]> git.proxmox.com Git - mirror_ovs.git/blob - ofproto/ofproto-dpif-xlate.c
openflow: Better abstract handling of packet-in messages.
[mirror_ovs.git] / ofproto / ofproto-dpif-xlate.c
1 /* Copyright (c) 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016 Nicira, Inc.
2 *
3 * Licensed under the Apache License, Version 2.0 (the "License");
4 * you may not use this file except in compliance with the License.
5 * You may obtain a copy of the License at:
6 *
7 * http://www.apache.org/licenses/LICENSE-2.0
8 *
9 * Unless required by applicable law or agreed to in writing, software
10 * distributed under the License is distributed on an "AS IS" BASIS,
11 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 * See the License for the specific language governing permissions and
13 * limitations under the License. */
14
15 #include <config.h>
16
17 #include "ofproto/ofproto-dpif-xlate.h"
18
19 #include <errno.h>
20 #include <arpa/inet.h>
21 #include <net/if.h>
22 #include <sys/socket.h>
23 #include <netinet/in.h>
24
25 #include "tnl-neigh-cache.h"
26 #include "bfd.h"
27 #include "bitmap.h"
28 #include "bond.h"
29 #include "bundle.h"
30 #include "byte-order.h"
31 #include "cfm.h"
32 #include "connmgr.h"
33 #include "coverage.h"
34 #include "dp-packet.h"
35 #include "dpif.h"
36 #include "dynamic-string.h"
37 #include "in-band.h"
38 #include "lacp.h"
39 #include "learn.h"
40 #include "list.h"
41 #include "ovs-lldp.h"
42 #include "mac-learning.h"
43 #include "mcast-snooping.h"
44 #include "meta-flow.h"
45 #include "multipath.h"
46 #include "netdev-vport.h"
47 #include "netlink.h"
48 #include "nx-match.h"
49 #include "odp-execute.h"
50 #include "ofp-actions.h"
51 #include "ofproto/ofproto-dpif-ipfix.h"
52 #include "ofproto/ofproto-dpif-mirror.h"
53 #include "ofproto/ofproto-dpif-monitor.h"
54 #include "ofproto/ofproto-dpif-sflow.h"
55 #include "ofproto/ofproto-dpif.h"
56 #include "ofproto/ofproto-provider.h"
57 #include "packets.h"
58 #include "ovs-router.h"
59 #include "tnl-ports.h"
60 #include "tunnel.h"
61 #include "openvswitch/vlog.h"
62
63 COVERAGE_DEFINE(xlate_actions);
64 COVERAGE_DEFINE(xlate_actions_oversize);
65 COVERAGE_DEFINE(xlate_actions_too_many_output);
66
67 VLOG_DEFINE_THIS_MODULE(ofproto_dpif_xlate);
68
69 /* Maximum depth of flow table recursion (due to resubmit actions) in a
70 * flow translation. */
71 #define MAX_RESUBMIT_RECURSION 64
72 #define MAX_INTERNAL_RESUBMITS 1 /* Max resbmits allowed using rules in
73 internal table. */
74
75 /* Maximum number of resubmit actions in a flow translation, whether they are
76 * recursive or not. */
77 #define MAX_RESUBMITS (MAX_RESUBMIT_RECURSION * MAX_RESUBMIT_RECURSION)
78
79 struct xbridge {
80 struct hmap_node hmap_node; /* Node in global 'xbridges' map. */
81 struct ofproto_dpif *ofproto; /* Key in global 'xbridges' map. */
82
83 struct ovs_list xbundles; /* Owned xbundles. */
84 struct hmap xports; /* Indexed by ofp_port. */
85
86 char *name; /* Name used in log messages. */
87 struct dpif *dpif; /* Datapath interface. */
88 struct mac_learning *ml; /* Mac learning handle. */
89 struct mcast_snooping *ms; /* Multicast Snooping handle. */
90 struct mbridge *mbridge; /* Mirroring. */
91 struct dpif_sflow *sflow; /* SFlow handle, or null. */
92 struct dpif_ipfix *ipfix; /* Ipfix handle, or null. */
93 struct netflow *netflow; /* Netflow handle, or null. */
94 struct stp *stp; /* STP or null if disabled. */
95 struct rstp *rstp; /* RSTP or null if disabled. */
96
97 bool has_in_band; /* Bridge has in band control? */
98 bool forward_bpdu; /* Bridge forwards STP BPDUs? */
99
100 /* Datapath feature support. */
101 struct dpif_backer_support support;
102 };
103
104 struct xbundle {
105 struct hmap_node hmap_node; /* In global 'xbundles' map. */
106 struct ofbundle *ofbundle; /* Key in global 'xbundles' map. */
107
108 struct ovs_list list_node; /* In parent 'xbridges' list. */
109 struct xbridge *xbridge; /* Parent xbridge. */
110
111 struct ovs_list xports; /* Contains "struct xport"s. */
112
113 char *name; /* Name used in log messages. */
114 struct bond *bond; /* Nonnull iff more than one port. */
115 struct lacp *lacp; /* LACP handle or null. */
116
117 enum port_vlan_mode vlan_mode; /* VLAN mode. */
118 int vlan; /* -1=trunk port, else a 12-bit VLAN ID. */
119 unsigned long *trunks; /* Bitmap of trunked VLANs, if 'vlan' == -1.
120 * NULL if all VLANs are trunked. */
121 bool use_priority_tags; /* Use 802.1p tag for frames in VLAN 0? */
122 bool floodable; /* No port has OFPUTIL_PC_NO_FLOOD set? */
123 };
124
125 struct xport {
126 struct hmap_node hmap_node; /* Node in global 'xports' map. */
127 struct ofport_dpif *ofport; /* Key in global 'xports map. */
128
129 struct hmap_node ofp_node; /* Node in parent xbridge 'xports' map. */
130 ofp_port_t ofp_port; /* Key in parent xbridge 'xports' map. */
131
132 odp_port_t odp_port; /* Datapath port number or ODPP_NONE. */
133
134 struct ovs_list bundle_node; /* In parent xbundle (if it exists). */
135 struct xbundle *xbundle; /* Parent xbundle or null. */
136
137 struct netdev *netdev; /* 'ofport''s netdev. */
138
139 struct xbridge *xbridge; /* Parent bridge. */
140 struct xport *peer; /* Patch port peer or null. */
141
142 enum ofputil_port_config config; /* OpenFlow port configuration. */
143 enum ofputil_port_state state; /* OpenFlow port state. */
144 int stp_port_no; /* STP port number or -1 if not in use. */
145 struct rstp_port *rstp_port; /* RSTP port or null. */
146
147 struct hmap skb_priorities; /* Map of 'skb_priority_to_dscp's. */
148
149 bool may_enable; /* May be enabled in bonds. */
150 bool is_tunnel; /* Is a tunnel port. */
151
152 struct cfm *cfm; /* CFM handle or null. */
153 struct bfd *bfd; /* BFD handle or null. */
154 struct lldp *lldp; /* LLDP handle or null. */
155 };
156
157 struct xlate_ctx {
158 struct xlate_in *xin;
159 struct xlate_out *xout;
160
161 const struct xbridge *xbridge;
162
163 /* Flow tables version at the beginning of the translation. */
164 cls_version_t tables_version;
165
166 /* Flow at the last commit. */
167 struct flow base_flow;
168
169 /* Tunnel IP destination address as received. This is stored separately
170 * as the base_flow.tunnel is cleared on init to reflect the datapath
171 * behavior. Used to make sure not to send tunneled output to ourselves,
172 * which might lead to an infinite loop. This could happen easily
173 * if a tunnel is marked as 'ip_remote=flow', and the flow does not
174 * actually set the tun_dst field. */
175 struct in6_addr orig_tunnel_ipv6_dst;
176
177 /* Stack for the push and pop actions. Each stack element is of type
178 * "union mf_subvalue". */
179 struct ofpbuf stack;
180
181 /* The rule that we are currently translating, or NULL. */
182 struct rule_dpif *rule;
183
184 /* Flow translation populates this with wildcards relevant in translation.
185 * When 'xin->wc' is nonnull, this is the same pointer. When 'xin->wc' is
186 * null, this is a pointer to uninitialized scratch memory. This allows
187 * code to blindly write to 'ctx->wc' without worrying about whether the
188 * caller really wants wildcards. */
189 struct flow_wildcards *wc;
190
191 /* Output buffer for datapath actions. When 'xin->odp_actions' is nonnull,
192 * this is the same pointer. When 'xin->odp_actions' is null, this points
193 * to a scratch ofpbuf. This allows code to add actions to
194 * 'ctx->odp_actions' without worrying about whether the caller really
195 * wants actions. */
196 struct ofpbuf *odp_actions;
197
198 /* Resubmit statistics, via xlate_table_action(). */
199 int recurse; /* Current resubmit nesting depth. */
200 int resubmits; /* Total number of resubmits. */
201 bool in_group; /* Currently translating ofgroup, if true. */
202 bool in_action_set; /* Currently translating action_set, if true. */
203
204 uint8_t table_id; /* OpenFlow table ID where flow was found. */
205 ovs_be64 rule_cookie; /* Cookie of the rule being translated. */
206 uint32_t orig_skb_priority; /* Priority when packet arrived. */
207 uint32_t sflow_n_outputs; /* Number of output ports. */
208 odp_port_t sflow_odp_port; /* Output port for composing sFlow action. */
209 ofp_port_t nf_output_iface; /* Output interface index for NetFlow. */
210 bool exit; /* No further actions should be processed. */
211 mirror_mask_t mirrors; /* Bitmap of associated mirrors. */
212
213 /* These are used for non-bond recirculation. The recirculation IDs are
214 * stored in xout and must be associated with a datapath flow (ukey),
215 * otherwise they will be freed when the xout is uninitialized.
216 *
217 *
218 * Steps in Recirculation Translation
219 * ==================================
220 *
221 * At some point during translation, the code recognizes the need for
222 * recirculation. For example, recirculation is necessary when, after
223 * popping the last MPLS label, an action or a match tries to examine or
224 * modify a field that has been newly revealed following the MPLS label.
225 *
226 * The simplest part of the work to be done is to commit existing changes to
227 * the packet, which produces datapath actions corresponding to the changes,
228 * and after this, add an OVS_ACTION_ATTR_RECIRC datapath action.
229 *
230 * The main problem here is preserving state. When the datapath executes
231 * OVS_ACTION_ATTR_RECIRC, it will upcall to userspace to get a translation
232 * for the post-recirculation actions. At this point userspace has to
233 * resume the translation where it left off, which means that it has to
234 * execute the following:
235 *
236 * - The action that prompted recirculation, and any actions following
237 * it within the same flow.
238 *
239 * - If the action that prompted recirculation was invoked within a
240 * NXAST_RESUBMIT, then any actions following the resubmit. These
241 * "resubmit"s can be nested, so this has to go all the way up the
242 * control stack.
243 *
244 * - The OpenFlow 1.1+ action set.
245 *
246 * State that actions and flow table lookups can depend on, such as the
247 * following, must also be preserved:
248 *
249 * - Metadata fields (input port, registers, OF1.1+ metadata, ...).
250 *
251 * - Action set, stack
252 *
253 * - The table ID and cookie of the flow being translated at each level
254 * of the control stack (since OFPAT_CONTROLLER actions send these to
255 * the controller).
256 *
257 * Translation allows for the control of this state preservation via these
258 * members. When a need for recirculation is identified, the translation
259 * process:
260 *
261 * 1. Sets 'recirc_action_offset' to the current size of 'action_set'. The
262 * action set is part of what needs to be preserved, so this allows the
263 * action set and the additional state to share the 'action_set' buffer.
264 * Later steps can tell that setup for recirculation is in progress from
265 * the nonnegative value of 'recirc_action_offset'.
266 *
267 * 2. Sets 'exit' to true to tell later steps that we're exiting from the
268 * translation process.
269 *
270 * 3. Adds an OFPACT_UNROLL_XLATE action to 'action_set'. This action
271 * holds the current table ID and cookie so that they can be restored
272 * during a post-recirculation upcall translation.
273 *
274 * 4. Adds the action that prompted recirculation and any actions following
275 * it within the same flow to 'action_set', so that they can be executed
276 * during a post-recirculation upcall translation.
277 *
278 * 5. Returns.
279 *
280 * 6. The action that prompted recirculation might be nested in a stack of
281 * nested "resubmit"s that have actions remaining. Each of these notices
282 * that we're exiting (from 'exit') and that recirculation setup is in
283 * progress (from 'recirc_action_offset') and responds by adding more
284 * OFPACT_UNROLL_XLATE actions to 'action_set', as necessary, and any
285 * actions that were yet unprocessed.
286 *
287 * The caller stores all the state produced by this process associated with
288 * the recirculation ID. For post-recirculation upcall translation, the
289 * caller passes it back in for the new translation to execute. The
290 * process yielded a set of ofpacts that can be translated directly, so it
291 * is not much of a special case at that point.
292 */
293 int recirc_action_offset; /* Offset in 'action_set' to actions to be
294 * executed after recirculation, or -1. */
295 int last_unroll_offset; /* Offset in 'action_set' to the latest unroll
296 * action, or -1. */
297
298 /* True if a packet was but is no longer MPLS (due to an MPLS pop action).
299 * This is a trigger for recirculation in cases where translating an action
300 * or looking up a flow requires access to the fields of the packet after
301 * the MPLS label stack that was originally present. */
302 bool was_mpls;
303
304 /* True if conntrack has been performed on this packet during processing
305 * on the current bridge. This is used to determine whether conntrack
306 * state from the datapath should be honored after recirculation. */
307 bool conntracked;
308
309 /* Pointer to an embedded NAT action in a conntrack action, or NULL. */
310 struct ofpact_nat *ct_nat_action;
311
312 /* OpenFlow 1.1+ action set.
313 *
314 * 'action_set' accumulates "struct ofpact"s added by OFPACT_WRITE_ACTIONS.
315 * When translation is otherwise complete, ofpacts_execute_action_set()
316 * converts it to a set of "struct ofpact"s that can be translated into
317 * datapath actions. */
318 bool action_set_has_group; /* Action set contains OFPACT_GROUP? */
319 struct ofpbuf action_set; /* Action set. */
320
321 enum xlate_error error; /* Translation failed. */
322 };
323
324 const char *xlate_strerror(enum xlate_error error)
325 {
326 switch (error) {
327 case XLATE_OK:
328 return "OK";
329 case XLATE_BRIDGE_NOT_FOUND:
330 return "Bridge not found";
331 case XLATE_RECURSION_TOO_DEEP:
332 return "Recursion too deep";
333 case XLATE_TOO_MANY_RESUBMITS:
334 return "Too many resubmits";
335 case XLATE_STACK_TOO_DEEP:
336 return "Stack too deep";
337 case XLATE_NO_RECIRCULATION_CONTEXT:
338 return "No recirculation context";
339 case XLATE_RECIRCULATION_CONFLICT:
340 return "Recirculation conflict";
341 case XLATE_TOO_MANY_MPLS_LABELS:
342 return "Too many MPLS labels";
343 }
344 return "Unknown error";
345 }
346
347 static void xlate_action_set(struct xlate_ctx *ctx);
348 static void xlate_commit_actions(struct xlate_ctx *ctx);
349
350 static void
351 ctx_trigger_recirculation(struct xlate_ctx *ctx)
352 {
353 ctx->exit = true;
354 ctx->recirc_action_offset = ctx->action_set.size;
355 }
356
357 static bool
358 ctx_first_recirculation_action(const struct xlate_ctx *ctx)
359 {
360 return ctx->recirc_action_offset == ctx->action_set.size;
361 }
362
363 static inline bool
364 exit_recirculates(const struct xlate_ctx *ctx)
365 {
366 /* When recirculating the 'recirc_action_offset' has a non-negative value.
367 */
368 return ctx->recirc_action_offset >= 0;
369 }
370
371 static void compose_recirculate_action(struct xlate_ctx *ctx);
372
373 /* A controller may use OFPP_NONE as the ingress port to indicate that
374 * it did not arrive on a "real" port. 'ofpp_none_bundle' exists for
375 * when an input bundle is needed for validation (e.g., mirroring or
376 * OFPP_NORMAL processing). It is not connected to an 'ofproto' or have
377 * any 'port' structs, so care must be taken when dealing with it. */
378 static struct xbundle ofpp_none_bundle = {
379 .name = "OFPP_NONE",
380 .vlan_mode = PORT_VLAN_TRUNK
381 };
382
383 /* Node in 'xport''s 'skb_priorities' map. Used to maintain a map from
384 * 'priority' (the datapath's term for QoS queue) to the dscp bits which all
385 * traffic egressing the 'ofport' with that priority should be marked with. */
386 struct skb_priority_to_dscp {
387 struct hmap_node hmap_node; /* Node in 'ofport_dpif''s 'skb_priorities'. */
388 uint32_t skb_priority; /* Priority of this queue (see struct flow). */
389
390 uint8_t dscp; /* DSCP bits to mark outgoing traffic with. */
391 };
392
393 enum xc_type {
394 XC_RULE,
395 XC_BOND,
396 XC_NETDEV,
397 XC_NETFLOW,
398 XC_MIRROR,
399 XC_LEARN,
400 XC_NORMAL,
401 XC_FIN_TIMEOUT,
402 XC_GROUP,
403 XC_TNL_NEIGH,
404 };
405
406 /* xlate_cache entries hold enough information to perform the side effects of
407 * xlate_actions() for a rule, without needing to perform rule translation
408 * from scratch. The primary usage of these is to submit statistics to objects
409 * that a flow relates to, although they may be used for other effects as well
410 * (for instance, refreshing hard timeouts for learned flows). */
411 struct xc_entry {
412 enum xc_type type;
413 union {
414 struct rule_dpif *rule;
415 struct {
416 struct netdev *tx;
417 struct netdev *rx;
418 struct bfd *bfd;
419 } dev;
420 struct {
421 struct netflow *netflow;
422 struct flow *flow;
423 ofp_port_t iface;
424 } nf;
425 struct {
426 struct mbridge *mbridge;
427 mirror_mask_t mirrors;
428 } mirror;
429 struct {
430 struct bond *bond;
431 struct flow *flow;
432 uint16_t vid;
433 } bond;
434 struct {
435 struct ofproto_dpif *ofproto;
436 struct ofputil_flow_mod *fm;
437 struct ofpbuf *ofpacts;
438 } learn;
439 struct {
440 struct ofproto_dpif *ofproto;
441 struct flow *flow;
442 int vlan;
443 } normal;
444 struct {
445 struct rule_dpif *rule;
446 uint16_t idle;
447 uint16_t hard;
448 } fin;
449 struct {
450 struct group_dpif *group;
451 struct ofputil_bucket *bucket;
452 } group;
453 struct {
454 char br_name[IFNAMSIZ];
455 struct in6_addr d_ipv6;
456 } tnl_neigh_cache;
457 } u;
458 };
459
460 #define XC_ENTRY_FOR_EACH(entry, entries, xcache) \
461 entries = xcache->entries; \
462 for (entry = ofpbuf_try_pull(&entries, sizeof *entry); \
463 entry; \
464 entry = ofpbuf_try_pull(&entries, sizeof *entry))
465
466 struct xlate_cache {
467 struct ofpbuf entries;
468 };
469
470 /* Xlate config contains hash maps of all bridges, bundles and ports.
471 * Xcfgp contains the pointer to the current xlate configuration.
472 * When the main thread needs to change the configuration, it copies xcfgp to
473 * new_xcfg and edits new_xcfg. This enables the use of RCU locking which
474 * does not block handler and revalidator threads. */
475 struct xlate_cfg {
476 struct hmap xbridges;
477 struct hmap xbundles;
478 struct hmap xports;
479 };
480 static OVSRCU_TYPE(struct xlate_cfg *) xcfgp = OVSRCU_INITIALIZER(NULL);
481 static struct xlate_cfg *new_xcfg = NULL;
482
483 static bool may_receive(const struct xport *, struct xlate_ctx *);
484 static void do_xlate_actions(const struct ofpact *, size_t ofpacts_len,
485 struct xlate_ctx *);
486 static void xlate_normal(struct xlate_ctx *);
487 static inline void xlate_report(struct xlate_ctx *, const char *, ...)
488 OVS_PRINTF_FORMAT(2, 3);
489 static void xlate_table_action(struct xlate_ctx *, ofp_port_t in_port,
490 uint8_t table_id, bool may_packet_in,
491 bool honor_table_miss);
492 static bool input_vid_is_valid(uint16_t vid, struct xbundle *, bool warn);
493 static uint16_t input_vid_to_vlan(const struct xbundle *, uint16_t vid);
494 static void output_normal(struct xlate_ctx *, const struct xbundle *,
495 uint16_t vlan);
496
497 /* Optional bond recirculation parameter to compose_output_action(). */
498 struct xlate_bond_recirc {
499 uint32_t recirc_id; /* !0 Use recirculation instead of output. */
500 uint8_t hash_alg; /* !0 Compute hash for recirc before. */
501 uint32_t hash_basis; /* Compute hash for recirc before. */
502 };
503
504 static void compose_output_action(struct xlate_ctx *, ofp_port_t ofp_port,
505 const struct xlate_bond_recirc *xr);
506
507 static struct xbridge *xbridge_lookup(struct xlate_cfg *,
508 const struct ofproto_dpif *);
509 static struct xbundle *xbundle_lookup(struct xlate_cfg *,
510 const struct ofbundle *);
511 static struct xport *xport_lookup(struct xlate_cfg *,
512 const struct ofport_dpif *);
513 static struct xport *get_ofp_port(const struct xbridge *, ofp_port_t ofp_port);
514 static struct skb_priority_to_dscp *get_skb_priority(const struct xport *,
515 uint32_t skb_priority);
516 static void clear_skb_priorities(struct xport *);
517 static size_t count_skb_priorities(const struct xport *);
518 static bool dscp_from_skb_priority(const struct xport *, uint32_t skb_priority,
519 uint8_t *dscp);
520
521 static struct xc_entry *xlate_cache_add_entry(struct xlate_cache *xc,
522 enum xc_type type);
523 static void xlate_xbridge_init(struct xlate_cfg *, struct xbridge *);
524 static void xlate_xbundle_init(struct xlate_cfg *, struct xbundle *);
525 static void xlate_xport_init(struct xlate_cfg *, struct xport *);
526 static void xlate_xbridge_set(struct xbridge *, struct dpif *,
527 const struct mac_learning *, struct stp *,
528 struct rstp *, const struct mcast_snooping *,
529 const struct mbridge *,
530 const struct dpif_sflow *,
531 const struct dpif_ipfix *,
532 const struct netflow *,
533 bool forward_bpdu, bool has_in_band,
534 const struct dpif_backer_support *);
535 static void xlate_xbundle_set(struct xbundle *xbundle,
536 enum port_vlan_mode vlan_mode, int vlan,
537 unsigned long *trunks, bool use_priority_tags,
538 const struct bond *bond, const struct lacp *lacp,
539 bool floodable);
540 static void xlate_xport_set(struct xport *xport, odp_port_t odp_port,
541 const struct netdev *netdev, const struct cfm *cfm,
542 const struct bfd *bfd, const struct lldp *lldp,
543 int stp_port_no, const struct rstp_port *rstp_port,
544 enum ofputil_port_config config,
545 enum ofputil_port_state state, bool is_tunnel,
546 bool may_enable);
547 static void xlate_xbridge_remove(struct xlate_cfg *, struct xbridge *);
548 static void xlate_xbundle_remove(struct xlate_cfg *, struct xbundle *);
549 static void xlate_xport_remove(struct xlate_cfg *, struct xport *);
550 static void xlate_xbridge_copy(struct xbridge *);
551 static void xlate_xbundle_copy(struct xbridge *, struct xbundle *);
552 static void xlate_xport_copy(struct xbridge *, struct xbundle *,
553 struct xport *);
554 static void xlate_xcfg_free(struct xlate_cfg *);
555
556 static inline void
557 xlate_report(struct xlate_ctx *ctx, const char *format, ...)
