]> git.proxmox.com Git - mirror_ovs.git/blob - ofproto/ofproto-dpif-xlate.c
userspace: Avoid dp_hash recirculation for balance-tcp bond mode.
[mirror_ovs.git] / ofproto / ofproto-dpif-xlate.c
1 /* Copyright (c) 2009-2017, 2019-2020 Nicira, Inc.
2 *
3 * Licensed under the Apache License, Version 2.0 (the "License");
4 * you may not use this file except in compliance with the License.
5 * You may obtain a copy of the License at:
6 *
7 * http://www.apache.org/licenses/LICENSE-2.0
8 *
9 * Unless required by applicable law or agreed to in writing, software
10 * distributed under the License is distributed on an "AS IS" BASIS,
11 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 * See the License for the specific language governing permissions and
13 * limitations under the License. */
14
15 #include <config.h>
16
17 #include "ofproto/ofproto-dpif-xlate.h"
18
19 #include <errno.h>
20 #include <sys/types.h>
21 #include <netinet/in.h>
22 #include <arpa/inet.h>
23 #include <net/if.h>
24 #include <sys/socket.h>
25
26 #include "bfd.h"
27 #include "bitmap.h"
28 #include "bond.h"
29 #include "bundle.h"
30 #include "byte-order.h"
31 #include "cfm.h"
32 #include "connmgr.h"
33 #include "coverage.h"
34 #include "csum.h"
35 #include "dp-packet.h"
36 #include "dpif.h"
37 #include "in-band.h"
38 #include "lacp.h"
39 #include "learn.h"
40 #include "mac-learning.h"
41 #include "mcast-snooping.h"
42 #include "multipath.h"
43 #include "netdev-vport.h"
44 #include "netlink.h"
45 #include "nx-match.h"
46 #include "odp-execute.h"
47 #include "ofproto/ofproto-dpif-ipfix.h"
48 #include "ofproto/ofproto-dpif-mirror.h"
49 #include "ofproto/ofproto-dpif-monitor.h"
50 #include "ofproto/ofproto-dpif-sflow.h"
51 #include "ofproto/ofproto-dpif-trace.h"
52 #include "ofproto/ofproto-dpif-xlate-cache.h"
53 #include "ofproto/ofproto-dpif.h"
54 #include "ofproto/ofproto-provider.h"
55 #include "openvswitch/dynamic-string.h"
56 #include "openvswitch/meta-flow.h"
57 #include "openvswitch/list.h"
58 #include "openvswitch/ofp-actions.h"
59 #include "openvswitch/ofp-ed-props.h"
60 #include "openvswitch/vlog.h"
61 #include "ovs-lldp.h"
62 #include "ovs-router.h"
63 #include "packets.h"
64 #include "tnl-neigh-cache.h"
65 #include "tnl-ports.h"
66 #include "tunnel.h"
67 #include "util.h"
68 #include "uuid.h"
69
70 COVERAGE_DEFINE(xlate_actions);
71 COVERAGE_DEFINE(xlate_actions_oversize);
72 COVERAGE_DEFINE(xlate_actions_too_many_output);
73
74 VLOG_DEFINE_THIS_MODULE(ofproto_dpif_xlate);
75
76 /* Maximum depth of flow table recursion (due to resubmit actions) in a
77 * flow translation.
78 *
79 * The goal of limiting the depth of resubmits is to ensure that flow
80 * translation eventually terminates. Only resubmits to the same table or an
81 * earlier table count against the maximum depth. This is because resubmits to
82 * strictly monotonically increasing table IDs will eventually terminate, since
83 * any OpenFlow switch has a finite number of tables. OpenFlow tables are most
84 * commonly traversed in numerically increasing order, so this limit has little
85 * effect on conventionally designed OpenFlow pipelines.
86 *
87 * Outputs to patch ports and to groups also count against the depth limit. */
88 #define MAX_DEPTH 64
89
90 /* Maximum number of resubmit actions in a flow translation, whether they are
91 * recursive or not. */
92 #define MAX_RESUBMITS (MAX_DEPTH * MAX_DEPTH)
93
94 /* The structure holds an array of IP addresses assigned to a bridge and the
95 * number of elements in the array. These data are mutable and are evaluated
96 * when ARP or Neighbor Advertisement packets received on a native tunnel
97 * port are xlated. So 'ref_cnt' and RCU are used for synchronization. */
98 struct xbridge_addr {
99 struct in6_addr *addr; /* Array of IP addresses of xbridge. */
100 int n_addr; /* Number of IP addresses. */
101 struct ovs_refcount ref_cnt;
102 };
103
104 struct xbridge {
105 struct hmap_node hmap_node; /* Node in global 'xbridges' map. */
106 struct ofproto_dpif *ofproto; /* Key in global 'xbridges' map. */
107
108 struct ovs_list xbundles; /* Owned xbundles. */
109 struct hmap xports; /* Indexed by ofp_port. */
110
111 char *name; /* Name used in log messages. */
112 struct dpif *dpif; /* Datapath interface. */
113 struct mac_learning *ml; /* Mac learning handle. */
114 struct mcast_snooping *ms; /* Multicast Snooping handle. */
115 struct mbridge *mbridge; /* Mirroring. */
116 struct dpif_sflow *sflow; /* SFlow handle, or null. */
117 struct dpif_ipfix *ipfix; /* Ipfix handle, or null. */
118 struct netflow *netflow; /* Netflow handle, or null. */
119 struct stp *stp; /* STP or null if disabled. */
120 struct rstp *rstp; /* RSTP or null if disabled. */
121
122 bool has_in_band; /* Bridge has in band control? */
123 bool forward_bpdu; /* Bridge forwards STP BPDUs? */
124
125 /* Datapath feature support. */
126 struct dpif_backer_support support;
127
128 struct xbridge_addr *addr;
129 };
130
131 struct xbundle {
132 struct hmap_node hmap_node; /* In global 'xbundles' map. */
133 struct ofbundle *ofbundle; /* Key in global 'xbundles' map. */
134
135 struct ovs_list list_node; /* In parent 'xbridges' list. */
136 struct xbridge *xbridge; /* Parent xbridge. */
137
138 struct ovs_list xports; /* Contains "struct xport"s. */
139
140 char *name; /* Name used in log messages. */
141 struct bond *bond; /* Nonnull iff more than one port. */
142 struct lacp *lacp; /* LACP handle or null. */
143
144 enum port_vlan_mode vlan_mode; /* VLAN mode. */
145 uint16_t qinq_ethtype; /* Ethertype of dot1q-tunnel interface
146 * either 0x8100 or 0x88a8. */
147 int vlan; /* -1=trunk port, else a 12-bit VLAN ID. */
148 unsigned long *trunks; /* Bitmap of trunked VLANs, if 'vlan' == -1.
149 * NULL if all VLANs are trunked. */
150 unsigned long *cvlans; /* Bitmap of allowed customer vlans,
151 * NULL if all VLANs are allowed */
152 enum port_priority_tags_mode use_priority_tags;
153 /* Use 802.1p tag for frames in VLAN 0? */
154 bool floodable; /* No port has OFPUTIL_PC_NO_FLOOD set? */
155 bool protected; /* Protected port mode */
156 };
157
158 struct xport {
159 struct hmap_node hmap_node; /* Node in global 'xports' map. */
160 struct ofport_dpif *ofport; /* Key in global 'xports map. */
161
162 struct hmap_node ofp_node; /* Node in parent xbridge 'xports' map. */
163 ofp_port_t ofp_port; /* Key in parent xbridge 'xports' map. */
164
165 struct hmap_node uuid_node; /* Node in global 'xports_uuid' map. */
166 struct uuid uuid; /* Key in global 'xports_uuid' map. */
167
168 odp_port_t odp_port; /* Datapath port number or ODPP_NONE. */
169
170 struct ovs_list bundle_node; /* In parent xbundle (if it exists). */
171 struct xbundle *xbundle; /* Parent xbundle or null. */
172
173 struct netdev *netdev; /* 'ofport''s netdev. */
174
175 struct xbridge *xbridge; /* Parent bridge. */
176 struct xport *peer; /* Patch port peer or null. */
177
178 enum ofputil_port_config config; /* OpenFlow port configuration. */
179 enum ofputil_port_state state; /* OpenFlow port state. */
180 int stp_port_no; /* STP port number or -1 if not in use. */
181 struct rstp_port *rstp_port; /* RSTP port or null. */
182
183 struct hmap skb_priorities; /* Map of 'skb_priority_to_dscp's. */
184
185 bool may_enable; /* May be enabled in bonds. */
186 bool is_tunnel; /* Is a tunnel port. */
187 enum netdev_pt_mode pt_mode; /* packet_type handling. */
188
189 struct cfm *cfm; /* CFM handle or null. */
190 struct bfd *bfd; /* BFD handle or null. */
191 struct lldp *lldp; /* LLDP handle or null. */
192 };
193
194 struct xlate_ctx {
195 struct xlate_in *xin;
196 struct xlate_out *xout;
197
198 struct xlate_cfg *xcfg;
199 const struct xbridge *xbridge;
200
201 /* Flow at the last commit. */
202 struct flow base_flow;
203
204 /* Tunnel IP destination address as received. This is stored separately
205 * as the base_flow.tunnel is cleared on init to reflect the datapath
206 * behavior. Used to make sure not to send tunneled output to ourselves,
207 * which might lead to an infinite loop. This could happen easily
208 * if a tunnel is marked as 'ip_remote=flow', and the flow does not
209 * actually set the tun_dst field. */
210 struct in6_addr orig_tunnel_ipv6_dst;
211
212 /* Stack for the push and pop actions. See comment above nx_stack_push()
213 * in nx-match.c for info on how the stack is stored. */
214 struct ofpbuf stack;
215
216 /* The rule that we are currently translating, or NULL. */
217 struct rule_dpif *rule;
218
219 /* Flow translation populates this with wildcards relevant in translation.
220 * When 'xin->wc' is nonnull, this is the same pointer. When 'xin->wc' is
221 * null, this is a pointer to a temporary buffer. */
222 struct flow_wildcards *wc;
223
224 /* Output buffer for datapath actions. When 'xin->odp_actions' is nonnull,
225 * this is the same pointer. When 'xin->odp_actions' is null, this points
226 * to a scratch ofpbuf. This allows code to add actions to
227 * 'ctx->odp_actions' without worrying about whether the caller really
228 * wants actions. */
229 struct ofpbuf *odp_actions;
230
231 /* Statistics maintained by xlate_table_action().
232 *
233 * These statistics limit the amount of work that a single flow
234 * translation can perform. The goal of the first of these, 'depth', is
235 * primarily to prevent translation from performing an infinite amount of
236 * work. It counts the current depth of nested "resubmit"s (and a few
237 * other activities); when a resubmit returns, it decreases. Resubmits to
238 * tables in strictly monotonically increasing order don't contribute to
239 * 'depth' because they cannot cause a flow translation to take an infinite
240 * amount of time (because the number of tables is finite). Translation
241 * aborts when 'depth' exceeds MAX_DEPTH.
242 *
243 * 'resubmits', on the other hand, prevents flow translation from
244 * performing an extraordinarily large while still finite amount of work.
245 * It counts the total number of resubmits (and a few other activities)
246 * that have been executed. Returning from a resubmit does not affect this
247 * counter. Thus, this limits the amount of work that a particular
248 * translation can perform. Translation aborts when 'resubmits' exceeds
249 * MAX_RESUBMITS (which is much larger than MAX_DEPTH).
250 */
251 int depth; /* Current resubmit nesting depth. */
252 int resubmits; /* Total number of resubmits. */
253 bool in_action_set; /* Currently translating action_set, if true. */
254 bool in_packet_out; /* Currently translating a packet_out msg, if
255 * true. */
256 bool pending_encap; /* True when waiting to commit a pending
257 * encap action. */
258 bool pending_decap; /* True when waiting to commit a pending
259 * decap action. */
260 struct ofpbuf *encap_data; /* May contain a pointer to an ofpbuf with
261 * context for the datapath encap action.*/
262
263 uint8_t table_id; /* OpenFlow table ID where flow was found. */
264 ovs_be64 rule_cookie; /* Cookie of the rule being translated. */
265 uint32_t orig_skb_priority; /* Priority when packet arrived. */
266 uint32_t sflow_n_outputs; /* Number of output ports. */
267 odp_port_t sflow_odp_port; /* Output port for composing sFlow action. */
268 ofp_port_t nf_output_iface; /* Output interface index for NetFlow. */
269 bool exit; /* No further actions should be processed. */
270 mirror_mask_t mirrors; /* Bitmap of associated mirrors. */
271 int mirror_snaplen; /* Max size of a mirror packet in byte. */
272
273 /* Freezing Translation
274 * ====================
275 *
276 * At some point during translation, the code may recognize the need to halt
277 * and checkpoint the translation in a way that it can be restarted again
278 * later. We call the checkpointing process "freezing" and the restarting
279 * process "thawing".
280 *
281 * The use cases for freezing are:
282 *
283 * - "Recirculation", where the translation process discovers that it
284 * doesn't have enough information to complete translation without
285 * actually executing the actions that have already been translated,
286 * which provides the additionally needed information. In these
287 * situations, translation freezes translation and assigns the frozen
288 * data a unique "recirculation ID", which it associates with the data
289 * in a table in userspace (see ofproto-dpif-rid.h). It also adds a
290 * OVS_ACTION_ATTR_RECIRC action specifying that ID to the datapath
291 * actions. When a packet hits that action, the datapath looks its
292 * flow up again using the ID. If there's a miss, it comes back to
293 * userspace, which find the recirculation table entry for the ID,
294 * thaws the associated frozen data, and continues translation from
295 * that point given the additional information that is now known.
296 *
297 * The archetypal example is MPLS. As MPLS is implemented in
298 * OpenFlow, the protocol that follows the last MPLS label becomes
299 * known only when that label is popped by an OpenFlow action. That
300 * means that Open vSwitch can't extract the headers beyond the MPLS
301 * labels until the pop action is executed. Thus, at that point
302 * translation uses the recirculation process to extract the headers
303 * beyond the MPLS labels.
304 *
305 * (OVS also uses OVS_ACTION_ATTR_RECIRC to implement hashing for
306 * output to bonds. OVS pre-populates all the datapath flows for bond
307 * output in the datapath, though, which means that the elaborate
308 * process of coming back to userspace for a second round of
309 * translation isn't needed, and so bonds don't follow the above
310 * process.)
311 *
312 * - "Continuation". A continuation is a way for an OpenFlow controller
313 * to interpose on a packet's traversal of the OpenFlow tables. When
314 * the translation process encounters a "controller" action with the
315 * "pause" flag, it freezes translation, serializes the frozen data,
316 * and sends it to an OpenFlow controller. The controller then
317 * examines and possibly modifies the frozen data and eventually sends
318 * it back to the switch, which thaws it and continues translation.
319 *
320 * The main problem of freezing translation is preserving state, so that
321 * when the translation is thawed later it resumes from where it left off,
322 * without disruption. In particular, actions must be preserved as follows:
323 *
324 * - If we're freezing because an action needed more information, the
325 * action that prompted it.
326 *
327 * - Any actions remaining to be translated within the current flow.
328 *
329 * - If translation was frozen within a NXAST_RESUBMIT, then any actions
330 * following the resubmit action. Resubmit actions can be nested, so
331 * this has to go all the way up the control stack.
332 *
333 * - The OpenFlow 1.1+ action set.
334 *
335 * State that actions and flow table lookups can depend on, such as the
336 * following, must also be preserved:
337 *
338 * - Metadata fields (input port, registers, OF1.1+ metadata, ...).
339 *
340 * - The stack used by NXAST_STACK_PUSH and NXAST_STACK_POP actions.
341 *
342 * - The table ID and cookie of the flow being translated at each level
343 * of the control stack, because these can become visible through
344 * OFPAT_CONTROLLER actions (and other ways).
345 *
346 * Translation allows for the control of this state preservation via these
347 * members. When a need to freeze translation is identified, the
348 * translation process:
349 *
350 * 1. Sets 'freezing' to true.
351 *
352 * 2. Sets 'exit' to true to tell later steps that we're exiting from the
353 * translation process.
354 *
355 * 3. Adds an OFPACT_UNROLL_XLATE action to 'frozen_actions', and points
356 * frozen_actions.header to the action to make it easy to find it later.
357 * This action holds the current table ID and cookie so that they can be
358 * restored during a post-recirculation upcall translation.
359 *
360 * 4. Adds the action that prompted recirculation and any actions following
361 * it within the same flow to 'frozen_actions', so that they can be
362 * executed during a post-recirculation upcall translation.
363 *
364 * 5. Returns.
365 *
366 * 6. The action that prompted recirculation might be nested in a stack of
367 * nested "resubmit"s that have actions remaining. Each of these notices
368 * that we're exiting and freezing and responds by adding more
369 * OFPACT_UNROLL_XLATE actions to 'frozen_actions', as necessary,
370 * followed by any actions that were yet unprocessed.
371 *
372 * If we're freezing because of recirculation, the caller generates a
373 * recirculation ID and associates all the state produced by this process
374 * with it. For post-recirculation upcall translation, the caller passes it
375 * back in for the new translation to execute. The process yielded a set of
376 * ofpacts that can be translated directly, so it is not much of a special
377 * case at that point.
378 */
379 bool freezing;
380 bool recirc_update_dp_hash; /* Generated recirculation will be preceded
381 * by datapath HASH action to get an updated
382 * dp_hash after recirculation. */
383 uint32_t dp_hash_alg;
384 uint32_t dp_hash_basis;
385 struct ofpbuf frozen_actions;
386 const struct ofpact_controller *pause;
387
388 /* True if a packet was but is no longer MPLS (due to an MPLS pop action).
389 * This is a trigger for recirculation in cases where translating an action
390 * or looking up a flow requires access to the fields of the packet after
391 * the MPLS label stack that was originally present. */
392 bool was_mpls;
393
394 /* True if conntrack has been performed on this packet during processing
395 * on the current bridge. This is used to determine whether conntrack
396 * state from the datapath should be honored after thawing. */
397 bool conntracked;
398
399 /* Pointer to an embedded NAT action in a conntrack action, or NULL. */
400 struct ofpact_nat *ct_nat_action;
401
402 /* OpenFlow 1.1+ action set.
403 *
404 * 'action_set' accumulates "struct ofpact"s added by OFPACT_WRITE_ACTIONS.
405 * When translation is otherwise complete, ofpacts_execute_action_set()
406 * converts it to a set of "struct ofpact"s that can be translated into
407 * datapath actions. */
408 bool action_set_has_group; /* Action set contains OFPACT_GROUP? */
409 struct ofpbuf action_set; /* Action set. */
410
411 enum xlate_error error; /* Translation failed. */
412 };
413
414 /* Structure to track VLAN manipulation */
415 struct xvlan_single {
416 uint16_t tpid;
417 uint16_t vid;
418 uint16_t pcp;
419 };
420
421 struct xvlan {
422 struct xvlan_single v[FLOW_MAX_VLAN_HEADERS];
423 };
424
425 const char *xlate_strerror(enum xlate_error error)
426 {
427 switch (error) {
428 case XLATE_OK:
429 return "OK";
430 case XLATE_BRIDGE_NOT_FOUND:
431 return "Bridge not found";
432 case XLATE_RECURSION_TOO_DEEP:
433 return "Recursion too deep";
434 case XLATE_TOO_MANY_RESUBMITS:
435 return "Too many resubmits";
436 case XLATE_STACK_TOO_DEEP:
437 return "Stack too deep";
438 case XLATE_NO_RECIRCULATION_CONTEXT:
439 return "No recirculation context";
440 case XLATE_RECIRCULATION_CONFLICT:
441 return "Recirculation conflict";
442 case XLATE_TOO_MANY_MPLS_LABELS:
443 return "Too many MPLS labels";
444 case XLATE_INVALID_TUNNEL_METADATA:
445 return "Invalid tunnel metadata";
446 case XLATE_UNSUPPORTED_PACKET_TYPE:
447 return "Unsupported packet type";
448 case XLATE_CONGESTION_DROP:
449 return "Congestion Drop";
450 case XLATE_FORWARDING_DISABLED:
451 return "Forwarding is disabled";
452 case XLATE_MAX:
453 break;
454 }
455 return "Unknown error";
456 }
457
458 static void xlate_action_set(struct xlate_ctx *ctx);
459 static void xlate_commit_actions(struct xlate_ctx *ctx);
460
461 static void
462 patch_port_output(struct xlate_ctx *ctx, const struct xport *in_dev,
463 struct xport *out_dev);
464
465 static void
466 ctx_trigger_freeze(struct xlate_ctx *ctx)
467 {
468 ctx->exit = true;
469 ctx->freezing = true;
470 }
471
472 static void
473 ctx_trigger_recirculate_with_hash(struct xlate_ctx *ctx, uint32_t type,
474 uint32_t basis)
475 {
476 ctx->exit = true;
477 ctx->freezing = true;
478 ctx->recirc_update_dp_hash = true;
479 ctx->dp_hash_alg = type;
480 ctx->dp_hash_basis = basis;
481 }
482
483 static bool
484 ctx_first_frozen_action(const struct xlate_ctx *ctx)
485 {
486 return !ctx->frozen_actions.size;
487 }
488
489 static void
490 ctx_cancel_freeze(struct xlate_ctx *ctx)
491 {
492 if (ctx->freezing) {
493 ctx->freezing = false;
494 ctx->recirc_update_dp_hash = false;
495 ofpbuf_clear(&ctx->frozen_actions);
496 ctx->frozen_actions.header = NULL;
497 ctx->pause = NULL;
498 }
499 }
500
501 static void finish_freezing(struct xlate_ctx *ctx);
502
503 /* A controller may use OFPP_NONE as the ingress port to indicate that
504 * it did not arrive on a "real" port. 'ofpp_none_bundle' exists for
505 * when an input bundle is needed for validation (e.g., mirroring or
506 * OFPP_NORMAL processing). It is not connected to an 'ofproto' or have
507 * any 'port' structs, so care must be taken when dealing with it. */
508 static struct xbundle ofpp_none_bundle = {
509 .name = "OFPP_NONE",
510 .vlan_mode = PORT_VLAN_TRUNK
511 };
512
513 /* Node in 'xport''s 'skb_priorities' map. Used to maintain a map from
514 * 'priority' (the datapath's term for QoS queue) to the dscp bits which all
515 * traffic egressing the 'ofport' with that priority should be marked with. */
516 struct skb_priority_to_dscp {
517 struct hmap_node hmap_node; /* Node in 'ofport_dpif''s 'skb_priorities'. */
518 uint32_t skb_priority; /* Priority of this queue (see struct flow). */
519
520 uint8_t dscp; /* DSCP bits to mark outgoing traffic with. */
521 };
522
523 /* Xlate config contains hash maps of all bridges, bundles and ports.
524 * Xcfgp contains the pointer to the current xlate configuration.
525 * When the main thread needs to change the configuration, it copies xcfgp to
526 * new_xcfg and edits new_xcfg. This enables the use of RCU locking which
527 * does not block handler and revalidator threads. */
528 struct xlate_cfg {
529 struct hmap xbridges;
530 struct hmap xbundles;
531 struct hmap xports;
532 struct hmap xports_uuid;
533 };
534 static OVSRCU_TYPE(struct xlate_cfg *) xcfgp = OVSRCU_INITIALIZER(NULL);
535 static struct xlate_cfg *new_xcfg = NULL;
536
537 typedef void xlate_actions_handler(const struct ofpact *, size_t ofpacts_len,
538 struct xlate_ctx *, bool, bool);
539 static bool may_receive(const struct xport *, struct xlate_ctx *);
540 static void do_xlate_actions(const struct ofpact *, size_t ofpacts_len,
541 struct xlate_ctx *, bool, bool);
542 static void clone_xlate_actions(const struct ofpact *, size_t ofpacts_len,
543 struct xlate_ctx *, bool, bool);
544 static void xlate_normal(struct xlate_ctx *);
545 static void xlate_normal_flood(struct xlate_ctx *ct,
546 struct xbundle *in_xbundle, struct xvlan *);
547 static void xlate_table_action(struct xlate_ctx *, ofp_port_t in_port,
548 uint8_t table_id, bool may_packet_in,
549 bool honor_table_miss, bool with_ct_orig,
550 bool is_last_action, xlate_actions_handler *);
551
552 static bool input_vid_is_valid(const struct xlate_ctx *,
553 uint16_t vid, struct xbundle *);
554 static void xvlan_copy(struct xvlan *dst, const struct xvlan *src);
555 static void xvlan_pop(struct xvlan *src);
556 static void xvlan_push_uninit(struct xvlan *src);
557 static void xvlan_extract(const struct flow *, struct xvlan *);
558 static void xvlan_put(struct flow *, const struct xvlan *,
559 enum port_priority_tags_mode);
560 static void xvlan_input_translate(const struct xbundle *,
561 const struct xvlan *in,
562 struct xvlan *xvlan);
563 static void xvlan_output_translate(const struct xbundle *,
564 const struct xvlan *xvlan,
565 struct xvlan *out);
566 static void output_normal(struct xlate_ctx *, const struct xbundle *,
567 const struct xvlan *);
568
569 /* Optional bond recirculation parameter to compose_output_action(). */
570 struct xlate_bond_recirc {
571 uint32_t recirc_id; /* !0 Use recirculation instead of output. */
572 uint8_t hash_alg; /* !0 Compute hash for recirc before. */
573 uint32_t hash_basis; /* Compute hash for recirc before. */
574 };
575
576 static void compose_output_action(struct xlate_ctx *, ofp_port_t ofp_port,
577 const struct xlate_bond_recirc *xr,
578 bool is_last_action, bool truncate);
579
580 static struct xbridge *xbridge_lookup(struct xlate_cfg *,
581 const struct ofproto_dpif *);
582 static struct xbridge *xbridge_lookup_by_uuid(struct xlate_cfg *,
583 const struct uuid *);
584 static struct xbundle *xbundle_lookup(struct xlate_cfg *,
585 const struct ofbundle *);
586 static struct xport *xport_lookup(struct xlate_cfg *,
587 const struct ofport_dpif *);
588 static struct xport *xport_lookup_by_uuid(struct xlate_cfg *,
589 const struct uuid *);
590 static struct xport *get_ofp_port(const struct xbridge *, ofp_port_t ofp_port);
591 static struct skb_priority_to_dscp *get_skb_priority(const struct xport *,
592 uint32_t skb_priority);
593 static void clear_skb_priorities(struct xport *);
594 static size_t count_skb_priorities(const struct xport *);
595 static bool dscp_from_skb_priority(const struct xport *, uint32_t skb_priority,
596 uint8_t *dscp);
597
598 static void xlate_xbridge_init(struct xlate_cfg *, struct xbridge *);
599 static void xlate_xbundle_init(struct xlate_cfg *, struct xbundle *);
600 static void xlate_xport_init(struct xlate_cfg *, struct xport *);
601 static void xlate_xbridge_set(struct xbridge *, struct dpif *,
602 const struct mac_learning *, struct stp *,
603 struct rstp *, const struct mcast_snooping *,
604 const struct mbridge *,
605 const struct dpif_sflow *,
606 const struct dpif_ipfix *,
607 const struct netflow *,
608 bool forward_bpdu, bool has_in_band,
609 const struct dpif_backer_support *,
610 const struct xbridge_addr *);
611 static void xlate_xbundle_set(struct xbundle *xbundle,
612 enum port_vlan_mode vlan_mode,
613 uint16_t qinq_ethtype, int vlan,
614 unsigned long *trunks, unsigned long *cvlans,
615 enum port_priority_tags_mode,
616 const struct bond *bond, const struct lacp *lacp,
617 bool floodable, bool protected);
618 static void xlate_xport_set(struct xport *xport, odp_port_t odp_port,
619 const struct netdev *netdev, const struct cfm *cfm,
620 const struct bfd *bfd, const struct lldp *lldp,
621 int stp_port_no, const struct rstp_port *rstp_port,
622 enum ofputil_port_config config,
623 enum ofputil_port_state state, bool is_tunnel,
624 bool may_enable);
625 static void xlate_xbridge_remove(struct xlate_cfg *, struct xbridge *);
626 static void xlate_xbundle_remove(struct xlate_cfg *, struct xbundle *);
627 static void xlate_xport_remove(struct xlate_cfg *, struct xport *);
628 static void xlate_xbridge_copy(struct xbridge *);
629 static void xlate_xbundle_copy(struct xbridge *, struct xbundle *);
630 static void xlate_xport_copy(struct xbridge *, struct xbundle *,
631 struct xport *);
632 static void xlate_xcfg_free(struct xlate_cfg *);
633 \f
634 /* Tracing helpers. */
635
636 /* If tracing is enabled in 'ctx', creates a new trace node and appends it to
637 * the list of nodes maintained in ctx->xin. The new node has type 'type' and
638 * its text is created from 'format' by treating it as a printf format string.
639 * Returns the list of nodes embedded within the new trace node; ordinarily,
640 * the calleer can ignore this, but it is useful if the caller needs to nest
641 * more trace nodes within the new node.
642 *
643 * If tracing is not enabled, does nothing and returns NULL. */
644 static struct ovs_list * OVS_PRINTF_FORMAT(3, 4)
645 xlate_report(const struct xlate_ctx *ctx, enum oftrace_node_type type,
646 const char *format, ...)
647 {
648 struct ovs_list *subtrace = NULL;
649 if (OVS_UNLIKELY(ctx->xin->trace)) {
650 va_list args;
651 va_start(args, format);
652 char *text = xvasprintf(format, args);
653 subtrace = &oftrace_report(ctx->xin->trace, type, text)->subs;
654 va_end(args);
655 free(text);
656 }
657 return subtrace;
658 }
659
660 /* This is like xlate_report() for errors that are serious enough that we
661 * should log them even if we are not tracing. */
662 static void OVS_PRINTF_FORMAT(2, 3)
663 xlate_report_error(const struct xlate_ctx *ctx, const char *format, ...)
664 {
665 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
666 if (!OVS_UNLIKELY(ctx->xin->trace)
667 && (!ctx->xin->packet || VLOG_DROP_WARN(&rl))) {
668 return;
669 }
670
671 struct ds s = DS_EMPTY_INITIALIZER;
672 va_list args;
673 va_start(args, format);
674 ds_put_format_valist(&s, format, args);
675 va_end(args);
676
677 if (ctx->xin->trace) {
678 oftrace_report(ctx->xin->trace, OFT_ERROR, ds_cstr(&s));
679 } else {
680 ds_put_format(&s, " on bridge %s while processing ",
681 ctx->xbridge->name);
682 flow_format(&s, &ctx->base_flow, NULL);
683 VLOG_WARN("%s", ds_cstr(&s));
684 }
685 ds_destroy(&s);
686 }
687
688 /* This is like xlate_report() for messages that should be logged
689 at the info level (even when not tracing). */
690 static void OVS_PRINTF_FORMAT(2, 3)
691 xlate_report_info(const struct xlate_ctx *ctx, const char *format, ...)
692 {
693 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
694 if (!OVS_UNLIKELY(ctx->xin->trace)
695 && (!ctx->xin->packet || VLOG_DROP_INFO(&rl))) {
696 return;
697 }
698
699 struct ds s = DS_EMPTY_INITIALIZER;
700 va_list args;
701 va_start(args, format);
702 ds_put_format_valist(&s, format, args);
703 va_end(args);
704
705 if (ctx->xin->trace) {
706 oftrace_report(ctx->xin->trace, OFT_WARN, ds_cstr(&s));
707 } else {
708 ds_put_format(&s, " on bridge %s while processing ",
709 ctx->xbridge->name);
710 flow_format(&s, &ctx->base_flow, NULL);
711 VLOG_INFO("%s", ds_cstr(&s));
712 }
713 ds_destroy(&s);
714 }
715
716 /* This is like xlate_report() for messages that should be logged at debug
717 * level (even if we are not tracing) because they can be valuable for
718 * debugging. */
719 static void OVS_PRINTF_FORMAT(3, 4)
720 xlate_report_debug(const struct xlate_ctx *ctx, enum oftrace_node_type type,
721 const char *format, ...)
722 {
723 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(30, 300);
724 if (!OVS_UNLIKELY(ctx->xin->trace)
725 && (!ctx->xin->packet || VLOG_DROP_DBG(&rl))) {
726 return;
727 }
728
729 struct ds s = DS_EMPTY_INITIALIZER;
730 va_list args;
731 va_start(args, format);
732 ds_put_format_valist(&s, format, args);
733 va_end(args);
734
735 if (ctx->xin->trace) {
736 oftrace_report(ctx->xin->trace, type, ds_cstr(&s));
737 } else {
738 VLOG_DBG("bridge %s: %s", ctx->xbridge->name, ds_cstr(&s));
739 }
740 ds_destroy(&s);
741 }
742
743 /* If tracing is enabled in 'ctx', appends a node of the given 'type' to the
744 * trace, whose text is 'title' followed by a formatted version of the
745 * 'ofpacts_len' OpenFlow actions in 'ofpacts'.
746 *
747 * If tracing is not enabled, does nothing. */
748 static void
749 xlate_report_actions(const struct xlate_ctx *ctx, enum oftrace_node_type type,
750 const char *title,
751 const struct ofpact *ofpacts, size_t ofpacts_len)
752 {
753 if (OVS_UNLIKELY(ctx->xin->trace)) {
754 struct ds s = DS_EMPTY_INITIALIZER;
755 ds_put_format(&s, "%s: ", title);
756 struct ofpact_format_params fp = { .s = &s };
757 ofpacts_format(ofpacts, ofpacts_len, &fp);
758 oftrace_report(ctx->xin->trace, type, ds_cstr(&s));
759 ds_destroy(&s);
760 }
761 }
762
763 /* If tracing is enabled in 'ctx', appends a node of type OFT_DETAIL to the
764 * trace, whose the message is a formatted version of the OpenFlow action set.
765 * 'verb' should be "was" or "is", depending on whether the action set reported
766 * is the new action set or the old one.
767 *
768 * If tracing is not enabled, does nothing. */
769 static void
770 xlate_report_action_set(const struct xlate_ctx *ctx, const char *verb)
771 {
772 if (OVS_UNLIKELY(ctx->xin->trace)) {
773 struct ofpbuf action_list;
774 ofpbuf_init(&action_list, 0);
775 ofpacts_execute_action_set(&action_list, &ctx->action_set);
776 if (action_list.size) {
777 struct ds s = DS_EMPTY_INITIALIZER;
778 struct ofpact_format_params fp = { .s = &s };
779 ofpacts_format(action_list.data, action_list.size, &fp);
780 xlate_report(ctx, OFT_DETAIL, "action set %s: %s",
781 verb, ds_cstr(&s));
782 ds_destroy(&s);
783 } else {
784 xlate_report(ctx, OFT_DETAIL, "action set %s empty", verb);
785 }
786 ofpbuf_uninit(&action_list);
787 }
788 }
789
790
791 /* If tracing is enabled in 'ctx', appends a node representing 'rule' (in
792 * OpenFlow table 'table_id') to the trace and makes this node the parent for
793 * future trace nodes. The caller should save ctx->xin->trace before calling
794 * this function, then after tracing all of the activities under the table,
795 * restore its previous value.
