which the packet is to be output, returns the
2352 * VLANs that should be included in output packet. */
2353 static void
2354 xvlan_output_translate(const struct xbundle *out_xbundle,
2355 const struct xvlan *xvlan, struct xvlan *out_xvlan)
2356 {
2357 switch (out_xbundle->vlan_mode) {
2358 case PORT_VLAN_ACCESS:
2359 memset(out_xvlan, 0, sizeof(*out_xvlan));
2360 break;
2361
2362 case PORT_VLAN_TRUNK:
2363 case PORT_VLAN_NATIVE_TAGGED:
2364 xvlan_copy(out_xvlan, xvlan);
2365 break;
2366
2367 case PORT_VLAN_NATIVE_UNTAGGED:
2368 xvlan_copy(out_xvlan, xvlan);
2369 if (xvlan->v[0].vid == out_xbundle->vlan) {
2370 xvlan_pop(out_xvlan);
2371 }
2372 break;
2373
2374 case PORT_VLAN_DOT1Q_TUNNEL:
2375 xvlan_copy(out_xvlan, xvlan);
2376 xvlan_pop(out_xvlan);
2377 break;
2378
2379 default:
2380 OVS_NOT_REACHED();
2381 }
2382 }
2383
2384 /* If output xbundle is dot1q-tunnel, set mask bits of cvlan */
2385 static void
2386 check_and_set_cvlan_mask(struct flow_wildcards *wc,
2387 const struct xbundle *xbundle)
2388 {
2389 if (xbundle->vlan_mode == PORT_VLAN_DOT1Q_TUNNEL && xbundle->cvlans) {
2390 wc->masks.vlans[1].tci = htons(0xffff);
2391 }
2392 }
2393
2394 static void
2395 output_normal(struct xlate_ctx *ctx, const struct xbundle *out_xbundle,
2396 const struct xvlan *xvlan)
2397 {
2398 uint16_t vid;
2399 union flow_vlan_hdr old_vlans[FLOW_MAX_VLAN_HEADERS];
2400 struct xport *xport;
2401 struct xlate_bond_recirc xr;
2402 bool use_recirc = false;
2403 struct xvlan out_xvlan;
2404
2405 check_and_set_cvlan_mask(ctx->wc, out_xbundle);
2406
2407 xvlan_output_translate(out_xbundle, xvlan, &out_xvlan);
2408 if (out_xbundle->use_priority_tags) {
2409 out_xvlan.v[0].pcp = ntohs(ctx->xin->flow.vlans[0].tci) &
2410 VLAN_PCP_MASK;
2411 }
2412 vid = out_xvlan.v[0].vid;
2413 if (ovs_list_is_empty(&out_xbundle->xports)) {
2414 /* Partially configured bundle with no slaves. Drop the packet. */
2415 return;
2416 } else if (!out_xbundle->bond) {
2417 xport = CONTAINER_OF(ovs_list_front(&out_xbundle->xports), struct xport,
2418 bundle_node);
2419 } else {
2420 struct flow_wildcards *wc = ctx->wc;
2421 struct ofport_dpif *ofport;
2422
2423 if (ctx->xbridge->support.odp.recirc) {
2424 /* In case recirculation is not actually in use, 'xr.recirc_id'
2425 * will be set to '0', since a valid 'recirc_id' can
2426 * not be zero. */
2427 bond_update_post_recirc_rules(out_xbundle->bond,
2428 &xr.recirc_id,
2429 &xr.hash_basis);
2430 if (xr.recirc_id) {
2431 /* Use recirculation instead of output. */
2432 use_recirc = true;
2433 xr.hash_alg = OVS_HASH_ALG_L4;
2434 /* Recirculation does not require unmasking hash fields. */
2435 wc = NULL;
2436 }
2437 }
2438
2439 ofport = bond_choose_output_slave(out_xbundle->bond,
2440 &ctx->xin->flow, wc, vid);
2441 xport = xport_lookup(ctx->xcfg, ofport);
2442
2443 if (!xport) {
2444 /* No slaves enabled, so drop packet. */
2445 return;
2446 }
2447
2448 /* If use_recirc is set, the main thread will handle stats
2449 * accounting for this bond. */
2450 if (!use_recirc) {
2451 if (ctx->xin->resubmit_stats) {
2452 bond_account(out_xbundle->bond, &ctx->xin->flow, vid,
2453 ctx->xin->resubmit_stats->n_bytes);
2454 }
2455 if (ctx->xin->xcache) {
2456 struct xc_entry *entry;
2457 struct flow *flow;
2458
2459 flow = &ctx->xin->flow;
2460 entry = xlate_cache_add_entry(ctx->xin->xcache, XC_BOND);
2461 entry->bond.bond = bond_ref(out_xbundle->bond);
2462 entry->bond.flow = xmemdup(flow, sizeof *flow);
2463 entry->bond.vid = vid;
2464 }
2465 }
2466 }
2467
2468 memcpy(&old_vlans, &ctx->xin->flow.vlans, sizeof(old_vlans));
2469 xvlan_put(&ctx->xin->flow, &out_xvlan, out_xbundle->use_priority_tags);
2470
2471 compose_output_action(ctx, xport->ofp_port, use_recirc ? &xr : NULL,
2472 false, false);
2473 memcpy(&ctx->xin->flow.vlans, &old_vlans, sizeof(old_vlans));
2474 }
2475
2476 /* A VM broadcasts a gratuitous ARP to indicate that it has resumed after
2477 * migration. Older Citrix-patched Linux DomU used gratuitous ARP replies to
2478 * indicate this; newer upstream kernels use gratuitous ARP requests. */
2479 static bool
2480 is_gratuitous_arp(const struct flow *flow, struct flow_wildcards *wc)
2481 {
2482 if (flow->dl_type != htons(ETH_TYPE_ARP)) {
2483 return false;
2484 }
2485
2486 memset(&wc->masks.dl_dst, 0xff, sizeof wc->masks.dl_dst);
2487 if (!eth_addr_is_broadcast(flow->dl_dst)) {
2488 return false;
2489 }
2490
2491 memset(&wc->masks.nw_proto, 0xff, sizeof wc->masks.nw_proto);
2492 if (flow->nw_proto == ARP_OP_REPLY) {
2493 return true;
2494 } else if (flow->nw_proto == ARP_OP_REQUEST) {
2495 memset(&wc->masks.nw_src, 0xff, sizeof wc->masks.nw_src);
2496 memset(&wc->masks.nw_dst, 0xff, sizeof wc->masks.nw_dst);
2497
2498 return flow->nw_src == flow->nw_dst;
2499 } else {
2500 return false;
2501 }
2502 }
2503
2504 /* Determines whether packets in 'flow' within 'xbridge' should be forwarded or
2505 * dropped. Returns true if they may be forwarded, false if they should be
2506 * dropped.
2507 *
2508 * 'in_port' must be the xport that corresponds to flow->in_port.
2509 * 'in_port' must be part of a bundle (e.g. in_port->bundle must be nonnull).
2510 *
2511 * 'vlan' must be the VLAN that corresponds to flow->vlan_tci on 'in_port', as
2512 * returned by input_vid_to_vlan(). It must be a valid VLAN for 'in_port', as
2513 * checked by input_vid_is_valid().
2514 *
2515 * May also add tags to '*tags', although the current implementation only does
2516 * so in one special case.
2517 */
2518 static bool
2519 is_admissible(struct xlate_ctx *ctx, struct xport *in_port,
2520 uint16_t vlan)
2521 {
2522 struct xbundle *in_xbundle = in_port->xbundle;
2523 const struct xbridge *xbridge = ctx->xbridge;
2524 struct flow *flow = &ctx->xin->flow;
2525
2526 /* Drop frames for reserved multicast addresses
2527 * only if forward_bpdu option is absent. */
2528 if (!xbridge->forward_bpdu && eth_addr_is_reserved(flow->dl_dst)) {
2529 xlate_report(ctx, OFT_DETAIL,
2530 "packet has reserved destination MAC, dropping");
2531 return false;
2532 }
2533
2534 if (in_xbundle->bond) {
2535 struct mac_entry *mac;
2536
2537 switch (bond_check_admissibility(in_xbundle->bond, in_port->ofport,
2538 flow->dl_dst)) {
2539 case BV_ACCEPT:
2540 break;
2541
2542 case BV_DROP:
2543 xlate_report(ctx, OFT_DETAIL,
2544 "bonding refused admissibility, dropping");
2545 return false;
2546
2547 case BV_DROP_IF_MOVED:
2548 ovs_rwlock_rdlock(&xbridge->ml->rwlock);
2549 mac = mac_learning_lookup(xbridge->ml, flow->dl_src, vlan);
2550 if (mac
2551 && mac_entry_get_port(xbridge->ml, mac) != in_xbundle->ofbundle
2552 && (!is_gratuitous_arp(flow, ctx->wc)
2553 || mac_entry_is_grat_arp_locked(mac))) {
2554 ovs_rwlock_unlock(&xbridge->ml->rwlock);
2555 xlate_report(ctx, OFT_DETAIL,
2556 "SLB bond thinks this packet looped back, "
2557 "dropping");
2558 return false;
2559 }
2560 ovs_rwlock_unlock(&xbridge->ml->rwlock);
2561 break;
2562 }
2563 }
2564
2565 return true;
2566 }
2567
2568 static bool
2569 update_learning_table__(const struct xbridge *xbridge,
2570 struct xbundle *in_xbundle, struct eth_addr dl_src,
2571 int vlan, bool is_grat_arp)
2572 {
2573 return (in_xbundle == &ofpp_none_bundle
2574 || !mac_learning_update(xbridge->ml, dl_src, vlan,
2575 is_grat_arp,
2576 in_xbundle->bond != NULL,
2577 in_xbundle->ofbundle));
2578 }
2579
2580 static void
2581 update_learning_table(const struct xlate_ctx *ctx,
2582 struct xbundle *in_xbundle, struct eth_addr dl_src,
2583 int vlan, bool is_grat_arp)
2584 {
2585 if (!update_learning_table__(ctx->xbridge, in_xbundle, dl_src, vlan,
2586 is_grat_arp)) {
2587 xlate_report_debug(ctx, OFT_DETAIL, "learned that "ETH_ADDR_FMT" is "
2588 "on port %s in VLAN %d",
2589 ETH_ADDR_ARGS(dl_src), in_xbundle->name, vlan);
2590 }
2591 }
2592
2593 /* Updates multicast snooping table 'ms' given that a packet matching 'flow'
2594 * was received on 'in_xbundle' in 'vlan' and is either Report or Query. */
2595 static void
2596 update_mcast_snooping_table4__(const struct xlate_ctx *ctx,
2597 const struct flow *flow,
2598 struct mcast_snooping *ms, int vlan,
2599 struct xbundle *in_xbundle,
2600 const struct dp_packet *packet)
2601 OVS_REQ_WRLOCK(ms->rwlock)
2602 {
2603 const struct igmp_header *igmp;
2604 int count;
2605 size_t offset;
2606 ovs_be32 ip4 = flow->igmp_group_ip4;
2607
2608 offset = (char *) dp_packet_l4(packet) - (char *) dp_packet_data(packet);
2609 igmp = dp_packet_at(packet, offset, IGMP_HEADER_LEN);
2610 if (!igmp || csum(igmp, dp_packet_l4_size(packet)) != 0) {
2611 xlate_report_debug(ctx, OFT_DETAIL,
2612 "multicast snooping received bad IGMP "
2613 "checksum on port %s in VLAN %d",
2614 in_xbundle->name, vlan);
2615 return;
2616 }
2617
2618 switch (ntohs(flow->tp_src)) {
2619 case IGMP_HOST_MEMBERSHIP_REPORT:
2620 case IGMPV2_HOST_MEMBERSHIP_REPORT:
2621 if (mcast_snooping_add_group4(ms, ip4, vlan, in_xbundle->ofbundle)) {
2622 xlate_report_debug(ctx, OFT_DETAIL,
2623 "multicast snooping learned that "
2624 IP_FMT" is on port %s in VLAN %d",
2625 IP_ARGS(ip4), in_xbundle->name, vlan);
2626 }
2627 break;
2628 case IGMP_HOST_LEAVE_MESSAGE:
2629 if (mcast_snooping_leave_group4(ms, ip4, vlan, in_xbundle->ofbundle)) {
2630 xlate_report_debug(ctx, OFT_DETAIL, "multicast snooping leaving "
2631 IP_FMT" is on port %s in VLAN %d",
2632 IP_ARGS(ip4), in_xbundle->name, vlan);
2633 }
2634 break;
2635 case IGMP_HOST_MEMBERSHIP_QUERY:
2636 if (flow->nw_src && mcast_snooping_add_mrouter(ms, vlan,
2637 in_xbundle->ofbundle)) {
2638 xlate_report_debug(ctx, OFT_DETAIL, "multicast snooping query "
2639 "from "IP_FMT" is on port %s in VLAN %d",
2640 IP_ARGS(flow->nw_src), in_xbundle->name, vlan);
2641 }
2642 break;
2643 case IGMPV3_HOST_MEMBERSHIP_REPORT:
2644 count = mcast_snooping_add_report(ms, packet, vlan,
2645 in_xbundle->ofbundle);
2646 if (count) {
2647 xlate_report_debug(ctx, OFT_DETAIL, "multicast snooping processed "
2648 "%d addresses on port %s in VLAN %d",
2649 count, in_xbundle->name, vlan);
2650 }
2651 break;
2652 }
2653 }
2654
2655 static void
2656 update_mcast_snooping_table6__(const struct xlate_ctx *ctx,
2657 const struct flow *flow,
2658 struct mcast_snooping *ms, int vlan,
2659 struct xbundle *in_xbundle,
2660 const struct dp_packet *packet)
2661 OVS_REQ_WRLOCK(ms->rwlock)
2662 {
2663 const struct mld_header *mld;
2664 int count;
2665 size_t offset;
2666
2667 offset = (char *) dp_packet_l4(packet) - (char *) dp_packet_data(packet);
2668 mld = dp_packet_at(packet, offset, MLD_HEADER_LEN);
2669
2670 if (!mld ||
2671 packet_csum_upperlayer6(dp_packet_l3(packet),
2672 mld, IPPROTO_ICMPV6,
2673 dp_packet_l4_size(packet)) != 0) {
2674 xlate_report_debug(ctx, OFT_DETAIL, "multicast snooping received "
2675 "bad MLD checksum on port %s in VLAN %d",
2676 in_xbundle->name, vlan);
2677 return;
2678 }
2679
2680 switch (ntohs(flow->tp_src)) {
2681 case MLD_QUERY:
2682 if (!ipv6_addr_equals(&flow->ipv6_src, &in6addr_any)
2683 && mcast_snooping_add_mrouter(ms, vlan, in_xbundle->ofbundle)) {
2684 xlate_report_debug(ctx, OFT_DETAIL, "multicast snooping query on "
2685 "port %s in VLAN %d", in_xbundle->name, vlan);
2686 }
2687 break;
2688 case MLD_REPORT:
2689 case MLD_DONE:
2690 case MLD2_REPORT:
2691 count = mcast_snooping_add_mld(ms, packet, vlan, in_xbundle->ofbundle);
2692 if (count) {
2693 xlate_report_debug(ctx, OFT_DETAIL, "multicast snooping processed "
2694 "%d addresses on port %s in VLAN %d",
2695 count, in_xbundle->name, vlan);
2696 }
2697 break;
2698 }
2699 }
2700
2701 /* Updates multicast snooping table 'ms' given that a packet matching 'flow'
2702 * was received on 'in_xbundle' in 'vlan'. */
2703 static void
2704 update_mcast_snooping_table(const struct xlate_ctx *ctx,
2705 const struct flow *flow, int vlan,
2706 struct xbundle *in_xbundle,
2707 const struct dp_packet *packet)
2708 {
2709 struct mcast_snooping *ms = ctx->xbridge->ms;
2710 struct xbundle *mcast_xbundle;
2711 struct mcast_port_bundle *fport;
2712
2713 /* Don't learn the OFPP_NONE port. */
2714 if (in_xbundle == &ofpp_none_bundle) {
2715 return;
2716 }
2717
2718 /* Don't learn from flood ports */
2719 mcast_xbundle = NULL;
2720 ovs_rwlock_wrlock(&ms->rwlock);
2721 LIST_FOR_EACH(fport, node, &ms->fport_list) {
2722 mcast_xbundle = xbundle_lookup(ctx->xcfg, fport->port);
2723 if (mcast_xbundle == in_xbundle) {
2724 break;
2725 }
2726 }
2727
2728 if (!mcast_xbundle || mcast_xbundle != in_xbundle) {
2729 if (flow->dl_type == htons(ETH_TYPE_IP)) {
2730 update_mcast_snooping_table4__(ctx, flow, ms, vlan,
2731 in_xbundle, packet);
2732 } else {
2733 update_mcast_snooping_table6__(ctx, flow, ms, vlan,
2734 in_xbundle, packet);
2735 }
2736 }
2737 ovs_rwlock_unlock(&ms->rwlock);
2738 }
2739 \f
2740 /* A list of multicast output ports.
2741 *
2742 * We accumulate output ports and then do all the outputs afterward. It would
2743 * be more natural to do the outputs one at a time as we discover the need for
2744 * each one, but this can cause a deadlock because we need to take the
2745 * mcast_snooping's rwlock for reading to iterate through the port lists and
2746 * doing an output, if it goes to a patch port, can eventually come back to the
2747 * same mcast_snooping and attempt to take the write lock (see
2748 * https://github.com/openvswitch/ovs-issues/issues/153). */
2749 struct mcast_output {
2750 /* Discrete ports. */
2751 struct xbundle **xbundles;
2752 size_t n, allocated;
2753
2754 /* If set, flood to all ports. */
2755 bool flood;
2756 };
2757 #define MCAST_OUTPUT_INIT { NULL, 0, 0, false }
2758
2759 /* Add 'mcast_bundle' to 'out'. */
2760 static void
2761 mcast_output_add(struct mcast_output *out, struct xbundle *mcast_xbundle)
2762 {
2763 if (out->n >= out->allocated) {
2764 out->xbundles = x2nrealloc(out->xbundles, &out->allocated,
2765 sizeof *out->xbundles);
2766 }
2767 out->xbundles[out->n++] = mcast_xbundle;
2768 }
2769
2770 /* Outputs the packet in 'ctx' to all of the output ports in 'out', given input
2771 * bundle 'in_xbundle' and the current 'xvlan'. */
2772 static void
2773 mcast_output_finish(struct xlate_ctx *ctx, struct mcast_output *out,
2774 struct xbundle *in_xbundle, struct xvlan *xvlan)
2775 {
2776 if (out->flood) {
2777 xlate_normal_flood(ctx, in_xbundle, xvlan);
2778 } else {
2779 for (size_t i = 0; i < out->n; i++) {
2780 output_normal(ctx, out->xbundles[i], xvlan);
2781 }
2782 }
2783
2784 free(out->xbundles);
2785 }
2786
2787 /* send the packet to ports having the multicast group learned */
2788 static void
2789 xlate_normal_mcast_send_group(struct xlate_ctx *ctx,
2790 struct mcast_snooping *ms OVS_UNUSED,
2791 struct mcast_group *grp,
2792 struct xbundle *in_xbundle,
2793 struct mcast_output *out)
2794 OVS_REQ_RDLOCK(ms->rwlock)
2795 {
2796 struct mcast_group_bundle *b;
2797 struct xbundle *mcast_xbundle;
2798
2799 LIST_FOR_EACH(b, bundle_node, &grp->bundle_lru) {
2800 mcast_xbundle = xbundle_lookup(ctx->xcfg, b->port);
2801 if (mcast_xbundle && mcast_xbundle != in_xbundle) {
2802 xlate_report(ctx, OFT_DETAIL, "forwarding to mcast group port");
2803 mcast_output_add(out, mcast_xbundle);
2804 } else if (!mcast_xbundle) {
2805 xlate_report(ctx, OFT_WARN,
2806 "mcast group port is unknown, dropping");
2807 } else {
2808 xlate_report(ctx, OFT_DETAIL,
2809 "mcast group port is input port, dropping");
2810 }
2811 }
2812 }
2813
2814 /* send the packet to ports connected to multicast routers */
2815 static void
2816 xlate_normal_mcast_send_mrouters(struct xlate_ctx *ctx,
2817 struct mcast_snooping *ms,
2818 struct xbundle *in_xbundle,
2819 const struct xvlan *xvlan,
2820 struct mcast_output *out)
2821 OVS_REQ_RDLOCK(ms->rwlock)
2822 {
2823 struct mcast_mrouter_bundle *mrouter;
2824 struct xbundle *mcast_xbundle;
2825
2826 LIST_FOR_EACH(mrouter, mrouter_node, &ms->mrouter_lru) {
2827 mcast_xbundle = xbundle_lookup(ctx->xcfg, mrouter->port);
2828 if (mcast_xbundle && mcast_xbundle != in_xbundle
2829 && mrouter->vlan == xvlan->v[0].vid) {
2830 xlate_report(ctx, OFT_DETAIL, "forwarding to mcast router port");
2831 mcast_output_add(out, mcast_xbundle);
2832 } else if (!mcast_xbundle) {
2833 xlate_report(ctx, OFT_WARN,
2834 "mcast router port is unknown, dropping");
2835 } else if (mrouter->vlan != xvlan->v[0].vid) {
2836 xlate_report(ctx, OFT_DETAIL,
2837 "mcast router is on another vlan, dropping");
2838 } else {
2839 xlate_report(ctx, OFT_DETAIL,
2840 "mcast router port is input port, dropping");
2841 }
2842 }
2843 }
2844
2845 /* send the packet to ports flagged to be flooded */
2846 static void
2847 xlate_normal_mcast_send_fports(struct xlate_ctx *ctx,
2848 struct mcast_snooping *ms,
2849 struct xbundle *in_xbundle,
2850 struct mcast_output *out)
2851 OVS_REQ_RDLOCK(ms->rwlock)
2852 {
2853 struct mcast_port_bundle *fport;
2854 struct xbundle *mcast_xbundle;
2855
2856 LIST_FOR_EACH(fport, node, &ms->fport_list) {
2857 mcast_xbundle = xbundle_lookup(ctx->xcfg, fport->port);
2858 if (mcast_xbundle && mcast_xbundle != in_xbundle) {
2859 xlate_report(ctx, OFT_DETAIL, "forwarding to mcast flood port");
2860 mcast_output_add(out, mcast_xbundle);
2861 } else if (!mcast_xbundle) {
2862 xlate_report(ctx, OFT_WARN,
2863 "mcast flood port is unknown, dropping");
2864 } else {
2865 xlate_report(ctx, OFT_DETAIL,
2866 "mcast flood port is input port, dropping");
2867 }
2868 }
2869 }
2870
2871 /* forward the Reports to configured ports */
2872 static void
2873 xlate_normal_mcast_send_rports(struct xlate_ctx *ctx,
2874 struct mcast_snooping *ms,
2875 struct xbundle *in_xbundle,
2876 struct mcast_output *out)
2877 OVS_REQ_RDLOCK(ms->rwlock)
2878 {
2879 struct mcast_port_bundle *rport;
2880 struct xbundle *mcast_xbundle;
2881
2882 LIST_FOR_EACH(rport, node, &ms->rport_list) {
2883 mcast_xbundle = xbundle_lookup(ctx->xcfg, rport->port);
2884 if (mcast_xbundle
2885 && mcast_xbundle != in_xbundle
2886 && mcast_xbundle->ofbundle != in_xbundle->ofbundle) {
2887 xlate_report(ctx, OFT_DETAIL,
2888 "forwarding report to mcast flagged port");
2889 mcast_output_add(out, mcast_xbundle);
2890 } else if (!mcast_xbundle) {
2891 xlate_report(ctx, OFT_WARN,
2892 "mcast port is unknown, dropping the report");
2893 } else {
2894 xlate_report(ctx, OFT_DETAIL,
2895 "mcast port is input port, dropping the Report");
2896 }
2897 }
2898 }
2899
2900 static void
2901 xlate_normal_flood(struct xlate_ctx *ctx, struct xbundle *in_xbundle,
2902 struct xvlan *xvlan)
2903 {
2904 struct xbundle *xbundle;
2905
2906 LIST_FOR_EACH (xbundle, list_node, &ctx->xbridge->xbundles) {
2907 if (xbundle != in_xbundle
2908 && xbundle->ofbundle != in_xbundle->ofbundle
2909 && xbundle_includes_vlan(xbundle, xvlan)
2910 && xbundle->floodable
2911 && !xbundle_mirror_out(ctx->xbridge, xbundle)) {
2912 output_normal(ctx, xbundle, xvlan);
2913 }
2914 }
2915 ctx->nf_output_iface = NF_OUT_FLOOD;
2916 }
2917
2918 static bool
2919 is_ip_local_multicast(const struct flow *flow, struct flow_wildcards *wc)
2920 {
2921 if (flow->dl_type == htons(ETH_TYPE_IP)) {
2922 memset(&wc->masks.nw_dst, 0xff, sizeof wc->masks.nw_dst);
2923 return ip_is_local_multicast(flow->nw_dst);
2924 } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
2925 memset(&wc->masks.ipv6_dst, 0xff, sizeof wc->masks.ipv6_dst);
2926 return ipv6_is_all_hosts(&flow->ipv6_dst);
2927 } else {
2928 return false;
2929 }
2930 }
2931
2932 static void
2933 xlate_normal(struct xlate_ctx *ctx)
2934 {
2935 struct flow_wildcards *wc = ctx->wc;
2936 struct flow *flow = &ctx->xin->flow;
2937 struct xbundle *in_xbundle;
2938 struct xport *in_port;
2939 struct mac_entry *mac;
2940 void *mac_port;
2941 struct xvlan in_xvlan;
2942 struct xvlan xvlan;
2943 uint16_t vlan;
2944
2945 memset(&wc->masks.dl_src, 0xff, sizeof wc->masks.dl_src);
2946 memset(&wc->masks.dl_dst, 0xff, sizeof wc->masks.dl_dst);
2947 wc->masks.vlans[0].tci |= htons(VLAN_VID_MASK | VLAN_CFI);
2948
2949 in_xbundle = lookup_input_bundle(ctx, flow->in_port.ofp_port, &in_port);
2950 if (!in_xbundle) {
2951 xlate_report(ctx, OFT_WARN, "no input bundle, dropping");
2952 return;
2953 }
2954
2955 /* Drop malformed frames. */
2956 if (eth_type_vlan(flow->dl_type) &&
2957 !(flow->vlans[0].tci & htons(VLAN_CFI))) {
2958 if (ctx->xin->packet != NULL) {
2959 xlate_report_error(ctx, "dropping packet with partial "
2960 "VLAN tag received on port %s",
2961 in_xbundle->name);
2962 }
2963 xlate_report(ctx, OFT_WARN, "partial VLAN tag, dropping");
2964 return;
2965 }
2966
2967 /* Drop frames on bundles reserved for mirroring. */
2968 if (xbundle_mirror_out(ctx->xbridge, in_xbundle)) {
2969 if (ctx->xin->packet != NULL) {
2970 xlate_report_error(ctx, "dropping packet received on port %s, "
2971 "which is reserved exclusively for mirroring",
2972 in_xbundle->name);
2973 }
2974 xlate_report(ctx, OFT_WARN,
2975 "input port is mirror output port, dropping");
2976 return;
2977 }
2978
2979 /* Check VLAN. */
2980 xvlan_extract(flow, &in_xvlan);
2981 if (!input_vid_is_valid(ctx, in_xvlan.v[0].vid, in_xbundle)) {
2982 xlate_report(ctx, OFT_WARN,
2983 "disallowed VLAN VID for this input port, dropping");
2984 return;
2985 }
2986 xvlan_input_translate(in_xbundle, &in_xvlan, &xvlan);
2987 vlan = xvlan.v[0].vid;
2988
2989 /* Check other admissibility requirements. */
2990 if (in_port && !is_admissible(ctx, in_port, vlan)) {
2991 return;
2992 }
2993
2994 /* Learn source MAC. */
2995 bool is_grat_arp = is_gratuitous_arp(flow, wc);
2996 if (ctx->xin->allow_side_effects
2997 && flow->packet_type == htonl(PT_ETH)
2998 && in_port->pt_mode != NETDEV_PT_LEGACY_L3
2999 ) {
3000 update_learning_table(ctx, in_xbundle, flow->dl_src, vlan,
3001 is_grat_arp);
3002 }
3003 if (ctx->xin->xcache && in_xbundle != &ofpp_none_bundle) {
3004 struct xc_entry *entry;
3005
3006 /* Save just enough info to update mac learning table later. */
3007 entry = xlate_cache_add_entry(ctx->xin->xcache, XC_NORMAL);
3008 entry->normal.ofproto = ctx->xbridge->ofproto;
3009 entry->normal.in_port = flow->in_port.ofp_port;
3010 entry->normal.dl_src = flow->dl_src;
3011 entry->normal.vlan = vlan;
3012 entry->normal.is_gratuitous_arp = is_grat_arp;
3013 }
3014
3015 /* Determine output bundle. */
3016 if (mcast_snooping_enabled(ctx->xbridge->ms)
3017 && !eth_addr_is_broadcast(flow->dl_dst)
3018 && eth_addr_is_multicast(flow->dl_dst)
3019 && is_ip_any(flow)) {
3020 struct mcast_snooping *ms = ctx->xbridge->ms;
3021 struct mcast_group *grp = NULL;
3022
3023 if (is_igmp(flow, wc)) {
3024 /*
3025 * IGMP packets need to take the slow path, in order to be
3026 * processed for mdb updates. That will prevent expires
3027 * firing off even after hosts have sent reports.
3028 */
3029 ctx->xout->slow |= SLOW_ACTION;
3030
3031 memset(&wc->masks.tp_src, 0xff, sizeof wc->masks.tp_src);
3032 if (mcast_snooping_is_membership(flow->tp_src) ||
3033 mcast_snooping_is_query(flow->tp_src)) {
3034 if (ctx->xin->allow_side_effects && ctx->xin->packet) {
3035 update_mcast_snooping_table(ctx, flow, vlan,
3036 in_xbundle, ctx->xin->packet);
3037 }
3038 }
3039
3040 if (mcast_snooping_is_membership(flow->tp_src)) {
3041 struct mcast_output out = MCAST_OUTPUT_INIT;
3042
3043 ovs_rwlock_rdlock(&ms->rwlock);
3044 xlate_normal_mcast_send_mrouters(ctx, ms, in_xbundle, &xvlan,
3045 &out);
3046 /* RFC4541: section 2.1.1, item 1: A snooping switch should
3047 * forward IGMP Membership Reports only to those ports where
3048 * multicast routers are attached. Alternatively stated: a
3049 * snooping switch should not forward IGMP Membership Reports
3050 * to ports on which only hosts are attached.