558 {
559 if (OVS_UNLIKELY(ctx->xin->report_hook)) {
560 va_list args;
561
562 va_start(args, format);
563 ctx->xin->report_hook(ctx->xin, ctx->recurse, format, args);
564 va_end(args);
565 }
566 }
567
568 static struct vlog_rate_limit error_report_rl = VLOG_RATE_LIMIT_INIT(1, 5);
569
570 #define XLATE_REPORT_ERROR(CTX, ...) \
571 do { \
572 if (OVS_UNLIKELY((CTX)->xin->report_hook)) { \
573 xlate_report(CTX, __VA_ARGS__); \
574 } else { \
575 VLOG_ERR_RL(&error_report_rl, __VA_ARGS__); \
576 } \
577 } while (0)
578
579 static inline void
580 xlate_report_actions(struct xlate_ctx *ctx, const char *title,
581 const struct ofpact *ofpacts, size_t ofpacts_len)
582 {
583 if (OVS_UNLIKELY(ctx->xin->report_hook)) {
584 struct ds s = DS_EMPTY_INITIALIZER;
585 ofpacts_format(ofpacts, ofpacts_len, &s);
586 xlate_report(ctx, "%s: %s", title, ds_cstr(&s));
587 ds_destroy(&s);
588 }
589 }
590
591 static void
592 xlate_xbridge_init(struct xlate_cfg *xcfg, struct xbridge *xbridge)
593 {
594 list_init(&xbridge->xbundles);
595 hmap_init(&xbridge->xports);
596 hmap_insert(&xcfg->xbridges, &xbridge->hmap_node,
597 hash_pointer(xbridge->ofproto, 0));
598 }
599
600 static void
601 xlate_xbundle_init(struct xlate_cfg *xcfg, struct xbundle *xbundle)
602 {
603 list_init(&xbundle->xports);
604 list_insert(&xbundle->xbridge->xbundles, &xbundle->list_node);
605 hmap_insert(&xcfg->xbundles, &xbundle->hmap_node,
606 hash_pointer(xbundle->ofbundle, 0));
607 }
608
609 static void
610 xlate_xport_init(struct xlate_cfg *xcfg, struct xport *xport)
611 {
612 hmap_init(&xport->skb_priorities);
613 hmap_insert(&xcfg->xports, &xport->hmap_node,
614 hash_pointer(xport->ofport, 0));
615 hmap_insert(&xport->xbridge->xports, &xport->ofp_node,
616 hash_ofp_port(xport->ofp_port));
617 }
618
619 static void
620 xlate_xbridge_set(struct xbridge *xbridge,
621 struct dpif *dpif,
622 const struct mac_learning *ml, struct stp *stp,
623 struct rstp *rstp, const struct mcast_snooping *ms,
624 const struct mbridge *mbridge,
625 const struct dpif_sflow *sflow,
626 const struct dpif_ipfix *ipfix,
627 const struct netflow *netflow,
628 bool forward_bpdu, bool has_in_band,
629 const struct dpif_backer_support *support)
630 {
631 if (xbridge->ml != ml) {
632 mac_learning_unref(xbridge->ml);
633 xbridge->ml = mac_learning_ref(ml);
634 }
635
636 if (xbridge->ms != ms) {
637 mcast_snooping_unref(xbridge->ms);
638 xbridge->ms = mcast_snooping_ref(ms);
639 }
640
641 if (xbridge->mbridge != mbridge) {
642 mbridge_unref(xbridge->mbridge);
643 xbridge->mbridge = mbridge_ref(mbridge);
644 }
645
646 if (xbridge->sflow != sflow) {
647 dpif_sflow_unref(xbridge->sflow);
648 xbridge->sflow = dpif_sflow_ref(sflow);
649 }
650
651 if (xbridge->ipfix != ipfix) {
652 dpif_ipfix_unref(xbridge->ipfix);
653 xbridge->ipfix = dpif_ipfix_ref(ipfix);
654 }
655
656 if (xbridge->stp != stp) {
657 stp_unref(xbridge->stp);
658 xbridge->stp = stp_ref(stp);
659 }
660
661 if (xbridge->rstp != rstp) {
662 rstp_unref(xbridge->rstp);
663 xbridge->rstp = rstp_ref(rstp);
664 }
665
666 if (xbridge->netflow != netflow) {
667 netflow_unref(xbridge->netflow);
668 xbridge->netflow = netflow_ref(netflow);
669 }
670
671 xbridge->dpif = dpif;
672 xbridge->forward_bpdu = forward_bpdu;
673 xbridge->has_in_band = has_in_band;
674 xbridge->support = *support;
675 }
676
677 static void
678 xlate_xbundle_set(struct xbundle *xbundle,
679 enum port_vlan_mode vlan_mode, int vlan,
680 unsigned long *trunks, bool use_priority_tags,
681 const struct bond *bond, const struct lacp *lacp,
682 bool floodable)
683 {
684 ovs_assert(xbundle->xbridge);
685
686 xbundle->vlan_mode = vlan_mode;
687 xbundle->vlan = vlan;
688 xbundle->trunks = trunks;
689 xbundle->use_priority_tags = use_priority_tags;
690 xbundle->floodable = floodable;
691
692 if (xbundle->bond != bond) {
693 bond_unref(xbundle->bond);
694 xbundle->bond = bond_ref(bond);
695 }
696
697 if (xbundle->lacp != lacp) {
698 lacp_unref(xbundle->lacp);
699 xbundle->lacp = lacp_ref(lacp);
700 }
701 }
702
703 static void
704 xlate_xport_set(struct xport *xport, odp_port_t odp_port,
705 const struct netdev *netdev, const struct cfm *cfm,
706 const struct bfd *bfd, const struct lldp *lldp, int stp_port_no,
707 const struct rstp_port* rstp_port,
708 enum ofputil_port_config config, enum ofputil_port_state state,
709 bool is_tunnel, bool may_enable)
710 {
711 xport->config = config;
712 xport->state = state;
713 xport->stp_port_no = stp_port_no;
714 xport->is_tunnel = is_tunnel;
715 xport->may_enable = may_enable;
716 xport->odp_port = odp_port;
717
718 if (xport->rstp_port != rstp_port) {
719 rstp_port_unref(xport->rstp_port);
720 xport->rstp_port = rstp_port_ref(rstp_port);
721 }
722
723 if (xport->cfm != cfm) {
724 cfm_unref(xport->cfm);
725 xport->cfm = cfm_ref(cfm);
726 }
727
728 if (xport->bfd != bfd) {
729 bfd_unref(xport->bfd);
730 xport->bfd = bfd_ref(bfd);
731 }
732
733 if (xport->lldp != lldp) {
734 lldp_unref(xport->lldp);
735 xport->lldp = lldp_ref(lldp);
736 }
737
738 if (xport->netdev != netdev) {
739 netdev_close(xport->netdev);
740 xport->netdev = netdev_ref(netdev);
741 }
742 }
743
744 static void
745 xlate_xbridge_copy(struct xbridge *xbridge)
746 {
747 struct xbundle *xbundle;
748 struct xport *xport;
749 struct xbridge *new_xbridge = xzalloc(sizeof *xbridge);
750 new_xbridge->ofproto = xbridge->ofproto;
751 new_xbridge->name = xstrdup(xbridge->name);
752 xlate_xbridge_init(new_xcfg, new_xbridge);
753
754 xlate_xbridge_set(new_xbridge,
755 xbridge->dpif, xbridge->ml, xbridge->stp,
756 xbridge->rstp, xbridge->ms, xbridge->mbridge,
757 xbridge->sflow, xbridge->ipfix, xbridge->netflow,
758 xbridge->forward_bpdu, xbridge->has_in_band,
759 &xbridge->support);
760 LIST_FOR_EACH (xbundle, list_node, &xbridge->xbundles) {
761 xlate_xbundle_copy(new_xbridge, xbundle);
762 }
763
764 /* Copy xports which are not part of a xbundle */
765 HMAP_FOR_EACH (xport, ofp_node, &xbridge->xports) {
766 if (!xport->xbundle) {
767 xlate_xport_copy(new_xbridge, NULL, xport);
768 }
769 }
770 }
771
772 static void
773 xlate_xbundle_copy(struct xbridge *xbridge, struct xbundle *xbundle)
774 {
775 struct xport *xport;
776 struct xbundle *new_xbundle = xzalloc(sizeof *xbundle);
777 new_xbundle->ofbundle = xbundle->ofbundle;
778 new_xbundle->xbridge = xbridge;
779 new_xbundle->name = xstrdup(xbundle->name);
780 xlate_xbundle_init(new_xcfg, new_xbundle);
781
782 xlate_xbundle_set(new_xbundle, xbundle->vlan_mode,
783 xbundle->vlan, xbundle->trunks,
784 xbundle->use_priority_tags, xbundle->bond, xbundle->lacp,
785 xbundle->floodable);
786 LIST_FOR_EACH (xport, bundle_node, &xbundle->xports) {
787 xlate_xport_copy(xbridge, new_xbundle, xport);
788 }
789 }
790
791 static void
792 xlate_xport_copy(struct xbridge *xbridge, struct xbundle *xbundle,
793 struct xport *xport)
794 {
795 struct skb_priority_to_dscp *pdscp, *new_pdscp;
796 struct xport *new_xport = xzalloc(sizeof *xport);
797 new_xport->ofport = xport->ofport;
798 new_xport->ofp_port = xport->ofp_port;
799 new_xport->xbridge = xbridge;
800 xlate_xport_init(new_xcfg, new_xport);
801
802 xlate_xport_set(new_xport, xport->odp_port, xport->netdev, xport->cfm,
803 xport->bfd, xport->lldp, xport->stp_port_no,
804 xport->rstp_port, xport->config, xport->state,
805 xport->is_tunnel, xport->may_enable);
806
807 if (xport->peer) {
808 struct xport *peer = xport_lookup(new_xcfg, xport->peer->ofport);
809 if (peer) {
810 new_xport->peer = peer;
811 new_xport->peer->peer = new_xport;
812 }
813 }
814
815 if (xbundle) {
816 new_xport->xbundle = xbundle;
817 list_insert(&new_xport->xbundle->xports, &new_xport->bundle_node);
818 }
819
820 HMAP_FOR_EACH (pdscp, hmap_node, &xport->skb_priorities) {
821 new_pdscp = xmalloc(sizeof *pdscp);
822 new_pdscp->skb_priority = pdscp->skb_priority;
823 new_pdscp->dscp = pdscp->dscp;
824 hmap_insert(&new_xport->skb_priorities, &new_pdscp->hmap_node,
825 hash_int(new_pdscp->skb_priority, 0));
826 }
827 }
828
829 /* Sets the current xlate configuration to new_xcfg and frees the old xlate
830 * configuration in xcfgp.
831 *
832 * This needs to be called after editing the xlate configuration.
833 *
834 * Functions that edit the new xlate configuration are
835 * xlate_<ofport/bundle/ofport>_set and xlate_<ofport/bundle/ofport>_remove.
836 *
837 * A sample workflow:
838 *
839 * xlate_txn_start();
840 * ...
841 * edit_xlate_configuration();
842 * ...
843 * xlate_txn_commit(); */
844 void
845 xlate_txn_commit(void)
846 {
847 struct xlate_cfg *xcfg = ovsrcu_get(struct xlate_cfg *, &xcfgp);
848
849 ovsrcu_set(&xcfgp, new_xcfg);
850 ovsrcu_synchronize();
851 xlate_xcfg_free(xcfg);
852 new_xcfg = NULL;
853 }
854
855 /* Copies the current xlate configuration in xcfgp to new_xcfg.
856 *
857 * This needs to be called prior to editing the xlate configuration. */
858 void
859 xlate_txn_start(void)
860 {
861 struct xbridge *xbridge;
862 struct xlate_cfg *xcfg;
863
864 ovs_assert(!new_xcfg);
865
866 new_xcfg = xmalloc(sizeof *new_xcfg);
867 hmap_init(&new_xcfg->xbridges);
868 hmap_init(&new_xcfg->xbundles);
869 hmap_init(&new_xcfg->xports);
870
871 xcfg = ovsrcu_get(struct xlate_cfg *, &xcfgp);
872 if (!xcfg) {
873 return;
874 }
875
876 HMAP_FOR_EACH (xbridge, hmap_node, &xcfg->xbridges) {
877 xlate_xbridge_copy(xbridge);
878 }
879 }
880
881
882 static void
883 xlate_xcfg_free(struct xlate_cfg *xcfg)
884 {
885 struct xbridge *xbridge, *next_xbridge;
886
887 if (!xcfg) {
888 return;
889 }
890
891 HMAP_FOR_EACH_SAFE (xbridge, next_xbridge, hmap_node, &xcfg->xbridges) {
892 xlate_xbridge_remove(xcfg, xbridge);
893 }
894
895 hmap_destroy(&xcfg->xbridges);
896 hmap_destroy(&xcfg->xbundles);
897 hmap_destroy(&xcfg->xports);
898 free(xcfg);
899 }
900
901 void
902 xlate_ofproto_set(struct ofproto_dpif *ofproto, const char *name,
903 struct dpif *dpif,
904 const struct mac_learning *ml, struct stp *stp,
905 struct rstp *rstp, const struct mcast_snooping *ms,
906 const struct mbridge *mbridge,
907 const struct dpif_sflow *sflow,
908 const struct dpif_ipfix *ipfix,
909 const struct netflow *netflow,
910 bool forward_bpdu, bool has_in_band,
911 const struct dpif_backer_support *support)
912 {
913 struct xbridge *xbridge;
914
915 ovs_assert(new_xcfg);
916
917 xbridge = xbridge_lookup(new_xcfg, ofproto);
918 if (!xbridge) {
919 xbridge = xzalloc(sizeof *xbridge);
920 xbridge->ofproto = ofproto;
921
922 xlate_xbridge_init(new_xcfg, xbridge);
923 }
924
925 free(xbridge->name);
926 xbridge->name = xstrdup(name);
927
928 xlate_xbridge_set(xbridge, dpif, ml, stp, rstp, ms, mbridge, sflow, ipfix,
929 netflow, forward_bpdu, has_in_band, support);
930 }
931
932 static void
933 xlate_xbridge_remove(struct xlate_cfg *xcfg, struct xbridge *xbridge)
934 {
935 struct xbundle *xbundle, *next_xbundle;
936 struct xport *xport, *next_xport;
937
938 if (!xbridge) {
939 return;
940 }
941
942 HMAP_FOR_EACH_SAFE (xport, next_xport, ofp_node, &xbridge->xports) {
943 xlate_xport_remove(xcfg, xport);
944 }
945
946 LIST_FOR_EACH_SAFE (xbundle, next_xbundle, list_node, &xbridge->xbundles) {
947 xlate_xbundle_remove(xcfg, xbundle);
948 }
949
950 hmap_remove(&xcfg->xbridges, &xbridge->hmap_node);
951 mac_learning_unref(xbridge->ml);
952 mcast_snooping_unref(xbridge->ms);
953 mbridge_unref(xbridge->mbridge);
954 dpif_sflow_unref(xbridge->sflow);
955 dpif_ipfix_unref(xbridge->ipfix);
956 stp_unref(xbridge->stp);
957 rstp_unref(xbridge->rstp);
958 hmap_destroy(&xbridge->xports);
959 free(xbridge->name);
960 free(xbridge);
961 }
962
963 void
964 xlate_remove_ofproto(struct ofproto_dpif *ofproto)
965 {
966 struct xbridge *xbridge;
967
968 ovs_assert(new_xcfg);
969
970 xbridge = xbridge_lookup(new_xcfg, ofproto);
971 xlate_xbridge_remove(new_xcfg, xbridge);
972 }
973
974 void
975 xlate_bundle_set(struct ofproto_dpif *ofproto, struct ofbundle *ofbundle,
976 const char *name, enum port_vlan_mode vlan_mode, int vlan,
977 unsigned long *trunks, bool use_priority_tags,
978 const struct bond *bond, const struct lacp *lacp,
979 bool floodable)
980 {
981 struct xbundle *xbundle;
982
983 ovs_assert(new_xcfg);
984
985 xbundle = xbundle_lookup(new_xcfg, ofbundle);
986 if (!xbundle) {
987 xbundle = xzalloc(sizeof *xbundle);
988 xbundle->ofbundle = ofbundle;
989 xbundle->xbridge = xbridge_lookup(new_xcfg, ofproto);
990
991 xlate_xbundle_init(new_xcfg, xbundle);
992 }
993
994 free(xbundle->name);
995 xbundle->name = xstrdup(name);
996
997 xlate_xbundle_set(xbundle, vlan_mode, vlan, trunks,
998 use_priority_tags, bond, lacp, floodable);
999 }
1000
1001 static void
1002 xlate_xbundle_remove(struct xlate_cfg *xcfg, struct xbundle *xbundle)
1003 {
1004 struct xport *xport;
1005
1006 if (!xbundle) {
1007 return;
1008 }
1009
1010 LIST_FOR_EACH_POP (xport, bundle_node, &xbundle->xports) {
1011 xport->xbundle = NULL;
1012 }
1013
1014 hmap_remove(&xcfg->xbundles, &xbundle->hmap_node);
1015 list_remove(&xbundle->list_node);
1016 bond_unref(xbundle->bond);
1017 lacp_unref(xbundle->lacp);
1018 free(xbundle->name);
1019 free(xbundle);
1020 }
1021
1022 void
1023 xlate_bundle_remove(struct ofbundle *ofbundle)
1024 {
1025 struct xbundle *xbundle;
1026
1027 ovs_assert(new_xcfg);
1028
1029 xbundle = xbundle_lookup(new_xcfg, ofbundle);
1030 xlate_xbundle_remove(new_xcfg, xbundle);
1031 }
1032
1033 void
1034 xlate_ofport_set(struct ofproto_dpif *ofproto, struct ofbundle *ofbundle,
1035 struct ofport_dpif *ofport, ofp_port_t ofp_port,
1036 odp_port_t odp_port, const struct netdev *netdev,
1037 const struct cfm *cfm, const struct bfd *bfd,
1038 const struct lldp *lldp, struct ofport_dpif *peer,
1039 int stp_port_no, const struct rstp_port *rstp_port,
1040 const struct ofproto_port_queue *qdscp_list, size_t n_qdscp,
1041 enum ofputil_port_config config,
1042 enum ofputil_port_state state, bool is_tunnel,
1043 bool may_enable)
1044 {
1045 size_t i;
1046 struct xport *xport;
1047
1048 ovs_assert(new_xcfg);
1049
1050 xport = xport_lookup(new_xcfg, ofport);
1051 if (!xport) {
1052 xport = xzalloc(sizeof *xport);
1053 xport->ofport = ofport;
1054 xport->xbridge = xbridge_lookup(new_xcfg, ofproto);
1055 xport->ofp_port = ofp_port;
1056
1057 xlate_xport_init(new_xcfg, xport);
1058 }
1059
1060 ovs_assert(xport->ofp_port == ofp_port);
1061
1062 xlate_xport_set(xport, odp_port, netdev, cfm, bfd, lldp,
1063 stp_port_no, rstp_port, config, state, is_tunnel,
1064 may_enable);
1065
1066 if (xport->peer) {
1067 xport->peer->peer = NULL;
1068 }
1069 xport->peer = xport_lookup(new_xcfg, peer);
1070 if (xport->peer) {
1071 xport->peer->peer = xport;
1072 }
1073
1074 if (xport->xbundle) {
1075 list_remove(&xport->bundle_node);
1076 }
1077 xport->xbundle = xbundle_lookup(new_xcfg, ofbundle);
1078 if (xport->xbundle) {
1079 list_insert(&xport->xbundle->xports, &xport->bundle_node);
1080 }
1081
1082 clear_skb_priorities(xport);
1083 for (i = 0; i < n_qdscp; i++) {
1084 struct skb_priority_to_dscp *pdscp;
1085 uint32_t skb_priority;
1086
1087 if (dpif_queue_to_priority(xport->xbridge->dpif, qdscp_list[i].queue,
1088 &skb_priority)) {
1089 continue;
1090 }
1091
1092 pdscp = xmalloc(sizeof *pdscp);
1093 pdscp->skb_priority = skb_priority;
1094 pdscp->dscp = (qdscp_list[i].dscp << 2) & IP_DSCP_MASK;
1095 hmap_insert(&xport->skb_priorities, &pdscp->hmap_node,
1096 hash_int(pdscp->skb_priority, 0));
1097 }
1098 }
1099
1100 static void
1101 xlate_xport_remove(struct xlate_cfg *xcfg, struct xport *xport)
1102 {
1103 if (!xport) {
1104 return;
1105 }
1106
1107 if (xport->peer) {
1108 xport->peer->peer = NULL;
1109 xport->peer = NULL;
1110 }
1111
1112 if (xport->xbundle) {
1113 list_remove(&xport->bundle_node);
1114 }
1115
1116 clear_skb_priorities(xport);
1117 hmap_destroy(&xport->skb_priorities);
1118
1119 hmap_remove(&xcfg->xports, &xport->hmap_node);
1120 hmap_remove(&xport->xbridge->xports, &xport->ofp_node);
1121
1122 netdev_close(xport->netdev);
1123 rstp_port_unref(xport->rstp_port);
1124 cfm_unref(xport->cfm);
1125 bfd_unref(xport->bfd);
1126 lldp_unref(xport->lldp);
1127 free(xport);
1128 }
1129
1130 void
1131 xlate_ofport_remove(struct ofport_dpif *ofport)
1132 {
1133 struct xport *xport;
1134
1135 ovs_assert(new_xcfg);
1136
1137 xport = xport_lookup(new_xcfg, ofport);
1138 xlate_xport_remove(new_xcfg, xport);
1139 }
1140
1141 static struct ofproto_dpif *
1142 xlate_lookup_ofproto_(const struct dpif_backer *backer, const struct flow *flow,
1143 ofp_port_t *ofp_in_port, const struct xport **xportp)
1144 {
1145 struct xlate_cfg *xcfg = ovsrcu_get(struct xlate_cfg *, &xcfgp);
1146 const struct xport *xport;
1147
1148 xport = xport_lookup(xcfg, tnl_port_should_receive(flow)
1149 ? tnl_port_receive(flow)
1150 : odp_port_to_ofport(backer, flow->in_port.odp_port));
1151 if (OVS_UNLIKELY(!xport)) {
1152 return NULL;
1153 }
1154 *xportp = xport;
1155 if (ofp_in_port) {
1156 *ofp_in_port = xport->ofp_port;
1157 }
1158 return xport->xbridge->ofproto;
1159 }
1160
1161 /* Given a datapath and flow metadata ('backer', and 'flow' respectively)
1162 * returns the corresponding struct ofproto_dpif and OpenFlow port number. */
1163 struct ofproto_dpif *
1164 xlate_lookup_ofproto(const struct dpif_backer *backer, const struct flow *flow,
1165 ofp_port_t *ofp_in_port)
1166 {
1167 const struct xport *xport;
1168
1169 return xlate_lookup_ofproto_(backer, flow, ofp_in_port, &xport);
1170 }
1171
1172 /* Given a datapath and flow metadata ('backer', and 'flow' respectively),
1173 * optionally populates 'ofproto' with the ofproto_dpif, 'ofp_in_port' with the
1174 * openflow in_port, and 'ipfix', 'sflow', and 'netflow' with the appropriate
1175 * handles for those protocols if they're enabled. Caller may use the returned
1176 * pointers until quiescing, for longer term use additional references must
1177 * be taken.
1178 *
1179 * Returns 0 if successful, ENODEV if the parsed flow has no associated ofproto.
1180 */
1181 int
1182 xlate_lookup(const struct dpif_backer *backer, const struct flow *flow,
1183 struct ofproto_dpif **ofprotop, struct dpif_ipfix **ipfix,
1184 struct dpif_sflow **sflow, struct netflow **netflow,
1185 ofp_port_t *ofp_in_port)
1186 {
1187 struct ofproto_dpif *ofproto;
1188 const struct xport *xport;
1189
1190 ofproto = xlate_lookup_ofproto_(backer, flow, ofp_in_port, &xport);
1191
1192 if (!ofproto) {
1193 return ENODEV;
1194 }
1195
1196 if (ofprotop) {
1197 *ofprotop = ofproto;
1198 }
1199
1200 if (ipfix) {
1201 *ipfix = xport ? xport->xbridge->ipfix : NULL;
1202 }
1203
1204 if (sflow) {
1205 *sflow = xport ? xport->xbridge->sflow : NULL;
1206 }
1207
1208 if (netflow) {
1209 *netflow = xport ? xport->xbridge->netflow : NULL;
1210 }
1211
1212 return 0;
1213 }
1214
1215 static struct xbridge *
1216 xbridge_lookup(struct xlate_cfg *xcfg, const struct ofproto_dpif *ofproto)
1217 {
1218 struct hmap *xbridges;
1219 struct xbridge *xbridge;
1220
1221 if (!ofproto || !xcfg) {
1222 return NULL;
1223 }
1224
1225 xbridges = &xcfg->xbridges;
1226
1227 HMAP_FOR_EACH_IN_BUCKET (xbridge, hmap_node, hash_pointer(ofproto, 0),
1228 xbridges) {
1229 if (xbridge->ofproto == ofproto) {
1230 return xbridge;
1231 }
1232 }
1233 return NULL;
1234 }
1235
1236 static struct xbundle *
1237 xbundle_lookup(struct xlate_cfg *xcfg, const struct ofbundle *ofbundle)
1238 {
1239 struct hmap *xbundles;
1240 struct xbundle *xbundle;
1241
1242 if (!ofbundle || !xcfg) {
1243 return NULL;
1244 }
1245
1246 xbundles = &xcfg->xbundles;
1247
1248 HMAP_FOR_EACH_IN_BUCKET (xbundle, hmap_node, hash_pointer(ofbundle, 0),
1249 xbundles) {
1250 if (xbundle->ofbundle == ofbundle) {
1251 return xbundle;
1252 }
1253 }
1254 return NULL;
1255 }
1256
1257 static struct xport *
1258 xport_lookup(struct xlate_cfg *xcfg, const struct ofport_dpif *ofport)
1259 {
1260 struct hmap *xports;
1261 struct xport *xport;
1262
1263 if (!ofport || !xcfg) {
1264 return NULL;
1265 }
1266
1267 xports = &xcfg->xports;
1268
1269 HMAP_FOR_EACH_IN_BUCKET (xport, hmap_node, hash_pointer(ofport, 0),
1270 xports) {
1271 if (xport->ofport == ofport) {
1272 return xport;
1273 }
1274 }
1275 return NULL;
1276 }
1277
1278 static struct stp_port *
1279 xport_get_stp_port(const struct xport *xport)
1280 {
1281 return xport->xbridge->stp && xport->stp_port_no != -1
1282 ? stp_get_port(xport->xbridge->stp, xport->stp_port_no)
1283 : NULL;
1284 }
1285
1286 static bool
1287 xport_stp_learn_state(const struct xport *xport)
1288 {
1289 struct stp_port *sp = xport_get_stp_port(xport);
1290 return sp
1291 ? stp_learn_in_state(stp_port_get_state(sp))
1292 : true;
1293 }
1294
1295 static bool
1296 xport_stp_forward_state(const struct xport *xport)
1297 {
1298 struct stp_port *sp = xport_get_stp_port(xport);
1299 return sp
1300 ? stp_forward_in_state(stp_port_get_state(sp))
1301 : true;
1302 }
1303
1304 static bool
1305 xport_stp_should_forward_bpdu(const struct xport *xport)
1306 {
1307 struct stp_port *sp = xport_get_stp_port(xport);
1308 return stp_should_forward_bpdu(sp ? stp_port_get_state(sp) : STP_DISABLED);
1309 }
1310
1311 /* Returns true if STP should process 'flow'. Sets fields in 'wc' that
1312 * were used to make the determination.*/
1313 static bool
1314 stp_should_process_flow(const struct flow *flow, struct flow_wildcards *wc)
1315 {
1316 /* is_stp() also checks dl_type, but dl_type is always set in 'wc'. */
1317 memset(&wc->masks.dl_dst, 0xff, sizeof wc->masks.dl_dst);
1318 return is_stp(flow);
1319 }
1320
1321 static void
1322 stp_process_packet(const struct xport *xport, const struct dp_packet *packet)
1323 {
1324 struct stp_port *sp = xport_get_stp_port(xport);
1325 struct dp_packet payload = *packet;
1326 struct eth_header *eth = dp_packet_data(&payload);
1327
1328 /* Sink packets on ports that have STP disabled when the bridge has
1329 * STP enabled. */
1330 if (!sp || stp_port_get_state(sp) == STP_DISABLED) {
1331 return;
1332 }
1333
1334 /* Trim off padding on payload. */
1335 if (dp_packet_size(&payload) > ntohs(eth->eth_type) + ETH_HEADER_LEN) {
1336 dp_packet_set_size(&payload, ntohs(eth->eth_type) + ETH_HEADER_LEN);
1337 }
1338
1339 if (dp_packet_try_pull(&payload, ETH_HEADER_LEN + LLC_HEADER_LEN)) {
1340 stp_received_bpdu(sp, dp_packet_data(&payload), dp_packet_size(&payload));
1341 }
1342 }
1343
1344 static enum rstp_state
1345 xport_get_rstp_port_state(const struct xport *xport)
1346 {
1347 return xport->rstp_port
1348 ? rstp_port_get_state(xport->rstp_port)
1349 : RSTP_DISABLED;
1350 }
1351
1352 static bool
1353 xport_rstp_learn_state(const struct xport *xport)
1354 {
1355 return xport->xbridge->rstp && xport->rstp_port
1356 ? rstp_learn_in_state(xport_get_rstp_port_state(xport))
1357 : true;
1358 }
1359
1360 static bool
1361 xport_rstp_forward_state(const struct xport *xport)
1362 {
1363 return xport->xbridge->rstp && xport->rstp_port
1364 ? rstp_forward_in_state(xport_get_rstp_port_state(xport))
1365 : true;
1366 }
1367
1368 static bool
1369 xport_rstp_should_manage_bpdu(const struct xport *xport)
1370 {
1371 return rstp_should_manage_bpdu(xport_get_rstp_port_state(xport));
1372 }
1373
1374 static void
1375 rstp_process_packet(const struct xport *xport, const struct dp_packet *packet)
1376 {
1377 struct dp_packet payload = *packet;
1378 struct eth_header *eth = dp_packet_data(&payload);
1379
1380 /* Sink packets on ports that have no RSTP. */
1381 if (!xport->rstp_port) {
1382 return;
1383 }
1384
1385 /* Trim off padding on payload. */
1386 if (dp_packet_size(&payload) > ntohs(eth->eth_type) + ETH_HEADER_LEN) {
1387 dp_packet_set_size(&payload, ntohs(eth->eth_type) + ETH_HEADER_LEN);
1388 }
1389
1390 if (dp_packet_try_pull(&payload, ETH_HEADER_LEN + LLC_HEADER_LEN)) {
1391 rstp_port_received_bpdu(xport->rstp_port, dp_packet_data(&payload),
1392 dp_packet_size(&payload));
1393 }
1394 }
1395
1396 static struct xport *
1397 get_ofp_port(const struct xbridge *xbridge, ofp_port_t ofp_port)
1398 {
1399 struct xport *xport;
1400
1401 HMAP_FOR_EACH_IN_BUCKET (xport, ofp_node, hash_ofp_port(ofp_port),
1402 &xbridge->xports) {
1403 if (xport->ofp_port == ofp_port) {
1404 return xport;
1405 }
1406 }
1407 return NULL;
1408 }
1409
1410 static odp_port_t
1411 ofp_port_to_odp_port(const struct xbridge *xbridge, ofp_port_t ofp_port)
1412 {
1413 const struct xport *xport = get_ofp_port(xbridge, ofp_port);
1414 return xport ? xport->odp_port : ODPP_NONE;
1415 }
1416
1417 static bool
1418 odp_port_is_alive(const struct xlate_ctx *ctx, ofp_port_t ofp_port)
1419 {
1420 struct xport *xport = get_ofp_port(ctx->xbridge, ofp_port);
1421 return xport && xport->may_enable;
1422 }
1423
1424 static struct ofputil_bucket *
1425 group_first_live_bucket(const struct xlate_ctx *, const struct group_dpif *,
1426 int depth);
1427
1428 static bool
1429 group_is_alive(const struct xlate_ctx *ctx, uint32_t group_id, int depth)
1430 {
1431 struct group_dpif *group;
1432
1433 if (group_dpif_lookup(ctx->xbridge->ofproto, group_id, &group)) {
1434 struct ofputil_bucket *bucket;
1435
1436 bucket = group_first_live_bucket(ctx, group, depth);
1437 group_dpif_unref(group);
1438 return bucket == NULL;
1439 }
1440
1441 return false;
1442 }
1443
1444 #define MAX_LIVENESS_RECURSION 128 /* Arbitrary limit */
1445
1446 static bool
1447 bucket_is_alive(const struct xlate_ctx *ctx,
1448 struct ofputil_bucket *bucket, int depth)
1449 {
1450 if (depth >= MAX_LIVENESS_RECURSION) {
1451 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 1);
1452
1453 VLOG_WARN_RL(&rl, "bucket chaining exceeded %d links",
1454 MAX_LIVENESS_RECURSION);
1455 return false;
1456 }
1457
1458 return (!ofputil_bucket_has_liveness(bucket)
1459 || (bucket->watch_port != OFPP_ANY
1460 && odp_port_is_alive(ctx, bucket->watch_port))
1461 || (bucket->watch_group != OFPG_ANY
1462 && group_is_alive(ctx, bucket->watch_group, depth + 1)));
1463 }
1464
1465 static struct ofputil_bucket *
1466 group_first_live_bucket(const struct xlate_ctx *ctx,
1467 const struct group_dpif *group, int depth)
1468 {
1469 struct ofputil_bucket *bucket;
1470 const struct ovs_list *buckets;
1471
1472 group_dpif_get_buckets(group, &buckets);
1473 LIST_FOR_EACH (bucket, list_node, buckets) {
1474 if (bucket_is_alive(ctx, bucket, depth)) {
1475 return bucket;
1476 }
1477 }
1478
1479 return NULL;
1480 }
1481
1482 static struct ofputil_bucket *
1483 group_best_live_bucket(const struct xlate_ctx *ctx,
1484 const struct group_dpif *group,
1485 uint32_t basis)
1486 {
1487 struct ofputil_bucket *best_bucket = NULL;
1488 uint32_t best_score = 0;
1489 int i = 0;
1490
1491 struct ofputil_bucket *bucket;
1492 const struct ovs_list *buckets;
1493
1494 group_dpif_get_buckets(group, &buckets);
1495 LIST_FOR_EACH (bucket, list_node, buckets) {
1496 if (bucket_is_alive(ctx, bucket, 0)) {
1497 uint32_t score = (hash_int(i, basis) & 0xffff) * bucket->weight;
1498 if (score >= best_score) {
1499 best_bucket = bucket;
1500 best_score = score;
1501 }
1502 }
1503 i++;
1504 }
1505
1506 return best_bucket;
1507 }
1508
1509 static bool
1510 xbundle_trunks_vlan(const struct xbundle *bundle, uint16_t vlan)
1511 {
1512 return (bundle->vlan_mode != PORT_VLAN_ACCESS
1513 && (!bundle->trunks || bitmap_is_set(bundle->trunks, vlan)));
1514 }
1515
1516 static bool
1517 xbundle_includes_vlan(const struct xbundle *xbundle, uint16_t vlan)
1518 {
1519 return vlan == xbundle->vlan || xbundle_trunks_vlan(xbundle, vlan);
1520 }
1521
1522 static mirror_mask_t
1523 xbundle_mirror_out(const struct xbridge *xbridge, struct xbundle *xbundle)
1524 {
1525 return xbundle != &ofpp_none_bundle
1526 ? mirror_bundle_out(xbridge->mbridge, xbundle->ofbundle)
1527 : 0;
1528 }
1529
1530 static mirror_mask_t
1531 xbundle_mirror_src(const struct xbridge *xbridge, struct xbundle *xbundle)
1532 {
1533 return xbundle != &ofpp_none_bundle
1534 ? mirror_bundle_src(xbridge->mbridge, xbundle->ofbundle)
1535 : 0;
1536 }
1537
1538 static mirror_mask_t
1539 xbundle_mirror_dst(const struct xbridge *xbridge, struct xbundle *xbundle)
1540 {
1541 return xbundle != &ofpp_none_bundle
1542 ? mirror_bundle_dst(xbridge->mbridge, xbundle->ofbundle)
1543 : 0;
1544 }
1545
1546 static struct xbundle *
1547 lookup_input_bundle(const struct xbridge *xbridge, ofp_port_t in_port,
1548 bool warn, struct xport **in_xportp)
1549 {
1550 struct xport *xport;
1551
1552 /* Find the port and bundle for the received packet. */
1553 xport = get_ofp_port(xbridge, in_port);
1554 if (in_xportp) {
1555 *in_xportp = xport;
1556 }
1557 if (xport && xport->xbundle) {
1558 return xport->xbundle;
1559 }
1560
1561 /* Special-case OFPP_NONE (OF1.0) and OFPP_CONTROLLER (OF1.1+),
1562 * which a controller may use as the ingress port for traffic that
1563 * it is sourcing. */
1564 if (in_port == OFPP_CONTROLLER || in_port == OFPP_NONE) {
1565 return &ofpp_none_bundle;
1566 }
1567
1568 /* Odd. A few possible reasons here:
1569 *
1570 * - We deleted a port but there are still a few packets queued up
1571 * from it.