796 *
797 * If tracing is not enabled, does nothing. */
798 static void
799 xlate_report_table(const struct xlate_ctx *ctx, struct rule_dpif *rule,
800 uint8_t table_id)
801 {
802 if (OVS_LIKELY(!ctx->xin->trace)) {
803 return;
804 }
805
806 struct ds s = DS_EMPTY_INITIALIZER;
807 ds_put_format(&s, "%2d. ", table_id);
808 if (rule == ctx->xin->ofproto->miss_rule) {
809 ds_put_cstr(&s, "No match, and a \"packet-in\" is called for.");
810 } else if (rule == ctx->xin->ofproto->no_packet_in_rule) {
811 ds_put_cstr(&s, "No match.");
812 } else if (rule == ctx->xin->ofproto->drop_frags_rule) {
813 ds_put_cstr(&s, "Packets are IP fragments and "
814 "the fragment handling mode is \"drop\".");
815 } else {
816 minimatch_format(&rule->up.cr.match,
817 ofproto_get_tun_tab(&ctx->xin->ofproto->up),
818 NULL, &s, OFP_DEFAULT_PRIORITY);
819 if (ds_last(&s) != ' ') {
820 ds_put_cstr(&s, ", ");
821 }
822 ds_put_format(&s, "priority %d", rule->up.cr.priority);
823 if (rule->up.flow_cookie) {
824 ds_put_format(&s, ", cookie %#"PRIx64,
825 ntohll(rule->up.flow_cookie));
826 }
827 }
828 ctx->xin->trace = &oftrace_report(ctx->xin->trace, OFT_TABLE,
829 ds_cstr(&s))->subs;
830 ds_destroy(&s);
831 }
832
833 /* If tracing is enabled in 'ctx', adds an OFT_DETAIL trace node to 'ctx'
834 * reporting the value of subfield 'sf'.
835 *
836 * If tracing is not enabled, does nothing. */
837 static void
838 xlate_report_subfield(const struct xlate_ctx *ctx,
839 const struct mf_subfield *sf)
840 {
841 if (OVS_UNLIKELY(ctx->xin->trace)) {
842 struct ds s = DS_EMPTY_INITIALIZER;
843 mf_format_subfield(sf, &s);
844 ds_put_cstr(&s, " is now ");
845
846 if (sf->ofs == 0 && sf->n_bits >= sf->field->n_bits) {
847 union mf_value value;
848 mf_get_value(sf->field, &ctx->xin->flow, &value);
849 mf_format(sf->field, &value, NULL, NULL, &s);
850 } else {
851 union mf_subvalue cst;
852 mf_read_subfield(sf, &ctx->xin->flow, &cst);
853 ds_put_hex(&s, &cst, sizeof cst);
854 }
855
856 xlate_report(ctx, OFT_DETAIL, "%s", ds_cstr(&s));
857
858 ds_destroy(&s);
859 }
860 }
861 \f
862 static void
863 xlate_xbridge_init(struct xlate_cfg *xcfg, struct xbridge *xbridge)
864 {
865 ovs_list_init(&xbridge->xbundles);
866 hmap_init(&xbridge->xports);
867 hmap_insert(&xcfg->xbridges, &xbridge->hmap_node,
868 hash_pointer(xbridge->ofproto, 0));
869 }
870
871 static void
872 xlate_xbundle_init(struct xlate_cfg *xcfg, struct xbundle *xbundle)
873 {
874 ovs_list_init(&xbundle->xports);
875 ovs_list_insert(&xbundle->xbridge->xbundles, &xbundle->list_node);
876 hmap_insert(&xcfg->xbundles, &xbundle->hmap_node,
877 hash_pointer(xbundle->ofbundle, 0));
878 }
879
880 static void
881 xlate_xport_init(struct xlate_cfg *xcfg, struct xport *xport)
882 {
883 hmap_init(&xport->skb_priorities);
884 hmap_insert(&xcfg->xports, &xport->hmap_node,
885 hash_pointer(xport->ofport, 0));
886 hmap_insert(&xport->xbridge->xports, &xport->ofp_node,
887 hash_ofp_port(xport->ofp_port));
888 hmap_insert(&xcfg->xports_uuid, &xport->uuid_node,
889 uuid_hash(&xport->uuid));
890 }
891
892 static struct xbridge_addr *
893 xbridge_addr_create(struct xbridge *xbridge)
894 {
895 struct xbridge_addr *xbridge_addr = xbridge->addr;
896 struct in6_addr *addr = NULL, *mask = NULL;
897 struct netdev *dev;
898 int err, n_addr = 0;
899
900 err = netdev_open(xbridge->name, NULL, &dev);
901 if (!err) {
902 err = netdev_get_addr_list(dev, &addr, &mask, &n_addr);
903 if (!err) {
904 if (!xbridge->addr ||
905 n_addr != xbridge->addr->n_addr ||
906 (xbridge->addr->addr && memcmp(addr, xbridge->addr->addr,
907 sizeof(*addr) * n_addr))) {
908 xbridge_addr = xzalloc(sizeof *xbridge_addr);
909 xbridge_addr->addr = addr;
910 xbridge_addr->n_addr = n_addr;
911 ovs_refcount_init(&xbridge_addr->ref_cnt);
912 } else {
913 free(addr);
914 }
915 free(mask);
916 }
917 netdev_close(dev);
918 }
919
920 return xbridge_addr;
921 }
922
923 static struct xbridge_addr *
924 xbridge_addr_ref(const struct xbridge_addr *addr_)
925 {
926 struct xbridge_addr *addr = CONST_CAST(struct xbridge_addr *, addr_);
927 if (addr) {
928 ovs_refcount_ref(&addr->ref_cnt);
929 }
930 return addr;
931 }
932
933 static void
934 xbridge_addr_unref(struct xbridge_addr *addr)
935 {
936 if (addr && ovs_refcount_unref_relaxed(&addr->ref_cnt) == 1) {
937 free(addr->addr);
938 free(addr);
939 }
940 }
941
942 static void
943 xlate_xbridge_set(struct xbridge *xbridge,
944 struct dpif *dpif,
945 const struct mac_learning *ml, struct stp *stp,
946 struct rstp *rstp, const struct mcast_snooping *ms,
947 const struct mbridge *mbridge,
948 const struct dpif_sflow *sflow,
949 const struct dpif_ipfix *ipfix,
950 const struct netflow *netflow,
951 bool forward_bpdu, bool has_in_band,
952 const struct dpif_backer_support *support,
953 const struct xbridge_addr *addr)
954 {
955 if (xbridge->ml != ml) {
956 mac_learning_unref(xbridge->ml);
957 xbridge->ml = mac_learning_ref(ml);
958 }
959
960 if (xbridge->ms != ms) {
961 mcast_snooping_unref(xbridge->ms);
962 xbridge->ms = mcast_snooping_ref(ms);
963 }
964
965 if (xbridge->mbridge != mbridge) {
966 mbridge_unref(xbridge->mbridge);
967 xbridge->mbridge = mbridge_ref(mbridge);
968 }
969
970 if (xbridge->sflow != sflow) {
971 dpif_sflow_unref(xbridge->sflow);
972 xbridge->sflow = dpif_sflow_ref(sflow);
973 }
974
975 if (xbridge->ipfix != ipfix) {
976 dpif_ipfix_unref(xbridge->ipfix);
977 xbridge->ipfix = dpif_ipfix_ref(ipfix);
978 }
979
980 if (xbridge->stp != stp) {
981 stp_unref(xbridge->stp);
982 xbridge->stp = stp_ref(stp);
983 }
984
985 if (xbridge->rstp != rstp) {
986 rstp_unref(xbridge->rstp);
987 xbridge->rstp = rstp_ref(rstp);
988 }
989
990 if (xbridge->netflow != netflow) {
991 netflow_unref(xbridge->netflow);
992 xbridge->netflow = netflow_ref(netflow);
993 }
994
995 if (xbridge->addr != addr) {
996 xbridge_addr_unref(xbridge->addr);
997 xbridge->addr = xbridge_addr_ref(addr);
998 }
999
1000 xbridge->dpif = dpif;
1001 xbridge->forward_bpdu = forward_bpdu;
1002 xbridge->has_in_band = has_in_band;
1003 xbridge->support = *support;
1004 }
1005
1006 static void
1007 xlate_xbundle_set(struct xbundle *xbundle,
1008 enum port_vlan_mode vlan_mode, uint16_t qinq_ethtype,
1009 int vlan, unsigned long *trunks, unsigned long *cvlans,
1010 enum port_priority_tags_mode use_priority_tags,
1011 const struct bond *bond, const struct lacp *lacp,
1012 bool floodable, bool protected)
1013 {
1014 ovs_assert(xbundle->xbridge);
1015
1016 xbundle->vlan_mode = vlan_mode;
1017 xbundle->qinq_ethtype = qinq_ethtype;
1018 xbundle->vlan = vlan;
1019 xbundle->trunks = trunks;
1020 xbundle->cvlans = cvlans;
1021 xbundle->use_priority_tags = use_priority_tags;
1022 xbundle->floodable = floodable;
1023 xbundle->protected = protected;
1024
1025 if (xbundle->bond != bond) {
1026 bond_unref(xbundle->bond);
1027 xbundle->bond = bond_ref(bond);
1028 }
1029
1030 if (xbundle->lacp != lacp) {
1031 lacp_unref(xbundle->lacp);
1032 xbundle->lacp = lacp_ref(lacp);
1033 }
1034 }
1035
1036 static void
1037 xlate_xport_set(struct xport *xport, odp_port_t odp_port,
1038 const struct netdev *netdev, const struct cfm *cfm,
1039 const struct bfd *bfd, const struct lldp *lldp, int stp_port_no,
1040 const struct rstp_port* rstp_port,
1041 enum ofputil_port_config config, enum ofputil_port_state state,
1042 bool is_tunnel, bool may_enable)
1043 {
1044 xport->config = config;
1045 xport->state = state;
1046 xport->stp_port_no = stp_port_no;
1047 xport->is_tunnel = is_tunnel;
1048 xport->pt_mode = netdev_get_pt_mode(netdev);
1049 xport->may_enable = may_enable;
1050 xport->odp_port = odp_port;
1051
1052 if (xport->rstp_port != rstp_port) {
1053 rstp_port_unref(xport->rstp_port);
1054 xport->rstp_port = rstp_port_ref(rstp_port);
1055 }
1056
1057 if (xport->cfm != cfm) {
1058 cfm_unref(xport->cfm);
1059 xport->cfm = cfm_ref(cfm);
1060 }
1061
1062 if (xport->bfd != bfd) {
1063 bfd_unref(xport->bfd);
1064 xport->bfd = bfd_ref(bfd);
1065 }
1066
1067 if (xport->lldp != lldp) {
1068 lldp_unref(xport->lldp);
1069 xport->lldp = lldp_ref(lldp);
1070 }
1071
1072 if (xport->netdev != netdev) {
1073 netdev_close(xport->netdev);
1074 xport->netdev = netdev_ref(netdev);
1075 }
1076 }
1077
1078 static void
1079 xlate_xbridge_copy(struct xbridge *xbridge)
1080 {
1081 struct xbundle *xbundle;
1082 struct xport *xport;
1083 struct xbridge *new_xbridge = xzalloc(sizeof *xbridge);
1084 new_xbridge->ofproto = xbridge->ofproto;
1085 new_xbridge->name = xstrdup(xbridge->name);
1086 xlate_xbridge_init(new_xcfg, new_xbridge);
1087
1088 xlate_xbridge_set(new_xbridge,
1089 xbridge->dpif, xbridge->ml, xbridge->stp,
1090 xbridge->rstp, xbridge->ms, xbridge->mbridge,
1091 xbridge->sflow, xbridge->ipfix, xbridge->netflow,
1092 xbridge->forward_bpdu, xbridge->has_in_band,
1093 &xbridge->support, xbridge->addr);
1094 LIST_FOR_EACH (xbundle, list_node, &xbridge->xbundles) {
1095 xlate_xbundle_copy(new_xbridge, xbundle);
1096 }
1097
1098 /* Copy xports which are not part of a xbundle */
1099 HMAP_FOR_EACH (xport, ofp_node, &xbridge->xports) {
1100 if (!xport->xbundle) {
1101 xlate_xport_copy(new_xbridge, NULL, xport);
1102 }
1103 }
1104 }
1105
1106 static void
1107 xlate_xbundle_copy(struct xbridge *xbridge, struct xbundle *xbundle)
1108 {
1109 struct xport *xport;
1110 struct xbundle *new_xbundle = xzalloc(sizeof *xbundle);
1111 new_xbundle->ofbundle = xbundle->ofbundle;
1112 new_xbundle->xbridge = xbridge;
1113 new_xbundle->name = xstrdup(xbundle->name);
1114 xlate_xbundle_init(new_xcfg, new_xbundle);
1115
1116 xlate_xbundle_set(new_xbundle, xbundle->vlan_mode, xbundle->qinq_ethtype,
1117 xbundle->vlan, xbundle->trunks, xbundle->cvlans,
1118 xbundle->use_priority_tags, xbundle->bond, xbundle->lacp,
1119 xbundle->floodable, xbundle->protected);
1120 LIST_FOR_EACH (xport, bundle_node, &xbundle->xports) {
1121 xlate_xport_copy(xbridge, new_xbundle, xport);
1122 }
1123 }
1124
1125 static void
1126 xlate_xport_copy(struct xbridge *xbridge, struct xbundle *xbundle,
1127 struct xport *xport)
1128 {
1129 struct skb_priority_to_dscp *pdscp, *new_pdscp;
1130 struct xport *new_xport = xzalloc(sizeof *xport);
1131 new_xport->ofport = xport->ofport;
1132 new_xport->ofp_port = xport->ofp_port;
1133 new_xport->xbridge = xbridge;
1134 new_xport->uuid = xport->uuid;
1135 xlate_xport_init(new_xcfg, new_xport);
1136
1137 xlate_xport_set(new_xport, xport->odp_port, xport->netdev, xport->cfm,
1138 xport->bfd, xport->lldp, xport->stp_port_no,
1139 xport->rstp_port, xport->config, xport->state,
1140 xport->is_tunnel, xport->may_enable);
1141
1142 if (xport->peer) {
1143 struct xport *peer = xport_lookup(new_xcfg, xport->peer->ofport);
1144 if (peer) {
1145 new_xport->peer = peer;
1146 new_xport->peer->peer = new_xport;
1147 }
1148 }
1149
1150 if (xbundle) {
1151 new_xport->xbundle = xbundle;
1152 ovs_list_insert(&new_xport->xbundle->xports, &new_xport->bundle_node);
1153 }
1154
1155 HMAP_FOR_EACH (pdscp, hmap_node, &xport->skb_priorities) {
1156 new_pdscp = xmalloc(sizeof *pdscp);
1157 new_pdscp->skb_priority = pdscp->skb_priority;
1158 new_pdscp->dscp = pdscp->dscp;
1159 hmap_insert(&new_xport->skb_priorities, &new_pdscp->hmap_node,
1160 hash_int(new_pdscp->skb_priority, 0));
1161 }
1162 }
1163
1164 /* Sets the current xlate configuration to new_xcfg and frees the old xlate
1165 * configuration in xcfgp.
1166 *
1167 * This needs to be called after editing the xlate configuration.
1168 *
1169 * Functions that edit the new xlate configuration are
1170 * xlate_<ofproto/bundle/ofport>_set and xlate_<ofproto/bundle/ofport>_remove.
1171 *
1172 * A sample workflow:
1173 *
1174 * xlate_txn_start();
1175 * ...
1176 * edit_xlate_configuration();
1177 * ...
1178 * xlate_txn_commit();
1179 *
1180 * The ovsrcu_synchronize() call here also ensures that the upcall threads
1181 * retain no references to anything in the previous configuration.
1182 */
1183 void
1184 xlate_txn_commit(void)
1185 {
1186 struct xlate_cfg *xcfg = ovsrcu_get(struct xlate_cfg *, &xcfgp);
1187
1188 ovsrcu_set(&xcfgp, new_xcfg);
1189 ovsrcu_synchronize();
1190 xlate_xcfg_free(xcfg);
1191 new_xcfg = NULL;
1192 }
1193
1194 /* Copies the current xlate configuration in xcfgp to new_xcfg.
1195 *
1196 * This needs to be called prior to editing the xlate configuration. */
1197 void
1198 xlate_txn_start(void)
1199 {
1200 struct xbridge *xbridge;
1201 struct xlate_cfg *xcfg;
1202
1203 ovs_assert(!new_xcfg);
1204
1205 new_xcfg = xmalloc(sizeof *new_xcfg);
1206 hmap_init(&new_xcfg->xbridges);
1207 hmap_init(&new_xcfg->xbundles);
1208 hmap_init(&new_xcfg->xports);
1209 hmap_init(&new_xcfg->xports_uuid);
1210
1211 xcfg = ovsrcu_get(struct xlate_cfg *, &xcfgp);
1212 if (!xcfg) {
1213 return;
1214 }
1215
1216 HMAP_FOR_EACH (xbridge, hmap_node, &xcfg->xbridges) {
1217 xlate_xbridge_copy(xbridge);
1218 }
1219 }
1220
1221
1222 static void
1223 xlate_xcfg_free(struct xlate_cfg *xcfg)
1224 {
1225 struct xbridge *xbridge, *next_xbridge;
1226
1227 if (!xcfg) {
1228 return;
1229 }
1230
1231 HMAP_FOR_EACH_SAFE (xbridge, next_xbridge, hmap_node, &xcfg->xbridges) {
1232 xlate_xbridge_remove(xcfg, xbridge);
1233 }
1234
1235 hmap_destroy(&xcfg->xbridges);
1236 hmap_destroy(&xcfg->xbundles);
1237 hmap_destroy(&xcfg->xports);
1238 hmap_destroy(&xcfg->xports_uuid);
1239 free(xcfg);
1240 }
1241
1242 void
1243 xlate_ofproto_set(struct ofproto_dpif *ofproto, const char *name,
1244 struct dpif *dpif,
1245 const struct mac_learning *ml, struct stp *stp,
1246 struct rstp *rstp, const struct mcast_snooping *ms,
1247 const struct mbridge *mbridge,
1248 const struct dpif_sflow *sflow,
1249 const struct dpif_ipfix *ipfix,
1250 const struct netflow *netflow,
1251 bool forward_bpdu, bool has_in_band,
1252 const struct dpif_backer_support *support)
1253 {
1254 struct xbridge *xbridge;
1255 struct xbridge_addr *xbridge_addr, *old_addr;
1256
1257 ovs_assert(new_xcfg);
1258
1259 xbridge = xbridge_lookup(new_xcfg, ofproto);
1260 if (!xbridge) {
1261 xbridge = xzalloc(sizeof *xbridge);
1262 xbridge->ofproto = ofproto;
1263
1264 xlate_xbridge_init(new_xcfg, xbridge);
1265 }
1266
1267 free(xbridge->name);
1268 xbridge->name = xstrdup(name);
1269
1270 xbridge_addr = xbridge_addr_create(xbridge);
1271 old_addr = xbridge->addr;
1272
1273 xlate_xbridge_set(xbridge, dpif, ml, stp, rstp, ms, mbridge, sflow, ipfix,
1274 netflow, forward_bpdu, has_in_band, support,
1275 xbridge_addr);
1276
1277 if (xbridge_addr != old_addr) {
1278 xbridge_addr_unref(xbridge_addr);
1279 }
1280 }
1281
1282 static void
1283 xlate_xbridge_remove(struct xlate_cfg *xcfg, struct xbridge *xbridge)
1284 {
1285 struct xbundle *xbundle, *next_xbundle;
1286 struct xport *xport, *next_xport;
1287
1288 if (!xbridge) {
1289 return;
1290 }
1291
1292 HMAP_FOR_EACH_SAFE (xport, next_xport, ofp_node, &xbridge->xports) {
1293 xlate_xport_remove(xcfg, xport);
1294 }
1295
1296 LIST_FOR_EACH_SAFE (xbundle, next_xbundle, list_node, &xbridge->xbundles) {
1297 xlate_xbundle_remove(xcfg, xbundle);
1298 }
1299
1300 hmap_remove(&xcfg->xbridges, &xbridge->hmap_node);
1301 mac_learning_unref(xbridge->ml);
1302 mcast_snooping_unref(xbridge->ms);
1303 mbridge_unref(xbridge->mbridge);
1304 dpif_sflow_unref(xbridge->sflow);
1305 dpif_ipfix_unref(xbridge->ipfix);
1306 netflow_unref(xbridge->netflow);
1307 stp_unref(xbridge->stp);
1308 rstp_unref(xbridge->rstp);
1309 xbridge_addr_unref(xbridge->addr);
1310 hmap_destroy(&xbridge->xports);
1311 free(xbridge->name);
1312 free(xbridge);
1313 }
1314
1315 void
1316 xlate_remove_ofproto(struct ofproto_dpif *ofproto)
1317 {
1318 struct xbridge *xbridge;
1319
1320 ovs_assert(new_xcfg);
1321
1322 xbridge = xbridge_lookup(new_xcfg, ofproto);
1323 xlate_xbridge_remove(new_xcfg, xbridge);
1324 }
1325
1326 void
1327 xlate_bundle_set(struct ofproto_dpif *ofproto, struct ofbundle *ofbundle,
1328 const char *name, enum port_vlan_mode vlan_mode,
1329 uint16_t qinq_ethtype, int vlan,
1330 unsigned long *trunks, unsigned long *cvlans,
1331 enum port_priority_tags_mode use_priority_tags,
1332 const struct bond *bond, const struct lacp *lacp,
1333 bool floodable, bool protected)
1334 {
1335 struct xbundle *xbundle;
1336
1337 ovs_assert(new_xcfg);
1338
1339 xbundle = xbundle_lookup(new_xcfg, ofbundle);
1340 if (!xbundle) {
1341 xbundle = xzalloc(sizeof *xbundle);
1342 xbundle->ofbundle = ofbundle;
1343 xbundle->xbridge = xbridge_lookup(new_xcfg, ofproto);
1344
1345 xlate_xbundle_init(new_xcfg, xbundle);
1346 }
1347
1348 free(xbundle->name);
1349 xbundle->name = xstrdup(name);
1350
1351 xlate_xbundle_set(xbundle, vlan_mode, qinq_ethtype, vlan, trunks, cvlans,
1352 use_priority_tags, bond, lacp, floodable, protected);
1353 }
1354
1355 static void
1356 xlate_xbundle_remove(struct xlate_cfg *xcfg, struct xbundle *xbundle)
1357 {
1358 struct xport *xport;
1359
1360 if (!xbundle) {
1361 return;
1362 }
1363
1364 LIST_FOR_EACH_POP (xport, bundle_node, &xbundle->xports) {
1365 xport->xbundle = NULL;
1366 }
1367
1368 hmap_remove(&xcfg->xbundles, &xbundle->hmap_node);
1369 ovs_list_remove(&xbundle->list_node);
1370 bond_unref(xbundle->bond);
1371 lacp_unref(xbundle->lacp);
1372 free(xbundle->name);
1373 free(xbundle);
1374 }
1375
1376 void
1377 xlate_bundle_remove(struct ofbundle *ofbundle)
1378 {
1379 struct xbundle *xbundle;
1380
1381 ovs_assert(new_xcfg);
1382
1383 xbundle = xbundle_lookup(new_xcfg, ofbundle);
1384 xlate_xbundle_remove(new_xcfg, xbundle);
1385 }
1386
1387 void
1388 xlate_ofport_set(struct ofproto_dpif *ofproto, struct ofbundle *ofbundle,
1389 struct ofport_dpif *ofport, ofp_port_t ofp_port,
1390 odp_port_t odp_port, const struct netdev *netdev,
1391 const struct cfm *cfm, const struct bfd *bfd,
1392 const struct lldp *lldp, struct ofport_dpif *peer,
1393 int stp_port_no, const struct rstp_port *rstp_port,
1394 const struct ofproto_port_queue *qdscp_list, size_t n_qdscp,
1395 enum ofputil_port_config config,
1396 enum ofputil_port_state state, bool is_tunnel,
1397 bool may_enable)
1398 {
1399 size_t i;
1400 struct xport *xport;
1401
1402 ovs_assert(new_xcfg);
1403
1404 xport = xport_lookup(new_xcfg, ofport);
1405 if (!xport) {
1406 xport = xzalloc(sizeof *xport);
1407 xport->ofport = ofport;
1408 xport->xbridge = xbridge_lookup(new_xcfg, ofproto);
1409 xport->ofp_port = ofp_port;
1410 uuid_generate(&xport->uuid);
1411
1412 xlate_xport_init(new_xcfg, xport);
1413 }
1414
1415 ovs_assert(xport->ofp_port == ofp_port);
1416
1417 xlate_xport_set(xport, odp_port, netdev, cfm, bfd, lldp,
1418 stp_port_no, rstp_port, config, state, is_tunnel,
1419 may_enable);
1420
1421 if (xport->peer) {
1422 xport->peer->peer = NULL;
1423 }
1424 xport->peer = xport_lookup(new_xcfg, peer);
1425 if (xport->peer) {
1426 xport->peer->peer = xport;
1427 }
1428
1429 if (xport->xbundle) {
1430 ovs_list_remove(&xport->bundle_node);
1431 }
1432 xport->xbundle = xbundle_lookup(new_xcfg, ofbundle);
1433 if (xport->xbundle) {
1434 ovs_list_insert(&xport->xbundle->xports, &xport->bundle_node);
1435 }
1436
1437 clear_skb_priorities(xport);
1438 for (i = 0; i < n_qdscp; i++) {
1439 struct skb_priority_to_dscp *pdscp;
1440 uint32_t skb_priority;
1441
1442 if (dpif_queue_to_priority(xport->xbridge->dpif, qdscp_list[i].queue,
1443 &skb_priority)) {
1444 continue;
1445 }
1446
1447 pdscp = xmalloc(sizeof *pdscp);
1448 pdscp->skb_priority = skb_priority;
1449 pdscp->dscp = (qdscp_list[i].dscp << 2) & IP_DSCP_MASK;
1450 hmap_insert(&xport->skb_priorities, &pdscp->hmap_node,
1451 hash_int(pdscp->skb_priority, 0));
1452 }
1453 }
1454
1455 static void
1456 xlate_xport_remove(struct xlate_cfg *xcfg, struct xport *xport)
1457 {
1458 if (!xport) {
1459 return;
1460 }
1461
1462 if (xport->peer) {
1463 xport->peer->peer = NULL;
1464 xport->peer = NULL;
1465 }
1466
1467 if (xport->xbundle) {
1468 ovs_list_remove(&xport->bundle_node);
1469 }
1470
1471 clear_skb_priorities(xport);
1472 hmap_destroy(&xport->skb_priorities);
1473
1474 hmap_remove(&xcfg->xports, &xport->hmap_node);
1475 hmap_remove(&xcfg->xports_uuid, &xport->uuid_node);
1476 hmap_remove(&xport->xbridge->xports, &xport->ofp_node);
1477
1478 netdev_close(xport->netdev);
1479 rstp_port_unref(xport->rstp_port);
1480 cfm_unref(xport->cfm);
1481 bfd_unref(xport->bfd);
1482 lldp_unref(xport->lldp);
1483 free(xport);
1484 }
1485
1486 void
1487 xlate_ofport_remove(struct ofport_dpif *ofport)
1488 {
1489 struct xport *xport;
1490
1491 ovs_assert(new_xcfg);
1492
1493 xport = xport_lookup(new_xcfg, ofport);
1494 if (xport) {
1495 tnl_neigh_flush(netdev_get_name(xport->netdev));
1496 }
1497 xlate_xport_remove(new_xcfg, xport);
1498 }
1499
1500 static struct ofproto_dpif *
1501 xlate_lookup_ofproto_(const struct dpif_backer *backer,
1502 const struct flow *flow,
1503 ofp_port_t *ofp_in_port, const struct xport **xportp,
1504 char **errorp)
1505 {
1506 struct xlate_cfg *xcfg = ovsrcu_get(struct xlate_cfg *, &xcfgp);
1507 const struct xport *xport;
1508
1509 /* If packet is recirculated, xport can be retrieved from frozen state. */
1510 if (flow->recirc_id) {
1511 const struct recirc_id_node *recirc_id_node;
1512
1513 recirc_id_node = recirc_id_node_find(flow->recirc_id);
1514
1515 if (OVS_UNLIKELY(!recirc_id_node)) {
1516 if (errorp) {
1517 *errorp = xasprintf("no recirculation data for recirc_id "
1518 "%"PRIu32, flow->recirc_id);
1519 }
1520 return NULL;
1521 }
1522
1523 ofp_port_t in_port = recirc_id_node->state.metadata.in_port;
1524 if (in_port != OFPP_NONE && in_port != OFPP_CONTROLLER) {
1525 struct uuid xport_uuid = recirc_id_node->state.xport_uuid;
1526 xport = xport_lookup_by_uuid(xcfg, &xport_uuid);
1527 if (xport && xport->xbridge && xport->xbridge->ofproto) {
1528 goto out;
1529 }
1530 } else {
1531 /* OFPP_NONE and OFPP_CONTROLLER are not real ports. They indicate
1532 * that the packet originated from the controller via an OpenFlow
1533 * "packet-out". The right thing to do is to find just the
1534 * ofproto. There is no xport, which is OK.
1535 *
1536 * OFPP_NONE can also indicate that a bond caused recirculation. */
1537 struct uuid uuid = recirc_id_node->state.ofproto_uuid;
1538 const struct xbridge *bridge = xbridge_lookup_by_uuid(xcfg, &uuid);
1539 if (bridge && bridge->ofproto) {
1540 if (errorp) {
1541 *errorp = NULL;
1542 }
1543 *xportp = NULL;
1544 if (ofp_in_port) {
1545 *ofp_in_port = in_port;
1546 }
1547 return bridge->ofproto;
1548 }
1549 }
1550 }
1551
1552 xport = xport_lookup(xcfg, tnl_port_should_receive(flow)
1553 ? tnl_port_receive(flow)
1554 : odp_port_to_ofport(backer, flow->in_port.odp_port));
1555 if (OVS_UNLIKELY(!xport)) {
1556 if (errorp) {
1557 *errorp = (tnl_port_should_receive(flow)
1558 ? xstrdup("no OpenFlow tunnel port for this packet")
1559 : xasprintf("no OpenFlow tunnel port for datapath "
1560 "port %"PRIu32, flow->in_port.odp_port));
1561 }
1562 return NULL;
1563 }
1564
1565 out:
1566 if (errorp) {
1567 *errorp = NULL;
1568 }
1569 *xportp = xport;
1570 if (ofp_in_port) {
1571 *ofp_in_port = xport->ofp_port;
1572 }
1573 return xport->xbridge->ofproto;
1574 }
1575
1576 /* Given a datapath and flow metadata ('backer', and 'flow' respectively)
1577 * returns the corresponding struct ofproto_dpif and OpenFlow port number. */
1578 struct ofproto_dpif *
1579 xlate_lookup_ofproto(const struct dpif_backer *backer, const struct flow *flow,
1580 ofp_port_t *ofp_in_port, char **errorp)
1581 {
1582 const struct xport *xport;
1583
1584 return xlate_lookup_ofproto_(backer, flow, ofp_in_port, &xport, errorp);
1585 }
1586
1587 /* Given a datapath and flow metadata ('backer', and 'flow' respectively),
1588 * optionally populates 'ofprotop' with the ofproto_dpif, 'ofp_in_port' with the
1589 * openflow in_port, and 'ipfix', 'sflow', and 'netflow' with the appropriate
1590 * handles for those protocols if they're enabled. Caller may use the returned
1591 * pointers until quiescing, for longer term use additional references must
1592 * be taken.
1593 *
1594 * Returns 0 if successful, ENODEV if the parsed flow has no associated ofproto.