3051 * An administrative control may be provided to override this
3052 * restriction, allowing the report messages to be flooded to
3053 * other ports. */
3054 xlate_normal_mcast_send_rports(ctx, ms, in_xbundle, &out);
3055 ovs_rwlock_unlock(&ms->rwlock);
3056
3057 mcast_output_finish(ctx, &out, in_xbundle, &xvlan);
3058 } else {
3059 xlate_report(ctx, OFT_DETAIL, "multicast traffic, flooding");
3060 xlate_normal_flood(ctx, in_xbundle, &xvlan);
3061 }
3062 return;
3063 } else if (is_mld(flow, wc)) {
3064 ctx->xout->slow |= SLOW_ACTION;
3065 if (ctx->xin->allow_side_effects && ctx->xin->packet) {
3066 update_mcast_snooping_table(ctx, flow, vlan,
3067 in_xbundle, ctx->xin->packet);
3068 }
3069 if (is_mld_report(flow, wc)) {
3070 struct mcast_output out = MCAST_OUTPUT_INIT;
3071
3072 ovs_rwlock_rdlock(&ms->rwlock);
3073 xlate_normal_mcast_send_mrouters(ctx, ms, in_xbundle, &xvlan,
3074 &out);
3075 xlate_normal_mcast_send_rports(ctx, ms, in_xbundle, &out);
3076 ovs_rwlock_unlock(&ms->rwlock);
3077
3078 mcast_output_finish(ctx, &out, in_xbundle, &xvlan);
3079 } else {
3080 xlate_report(ctx, OFT_DETAIL, "MLD query, flooding");
3081 xlate_normal_flood(ctx, in_xbundle, &xvlan);
3082 }
3083 } else {
3084 if (is_ip_local_multicast(flow, wc)) {
3085 /* RFC4541: section 2.1.2, item 2: Packets with a dst IP
3086 * address in the 224.0.0.x range which are not IGMP must
3087 * be forwarded on all ports */
3088 xlate_report(ctx, OFT_DETAIL,
3089 "RFC4541: section 2.1.2, item 2, flooding");
3090 xlate_normal_flood(ctx, in_xbundle, &xvlan);
3091 return;
3092 }
3093 }
3094
3095 /* forwarding to group base ports */
3096 struct mcast_output out = MCAST_OUTPUT_INIT;
3097
3098 ovs_rwlock_rdlock(&ms->rwlock);
3099 if (flow->dl_type == htons(ETH_TYPE_IP)) {
3100 grp = mcast_snooping_lookup4(ms, flow->nw_dst, vlan);
3101 } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
3102 grp = mcast_snooping_lookup(ms, &flow->ipv6_dst, vlan);
3103 }
3104 if (grp) {
3105 xlate_normal_mcast_send_group(ctx, ms, grp, in_xbundle, &out);
3106 xlate_normal_mcast_send_fports(ctx, ms, in_xbundle, &out);
3107 xlate_normal_mcast_send_mrouters(ctx, ms, in_xbundle, &xvlan,
3108 &out);
3109 } else {
3110 if (mcast_snooping_flood_unreg(ms)) {
3111 xlate_report(ctx, OFT_DETAIL,
3112 "unregistered multicast, flooding");
3113 out.flood = true;
3114 } else {
3115 xlate_normal_mcast_send_mrouters(ctx, ms, in_xbundle, &xvlan,
3116 &out);
3117 xlate_normal_mcast_send_fports(ctx, ms, in_xbundle, &out);
3118 }
3119 }
3120 ovs_rwlock_unlock(&ms->rwlock);
3121
3122 mcast_output_finish(ctx, &out, in_xbundle, &xvlan);
3123 } else {
3124 ovs_rwlock_rdlock(&ctx->xbridge->ml->rwlock);
3125 mac = mac_learning_lookup(ctx->xbridge->ml, flow->dl_dst, vlan);
3126 mac_port = mac ? mac_entry_get_port(ctx->xbridge->ml, mac) : NULL;
3127 ovs_rwlock_unlock(&ctx->xbridge->ml->rwlock);
3128
3129 if (mac_port) {
3130 struct xbundle *mac_xbundle = xbundle_lookup(ctx->xcfg, mac_port);
3131
3132 if (mac_xbundle && xbundle_mirror_out(ctx->xbridge, mac_xbundle)) {
3133 xlate_report(ctx, OFT_WARN,
3134 "learned port is a mirror port, dropping");
3135 return;
3136 }
3137
3138 if (mac_xbundle
3139 && mac_xbundle != in_xbundle
3140 && mac_xbundle->ofbundle != in_xbundle->ofbundle) {
3141 xlate_report(ctx, OFT_DETAIL, "forwarding to learned port");
3142 output_normal(ctx, mac_xbundle, &xvlan);
3143 } else if (!mac_xbundle) {
3144 xlate_report(ctx, OFT_WARN,
3145 "learned port is unknown, dropping");
3146 } else {
3147 xlate_report(ctx, OFT_DETAIL,
3148 "learned port is input port, dropping");
3149 }
3150 } else {
3151 xlate_report(ctx, OFT_DETAIL,
3152 "no learned MAC for destination, flooding");
3153 xlate_normal_flood(ctx, in_xbundle, &xvlan);
3154 }
3155 }
3156 }
3157
3158 /* Appends a "sample" action for sFlow or IPFIX to 'ctx->odp_actions'. The
3159 * 'probability' is the number of packets out of UINT32_MAX to sample. The
3160 * 'cookie' is passed back in the callback for each sampled packet.
3161 * 'tunnel_out_port', if not ODPP_NONE, is added as the
3162 * OVS_USERSPACE_ATTR_EGRESS_TUN_PORT attribute. If 'include_actions',
3163 * an OVS_USERSPACE_ATTR_ACTIONS attribute is added. If
3164 * 'emit_set_tunnel', sample(sampling_port=1) would translate into
3165 * datapath sample action set(tunnel(...)), sample(...) and it is used
3166 * for sampling egress tunnel information.
3167 */
3168 static size_t
3169 compose_sample_action(struct xlate_ctx *ctx,
3170 const uint32_t probability,
3171 const struct user_action_cookie *cookie,
3172 const odp_port_t tunnel_out_port,
3173 bool include_actions)
3174 {
3175 if (probability == 0) {
3176 /* No need to generate sampling or the inner action. */
3177 return 0;
3178 }
3179
3180 /* If the slow path meter is configured by the controller,
3181 * insert a meter action before the user space action. */
3182 struct ofproto *ofproto = &ctx->xin->ofproto->up;
3183 uint32_t meter_id = ofproto->slowpath_meter_id;
3184
3185 /* When meter action is not required, avoid generate sample action
3186 * for 100% sampling rate. */
3187 bool is_sample = probability < UINT32_MAX || meter_id != UINT32_MAX;
3188 size_t sample_offset = 0, actions_offset = 0;
3189 if (is_sample) {
3190 sample_offset = nl_msg_start_nested(ctx->odp_actions,
3191 OVS_ACTION_ATTR_SAMPLE);
3192 nl_msg_put_u32(ctx->odp_actions, OVS_SAMPLE_ATTR_PROBABILITY,
3193 probability);
3194 actions_offset = nl_msg_start_nested(ctx->odp_actions,
3195 OVS_SAMPLE_ATTR_ACTIONS);
3196 }
3197
3198 if (meter_id != UINT32_MAX) {
3199 nl_msg_put_u32(ctx->odp_actions, OVS_ACTION_ATTR_METER, meter_id);
3200 }
3201
3202 odp_port_t odp_port = ofp_port_to_odp_port(
3203 ctx->xbridge, ctx->xin->flow.in_port.ofp_port);
3204 uint32_t pid = dpif_port_get_pid(ctx->xbridge->dpif, odp_port);
3205 size_t cookie_offset = odp_put_userspace_action(pid, cookie,
3206 sizeof *cookie,
3207 tunnel_out_port,
3208 include_actions,
3209 ctx->odp_actions);
3210
3211 if (is_sample) {
3212 nl_msg_end_nested(ctx->odp_actions, actions_offset);
3213 nl_msg_end_nested(ctx->odp_actions, sample_offset);
3214 }
3215
3216 return cookie_offset;
3217 }
3218
3219 /* If sFLow is not enabled, returns 0 without doing anything.
3220 *
3221 * If sFlow is enabled, appends a template "sample" action to the ODP actions
3222 * in 'ctx'. This action is a template because some of the information needed
3223 * to fill it out is not available until flow translation is complete. In this
3224 * case, this functions returns an offset, which is always nonzero, to pass
3225 * later to fix_sflow_action() to fill in the rest of the template. */
3226 static size_t
3227 compose_sflow_action(struct xlate_ctx *ctx)
3228 {
3229 struct dpif_sflow *sflow = ctx->xbridge->sflow;
3230 if (!sflow || ctx->xin->flow.in_port.ofp_port == OFPP_NONE) {
3231 return 0;
3232 }
3233
3234 struct user_action_cookie cookie;
3235
3236 memset(&cookie, 0, sizeof cookie);
3237 cookie.type = USER_ACTION_COOKIE_SFLOW;
3238 cookie.ofp_in_port = ctx->xin->flow.in_port.ofp_port;
3239 cookie.ofproto_uuid = ctx->xbridge->ofproto->uuid;
3240
3241 return compose_sample_action(ctx, dpif_sflow_get_probability(sflow),
3242 &cookie, ODPP_NONE, true);
3243 }
3244
3245 /* If flow IPFIX is enabled, make sure IPFIX flow sample action
3246 * at egress point of tunnel port is just in front of corresponding
3247 * output action. If bridge IPFIX is enabled, this appends an IPFIX
3248 * sample action to 'ctx->odp_actions'. */
3249 static void
3250 compose_ipfix_action(struct xlate_ctx *ctx, odp_port_t output_odp_port)
3251 {
3252 struct dpif_ipfix *ipfix = ctx->xbridge->ipfix;
3253 odp_port_t tunnel_out_port = ODPP_NONE;
3254
3255 if (!ipfix || ctx->xin->flow.in_port.ofp_port == OFPP_NONE) {
3256 return;
3257 }
3258
3259 /* For input case, output_odp_port is ODPP_NONE, which is an invalid port
3260 * number. */
3261 if (output_odp_port == ODPP_NONE &&
3262 !dpif_ipfix_get_bridge_exporter_input_sampling(ipfix)) {
3263 return;
3264 }
3265
3266 /* For output case, output_odp_port is valid. */
3267 if (output_odp_port != ODPP_NONE) {
3268 if (!dpif_ipfix_get_bridge_exporter_output_sampling(ipfix)) {
3269 return;
3270 }
3271 /* If tunnel sampling is enabled, put an additional option attribute:
3272 * OVS_USERSPACE_ATTR_TUNNEL_OUT_PORT
3273 */
3274 if (dpif_ipfix_get_bridge_exporter_tunnel_sampling(ipfix) &&
3275 dpif_ipfix_is_tunnel_port(ipfix, output_odp_port) ) {
3276 tunnel_out_port = output_odp_port;
3277 }
3278 }
3279
3280 struct user_action_cookie cookie;
3281
3282 memset(&cookie, 0, sizeof cookie);
3283 cookie.type = USER_ACTION_COOKIE_IPFIX;
3284 cookie.ofp_in_port = ctx->xin->flow.in_port.ofp_port;
3285 cookie.ofproto_uuid = ctx->xbridge->ofproto->uuid;
3286 cookie.ipfix.output_odp_port = output_odp_port;
3287
3288 compose_sample_action(ctx,
3289 dpif_ipfix_get_bridge_exporter_probability(ipfix),
3290 &cookie, tunnel_out_port, false);
3291 }
3292
3293 /* Fix "sample" action according to data collected while composing ODP actions,
3294 * as described in compose_sflow_action().
3295 *
3296 * 'user_cookie_offset' must be the offset returned by
3297 * compose_sflow_action(). */
3298 static void
3299 fix_sflow_action(struct xlate_ctx *ctx, unsigned int user_cookie_offset)
3300 {
3301 const struct flow *base = &ctx->base_flow;
3302 struct user_action_cookie *cookie;
3303
3304 cookie = ofpbuf_at(ctx->odp_actions, user_cookie_offset, sizeof *cookie);
3305 ovs_assert(cookie->type == USER_ACTION_COOKIE_SFLOW);
3306
3307 cookie->sflow.vlan_tci = base->vlans[0].tci;
3308
3309 /* See http://www.sflow.org/sflow_version_5.txt (search for "Input/output
3310 * port information") for the interpretation of cookie->output. */
3311 switch (ctx->sflow_n_outputs) {
3312 case 0:
3313 /* 0x40000000 | 256 means "packet dropped for unknown reason". */
3314 cookie->sflow.output = 0x40000000 | 256;
3315 break;
3316
3317 case 1:
3318 cookie->sflow.output = dpif_sflow_odp_port_to_ifindex(
3319 ctx->xbridge->sflow, ctx->sflow_odp_port);
3320 if (cookie->sflow.output) {
3321 break;
3322 }
3323 /* Fall through. */
3324 default:
3325 /* 0x80000000 means "multiple output ports. */
3326 cookie->sflow.output = 0x80000000 | ctx->sflow_n_outputs;
3327 break;
3328 }
3329 }
3330
3331 static bool
3332 process_special(struct xlate_ctx *ctx, const struct xport *xport)
3333 {
3334 const struct flow *flow = &ctx->xin->flow;
3335 struct flow_wildcards *wc = ctx->wc;
3336 const struct xbridge *xbridge = ctx->xbridge;
3337 const struct dp_packet *packet = ctx->xin->packet;
3338 enum slow_path_reason slow;
3339 bool lacp_may_enable;
3340
3341 if (!xport) {
3342 slow = 0;
3343 } else if (xport->cfm && cfm_should_process_flow(xport->cfm, flow, wc)) {
3344 if (packet) {
3345 cfm_process_heartbeat(xport->cfm, packet);
3346 }
3347 slow = SLOW_CFM;
3348 } else if (xport->bfd && bfd_should_process_flow(xport->bfd, flow, wc)) {
3349 if (packet) {
3350 bfd_process_packet(xport->bfd, flow, packet);
3351 /* If POLL received, immediately sends FINAL back. */
3352 if (bfd_should_send_packet(xport->bfd)) {
3353 ofproto_dpif_monitor_port_send_soon(xport->ofport);
3354 }
3355 }
3356 slow = SLOW_BFD;
3357 } else if (xport->xbundle && xport->xbundle->lacp
3358 && flow->dl_type == htons(ETH_TYPE_LACP)) {
3359 if (packet) {
3360 lacp_may_enable = lacp_process_packet(xport->xbundle->lacp,
3361 xport->ofport, packet);
3362 /* Update LACP status in bond-slave to avoid packet-drops until
3363 * LACP state machine is run by the main thread. */
3364 if (xport->xbundle->bond && lacp_may_enable) {
3365 bond_slave_set_may_enable(xport->xbundle->bond, xport->ofport,
3366 lacp_may_enable);
3367 }
3368 }
3369 slow = SLOW_LACP;
3370 } else if ((xbridge->stp || xbridge->rstp) &&
3371 stp_should_process_flow(flow, wc)) {
3372 if (packet) {
3373 xbridge->stp
3374 ? stp_process_packet(xport, packet)
3375 : rstp_process_packet(xport, packet);
3376 }
3377 slow = SLOW_STP;
3378 } else if (xport->lldp && lldp_should_process_flow(xport->lldp, flow)) {
3379 if (packet) {
3380 lldp_process_packet(xport->lldp, packet);
3381 }
3382 slow = SLOW_LLDP;
3383 } else {
3384 slow = 0;
3385 }
3386
3387 if (slow) {
3388 ctx->xout->slow |= slow;
3389 return true;
3390 } else {
3391 return false;
3392 }
3393 }
3394
3395 static int
3396 tnl_route_lookup_flow(const struct xlate_ctx *ctx,
3397 const struct flow *oflow,
3398 struct in6_addr *ip, struct in6_addr *src,
3399 struct xport **out_port)
3400 {
3401 char out_dev[IFNAMSIZ];
3402 struct xbridge *xbridge;
3403 struct in6_addr gw;
3404 struct in6_addr dst;
3405
3406 dst = flow_tnl_dst(&oflow->tunnel);
3407 if (!ovs_router_lookup(oflow->pkt_mark, &dst, out_dev, src, &gw)) {
3408 return -ENOENT;
3409 }
3410
3411 if (ipv6_addr_is_set(&gw) &&
3412 (!IN6_IS_ADDR_V4MAPPED(&gw) || in6_addr_get_mapped_ipv4(&gw))) {
3413 *ip = gw;
3414 } else {
3415 *ip = dst;
3416 }
3417
3418 HMAP_FOR_EACH (xbridge, hmap_node, &ctx->xcfg->xbridges) {
3419 if (!strncmp(xbridge->name, out_dev, IFNAMSIZ)) {
3420 struct xport *port;
3421
3422 HMAP_FOR_EACH (port, ofp_node, &xbridge->xports) {
3423 if (!strncmp(netdev_get_name(port->netdev), out_dev, IFNAMSIZ)) {
3424 *out_port = port;
3425 return 0;
3426 }
3427 }
3428 }
3429 }
3430
3431 /* If tunnel IP isn't configured on bridges, then we search all ports. */
3432 HMAP_FOR_EACH (xbridge, hmap_node, &ctx->xcfg->xbridges) {
3433 struct xport *port;
3434
3435 HMAP_FOR_EACH (port, ofp_node, &xbridge->xports) {
3436 if (!strncmp(netdev_get_name(port->netdev),
3437 out_dev, IFNAMSIZ)) {
3438 *out_port = port;
3439 return 0;
3440 }
3441 }
3442 }
3443 return -ENOENT;
3444 }
3445
3446 static int
3447 compose_table_xlate(struct xlate_ctx *ctx, const struct xport *out_dev,
3448 struct dp_packet *packet)
3449 {
3450 struct xbridge *xbridge = out_dev->xbridge;
3451 ovs_version_t version = ofproto_dpif_get_tables_version(xbridge->ofproto);
3452 struct ofpact_output output;
3453 struct flow flow;
3454
3455 ofpact_init(&output.ofpact, OFPACT_OUTPUT, sizeof output);
3456 flow_extract(packet, &flow);
3457 flow.in_port.ofp_port = out_dev->ofp_port;
3458 output.port = OFPP_TABLE;
3459 output.max_len = 0;
3460
3461 return ofproto_dpif_execute_actions__(xbridge->ofproto, version, &flow,
3462 NULL, &output.ofpact, sizeof output,
3463 ctx->depth, ctx->resubmits, packet);
3464 }
3465
3466 static void
3467 tnl_send_nd_request(struct xlate_ctx *ctx, const struct xport *out_dev,
3468 const struct eth_addr eth_src,
3469 struct in6_addr * ipv6_src, struct in6_addr * ipv6_dst)
3470 {
3471 struct dp_packet packet;
3472
3473 dp_packet_init(&packet, 0);
3474 compose_nd_ns(&packet, eth_src, ipv6_src, ipv6_dst);
3475 compose_table_xlate(ctx, out_dev, &packet);
3476 dp_packet_uninit(&packet);
3477 }
3478
3479 static void
3480 tnl_send_arp_request(struct xlate_ctx *ctx, const struct xport *out_dev,
3481 const struct eth_addr eth_src,
3482 ovs_be32 ip_src, ovs_be32 ip_dst)
3483 {
3484 struct dp_packet packet;
3485
3486 dp_packet_init(&packet, 0);
3487 compose_arp(&packet, ARP_OP_REQUEST,
3488 eth_src, eth_addr_zero, true, ip_src, ip_dst);
3489
3490 compose_table_xlate(ctx, out_dev, &packet);
3491 dp_packet_uninit(&packet);
3492 }
3493
3494 static void
3495 propagate_tunnel_data_to_flow__(struct flow *dst_flow,
3496 const struct flow *src_flow,
3497 struct eth_addr dmac, struct eth_addr smac,
3498 struct in6_addr s_ip6, ovs_be32 s_ip,
3499 bool is_tnl_ipv6, uint8_t nw_proto)
3500 {
3501 dst_flow->dl_dst = dmac;
3502 dst_flow->dl_src = smac;
3503
3504 dst_flow->packet_type = htonl(PT_ETH);
3505 dst_flow->nw_dst = src_flow->tunnel.ip_dst;
3506 dst_flow->nw_src = src_flow->tunnel.ip_src;
3507 dst_flow->ipv6_dst = src_flow->tunnel.ipv6_dst;
3508 dst_flow->ipv6_src = src_flow->tunnel.ipv6_src;
3509
3510 dst_flow->nw_frag = 0; /* Tunnel packets are unfragmented. */
3511 dst_flow->nw_tos = src_flow->tunnel.ip_tos;
3512 dst_flow->nw_ttl = src_flow->tunnel.ip_ttl;
3513 dst_flow->tp_dst = src_flow->tunnel.tp_dst;
3514 dst_flow->tp_src = src_flow->tunnel.tp_src;
3515
3516 if (is_tnl_ipv6) {
3517 dst_flow->dl_type = htons(ETH_TYPE_IPV6);
3518 if (ipv6_mask_is_any(&dst_flow->ipv6_src)
3519 && !ipv6_mask_is_any(&s_ip6)) {
3520 dst_flow->ipv6_src = s_ip6;
3521 }
3522 } else {
3523 dst_flow->dl_type = htons(ETH_TYPE_IP);
3524 if (dst_flow->nw_src == 0 && s_ip) {
3525 dst_flow->nw_src = s_ip;
3526 }
3527 }
3528 dst_flow->nw_proto = nw_proto;
3529 }
3530
3531 /*
3532 * Populate the 'flow' and 'base_flow' L3 fields to do the post tunnel push
3533 * translations.
3534 */
3535 static void
3536 propagate_tunnel_data_to_flow(struct xlate_ctx *ctx, struct eth_addr dmac,
3537 struct eth_addr smac, struct in6_addr s_ip6,
3538 ovs_be32 s_ip, bool is_tnl_ipv6,
3539 enum ovs_vport_type tnl_type)
3540 {
3541 struct flow *base_flow, *flow;
3542 flow = &ctx->xin->flow;
3543 base_flow = &ctx->base_flow;
3544 uint8_t nw_proto = 0;
3545
3546 switch (tnl_type) {
3547 case OVS_VPORT_TYPE_GRE:
3548 case OVS_VPORT_TYPE_ERSPAN:
3549 case OVS_VPORT_TYPE_IP6ERSPAN:
3550 case OVS_VPORT_TYPE_IP6GRE:
3551 nw_proto = IPPROTO_GRE;
3552 break;
3553 case OVS_VPORT_TYPE_VXLAN:
3554 case OVS_VPORT_TYPE_GENEVE:
3555 nw_proto = IPPROTO_UDP;
3556 break;
3557 case OVS_VPORT_TYPE_LISP:
3558 case OVS_VPORT_TYPE_STT:
3559 case OVS_VPORT_TYPE_UNSPEC:
3560 case OVS_VPORT_TYPE_NETDEV:
3561 case OVS_VPORT_TYPE_INTERNAL:
3562 case __OVS_VPORT_TYPE_MAX:
3563 default:
3564 OVS_NOT_REACHED();
3565 }
3566 /*
3567 * Update base_flow first followed by flow as the dst_flow gets modified
3568 * in the function.
3569 */
3570 propagate_tunnel_data_to_flow__(base_flow, flow, dmac, smac, s_ip6, s_ip,
3571 is_tnl_ipv6, nw_proto);
3572 propagate_tunnel_data_to_flow__(flow, flow, dmac, smac, s_ip6, s_ip,
3573 is_tnl_ipv6, nw_proto);
3574 }
3575
3576 static int
3577 native_tunnel_output(struct xlate_ctx *ctx, const struct xport *xport,
3578 const struct flow *flow, odp_port_t tunnel_odp_port,
3579 bool truncate)
3580 {
3581 struct netdev_tnl_build_header_params tnl_params;
3582 struct ovs_action_push_tnl tnl_push_data;
3583 struct xport *out_dev = NULL;
3584 ovs_be32 s_ip = 0, d_ip = 0;
3585 struct in6_addr s_ip6 = in6addr_any;
3586 struct in6_addr d_ip6 = in6addr_any;
3587 struct eth_addr smac;
3588 struct eth_addr dmac;
3589 int err;
3590 char buf_sip6[INET6_ADDRSTRLEN];
3591 char buf_dip6[INET6_ADDRSTRLEN];
3592
3593 /* Store sFlow data. */
3594 uint32_t sflow_n_outputs = ctx->sflow_n_outputs;
3595
3596 /* Structures to backup Ethernet and IP of base_flow. */
3597 struct flow old_base_flow;
3598 struct flow old_flow;
3599
3600 /* Backup flow & base_flow data. */
3601 memcpy(&old_base_flow, &ctx->base_flow, sizeof old_base_flow);
3602 memcpy(&old_flow, &ctx->xin->flow, sizeof old_flow);
3603
3604 if (flow->tunnel.ip_src) {
3605 in6_addr_set_mapped_ipv4(&s_ip6, flow->tunnel.ip_src);
3606 }
3607
3608 err = tnl_route_lookup_flow(ctx, flow, &d_ip6, &s_ip6, &out_dev);
3609 if (err) {
3610 xlate_report(ctx, OFT_WARN, "native tunnel routing failed");
3611 return err;
3612 }
3613
3614 xlate_report(ctx, OFT_DETAIL, "tunneling to %s via %s",
3615 ipv6_string_mapped(buf_dip6, &d_ip6),
3616 netdev_get_name(out_dev->netdev));
3617
3618 /* Use mac addr of bridge port of the peer. */
3619 err = netdev_get_etheraddr(out_dev->netdev, &smac);
3620 if (err) {
3621 xlate_report(ctx, OFT_WARN,
3622 "tunnel output device lacks Ethernet address");
3623 return err;
3624 }
3625
3626 d_ip = in6_addr_get_mapped_ipv4(&d_ip6);
3627 if (d_ip) {
3628 s_ip = in6_addr_get_mapped_ipv4(&s_ip6);
3629 }
3630
3631 err = tnl_neigh_lookup(out_dev->xbridge->name, &d_ip6, &dmac);
3632 if (err) {
3633 xlate_report(ctx, OFT_DETAIL,
3634 "neighbor cache miss for %s on bridge %s, "
3635 "sending %s request",
3636 buf_dip6, out_dev->xbridge->name, d_ip ? "ARP" : "ND");
3637 if (d_ip) {
3638 tnl_send_arp_request(ctx, out_dev, smac, s_ip, d_ip);
3639 } else {
3640 tnl_send_nd_request(ctx, out_dev, smac, &s_ip6, &d_ip6);
3641 }
3642 return err;
3643 }
3644
3645 if (ctx->xin->xcache) {
3646 struct xc_entry *entry;
3647
3648 entry = xlate_cache_add_entry(ctx->xin->xcache, XC_TNL_NEIGH);
3649 ovs_strlcpy(entry->tnl_neigh_cache.br_name, out_dev->xbridge->name,
3650 sizeof entry->tnl_neigh_cache.br_name);
3651 entry->tnl_neigh_cache.d_ipv6 = d_ip6;
3652 }
3653
3654 xlate_report(ctx, OFT_DETAIL, "tunneling from "ETH_ADDR_FMT" %s"
3655 " to "ETH_ADDR_FMT" %s",
3656 ETH_ADDR_ARGS(smac), ipv6_string_mapped(buf_sip6, &s_ip6),
3657 ETH_ADDR_ARGS(dmac), buf_dip6);
3658
3659 netdev_init_tnl_build_header_params(&tnl_params, flow, &s_ip6, dmac, smac);
3660 err = tnl_port_build_header(xport->ofport, &tnl_push_data, &tnl_params);
3661 if (err) {
3662 return err;
3663 }
3664 tnl_push_data.tnl_port = tunnel_odp_port;
3665 tnl_push_data.out_port = out_dev->odp_port;
3666
3667 /* After tunnel header has been added, MAC and IP data of flow and
3668 * base_flow need to be set properly, since there is not recirculation
3669 * any more when sending packet to tunnel. */
3670
3671 propagate_tunnel_data_to_flow(ctx, dmac, smac, s_ip6,
3672 s_ip, tnl_params.is_ipv6,
3673 tnl_push_data.tnl_type);
3674
3675 size_t clone_ofs = 0;
3676 size_t push_action_size;
3677
3678 clone_ofs = nl_msg_start_nested(ctx->odp_actions, OVS_ACTION_ATTR_CLONE);
3679 odp_put_tnl_push_action(ctx->odp_actions, &tnl_push_data);
3680 push_action_size = ctx->odp_actions->size;
3681
3682 if (!truncate) {
3683 const struct dpif_flow_stats *backup_resubmit_stats;
3684 struct xlate_cache *backup_xcache;
3685 struct flow_wildcards *backup_wc, wc;
3686 bool backup_side_effects;
3687 const struct dp_packet *backup_packet;
3688
3689 memset(&wc, 0 , sizeof wc);
3690 backup_wc = ctx->wc;
3691 ctx->wc = &wc;
3692 ctx->xin->wc = NULL;
3693 backup_resubmit_stats = ctx->xin->resubmit_stats;
3694 backup_xcache = ctx->xin->xcache;
3695 backup_side_effects = ctx->xin->allow_side_effects;
3696 backup_packet = ctx->xin->packet;
3697
3698 ctx->xin->resubmit_stats = NULL;
3699 ctx->xin->xcache = xlate_cache_new(); /* Use new temporary cache. */
3700 ctx->xin->allow_side_effects = false;
3701 ctx->xin->packet = NULL;
3702
3703 /* Push the cache entry for the tunnel first. */
3704 struct xc_entry *entry;
3705 entry = xlate_cache_add_entry(ctx->xin->xcache, XC_TUNNEL_HEADER);
3706 entry->tunnel_hdr.hdr_size = tnl_push_data.header_len;
3707 entry->tunnel_hdr.operation = ADD;
3708
3709 patch_port_output(ctx, xport, out_dev);
3710
3711 /* Similar to the stats update in revalidation, the x_cache entries
3712 * are populated by the previous translation are used to update the
3713 * stats correctly.