1572 *
1573 * - Someone externally added a port (e.g. "ovs-dpctl add-if") that
1574 * we don't know about.
1575 *
1576 * - The ofproto client didn't configure the port as part of a bundle.
1577 * This is particularly likely to happen if a packet was received on the
1578 * port after it was created, but before the client had a chance to
1579 * configure its bundle.
1580 */
1581 if (warn) {
1582 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
1583
1584 VLOG_WARN_RL(&rl, "bridge %s: received packet on unknown "
1585 "port %"PRIu16, xbridge->name, in_port);
1586 }
1587 return NULL;
1588 }
1589
1590 static void
1591 mirror_packet(struct xlate_ctx *ctx, struct xbundle *xbundle,
1592 mirror_mask_t mirrors)
1593 {
1594 bool warn = ctx->xin->packet != NULL;
1595 uint16_t vid = vlan_tci_to_vid(ctx->xin->flow.vlan_tci);
1596 if (!input_vid_is_valid(vid, xbundle, warn)) {
1597 return;
1598 }
1599 uint16_t vlan = input_vid_to_vlan(xbundle, vid);
1600
1601 const struct xbridge *xbridge = ctx->xbridge;
1602
1603 /* Don't mirror to destinations that we've already mirrored to. */
1604 mirrors &= ~ctx->mirrors;
1605 if (!mirrors) {
1606 return;
1607 }
1608
1609 /* Record these mirrors so that we don't mirror to them again. */
1610 ctx->mirrors |= mirrors;
1611
1612 if (ctx->xin->resubmit_stats) {
1613 mirror_update_stats(xbridge->mbridge, mirrors,
1614 ctx->xin->resubmit_stats->n_packets,
1615 ctx->xin->resubmit_stats->n_bytes);
1616 }
1617 if (ctx->xin->xcache) {
1618 struct xc_entry *entry;
1619
1620 entry = xlate_cache_add_entry(ctx->xin->xcache, XC_MIRROR);
1621 entry->u.mirror.mbridge = mbridge_ref(xbridge->mbridge);
1622 entry->u.mirror.mirrors = mirrors;
1623 }
1624
1625 while (mirrors) {
1626 const unsigned long *vlans;
1627 mirror_mask_t dup_mirrors;
1628 struct ofbundle *out;
1629 int out_vlan;
1630
1631 bool has_mirror = mirror_get(xbridge->mbridge, raw_ctz(mirrors),
1632 &vlans, &dup_mirrors, &out, &out_vlan);
1633 ovs_assert(has_mirror);
1634
1635 if (vlans) {
1636 ctx->wc->masks.vlan_tci |= htons(VLAN_CFI | VLAN_VID_MASK);
1637 }
1638
1639 if (vlans && !bitmap_is_set(vlans, vlan)) {
1640 mirrors = zero_rightmost_1bit(mirrors);
1641 continue;
1642 }
1643
1644 mirrors &= ~dup_mirrors;
1645 ctx->mirrors |= dup_mirrors;
1646 if (out) {
1647 struct xlate_cfg *xcfg = ovsrcu_get(struct xlate_cfg *, &xcfgp);
1648 struct xbundle *out_xbundle = xbundle_lookup(xcfg, out);
1649 if (out_xbundle) {
1650 output_normal(ctx, out_xbundle, vlan);
1651 }
1652 } else if (vlan != out_vlan
1653 && !eth_addr_is_reserved(ctx->xin->flow.dl_dst)) {
1654 struct xbundle *xbundle;
1655
1656 LIST_FOR_EACH (xbundle, list_node, &xbridge->xbundles) {
1657 if (xbundle_includes_vlan(xbundle, out_vlan)
1658 && !xbundle_mirror_out(xbridge, xbundle)) {
1659 output_normal(ctx, xbundle, out_vlan);
1660 }
1661 }
1662 }
1663 }
1664 }
1665
1666 static void
1667 mirror_ingress_packet(struct xlate_ctx *ctx)
1668 {
1669 if (mbridge_has_mirrors(ctx->xbridge->mbridge)) {
1670 bool warn = ctx->xin->packet != NULL;
1671 struct xbundle *xbundle = lookup_input_bundle(
1672 ctx->xbridge, ctx->xin->flow.in_port.ofp_port, warn, NULL);
1673 if (xbundle) {
1674 mirror_packet(ctx, xbundle,
1675 xbundle_mirror_src(ctx->xbridge, xbundle));
1676 }
1677 }
1678 }
1679
1680 /* Given 'vid', the VID obtained from the 802.1Q header that was received as
1681 * part of a packet (specify 0 if there was no 802.1Q header), and 'in_xbundle',
1682 * the bundle on which the packet was received, returns the VLAN to which the
1683 * packet belongs.
1684 *
1685 * Both 'vid' and the return value are in the range 0...4095. */
1686 static uint16_t
1687 input_vid_to_vlan(const struct xbundle *in_xbundle, uint16_t vid)
1688 {
1689 switch (in_xbundle->vlan_mode) {
1690 case PORT_VLAN_ACCESS:
1691 return in_xbundle->vlan;
1692 break;
1693
1694 case PORT_VLAN_TRUNK:
1695 return vid;
1696
1697 case PORT_VLAN_NATIVE_UNTAGGED:
1698 case PORT_VLAN_NATIVE_TAGGED:
1699 return vid ? vid : in_xbundle->vlan;
1700
1701 default:
1702 OVS_NOT_REACHED();
1703 }
1704 }
1705
1706 /* Checks whether a packet with the given 'vid' may ingress on 'in_xbundle'.
1707 * If so, returns true. Otherwise, returns false and, if 'warn' is true, logs
1708 * a warning.
1709 *
1710 * 'vid' should be the VID obtained from the 802.1Q header that was received as
1711 * part of a packet (specify 0 if there was no 802.1Q header), in the range
1712 * 0...4095. */
1713 static bool
1714 input_vid_is_valid(uint16_t vid, struct xbundle *in_xbundle, bool warn)
1715 {
1716 /* Allow any VID on the OFPP_NONE port. */
1717 if (in_xbundle == &ofpp_none_bundle) {
1718 return true;
1719 }
1720
1721 switch (in_xbundle->vlan_mode) {
1722 case PORT_VLAN_ACCESS:
1723 if (vid) {
1724 if (warn) {
1725 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
1726 VLOG_WARN_RL(&rl, "dropping VLAN %"PRIu16" tagged "
1727 "packet received on port %s configured as VLAN "
1728 "%"PRIu16" access port", vid, in_xbundle->name,
1729 in_xbundle->vlan);
1730 }
1731 return false;
1732 }
1733 return true;
1734
1735 case PORT_VLAN_NATIVE_UNTAGGED:
1736 case PORT_VLAN_NATIVE_TAGGED:
1737 if (!vid) {
1738 /* Port must always carry its native VLAN. */
1739 return true;
1740 }
1741 /* Fall through. */
1742 case PORT_VLAN_TRUNK:
1743 if (!xbundle_includes_vlan(in_xbundle, vid)) {
1744 if (warn) {
1745 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
1746 VLOG_WARN_RL(&rl, "dropping VLAN %"PRIu16" packet "
1747 "received on port %s not configured for trunking "
1748 "VLAN %"PRIu16, vid, in_xbundle->name, vid);
1749 }
1750 return false;
1751 }
1752 return true;
1753
1754 default:
1755 OVS_NOT_REACHED();
1756 }
1757
1758 }
1759
1760 /* Given 'vlan', the VLAN that a packet belongs to, and
1761 * 'out_xbundle', a bundle on which the packet is to be output, returns the VID
1762 * that should be included in the 802.1Q header. (If the return value is 0,
1763 * then the 802.1Q header should only be included in the packet if there is a
1764 * nonzero PCP.)
1765 *
1766 * Both 'vlan' and the return value are in the range 0...4095. */
1767 static uint16_t
1768 output_vlan_to_vid(const struct xbundle *out_xbundle, uint16_t vlan)
1769 {
1770 switch (out_xbundle->vlan_mode) {
1771 case PORT_VLAN_ACCESS:
1772 return 0;
1773
1774 case PORT_VLAN_TRUNK:
1775 case PORT_VLAN_NATIVE_TAGGED:
1776 return vlan;
1777
1778 case PORT_VLAN_NATIVE_UNTAGGED:
1779 return vlan == out_xbundle->vlan ? 0 : vlan;
1780
1781 default:
1782 OVS_NOT_REACHED();
1783 }
1784 }
1785
1786 static void
1787 output_normal(struct xlate_ctx *ctx, const struct xbundle *out_xbundle,
1788 uint16_t vlan)
1789 {
1790 ovs_be16 *flow_tci = &ctx->xin->flow.vlan_tci;
1791 uint16_t vid;
1792 ovs_be16 tci, old_tci;
1793 struct xport *xport;
1794 struct xlate_bond_recirc xr;
1795 bool use_recirc = false;
1796
1797 vid = output_vlan_to_vid(out_xbundle, vlan);
1798 if (list_is_empty(&out_xbundle->xports)) {
1799 /* Partially configured bundle with no slaves. Drop the packet. */
1800 return;
1801 } else if (!out_xbundle->bond) {
1802 xport = CONTAINER_OF(list_front(&out_xbundle->xports), struct xport,
1803 bundle_node);
1804 } else {
1805 struct xlate_cfg *xcfg = ovsrcu_get(struct xlate_cfg *, &xcfgp);
1806 struct flow_wildcards *wc = ctx->wc;
1807 struct ofport_dpif *ofport;
1808
1809 if (ctx->xbridge->support.odp.recirc) {
1810 use_recirc = bond_may_recirc(
1811 out_xbundle->bond, &xr.recirc_id, &xr.hash_basis);
1812
1813 if (use_recirc) {
1814 /* Only TCP mode uses recirculation. */
1815 xr.hash_alg = OVS_HASH_ALG_L4;
1816 bond_update_post_recirc_rules(out_xbundle->bond, false);
1817
1818 /* Recirculation does not require unmasking hash fields. */
1819 wc = NULL;
1820 }
1821 }
1822
1823 ofport = bond_choose_output_slave(out_xbundle->bond,
1824 &ctx->xin->flow, wc, vid);
1825 xport = xport_lookup(xcfg, ofport);
1826
1827 if (!xport) {
1828 /* No slaves enabled, so drop packet. */
1829 return;
1830 }
1831
1832 /* If use_recirc is set, the main thread will handle stats
1833 * accounting for this bond. */
1834 if (!use_recirc) {
1835 if (ctx->xin->resubmit_stats) {
1836 bond_account(out_xbundle->bond, &ctx->xin->flow, vid,
1837 ctx->xin->resubmit_stats->n_bytes);
1838 }
1839 if (ctx->xin->xcache) {
1840 struct xc_entry *entry;
1841 struct flow *flow;
1842
1843 flow = &ctx->xin->flow;
1844 entry = xlate_cache_add_entry(ctx->xin->xcache, XC_BOND);
1845 entry->u.bond.bond = bond_ref(out_xbundle->bond);
1846 entry->u.bond.flow = xmemdup(flow, sizeof *flow);
1847 entry->u.bond.vid = vid;
1848 }
1849 }
1850 }
1851
1852 old_tci = *flow_tci;
1853 tci = htons(vid);
1854 if (tci || out_xbundle->use_priority_tags) {
1855 tci |= *flow_tci & htons(VLAN_PCP_MASK);
1856 if (tci) {
1857 tci |= htons(VLAN_CFI);
1858 }
1859 }
1860 *flow_tci = tci;
1861
1862 compose_output_action(ctx, xport->ofp_port, use_recirc ? &xr : NULL);
1863 *flow_tci = old_tci;
1864 }
1865
1866 /* A VM broadcasts a gratuitous ARP to indicate that it has resumed after
1867 * migration. Older Citrix-patched Linux DomU used gratuitous ARP replies to
1868 * indicate this; newer upstream kernels use gratuitous ARP requests. */
1869 static bool
1870 is_gratuitous_arp(const struct flow *flow, struct flow_wildcards *wc)
1871 {
1872 if (flow->dl_type != htons(ETH_TYPE_ARP)) {
1873 return false;
1874 }
1875
1876 memset(&wc->masks.dl_dst, 0xff, sizeof wc->masks.dl_dst);
1877 if (!eth_addr_is_broadcast(flow->dl_dst)) {
1878 return false;
1879 }
1880
1881 memset(&wc->masks.nw_proto, 0xff, sizeof wc->masks.nw_proto);
1882 if (flow->nw_proto == ARP_OP_REPLY) {
1883 return true;
1884 } else if (flow->nw_proto == ARP_OP_REQUEST) {
1885 memset(&wc->masks.nw_src, 0xff, sizeof wc->masks.nw_src);
1886 memset(&wc->masks.nw_dst, 0xff, sizeof wc->masks.nw_dst);
1887
1888 return flow->nw_src == flow->nw_dst;
1889 } else {
1890 return false;
1891 }
1892 }
1893
1894 /* Determines whether packets in 'flow' within 'xbridge' should be forwarded or
1895 * dropped. Returns true if they may be forwarded, false if they should be
1896 * dropped.
1897 *
1898 * 'in_port' must be the xport that corresponds to flow->in_port.
1899 * 'in_port' must be part of a bundle (e.g. in_port->bundle must be nonnull).
1900 *
1901 * 'vlan' must be the VLAN that corresponds to flow->vlan_tci on 'in_port', as
1902 * returned by input_vid_to_vlan(). It must be a valid VLAN for 'in_port', as
1903 * checked by input_vid_is_valid().
1904 *
1905 * May also add tags to '*tags', although the current implementation only does
1906 * so in one special case.
1907 */
1908 static bool
1909 is_admissible(struct xlate_ctx *ctx, struct xport *in_port,
1910 uint16_t vlan)
1911 {
1912 struct xbundle *in_xbundle = in_port->xbundle;
1913 const struct xbridge *xbridge = ctx->xbridge;
1914 struct flow *flow = &ctx->xin->flow;
1915
1916 /* Drop frames for reserved multicast addresses
1917 * only if forward_bpdu option is absent. */
1918 if (!xbridge->forward_bpdu && eth_addr_is_reserved(flow->dl_dst)) {
1919 xlate_report(ctx, "packet has reserved destination MAC, dropping");
1920 return false;
1921 }
1922
1923 if (in_xbundle->bond) {
1924 struct mac_entry *mac;
1925
1926 switch (bond_check_admissibility(in_xbundle->bond, in_port->ofport,
1927 flow->dl_dst)) {
1928 case BV_ACCEPT:
1929 break;
1930
1931 case BV_DROP:
1932 xlate_report(ctx, "bonding refused admissibility, dropping");
1933 return false;
1934
1935 case BV_DROP_IF_MOVED:
1936 ovs_rwlock_rdlock(&xbridge->ml->rwlock);
1937 mac = mac_learning_lookup(xbridge->ml, flow->dl_src, vlan);
1938 if (mac
1939 && mac_entry_get_port(xbridge->ml, mac) != in_xbundle->ofbundle
1940 && (!is_gratuitous_arp(flow, ctx->wc)
1941 || mac_entry_is_grat_arp_locked(mac))) {
1942 ovs_rwlock_unlock(&xbridge->ml->rwlock);
1943 xlate_report(ctx, "SLB bond thinks this packet looped back, "
1944 "dropping");
1945 return false;
1946 }
1947 ovs_rwlock_unlock(&xbridge->ml->rwlock);
1948 break;
1949 }
1950 }
1951
1952 return true;
1953 }
1954
1955 /* Checks whether a MAC learning update is necessary for MAC learning table
1956 * 'ml' given that a packet matching 'flow' was received on 'in_xbundle' in
1957 * 'vlan'.
1958 *
1959 * Most packets processed through the MAC learning table do not actually
1960 * change it in any way. This function requires only a read lock on the MAC
1961 * learning table, so it is much cheaper in this common case.
1962 *
1963 * Keep the code here synchronized with that in update_learning_table__()
1964 * below. */
1965 static bool
1966 is_mac_learning_update_needed(const struct mac_learning *ml,
1967 const struct flow *flow,
1968 struct flow_wildcards *wc,
1969 int vlan, struct xbundle *in_xbundle)
1970 OVS_REQ_RDLOCK(ml->rwlock)
1971 {
1972 struct mac_entry *mac;
1973
1974 if (!mac_learning_may_learn(ml, flow->dl_src, vlan)) {
1975 return false;
1976 }
1977
1978 mac = mac_learning_lookup(ml, flow->dl_src, vlan);
1979 if (!mac || mac_entry_age(ml, mac)) {
1980 return true;
1981 }
1982
1983 if (is_gratuitous_arp(flow, wc)) {
1984 /* We don't want to learn from gratuitous ARP packets that are
1985 * reflected back over bond slaves so we lock the learning table. */
1986 if (!in_xbundle->bond) {
1987 return true;
1988 } else if (mac_entry_is_grat_arp_locked(mac)) {
1989 return false;
1990 }
1991 }
1992
1993 return mac_entry_get_port(ml, mac) != in_xbundle->ofbundle;
1994 }
1995
1996
1997 /* Updates MAC learning table 'ml' given that a packet matching 'flow' was
1998 * received on 'in_xbundle' in 'vlan'.
1999 *
2000 * This code repeats all the checks in is_mac_learning_update_needed() because
2001 * the lock was released between there and here and thus the MAC learning state
2002 * could have changed.