1595 */
1596 int
1597 xlate_lookup(const struct dpif_backer *backer, const struct flow *flow,
1598 struct ofproto_dpif **ofprotop, struct dpif_ipfix **ipfix,
1599 struct dpif_sflow **sflow, struct netflow **netflow,
1600 ofp_port_t *ofp_in_port)
1601 {
1602 struct ofproto_dpif *ofproto;
1603 const struct xport *xport;
1604
1605 ofproto = xlate_lookup_ofproto_(backer, flow, ofp_in_port, &xport, NULL);
1606
1607 if (!ofproto) {
1608 return ENODEV;
1609 }
1610
1611 if (ofprotop) {
1612 *ofprotop = ofproto;
1613 }
1614
1615 if (ipfix) {
1616 *ipfix = xport ? xport->xbridge->ipfix : NULL;
1617 }
1618
1619 if (sflow) {
1620 *sflow = xport ? xport->xbridge->sflow : NULL;
1621 }
1622
1623 if (netflow) {
1624 *netflow = xport ? xport->xbridge->netflow : NULL;
1625 }
1626
1627 return 0;
1628 }
1629
1630 static struct xbridge *
1631 xbridge_lookup(struct xlate_cfg *xcfg, const struct ofproto_dpif *ofproto)
1632 {
1633 struct hmap *xbridges;
1634 struct xbridge *xbridge;
1635
1636 if (!ofproto || !xcfg) {
1637 return NULL;
1638 }
1639
1640 xbridges = &xcfg->xbridges;
1641
1642 HMAP_FOR_EACH_IN_BUCKET (xbridge, hmap_node, hash_pointer(ofproto, 0),
1643 xbridges) {
1644 if (xbridge->ofproto == ofproto) {
1645 return xbridge;
1646 }
1647 }
1648 return NULL;
1649 }
1650
1651 static struct xbridge *
1652 xbridge_lookup_by_uuid(struct xlate_cfg *xcfg, const struct uuid *uuid)
1653 {
1654 struct xbridge *xbridge;
1655
1656 HMAP_FOR_EACH (xbridge, hmap_node, &xcfg->xbridges) {
1657 if (uuid_equals(&xbridge->ofproto->uuid, uuid)) {
1658 return xbridge;
1659 }
1660 }
1661 return NULL;
1662 }
1663
1664 static struct xbundle *
1665 xbundle_lookup(struct xlate_cfg *xcfg, const struct ofbundle *ofbundle)
1666 {
1667 struct hmap *xbundles;
1668 struct xbundle *xbundle;
1669
1670 if (!ofbundle || !xcfg) {
1671 return NULL;
1672 }
1673
1674 xbundles = &xcfg->xbundles;
1675
1676 HMAP_FOR_EACH_IN_BUCKET (xbundle, hmap_node, hash_pointer(ofbundle, 0),
1677 xbundles) {
1678 if (xbundle->ofbundle == ofbundle) {
1679 return xbundle;
1680 }
1681 }
1682 return NULL;
1683 }
1684
1685 static struct xport *
1686 xport_lookup(struct xlate_cfg *xcfg, const struct ofport_dpif *ofport)
1687 {
1688 struct hmap *xports;
1689 struct xport *xport;
1690
1691 if (!ofport || !xcfg) {
1692 return NULL;
1693 }
1694
1695 xports = &xcfg->xports;
1696
1697 HMAP_FOR_EACH_IN_BUCKET (xport, hmap_node, hash_pointer(ofport, 0),
1698 xports) {
1699 if (xport->ofport == ofport) {
1700 return xport;
1701 }
1702 }
1703 return NULL;
1704 }
1705
1706 static struct xport *
1707 xport_lookup_by_uuid(struct xlate_cfg *xcfg, const struct uuid *uuid)
1708 {
1709 struct hmap *xports;
1710 struct xport *xport;
1711
1712 if (uuid_is_zero(uuid) || !xcfg) {
1713 return NULL;
1714 }
1715
1716 xports = &xcfg->xports_uuid;
1717
1718 HMAP_FOR_EACH_IN_BUCKET (xport, uuid_node, uuid_hash(uuid), xports) {
1719 if (uuid_equals(&xport->uuid, uuid)) {
1720 return xport;
1721 }
1722 }
1723 return NULL;
1724 }
1725
1726 static struct stp_port *
1727 xport_get_stp_port(const struct xport *xport)
1728 {
1729 return xport->xbridge->stp && xport->stp_port_no != -1
1730 ? stp_get_port(xport->xbridge->stp, xport->stp_port_no)
1731 : NULL;
1732 }
1733
1734 static bool
1735 xport_stp_learn_state(const struct xport *xport)
1736 {
1737 struct stp_port *sp = xport_get_stp_port(xport);
1738 return sp
1739 ? stp_learn_in_state(stp_port_get_state(sp))
1740 : true;
1741 }
1742
1743 static bool
1744 xport_stp_forward_state(const struct xport *xport)
1745 {
1746 struct stp_port *sp = xport_get_stp_port(xport);
1747 return sp
1748 ? stp_forward_in_state(stp_port_get_state(sp))
1749 : true;
1750 }
1751
1752 static bool
1753 xport_stp_should_forward_bpdu(const struct xport *xport)
1754 {
1755 struct stp_port *sp = xport_get_stp_port(xport);
1756 return stp_should_forward_bpdu(sp ? stp_port_get_state(sp) : STP_DISABLED);
1757 }
1758
1759 /* Returns true if STP should process 'flow'. Sets fields in 'wc' that
1760 * were used to make the determination.*/
1761 static bool
1762 stp_should_process_flow(const struct flow *flow, struct flow_wildcards *wc)
1763 {
1764 /* is_stp() also checks dl_type, but dl_type is always set in 'wc'. */
1765 memset(&wc->masks.dl_dst, 0xff, sizeof wc->masks.dl_dst);
1766 return is_stp(flow);
1767 }
1768
1769 static void
1770 stp_process_packet(const struct xport *xport, const struct dp_packet *packet)
1771 {
1772 struct stp_port *sp = xport_get_stp_port(xport);
1773 struct dp_packet payload = *packet;
1774 struct eth_header *eth = dp_packet_data(&payload);
1775
1776 /* Sink packets on ports that have STP disabled when the bridge has
1777 * STP enabled. */
1778 if (!sp || stp_port_get_state(sp) == STP_DISABLED) {
1779 return;
1780 }
1781
1782 /* Trim off padding on payload. */
1783 if (dp_packet_size(&payload) > ntohs(eth->eth_type) + ETH_HEADER_LEN) {
1784 dp_packet_set_size(&payload, ntohs(eth->eth_type) + ETH_HEADER_LEN);
1785 }
1786
1787 if (dp_packet_try_pull(&payload, ETH_HEADER_LEN + LLC_HEADER_LEN)) {
1788 stp_received_bpdu(sp, dp_packet_data(&payload), dp_packet_size(&payload));
1789 }
1790 }
1791
1792 static enum rstp_state
1793 xport_get_rstp_port_state(const struct xport *xport)
1794 {
1795 return xport->rstp_port
1796 ? rstp_port_get_state(xport->rstp_port)
1797 : RSTP_DISABLED;
1798 }
1799
1800 static bool
1801 xport_rstp_learn_state(const struct xport *xport)
1802 {
1803 return xport->xbridge->rstp && xport->rstp_port
1804 ? rstp_learn_in_state(xport_get_rstp_port_state(xport))
1805 : true;
1806 }
1807
1808 static bool
1809 xport_rstp_forward_state(const struct xport *xport)
1810 {
1811 return xport->xbridge->rstp && xport->rstp_port
1812 ? rstp_forward_in_state(xport_get_rstp_port_state(xport))
1813 : true;
1814 }
1815
1816 static bool
1817 xport_rstp_should_manage_bpdu(const struct xport *xport)
1818 {
1819 return rstp_should_manage_bpdu(xport_get_rstp_port_state(xport));
1820 }
1821
1822 static void
1823 rstp_process_packet(const struct xport *xport, const struct dp_packet *packet)
1824 {
1825 struct dp_packet payload = *packet;
1826 struct eth_header *eth = dp_packet_data(&payload);
1827
1828 /* Sink packets on ports that have no RSTP. */
1829 if (!xport->rstp_port) {
1830 return;
1831 }
1832
1833 /* Trim off padding on payload. */
1834 if (dp_packet_size(&payload) > ntohs(eth->eth_type) + ETH_HEADER_LEN) {
1835 dp_packet_set_size(&payload, ntohs(eth->eth_type) + ETH_HEADER_LEN);
1836 }
1837
1838 int len = ETH_HEADER_LEN + LLC_HEADER_LEN;
1839 if (eth->eth_type == htons(ETH_TYPE_VLAN)) {
1840 len += VLAN_HEADER_LEN;
1841 }
1842 if (dp_packet_try_pull(&payload, len)) {
1843 rstp_port_received_bpdu(xport->rstp_port, dp_packet_data(&payload),
1844 dp_packet_size(&payload));
1845 }
1846 }
1847
1848 static struct xport *
1849 get_ofp_port(const struct xbridge *xbridge, ofp_port_t ofp_port)
1850 {
1851 struct xport *xport;
1852
1853 HMAP_FOR_EACH_IN_BUCKET (xport, ofp_node, hash_ofp_port(ofp_port),
1854 &xbridge->xports) {
1855 if (xport->ofp_port == ofp_port) {
1856 return xport;
1857 }
1858 }
1859 return NULL;
1860 }
1861
1862 static odp_port_t
1863 ofp_port_to_odp_port(const struct xbridge *xbridge, ofp_port_t ofp_port)
1864 {
1865 const struct xport *xport = get_ofp_port(xbridge, ofp_port);
1866 return xport ? xport->odp_port : ODPP_NONE;
1867 }
1868
1869 static bool
1870 odp_port_is_alive(const struct xlate_ctx *ctx, ofp_port_t ofp_port)
1871 {
1872 struct xport *xport = get_ofp_port(ctx->xbridge, ofp_port);
1873 return xport && xport->may_enable;
1874 }
1875
1876 static struct ofputil_bucket *
1877 group_first_live_bucket(const struct xlate_ctx *, const struct group_dpif *,
1878 int depth);
1879
1880 static bool
1881 group_is_alive(const struct xlate_ctx *ctx, uint32_t group_id, int depth)
1882 {
1883 struct group_dpif *group;
1884
1885 group = group_dpif_lookup(ctx->xbridge->ofproto, group_id,
1886 ctx->xin->tables_version, false);
1887 if (group) {
1888 return group_first_live_bucket(ctx, group, depth) != NULL;
1889 }
1890
1891 return false;
1892 }
1893
1894 #define MAX_LIVENESS_RECURSION 128 /* Arbitrary limit */
1895
1896 static bool
1897 bucket_is_alive(const struct xlate_ctx *ctx,
1898 struct ofputil_bucket *bucket, int depth)
1899 {
1900 if (depth >= MAX_LIVENESS_RECURSION) {
1901 xlate_report_error(ctx, "bucket chaining exceeded %d links",
1902 MAX_LIVENESS_RECURSION);
1903 return false;
1904 }
1905
1906 return (!ofputil_bucket_has_liveness(bucket)
1907 || (bucket->watch_port != OFPP_ANY
1908 && bucket->watch_port != OFPP_CONTROLLER
1909 && odp_port_is_alive(ctx, bucket->watch_port))
1910 || (bucket->watch_group != OFPG_ANY
1911 && group_is_alive(ctx, bucket->watch_group, depth + 1))
1912 || (bucket->watch_port == OFPP_CONTROLLER
1913 && ofproto_is_alive(&ctx->xbridge->ofproto->up)));
1914 }
1915
1916 static void
1917 xlate_report_bucket_not_live(const struct xlate_ctx *ctx,
1918 const struct ofputil_bucket *bucket)
1919 {
1920 if (OVS_UNLIKELY(ctx->xin->trace)) {
1921 struct ds s = DS_EMPTY_INITIALIZER;
1922 if (bucket->watch_port != OFPP_ANY) {
1923 ds_put_cstr(&s, "port ");
1924 ofputil_format_port(bucket->watch_port, NULL, &s);
1925 }
1926 if (bucket->watch_group != OFPG_ANY) {
1927 if (s.length) {
1928 ds_put_cstr(&s, " and ");
1929 }
1930 ds_put_format(&s, "port %"PRIu32, bucket->watch_group);
1931 }
1932
1933 xlate_report(ctx, OFT_DETAIL, "bucket %"PRIu32": not live due to %s",
1934 bucket->bucket_id, ds_cstr(&s));
1935
1936 ds_destroy(&s);
1937 }
1938 }
1939
1940 static struct ofputil_bucket *
1941 group_first_live_bucket(const struct xlate_ctx *ctx,
1942 const struct group_dpif *group, int depth)
1943 {
1944 struct ofputil_bucket *bucket;
1945 LIST_FOR_EACH (bucket, list_node, &group->up.buckets) {
1946 if (bucket_is_alive(ctx, bucket, depth)) {
1947 return bucket;
1948 }
1949 xlate_report_bucket_not_live(ctx, bucket);
1950 }
1951
1952 return NULL;
1953 }
1954
1955 static struct ofputil_bucket *
1956 group_best_live_bucket(const struct xlate_ctx *ctx,
1957 const struct group_dpif *group,
1958 uint32_t basis)
1959 {
1960 struct ofputil_bucket *best_bucket = NULL;
1961 uint32_t best_score = 0;
1962
1963 struct ofputil_bucket *bucket;
1964 LIST_FOR_EACH (bucket, list_node, &group->up.buckets) {
1965 if (bucket_is_alive(ctx, bucket, 0)) {
1966 uint32_t score =
1967 (hash_int(bucket->bucket_id, basis) & 0xffff) * bucket->weight;
1968 if (score >= best_score) {
1969 best_bucket = bucket;
1970 best_score = score;
1971 }
1972 xlate_report(ctx, OFT_DETAIL, "bucket %"PRIu32": score %"PRIu32,
1973 bucket->bucket_id, score);
1974 } else {
1975 xlate_report_bucket_not_live(ctx, bucket);
1976 }
1977 }
1978
1979 return best_bucket;
1980 }
1981
1982 static bool
1983 xbundle_trunks_vlan(const struct xbundle *bundle, uint16_t vlan)
1984 {
1985 return (bundle->vlan_mode != PORT_VLAN_ACCESS
1986 && (!bundle->trunks || bitmap_is_set(bundle->trunks, vlan)));
1987 }
1988
1989 static bool
1990 xbundle_allows_cvlan(const struct xbundle *bundle, uint16_t vlan)
1991 {
1992 return (!bundle->cvlans || bitmap_is_set(bundle->cvlans, vlan));
1993 }
1994
1995 static bool
1996 xbundle_includes_vlan(const struct xbundle *xbundle, const struct xvlan *xvlan)
1997 {
1998 switch (xbundle->vlan_mode) {
1999 case PORT_VLAN_ACCESS:
2000 return xvlan->v[0].vid == xbundle->vlan && xvlan->v[1].vid == 0;
2001
2002 case PORT_VLAN_TRUNK:
2003 case PORT_VLAN_NATIVE_UNTAGGED:
2004 case PORT_VLAN_NATIVE_TAGGED:
2005 return xbundle_trunks_vlan(xbundle, xvlan->v[0].vid);
2006
2007 case PORT_VLAN_DOT1Q_TUNNEL:
2008 return xvlan->v[0].vid == xbundle->vlan &&
2009 xbundle_allows_cvlan(xbundle, xvlan->v[1].vid);
2010
2011 default:
2012 OVS_NOT_REACHED();
2013 }
2014 }
2015
2016 static mirror_mask_t
2017 xbundle_mirror_out(const struct xbridge *xbridge, struct xbundle *xbundle)
2018 {
2019 return xbundle != &ofpp_none_bundle
2020 ? mirror_bundle_out(xbridge->mbridge, xbundle->ofbundle)
2021 : 0;
2022 }
2023
2024 static mirror_mask_t
2025 xbundle_mirror_src(const struct xbridge *xbridge, struct xbundle *xbundle)
2026 {
2027 return xbundle != &ofpp_none_bundle
2028 ? mirror_bundle_src(xbridge->mbridge, xbundle->ofbundle)
2029 : 0;
2030 }
2031
2032 static mirror_mask_t
2033 xbundle_mirror_dst(const struct xbridge *xbridge, struct xbundle *xbundle)
2034 {
2035 return xbundle != &ofpp_none_bundle
2036 ? mirror_bundle_dst(xbridge->mbridge, xbundle->ofbundle)
2037 : 0;
2038 }
2039
2040 static struct xbundle *
2041 lookup_input_bundle__(const struct xbridge *xbridge,
2042 ofp_port_t in_port, struct xport **in_xportp)
2043 {
2044 struct xport *xport;
2045
2046 /* Find the port and bundle for the received packet. */
2047 xport = get_ofp_port(xbridge, in_port);
2048 if (in_xportp) {
2049 *in_xportp = xport;
2050 }
2051 if (xport && xport->xbundle) {
2052 return xport->xbundle;
2053 }
2054
2055 /* Special-case OFPP_NONE (OF1.0) and OFPP_CONTROLLER (OF1.1+),
2056 * which a controller may use as the ingress port for traffic that
2057 * it is sourcing. */
2058 if (in_port == OFPP_CONTROLLER || in_port == OFPP_NONE) {
2059 return &ofpp_none_bundle;
2060 }
2061 return NULL;
2062 }
2063
2064 static struct xbundle *
2065 lookup_input_bundle(const struct xlate_ctx *ctx,
2066 ofp_port_t in_port, struct xport **in_xportp)
2067 {
2068 struct xbundle *xbundle = lookup_input_bundle__(ctx->xbridge,
2069 in_port, in_xportp);
2070 if (!xbundle) {
2071 /* Odd. A few possible reasons here:
2072 *
2073 * - We deleted a port but there are still a few packets queued up
2074 * from it.
2075 *
2076 * - Someone externally added a port (e.g. "ovs-dpctl add-if") that
2077 * we don't know about.
2078 *
2079 * - The ofproto client didn't configure the port as part of a bundle.
2080 * This is particularly likely to happen if a packet was received on
2081 * the port after it was created, but before the client had a chance
2082 * to configure its bundle.
2083 */
2084 xlate_report_error(ctx, "received packet on unknown port %"PRIu32,
2085 in_port);
2086 }
2087 return xbundle;
2088 }
2089
2090 /* Mirrors the packet represented by 'ctx' to appropriate mirror destinations,
2091 * given the packet is ingressing or egressing on 'xbundle', which has ingress
2092 * or egress (as appropriate) mirrors 'mirrors'. */
2093 static void
2094 mirror_packet(struct xlate_ctx *ctx, struct xbundle *xbundle,
2095 mirror_mask_t mirrors)
2096 {
2097 struct xvlan in_xvlan;
2098 struct xvlan xvlan;
2099
2100 /* Figure out what VLAN the packet is in (because mirrors can select
2101 * packets on basis of VLAN). */
2102 xvlan_extract(&ctx->xin->flow, &in_xvlan);
2103 if (!input_vid_is_valid(ctx, in_xvlan.v[0].vid, xbundle)) {
2104 return;
2105 }
2106 xvlan_input_translate(xbundle, &in_xvlan, &xvlan);
2107
2108 const struct xbridge *xbridge = ctx->xbridge;
2109
2110 /* Don't mirror to destinations that we've already mirrored to. */
2111 mirrors &= ~ctx->mirrors;
2112 if (!mirrors) {
2113 return;
2114 }
2115
2116 /* 'mirrors' is a bit-mask of candidates for mirroring. Iterate through
2117 * the candidates, adding the ones that really should be mirrored to
2118 * 'used_mirrors', as long as some candidates remain. */
2119 mirror_mask_t used_mirrors = 0;
2120 while (mirrors) {
2121 const unsigned long *vlans;
2122 mirror_mask_t dup_mirrors;
2123 struct ofbundle *out;
2124 int out_vlan;
2125 int snaplen;
2126
2127 /* Get the details of the mirror represented by the rightmost 1-bit. */
2128 ovs_assert(mirror_get(xbridge->mbridge, raw_ctz(mirrors),
2129 &vlans, &dup_mirrors,
2130 &out, &snaplen, &out_vlan));
2131
2132
2133 /* If this mirror selects on the basis of VLAN, and it does not select
2134 * 'vlan', then discard this mirror and go on to the next one. */
2135 if (vlans) {
2136 ctx->wc->masks.vlans[0].tci |= htons(VLAN_CFI | VLAN_VID_MASK);
2137 }
2138 if (vlans && !bitmap_is_set(vlans, xvlan.v[0].vid)) {
2139 mirrors = zero_rightmost_1bit(mirrors);
2140 continue;
2141 }
2142
2143 /* We sent a packet to this mirror. */
2144 used_mirrors |= rightmost_1bit(mirrors);
2145
2146 /* Record the mirror, and the mirrors that output to the same
2147 * destination, so that we don't mirror to them again. This must be
2148 * done now to ensure that output_normal(), below, doesn't recursively
2149 * output to the same mirrors. */
2150 ctx->mirrors |= dup_mirrors;
2151 ctx->mirror_snaplen = snaplen;
2152
2153 /* Send the packet to the mirror. */
2154 if (out) {
2155 struct xbundle *out_xbundle = xbundle_lookup(ctx->xcfg, out);
2156 if (out_xbundle) {
2157 output_normal(ctx, out_xbundle, &xvlan);
2158 }
2159 } else if (xvlan.v[0].vid != out_vlan
2160 && !eth_addr_is_reserved(ctx->xin->flow.dl_dst)) {
2161 struct xbundle *xb;
2162 uint16_t old_vid = xvlan.v[0].vid;
2163
2164 xvlan.v[0].vid = out_vlan;
2165 LIST_FOR_EACH (xb, list_node, &xbridge->xbundles) {
2166 if (xbundle_includes_vlan(xb, &xvlan)
2167 && !xbundle_mirror_out(xbridge, xb)) {
2168 output_normal(ctx, xb, &xvlan);
2169 }
2170 }
2171 xvlan.v[0].vid = old_vid;
2172 }
2173
2174 /* output_normal() could have recursively output (to different
2175 * mirrors), so make sure that we don't send duplicates. */
2176 mirrors &= ~ctx->mirrors;
2177 ctx->mirror_snaplen = 0;
2178 }
2179
2180 if (used_mirrors) {
2181 if (ctx->xin->resubmit_stats) {
2182 mirror_update_stats(xbridge->mbridge, used_mirrors,
2183 ctx->xin->resubmit_stats->n_packets,
2184 ctx->xin->resubmit_stats->n_bytes);
2185 }
2186 if (ctx->xin->xcache) {
2187 struct xc_entry *entry;
2188
2189 entry = xlate_cache_add_entry(ctx->xin->xcache, XC_MIRROR);
2190 entry->mirror.mbridge = mbridge_ref(xbridge->mbridge);
2191 entry->mirror.mirrors = used_mirrors;
2192 }
2193 }
2194 }
2195
2196 static void
2197 mirror_ingress_packet(struct xlate_ctx *ctx)
2198 {
2199 if (mbridge_has_mirrors(ctx->xbridge->mbridge)) {
2200 struct xbundle *xbundle = lookup_input_bundle(
2201 ctx, ctx->xin->flow.in_port.ofp_port, NULL);
2202 if (xbundle) {
2203 mirror_packet(ctx, xbundle,
2204 xbundle_mirror_src(ctx->xbridge, xbundle));
2205 }
2206 }
2207 }
2208
2209 /* Checks whether a packet with the given 'vid' may ingress on 'in_xbundle'.
2210 * If so, returns true. Otherwise, returns false.
2211 *
2212 * 'vid' should be the VID obtained from the 802.1Q header that was received as
2213 * part of a packet (specify 0 if there was no 802.1Q header), in the range
2214 * 0...4095. */
2215 static bool
2216 input_vid_is_valid(const struct xlate_ctx *ctx,
2217 uint16_t vid, struct xbundle *in_xbundle)
2218 {
2219 /* Allow any VID on the OFPP_NONE port. */
2220 if (in_xbundle == &ofpp_none_bundle) {
2221 return true;
2222 }
2223
2224 switch (in_xbundle->vlan_mode) {
2225 case PORT_VLAN_ACCESS:
2226 if (vid) {
2227 xlate_report_error(ctx, "dropping VLAN %"PRIu16" tagged "
2228 "packet received on port %s configured as VLAN "
2229 "%d access port", vid, in_xbundle->name,
2230 in_xbundle->vlan);
2231 return false;
2232 }
2233 return true;
2234
2235 case PORT_VLAN_NATIVE_UNTAGGED:
2236 case PORT_VLAN_NATIVE_TAGGED:
2237 if (!vid) {
2238 /* Port must always carry its native VLAN. */
2239 return true;
2240 }
2241 /* Fall through. */
2242 case PORT_VLAN_TRUNK:
2243 if (!xbundle_trunks_vlan(in_xbundle, vid)) {
2244 xlate_report_error(ctx, "dropping VLAN %"PRIu16" packet "
2245 "received on port %s not configured for "
2246 "trunking VLAN %"PRIu16,
2247 vid, in_xbundle->name, vid);
2248 return false;
2249 }
2250 return true;
2251
2252 case PORT_VLAN_DOT1Q_TUNNEL:
2253 if (!xbundle_allows_cvlan(in_xbundle, vid)) {
2254 xlate_report_error(ctx, "dropping VLAN %"PRIu16" packet received "
2255 "on dot1q-tunnel port %s that excludes this "
2256 "VLAN", vid, in_xbundle->name);
2257 return false;
2258 }
2259 return true;
2260
2261 default:
2262 OVS_NOT_REACHED();
2263 }
2264
2265 }
2266
2267 static void
2268 xvlan_copy(struct xvlan *dst, const struct xvlan *src)
2269 {
2270 *dst = *src;
2271 }
2272
2273 static void
2274 xvlan_pop(struct xvlan *src)
2275 {
2276 memmove(&src->v[0], &src->v[1], sizeof(src->v) - sizeof(src->v[0]));
2277 memset(&src->v[FLOW_MAX_VLAN_HEADERS - 1], 0,
2278 sizeof(src->v[FLOW_MAX_VLAN_HEADERS - 1]));
2279 }
2280
2281 static void
2282 xvlan_push_uninit(struct xvlan *src)
2283 {
2284 memmove(&src->v[1], &src->v[0], sizeof(src->v) - sizeof(src->v[0]));
2285 memset(&src->v[0], 0, sizeof(src->v[0]));
2286 }
2287
2288 /* Extract VLAN information (headers) from flow */
2289 static void
2290 xvlan_extract(const struct flow *flow, struct xvlan *xvlan)
2291 {
2292 int i;
2293 memset(xvlan, 0, sizeof(*xvlan));
2294 for (i = 0; i < FLOW_MAX_VLAN_HEADERS; i++) {
2295 if (!eth_type_vlan(flow->vlans[i].tpid) ||
2296 !(flow->vlans[i].tci & htons(VLAN_CFI))) {
2297 break;
2298 }
2299 xvlan->v[i].tpid = ntohs(flow->vlans[i].tpid);
2300 xvlan->v[i].vid = vlan_tci_to_vid(flow->vlans[i].tci);
2301 xvlan->v[i].pcp = ntohs(flow->vlans[i].tci) & VLAN_PCP_MASK;
2302 }
2303 }
2304
2305 /* Put VLAN information (headers) to flow */
2306 static void
2307 xvlan_put(struct flow *flow, const struct xvlan *xvlan,
2308 enum port_priority_tags_mode use_priority_tags)
2309 {
2310 ovs_be16 tci;
2311 int i;
2312 for (i = 0; i < FLOW_MAX_VLAN_HEADERS; i++) {
2313 tci = htons(xvlan->v[i].vid | (xvlan->v[i].pcp & VLAN_PCP_MASK));
2314 if (tci || ((use_priority_tags == PORT_PRIORITY_TAGS_ALWAYS) &&
2315 xvlan->v[i].tpid)) {
2316 tci |= htons(VLAN_CFI);
2317 flow->vlans[i].tpid = xvlan->v[i].tpid ?
2318 htons(xvlan->v[i].tpid) :
2319 htons(ETH_TYPE_VLAN_8021Q);
2320 }
2321 flow->vlans[i].tci = tci;
2322 }
2323 }
2324
2325 /* Given 'in_xvlan', extracted from the input 802.1Q headers received as part
2326 * of a packet, and 'in_xbundle', the bundle on which the packet was received,
2327 * returns the VLANs of the packet during bridge internal processing. */
2328 static void
2329 xvlan_input_translate(const struct xbundle *in_xbundle,
2330 const struct xvlan *in_xvlan, struct xvlan *xvlan)
2331 {
2332
2333 switch (in_xbundle->vlan_mode) {
2334 case PORT_VLAN_ACCESS:
2335 memset(xvlan, 0, sizeof(*xvlan));
2336 xvlan->v[0].tpid = in_xvlan->v[0].tpid ? in_xvlan->v[0].tpid :
2337 ETH_TYPE_VLAN_8021Q;
2338 xvlan->v[0].vid = in_xbundle->vlan;
2339 xvlan->v[0].pcp = in_xvlan->v[0].pcp;
2340 break;
2341
2342 case PORT_VLAN_TRUNK:
2343 xvlan_copy(xvlan, in_xvlan);
2344 break;
2345
2346 case PORT_VLAN_NATIVE_UNTAGGED:
2347 case PORT_VLAN_NATIVE_TAGGED:
2348 xvlan_copy(xvlan, in_xvlan);
2349 if (!in_xvlan->v[0].vid) {
2350 xvlan->v[0].tpid = in_xvlan->v[0].tpid ? in_xvlan->v[0].tpid :
2351 ETH_TYPE_VLAN_8021Q;
2352 xvlan->v[0].vid = in_xbundle->vlan;
2353 xvlan->v[0].pcp = in_xvlan->v[0].pcp;
2354 }
2355 break;
2356
2357 case PORT_VLAN_DOT1Q_TUNNEL:
2358 xvlan_copy(xvlan, in_xvlan);
2359 xvlan_push_uninit(xvlan);
2360 xvlan->v[0].tpid = in_xbundle->qinq_ethtype;
2361 xvlan->v[0].vid = in_xbundle->vlan;
2362 xvlan->v[0].pcp = 0;
2363 break;
2364
2365 default:
2366 OVS_NOT_REACHED();
2367 }
2368 }
2369
2370 /* Given 'xvlan', the VLANs of a packet during internal processing, and
2371 * 'out_xbundle', a bundle on which the packet is to be output, returns the
2372 * VLANs that should be included in output packet. */
2373 static void
2374 xvlan_output_translate(const struct xbundle *out_xbundle,
2375 const struct xvlan *xvlan, struct xvlan *out_xvlan)
2376 {
2377 switch (out_xbundle->vlan_mode) {
2378 case PORT_VLAN_ACCESS:
2379 memset(out_xvlan, 0, sizeof(*out_xvlan));
2380 break;
2381
2382 case PORT_VLAN_TRUNK:
2383 case PORT_VLAN_NATIVE_TAGGED:
2384 xvlan_copy(out_xvlan, xvlan);
2385 break;
2386
2387 case PORT_VLAN_NATIVE_UNTAGGED:
2388 xvlan_copy(out_xvlan, xvlan);
2389 if (xvlan->v[0].vid == out_xbundle->vlan) {
2390 xvlan_pop(out_xvlan);
2391 }
2392 break;
2393
2394 case PORT_VLAN_DOT1Q_TUNNEL:
2395 xvlan_copy(out_xvlan, xvlan);
2396 xvlan_pop(out_xvlan);
2397 break;
2398
2399 default:
2400 OVS_NOT_REACHED();
2401 }
2402 }
2403
2404 /* If output xbundle is dot1q-tunnel, set mask bits of cvlan */
2405 static void
2406 check_and_set_cvlan_mask(struct flow_wildcards *wc,
2407 const struct xbundle *xbundle)
2408 {
2409 if (xbundle->vlan_mode == PORT_VLAN_DOT1Q_TUNNEL && xbundle->cvlans) {
2410 wc->masks.vlans[1].tci = htons(0xffff);
2411 }
2412 }
2413
2414 static void
2415 output_normal(struct xlate_ctx *ctx, const struct xbundle *out_xbundle,
2416 const struct xvlan *xvlan)
2417 {
2418 uint16_t vid;
2419 union flow_vlan_hdr old_vlans[FLOW_MAX_VLAN_HEADERS];
2420 struct xport *xport;
2421 struct xlate_bond_recirc xr;
2422 bool use_recirc = false;
2423 struct xvlan out_xvlan;
2424
2425 check_and_set_cvlan_mask(ctx->wc, out_xbundle);
2426
2427 xvlan_output_translate(out_xbundle, xvlan, &out_xvlan);
2428 if (out_xbundle->use_priority_tags) {
2429 out_xvlan.v[0].pcp = ntohs(ctx->xin->flow.vlans[0].tci) &
2430 VLAN_PCP_MASK;
2431 }
2432 vid = out_xvlan.v[0].vid;
2433 if (ovs_list_is_empty(&out_xbundle->xports)) {
2434 /* Partially configured bundle with no slaves. Drop the packet. */
2435 return;
2436 } else if (!out_xbundle->bond) {
2437 xport = CONTAINER_OF(ovs_list_front(&out_xbundle->xports), struct xport,
2438 bundle_node);
2439 } else {
2440 struct flow_wildcards *wc = ctx->wc;
2441 struct ofport_dpif *ofport;
2442
2443 if (ctx->xbridge->support.odp.recirc) {
2444 /* In case recirculation is not actually in use, 'xr.recirc_id'
2445 * will be set to '0', since a valid 'recirc_id' can
2446 * not be zero. */
2447 bond_update_post_recirc_rules(out_xbundle->bond,
2448 &xr.recirc_id,
2449 &xr.hash_basis);
2450 if (xr.recirc_id) {
2451 /* Use recirculation instead of output. */
2452 use_recirc = true;
2453 xr.hash_alg = OVS_HASH_ALG_L4;
2454 /* Recirculation does not require unmasking hash fields. */
2455 wc = NULL;
2456 }
2457 }
2458
2459 ofport = bond_choose_output_slave(out_xbundle->bond,
2460 &ctx->xin->flow, wc, vid);
2461 xport = xport_lookup(ctx->xcfg, ofport);
2462
2463 if (!xport) {
2464 /* No slaves enabled, so drop packet. */
2465 return;
2466 }
2467
2468 /* If use_recirc is set, the main thread will handle stats
2469 * accounting for this bond. */
2470 if (!use_recirc) {
2471 if (ctx->xin->resubmit_stats) {
2472 bond_account(out_xbundle->bond, &ctx->xin->flow, vid,
2473 ctx->xin->resubmit_stats->n_bytes);
2474 }
2475 if (ctx->xin->xcache) {
2476 struct xc_entry *entry;
2477 struct flow *flow;
2478
2479 flow = &ctx->xin->flow;
2480 entry = xlate_cache_add_entry(ctx->xin->xcache, XC_BOND);
2481 entry->bond.bond = bond_ref(out_xbundle->bond);
2482 entry->bond.flow = xmemdup(flow, sizeof *flow);
2483 entry->bond.vid = vid;
2484 }
2485 }
2486 }
2487
2488 memcpy(&old_vlans, &ctx->xin->flow.vlans, sizeof(old_vlans));
2489 xvlan_put(&ctx->xin->flow, &out_xvlan, out_xbundle->use_priority_tags);
2490
2491 compose_output_action(ctx, xport->ofp_port, use_recirc ? &xr : NULL,
2492 false, false);
2493 memcpy(&ctx->xin->flow.vlans, &old_vlans, sizeof(old_vlans));
2494 }
2495
2496 /* A VM broadcasts a gratuitous ARP to indicate that it has resumed after
2497 * migration. Older Citrix-patched Linux DomU used gratuitous ARP replies to
2498 * indicate this; newer upstream kernels use gratuitous ARP requests. */
2499 static bool
2500 is_gratuitous_arp(const struct flow *flow, struct flow_wildcards *wc)
2501 {
2502 if (flow->dl_type != htons(ETH_TYPE_ARP)) {
2503 return false;
2504 }
2505
2506 memset(&wc->masks.dl_dst, 0xff, sizeof wc->masks.dl_dst);
2507 if (!eth_addr_is_broadcast(flow->dl_dst)) {
2508 return false;
2509 }
2510
2511 memset(&wc->masks.nw_proto, 0xff, sizeof wc->masks.nw_proto);
2512 if (flow->nw_proto == ARP_OP_REPLY) {
2513 return true;
2514 } else if (flow->nw_proto == ARP_OP_REQUEST) {
2515 memset(&wc->masks.nw_src, 0xff, sizeof wc->masks.nw_src);
2516 memset(&wc->masks.nw_dst, 0xff, sizeof wc->masks.nw_dst);
2517
2518 return flow->nw_src == flow->nw_dst;
2519 } else {
2520 return false;
2521 }
2522 }
2523
2524 /* Determines whether packets in 'flow' within 'xbridge' should be forwarded or
2525 * dropped. Returns true if they may be forwarded, false if they should be
2526 * dropped.
2527 *
2528 * 'in_port' must be the xport that corresponds to flow->in_port.
2529 * 'in_port' must be part of a bundle (e.g. in_port->bundle must be nonnull).
2530 *
2531 * 'vlan' must be the VLAN that corresponds to flow->vlan_tci on 'in_port', as
2532 * returned by input_vid_to_vlan(). It must be a valid VLAN for 'in_port', as
2533 * checked by input_vid_is_valid().
2534 *
2535 * May also add tags to '*tags', although the current implementation only does
2536 * so in one special case.