3714 */
3715 if (backup_resubmit_stats) {
3716 struct dpif_flow_stats stats = *backup_resubmit_stats;
3717 xlate_push_stats(ctx->xin->xcache, &stats, false);
3718 }
3719 xlate_cache_steal_entries(backup_xcache, ctx->xin->xcache);
3720
3721 if (ctx->odp_actions->size > push_action_size) {
3722 nl_msg_end_non_empty_nested(ctx->odp_actions, clone_ofs);
3723 } else {
3724 nl_msg_cancel_nested(ctx->odp_actions, clone_ofs);
3725 }
3726
3727 /* Restore context status. */
3728 ctx->xin->resubmit_stats = backup_resubmit_stats;
3729 xlate_cache_delete(ctx->xin->xcache);
3730 ctx->xin->xcache = backup_xcache;
3731 ctx->xin->allow_side_effects = backup_side_effects;
3732 ctx->xin->packet = backup_packet;
3733 ctx->wc = backup_wc;
3734 } else {
3735 /* In order to maintain accurate stats, use recirc for
3736 * natvie tunneling. */
3737 nl_msg_put_u32(ctx->odp_actions, OVS_ACTION_ATTR_RECIRC, 0);
3738 nl_msg_end_nested(ctx->odp_actions, clone_ofs);
3739 }
3740
3741 /* Restore the flows after the translation. */
3742 memcpy(&ctx->xin->flow, &old_flow, sizeof ctx->xin->flow);
3743 memcpy(&ctx->base_flow, &old_base_flow, sizeof ctx->base_flow);
3744
3745 /* Restore sFlow data. */
3746 ctx->sflow_n_outputs = sflow_n_outputs;
3747
3748 return 0;
3749 }
3750
3751 static void
3752 xlate_commit_actions(struct xlate_ctx *ctx)
3753 {
3754 bool use_masked = ctx->xbridge->support.masked_set_action;
3755
3756 ctx->xout->slow |= commit_odp_actions(&ctx->xin->flow, &ctx->base_flow,
3757 ctx->odp_actions, ctx->wc,
3758 use_masked, ctx->pending_encap,
3759 ctx->pending_decap, ctx->encap_data);
3760 ctx->pending_encap = false;
3761 ctx->pending_decap = false;
3762 ofpbuf_delete(ctx->encap_data);
3763 ctx->encap_data = NULL;
3764 }
3765
3766 static void
3767 clear_conntrack(struct xlate_ctx *ctx)
3768 {
3769 ctx->conntracked = false;
3770 flow_clear_conntrack(&ctx->xin->flow);
3771 }
3772
3773 static bool
3774 xlate_flow_is_protected(const struct xlate_ctx *ctx, const struct flow *flow, const struct xport *xport_out)
3775 {
3776 const struct xport *xport_in;
3777
3778 if (!xport_out) {
3779 return false;
3780 }
3781
3782 xport_in = get_ofp_port(ctx->xbridge, flow->in_port.ofp_port);
3783
3784 return (xport_in && xport_in->xbundle && xport_out->xbundle &&
3785 xport_in->xbundle->protected && xport_out->xbundle->protected);
3786 }
3787
3788 /* Function handles when a packet is sent from one bridge to another bridge.
3789 *
3790 * The bridges are internally connected, either with patch ports or with
3791 * tunnel ports.
3792 *
3793 * The output action to another bridge causes translation to continue within
3794 * the next bridge. This process can be recursive; the next bridge can
3795 * output yet to another bridge.
3796 *
3797 * The translated actions from the second bridge onwards are enclosed within
3798 * the clone action, so that any modification to the packet will not be visible
3799 * to the remaining actions of the originating bridge.
3800 */
3801 static void
3802 patch_port_output(struct xlate_ctx *ctx, const struct xport *in_dev,
3803 struct xport *out_dev)
3804 {
3805 struct flow *flow = &ctx->xin->flow;
3806 struct flow old_flow = ctx->xin->flow;
3807 struct flow_tnl old_flow_tnl_wc = ctx->wc->masks.tunnel;
3808 bool old_conntrack = ctx->conntracked;
3809 bool old_was_mpls = ctx->was_mpls;
3810 ovs_version_t old_version = ctx->xin->tables_version;
3811 struct ofpbuf old_stack = ctx->stack;
3812 uint8_t new_stack[1024];
3813 struct ofpbuf old_action_set = ctx->action_set;
3814 struct ovs_list *old_trace = ctx->xin->trace;
3815 uint64_t actset_stub[1024 / 8];
3816
3817 ofpbuf_use_stub(&ctx->stack, new_stack, sizeof new_stack);
3818 ofpbuf_use_stub(&ctx->action_set, actset_stub, sizeof actset_stub);
3819 flow->in_port.ofp_port = out_dev->ofp_port;
3820 flow->metadata = htonll(0);
3821 memset(&flow->tunnel, 0, sizeof flow->tunnel);
3822 memset(&ctx->wc->masks.tunnel, 0, sizeof ctx->wc->masks.tunnel);
3823 flow->tunnel.metadata.tab =
3824 ofproto_get_tun_tab(&out_dev->xbridge->ofproto->up);
3825 ctx->wc->masks.tunnel.metadata.tab = flow->tunnel.metadata.tab;
3826 memset(flow->regs, 0, sizeof flow->regs);
3827 flow->actset_output = OFPP_UNSET;
3828 clear_conntrack(ctx);
3829 ctx->xin->trace = xlate_report(ctx, OFT_BRIDGE, "bridge(\"%s\")",
3830 out_dev->xbridge->name);
3831 mirror_mask_t old_mirrors = ctx->mirrors;
3832 bool independent_mirrors = out_dev->xbridge != ctx->xbridge;
3833 if (independent_mirrors) {
3834 ctx->mirrors = 0;
3835 }
3836 ctx->xbridge = out_dev->xbridge;
3837
3838 /* The bridge is now known so obtain its table version. */
3839 ctx->xin->tables_version
3840 = ofproto_dpif_get_tables_version(ctx->xbridge->ofproto);
3841
3842 if (!process_special(ctx, out_dev) && may_receive(out_dev, ctx)) {
3843 if (xport_stp_forward_state(out_dev) &&
3844 xport_rstp_forward_state(out_dev)) {
3845 xlate_table_action(ctx, flow->in_port.ofp_port, 0, true, true,
3846 false, true, clone_xlate_actions);
3847 if (!ctx->freezing) {
3848 xlate_action_set(ctx);
3849 }
3850 if (ctx->freezing) {
3851 finish_freezing(ctx);
3852 }
3853 } else {
3854 /* Forwarding is disabled by STP and RSTP. Let OFPP_NORMAL and
3855 * the learning action look at the packet, then drop it. */
3856 struct flow old_base_flow = ctx->base_flow;
3857 size_t old_size = ctx->odp_actions->size;
3858 mirror_mask_t old_mirrors2 = ctx->mirrors;
3859
3860 xlate_table_action(ctx, flow->in_port.ofp_port, 0, true, true,
3861 false, true, clone_xlate_actions);
3862 ctx->mirrors = old_mirrors2;
3863 ctx->base_flow = old_base_flow;
3864 ctx->odp_actions->size = old_size;
3865
3866 /* Undo changes that may have been done for freezing. */
3867 ctx_cancel_freeze(ctx);
3868 }
3869 }
3870
3871 ctx->xin->trace = old_trace;
3872 if (independent_mirrors) {
3873 ctx->mirrors = old_mirrors;
3874 }
3875 ctx->xin->flow = old_flow;
3876 ctx->xbridge = in_dev->xbridge;
3877 ofpbuf_uninit(&ctx->action_set);
3878 ctx->action_set = old_action_set;
3879 ofpbuf_uninit(&ctx->stack);
3880 ctx->stack = old_stack;
3881
3882 /* Restore calling bridge's lookup version. */
3883 ctx->xin->tables_version = old_version;
3884
3885 /* Restore to calling bridge tunneling information */
3886 ctx->wc->masks.tunnel = old_flow_tnl_wc;
3887
3888 /* The out bridge popping MPLS should have no effect on the original
3889 * bridge. */
3890 ctx->was_mpls = old_was_mpls;
3891
3892 /* The out bridge's conntrack execution should have no effect on the
3893 * original bridge. */
3894 ctx->conntracked = old_conntrack;
3895
3896 /* The fact that the out bridge exits (for any reason) does not mean
3897 * that the original bridge should exit. Specifically, if the out
3898 * bridge freezes translation, the original bridge must continue
3899 * processing with the original, not the frozen packet! */
3900 ctx->exit = false;
3901
3902 /* Out bridge errors do not propagate back. */
3903 ctx->error = XLATE_OK;
3904
3905 if (ctx->xin->resubmit_stats) {
3906 netdev_vport_inc_tx(in_dev->netdev, ctx->xin->resubmit_stats);
3907 netdev_vport_inc_rx(out_dev->netdev, ctx->xin->resubmit_stats);
3908 if (out_dev->bfd) {
3909 bfd_account_rx(out_dev->bfd, ctx->xin->resubmit_stats);
3910 }
3911 }
3912 if (ctx->xin->xcache) {
3913 struct xc_entry *entry;
3914
3915 entry = xlate_cache_add_entry(ctx->xin->xcache, XC_NETDEV);
3916 entry->dev.tx = netdev_ref(in_dev->netdev);
3917 entry->dev.rx = netdev_ref(out_dev->netdev);
3918 entry->dev.bfd = bfd_ref(out_dev->bfd);
3919 }
3920 }
3921
3922 static bool
3923 check_output_prerequisites(struct xlate_ctx *ctx,
3924 const struct xport *xport,
3925 struct flow *flow,
3926 bool check_stp)
3927 {
3928 struct flow_wildcards *wc = ctx->wc;
3929
3930 if (!xport) {
3931 xlate_report(ctx, OFT_WARN, "Nonexistent output port");
3932 return false;
3933 } else if (xport->config & OFPUTIL_PC_NO_FWD) {
3934 xlate_report(ctx, OFT_DETAIL, "OFPPC_NO_FWD set, skipping output");
3935 return false;
3936 } else if (ctx->mirror_snaplen != 0 && xport->odp_port == ODPP_NONE) {
3937 xlate_report(ctx, OFT_WARN,
3938 "Mirror truncate to ODPP_NONE, skipping output");
3939 return false;
3940 } else if (xlate_flow_is_protected(ctx, flow, xport)) {
3941 xlate_report(ctx, OFT_WARN,
3942 "Flow is between protected ports, skipping output.");
3943 return false;
3944 } else if (check_stp) {
3945 if (is_stp(&ctx->base_flow)) {
3946 if (!xport_stp_should_forward_bpdu(xport) &&
3947 !xport_rstp_should_manage_bpdu(xport)) {
3948 if (ctx->xbridge->stp != NULL) {
3949 xlate_report(ctx, OFT_WARN,
3950 "STP not in listening state, "
3951 "skipping bpdu output");
3952 } else if (ctx->xbridge->rstp != NULL) {
3953 xlate_report(ctx, OFT_WARN,
3954 "RSTP not managing BPDU in this state, "
3955 "skipping bpdu output");
3956 }
3957 return false;
3958 }
3959 } else if ((xport->cfm && cfm_should_process_flow(xport->cfm, flow, wc))
3960 || (xport->bfd && bfd_should_process_flow(xport->bfd, flow,
3961 wc))) {
3962 /* Pass; STP should not block link health detection. */
3963 } else if (!xport_stp_forward_state(xport) ||
3964 !xport_rstp_forward_state(xport)) {
3965 if (ctx->xbridge->stp != NULL) {
3966 xlate_report(ctx, OFT_WARN,
3967 "STP not in forwarding state, skipping output");
3968 } else if (ctx->xbridge->rstp != NULL) {
3969 xlate_report(ctx, OFT_WARN,
3970 "RSTP not in forwarding state, skipping output");
3971 }
3972 return false;
3973 }
3974 }
3975
3976 if (xport->pt_mode == NETDEV_PT_LEGACY_L2 &&
3977 flow->packet_type != htonl(PT_ETH)) {
3978 xlate_report(ctx, OFT_WARN, "Trying to send non-Ethernet packet "
3979 "through legacy L2 port. Dropping packet.");
3980 return false;
3981 }
3982
3983 return true;
3984 }
3985
3986 /* Function verifies if destination address of received Neighbor Advertisement
3987 * message stored in 'flow' is correct. It should be either FF02::1:FFXX:XXXX
3988 * where XX:XXXX stands for the last 24 bits of 'ipv6_addr' or it should match
3989 * 'ipv6_addr'. */
3990 static bool
3991 is_nd_dst_correct(const struct flow *flow, const struct in6_addr *ipv6_addr)
3992 {
3993 const uint8_t *flow_ipv6_addr = (uint8_t *) &flow->ipv6_dst;
3994 const uint8_t *addr = (uint8_t *) ipv6_addr;
3995
3996 return (IN6_IS_ADDR_MC_LINKLOCAL(&flow->ipv6_dst) &&
3997 flow_ipv6_addr[11] == 0x01 &&
3998 flow_ipv6_addr[12] == 0xff &&
3999 flow_ipv6_addr[13] == addr[13] &&
4000 flow_ipv6_addr[14] == addr[14] &&
4001 flow_ipv6_addr[15] == addr[15]) ||
4002 IN6_ARE_ADDR_EQUAL(&flow->ipv6_dst, ipv6_addr);
4003 }
4004
4005 static bool
4006 is_neighbor_reply_matched(const struct flow *flow, struct in6_addr *ip_addr)
4007 {
4008 return ((IN6_IS_ADDR_V4MAPPED(ip_addr) &&
4009 flow->dl_type == htons(ETH_TYPE_ARP) &&
4010 in6_addr_get_mapped_ipv4(ip_addr) == flow->nw_dst) ||
4011 (!IN6_IS_ADDR_V4MAPPED(ip_addr) &&
4012 is_nd_dst_correct(flow, ip_addr)));
4013 }
4014
4015 /* Function verifies if the ARP reply or Neighbor Advertisement represented by
4016 * 'flow' addresses the 'xbridge' of 'ctx'. Returns true if the ARP TA or
4017 * neighbor discovery destination is in the list of configured IP addresses of
4018 * the bridge. Otherwise, it returns false. */
4019 static bool
4020 is_neighbor_reply_correct(const struct xlate_ctx *ctx, const struct flow *flow)
4021 {
4022 bool ret = false;
4023 int i;
4024 struct xbridge_addr *xbridge_addr = xbridge_addr_ref(ctx->xbridge->addr);
4025
4026 /* Verify if 'nw_dst' of ARP or 'ipv6_dst' of ICMPV6 is in the list. */
4027 for (i = 0; xbridge_addr && i < xbridge_addr->n_addr; i++) {
4028 struct in6_addr *ip_addr = &xbridge_addr->addr[i];
4029 if (is_neighbor_reply_matched(flow, ip_addr)) {
4030 /* Found a match. */
4031 ret = true;
4032 break;
4033 }
4034 }
4035
4036 xbridge_addr_unref(xbridge_addr);
4037
4038 /* If not found in bridge's IPs, search in its ports. */
4039 if (!ret) {
4040 struct in6_addr *ip_addr, *mask;
4041 struct xport *port;
4042 int error, n_in6;
4043
4044 HMAP_FOR_EACH (port, ofp_node, &ctx->xbridge->xports) {
4045 error = netdev_get_addr_list(port->netdev, &ip_addr,
4046 &mask, &n_in6);
4047 if (!error) {
4048 ret = is_neighbor_reply_matched(flow, ip_addr);
4049 free(ip_addr);
4050 free(mask);
4051 if (ret) {
4052 /* Found a match. */
4053 break;
4054 }
4055 }
4056 }
4057 }
4058 return ret;
4059 }
4060
4061 static bool
4062 terminate_native_tunnel(struct xlate_ctx *ctx, struct flow *flow,
4063 struct flow_wildcards *wc, odp_port_t *tnl_port)
4064 {
4065 *tnl_port = ODPP_NONE;
4066
4067 /* XXX: Write better Filter for tunnel port. We can use in_port
4068 * in tunnel-port flow to avoid these checks completely. */
4069 if (ovs_native_tunneling_is_on(ctx->xbridge->ofproto)) {
4070 *tnl_port = tnl_port_map_lookup(flow, wc);
4071
4072 /* If no tunnel port was found and it's about an ARP or ICMPv6 packet,
4073 * do tunnel neighbor snooping. */
4074 if (*tnl_port == ODPP_NONE &&
4075 (flow->dl_type == htons(ETH_TYPE_ARP) ||
4076 flow->nw_proto == IPPROTO_ICMPV6) &&
4077 is_neighbor_reply_correct(ctx, flow)) {
4078 tnl_neigh_snoop(flow, wc, ctx->xbridge->name);
4079 }
4080 }
4081
4082 return *tnl_port != ODPP_NONE;
4083 }
4084
4085 static void
4086 compose_output_action__(struct xlate_ctx *ctx, ofp_port_t ofp_port,
4087 const struct xlate_bond_recirc *xr, bool check_stp,
4088 bool is_last_action OVS_UNUSED, bool truncate)
4089 {
4090 const struct xport *xport = get_ofp_port(ctx->xbridge, ofp_port);
4091 struct flow_wildcards *wc = ctx->wc;
4092 struct flow *flow = &ctx->xin->flow;
4093 struct flow_tnl flow_tnl;
4094 union flow_vlan_hdr flow_vlans[FLOW_MAX_VLAN_HEADERS];
4095 uint8_t flow_nw_tos;
4096 odp_port_t out_port, odp_port, odp_tnl_port;
4097 bool is_native_tunnel = false;
4098 uint8_t dscp;
4099 struct eth_addr flow_dl_dst = flow->dl_dst;
4100 struct eth_addr flow_dl_src = flow->dl_src;
4101 ovs_be32 flow_packet_type = flow->packet_type;
4102 ovs_be16 flow_dl_type = flow->dl_type;
4103
4104 /* If 'struct flow' gets additional metadata, we'll need to zero it out
4105 * before traversing a patch port. */
4106 BUILD_ASSERT_DECL(FLOW_WC_SEQ == 41);
4107 memset(&flow_tnl, 0, sizeof flow_tnl);
4108
4109 if (!check_output_prerequisites(ctx, xport, flow, check_stp)) {
4110 return;
4111 }
4112
4113 if (flow->packet_type == htonl(PT_ETH)) {
4114 /* Strip Ethernet header for legacy L3 port. */
4115 if (xport->pt_mode == NETDEV_PT_LEGACY_L3) {
4116 flow->packet_type = PACKET_TYPE_BE(OFPHTN_ETHERTYPE,
4117 ntohs(flow->dl_type));
4118 }
4119 }
4120
4121 if (xport->peer) {
4122 if (truncate) {
4123 xlate_report_error(ctx, "Cannot truncate output to patch port");
4124 }
4125 patch_port_output(ctx, xport, xport->peer);
4126 return;
4127 }
4128
4129 memcpy(flow_vlans, flow->vlans, sizeof flow_vlans);
4130 flow_nw_tos = flow->nw_tos;
4131
4132 if (count_skb_priorities(xport)) {
4133 memset(&wc->masks.skb_priority, 0xff, sizeof wc->masks.skb_priority);
4134 if (dscp_from_skb_priority(xport, flow->skb_priority, &dscp)) {
4135 wc->masks.nw_tos |= IP_DSCP_MASK;
4136 flow->nw_tos &= ~IP_DSCP_MASK;
4137 flow->nw_tos |= dscp;
4138 }
4139 }
4140
4141 if (xport->is_tunnel) {
4142 struct in6_addr dst;
4143 /* Save tunnel metadata so that changes made due to
4144 * the Logical (tunnel) Port are not visible for any further
4145 * matches, while explicit set actions on tunnel metadata are.
4146 */
4147 flow_tnl = flow->tunnel;
4148 odp_port = tnl_port_send(xport->ofport, flow, ctx->wc);
4149 if (odp_port == ODPP_NONE) {
4150 xlate_report(ctx, OFT_WARN, "Tunneling decided against output");
4151 goto out; /* restore flow_nw_tos */
4152 }
4153 dst = flow_tnl_dst(&flow->tunnel);
4154 if (ipv6_addr_equals(&dst, &ctx->orig_tunnel_ipv6_dst)) {
4155 xlate_report(ctx, OFT_WARN, "Not tunneling to our own address");
4156 goto out; /* restore flow_nw_tos */
4157 }
4158 if (ctx->xin->resubmit_stats) {
4159 netdev_vport_inc_tx(xport->netdev, ctx->xin->resubmit_stats);
4160 }
4161 if (ctx->xin->xcache) {
4162 struct xc_entry *entry;
4163
4164 entry = xlate_cache_add_entry(ctx->xin->xcache, XC_NETDEV);
4165 entry->dev.tx = netdev_ref(xport->netdev);
4166 }
4167 out_port = odp_port;
4168 if (ovs_native_tunneling_is_on(ctx->xbridge->ofproto)) {
4169 xlate_report(ctx, OFT_DETAIL, "output to native tunnel");
4170 is_native_tunnel = true;
4171 } else {
4172 const char *tnl_type;
4173
4174 xlate_report(ctx, OFT_DETAIL, "output to kernel tunnel");
4175 tnl_type = tnl_port_get_type(xport->ofport);
4176 commit_odp_tunnel_action(flow, &ctx->base_flow,
4177 ctx->odp_actions, tnl_type);
4178 flow->tunnel = flow_tnl; /* Restore tunnel metadata */
4179 }
4180 } else {
4181 odp_port = xport->odp_port;
4182 out_port = odp_port;
4183 }
4184
4185 if (out_port != ODPP_NONE) {
4186 /* Commit accumulated flow updates before output. */
4187 xlate_commit_actions(ctx);
4188
4189 if (xr) {
4190 /* Recirculate the packet. */
4191 struct ovs_action_hash *act_hash;
4192
4193 /* Hash action. */
4194 enum ovs_hash_alg hash_alg = xr->hash_alg;
4195 if (hash_alg > ctx->xbridge->support.max_hash_alg) {
4196 /* Algorithm supported by all datapaths. */
4197 hash_alg = OVS_HASH_ALG_L4;
4198 }
4199 act_hash = nl_msg_put_unspec_uninit(ctx->odp_actions,
4200 OVS_ACTION_ATTR_HASH,
4201 sizeof *act_hash);
4202 act_hash->hash_alg = hash_alg;
4203 act_hash->hash_basis = xr->hash_basis;
4204
4205 /* Recirc action. */
4206 nl_msg_put_u32(ctx->odp_actions, OVS_ACTION_ATTR_RECIRC,
4207 xr->recirc_id);
4208 } else if (is_native_tunnel) {
4209 /* Output to native tunnel port. */
4210 native_tunnel_output(ctx, xport, flow, odp_port, truncate);
4211 flow->tunnel = flow_tnl; /* Restore tunnel metadata */
4212
4213 } else if (terminate_native_tunnel(ctx, flow, wc,
4214 &odp_tnl_port)) {
4215 /* Intercept packet to be received on native tunnel port. */
4216 nl_msg_put_odp_port(ctx->odp_actions, OVS_ACTION_ATTR_TUNNEL_POP,
4217 odp_tnl_port);
4218
4219 } else {
4220 /* Tunnel push-pop action is not compatible with
4221 * IPFIX action. */
4222 compose_ipfix_action(ctx, out_port);
4223
4224 /* Handle truncation of the mirrored packet. */
4225 if (ctx->mirror_snaplen > 0 &&
4226 ctx->mirror_snaplen < UINT16_MAX) {
4227 struct ovs_action_trunc *trunc;
4228
4229 trunc = nl_msg_put_unspec_uninit(ctx->odp_actions,
4230 OVS_ACTION_ATTR_TRUNC,
4231 sizeof *trunc);
4232 trunc->max_len = ctx->mirror_snaplen;
4233 if (!ctx->xbridge->support.trunc) {
4234 ctx->xout->slow |= SLOW_ACTION;
4235 }
4236 }
4237
4238 nl_msg_put_odp_port(ctx->odp_actions,
4239 OVS_ACTION_ATTR_OUTPUT,
4240 out_port);
4241 }
4242
4243 ctx->sflow_odp_port = odp_port;
4244 ctx->sflow_n_outputs++;
4245 ctx->nf_output_iface = ofp_port;
4246 }
4247
4248 if (mbridge_has_mirrors(ctx->xbridge->mbridge) && xport->xbundle) {
4249 mirror_packet(ctx, xport->xbundle,
4250 xbundle_mirror_dst(xport->xbundle->xbridge,
4251 xport->xbundle));
4252 }
4253
4254 out:
4255 /* Restore flow */
4256 memcpy(flow->vlans, flow_vlans, sizeof flow->vlans);
4257 flow->nw_tos = flow_nw_tos;
4258 flow->dl_dst = flow_dl_dst;
4259 flow->dl_src = flow_dl_src;
4260 flow->packet_type = flow_packet_type;
4261 flow->dl_type = flow_dl_type;
4262 }
4263
4264 static void
4265 compose_output_action(struct xlate_ctx *ctx, ofp_port_t ofp_port,
4266 const struct xlate_bond_recirc *xr,
4267 bool is_last_action, bool truncate)
4268 {
4269 compose_output_action__(ctx, ofp_port, xr, true,
4270 is_last_action, truncate);
4271 }
4272
4273 static void
4274 xlate_recursively(struct xlate_ctx *ctx, struct rule_dpif *rule,
4275 bool deepens, bool is_last_action,
4276 xlate_actions_handler *actions_xlator)
4277 {
4278 struct rule_dpif *old_rule = ctx->rule;
4279 ovs_be64 old_cookie = ctx->rule_cookie;
4280 const struct rule_actions *actions;
4281
4282 if (ctx->xin->resubmit_stats) {
4283 rule_dpif_credit_stats(rule, ctx->xin->resubmit_stats, false);
4284 }
4285
4286 ctx->resubmits++;
4287
4288 ctx->depth += deepens;
4289 ctx->rule = rule;
4290 ctx->rule_cookie = rule->up.flow_cookie;
4291 actions = rule_get_actions(&rule->up);
4292 actions_xlator(actions->ofpacts, actions->ofpacts_len, ctx,
4293 is_last_action, false);
4294 ctx->rule_cookie = old_cookie;
4295 ctx->rule = old_rule;
4296 ctx->depth -= deepens;
4297 }
4298
4299 static bool
4300 xlate_resubmit_resource_check(struct xlate_ctx *ctx)
4301 {
4302 if (ctx->depth >= MAX_DEPTH) {
4303 xlate_report_error(ctx, "over max translation depth %d", MAX_DEPTH);
4304 ctx->error = XLATE_RECURSION_TOO_DEEP;
4305 } else if (ctx->resubmits >= MAX_RESUBMITS) {
4306 xlate_report_error(ctx, "over %d resubmit actions", MAX_RESUBMITS);
4307 ctx->error = XLATE_TOO_MANY_RESUBMITS;
4308 } else if (ctx->odp_actions->size > UINT16_MAX) {
4309 xlate_report_error(ctx, "resubmits yielded over 64 kB of actions");
4310 /* NOT an error, as we'll be slow-pathing the flow in this case? */
4311 ctx->exit = true; /* XXX: translation still terminated! */
4312 } else if (ctx->stack.size >= 65536) {
4313 xlate_report_error(ctx, "resubmits yielded over 64 kB of stack");
4314 ctx->error = XLATE_STACK_TOO_DEEP;
4315 } else {
4316 return true;
4317 }
4318
4319 return false;
4320 }
4321
4322 static void
4323 tuple_swap_flow(struct flow *flow, bool ipv4)
4324 {
4325 uint8_t nw_proto = flow->nw_proto;
4326 flow->nw_proto = flow->ct_nw_proto;
4327 flow->ct_nw_proto = nw_proto;
4328
4329 if (ipv4) {
4330 ovs_be32 nw_src = flow->nw_src;
4331 flow->nw_src = flow->ct_nw_src;
4332 flow->ct_nw_src = nw_src;
4333
4334 ovs_be32 nw_dst = flow->nw_dst;
4335 flow->nw_dst = flow->ct_nw_dst;
4336 flow->ct_nw_dst = nw_dst;
4337 } else {
4338 struct in6_addr ipv6_src = flow->ipv6_src;
4339 flow->ipv6_src = flow->ct_ipv6_src;
4340 flow->ct_ipv6_src = ipv6_src;
4341
4342 struct in6_addr ipv6_dst = flow->ipv6_dst;
4343 flow->ipv6_dst = flow->ct_ipv6_dst;
4344 flow->ct_ipv6_dst = ipv6_dst;
4345 }
4346
4347 ovs_be16 tp_src = flow->tp_src;
4348 flow->tp_src = flow->ct_tp_src;
4349 flow->ct_tp_src = tp_src;
4350
4351 ovs_be16 tp_dst = flow->tp_dst;
4352 flow->tp_dst = flow->ct_tp_dst;
4353 flow->ct_tp_dst = tp_dst;
4354 }
4355
4356 static void
4357 tuple_swap(struct flow *flow, struct flow_wildcards *wc)
4358 {
4359 bool ipv4 = (flow->dl_type == htons(ETH_TYPE_IP));
4360
4361 tuple_swap_flow(flow, ipv4);
4362 tuple_swap_flow(&wc->masks, ipv4);
4363 }
4364
4365 static void
4366 xlate_table_action(struct xlate_ctx *ctx, ofp_port_t in_port, uint8_t table_id,
4367 bool may_packet_in, bool honor_table_miss,
4368 bool with_ct_orig, bool is_last_action,
4369 xlate_actions_handler *xlator)
4370 {
4371 /* Check if we need to recirculate before matching in a table. */
4372 if (ctx->was_mpls) {
4373 ctx_trigger_freeze(ctx);
4374 return;
4375 }
4376 if (xlate_resubmit_resource_check(ctx)) {
4377 uint8_t old_table_id = ctx->table_id;
4378 struct rule_dpif *rule;
4379
4380 ctx->table_id = table_id;
4381
4382 /* Swap packet fields with CT 5-tuple if requested. */
4383 if (with_ct_orig) {
4384 /* Do not swap if there is no CT tuple, or if key is not IP. */
4385 if (ctx->xin->flow.ct_nw_proto == 0 ||
4386 !is_ip_any(&ctx->xin->flow)) {
4387 xlate_report_error(ctx,
4388 "resubmit(ct) with non-tracked or non-IP packet!");
4389 ctx->table_id = old_table_id;
4390 return;
4391 }
4392 tuple_swap(&ctx->xin->flow, ctx->wc);
4393 }
4394 rule = rule_dpif_lookup_from_table(ctx->xbridge->ofproto,
4395 ctx->xin->tables_version,
4396 &ctx->xin->flow, ctx->wc,
4397 ctx->xin->resubmit_stats,
4398 &ctx->table_id, in_port,
4399 may_packet_in, honor_table_miss,
4400 ctx->xin->xcache);
4401 /* Swap back. */
4402 if (with_ct_orig) {
4403 tuple_swap(&ctx->xin->flow, ctx->wc);
4404 }
4405
4406 if (rule) {
4407 /* Fill in the cache entry here instead of xlate_recursively
4408 * to make the reference counting more explicit. We take a
4409 * reference in the lookups above if we are going to cache the
4410 * rule. */
4411 if (ctx->xin->xcache) {
4412 struct xc_entry *entry;
4413
4414 entry = xlate_cache_add_entry(ctx->xin->xcache, XC_RULE);
4415 entry->rule = rule;
4416 ofproto_rule_ref(&rule->up);
4417 }
4418
4419 struct ovs_list *old_trace = ctx->xin->trace;
4420 xlate_report_table(ctx, rule, table_id);
4421 xlate_recursively(ctx, rule, table_id <= old_table_id,
4422 is_last_action, xlator);
4423 ctx->xin->trace = old_trace;
4424 }
4425
4426 ctx->table_id = old_table_id;
4427 return;
4428 }
4429 }
4430
4431 /* Consumes the group reference, which is only taken if xcache exists. */
4432 static void
4433 xlate_group_stats(struct xlate_ctx *ctx, struct group_dpif *group,
4434 struct ofputil_bucket *bucket)
4435 {
4436 if (ctx->xin->resubmit_stats) {
4437 group_dpif_credit_stats(group, bucket, ctx->xin->resubmit_stats);
4438 }
4439 if (ctx->xin->xcache) {
4440 struct xc_entry *entry;
4441
4442 entry = xlate_cache_add_entry(ctx->xin->xcache, XC_GROUP);
4443 entry->group.group = group;
4444 entry->group.bucket = bucket;
4445 }
4446 }
4447
4448 static void
4449 xlate_group_bucket(struct xlate_ctx *ctx, struct ofputil_bucket *bucket,
4450 bool is_last_action)
4451 {
4452 struct ovs_list *old_trace = ctx->xin->trace;
4453 if (OVS_UNLIKELY(ctx->xin->trace)) {
4454 char *s = xasprintf("bucket %"PRIu32, bucket->bucket_id);
4455 ctx->xin->trace = &oftrace_report(ctx->xin->trace, OFT_BUCKET,
4456 s)->subs;
4457 free(s);
4458 }
4459
4460 uint64_t action_list_stub[1024 / 8];
4461 struct ofpbuf action_list = OFPBUF_STUB_INITIALIZER(action_list_stub);
4462 struct ofpbuf action_set = ofpbuf_const_initializer(bucket->ofpacts,
4463 bucket->ofpacts_len);
4464 struct flow old_flow = ctx->xin->flow;
4465 bool old_was_mpls = ctx->was_mpls;
4466
4467 ofpacts_execute_action_set(&action_list, &action_set);
4468 ctx->depth++;
4469 do_xlate_actions(action_list.data, action_list.size, ctx, is_last_action,
4470 true);
4471 ctx->depth--;
4472
4473 ofpbuf_uninit(&action_list);
4474
4475 /* Check if need to freeze. */
4476 if (ctx->freezing) {
4477 finish_freezing(ctx);
4478 }
4479
4480 /* Roll back flow to previous state.