2003 *
2004 * Keep the code here synchronized with that in is_mac_learning_update_needed()
2005 * above. */
2006 static void
2007 update_learning_table__(const struct xbridge *xbridge,
2008 const struct flow *flow, struct flow_wildcards *wc,
2009 int vlan, struct xbundle *in_xbundle)
2010 OVS_REQ_WRLOCK(xbridge->ml->rwlock)
2011 {
2012 struct mac_entry *mac;
2013
2014 if (!mac_learning_may_learn(xbridge->ml, flow->dl_src, vlan)) {
2015 return;
2016 }
2017
2018 mac = mac_learning_insert(xbridge->ml, flow->dl_src, vlan);
2019 if (is_gratuitous_arp(flow, wc)) {
2020 /* We don't want to learn from gratuitous ARP packets that are
2021 * reflected back over bond slaves so we lock the learning table. */
2022 if (!in_xbundle->bond) {
2023 mac_entry_set_grat_arp_lock(mac);
2024 } else if (mac_entry_is_grat_arp_locked(mac)) {
2025 return;
2026 }
2027 }
2028
2029 if (mac_entry_get_port(xbridge->ml, mac) != in_xbundle->ofbundle) {
2030 /* The log messages here could actually be useful in debugging,
2031 * so keep the rate limit relatively high. */
2032 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(30, 300);
2033
2034 VLOG_DBG_RL(&rl, "bridge %s: learned that "ETH_ADDR_FMT" is "
2035 "on port %s in VLAN %d",
2036 xbridge->name, ETH_ADDR_ARGS(flow->dl_src),
2037 in_xbundle->name, vlan);
2038
2039 mac_entry_set_port(xbridge->ml, mac, in_xbundle->ofbundle);
2040 }
2041 }
2042
2043 static void
2044 update_learning_table(const struct xbridge *xbridge,
2045 const struct flow *flow, struct flow_wildcards *wc,
2046 int vlan, struct xbundle *in_xbundle)
2047 {
2048 bool need_update;
2049
2050 /* Don't learn the OFPP_NONE port. */
2051 if (in_xbundle == &ofpp_none_bundle) {
2052 return;
2053 }
2054
2055 /* First try the common case: no change to MAC learning table. */
2056 ovs_rwlock_rdlock(&xbridge->ml->rwlock);
2057 need_update = is_mac_learning_update_needed(xbridge->ml, flow, wc, vlan,
2058 in_xbundle);
2059 ovs_rwlock_unlock(&xbridge->ml->rwlock);
2060
2061 if (need_update) {
2062 /* Slow path: MAC learning table might need an update. */
2063 ovs_rwlock_wrlock(&xbridge->ml->rwlock);
2064 update_learning_table__(xbridge, flow, wc, vlan, in_xbundle);
2065 ovs_rwlock_unlock(&xbridge->ml->rwlock);
2066 }
2067 }
2068
2069 /* Updates multicast snooping table 'ms' given that a packet matching 'flow'
2070 * was received on 'in_xbundle' in 'vlan' and is either Report or Query. */
2071 static void
2072 update_mcast_snooping_table4__(const struct xbridge *xbridge,
2073 const struct flow *flow,
2074 struct mcast_snooping *ms, int vlan,
2075 struct xbundle *in_xbundle,
2076 const struct dp_packet *packet)
2077 OVS_REQ_WRLOCK(ms->rwlock)
2078 {
2079 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(60, 30);
2080 int count;
2081 ovs_be32 ip4 = flow->igmp_group_ip4;
2082
2083 switch (ntohs(flow->tp_src)) {
2084 case IGMP_HOST_MEMBERSHIP_REPORT:
2085 case IGMPV2_HOST_MEMBERSHIP_REPORT:
2086 if (mcast_snooping_add_group4(ms, ip4, vlan, in_xbundle->ofbundle)) {
2087 VLOG_DBG_RL(&rl, "bridge %s: multicast snooping learned that "
2088 IP_FMT" is on port %s in VLAN %d",
2089 xbridge->name, IP_ARGS(ip4), in_xbundle->name, vlan);
2090 }
2091 break;
2092 case IGMP_HOST_LEAVE_MESSAGE:
2093 if (mcast_snooping_leave_group4(ms, ip4, vlan, in_xbundle->ofbundle)) {
2094 VLOG_DBG_RL(&rl, "bridge %s: multicast snooping leaving "
2095 IP_FMT" is on port %s in VLAN %d",
2096 xbridge->name, IP_ARGS(ip4), in_xbundle->name, vlan);
2097 }
2098 break;
2099 case IGMP_HOST_MEMBERSHIP_QUERY:
2100 if (flow->nw_src && mcast_snooping_add_mrouter(ms, vlan,
2101 in_xbundle->ofbundle)) {
2102 VLOG_DBG_RL(&rl, "bridge %s: multicast snooping query from "
2103 IP_FMT" is on port %s in VLAN %d",
2104 xbridge->name, IP_ARGS(flow->nw_src),
2105 in_xbundle->name, vlan);
2106 }
2107 break;
2108 case IGMPV3_HOST_MEMBERSHIP_REPORT:
2109 if ((count = mcast_snooping_add_report(ms, packet, vlan,
2110 in_xbundle->ofbundle))) {
2111 VLOG_DBG_RL(&rl, "bridge %s: multicast snooping processed %d "
2112 "addresses on port %s in VLAN %d",
2113 xbridge->name, count, in_xbundle->name, vlan);
2114 }
2115 break;
2116 }
2117 }
2118
2119 static void
2120 update_mcast_snooping_table6__(const struct xbridge *xbridge,
2121 const struct flow *flow,
2122 struct mcast_snooping *ms, int vlan,
2123 struct xbundle *in_xbundle,
2124 const struct dp_packet *packet)
2125 OVS_REQ_WRLOCK(ms->rwlock)
2126 {
2127 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(60, 30);
2128 int count;
2129
2130 switch (ntohs(flow->tp_src)) {
2131 case MLD_QUERY:
2132 if (!ipv6_addr_equals(&flow->ipv6_src, &in6addr_any)
2133 && mcast_snooping_add_mrouter(ms, vlan, in_xbundle->ofbundle)) {
2134 VLOG_DBG_RL(&rl, "bridge %s: multicast snooping query on port %s"
2135 "in VLAN %d",
2136 xbridge->name, in_xbundle->name, vlan);
2137 }
2138 break;
2139 case MLD_REPORT:
2140 case MLD_DONE:
2141 case MLD2_REPORT:
2142 count = mcast_snooping_add_mld(ms, packet, vlan, in_xbundle->ofbundle);
2143 if (count) {
2144 VLOG_DBG_RL(&rl, "bridge %s: multicast snooping processed %d "
2145 "addresses on port %s in VLAN %d",
2146 xbridge->name, count, in_xbundle->name, vlan);
2147 }
2148 break;
2149 }
2150 }
2151
2152 /* Updates multicast snooping table 'ms' given that a packet matching 'flow'
2153 * was received on 'in_xbundle' in 'vlan'. */
2154 static void
2155 update_mcast_snooping_table(const struct xbridge *xbridge,
2156 const struct flow *flow, int vlan,
2157 struct xbundle *in_xbundle,
2158 const struct dp_packet *packet)
2159 {
2160 struct mcast_snooping *ms = xbridge->ms;
2161 struct xlate_cfg *xcfg;
2162 struct xbundle *mcast_xbundle;
2163 struct mcast_port_bundle *fport;
2164
2165 /* Don't learn the OFPP_NONE port. */
2166 if (in_xbundle == &ofpp_none_bundle) {
2167 return;
2168 }
2169
2170 /* Don't learn from flood ports */
2171 mcast_xbundle = NULL;
2172 ovs_rwlock_wrlock(&ms->rwlock);
2173 xcfg = ovsrcu_get(struct xlate_cfg *, &xcfgp);
2174 LIST_FOR_EACH(fport, node, &ms->fport_list) {
2175 mcast_xbundle = xbundle_lookup(xcfg, fport->port);
2176 if (mcast_xbundle == in_xbundle) {
2177 break;
2178 }
2179 }
2180
2181 if (!mcast_xbundle || mcast_xbundle != in_xbundle) {
2182 if (flow->dl_type == htons(ETH_TYPE_IP)) {
2183 update_mcast_snooping_table4__(xbridge, flow, ms, vlan,
2184 in_xbundle, packet);
2185 } else {
2186 update_mcast_snooping_table6__(xbridge, flow, ms, vlan,
2187 in_xbundle, packet);
2188 }
2189 }
2190 ovs_rwlock_unlock(&ms->rwlock);
2191 }
2192
2193 /* send the packet to ports having the multicast group learned */
2194 static void
2195 xlate_normal_mcast_send_group(struct xlate_ctx *ctx,
2196 struct mcast_snooping *ms OVS_UNUSED,
2197 struct mcast_group *grp,
2198 struct xbundle *in_xbundle, uint16_t vlan)
2199 OVS_REQ_RDLOCK(ms->rwlock)
2200 {
2201 struct xlate_cfg *xcfg;
2202 struct mcast_group_bundle *b;
2203 struct xbundle *mcast_xbundle;
2204
2205 xcfg = ovsrcu_get(struct xlate_cfg *, &xcfgp);
2206 LIST_FOR_EACH(b, bundle_node, &grp->bundle_lru) {
2207 mcast_xbundle = xbundle_lookup(xcfg, b->port);
2208 if (mcast_xbundle && mcast_xbundle != in_xbundle) {
2209 xlate_report(ctx, "forwarding to mcast group port");
2210 output_normal(ctx, mcast_xbundle, vlan);
2211 } else if (!mcast_xbundle) {
2212 xlate_report(ctx, "mcast group port is unknown, dropping");
2213 } else {
2214 xlate_report(ctx, "mcast group port is input port, dropping");
2215 }
2216 }
2217 }
2218
2219 /* send the packet to ports connected to multicast routers */
2220 static void
2221 xlate_normal_mcast_send_mrouters(struct xlate_ctx *ctx,
2222 struct mcast_snooping *ms,
2223 struct xbundle *in_xbundle, uint16_t vlan)
2224 OVS_REQ_RDLOCK(ms->rwlock)
2225 {
2226 struct xlate_cfg *xcfg;
2227 struct mcast_mrouter_bundle *mrouter;
2228 struct xbundle *mcast_xbundle;
2229
2230 xcfg = ovsrcu_get(struct xlate_cfg *, &xcfgp);
2231 LIST_FOR_EACH(mrouter, mrouter_node, &ms->mrouter_lru) {
2232 mcast_xbundle = xbundle_lookup(xcfg, mrouter->port);
2233 if (mcast_xbundle && mcast_xbundle != in_xbundle) {
2234 xlate_report(ctx, "forwarding to mcast router port");
2235 output_normal(ctx, mcast_xbundle, vlan);
2236 } else if (!mcast_xbundle) {
2237 xlate_report(ctx, "mcast router port is unknown, dropping");
2238 } else {
2239 xlate_report(ctx, "mcast router port is input port, dropping");
2240 }
2241 }
2242 }
2243
2244 /* send the packet to ports flagged to be flooded */
2245 static void
2246 xlate_normal_mcast_send_fports(struct xlate_ctx *ctx,
2247 struct mcast_snooping *ms,
2248 struct xbundle *in_xbundle, uint16_t vlan)
2249 OVS_REQ_RDLOCK(ms->rwlock)
2250 {
2251 struct xlate_cfg *xcfg;
2252 struct mcast_port_bundle *fport;
2253 struct xbundle *mcast_xbundle;
2254
2255 xcfg = ovsrcu_get(struct xlate_cfg *, &xcfgp);
2256 LIST_FOR_EACH(fport, node, &ms->fport_list) {
2257 mcast_xbundle = xbundle_lookup(xcfg, fport->port);
2258 if (mcast_xbundle && mcast_xbundle != in_xbundle) {
2259 xlate_report(ctx, "forwarding to mcast flood port");
2260 output_normal(ctx, mcast_xbundle, vlan);
2261 } else if (!mcast_xbundle) {
2262 xlate_report(ctx, "mcast flood port is unknown, dropping");
2263 } else {
2264 xlate_report(ctx, "mcast flood port is input port, dropping");
2265 }
2266 }
2267 }
2268
2269 /* forward the Reports to configured ports */
2270 static void
2271 xlate_normal_mcast_send_rports(struct xlate_ctx *ctx,
2272 struct mcast_snooping *ms,
2273 struct xbundle *in_xbundle, uint16_t vlan)
2274 OVS_REQ_RDLOCK(ms->rwlock)
2275 {
2276 struct xlate_cfg *xcfg;
2277 struct mcast_port_bundle *rport;
2278 struct xbundle *mcast_xbundle;
2279
2280 xcfg = ovsrcu_get(struct xlate_cfg *, &xcfgp);
2281 LIST_FOR_EACH(rport, node, &ms->rport_list) {
2282 mcast_xbundle = xbundle_lookup(xcfg, rport->port);
2283 if (mcast_xbundle && mcast_xbundle != in_xbundle) {
2284 xlate_report(ctx, "forwarding Report to mcast flagged port");
2285 output_normal(ctx, mcast_xbundle, vlan);
2286 } else if (!mcast_xbundle) {
2287 xlate_report(ctx, "mcast port is unknown, dropping the Report");
2288 } else {
2289 xlate_report(ctx, "mcast port is input port, dropping the Report");
2290 }
2291 }
2292 }
2293
2294 static void
2295 xlate_normal_flood(struct xlate_ctx *ctx, struct xbundle *in_xbundle,
2296 uint16_t vlan)
2297 {
2298 struct xbundle *xbundle;
2299
2300 LIST_FOR_EACH (xbundle, list_node, &ctx->xbridge->xbundles) {
2301 if (xbundle != in_xbundle
2302 && xbundle_includes_vlan(xbundle, vlan)
2303 && xbundle->floodable
2304 && !xbundle_mirror_out(ctx->xbridge, xbundle)) {
2305 output_normal(ctx, xbundle, vlan);
2306 }
2307 }
2308 ctx->nf_output_iface = NF_OUT_FLOOD;
2309 }
2310
2311 static void
2312 xlate_normal(struct xlate_ctx *ctx)
2313 {
2314 struct flow_wildcards *wc = ctx->wc;
2315 struct flow *flow = &ctx->xin->flow;
2316 struct xbundle *in_xbundle;
2317 struct xport *in_port;
2318 struct mac_entry *mac;
2319 void *mac_port;
2320 uint16_t vlan;
2321 uint16_t vid;
2322
2323 memset(&wc->masks.dl_src, 0xff, sizeof wc->masks.dl_src);
2324 memset(&wc->masks.dl_dst, 0xff, sizeof wc->masks.dl_dst);
2325 wc->masks.vlan_tci |= htons(VLAN_VID_MASK | VLAN_CFI);
2326
2327 in_xbundle = lookup_input_bundle(ctx->xbridge, flow->in_port.ofp_port,
2328 ctx->xin->packet != NULL, &in_port);
2329 if (!in_xbundle) {
2330 xlate_report(ctx, "no input bundle, dropping");
2331 return;
2332 }
2333
2334 /* Drop malformed frames. */
2335 if (flow->dl_type == htons(ETH_TYPE_VLAN) &&
2336 !(flow->vlan_tci & htons(VLAN_CFI))) {
2337 if (ctx->xin->packet != NULL) {
2338 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
2339 VLOG_WARN_RL(&rl, "bridge %s: dropping packet with partial "
2340 "VLAN tag received on port %s",
2341 ctx->xbridge->name, in_xbundle->name);
2342 }
2343 xlate_report(ctx, "partial VLAN tag, dropping");
2344 return;
2345 }
2346
2347 /* Drop frames on bundles reserved for mirroring. */
2348 if (xbundle_mirror_out(ctx->xbridge, in_xbundle)) {
2349 if (ctx->xin->packet != NULL) {
2350 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
2351 VLOG_WARN_RL(&rl, "bridge %s: dropping packet received on port "
2352 "%s, which is reserved exclusively for mirroring",
2353 ctx->xbridge->name, in_xbundle->name);
2354 }
2355 xlate_report(ctx, "input port is mirror output port, dropping");
2356 return;
2357 }
2358
2359 /* Check VLAN. */
2360 vid = vlan_tci_to_vid(flow->vlan_tci);
2361 if (!input_vid_is_valid(vid, in_xbundle, ctx->xin->packet != NULL)) {
2362 xlate_report(ctx, "disallowed VLAN VID for this input port, dropping");
2363 return;
2364 }
2365 vlan = input_vid_to_vlan(in_xbundle, vid);
2366
2367 /* Check other admissibility requirements. */
2368 if (in_port && !is_admissible(ctx, in_port, vlan)) {
2369 return;
2370 }
2371
2372 /* Learn source MAC. */
2373 if (ctx->xin->may_learn) {
2374 update_learning_table(ctx->xbridge, flow, wc, vlan, in_xbundle);
2375 }
2376 if (ctx->xin->xcache) {
2377 struct xc_entry *entry;
2378
2379 /* Save enough info to update mac learning table later. */
2380 entry = xlate_cache_add_entry(ctx->xin->xcache, XC_NORMAL);
2381 entry->u.normal.ofproto = ctx->xbridge->ofproto;
2382 entry->u.normal.flow = xmemdup(flow, sizeof *flow);
2383 entry->u.normal.vlan = vlan;
2384 }
2385
2386 /* Determine output bundle. */
2387 if (mcast_snooping_enabled(ctx->xbridge->ms)
2388 && !eth_addr_is_broadcast(flow->dl_dst)
2389 && eth_addr_is_multicast(flow->dl_dst)
2390 && is_ip_any(flow)) {
2391 struct mcast_snooping *ms = ctx->xbridge->ms;
2392 struct mcast_group *grp = NULL;
2393
2394 if (is_igmp(flow)) {
2395 if (mcast_snooping_is_membership(flow->tp_src) ||
2396 mcast_snooping_is_query(flow->tp_src)) {
2397 if (ctx->xin->may_learn) {
2398 update_mcast_snooping_table(ctx->xbridge, flow, vlan,
2399 in_xbundle, ctx->xin->packet);
2400 }
2401 /*
2402 * IGMP packets need to take the slow path, in order to be
2403 * processed for mdb updates. That will prevent expires
2404 * firing off even after hosts have sent reports.
2405 */
2406 ctx->xout->slow |= SLOW_ACTION;
2407 }
2408
2409 if (mcast_snooping_is_membership(flow->tp_src)) {
2410 ovs_rwlock_rdlock(&ms->rwlock);
2411 xlate_normal_mcast_send_mrouters(ctx, ms, in_xbundle, vlan);
2412 /* RFC4541: section 2.1.1, item 1: A snooping switch should
2413 * forward IGMP Membership Reports only to those ports where
2414 * multicast routers are attached. Alternatively stated: a
2415 * snooping switch should not forward IGMP Membership Reports
2416 * to ports on which only hosts are attached.
2417 * An administrative control may be provided to override this
2418 * restriction, allowing the report messages to be flooded to
2419 * other ports. */
2420 xlate_normal_mcast_send_rports(ctx, ms, in_xbundle, vlan);
2421 ovs_rwlock_unlock(&ms->rwlock);
2422 } else {
2423 xlate_report(ctx, "multicast traffic, flooding");
2424 xlate_normal_flood(ctx, in_xbundle, vlan);
2425 }
2426 return;
2427 } else if (is_mld(flow)) {
2428 ctx->xout->slow |= SLOW_ACTION;
2429 if (ctx->xin->may_learn) {
2430 update_mcast_snooping_table(ctx->xbridge, flow, vlan,
2431 in_xbundle, ctx->xin->packet);
2432 }
2433 if (is_mld_report(flow)) {
2434 ovs_rwlock_rdlock(&ms->rwlock);
2435 xlate_normal_mcast_send_mrouters(ctx, ms, in_xbundle, vlan);
2436 xlate_normal_mcast_send_rports(ctx, ms, in_xbundle, vlan);
2437 ovs_rwlock_unlock(&ms->rwlock);
2438 } else {
2439 xlate_report(ctx, "MLD query, flooding");
2440 xlate_normal_flood(ctx, in_xbundle, vlan);
2441 }
2442 } else {
2443 if ((flow->dl_type == htons(ETH_TYPE_IP)
2444 && ip_is_local_multicast(flow->nw_dst))
2445 || (flow->dl_type == htons(ETH_TYPE_IPV6)
2446 && ipv6_is_all_hosts(&flow->ipv6_dst))) {
2447 /* RFC4541: section 2.1.2, item 2: Packets with a dst IP
2448 * address in the 224.0.0.x range which are not IGMP must
2449 * be forwarded on all ports */
2450 xlate_report(ctx, "RFC4541: section 2.1.2, item 2, flooding");
2451 xlate_normal_flood(ctx, in_xbundle, vlan);
2452 return;
2453 }
2454 }
2455
2456 /* forwarding to group base ports */
2457 ovs_rwlock_rdlock(&ms->rwlock);
2458 if (flow->dl_type == htons(ETH_TYPE_IP)) {
2459 grp = mcast_snooping_lookup4(ms, flow->nw_dst, vlan);
2460 } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
2461 grp = mcast_snooping_lookup(ms, &flow->ipv6_dst, vlan);
2462 }
2463 if (grp) {
2464 xlate_normal_mcast_send_group(ctx, ms, grp, in_xbundle, vlan);
2465 xlate_normal_mcast_send_fports(ctx, ms, in_xbundle, vlan);
2466 xlate_normal_mcast_send_mrouters(ctx, ms, in_xbundle, vlan);
2467 } else {
2468 if (mcast_snooping_flood_unreg(ms)) {
2469 xlate_report(ctx, "unregistered multicast, flooding");
2470 xlate_normal_flood(ctx, in_xbundle, vlan);
2471 } else {
2472 xlate_normal_mcast_send_mrouters(ctx, ms, in_xbundle, vlan);
2473 xlate_normal_mcast_send_fports(ctx, ms, in_xbundle, vlan);
2474 }
2475 }
2476 ovs_rwlock_unlock(&ms->rwlock);
2477 } else {
2478 ovs_rwlock_rdlock(&ctx->xbridge->ml->rwlock);
2479 mac = mac_learning_lookup(ctx->xbridge->ml, flow->dl_dst, vlan);
2480 mac_port = mac ? mac_entry_get_port(ctx->xbridge->ml, mac) : NULL;
2481 ovs_rwlock_unlock(&ctx->xbridge->ml->rwlock);
2482
2483 if (mac_port) {
2484 struct xlate_cfg *xcfg = ovsrcu_get(struct xlate_cfg *, &xcfgp);
2485 struct xbundle *mac_xbundle = xbundle_lookup(xcfg, mac_port);
2486 if (mac_xbundle && mac_xbundle != in_xbundle) {
2487 xlate_report(ctx, "forwarding to learned port");
2488 output_normal(ctx, mac_xbundle, vlan);
2489 } else if (!mac_xbundle) {
2490 xlate_report(ctx, "learned port is unknown, dropping");
2491 } else {
2492 xlate_report(ctx, "learned port is input port, dropping");
2493 }
2494 } else {
2495 xlate_report(ctx, "no learned MAC for destination, flooding");
2496 xlate_normal_flood(ctx, in_xbundle, vlan);
2497 }
2498 }
2499 }
2500
2501 /* Appends a "sample" action for sFlow or IPFIX to 'ctx->odp_actions'. The
2502 * 'probability' is the number of packets out of UINT32_MAX to sample. The
2503 * 'cookie' (of length 'cookie_size' bytes) is passed back in the callback for
2504 * each sampled packet. 'tunnel_out_port', if not ODPP_NONE, is added as the
2505 * OVS_USERSPACE_ATTR_EGRESS_TUN_PORT attribute. If 'include_actions', an
2506 * OVS_USERSPACE_ATTR_ACTIONS attribute is added.
2507 */
2508 static size_t
2509 compose_sample_action(struct xlate_ctx *ctx,
2510 const uint32_t probability,
2511 const union user_action_cookie *cookie,
2512 const size_t cookie_size,
2513 const odp_port_t tunnel_out_port,
2514 bool include_actions)
2515 {
2516 size_t sample_offset = nl_msg_start_nested(ctx->odp_actions,
2517 OVS_ACTION_ATTR_SAMPLE);
2518
2519 nl_msg_put_u32(ctx->odp_actions, OVS_SAMPLE_ATTR_PROBABILITY, probability);
2520
2521 size_t actions_offset = nl_msg_start_nested(ctx->odp_actions,
2522 OVS_SAMPLE_ATTR_ACTIONS);
2523
2524 odp_port_t odp_port = ofp_port_to_odp_port(
2525 ctx->xbridge, ctx->xin->flow.in_port.ofp_port);
2526 uint32_t pid = dpif_port_get_pid(ctx->xbridge->dpif, odp_port,
2527 flow_hash_5tuple(&ctx->xin->flow, 0));
2528 int cookie_offset = odp_put_userspace_action(pid, cookie, cookie_size,
2529 tunnel_out_port,
2530 include_actions,
2531 ctx->odp_actions);
2532
2533 nl_msg_end_nested(ctx->odp_actions, actions_offset);
2534 nl_msg_end_nested(ctx->odp_actions, sample_offset);
2535
2536 return cookie_offset;
2537 }
2538
2539 /* If sFLow is not enabled, returns 0 without doing anything.
2540 *
2541 * If sFlow is enabled, appends a template "sample" action to the ODP actions
2542 * in 'ctx'. This action is a template because some of the information needed
2543 * to fill it out is not available until flow translation is complete. In this
2544 * case, this functions returns an offset, which is always nonzero, to pass
2545 * later to fix_sflow_action() to fill in the rest of the template. */
2546 static size_t
2547 compose_sflow_action(struct xlate_ctx *ctx)
2548 {
2549 struct dpif_sflow *sflow = ctx->xbridge->sflow;
2550 if (!sflow || ctx->xin->flow.in_port.ofp_port == OFPP_NONE) {
2551 return 0;
2552 }
2553
2554 union user_action_cookie cookie = { .type = USER_ACTION_COOKIE_SFLOW };
2555 return compose_sample_action(ctx, dpif_sflow_get_probability(sflow),
2556 &cookie, sizeof cookie.sflow, ODPP_NONE,
2557 true);
2558 }
2559
2560 /* If IPFIX is enabled, this appends a "sample" action to implement IPFIX to
2561 * 'ctx->odp_actions'. */
2562 static void
2563 compose_ipfix_action(struct xlate_ctx *ctx, odp_port_t output_odp_port)
2564 {
2565 struct dpif_ipfix *ipfix = ctx->xbridge->ipfix;
2566 odp_port_t tunnel_out_port = ODPP_NONE;
2567
2568 if (!ipfix || ctx->xin->flow.in_port.ofp_port == OFPP_NONE) {
2569 return;
2570 }
2571
2572 /* For input case, output_odp_port is ODPP_NONE, which is an invalid port
2573 * number. */
2574 if (output_odp_port == ODPP_NONE &&
2575 !dpif_ipfix_get_bridge_exporter_input_sampling(ipfix)) {
2576 return;
2577 }
2578
2579 /* For output case, output_odp_port is valid*/
2580 if (output_odp_port != ODPP_NONE) {
2581 if (!dpif_ipfix_get_bridge_exporter_output_sampling(ipfix)) {
2582 return;
2583 }
2584 /* If tunnel sampling is enabled, put an additional option attribute:
2585 * OVS_USERSPACE_ATTR_TUNNEL_OUT_PORT
2586 */
2587 if (dpif_ipfix_get_bridge_exporter_tunnel_sampling(ipfix) &&
2588 dpif_ipfix_get_tunnel_port(ipfix, output_odp_port) ) {
2589 tunnel_out_port = output_odp_port;
2590 }
2591 }
2592
2593 union user_action_cookie cookie = {
2594 .ipfix = {
2595 .type = USER_ACTION_COOKIE_IPFIX,
2596 .output_odp_port = output_odp_port,
2597 }
2598 };
2599 compose_sample_action(ctx,
2600 dpif_ipfix_get_bridge_exporter_probability(ipfix),
2601 &cookie, sizeof cookie.ipfix, tunnel_out_port,
2602 false);
2603 }
2604
2605 /* Fix "sample" action according to data collected while composing ODP actions,
2606 * as described in compose_sflow_action().
2607 *
2608 * 'user_cookie_offset' must be the offset returned by add_sflow_action(). */
2609 static void
2610 fix_sflow_action(struct xlate_ctx *ctx, unsigned int user_cookie_offset)
2611 {
2612 const struct flow *base = &ctx->base_flow;
2613 union user_action_cookie *cookie;
2614
2615 cookie = ofpbuf_at(ctx->odp_actions, user_cookie_offset,
2616 sizeof cookie->sflow);
2617 ovs_assert(cookie->type == USER_ACTION_COOKIE_SFLOW);
2618
2619 cookie->type = USER_ACTION_COOKIE_SFLOW;
2620 cookie->sflow.vlan_tci = base->vlan_tci;
2621
2622 /* See http://www.sflow.org/sflow_version_5.txt (search for "Input/output
2623 * port information") for the interpretation of cookie->output. */
2624 switch (ctx->sflow_n_outputs) {
2625 case 0:
2626 /* 0x40000000 | 256 means "packet dropped for unknown reason". */
2627 cookie->sflow.output = 0x40000000 | 256;
2628 break;
2629
2630 case 1:
2631 cookie->sflow.output = dpif_sflow_odp_port_to_ifindex(
2632 ctx->xbridge->sflow, ctx->sflow_odp_port);
2633 if (cookie->sflow.output) {
2634 break;
2635 }
2636 /* Fall through. */
2637 default:
2638 /* 0x80000000 means "multiple output ports. */
2639 cookie->sflow.output = 0x80000000 | ctx->sflow_n_outputs;
2640 break;
2641 }
2642 }
2643
2644 static bool
2645 process_special(struct xlate_ctx *ctx, const struct xport *xport)
2646 {
2647 const struct flow *flow = &ctx->xin->flow;
2648 struct flow_wildcards *wc = ctx->wc;
2649 const struct xbridge *xbridge = ctx->xbridge;
2650 const struct dp_packet *packet = ctx->xin->packet;
2651 enum slow_path_reason slow;
2652
2653 if (!xport) {
2654 slow = 0;
2655 } else if (xport->cfm && cfm_should_process_flow(xport->cfm, flow, wc)) {
2656 if (packet) {
2657 cfm_process_heartbeat(xport->cfm, packet);
2658 }
2659 slow = SLOW_CFM;
2660 } else if (xport->bfd && bfd_should_process_flow(xport->bfd, flow, wc)) {
2661 if (packet) {
2662 bfd_process_packet(xport->bfd, flow, packet);
2663 /* If POLL received, immediately sends FINAL back. */
2664 if (bfd_should_send_packet(xport->bfd)) {
2665 ofproto_dpif_monitor_port_send_soon(xport->ofport);
2666 }
2667 }
2668 slow = SLOW_BFD;
2669 } else if (xport->xbundle && xport->xbundle->lacp
2670 && flow->dl_type == htons(ETH_TYPE_LACP)) {
2671 if (packet) {
2672 lacp_process_packet(xport->xbundle->lacp, xport->ofport, packet);
2673 }
2674 slow = SLOW_LACP;
2675 } else if ((xbridge->stp || xbridge->rstp) &&
2676 stp_should_process_flow(flow, wc)) {
2677 if (packet) {
2678 xbridge->stp
2679 ? stp_process_packet(xport, packet)
2680 : rstp_process_packet(xport, packet);
2681 }
2682 slow = SLOW_STP;
2683 } else if (xport->lldp && lldp_should_process_flow(xport->lldp, flow)) {
2684 if (packet) {
2685 lldp_process_packet(xport->lldp, packet);
2686 }
2687 slow = SLOW_LLDP;
2688 } else {
2689 slow = 0;
2690 }
2691
2692 if (slow) {
2693 ctx->xout->slow |= slow;
2694 return true;
2695 } else {
2696 return false;
2697 }
2698 }
2699
2700 static int
2701 tnl_route_lookup_flow(const struct flow *oflow,
2702 struct in6_addr *ip, struct xport **out_port)
2703 {
2704 char out_dev[IFNAMSIZ];
2705 struct xbridge *xbridge;
2706 struct xlate_cfg *xcfg;
2707 struct in6_addr gw;
2708 struct in6_addr dst;
2709
2710 dst = flow_tnl_dst(&oflow->tunnel);
2711 if (!ovs_router_lookup(&dst, out_dev, &gw)) {
2712 return -ENOENT;
2713 }
2714
2715 if (ipv6_addr_is_set(&gw) &&
2716 (!IN6_IS_ADDR_V4MAPPED(&gw) || in6_addr_get_mapped_ipv4(&gw))) {
2717 *ip = gw;
2718 } else {
2719 *ip = dst;
2720 }
2721
2722 xcfg = ovsrcu_get(struct xlate_cfg *, &xcfgp);
2723 ovs_assert(xcfg);
2724
2725 HMAP_FOR_EACH (xbridge, hmap_node, &xcfg->xbridges) {
2726 if (!strncmp(xbridge->name, out_dev, IFNAMSIZ)) {
2727 struct xport *port;
2728
2729 HMAP_FOR_EACH (port, ofp_node, &xbridge->xports) {
2730 if (!strncmp(netdev_get_name(port->netdev), out_dev, IFNAMSIZ)) {
2731 *out_port = port;
2732 return 0;
2733 }
2734 }
2735 }
2736 }
2737 return -ENOENT;
2738 }
2739
2740 static int
2741 compose_table_xlate(struct xlate_ctx *ctx, const struct xport *out_dev,
2742 struct dp_packet *packet)
2743 {
2744 struct xbridge *xbridge = out_dev->xbridge;
2745 struct ofpact_output output;
2746 struct flow flow;
2747
2748 ofpact_init(&output.ofpact, OFPACT_OUTPUT, sizeof output);
2749 flow_extract(packet, &flow);
2750 flow.in_port.ofp_port = out_dev->ofp_port;
2751 output.port = OFPP_TABLE;
2752 output.max_len = 0;
2753
2754 return ofproto_dpif_execute_actions__(xbridge->ofproto, &flow, NULL,
2755 &output.ofpact, sizeof output,
2756 ctx->recurse, ctx->resubmits, packet);
2757 }
2758
2759 static void
2760 tnl_send_nd_request(struct xlate_ctx *ctx, const struct xport *out_dev,
2761 const struct eth_addr eth_src,
2762 struct in6_addr * ipv6_src, struct in6_addr * ipv6_dst)
2763 {
2764 struct dp_packet packet;
2765
2766 dp_packet_init(&packet, 0);
2767 compose_nd(&packet, eth_src, ipv6_src, ipv6_dst);
2768 compose_table_xlate(ctx, out_dev, &packet);
2769 dp_packet_uninit(&packet);
2770 }
2771
2772 static void
2773 tnl_send_arp_request(struct xlate_ctx *ctx, const struct xport *out_dev,
2774 const struct eth_addr eth_src,
2775 ovs_be32 ip_src, ovs_be32 ip_dst)
2776 {
2777 struct dp_packet packet;
2778
2779 dp_packet_init(&packet, 0);
2780 compose_arp(&packet, ARP_OP_REQUEST,
2781 eth_src, eth_addr_zero, true, ip_src, ip_dst);
2782
2783 compose_table_xlate(ctx, out_dev, &packet);
2784 dp_packet_uninit(&packet);
2785 }
2786
2787 static int
2788 build_tunnel_send(struct xlate_ctx *ctx, const struct xport *xport,
2789 const struct flow *flow, odp_port_t tunnel_odp_port)