2537 */
2538 static bool
2539 is_admissible(struct xlate_ctx *ctx, struct xport *in_port,
2540 uint16_t vlan)
2541 {
2542 struct xbundle *in_xbundle = in_port->xbundle;
2543 const struct xbridge *xbridge = ctx->xbridge;
2544 struct flow *flow = &ctx->xin->flow;
2545
2546 /* Drop frames for reserved multicast addresses
2547 * only if forward_bpdu option is absent. */
2548 if (!xbridge->forward_bpdu && eth_addr_is_reserved(flow->dl_dst)) {
2549 xlate_report(ctx, OFT_DETAIL,
2550 "packet has reserved destination MAC, dropping");
2551 return false;
2552 }
2553
2554 if (in_xbundle->bond) {
2555 struct mac_entry *mac;
2556
2557 switch (bond_check_admissibility(in_xbundle->bond, in_port->ofport,
2558 flow->dl_dst)) {
2559 case BV_ACCEPT:
2560 break;
2561
2562 case BV_DROP:
2563 xlate_report(ctx, OFT_DETAIL,
2564 "bonding refused admissibility, dropping");
2565 return false;
2566
2567 case BV_DROP_IF_MOVED:
2568 ovs_rwlock_rdlock(&xbridge->ml->rwlock);
2569 mac = mac_learning_lookup(xbridge->ml, flow->dl_src, vlan);
2570 if (mac
2571 && mac_entry_get_port(xbridge->ml, mac) != in_xbundle->ofbundle
2572 && (!is_gratuitous_arp(flow, ctx->wc)
2573 || mac_entry_is_grat_arp_locked(mac))) {
2574 ovs_rwlock_unlock(&xbridge->ml->rwlock);
2575 xlate_report(ctx, OFT_DETAIL,
2576 "SLB bond thinks this packet looped back, "
2577 "dropping");
2578 return false;
2579 }
2580 ovs_rwlock_unlock(&xbridge->ml->rwlock);
2581 break;
2582 }
2583 }
2584
2585 return true;
2586 }
2587
2588 static bool
2589 update_learning_table__(const struct xbridge *xbridge,
2590 struct xbundle *in_xbundle, struct eth_addr dl_src,
2591 int vlan, bool is_grat_arp)
2592 {
2593 return (in_xbundle == &ofpp_none_bundle
2594 || !mac_learning_update(xbridge->ml, dl_src, vlan,
2595 is_grat_arp,
2596 in_xbundle->bond != NULL,
2597 in_xbundle->ofbundle));
2598 }
2599
2600 static void
2601 update_learning_table(const struct xlate_ctx *ctx,
2602 struct xbundle *in_xbundle, struct eth_addr dl_src,
2603 int vlan, bool is_grat_arp)
2604 {
2605 if (!update_learning_table__(ctx->xbridge, in_xbundle, dl_src, vlan,
2606 is_grat_arp)) {
2607 xlate_report_debug(ctx, OFT_DETAIL, "learned that "ETH_ADDR_FMT" is "
2608 "on port %s in VLAN %d",
2609 ETH_ADDR_ARGS(dl_src), in_xbundle->name, vlan);
2610 }
2611 }
2612
2613 /* Updates multicast snooping table 'ms' given that a packet matching 'flow'
2614 * was received on 'in_xbundle' in 'vlan' and is either Report or Query. */
2615 static void
2616 update_mcast_snooping_table4__(const struct xlate_ctx *ctx,
2617 const struct flow *flow,
2618 struct mcast_snooping *ms, int vlan,
2619 struct xbundle *in_xbundle,
2620 const struct dp_packet *packet)
2621 OVS_REQ_WRLOCK(ms->rwlock)
2622 {
2623 const struct igmp_header *igmp;
2624 int count;
2625 size_t offset;
2626 ovs_be32 ip4 = flow->igmp_group_ip4;
2627
2628 offset = (char *) dp_packet_l4(packet) - (char *) dp_packet_data(packet);
2629 igmp = dp_packet_at(packet, offset, IGMP_HEADER_LEN);
2630 if (!igmp || csum(igmp, dp_packet_l4_size(packet)) != 0) {
2631 xlate_report_debug(ctx, OFT_DETAIL,
2632 "multicast snooping received bad IGMP "
2633 "checksum on port %s in VLAN %d",
2634 in_xbundle->name, vlan);
2635 return;
2636 }
2637
2638 switch (ntohs(flow->tp_src)) {
2639 case IGMP_HOST_MEMBERSHIP_REPORT:
2640 case IGMPV2_HOST_MEMBERSHIP_REPORT:
2641 if (mcast_snooping_add_group4(ms, ip4, vlan, in_xbundle->ofbundle)) {
2642 xlate_report_debug(ctx, OFT_DETAIL,
2643 "multicast snooping learned that "
2644 IP_FMT" is on port %s in VLAN %d",
2645 IP_ARGS(ip4), in_xbundle->name, vlan);
2646 }
2647 break;
2648 case IGMP_HOST_LEAVE_MESSAGE:
2649 if (mcast_snooping_leave_group4(ms, ip4, vlan, in_xbundle->ofbundle)) {
2650 xlate_report_debug(ctx, OFT_DETAIL, "multicast snooping leaving "
2651 IP_FMT" is on port %s in VLAN %d",
2652 IP_ARGS(ip4), in_xbundle->name, vlan);
2653 }
2654 break;
2655 case IGMP_HOST_MEMBERSHIP_QUERY:
2656 if (flow->nw_src && mcast_snooping_add_mrouter(ms, vlan,
2657 in_xbundle->ofbundle)) {
2658 xlate_report_debug(ctx, OFT_DETAIL, "multicast snooping query "
2659 "from "IP_FMT" is on port %s in VLAN %d",
2660 IP_ARGS(flow->nw_src), in_xbundle->name, vlan);
2661 }
2662 break;
2663 case IGMPV3_HOST_MEMBERSHIP_REPORT:
2664 count = mcast_snooping_add_report(ms, packet, vlan,
2665 in_xbundle->ofbundle);
2666 if (count) {
2667 xlate_report_debug(ctx, OFT_DETAIL, "multicast snooping processed "
2668 "%d addresses on port %s in VLAN %d",
2669 count, in_xbundle->name, vlan);
2670 }
2671 break;
2672 }
2673 }
2674
2675 static void
2676 update_mcast_snooping_table6__(const struct xlate_ctx *ctx,
2677 const struct flow *flow,
2678 struct mcast_snooping *ms, int vlan,
2679 struct xbundle *in_xbundle,
2680 const struct dp_packet *packet)
2681 OVS_REQ_WRLOCK(ms->rwlock)
2682 {
2683 const struct mld_header *mld;
2684 int count;
2685 size_t offset;
2686
2687 offset = (char *) dp_packet_l4(packet) - (char *) dp_packet_data(packet);
2688 mld = dp_packet_at(packet, offset, MLD_HEADER_LEN);
2689
2690 if (!mld ||
2691 packet_csum_upperlayer6(dp_packet_l3(packet),
2692 mld, IPPROTO_ICMPV6,
2693 dp_packet_l4_size(packet)) != 0) {
2694 xlate_report_debug(ctx, OFT_DETAIL, "multicast snooping received "
2695 "bad MLD checksum on port %s in VLAN %d",
2696 in_xbundle->name, vlan);
2697 return;
2698 }
2699
2700 switch (ntohs(flow->tp_src)) {
2701 case MLD_QUERY:
2702 if (!ipv6_addr_equals(&flow->ipv6_src, &in6addr_any)
2703 && mcast_snooping_add_mrouter(ms, vlan, in_xbundle->ofbundle)) {
2704 xlate_report_debug(ctx, OFT_DETAIL, "multicast snooping query on "
2705 "port %s in VLAN %d", in_xbundle->name, vlan);
2706 }
2707 break;
2708 case MLD_REPORT:
2709 case MLD_DONE:
2710 case MLD2_REPORT:
2711 count = mcast_snooping_add_mld(ms, packet, vlan, in_xbundle->ofbundle);
2712 if (count) {
2713 xlate_report_debug(ctx, OFT_DETAIL, "multicast snooping processed "
2714 "%d addresses on port %s in VLAN %d",
2715 count, in_xbundle->name, vlan);
2716 }
2717 break;
2718 }
2719 }
2720
2721 /* Updates multicast snooping table 'ms' given that a packet matching 'flow'
2722 * was received on 'in_xbundle' in 'vlan'. */
2723 static void
2724 update_mcast_snooping_table(const struct xlate_ctx *ctx,
2725 const struct flow *flow, int vlan,
2726 struct xbundle *in_xbundle,
2727 const struct dp_packet *packet)
2728 {
2729 struct mcast_snooping *ms = ctx->xbridge->ms;
2730 struct xbundle *mcast_xbundle;
2731 struct mcast_port_bundle *fport;
2732
2733 /* Don't learn the OFPP_NONE port. */
2734 if (in_xbundle == &ofpp_none_bundle) {
2735 return;
2736 }
2737
2738 /* Don't learn from flood ports */
2739 mcast_xbundle = NULL;
2740 ovs_rwlock_wrlock(&ms->rwlock);
2741 LIST_FOR_EACH(fport, node, &ms->fport_list) {
2742 mcast_xbundle = xbundle_lookup(ctx->xcfg, fport->port);
2743 if (mcast_xbundle == in_xbundle) {
2744 break;
2745 }
2746 }
2747
2748 if (!mcast_xbundle || mcast_xbundle != in_xbundle) {
2749 if (flow->dl_type == htons(ETH_TYPE_IP)) {
2750 update_mcast_snooping_table4__(ctx, flow, ms, vlan,
2751 in_xbundle, packet);
2752 } else {
2753 update_mcast_snooping_table6__(ctx, flow, ms, vlan,
2754 in_xbundle, packet);
2755 }
2756 }
2757 ovs_rwlock_unlock(&ms->rwlock);
2758 }
2759 \f
2760 /* A list of multicast output ports.
2761 *
2762 * We accumulate output ports and then do all the outputs afterward. It would
2763 * be more natural to do the outputs one at a time as we discover the need for
2764 * each one, but this can cause a deadlock because we need to take the
2765 * mcast_snooping's rwlock for reading to iterate through the port lists and
2766 * doing an output, if it goes to a patch port, can eventually come back to the
2767 * same mcast_snooping and attempt to take the write lock (see
2768 * https://github.com/openvswitch/ovs-issues/issues/153). */
2769 struct mcast_output {
2770 /* Discrete ports. */
2771 struct xbundle **xbundles;
2772 size_t n, allocated;
2773
2774 /* If set, flood to all ports. */
2775 bool flood;
2776 };
2777 #define MCAST_OUTPUT_INIT { NULL, 0, 0, false }
2778
2779 /* Add 'mcast_bundle' to 'out'. */
2780 static void
2781 mcast_output_add(struct mcast_output *out, struct xbundle *mcast_xbundle)
2782 {
2783 if (out->n >= out->allocated) {
2784 out->xbundles = x2nrealloc(out->xbundles, &out->allocated,
2785 sizeof *out->xbundles);
2786 }
2787 out->xbundles[out->n++] = mcast_xbundle;
2788 }
2789
2790 /* Outputs the packet in 'ctx' to all of the output ports in 'out', given input
2791 * bundle 'in_xbundle' and the current 'xvlan'. */
2792 static void
2793 mcast_output_finish(struct xlate_ctx *ctx, struct mcast_output *out,
2794 struct xbundle *in_xbundle, struct xvlan *xvlan)
2795 {
2796 if (out->flood) {
2797 xlate_normal_flood(ctx, in_xbundle, xvlan);
2798 } else {
2799 for (size_t i = 0; i < out->n; i++) {
2800 output_normal(ctx, out->xbundles[i], xvlan);
2801 }
2802 }
2803
2804 free(out->xbundles);
2805 }
2806
2807 /* send the packet to ports having the multicast group learned */
2808 static void
2809 xlate_normal_mcast_send_group(struct xlate_ctx *ctx,
2810 struct mcast_snooping *ms OVS_UNUSED,
2811 struct mcast_group *grp,
2812 struct xbundle *in_xbundle,
2813 struct mcast_output *out)
2814 OVS_REQ_RDLOCK(ms->rwlock)
2815 {
2816 struct mcast_group_bundle *b;
2817 struct xbundle *mcast_xbundle;
2818
2819 LIST_FOR_EACH(b, bundle_node, &grp->bundle_lru) {
2820 mcast_xbundle = xbundle_lookup(ctx->xcfg, b->port);
2821 if (mcast_xbundle && mcast_xbundle != in_xbundle) {
2822 xlate_report(ctx, OFT_DETAIL, "forwarding to mcast group port");
2823 mcast_output_add(out, mcast_xbundle);
2824 } else if (!mcast_xbundle) {
2825 xlate_report(ctx, OFT_WARN,
2826 "mcast group port is unknown, dropping");
2827 } else {
2828 xlate_report(ctx, OFT_DETAIL,
2829 "mcast group port is input port, dropping");
2830 }
2831 }
2832 }
2833
2834 /* send the packet to ports connected to multicast routers */
2835 static void
2836 xlate_normal_mcast_send_mrouters(struct xlate_ctx *ctx,
2837 struct mcast_snooping *ms,
2838 struct xbundle *in_xbundle,
2839 const struct xvlan *xvlan,
2840 struct mcast_output *out)
2841 OVS_REQ_RDLOCK(ms->rwlock)
2842 {
2843 struct mcast_mrouter_bundle *mrouter;
2844 struct xbundle *mcast_xbundle;
2845
2846 LIST_FOR_EACH(mrouter, mrouter_node, &ms->mrouter_lru) {
2847 mcast_xbundle = xbundle_lookup(ctx->xcfg, mrouter->port);
2848 if (mcast_xbundle && mcast_xbundle != in_xbundle
2849 && mrouter->vlan == xvlan->v[0].vid) {
2850 xlate_report(ctx, OFT_DETAIL, "forwarding to mcast router port");
2851 mcast_output_add(out, mcast_xbundle);
2852 } else if (!mcast_xbundle) {
2853 xlate_report(ctx, OFT_WARN,
2854 "mcast router port is unknown, dropping");
2855 } else if (mrouter->vlan != xvlan->v[0].vid) {
2856 xlate_report(ctx, OFT_DETAIL,
2857 "mcast router is on another vlan, dropping");
2858 } else {
2859 xlate_report(ctx, OFT_DETAIL,
2860 "mcast router port is input port, dropping");
2861 }
2862 }
2863 }
2864
2865 /* send the packet to ports flagged to be flooded */
2866 static void
2867 xlate_normal_mcast_send_fports(struct xlate_ctx *ctx,
2868 struct mcast_snooping *ms,
2869 struct xbundle *in_xbundle,
2870 struct mcast_output *out)
2871 OVS_REQ_RDLOCK(ms->rwlock)
2872 {
2873 struct mcast_port_bundle *fport;
2874 struct xbundle *mcast_xbundle;
2875
2876 LIST_FOR_EACH(fport, node, &ms->fport_list) {
2877 mcast_xbundle = xbundle_lookup(ctx->xcfg, fport->port);
2878 if (mcast_xbundle && mcast_xbundle != in_xbundle) {
2879 xlate_report(ctx, OFT_DETAIL, "forwarding to mcast flood port");
2880 mcast_output_add(out, mcast_xbundle);
2881 } else if (!mcast_xbundle) {
2882 xlate_report(ctx, OFT_WARN,
2883 "mcast flood port is unknown, dropping");
2884 } else {
2885 xlate_report(ctx, OFT_DETAIL,
2886 "mcast flood port is input port, dropping");
2887 }
2888 }
2889 }
2890
2891 /* forward the Reports to configured ports */
2892 static void
2893 xlate_normal_mcast_send_rports(struct xlate_ctx *ctx,
2894 struct mcast_snooping *ms,
2895 struct xbundle *in_xbundle,
2896 struct mcast_output *out)
2897 OVS_REQ_RDLOCK(ms->rwlock)
2898 {
2899 struct mcast_port_bundle *rport;
2900 struct xbundle *mcast_xbundle;
2901
2902 LIST_FOR_EACH(rport, node, &ms->rport_list) {
2903 mcast_xbundle = xbundle_lookup(ctx->xcfg, rport->port);
2904 if (mcast_xbundle
2905 && mcast_xbundle != in_xbundle
2906 && mcast_xbundle->ofbundle != in_xbundle->ofbundle) {
2907 xlate_report(ctx, OFT_DETAIL,
2908 "forwarding report to mcast flagged port");
2909 mcast_output_add(out, mcast_xbundle);
2910 } else if (!mcast_xbundle) {
2911 xlate_report(ctx, OFT_WARN,
2912 "mcast port is unknown, dropping the report");
2913 } else {
2914 xlate_report(ctx, OFT_DETAIL,
2915 "mcast port is input port, dropping the Report");
2916 }
2917 }
2918 }
2919
2920 static void
2921 xlate_normal_flood(struct xlate_ctx *ctx, struct xbundle *in_xbundle,
2922 struct xvlan *xvlan)
2923 {
2924 struct xbundle *xbundle;
2925
2926 LIST_FOR_EACH (xbundle, list_node, &ctx->xbridge->xbundles) {
2927 if (xbundle != in_xbundle
2928 && xbundle->ofbundle != in_xbundle->ofbundle
2929 && xbundle_includes_vlan(xbundle, xvlan)
2930 && xbundle->floodable
2931 && !xbundle_mirror_out(ctx->xbridge, xbundle)) {
2932 output_normal(ctx, xbundle, xvlan);
2933 }
2934 }
2935 ctx->nf_output_iface = NF_OUT_FLOOD;
2936 }
2937
2938 static bool
2939 is_ip_local_multicast(const struct flow *flow, struct flow_wildcards *wc)
2940 {
2941 if (flow->dl_type == htons(ETH_TYPE_IP)) {
2942 memset(&wc->masks.nw_dst, 0xff, sizeof wc->masks.nw_dst);
2943 return ip_is_local_multicast(flow->nw_dst);
2944 } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
2945 memset(&wc->masks.ipv6_dst, 0xff, sizeof wc->masks.ipv6_dst);
2946 return ipv6_is_all_hosts(&flow->ipv6_dst);
2947 } else {
2948 return false;
2949 }
2950 }
2951
2952 static void
2953 xlate_normal(struct xlate_ctx *ctx)
2954 {
2955 struct flow_wildcards *wc = ctx->wc;
2956 struct flow *flow = &ctx->xin->flow;
2957 struct xbundle *in_xbundle;
2958 struct xport *in_port;
2959 struct mac_entry *mac;
2960 void *mac_port;
2961 struct xvlan in_xvlan;
2962 struct xvlan xvlan;
2963 uint16_t vlan;
2964
2965 memset(&wc->masks.dl_src, 0xff, sizeof wc->masks.dl_src);
2966 memset(&wc->masks.dl_dst, 0xff, sizeof wc->masks.dl_dst);
2967 wc->masks.vlans[0].tci |= htons(VLAN_VID_MASK | VLAN_CFI);
2968
2969 in_xbundle = lookup_input_bundle(ctx, flow->in_port.ofp_port, &in_port);
2970 if (!in_xbundle) {
2971 xlate_report(ctx, OFT_WARN, "no input bundle, dropping");
2972 return;
2973 }
2974
2975 /* Drop malformed frames. */
2976 if (eth_type_vlan(flow->dl_type) &&
2977 !(flow->vlans[0].tci & htons(VLAN_CFI))) {
2978 if (ctx->xin->packet != NULL) {
2979 xlate_report_error(ctx, "dropping packet with partial "
2980 "VLAN tag received on port %s",
2981 in_xbundle->name);
2982 }
2983 xlate_report(ctx, OFT_WARN, "partial VLAN tag, dropping");
2984 return;
2985 }
2986
2987 /* Drop frames on bundles reserved for mirroring. */
2988 if (xbundle_mirror_out(ctx->xbridge, in_xbundle)) {
2989 if (ctx->xin->packet != NULL) {
2990 xlate_report_error(ctx, "dropping packet received on port %s, "
2991 "which is reserved exclusively for mirroring",
2992 in_xbundle->name);
2993 }
2994 xlate_report(ctx, OFT_WARN,
2995 "input port is mirror output port, dropping");
2996 return;
2997 }
2998
2999 /* Check VLAN. */
3000 xvlan_extract(flow, &in_xvlan);
3001 if (!input_vid_is_valid(ctx, in_xvlan.v[0].vid, in_xbundle)) {
3002 xlate_report(ctx, OFT_WARN,
3003 "disallowed VLAN VID for this input port, dropping");
3004 return;
3005 }
3006 xvlan_input_translate(in_xbundle, &in_xvlan, &xvlan);
3007 vlan = xvlan.v[0].vid;
3008
3009 /* Check other admissibility requirements. */
3010 if (in_port && !is_admissible(ctx, in_port, vlan)) {
3011 return;
3012 }
3013
3014 /* Learn source MAC. */
3015 bool is_grat_arp = is_gratuitous_arp(flow, wc);
3016 if (ctx->xin->allow_side_effects
3017 && flow->packet_type == htonl(PT_ETH)
3018 && in_port->pt_mode != NETDEV_PT_LEGACY_L3
3019 ) {
3020 update_learning_table(ctx, in_xbundle, flow->dl_src, vlan,
3021 is_grat_arp);
3022 }
3023 if (ctx->xin->xcache && in_xbundle != &ofpp_none_bundle) {
3024 struct xc_entry *entry;
3025
3026 /* Save just enough info to update mac learning table later. */
3027 entry = xlate_cache_add_entry(ctx->xin->xcache, XC_NORMAL);
3028 entry->normal.ofproto = ctx->xbridge->ofproto;
3029 entry->normal.in_port = flow->in_port.ofp_port;
3030 entry->normal.dl_src = flow->dl_src;
3031 entry->normal.vlan = vlan;
3032 entry->normal.is_gratuitous_arp = is_grat_arp;
3033 }
3034
3035 /* Determine output bundle. */
3036 if (mcast_snooping_enabled(ctx->xbridge->ms)
3037 && !eth_addr_is_broadcast(flow->dl_dst)
3038 && eth_addr_is_multicast(flow->dl_dst)
3039 && is_ip_any(flow)) {
3040 struct mcast_snooping *ms = ctx->xbridge->ms;
3041 struct mcast_group *grp = NULL;
3042
3043 if (is_igmp(flow, wc)) {
3044 /*
3045 * IGMP packets need to take the slow path, in order to be
3046 * processed for mdb updates. That will prevent expires
3047 * firing off even after hosts have sent reports.
3048 */
3049 ctx->xout->slow |= SLOW_ACTION;
3050
3051 memset(&wc->masks.tp_src, 0xff, sizeof wc->masks.tp_src);
3052 if (mcast_snooping_is_membership(flow->tp_src) ||
3053 mcast_snooping_is_query(flow->tp_src)) {
3054 if (ctx->xin->allow_side_effects && ctx->xin->packet) {
3055 update_mcast_snooping_table(ctx, flow, vlan,
3056 in_xbundle, ctx->xin->packet);
3057 }
3058 }
3059
3060 if (mcast_snooping_is_membership(flow->tp_src)) {
3061 struct mcast_output out = MCAST_OUTPUT_INIT;
3062
3063 ovs_rwlock_rdlock(&ms->rwlock);
3064 xlate_normal_mcast_send_mrouters(ctx, ms, in_xbundle, &xvlan,
3065 &out);
3066 /* RFC4541: section 2.1.1, item 1: A snooping switch should
3067 * forward IGMP Membership Reports only to those ports where
3068 * multicast routers are attached. Alternatively stated: a
3069 * snooping switch should not forward IGMP Membership Reports
3070 * to ports on which only hosts are attached.
3071 * An administrative control may be provided to override this
3072 * restriction, allowing the report messages to be flooded to
3073 * other ports. */
3074 xlate_normal_mcast_send_rports(ctx, ms, in_xbundle, &out);
3075 ovs_rwlock_unlock(&ms->rwlock);
3076
3077 mcast_output_finish(ctx, &out, in_xbundle, &xvlan);
3078 } else {
3079 xlate_report(ctx, OFT_DETAIL, "multicast traffic, flooding");
3080 xlate_normal_flood(ctx, in_xbundle, &xvlan);
3081 }
3082 return;
3083 } else if (is_mld(flow, wc)) {
3084 ctx->xout->slow |= SLOW_ACTION;
3085 if (ctx->xin->allow_side_effects && ctx->xin->packet) {
3086 update_mcast_snooping_table(ctx, flow, vlan,
3087 in_xbundle, ctx->xin->packet);
3088 }
3089 if (is_mld_report(flow, wc)) {
3090 struct mcast_output out = MCAST_OUTPUT_INIT;
3091
3092 ovs_rwlock_rdlock(&ms->rwlock);
3093 xlate_normal_mcast_send_mrouters(ctx, ms, in_xbundle, &xvlan,
3094 &out);
3095 xlate_normal_mcast_send_rports(ctx, ms, in_xbundle, &out);
3096 ovs_rwlock_unlock(&ms->rwlock);
3097
3098 mcast_output_finish(ctx, &out, in_xbundle, &xvlan);
3099 } else {
3100 xlate_report(ctx, OFT_DETAIL, "MLD query, flooding");
3101 xlate_normal_flood(ctx, in_xbundle, &xvlan);
3102 }
3103 } else {
3104 if (is_ip_local_multicast(flow, wc)) {
3105 /* RFC4541: section 2.1.2, item 2: Packets with a dst IP
3106 * address in the 224.0.0.x range which are not IGMP must
3107 * be forwarded on all ports */
3108 xlate_report(ctx, OFT_DETAIL,
3109 "RFC4541: section 2.1.2, item 2, flooding");
3110 xlate_normal_flood(ctx, in_xbundle, &xvlan);
3111 return;
3112 }
3113 }
3114
3115 /* forwarding to group base ports */
3116 struct mcast_output out = MCAST_OUTPUT_INIT;
3117
3118 ovs_rwlock_rdlock(&ms->rwlock);
3119 if (flow->dl_type == htons(ETH_TYPE_IP)) {
3120 grp = mcast_snooping_lookup4(ms, flow->nw_dst, vlan);
3121 } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
3122 grp = mcast_snooping_lookup(ms, &flow->ipv6_dst, vlan);
3123 }
3124 if (grp) {
3125 xlate_normal_mcast_send_group(ctx, ms, grp, in_xbundle, &out);
3126 xlate_normal_mcast_send_fports(ctx, ms, in_xbundle, &out);
3127 xlate_normal_mcast_send_mrouters(ctx, ms, in_xbundle, &xvlan,
3128 &out);
3129 } else {
3130 if (mcast_snooping_flood_unreg(ms)) {
3131 xlate_report(ctx, OFT_DETAIL,
3132 "unregistered multicast, flooding");
3133 out.flood = true;
3134 } else {
3135 xlate_normal_mcast_send_mrouters(ctx, ms, in_xbundle, &xvlan,
3136 &out);
3137 xlate_normal_mcast_send_fports(ctx, ms, in_xbundle, &out);
3138 }
3139 }
3140 ovs_rwlock_unlock(&ms->rwlock);
3141
3142 mcast_output_finish(ctx, &out, in_xbundle, &xvlan);
3143 } else {
3144 ovs_rwlock_rdlock(&ctx->xbridge->ml->rwlock);
3145 mac = mac_learning_lookup(ctx->xbridge->ml, flow->dl_dst, vlan);
3146 mac_port = mac ? mac_entry_get_port(ctx->xbridge->ml, mac) : NULL;
3147 ovs_rwlock_unlock(&ctx->xbridge->ml->rwlock);
3148
3149 if (mac_port) {
3150 struct xbundle *mac_xbundle = xbundle_lookup(ctx->xcfg, mac_port);
3151
3152 if (mac_xbundle && xbundle_mirror_out(ctx->xbridge, mac_xbundle)) {
3153 xlate_report(ctx, OFT_WARN,
3154 "learned port is a mirror port, dropping");
3155 return;
3156 }
3157
3158 if (mac_xbundle
3159 && mac_xbundle != in_xbundle
3160 && mac_xbundle->ofbundle != in_xbundle->ofbundle) {
3161 xlate_report(ctx, OFT_DETAIL, "forwarding to learned port");
3162 output_normal(ctx, mac_xbundle, &xvlan);
3163 } else if (!mac_xbundle) {
3164 xlate_report(ctx, OFT_WARN,
3165 "learned port is unknown, dropping");
3166 } else {
3167 xlate_report(ctx, OFT_DETAIL,
3168 "learned port is input port, dropping");
3169 }
3170 } else {
3171 xlate_report(ctx, OFT_DETAIL,
3172 "no learned MAC for destination, flooding");
3173 xlate_normal_flood(ctx, in_xbundle, &xvlan);
3174 }
3175 }
3176 }
3177
3178 /* Appends a "sample" action for sFlow or IPFIX to 'ctx->odp_actions'. The
3179 * 'probability' is the number of packets out of UINT32_MAX to sample. The
3180 * 'cookie' is passed back in the callback for each sampled packet.
3181 * 'tunnel_out_port', if not ODPP_NONE, is added as the
3182 * OVS_USERSPACE_ATTR_EGRESS_TUN_PORT attribute. If 'include_actions',
3183 * an OVS_USERSPACE_ATTR_ACTIONS attribute is added. If
3184 * 'emit_set_tunnel', sample(sampling_port=1) would translate into
3185 * datapath sample action set(tunnel(...)), sample(...) and it is used
3186 * for sampling egress tunnel information.
3187 */
3188 static size_t
3189 compose_sample_action(struct xlate_ctx *ctx,
3190 const uint32_t probability,
3191 const struct user_action_cookie *cookie,
3192 const odp_port_t tunnel_out_port,
3193 bool include_actions)
3194 {
3195 if (probability == 0) {
3196 /* No need to generate sampling or the inner action. */
3197 return 0;
3198 }
3199
3200 /* If the slow path meter is configured by the controller,
3201 * insert a meter action before the user space action. */
3202 struct ofproto *ofproto = &ctx->xin->ofproto->up;
3203 uint32_t meter_id = ofproto->slowpath_meter_id;
3204
3205 /* When meter action is not required, avoid generate sample action
3206 * for 100% sampling rate. */
3207 bool is_sample = probability < UINT32_MAX || meter_id != UINT32_MAX;
3208 size_t sample_offset = 0, actions_offset = 0;
3209 if (is_sample) {
3210 sample_offset = nl_msg_start_nested(ctx->odp_actions,
3211 OVS_ACTION_ATTR_SAMPLE);
3212 nl_msg_put_u32(ctx->odp_actions, OVS_SAMPLE_ATTR_PROBABILITY,
3213 probability);
3214 actions_offset = nl_msg_start_nested(ctx->odp_actions,
3215 OVS_SAMPLE_ATTR_ACTIONS);
3216 }
3217
3218 if (meter_id != UINT32_MAX) {
3219 nl_msg_put_u32(ctx->odp_actions, OVS_ACTION_ATTR_METER, meter_id);
3220 }
3221
3222 odp_port_t odp_port = ofp_port_to_odp_port(
3223 ctx->xbridge, ctx->xin->flow.in_port.ofp_port);
3224 uint32_t pid = dpif_port_get_pid(ctx->xbridge->dpif, odp_port);
3225 size_t cookie_offset = odp_put_userspace_action(pid, cookie,
3226 sizeof *cookie,
3227 tunnel_out_port,
3228 include_actions,
3229 ctx->odp_actions);
3230
3231 if (is_sample) {
3232 nl_msg_end_nested(ctx->odp_actions, actions_offset);
3233 nl_msg_end_nested(ctx->odp_actions, sample_offset);
3234 }
3235
3236 return cookie_offset;
3237 }
3238
3239 /* If sFLow is not enabled, returns 0 without doing anything.
3240 *
3241 * If sFlow is enabled, appends a template "sample" action to the ODP actions
3242 * in 'ctx'. This action is a template because some of the information needed
3243 * to fill it out is not available until flow translation is complete. In this
3244 * case, this functions returns an offset, which is always nonzero, to pass
3245 * later to fix_sflow_action() to fill in the rest of the template. */
3246 static size_t
3247 compose_sflow_action(struct xlate_ctx *ctx)
3248 {
3249 struct dpif_sflow *sflow = ctx->xbridge->sflow;
3250 if (!sflow || ctx->xin->flow.in_port.ofp_port == OFPP_NONE) {
3251 return 0;
3252 }
3253
3254 struct user_action_cookie cookie;
3255
3256 memset(&cookie, 0, sizeof cookie);
3257 cookie.type = USER_ACTION_COOKIE_SFLOW;
3258 cookie.ofp_in_port = ctx->xin->flow.in_port.ofp_port;
3259 cookie.ofproto_uuid = ctx->xbridge->ofproto->uuid;
3260
3261 return compose_sample_action(ctx, dpif_sflow_get_probability(sflow),
3262 &cookie, ODPP_NONE, true);
3263 }
3264
3265 /* If flow IPFIX is enabled, make sure IPFIX flow sample action
3266 * at egress point of tunnel port is just in front of corresponding
3267 * output action. If bridge IPFIX is enabled, this appends an IPFIX
3268 * sample action to 'ctx->odp_actions'. */
3269 static void
3270 compose_ipfix_action(struct xlate_ctx *ctx, odp_port_t output_odp_port)
3271 {
3272 struct dpif_ipfix *ipfix = ctx->xbridge->ipfix;
3273 odp_port_t tunnel_out_port = ODPP_NONE;
3274
3275 if (!ipfix || ctx->xin->flow.in_port.ofp_port == OFPP_NONE) {
3276 return;
3277 }
3278
3279 /* For input case, output_odp_port is ODPP_NONE, which is an invalid port
3280 * number. */
3281 if (output_odp_port == ODPP_NONE &&
3282 !dpif_ipfix_get_bridge_exporter_input_sampling(ipfix)) {
3283 return;
3284 }
3285
3286 /* For output case, output_odp_port is valid. */
3287 if (output_odp_port != ODPP_NONE) {
3288 if (!dpif_ipfix_get_bridge_exporter_output_sampling(ipfix)) {
3289 return;
3290 }
3291 /* If tunnel sampling is enabled, put an additional option attribute:
3292 * OVS_USERSPACE_ATTR_TUNNEL_OUT_PORT
3293 */
3294 if (dpif_ipfix_get_bridge_exporter_tunnel_sampling(ipfix) &&
3295 dpif_ipfix_is_tunnel_port(ipfix, output_odp_port) ) {
3296 tunnel_out_port = output_odp_port;
3297 }
3298 }
3299
3300 struct user_action_cookie cookie;
3301
3302 memset(&cookie, 0, sizeof cookie);
3303 cookie.type = USER_ACTION_COOKIE_IPFIX;
3304 cookie.ofp_in_port = ctx->xin->flow.in_port.ofp_port;
3305 cookie.ofproto_uuid = ctx->xbridge->ofproto->uuid;
3306 cookie.ipfix.output_odp_port = output_odp_port;
3307
3308 compose_sample_action(ctx,
3309 dpif_ipfix_get_bridge_exporter_probability(ipfix),
3310 &cookie, tunnel_out_port, false);
3311 }
3312
3313 /* Fix "sample" action according to data collected while composing ODP actions,
3314 * as described in compose_sflow_action().