4481 * This is equivalent to cloning the packet for each bucket.
4482 *
4483 * As a side effect any subsequently applied actions will
4484 * also effectively be applied to a clone of the packet taken
4485 * just before applying the all or indirect group.
4486 *
4487 * Note that group buckets are action sets, hence they cannot modify the
4488 * main action set. Also any stack actions are ignored when executing an
4489 * action set, so group buckets cannot directly change the stack either.
4490 * However, we do allow resubmit actions in group buckets, which could
4491 * recursively execute actions that do modify the action set or change the
4492 * stack. The controller must be careful about what it does to the
4493 * action_set and stack in the tables resubmitted to from group buckets. */
4494 ctx->xin->flow = old_flow;
4495
4496 /* The group bucket popping MPLS should have no effect after bucket
4497 * execution. */
4498 ctx->was_mpls = old_was_mpls;
4499
4500 /* The fact that the group bucket exits (for any reason) does not mean that
4501 * the translation after the group action should exit. Specifically, if
4502 * the group bucket freezes translation, the actions after the group action
4503 * must continue processing with the original, not the frozen packet! */
4504 ctx->exit = false;
4505
4506 /* Context error in a bucket should not impact processing of other buckets
4507 * or actions. This is similar to cloning a packet for group buckets.
4508 * There is no need to restore the error back to old value due to the fact
4509 * that we actually processed group action which can happen only when there
4510 * is no previous context error.
4511 *
4512 * Exception to above is errors which are system limits to protect
4513 * translation from running too long or occupy too much space. These errors
4514 * should not be masked. XLATE_RECURSION_TOO_DEEP, XLATE_TOO_MANY_RESUBMITS
4515 * and XLATE_STACK_TOO_DEEP fall in this category. */
4516 if (ctx->error == XLATE_TOO_MANY_MPLS_LABELS ||
4517 ctx->error == XLATE_UNSUPPORTED_PACKET_TYPE) {
4518 /* reset the error and continue processing other buckets */
4519 ctx->error = XLATE_OK;
4520 }
4521
4522 ctx->xin->trace = old_trace;
4523 }
4524
4525 static struct ofputil_bucket *
4526 pick_ff_group(struct xlate_ctx *ctx, struct group_dpif *group)
4527 {
4528 return group_first_live_bucket(ctx, group, 0);
4529 }
4530
4531 static struct ofputil_bucket *
4532 pick_default_select_group(struct xlate_ctx *ctx, struct group_dpif *group)
4533 {
4534 flow_mask_hash_fields(&ctx->xin->flow, ctx->wc,
4535 NX_HASH_FIELDS_SYMMETRIC_L4);
4536 return group_best_live_bucket(ctx, group,
4537 flow_hash_symmetric_l4(&ctx->xin->flow, 0));
4538 }
4539
4540 static struct ofputil_bucket *
4541 pick_hash_fields_select_group(struct xlate_ctx *ctx, struct group_dpif *group)
4542 {
4543 const struct field_array *fields = &group->up.props.fields;
4544 const uint8_t *mask_values = fields->values;
4545 uint32_t basis = hash_uint64(group->up.props.selection_method_param);
4546
4547 size_t i;
4548 BITMAP_FOR_EACH_1 (i, MFF_N_IDS, fields->used.bm) {
4549 const struct mf_field *mf = mf_from_id(i);
4550
4551 /* Skip fields for which prerequisites are not met. */
4552 if (!mf_are_prereqs_ok(mf, &ctx->xin->flow, ctx->wc)) {
4553 /* Skip the mask bytes for this field. */
4554 mask_values += mf->n_bytes;
4555 continue;
4556 }
4557
4558 union mf_value value;
4559 union mf_value mask;
4560
4561 mf_get_value(mf, &ctx->xin->flow, &value);
4562 /* Mask the value. */
4563 for (int j = 0; j < mf->n_bytes; j++) {
4564 mask.b[j] = *mask_values++;
4565 value.b[j] &= mask.b[j];
4566 }
4567 basis = hash_bytes(&value, mf->n_bytes, basis);
4568
4569 /* For tunnels, hash in whether the field is present. */
4570 if (mf_is_tun_metadata(mf)) {
4571 basis = hash_boolean(mf_is_set(mf, &ctx->xin->flow), basis);
4572 }
4573
4574 mf_mask_field_masked(mf, &mask, ctx->wc);
4575 }
4576
4577 return group_best_live_bucket(ctx, group, basis);
4578 }
4579
4580 static struct ofputil_bucket *
4581 pick_dp_hash_select_group(struct xlate_ctx *ctx, struct group_dpif *group)
4582 {
4583 uint32_t dp_hash = ctx->xin->flow.dp_hash;
4584
4585 /* dp_hash value 0 is special since it means that the dp_hash has not been
4586 * computed, as all computed dp_hash values are non-zero. Therefore
4587 * compare to zero can be used to decide if the dp_hash value is valid
4588 * without masking the dp_hash field. */
4589 if (!dp_hash) {
4590 enum ovs_hash_alg hash_alg = group->hash_alg;
4591 if (hash_alg > ctx->xbridge->support.max_hash_alg) {
4592 /* Algorithm supported by all datapaths. */
4593 hash_alg = OVS_HASH_ALG_L4;
4594 }
4595 ctx_trigger_recirculate_with_hash(ctx, hash_alg, group->hash_basis);
4596 return NULL;
4597 } else {
4598 uint32_t hash_mask = group->hash_mask;
4599 ctx->wc->masks.dp_hash |= hash_mask;
4600
4601 /* Starting from the original masked dp_hash value iterate over the
4602 * hash mapping table to find the first live bucket. As the buckets
4603 * are quasi-randomly spread over the hash values, this maintains
4604 * a distribution according to bucket weights even when some buckets
4605 * are non-live. */
4606 for (int i = 0; i <= hash_mask; i++) {
4607 struct ofputil_bucket *b =
4608 group->hash_map[(dp_hash + i) & hash_mask];
4609 if (bucket_is_alive(ctx, b, 0)) {
4610 return b;
4611 }
4612 }
4613
4614 return NULL;
4615 }
4616 }
4617
4618 static struct ofputil_bucket *
4619 pick_select_group(struct xlate_ctx *ctx, struct group_dpif *group)
4620 {
4621 /* Select groups may access flow keys beyond L2 in order to
4622 * select a bucket. Recirculate as appropriate to make this possible.
4623 */
4624 if (ctx->was_mpls) {
4625 ctx_trigger_freeze(ctx);
4626 return NULL;
4627 }
4628
4629 switch (group->selection_method) {
4630 case SEL_METHOD_DEFAULT:
4631 return pick_default_select_group(ctx, group);
4632 break;
4633 case SEL_METHOD_HASH:
4634 return pick_hash_fields_select_group(ctx, group);
4635 break;
4636 case SEL_METHOD_DP_HASH:
4637 return pick_dp_hash_select_group(ctx, group);
4638 break;
4639 default:
4640 /* Parsing of groups ensures this never happens */
4641 OVS_NOT_REACHED();
4642 }
4643
4644 return NULL;
4645 }
4646
4647 static void
4648 xlate_group_action__(struct xlate_ctx *ctx, struct group_dpif *group,
4649 bool is_last_action)
4650 {
4651 if (group->up.type == OFPGT11_ALL || group->up.type == OFPGT11_INDIRECT) {
4652 struct ovs_list *last_bucket = group->up.buckets.prev;
4653 struct ofputil_bucket *bucket;
4654 LIST_FOR_EACH (bucket, list_node, &group->up.buckets) {
4655 bool is_last_bucket = &bucket->list_node == last_bucket;
4656 xlate_group_bucket(ctx, bucket, is_last_action && is_last_bucket);
4657 }
4658 xlate_group_stats(ctx, group, NULL);
4659 } else {
4660 struct ofputil_bucket *bucket;
4661 if (group->up.type == OFPGT11_SELECT) {
4662 bucket = pick_select_group(ctx, group);
4663 } else if (group->up.type == OFPGT11_FF) {
4664 bucket = pick_ff_group(ctx, group);
4665 } else {
4666 OVS_NOT_REACHED();
4667 }
4668
4669 if (bucket) {
4670 xlate_report(ctx, OFT_DETAIL, "using bucket %"PRIu32,
4671 bucket->bucket_id);
4672 xlate_group_bucket(ctx, bucket, is_last_action);
4673 xlate_group_stats(ctx, group, bucket);
4674 } else {
4675 xlate_report(ctx, OFT_DETAIL, "no live bucket");
4676 if (ctx->xin->xcache) {
4677 ofproto_group_unref(&group->up);
4678 }
4679 }
4680 }
4681 }
4682
4683 static bool
4684 xlate_group_action(struct xlate_ctx *ctx, uint32_t group_id,
4685 bool is_last_action)
4686 {
4687 if (xlate_resubmit_resource_check(ctx)) {
4688 struct group_dpif *group;
4689
4690 /* Take ref only if xcache exists. */
4691 group = group_dpif_lookup(ctx->xbridge->ofproto, group_id,
4692 ctx->xin->tables_version, ctx->xin->xcache);
4693 if (!group) {
4694 /* XXX: Should set ctx->error ? */
4695 xlate_report(ctx, OFT_WARN, "output to nonexistent group %"PRIu32,
4696 group_id);
4697 return true;
4698 }
4699 xlate_group_action__(ctx, group, is_last_action);
4700 }
4701
4702 return false;
4703 }
4704
4705 static void
4706 xlate_ofpact_resubmit(struct xlate_ctx *ctx,
4707 const struct ofpact_resubmit *resubmit,
4708 bool is_last_action)
4709 {
4710 ofp_port_t in_port;
4711 uint8_t table_id;
4712 bool may_packet_in = false;
4713 bool honor_table_miss = false;
4714
4715 if (ctx->rule && rule_dpif_is_internal(ctx->rule)) {
4716 /* Still allow missed packets to be sent to the controller
4717 * if resubmitting from an internal table. */
4718 may_packet_in = true;
4719 honor_table_miss = true;
4720 }
4721
4722 in_port = resubmit->in_port;
4723 if (in_port == OFPP_IN_PORT) {
4724 in_port = ctx->xin->flow.in_port.ofp_port;
4725 }
4726
4727 table_id = resubmit->table_id;
4728 if (table_id == 255) {
4729 table_id = ctx->table_id;
4730 }
4731
4732 xlate_table_action(ctx, in_port, table_id, may_packet_in,
4733 honor_table_miss, resubmit->with_ct_orig,
4734 is_last_action, do_xlate_actions);
4735 }
4736
4737 static void
4738 flood_packet_to_port(struct xlate_ctx *ctx, const struct xport *xport,
4739 bool all, bool is_last_action)
4740 {
4741 if (!xport) {
4742 return;
4743 }
4744
4745 if (all) {
4746 compose_output_action__(ctx, xport->ofp_port, NULL, false,
4747 is_last_action, false);
4748 } else {
4749 compose_output_action(ctx, xport->ofp_port, NULL, is_last_action,
4750 false);
4751 }
4752 }
4753
4754 static void
4755 flood_packets(struct xlate_ctx *ctx, bool all, bool is_last_action)
4756 {
4757 const struct xport *xport, *last = NULL;
4758
4759 /* Use 'last' the keep track of the last output port. */
4760 HMAP_FOR_EACH (xport, ofp_node, &ctx->xbridge->xports) {
4761 if (xport->ofp_port == ctx->xin->flow.in_port.ofp_port) {
4762 continue;
4763 }
4764
4765 if (all || !(xport->config & OFPUTIL_PC_NO_FLOOD)) {
4766 /* 'last' is not the last port, send a packet out, and
4767 * update 'last'. */
4768 flood_packet_to_port(ctx, last, all, false);
4769 last = xport;
4770 }
4771 }
4772
4773 /* Send the packet to the 'last' port. */
4774 flood_packet_to_port(ctx, last, all, is_last_action);
4775 ctx->nf_output_iface = NF_OUT_FLOOD;
4776 }
4777
4778 static void
4779 put_controller_user_action(struct xlate_ctx *ctx,
4780 bool dont_send, bool continuation,
4781 uint32_t recirc_id, int len,
4782 enum ofp_packet_in_reason reason,
4783 uint16_t controller_id)
4784 {
4785 struct user_action_cookie cookie;
4786
4787 memset(&cookie, 0, sizeof cookie);
4788 cookie.type = USER_ACTION_COOKIE_CONTROLLER;
4789 cookie.ofp_in_port = OFPP_NONE,
4790 cookie.ofproto_uuid = ctx->xbridge->ofproto->uuid;
4791 cookie.controller.dont_send = dont_send;
4792 cookie.controller.continuation = continuation;
4793 cookie.controller.reason = reason;
4794 cookie.controller.recirc_id = recirc_id;
4795 put_32aligned_be64(&cookie.controller.rule_cookie, ctx->rule_cookie);
4796 cookie.controller.controller_id = controller_id;
4797 cookie.controller.max_len = len;
4798
4799 odp_port_t odp_port = ofp_port_to_odp_port(ctx->xbridge,
4800 ctx->xin->flow.in_port.ofp_port);
4801 uint32_t pid = dpif_port_get_pid(ctx->xbridge->dpif, odp_port);
4802 odp_put_userspace_action(pid, &cookie, sizeof cookie, ODPP_NONE,
4803 false, ctx->odp_actions);
4804 }
4805
4806 static void
4807 xlate_controller_action(struct xlate_ctx *ctx, int len,
4808 enum ofp_packet_in_reason reason,
4809 uint16_t controller_id,
4810 uint32_t provider_meter_id,
4811 const uint8_t *userdata, size_t userdata_len)
4812 {
4813 xlate_commit_actions(ctx);
4814
4815 /* A packet sent by an action in a table-miss rule is considered an
4816 * explicit table miss. OpenFlow before 1.3 doesn't have that concept so
4817 * it will get translated back to OFPR_ACTION for those versions. */
4818 if (reason == OFPR_ACTION
4819 && ctx->rule && rule_is_table_miss(&ctx->rule->up)) {
4820 reason = OFPR_EXPLICIT_MISS;
4821 }
4822
4823 struct frozen_state state = {
4824 .table_id = ctx->table_id,
4825 .ofproto_uuid = ctx->xbridge->ofproto->uuid,
4826 .stack = ctx->stack.data,
4827 .stack_size = ctx->stack.size,
4828 .mirrors = ctx->mirrors,
4829 .conntracked = ctx->conntracked,
4830 .was_mpls = ctx->was_mpls,
4831 .ofpacts = NULL,
4832 .ofpacts_len = 0,
4833 .action_set = NULL,
4834 .action_set_len = 0,
4835 .userdata = CONST_CAST(uint8_t *, userdata),
4836 .userdata_len = userdata_len,
4837 };
4838 frozen_metadata_from_flow(&state.metadata, &ctx->xin->flow);
4839
4840 uint32_t recirc_id = recirc_alloc_id_ctx(&state);
4841 if (!recirc_id) {
4842 xlate_report_error(ctx, "Failed to allocate recirculation id");
4843 ctx->error = XLATE_NO_RECIRCULATION_CONTEXT;
4844 return;
4845 }
4846 recirc_refs_add(&ctx->xout->recircs, recirc_id);
4847
4848 /* If the controller action didn't request a meter (indicated by a
4849 * 'meter_id' argument other than NX_CTLR_NO_METER), see if one was
4850 * configured through the "controller" virtual meter.
4851 *
4852 * Internally, ovs-vswitchd uses UINT32_MAX to indicate no meter is
4853 * configured. */
4854 uint32_t meter_id;
4855 if (provider_meter_id == UINT32_MAX) {
4856 meter_id = ctx->xbridge->ofproto->up.controller_meter_id;
4857 } else {
4858 meter_id = provider_meter_id;
4859 }
4860
4861 size_t offset;
4862 size_t ac_offset;
4863 if (meter_id != UINT32_MAX) {
4864 /* If controller meter is configured, generate clone(meter, userspace)
4865 * action. */
4866 offset = nl_msg_start_nested(ctx->odp_actions, OVS_ACTION_ATTR_SAMPLE);
4867 nl_msg_put_u32(ctx->odp_actions, OVS_SAMPLE_ATTR_PROBABILITY,
4868 UINT32_MAX);
4869 ac_offset = nl_msg_start_nested(ctx->odp_actions,
4870 OVS_SAMPLE_ATTR_ACTIONS);
4871 nl_msg_put_u32(ctx->odp_actions, OVS_ACTION_ATTR_METER, meter_id);
4872 }
4873
4874 /* Generate the datapath flows even if we don't send the packet-in
4875 * so that debugging more closely represents normal state. */
4876 bool dont_send = false;
4877 if (!ctx->xin->allow_side_effects && !ctx->xin->xcache) {
4878 dont_send = true;
4879 }
4880 put_controller_user_action(ctx, dont_send, false, recirc_id, len,
4881 reason, controller_id);
4882
4883 if (meter_id != UINT32_MAX) {
4884 nl_msg_end_nested(ctx->odp_actions, ac_offset);
4885 nl_msg_end_nested(ctx->odp_actions, offset);
4886 }
4887 }
4888
4889 /* Creates a frozen state, and allocates a unique recirc id for the given
4890 * state. Returns a non-zero recirc id if it is allocated successfully.
4891 * Returns 0 otherwise.
4892 **/
4893 static uint32_t
4894 finish_freezing__(struct xlate_ctx *ctx, uint8_t table)
4895 {
4896 ovs_assert(ctx->freezing);
4897
4898 struct frozen_state state = {
4899 .table_id = table,
4900 .ofproto_uuid = ctx->xbridge->ofproto->uuid,
4901 .stack = ctx->stack.data,
4902 .stack_size = ctx->stack.size,
4903 .mirrors = ctx->mirrors,
4904 .conntracked = ctx->conntracked,
4905 .was_mpls = ctx->was_mpls,
4906 .xport_uuid = ctx->xin->xport_uuid,
4907 .ofpacts = ctx->frozen_actions.data,
4908 .ofpacts_len = ctx->frozen_actions.size,
4909 .action_set = ctx->action_set.data,
4910 .action_set_len = ctx->action_set.size,
4911 .userdata = ctx->pause ? CONST_CAST(uint8_t *,ctx->pause->userdata)
4912 : NULL,
4913 .userdata_len = ctx->pause ? ctx->pause->userdata_len : 0,
4914 };
4915 frozen_metadata_from_flow(&state.metadata, &ctx->xin->flow);
4916
4917 /* Allocate a unique recirc id for the given metadata state in the
4918 * flow. An existing id, with a new reference to the corresponding
4919 * recirculation context, will be returned if possible.
4920 * The life-cycle of this recirc id is managed by associating it
4921 * with the udpif key ('ukey') created for each new datapath flow. */
4922 uint32_t recirc_id = recirc_alloc_id_ctx(&state);
4923 if (!recirc_id) {
4924 xlate_report_error(ctx, "Failed to allocate recirculation id");
4925 ctx->error = XLATE_NO_RECIRCULATION_CONTEXT;
4926 return 0;
4927 }
4928 recirc_refs_add(&ctx->xout->recircs, recirc_id);
4929
4930 if (ctx->pause) {
4931 if (!ctx->xin->allow_side_effects && !ctx->xin->xcache) {
4932 return 0;
4933 }
4934
4935 put_controller_user_action(ctx, false, true, recirc_id,
4936 ctx->pause->max_len,
4937 ctx->pause->reason,
4938 ctx->pause->controller_id);
4939 } else {
4940 if (ctx->recirc_update_dp_hash) {
4941 struct ovs_action_hash *act_hash;
4942
4943 /* Hash action. */
4944 act_hash = nl_msg_put_unspec_uninit(ctx->odp_actions,
4945 OVS_ACTION_ATTR_HASH,
4946 sizeof *act_hash);
4947 act_hash->hash_alg = ctx->dp_hash_alg;
4948 act_hash->hash_basis = ctx->dp_hash_basis;
4949 }
4950 nl_msg_put_u32(ctx->odp_actions, OVS_ACTION_ATTR_RECIRC, recirc_id);
4951 }
4952
4953 /* Undo changes done by freezing. */
4954 ctx_cancel_freeze(ctx);
4955 return recirc_id;
4956 }
4957
4958 /* Called only when we're freezing. */
4959 static void
4960 finish_freezing(struct xlate_ctx *ctx)
4961 {
4962 xlate_commit_actions(ctx);
4963 finish_freezing__(ctx, 0);
4964 }
4965
4966 /* Fork the pipeline here. The current packet will continue processing the
4967 * current action list. A clone of the current packet will recirculate, skip
4968 * the remainder of the current action list and asynchronously resume pipeline
4969 * processing in 'table' with the current metadata and action set. */
4970 static void
4971 compose_recirculate_and_fork(struct xlate_ctx *ctx, uint8_t table,
4972 const uint16_t zone)
4973 {
4974 uint32_t recirc_id;
4975 ctx->freezing = true;
4976 recirc_id = finish_freezing__(ctx, table);
4977
4978 if (OVS_UNLIKELY(ctx->xin->trace) && recirc_id) {
4979 if (oftrace_add_recirc_node(ctx->xin->recirc_queue,
4980 OFT_RECIRC_CONNTRACK, &ctx->xin->flow,
4981 ctx->xin->packet, recirc_id, zone)) {
4982 xlate_report(ctx, OFT_DETAIL, "A clone of the packet is forked to "
4983 "recirculate. The forked pipeline will be resumed at "
4984 "table %u.", table);
4985 } else {
4986 xlate_report(ctx, OFT_DETAIL, "Failed to trace the conntrack "
4987 "forked pipeline with recirc_id = %d.", recirc_id);
4988 }
4989 }
4990 }
4991
4992 static void
4993 compose_mpls_push_action(struct xlate_ctx *ctx, struct ofpact_push_mpls *mpls)
4994 {
4995 struct flow *flow = &ctx->xin->flow;
4996 int n;
4997
4998 ovs_assert(eth_type_mpls(mpls->ethertype));
4999
5000 n = flow_count_mpls_labels(flow, ctx->wc);
5001 if (!n) {
5002 xlate_commit_actions(ctx);
5003 } else if (n >= FLOW_MAX_MPLS_LABELS) {
5004 if (ctx->xin->packet != NULL) {
5005 xlate_report_error(ctx, "dropping packet on which an MPLS push "
5006 "action can't be performed as it would have "
5007 "more MPLS LSEs than the %d supported.",
5008 FLOW_MAX_MPLS_LABELS);
5009 }
5010 ctx->error = XLATE_TOO_MANY_MPLS_LABELS;
5011 return;
5012 }
5013
5014 /* Update flow's MPLS stack, and clear L3/4 fields to mark them invalid. */
5015 flow_push_mpls(flow, n, mpls->ethertype, ctx->wc, true);
5016 }
5017
5018 static void
5019 compose_mpls_pop_action(struct xlate_ctx *ctx, ovs_be16 eth_type)
5020 {
5021 struct flow *flow = &ctx->xin->flow;
5022 int n = flow_count_mpls_labels(flow, ctx->wc);
5023
5024 if (flow_pop_mpls(flow, n, eth_type, ctx->wc)) {
5025 if (!eth_type_mpls(eth_type) && ctx->xbridge->support.odp.recirc) {
5026 ctx->was_mpls = true;
5027 }
5028 } else if (n >= FLOW_MAX_MPLS_LABELS) {
5029 if (ctx->xin->packet != NULL) {
5030 xlate_report_error(ctx, "dropping packet on which an "
5031 "MPLS pop action can't be performed as it has "
5032 "more MPLS LSEs than the %d supported.",
5033 FLOW_MAX_MPLS_LABELS);
5034 }
5035 ctx->error = XLATE_TOO_MANY_MPLS_LABELS;
5036 ofpbuf_clear(ctx->odp_actions);
5037 }
5038 }
5039
5040 static bool
5041 compose_dec_ttl(struct xlate_ctx *ctx, struct ofpact_cnt_ids *ids)
5042 {
5043 struct flow *flow = &ctx->xin->flow;
5044
5045 if (!is_ip_any(flow)) {
5046 return false;
5047 }
5048
5049 ctx->wc->masks.nw_ttl = 0xff;
5050 if (flow->nw_ttl > 1) {
5051 flow->nw_ttl--;
5052 return false;
5053 } else {
5054 size_t i;
5055
5056 for (i = 0; i < ids->n_controllers; i++) {
5057 xlate_controller_action(ctx, UINT16_MAX, OFPR_INVALID_TTL,
5058 ids->cnt_ids[i], UINT32_MAX, NULL, 0);
5059 }
5060
5061 /* Stop processing for current table. */
5062 xlate_report(ctx, OFT_WARN, "IPv%d decrement TTL exception",
5063 flow->dl_type == htons(ETH_TYPE_IP) ? 4 : 6);
5064 return true;
5065 }
5066 }
5067
5068 static void
5069 compose_set_mpls_label_action(struct xlate_ctx *ctx, ovs_be32 label)
5070 {
5071 if (eth_type_mpls(ctx->xin->flow.dl_type)) {
5072 ctx->wc->masks.mpls_lse[0] |= htonl(MPLS_LABEL_MASK);
5073 set_mpls_lse_label(&ctx->xin->flow.mpls_lse[0], label);
5074 }
5075 }
5076
5077 static void
5078 compose_set_mpls_tc_action(struct xlate_ctx *ctx, uint8_t tc)
5079 {
5080 if (eth_type_mpls(ctx->xin->flow.dl_type)) {
5081 ctx->wc->masks.mpls_lse[0] |= htonl(MPLS_TC_MASK);
5082 set_mpls_lse_tc(&ctx->xin->flow.mpls_lse[0], tc);
5083 }
5084 }
5085
5086 static bool
5087 compose_dec_nsh_ttl_action(struct xlate_ctx *ctx)
5088 {
5089 struct flow *flow = &ctx->xin->flow;
5090
5091 if ((flow->packet_type == htonl(PT_NSH)) ||
5092 (flow->dl_type == htons(ETH_TYPE_NSH))) {
5093 ctx->wc->masks.nsh.ttl = 0xff;
5094 if (flow->nsh.ttl > 1) {
5095 flow->nsh.ttl--;
5096 return false;
5097 } else {
5098 xlate_controller_action(ctx, UINT16_MAX, OFPR_INVALID_TTL,
5099 0, UINT32_MAX, NULL, 0);
5100 }
5101 }
5102
5103 /* Stop processing for current table. */
5104 xlate_report(ctx, OFT_WARN, "NSH decrement TTL exception");
5105 return true;
5106 }
5107
5108 static void
5109 compose_set_mpls_ttl_action(struct xlate_ctx *ctx, uint8_t ttl)
5110 {
5111 if (eth_type_mpls(ctx->xin->flow.dl_type)) {
5112 ctx->wc->masks.mpls_lse[0] |= htonl(MPLS_TTL_MASK);
5113 set_mpls_lse_ttl(&ctx->xin->flow.mpls_lse[0], ttl);
5114 }
5115 }
5116
5117 static bool
5118 compose_dec_mpls_ttl_action(struct xlate_ctx *ctx)
5119 {
5120 struct flow *flow = &ctx->xin->flow;
5121
5122 if (eth_type_mpls(flow->dl_type)) {
5123 uint8_t ttl = mpls_lse_to_ttl(flow->mpls_lse[0]);
5124
5125 ctx->wc->masks.mpls_lse[0] |= htonl(MPLS_TTL_MASK);
5126 if (ttl > 1) {
5127 ttl--;
5128 set_mpls_lse_ttl(&flow->mpls_lse[0], ttl);
5129 return false;
5130 } else {
5131 xlate_controller_action(ctx, UINT16_MAX, OFPR_INVALID_TTL, 0,
5132 UINT32_MAX, NULL, 0);
5133 }
5134 }
5135
5136 /* Stop processing for current table. */
5137 xlate_report(ctx, OFT_WARN, "MPLS decrement TTL exception");
5138 return true;
5139 }
5140
5141 /* Emits an action that outputs to 'port', within 'ctx'.
5142 *
5143 * 'controller_len' affects only packets sent to an OpenFlow controller. It
5144 * is the maximum number of bytes of the packet to send. UINT16_MAX means to
5145 * send the whole packet (and 0 means to omit the packet entirely).