2790 {
2791 struct ovs_action_push_tnl tnl_push_data;
2792 struct xport *out_dev = NULL;
2793 ovs_be32 s_ip = 0, d_ip = 0;
2794 struct in6_addr s_ip6 = in6addr_any;
2795 struct in6_addr d_ip6 = in6addr_any;
2796 struct eth_addr smac;
2797 struct eth_addr dmac;
2798 int err;
2799 char buf_sip6[INET6_ADDRSTRLEN];
2800 char buf_dip6[INET6_ADDRSTRLEN];
2801
2802 err = tnl_route_lookup_flow(flow, &d_ip6, &out_dev);
2803 if (err) {
2804 xlate_report(ctx, "native tunnel routing failed");
2805 return err;
2806 }
2807
2808 xlate_report(ctx, "tunneling to %s via %s",
2809 ipv6_string_mapped(buf_dip6, &d_ip6),
2810 netdev_get_name(out_dev->netdev));
2811
2812 /* Use mac addr of bridge port of the peer. */
2813 err = netdev_get_etheraddr(out_dev->netdev, &smac);
2814 if (err) {
2815 xlate_report(ctx, "tunnel output device lacks Ethernet address");
2816 return err;
2817 }
2818
2819 d_ip = in6_addr_get_mapped_ipv4(&d_ip6);
2820 if (d_ip) {
2821 err = netdev_get_in4(out_dev->netdev, (struct in_addr *) &s_ip, NULL);
2822 if (err) {
2823 xlate_report(ctx, "tunnel output device lacks IPv4 address");
2824 return err;
2825 }
2826 in6_addr_set_mapped_ipv4(&s_ip6, s_ip);
2827 } else {
2828 err = netdev_get_in6(out_dev->netdev, &s_ip6);
2829 if (err) {
2830 xlate_report(ctx, "tunnel output device lacks IPv6 address");
2831 return err;
2832 }
2833 }
2834
2835 err = tnl_neigh_lookup(out_dev->xbridge->name, &d_ip6, &dmac);
2836 if (err) {
2837 xlate_report(ctx, "neighbor cache miss for %s on bridge %s, "
2838 "sending %s request",
2839 buf_dip6, out_dev->xbridge->name, d_ip ? "ARP" : "ND");
2840 if (d_ip) {
2841 tnl_send_arp_request(ctx, out_dev, smac, s_ip, d_ip);
2842 } else {
2843 tnl_send_nd_request(ctx, out_dev, smac, &s_ip6, &d_ip6);
2844 }
2845 return err;
2846 }
2847
2848 if (ctx->xin->xcache) {
2849 struct xc_entry *entry;
2850
2851 entry = xlate_cache_add_entry(ctx->xin->xcache, XC_TNL_NEIGH);
2852 ovs_strlcpy(entry->u.tnl_neigh_cache.br_name, out_dev->xbridge->name,
2853 sizeof entry->u.tnl_neigh_cache.br_name);
2854 entry->u.tnl_neigh_cache.d_ipv6 = d_ip6;
2855 }
2856
2857 xlate_report(ctx, "tunneling from "ETH_ADDR_FMT" %s"
2858 " to "ETH_ADDR_FMT" %s",
2859 ETH_ADDR_ARGS(smac), ipv6_string_mapped(buf_sip6, &s_ip6),
2860 ETH_ADDR_ARGS(dmac), buf_dip6);
2861
2862 err = tnl_port_build_header(xport->ofport, flow,
2863 dmac, smac, &s_ip6, &tnl_push_data);
2864 if (err) {
2865 return err;
2866 }
2867 tnl_push_data.tnl_port = odp_to_u32(tunnel_odp_port);
2868 tnl_push_data.out_port = odp_to_u32(out_dev->odp_port);
2869 odp_put_tnl_push_action(ctx->odp_actions, &tnl_push_data);
2870 return 0;
2871 }
2872
2873 static void
2874 xlate_commit_actions(struct xlate_ctx *ctx)
2875 {
2876 bool use_masked = ctx->xbridge->support.masked_set_action;
2877
2878 ctx->xout->slow |= commit_odp_actions(&ctx->xin->flow, &ctx->base_flow,
2879 ctx->odp_actions, ctx->wc,
2880 use_masked);
2881 }
2882
2883 static void
2884 clear_conntrack(struct flow *flow)
2885 {
2886 flow->ct_state = 0;
2887 flow->ct_zone = 0;
2888 flow->ct_mark = 0;
2889 memset(&flow->ct_label, 0, sizeof flow->ct_label);
2890 }
2891
2892 static void
2893 compose_output_action__(struct xlate_ctx *ctx, ofp_port_t ofp_port,
2894 const struct xlate_bond_recirc *xr, bool check_stp)
2895 {
2896 const struct xport *xport = get_ofp_port(ctx->xbridge, ofp_port);
2897 struct flow_wildcards *wc = ctx->wc;
2898 struct flow *flow = &ctx->xin->flow;
2899 struct flow_tnl flow_tnl;
2900 ovs_be16 flow_vlan_tci;
2901 uint32_t flow_pkt_mark;
2902 uint8_t flow_nw_tos;
2903 odp_port_t out_port, odp_port;
2904 bool tnl_push_pop_send = false;
2905 uint8_t dscp;
2906
2907 /* If 'struct flow' gets additional metadata, we'll need to zero it out
2908 * before traversing a patch port. */
2909 BUILD_ASSERT_DECL(FLOW_WC_SEQ == 35);
2910 memset(&flow_tnl, 0, sizeof flow_tnl);
2911
2912 if (!xport) {
2913 xlate_report(ctx, "Nonexistent output port");
2914 return;
2915 } else if (xport->config & OFPUTIL_PC_NO_FWD) {
2916 xlate_report(ctx, "OFPPC_NO_FWD set, skipping output");
2917 return;
2918 } else if (check_stp) {
2919 if (is_stp(&ctx->base_flow)) {
2920 if (!xport_stp_should_forward_bpdu(xport) &&
2921 !xport_rstp_should_manage_bpdu(xport)) {
2922 if (ctx->xbridge->stp != NULL) {
2923 xlate_report(ctx, "STP not in listening state, "
2924 "skipping bpdu output");
2925 } else if (ctx->xbridge->rstp != NULL) {
2926 xlate_report(ctx, "RSTP not managing BPDU in this state, "
2927 "skipping bpdu output");
2928 }
2929 return;
2930 }
2931 } else if (!xport_stp_forward_state(xport) ||
2932 !xport_rstp_forward_state(xport)) {
2933 if (ctx->xbridge->stp != NULL) {
2934 xlate_report(ctx, "STP not in forwarding state, "
2935 "skipping output");
2936 } else if (ctx->xbridge->rstp != NULL) {
2937 xlate_report(ctx, "RSTP not in forwarding state, "
2938 "skipping output");
2939 }
2940 return;
2941 }
2942 }
2943
2944 if (xport->peer) {
2945 const struct xport *peer = xport->peer;
2946 struct flow old_flow = ctx->xin->flow;
2947 bool old_conntrack = ctx->conntracked;
2948 bool old_was_mpls = ctx->was_mpls;
2949 cls_version_t old_version = ctx->tables_version;
2950 struct ofpbuf old_stack = ctx->stack;
2951 union mf_subvalue new_stack[1024 / sizeof(union mf_subvalue)];
2952 struct ofpbuf old_action_set = ctx->action_set;
2953 uint64_t actset_stub[1024 / 8];
2954
2955 ofpbuf_use_stub(&ctx->stack, new_stack, sizeof new_stack);
2956 ofpbuf_use_stub(&ctx->action_set, actset_stub, sizeof actset_stub);
2957 ctx->xbridge = peer->xbridge;
2958 flow->in_port.ofp_port = peer->ofp_port;
2959 flow->metadata = htonll(0);
2960 memset(&flow->tunnel, 0, sizeof flow->tunnel);
2961 memset(flow->regs, 0, sizeof flow->regs);
2962 flow->actset_output = OFPP_UNSET;
2963 ctx->conntracked = false;
2964 clear_conntrack(flow);
2965
2966 /* The bridge is now known so obtain its table version. */
2967 ctx->tables_version
2968 = ofproto_dpif_get_tables_version(ctx->xbridge->ofproto);
2969
2970 if (!process_special(ctx, peer) && may_receive(peer, ctx)) {
2971 if (xport_stp_forward_state(peer) && xport_rstp_forward_state(peer)) {
2972 xlate_table_action(ctx, flow->in_port.ofp_port, 0, true, true);
2973 if (ctx->action_set.size) {
2974 /* Translate action set only if not dropping the packet and
2975 * not recirculating. */
2976 if (!exit_recirculates(ctx)) {
2977 xlate_action_set(ctx);
2978 }
2979 }
2980 /* Check if need to recirculate. */
2981 if (exit_recirculates(ctx)) {
2982 compose_recirculate_action(ctx);
2983 }
2984 } else {
2985 /* Forwarding is disabled by STP and RSTP. Let OFPP_NORMAL and
2986 * the learning action look at the packet, then drop it. */
2987 struct flow old_base_flow = ctx->base_flow;
2988 size_t old_size = ctx->odp_actions->size;
2989 mirror_mask_t old_mirrors = ctx->mirrors;
2990
2991 xlate_table_action(ctx, flow->in_port.ofp_port, 0, true, true);
2992 ctx->mirrors = old_mirrors;
2993 ctx->base_flow = old_base_flow;
2994 ctx->odp_actions->size = old_size;
2995
2996 /* Undo changes that may have been done for recirculation. */
2997 if (exit_recirculates(ctx)) {
2998 ctx->action_set.size = ctx->recirc_action_offset;
2999 ctx->recirc_action_offset = -1;
3000 ctx->last_unroll_offset = -1;
3001 }
3002 }
3003 }
3004
3005 ctx->xin->flow = old_flow;
3006 ctx->xbridge = xport->xbridge;
3007 ofpbuf_uninit(&ctx->action_set);
3008 ctx->action_set = old_action_set;
3009 ofpbuf_uninit(&ctx->stack);
3010 ctx->stack = old_stack;
3011
3012 /* Restore calling bridge's lookup version. */
3013 ctx->tables_version = old_version;
3014
3015 /* The peer bridge popping MPLS should have no effect on the original
3016 * bridge. */
3017 ctx->was_mpls = old_was_mpls;
3018
3019 /* The peer bridge's conntrack execution should have no effect on the
3020 * original bridge. */
3021 ctx->conntracked = old_conntrack;
3022
3023 /* The fact that the peer bridge exits (for any reason) does not mean
3024 * that the original bridge should exit. Specifically, if the peer
3025 * bridge recirculates (which typically modifies the packet), the
3026 * original bridge must continue processing with the original, not the
3027 * recirculated packet! */
3028 ctx->exit = false;
3029
3030 /* Peer bridge errors do not propagate back. */
3031 ctx->error = XLATE_OK;
3032
3033 if (ctx->xin->resubmit_stats) {
3034 netdev_vport_inc_tx(xport->netdev, ctx->xin->resubmit_stats);
3035 netdev_vport_inc_rx(peer->netdev, ctx->xin->resubmit_stats);
3036 if (peer->bfd) {
3037 bfd_account_rx(peer->bfd, ctx->xin->resubmit_stats);
3038 }
3039 }
3040 if (ctx->xin->xcache) {
3041 struct xc_entry *entry;
3042
3043 entry = xlate_cache_add_entry(ctx->xin->xcache, XC_NETDEV);
3044 entry->u.dev.tx = netdev_ref(xport->netdev);
3045 entry->u.dev.rx = netdev_ref(peer->netdev);
3046 entry->u.dev.bfd = bfd_ref(peer->bfd);
3047 }
3048 return;
3049 }
3050
3051 flow_vlan_tci = flow->vlan_tci;
3052 flow_pkt_mark = flow->pkt_mark;
3053 flow_nw_tos = flow->nw_tos;
3054
3055 if (count_skb_priorities(xport)) {
3056 memset(&wc->masks.skb_priority, 0xff, sizeof wc->masks.skb_priority);
3057 if (dscp_from_skb_priority(xport, flow->skb_priority, &dscp)) {
3058 wc->masks.nw_tos |= IP_DSCP_MASK;
3059 flow->nw_tos &= ~IP_DSCP_MASK;
3060 flow->nw_tos |= dscp;
3061 }
3062 }
3063
3064 if (xport->is_tunnel) {
3065 struct in6_addr dst;
3066 /* Save tunnel metadata so that changes made due to
3067 * the Logical (tunnel) Port are not visible for any further
3068 * matches, while explicit set actions on tunnel metadata are.
3069 */
3070 flow_tnl = flow->tunnel;
3071 odp_port = tnl_port_send(xport->ofport, flow, ctx->wc);
3072 if (odp_port == ODPP_NONE) {
3073 xlate_report(ctx, "Tunneling decided against output");
3074 goto out; /* restore flow_nw_tos */
3075 }
3076 dst = flow_tnl_dst(&flow->tunnel);
3077 if (ipv6_addr_equals(&dst, &ctx->orig_tunnel_ipv6_dst)) {
3078 xlate_report(ctx, "Not tunneling to our own address");
3079 goto out; /* restore flow_nw_tos */
3080 }
3081 if (ctx->xin->resubmit_stats) {
3082 netdev_vport_inc_tx(xport->netdev, ctx->xin->resubmit_stats);
3083 }
3084 if (ctx->xin->xcache) {
3085 struct xc_entry *entry;
3086
3087 entry = xlate_cache_add_entry(ctx->xin->xcache, XC_NETDEV);
3088 entry->u.dev.tx = netdev_ref(xport->netdev);
3089 }
3090 out_port = odp_port;
3091 if (ovs_native_tunneling_is_on(ctx->xbridge->ofproto)) {
3092 xlate_report(ctx, "output to native tunnel");
3093 tnl_push_pop_send = true;
3094 } else {
3095 xlate_report(ctx, "output to kernel tunnel");
3096 commit_odp_tunnel_action(flow, &ctx->base_flow, ctx->odp_actions);
3097 flow->tunnel = flow_tnl; /* Restore tunnel metadata */
3098 }
3099 } else {
3100 odp_port = xport->odp_port;
3101 out_port = odp_port;
3102 if (ofproto_has_vlan_splinters(ctx->xbridge->ofproto)) {
3103 ofp_port_t vlandev_port;
3104
3105 wc->masks.vlan_tci |= htons(VLAN_VID_MASK | VLAN_CFI);
3106 vlandev_port = vsp_realdev_to_vlandev(ctx->xbridge->ofproto,
3107 ofp_port, flow->vlan_tci);
3108 if (vlandev_port != ofp_port) {
3109 out_port = ofp_port_to_odp_port(ctx->xbridge, vlandev_port);
3110 flow->vlan_tci = htons(0);
3111 }
3112 }
3113 }
3114
3115 if (out_port != ODPP_NONE) {
3116 xlate_commit_actions(ctx);
3117
3118 if (xr) {
3119 struct ovs_action_hash *act_hash;
3120
3121 /* Hash action. */
3122 act_hash = nl_msg_put_unspec_uninit(ctx->odp_actions,
3123 OVS_ACTION_ATTR_HASH,
3124 sizeof *act_hash);
3125 act_hash->hash_alg = xr->hash_alg;
3126 act_hash->hash_basis = xr->hash_basis;
3127
3128 /* Recirc action. */
3129 nl_msg_put_u32(ctx->odp_actions, OVS_ACTION_ATTR_RECIRC,
3130 xr->recirc_id);
3131 } else {
3132
3133 if (tnl_push_pop_send) {
3134 build_tunnel_send(ctx, xport, flow, odp_port);
3135 flow->tunnel = flow_tnl; /* Restore tunnel metadata */
3136 } else {
3137 odp_port_t odp_tnl_port = ODPP_NONE;
3138
3139 /* XXX: Write better Filter for tunnel port. We can use inport
3140 * int tunnel-port flow to avoid these checks completely. */
3141 if (ofp_port == OFPP_LOCAL &&
3142 ovs_native_tunneling_is_on(ctx->xbridge->ofproto)) {
3143
3144 odp_tnl_port = tnl_port_map_lookup(flow, wc);
3145 }
3146
3147 if (odp_tnl_port != ODPP_NONE) {
3148 nl_msg_put_odp_port(ctx->odp_actions,
3149 OVS_ACTION_ATTR_TUNNEL_POP,
3150 odp_tnl_port);
3151 } else {
3152 /* Tunnel push-pop action is not compatible with
3153 * IPFIX action. */
3154 compose_ipfix_action(ctx, out_port);
3155 nl_msg_put_odp_port(ctx->odp_actions,
3156 OVS_ACTION_ATTR_OUTPUT,
3157 out_port);
3158 }
3159 }
3160 }
3161
3162 ctx->sflow_odp_port = odp_port;
3163 ctx->sflow_n_outputs++;
3164 ctx->nf_output_iface = ofp_port;
3165 }
3166
3167 if (mbridge_has_mirrors(ctx->xbridge->mbridge) && xport->xbundle) {
3168 mirror_packet(ctx, xport->xbundle,
3169 xbundle_mirror_dst(xport->xbundle->xbridge,
3170 xport->xbundle));
3171 }
3172
3173 out:
3174 /* Restore flow */
3175 flow->vlan_tci = flow_vlan_tci;
3176 flow->pkt_mark = flow_pkt_mark;
3177 flow->nw_tos = flow_nw_tos;
3178 }
3179
3180 static void
3181 compose_output_action(struct xlate_ctx *ctx, ofp_port_t ofp_port,
3182 const struct xlate_bond_recirc *xr)
3183 {
3184 compose_output_action__(ctx, ofp_port, xr, true);
3185 }
3186
3187 static void
3188 xlate_recursively(struct xlate_ctx *ctx, struct rule_dpif *rule)
3189 {
3190 struct rule_dpif *old_rule = ctx->rule;
3191 ovs_be64 old_cookie = ctx->rule_cookie;
3192 const struct rule_actions *actions;
3193
3194 if (ctx->xin->resubmit_stats) {
3195 rule_dpif_credit_stats(rule, ctx->xin->resubmit_stats);
3196 }
3197
3198 ctx->resubmits++;
3199 ctx->recurse++;
3200 ctx->rule = rule;
3201 ctx->rule_cookie = rule_dpif_get_flow_cookie(rule);
3202 actions = rule_dpif_get_actions(rule);
3203 do_xlate_actions(actions->ofpacts, actions->ofpacts_len, ctx);
3204 ctx->rule_cookie = old_cookie;
3205 ctx->rule = old_rule;
3206 ctx->recurse--;
3207 }
3208
3209 static bool
3210 xlate_resubmit_resource_check(struct xlate_ctx *ctx)
3211 {
3212 if (ctx->recurse >= MAX_RESUBMIT_RECURSION + MAX_INTERNAL_RESUBMITS) {
3213 XLATE_REPORT_ERROR(ctx, "resubmit actions recursed over %d times",
3214 MAX_RESUBMIT_RECURSION);
3215 ctx->error = XLATE_RECURSION_TOO_DEEP;
3216 } else if (ctx->resubmits >= MAX_RESUBMITS + MAX_INTERNAL_RESUBMITS) {
3217 XLATE_REPORT_ERROR(ctx, "over %d resubmit actions", MAX_RESUBMITS);
3218 ctx->error = XLATE_TOO_MANY_RESUBMITS;
3219 } else if (ctx->odp_actions->size > UINT16_MAX) {
3220 XLATE_REPORT_ERROR(ctx, "resubmits yielded over 64 kB of actions");
3221 /* NOT an error, as we'll be slow-pathing the flow in this case? */
3222 ctx->exit = true; /* XXX: translation still terminated! */
3223 } else if (ctx->stack.size >= 65536) {
3224 XLATE_REPORT_ERROR(ctx, "resubmits yielded over 64 kB of stack");
3225 ctx->error = XLATE_STACK_TOO_DEEP;
3226 } else {
3227 return true;
3228 }
3229
3230 return false;
3231 }
3232
3233 static void
3234 xlate_table_action(struct xlate_ctx *ctx, ofp_port_t in_port, uint8_t table_id,
3235 bool may_packet_in, bool honor_table_miss)
3236 {
3237 /* Check if we need to recirculate before matching in a table. */
3238 if (ctx->was_mpls) {
3239 ctx_trigger_recirculation(ctx);
3240 return;
3241 }
3242 if (xlate_resubmit_resource_check(ctx)) {
3243 uint8_t old_table_id = ctx->table_id;
3244 struct rule_dpif *rule;
3245
3246 ctx->table_id = table_id;
3247
3248 rule = rule_dpif_lookup_from_table(ctx->xbridge->ofproto,
3249 ctx->tables_version,
3250 &ctx->xin->flow, ctx->xin->wc,
3251 ctx->xin->resubmit_stats,
3252 &ctx->table_id, in_port,
3253 may_packet_in, honor_table_miss);
3254
3255 if (OVS_UNLIKELY(ctx->xin->resubmit_hook)) {
3256 ctx->xin->resubmit_hook(ctx->xin, rule, ctx->recurse + 1);
3257 }
3258
3259 if (rule) {
3260 /* Fill in the cache entry here instead of xlate_recursively
3261 * to make the reference counting more explicit. We take a
3262 * reference in the lookups above if we are going to cache the
3263 * rule. */
3264 if (ctx->xin->xcache) {
3265 struct xc_entry *entry;
3266
3267 entry = xlate_cache_add_entry(ctx->xin->xcache, XC_RULE);
3268 entry->u.rule = rule;
3269 rule_dpif_ref(rule);
3270 }
3271 xlate_recursively(ctx, rule);
3272 }
3273
3274 ctx->table_id = old_table_id;
3275 return;
3276 }
3277 }
3278
3279 static void
3280 xlate_group_stats(struct xlate_ctx *ctx, struct group_dpif *group,
3281 struct ofputil_bucket *bucket)
3282 {
3283 if (ctx->xin->resubmit_stats) {
3284 group_dpif_credit_stats(group, bucket, ctx->xin->resubmit_stats);
3285 }
3286 if (ctx->xin->xcache) {
3287 struct xc_entry *entry;
3288
3289 entry = xlate_cache_add_entry(ctx->xin->xcache, XC_GROUP);
3290 entry->u.group.group = group_dpif_ref(group);
3291 entry->u.group.bucket = bucket;
3292 }
3293 }
3294
3295 static void
3296 xlate_group_bucket(struct xlate_ctx *ctx, struct ofputil_bucket *bucket)
3297 {
3298 uint64_t action_list_stub[1024 / 8];
3299 struct ofpbuf action_list, action_set;
3300 struct flow old_flow = ctx->xin->flow;
3301 bool old_was_mpls = ctx->was_mpls;
3302
3303 ofpbuf_use_const(&action_set, bucket->ofpacts, bucket->ofpacts_len);
3304 ofpbuf_use_stub(&action_list, action_list_stub, sizeof action_list_stub);
3305
3306 ofpacts_execute_action_set(&action_list, &action_set);
3307 ctx->recurse++;
3308 do_xlate_actions(action_list.data, action_list.size, ctx);
3309 ctx->recurse--;
3310
3311 ofpbuf_uninit(&action_set);
3312 ofpbuf_uninit(&action_list);
3313
3314 /* Check if need to recirculate. */
3315 if (exit_recirculates(ctx)) {
3316 compose_recirculate_action(ctx);
3317 }
3318
3319 /* Roll back flow to previous state.
3320 * This is equivalent to cloning the packet for each bucket.
3321 *
3322 * As a side effect any subsequently applied actions will
3323 * also effectively be applied to a clone of the packet taken
3324 * just before applying the all or indirect group.
3325 *
3326 * Note that group buckets are action sets, hence they cannot modify the
3327 * main action set. Also any stack actions are ignored when executing an
3328 * action set, so group buckets cannot change the stack either.
3329 * However, we do allow resubmit actions in group buckets, which could
3330 * break the above assumptions. It is up to the controller to not mess up
3331 * with the action_set and stack in the tables resubmitted to from
3332 * group buckets. */
3333 ctx->xin->flow = old_flow;
3334
3335 /* The group bucket popping MPLS should have no effect after bucket
3336 * execution. */
3337 ctx->was_mpls = old_was_mpls;
3338
3339 /* The fact that the group bucket exits (for any reason) does not mean that
3340 * the translation after the group action should exit. Specifically, if
3341 * the group bucket recirculates (which typically modifies the packet), the
3342 * actions after the group action must continue processing with the
3343 * original, not the recirculated packet! */
3344 ctx->exit = false;
3345 }
3346
3347 static void
3348 xlate_all_group(struct xlate_ctx *ctx, struct group_dpif *group)
3349 {
3350 struct ofputil_bucket *bucket;
3351 const struct ovs_list *buckets;
3352
3353 group_dpif_get_buckets(group, &buckets);
3354
3355 LIST_FOR_EACH (bucket, list_node, buckets) {
3356 xlate_group_bucket(ctx, bucket);
3357 }
3358 xlate_group_stats(ctx, group, NULL);
3359 }
3360
3361 static void
3362 xlate_ff_group(struct xlate_ctx *ctx, struct group_dpif *group)
3363 {
3364 struct ofputil_bucket *bucket;
3365
3366 bucket = group_first_live_bucket(ctx, group, 0);
3367 if (bucket) {
3368 xlate_group_bucket(ctx, bucket);
3369 xlate_group_stats(ctx, group, bucket);
3370 }
3371 }
3372
3373 static void
3374 xlate_default_select_group(struct xlate_ctx *ctx, struct group_dpif *group)
3375 {
3376 struct flow_wildcards *wc = ctx->wc;
3377 struct ofputil_bucket *bucket;
3378 uint32_t basis;
3379
3380 basis = flow_hash_symmetric_l4(&ctx->xin->flow, 0);
3381 flow_mask_hash_fields(&ctx->xin->flow, wc, NX_HASH_FIELDS_SYMMETRIC_L4);
3382 bucket = group_best_live_bucket(ctx, group, basis);
3383 if (bucket) {
3384 xlate_group_bucket(ctx, bucket);
3385 xlate_group_stats(ctx, group, bucket);
3386 }
3387 }
3388
3389 static void
3390 xlate_hash_fields_select_group(struct xlate_ctx *ctx, struct group_dpif *group)
3391 {
3392 struct mf_bitmap hash_fields = MF_BITMAP_INITIALIZER;
3393 const struct field_array *fields;
3394 struct ofputil_bucket *bucket;
3395 uint32_t basis;
3396 int i;
3397
3398 fields = group_dpif_get_fields(group);
3399 basis = hash_uint64(group_dpif_get_selection_method_param(group));
3400
3401 /* Determine which fields to hash */
3402 for (i = 0; i < MFF_N_IDS; i++) {
3403 if (bitmap_is_set(fields->used.bm, i)) {
3404 const struct mf_field *mf;
3405
3406 /* If the field is already present in 'hash_fields' then
3407 * this loop has already checked that it and its pre-requisites
3408 * are present in the flow and its pre-requisites have
3409 * already been added to 'hash_fields'. There is nothing more
3410 * to do here and as an optimisation the loop can continue. */
3411 if (bitmap_is_set(hash_fields.bm, i)) {
3412 continue;
3413 }
3414
3415 mf = mf_from_id(i);
3416
3417 /* Only hash a field if it and its pre-requisites are present
3418 * in the flow. */
3419 if (!mf_are_prereqs_ok(mf, &ctx->xin->flow)) {
3420 continue;
3421 }
3422
3423 /* Hash both the field and its pre-requisites */
3424 mf_bitmap_set_field_and_prereqs(mf, &hash_fields);
3425 }
3426 }
3427
3428 /* Hash the fields */
3429 for (i = 0; i < MFF_N_IDS; i++) {
3430 if (bitmap_is_set(hash_fields.bm, i)) {
3431 const struct mf_field *mf = mf_from_id(i);
3432 union mf_value value;
3433 int j;
3434
3435 mf_get_value(mf, &ctx->xin->flow, &value);
3436 /* This seems inefficient but so does apply_mask() */
3437 for (j = 0; j < mf->n_bytes; j++) {
3438 ((uint8_t *) &value)[j] &= ((uint8_t *) &fields->value[i])[j];
3439 }
3440 basis = hash_bytes(&value, mf->n_bytes, basis);
3441
3442 /* For tunnels, hash in whether the field is present. */
3443 if (mf_is_tun_metadata(mf)) {
3444 basis = hash_boolean(mf_is_set(mf, &ctx->xin->flow), basis);
3445 }
3446
3447 mf_mask_field(mf, &ctx->wc->masks);
3448 }
3449 }
3450
3451 bucket = group_best_live_bucket(ctx, group, basis);
3452 if (bucket) {
3453 xlate_group_bucket(ctx, bucket);
3454 xlate_group_stats(ctx, group, bucket);
3455 }
3456 }
3457
3458 static void
3459 xlate_select_group(struct xlate_ctx *ctx, struct group_dpif *group)
3460 {
3461 const char *selection_method = group_dpif_get_selection_method(group);
3462
3463 if (selection_method[0] == '\0') {
3464 xlate_default_select_group(ctx, group);
3465 } else if (!strcasecmp("hash", selection_method)) {
3466 xlate_hash_fields_select_group(ctx, group);
3467 } else {
3468 /* Parsing of groups should ensure this never happens */
3469 OVS_NOT_REACHED();
3470 }
3471 }
3472
3473 static void
3474 xlate_group_action__(struct xlate_ctx *ctx, struct group_dpif *group)
3475 {
3476 bool was_in_group = ctx->in_group;
3477 ctx->in_group = true;
3478
3479 switch (group_dpif_get_type(group)) {
3480 case OFPGT11_ALL:
3481 case OFPGT11_INDIRECT:
3482 xlate_all_group(ctx, group);
3483 break;
3484 case OFPGT11_SELECT:
3485 xlate_select_group(ctx, group);
3486 break;
3487 case OFPGT11_FF:
3488 xlate_ff_group(ctx, group);
3489 break;
3490 default:
3491 OVS_NOT_REACHED();
3492 }
3493 group_dpif_unref(group);
3494
3495 ctx->in_group = was_in_group;
3496 }
3497
3498 static bool
3499 xlate_group_action(struct xlate_ctx *ctx, uint32_t group_id)
3500 {
3501 if (xlate_resubmit_resource_check(ctx)) {
3502 struct group_dpif *group;
3503 bool got_group;
3504
3505 got_group = group_dpif_lookup(ctx->xbridge->ofproto, group_id, &group);
3506 if (got_group) {
3507 xlate_group_action__(ctx, group);
3508 } else {
3509 return true;
3510 }
3511 }
3512
3513 return false;
3514 }
3515
3516 static void
3517 xlate_ofpact_resubmit(struct xlate_ctx *ctx,
3518 const struct ofpact_resubmit *resubmit)
3519 {
3520 ofp_port_t in_port;
3521 uint8_t table_id;
3522 bool may_packet_in = false;
3523 bool honor_table_miss = false;
3524
3525 if (ctx->rule && rule_dpif_is_internal(ctx->rule)) {
3526 /* Still allow missed packets to be sent to the controller
3527 * if resubmitting from an internal table. */
3528 may_packet_in = true;
3529 honor_table_miss = true;
3530 }
3531
3532 in_port = resubmit->in_port;
3533 if (in_port == OFPP_IN_PORT) {
3534 in_port = ctx->xin->flow.in_port.ofp_port;
3535 }
3536
3537 table_id = resubmit->table_id;
3538 if (table_id == 255) {
3539 table_id = ctx->table_id;
3540 }
3541
3542 xlate_table_action(ctx, in_port, table_id, may_packet_in,
3543 honor_table_miss);
3544 }
3545
3546 static void
3547 flood_packets(struct xlate_ctx *ctx, bool all)
3548 {
3549 const struct xport *xport;
3550
3551 HMAP_FOR_EACH (xport, ofp_node, &ctx->xbridge->xports) {
3552 if (xport->ofp_port == ctx->xin->flow.in_port.ofp_port) {
3553 continue;
3554 }
3555
3556 if (all) {
3557 compose_output_action__(ctx, xport->ofp_port, NULL, false);
3558 } else if (!(xport->config & OFPUTIL_PC_NO_FLOOD)) {
3559 compose_output_action(ctx, xport->ofp_port, NULL);
3560 }
3561 }
3562
3563 ctx->nf_output_iface = NF_OUT_FLOOD;
3564 }
3565
3566 static void
3567 execute_controller_action(struct xlate_ctx *ctx, int len,
3568 enum ofp_packet_in_reason reason,
3569 uint16_t controller_id)
3570 {
3571 struct ofproto_packet_in *pin;
3572 struct dp_packet *packet;
3573
3574 ctx->xout->slow |= SLOW_CONTROLLER;
3575 xlate_commit_actions(ctx);
3576 if (!ctx->xin->packet) {
3577 return;
3578 }
3579
3580 packet = dp_packet_clone(ctx->xin->packet);
3581
3582 odp_execute_actions(NULL, &packet, 1, false,
3583 ctx->odp_actions->data, ctx->odp_actions->size, NULL);
3584
3585 /* A packet sent by an action in a table-miss rule is considered an
3586 * explicit table miss. OpenFlow before 1.3 doesn't have that concept so
3587 * it will get translated back to OFPR_ACTION for those versions. */
3588 if (reason == OFPR_ACTION
3589 && ctx->rule && rule_dpif_is_table_miss(ctx->rule)) {
3590 reason = OFPR_EXPLICIT_MISS;
3591 }
3592
3593 size_t packet_len = dp_packet_size(packet);
3594
3595 pin = xmalloc(sizeof *pin);
3596 *pin = (struct ofproto_packet_in) {
3597 .controller_id = controller_id,
3598 .up = {
3599 .packet = dp_packet_steal_data(packet),
3600 .len = packet_len,
3601 .reason = reason,
3602 .table_id = ctx->table_id,
3603 .cookie = ctx->rule_cookie,
3604 },
3605 .max_len = len,
3606 };
3607 flow_get_metadata(&ctx->xin->flow, &pin->up.flow_metadata);
3608
3609 ofproto_dpif_send_packet_in(ctx->xbridge->ofproto, pin);
3610 dp_packet_delete(packet);
3611 }
3612
3613 static void
3614 compose_recirculate_action__(struct xlate_ctx *ctx, uint8_t table)
3615 {
3616 struct recirc_metadata md;
3617 uint32_t id;
3618
3619 recirc_metadata_from_flow(&md, &ctx->xin->flow);
3620
3621 ovs_assert(ctx->recirc_action_offset >= 0);
3622
3623 struct recirc_state state = {
3624 .table_id = table,
3625 .ofproto = ctx->xbridge->ofproto,
3626 .metadata = md,
3627 .stack = &ctx->stack,
3628 .mirrors = ctx->mirrors,
3629 .conntracked = ctx->conntracked,
3630 .action_set_len = ctx->recirc_action_offset,
3631 .ofpacts_len = ctx->action_set.size,
3632 .ofpacts = ctx->action_set.data,
3633 };
3634
3635 /* Allocate a unique recirc id for the given metadata state in the
3636 * flow. An existing id, with a new reference to the corresponding
3637 * recirculation context, will be returned if possible.