3315 *
3316 * 'user_cookie_offset' must be the offset returned by
3317 * compose_sflow_action(). */
3318 static void
3319 fix_sflow_action(struct xlate_ctx *ctx, unsigned int user_cookie_offset)
3320 {
3321 const struct flow *base = &ctx->base_flow;
3322 struct user_action_cookie *cookie;
3323
3324 cookie = ofpbuf_at(ctx->odp_actions, user_cookie_offset, sizeof *cookie);
3325 ovs_assert(cookie->type == USER_ACTION_COOKIE_SFLOW);
3326
3327 cookie->sflow.vlan_tci = base->vlans[0].tci;
3328
3329 /* See http://www.sflow.org/sflow_version_5.txt (search for "Input/output
3330 * port information") for the interpretation of cookie->output. */
3331 switch (ctx->sflow_n_outputs) {
3332 case 0:
3333 /* 0x40000000 | 256 means "packet dropped for unknown reason". */
3334 cookie->sflow.output = 0x40000000 | 256;
3335 break;
3336
3337 case 1:
3338 cookie->sflow.output = dpif_sflow_odp_port_to_ifindex(
3339 ctx->xbridge->sflow, ctx->sflow_odp_port);
3340 if (cookie->sflow.output) {
3341 break;
3342 }
3343 /* Fall through. */
3344 default:
3345 /* 0x80000000 means "multiple output ports. */
3346 cookie->sflow.output = 0x80000000 | ctx->sflow_n_outputs;
3347 break;
3348 }
3349 }
3350
3351 static bool
3352 process_special(struct xlate_ctx *ctx, const struct xport *xport)
3353 {
3354 const struct flow *flow = &ctx->xin->flow;
3355 struct flow_wildcards *wc = ctx->wc;
3356 const struct xbridge *xbridge = ctx->xbridge;
3357 const struct dp_packet *packet = ctx->xin->packet;
3358 enum slow_path_reason slow;
3359 bool lacp_may_enable;
3360
3361 if (!xport) {
3362 slow = 0;
3363 } else if (xport->cfm && cfm_should_process_flow(xport->cfm, flow, wc)) {
3364 if (packet) {
3365 cfm_process_heartbeat(xport->cfm, packet);
3366 }
3367 slow = SLOW_CFM;
3368 } else if (xport->bfd && bfd_should_process_flow(xport->bfd, flow, wc)) {
3369 if (packet) {
3370 bfd_process_packet(xport->bfd, flow, packet);
3371 /* If POLL received, immediately sends FINAL back. */
3372 if (bfd_should_send_packet(xport->bfd)) {
3373 ofproto_dpif_monitor_port_send_soon(xport->ofport);
3374 }
3375 }
3376 slow = SLOW_BFD;
3377 } else if (xport->xbundle && xport->xbundle->lacp
3378 && flow->dl_type == htons(ETH_TYPE_LACP)) {
3379 if (packet) {
3380 lacp_may_enable = lacp_process_packet(xport->xbundle->lacp,
3381 xport->ofport, packet);
3382 /* Update LACP status in bond-slave to avoid packet-drops until
3383 * LACP state machine is run by the main thread. */
3384 if (xport->xbundle->bond && lacp_may_enable) {
3385 bond_slave_set_may_enable(xport->xbundle->bond, xport->ofport,
3386 lacp_may_enable);
3387 }
3388 }
3389 slow = SLOW_LACP;
3390 } else if ((xbridge->stp || xbridge->rstp) &&
3391 stp_should_process_flow(flow, wc)) {
3392 if (packet) {
3393 xbridge->stp
3394 ? stp_process_packet(xport, packet)
3395 : rstp_process_packet(xport, packet);
3396 }
3397 slow = SLOW_STP;
3398 } else if (xport->lldp && lldp_should_process_flow(xport->lldp, flow)) {
3399 if (packet) {
3400 lldp_process_packet(xport->lldp, packet);
3401 }
3402 slow = SLOW_LLDP;
3403 } else {
3404 slow = 0;
3405 }
3406
3407 if (slow) {
3408 ctx->xout->slow |= slow;
3409 return true;
3410 } else {
3411 return false;
3412 }
3413 }
3414
3415 static int
3416 tnl_route_lookup_flow(const struct xlate_ctx *ctx,
3417 const struct flow *oflow,
3418 struct in6_addr *ip, struct in6_addr *src,
3419 struct xport **out_port)
3420 {
3421 char out_dev[IFNAMSIZ];
3422 struct xbridge *xbridge;
3423 struct in6_addr gw;
3424 struct in6_addr dst;
3425
3426 dst = flow_tnl_dst(&oflow->tunnel);
3427 if (!ovs_router_lookup(oflow->pkt_mark, &dst, out_dev, src, &gw)) {
3428 return -ENOENT;
3429 }
3430
3431 if (ipv6_addr_is_set(&gw) &&
3432 (!IN6_IS_ADDR_V4MAPPED(&gw) || in6_addr_get_mapped_ipv4(&gw))) {
3433 *ip = gw;
3434 } else {
3435 *ip = dst;
3436 }
3437
3438 HMAP_FOR_EACH (xbridge, hmap_node, &ctx->xcfg->xbridges) {
3439 if (!strncmp(xbridge->name, out_dev, IFNAMSIZ)) {
3440 struct xport *port;
3441
3442 HMAP_FOR_EACH (port, ofp_node, &xbridge->xports) {
3443 if (!strncmp(netdev_get_name(port->netdev), out_dev, IFNAMSIZ)) {
3444 *out_port = port;
3445 return 0;
3446 }
3447 }
3448 }
3449 }
3450
3451 /* If tunnel IP isn't configured on bridges, then we search all ports. */
3452 HMAP_FOR_EACH (xbridge, hmap_node, &ctx->xcfg->xbridges) {
3453 struct xport *port;
3454
3455 HMAP_FOR_EACH (port, ofp_node, &xbridge->xports) {
3456 if (!strncmp(netdev_get_name(port->netdev),
3457 out_dev, IFNAMSIZ)) {
3458 *out_port = port;
3459 return 0;
3460 }
3461 }
3462 }
3463 return -ENOENT;
3464 }
3465
3466 static int
3467 compose_table_xlate(struct xlate_ctx *ctx, const struct xport *out_dev,
3468 struct dp_packet *packet)
3469 {
3470 struct xbridge *xbridge = out_dev->xbridge;
3471 ovs_version_t version = ofproto_dpif_get_tables_version(xbridge->ofproto);
3472 struct ofpact_output output;
3473 struct flow flow;
3474
3475 ofpact_init(&output.ofpact, OFPACT_OUTPUT, sizeof output);
3476 flow_extract(packet, &flow);
3477 flow.in_port.ofp_port = out_dev->ofp_port;
3478 output.port = OFPP_TABLE;
3479 output.max_len = 0;
3480
3481 return ofproto_dpif_execute_actions__(xbridge->ofproto, version, &flow,
3482 NULL, &output.ofpact, sizeof output,
3483 ctx->depth, ctx->resubmits, packet);
3484 }
3485
3486 static void
3487 tnl_send_nd_request(struct xlate_ctx *ctx, const struct xport *out_dev,
3488 const struct eth_addr eth_src,
3489 struct in6_addr * ipv6_src, struct in6_addr * ipv6_dst)
3490 {
3491 struct dp_packet packet;
3492
3493 dp_packet_init(&packet, 0);
3494 compose_nd_ns(&packet, eth_src, ipv6_src, ipv6_dst);
3495 compose_table_xlate(ctx, out_dev, &packet);
3496 dp_packet_uninit(&packet);
3497 }
3498
3499 static void
3500 tnl_send_arp_request(struct xlate_ctx *ctx, const struct xport *out_dev,
3501 const struct eth_addr eth_src,
3502 ovs_be32 ip_src, ovs_be32 ip_dst)
3503 {
3504 struct dp_packet packet;
3505
3506 dp_packet_init(&packet, 0);
3507 compose_arp(&packet, ARP_OP_REQUEST,
3508 eth_src, eth_addr_zero, true, ip_src, ip_dst);
3509
3510 compose_table_xlate(ctx, out_dev, &packet);
3511 dp_packet_uninit(&packet);
3512 }
3513
3514 static void
3515 propagate_tunnel_data_to_flow__(struct flow *dst_flow,
3516 const struct flow *src_flow,
3517 struct eth_addr dmac, struct eth_addr smac,
3518 struct in6_addr s_ip6, ovs_be32 s_ip,
3519 bool is_tnl_ipv6, uint8_t nw_proto)
3520 {
3521 dst_flow->dl_dst = dmac;
3522 dst_flow->dl_src = smac;
3523
3524 dst_flow->packet_type = htonl(PT_ETH);
3525 dst_flow->nw_dst = src_flow->tunnel.ip_dst;
3526 dst_flow->nw_src = src_flow->tunnel.ip_src;
3527 dst_flow->ipv6_dst = src_flow->tunnel.ipv6_dst;
3528 dst_flow->ipv6_src = src_flow->tunnel.ipv6_src;
3529
3530 dst_flow->nw_frag = 0; /* Tunnel packets are unfragmented. */
3531 dst_flow->nw_tos = src_flow->tunnel.ip_tos;
3532 dst_flow->nw_ttl = src_flow->tunnel.ip_ttl;
3533 dst_flow->tp_dst = src_flow->tunnel.tp_dst;
3534 dst_flow->tp_src = src_flow->tunnel.tp_src;
3535
3536 if (is_tnl_ipv6) {
3537 dst_flow->dl_type = htons(ETH_TYPE_IPV6);
3538 if (ipv6_mask_is_any(&dst_flow->ipv6_src)
3539 && !ipv6_mask_is_any(&s_ip6)) {
3540 dst_flow->ipv6_src = s_ip6;
3541 }
3542 } else {
3543 dst_flow->dl_type = htons(ETH_TYPE_IP);
3544 if (dst_flow->nw_src == 0 && s_ip) {
3545 dst_flow->nw_src = s_ip;
3546 }
3547 }
3548 dst_flow->nw_proto = nw_proto;
3549 }
3550
3551 /*
3552 * Populate the 'flow' and 'base_flow' L3 fields to do the post tunnel push
3553 * translations.
3554 */
3555 static void
3556 propagate_tunnel_data_to_flow(struct xlate_ctx *ctx, struct eth_addr dmac,
3557 struct eth_addr smac, struct in6_addr s_ip6,
3558 ovs_be32 s_ip, bool is_tnl_ipv6,
3559 enum ovs_vport_type tnl_type)
3560 {
3561 struct flow *base_flow, *flow;
3562 flow = &ctx->xin->flow;
3563 base_flow = &ctx->base_flow;
3564 uint8_t nw_proto = 0;
3565
3566 switch (tnl_type) {
3567 case OVS_VPORT_TYPE_GRE:
3568 case OVS_VPORT_TYPE_ERSPAN:
3569 case OVS_VPORT_TYPE_IP6ERSPAN:
3570 case OVS_VPORT_TYPE_IP6GRE:
3571 nw_proto = IPPROTO_GRE;
3572 break;
3573 case OVS_VPORT_TYPE_VXLAN:
3574 case OVS_VPORT_TYPE_GENEVE:
3575 case OVS_VPORT_TYPE_GTPU:
3576 nw_proto = IPPROTO_UDP;
3577 break;
3578 case OVS_VPORT_TYPE_LISP:
3579 case OVS_VPORT_TYPE_STT:
3580 case OVS_VPORT_TYPE_UNSPEC:
3581 case OVS_VPORT_TYPE_NETDEV:
3582 case OVS_VPORT_TYPE_INTERNAL:
3583 case __OVS_VPORT_TYPE_MAX:
3584 default:
3585 OVS_NOT_REACHED();
3586 }
3587 /*
3588 * Update base_flow first followed by flow as the dst_flow gets modified
3589 * in the function.
3590 */
3591 propagate_tunnel_data_to_flow__(base_flow, flow, dmac, smac, s_ip6, s_ip,
3592 is_tnl_ipv6, nw_proto);
3593 propagate_tunnel_data_to_flow__(flow, flow, dmac, smac, s_ip6, s_ip,
3594 is_tnl_ipv6, nw_proto);
3595 }
3596
3597 static int
3598 native_tunnel_output(struct xlate_ctx *ctx, const struct xport *xport,
3599 const struct flow *flow, odp_port_t tunnel_odp_port,
3600 bool truncate)
3601 {
3602 struct netdev_tnl_build_header_params tnl_params;
3603 struct ovs_action_push_tnl tnl_push_data;
3604 struct xport *out_dev = NULL;
3605 ovs_be32 s_ip = 0, d_ip = 0;
3606 struct in6_addr s_ip6 = in6addr_any;
3607 struct in6_addr d_ip6 = in6addr_any;
3608 struct eth_addr smac;
3609 struct eth_addr dmac;
3610 int err;
3611 char buf_sip6[INET6_ADDRSTRLEN];
3612 char buf_dip6[INET6_ADDRSTRLEN];
3613
3614 /* Store sFlow data. */
3615 uint32_t sflow_n_outputs = ctx->sflow_n_outputs;
3616
3617 /* Structures to backup Ethernet and IP of base_flow. */
3618 struct flow old_base_flow;
3619 struct flow old_flow;
3620
3621 /* Backup flow & base_flow data. */
3622 memcpy(&old_base_flow, &ctx->base_flow, sizeof old_base_flow);
3623 memcpy(&old_flow, &ctx->xin->flow, sizeof old_flow);
3624
3625 if (flow->tunnel.ip_src) {
3626 in6_addr_set_mapped_ipv4(&s_ip6, flow->tunnel.ip_src);
3627 }
3628
3629 err = tnl_route_lookup_flow(ctx, flow, &d_ip6, &s_ip6, &out_dev);
3630 if (err) {
3631 xlate_report(ctx, OFT_WARN, "native tunnel routing failed");
3632 return err;
3633 }
3634
3635 xlate_report(ctx, OFT_DETAIL, "tunneling to %s via %s",
3636 ipv6_string_mapped(buf_dip6, &d_ip6),
3637 netdev_get_name(out_dev->netdev));
3638
3639 /* Use mac addr of bridge port of the peer. */
3640 err = netdev_get_etheraddr(out_dev->netdev, &smac);
3641 if (err) {
3642 xlate_report(ctx, OFT_WARN,
3643 "tunnel output device lacks Ethernet address");
3644 return err;
3645 }
3646
3647 d_ip = in6_addr_get_mapped_ipv4(&d_ip6);
3648 if (d_ip) {
3649 s_ip = in6_addr_get_mapped_ipv4(&s_ip6);
3650 }
3651
3652 err = tnl_neigh_lookup(out_dev->xbridge->name, &d_ip6, &dmac);
3653 if (err) {
3654 xlate_report(ctx, OFT_DETAIL,
3655 "neighbor cache miss for %s on bridge %s, "
3656 "sending %s request",
3657 buf_dip6, out_dev->xbridge->name, d_ip ? "ARP" : "ND");
3658 if (d_ip) {
3659 tnl_send_arp_request(ctx, out_dev, smac, s_ip, d_ip);
3660 } else {
3661 tnl_send_nd_request(ctx, out_dev, smac, &s_ip6, &d_ip6);
3662 }
3663 return err;
3664 }
3665
3666 if (ctx->xin->xcache) {
3667 struct xc_entry *entry;
3668
3669 entry = xlate_cache_add_entry(ctx->xin->xcache, XC_TNL_NEIGH);
3670 ovs_strlcpy(entry->tnl_neigh_cache.br_name, out_dev->xbridge->name,
3671 sizeof entry->tnl_neigh_cache.br_name);
3672 entry->tnl_neigh_cache.d_ipv6 = d_ip6;
3673 }
3674
3675 xlate_report(ctx, OFT_DETAIL, "tunneling from "ETH_ADDR_FMT" %s"
3676 " to "ETH_ADDR_FMT" %s",
3677 ETH_ADDR_ARGS(smac), ipv6_string_mapped(buf_sip6, &s_ip6),
3678 ETH_ADDR_ARGS(dmac), buf_dip6);
3679
3680 netdev_init_tnl_build_header_params(&tnl_params, flow, &s_ip6, dmac, smac);
3681 err = tnl_port_build_header(xport->ofport, &tnl_push_data, &tnl_params);
3682 if (err) {
3683 return err;
3684 }
3685 tnl_push_data.tnl_port = tunnel_odp_port;
3686 tnl_push_data.out_port = out_dev->odp_port;
3687
3688 /* After tunnel header has been added, MAC and IP data of flow and
3689 * base_flow need to be set properly, since there is not recirculation
3690 * any more when sending packet to tunnel. */
3691
3692 propagate_tunnel_data_to_flow(ctx, dmac, smac, s_ip6,
3693 s_ip, tnl_params.is_ipv6,
3694 tnl_push_data.tnl_type);
3695
3696 size_t clone_ofs = 0;
3697 size_t push_action_size;
3698
3699 clone_ofs = nl_msg_start_nested(ctx->odp_actions, OVS_ACTION_ATTR_CLONE);
3700 odp_put_tnl_push_action(ctx->odp_actions, &tnl_push_data);
3701 push_action_size = ctx->odp_actions->size;
3702
3703 if (!truncate) {
3704 const struct dpif_flow_stats *backup_resubmit_stats;
3705 struct xlate_cache *backup_xcache;
3706 struct flow_wildcards *backup_wc, wc;
3707 bool backup_side_effects;
3708 const struct dp_packet *backup_packet;
3709
3710 memset(&wc, 0 , sizeof wc);
3711 backup_wc = ctx->wc;
3712 ctx->wc = &wc;
3713 ctx->xin->wc = NULL;
3714 backup_resubmit_stats = ctx->xin->resubmit_stats;
3715 backup_xcache = ctx->xin->xcache;
3716 backup_side_effects = ctx->xin->allow_side_effects;
3717 backup_packet = ctx->xin->packet;
3718
3719 ctx->xin->resubmit_stats = NULL;
3720 ctx->xin->xcache = xlate_cache_new(); /* Use new temporary cache. */
3721 ctx->xin->allow_side_effects = false;
3722 ctx->xin->packet = NULL;
3723
3724 /* Push the cache entry for the tunnel first. */
3725 struct xc_entry *entry;
3726 entry = xlate_cache_add_entry(ctx->xin->xcache, XC_TUNNEL_HEADER);
3727 entry->tunnel_hdr.hdr_size = tnl_push_data.header_len;
3728 entry->tunnel_hdr.operation = ADD;
3729
3730 patch_port_output(ctx, xport, out_dev);
3731
3732 /* Similar to the stats update in revalidation, the x_cache entries
3733 * are populated by the previous translation are used to update the
3734 * stats correctly.
3735 */
3736 if (backup_resubmit_stats) {
3737 struct dpif_flow_stats stats = *backup_resubmit_stats;
3738 xlate_push_stats(ctx->xin->xcache, &stats, false);
3739 }
3740 xlate_cache_steal_entries(backup_xcache, ctx->xin->xcache);
3741
3742 if (ctx->odp_actions->size > push_action_size) {
3743 nl_msg_end_non_empty_nested(ctx->odp_actions, clone_ofs);
3744 } else {
3745 nl_msg_cancel_nested(ctx->odp_actions, clone_ofs);
3746 }
3747
3748 /* Restore context status. */
3749 ctx->xin->resubmit_stats = backup_resubmit_stats;
3750 xlate_cache_delete(ctx->xin->xcache);
3751 ctx->xin->xcache = backup_xcache;
3752 ctx->xin->allow_side_effects = backup_side_effects;
3753 ctx->xin->packet = backup_packet;
3754 ctx->wc = backup_wc;
3755 } else {
3756 /* In order to maintain accurate stats, use recirc for
3757 * natvie tunneling. */
3758 nl_msg_put_u32(ctx->odp_actions, OVS_ACTION_ATTR_RECIRC, 0);
3759 nl_msg_end_nested(ctx->odp_actions, clone_ofs);
3760 }
3761
3762 /* Restore the flows after the translation. */
3763 memcpy(&ctx->xin->flow, &old_flow, sizeof ctx->xin->flow);
3764 memcpy(&ctx->base_flow, &old_base_flow, sizeof ctx->base_flow);
3765
3766 /* Restore sFlow data. */
3767 ctx->sflow_n_outputs = sflow_n_outputs;
3768
3769 return 0;
3770 }
3771
3772 static void
3773 xlate_commit_actions(struct xlate_ctx *ctx)
3774 {
3775 bool use_masked = ctx->xbridge->support.masked_set_action;
3776
3777 ctx->xout->slow |= commit_odp_actions(&ctx->xin->flow, &ctx->base_flow,
3778 ctx->odp_actions, ctx->wc,
3779 use_masked, ctx->pending_encap,
3780 ctx->pending_decap, ctx->encap_data);
3781 ctx->pending_encap = false;
3782 ctx->pending_decap = false;
3783 ofpbuf_delete(ctx->encap_data);
3784 ctx->encap_data = NULL;
3785 }
3786
3787 static void
3788 clear_conntrack(struct xlate_ctx *ctx)
3789 {
3790 ctx->conntracked = false;
3791 flow_clear_conntrack(&ctx->xin->flow);
3792 }
3793
3794 static bool
3795 xlate_flow_is_protected(const struct xlate_ctx *ctx, const struct flow *flow, const struct xport *xport_out)
3796 {
3797 const struct xport *xport_in;
3798
3799 if (!xport_out) {
3800 return false;
3801 }
3802
3803 xport_in = get_ofp_port(ctx->xbridge, flow->in_port.ofp_port);
3804
3805 return (xport_in && xport_in->xbundle && xport_out->xbundle &&
3806 xport_in->xbundle->protected && xport_out->xbundle->protected);
3807 }
3808
3809 /* Function handles when a packet is sent from one bridge to another bridge.
3810 *
3811 * The bridges are internally connected, either with patch ports or with
3812 * tunnel ports.
3813 *
3814 * The output action to another bridge causes translation to continue within
3815 * the next bridge. This process can be recursive; the next bridge can
3816 * output yet to another bridge.
3817 *
3818 * The translated actions from the second bridge onwards are enclosed within
3819 * the clone action, so that any modification to the packet will not be visible
3820 * to the remaining actions of the originating bridge.
3821 */
3822 static void
3823 patch_port_output(struct xlate_ctx *ctx, const struct xport *in_dev,
3824 struct xport *out_dev)
3825 {
3826 struct flow *flow = &ctx->xin->flow;
3827 struct flow old_flow = ctx->xin->flow;
3828 struct flow_tnl old_flow_tnl_wc = ctx->wc->masks.tunnel;
3829 bool old_conntrack = ctx->conntracked;
3830 bool old_was_mpls = ctx->was_mpls;
3831 ovs_version_t old_version = ctx->xin->tables_version;
3832 struct ofpbuf old_stack = ctx->stack;
3833 uint8_t new_stack[1024];
3834 struct ofpbuf old_action_set = ctx->action_set;
3835 struct ovs_list *old_trace = ctx->xin->trace;
3836 uint64_t actset_stub[1024 / 8];
3837
3838 ofpbuf_use_stub(&ctx->stack, new_stack, sizeof new_stack);
3839 ofpbuf_use_stub(&ctx->action_set, actset_stub, sizeof actset_stub);
3840 flow->in_port.ofp_port = out_dev->ofp_port;
3841 flow->metadata = htonll(0);
3842 memset(&flow->tunnel, 0, sizeof flow->tunnel);
3843 memset(&ctx->wc->masks.tunnel, 0, sizeof ctx->wc->masks.tunnel);
3844 flow->tunnel.metadata.tab =
3845 ofproto_get_tun_tab(&out_dev->xbridge->ofproto->up);
3846 ctx->wc->masks.tunnel.metadata.tab = flow->tunnel.metadata.tab;
3847 memset(flow->regs, 0, sizeof flow->regs);
3848 flow->actset_output = OFPP_UNSET;
3849 clear_conntrack(ctx);
3850 ctx->xin->trace = xlate_report(ctx, OFT_BRIDGE, "bridge(\"%s\")",
3851 out_dev->xbridge->name);
3852 mirror_mask_t old_mirrors = ctx->mirrors;
3853 bool independent_mirrors = out_dev->xbridge != ctx->xbridge;
3854 if (independent_mirrors) {
3855 ctx->mirrors = 0;
3856 }
3857 ctx->xbridge = out_dev->xbridge;
3858
3859 /* The bridge is now known so obtain its table version. */
3860 ctx->xin->tables_version
3861 = ofproto_dpif_get_tables_version(ctx->xbridge->ofproto);
3862
3863 if (!process_special(ctx, out_dev) && may_receive(out_dev, ctx)) {
3864 if (xport_stp_forward_state(out_dev) &&
3865 xport_rstp_forward_state(out_dev)) {
3866 xlate_table_action(ctx, flow->in_port.ofp_port, 0, true, true,
3867 false, true, clone_xlate_actions);
3868 if (!ctx->freezing) {
3869 xlate_action_set(ctx);
3870 }
3871 if (ctx->freezing) {
3872 finish_freezing(ctx);
3873 }
3874 } else {
3875 /* Forwarding is disabled by STP and RSTP. Let OFPP_NORMAL and
3876 * the learning action look at the packet, then drop it. */
3877 struct flow old_base_flow = ctx->base_flow;
3878 size_t old_size = ctx->odp_actions->size;
3879 mirror_mask_t old_mirrors2 = ctx->mirrors;
3880
3881 xlate_table_action(ctx, flow->in_port.ofp_port, 0, true, true,
3882 false, true, clone_xlate_actions);
3883 ctx->mirrors = old_mirrors2;
3884 ctx->base_flow = old_base_flow;
3885 ctx->odp_actions->size = old_size;
3886
3887 /* Undo changes that may have been done for freezing. */
3888 ctx_cancel_freeze(ctx);
3889 }
3890 }
3891
3892 ctx->xin->trace = old_trace;
3893 if (independent_mirrors) {
3894 ctx->mirrors = old_mirrors;
3895 }
3896 ctx->xin->flow = old_flow;
3897 ctx->xbridge = in_dev->xbridge;
3898 ofpbuf_uninit(&ctx->action_set);
3899 ctx->action_set = old_action_set;
3900 ofpbuf_uninit(&ctx->stack);
3901 ctx->stack = old_stack;
3902
3903 /* Restore calling bridge's lookup version. */
3904 ctx->xin->tables_version = old_version;
3905
3906 /* Restore to calling bridge tunneling information */
3907 ctx->wc->masks.tunnel = old_flow_tnl_wc;
3908
3909 /* The out bridge popping MPLS should have no effect on the original
3910 * bridge. */
3911 ctx->was_mpls = old_was_mpls;
3912
3913 /* The out bridge's conntrack execution should have no effect on the
3914 * original bridge. */
3915 ctx->conntracked = old_conntrack;
3916
3917 /* The fact that the out bridge exits (for any reason) does not mean
3918 * that the original bridge should exit. Specifically, if the out
3919 * bridge freezes translation, the original bridge must continue
3920 * processing with the original, not the frozen packet! */
3921 ctx->exit = false;
3922
3923 /* Out bridge errors do not propagate back. */
3924 ctx->error = XLATE_OK;
3925
3926 if (ctx->xin->resubmit_stats) {
3927 netdev_vport_inc_tx(in_dev->netdev, ctx->xin->resubmit_stats);
3928 netdev_vport_inc_rx(out_dev->netdev, ctx->xin->resubmit_stats);
3929 if (out_dev->bfd) {
3930 bfd_account_rx(out_dev->bfd, ctx->xin->resubmit_stats);
3931 }
3932 }
3933 if (ctx->xin->xcache) {
3934 struct xc_entry *entry;
3935
3936 entry = xlate_cache_add_entry(ctx->xin->xcache, XC_NETDEV);
3937 entry->dev.tx = netdev_ref(in_dev->netdev);
3938 entry->dev.rx = netdev_ref(out_dev->netdev);
3939 entry->dev.bfd = bfd_ref(out_dev->bfd);
3940 }
3941 }
3942
3943 static bool
3944 check_output_prerequisites(struct xlate_ctx *ctx,
3945 const struct xport *xport,
3946 struct flow *flow,
3947 bool check_stp)
3948 {
3949 struct flow_wildcards *wc = ctx->wc;
3950
3951 if (!xport) {
3952 xlate_report(ctx, OFT_WARN, "Nonexistent output port");
3953 return false;
3954 } else if (xport->config & OFPUTIL_PC_NO_FWD) {
3955 xlate_report(ctx, OFT_DETAIL, "OFPPC_NO_FWD set, skipping output");
3956 return false;
3957 } else if (ctx->mirror_snaplen != 0 && xport->odp_port == ODPP_NONE) {
3958 xlate_report(ctx, OFT_WARN,
3959 "Mirror truncate to ODPP_NONE, skipping output");
3960 return false;
3961 } else if (xlate_flow_is_protected(ctx, flow, xport)) {
3962 xlate_report(ctx, OFT_WARN,
3963 "Flow is between protected ports, skipping output.");
3964 return false;
3965 } else if (check_stp) {
3966 if (is_stp(&ctx->base_flow)) {
3967 if (!xport_stp_should_forward_bpdu(xport) &&
3968 !xport_rstp_should_manage_bpdu(xport)) {
3969 if (ctx->xbridge->stp != NULL) {
3970 xlate_report(ctx, OFT_WARN,
3971 "STP not in listening state, "
3972 "skipping bpdu output");
3973 } else if (ctx->xbridge->rstp != NULL) {
3974 xlate_report(ctx, OFT_WARN,
3975 "RSTP not managing BPDU in this state, "
3976 "skipping bpdu output");
3977 }
3978 return false;
3979 }
3980 } else if ((xport->cfm && cfm_should_process_flow(xport->cfm, flow, wc))
3981 || (xport->bfd && bfd_should_process_flow(xport->bfd, flow,
3982 wc))) {
3983 /* Pass; STP should not block link health detection. */
3984 } else if (!xport_stp_forward_state(xport) ||
3985 !xport_rstp_forward_state(xport)) {
3986 if (ctx->xbridge->stp != NULL) {
3987 xlate_report(ctx, OFT_WARN,
3988 "STP not in forwarding state, skipping output");
3989 } else if (ctx->xbridge->rstp != NULL) {
3990 xlate_report(ctx, OFT_WARN,
3991 "RSTP not in forwarding state, skipping output");
3992 }
3993 return false;
3994 }
3995 }
3996
3997 if (xport->pt_mode == NETDEV_PT_LEGACY_L2 &&
3998 flow->packet_type != htonl(PT_ETH)) {
3999 xlate_report(ctx, OFT_WARN, "Trying to send non-Ethernet packet "
4000 "through legacy L2 port. Dropping packet.");
4001 return false;
4002 }
4003
4004 return true;
4005 }
4006
4007 /* Function verifies if destination address of received Neighbor Advertisement
4008 * message stored in 'flow' is correct. It should be either FF02::1:FFXX:XXXX
4009 * where XX:XXXX stands for the last 24 bits of 'ipv6_addr' or it should match
4010 * 'ipv6_addr'. */
4011 static bool
4012 is_nd_dst_correct(const struct flow *flow, const struct in6_addr *ipv6_addr)
4013 {
4014 const uint8_t *flow_ipv6_addr = (uint8_t *) &flow->ipv6_dst;
4015 const uint8_t *addr = (uint8_t *) ipv6_addr;
4016
4017 return (IN6_IS_ADDR_MC_LINKLOCAL(&flow->ipv6_dst) &&
4018 flow_ipv6_addr[11] == 0x01 &&
4019 flow_ipv6_addr[12] == 0xff &&
4020 flow_ipv6_addr[13] == addr[13] &&
4021 flow_ipv6_addr[14] == addr[14] &&
4022 flow_ipv6_addr[15] == addr[15]) ||
4023 IN6_ARE_ADDR_EQUAL(&flow->ipv6_dst, ipv6_addr);
4024 }
4025
4026 static bool
4027 is_neighbor_reply_matched(const struct flow *flow, struct in6_addr *ip_addr)
4028 {
4029 return ((IN6_IS_ADDR_V4MAPPED(ip_addr) &&
4030 flow->dl_type == htons(ETH_TYPE_ARP) &&
4031 in6_addr_get_mapped_ipv4(ip_addr) == flow->nw_dst) ||
4032 (!IN6_IS_ADDR_V4MAPPED(ip_addr) &&
4033 is_nd_dst_correct(flow, ip_addr)));
4034 }
4035
4036 /* Function verifies if the ARP reply or Neighbor Advertisement represented by
4037 * 'flow' addresses the 'xbridge' of 'ctx'. Returns true if the ARP TA or
4038 * neighbor discovery destination is in the list of configured IP addresses of
4039 * the bridge. Otherwise, it returns false. */
4040 static bool
4041 is_neighbor_reply_correct(const struct xlate_ctx *ctx, const struct flow *flow)
4042 {
4043 bool ret = false;
4044 int i;
4045 struct xbridge_addr *xbridge_addr = xbridge_addr_ref(ctx->xbridge->addr);
4046
4047 /* Verify if 'nw_dst' of ARP or 'ipv6_dst' of ICMPV6 is in the list. */
4048 for (i = 0; xbridge_addr && i < xbridge_addr->n_addr; i++) {
4049 struct in6_addr *ip_addr = &xbridge_addr->addr[i];
4050 if (is_neighbor_reply_matched(flow, ip_addr)) {
4051 /* Found a match. */
4052 ret = true;
4053 break;
4054 }
4055 }
4056
4057 xbridge_addr_unref(xbridge_addr);
4058
4059 /* If not found in bridge's IPs, search in its ports. */
4060 if (!ret) {
4061 struct in6_addr *ip_addr, *mask;
4062 struct xport *port;
4063 int error, n_in6;
4064
4065 HMAP_FOR_EACH (port, ofp_node, &ctx->xbridge->xports) {
4066 error = netdev_get_addr_list(port->netdev, &ip_addr,
4067 &mask, &n_in6);
4068 if (!error) {
4069 ret = is_neighbor_reply_matched(flow, ip_addr);
4070 free(ip_addr);
4071 free(mask);
4072 if (ret) {
4073 /* Found a match. */
4074 break;
4075 }
4076 }
4077 }
4078 }
4079 return ret;
4080 }
4081
4082 static bool
4083 terminate_native_tunnel(struct xlate_ctx *ctx, struct flow *flow,
4084 struct flow_wildcards *wc, odp_port_t *tnl_port)
4085 {
4086 *tnl_port = ODPP_NONE;
4087
4088 /* XXX: Write better Filter for tunnel port. We can use in_port
4089 * in tunnel-port flow to avoid these checks completely. */
4090 if (ovs_native_tunneling_is_on(ctx->xbridge->ofproto)) {
4091 *tnl_port = tnl_port_map_lookup(flow, wc);
4092
4093 /* If no tunnel port was found and it's about an ARP or ICMPv6 packet,
4094 * do tunnel neighbor snooping. */
4095 if (*tnl_port == ODPP_NONE &&
4096 (flow->dl_type == htons(ETH_TYPE_ARP) ||
4097 flow->nw_proto == IPPROTO_ICMPV6) &&
4098 is_neighbor_reply_correct(ctx, flow)) {
4099 tnl_neigh_snoop(flow, wc, ctx->xbridge->name);
4100 }
4101 }
4102
4103 return *tnl_port != ODPP_NONE;
4104 }
4105
4106 static void
4107 compose_output_action__(struct xlate_ctx *ctx, ofp_port_t ofp_port,
4108 const struct xlate_bond_recirc *xr, bool check_stp,
4109 bool is_last_action OVS_UNUSED, bool truncate)
4110 {
4111 const struct xport *xport = get_ofp_port(ctx->xbridge, ofp_port);
4112 struct flow_wildcards *wc = ctx->wc;
4113 struct flow *flow = &ctx->xin->flow;
4114 struct flow_tnl flow_tnl;
4115 union flow_vlan_hdr flow_vlans[FLOW_MAX_VLAN_HEADERS];
4116 uint8_t flow_nw_tos;
4117 odp_port_t out_port, odp_port, odp_tnl_port;
4118 bool is_native_tunnel = false;
4119 uint8_t dscp;
4120 struct eth_addr flow_dl_dst = flow->dl_dst;
4121 struct eth_addr flow_dl_src = flow->dl_src;
4122 ovs_be32 flow_packet_type = flow->packet_type;
4123 ovs_be16 flow_dl_type = flow->dl_type;
4124
4125 /* If 'struct flow' gets additional metadata, we'll need to zero it out
4126 * before traversing a patch port. */
4127 BUILD_ASSERT_DECL(FLOW_WC_SEQ == 42);
4128 memset(&flow_tnl, 0, sizeof flow_tnl);
4129
4130 if (!check_output_prerequisites(ctx, xport, flow, check_stp)) {
4131 return;
4132 }
4133
4134 if (flow->packet_type == htonl(PT_ETH)) {
4135 /* Strip Ethernet header for legacy L3 port. */
4136 if (xport->pt_mode == NETDEV_PT_LEGACY_L3) {
4137 flow->packet_type = PACKET_TYPE_BE(OFPHTN_ETHERTYPE,
4138 ntohs(flow->dl_type));
4139 }
4140 }
4141
4142 if (xport->peer) {
4143 if (truncate) {
4144 xlate_report_error(ctx, "Cannot truncate output to patch port");
4145 }
4146 patch_port_output(ctx, xport, xport->peer);
4147 return;
4148 }
4149
4150 memcpy(flow_vlans, flow->vlans, sizeof flow_vlans);
4151 flow_nw_tos = flow->nw_tos;
4152
4153 if (count_skb_priorities(xport)) {
4154 memset(&wc->masks.skb_priority, 0xff, sizeof wc->masks.skb_priority);
4155 if (dscp_from_skb_priority(xport, flow->skb_priority, &dscp)) {
4156 wc->masks.nw_tos |= IP_DSCP_MASK;
4157 flow->nw_tos &= ~IP_DSCP_MASK;
4158 flow->nw_tos |= dscp;
4159 }
4160 }
4161
4162 if (xport->is_tunnel) {
4163 struct in6_addr dst;
4164 /* Save tunnel metadata so that changes made due to
4165 * the Logical (tunnel) Port are not visible for any further
4166 * matches, while explicit set actions on tunnel metadata are.