5146 *
5147 * 'may_packet_in' determines whether the packet may be sent to an OpenFlow
5148 * controller. If it is false, then the packet is never sent to the OpenFlow
5149 * controller.
5150 *
5151 * 'is_last_action' should be true if this output is the last OpenFlow action
5152 * to be processed, which enables certain optimizations.
5153 *
5154 * 'truncate' should be true if the packet to be output is being truncated,
5155 * which suppresses certain optimizations. */
5156 static void
5157 xlate_output_action(struct xlate_ctx *ctx, ofp_port_t port,
5158 uint16_t controller_len, bool may_packet_in,
5159 bool is_last_action, bool truncate,
5160 bool group_bucket_action)
5161 {
5162 ofp_port_t prev_nf_output_iface = ctx->nf_output_iface;
5163
5164 ctx->nf_output_iface = NF_OUT_DROP;
5165
5166 switch (port) {
5167 case OFPP_IN_PORT:
5168 compose_output_action(ctx, ctx->xin->flow.in_port.ofp_port, NULL,
5169 is_last_action, truncate);
5170 break;
5171 case OFPP_TABLE:
5172 xlate_table_action(ctx, ctx->xin->flow.in_port.ofp_port,
5173 0, may_packet_in, true, false, false,
5174 do_xlate_actions);
5175 break;
5176 case OFPP_NORMAL:
5177 xlate_normal(ctx);
5178 break;
5179 case OFPP_FLOOD:
5180 flood_packets(ctx, false, is_last_action);
5181 break;
5182 case OFPP_ALL:
5183 flood_packets(ctx, true, is_last_action);
5184 break;
5185 case OFPP_CONTROLLER:
5186 xlate_controller_action(ctx, controller_len,
5187 (ctx->in_packet_out ? OFPR_PACKET_OUT
5188 : group_bucket_action ? OFPR_GROUP
5189 : ctx->in_action_set ? OFPR_ACTION_SET
5190 : OFPR_ACTION),
5191 0, UINT32_MAX, NULL, 0);
5192 break;
5193 case OFPP_NONE:
5194 break;
5195 case OFPP_LOCAL:
5196 default:
5197 if (port != ctx->xin->flow.in_port.ofp_port) {
5198 compose_output_action(ctx, port, NULL, is_last_action, truncate);
5199 } else {
5200 xlate_report_info(ctx, "skipping output to input port");
5201 }
5202 break;
5203 }
5204
5205 if (prev_nf_output_iface == NF_OUT_FLOOD) {
5206 ctx->nf_output_iface = NF_OUT_FLOOD;
5207 } else if (ctx->nf_output_iface == NF_OUT_DROP) {
5208 ctx->nf_output_iface = prev_nf_output_iface;
5209 } else if (prev_nf_output_iface != NF_OUT_DROP &&
5210 ctx->nf_output_iface != NF_OUT_FLOOD) {
5211 ctx->nf_output_iface = NF_OUT_MULTI;
5212 }
5213 }
5214
5215 static void
5216 xlate_output_reg_action(struct xlate_ctx *ctx,
5217 const struct ofpact_output_reg *or,
5218 bool is_last_action,
5219 bool group_bucket_action)
5220 {
5221 uint64_t port = mf_get_subfield(&or->src, &ctx->xin->flow);
5222 if (port <= UINT16_MAX) {
5223 xlate_report(ctx, OFT_DETAIL, "output port is %"PRIu64, port);
5224
5225 union mf_subvalue value;
5226
5227 memset(&value, 0xff, sizeof value);
5228 mf_write_subfield_flow(&or->src, &value, &ctx->wc->masks);
5229 xlate_output_action(ctx, u16_to_ofp(port), or->max_len,
5230 false, is_last_action, false,
5231 group_bucket_action);
5232 } else {
5233 xlate_report(ctx, OFT_WARN, "output port %"PRIu64" is out of range",
5234 port);
5235 }
5236 }
5237
5238 static void
5239 xlate_output_trunc_action(struct xlate_ctx *ctx,
5240 ofp_port_t port, uint32_t max_len,
5241 bool is_last_action,
5242 bool group_bucket_action)
5243 {
5244 bool support_trunc = ctx->xbridge->support.trunc;
5245 struct ovs_action_trunc *trunc;
5246 char name[OFP_MAX_PORT_NAME_LEN];
5247
5248 switch (port) {
5249 case OFPP_TABLE:
5250 case OFPP_NORMAL:
5251 case OFPP_FLOOD:
5252 case OFPP_ALL:
5253 case OFPP_CONTROLLER:
5254 case OFPP_NONE:
5255 ofputil_port_to_string(port, NULL, name, sizeof name);
5256 xlate_report(ctx, OFT_WARN,
5257 "output_trunc does not support port: %s", name);
5258 break;
5259 case OFPP_LOCAL:
5260 case OFPP_IN_PORT:
5261 default:
5262 if (port != ctx->xin->flow.in_port.ofp_port) {
5263 const struct xport *xport = get_ofp_port(ctx->xbridge, port);
5264
5265 if (xport == NULL || xport->odp_port == ODPP_NONE) {
5266 /* Since truncate happens at its following output action, if
5267 * the output port is a patch port, the behavior is somehow
5268 * unpredictable. For simplicity, disallow this case. */
5269 ofputil_port_to_string(port, NULL, name, sizeof name);
5270 xlate_report_error(ctx, "output_trunc does not support "
5271 "patch port %s", name);
5272 break;
5273 }
5274
5275 trunc = nl_msg_put_unspec_uninit(ctx->odp_actions,
5276 OVS_ACTION_ATTR_TRUNC,
5277 sizeof *trunc);
5278 trunc->max_len = max_len;
5279 xlate_output_action(ctx, port, 0, false, is_last_action, true,
5280 group_bucket_action);
5281 if (!support_trunc) {
5282 ctx->xout->slow |= SLOW_ACTION;
5283 }
5284 } else {
5285 xlate_report_info(ctx, "skipping output to input port");
5286 }
5287 break;
5288 }
5289 }
5290
5291 static void
5292 xlate_enqueue_action(struct xlate_ctx *ctx,
5293 const struct ofpact_enqueue *enqueue,
5294 bool is_last_action,
5295 bool group_bucket_action)
5296 {
5297 ofp_port_t ofp_port = enqueue->port;
5298 uint32_t queue_id = enqueue->queue;
5299 uint32_t flow_priority, priority;
5300 int error;
5301
5302 /* Translate queue to priority. */
5303 error = dpif_queue_to_priority(ctx->xbridge->dpif, queue_id, &priority);
5304 if (error) {
5305 /* Fall back to ordinary output action. */
5306 xlate_output_action(ctx, enqueue->port, 0, false,
5307 is_last_action, false,
5308 group_bucket_action);
5309 return;
5310 }
5311
5312 /* Check output port. */
5313 if (ofp_port == OFPP_IN_PORT) {
5314 ofp_port = ctx->xin->flow.in_port.ofp_port;
5315 } else if (ofp_port == ctx->xin->flow.in_port.ofp_port) {
5316 return;
5317 }
5318
5319 /* Add datapath actions. */
5320 flow_priority = ctx->xin->flow.skb_priority;
5321 ctx->xin->flow.skb_priority = priority;
5322 compose_output_action(ctx, ofp_port, NULL, is_last_action, false);
5323 ctx->xin->flow.skb_priority = flow_priority;
5324
5325 /* Update NetFlow output port. */
5326 if (ctx->nf_output_iface == NF_OUT_DROP) {
5327 ctx->nf_output_iface = ofp_port;
5328 } else if (ctx->nf_output_iface != NF_OUT_FLOOD) {
5329 ctx->nf_output_iface = NF_OUT_MULTI;
5330 }
5331 }
5332
5333 static void
5334 xlate_set_queue_action(struct xlate_ctx *ctx, uint32_t queue_id)
5335 {
5336 uint32_t skb_priority;
5337
5338 if (!dpif_queue_to_priority(ctx->xbridge->dpif, queue_id, &skb_priority)) {
5339 ctx->xin->flow.skb_priority = skb_priority;
5340 } else {
5341 /* Couldn't translate queue to a priority. Nothing to do. A warning
5342 * has already been logged. */
5343 }
5344 }
5345
5346 static bool
5347 slave_enabled_cb(ofp_port_t ofp_port, void *xbridge_)
5348 {
5349 const struct xbridge *xbridge = xbridge_;
5350 struct xport *port;
5351
5352 switch (ofp_port) {
5353 case OFPP_IN_PORT:
5354 case OFPP_TABLE:
5355 case OFPP_NORMAL:
5356 case OFPP_FLOOD:
5357 case OFPP_ALL:
5358 case OFPP_NONE:
5359 return true;
5360 case OFPP_CONTROLLER: /* Not supported by the bundle action. */
5361 return false;
5362 default:
5363 port = get_ofp_port(xbridge, ofp_port);
5364 return port ? port->may_enable : false;
5365 }
5366 }
5367
5368 static void
5369 xlate_bundle_action(struct xlate_ctx *ctx,
5370 const struct ofpact_bundle *bundle,
5371 bool is_last_action,
5372 bool group_bucket_action)
5373 {
5374 ofp_port_t port;
5375
5376 port = bundle_execute(bundle, &ctx->xin->flow, ctx->wc, slave_enabled_cb,
5377 CONST_CAST(struct xbridge *, ctx->xbridge));
5378 if (bundle->dst.field) {
5379 nxm_reg_load(&bundle->dst, ofp_to_u16(port), &ctx->xin->flow, ctx->wc);
5380 xlate_report_subfield(ctx, &bundle->dst);
5381 } else {
5382 xlate_output_action(ctx, port, 0, false, is_last_action, false,
5383 group_bucket_action);
5384 }
5385 }
5386
5387 static void
5388 xlate_learn_action(struct xlate_ctx *ctx, const struct ofpact_learn *learn)
5389 {
5390 learn_mask(learn, ctx->wc);
5391
5392 if (ctx->xin->xcache || ctx->xin->allow_side_effects) {
5393 uint64_t ofpacts_stub[1024 / 8];
5394 struct ofputil_flow_mod fm;
5395 struct ofproto_flow_mod ofm__, *ofm;
5396 struct ofpbuf ofpacts;
5397 enum ofperr error;
5398
5399 if (ctx->xin->xcache) {
5400 ofm = xmalloc(sizeof *ofm);
5401 } else {
5402 ofm = &ofm__;
5403 }
5404
5405 ofpbuf_use_stub(&ofpacts, ofpacts_stub, sizeof ofpacts_stub);
5406 learn_execute(learn, &ctx->xin->flow, &fm, &ofpacts);
5407 if (OVS_UNLIKELY(ctx->xin->trace)) {
5408 struct ds s = DS_EMPTY_INITIALIZER;
5409 ds_put_format(&s, "table=%"PRIu8" ", fm.table_id);
5410 minimatch_format(&fm.match,
5411 ofproto_get_tun_tab(&ctx->xin->ofproto->up),
5412 NULL, &s, OFP_DEFAULT_PRIORITY);
5413 ds_chomp(&s, ' ');
5414 ds_put_format(&s, " priority=%d", fm.priority);
5415 if (fm.new_cookie) {
5416 ds_put_format(&s, " cookie=%#"PRIx64, ntohll(fm.new_cookie));
5417 }
5418 if (fm.idle_timeout != OFP_FLOW_PERMANENT) {
5419 ds_put_format(&s, " idle=%"PRIu16, fm.idle_timeout);
5420 }
5421 if (fm.hard_timeout != OFP_FLOW_PERMANENT) {
5422 ds_put_format(&s, " hard=%"PRIu16, fm.hard_timeout);
5423 }
5424 if (fm.flags & NX_LEARN_F_SEND_FLOW_REM) {
5425 ds_put_cstr(&s, " send_flow_rem");
5426 }
5427 ds_put_cstr(&s, " actions=");
5428 struct ofpact_format_params fp = { .s = &s };
5429 ofpacts_format(fm.ofpacts, fm.ofpacts_len, &fp);
5430 xlate_report(ctx, OFT_DETAIL, "%s", ds_cstr(&s));
5431 ds_destroy(&s);
5432 }
5433 error = ofproto_dpif_flow_mod_init_for_learn(ctx->xbridge->ofproto,
5434 &fm, ofm);
5435 ofpbuf_uninit(&ofpacts);
5436
5437 if (!error) {
5438 bool success = true;
5439 if (ctx->xin->allow_side_effects) {
5440 error = ofproto_flow_mod_learn(ofm, ctx->xin->xcache != NULL,
5441 learn->limit, &success);
5442 } else if (learn->limit) {
5443 if (!ofm->temp_rule
5444 || ofm->temp_rule->state != RULE_INSERTED) {
5445 /* The learned rule expired and there are no packets, so
5446 * we cannot learn again. Since the translated actions
5447 * depend on the result of learning, we tell the caller
5448 * that there's no point in caching this result. */
5449 ctx->xout->avoid_caching = true;
5450 }
5451 }
5452
5453 if (learn->flags & NX_LEARN_F_WRITE_RESULT) {
5454 nxm_reg_load(&learn->result_dst, success ? 1 : 0,
5455 &ctx->xin->flow, ctx->wc);
5456 xlate_report_subfield(ctx, &learn->result_dst);
5457 }
5458
5459 if (success && ctx->xin->xcache) {
5460 struct xc_entry *entry;
5461
5462 entry = xlate_cache_add_entry(ctx->xin->xcache, XC_LEARN);
5463 entry->learn.ofm = ofm;
5464 entry->learn.limit = learn->limit;
5465 ofm = NULL;
5466 } else {
5467 ofproto_flow_mod_uninit(ofm);
5468 }
5469
5470 if (OVS_UNLIKELY(ctx->xin->trace && !success)) {
5471 xlate_report(ctx, OFT_DETAIL, "Limit exceeded, learn failed");
5472 }
5473 }
5474
5475 if (ofm != &ofm__) {
5476 free(ofm);
5477 }
5478
5479 if (error) {
5480 xlate_report_error(ctx, "LEARN action execution failed (%s).",
5481 ofperr_to_string(error));
5482 }
5483
5484 minimatch_destroy(&fm.match);
5485 } else {
5486 xlate_report(ctx, OFT_WARN,
5487 "suppressing side effects, so learn action ignored");
5488 }
5489 }
5490
5491 static void
5492 xlate_fin_timeout__(struct rule_dpif *rule, uint16_t tcp_flags,
5493 uint16_t idle_timeout, uint16_t hard_timeout)
5494 {
5495 if (tcp_flags & (TCP_FIN | TCP_RST)) {
5496 ofproto_rule_reduce_timeouts(&rule->up, idle_timeout, hard_timeout);
5497 }
5498 }
5499
5500 static void
5501 xlate_fin_timeout(struct xlate_ctx *ctx,
5502 const struct ofpact_fin_timeout *oft)
5503 {
5504 if (ctx->rule) {
5505 if (ctx->xin->allow_side_effects) {
5506 xlate_fin_timeout__(ctx->rule, ctx->xin->tcp_flags,
5507 oft->fin_idle_timeout, oft->fin_hard_timeout);
5508 }
5509 if (ctx->xin->xcache) {
5510 struct xc_entry *entry;
5511
5512 entry = xlate_cache_add_entry(ctx->xin->xcache, XC_FIN_TIMEOUT);
5513 /* XC_RULE already holds a reference on the rule, none is taken
5514 * here. */
5515 entry->fin.rule = ctx->rule;
5516 entry->fin.idle = oft->fin_idle_timeout;
5517 entry->fin.hard = oft->fin_hard_timeout;
5518 }
5519 }
5520 }
5521
5522 static void
5523 xlate_sample_action(struct xlate_ctx *ctx,
5524 const struct ofpact_sample *os)
5525 {
5526 odp_port_t output_odp_port = ODPP_NONE;
5527 odp_port_t tunnel_out_port = ODPP_NONE;
5528 struct dpif_ipfix *ipfix = ctx->xbridge->ipfix;
5529 bool emit_set_tunnel = false;
5530
5531 if (!ipfix || ctx->xin->flow.in_port.ofp_port == OFPP_NONE) {
5532 return;
5533 }
5534
5535 /* Scale the probability from 16-bit to 32-bit while representing
5536 * the same percentage. */
5537 uint32_t probability = (os->probability << 16) | os->probability;
5538
5539 /* If ofp_port in flow sample action is equel to ofp_port,
5540 * this sample action is a input port action. */
5541 if (os->sampling_port != OFPP_NONE &&
5542 os->sampling_port != ctx->xin->flow.in_port.ofp_port) {
5543 output_odp_port = ofp_port_to_odp_port(ctx->xbridge,
5544 os->sampling_port);
5545 if (output_odp_port == ODPP_NONE) {
5546 xlate_report_error(ctx, "can't use unknown port %d in flow sample "
5547 "action", os->sampling_port);
5548 return;
5549 }
5550
5551 if (dpif_ipfix_get_flow_exporter_tunnel_sampling(ipfix,
5552 os->collector_set_id)
5553 && dpif_ipfix_is_tunnel_port(ipfix, output_odp_port)) {
5554 tunnel_out_port = output_odp_port;
5555 emit_set_tunnel = true;
5556 }
5557 }
5558
5559 xlate_commit_actions(ctx);
5560 /* If 'emit_set_tunnel', sample(sampling_port=1) would translate
5561 * into datapath sample action set(tunnel(...)), sample(...) and
5562 * it is used for sampling egress tunnel information. */
5563 if (emit_set_tunnel) {
5564 const struct xport *xport = get_ofp_port(ctx->xbridge,
5565 os->sampling_port);
5566
5567 if (xport && xport->is_tunnel) {
5568 struct flow *flow = &ctx->xin->flow;
5569 tnl_port_send(xport->ofport, flow, ctx->wc);
5570 if (!ovs_native_tunneling_is_on(ctx->xbridge->ofproto)) {
5571 struct flow_tnl flow_tnl = flow->tunnel;
5572 const char *tnl_type;
5573
5574 tnl_type = tnl_port_get_type(xport->ofport);
5575 commit_odp_tunnel_action(flow, &ctx->base_flow,
5576 ctx->odp_actions, tnl_type);
5577 flow->tunnel = flow_tnl;
5578 }
5579 } else {
5580 xlate_report_error(ctx,
5581 "sampling_port:%d should be a tunnel port.",
5582 os->sampling_port);
5583 }
5584 }
5585
5586 struct user_action_cookie cookie;
5587
5588 memset(&cookie, 0, sizeof cookie);
5589 cookie.type = USER_ACTION_COOKIE_FLOW_SAMPLE;
5590 cookie.ofp_in_port = ctx->xin->flow.in_port.ofp_port;
5591 cookie.ofproto_uuid = ctx->xbridge->ofproto->uuid;
5592 cookie.flow_sample.probability = os->probability;
5593 cookie.flow_sample.collector_set_id = os->collector_set_id;
5594 cookie.flow_sample.obs_domain_id = os->obs_domain_id;
5595 cookie.flow_sample.obs_point_id = os->obs_point_id;
5596 cookie.flow_sample.output_odp_port = output_odp_port;
5597 cookie.flow_sample.direction = os->direction;
5598
5599 compose_sample_action(ctx, probability, &cookie, tunnel_out_port, false);
5600 }
5601
5602 /* Determine if an datapath action translated from the openflow action
5603 * can be reversed by another datapath action.
5604 *
5605 * Openflow actions that do not emit datapath actions are trivially
5606 * reversible. Reversiblity of other actions depends on nature of
5607 * action and their translation. */
5608 static bool
5609 reversible_actions(const struct ofpact *ofpacts, size_t ofpacts_len)
5610 {
5611 const struct ofpact *a;
5612
5613 OFPACT_FOR_EACH (a, ofpacts, ofpacts_len) {
5614 switch (a->type) {
5615 case OFPACT_BUNDLE:
5616 case OFPACT_CLEAR_ACTIONS:
5617 case OFPACT_CLONE:
5618 case OFPACT_CONJUNCTION:
5619 case OFPACT_CONTROLLER:
5620 case OFPACT_CT_CLEAR:
5621 case OFPACT_DEBUG_RECIRC:
5622 case OFPACT_DEBUG_SLOW:
5623 case OFPACT_DEC_MPLS_TTL:
5624 case OFPACT_DEC_TTL:
5625 case OFPACT_ENQUEUE:
5626 case OFPACT_EXIT:
5627 case OFPACT_FIN_TIMEOUT:
5628 case OFPACT_GOTO_TABLE:
5629 case OFPACT_GROUP:
5630 case OFPACT_LEARN:
5631 case OFPACT_MULTIPATH:
5632 case OFPACT_NOTE:
5633 case OFPACT_OUTPUT:
5634 case OFPACT_OUTPUT_REG:
5635 case OFPACT_POP_MPLS:
5636 case OFPACT_POP_QUEUE:
5637 case OFPACT_PUSH_MPLS:
5638 case OFPACT_PUSH_VLAN:
5639 case OFPACT_REG_MOVE:
5640 case OFPACT_RESUBMIT:
5641 case OFPACT_SAMPLE:
5642 case OFPACT_SET_ETH_DST:
5643 case OFPACT_SET_ETH_SRC:
5644 case OFPACT_SET_FIELD:
5645 case OFPACT_SET_IP_DSCP:
5646 case OFPACT_SET_IP_ECN:
5647 case OFPACT_SET_IP_TTL:
5648 case OFPACT_SET_IPV4_DST:
5649 case OFPACT_SET_IPV4_SRC:
5650 case OFPACT_SET_L4_DST_PORT:
5651 case OFPACT_SET_L4_SRC_PORT:
5652 case OFPACT_SET_MPLS_LABEL:
5653 case OFPACT_SET_MPLS_TC:
5654 case OFPACT_SET_MPLS_TTL:
5655 case OFPACT_SET_QUEUE:
5656 case OFPACT_SET_TUNNEL:
5657 case OFPACT_SET_VLAN_PCP:
5658 case OFPACT_SET_VLAN_VID:
5659 case OFPACT_STACK_POP:
5660 case OFPACT_STACK_PUSH:
5661 case OFPACT_STRIP_VLAN:
5662 case OFPACT_UNROLL_XLATE:
5663 case OFPACT_WRITE_ACTIONS:
5664 case OFPACT_WRITE_METADATA:
5665 case OFPACT_CHECK_PKT_LARGER:
5666 break;
5667
5668 case OFPACT_CT:
5669 case OFPACT_METER:
5670 case OFPACT_NAT:
5671 case OFPACT_OUTPUT_TRUNC:
5672 case OFPACT_ENCAP:
5673 case OFPACT_DECAP:
5674 case OFPACT_DEC_NSH_TTL:
5675 return false;
5676 }
5677 }
5678 return true;
5679 }
5680
5681 static void
5682 clone_xlate_actions(const struct ofpact *actions, size_t actions_len,
5683 struct xlate_ctx *ctx, bool is_last_action,
5684 bool group_bucket_action OVS_UNUSED)
5685 {
5686 struct ofpbuf old_stack = ctx->stack;
5687 union mf_subvalue new_stack[1024 / sizeof(union mf_subvalue)];
5688 ofpbuf_use_stub(&ctx->stack, new_stack, sizeof new_stack);
5689 ofpbuf_put(&ctx->stack, old_stack.data, old_stack.size);
5690
5691 struct ofpbuf old_action_set = ctx->action_set;
5692 uint64_t actset_stub[1024 / 8];
5693 ofpbuf_use_stub(&ctx->action_set, actset_stub, sizeof actset_stub);
5694 ofpbuf_put(&ctx->action_set, old_action_set.data, old_action_set.size);
5695
5696 size_t offset, ac_offset;
5697 struct flow old_flow = ctx->xin->flow;
5698
5699 if (reversible_actions(actions, actions_len) || is_last_action) {
5700 old_flow = ctx->xin->flow;
5701 do_xlate_actions(actions, actions_len, ctx, is_last_action, false);
5702 if (!ctx->freezing) {
5703 xlate_action_set(ctx);
5704 }
5705 if (ctx->freezing) {
5706 finish_freezing(ctx);
5707 }
5708 goto xlate_done;
5709 }
5710
5711 /* Commit datapath actions before emitting the clone action to
5712 * avoid emitting those actions twice. Once inside
5713 * the clone, another time for the action after clone. */
5714 xlate_commit_actions(ctx);
5715 struct flow old_base = ctx->base_flow;
5716 bool old_was_mpls = ctx->was_mpls;
5717 bool old_conntracked = ctx->conntracked;
5718
5719 /* The actions are not reversible, a datapath clone action is
5720 * required to encode the translation. Select the clone action
5721 * based on datapath capabilities. */
5722 if (ctx->xbridge->support.clone) { /* Use clone action */
5723 /* Use clone action as datapath clone. */
5724 offset = nl_msg_start_nested(ctx->odp_actions, OVS_ACTION_ATTR_CLONE);
5725 do_xlate_actions(actions, actions_len, ctx, true, false);
5726 if (!ctx->freezing) {
5727 xlate_action_set(ctx);
5728 }
5729 if (ctx->freezing) {
5730 finish_freezing(ctx);
5731 }
5732 nl_msg_end_non_empty_nested(ctx->odp_actions, offset);
5733 goto dp_clone_done;
5734 }
5735
5736 if (ctx->xbridge->support.sample_nesting > 3) {
5737 /* Use sample action as datapath clone. */
5738 offset = nl_msg_start_nested(ctx->odp_actions, OVS_ACTION_ATTR_SAMPLE);
5739 ac_offset = nl_msg_start_nested(ctx->odp_actions,
5740 OVS_SAMPLE_ATTR_ACTIONS);
5741 do_xlate_actions(actions, actions_len, ctx, true, false);
5742 if (!ctx->freezing) {
5743 xlate_action_set(ctx);
5744 }
5745 if (ctx->freezing) {
5746 finish_freezing(ctx);
5747 }
5748 if (nl_msg_end_non_empty_nested(ctx->odp_actions, ac_offset)) {
5749 nl_msg_cancel_nested(ctx->odp_actions, offset);
5750 } else {
5751 nl_msg_put_u32(ctx->odp_actions, OVS_SAMPLE_ATTR_PROBABILITY,
5752 UINT32_MAX); /* 100% probability. */
5753 nl_msg_end_nested(ctx->odp_actions, offset);
5754 }
5755 goto dp_clone_done;
5756 }
5757
5758 /* Datapath does not support clone, skip xlate 'oc' and
5759 * report an error */
5760 xlate_report_error(ctx, "Failed to compose clone action");
5761
5762 dp_clone_done:
5763 /* The clone's conntrack execution should have no effect on the original
5764 * packet. */
5765 ctx->conntracked = old_conntracked;
5766
5767 /* Popping MPLS from the clone should have no effect on the original
5768 * packet. */
5769 ctx->was_mpls = old_was_mpls;
5770
5771 /* Restore the 'base_flow' for the next action. */
5772 ctx->base_flow = old_base;
5773
5774 xlate_done:
5775 ofpbuf_uninit(&ctx->action_set);
5776 ctx->action_set = old_action_set;
5777 ofpbuf_uninit(&ctx->stack);
5778 ctx->stack = old_stack;
5779 ctx->xin->flow = old_flow;
5780 }
5781
5782 static void
5783 compose_clone(struct xlate_ctx *ctx, const struct ofpact_nest *oc,
5784 bool is_last_action)
5785 {
5786 size_t oc_actions_len = ofpact_nest_get_action_len(oc);
5787
5788 clone_xlate_actions(oc->actions, oc_actions_len, ctx, is_last_action,
5789 false);
5790 }
5791
5792 static void
5793 xlate_meter_action(struct xlate_ctx *ctx, const struct ofpact_meter *meter)
5794 {
5795 if (meter->provider_meter_id != UINT32_MAX) {
5796 nl_msg_put_u32(ctx->odp_actions, OVS_ACTION_ATTR_METER,
5797 meter->provider_meter_id);
5798 }
5799 }
5800
5801 static bool
5802 may_receive(const struct xport *xport, struct xlate_ctx *ctx)
5803 {
5804 if (xport->config & (is_stp(&ctx->xin->flow)
5805 ? OFPUTIL_PC_NO_RECV_STP
5806 : OFPUTIL_PC_NO_RECV)) {
5807 return false;
5808 }
5809
5810 /* Only drop packets here if both forwarding and learning are
5811 * disabled. If just learning is enabled, we need to have
5812 * OFPP_NORMAL and the learning action have a look at the packet
5813 * before we can drop it. */
5814 if ((!xport_stp_forward_state(xport) && !xport_stp_learn_state(xport)) ||
5815 (!xport_rstp_forward_state(xport) && !xport_rstp_learn_state(xport))) {
5816 return false;
5817 }
5818
5819 return true;
5820 }
5821
5822 static void
5823 xlate_write_actions__(struct xlate_ctx *ctx,
5824 const struct ofpact *ofpacts, size_t ofpacts_len)
5825 {
5826 /* Maintain actset_output depending on the contents of the action set:
5827 *
5828 * - OFPP_UNSET, if there is no "output" action.
5829 *
5830 * - The output port, if there is an "output" action and no "group"
5831 * action.
5832 *
5833 * - OFPP_UNSET, if there is a "group" action.