3638 * The life-cycle of this recirc id is managed by associating it
3639 * with the udpif key ('ukey') created for each new datapath flow. */
3640 id = recirc_alloc_id_ctx(&state);
3641 if (!id) {
3642 XLATE_REPORT_ERROR(ctx, "Failed to allocate recirculation id");
3643 ctx->error = XLATE_NO_RECIRCULATION_CONTEXT;
3644 return;
3645 }
3646 recirc_refs_add(&ctx->xout->recircs, id);
3647
3648 nl_msg_put_u32(ctx->odp_actions, OVS_ACTION_ATTR_RECIRC, id);
3649
3650 /* Undo changes done by recirculation. */
3651 ctx->action_set.size = ctx->recirc_action_offset;
3652 ctx->recirc_action_offset = -1;
3653 ctx->last_unroll_offset = -1;
3654 }
3655
3656 /* Called only when ctx->recirc_action_offset is set. */
3657 static void
3658 compose_recirculate_action(struct xlate_ctx *ctx)
3659 {
3660 xlate_commit_actions(ctx);
3661 compose_recirculate_action__(ctx, 0);
3662 }
3663
3664 /* Fork the pipeline here. The current packet will continue processing the
3665 * current action list. A clone of the current packet will recirculate, skip
3666 * the remainder of the current action list and asynchronously resume pipeline
3667 * processing in 'table' with the current metadata and action set. */
3668 static void
3669 compose_recirculate_and_fork(struct xlate_ctx *ctx, uint8_t table)
3670 {
3671 ctx->recirc_action_offset = ctx->action_set.size;
3672 compose_recirculate_action__(ctx, table);
3673 }
3674
3675 static void
3676 compose_mpls_push_action(struct xlate_ctx *ctx, struct ofpact_push_mpls *mpls)
3677 {
3678 struct flow *flow = &ctx->xin->flow;
3679 int n;
3680
3681 ovs_assert(eth_type_mpls(mpls->ethertype));
3682
3683 n = flow_count_mpls_labels(flow, ctx->wc);
3684 if (!n) {
3685 xlate_commit_actions(ctx);
3686 } else if (n >= FLOW_MAX_MPLS_LABELS) {
3687 if (ctx->xin->packet != NULL) {
3688 XLATE_REPORT_ERROR(ctx, "bridge %s: dropping packet on which an "
3689 "MPLS push action can't be performed as it would "
3690 "have more MPLS LSEs than the %d supported.",
3691 ctx->xbridge->name, FLOW_MAX_MPLS_LABELS);
3692 }
3693 ctx->error = XLATE_TOO_MANY_MPLS_LABELS;
3694 return;
3695 }
3696
3697 flow_push_mpls(flow, n, mpls->ethertype, ctx->wc);
3698 }
3699
3700 static void
3701 compose_mpls_pop_action(struct xlate_ctx *ctx, ovs_be16 eth_type)
3702 {
3703 struct flow *flow = &ctx->xin->flow;
3704 int n = flow_count_mpls_labels(flow, ctx->wc);
3705
3706 if (flow_pop_mpls(flow, n, eth_type, ctx->wc)) {
3707 if (ctx->xbridge->support.odp.recirc) {
3708 ctx->was_mpls = true;
3709 }
3710 } else if (n >= FLOW_MAX_MPLS_LABELS) {
3711 if (ctx->xin->packet != NULL) {
3712 XLATE_REPORT_ERROR(ctx, "bridge %s: dropping packet on which an "
3713 "MPLS pop action can't be performed as it has "
3714 "more MPLS LSEs than the %d supported.",
3715 ctx->xbridge->name, FLOW_MAX_MPLS_LABELS);
3716 }
3717 ctx->error = XLATE_TOO_MANY_MPLS_LABELS;
3718 ofpbuf_clear(ctx->odp_actions);
3719 }
3720 }
3721
3722 static bool
3723 compose_dec_ttl(struct xlate_ctx *ctx, struct ofpact_cnt_ids *ids)
3724 {
3725 struct flow *flow = &ctx->xin->flow;
3726
3727 if (!is_ip_any(flow)) {
3728 return false;
3729 }
3730
3731 ctx->wc->masks.nw_ttl = 0xff;
3732 if (flow->nw_ttl > 1) {
3733 flow->nw_ttl--;
3734 return false;
3735 } else {
3736 size_t i;
3737
3738 for (i = 0; i < ids->n_controllers; i++) {
3739 execute_controller_action(ctx, UINT16_MAX, OFPR_INVALID_TTL,
3740 ids->cnt_ids[i]);
3741 }
3742
3743 /* Stop processing for current table. */
3744 return true;
3745 }
3746 }
3747
3748 static void
3749 compose_set_mpls_label_action(struct xlate_ctx *ctx, ovs_be32 label)
3750 {
3751 if (eth_type_mpls(ctx->xin->flow.dl_type)) {
3752 ctx->wc->masks.mpls_lse[0] |= htonl(MPLS_LABEL_MASK);
3753 set_mpls_lse_label(&ctx->xin->flow.mpls_lse[0], label);
3754 }
3755 }
3756
3757 static void
3758 compose_set_mpls_tc_action(struct xlate_ctx *ctx, uint8_t tc)
3759 {
3760 if (eth_type_mpls(ctx->xin->flow.dl_type)) {
3761 ctx->wc->masks.mpls_lse[0] |= htonl(MPLS_TC_MASK);
3762 set_mpls_lse_tc(&ctx->xin->flow.mpls_lse[0], tc);
3763 }
3764 }
3765
3766 static void
3767 compose_set_mpls_ttl_action(struct xlate_ctx *ctx, uint8_t ttl)
3768 {
3769 if (eth_type_mpls(ctx->xin->flow.dl_type)) {
3770 ctx->wc->masks.mpls_lse[0] |= htonl(MPLS_TTL_MASK);
3771 set_mpls_lse_ttl(&ctx->xin->flow.mpls_lse[0], ttl);
3772 }
3773 }
3774
3775 static bool
3776 compose_dec_mpls_ttl_action(struct xlate_ctx *ctx)
3777 {
3778 struct flow *flow = &ctx->xin->flow;
3779
3780 if (eth_type_mpls(flow->dl_type)) {
3781 uint8_t ttl = mpls_lse_to_ttl(flow->mpls_lse[0]);
3782
3783 ctx->wc->masks.mpls_lse[0] |= htonl(MPLS_TTL_MASK);
3784 if (ttl > 1) {
3785 ttl--;
3786 set_mpls_lse_ttl(&flow->mpls_lse[0], ttl);
3787 return false;
3788 } else {
3789 execute_controller_action(ctx, UINT16_MAX, OFPR_INVALID_TTL, 0);
3790 }
3791 }
3792
3793 /* Stop processing for current table. */
3794 return true;
3795 }
3796
3797 static void
3798 xlate_output_action(struct xlate_ctx *ctx,
3799 ofp_port_t port, uint16_t max_len, bool may_packet_in)
3800 {
3801 ofp_port_t prev_nf_output_iface = ctx->nf_output_iface;
3802
3803 ctx->nf_output_iface = NF_OUT_DROP;
3804
3805 switch (port) {
3806 case OFPP_IN_PORT:
3807 compose_output_action(ctx, ctx->xin->flow.in_port.ofp_port, NULL);
3808 break;
3809 case OFPP_TABLE:
3810 xlate_table_action(ctx, ctx->xin->flow.in_port.ofp_port,
3811 0, may_packet_in, true);
3812 break;
3813 case OFPP_NORMAL:
3814 xlate_normal(ctx);
3815 break;
3816 case OFPP_FLOOD:
3817 flood_packets(ctx, false);
3818 break;
3819 case OFPP_ALL:
3820 flood_packets(ctx, true);
3821 break;
3822 case OFPP_CONTROLLER:
3823 execute_controller_action(ctx, max_len,
3824 (ctx->in_group ? OFPR_GROUP
3825 : ctx->in_action_set ? OFPR_ACTION_SET
3826 : OFPR_ACTION),
3827 0);
3828 break;
3829 case OFPP_NONE:
3830 break;
3831 case OFPP_LOCAL:
3832 default:
3833 if (port != ctx->xin->flow.in_port.ofp_port) {
3834 compose_output_action(ctx, port, NULL);
3835 } else {
3836 xlate_report(ctx, "skipping output to input port");
3837 }
3838 break;
3839 }
3840
3841 if (prev_nf_output_iface == NF_OUT_FLOOD) {
3842 ctx->nf_output_iface = NF_OUT_FLOOD;
3843 } else if (ctx->nf_output_iface == NF_OUT_DROP) {
3844 ctx->nf_output_iface = prev_nf_output_iface;
3845 } else if (prev_nf_output_iface != NF_OUT_DROP &&
3846 ctx->nf_output_iface != NF_OUT_FLOOD) {
3847 ctx->nf_output_iface = NF_OUT_MULTI;
3848 }
3849 }
3850
3851 static void
3852 xlate_output_reg_action(struct xlate_ctx *ctx,
3853 const struct ofpact_output_reg *or)
3854 {
3855 uint64_t port = mf_get_subfield(&or->src, &ctx->xin->flow);
3856 if (port <= UINT16_MAX) {
3857 union mf_subvalue value;
3858
3859 memset(&value, 0xff, sizeof value);
3860 mf_write_subfield_flow(&or->src, &value, &ctx->wc->masks);
3861 xlate_output_action(ctx, u16_to_ofp(port),
3862 or->max_len, false);
3863 }
3864 }
3865
3866 static void
3867 xlate_enqueue_action(struct xlate_ctx *ctx,
3868 const struct ofpact_enqueue *enqueue)
3869 {
3870 ofp_port_t ofp_port = enqueue->port;
3871 uint32_t queue_id = enqueue->queue;
3872 uint32_t flow_priority, priority;
3873 int error;
3874
3875 /* Translate queue to priority. */
3876 error = dpif_queue_to_priority(ctx->xbridge->dpif, queue_id, &priority);
3877 if (error) {
3878 /* Fall back to ordinary output action. */
3879 xlate_output_action(ctx, enqueue->port, 0, false);
3880 return;
3881 }
3882
3883 /* Check output port. */
3884 if (ofp_port == OFPP_IN_PORT) {
3885 ofp_port = ctx->xin->flow.in_port.ofp_port;
3886 } else if (ofp_port == ctx->xin->flow.in_port.ofp_port) {
3887 return;
3888 }
3889
3890 /* Add datapath actions. */
3891 flow_priority = ctx->xin->flow.skb_priority;
3892 ctx->xin->flow.skb_priority = priority;
3893 compose_output_action(ctx, ofp_port, NULL);
3894 ctx->xin->flow.skb_priority = flow_priority;
3895
3896 /* Update NetFlow output port. */
3897 if (ctx->nf_output_iface == NF_OUT_DROP) {
3898 ctx->nf_output_iface = ofp_port;
3899 } else if (ctx->nf_output_iface != NF_OUT_FLOOD) {
3900 ctx->nf_output_iface = NF_OUT_MULTI;
3901 }
3902 }
3903
3904 static void
3905 xlate_set_queue_action(struct xlate_ctx *ctx, uint32_t queue_id)
3906 {
3907 uint32_t skb_priority;
3908
3909 if (!dpif_queue_to_priority(ctx->xbridge->dpif, queue_id, &skb_priority)) {
3910 ctx->xin->flow.skb_priority = skb_priority;
3911 } else {
3912 /* Couldn't translate queue to a priority. Nothing to do. A warning
3913 * has already been logged. */
3914 }
3915 }
3916
3917 static bool
3918 slave_enabled_cb(ofp_port_t ofp_port, void *xbridge_)
3919 {
3920 const struct xbridge *xbridge = xbridge_;
3921 struct xport *port;
3922
3923 switch (ofp_port) {
3924 case OFPP_IN_PORT:
3925 case OFPP_TABLE:
3926 case OFPP_NORMAL:
3927 case OFPP_FLOOD:
3928 case OFPP_ALL:
3929 case OFPP_NONE:
3930 return true;
3931 case OFPP_CONTROLLER: /* Not supported by the bundle action. */
3932 return false;
3933 default:
3934 port = get_ofp_port(xbridge, ofp_port);
3935 return port ? port->may_enable : false;
3936 }
3937 }
3938
3939 static void
3940 xlate_bundle_action(struct xlate_ctx *ctx,
3941 const struct ofpact_bundle *bundle)
3942 {
3943 ofp_port_t port;
3944
3945 port = bundle_execute(bundle, &ctx->xin->flow, ctx->wc, slave_enabled_cb,
3946 CONST_CAST(struct xbridge *, ctx->xbridge));
3947 if (bundle->dst.field) {
3948 nxm_reg_load(&bundle->dst, ofp_to_u16(port), &ctx->xin->flow, ctx->wc);
3949 } else {
3950 xlate_output_action(ctx, port, 0, false);
3951 }
3952 }
3953
3954 static void
3955 xlate_learn_action__(struct xlate_ctx *ctx, const struct ofpact_learn *learn,
3956 struct ofputil_flow_mod *fm, struct ofpbuf *ofpacts)
3957 {
3958 learn_execute(learn, &ctx->xin->flow, fm, ofpacts);
3959 if (ctx->xin->may_learn) {
3960 ofproto_dpif_flow_mod(ctx->xbridge->ofproto, fm);
3961 }
3962 }
3963
3964 static void
3965 xlate_learn_action(struct xlate_ctx *ctx, const struct ofpact_learn *learn)
3966 {
3967 learn_mask(learn, ctx->wc);
3968
3969 if (ctx->xin->xcache) {
3970 struct xc_entry *entry;
3971
3972 entry = xlate_cache_add_entry(ctx->xin->xcache, XC_LEARN);
3973 entry->u.learn.ofproto = ctx->xbridge->ofproto;
3974 entry->u.learn.fm = xmalloc(sizeof *entry->u.learn.fm);
3975 entry->u.learn.ofpacts = ofpbuf_new(64);
3976 xlate_learn_action__(ctx, learn, entry->u.learn.fm,
3977 entry->u.learn.ofpacts);
3978 } else if (ctx->xin->may_learn) {
3979 uint64_t ofpacts_stub[1024 / 8];
3980 struct ofputil_flow_mod fm;
3981 struct ofpbuf ofpacts;
3982
3983 ofpbuf_use_stub(&ofpacts, ofpacts_stub, sizeof ofpacts_stub);
3984 xlate_learn_action__(ctx, learn, &fm, &ofpacts);
3985 ofpbuf_uninit(&ofpacts);
3986 }
3987 }
3988
3989 static void
3990 xlate_fin_timeout__(struct rule_dpif *rule, uint16_t tcp_flags,
3991 uint16_t idle_timeout, uint16_t hard_timeout)
3992 {
3993 if (tcp_flags & (TCP_FIN | TCP_RST)) {
3994 rule_dpif_reduce_timeouts(rule, idle_timeout, hard_timeout);
3995 }
3996 }
3997
3998 static void
3999 xlate_fin_timeout(struct xlate_ctx *ctx,
4000 const struct ofpact_fin_timeout *oft)
4001 {
4002 if (ctx->rule) {
4003 xlate_fin_timeout__(ctx->rule, ctx->xin->tcp_flags,
4004 oft->fin_idle_timeout, oft->fin_hard_timeout);
4005 if (ctx->xin->xcache) {
4006 struct xc_entry *entry;
4007
4008 entry = xlate_cache_add_entry(ctx->xin->xcache, XC_FIN_TIMEOUT);
4009 /* XC_RULE already holds a reference on the rule, none is taken
4010 * here. */
4011 entry->u.fin.rule = ctx->rule;
4012 entry->u.fin.idle = oft->fin_idle_timeout;
4013 entry->u.fin.hard = oft->fin_hard_timeout;
4014 }
4015 }
4016 }
4017
4018 static void
4019 xlate_sample_action(struct xlate_ctx *ctx,
4020 const struct ofpact_sample *os)
4021 {
4022 /* Scale the probability from 16-bit to 32-bit while representing
4023 * the same percentage. */
4024 uint32_t probability = (os->probability << 16) | os->probability;
4025
4026 if (!ctx->xbridge->support.variable_length_userdata) {
4027 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 1);
4028
4029 VLOG_ERR_RL(&rl, "ignoring NXAST_SAMPLE action because datapath "
4030 "lacks support (needs Linux 3.10+ or kernel module from "
4031 "OVS 1.11+)");
4032 return;
4033 }
4034
4035 xlate_commit_actions(ctx);
4036
4037 union user_action_cookie cookie = {
4038 .flow_sample = {
4039 .type = USER_ACTION_COOKIE_FLOW_SAMPLE,
4040 .probability = os->probability,
4041 .collector_set_id = os->collector_set_id,
4042 .obs_domain_id = os->obs_domain_id,
4043 .obs_point_id = os->obs_point_id,
4044 }
4045 };
4046 compose_sample_action(ctx, probability, &cookie, sizeof cookie.flow_sample,
4047 ODPP_NONE, false);
4048 }
4049
4050 static bool
4051 may_receive(const struct xport *xport, struct xlate_ctx *ctx)
4052 {
4053 if (xport->config & (is_stp(&ctx->xin->flow)
4054 ? OFPUTIL_PC_NO_RECV_STP
4055 : OFPUTIL_PC_NO_RECV)) {
4056 return false;
4057 }
4058
4059 /* Only drop packets here if both forwarding and learning are
4060 * disabled. If just learning is enabled, we need to have
4061 * OFPP_NORMAL and the learning action have a look at the packet
4062 * before we can drop it. */
4063 if ((!xport_stp_forward_state(xport) && !xport_stp_learn_state(xport)) ||
4064 (!xport_rstp_forward_state(xport) && !xport_rstp_learn_state(xport))) {
4065 return false;
4066 }
4067
4068 return true;
4069 }
4070
4071 static void
4072 xlate_write_actions(struct xlate_ctx *ctx, const struct ofpact *a)
4073 {
4074 const struct ofpact_nest *on = ofpact_get_WRITE_ACTIONS(a);
4075 size_t on_len = ofpact_nest_get_action_len(on);
4076 const struct ofpact *inner;
4077
4078 /* Maintain actset_output depending on the contents of the action set:
4079 *
4080 * - OFPP_UNSET, if there is no "output" action.
4081 *
4082 * - The output port, if there is an "output" action and no "group"
4083 * action.
4084 *
4085 * - OFPP_UNSET, if there is a "group" action.
4086 */
4087 if (!ctx->action_set_has_group) {
4088 OFPACT_FOR_EACH (inner, on->actions, on_len) {
4089 if (inner->type == OFPACT_OUTPUT) {
4090 ctx->xin->flow.actset_output = ofpact_get_OUTPUT(inner)->port;
4091 } else if (inner->type == OFPACT_GROUP) {
4092 ctx->xin->flow.actset_output = OFPP_UNSET;
4093 ctx->action_set_has_group = true;
4094 break;
4095 }
4096 }
4097 }
4098
4099 ofpbuf_put(&ctx->action_set, on->actions, on_len);
4100 }
4101
4102 static void
4103 xlate_action_set(struct xlate_ctx *ctx)
4104 {
4105 uint64_t action_list_stub[1024 / 64];
4106 struct ofpbuf action_list;
4107
4108 ctx->in_action_set = true;
4109 ofpbuf_use_stub(&action_list, action_list_stub, sizeof action_list_stub);
4110 ofpacts_execute_action_set(&action_list, &ctx->action_set);
4111 /* Clear the action set, as it is not needed any more. */
4112 ofpbuf_clear(&ctx->action_set);
4113 do_xlate_actions(action_list.data, action_list.size, ctx);
4114 ctx->in_action_set = false;
4115 ofpbuf_uninit(&action_list);
4116 }
4117
4118 static void
4119 recirc_put_unroll_xlate(struct xlate_ctx *ctx)
4120 {
4121 struct ofpact_unroll_xlate *unroll;
4122
4123 unroll = ctx->last_unroll_offset < 0
4124 ? NULL
4125 : ALIGNED_CAST(struct ofpact_unroll_xlate *,
4126 (char *)ctx->action_set.data + ctx->last_unroll_offset);
4127
4128 /* Restore the table_id and rule cookie for a potential PACKET
4129 * IN if needed. */
4130 if (!unroll ||
4131 (ctx->table_id != unroll->rule_table_id
4132 || ctx->rule_cookie != unroll->rule_cookie)) {
4133
4134 ctx->last_unroll_offset = ctx->action_set.size;
4135 unroll = ofpact_put_UNROLL_XLATE(&ctx->action_set);
4136 unroll->rule_table_id = ctx->table_id;
4137 unroll->rule_cookie = ctx->rule_cookie;
4138 }
4139 }
4140
4141
4142 /* Copy remaining actions to the action_set to be executed after recirculation.