4167 */
4168 flow_tnl = flow->tunnel;
4169 odp_port = tnl_port_send(xport->ofport, flow, ctx->wc);
4170 if (odp_port == ODPP_NONE) {
4171 xlate_report(ctx, OFT_WARN, "Tunneling decided against output");
4172 goto out; /* restore flow_nw_tos */
4173 }
4174 dst = flow_tnl_dst(&flow->tunnel);
4175 if (ipv6_addr_equals(&dst, &ctx->orig_tunnel_ipv6_dst)) {
4176 xlate_report(ctx, OFT_WARN, "Not tunneling to our own address");
4177 goto out; /* restore flow_nw_tos */
4178 }
4179 if (ctx->xin->resubmit_stats) {
4180 netdev_vport_inc_tx(xport->netdev, ctx->xin->resubmit_stats);
4181 }
4182 if (ctx->xin->xcache) {
4183 struct xc_entry *entry;
4184
4185 entry = xlate_cache_add_entry(ctx->xin->xcache, XC_NETDEV);
4186 entry->dev.tx = netdev_ref(xport->netdev);
4187 }
4188 out_port = odp_port;
4189 if (ovs_native_tunneling_is_on(ctx->xbridge->ofproto)) {
4190 xlate_report(ctx, OFT_DETAIL, "output to native tunnel");
4191 is_native_tunnel = true;
4192 } else {
4193 const char *tnl_type;
4194
4195 xlate_report(ctx, OFT_DETAIL, "output to kernel tunnel");
4196 tnl_type = tnl_port_get_type(xport->ofport);
4197 commit_odp_tunnel_action(flow, &ctx->base_flow,
4198 ctx->odp_actions, tnl_type);
4199 flow->tunnel = flow_tnl; /* Restore tunnel metadata */
4200 }
4201 } else {
4202 odp_port = xport->odp_port;
4203 out_port = odp_port;
4204 }
4205
4206 if (out_port != ODPP_NONE) {
4207 /* Commit accumulated flow updates before output. */
4208 xlate_commit_actions(ctx);
4209
4210 if (xr && bond_use_lb_output_action(xport->xbundle->bond)) {
4211 /*
4212 * If bond mode is balance-tcp and optimize balance tcp is enabled
4213 * then use the hash directly for slave selection and avoid
4214 * recirculation.
4215 *
4216 * Currently support for netdev datapath only.
4217 */
4218 nl_msg_put_u32(ctx->odp_actions, OVS_ACTION_ATTR_LB_OUTPUT,
4219 xr->recirc_id);
4220 } else if (xr) {
4221 /* Recirculate the packet. */
4222 struct ovs_action_hash *act_hash;
4223
4224 /* Hash action. */
4225 enum ovs_hash_alg hash_alg = xr->hash_alg;
4226 if (hash_alg > ctx->xbridge->support.max_hash_alg) {
4227 /* Algorithm supported by all datapaths. */
4228 hash_alg = OVS_HASH_ALG_L4;
4229 }
4230 act_hash = nl_msg_put_unspec_uninit(ctx->odp_actions,
4231 OVS_ACTION_ATTR_HASH,
4232 sizeof *act_hash);
4233 act_hash->hash_alg = hash_alg;
4234 act_hash->hash_basis = xr->hash_basis;
4235
4236 /* Recirc action. */
4237 nl_msg_put_u32(ctx->odp_actions, OVS_ACTION_ATTR_RECIRC,
4238 xr->recirc_id);
4239 } else if (is_native_tunnel) {
4240 /* Output to native tunnel port. */
4241 native_tunnel_output(ctx, xport, flow, odp_port, truncate);
4242 flow->tunnel = flow_tnl; /* Restore tunnel metadata */
4243
4244 } else if (terminate_native_tunnel(ctx, flow, wc,
4245 &odp_tnl_port)) {
4246 /* Intercept packet to be received on native tunnel port. */
4247 nl_msg_put_odp_port(ctx->odp_actions, OVS_ACTION_ATTR_TUNNEL_POP,
4248 odp_tnl_port);
4249
4250 } else {
4251 /* Tunnel push-pop action is not compatible with
4252 * IPFIX action. */
4253 compose_ipfix_action(ctx, out_port);
4254
4255 /* Handle truncation of the mirrored packet. */
4256 if (ctx->mirror_snaplen > 0 &&
4257 ctx->mirror_snaplen < UINT16_MAX) {
4258 struct ovs_action_trunc *trunc;
4259
4260 trunc = nl_msg_put_unspec_uninit(ctx->odp_actions,
4261 OVS_ACTION_ATTR_TRUNC,
4262 sizeof *trunc);
4263 trunc->max_len = ctx->mirror_snaplen;
4264 if (!ctx->xbridge->support.trunc) {
4265 ctx->xout->slow |= SLOW_ACTION;
4266 }
4267 }
4268
4269 nl_msg_put_odp_port(ctx->odp_actions,
4270 OVS_ACTION_ATTR_OUTPUT,
4271 out_port);
4272 }
4273
4274 ctx->sflow_odp_port = odp_port;
4275 ctx->sflow_n_outputs++;
4276 ctx->nf_output_iface = ofp_port;
4277 }
4278
4279 if (mbridge_has_mirrors(ctx->xbridge->mbridge) && xport->xbundle) {
4280 mirror_packet(ctx, xport->xbundle,
4281 xbundle_mirror_dst(xport->xbundle->xbridge,
4282 xport->xbundle));
4283 }
4284
4285 out:
4286 /* Restore flow */
4287 memcpy(flow->vlans, flow_vlans, sizeof flow->vlans);
4288 flow->nw_tos = flow_nw_tos;
4289 flow->dl_dst = flow_dl_dst;
4290 flow->dl_src = flow_dl_src;
4291 flow->packet_type = flow_packet_type;
4292 flow->dl_type = flow_dl_type;
4293 }
4294
4295 static void
4296 compose_output_action(struct xlate_ctx *ctx, ofp_port_t ofp_port,
4297 const struct xlate_bond_recirc *xr,
4298 bool is_last_action, bool truncate)
4299 {
4300 compose_output_action__(ctx, ofp_port, xr, true,
4301 is_last_action, truncate);
4302 }
4303
4304 static void
4305 xlate_recursively(struct xlate_ctx *ctx, struct rule_dpif *rule,
4306 bool deepens, bool is_last_action,
4307 xlate_actions_handler *actions_xlator)
4308 {
4309 struct rule_dpif *old_rule = ctx->rule;
4310 ovs_be64 old_cookie = ctx->rule_cookie;
4311 const struct rule_actions *actions;
4312
4313 if (ctx->xin->resubmit_stats) {
4314 rule_dpif_credit_stats(rule, ctx->xin->resubmit_stats, false);
4315 }
4316
4317 ctx->resubmits++;
4318
4319 ctx->depth += deepens;
4320 ctx->rule = rule;
4321 ctx->rule_cookie = rule->up.flow_cookie;
4322 actions = rule_get_actions(&rule->up);
4323 actions_xlator(actions->ofpacts, actions->ofpacts_len, ctx,
4324 is_last_action, false);
4325 ctx->rule_cookie = old_cookie;
4326 ctx->rule = old_rule;
4327 ctx->depth -= deepens;
4328 }
4329
4330 static bool
4331 xlate_resubmit_resource_check(struct xlate_ctx *ctx)
4332 {
4333 if (ctx->depth >= MAX_DEPTH) {
4334 xlate_report_error(ctx, "over max translation depth %d", MAX_DEPTH);
4335 ctx->error = XLATE_RECURSION_TOO_DEEP;
4336 } else if (ctx->resubmits >= MAX_RESUBMITS) {
4337 xlate_report_error(ctx, "over %d resubmit actions", MAX_RESUBMITS);
4338 ctx->error = XLATE_TOO_MANY_RESUBMITS;
4339 } else if (ctx->odp_actions->size > UINT16_MAX) {
4340 xlate_report_error(ctx, "resubmits yielded over 64 kB of actions");
4341 /* NOT an error, as we'll be slow-pathing the flow in this case? */
4342 ctx->exit = true; /* XXX: translation still terminated! */
4343 } else if (ctx->stack.size >= 65536) {
4344 xlate_report_error(ctx, "resubmits yielded over 64 kB of stack");
4345 ctx->error = XLATE_STACK_TOO_DEEP;
4346 } else {
4347 return true;
4348 }
4349
4350 return false;
4351 }
4352
4353 static void
4354 tuple_swap_flow(struct flow *flow, bool ipv4)
4355 {
4356 uint8_t nw_proto = flow->nw_proto;
4357 flow->nw_proto = flow->ct_nw_proto;
4358 flow->ct_nw_proto = nw_proto;
4359
4360 if (ipv4) {
4361 ovs_be32 nw_src = flow->nw_src;
4362 flow->nw_src = flow->ct_nw_src;
4363 flow->ct_nw_src = nw_src;
4364
4365 ovs_be32 nw_dst = flow->nw_dst;
4366 flow->nw_dst = flow->ct_nw_dst;
4367 flow->ct_nw_dst = nw_dst;
4368 } else {
4369 struct in6_addr ipv6_src = flow->ipv6_src;
4370 flow->ipv6_src = flow->ct_ipv6_src;
4371 flow->ct_ipv6_src = ipv6_src;
4372
4373 struct in6_addr ipv6_dst = flow->ipv6_dst;
4374 flow->ipv6_dst = flow->ct_ipv6_dst;
4375 flow->ct_ipv6_dst = ipv6_dst;
4376 }
4377
4378 ovs_be16 tp_src = flow->tp_src;
4379 flow->tp_src = flow->ct_tp_src;
4380 flow->ct_tp_src = tp_src;
4381
4382 ovs_be16 tp_dst = flow->tp_dst;
4383 flow->tp_dst = flow->ct_tp_dst;
4384 flow->ct_tp_dst = tp_dst;
4385 }
4386
4387 static void
4388 tuple_swap(struct flow *flow, struct flow_wildcards *wc)
4389 {
4390 bool ipv4 = (flow->dl_type == htons(ETH_TYPE_IP));
4391
4392 tuple_swap_flow(flow, ipv4);
4393 tuple_swap_flow(&wc->masks, ipv4);
4394 }
4395
4396 static void
4397 xlate_table_action(struct xlate_ctx *ctx, ofp_port_t in_port, uint8_t table_id,
4398 bool may_packet_in, bool honor_table_miss,
4399 bool with_ct_orig, bool is_last_action,
4400 xlate_actions_handler *xlator)
4401 {
4402 /* Check if we need to recirculate before matching in a table. */
4403 if (ctx->was_mpls) {
4404 ctx_trigger_freeze(ctx);
4405 return;
4406 }
4407 if (xlate_resubmit_resource_check(ctx)) {
4408 uint8_t old_table_id = ctx->table_id;
4409 struct rule_dpif *rule;
4410
4411 ctx->table_id = table_id;
4412
4413 /* Swap packet fields with CT 5-tuple if requested. */
4414 if (with_ct_orig) {
4415 /* Do not swap if there is no CT tuple, or if key is not IP. */
4416 if (ctx->xin->flow.ct_nw_proto == 0 ||
4417 !is_ip_any(&ctx->xin->flow)) {
4418 xlate_report_error(ctx,
4419 "resubmit(ct) with non-tracked or non-IP packet!");
4420 ctx->table_id = old_table_id;
4421 return;
4422 }
4423 tuple_swap(&ctx->xin->flow, ctx->wc);
4424 }
4425 rule = rule_dpif_lookup_from_table(ctx->xbridge->ofproto,
4426 ctx->xin->tables_version,
4427 &ctx->xin->flow, ctx->wc,
4428 ctx->xin->resubmit_stats,
4429 &ctx->table_id, in_port,
4430 may_packet_in, honor_table_miss,
4431 ctx->xin->xcache);
4432 /* Swap back. */
4433 if (with_ct_orig) {
4434 tuple_swap(&ctx->xin->flow, ctx->wc);
4435 }
4436
4437 if (rule) {
4438 /* Fill in the cache entry here instead of xlate_recursively
4439 * to make the reference counting more explicit. We take a
4440 * reference in the lookups above if we are going to cache the
4441 * rule. */
4442 if (ctx->xin->xcache) {
4443 struct xc_entry *entry;
4444
4445 entry = xlate_cache_add_entry(ctx->xin->xcache, XC_RULE);
4446 entry->rule = rule;
4447 ofproto_rule_ref(&rule->up);
4448 }
4449
4450 struct ovs_list *old_trace = ctx->xin->trace;
4451 xlate_report_table(ctx, rule, table_id);
4452 xlate_recursively(ctx, rule, table_id <= old_table_id,
4453 is_last_action, xlator);
4454 ctx->xin->trace = old_trace;
4455 }
4456
4457 ctx->table_id = old_table_id;
4458 return;
4459 }
4460 }
4461
4462 /* Consumes the group reference, which is only taken if xcache exists. */
4463 static void
4464 xlate_group_stats(struct xlate_ctx *ctx, struct group_dpif *group,
4465 struct ofputil_bucket *bucket)
4466 {
4467 if (ctx->xin->resubmit_stats) {
4468 group_dpif_credit_stats(group, bucket, ctx->xin->resubmit_stats);
4469 }
4470 if (ctx->xin->xcache) {
4471 struct xc_entry *entry;
4472
4473 entry = xlate_cache_add_entry(ctx->xin->xcache, XC_GROUP);
4474 entry->group.group = group;
4475 entry->group.bucket = bucket;
4476 }
4477 }
4478
4479 static void
4480 xlate_group_bucket(struct xlate_ctx *ctx, struct ofputil_bucket *bucket,
4481 bool is_last_action)
4482 {
4483 struct ovs_list *old_trace = ctx->xin->trace;
4484 if (OVS_UNLIKELY(ctx->xin->trace)) {
4485 char *s = xasprintf("bucket %"PRIu32, bucket->bucket_id);
4486 ctx->xin->trace = &oftrace_report(ctx->xin->trace, OFT_BUCKET,
4487 s)->subs;
4488 free(s);
4489 }
4490
4491 uint64_t action_list_stub[1024 / 8];
4492 struct ofpbuf action_list = OFPBUF_STUB_INITIALIZER(action_list_stub);
4493 struct ofpbuf action_set = ofpbuf_const_initializer(bucket->ofpacts,
4494 bucket->ofpacts_len);
4495 struct flow old_flow = ctx->xin->flow;
4496 bool old_was_mpls = ctx->was_mpls;
4497
4498 ofpacts_execute_action_set(&action_list, &action_set);
4499 ctx->depth++;
4500 do_xlate_actions(action_list.data, action_list.size, ctx, is_last_action,
4501 true);
4502 ctx->depth--;
4503
4504 ofpbuf_uninit(&action_list);
4505
4506 /* Check if need to freeze. */
4507 if (ctx->freezing) {
4508 finish_freezing(ctx);
4509 }
4510
4511 /* Roll back flow to previous state.
4512 * This is equivalent to cloning the packet for each bucket.
4513 *
4514 * As a side effect any subsequently applied actions will
4515 * also effectively be applied to a clone of the packet taken
4516 * just before applying the all or indirect group.
4517 *
4518 * Note that group buckets are action sets, hence they cannot modify the
4519 * main action set. Also any stack actions are ignored when executing an
4520 * action set, so group buckets cannot directly change the stack either.
4521 * However, we do allow resubmit actions in group buckets, which could
4522 * recursively execute actions that do modify the action set or change the
4523 * stack. The controller must be careful about what it does to the
4524 * action_set and stack in the tables resubmitted to from group buckets. */
4525 ctx->xin->flow = old_flow;
4526
4527 /* The group bucket popping MPLS should have no effect after bucket
4528 * execution. */
4529 ctx->was_mpls = old_was_mpls;
4530
4531 /* The fact that the group bucket exits (for any reason) does not mean that
4532 * the translation after the group action should exit. Specifically, if
4533 * the group bucket freezes translation, the actions after the group action
4534 * must continue processing with the original, not the frozen packet! */
4535 ctx->exit = false;
4536
4537 /* Context error in a bucket should not impact processing of other buckets
4538 * or actions. This is similar to cloning a packet for group buckets.
4539 * There is no need to restore the error back to old value due to the fact
4540 * that we actually processed group action which can happen only when there
4541 * is no previous context error.
4542 *
4543 * Exception to above is errors which are system limits to protect
4544 * translation from running too long or occupy too much space. These errors
4545 * should not be masked. XLATE_RECURSION_TOO_DEEP, XLATE_TOO_MANY_RESUBMITS
4546 * and XLATE_STACK_TOO_DEEP fall in this category. */
4547 if (ctx->error == XLATE_TOO_MANY_MPLS_LABELS ||
4548 ctx->error == XLATE_UNSUPPORTED_PACKET_TYPE) {
4549 /* reset the error and continue processing other buckets */
4550 ctx->error = XLATE_OK;
4551 }
4552
4553 ctx->xin->trace = old_trace;
4554 }
4555
4556 static struct ofputil_bucket *
4557 pick_ff_group(struct xlate_ctx *ctx, struct group_dpif *group)
4558 {
4559 return group_first_live_bucket(ctx, group, 0);
4560 }
4561
4562 static struct ofputil_bucket *
4563 pick_default_select_group(struct xlate_ctx *ctx, struct group_dpif *group)
4564 {
4565 flow_mask_hash_fields(&ctx->xin->flow, ctx->wc,
4566 NX_HASH_FIELDS_SYMMETRIC_L4);
4567 return group_best_live_bucket(ctx, group,
4568 flow_hash_symmetric_l4(&ctx->xin->flow, 0));
4569 }
4570
4571 static struct ofputil_bucket *
4572 pick_hash_fields_select_group(struct xlate_ctx *ctx, struct group_dpif *group)
4573 {
4574 const struct field_array *fields = &group->up.props.fields;
4575 const uint8_t *mask_values = fields->values;
4576 uint32_t basis = hash_uint64(group->up.props.selection_method_param);
4577
4578 size_t i;
4579 BITMAP_FOR_EACH_1 (i, MFF_N_IDS, fields->used.bm) {
4580 const struct mf_field *mf = mf_from_id(i);
4581
4582 /* Skip fields for which prerequisites are not met. */
4583 if (!mf_are_prereqs_ok(mf, &ctx->xin->flow, ctx->wc)) {
4584 /* Skip the mask bytes for this field. */
4585 mask_values += mf->n_bytes;
4586 continue;
4587 }
4588
4589 union mf_value value;
4590 union mf_value mask;
4591
4592 mf_get_value(mf, &ctx->xin->flow, &value);
4593 /* Mask the value. */
4594 for (int j = 0; j < mf->n_bytes; j++) {
4595 mask.b[j] = *mask_values++;
4596 value.b[j] &= mask.b[j];
4597 }
4598 basis = hash_bytes(&value, mf->n_bytes, basis);
4599
4600 /* For tunnels, hash in whether the field is present. */
4601 if (mf_is_tun_metadata(mf)) {
4602 basis = hash_boolean(mf_is_set(mf, &ctx->xin->flow), basis);
4603 }
4604
4605 mf_mask_field_masked(mf, &mask, ctx->wc);
4606 }
4607
4608 return group_best_live_bucket(ctx, group, basis);
4609 }
4610
4611 static struct ofputil_bucket *
4612 pick_dp_hash_select_group(struct xlate_ctx *ctx, struct group_dpif *group)
4613 {
4614 uint32_t dp_hash = ctx->xin->flow.dp_hash;
4615
4616 /* dp_hash value 0 is special since it means that the dp_hash has not been
4617 * computed, as all computed dp_hash values are non-zero. Therefore
4618 * compare to zero can be used to decide if the dp_hash value is valid
4619 * without masking the dp_hash field. */
4620 if (!dp_hash) {
4621 enum ovs_hash_alg hash_alg = group->hash_alg;
4622 if (hash_alg > ctx->xbridge->support.max_hash_alg) {
4623 /* Algorithm supported by all datapaths. */
4624 hash_alg = OVS_HASH_ALG_L4;
4625 }
4626 ctx_trigger_recirculate_with_hash(ctx, hash_alg, group->hash_basis);
4627 return NULL;
4628 } else {
4629 uint32_t hash_mask = group->hash_mask;
4630 ctx->wc->masks.dp_hash |= hash_mask;
4631
4632 /* Starting from the original masked dp_hash value iterate over the
4633 * hash mapping table to find the first live bucket. As the buckets
4634 * are quasi-randomly spread over the hash values, this maintains
4635 * a distribution according to bucket weights even when some buckets
4636 * are non-live. */
4637 for (int i = 0; i <= hash_mask; i++) {
4638 struct ofputil_bucket *b =
4639 group->hash_map[(dp_hash + i) & hash_mask];
4640 if (bucket_is_alive(ctx, b, 0)) {
4641 return b;
4642 }
4643 }
4644
4645 return NULL;
4646 }
4647 }
4648
4649 static struct ofputil_bucket *
4650 pick_select_group(struct xlate_ctx *ctx, struct group_dpif *group)
4651 {
4652 /* Select groups may access flow keys beyond L2 in order to
4653 * select a bucket. Recirculate as appropriate to make this possible.
4654 */
4655 if (ctx->was_mpls) {
4656 ctx_trigger_freeze(ctx);
4657 return NULL;
4658 }
4659
4660 switch (group->selection_method) {
4661 case SEL_METHOD_DEFAULT:
4662 return pick_default_select_group(ctx, group);
4663 break;
4664 case SEL_METHOD_HASH:
4665 return pick_hash_fields_select_group(ctx, group);
4666 break;
4667 case SEL_METHOD_DP_HASH:
4668 return pick_dp_hash_select_group(ctx, group);
4669 break;
4670 default:
4671 /* Parsing of groups ensures this never happens */
4672 OVS_NOT_REACHED();
4673 }
4674
4675 return NULL;
4676 }
4677
4678 static void
4679 xlate_group_action__(struct xlate_ctx *ctx, struct group_dpif *group,
4680 bool is_last_action)
4681 {
4682 if (group->up.type == OFPGT11_ALL || group->up.type == OFPGT11_INDIRECT) {
4683 struct ovs_list *last_bucket = group->up.buckets.prev;
4684 struct ofputil_bucket *bucket;
4685 LIST_FOR_EACH (bucket, list_node, &group->up.buckets) {
4686 bool is_last_bucket = &bucket->list_node == last_bucket;
4687 xlate_group_bucket(ctx, bucket, is_last_action && is_last_bucket);
4688 }
4689 xlate_group_stats(ctx, group, NULL);
4690 } else {
4691 struct ofputil_bucket *bucket;
4692 if (group->up.type == OFPGT11_SELECT) {
4693 bucket = pick_select_group(ctx, group);
4694 } else if (group->up.type == OFPGT11_FF) {
4695 bucket = pick_ff_group(ctx, group);
4696 } else {
4697 OVS_NOT_REACHED();
4698 }
4699
4700 if (bucket) {
4701 xlate_report(ctx, OFT_DETAIL, "using bucket %"PRIu32,
4702 bucket->bucket_id);
4703 xlate_group_bucket(ctx, bucket, is_last_action);
4704 xlate_group_stats(ctx, group, bucket);
4705 } else {
4706 xlate_report(ctx, OFT_DETAIL, "no live bucket");
4707 if (ctx->xin->xcache) {
4708 ofproto_group_unref(&group->up);
4709 }
4710 }
4711 }
4712 }
4713
4714 static bool
4715 xlate_group_action(struct xlate_ctx *ctx, uint32_t group_id,
4716 bool is_last_action)
4717 {
4718 if (xlate_resubmit_resource_check(ctx)) {
4719 struct group_dpif *group;
4720
4721 /* Take ref only if xcache exists. */
4722 group = group_dpif_lookup(ctx->xbridge->ofproto, group_id,
4723 ctx->xin->tables_version, ctx->xin->xcache);
4724 if (!group) {
4725 /* XXX: Should set ctx->error ? */
4726 xlate_report(ctx, OFT_WARN, "output to nonexistent group %"PRIu32,
4727 group_id);
4728 return true;
4729 }
4730 xlate_group_action__(ctx, group, is_last_action);
4731 }
4732
4733 return false;
4734 }
4735
4736 static void
4737 xlate_ofpact_resubmit(struct xlate_ctx *ctx,
4738 const struct ofpact_resubmit *resubmit,
4739 bool is_last_action)
4740 {
4741 ofp_port_t in_port;
4742 uint8_t table_id;
4743 bool may_packet_in = false;
4744 bool honor_table_miss = false;
4745
4746 if (ctx->rule && rule_dpif_is_internal(ctx->rule)) {
4747 /* Still allow missed packets to be sent to the controller
4748 * if resubmitting from an internal table. */
4749 may_packet_in = true;
4750 honor_table_miss = true;
4751 }
4752
4753 in_port = resubmit->in_port;
4754 if (in_port == OFPP_IN_PORT) {
4755 in_port = ctx->xin->flow.in_port.ofp_port;
4756 }
4757
4758 table_id = resubmit->table_id;
4759 if (table_id == 255) {
4760 table_id = ctx->table_id;
4761 }
4762
4763 xlate_table_action(ctx, in_port, table_id, may_packet_in,
4764 honor_table_miss, resubmit->with_ct_orig,
4765 is_last_action, do_xlate_actions);
4766 }
4767
4768 static void
4769 flood_packet_to_port(struct xlate_ctx *ctx, const struct xport *xport,
4770 bool all, bool is_last_action)
4771 {
4772 if (!xport) {
4773 return;
4774 }
4775
4776 if (all) {
4777 compose_output_action__(ctx, xport->ofp_port, NULL, false,
4778 is_last_action, false);
4779 } else {
4780 compose_output_action(ctx, xport->ofp_port, NULL, is_last_action,
4781 false);
4782 }
4783 }
4784
4785 static void
4786 flood_packets(struct xlate_ctx *ctx, bool all, bool is_last_action)
4787 {
4788 const struct xport *xport, *last = NULL;
4789
4790 /* Use 'last' the keep track of the last output port. */
4791 HMAP_FOR_EACH (xport, ofp_node, &ctx->xbridge->xports) {
4792 if (xport->ofp_port == ctx->xin->flow.in_port.ofp_port) {
4793 continue;
4794 }
4795
4796 if (all || !(xport->config & OFPUTIL_PC_NO_FLOOD)) {
4797 /* 'last' is not the last port, send a packet out, and
4798 * update 'last'. */
4799 flood_packet_to_port(ctx, last, all, false);
4800 last = xport;
4801 }
4802 }
4803
4804 /* Send the packet to the 'last' port. */
4805 flood_packet_to_port(ctx, last, all, is_last_action);
4806 ctx->nf_output_iface = NF_OUT_FLOOD;
4807 }
4808
4809 static void
4810 put_controller_user_action(struct xlate_ctx *ctx,
4811 bool dont_send, bool continuation,
4812 uint32_t recirc_id, int len,
4813 enum ofp_packet_in_reason reason,
4814 uint16_t controller_id)
4815 {
4816 struct user_action_cookie cookie;
4817
4818 memset(&cookie, 0, sizeof cookie);
4819 cookie.type = USER_ACTION_COOKIE_CONTROLLER;
4820 cookie.ofp_in_port = OFPP_NONE,
4821 cookie.ofproto_uuid = ctx->xbridge->ofproto->uuid;
4822 cookie.controller.dont_send = dont_send;
4823 cookie.controller.continuation = continuation;
4824 cookie.controller.reason = reason;
4825 cookie.controller.recirc_id = recirc_id;
4826 put_32aligned_be64(&cookie.controller.rule_cookie, ctx->rule_cookie);
4827 cookie.controller.controller_id = controller_id;
4828 cookie.controller.max_len = len;
4829
4830 odp_port_t odp_port = ofp_port_to_odp_port(ctx->xbridge,
4831 ctx->xin->flow.in_port.ofp_port);
4832 uint32_t pid = dpif_port_get_pid(ctx->xbridge->dpif, odp_port);
4833 odp_put_userspace_action(pid, &cookie, sizeof cookie, ODPP_NONE,
4834 false, ctx->odp_actions);
4835 }
4836
4837 static void
4838 xlate_controller_action(struct xlate_ctx *ctx, int len,
4839 enum ofp_packet_in_reason reason,
4840 uint16_t controller_id,
4841 uint32_t provider_meter_id,
4842 const uint8_t *userdata, size_t userdata_len)
4843 {
4844 xlate_commit_actions(ctx);
4845
4846 /* A packet sent by an action in a table-miss rule is considered an
4847 * explicit table miss. OpenFlow before 1.3 doesn't have that concept so
4848 * it will get translated back to OFPR_ACTION for those versions. */
4849 if (reason == OFPR_ACTION
4850 && ctx->rule && rule_is_table_miss(&ctx->rule->up)) {
4851 reason = OFPR_EXPLICIT_MISS;
4852 }
4853
4854 struct frozen_state state = {
4855 .table_id = ctx->table_id,
4856 .ofproto_uuid = ctx->xbridge->ofproto->uuid,
4857 .stack = ctx->stack.data,
4858 .stack_size = ctx->stack.size,
4859 .mirrors = ctx->mirrors,
4860 .conntracked = ctx->conntracked,
4861 .was_mpls = ctx->was_mpls,
4862 .ofpacts = NULL,
4863 .ofpacts_len = 0,
4864 .action_set = NULL,
4865 .action_set_len = 0,
4866 .userdata = CONST_CAST(uint8_t *, userdata),
4867 .userdata_len = userdata_len,
4868 };
4869 frozen_metadata_from_flow(&state.metadata, &ctx->xin->flow);
4870
4871 uint32_t recirc_id = recirc_alloc_id_ctx(&state);
4872 if (!recirc_id) {
4873 xlate_report_error(ctx, "Failed to allocate recirculation id");
4874 ctx->error = XLATE_NO_RECIRCULATION_CONTEXT;
4875 return;
4876 }
4877 recirc_refs_add(&ctx->xout->recircs, recirc_id);
4878
4879 /* If the controller action didn't request a meter (indicated by a
4880 * 'meter_id' argument other than NX_CTLR_NO_METER), see if one was
4881 * configured through the "controller" virtual meter.
4882 *
4883 * Internally, ovs-vswitchd uses UINT32_MAX to indicate no meter is
4884 * configured. */
4885 uint32_t meter_id;
4886 if (provider_meter_id == UINT32_MAX) {
4887 meter_id = ctx->xbridge->ofproto->up.controller_meter_id;
4888 } else {
4889 meter_id = provider_meter_id;
4890 }
4891
4892 size_t offset;
4893 size_t ac_offset;
4894 if (meter_id != UINT32_MAX) {
4895 /* If controller meter is configured, generate clone(meter, userspace)
4896 * action. */
4897 offset = nl_msg_start_nested(ctx->odp_actions, OVS_ACTION_ATTR_SAMPLE);
4898 nl_msg_put_u32(ctx->odp_actions, OVS_SAMPLE_ATTR_PROBABILITY,
4899 UINT32_MAX);
4900 ac_offset = nl_msg_start_nested(ctx->odp_actions,
4901 OVS_SAMPLE_ATTR_ACTIONS);
4902 nl_msg_put_u32(ctx->odp_actions, OVS_ACTION_ATTR_METER, meter_id);
4903 }
4904
4905 /* Generate the datapath flows even if we don't send the packet-in
4906 * so that debugging more closely represents normal state. */
4907 bool dont_send = false;
4908 if (!ctx->xin->allow_side_effects && !ctx->xin->xcache) {
4909 dont_send = true;
4910 }
4911 put_controller_user_action(ctx, dont_send, false, recirc_id, len,
4912 reason, controller_id);
4913
4914 if (meter_id != UINT32_MAX) {
4915 nl_msg_end_nested(ctx->odp_actions, ac_offset);
4916 nl_msg_end_nested(ctx->odp_actions, offset);
4917 }
4918 }
4919
4920 /* Creates a frozen state, and allocates a unique recirc id for the given
4921 * state. Returns a non-zero recirc id if it is allocated successfully.