5834 */
5835 if (!ctx->action_set_has_group) {
5836 const struct ofpact *a;
5837 OFPACT_FOR_EACH (a, ofpacts, ofpacts_len) {
5838 if (a->type == OFPACT_OUTPUT) {
5839 ctx->xin->flow.actset_output = ofpact_get_OUTPUT(a)->port;
5840 } else if (a->type == OFPACT_GROUP) {
5841 ctx->xin->flow.actset_output = OFPP_UNSET;
5842 ctx->action_set_has_group = true;
5843 break;
5844 }
5845 }
5846 }
5847
5848 ofpbuf_put(&ctx->action_set, ofpacts, ofpacts_len);
5849 }
5850
5851 static void
5852 xlate_write_actions(struct xlate_ctx *ctx, const struct ofpact_nest *a)
5853 {
5854 xlate_write_actions__(ctx, a->actions, ofpact_nest_get_action_len(a));
5855 }
5856
5857 static void
5858 xlate_action_set(struct xlate_ctx *ctx)
5859 {
5860 uint64_t action_list_stub[1024 / 8];
5861 struct ofpbuf action_list = OFPBUF_STUB_INITIALIZER(action_list_stub);
5862 ofpacts_execute_action_set(&action_list, &ctx->action_set);
5863 /* Clear the action set, as it is not needed any more. */
5864 ofpbuf_clear(&ctx->action_set);
5865 if (action_list.size) {
5866 ctx->in_action_set = true;
5867
5868 struct ovs_list *old_trace = ctx->xin->trace;
5869 ctx->xin->trace = xlate_report(ctx, OFT_TABLE,
5870 "--. Executing action set:");
5871 do_xlate_actions(action_list.data, action_list.size, ctx, true, false);
5872 ctx->xin->trace = old_trace;
5873
5874 ctx->in_action_set = false;
5875 }
5876 ofpbuf_uninit(&action_list);
5877 }
5878
5879 static void
5880 freeze_put_unroll_xlate(struct xlate_ctx *ctx)
5881 {
5882 struct ofpact_unroll_xlate *unroll = ctx->frozen_actions.header;
5883
5884 /* Restore the table_id and rule cookie for a potential PACKET
5885 * IN if needed. */
5886 if (!unroll ||
5887 (ctx->table_id != unroll->rule_table_id
5888 || ctx->rule_cookie != unroll->rule_cookie)) {
5889 unroll = ofpact_put_UNROLL_XLATE(&ctx->frozen_actions);
5890 unroll->rule_table_id = ctx->table_id;
5891 unroll->rule_cookie = ctx->rule_cookie;
5892 ctx->frozen_actions.header = unroll;
5893 }
5894 }
5895
5896
5897 /* Copy actions 'a' through 'end' to ctx->frozen_actions, which will be
5898 * executed after thawing. Inserts an UNROLL_XLATE action, if none is already
5899 * present, before any action that may depend on the current table ID or flow
5900 * cookie. */
5901 static void
5902 freeze_unroll_actions(const struct ofpact *a, const struct ofpact *end,
5903 struct xlate_ctx *ctx)
5904 {
5905 for (; a < end; a = ofpact_next(a)) {
5906 switch (a->type) {
5907 case OFPACT_OUTPUT_REG:
5908 case OFPACT_OUTPUT_TRUNC:
5909 case OFPACT_GROUP:
5910 case OFPACT_OUTPUT:
5911 case OFPACT_CONTROLLER:
5912 case OFPACT_DEC_MPLS_TTL:
5913 case OFPACT_DEC_NSH_TTL:
5914 case OFPACT_DEC_TTL:
5915 /* These actions may generate asynchronous messages, which include
5916 * table ID and flow cookie information. */
5917 freeze_put_unroll_xlate(ctx);
5918 break;
5919
5920 case OFPACT_RESUBMIT:
5921 if (ofpact_get_RESUBMIT(a)->table_id == 0xff) {
5922 /* This resubmit action is relative to the current table, so we
5923 * need to track what table that is.*/
5924 freeze_put_unroll_xlate(ctx);
5925 }
5926 break;
5927
5928 case OFPACT_SET_TUNNEL:
5929 case OFPACT_REG_MOVE:
5930 case OFPACT_SET_FIELD:
5931 case OFPACT_STACK_PUSH:
5932 case OFPACT_STACK_POP:
5933 case OFPACT_LEARN:
5934 case OFPACT_WRITE_METADATA:
5935 case OFPACT_GOTO_TABLE:
5936 case OFPACT_ENQUEUE:
5937 case OFPACT_SET_VLAN_VID:
5938 case OFPACT_SET_VLAN_PCP:
5939 case OFPACT_STRIP_VLAN:
5940 case OFPACT_PUSH_VLAN:
5941 case OFPACT_SET_ETH_SRC:
5942 case OFPACT_SET_ETH_DST:
5943 case OFPACT_SET_IPV4_SRC:
5944 case OFPACT_SET_IPV4_DST:
5945 case OFPACT_SET_IP_DSCP:
5946 case OFPACT_SET_IP_ECN:
5947 case OFPACT_SET_IP_TTL:
5948 case OFPACT_SET_L4_SRC_PORT:
5949 case OFPACT_SET_L4_DST_PORT:
5950 case OFPACT_SET_QUEUE:
5951 case OFPACT_POP_QUEUE:
5952 case OFPACT_PUSH_MPLS:
5953 case OFPACT_POP_MPLS:
5954 case OFPACT_SET_MPLS_LABEL:
5955 case OFPACT_SET_MPLS_TC:
5956 case OFPACT_SET_MPLS_TTL:
5957 case OFPACT_MULTIPATH:
5958 case OFPACT_BUNDLE:
5959 case OFPACT_EXIT:
5960 case OFPACT_UNROLL_XLATE:
5961 case OFPACT_FIN_TIMEOUT:
5962 case OFPACT_CLEAR_ACTIONS:
5963 case OFPACT_WRITE_ACTIONS:
5964 case OFPACT_METER:
5965 case OFPACT_SAMPLE:
5966 case OFPACT_CLONE:
5967 case OFPACT_ENCAP:
5968 case OFPACT_DECAP:
5969 case OFPACT_DEBUG_RECIRC:
5970 case OFPACT_DEBUG_SLOW:
5971 case OFPACT_CT:
5972 case OFPACT_CT_CLEAR:
5973 case OFPACT_NAT:
5974 case OFPACT_CHECK_PKT_LARGER:
5975 /* These may not generate PACKET INs. */
5976 break;
5977
5978 case OFPACT_NOTE:
5979 case OFPACT_CONJUNCTION:
5980 /* These need not be copied for restoration. */
5981 continue;
5982 }
5983 /* Copy the action over. */
5984 ofpbuf_put(&ctx->frozen_actions, a, OFPACT_ALIGN(a->len));
5985 }
5986 }
5987
5988 static void
5989 put_ct_mark(const struct flow *flow, struct ofpbuf *odp_actions,
5990 struct flow_wildcards *wc)
5991 {
5992 if (wc->masks.ct_mark) {
5993 struct {
5994 uint32_t key;
5995 uint32_t mask;
5996 } *odp_ct_mark;
5997
5998 odp_ct_mark = nl_msg_put_unspec_uninit(odp_actions, OVS_CT_ATTR_MARK,
5999 sizeof(*odp_ct_mark));
6000 odp_ct_mark->key = flow->ct_mark & wc->masks.ct_mark;
6001 odp_ct_mark->mask = wc->masks.ct_mark;
6002 }
6003 }
6004
6005 static void
6006 put_ct_label(const struct flow *flow, struct ofpbuf *odp_actions,
6007 struct flow_wildcards *wc)
6008 {
6009 if (!ovs_u128_is_zero(wc->masks.ct_label)) {
6010 struct {
6011 ovs_u128 key;
6012 ovs_u128 mask;
6013 } odp_ct_label;
6014
6015 odp_ct_label.key = ovs_u128_and(flow->ct_label, wc->masks.ct_label);
6016 odp_ct_label.mask = wc->masks.ct_label;
6017 nl_msg_put_unspec(odp_actions, OVS_CT_ATTR_LABELS,
6018 &odp_ct_label, sizeof odp_ct_label);
6019 }
6020 }
6021
6022 static void
6023 put_drop_action(struct ofpbuf *odp_actions, enum xlate_error error)
6024 {
6025 nl_msg_put_u32(odp_actions, OVS_ACTION_ATTR_DROP, error);
6026 }
6027
6028 static void
6029 put_ct_helper(struct xlate_ctx *ctx,
6030 struct ofpbuf *odp_actions, struct ofpact_conntrack *ofc)
6031 {
6032 if (ofc->alg) {
6033 switch(ofc->alg) {
6034 case IPPORT_FTP:
6035 nl_msg_put_string(odp_actions, OVS_CT_ATTR_HELPER, "ftp");
6036 break;
6037 case IPPORT_TFTP:
6038 nl_msg_put_string(odp_actions, OVS_CT_ATTR_HELPER, "tftp");
6039 break;
6040 default:
6041 xlate_report_error(ctx, "cannot serialize ct_helper %d", ofc->alg);
6042 break;
6043 }
6044 }
6045 }
6046
6047 static void
6048 put_ct_timeout(struct ofpbuf *odp_actions, const struct dpif_backer *backer,
6049 const struct flow *flow, struct flow_wildcards *wc,
6050 uint16_t zone_id)
6051 {
6052 bool unwildcard;
6053 char *tp_name = NULL;
6054
6055 if (ofproto_dpif_ct_zone_timeout_policy_get_name(backer, zone_id,
6056 ntohs(flow->dl_type), flow->nw_proto, &tp_name, &unwildcard)) {
6057 nl_msg_put_string(odp_actions, OVS_CT_ATTR_TIMEOUT, tp_name);
6058
6059 if (unwildcard) {
6060 /* The underlying datapath requires separate timeout
6061 * policies for different Ethertypes and IP protocols. We
6062 * don't need to unwildcard 'wc->masks.dl_type' since that
6063 * field is always unwildcarded in megaflows. */
6064 memset(&wc->masks.nw_proto, 0xff, sizeof wc->masks.nw_proto);
6065 }
6066 }
6067 free(tp_name);
6068 }
6069
6070 static void
6071 put_ct_nat(struct xlate_ctx *ctx)
6072 {
6073 struct ofpact_nat *ofn = ctx->ct_nat_action;
6074 size_t nat_offset;
6075
6076 if (!ofn) {
6077 return;
6078 }
6079
6080 nat_offset = nl_msg_start_nested(ctx->odp_actions, OVS_CT_ATTR_NAT);
6081 if (ofn->flags & NX_NAT_F_SRC || ofn->flags & NX_NAT_F_DST) {
6082 nl_msg_put_flag(ctx->odp_actions, ofn->flags & NX_NAT_F_SRC
6083 ? OVS_NAT_ATTR_SRC : OVS_NAT_ATTR_DST);
6084 if (ofn->flags & NX_NAT_F_PERSISTENT) {
6085 nl_msg_put_flag(ctx->odp_actions, OVS_NAT_ATTR_PERSISTENT);
6086 }
6087 if (ofn->flags & NX_NAT_F_PROTO_HASH) {
6088 nl_msg_put_flag(ctx->odp_actions, OVS_NAT_ATTR_PROTO_HASH);
6089 } else if (ofn->flags & NX_NAT_F_PROTO_RANDOM) {
6090 nl_msg_put_flag(ctx->odp_actions, OVS_NAT_ATTR_PROTO_RANDOM);
6091 }
6092 if (ofn->range_af == AF_INET) {
6093 nl_msg_put_be32(ctx->odp_actions, OVS_NAT_ATTR_IP_MIN,
6094 ofn->range.addr.ipv4.min);
6095 if (ofn->range.addr.ipv4.max &&
6096 (ntohl(ofn->range.addr.ipv4.max)
6097 > ntohl(ofn->range.addr.ipv4.min))) {
6098 nl_msg_put_be32(ctx->odp_actions, OVS_NAT_ATTR_IP_MAX,
6099 ofn->range.addr.ipv4.max);
6100 }
6101 } else if (ofn->range_af == AF_INET6) {
6102 nl_msg_put_unspec(ctx->odp_actions, OVS_NAT_ATTR_IP_MIN,
6103 &ofn->range.addr.ipv6.min,
6104 sizeof ofn->range.addr.ipv6.min);
6105 if (!ipv6_mask_is_any(&ofn->range.addr.ipv6.max) &&
6106 memcmp(&ofn->range.addr.ipv6.max, &ofn->range.addr.ipv6.min,
6107 sizeof ofn->range.addr.ipv6.max) > 0) {
6108 nl_msg_put_unspec(ctx->odp_actions, OVS_NAT_ATTR_IP_MAX,
6109 &ofn->range.addr.ipv6.max,
6110 sizeof ofn->range.addr.ipv6.max);
6111 }
6112 }
6113 if (ofn->range_af != AF_UNSPEC && ofn->range.proto.min) {
6114 nl_msg_put_u16(ctx->odp_actions, OVS_NAT_ATTR_PROTO_MIN,
6115 ofn->range.proto.min);
6116 if (ofn->range.proto.max &&
6117 ofn->range.proto.max > ofn->range.proto.min) {
6118 nl_msg_put_u16(ctx->odp_actions, OVS_NAT_ATTR_PROTO_MAX,
6119 ofn->range.proto.max);
6120 }
6121 }
6122 }
6123 nl_msg_end_nested(ctx->odp_actions, nat_offset);
6124 }
6125
6126 static void
6127 compose_conntrack_action(struct xlate_ctx *ctx, struct ofpact_conntrack *ofc,
6128 bool is_last_action)
6129 {
6130 ovs_u128 old_ct_label_mask = ctx->wc->masks.ct_label;
6131 uint32_t old_ct_mark_mask = ctx->wc->masks.ct_mark;
6132 size_t ct_offset;
6133 uint16_t zone;
6134
6135 /* Ensure that any prior actions are applied before composing the new
6136 * conntrack action. */
6137 xlate_commit_actions(ctx);
6138
6139 /* Process nested actions first, to populate the key. */
6140 ctx->ct_nat_action = NULL;
6141 ctx->wc->masks.ct_mark = 0;
6142 ctx->wc->masks.ct_label = OVS_U128_ZERO;
6143 do_xlate_actions(ofc->actions, ofpact_ct_get_action_len(ofc), ctx,
6144 is_last_action, false);
6145
6146 if (ofc->zone_src.field) {
6147 zone = mf_get_subfield(&ofc->zone_src, &ctx->xin->flow);
6148 } else {
6149 zone = ofc->zone_imm;
6150 }
6151
6152 ct_offset = nl_msg_start_nested(ctx->odp_actions, OVS_ACTION_ATTR_CT);
6153 if (ofc->flags & NX_CT_F_COMMIT) {
6154 nl_msg_put_flag(ctx->odp_actions, ofc->flags & NX_CT_F_FORCE ?
6155 OVS_CT_ATTR_FORCE_COMMIT : OVS_CT_ATTR_COMMIT);
6156 if (ctx->xbridge->support.ct_eventmask) {
6157 nl_msg_put_u32(ctx->odp_actions, OVS_CT_ATTR_EVENTMASK,
6158 OVS_CT_EVENTMASK_DEFAULT);
6159 }
6160 if (ctx->xbridge->support.ct_timeout) {
6161 put_ct_timeout(ctx->odp_actions, ctx->xbridge->ofproto->backer,
6162 &ctx->xin->flow, ctx->wc, zone);
6163 }
6164 }
6165 nl_msg_put_u16(ctx->odp_actions, OVS_CT_ATTR_ZONE, zone);
6166 put_ct_mark(&ctx->xin->flow, ctx->odp_actions, ctx->wc);
6167 put_ct_label(&ctx->xin->flow, ctx->odp_actions, ctx->wc);
6168 put_ct_helper(ctx, ctx->odp_actions, ofc);
6169 put_ct_nat(ctx);
6170 ctx->ct_nat_action = NULL;
6171 nl_msg_end_nested(ctx->odp_actions, ct_offset);
6172
6173 ctx->wc->masks.ct_mark = old_ct_mark_mask;
6174 ctx->wc->masks.ct_label = old_ct_label_mask;
6175
6176 if (ofc->recirc_table != NX_CT_RECIRC_NONE) {
6177 ctx->conntracked = true;
6178 compose_recirculate_and_fork(ctx, ofc->recirc_table, zone);
6179 }
6180
6181 /* The ct_* fields are only available in the scope of the 'recirc_table'
6182 * call chain. */
6183 flow_clear_conntrack(&ctx->xin->flow);
6184 xlate_report(ctx, OFT_DETAIL, "Sets the packet to an untracked state, "
6185 "and clears all the conntrack fields.");
6186 ctx->conntracked = false;
6187 }
6188
6189 static void
6190 compose_ct_clear_action(struct xlate_ctx *ctx)
6191 {
6192 clear_conntrack(ctx);
6193 /* This action originally existed without dpif support. So to preserve
6194 * compatibility, only append it if the dpif supports it. */
6195 if (ctx->xbridge->support.ct_clear) {
6196 nl_msg_put_flag(ctx->odp_actions, OVS_ACTION_ATTR_CT_CLEAR);
6197 }
6198 }
6199
6200 /* check_pkt_larger action checks the packet length and stores the
6201 * result in the register bit. We translate this action to the
6202 * datapath action - 'check_pkt_len' whose format
6203 * is: 'check_pkt_len(pkt_len, ge(actions), le(actions))'.
6204 *
6205 * We first set the destination register bit to 1 and call
6206 * 'do_xlate_actions' for the case - packet len greater than
6207 * the specified packet length.
6208 *
6209 * We then set the destination register bit to 0 and call
6210 * 'do_xlate_actions' for the case - packet length is lesser or
6211 * equal to the specified packet length.
6212 *
6213 * It is possible for freezing to happen for both the cases.
6214 */
6215 static void
6216 xlate_check_pkt_larger(struct xlate_ctx *ctx,
6217 struct ofpact_check_pkt_larger *check_pkt_larger,
6218 const struct ofpact *remaining_acts,
6219 size_t remaining_acts_len)
6220 {
6221 union mf_subvalue value;
6222 memset(&value, 0, sizeof value);
6223 if (!ctx->xbridge->support.check_pkt_len) {
6224 uint8_t is_pkt_larger = 0;
6225 if (ctx->xin->packet) {
6226 is_pkt_larger =
6227 dp_packet_size(ctx->xin->packet) > check_pkt_larger->pkt_len;
6228 }
6229 value.u8_val = is_pkt_larger;
6230 mf_write_subfield_flow(&check_pkt_larger->dst, &value,
6231 &ctx->xin->flow);
6232 /* If datapath doesn't support check_pkt_len action, then set the
6233 * SLOW_ACTION flag. If we don't set SLOW_ACTION, we
6234 * will push a flow to the datapath based on the packet length
6235 * in ctx->xin->packet. For subsequent patches which match the
6236 * same flow, datapath will apply the actions without considering
6237 * the packet length. This results in wrong actions being applied.
6238 */
6239 ctx->xout->slow |= SLOW_ACTION;
6240 return;
6241 }
6242
6243 struct ofpbuf old_stack = ctx->stack;
6244 union mf_subvalue new_stack[1024 / sizeof(union mf_subvalue)];
6245 ofpbuf_use_stub(&ctx->stack, new_stack, sizeof new_stack);
6246 ofpbuf_put(&ctx->stack, old_stack.data, old_stack.size);
6247
6248 struct ofpbuf old_action_set = ctx->action_set;
6249 uint64_t actset_stub[1024 / 8];
6250 ofpbuf_use_stub(&ctx->action_set, actset_stub, sizeof actset_stub);
6251 ofpbuf_put(&ctx->action_set, old_action_set.data, old_action_set.size);
6252
6253 struct flow old_flow = ctx->xin->flow;
6254 xlate_commit_actions(ctx);
6255 struct flow old_base = ctx->base_flow;
6256 bool old_was_mpls = ctx->was_mpls;
6257 bool old_conntracked = ctx->conntracked;
6258
6259 size_t offset = nl_msg_start_nested(ctx->odp_actions,
6260 OVS_ACTION_ATTR_CHECK_PKT_LEN);
6261 nl_msg_put_u16(ctx->odp_actions, OVS_CHECK_PKT_LEN_ATTR_PKT_LEN,
6262 check_pkt_larger->pkt_len);
6263 size_t offset_attr = nl_msg_start_nested(
6264 ctx->odp_actions, OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER);
6265 value.u8_val = 1;
6266 mf_write_subfield_flow(&check_pkt_larger->dst, &value, &ctx->xin->flow);
6267 do_xlate_actions(remaining_acts, remaining_acts_len, ctx, true, false);
6268 if (!ctx->freezing) {
6269 xlate_action_set(ctx);
6270 }
6271 if (ctx->freezing) {
6272 finish_freezing(ctx);
6273 }
6274 nl_msg_end_nested(ctx->odp_actions, offset_attr);
6275
6276 ctx->base_flow = old_base;
6277 ctx->was_mpls = old_was_mpls;
6278 ctx->conntracked = old_conntracked;
6279 ctx->xin->flow = old_flow;
6280
6281 /* If the flow translation for the IF_GREATER case requires freezing,
6282 * then ctx->exit would be true. Reset to false so that we can
6283 * do flow translation for 'IF_LESS_EQUAL' case. finish_freezing()
6284 * would have taken care of Undoing the changes done for freeze. */
6285 ctx->exit = false;
6286
6287 offset_attr = nl_msg_start_nested(
6288 ctx->odp_actions, OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL);
6289 value.u8_val = 0;
6290 mf_write_subfield_flow(&check_pkt_larger->dst, &value, &ctx->xin->flow);
6291 do_xlate_actions(remaining_acts, remaining_acts_len, ctx, true, false);
6292 if (!ctx->freezing) {
6293 xlate_action_set(ctx);
6294 }
6295 if (ctx->freezing) {
6296 finish_freezing(ctx);
6297 }
6298 nl_msg_end_nested(ctx->odp_actions, offset_attr);
6299 nl_msg_end_nested(ctx->odp_actions, offset);
6300
6301 ofpbuf_uninit(&ctx->action_set);
6302 ctx->action_set = old_action_set;
6303 ofpbuf_uninit(&ctx->stack);
6304 ctx->stack = old_stack;
6305 ctx->base_flow = old_base;
6306 ctx->was_mpls = old_was_mpls;
6307 ctx->conntracked = old_conntracked;
6308 ctx->xin->flow = old_flow;
6309 ctx->exit = true;
6310 }
6311
6312 static void
6313 rewrite_flow_encap_ethernet(struct xlate_ctx *ctx,
6314 struct flow *flow,
6315 struct flow_wildcards *wc)
6316 {
6317 wc->masks.packet_type = OVS_BE32_MAX;
6318 if (pt_ns(flow->packet_type) == OFPHTN_ETHERTYPE) {
6319 /* Only adjust the packet_type and zero the dummy Ethernet addresses. */
6320 ovs_be16 ethertype = pt_ns_type_be(flow->packet_type);
6321 flow->packet_type = htonl(PT_ETH);
6322 flow->dl_src = eth_addr_zero;
6323 flow->dl_dst = eth_addr_zero;
6324 flow->dl_type = ethertype;
6325 } else {
6326 /* Error handling: drop packet. */
6327 xlate_report_debug(ctx, OFT_ACTION,
6328 "Dropping packet as encap(ethernet) is not "
6329 "supported for packet type ethernet.");
6330 ctx->error = XLATE_UNSUPPORTED_PACKET_TYPE;
6331 }
6332 }
6333
6334 /* For an MD2 NSH header returns a pointer to an ofpbuf with the encoded
6335 * MD2 TLVs provided as encap properties to the encap operation. This
6336 * will be stored as encap_data in the ctx and copied into the push_nsh
6337 * action at the next commit. */
6338 static struct ofpbuf *
6339 rewrite_flow_push_nsh(struct xlate_ctx *ctx,
6340 const struct ofpact_encap *encap,
6341 struct flow *flow,
6342 struct flow_wildcards *wc)
6343 {
6344 ovs_be32 packet_type = flow->packet_type;
6345 const char *ptr = (char *) encap->props;
6346 struct ofpbuf *buf = ofpbuf_new(NSH_CTX_HDRS_MAX_LEN);
6347 uint8_t md_type = NSH_M_TYPE1;
6348 uint8_t np = 0;
6349 int i;
6350
6351 /* Scan the optional NSH encap TLV properties, if any. */
6352 for (i = 0; i < encap->n_props; i++) {
6353 struct ofpact_ed_prop *prop_ptr =
6354 ALIGNED_CAST(struct ofpact_ed_prop *, ptr);
6355 if (prop_ptr->prop_class == OFPPPC_NSH) {
6356 switch (prop_ptr->type) {
6357 case OFPPPT_PROP_NSH_MDTYPE: {
6358 struct ofpact_ed_prop_nsh_md_type *prop_md_type =
6359 ALIGNED_CAST(struct ofpact_ed_prop_nsh_md_type *,
6360 prop_ptr);
6361 md_type = prop_md_type->md_type;
6362 break;
6363 }
6364 case OFPPPT_PROP_NSH_TLV: {
6365 struct ofpact_ed_prop_nsh_tlv *tlv_prop =
6366 ALIGNED_CAST(struct ofpact_ed_prop_nsh_tlv *,
6367 prop_ptr);
6368 struct nsh_md2_tlv *md2_ctx =
6369 ofpbuf_put_uninit(buf, sizeof(*md2_ctx));
6370 md2_ctx->md_class = tlv_prop->tlv_class;
6371 md2_ctx->type = tlv_prop->tlv_type;
6372 md2_ctx->length = tlv_prop->tlv_len;
6373 size_t len = ROUND_UP(md2_ctx->length, 4);
6374 size_t padding = len - md2_ctx->length;
6375 ofpbuf_put(buf, tlv_prop->data, md2_ctx->length);
6376 ofpbuf_put_zeros(buf, padding);
6377 break;
6378 }
6379 default:
6380 /* No other NSH encap properties defined yet. */
6381 break;
6382 }
6383 }
6384 ptr += ROUND_UP(prop_ptr->len, 8);
6385 }
6386 if (buf->size == 0 || buf->size > NSH_CTX_HDRS_MAX_LEN) {
6387 ofpbuf_delete(buf);
6388 buf = NULL;
6389 }
6390
6391 /* Determine the Next Protocol field for NSH header. */
6392 switch (ntohl(packet_type)) {
6393 case PT_ETH:
6394 np = NSH_P_ETHERNET;
6395 break;
6396 case PT_IPV4:
6397 np = NSH_P_IPV4;
6398 break;
6399 case PT_IPV6:
6400 np = NSH_P_IPV6;
6401 break;
6402 case PT_NSH:
6403 np = NSH_P_NSH;
6404 break;
6405 default:
6406 /* Error handling: drop packet. */
6407 xlate_report_debug(ctx, OFT_ACTION,
6408 "Dropping packet as encap(nsh) is not "
6409 "supported for packet type (%d,0x%x)",
6410 pt_ns(packet_type), pt_ns_type(packet_type));
6411 ctx->error = XLATE_UNSUPPORTED_PACKET_TYPE;
6412 return buf;
6413 }
6414 /* Note that we have matched on packet_type! */
6415 wc->masks.packet_type = OVS_BE32_MAX;
6416
6417 /* Reset all current flow packet headers. */
6418 memset(&flow->dl_dst, 0,
6419 sizeof(struct flow) - offsetof(struct flow, dl_dst));
6420
6421 /* Populate the flow with the new NSH header. */
6422 flow->packet_type = htonl(PT_NSH);
6423 flow->dl_type = htons(ETH_TYPE_NSH);
6424 flow->nsh.flags = 0;
6425 flow->nsh.ttl = 63;
6426 flow->nsh.np = np;
6427 flow->nsh.path_hdr = htonl(255);
6428
6429 if (md_type == NSH_M_TYPE1) {
6430 flow->nsh.mdtype = NSH_M_TYPE1;
6431 memset(flow->nsh.context, 0, sizeof flow->nsh.context);
6432 if (buf) {
6433 /* Drop any MD2 context TLVs. */
6434 ofpbuf_delete(buf);
6435 buf = NULL;
6436 }
6437 } else if (md_type == NSH_M_TYPE2) {
6438 flow->nsh.mdtype = NSH_M_TYPE2;
6439 }
6440 flow->nsh.mdtype &= NSH_MDTYPE_MASK;
6441
6442 return buf;
6443 }
6444
6445 static void
6446 xlate_generic_encap_action(struct xlate_ctx *ctx,
6447 const struct ofpact_encap *encap)
6448 {
6449 struct flow *flow = &ctx->xin->flow;
6450 struct flow_wildcards *wc = ctx->wc;
6451 struct ofpbuf *encap_data = NULL;
6452
6453 /* Ensure that any pending actions on the inner packet are applied before
6454 * rewriting the flow */
6455 xlate_commit_actions(ctx);
6456
6457 /* Rewrite the flow to reflect the effect of pushing the new encap header. */
6458 switch (ntohl(encap->new_pkt_type)) {
6459 case PT_ETH:
6460 rewrite_flow_encap_ethernet(ctx, flow, wc);
6461 break;
6462 case PT_NSH:
6463 encap_data = rewrite_flow_push_nsh(ctx, encap, flow, wc);
6464 break;
6465 default:
6466 /* New packet type was checked during decoding. */
6467 OVS_NOT_REACHED();
6468 }
6469
6470 if (!ctx->error) {
6471 /* The actual encap datapath action will be generated at next commit. */
6472 ctx->pending_encap = true;
6473 ctx->encap_data = encap_data;
6474 }
6475 }
6476
6477 /* Returns true if packet must be recirculated after decapsulation. */
6478 static bool
6479 xlate_generic_decap_action(struct xlate_ctx *ctx,
6480 const struct ofpact_decap *decap OVS_UNUSED)
6481 {
6482 struct flow *flow = &ctx->xin->flow;
6483
6484 /* Ensure that any pending actions on the current packet are applied
6485 * before generating the decap action. */
6486 xlate_commit_actions(ctx);
6487
6488 /* We assume for now that the new_pkt_type is PT_USE_NEXT_PROTO. */
6489 switch (ntohl(flow->packet_type)) {
6490 case PT_ETH:
6491 if (flow->vlans[0].tci & htons(VLAN_CFI)) {
6492 /* Error handling: drop packet. */
6493 xlate_report_debug(ctx, OFT_ACTION, "Dropping packet, cannot "
6494 "decap Ethernet if VLAN is present.");
6495 ctx->error = XLATE_UNSUPPORTED_PACKET_TYPE;
6496 } else {
6497 /* Just change the packet_type.
6498 * Delay generating pop_eth to the next commit. */
6499 flow->packet_type = htonl(PACKET_TYPE(OFPHTN_ETHERTYPE,
6500 ntohs(flow->dl_type)));
6501 ctx->wc->masks.dl_type = OVS_BE16_MAX;
6502 }
6503 return false;
6504 case PT_NSH:
6505 /* The pop_nsh action is generated at the commit executed as
6506 * part of freezing the ctx for recirculation. Here we just set
6507 * the new packet type based on the NSH next protocol field. */
6508 switch (flow->nsh.np) {
6509 case NSH_P_ETHERNET:
6510 flow->packet_type = htonl(PT_ETH);
6511 break;
6512 case NSH_P_IPV4:
6513 flow->packet_type = htonl(PT_IPV4);
6514 break;
6515 case NSH_P_IPV6:
6516 flow->packet_type = htonl(PT_IPV6);
6517 break;
6518 case NSH_P_NSH:
6519 flow->packet_type = htonl(PT_NSH);
6520 break;
6521 default:
6522 /* Error handling: drop packet. */
6523 xlate_report_debug(ctx, OFT_ACTION,
6524 "Dropping packet as NSH next protocol %d "
6525 "is not supported", flow->nsh.np);
6526 ctx->error = XLATE_UNSUPPORTED_PACKET_TYPE;
6527 return false;
6528 break;
6529 }
6530 ctx->wc->masks.nsh.np = UINT8_MAX;
6531 ctx->pending_decap = true;
6532 /* Trigger recirculation. */
6533 return true;
6534 default:
6535 /* Error handling: drop packet. */
6536 xlate_report_debug(
6537 ctx, OFT_ACTION,
6538 "Dropping packet as the decap() does not support "
6539 "packet type (%d,0x%x)",
6540 pt_ns(flow->packet_type), pt_ns_type(flow->packet_type));
6541 ctx->error = XLATE_UNSUPPORTED_PACKET_TYPE;
6542 return false;
6543 }
6544 }
6545
6546 static void
6547 recirc_for_mpls(const struct ofpact *a, struct xlate_ctx *ctx)
6548 {
6549 /* No need to recirculate if already exiting. */
6550 if (ctx->exit) {
6551 return;
6552 }
6553
6554 /* Do not consider recirculating unless the packet was previously MPLS. */
6555 if (!ctx->was_mpls) {
6556 return;
6557 }
6558
6559 /* Special case these actions, only recirculating if necessary.