4143 * UNROLL_XLATE action is inserted, if not already done so, before actions that
4144 * may generate PACKET_INs from the current table and without matching another
4145 * rule. */
4146 static void
4147 recirc_unroll_actions(const struct ofpact *ofpacts, size_t ofpacts_len,
4148 struct xlate_ctx *ctx)
4149 {
4150 const struct ofpact *a;
4151
4152 OFPACT_FOR_EACH (a, ofpacts, ofpacts_len) {
4153 switch (a->type) {
4154 /* May generate PACKET INs. */
4155 case OFPACT_OUTPUT_REG:
4156 case OFPACT_GROUP:
4157 case OFPACT_OUTPUT:
4158 case OFPACT_CONTROLLER:
4159 case OFPACT_DEC_MPLS_TTL:
4160 case OFPACT_DEC_TTL:
4161 recirc_put_unroll_xlate(ctx);
4162 break;
4163
4164 /* These may not generate PACKET INs. */
4165 case OFPACT_SET_TUNNEL:
4166 case OFPACT_REG_MOVE:
4167 case OFPACT_SET_FIELD:
4168 case OFPACT_STACK_PUSH:
4169 case OFPACT_STACK_POP:
4170 case OFPACT_LEARN:
4171 case OFPACT_WRITE_METADATA:
4172 case OFPACT_RESUBMIT: /* May indirectly generate PACKET INs, */
4173 case OFPACT_GOTO_TABLE: /* but from a different table and rule. */
4174 case OFPACT_ENQUEUE:
4175 case OFPACT_SET_VLAN_VID:
4176 case OFPACT_SET_VLAN_PCP:
4177 case OFPACT_STRIP_VLAN:
4178 case OFPACT_PUSH_VLAN:
4179 case OFPACT_SET_ETH_SRC:
4180 case OFPACT_SET_ETH_DST:
4181 case OFPACT_SET_IPV4_SRC:
4182 case OFPACT_SET_IPV4_DST:
4183 case OFPACT_SET_IP_DSCP:
4184 case OFPACT_SET_IP_ECN:
4185 case OFPACT_SET_IP_TTL:
4186 case OFPACT_SET_L4_SRC_PORT:
4187 case OFPACT_SET_L4_DST_PORT:
4188 case OFPACT_SET_QUEUE:
4189 case OFPACT_POP_QUEUE:
4190 case OFPACT_PUSH_MPLS:
4191 case OFPACT_POP_MPLS:
4192 case OFPACT_SET_MPLS_LABEL:
4193 case OFPACT_SET_MPLS_TC:
4194 case OFPACT_SET_MPLS_TTL:
4195 case OFPACT_MULTIPATH:
4196 case OFPACT_BUNDLE:
4197 case OFPACT_EXIT:
4198 case OFPACT_UNROLL_XLATE:
4199 case OFPACT_FIN_TIMEOUT:
4200 case OFPACT_CLEAR_ACTIONS:
4201 case OFPACT_WRITE_ACTIONS:
4202 case OFPACT_METER:
4203 case OFPACT_SAMPLE:
4204 case OFPACT_DEBUG_RECIRC:
4205 case OFPACT_CT:
4206 case OFPACT_NAT:
4207 break;
4208
4209 /* These need not be copied for restoration. */
4210 case OFPACT_NOTE:
4211 case OFPACT_CONJUNCTION:
4212 continue;
4213 }
4214 /* Copy the action over. */
4215 ofpbuf_put(&ctx->action_set, a, OFPACT_ALIGN(a->len));
4216 }
4217 }
4218
4219 #define CHECK_MPLS_RECIRCULATION() \
4220 if (ctx->was_mpls) { \
4221 ctx_trigger_recirculation(ctx); \
4222 break; \
4223 }
4224 #define CHECK_MPLS_RECIRCULATION_IF(COND) \
4225 if (COND) { \
4226 CHECK_MPLS_RECIRCULATION(); \
4227 }
4228
4229 static void
4230 put_ct_mark(const struct flow *flow, struct flow *base_flow,
4231 struct ofpbuf *odp_actions, struct flow_wildcards *wc)
4232 {
4233 struct {
4234 uint32_t key;
4235 uint32_t mask;
4236 } odp_attr;
4237
4238 odp_attr.key = flow->ct_mark;
4239 odp_attr.mask = wc->masks.ct_mark;
4240
4241 if (odp_attr.mask && odp_attr.key != base_flow->ct_mark) {
4242 nl_msg_put_unspec(odp_actions, OVS_CT_ATTR_MARK, &odp_attr,
4243 sizeof(odp_attr));
4244 }
4245 }
4246
4247 static void
4248 put_ct_label(const struct flow *flow, struct flow *base_flow,
4249 struct ofpbuf *odp_actions, struct flow_wildcards *wc)
4250 {
4251 if (!ovs_u128_is_zero(&wc->masks.ct_label)
4252 && !ovs_u128_equals(&flow->ct_label, &base_flow->ct_label)) {
4253 struct {
4254 ovs_u128 key;
4255 ovs_u128 mask;
4256 } *odp_ct_label;
4257
4258 odp_ct_label = nl_msg_put_unspec_uninit(odp_actions,
4259 OVS_CT_ATTR_LABELS,
4260 sizeof(*odp_ct_label));
4261 odp_ct_label->key = flow->ct_label;
4262 odp_ct_label->mask = wc->masks.ct_label;
4263 }
4264 }
4265
4266 static void
4267 put_ct_helper(struct ofpbuf *odp_actions, struct ofpact_conntrack *ofc)
4268 {
4269 if (ofc->alg) {
4270 if (ofc->alg == IPPORT_FTP) {
4271 nl_msg_put_string(odp_actions, OVS_CT_ATTR_HELPER, "ftp");
4272 } else {
4273 VLOG_WARN("Cannot serialize ct_helper %d\n", ofc->alg);
4274 }
4275 }
4276 }
4277
4278 static void
4279 put_ct_nat(struct xlate_ctx *ctx)
4280 {
4281 struct ofpact_nat *ofn = ctx->ct_nat_action;
4282 size_t nat_offset;
4283
4284 if (!ofn) {
4285 return;
4286 }
4287
4288 nat_offset = nl_msg_start_nested(ctx->odp_actions, OVS_CT_ATTR_NAT);
4289 if (ofn->flags & NX_NAT_F_SRC || ofn->flags & NX_NAT_F_DST) {
4290 nl_msg_put_flag(ctx->odp_actions, ofn->flags & NX_NAT_F_SRC
4291 ? OVS_NAT_ATTR_SRC : OVS_NAT_ATTR_DST);
4292 if (ofn->flags & NX_NAT_F_PERSISTENT) {
4293 nl_msg_put_flag(ctx->odp_actions, OVS_NAT_ATTR_PERSISTENT);
4294 }
4295 if (ofn->flags & NX_NAT_F_PROTO_HASH) {
4296 nl_msg_put_flag(ctx->odp_actions, OVS_NAT_ATTR_PROTO_HASH);
4297 } else if (ofn->flags & NX_NAT_F_PROTO_RANDOM) {
4298 nl_msg_put_flag(ctx->odp_actions, OVS_NAT_ATTR_PROTO_RANDOM);
4299 }
4300 if (ofn->range_af == AF_INET) {
4301 nl_msg_put_be32(ctx->odp_actions, OVS_NAT_ATTR_IP_MIN,
4302 ofn->range.addr.ipv4.min);
4303 if (ofn->range.addr.ipv4.max &&
4304 (ntohl(ofn->range.addr.ipv4.max)
4305 > ntohl(ofn->range.addr.ipv4.min))) {
4306 nl_msg_put_be32(ctx->odp_actions, OVS_NAT_ATTR_IP_MAX,
4307 ofn->range.addr.ipv4.max);
4308 }
4309 } else if (ofn->range_af == AF_INET6) {
4310 nl_msg_put_unspec(ctx->odp_actions, OVS_NAT_ATTR_IP_MIN,
4311 &ofn->range.addr.ipv6.min,
4312 sizeof ofn->range.addr.ipv6.min);
4313 if (!ipv6_mask_is_any(&ofn->range.addr.ipv6.max) &&
4314 memcmp(&ofn->range.addr.ipv6.max, &ofn->range.addr.ipv6.min,
4315 sizeof ofn->range.addr.ipv6.max) > 0) {
4316 nl_msg_put_unspec(ctx->odp_actions, OVS_NAT_ATTR_IP_MAX,
4317 &ofn->range.addr.ipv6.max,
4318 sizeof ofn->range.addr.ipv6.max);
4319 }
4320 }
4321 if (ofn->range_af != AF_UNSPEC && ofn->range.proto.min) {
4322 nl_msg_put_u16(ctx->odp_actions, OVS_NAT_ATTR_PROTO_MIN,
4323 ofn->range.proto.min);
4324 if (ofn->range.proto.max &&
4325 ofn->range.proto.max > ofn->range.proto.min) {
4326 nl_msg_put_u16(ctx->odp_actions, OVS_NAT_ATTR_PROTO_MAX,
4327 ofn->range.proto.max);
4328 }
4329 }
4330 }
4331 nl_msg_end_nested(ctx->odp_actions, nat_offset);
4332 }
4333
4334 static void
4335 compose_conntrack_action(struct xlate_ctx *ctx, struct ofpact_conntrack *ofc)
4336 {
4337 ovs_u128 old_ct_label = ctx->base_flow.ct_label;
4338 uint32_t old_ct_mark = ctx->base_flow.ct_mark;
4339 size_t ct_offset;
4340 uint16_t zone;
4341
4342 /* Ensure that any prior actions are applied before composing the new
4343 * conntrack action. */
4344 xlate_commit_actions(ctx);
4345
4346 /* Process nested actions first, to populate the key. */
4347 ctx->ct_nat_action = NULL;
4348 do_xlate_actions(ofc->actions, ofpact_ct_get_action_len(ofc), ctx);
4349
4350 if (ofc->zone_src.field) {
4351 zone = mf_get_subfield(&ofc->zone_src, &ctx->xin->flow);
4352 } else {
4353 zone = ofc->zone_imm;
4354 }
4355
4356 ct_offset = nl_msg_start_nested(ctx->odp_actions, OVS_ACTION_ATTR_CT);
4357 if (ofc->flags & NX_CT_F_COMMIT) {
4358 nl_msg_put_flag(ctx->odp_actions, OVS_CT_ATTR_COMMIT);
4359 }
4360 nl_msg_put_u16(ctx->odp_actions, OVS_CT_ATTR_ZONE, zone);
4361 put_ct_mark(&ctx->xin->flow, &ctx->base_flow, ctx->odp_actions, ctx->wc);
4362 put_ct_label(&ctx->xin->flow, &ctx->base_flow, ctx->odp_actions, ctx->wc);
4363 put_ct_helper(ctx->odp_actions, ofc);
4364 put_ct_nat(ctx);
4365 ctx->ct_nat_action = NULL;
4366 nl_msg_end_nested(ctx->odp_actions, ct_offset);
4367
4368 /* Restore the original ct fields in the key. These should only be exposed
4369 * after recirculation to another table. */
4370 ctx->base_flow.ct_mark = old_ct_mark;
4371 ctx->base_flow.ct_label = old_ct_label;
4372
4373 if (ofc->recirc_table == NX_CT_RECIRC_NONE) {
4374 /* If we do not recirculate as part of this action, hide the results of
4375 * connection tracking from subsequent recirculations. */
4376 ctx->conntracked = false;
4377 } else {
4378 /* Use ct_* fields from datapath during recirculation upcall. */
4379 ctx->conntracked = true;
4380 compose_recirculate_and_fork(ctx, ofc->recirc_table);
4381 }
4382 }
4383
4384 static void
4385 do_xlate_actions(const struct ofpact *ofpacts, size_t ofpacts_len,
4386 struct xlate_ctx *ctx)
4387 {
4388 struct flow_wildcards *wc = ctx->wc;
4389 struct flow *flow = &ctx->xin->flow;
4390 const struct ofpact *a;
4391
4392 if (ovs_native_tunneling_is_on(ctx->xbridge->ofproto)) {
4393 tnl_neigh_snoop(flow, wc, ctx->xbridge->name);
4394 }
4395 /* dl_type already in the mask, not set below. */
4396
4397 OFPACT_FOR_EACH (a, ofpacts, ofpacts_len) {
4398 struct ofpact_controller *controller;
4399 const struct ofpact_metadata *metadata;
4400 const struct ofpact_set_field *set_field;
4401 const struct mf_field *mf;
4402
4403 if (ctx->error) {
4404 break;
4405 }
4406
4407 if (ctx->exit) {
4408 /* Check if need to store the remaining actions for later
4409 * execution. */
4410 if (exit_recirculates(ctx)) {
4411 recirc_unroll_actions(a, OFPACT_ALIGN(ofpacts_len -
4412 ((uint8_t *)a -
4413 (uint8_t *)ofpacts)),
4414 ctx);
4415 }
4416 break;
4417 }
4418
4419 switch (a->type) {
4420 case OFPACT_OUTPUT:
4421 xlate_output_action(ctx, ofpact_get_OUTPUT(a)->port,
4422 ofpact_get_OUTPUT(a)->max_len, true);
4423 break;
4424
4425 case OFPACT_GROUP:
4426 if (xlate_group_action(ctx, ofpact_get_GROUP(a)->group_id)) {
4427 /* Group could not be found. */
4428 return;
4429 }
4430 break;
4431
4432 case OFPACT_CONTROLLER:
4433 controller = ofpact_get_CONTROLLER(a);
4434 execute_controller_action(ctx, controller->max_len,
4435 controller->reason,
4436 controller->controller_id);
4437 break;
4438
4439 case OFPACT_ENQUEUE:
4440 memset(&wc->masks.skb_priority, 0xff,
4441 sizeof wc->masks.skb_priority);
4442 xlate_enqueue_action(ctx, ofpact_get_ENQUEUE(a));
4443 break;
4444
4445 case OFPACT_SET_VLAN_VID:
4446 wc->masks.vlan_tci |= htons(VLAN_VID_MASK | VLAN_CFI);
4447 if (flow->vlan_tci & htons(VLAN_CFI) ||
4448 ofpact_get_SET_VLAN_VID(a)->push_vlan_if_needed) {
4449 flow->vlan_tci &= ~htons(VLAN_VID_MASK);
4450 flow->vlan_tci |= (htons(ofpact_get_SET_VLAN_VID(a)->vlan_vid)
4451 | htons(VLAN_CFI));
4452 }
4453 break;
4454
4455 case OFPACT_SET_VLAN_PCP:
4456 wc->masks.vlan_tci |= htons(VLAN_PCP_MASK | VLAN_CFI);
4457 if (flow->vlan_tci & htons(VLAN_CFI) ||
4458 ofpact_get_SET_VLAN_PCP(a)->push_vlan_if_needed) {
4459 flow->vlan_tci &= ~htons(VLAN_PCP_MASK);
4460 flow->vlan_tci |= htons((ofpact_get_SET_VLAN_PCP(a)->vlan_pcp
4461 << VLAN_PCP_SHIFT) | VLAN_CFI);
4462 }
4463 break;
4464
4465 case OFPACT_STRIP_VLAN:
4466 memset(&wc->masks.vlan_tci, 0xff, sizeof wc->masks.vlan_tci);
4467 flow->vlan_tci = htons(0);
4468 break;
4469
4470 case OFPACT_PUSH_VLAN:
4471 /* XXX 802.1AD(QinQ) */
4472 memset(&wc->masks.vlan_tci, 0xff, sizeof wc->masks.vlan_tci);
4473 flow->vlan_tci = htons(VLAN_CFI);
4474 break;
4475
4476 case OFPACT_SET_ETH_SRC:
4477 WC_MASK_FIELD(wc, dl_src);
4478 flow->dl_src = ofpact_get_SET_ETH_SRC(a)->mac;
4479 break;
4480
4481 case OFPACT_SET_ETH_DST:
4482 WC_MASK_FIELD(wc, dl_dst);
4483 flow->dl_dst = ofpact_get_SET_ETH_DST(a)->mac;
4484 break;
4485
4486 case OFPACT_SET_IPV4_SRC:
4487 CHECK_MPLS_RECIRCULATION();
4488 if (flow->dl_type == htons(ETH_TYPE_IP)) {
4489 memset(&wc->masks.nw_src, 0xff, sizeof wc->masks.nw_src);
4490 flow->nw_src = ofpact_get_SET_IPV4_SRC(a)->ipv4;
4491 }
4492 break;
4493
4494 case OFPACT_SET_IPV4_DST:
4495 CHECK_MPLS_RECIRCULATION();
4496 if (flow->dl_type == htons(ETH_TYPE_IP)) {
4497 memset(&wc->masks.nw_dst, 0xff, sizeof wc->masks.nw_dst);
4498 flow->nw_dst = ofpact_get_SET_IPV4_DST(a)->ipv4;
4499 }
4500 break;
4501
4502 case OFPACT_SET_IP_DSCP:
4503 CHECK_MPLS_RECIRCULATION();
4504 if (is_ip_any(flow)) {
4505 wc->masks.nw_tos |= IP_DSCP_MASK;
4506 flow->nw_tos &= ~IP_DSCP_MASK;
4507 flow->nw_tos |= ofpact_get_SET_IP_DSCP(a)->dscp;
4508 }
4509 break;
4510
4511 case OFPACT_SET_IP_ECN:
4512 CHECK_MPLS_RECIRCULATION();
4513 if (is_ip_any(flow)) {
4514 wc->masks.nw_tos |= IP_ECN_MASK;
4515 flow->nw_tos &= ~IP_ECN_MASK;
4516 flow->nw_tos |= ofpact_get_SET_IP_ECN(a)->ecn;
4517 }
4518 break;
4519
4520 case OFPACT_SET_IP_TTL:
4521 CHECK_MPLS_RECIRCULATION();
4522 if (is_ip_any(flow)) {
4523 wc->masks.nw_ttl = 0xff;
4524 flow->nw_ttl = ofpact_get_SET_IP_TTL(a)->ttl;
4525 }
4526 break;
4527
4528 case OFPACT_SET_L4_SRC_PORT:
4529 CHECK_MPLS_RECIRCULATION();
4530 if (is_ip_any(flow) && !(flow->nw_frag & FLOW_NW_FRAG_LATER)) {
4531 memset(&wc->masks.nw_proto, 0xff, sizeof wc->masks.nw_proto);
4532 memset(&wc->masks.tp_src, 0xff, sizeof wc->masks.tp_src);
4533 flow->tp_src = htons(ofpact_get_SET_L4_SRC_PORT(a)->port);
4534 }
4535 break;
4536
4537 case OFPACT_SET_L4_DST_PORT:
4538 CHECK_MPLS_RECIRCULATION();
4539 if (is_ip_any(flow) && !(flow->nw_frag & FLOW_NW_FRAG_LATER)) {
4540 memset(&wc->masks.nw_proto, 0xff, sizeof wc->masks.nw_proto);
4541 memset(&wc->masks.tp_dst, 0xff, sizeof wc->masks.tp_dst);
4542 flow->tp_dst = htons(ofpact_get_SET_L4_DST_PORT(a)->port);
4543 }
4544 break;
4545
4546 case OFPACT_RESUBMIT:
4547 xlate_ofpact_resubmit(ctx, ofpact_get_RESUBMIT(a));
4548 break;
4549
4550 case OFPACT_SET_TUNNEL:
4551 flow->tunnel.tun_id = htonll(ofpact_get_SET_TUNNEL(a)->tun_id);
4552 break;
4553
4554 case OFPACT_SET_QUEUE:
4555 memset(&wc->masks.skb_priority, 0xff,
4556 sizeof wc->masks.skb_priority);
4557 xlate_set_queue_action(ctx, ofpact_get_SET_QUEUE(a)->queue_id);
4558 break;
4559
4560 case OFPACT_POP_QUEUE:
4561 memset(&wc->masks.skb_priority, 0xff,
4562 sizeof wc->masks.skb_priority);
4563 flow->skb_priority = ctx->orig_skb_priority;
4564 break;
4565
4566 case OFPACT_REG_MOVE:
4567 CHECK_MPLS_RECIRCULATION_IF(
4568 mf_is_l3_or_higher(ofpact_get_REG_MOVE(a)->dst.field) ||
4569 mf_is_l3_or_higher(ofpact_get_REG_MOVE(a)->src.field));
4570 nxm_execute_reg_move(ofpact_get_REG_MOVE(a), flow, wc);
4571 break;
4572
4573 case OFPACT_SET_FIELD:
4574 CHECK_MPLS_RECIRCULATION_IF(
4575 mf_is_l3_or_higher(ofpact_get_SET_FIELD(a)->field));
4576 set_field = ofpact_get_SET_FIELD(a);
4577 mf = set_field->field;
4578
4579 /* Set field action only ever overwrites packet's outermost
4580 * applicable header fields. Do nothing if no header exists. */
4581 if (mf->id == MFF_VLAN_VID) {
4582 wc->masks.vlan_tci |= htons(VLAN_CFI);
4583 if (!(flow->vlan_tci & htons(VLAN_CFI))) {
4584 break;
4585 }
4586 } else if ((mf->id == MFF_MPLS_LABEL || mf->id == MFF_MPLS_TC)
4587 /* 'dl_type' is already unwildcarded. */
4588 && !eth_type_mpls(flow->dl_type)) {
4589 break;
4590 }
4591 /* A flow may wildcard nw_frag. Do nothing if setting a transport
4592 * header field on a packet that does not have them. */
4593 mf_mask_field_and_prereqs(mf, wc);
4594 if (mf_are_prereqs_ok(mf, flow)) {
4595 mf_set_flow_value_masked(mf, &set_field->value,
4596 &set_field->mask, flow);
4597 }
4598 break;
4599
4600 case OFPACT_STACK_PUSH:
4601 CHECK_MPLS_RECIRCULATION_IF(
4602 mf_is_l3_or_higher(ofpact_get_STACK_PUSH(a)->subfield.field));
4603 nxm_execute_stack_push(ofpact_get_STACK_PUSH(a), flow, wc,
4604 &ctx->stack);
4605 break;
4606
4607 case OFPACT_STACK_POP:
4608 CHECK_MPLS_RECIRCULATION_IF(
4609 mf_is_l3_or_higher(ofpact_get_STACK_POP(a)->subfield.field));
4610 nxm_execute_stack_pop(ofpact_get_STACK_POP(a), flow, wc,
4611 &ctx->stack);
4612 break;
4613
4614 case OFPACT_PUSH_MPLS:
4615 /* Recirculate if it is an IP packet with a zero ttl. This may
4616 * indicate that the packet was previously MPLS and an MPLS pop
4617 * action converted it to IP. In this case recirculating should
4618 * reveal the IP TTL which is used as the basis for a new MPLS
4619 * LSE. */
4620 CHECK_MPLS_RECIRCULATION_IF(
4621 !flow_count_mpls_labels(flow, wc)
4622 && flow->nw_ttl == 0
4623 && is_ip_any(flow));
4624 compose_mpls_push_action(ctx, ofpact_get_PUSH_MPLS(a));
4625 break;
4626
4627 case OFPACT_POP_MPLS:
4628 CHECK_MPLS_RECIRCULATION();
4629 compose_mpls_pop_action(ctx, ofpact_get_POP_MPLS(a)->ethertype);
4630 break;
4631
4632 case OFPACT_SET_MPLS_LABEL:
4633 CHECK_MPLS_RECIRCULATION();
4634 compose_set_mpls_label_action(
4635 ctx, ofpact_get_SET_MPLS_LABEL(a)->label);
4636 break;
4637
4638 case OFPACT_SET_MPLS_TC:
4639 CHECK_MPLS_RECIRCULATION();
4640 compose_set_mpls_tc_action(ctx, ofpact_get_SET_MPLS_TC(a)->tc);
4641 break;
4642
4643 case OFPACT_SET_MPLS_TTL:
4644 CHECK_MPLS_RECIRCULATION();
4645 compose_set_mpls_ttl_action(ctx, ofpact_get_SET_MPLS_TTL(a)->ttl);
4646 break;
4647
4648 case OFPACT_DEC_MPLS_TTL:
4649 CHECK_MPLS_RECIRCULATION();
4650 if (compose_dec_mpls_ttl_action(ctx)) {
4651 return;
4652 }
4653 break;
4654
4655 case OFPACT_DEC_TTL:
4656 CHECK_MPLS_RECIRCULATION();
4657 wc->masks.nw_ttl = 0xff;
4658 if (compose_dec_ttl(ctx, ofpact_get_DEC_TTL(a))) {
4659 return;
4660 }
4661 break;
4662
4663 case OFPACT_NOTE:
4664 /* Nothing to do. */
4665 break;
4666
4667 case OFPACT_MULTIPATH:
4668 CHECK_MPLS_RECIRCULATION();
4669 multipath_execute(ofpact_get_MULTIPATH(a), flow, wc);
4670 break;
4671
4672 case OFPACT_BUNDLE:
4673 CHECK_MPLS_RECIRCULATION();
4674 xlate_bundle_action(ctx, ofpact_get_BUNDLE(a));
4675 break;
4676
4677 case OFPACT_OUTPUT_REG:
4678 xlate_output_reg_action(ctx, ofpact_get_OUTPUT_REG(a));
4679 break;
4680
4681 case OFPACT_LEARN:
4682 CHECK_MPLS_RECIRCULATION();
4683 xlate_learn_action(ctx, ofpact_get_LEARN(a));
4684 break;
4685
4686 case OFPACT_CONJUNCTION: {
4687 /* A flow with a "conjunction" action represents part of a special
4688 * kind of "set membership match". Such a flow should not actually
4689 * get executed, but it could via, say, a "packet-out", even though
4690 * that wouldn't be useful. Log it to help debugging. */
4691 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 1);
4692 VLOG_INFO_RL(&rl, "executing no-op conjunction action");
4693 break;
4694 }
4695
4696 case OFPACT_EXIT:
4697 ctx->exit = true;
4698 break;
4699
4700 case OFPACT_UNROLL_XLATE: {
4701 struct ofpact_unroll_xlate *unroll = ofpact_get_UNROLL_XLATE(a);
4702
4703 /* Restore translation context data that was stored earlier. */
4704 ctx->table_id = unroll->rule_table_id;
4705 ctx->rule_cookie = unroll->rule_cookie;
4706 break;
4707 }
4708 case OFPACT_FIN_TIMEOUT:
4709 CHECK_MPLS_RECIRCULATION();
4710 memset(&wc->masks.nw_proto, 0xff, sizeof wc->masks.nw_proto);
4711 xlate_fin_timeout(ctx, ofpact_get_FIN_TIMEOUT(a));
4712 break;
4713
4714 case OFPACT_CLEAR_ACTIONS:
4715 ofpbuf_clear(&ctx->action_set);
4716 ctx->xin->flow.actset_output = OFPP_UNSET;
4717 ctx->action_set_has_group = false;
4718 break;
4719
4720 case OFPACT_WRITE_ACTIONS:
4721 xlate_write_actions(ctx, a);
4722 break;
4723
4724 case OFPACT_WRITE_METADATA:
4725 metadata = ofpact_get_WRITE_METADATA(a);
4726 flow->metadata &= ~metadata->mask;
4727 flow->metadata |= metadata->metadata & metadata->mask;
4728 break;
4729
4730 case OFPACT_METER:
4731 /* Not implemented yet. */
4732 break;
4733
4734 case OFPACT_GOTO_TABLE: {
4735 struct ofpact_goto_table *ogt = ofpact_get_GOTO_TABLE(a);
4736
4737 /* Allow ctx->table_id == TBL_INTERNAL, which will be greater
4738 * than ogt->table_id. This is to allow goto_table actions that
4739 * triggered recirculation: ctx->table_id will be TBL_INTERNAL
4740 * after recirculation. */
4741 ovs_assert(ctx->table_id == TBL_INTERNAL
4742 || ctx->table_id < ogt->table_id);
4743 xlate_table_action(ctx, ctx->xin->flow.in_port.ofp_port,
4744 ogt->table_id, true, true);
4745 break;
4746 }
4747
4748 case OFPACT_SAMPLE:
4749 xlate_sample_action(ctx, ofpact_get_SAMPLE(a));
4750 break;
4751
4752 case OFPACT_CT:
4753 CHECK_MPLS_RECIRCULATION();
4754 compose_conntrack_action(ctx, ofpact_get_CT(a));
4755 break;
4756
4757 case OFPACT_NAT:
4758 /* This will be processed by compose_conntrack_action(). */
4759 ctx->ct_nat_action = ofpact_get_NAT(a);
4760 break;
4761
4762 case OFPACT_DEBUG_RECIRC:
4763 ctx_trigger_recirculation(ctx);
4764 a = ofpact_next(a);
4765 break;
4766 }
4767
4768 /* Check if need to store this and the remaining actions for later
4769 * execution. */
4770 if (!ctx->error && ctx->exit && ctx_first_recirculation_action(ctx)) {
4771 recirc_unroll_actions(a, OFPACT_ALIGN(ofpacts_len -
4772 ((uint8_t *)a -
4773 (uint8_t *)ofpacts)),
4774 ctx);
4775 break;
4776 }
4777 }
4778 }
4779
4780 void
4781 xlate_in_init(struct xlate_in *xin, struct ofproto_dpif *ofproto,
4782 const struct flow *flow, ofp_port_t in_port,
4783 struct rule_dpif *rule, uint16_t tcp_flags,
4784 const struct dp_packet *packet, struct flow_wildcards *wc,
4785 struct ofpbuf *odp_actions)
4786 {
4787 xin->ofproto = ofproto;
4788 xin->flow = *flow;
4789 xin->flow.in_port.ofp_port = in_port;
4790 xin->flow.actset_output = OFPP_UNSET;
4791 xin->packet = packet;
4792 xin->may_learn = packet != NULL;
4793 xin->rule = rule;
4794 xin->xcache = NULL;
4795 xin->ofpacts = NULL;
4796 xin->ofpacts_len = 0;
4797 xin->tcp_flags = tcp_flags;
4798 xin->resubmit_hook = NULL;
4799 xin->report_hook = NULL;
4800 xin->resubmit_stats = NULL;
4801 xin->recurse = 0;
4802 xin->resubmits = 0;
4803 xin->wc = wc;
4804 xin->odp_actions = odp_actions;
4805
4806 /* Do recirc lookup. */
4807 xin->recirc = flow->recirc_id
4808 ? recirc_id_node_find(flow->recirc_id)
4809 : NULL;
4810 }
4811
4812 void
4813 xlate_out_uninit(struct xlate_out *xout)
4814 {
4815 if (xout) {
4816 recirc_refs_unref(&xout->recircs);
4817 }
4818 }
4819
4820 /* Translates the 'ofpacts_len' bytes of "struct ofpact"s starting at 'ofpacts'
4821 * into datapath actions, using 'ctx', and discards the datapath actions. */
4822 void
4823 xlate_actions_for_side_effects(struct xlate_in *xin)
4824 {
4825 struct xlate_out xout;
4826 enum xlate_error error;
4827
4828 error = xlate_actions(xin, &xout);
4829 if (error) {
4830 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
4831
4832 VLOG_WARN_RL(&rl, "xlate_actions failed (%s)!", xlate_strerror(error));
4833 }
4834
4835 xlate_out_uninit(&xout);
4836 }
4837 \f
4838 static struct skb_priority_to_dscp *
4839 get_skb_priority(const struct xport *xport, uint32_t skb_priority)
4840 {
4841 struct skb_priority_to_dscp *pdscp;
4842 uint32_t hash;
4843
4844 hash = hash_int(skb_priority, 0);
4845 HMAP_FOR_EACH_IN_BUCKET (pdscp, hmap_node, hash, &xport->skb_priorities) {
4846 if (pdscp->skb_priority == skb_priority) {
4847 return pdscp;
4848 }
4849 }
4850 return NULL;
4851 }
4852
4853 static bool
4854 dscp_from_skb_priority(const struct xport *xport, uint32_t skb_priority,
4855 uint8_t *dscp)
4856 {
4857 struct skb_priority_to_dscp *pdscp = get_skb_priority(xport, skb_priority);
4858 *dscp = pdscp ? pdscp->dscp : 0;
4859 return pdscp != NULL;
4860 }
4861
4862 static size_t
4863 count_skb_priorities(const struct xport *xport)
4864 {
4865 return hmap_count(&xport->skb_priorities);
4866 }
4867
4868 static void
4869 clear_skb_priorities(struct xport *xport)
4870 {
4871 struct skb_priority_to_dscp *pdscp, *next;
4872
4873 HMAP_FOR_EACH_SAFE (pdscp, next, hmap_node, &xport->skb_priorities) {
4874 hmap_remove(&xport->skb_priorities, &pdscp->hmap_node);
4875 free(pdscp);
4876 }
4877 }
4878
4879 static bool
4880 actions_output_to_local_port(const struct xlate_ctx *ctx)
4881 {
4882 odp_port_t local_odp_port = ofp_port_to_odp_port(ctx->xbridge, OFPP_LOCAL);
4883 const struct nlattr *a;
4884 unsigned int left;
4885
4886 NL_ATTR_FOR_EACH_UNSAFE (a, left, ctx->odp_actions->data,
4887 ctx->odp_actions->size) {
4888 if (nl_attr_type(a) == OVS_ACTION_ATTR_OUTPUT
4889 && nl_attr_get_odp_port(a) == local_odp_port) {
4890 return true;
4891 }
4892 }
4893 return false;
4894 }
4895
4896 #if defined(__linux__)
4897 /* Returns the maximum number of packets that the Linux kernel is willing to
4898 * queue up internally to certain kinds of software-implemented ports, or the
4899 * default (and rarely modified) value if it cannot be determined. */
4900 static int
4901 netdev_max_backlog(void)
4902 {
4903 static struct ovsthread_once once = OVSTHREAD_ONCE_INITIALIZER;
4904 static int max_backlog = 1000; /* The normal default value. */
4905
4906 if (ovsthread_once_start(&once)) {
4907 static const char filename[] = "/proc/sys/net/core/netdev_max_backlog";
4908 FILE *stream;
4909 int n;
4910
4911 stream = fopen(filename, "r");
4912 if (!stream) {
4913 VLOG_INFO("%s: open failed (%s)", filename, ovs_strerror(errno));
4914 } else {
4915 if (fscanf(stream, "%d", &n) != 1) {
4916 VLOG_WARN("%s: read error", filename);
4917 } else if (n <= 100) {
4918 VLOG_WARN("%s: unexpectedly small value %d", filename, n);
4919 } else {
4920 max_backlog = n;
4921 }
4922 fclose(stream);
4923 }
4924 ovsthread_once_done(&once);
4925
4926 VLOG_DBG("%s: using %d max_backlog", filename, max_backlog);
4927 }
4928
4929 return max_backlog;
4930 }
4931
4932 /* Counts and returns the number of OVS_ACTION_ATTR_OUTPUT actions in
4933 * 'odp_actions'. */
4934 static int
4935 count_output_actions(const struct ofpbuf *odp_actions)
4936 {
4937 const struct nlattr *a;
4938 size_t left;
4939 int n = 0;
4940
4941 NL_ATTR_FOR_EACH_UNSAFE (a, left, odp_actions->data, odp_actions->size) {
4942 if (a->nla_type == OVS_ACTION_ATTR_OUTPUT) {
4943 n++;
4944 }
4945 }
4946 return n;
4947 }
4948 #endif /* defined(__linux__) */
4949
4950 /* Returns true if 'odp_actions' contains more output actions than the datapath
4951 * can reliably handle in one go. On Linux, this is the value of the
4952 * net.core.netdev_max_backlog sysctl, which limits the maximum number of
4953 * packets that the kernel is willing to queue up for processing while the
4954 * datapath is processing a set of actions. */
4955 static bool
4956 too_many_output_actions(const struct ofpbuf *odp_actions OVS_UNUSED)
4957 {
4958 #ifdef __linux__
4959 return (odp_actions->size / NL_A_U32_SIZE > netdev_max_backlog()
4960 && count_output_actions(odp_actions) > netdev_max_backlog());
4961 #else
4962 /* OSes other than Linux might have similar limits, but we don't know how
4963 * to determine them.*/
4964 return false;
4965 #endif
4966 }
4967
4968 static void
4969 xlate_wc_init(struct xlate_ctx *ctx)
4970 {
4971 flow_wildcards_init_catchall(ctx->wc);
4972
4973 /* Some fields we consider to always be examined. */
4974 WC_MASK_FIELD(ctx->wc, in_port);
4975 WC_MASK_FIELD(ctx->wc, dl_type);
4976 if (is_ip_any(&ctx->xin->flow)) {
4977 WC_MASK_FIELD_MASK(ctx->wc, nw_frag, FLOW_NW_FRAG_MASK);
4978 }
4979
4980 if (ctx->xbridge->support.odp.recirc) {
4981 /* Always exactly match recirc_id when datapath supports
4982 * recirculation. */
4983 WC_MASK_FIELD(ctx->wc, recirc_id);
4984 }
4985
4986 if (ctx->xbridge->netflow) {
4987 netflow_mask_wc(&ctx->xin->flow, ctx->wc);
4988 }
4989
4990 tnl_wc_init(&ctx->xin->flow, ctx->wc);
4991 }
4992
4993 static void
4994 xlate_wc_finish(struct xlate_ctx *ctx)
4995 {
4996 /* Clear the metadata and register wildcard masks, because we won't
4997 * use non-header fields as part of the cache. */
4998 flow_wildcards_clear_non_packet_fields(ctx->wc);
4999
5000 /* ICMPv4 and ICMPv6 have 8-bit "type" and "code" fields. struct flow
5001 * uses the low 8 bits of the 16-bit tp_src and tp_dst members to
5002 * represent these fields. The datapath interface, on the other hand,
5003 * represents them with just 8 bits each. This means that if the high
5004 * 8 bits of the masks for these fields somehow become set, then they
5005 * will get chopped off by a round trip through the datapath, and
5006 * revalidation will spot that as an inconsistency and delete the flow.