4922 * Returns 0 otherwise.
4923 **/
4924 static uint32_t
4925 finish_freezing__(struct xlate_ctx *ctx, uint8_t table)
4926 {
4927 ovs_assert(ctx->freezing);
4928
4929 struct frozen_state state = {
4930 .table_id = table,
4931 .ofproto_uuid = ctx->xbridge->ofproto->uuid,
4932 .stack = ctx->stack.data,
4933 .stack_size = ctx->stack.size,
4934 .mirrors = ctx->mirrors,
4935 .conntracked = ctx->conntracked,
4936 .was_mpls = ctx->was_mpls,
4937 .xport_uuid = ctx->xin->xport_uuid,
4938 .ofpacts = ctx->frozen_actions.data,
4939 .ofpacts_len = ctx->frozen_actions.size,
4940 .action_set = ctx->action_set.data,
4941 .action_set_len = ctx->action_set.size,
4942 .userdata = ctx->pause ? CONST_CAST(uint8_t *,ctx->pause->userdata)
4943 : NULL,
4944 .userdata_len = ctx->pause ? ctx->pause->userdata_len : 0,
4945 };
4946 frozen_metadata_from_flow(&state.metadata, &ctx->xin->flow);
4947
4948 /* Allocate a unique recirc id for the given metadata state in the
4949 * flow. An existing id, with a new reference to the corresponding
4950 * recirculation context, will be returned if possible.
4951 * The life-cycle of this recirc id is managed by associating it
4952 * with the udpif key ('ukey') created for each new datapath flow. */
4953 uint32_t recirc_id = recirc_alloc_id_ctx(&state);
4954 if (!recirc_id) {
4955 xlate_report_error(ctx, "Failed to allocate recirculation id");
4956 ctx->error = XLATE_NO_RECIRCULATION_CONTEXT;
4957 return 0;
4958 }
4959 recirc_refs_add(&ctx->xout->recircs, recirc_id);
4960
4961 if (ctx->pause) {
4962 if (!ctx->xin->allow_side_effects && !ctx->xin->xcache) {
4963 return 0;
4964 }
4965
4966 put_controller_user_action(ctx, false, true, recirc_id,
4967 ctx->pause->max_len,
4968 ctx->pause->reason,
4969 ctx->pause->controller_id);
4970 } else {
4971 if (ctx->recirc_update_dp_hash) {
4972 struct ovs_action_hash *act_hash;
4973
4974 /* Hash action. */
4975 act_hash = nl_msg_put_unspec_uninit(ctx->odp_actions,
4976 OVS_ACTION_ATTR_HASH,
4977 sizeof *act_hash);
4978 act_hash->hash_alg = ctx->dp_hash_alg;
4979 act_hash->hash_basis = ctx->dp_hash_basis;
4980 }
4981 nl_msg_put_u32(ctx->odp_actions, OVS_ACTION_ATTR_RECIRC, recirc_id);
4982 }
4983
4984 /* Undo changes done by freezing. */
4985 ctx_cancel_freeze(ctx);
4986 return recirc_id;
4987 }
4988
4989 /* Called only when we're freezing. */
4990 static void
4991 finish_freezing(struct xlate_ctx *ctx)
4992 {
4993 xlate_commit_actions(ctx);
4994 finish_freezing__(ctx, 0);
4995 }
4996
4997 /* Fork the pipeline here. The current packet will continue processing the
4998 * current action list. A clone of the current packet will recirculate, skip
4999 * the remainder of the current action list and asynchronously resume pipeline
5000 * processing in 'table' with the current metadata and action set. */
5001 static void
5002 compose_recirculate_and_fork(struct xlate_ctx *ctx, uint8_t table,
5003 const uint16_t zone)
5004 {
5005 uint32_t recirc_id;
5006 ctx->freezing = true;
5007 recirc_id = finish_freezing__(ctx, table);
5008
5009 if (OVS_UNLIKELY(ctx->xin->trace) && recirc_id) {
5010 if (oftrace_add_recirc_node(ctx->xin->recirc_queue,
5011 OFT_RECIRC_CONNTRACK, &ctx->xin->flow,
5012 ctx->ct_nat_action, ctx->xin->packet,
5013 recirc_id, zone)) {
5014 xlate_report(ctx, OFT_DETAIL, "A clone of the packet is forked to "
5015 "recirculate. The forked pipeline will be resumed at "
5016 "table %u.", table);
5017 } else {
5018 xlate_report(ctx, OFT_DETAIL, "Failed to trace the conntrack "
5019 "forked pipeline with recirc_id = %d.", recirc_id);
5020 }
5021 }
5022 }
5023
5024 static void
5025 compose_mpls_push_action(struct xlate_ctx *ctx, struct ofpact_push_mpls *mpls)
5026 {
5027 struct flow *flow = &ctx->xin->flow;
5028 int n;
5029
5030 ovs_assert(eth_type_mpls(mpls->ethertype));
5031
5032 n = flow_count_mpls_labels(flow, ctx->wc);
5033 if (!n) {
5034 xlate_commit_actions(ctx);
5035 } else if (n >= FLOW_MAX_MPLS_LABELS) {
5036 if (ctx->xin->packet != NULL) {
5037 xlate_report_error(ctx, "dropping packet on which an MPLS push "
5038 "action can't be performed as it would have "
5039 "more MPLS LSEs than the %d supported.",
5040 FLOW_MAX_MPLS_LABELS);
5041 }
5042 ctx->error = XLATE_TOO_MANY_MPLS_LABELS;
5043 return;
5044 }
5045
5046 /* Update flow's MPLS stack, and clear L3/4 fields to mark them invalid. */
5047 flow_push_mpls(flow, n, mpls->ethertype, ctx->wc, true);
5048 }
5049
5050 static void
5051 compose_mpls_pop_action(struct xlate_ctx *ctx, ovs_be16 eth_type)
5052 {
5053 struct flow *flow = &ctx->xin->flow;
5054 int n = flow_count_mpls_labels(flow, ctx->wc);
5055
5056 if (flow_pop_mpls(flow, n, eth_type, ctx->wc)) {
5057 if (!eth_type_mpls(eth_type) && ctx->xbridge->support.odp.recirc) {
5058 ctx->was_mpls = true;
5059 }
5060 } else if (n >= FLOW_MAX_MPLS_LABELS) {
5061 if (ctx->xin->packet != NULL) {
5062 xlate_report_error(ctx, "dropping packet on which an "
5063 "MPLS pop action can't be performed as it has "
5064 "more MPLS LSEs than the %d supported.",
5065 FLOW_MAX_MPLS_LABELS);
5066 }
5067 ctx->error = XLATE_TOO_MANY_MPLS_LABELS;
5068 ofpbuf_clear(ctx->odp_actions);
5069 }
5070 }
5071
5072 static bool
5073 compose_dec_ttl(struct xlate_ctx *ctx, struct ofpact_cnt_ids *ids)
5074 {
5075 struct flow *flow = &ctx->xin->flow;
5076
5077 if (!is_ip_any(flow)) {
5078 return false;
5079 }
5080
5081 ctx->wc->masks.nw_ttl = 0xff;
5082 if (flow->nw_ttl > 1) {
5083 flow->nw_ttl--;
5084 return false;
5085 } else {
5086 size_t i;
5087
5088 for (i = 0; i < ids->n_controllers; i++) {
5089 xlate_controller_action(ctx, UINT16_MAX, OFPR_INVALID_TTL,
5090 ids->cnt_ids[i], UINT32_MAX, NULL, 0);
5091 }
5092
5093 /* Stop processing for current table. */
5094 xlate_report(ctx, OFT_WARN, "IPv%d decrement TTL exception",
5095 flow->dl_type == htons(ETH_TYPE_IP) ? 4 : 6);
5096 return true;
5097 }
5098 }
5099
5100 static void
5101 compose_set_mpls_label_action(struct xlate_ctx *ctx, ovs_be32 label)
5102 {
5103 if (eth_type_mpls(ctx->xin->flow.dl_type)) {
5104 ctx->wc->masks.mpls_lse[0] |= htonl(MPLS_LABEL_MASK);
5105 set_mpls_lse_label(&ctx->xin->flow.mpls_lse[0], label);
5106 }
5107 }
5108
5109 static void
5110 compose_set_mpls_tc_action(struct xlate_ctx *ctx, uint8_t tc)
5111 {
5112 if (eth_type_mpls(ctx->xin->flow.dl_type)) {
5113 ctx->wc->masks.mpls_lse[0] |= htonl(MPLS_TC_MASK);
5114 set_mpls_lse_tc(&ctx->xin->flow.mpls_lse[0], tc);
5115 }
5116 }
5117
5118 static bool
5119 compose_dec_nsh_ttl_action(struct xlate_ctx *ctx)
5120 {
5121 struct flow *flow = &ctx->xin->flow;
5122
5123 if ((flow->packet_type == htonl(PT_NSH)) ||
5124 (flow->dl_type == htons(ETH_TYPE_NSH))) {
5125 ctx->wc->masks.nsh.ttl = 0xff;
5126 if (flow->nsh.ttl > 1) {
5127 flow->nsh.ttl--;
5128 return false;
5129 } else {
5130 xlate_controller_action(ctx, UINT16_MAX, OFPR_INVALID_TTL,
5131 0, UINT32_MAX, NULL, 0);
5132 }
5133 }
5134
5135 /* Stop processing for current table. */
5136 xlate_report(ctx, OFT_WARN, "NSH decrement TTL exception");
5137 return true;
5138 }
5139
5140 static void
5141 compose_set_mpls_ttl_action(struct xlate_ctx *ctx, uint8_t ttl)
5142 {
5143 if (eth_type_mpls(ctx->xin->flow.dl_type)) {
5144 ctx->wc->masks.mpls_lse[0] |= htonl(MPLS_TTL_MASK);
5145 set_mpls_lse_ttl(&ctx->xin->flow.mpls_lse[0], ttl);
5146 }
5147 }
5148
5149 static bool
5150 compose_dec_mpls_ttl_action(struct xlate_ctx *ctx)
5151 {
5152 struct flow *flow = &ctx->xin->flow;
5153
5154 if (eth_type_mpls(flow->dl_type)) {
5155 uint8_t ttl = mpls_lse_to_ttl(flow->mpls_lse[0]);
5156
5157 ctx->wc->masks.mpls_lse[0] |= htonl(MPLS_TTL_MASK);
5158 if (ttl > 1) {
5159 ttl--;
5160 set_mpls_lse_ttl(&flow->mpls_lse[0], ttl);
5161 return false;
5162 } else {
5163 xlate_controller_action(ctx, UINT16_MAX, OFPR_INVALID_TTL, 0,
5164 UINT32_MAX, NULL, 0);
5165 }
5166 }
5167
5168 /* Stop processing for current table. */
5169 xlate_report(ctx, OFT_WARN, "MPLS decrement TTL exception");
5170 return true;
5171 }
5172
5173 static void
5174 xlate_delete_field(struct xlate_ctx *ctx,
5175 struct flow *flow,
5176 const struct ofpact_delete_field *odf)
5177 {
5178 struct ds s = DS_EMPTY_INITIALIZER;
5179
5180 /* Currently, only tun_metadata is allowed for delete_field action. */
5181 tun_metadata_delete(&flow->tunnel, odf->field);
5182
5183 ds_put_format(&s, "delete %s", odf->field->name);
5184 xlate_report(ctx, OFT_DETAIL, "%s", ds_cstr(&s));
5185 ds_destroy(&s);
5186 }
5187
5188 /* Emits an action that outputs to 'port', within 'ctx'.
5189 *
5190 * 'controller_len' affects only packets sent to an OpenFlow controller. It
5191 * is the maximum number of bytes of the packet to send. UINT16_MAX means to
5192 * send the whole packet (and 0 means to omit the packet entirely).
5193 *
5194 * 'may_packet_in' determines whether the packet may be sent to an OpenFlow
5195 * controller. If it is false, then the packet is never sent to the OpenFlow
5196 * controller.
5197 *
5198 * 'is_last_action' should be true if this output is the last OpenFlow action
5199 * to be processed, which enables certain optimizations.
5200 *
5201 * 'truncate' should be true if the packet to be output is being truncated,
5202 * which suppresses certain optimizations. */
5203 static void
5204 xlate_output_action(struct xlate_ctx *ctx, ofp_port_t port,
5205 uint16_t controller_len, bool may_packet_in,
5206 bool is_last_action, bool truncate,
5207 bool group_bucket_action)
5208 {
5209 ofp_port_t prev_nf_output_iface = ctx->nf_output_iface;
5210
5211 ctx->nf_output_iface = NF_OUT_DROP;
5212
5213 switch (port) {
5214 case OFPP_IN_PORT:
5215 compose_output_action(ctx, ctx->xin->flow.in_port.ofp_port, NULL,
5216 is_last_action, truncate);
5217 break;
5218 case OFPP_TABLE:
5219 xlate_table_action(ctx, ctx->xin->flow.in_port.ofp_port,
5220 0, may_packet_in, true, false, false,
5221 do_xlate_actions);
5222 break;
5223 case OFPP_NORMAL:
5224 xlate_normal(ctx);
5225 break;
5226 case OFPP_FLOOD:
5227 flood_packets(ctx, false, is_last_action);
5228 break;
5229 case OFPP_ALL:
5230 flood_packets(ctx, true, is_last_action);
5231 break;
5232 case OFPP_CONTROLLER:
5233 xlate_controller_action(ctx, controller_len,
5234 (ctx->in_packet_out ? OFPR_PACKET_OUT
5235 : group_bucket_action ? OFPR_GROUP
5236 : ctx->in_action_set ? OFPR_ACTION_SET
5237 : OFPR_ACTION),
5238 0, UINT32_MAX, NULL, 0);
5239 break;
5240 case OFPP_NONE:
5241 break;
5242 case OFPP_LOCAL:
5243 default:
5244 if (port != ctx->xin->flow.in_port.ofp_port) {
5245 compose_output_action(ctx, port, NULL, is_last_action, truncate);
5246 } else {
5247 xlate_report_info(ctx, "skipping output to input port");
5248 }
5249 break;
5250 }
5251
5252 if (prev_nf_output_iface == NF_OUT_FLOOD) {
5253 ctx->nf_output_iface = NF_OUT_FLOOD;
5254 } else if (ctx->nf_output_iface == NF_OUT_DROP) {
5255 ctx->nf_output_iface = prev_nf_output_iface;
5256 } else if (prev_nf_output_iface != NF_OUT_DROP &&
5257 ctx->nf_output_iface != NF_OUT_FLOOD) {
5258 ctx->nf_output_iface = NF_OUT_MULTI;
5259 }
5260 }
5261
5262 static void
5263 xlate_output_reg_action(struct xlate_ctx *ctx,
5264 const struct ofpact_output_reg *or,
5265 bool is_last_action,
5266 bool group_bucket_action)
5267 {
5268 uint64_t port = mf_get_subfield(&or->src, &ctx->xin->flow);
5269 if (port <= UINT16_MAX) {
5270 xlate_report(ctx, OFT_DETAIL, "output port is %"PRIu64, port);
5271
5272 union mf_subvalue value;
5273
5274 memset(&value, 0xff, sizeof value);
5275 mf_write_subfield_flow(&or->src, &value, &ctx->wc->masks);
5276 xlate_output_action(ctx, u16_to_ofp(port), or->max_len,
5277 false, is_last_action, false,
5278 group_bucket_action);
5279 } else {
5280 xlate_report(ctx, OFT_WARN, "output port %"PRIu64" is out of range",
5281 port);
5282 }
5283 }
5284
5285 static void
5286 xlate_output_trunc_action(struct xlate_ctx *ctx,
5287 ofp_port_t port, uint32_t max_len,
5288 bool is_last_action,
5289 bool group_bucket_action)
5290 {
5291 bool support_trunc = ctx->xbridge->support.trunc;
5292 struct ovs_action_trunc *trunc;
5293 char name[OFP_MAX_PORT_NAME_LEN];
5294
5295 switch (port) {
5296 case OFPP_TABLE:
5297 case OFPP_NORMAL:
5298 case OFPP_FLOOD:
5299 case OFPP_ALL:
5300 case OFPP_CONTROLLER:
5301 case OFPP_NONE:
5302 ofputil_port_to_string(port, NULL, name, sizeof name);
5303 xlate_report(ctx, OFT_WARN,
5304 "output_trunc does not support port: %s", name);
5305 break;
5306 case OFPP_LOCAL:
5307 case OFPP_IN_PORT:
5308 default:
5309 if (port != ctx->xin->flow.in_port.ofp_port) {
5310 const struct xport *xport = get_ofp_port(ctx->xbridge, port);
5311
5312 if (xport == NULL || xport->odp_port == ODPP_NONE) {
5313 /* Since truncate happens at its following output action, if
5314 * the output port is a patch port, the behavior is somehow
5315 * unpredictable. For simplicity, disallow this case. */
5316 ofputil_port_to_string(port, NULL, name, sizeof name);
5317 xlate_report_error(ctx, "output_trunc does not support "
5318 "patch port %s", name);
5319 break;
5320 }
5321
5322 trunc = nl_msg_put_unspec_uninit(ctx->odp_actions,
5323 OVS_ACTION_ATTR_TRUNC,
5324 sizeof *trunc);
5325 trunc->max_len = max_len;
5326 xlate_output_action(ctx, port, 0, false, is_last_action, true,
5327 group_bucket_action);
5328 if (!support_trunc) {
5329 ctx->xout->slow |= SLOW_ACTION;
5330 }
5331 } else {
5332 xlate_report_info(ctx, "skipping output to input port");
5333 }
5334 break;
5335 }
5336 }
5337
5338 static void
5339 xlate_enqueue_action(struct xlate_ctx *ctx,
5340 const struct ofpact_enqueue *enqueue,
5341 bool is_last_action,
5342 bool group_bucket_action)
5343 {
5344 ofp_port_t ofp_port = enqueue->port;
5345 uint32_t queue_id = enqueue->queue;
5346 uint32_t flow_priority, priority;
5347 int error;
5348
5349 /* Translate queue to priority. */
5350 error = dpif_queue_to_priority(ctx->xbridge->dpif, queue_id, &priority);
5351 if (error) {
5352 /* Fall back to ordinary output action. */
5353 xlate_output_action(ctx, enqueue->port, 0, false,
5354 is_last_action, false,
5355 group_bucket_action);
5356 return;
5357 }
5358
5359 /* Check output port. */
5360 if (ofp_port == OFPP_IN_PORT) {
5361 ofp_port = ctx->xin->flow.in_port.ofp_port;
5362 } else if (ofp_port == ctx->xin->flow.in_port.ofp_port) {
5363 return;
5364 }
5365
5366 /* Add datapath actions. */
5367 flow_priority = ctx->xin->flow.skb_priority;
5368 ctx->xin->flow.skb_priority = priority;
5369 compose_output_action(ctx, ofp_port, NULL, is_last_action, false);
5370 ctx->xin->flow.skb_priority = flow_priority;
5371
5372 /* Update NetFlow output port. */
5373 if (ctx->nf_output_iface == NF_OUT_DROP) {
5374 ctx->nf_output_iface = ofp_port;
5375 } else if (ctx->nf_output_iface != NF_OUT_FLOOD) {
5376 ctx->nf_output_iface = NF_OUT_MULTI;
5377 }
5378 }
5379
5380 static void
5381 xlate_set_queue_action(struct xlate_ctx *ctx, uint32_t queue_id)
5382 {
5383 uint32_t skb_priority;
5384
5385 if (!dpif_queue_to_priority(ctx->xbridge->dpif, queue_id, &skb_priority)) {
5386 ctx->xin->flow.skb_priority = skb_priority;
5387 } else {
5388 /* Couldn't translate queue to a priority. Nothing to do. A warning
5389 * has already been logged. */
5390 }
5391 }
5392
5393 static bool
5394 slave_enabled_cb(ofp_port_t ofp_port, void *xbridge_)
5395 {
5396 const struct xbridge *xbridge = xbridge_;
5397 struct xport *port;
5398
5399 switch (ofp_port) {
5400 case OFPP_IN_PORT:
5401 case OFPP_TABLE:
5402 case OFPP_NORMAL:
5403 case OFPP_FLOOD:
5404 case OFPP_ALL:
5405 case OFPP_NONE:
5406 return true;
5407 case OFPP_CONTROLLER: /* Not supported by the bundle action. */
5408 return false;
5409 default:
5410 port = get_ofp_port(xbridge, ofp_port);
5411 return port ? port->may_enable : false;
5412 }
5413 }
5414
5415 static void
5416 xlate_bundle_action(struct xlate_ctx *ctx,
5417 const struct ofpact_bundle *bundle,
5418 bool is_last_action,
5419 bool group_bucket_action)
5420 {
5421 ofp_port_t port;
5422
5423 port = bundle_execute(bundle, &ctx->xin->flow, ctx->wc, slave_enabled_cb,
5424 CONST_CAST(struct xbridge *, ctx->xbridge));
5425 if (bundle->dst.field) {
5426 nxm_reg_load(&bundle->dst, ofp_to_u16(port), &ctx->xin->flow, ctx->wc);
5427 xlate_report_subfield(ctx, &bundle->dst);
5428 } else {
5429 xlate_output_action(ctx, port, 0, false, is_last_action, false,
5430 group_bucket_action);
5431 }
5432 }
5433
5434 static void
5435 xlate_learn_action(struct xlate_ctx *ctx, const struct ofpact_learn *learn)
5436 {
5437 learn_mask(learn, ctx->wc);
5438
5439 if (ctx->xin->xcache || ctx->xin->allow_side_effects) {
5440 uint64_t ofpacts_stub[1024 / 8];
5441 struct ofputil_flow_mod fm;
5442 struct ofproto_flow_mod ofm__, *ofm;
5443 struct ofpbuf ofpacts;
5444 enum ofperr error;
5445
5446 if (ctx->xin->xcache) {
5447 ofm = xmalloc(sizeof *ofm);
5448 } else {
5449 ofm = &ofm__;
5450 }
5451
5452 ofpbuf_use_stub(&ofpacts, ofpacts_stub, sizeof ofpacts_stub);
5453 learn_execute(learn, &ctx->xin->flow, &fm, &ofpacts);
5454 if (OVS_UNLIKELY(ctx->xin->trace)) {
5455 struct ds s = DS_EMPTY_INITIALIZER;
5456 ds_put_format(&s, "table=%"PRIu8" ", fm.table_id);
5457 minimatch_format(&fm.match,
5458 ofproto_get_tun_tab(&ctx->xin->ofproto->up),
5459 NULL, &s, OFP_DEFAULT_PRIORITY);
5460 ds_chomp(&s, ' ');
5461 ds_put_format(&s, " priority=%d", fm.priority);
5462 if (fm.new_cookie) {
5463 ds_put_format(&s, " cookie=%#"PRIx64, ntohll(fm.new_cookie));
5464 }
5465 if (fm.idle_timeout != OFP_FLOW_PERMANENT) {
5466 ds_put_format(&s, " idle=%"PRIu16, fm.idle_timeout);
5467 }
5468 if (fm.hard_timeout != OFP_FLOW_PERMANENT) {
5469 ds_put_format(&s, " hard=%"PRIu16, fm.hard_timeout);
5470 }
5471 if (fm.flags & NX_LEARN_F_SEND_FLOW_REM) {
5472 ds_put_cstr(&s, " send_flow_rem");
5473 }
5474 ds_put_cstr(&s, " actions=");
5475 struct ofpact_format_params fp = { .s = &s };
5476 ofpacts_format(fm.ofpacts, fm.ofpacts_len, &fp);
5477 xlate_report(ctx, OFT_DETAIL, "%s", ds_cstr(&s));
5478 ds_destroy(&s);
5479 }
5480 error = ofproto_dpif_flow_mod_init_for_learn(ctx->xbridge->ofproto,
5481 &fm, ofm);
5482 ofpbuf_uninit(&ofpacts);
5483
5484 if (!error) {
5485 bool success = true;
5486 if (ctx->xin->allow_side_effects) {
5487 error = ofproto_flow_mod_learn(ofm, ctx->xin->xcache != NULL,
5488 learn->limit, &success);
5489 } else if (learn->limit) {
5490 if (!ofm->temp_rule
5491 || ofm->temp_rule->state != RULE_INSERTED) {
5492 /* The learned rule expired and there are no packets, so
5493 * we cannot learn again. Since the translated actions
5494 * depend on the result of learning, we tell the caller
5495 * that there's no point in caching this result. */
5496 ctx->xout->avoid_caching = true;
5497 }
5498 }
5499
5500 if (learn->flags & NX_LEARN_F_WRITE_RESULT) {
5501 nxm_reg_load(&learn->result_dst, success ? 1 : 0,
5502 &ctx->xin->flow, ctx->wc);
5503 xlate_report_subfield(ctx, &learn->result_dst);
5504 }
5505
5506 if (success && ctx->xin->xcache) {
5507 struct xc_entry *entry;
5508
5509 entry = xlate_cache_add_entry(ctx->xin->xcache, XC_LEARN);
5510 entry->learn.ofm = ofm;
5511 entry->learn.limit = learn->limit;
5512 ofm = NULL;
5513 } else {
5514 ofproto_flow_mod_uninit(ofm);
5515 }
5516
5517 if (OVS_UNLIKELY(ctx->xin->trace && !success)) {
5518 xlate_report(ctx, OFT_DETAIL, "Limit exceeded, learn failed");
5519 }
5520 }
5521
5522 if (ofm != &ofm__) {
5523 free(ofm);
5524 }
5525
5526 if (error) {
5527 xlate_report_error(ctx, "LEARN action execution failed (%s).",
5528 ofperr_to_string(error));
5529 }
5530
5531 minimatch_destroy(&fm.match);
5532 } else {
5533 xlate_report(ctx, OFT_WARN,
5534 "suppressing side effects, so learn action ignored");
5535 }
5536 }
5537
5538 static void
5539 xlate_fin_timeout__(struct rule_dpif *rule, uint16_t tcp_flags,
5540 uint16_t idle_timeout, uint16_t hard_timeout)
5541 {
5542 if (tcp_flags & (TCP_FIN | TCP_RST)) {
5543 ofproto_rule_reduce_timeouts(&rule->up, idle_timeout, hard_timeout);
5544 }
5545 }
5546
5547 static void
5548 xlate_fin_timeout(struct xlate_ctx *ctx,
5549 const struct ofpact_fin_timeout *oft)
5550 {
5551 if (ctx->rule) {
5552 if (ctx->xin->allow_side_effects) {
5553 xlate_fin_timeout__(ctx->rule, ctx->xin->tcp_flags,
5554 oft->fin_idle_timeout, oft->fin_hard_timeout);
5555 }
5556 if (ctx->xin->xcache) {
5557 struct xc_entry *entry;
5558
5559 entry = xlate_cache_add_entry(ctx->xin->xcache, XC_FIN_TIMEOUT);
5560 /* XC_RULE already holds a reference on the rule, none is taken
5561 * here. */
5562 entry->fin.rule = ctx->rule;
5563 entry->fin.idle = oft->fin_idle_timeout;
5564 entry->fin.hard = oft->fin_hard_timeout;
5565 }
5566 }
5567 }
5568
5569 static void
5570 xlate_sample_action(struct xlate_ctx *ctx,
5571 const struct ofpact_sample *os)
5572 {
5573 odp_port_t output_odp_port = ODPP_NONE;
5574 odp_port_t tunnel_out_port = ODPP_NONE;
5575 struct dpif_ipfix *ipfix = ctx->xbridge->ipfix;
5576 bool emit_set_tunnel = false;
5577
5578 if (!ipfix || ctx->xin->flow.in_port.ofp_port == OFPP_NONE) {
5579 return;
5580 }
5581
5582 /* Scale the probability from 16-bit to 32-bit while representing
5583 * the same percentage. */
5584 uint32_t probability = (os->probability << 16) | os->probability;
5585
5586 /* If ofp_port in flow sample action is equel to ofp_port,
5587 * this sample action is a input port action. */
5588 if (os->sampling_port != OFPP_NONE &&
5589 os->sampling_port != ctx->xin->flow.in_port.ofp_port) {
5590 output_odp_port = ofp_port_to_odp_port(ctx->xbridge,
5591 os->sampling_port);
5592 if (output_odp_port == ODPP_NONE) {
5593 xlate_report_error(ctx, "can't use unknown port %d in flow sample "
5594 "action", os->sampling_port);
5595 return;
5596 }
5597
5598 if (dpif_ipfix_get_flow_exporter_tunnel_sampling(ipfix,
5599 os->collector_set_id)
5600 && dpif_ipfix_is_tunnel_port(ipfix, output_odp_port)) {
5601 tunnel_out_port = output_odp_port;
5602 emit_set_tunnel = true;
5603 }
5604 }
5605
5606 xlate_commit_actions(ctx);
5607 /* If 'emit_set_tunnel', sample(sampling_port=1) would translate
5608 * into datapath sample action set(tunnel(...)), sample(...) and
5609 * it is used for sampling egress tunnel information. */
5610 if (emit_set_tunnel) {
5611 const struct xport *xport = get_ofp_port(ctx->xbridge,
5612 os->sampling_port);
5613
5614 if (xport && xport->is_tunnel) {
5615 struct flow *flow = &ctx->xin->flow;
5616 tnl_port_send(xport->ofport, flow, ctx->wc);
5617 if (!ovs_native_tunneling_is_on(ctx->xbridge->ofproto)) {
5618 struct flow_tnl flow_tnl = flow->tunnel;
5619 const char *tnl_type;
5620
5621 tnl_type = tnl_port_get_type(xport->ofport);
5622 commit_odp_tunnel_action(flow, &ctx->base_flow,
5623 ctx->odp_actions, tnl_type);
5624 flow->tunnel = flow_tnl;
5625 }
5626 } else {
5627 xlate_report_error(ctx,
5628 "sampling_port:%d should be a tunnel port.",
5629 os->sampling_port);
5630 }
5631 }
5632
5633 struct user_action_cookie cookie;
5634
5635 memset(&cookie, 0, sizeof cookie);
5636 cookie.type = USER_ACTION_COOKIE_FLOW_SAMPLE;
5637 cookie.ofp_in_port = ctx->xin->flow.in_port.ofp_port;
5638 cookie.ofproto_uuid = ctx->xbridge->ofproto->uuid;
5639 cookie.flow_sample.probability = os->probability;
5640 cookie.flow_sample.collector_set_id = os->collector_set_id;
5641 cookie.flow_sample.obs_domain_id = os->obs_domain_id;
5642 cookie.flow_sample.obs_point_id = os->obs_point_id;
5643 cookie.flow_sample.output_odp_port = output_odp_port;
5644 cookie.flow_sample.direction = os->direction;
5645
5646 compose_sample_action(ctx, probability, &cookie, tunnel_out_port, false);
5647 }
5648
5649 /* Determine if an datapath action translated from the openflow action
5650 * can be reversed by another datapath action.