6560 * This avoids the overhead of recirculation in common use-cases.
6561 */
6562 switch (a->type) {
6563
6564 /* Output actions do not require recirculation. */
6565 case OFPACT_OUTPUT:
6566 case OFPACT_OUTPUT_TRUNC:
6567 case OFPACT_ENQUEUE:
6568 case OFPACT_OUTPUT_REG:
6569 /* Set actions that don't touch L3+ fields do not require recirculation. */
6570 case OFPACT_SET_VLAN_VID:
6571 case OFPACT_SET_VLAN_PCP:
6572 case OFPACT_SET_ETH_SRC:
6573 case OFPACT_SET_ETH_DST:
6574 case OFPACT_SET_TUNNEL:
6575 case OFPACT_SET_QUEUE:
6576 /* If actions of a group require recirculation that can be detected
6577 * when translating them. */
6578 case OFPACT_GROUP:
6579 return;
6580
6581 /* Set field that don't touch L3+ fields don't require recirculation. */
6582 case OFPACT_SET_FIELD:
6583 if (mf_is_l3_or_higher(ofpact_get_SET_FIELD(a)->field)) {
6584 break;
6585 }
6586 return;
6587
6588 /* For simplicity, recirculate in all other cases. */
6589 case OFPACT_CONTROLLER:
6590 case OFPACT_BUNDLE:
6591 case OFPACT_STRIP_VLAN:
6592 case OFPACT_PUSH_VLAN:
6593 case OFPACT_SET_IPV4_SRC:
6594 case OFPACT_SET_IPV4_DST:
6595 case OFPACT_SET_IP_DSCP:
6596 case OFPACT_SET_IP_ECN:
6597 case OFPACT_SET_IP_TTL:
6598 case OFPACT_SET_L4_SRC_PORT:
6599 case OFPACT_SET_L4_DST_PORT:
6600 case OFPACT_REG_MOVE:
6601 case OFPACT_STACK_PUSH:
6602 case OFPACT_STACK_POP:
6603 case OFPACT_DEC_TTL:
6604 case OFPACT_SET_MPLS_LABEL:
6605 case OFPACT_SET_MPLS_TC:
6606 case OFPACT_SET_MPLS_TTL:
6607 case OFPACT_DEC_MPLS_TTL:
6608 case OFPACT_PUSH_MPLS:
6609 case OFPACT_POP_MPLS:
6610 case OFPACT_POP_QUEUE:
6611 case OFPACT_FIN_TIMEOUT:
6612 case OFPACT_RESUBMIT:
6613 case OFPACT_LEARN:
6614 case OFPACT_CONJUNCTION:
6615 case OFPACT_MULTIPATH:
6616 case OFPACT_NOTE:
6617 case OFPACT_EXIT:
6618 case OFPACT_SAMPLE:
6619 case OFPACT_CLONE:
6620 case OFPACT_ENCAP:
6621 case OFPACT_DECAP:
6622 case OFPACT_DEC_NSH_TTL:
6623 case OFPACT_UNROLL_XLATE:
6624 case OFPACT_CT:
6625 case OFPACT_CT_CLEAR:
6626 case OFPACT_NAT:
6627 case OFPACT_DEBUG_RECIRC:
6628 case OFPACT_DEBUG_SLOW:
6629 case OFPACT_METER:
6630 case OFPACT_CLEAR_ACTIONS:
6631 case OFPACT_WRITE_ACTIONS:
6632 case OFPACT_WRITE_METADATA:
6633 case OFPACT_GOTO_TABLE:
6634 case OFPACT_CHECK_PKT_LARGER:
6635 default:
6636 break;
6637 }
6638
6639 /* Recirculate */
6640 ctx_trigger_freeze(ctx);
6641 }
6642
6643 static void
6644 xlate_ofpact_reg_move(struct xlate_ctx *ctx, const struct ofpact_reg_move *a)
6645 {
6646 mf_subfield_copy(&a->src, &a->dst, &ctx->xin->flow, ctx->wc);
6647 xlate_report_subfield(ctx, &a->dst);
6648 }
6649
6650 static void
6651 xlate_ofpact_stack_pop(struct xlate_ctx *ctx, const struct ofpact_stack *a)
6652 {
6653 if (nxm_execute_stack_pop(a, &ctx->xin->flow, ctx->wc, &ctx->stack)) {
6654 xlate_report_subfield(ctx, &a->subfield);
6655 } else {
6656 xlate_report_error(ctx, "stack underflow");
6657 }
6658 }
6659
6660 /* Restore translation context data that was stored earlier. */
6661 static void
6662 xlate_ofpact_unroll_xlate(struct xlate_ctx *ctx,
6663 const struct ofpact_unroll_xlate *a)
6664 {
6665 ctx->table_id = a->rule_table_id;
6666 ctx->rule_cookie = a->rule_cookie;
6667 xlate_report(ctx, OFT_THAW, "restored state: table=%"PRIu8", "
6668 "cookie=%#"PRIx64, a->rule_table_id, a->rule_cookie);
6669 }
6670
6671 static void
6672 do_xlate_actions(const struct ofpact *ofpacts, size_t ofpacts_len,
6673 struct xlate_ctx *ctx, bool is_last_action,
6674 bool group_bucket_action)
6675 {
6676 struct flow_wildcards *wc = ctx->wc;
6677 struct flow *flow = &ctx->xin->flow;
6678 const struct ofpact *a;
6679
6680 /* dl_type already in the mask, not set below. */
6681
6682 if (!ofpacts_len) {
6683 xlate_report(ctx, OFT_ACTION, "drop");
6684 return;
6685 }
6686
6687 OFPACT_FOR_EACH (a, ofpacts, ofpacts_len) {
6688 struct ofpact_controller *controller;
6689 const struct ofpact_metadata *metadata;
6690 const struct ofpact_set_field *set_field;
6691 const struct mf_field *mf;
6692 bool last = is_last_action && ofpact_last(a, ofpacts, ofpacts_len)
6693 && ctx->action_set.size;
6694
6695 if (ctx->error) {
6696 break;
6697 }
6698
6699 recirc_for_mpls(a, ctx);
6700
6701 if (ctx->exit) {
6702 /* Check if need to store the remaining actions for later
6703 * execution. */
6704 if (ctx->freezing) {
6705 freeze_unroll_actions(a, ofpact_end(ofpacts, ofpacts_len),
6706 ctx);
6707 }
6708 break;
6709 }
6710
6711 if (OVS_UNLIKELY(ctx->xin->trace)) {
6712 struct ds s = DS_EMPTY_INITIALIZER;
6713 struct ofpact_format_params fp = { .s = &s };
6714 ofpacts_format(a, OFPACT_ALIGN(a->len), &fp);
6715 xlate_report(ctx, OFT_ACTION, "%s", ds_cstr(&s));
6716 ds_destroy(&s);
6717 }
6718
6719 switch (a->type) {
6720 case OFPACT_OUTPUT:
6721 xlate_output_action(ctx, ofpact_get_OUTPUT(a)->port,
6722 ofpact_get_OUTPUT(a)->max_len, true, last,
6723 false, group_bucket_action);
6724 break;
6725
6726 case OFPACT_GROUP:
6727 if (xlate_group_action(ctx, ofpact_get_GROUP(a)->group_id, last)) {
6728 /* Group could not be found. */
6729
6730 /* XXX: Terminates action list translation, but does not
6731 * terminate the pipeline. */
6732 return;
6733 }
6734 break;
6735
6736 case OFPACT_CONTROLLER:
6737 controller = ofpact_get_CONTROLLER(a);
6738 if (controller->pause) {
6739 ctx->pause = controller;
6740 ctx_trigger_freeze(ctx);
6741 a = ofpact_next(a);
6742 } else {
6743 xlate_controller_action(ctx, controller->max_len,
6744 controller->reason,
6745 controller->controller_id,
6746 controller->provider_meter_id,
6747 controller->userdata,
6748 controller->userdata_len);
6749 }
6750 break;
6751
6752 case OFPACT_ENQUEUE:
6753 memset(&wc->masks.skb_priority, 0xff,
6754 sizeof wc->masks.skb_priority);
6755 xlate_enqueue_action(ctx, ofpact_get_ENQUEUE(a), last,
6756 group_bucket_action);
6757 break;
6758
6759 case OFPACT_SET_VLAN_VID:
6760 wc->masks.vlans[0].tci |= htons(VLAN_VID_MASK | VLAN_CFI);
6761 if (flow->vlans[0].tci & htons(VLAN_CFI) ||
6762 ofpact_get_SET_VLAN_VID(a)->push_vlan_if_needed) {
6763 if (!flow->vlans[0].tpid) {
6764 flow->vlans[0].tpid = htons(ETH_TYPE_VLAN);
6765 }
6766 flow->vlans[0].tci &= ~htons(VLAN_VID_MASK);
6767 flow->vlans[0].tci |=
6768 (htons(ofpact_get_SET_VLAN_VID(a)->vlan_vid) |
6769 htons(VLAN_CFI));
6770 }
6771 break;
6772
6773 case OFPACT_SET_VLAN_PCP:
6774 wc->masks.vlans[0].tci |= htons(VLAN_PCP_MASK | VLAN_CFI);
6775 if (flow->vlans[0].tci & htons(VLAN_CFI) ||
6776 ofpact_get_SET_VLAN_PCP(a)->push_vlan_if_needed) {
6777 if (!flow->vlans[0].tpid) {
6778 flow->vlans[0].tpid = htons(ETH_TYPE_VLAN);
6779 }
6780 flow->vlans[0].tci &= ~htons(VLAN_PCP_MASK);
6781 flow->vlans[0].tci |=
6782 htons((ofpact_get_SET_VLAN_PCP(a)->vlan_pcp
6783 << VLAN_PCP_SHIFT) | VLAN_CFI);
6784 }
6785 break;
6786
6787 case OFPACT_STRIP_VLAN:
6788 flow_pop_vlan(flow, wc);
6789 break;
6790
6791 case OFPACT_PUSH_VLAN:
6792 flow_push_vlan_uninit(flow, wc);
6793 flow->vlans[0].tpid = ofpact_get_PUSH_VLAN(a)->ethertype;
6794 flow->vlans[0].tci = htons(VLAN_CFI);
6795 break;
6796
6797 case OFPACT_SET_ETH_SRC:
6798 WC_MASK_FIELD(wc, dl_src);
6799 flow->dl_src = ofpact_get_SET_ETH_SRC(a)->mac;
6800 break;
6801
6802 case OFPACT_SET_ETH_DST:
6803 WC_MASK_FIELD(wc, dl_dst);
6804 flow->dl_dst = ofpact_get_SET_ETH_DST(a)->mac;
6805 break;
6806
6807 case OFPACT_SET_IPV4_SRC:
6808 if (flow->dl_type == htons(ETH_TYPE_IP)) {
6809 memset(&wc->masks.nw_src, 0xff, sizeof wc->masks.nw_src);
6810 flow->nw_src = ofpact_get_SET_IPV4_SRC(a)->ipv4;
6811 }
6812 break;
6813
6814 case OFPACT_SET_IPV4_DST:
6815 if (flow->dl_type == htons(ETH_TYPE_IP)) {
6816 memset(&wc->masks.nw_dst, 0xff, sizeof wc->masks.nw_dst);
6817 flow->nw_dst = ofpact_get_SET_IPV4_DST(a)->ipv4;
6818 }
6819 break;
6820
6821 case OFPACT_SET_IP_DSCP:
6822 if (is_ip_any(flow)) {
6823 wc->masks.nw_tos |= IP_DSCP_MASK;
6824 flow->nw_tos &= ~IP_DSCP_MASK;
6825 flow->nw_tos |= ofpact_get_SET_IP_DSCP(a)->dscp;
6826 }
6827 break;
6828
6829 case OFPACT_SET_IP_ECN:
6830 if (is_ip_any(flow)) {
6831 wc->masks.nw_tos |= IP_ECN_MASK;
6832 flow->nw_tos &= ~IP_ECN_MASK;
6833 flow->nw_tos |= ofpact_get_SET_IP_ECN(a)->ecn;
6834 }
6835 break;
6836
6837 case OFPACT_SET_IP_TTL:
6838 if (is_ip_any(flow)) {
6839 wc->masks.nw_ttl = 0xff;
6840 flow->nw_ttl = ofpact_get_SET_IP_TTL(a)->ttl;
6841 }
6842 break;
6843
6844 case OFPACT_SET_L4_SRC_PORT:
6845 if (is_ip_any(flow) && !(flow->nw_frag & FLOW_NW_FRAG_LATER)) {
6846 memset(&wc->masks.nw_proto, 0xff, sizeof wc->masks.nw_proto);
6847 memset(&wc->masks.tp_src, 0xff, sizeof wc->masks.tp_src);
6848 flow->tp_src = htons(ofpact_get_SET_L4_SRC_PORT(a)->port);
6849 }
6850 break;
6851
6852 case OFPACT_SET_L4_DST_PORT:
6853 if (is_ip_any(flow) && !(flow->nw_frag & FLOW_NW_FRAG_LATER)) {
6854 memset(&wc->masks.nw_proto, 0xff, sizeof wc->masks.nw_proto);
6855 memset(&wc->masks.tp_dst, 0xff, sizeof wc->masks.tp_dst);
6856 flow->tp_dst = htons(ofpact_get_SET_L4_DST_PORT(a)->port);
6857 }
6858 break;
6859
6860 case OFPACT_RESUBMIT:
6861 /* Freezing complicates resubmit. Some action in the flow
6862 * entry found by resubmit might trigger freezing. If that
6863 * happens, then we do not want to execute the resubmit again after
6864 * during thawing, so we want to skip back to the head of the loop
6865 * to avoid that, only adding any actions that follow the resubmit
6866 * to the frozen actions.
6867 */
6868 xlate_ofpact_resubmit(ctx, ofpact_get_RESUBMIT(a), last);
6869 continue;
6870
6871 case OFPACT_SET_TUNNEL:
6872 flow->tunnel.tun_id = htonll(ofpact_get_SET_TUNNEL(a)->tun_id);
6873 break;
6874
6875 case OFPACT_SET_QUEUE:
6876 memset(&wc->masks.skb_priority, 0xff,
6877 sizeof wc->masks.skb_priority);
6878 xlate_set_queue_action(ctx, ofpact_get_SET_QUEUE(a)->queue_id);
6879 break;
6880
6881 case OFPACT_POP_QUEUE:
6882 memset(&wc->masks.skb_priority, 0xff,
6883 sizeof wc->masks.skb_priority);
6884 if (flow->skb_priority != ctx->orig_skb_priority) {
6885 flow->skb_priority = ctx->orig_skb_priority;
6886 xlate_report(ctx, OFT_DETAIL, "queue = %#"PRIx32,
6887 flow->skb_priority);
6888 }
6889 break;
6890
6891 case OFPACT_REG_MOVE:
6892 xlate_ofpact_reg_move(ctx, ofpact_get_REG_MOVE(a));
6893 break;
6894
6895 case OFPACT_SET_FIELD:
6896 set_field = ofpact_get_SET_FIELD(a);
6897 mf = set_field->field;
6898
6899 /* Set the field only if the packet actually has it. */
6900 if (mf_are_prereqs_ok(mf, flow, wc)) {
6901 mf_mask_field_masked(mf, ofpact_set_field_mask(set_field), wc);
6902 mf_set_flow_value_masked(mf, set_field->value,
6903 ofpact_set_field_mask(set_field),
6904 flow);
6905 } else {
6906 xlate_report(ctx, OFT_WARN,
6907 "unmet prerequisites for %s, set_field ignored",
6908 mf->name);
6909
6910 }
6911 break;
6912
6913 case OFPACT_STACK_PUSH:
6914 nxm_execute_stack_push(ofpact_get_STACK_PUSH(a), flow, wc,
6915 &ctx->stack);
6916 break;
6917
6918 case OFPACT_STACK_POP:
6919 xlate_ofpact_stack_pop(ctx, ofpact_get_STACK_POP(a));
6920 break;
6921
6922 case OFPACT_PUSH_MPLS:
6923 compose_mpls_push_action(ctx, ofpact_get_PUSH_MPLS(a));
6924 break;
6925
6926 case OFPACT_POP_MPLS:
6927 compose_mpls_pop_action(ctx, ofpact_get_POP_MPLS(a)->ethertype);
6928 break;
6929
6930 case OFPACT_SET_MPLS_LABEL:
6931 compose_set_mpls_label_action(
6932 ctx, ofpact_get_SET_MPLS_LABEL(a)->label);
6933 break;
6934
6935 case OFPACT_SET_MPLS_TC:
6936 compose_set_mpls_tc_action(ctx, ofpact_get_SET_MPLS_TC(a)->tc);
6937 break;
6938
6939 case OFPACT_SET_MPLS_TTL:
6940 compose_set_mpls_ttl_action(ctx, ofpact_get_SET_MPLS_TTL(a)->ttl);
6941 break;
6942
6943 case OFPACT_DEC_MPLS_TTL:
6944 if (compose_dec_mpls_ttl_action(ctx)) {
6945 return;
6946 }
6947 break;
6948
6949 case OFPACT_DEC_NSH_TTL:
6950 if (compose_dec_nsh_ttl_action(ctx)) {
6951 return;
6952 }
6953 break;
6954
6955 case OFPACT_DEC_TTL:
6956 wc->masks.nw_ttl = 0xff;
6957 if (compose_dec_ttl(ctx, ofpact_get_DEC_TTL(a))) {
6958 return;
6959 }
6960 break;
6961
6962 case OFPACT_NOTE:
6963 /* Nothing to do. */
6964 break;
6965
6966 case OFPACT_MULTIPATH:
6967 multipath_execute(ofpact_get_MULTIPATH(a), flow, wc);
6968 xlate_report_subfield(ctx, &ofpact_get_MULTIPATH(a)->dst);
6969 break;
6970
6971 case OFPACT_BUNDLE:
6972 xlate_bundle_action(ctx, ofpact_get_BUNDLE(a), last,
6973 group_bucket_action);
6974 break;
6975
6976 case OFPACT_OUTPUT_REG:
6977 xlate_output_reg_action(ctx, ofpact_get_OUTPUT_REG(a), last,
6978 group_bucket_action);
6979 break;
6980
6981 case OFPACT_OUTPUT_TRUNC:
6982 xlate_output_trunc_action(ctx, ofpact_get_OUTPUT_TRUNC(a)->port,
6983 ofpact_get_OUTPUT_TRUNC(a)->max_len, last,
6984 group_bucket_action);
6985 break;
6986
6987 case OFPACT_LEARN:
6988 xlate_learn_action(ctx, ofpact_get_LEARN(a));
6989 break;
6990
6991 case OFPACT_CONJUNCTION:
6992 /* A flow with a "conjunction" action represents part of a special
6993 * kind of "set membership match". Such a flow should not actually
6994 * get executed, but it could via, say, a "packet-out", even though
6995 * that wouldn't be useful. Log it to help debugging. */
6996 xlate_report_error(ctx, "executing no-op conjunction action");
6997 break;
6998
6999 case OFPACT_EXIT:
7000 ctx->exit = true;
7001 break;
7002
7003 case OFPACT_UNROLL_XLATE:
7004 xlate_ofpact_unroll_xlate(ctx, ofpact_get_UNROLL_XLATE(a));
7005 break;
7006
7007 case OFPACT_FIN_TIMEOUT:
7008 memset(&wc->masks.nw_proto, 0xff, sizeof wc->masks.nw_proto);
7009 xlate_fin_timeout(ctx, ofpact_get_FIN_TIMEOUT(a));
7010 break;
7011
7012 case OFPACT_CLEAR_ACTIONS:
7013 xlate_report_action_set(ctx, "was");
7014 ofpbuf_clear(&ctx->action_set);
7015 ctx->xin->flow.actset_output = OFPP_UNSET;
7016 ctx->action_set_has_group = false;
7017 break;
7018
7019 case OFPACT_WRITE_ACTIONS:
7020 xlate_write_actions(ctx, ofpact_get_WRITE_ACTIONS(a));
7021 xlate_report_action_set(ctx, "is");
7022 break;
7023
7024 case OFPACT_WRITE_METADATA:
7025 metadata = ofpact_get_WRITE_METADATA(a);
7026 flow->metadata &= ~metadata->mask;
7027 flow->metadata |= metadata->metadata & metadata->mask;
7028 break;
7029
7030 case OFPACT_METER:
7031 xlate_meter_action(ctx, ofpact_get_METER(a));
7032 break;
7033
7034 case OFPACT_GOTO_TABLE: {
7035 struct ofpact_goto_table *ogt = ofpact_get_GOTO_TABLE(a);
7036
7037 ovs_assert(ctx->table_id < ogt->table_id);
7038
7039 xlate_table_action(ctx, ctx->xin->flow.in_port.ofp_port,
7040 ogt->table_id, true, true, false, last,
7041 do_xlate_actions);
7042 break;
7043 }
7044
7045 case OFPACT_SAMPLE:
7046 xlate_sample_action(ctx, ofpact_get_SAMPLE(a));
7047 break;
7048
7049 case OFPACT_CLONE:
7050 compose_clone(ctx, ofpact_get_CLONE(a), last);
7051 break;
7052
7053 case OFPACT_ENCAP:
7054 xlate_generic_encap_action(ctx, ofpact_get_ENCAP(a));
7055 break;
7056
7057 case OFPACT_DECAP: {
7058 bool recirc_needed =
7059 xlate_generic_decap_action(ctx, ofpact_get_DECAP(a));
7060 if (!ctx->error && recirc_needed) {
7061 /* Recirculate for parsing of inner packet. */
7062 ctx_trigger_freeze(ctx);
7063 /* Then continue with next action. */
7064 a = ofpact_next(a);
7065 }
7066 break;
7067 }
7068
7069 case OFPACT_CT:
7070 compose_conntrack_action(ctx, ofpact_get_CT(a), last);
7071 break;
7072
7073 case OFPACT_CT_CLEAR:
7074 compose_ct_clear_action(ctx);
7075 break;
7076
7077 case OFPACT_NAT:
7078 /* This will be processed by compose_conntrack_action(). */
7079 ctx->ct_nat_action = ofpact_get_NAT(a);
7080 break;
7081
7082 case OFPACT_DEBUG_RECIRC:
7083 ctx_trigger_freeze(ctx);
7084 a = ofpact_next(a);
7085 break;
7086
7087 case OFPACT_DEBUG_SLOW:
7088 ctx->xout->slow |= SLOW_ACTION;
7089 break;
7090
7091 case OFPACT_CHECK_PKT_LARGER: {
7092 if (last) {
7093 /* If this is last action, then there is no need to
7094 * translate the action. */
7095 break;
7096 }
7097 const struct ofpact *remaining_acts = ofpact_next(a);
7098 size_t remaining_acts_len = ofpact_remaining_len(remaining_acts,
7099 ofpacts,
7100 ofpacts_len);
7101 xlate_check_pkt_larger(ctx, ofpact_get_CHECK_PKT_LARGER(a),
7102 remaining_acts, remaining_acts_len);
7103 break;
7104 }
7105 }
7106
7107 /* Check if need to store this and the remaining actions for later
7108 * execution. */
7109 if (!ctx->error && ctx->exit && ctx_first_frozen_action(ctx)) {
7110 freeze_unroll_actions(a, ofpact_end(ofpacts, ofpacts_len), ctx);
7111 break;
7112 }
7113 }
7114 }
7115
7116 void
7117 xlate_in_init(struct xlate_in *xin, struct ofproto_dpif *ofproto,
7118 ovs_version_t version, const struct flow *flow,
7119 ofp_port_t in_port, struct rule_dpif *rule, uint16_t tcp_flags,
7120 const struct dp_packet *packet, struct flow_wildcards *wc,
7121 struct ofpbuf *odp_actions)
7122 {
7123 xin->ofproto = ofproto;
7124 xin->tables_version = version;
7125 xin->flow = *flow;
7126 xin->upcall_flow = flow;
7127 xin->flow.in_port.ofp_port = in_port;
7128 xin->flow.actset_output = OFPP_UNSET;
7129 xin->packet = packet;
7130 xin->allow_side_effects = packet != NULL;
7131 xin->rule = rule;
7132 xin->xcache = NULL;
7133 xin->ofpacts = NULL;
7134 xin->ofpacts_len = 0;
7135 xin->tcp_flags = tcp_flags;
7136 xin->trace = NULL;
7137 xin->resubmit_stats = NULL;
7138 xin->depth = 0;
7139 xin->resubmits = 0;
7140 xin->wc = wc;
7141 xin->odp_actions = odp_actions;
7142 xin->in_packet_out = false;
7143 xin->recirc_queue = NULL;
7144 xin->xport_uuid = UUID_ZERO;
7145
7146 /* Do recirc lookup. */
7147 xin->frozen_state = NULL;
7148 if (flow->recirc_id) {
7149 const struct recirc_id_node *node
7150 = recirc_id_node_find(flow->recirc_id);
7151 if (node) {
7152 xin->frozen_state = &node->state;
7153 }
7154 }
7155 }
7156
7157 void
7158 xlate_out_uninit(struct xlate_out *xout)
7159 {
7160 if (xout) {
7161 recirc_refs_unref(&xout->recircs);
7162 }
7163 }
7164 \f
7165 static struct skb_priority_to_dscp *
7166 get_skb_priority(const struct xport *xport, uint32_t skb_priority)
7167 {
7168 struct skb_priority_to_dscp *pdscp;
7169 uint32_t hash;
7170
7171 hash = hash_int(skb_priority, 0);
7172 HMAP_FOR_EACH_IN_BUCKET (pdscp, hmap_node, hash, &xport->skb_priorities) {
7173 if (pdscp->skb_priority == skb_priority) {
7174 return pdscp;
7175 }
7176 }
7177 return NULL;
7178 }
7179
7180 static bool
7181 dscp_from_skb_priority(const struct xport *xport, uint32_t skb_priority,
7182 uint8_t *dscp)
7183 {
7184 struct skb_priority_to_dscp *pdscp = get_skb_priority(xport, skb_priority);
7185 *dscp = pdscp ? pdscp->dscp : 0;
7186 return pdscp != NULL;
7187 }
7188
7189 static size_t
7190 count_skb_priorities(const struct xport *xport)
7191 {
7192 return hmap_count(&xport->skb_priorities);
7193 }
7194
7195 static void
7196 clear_skb_priorities(struct xport *xport)
7197 {
7198 struct skb_priority_to_dscp *pdscp;
7199
7200 HMAP_FOR_EACH_POP (pdscp, hmap_node, &xport->skb_priorities) {
7201 free(pdscp);
7202 }
7203 }
7204
7205 static bool
7206 actions_output_to_local_port(const struct xlate_ctx *ctx)
7207 {
7208 odp_port_t local_odp_port = ofp_port_to_odp_port(ctx->xbridge, OFPP_LOCAL);
7209 const struct nlattr *a;
7210 unsigned int left;
7211
7212 NL_ATTR_FOR_EACH_UNSAFE (a, left, ctx->odp_actions->data,
7213 ctx->odp_actions->size) {
7214 if (nl_attr_type(a) == OVS_ACTION_ATTR_OUTPUT
7215 && nl_attr_get_odp_port(a) == local_odp_port) {
7216 return true;
7217 }
7218 }
7219 return false;
7220 }
7221
7222 #if defined(__linux__)
7223 /* Returns the maximum number of packets that the Linux kernel is willing to
7224 * queue up internally to certain kinds of software-implemented ports, or the
7225 * default (and rarely modified) value if it cannot be determined. */
7226 static int
7227 netdev_max_backlog(void)
7228 {
7229 static struct ovsthread_once once = OVSTHREAD_ONCE_INITIALIZER;
7230 static int max_backlog = 1000; /* The normal default value. */
7231
7232 if (ovsthread_once_start(&once)) {
7233 static const char filename[] = "/proc/sys/net/core/netdev_max_backlog";
7234 FILE *stream;
7235 int n;
7236
7237 stream = fopen(filename, "r");
7238 if (!stream) {
7239 VLOG_INFO("%s: open failed (%s)", filename, ovs_strerror(errno));
7240 } else {
7241 if (fscanf(stream, "%d", &n) != 1) {
7242 VLOG_WARN("%s: read error", filename);
7243 } else if (n <= 100) {
7244 VLOG_WARN("%s: unexpectedly small value %d", filename, n);
7245 } else {
7246 max_backlog = n;
7247 }
7248 fclose(stream);
7249 }
7250 ovsthread_once_done(&once);
7251
7252 VLOG_DBG("%s: using %d max_backlog", filename, max_backlog);
7253 }
7254
7255 return max_backlog;
7256 }
7257
7258 /* Counts and returns the number of OVS_ACTION_ATTR_OUTPUT actions in
7259 * 'odp_actions'. */
7260 static int
7261 count_output_actions(const struct ofpbuf *odp_actions)
7262 {
7263 const struct nlattr *a;
7264 size_t left;
7265 int n = 0;
7266
7267 NL_ATTR_FOR_EACH_UNSAFE (a, left, odp_actions->data, odp_actions->size) {
7268 if (a->nla_type == OVS_ACTION_ATTR_OUTPUT) {
7269 n++;
7270 }
7271 }
7272 return n;
7273 }
7274 #endif /* defined(__linux__) */
7275
7276 /* Returns true if 'odp_actions' contains more output actions than the datapath
7277 * can reliably handle in one go. On Linux, this is the value of the
7278 * net.core.netdev_max_backlog sysctl, which limits the maximum number of
7279 * packets that the kernel is willing to queue up for processing while the
7280 * datapath is processing a set of actions. */
7281 static bool
7282 too_many_output_actions(const struct ofpbuf *odp_actions OVS_UNUSED)
7283 {
7284 #ifdef __linux__
7285 return (odp_actions->size / NL_A_U32_SIZE > netdev_max_backlog()
7286 && count_output_actions(odp_actions) > netdev_max_backlog());
7287 #else
7288 /* OSes other than Linux might have similar limits, but we don't know how
7289 * to determine them.*/
7290 return false;
7291 #endif
7292 }
7293
7294 static void
7295 xlate_wc_init(struct xlate_ctx *ctx)
7296 {
7297 flow_wildcards_init_catchall(ctx->wc);
7298
7299 /* Some fields we consider to always be examined. */
7300 WC_MASK_FIELD(ctx->wc, packet_type);
7301 WC_MASK_FIELD(ctx->wc, in_port);
7302 WC_MASK_FIELD(ctx->wc, dl_type);
7303 if (is_ip_any(&ctx->xin->flow)) {
7304 WC_MASK_FIELD_MASK(ctx->wc, nw_frag, FLOW_NW_FRAG_MASK);
7305 }
7306
7307 if (ctx->xbridge->support.odp.recirc) {
7308 /* Always exactly match recirc_id when datapath supports
7309 * recirculation. */
7310 WC_MASK_FIELD(ctx->wc, recirc_id);
7311 }
7312
7313 if (ctx->xbridge->netflow) {
7314 netflow_mask_wc(&ctx->xin->flow, ctx->wc);
7315 }
7316
7317 tnl_wc_init(&ctx->xin->flow, ctx->wc);
7318 }
7319
7320 static void
7321 xlate_wc_finish(struct xlate_ctx *ctx)
7322 {
7323 int i;
7324
7325 /* Clear the metadata and register wildcard masks, because we won't
7326 * use non-header fields as part of the cache. */
7327 flow_wildcards_clear_non_packet_fields(ctx->wc);
7328
7329 /* Wildcard Ethernet address fields if the original packet type was not
7330 * Ethernet.