5007 * Avoid the problem here by making sure that only the low 8 bits of
5008 * either field can be unwildcarded for ICMP.
5009 */
5010 if (is_icmpv4(&ctx->xin->flow) || is_icmpv6(&ctx->xin->flow)) {
5011 ctx->wc->masks.tp_src &= htons(UINT8_MAX);
5012 ctx->wc->masks.tp_dst &= htons(UINT8_MAX);
5013 }
5014 /* VLAN_TCI CFI bit must be matched if any of the TCI is matched. */
5015 if (ctx->wc->masks.vlan_tci) {
5016 ctx->wc->masks.vlan_tci |= htons(VLAN_CFI);
5017 }
5018 }
5019
5020 /* Translates the flow, actions, or rule in 'xin' into datapath actions in
5021 * 'xout'.
5022 * The caller must take responsibility for eventually freeing 'xout', with
5023 * xlate_out_uninit().
5024 * Returns 'XLATE_OK' if translation was successful. In case of an error an
5025 * empty set of actions will be returned in 'xin->odp_actions' (if non-NULL),
5026 * so that most callers may ignore the return value and transparently install a
5027 * drop flow when the translation fails. */
5028 enum xlate_error
5029 xlate_actions(struct xlate_in *xin, struct xlate_out *xout)
5030 {
5031 *xout = (struct xlate_out) {
5032 .slow = 0,
5033 .recircs = RECIRC_REFS_EMPTY_INITIALIZER,
5034 };
5035
5036 struct xlate_cfg *xcfg = ovsrcu_get(struct xlate_cfg *, &xcfgp);
5037 struct xbridge *xbridge = xbridge_lookup(xcfg, xin->ofproto);
5038 if (!xbridge) {
5039 return XLATE_BRIDGE_NOT_FOUND;
5040 }
5041
5042 struct flow *flow = &xin->flow;
5043
5044 union mf_subvalue stack_stub[1024 / sizeof(union mf_subvalue)];
5045 uint64_t action_set_stub[1024 / 8];
5046 struct flow_wildcards scratch_wc;
5047 uint64_t actions_stub[256 / 8];
5048 struct ofpbuf scratch_actions = OFPBUF_STUB_INITIALIZER(actions_stub);
5049 struct xlate_ctx ctx = {
5050 .xin = xin,
5051 .xout = xout,
5052 .base_flow = *flow,
5053 .orig_tunnel_ipv6_dst = flow_tnl_dst(&flow->tunnel),
5054 .xbridge = xbridge,
5055 .stack = OFPBUF_STUB_INITIALIZER(stack_stub),
5056 .rule = xin->rule,
5057 .wc = xin->wc ? xin->wc : &scratch_wc,
5058 .odp_actions = xin->odp_actions ? xin->odp_actions : &scratch_actions,
5059
5060 .recurse = xin->recurse,
5061 .resubmits = xin->resubmits,
5062 .in_group = false,
5063 .in_action_set = false,
5064
5065 .table_id = 0,
5066 .rule_cookie = OVS_BE64_MAX,
5067 .orig_skb_priority = flow->skb_priority,
5068 .sflow_n_outputs = 0,
5069 .sflow_odp_port = 0,
5070 .nf_output_iface = NF_OUT_DROP,
5071 .exit = false,
5072 .error = XLATE_OK,
5073 .mirrors = 0,
5074
5075 .recirc_action_offset = -1,
5076 .last_unroll_offset = -1,
5077
5078 .was_mpls = false,
5079 .conntracked = false,
5080
5081 .ct_nat_action = NULL,
5082
5083 .action_set_has_group = false,
5084 .action_set = OFPBUF_STUB_INITIALIZER(action_set_stub),
5085 };
5086
5087 /* 'base_flow' reflects the packet as it came in, but we need it to reflect
5088 * the packet as the datapath will treat it for output actions:
5089 *
5090 * - Our datapath doesn't retain tunneling information without us
5091 * re-setting it, so clear the tunnel data.
5092 *
5093 * - For VLAN splinters, a higher layer may pretend that the packet
5094 * came in on 'flow->in_port.ofp_port' with 'flow->vlan_tci'
5095 * attached, because that's how we want to treat it from an OpenFlow
5096 * perspective. But from the datapath's perspective it actually came
5097 * in on a VLAN device without any VLAN attached. So here we put the
5098 * datapath's view of the VLAN information in 'base_flow' to ensure
5099 * correct treatment.
5100 */
5101 memset(&ctx.base_flow.tunnel, 0, sizeof ctx.base_flow.tunnel);
5102 if (flow->in_port.ofp_port
5103 != vsp_realdev_to_vlandev(xbridge->ofproto,
5104 flow->in_port.ofp_port,
5105 flow->vlan_tci)) {
5106 ctx.base_flow.vlan_tci = 0;
5107 }
5108
5109 ofpbuf_reserve(ctx.odp_actions, NL_A_U32_SIZE);
5110 if (xin->wc) {
5111 xlate_wc_init(&ctx);
5112 }
5113
5114 COVERAGE_INC(xlate_actions);
5115
5116 if (xin->recirc) {
5117 const struct recirc_state *state = &xin->recirc->state;
5118
5119 xlate_report(&ctx, "Restoring state post-recirculation:");
5120
5121 if (xin->ofpacts_len > 0 || ctx.rule) {
5122 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 1);
5123 const char *conflict = xin->ofpacts_len ? "actions" : "rule";
5124
5125 VLOG_WARN_RL(&rl, "Recirculation conflict (%s)!", conflict);
5126 xlate_report(&ctx, "- Recirculation conflict (%s)!", conflict);
5127 ctx.error = XLATE_RECIRCULATION_CONFLICT;
5128 goto exit;
5129 }
5130
5131 /* Set the bridge for post-recirculation processing if needed. */
5132 if (ctx.xbridge->ofproto != state->ofproto) {
5133 struct xlate_cfg *xcfg = ovsrcu_get(struct xlate_cfg *, &xcfgp);
5134 const struct xbridge *new_bridge
5135 = xbridge_lookup(xcfg, state->ofproto);
5136
5137 if (OVS_UNLIKELY(!new_bridge)) {
5138 /* Drop the packet if the bridge cannot be found. */
5139 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 1);
5140 VLOG_WARN_RL(&rl, "Recirculation bridge no longer exists.");
5141 xlate_report(&ctx, "- Recirculation bridge no longer exists.");
5142 ctx.error = XLATE_BRIDGE_NOT_FOUND;
5143 goto exit;
5144 }
5145 ctx.xbridge = new_bridge;
5146 }
5147
5148 /* Set the post-recirculation table id. Note: A table lookup is done
5149 * only if there are no post-recirculation actions. */
5150 ctx.table_id = state->table_id;
5151 xlate_report(&ctx, "- Resuming from table %"PRIu8, ctx.table_id);
5152
5153 if (!state->conntracked) {
5154 clear_conntrack(flow);
5155 }
5156
5157 /* Restore pipeline metadata. May change flow's in_port and other
5158 * metadata to the values that existed when recirculation was
5159 * triggered. */
5160 recirc_metadata_to_flow(&state->metadata, flow);
5161
5162 /* Restore stack, if any. */
5163 if (state->stack) {
5164 ofpbuf_put(&ctx.stack, state->stack->data, state->stack->size);
5165 }
5166
5167 /* Restore mirror state. */
5168 ctx.mirrors = state->mirrors;
5169
5170 /* Restore action set, if any. */
5171 if (state->action_set_len) {
5172 const struct ofpact *a;
5173
5174 xlate_report_actions(&ctx, "- Restoring action set",
5175 state->ofpacts, state->action_set_len);
5176
5177 ofpbuf_put(&ctx.action_set, state->ofpacts, state->action_set_len);
5178
5179 OFPACT_FOR_EACH(a, state->ofpacts, state->action_set_len) {
5180 if (a->type == OFPACT_GROUP) {
5181 ctx.action_set_has_group = true;
5182 break;
5183 }
5184 }
5185 }
5186
5187 /* Restore recirculation actions. If there are no actions, processing
5188 * will start with a lookup in the table set above. */
5189 if (state->ofpacts_len > state->action_set_len) {
5190 xin->ofpacts_len = state->ofpacts_len - state->action_set_len;
5191 xin->ofpacts = state->ofpacts +
5192 state->action_set_len / sizeof *state->ofpacts;
5193
5194 xlate_report_actions(&ctx, "- Restoring actions",
5195 xin->ofpacts, xin->ofpacts_len);
5196 }
5197 } else if (OVS_UNLIKELY(flow->recirc_id)) {
5198 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 1);
5199
5200 VLOG_WARN_RL(&rl, "Recirculation context not found for ID %"PRIx32,
5201 flow->recirc_id);
5202 ctx.error = XLATE_NO_RECIRCULATION_CONTEXT;
5203 goto exit;
5204 }
5205 /* The bridge is now known so obtain its table version. */
5206 ctx.tables_version = ofproto_dpif_get_tables_version(ctx.xbridge->ofproto);
5207
5208 if (!xin->ofpacts && !ctx.rule) {
5209 ctx.rule = rule_dpif_lookup_from_table(
5210 ctx.xbridge->ofproto, ctx.tables_version, flow, xin->wc,
5211 ctx.xin->resubmit_stats, &ctx.table_id,
5212 flow->in_port.ofp_port, true, true);
5213 if (ctx.xin->resubmit_stats) {
5214 rule_dpif_credit_stats(ctx.rule, ctx.xin->resubmit_stats);
5215 }
5216 if (ctx.xin->xcache) {
5217 struct xc_entry *entry;
5218
5219 entry = xlate_cache_add_entry(ctx.xin->xcache, XC_RULE);
5220 entry->u.rule = ctx.rule;
5221 rule_dpif_ref(ctx.rule);
5222 }
5223
5224 if (OVS_UNLIKELY(ctx.xin->resubmit_hook)) {
5225 ctx.xin->resubmit_hook(ctx.xin, ctx.rule, 0);
5226 }
5227 }
5228
5229 /* Get the proximate input port of the packet. (If xin->recirc,
5230 * flow->in_port is the ultimate input port of the packet.) */
5231 struct xport *in_port = get_ofp_port(xbridge,
5232 ctx.base_flow.in_port.ofp_port);
5233
5234 /* Tunnel stats only for non-recirculated packets. */
5235 if (!xin->recirc && in_port && in_port->is_tunnel) {
5236 if (ctx.xin->resubmit_stats) {
5237 netdev_vport_inc_rx(in_port->netdev, ctx.xin->resubmit_stats);
5238 if (in_port->bfd) {
5239 bfd_account_rx(in_port->bfd, ctx.xin->resubmit_stats);
5240 }
5241 }
5242 if (ctx.xin->xcache) {
5243 struct xc_entry *entry;
5244
5245 entry = xlate_cache_add_entry(ctx.xin->xcache, XC_NETDEV);
5246 entry->u.dev.rx = netdev_ref(in_port->netdev);
5247 entry->u.dev.bfd = bfd_ref(in_port->bfd);
5248 }
5249 }
5250
5251 if (!xin->recirc && process_special(&ctx, in_port)) {
5252 /* process_special() did all the processing for this packet.
5253 *
5254 * We do not perform special processing on recirculated packets, as
5255 * recirculated packets are not really received by the bridge.*/
5256 } else if (in_port && in_port->xbundle
5257 && xbundle_mirror_out(xbridge, in_port->xbundle)) {
5258 if (ctx.xin->packet != NULL) {
5259 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
5260 VLOG_WARN_RL(&rl, "bridge %s: dropping packet received on port "
5261 "%s, which is reserved exclusively for mirroring",
5262 ctx.xbridge->name, in_port->xbundle->name);
5263 }
5264 } else {
5265 /* Sampling is done only for packets really received by the bridge. */
5266 unsigned int user_cookie_offset = 0;
5267 if (!xin->recirc) {
5268 user_cookie_offset = compose_sflow_action(&ctx);
5269 compose_ipfix_action(&ctx, ODPP_NONE);
5270 }
5271 size_t sample_actions_len = ctx.odp_actions->size;
5272
5273 if (tnl_process_ecn(flow)
5274 && (!in_port || may_receive(in_port, &ctx))) {
5275 const struct ofpact *ofpacts;
5276 size_t ofpacts_len;
5277
5278 if (xin->ofpacts) {
5279 ofpacts = xin->ofpacts;
5280 ofpacts_len = xin->ofpacts_len;
5281 } else if (ctx.rule) {
5282 const struct rule_actions *actions
5283 = rule_dpif_get_actions(ctx.rule);
5284 ofpacts = actions->ofpacts;
5285 ofpacts_len = actions->ofpacts_len;
5286 ctx.rule_cookie = rule_dpif_get_flow_cookie(ctx.rule);
5287 } else {
5288 OVS_NOT_REACHED();
5289 }
5290
5291 mirror_ingress_packet(&ctx);
5292 do_xlate_actions(ofpacts, ofpacts_len, &ctx);
5293 if (ctx.error) {
5294 goto exit;
5295 }
5296
5297 /* We've let OFPP_NORMAL and the learning action look at the
5298 * packet, so drop it now if forwarding is disabled. */
5299 if (in_port && (!xport_stp_forward_state(in_port) ||
5300 !xport_rstp_forward_state(in_port))) {
5301 /* Drop all actions added by do_xlate_actions() above. */
5302 ctx.odp_actions->size = sample_actions_len;
5303
5304 /* Undo changes that may have been done for recirculation. */
5305 if (exit_recirculates(&ctx)) {
5306 ctx.action_set.size = ctx.recirc_action_offset;
5307 ctx.recirc_action_offset = -1;
5308 ctx.last_unroll_offset = -1;
5309 }
5310 } else if (ctx.action_set.size) {
5311 /* Translate action set only if not dropping the packet and
5312 * not recirculating. */
5313 if (!exit_recirculates(&ctx)) {
5314 xlate_action_set(&ctx);
5315 }
5316 }
5317 /* Check if need to recirculate. */
5318 if (exit_recirculates(&ctx)) {
5319 compose_recirculate_action(&ctx);
5320 }
5321 }
5322
5323 /* Output only fully processed packets. */
5324 if (!exit_recirculates(&ctx)
5325 && xbridge->has_in_band
5326 && in_band_must_output_to_local_port(flow)
5327 && !actions_output_to_local_port(&ctx)) {
5328 compose_output_action(&ctx, OFPP_LOCAL, NULL);
5329 }
5330
5331 if (user_cookie_offset) {
5332 fix_sflow_action(&ctx, user_cookie_offset);
5333 }
5334 }
5335
5336 if (nl_attr_oversized(ctx.odp_actions->size)) {
5337 /* These datapath actions are too big for a Netlink attribute, so we
5338 * can't hand them to the kernel directly. dpif_execute() can execute
5339 * them one by one with help, so just mark the result as SLOW_ACTION to
5340 * prevent the flow from being installed. */
5341 COVERAGE_INC(xlate_actions_oversize);
5342 ctx.xout->slow |= SLOW_ACTION;
5343 } else if (too_many_output_actions(ctx.odp_actions)) {
5344 COVERAGE_INC(xlate_actions_too_many_output);
5345 ctx.xout->slow |= SLOW_ACTION;
5346 }
5347
5348 /* Do netflow only for packets really received by the bridge and not sent
5349 * to the controller. We consider packets sent to the controller to be
5350 * part of the control plane rather than the data plane. */
5351 if (!xin->recirc && xbridge->netflow && !(xout->slow & SLOW_CONTROLLER)) {
5352 if (ctx.xin->resubmit_stats) {
5353 netflow_flow_update(xbridge->netflow, flow,
5354 ctx.nf_output_iface,
5355 ctx.xin->resubmit_stats);
5356 }
5357 if (ctx.xin->xcache) {
5358 struct xc_entry *entry;
5359
5360 entry = xlate_cache_add_entry(ctx.xin->xcache, XC_NETFLOW);
5361 entry->u.nf.netflow = netflow_ref(xbridge->netflow);
5362 entry->u.nf.flow = xmemdup(flow, sizeof *flow);
5363 entry->u.nf.iface = ctx.nf_output_iface;
5364 }
5365 }
5366
5367 if (xin->wc) {
5368 xlate_wc_finish(&ctx);
5369 }
5370
5371 exit:
5372 ofpbuf_uninit(&ctx.stack);
5373 ofpbuf_uninit(&ctx.action_set);
5374 ofpbuf_uninit(&scratch_actions);
5375
5376 /* Make sure we return a "drop flow" in case of an error. */
5377 if (ctx.error) {
5378 xout->slow = 0;
5379 if (xin->odp_actions) {
5380 ofpbuf_clear(xin->odp_actions);
5381 }
5382 }
5383 return ctx.error;
5384 }
5385
5386 /* Sends 'packet' out 'ofport'.
5387 * May modify 'packet'.
5388 * Returns 0 if successful, otherwise a positive errno value. */
5389 int
5390 xlate_send_packet(const struct ofport_dpif *ofport, struct dp_packet *packet)
5391 {
5392 struct xlate_cfg *xcfg = ovsrcu_get(struct xlate_cfg *, &xcfgp);
5393 struct xport *xport;
5394 struct ofpact_output output;
5395 struct flow flow;
5396
5397 ofpact_init(&output.ofpact, OFPACT_OUTPUT, sizeof output);
5398 /* Use OFPP_NONE as the in_port to avoid special packet processing. */
5399 flow_extract(packet, &flow);
5400 flow.in_port.ofp_port = OFPP_NONE;
5401
5402 xport = xport_lookup(xcfg, ofport);
5403 if (!xport) {
5404 return EINVAL;
5405 }
5406 output.port = xport->ofp_port;
5407 output.max_len = 0;
5408
5409 return ofproto_dpif_execute_actions(xport->xbridge->ofproto, &flow, NULL,
5410 &output.ofpact, sizeof output,
5411 packet);
5412 }
5413
5414 struct xlate_cache *
5415 xlate_cache_new(void)
5416 {
5417 struct xlate_cache *xcache = xmalloc(sizeof *xcache);
5418
5419 ofpbuf_init(&xcache->entries, 512);
5420 return xcache;
5421 }
5422
5423 static struct xc_entry *
5424 xlate_cache_add_entry(struct xlate_cache *xcache, enum xc_type type)
5425 {
5426 struct xc_entry *entry;
5427
5428 entry = ofpbuf_put_zeros(&xcache->entries, sizeof *entry);
5429 entry->type = type;
5430
5431 return entry;
5432 }
5433
5434 static void
5435 xlate_cache_netdev(struct xc_entry *entry, const struct dpif_flow_stats *stats)
5436 {
5437 if (entry->u.dev.tx) {
5438 netdev_vport_inc_tx(entry->u.dev.tx, stats);
5439 }
5440 if (entry->u.dev.rx) {
5441 netdev_vport_inc_rx(entry->u.dev.rx, stats);
5442 }
5443 if (entry->u.dev.bfd) {
5444 bfd_account_rx(entry->u.dev.bfd, stats);
5445 }
5446 }
5447
5448 static void
5449 xlate_cache_normal(struct ofproto_dpif *ofproto, struct flow *flow, int vlan)
5450 {
5451 struct xlate_cfg *xcfg = ovsrcu_get(struct xlate_cfg *, &xcfgp);
5452 struct xbridge *xbridge;
5453 struct xbundle *xbundle;
5454 struct flow_wildcards wc;
5455
5456 xbridge = xbridge_lookup(xcfg, ofproto);
5457 if (!xbridge) {
5458 return;
5459 }
5460
5461 xbundle = lookup_input_bundle(xbridge, flow->in_port.ofp_port, false,
5462 NULL);
5463 if (!xbundle) {
5464 return;
5465 }
5466
5467 update_learning_table(xbridge, flow, &wc, vlan, xbundle);
5468 }
5469
5470 /* Push stats and perform side effects of flow translation. */
5471 void
5472 xlate_push_stats(struct xlate_cache *xcache,
5473 const struct dpif_flow_stats *stats)
5474 {
5475 struct xc_entry *entry;
5476 struct ofpbuf entries = xcache->entries;
5477 struct eth_addr dmac;
5478
5479 if (!stats->n_packets) {
5480 return;
5481 }
5482
5483 XC_ENTRY_FOR_EACH (entry, entries, xcache) {
5484 switch (entry->type) {
5485 case XC_RULE:
5486 rule_dpif_credit_stats(entry->u.rule, stats);
5487 break;
5488 case XC_BOND:
5489 bond_account(entry->u.bond.bond, entry->u.bond.flow,
5490 entry->u.bond.vid, stats->n_bytes);
5491 break;
5492 case XC_NETDEV:
5493 xlate_cache_netdev(entry, stats);
5494 break;
5495 case XC_NETFLOW:
5496 netflow_flow_update(entry->u.nf.netflow, entry->u.nf.flow,
5497 entry->u.nf.iface, stats);
5498 break;
5499 case XC_MIRROR:
5500 mirror_update_stats(entry->u.mirror.mbridge,
5501 entry->u.mirror.mirrors,
5502 stats->n_packets, stats->n_bytes);
5503 break;
5504 case XC_LEARN:
5505 ofproto_dpif_flow_mod(entry->u.learn.ofproto, entry->u.learn.fm);
5506 break;
5507 case XC_NORMAL:
5508 xlate_cache_normal(entry->u.normal.ofproto, entry->u.normal.flow,
5509 entry->u.normal.vlan);
5510 break;
5511 case XC_FIN_TIMEOUT:
5512 xlate_fin_timeout__(entry->u.fin.rule, stats->tcp_flags,
5513 entry->u.fin.idle, entry->u.fin.hard);
5514 break;
5515 case XC_GROUP:
5516 group_dpif_credit_stats(entry->u.group.group, entry->u.group.bucket,
5517 stats);
5518 break;
5519 case XC_TNL_NEIGH:
5520 /* Lookup neighbor to avoid timeout. */
5521 tnl_neigh_lookup(entry->u.tnl_neigh_cache.br_name,
5522 &entry->u.tnl_neigh_cache.d_ipv6, &dmac);
5523 break;
5524 default:
5525 OVS_NOT_REACHED();
5526 }
5527 }
5528 }
5529
5530 static void
5531 xlate_dev_unref(struct xc_entry *entry)
5532 {
5533 if (entry->u.dev.tx) {
5534 netdev_close(entry->u.dev.tx);
5535 }
5536 if (entry->u.dev.rx) {
5537 netdev_close(entry->u.dev.rx);
5538 }
5539 if (entry->u.dev.bfd) {
5540 bfd_unref(entry->u.dev.bfd);
5541 }
5542 }
5543
5544 static void
5545 xlate_cache_clear_netflow(struct netflow *netflow, struct flow *flow)
5546 {
5547 netflow_flow_clear(netflow, flow);
5548 netflow_unref(netflow);
5549 free(flow);
5550 }
5551
5552 void
5553 xlate_cache_clear(struct xlate_cache *xcache)
5554 {
5555 struct xc_entry *entry;
5556 struct ofpbuf entries;
5557
5558 if (!xcache) {
5559 return;
5560 }
5561
5562 XC_ENTRY_FOR_EACH (entry, entries, xcache) {
5563 switch (entry->type) {
5564 case XC_RULE:
5565 rule_dpif_unref(entry->u.rule);
5566 break;
5567 case XC_BOND:
5568 free(entry->u.bond.flow);
5569 bond_unref(entry->u.bond.bond);
5570 break;
5571 case XC_NETDEV:
5572 xlate_dev_unref(entry);
5573 break;
5574 case XC_NETFLOW:
5575 xlate_cache_clear_netflow(entry->u.nf.netflow, entry->u.nf.flow);
5576 break;
5577 case XC_MIRROR:
5578 mbridge_unref(entry->u.mirror.mbridge);
5579 break;
5580 case XC_LEARN:
5581 free(entry->u.learn.fm);
5582 ofpbuf_delete(entry->u.learn.ofpacts);
5583 break;
5584 case XC_NORMAL:
5585 free(entry->u.normal.flow);
5586 break;
5587 case XC_FIN_TIMEOUT:
5588 /* 'u.fin.rule' is always already held as a XC_RULE, which
5589 * has already released it's reference above. */
5590 break;
5591 case XC_GROUP:
5592 group_dpif_unref(entry->u.group.group);
5593 break;
5594 case XC_TNL_NEIGH:
5595 break;
5596 default:
5597 OVS_NOT_REACHED();
5598 }
5599 }
5600
5601 ofpbuf_clear(&xcache->entries);
5602 }
5603
5604 void
5605 xlate_cache_delete(struct xlate_cache *xcache)
5606 {
5607 xlate_cache_clear(xcache);
5608 ofpbuf_uninit(&xcache->entries);
5609 free(xcache);
5610 }