7331 *
7332 * (The Ethertype field is used even when the original packet type is not
7333 * Ethernet.) */
7334 if (ctx->xin->upcall_flow->packet_type != htonl(PT_ETH)) {
7335 ctx->wc->masks.dl_dst = eth_addr_zero;
7336 ctx->wc->masks.dl_src = eth_addr_zero;
7337 }
7338
7339 /* ICMPv4 and ICMPv6 have 8-bit "type" and "code" fields. struct flow
7340 * uses the low 8 bits of the 16-bit tp_src and tp_dst members to
7341 * represent these fields. The datapath interface, on the other hand,
7342 * represents them with just 8 bits each. This means that if the high
7343 * 8 bits of the masks for these fields somehow become set, then they
7344 * will get chopped off by a round trip through the datapath, and
7345 * revalidation will spot that as an inconsistency and delete the flow.
7346 * Avoid the problem here by making sure that only the low 8 bits of
7347 * either field can be unwildcarded for ICMP.
7348 */
7349 if (is_icmpv4(&ctx->xin->flow, NULL) || is_icmpv6(&ctx->xin->flow, NULL)) {
7350 ctx->wc->masks.tp_src &= htons(UINT8_MAX);
7351 ctx->wc->masks.tp_dst &= htons(UINT8_MAX);
7352 }
7353 /* VLAN_TCI CFI bit must be matched if any of the TCI is matched. */
7354 for (i = 0; i < FLOW_MAX_VLAN_HEADERS; i++) {
7355 if (ctx->wc->masks.vlans[i].tci) {
7356 ctx->wc->masks.vlans[i].tci |= htons(VLAN_CFI);
7357 }
7358 }
7359
7360 /* The classifier might return masks that match on tp_src and tp_dst even
7361 * for later fragments. This happens because there might be flows that
7362 * match on tp_src or tp_dst without matching on the frag bits, because
7363 * it is not a prerequisite for OpenFlow. Since it is a prerequisite for
7364 * datapath flows and since tp_src and tp_dst are always going to be 0,
7365 * wildcard the fields here. */
7366 if (ctx->xin->flow.nw_frag & FLOW_NW_FRAG_LATER) {
7367 ctx->wc->masks.tp_src = 0;
7368 ctx->wc->masks.tp_dst = 0;
7369 }
7370
7371 /* Clear flow wildcard bits for fields which are not present
7372 * in the original packet header. These wildcards may get set
7373 * due to push/set_field actions. This results into frequent
7374 * invalidation of datapath flows by revalidator thread. */
7375
7376 /* Clear mpls label wc bits if original packet is non-mpls. */
7377 if (!eth_type_mpls(ctx->xin->upcall_flow->dl_type)) {
7378 for (i = 0; i < FLOW_MAX_MPLS_LABELS; i++) {
7379 ctx->wc->masks.mpls_lse[i] = 0;
7380 }
7381 }
7382 /* Clear vlan header wc bits if original packet does not have
7383 * vlan header. */
7384 for (i = 0; i < FLOW_MAX_VLAN_HEADERS; i++) {
7385 if (!eth_type_vlan(ctx->xin->upcall_flow->vlans[i].tpid)) {
7386 ctx->wc->masks.vlans[i].tpid = 0;
7387 ctx->wc->masks.vlans[i].tci = 0;
7388 }
7389 }
7390 }
7391
7392 /* Translates the flow, actions, or rule in 'xin' into datapath actions in
7393 * 'xout'.
7394 * The caller must take responsibility for eventually freeing 'xout', with
7395 * xlate_out_uninit().
7396 * Returns 'XLATE_OK' if translation was successful. In case of an error an
7397 * empty set of actions will be returned in 'xin->odp_actions' (if non-NULL),
7398 * so that most callers may ignore the return value and transparently install a
7399 * drop flow when the translation fails. */
7400 enum xlate_error
7401 xlate_actions(struct xlate_in *xin, struct xlate_out *xout)
7402 {
7403 *xout = (struct xlate_out) {
7404 .slow = 0,
7405 .recircs = RECIRC_REFS_EMPTY_INITIALIZER,
7406 };
7407
7408 struct xlate_cfg *xcfg = ovsrcu_get(struct xlate_cfg *, &xcfgp);
7409 struct xbridge *xbridge = xbridge_lookup(xcfg, xin->ofproto);
7410 if (!xbridge) {
7411 return XLATE_BRIDGE_NOT_FOUND;
7412 }
7413
7414 struct flow *flow = &xin->flow;
7415
7416 uint8_t stack_stub[1024];
7417 uint64_t action_set_stub[1024 / 8];
7418 uint64_t frozen_actions_stub[1024 / 8];
7419 uint64_t actions_stub[256 / 8];
7420 struct ofpbuf scratch_actions = OFPBUF_STUB_INITIALIZER(actions_stub);
7421 struct xlate_ctx ctx = {
7422 .xin = xin,
7423 .xout = xout,
7424 .base_flow = *flow,
7425 .orig_tunnel_ipv6_dst = flow_tnl_dst(&flow->tunnel),
7426 .xcfg = xcfg,
7427 .xbridge = xbridge,
7428 .stack = OFPBUF_STUB_INITIALIZER(stack_stub),
7429 .rule = xin->rule,
7430 .wc = (xin->wc
7431 ? xin->wc
7432 : &(struct flow_wildcards) { .masks = { .dl_type = 0 } }),
7433 .odp_actions = xin->odp_actions ? xin->odp_actions : &scratch_actions,
7434
7435 .depth = xin->depth,
7436 .resubmits = xin->resubmits,
7437 .in_action_set = false,
7438 .in_packet_out = xin->in_packet_out,
7439 .pending_encap = false,
7440 .pending_decap = false,
7441 .encap_data = NULL,
7442
7443 .table_id = 0,
7444 .rule_cookie = OVS_BE64_MAX,
7445 .orig_skb_priority = flow->skb_priority,
7446 .sflow_n_outputs = 0,
7447 .sflow_odp_port = 0,
7448 .nf_output_iface = NF_OUT_DROP,
7449 .exit = false,
7450 .error = XLATE_OK,
7451 .mirrors = 0,
7452
7453 .freezing = false,
7454 .recirc_update_dp_hash = false,
7455 .frozen_actions = OFPBUF_STUB_INITIALIZER(frozen_actions_stub),
7456 .pause = NULL,
7457
7458 .was_mpls = false,
7459 .conntracked = false,
7460
7461 .ct_nat_action = NULL,
7462
7463 .action_set_has_group = false,
7464 .action_set = OFPBUF_STUB_INITIALIZER(action_set_stub),
7465 };
7466
7467 /* 'base_flow' reflects the packet as it came in, but we need it to reflect
7468 * the packet as the datapath will treat it for output actions. Our
7469 * datapath doesn't retain tunneling information without us re-setting
7470 * it, so clear the tunnel data.
7471 */
7472
7473 memset(&ctx.base_flow.tunnel, 0, sizeof ctx.base_flow.tunnel);
7474
7475 ofpbuf_reserve(ctx.odp_actions, NL_A_U32_SIZE);
7476 xlate_wc_init(&ctx);
7477
7478 COVERAGE_INC(xlate_actions);
7479
7480 xin->trace = xlate_report(&ctx, OFT_BRIDGE, "bridge(\"%s\")",
7481 xbridge->name);
7482 if (xin->frozen_state) {
7483 const struct frozen_state *state = xin->frozen_state;
7484
7485 struct ovs_list *old_trace = xin->trace;
7486 xin->trace = xlate_report(&ctx, OFT_THAW, "thaw");
7487
7488 if (xin->ofpacts_len > 0 || ctx.rule) {
7489 xlate_report_error(&ctx, "Recirculation conflict (%s)!",
7490 xin->ofpacts_len ? "actions" : "rule");
7491 ctx.error = XLATE_RECIRCULATION_CONFLICT;
7492 goto exit;
7493 }
7494
7495 /* Set the bridge for post-recirculation processing if needed. */
7496 if (!uuid_equals(&ctx.xbridge->ofproto->uuid, &state->ofproto_uuid)) {
7497 const struct xbridge *new_bridge
7498 = xbridge_lookup_by_uuid(xcfg, &state->ofproto_uuid);
7499
7500 if (OVS_UNLIKELY(!new_bridge)) {
7501 /* Drop the packet if the bridge cannot be found. */
7502 xlate_report_error(&ctx, "Frozen bridge no longer exists.");
7503 ctx.error = XLATE_BRIDGE_NOT_FOUND;
7504 xin->trace = old_trace;
7505 goto exit;
7506 }
7507 ctx.xbridge = new_bridge;
7508 /* The bridge is now known so obtain its table version. */
7509 ctx.xin->tables_version
7510 = ofproto_dpif_get_tables_version(ctx.xbridge->ofproto);
7511 }
7512
7513 /* Set the thawed table id. Note: A table lookup is done only if there
7514 * are no frozen actions. */
7515 ctx.table_id = state->table_id;
7516 xlate_report(&ctx, OFT_THAW,
7517 "Resuming from table %"PRIu8, ctx.table_id);
7518
7519 ctx.conntracked = state->conntracked;
7520 if (!state->conntracked) {
7521 clear_conntrack(&ctx);
7522 }
7523
7524 /* Restore pipeline metadata. May change flow's in_port and other
7525 * metadata to the values that existed when freezing was triggered. */
7526 frozen_metadata_to_flow(&state->metadata, flow);
7527
7528 /* Restore stack, if any. */
7529 if (state->stack) {
7530 ofpbuf_put(&ctx.stack, state->stack, state->stack_size);
7531 }
7532
7533 /* Restore mirror state. */
7534 ctx.mirrors = state->mirrors;
7535
7536 /* Restore action set, if any. */
7537 if (state->action_set_len) {
7538 xlate_report_actions(&ctx, OFT_THAW, "Restoring action set",
7539 state->action_set, state->action_set_len);
7540
7541 flow->actset_output = OFPP_UNSET;
7542 xlate_write_actions__(&ctx, state->action_set,
7543 state->action_set_len);
7544 }
7545
7546 /* Restore frozen actions. If there are no actions, processing will
7547 * start with a lookup in the table set above. */
7548 xin->ofpacts = state->ofpacts;
7549 xin->ofpacts_len = state->ofpacts_len;
7550 if (state->ofpacts_len) {
7551 xlate_report_actions(&ctx, OFT_THAW, "Restoring actions",
7552 xin->ofpacts, xin->ofpacts_len);
7553 }
7554
7555 xin->trace = old_trace;
7556 } else if (OVS_UNLIKELY(flow->recirc_id)) {
7557 xlate_report_error(&ctx,
7558 "Recirculation context not found for ID %"PRIx32,
7559 flow->recirc_id);
7560 ctx.error = XLATE_NO_RECIRCULATION_CONTEXT;
7561 goto exit;
7562 }
7563
7564 /* Tunnel metadata in udpif format must be normalized before translation. */
7565 if (flow->tunnel.flags & FLOW_TNL_F_UDPIF) {
7566 const struct tun_table *tun_tab = ofproto_get_tun_tab(
7567 &ctx.xbridge->ofproto->up);
7568 int err;
7569
7570 err = tun_metadata_from_geneve_udpif(tun_tab, &xin->upcall_flow->tunnel,
7571 &xin->upcall_flow->tunnel,
7572 &flow->tunnel);
7573 if (err) {
7574 xlate_report_error(&ctx, "Invalid Geneve tunnel metadata");
7575 ctx.error = XLATE_INVALID_TUNNEL_METADATA;
7576 goto exit;
7577 }
7578 } else if (!flow->tunnel.metadata.tab || xin->frozen_state) {
7579 /* If the original flow did not come in on a tunnel, then it won't have
7580 * FLOW_TNL_F_UDPIF set. However, we still need to have a metadata
7581 * table in case we generate tunnel actions. */
7582 /* If the translation is from a frozen state, we use the latest
7583 * TLV map to avoid segmentation fault in case the old TLV map is
7584 * replaced by a new one.
7585 * XXX: It is better to abort translation if the table is changed. */
7586 flow->tunnel.metadata.tab = ofproto_get_tun_tab(
7587 &ctx.xbridge->ofproto->up);
7588 }
7589 ctx.wc->masks.tunnel.metadata.tab = flow->tunnel.metadata.tab;
7590
7591 /* Get the proximate input port of the packet. (If xin->frozen_state,
7592 * flow->in_port is the ultimate input port of the packet.) */
7593 struct xport *in_port = get_ofp_port(xbridge,
7594 ctx.base_flow.in_port.ofp_port);
7595 if (in_port && !in_port->peer) {
7596 ctx.xin->xport_uuid = in_port->uuid;
7597 }
7598
7599 if (flow->packet_type != htonl(PT_ETH) && in_port &&
7600 in_port->pt_mode == NETDEV_PT_LEGACY_L3 && ctx.table_id == 0) {
7601 /* Add dummy Ethernet header to non-L2 packet if it's coming from a
7602 * L3 port. So all packets will be L2 packets for lookup.
7603 * The dl_type has already been set from the packet_type. */
7604 flow->packet_type = htonl(PT_ETH);
7605 flow->dl_src = eth_addr_zero;
7606 flow->dl_dst = eth_addr_zero;
7607 ctx.pending_encap = true;
7608 }
7609
7610 if (!xin->ofpacts && !ctx.rule) {
7611 ctx.rule = rule_dpif_lookup_from_table(
7612 ctx.xbridge->ofproto, ctx.xin->tables_version, flow, ctx.wc,
7613 ctx.xin->resubmit_stats, &ctx.table_id,
7614 flow->in_port.ofp_port, true, true, ctx.xin->xcache);
7615 if (ctx.xin->resubmit_stats) {
7616 rule_dpif_credit_stats(ctx.rule, ctx.xin->resubmit_stats, false);
7617 }
7618 if (ctx.xin->xcache) {
7619 struct xc_entry *entry;
7620
7621 entry = xlate_cache_add_entry(ctx.xin->xcache, XC_RULE);
7622 entry->rule = ctx.rule;
7623 ofproto_rule_ref(&ctx.rule->up);
7624 }
7625
7626 xlate_report_table(&ctx, ctx.rule, ctx.table_id);
7627 }
7628
7629 /* Tunnel stats only for not-thawed packets. */
7630 if (!xin->frozen_state && in_port && in_port->is_tunnel) {
7631 if (ctx.xin->resubmit_stats) {
7632 netdev_vport_inc_rx(in_port->netdev, ctx.xin->resubmit_stats);
7633 if (in_port->bfd) {
7634 bfd_account_rx(in_port->bfd, ctx.xin->resubmit_stats);
7635 }
7636 }
7637 if (ctx.xin->xcache) {
7638 struct xc_entry *entry;
7639
7640 entry = xlate_cache_add_entry(ctx.xin->xcache, XC_NETDEV);
7641 entry->dev.rx = netdev_ref(in_port->netdev);
7642 entry->dev.bfd = bfd_ref(in_port->bfd);
7643 }
7644 }
7645
7646 if (!xin->frozen_state && process_special(&ctx, in_port)) {
7647 /* process_special() did all the processing for this packet.
7648 *
7649 * We do not perform special processing on thawed packets, since that
7650 * was done before they were frozen and should not be redone. */
7651 mirror_ingress_packet(&ctx);
7652 } else if (in_port && in_port->xbundle
7653 && xbundle_mirror_out(xbridge, in_port->xbundle)) {
7654 xlate_report_error(&ctx, "dropping packet received on port "
7655 "%s, which is reserved exclusively for mirroring",
7656 in_port->xbundle->name);
7657 } else {
7658 /* Sampling is done on initial reception; don't redo after thawing. */
7659 unsigned int user_cookie_offset = 0;
7660 if (!xin->frozen_state) {
7661 user_cookie_offset = compose_sflow_action(&ctx);
7662 compose_ipfix_action(&ctx, ODPP_NONE);
7663 }
7664 size_t sample_actions_len = ctx.odp_actions->size;
7665 bool ecn_drop = !tnl_process_ecn(flow);
7666
7667 if (!ecn_drop
7668 && (!in_port || may_receive(in_port, &ctx))) {
7669 const struct ofpact *ofpacts;
7670 size_t ofpacts_len;
7671
7672 if (xin->ofpacts) {
7673 ofpacts = xin->ofpacts;
7674 ofpacts_len = xin->ofpacts_len;
7675 } else if (ctx.rule) {
7676 const struct rule_actions *actions
7677 = rule_get_actions(&ctx.rule->up);
7678 ofpacts = actions->ofpacts;
7679 ofpacts_len = actions->ofpacts_len;
7680 ctx.rule_cookie = ctx.rule->up.flow_cookie;
7681 } else {
7682 OVS_NOT_REACHED();
7683 }
7684
7685 mirror_ingress_packet(&ctx);
7686 do_xlate_actions(ofpacts, ofpacts_len, &ctx, true, false);
7687 if (ctx.error) {
7688 goto exit;
7689 }
7690
7691 /* We've let OFPP_NORMAL and the learning action look at the
7692 * packet, so cancel all actions and freezing if forwarding is
7693 * disabled. */
7694 if (in_port && (!xport_stp_forward_state(in_port) ||
7695 !xport_rstp_forward_state(in_port))) {
7696 ctx.odp_actions->size = sample_actions_len;
7697 ctx_cancel_freeze(&ctx);
7698 ofpbuf_clear(&ctx.action_set);
7699 ctx.error = XLATE_FORWARDING_DISABLED;
7700 }
7701
7702 if (!ctx.freezing) {
7703 xlate_action_set(&ctx);
7704 }
7705 if (ctx.freezing) {
7706 finish_freezing(&ctx);
7707 }
7708 } else if (ecn_drop) {
7709 ctx.error = XLATE_CONGESTION_DROP;
7710 }
7711
7712 /* Output only fully processed packets. */
7713 if (!ctx.freezing
7714 && xbridge->has_in_band
7715 && in_band_must_output_to_local_port(flow)
7716 && !actions_output_to_local_port(&ctx)) {
7717 WC_MASK_FIELD(ctx.wc, nw_proto);
7718 WC_MASK_FIELD(ctx.wc, tp_src);
7719 WC_MASK_FIELD(ctx.wc, tp_dst);
7720 WC_MASK_FIELD(ctx.wc, dl_type);
7721 xlate_report(&ctx, OFT_DETAIL, "outputting DHCP packet "
7722 "to local port for in-band control");
7723 compose_output_action(&ctx, OFPP_LOCAL, NULL, false, false);
7724 }
7725
7726 if (user_cookie_offset) {
7727 fix_sflow_action(&ctx, user_cookie_offset);
7728 }
7729 }
7730
7731 if (nl_attr_oversized(ctx.odp_actions->size)) {
7732 /* These datapath actions are too big for a Netlink attribute, so we
7733 * can't hand them to the kernel directly. dpif_execute() can execute
7734 * them one by one with help, so just mark the result as SLOW_ACTION to
7735 * prevent the flow from being installed. */
7736 COVERAGE_INC(xlate_actions_oversize);
7737 ctx.xout->slow |= SLOW_ACTION;
7738 } else if (too_many_output_actions(ctx.odp_actions)) {
7739 COVERAGE_INC(xlate_actions_too_many_output);
7740 ctx.xout->slow |= SLOW_ACTION;
7741 }
7742
7743 /* Update NetFlow for non-frozen traffic. */
7744 if (xbridge->netflow && !xin->frozen_state) {
7745 if (ctx.xin->resubmit_stats) {
7746 netflow_flow_update(xbridge->netflow, flow,
7747 ctx.nf_output_iface,
7748 ctx.xin->resubmit_stats);
7749 }
7750 if (ctx.xin->xcache) {
7751 struct xc_entry *entry;
7752
7753 entry = xlate_cache_add_entry(ctx.xin->xcache, XC_NETFLOW);
7754 entry->nf.netflow = netflow_ref(xbridge->netflow);
7755 entry->nf.flow = xmemdup(flow, sizeof *flow);
7756 entry->nf.iface = ctx.nf_output_iface;
7757 }
7758 }
7759
7760 /* Translate tunnel metadata masks to udpif format if necessary. */
7761 if (xin->upcall_flow->tunnel.flags & FLOW_TNL_F_UDPIF) {
7762 if (ctx.wc->masks.tunnel.metadata.present.map) {
7763 const struct flow_tnl *upcall_tnl = &xin->upcall_flow->tunnel;
7764 struct geneve_opt opts[TLV_TOT_OPT_SIZE /
7765 sizeof(struct geneve_opt)];
7766
7767 tun_metadata_to_geneve_udpif_mask(&flow->tunnel,
7768 &ctx.wc->masks.tunnel,
7769 upcall_tnl->metadata.opts.gnv,
7770 upcall_tnl->metadata.present.len,
7771 opts);
7772 memset(&ctx.wc->masks.tunnel.metadata, 0,
7773 sizeof ctx.wc->masks.tunnel.metadata);
7774 memcpy(&ctx.wc->masks.tunnel.metadata.opts.gnv, opts,
7775 upcall_tnl->metadata.present.len);
7776 }
7777 ctx.wc->masks.tunnel.metadata.present.len = 0xff;
7778 ctx.wc->masks.tunnel.metadata.tab = NULL;
7779 ctx.wc->masks.tunnel.flags |= FLOW_TNL_F_UDPIF;
7780 } else if (!xin->upcall_flow->tunnel.metadata.tab) {
7781 /* If we didn't have options in UDPIF format and didn't have an existing
7782 * metadata table, then it means that there were no options at all when
7783 * we started processing and any wildcards we picked up were from
7784 * action generation. Without options on the incoming packet, wildcards
7785 * aren't meaningful. To avoid them possibly getting misinterpreted,
7786 * just clear everything. */
7787 if (ctx.wc->masks.tunnel.metadata.present.map) {
7788 memset(&ctx.wc->masks.tunnel.metadata, 0,
7789 sizeof ctx.wc->masks.tunnel.metadata);
7790 } else {
7791 ctx.wc->masks.tunnel.metadata.tab = NULL;
7792 }
7793 }
7794
7795 xlate_wc_finish(&ctx);
7796
7797 exit:
7798 /* Reset the table to what it was when we came in. If we only fetched
7799 * it locally, then it has no meaning outside of flow translation. */
7800 flow->tunnel.metadata.tab = xin->upcall_flow->tunnel.metadata.tab;
7801
7802 ofpbuf_uninit(&ctx.stack);
7803 ofpbuf_uninit(&ctx.action_set);
7804 ofpbuf_uninit(&ctx.frozen_actions);
7805 ofpbuf_uninit(&scratch_actions);
7806 ofpbuf_delete(ctx.encap_data);
7807
7808 /* Make sure we return a "drop flow" in case of an error. */
7809 if (ctx.error) {
7810 xout->slow = 0;
7811 if (xin->odp_actions) {
7812 ofpbuf_clear(xin->odp_actions);
7813 }
7814 }
7815
7816 /* Install drop action if datapath supports explicit drop action. */
7817 if (xin->odp_actions && !xin->odp_actions->size &&
7818 ovs_explicit_drop_action_supported(ctx.xbridge->ofproto)) {
7819 put_drop_action(xin->odp_actions, ctx.error);
7820 }
7821
7822 /* Since congestion drop and forwarding drop are not exactly
7823 * translation error, we are resetting the translation error.
7824 */
7825 if (ctx.error == XLATE_CONGESTION_DROP ||
7826 ctx.error == XLATE_FORWARDING_DISABLED) {
7827 ctx.error = XLATE_OK;
7828 }
7829
7830 return ctx.error;
7831 }
7832
7833 enum ofperr
7834 xlate_resume(struct ofproto_dpif *ofproto,
7835 const struct ofputil_packet_in_private *pin,
7836 struct ofpbuf *odp_actions,
7837 enum slow_path_reason *slow,
7838 struct flow *flow,
7839 struct xlate_cache *xcache)
7840 {
7841 struct dp_packet packet;
7842 dp_packet_use_const(&packet, pin->base.packet,
7843 pin->base.packet_len);
7844
7845 pkt_metadata_from_flow(&packet.md, &pin->base.flow_metadata.flow);
7846 flow_extract(&packet, flow);
7847
7848 struct xlate_in xin;
7849 xlate_in_init(&xin, ofproto, ofproto_dpif_get_tables_version(ofproto),
7850 flow, 0, NULL, ntohs(flow->tcp_flags),
7851 &packet, NULL, odp_actions);
7852 xin.xcache = xcache;
7853
7854 struct ofpact_note noop;
7855 ofpact_init_NOTE(&noop);
7856 noop.length = 0;
7857
7858 bool any_actions = pin->actions_len > 0;
7859 struct frozen_state state = {
7860 .table_id = 0, /* Not the table where NXAST_PAUSE was executed. */
7861 .ofproto_uuid = pin->bridge,
7862 .stack = pin->stack,
7863 .stack_size = pin->stack_size,
7864 .mirrors = pin->mirrors,
7865 .conntracked = pin->conntracked,
7866 .xport_uuid = UUID_ZERO,
7867
7868 /* When there are no actions, xlate_actions() will search the flow
7869 * table. We don't want it to do that (we want it to resume), so
7870 * supply a no-op action if there aren't any.
7871 *
7872 * (We can't necessarily avoid translating actions entirely if there
7873 * aren't any actions, because there might be some finishing-up to do
7874 * at the end of the pipeline, and we don't check for those
7875 * conditions.) */
7876 .ofpacts = any_actions ? pin->actions : &noop.ofpact,
7877 .ofpacts_len = any_actions ? pin->actions_len : sizeof noop,
7878
7879 .action_set = pin->action_set,
7880 .action_set_len = pin->action_set_len,
7881 };
7882 frozen_metadata_from_flow(&state.metadata,
7883 &pin->base.flow_metadata.flow);
7884 xin.frozen_state = &state;
7885
7886 struct xlate_out xout;
7887 enum xlate_error error = xlate_actions(&xin, &xout);
7888 *slow = xout.slow;
7889 xlate_out_uninit(&xout);
7890
7891 /* xlate_actions() can generate a number of errors, but only
7892 * XLATE_BRIDGE_NOT_FOUND really stands out to me as one that we should be
7893 * sure to report over OpenFlow. The others could come up in packet-outs
7894 * or regular flow translation and I don't think that it's going to be too
7895 * useful to report them to the controller. */
7896 return error == XLATE_BRIDGE_NOT_FOUND ? OFPERR_NXR_STALE : 0;
7897 }
7898
7899 /* Sends 'packet' out 'ofport'. If 'port' is a tunnel and that tunnel type
7900 * supports a notion of an OAM flag, sets it if 'oam' is true.
7901 * May modify 'packet'.
7902 * Returns 0 if successful, otherwise a positive errno value. */
7903 int
7904 xlate_send_packet(const struct ofport_dpif *ofport, bool oam,
7905 struct dp_packet *packet)
7906 {
7907 struct xlate_cfg *xcfg = ovsrcu_get(struct xlate_cfg *, &xcfgp);
7908 struct xport *xport;
7909 uint64_t ofpacts_stub[1024 / 8];
7910 struct ofpbuf ofpacts;
7911 struct flow flow;
7912
7913 ofpbuf_use_stack(&ofpacts, ofpacts_stub, sizeof ofpacts_stub);
7914 /* Use OFPP_NONE as the in_port to avoid special packet processing. */
7915 flow_extract(packet, &flow);
7916 flow.in_port.ofp_port = OFPP_NONE;
7917
7918 xport = xport_lookup(xcfg, ofport);
7919 if (!xport) {
7920 return EINVAL;
7921 }
7922
7923 if (oam) {
7924 const ovs_be16 flag = htons(NX_TUN_FLAG_OAM);
7925 ofpact_put_set_field(&ofpacts, mf_from_id(MFF_TUN_FLAGS),
7926 &flag, &flag);
7927 }
7928
7929 ofpact_put_OUTPUT(&ofpacts)->port = xport->ofp_port;
7930
7931 /* Actions here are not referring to anything versionable (flow tables or
7932 * groups) so we don't need to worry about the version here. */
7933 return ofproto_dpif_execute_actions(xport->xbridge->ofproto,
7934 OVS_VERSION_MAX, &flow, NULL,
7935 ofpacts.data, ofpacts.size, packet);
7936 }
7937
7938 void
7939 xlate_mac_learning_update(const struct ofproto_dpif *ofproto,
7940 ofp_port_t in_port, struct eth_addr dl_src,
7941 int vlan, bool is_grat_arp)
7942 {
7943 struct xlate_cfg *xcfg = ovsrcu_get(struct xlate_cfg *, &xcfgp);
7944 struct xbridge *xbridge;
7945 struct xbundle *xbundle;
7946
7947 xbridge = xbridge_lookup(xcfg, ofproto);
7948 if (!xbridge) {
7949 return;
7950 }
7951
7952 xbundle = lookup_input_bundle__(xbridge, in_port, NULL);
7953 if (!xbundle) {
7954 return;
7955 }
7956
7957 update_learning_table__(xbridge, xbundle, dl_src, vlan, is_grat_arp);
7958 }
7959
7960 void
7961 xlate_set_support(const struct ofproto_dpif *ofproto,
7962 const struct dpif_backer_support *support)
7963 {
7964 struct xlate_cfg *xcfg = ovsrcu_get(struct xlate_cfg *, &xcfgp);
7965 struct xbridge *xbridge = xbridge_lookup(xcfg, ofproto);
7966
7967 if (xbridge) {
7968 xbridge->support = *support;
7969 }
7970 }