5651 *
5652 * Openflow actions that do not emit datapath actions are trivially
5653 * reversible. Reversiblity of other actions depends on nature of
5654 * action and their translation. */
5655 static bool
5656 reversible_actions(const struct ofpact *ofpacts, size_t ofpacts_len)
5657 {
5658 const struct ofpact *a;
5659
5660 OFPACT_FOR_EACH (a, ofpacts, ofpacts_len) {
5661 switch (a->type) {
5662 case OFPACT_BUNDLE:
5663 case OFPACT_CLEAR_ACTIONS:
5664 case OFPACT_CLONE:
5665 case OFPACT_CONJUNCTION:
5666 case OFPACT_CONTROLLER:
5667 case OFPACT_CT_CLEAR:
5668 case OFPACT_DEBUG_RECIRC:
5669 case OFPACT_DEBUG_SLOW:
5670 case OFPACT_DEC_MPLS_TTL:
5671 case OFPACT_DEC_TTL:
5672 case OFPACT_ENQUEUE:
5673 case OFPACT_EXIT:
5674 case OFPACT_FIN_TIMEOUT:
5675 case OFPACT_GOTO_TABLE:
5676 case OFPACT_GROUP:
5677 case OFPACT_LEARN:
5678 case OFPACT_MULTIPATH:
5679 case OFPACT_NOTE:
5680 case OFPACT_OUTPUT:
5681 case OFPACT_OUTPUT_REG:
5682 case OFPACT_POP_MPLS:
5683 case OFPACT_POP_QUEUE:
5684 case OFPACT_PUSH_MPLS:
5685 case OFPACT_PUSH_VLAN:
5686 case OFPACT_REG_MOVE:
5687 case OFPACT_RESUBMIT:
5688 case OFPACT_SAMPLE:
5689 case OFPACT_SET_ETH_DST:
5690 case OFPACT_SET_ETH_SRC:
5691 case OFPACT_SET_FIELD:
5692 case OFPACT_SET_IP_DSCP:
5693 case OFPACT_SET_IP_ECN:
5694 case OFPACT_SET_IP_TTL:
5695 case OFPACT_SET_IPV4_DST:
5696 case OFPACT_SET_IPV4_SRC:
5697 case OFPACT_SET_L4_DST_PORT:
5698 case OFPACT_SET_L4_SRC_PORT:
5699 case OFPACT_SET_MPLS_LABEL:
5700 case OFPACT_SET_MPLS_TC:
5701 case OFPACT_SET_MPLS_TTL:
5702 case OFPACT_SET_QUEUE:
5703 case OFPACT_SET_TUNNEL:
5704 case OFPACT_SET_VLAN_PCP:
5705 case OFPACT_SET_VLAN_VID:
5706 case OFPACT_STACK_POP:
5707 case OFPACT_STACK_PUSH:
5708 case OFPACT_STRIP_VLAN:
5709 case OFPACT_UNROLL_XLATE:
5710 case OFPACT_WRITE_ACTIONS:
5711 case OFPACT_WRITE_METADATA:
5712 case OFPACT_CHECK_PKT_LARGER:
5713 case OFPACT_DELETE_FIELD:
5714 break;
5715
5716 case OFPACT_CT:
5717 case OFPACT_METER:
5718 case OFPACT_NAT:
5719 case OFPACT_OUTPUT_TRUNC:
5720 case OFPACT_ENCAP:
5721 case OFPACT_DECAP:
5722 case OFPACT_DEC_NSH_TTL:
5723 return false;
5724 }
5725 }
5726 return true;
5727 }
5728
5729 static void
5730 clone_xlate_actions(const struct ofpact *actions, size_t actions_len,
5731 struct xlate_ctx *ctx, bool is_last_action,
5732 bool group_bucket_action OVS_UNUSED)
5733 {
5734 struct ofpbuf old_stack = ctx->stack;
5735 union mf_subvalue new_stack[1024 / sizeof(union mf_subvalue)];
5736 ofpbuf_use_stub(&ctx->stack, new_stack, sizeof new_stack);
5737 ofpbuf_put(&ctx->stack, old_stack.data, old_stack.size);
5738
5739 struct ofpbuf old_action_set = ctx->action_set;
5740 uint64_t actset_stub[1024 / 8];
5741 ofpbuf_use_stub(&ctx->action_set, actset_stub, sizeof actset_stub);
5742 ofpbuf_put(&ctx->action_set, old_action_set.data, old_action_set.size);
5743
5744 size_t offset, ac_offset;
5745 struct flow old_flow = ctx->xin->flow;
5746
5747 if (reversible_actions(actions, actions_len) || is_last_action) {
5748 old_flow = ctx->xin->flow;
5749 do_xlate_actions(actions, actions_len, ctx, is_last_action, false);
5750 if (!ctx->freezing) {
5751 xlate_action_set(ctx);
5752 }
5753 if (ctx->freezing) {
5754 finish_freezing(ctx);
5755 }
5756 goto xlate_done;
5757 }
5758
5759 /* Commit datapath actions before emitting the clone action to
5760 * avoid emitting those actions twice. Once inside
5761 * the clone, another time for the action after clone. */
5762 xlate_commit_actions(ctx);
5763 struct flow old_base = ctx->base_flow;
5764 bool old_was_mpls = ctx->was_mpls;
5765 bool old_conntracked = ctx->conntracked;
5766
5767 /* The actions are not reversible, a datapath clone action is
5768 * required to encode the translation. Select the clone action
5769 * based on datapath capabilities. */
5770 if (ctx->xbridge->support.clone) { /* Use clone action */
5771 /* Use clone action as datapath clone. */
5772 offset = nl_msg_start_nested(ctx->odp_actions, OVS_ACTION_ATTR_CLONE);
5773 do_xlate_actions(actions, actions_len, ctx, true, false);
5774 if (!ctx->freezing) {
5775 xlate_action_set(ctx);
5776 }
5777 if (ctx->freezing) {
5778 finish_freezing(ctx);
5779 }
5780 nl_msg_end_non_empty_nested(ctx->odp_actions, offset);
5781 goto dp_clone_done;
5782 }
5783
5784 if (ctx->xbridge->support.sample_nesting > 3) {
5785 /* Use sample action as datapath clone. */
5786 offset = nl_msg_start_nested(ctx->odp_actions, OVS_ACTION_ATTR_SAMPLE);
5787 ac_offset = nl_msg_start_nested(ctx->odp_actions,
5788 OVS_SAMPLE_ATTR_ACTIONS);
5789 do_xlate_actions(actions, actions_len, ctx, true, false);
5790 if (!ctx->freezing) {
5791 xlate_action_set(ctx);
5792 }
5793 if (ctx->freezing) {
5794 finish_freezing(ctx);
5795 }
5796 if (nl_msg_end_non_empty_nested(ctx->odp_actions, ac_offset)) {
5797 nl_msg_cancel_nested(ctx->odp_actions, offset);
5798 } else {
5799 nl_msg_put_u32(ctx->odp_actions, OVS_SAMPLE_ATTR_PROBABILITY,
5800 UINT32_MAX); /* 100% probability. */
5801 nl_msg_end_nested(ctx->odp_actions, offset);
5802 }
5803 goto dp_clone_done;
5804 }
5805
5806 /* Datapath does not support clone, skip xlate 'oc' and
5807 * report an error */
5808 xlate_report_error(ctx, "Failed to compose clone action");
5809
5810 dp_clone_done:
5811 /* The clone's conntrack execution should have no effect on the original
5812 * packet. */
5813 ctx->conntracked = old_conntracked;
5814
5815 /* Popping MPLS from the clone should have no effect on the original
5816 * packet. */
5817 ctx->was_mpls = old_was_mpls;
5818
5819 /* Restore the 'base_flow' for the next action. */
5820 ctx->base_flow = old_base;
5821
5822 xlate_done:
5823 ofpbuf_uninit(&ctx->action_set);
5824 ctx->action_set = old_action_set;
5825 ofpbuf_uninit(&ctx->stack);
5826 ctx->stack = old_stack;
5827 ctx->xin->flow = old_flow;
5828 }
5829
5830 static void
5831 compose_clone(struct xlate_ctx *ctx, const struct ofpact_nest *oc,
5832 bool is_last_action)
5833 {
5834 size_t oc_actions_len = ofpact_nest_get_action_len(oc);
5835
5836 clone_xlate_actions(oc->actions, oc_actions_len, ctx, is_last_action,
5837 false);
5838 }
5839
5840 static void
5841 xlate_meter_action(struct xlate_ctx *ctx, const struct ofpact_meter *meter)
5842 {
5843 if (meter->provider_meter_id != UINT32_MAX) {
5844 nl_msg_put_u32(ctx->odp_actions, OVS_ACTION_ATTR_METER,
5845 meter->provider_meter_id);
5846 }
5847 }
5848
5849 static bool
5850 may_receive(const struct xport *xport, struct xlate_ctx *ctx)
5851 {
5852 if (xport->config & (is_stp(&ctx->xin->flow)
5853 ? OFPUTIL_PC_NO_RECV_STP
5854 : OFPUTIL_PC_NO_RECV)) {
5855 return false;
5856 }
5857
5858 /* Only drop packets here if both forwarding and learning are
5859 * disabled. If just learning is enabled, we need to have
5860 * OFPP_NORMAL and the learning action have a look at the packet
5861 * before we can drop it. */
5862 if ((!xport_stp_forward_state(xport) && !xport_stp_learn_state(xport)) ||
5863 (!xport_rstp_forward_state(xport) && !xport_rstp_learn_state(xport))) {
5864 return false;
5865 }
5866
5867 return true;
5868 }
5869
5870 static void
5871 xlate_write_actions__(struct xlate_ctx *ctx,
5872 const struct ofpact *ofpacts, size_t ofpacts_len)
5873 {
5874 /* Maintain actset_output depending on the contents of the action set:
5875 *
5876 * - OFPP_UNSET, if there is no "output" action.
5877 *
5878 * - The output port, if there is an "output" action and no "group"
5879 * action.
5880 *
5881 * - OFPP_UNSET, if there is a "group" action.
5882 */
5883 if (!ctx->action_set_has_group) {
5884 const struct ofpact *a;
5885 OFPACT_FOR_EACH (a, ofpacts, ofpacts_len) {
5886 if (a->type == OFPACT_OUTPUT) {
5887 ctx->xin->flow.actset_output = ofpact_get_OUTPUT(a)->port;
5888 } else if (a->type == OFPACT_GROUP) {
5889 ctx->xin->flow.actset_output = OFPP_UNSET;
5890 ctx->action_set_has_group = true;
5891 break;
5892 }
5893 }
5894 }
5895
5896 ofpbuf_put(&ctx->action_set, ofpacts, ofpacts_len);
5897 }
5898
5899 static void
5900 xlate_write_actions(struct xlate_ctx *ctx, const struct ofpact_nest *a)
5901 {
5902 xlate_write_actions__(ctx, a->actions, ofpact_nest_get_action_len(a));
5903 }
5904
5905 static void
5906 xlate_action_set(struct xlate_ctx *ctx)
5907 {
5908 uint64_t action_list_stub[1024 / 8];
5909 struct ofpbuf action_list = OFPBUF_STUB_INITIALIZER(action_list_stub);
5910 ofpacts_execute_action_set(&action_list, &ctx->action_set);
5911 /* Clear the action set, as it is not needed any more. */
5912 ofpbuf_clear(&ctx->action_set);
5913 if (action_list.size) {
5914 ctx->in_action_set = true;
5915
5916 struct ovs_list *old_trace = ctx->xin->trace;
5917 ctx->xin->trace = xlate_report(ctx, OFT_TABLE,
5918 "--. Executing action set:");
5919 do_xlate_actions(action_list.data, action_list.size, ctx, true, false);
5920 ctx->xin->trace = old_trace;
5921
5922 ctx->in_action_set = false;
5923 }
5924 ofpbuf_uninit(&action_list);
5925 }
5926
5927 static void
5928 freeze_put_unroll_xlate(struct xlate_ctx *ctx)
5929 {
5930 struct ofpact_unroll_xlate *unroll = ctx->frozen_actions.header;
5931
5932 /* Restore the table_id and rule cookie for a potential PACKET
5933 * IN if needed. */
5934 if (!unroll ||
5935 (ctx->table_id != unroll->rule_table_id
5936 || ctx->rule_cookie != unroll->rule_cookie)) {
5937 unroll = ofpact_put_UNROLL_XLATE(&ctx->frozen_actions);
5938 unroll->rule_table_id = ctx->table_id;
5939 unroll->rule_cookie = ctx->rule_cookie;
5940 ctx->frozen_actions.header = unroll;
5941 }
5942 }
5943
5944
5945 /* Copy actions 'a' through 'end' to ctx->frozen_actions, which will be
5946 * executed after thawing. Inserts an UNROLL_XLATE action, if none is already
5947 * present, before any action that may depend on the current table ID or flow
5948 * cookie. */
5949 static void
5950 freeze_unroll_actions(const struct ofpact *a, const struct ofpact *end,
5951 struct xlate_ctx *ctx)
5952 {
5953 for (; a < end; a = ofpact_next(a)) {
5954 switch (a->type) {
5955 case OFPACT_OUTPUT_REG:
5956 case OFPACT_OUTPUT_TRUNC:
5957 case OFPACT_GROUP:
5958 case OFPACT_OUTPUT:
5959 case OFPACT_CONTROLLER:
5960 case OFPACT_DEC_MPLS_TTL:
5961 case OFPACT_DEC_NSH_TTL:
5962 case OFPACT_DEC_TTL:
5963 /* These actions may generate asynchronous messages, which include
5964 * table ID and flow cookie information. */
5965 freeze_put_unroll_xlate(ctx);
5966 break;
5967
5968 case OFPACT_RESUBMIT:
5969 if (ofpact_get_RESUBMIT(a)->table_id == 0xff) {
5970 /* This resubmit action is relative to the current table, so we
5971 * need to track what table that is.*/
5972 freeze_put_unroll_xlate(ctx);
5973 }
5974 break;
5975
5976 case OFPACT_SET_TUNNEL:
5977 case OFPACT_REG_MOVE:
5978 case OFPACT_SET_FIELD:
5979 case OFPACT_STACK_PUSH:
5980 case OFPACT_STACK_POP:
5981 case OFPACT_LEARN:
5982 case OFPACT_WRITE_METADATA:
5983 case OFPACT_GOTO_TABLE:
5984 case OFPACT_ENQUEUE:
5985 case OFPACT_SET_VLAN_VID:
5986 case OFPACT_SET_VLAN_PCP:
5987 case OFPACT_STRIP_VLAN:
5988 case OFPACT_PUSH_VLAN:
5989 case OFPACT_SET_ETH_SRC:
5990 case OFPACT_SET_ETH_DST:
5991 case OFPACT_SET_IPV4_SRC:
5992 case OFPACT_SET_IPV4_DST:
5993 case OFPACT_SET_IP_DSCP:
5994 case OFPACT_SET_IP_ECN:
5995 case OFPACT_SET_IP_TTL:
5996 case OFPACT_SET_L4_SRC_PORT:
5997 case OFPACT_SET_L4_DST_PORT:
5998 case OFPACT_SET_QUEUE:
5999 case OFPACT_POP_QUEUE:
6000 case OFPACT_PUSH_MPLS:
6001 case OFPACT_POP_MPLS:
6002 case OFPACT_SET_MPLS_LABEL:
6003 case OFPACT_SET_MPLS_TC:
6004 case OFPACT_SET_MPLS_TTL:
6005 case OFPACT_MULTIPATH:
6006 case OFPACT_BUNDLE:
6007 case OFPACT_EXIT:
6008 case OFPACT_UNROLL_XLATE:
6009 case OFPACT_FIN_TIMEOUT:
6010 case OFPACT_CLEAR_ACTIONS:
6011 case OFPACT_WRITE_ACTIONS:
6012 case OFPACT_METER:
6013 case OFPACT_SAMPLE:
6014 case OFPACT_CLONE:
6015 case OFPACT_ENCAP:
6016 case OFPACT_DECAP:
6017 case OFPACT_DEBUG_RECIRC:
6018 case OFPACT_DEBUG_SLOW:
6019 case OFPACT_CT:
6020 case OFPACT_CT_CLEAR:
6021 case OFPACT_NAT:
6022 case OFPACT_CHECK_PKT_LARGER:
6023 case OFPACT_DELETE_FIELD:
6024 /* These may not generate PACKET INs. */
6025 break;
6026
6027 case OFPACT_NOTE:
6028 case OFPACT_CONJUNCTION:
6029 /* These need not be copied for restoration. */
6030 continue;
6031 }
6032 /* Copy the action over. */
6033 ofpbuf_put(&ctx->frozen_actions, a, OFPACT_ALIGN(a->len));
6034 }
6035 }
6036
6037 static void
6038 put_ct_mark(const struct flow *flow, struct ofpbuf *odp_actions,
6039 struct flow_wildcards *wc)
6040 {
6041 if (wc->masks.ct_mark) {
6042 struct {
6043 uint32_t key;
6044 uint32_t mask;
6045 } *odp_ct_mark;
6046
6047 odp_ct_mark = nl_msg_put_unspec_uninit(odp_actions, OVS_CT_ATTR_MARK,
6048 sizeof(*odp_ct_mark));
6049 odp_ct_mark->key = flow->ct_mark & wc->masks.ct_mark;
6050 odp_ct_mark->mask = wc->masks.ct_mark;
6051 }
6052 }
6053
6054 static void
6055 put_ct_label(const struct flow *flow, struct ofpbuf *odp_actions,
6056 struct flow_wildcards *wc)
6057 {
6058 if (!ovs_u128_is_zero(wc->masks.ct_label)) {
6059 struct {
6060 ovs_u128 key;
6061 ovs_u128 mask;
6062 } odp_ct_label;
6063
6064 odp_ct_label.key = ovs_u128_and(flow->ct_label, wc->masks.ct_label);
6065 odp_ct_label.mask = wc->masks.ct_label;
6066 nl_msg_put_unspec(odp_actions, OVS_CT_ATTR_LABELS,
6067 &odp_ct_label, sizeof odp_ct_label);
6068 }
6069 }
6070
6071 static void
6072 put_drop_action(struct ofpbuf *odp_actions, enum xlate_error error)
6073 {
6074 nl_msg_put_u32(odp_actions, OVS_ACTION_ATTR_DROP, error);
6075 }
6076
6077 static void
6078 put_ct_helper(struct xlate_ctx *ctx,
6079 struct ofpbuf *odp_actions, struct ofpact_conntrack *ofc)
6080 {
6081 if (ofc->alg) {
6082 switch(ofc->alg) {
6083 case IPPORT_FTP:
6084 nl_msg_put_string(odp_actions, OVS_CT_ATTR_HELPER, "ftp");
6085 break;
6086 case IPPORT_TFTP:
6087 nl_msg_put_string(odp_actions, OVS_CT_ATTR_HELPER, "tftp");
6088 break;
6089 default:
6090 xlate_report_error(ctx, "cannot serialize ct_helper %d", ofc->alg);
6091 break;
6092 }
6093 }
6094 }
6095
6096 static void
6097 put_ct_timeout(struct ofpbuf *odp_actions, const struct dpif_backer *backer,
6098 const struct flow *flow, struct flow_wildcards *wc,
6099 uint16_t zone_id)
6100 {
6101 bool unwildcard;
6102 char *tp_name = NULL;
6103
6104 if (ofproto_dpif_ct_zone_timeout_policy_get_name(backer, zone_id,
6105 ntohs(flow->dl_type), flow->nw_proto, &tp_name, &unwildcard)) {
6106 nl_msg_put_string(odp_actions, OVS_CT_ATTR_TIMEOUT, tp_name);
6107
6108 if (unwildcard) {
6109 /* The underlying datapath requires separate timeout
6110 * policies for different Ethertypes and IP protocols. We
6111 * don't need to unwildcard 'wc->masks.dl_type' since that
6112 * field is always unwildcarded in megaflows. */
6113 memset(&wc->masks.nw_proto, 0xff, sizeof wc->masks.nw_proto);
6114 }
6115 }
6116 free(tp_name);
6117 }
6118
6119 static void
6120 put_ct_nat(struct xlate_ctx *ctx)
6121 {
6122 struct ofpact_nat *ofn = ctx->ct_nat_action;
6123 size_t nat_offset;
6124
6125 if (!ofn) {
6126 return;
6127 }
6128
6129 nat_offset = nl_msg_start_nested(ctx->odp_actions, OVS_CT_ATTR_NAT);
6130 if (ofn->flags & NX_NAT_F_SRC || ofn->flags & NX_NAT_F_DST) {
6131 nl_msg_put_flag(ctx->odp_actions, ofn->flags & NX_NAT_F_SRC
6132 ? OVS_NAT_ATTR_SRC : OVS_NAT_ATTR_DST);
6133 if (ofn->flags & NX_NAT_F_PERSISTENT) {
6134 nl_msg_put_flag(ctx->odp_actions, OVS_NAT_ATTR_PERSISTENT);
6135 }
6136 if (ofn->flags & NX_NAT_F_PROTO_HASH) {
6137 nl_msg_put_flag(ctx->odp_actions, OVS_NAT_ATTR_PROTO_HASH);
6138 } else if (ofn->flags & NX_NAT_F_PROTO_RANDOM) {
6139 nl_msg_put_flag(ctx->odp_actions, OVS_NAT_ATTR_PROTO_RANDOM);
6140 }
6141 if (ofn->range_af == AF_INET) {
6142 nl_msg_put_be32(ctx->odp_actions, OVS_NAT_ATTR_IP_MIN,
6143 ofn->range.addr.ipv4.min);
6144 if (ofn->range.addr.ipv4.max &&
6145 (ntohl(ofn->range.addr.ipv4.max)
6146 > ntohl(ofn->range.addr.ipv4.min))) {
6147 nl_msg_put_be32(ctx->odp_actions, OVS_NAT_ATTR_IP_MAX,
6148 ofn->range.addr.ipv4.max);
6149 }
6150 } else if (ofn->range_af == AF_INET6) {
6151 nl_msg_put_unspec(ctx->odp_actions, OVS_NAT_ATTR_IP_MIN,
6152 &ofn->range.addr.ipv6.min,
6153 sizeof ofn->range.addr.ipv6.min);
6154 if (!ipv6_mask_is_any(&ofn->range.addr.ipv6.max) &&
6155 memcmp(&ofn->range.addr.ipv6.max, &ofn->range.addr.ipv6.min,
6156 sizeof ofn->range.addr.ipv6.max) > 0) {
6157 nl_msg_put_unspec(ctx->odp_actions, OVS_NAT_ATTR_IP_MAX,
6158 &ofn->range.addr.ipv6.max,
6159 sizeof ofn->range.addr.ipv6.max);
6160 }
6161 }
6162 if (ofn->range_af != AF_UNSPEC && ofn->range.proto.min) {
6163 nl_msg_put_u16(ctx->odp_actions, OVS_NAT_ATTR_PROTO_MIN,
6164 ofn->range.proto.min);
6165 if (ofn->range.proto.max &&
6166 ofn->range.proto.max > ofn->range.proto.min) {
6167 nl_msg_put_u16(ctx->odp_actions, OVS_NAT_ATTR_PROTO_MAX,
6168 ofn->range.proto.max);
6169 }
6170 }
6171 }
6172 nl_msg_end_nested(ctx->odp_actions, nat_offset);
6173 }
6174
6175 static void
6176 compose_conntrack_action(struct xlate_ctx *ctx, struct ofpact_conntrack *ofc,
6177 bool is_last_action)
6178 {
6179 ovs_u128 old_ct_label_mask = ctx->wc->masks.ct_label;
6180 uint32_t old_ct_mark_mask = ctx->wc->masks.ct_mark;
6181 size_t ct_offset;
6182 uint16_t zone;
6183
6184 /* Ensure that any prior actions are applied before composing the new
6185 * conntrack action. */
6186 xlate_commit_actions(ctx);
6187
6188 /* Process nested actions first, to populate the key. */
6189 ctx->ct_nat_action = NULL;
6190 ctx->wc->masks.ct_mark = 0;
6191 ctx->wc->masks.ct_label = OVS_U128_ZERO;
6192 do_xlate_actions(ofc->actions, ofpact_ct_get_action_len(ofc), ctx,
6193 is_last_action, false);
6194
6195 if (ofc->zone_src.field) {
6196 zone = mf_get_subfield(&ofc->zone_src, &ctx->xin->flow);
6197 } else {
6198 zone = ofc->zone_imm;
6199 }
6200
6201 ct_offset = nl_msg_start_nested(ctx->odp_actions, OVS_ACTION_ATTR_CT);
6202 if (ofc->flags & NX_CT_F_COMMIT) {
6203 nl_msg_put_flag(ctx->odp_actions, ofc->flags & NX_CT_F_FORCE ?
6204 OVS_CT_ATTR_FORCE_COMMIT : OVS_CT_ATTR_COMMIT);
6205 if (ctx->xbridge->support.ct_eventmask) {
6206 nl_msg_put_u32(ctx->odp_actions, OVS_CT_ATTR_EVENTMASK,
6207 OVS_CT_EVENTMASK_DEFAULT);
6208 }
6209 if (ctx->xbridge->support.ct_timeout) {
6210 put_ct_timeout(ctx->odp_actions, ctx->xbridge->ofproto->backer,
6211 &ctx->xin->flow, ctx->wc, zone);
6212 }
6213 }
6214 nl_msg_put_u16(ctx->odp_actions, OVS_CT_ATTR_ZONE, zone);
6215 put_ct_mark(&ctx->xin->flow, ctx->odp_actions, ctx->wc);
6216 put_ct_label(&ctx->xin->flow, ctx->odp_actions, ctx->wc);
6217 put_ct_helper(ctx, ctx->odp_actions, ofc);
6218 put_ct_nat(ctx);
6219 nl_msg_end_nested(ctx->odp_actions, ct_offset);
6220
6221 ctx->wc->masks.ct_mark = old_ct_mark_mask;
6222 ctx->wc->masks.ct_label = old_ct_label_mask;
6223
6224 if (ofc->recirc_table != NX_CT_RECIRC_NONE) {
6225 ctx->conntracked = true;
6226 compose_recirculate_and_fork(ctx, ofc->recirc_table, zone);
6227 }
6228
6229 ctx->ct_nat_action = NULL;
6230
6231 /* The ct_* fields are only available in the scope of the 'recirc_table'
6232 * call chain. */
6233 flow_clear_conntrack(&ctx->xin->flow);
6234 xlate_report(ctx, OFT_DETAIL, "Sets the packet to an untracked state, "
6235 "and clears all the conntrack fields.");
6236 ctx->conntracked = false;
6237 }
6238
6239 static void
6240 compose_ct_clear_action(struct xlate_ctx *ctx)
6241 {
6242 clear_conntrack(ctx);
6243 /* This action originally existed without dpif support. So to preserve
6244 * compatibility, only append it if the dpif supports it. */
6245 if (ctx->xbridge->support.ct_clear) {
6246 nl_msg_put_flag(ctx->odp_actions, OVS_ACTION_ATTR_CT_CLEAR);
6247 }
6248 }
6249
6250 /* check_pkt_larger action checks the packet length and stores the
6251 * result in the register bit. We translate this action to the
6252 * datapath action - 'check_pkt_len' whose format
6253 * is: 'check_pkt_len(pkt_len, ge(actions), le(actions))'.
6254 *
6255 * We first set the destination register bit to 1 and call
6256 * 'do_xlate_actions' for the case - packet len greater than
6257 * the specified packet length.
6258 *
6259 * We then set the destination register bit to 0 and call
6260 * 'do_xlate_actions' for the case - packet length is lesser or
6261 * equal to the specified packet length.
6262 *
6263 * It is possible for freezing to happen for both the cases.
6264 */
6265 static void
6266 xlate_check_pkt_larger(struct xlate_ctx *ctx,
6267 struct ofpact_check_pkt_larger *check_pkt_larger,
6268 const struct ofpact *remaining_acts,
6269 size_t remaining_acts_len)
6270 {
6271 union mf_subvalue value;
6272 memset(&value, 0, sizeof value);
6273 if (!ctx->xbridge->support.check_pkt_len) {
6274 uint8_t is_pkt_larger = 0;
6275 if (ctx->xin->packet) {
6276 is_pkt_larger =
6277 dp_packet_size(ctx->xin->packet) > check_pkt_larger->pkt_len;
6278 }
6279 value.u8_val = is_pkt_larger;
6280 mf_write_subfield_flow(&check_pkt_larger->dst, &value,
6281 &ctx->xin->flow);
6282 /* If datapath doesn't support check_pkt_len action, then set the
6283 * SLOW_ACTION flag. If we don't set SLOW_ACTION, we
6284 * will push a flow to the datapath based on the packet length
6285 * in ctx->xin->packet. For subsequent patches which match the
6286 * same flow, datapath will apply the actions without considering
6287 * the packet length. This results in wrong actions being applied.
6288 */
6289 ctx->xout->slow |= SLOW_ACTION;
6290 return;
6291 }
6292
6293 struct ofpbuf old_stack = ctx->stack;
6294 union mf_subvalue new_stack[1024 / sizeof(union mf_subvalue)];
6295 ofpbuf_use_stub(&ctx->stack, new_stack, sizeof new_stack);
6296 ofpbuf_put(&ctx->stack, old_stack.data, old_stack.size);
6297
6298 struct ofpbuf old_action_set = ctx->action_set;
6299 uint64_t actset_stub[1024 / 8];
6300 ofpbuf_use_stub(&ctx->action_set, actset_stub, sizeof actset_stub);
6301 ofpbuf_put(&ctx->action_set, old_action_set.data, old_action_set.size);
6302
6303 struct flow old_flow = ctx->xin->flow;
6304 xlate_commit_actions(ctx);
6305 struct flow old_base = ctx->base_flow;
6306 bool old_was_mpls = ctx->was_mpls;
6307 bool old_conntracked = ctx->conntracked;
6308
6309 size_t offset = nl_msg_start_nested(ctx->odp_actions,
6310 OVS_ACTION_ATTR_CHECK_PKT_LEN);
6311 nl_msg_put_u16(ctx->odp_actions, OVS_CHECK_PKT_LEN_ATTR_PKT_LEN,
6312 check_pkt_larger->pkt_len);
6313 size_t offset_attr = nl_msg_start_nested(
6314 ctx->odp_actions, OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER);
6315 value.u8_val = 1;
6316 mf_write_subfield_flow(&check_pkt_larger->dst, &value, &ctx->xin->flow);
6317 do_xlate_actions(remaining_acts, remaining_acts_len, ctx, true, false);
6318 if (!ctx->freezing) {
6319 xlate_action_set(ctx);
6320 }
6321 if (ctx->freezing) {
6322 finish_freezing(ctx);
6323 }
6324 nl_msg_end_nested(ctx->odp_actions, offset_attr);
6325
6326 ctx->base_flow = old_base;
6327 ctx->was_mpls = old_was_mpls;
6328 ctx->conntracked = old_conntracked;
6329 ctx->xin->flow = old_flow;
6330
6331 /* If the flow translation for the IF_GREATER case requires freezing,
6332 * then ctx->exit would be true. Reset to false so that we can
6333 * do flow translation for 'IF_LESS_EQUAL' case. finish_freezing()
6334 * would have taken care of Undoing the changes done for freeze. */
6335 ctx->exit = false;
6336
6337 offset_attr = nl_msg_start_nested(
6338 ctx->odp_actions, OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL);
6339 value.u8_val = 0;
6340 mf_write_subfield_flow(&check_pkt_larger->dst, &value, &ctx->xin->flow);
6341 do_xlate_actions(remaining_acts, remaining_acts_len, ctx, true, false);
6342 if (!ctx->freezing) {
6343 xlate_action_set(ctx);
6344 }
6345 if (ctx->freezing) {
6346 finish_freezing(ctx);
6347 }
6348 nl_msg_end_nested(ctx->odp_actions, offset_attr);
6349 nl_msg_end_nested(ctx->odp_actions, offset);
6350
6351 ofpbuf_uninit(&ctx->action_set);
6352 ctx->action_set = old_action_set;
6353 ofpbuf_uninit(&ctx->stack);
6354 ctx->stack = old_stack;
6355 ctx->base_flow = old_base;
6356 ctx->was_mpls = old_was_mpls;
6357 ctx->conntracked = old_conntracked;
6358 ctx->xin->flow = old_flow;
6359 ctx->exit = true;
6360 }
6361
6362 static void
6363 rewrite_flow_encap_ethernet(struct xlate_ctx *ctx,
6364 struct flow *flow,
6365 struct flow_wildcards *wc)
6366 {
6367 wc->masks.packet_type = OVS_BE32_MAX;
6368 if (pt_ns(flow->packet_type) == OFPHTN_ETHERTYPE) {
6369 /* Only adjust the packet_type and zero the dummy Ethernet addresses. */
6370 ovs_be16 ethertype = pt_ns_type_be(flow->packet_type);
6371 flow->packet_type = htonl(PT_ETH);
6372 flow->dl_src = eth_addr_zero;
6373 flow->dl_dst = eth_addr_zero;
6374 flow->dl_type = ethertype;
6375 } else {
6376 /* Error handling: drop packet. */
6377 xlate_report_debug(ctx, OFT_ACTION,
6378 "Dropping packet as encap(ethernet) is not "
6379 "supported for packet type ethernet.");
6380 ctx->error = XLATE_UNSUPPORTED_PACKET_TYPE;
6381 }
6382 }
6383
6384 /* For an MD2 NSH header returns a pointer to an ofpbuf with the encoded
6385 * MD2 TLVs provided as encap properties to the encap operation. This
6386 * will be stored as encap_data in the ctx and copied into the push_nsh
6387 * action at the next commit. */
6388 static struct ofpbuf *
6389 rewrite_flow_push_nsh(struct xlate_ctx *ctx,
6390 const struct ofpact_encap *encap,
6391 struct flow *flow,
6392 struct flow_wildcards *wc)
6393 {
6394 ovs_be32 packet_type = flow->packet_type;
6395 const char *ptr = (char *) encap->props;
6396 struct ofpbuf *buf = ofpbuf_new(NSH_CTX_HDRS_MAX_LEN);
6397 uint8_t md_type = NSH_M_TYPE1;
6398 uint8_t np = 0;
6399 int i;
6400
6401 /* Scan the optional NSH encap TLV properties, if any. */
6402 for (i = 0; i < encap->n_props; i++) {
6403 struct ofpact_ed_prop *prop_ptr =
6404 ALIGNED_CAST(struct ofpact_ed_prop *, ptr);
6405 if (prop_ptr->prop_class == OFPPPC_NSH) {
6406 switch (prop_ptr->type) {
6407 case OFPPPT_PROP_NSH_MDTYPE: {
6408 struct ofpact_ed_prop_nsh_md_type *prop_md_type =
6409 ALIGNED_CAST(struct ofpact_ed_prop_nsh_md_type *,
6410 prop_ptr);
6411 md_type = prop_md_type->md_type;
6412 break;
6413 }
6414 case OFPPPT_PROP_NSH_TLV: {
6415 struct ofpact_ed_prop_nsh_tlv *tlv_prop =
6416 ALIGNED_CAST(struct ofpact_ed_prop_nsh_tlv *,
6417 prop_ptr);
6418 struct nsh_md2_tlv *md2_ctx =
6419 ofpbuf_put_uninit(buf, sizeof(*md2_ctx));
6420 md2_ctx->md_class = tlv_prop->tlv_class;
6421 md2_ctx->type = tlv_prop->tlv_type;
6422 md2_ctx->length = tlv_prop->tlv_len;
6423 size_t len = ROUND_UP(md2_ctx->length, 4);
6424 size_t padding = len - md2_ctx->length;
6425 ofpbuf_put(buf, tlv_prop->data, md2_ctx->length);
6426 ofpbuf_put_zeros(buf, padding);
6427 break;
6428 }
6429 default:
6430 /* No other NSH encap properties defined yet. */
6431 break;
6432 }
6433 }
6434 ptr += ROUND_UP(prop_ptr->len, 8);
6435 }
6436 if (buf->size == 0 || buf->size > NSH_CTX_HDRS_MAX_LEN) {
6437 ofpbuf_delete(buf);
6438 buf = NULL;
6439 }
6440
6441 /* Determine the Next Protocol field for NSH header. */
6442 switch (ntohl(packet_type)) {
6443 case PT_ETH:
6444 np = NSH_P_ETHERNET;
6445 break;
6446 case PT_IPV4:
6447 np = NSH_P_IPV4;
6448 break;
6449 case PT_IPV6:
6450 np = NSH_P_IPV6;
6451 break;
6452 case PT_NSH:
6453 np = NSH_P_NSH;
6454 break;
6455 default:
6456 /* Error handling: drop packet. */
6457 xlate_report_debug(ctx, OFT_ACTION,
6458 "Dropping packet as encap(nsh) is not "
6459 "supported for packet type (%d,0x%x)",
6460 pt_ns(packet_type), pt_ns_type(packet_type));
6461 ctx->error = XLATE_UNSUPPORTED_PACKET_TYPE;
6462 return buf;
6463 }
6464 /* Note that we have matched on packet_type! */
6465 wc->masks.packet_type = OVS_BE32_MAX;
6466
6467 /* Reset all current flow packet headers. */
6468 memset(&flow->dl_dst, 0,
6469 sizeof(struct flow) - offsetof(struct flow, dl_dst));
6470
6471 /* Populate the flow with the new NSH header. */
6472 flow->packet_type = htonl(PT_NSH);
6473 flow->dl_type = htons(ETH_TYPE_NSH);
6474 flow->nsh.flags = 0;
6475 flow->nsh.ttl = 63;
6476 flow->nsh.np = np;
6477 flow->nsh.path_hdr = htonl(255);
6478
6479 if (md_type == NSH_M_TYPE1) {
6480 flow->nsh.mdtype = NSH_M_TYPE1;
6481 memset(flow->nsh.context, 0, sizeof flow->nsh.context);
6482 if (buf) {
6483 /* Drop any MD2 context TLVs. */
6484 ofpbuf_delete(buf);
6485 buf = NULL;
6486 }
6487 } else if (md_type == NSH_M_TYPE2) {
6488 flow->nsh.mdtype = NSH_M_TYPE2;
6489 }
6490 flow->nsh.mdtype &= NSH_MDTYPE_MASK;
6491
6492 return buf;
6493 }
6494
6495 static void
6496 xlate_generic_encap_action(struct xlate_ctx *ctx,
6497 const struct ofpact_encap *encap)
6498 {
6499 struct flow *flow = &ctx->xin->flow;
6500 struct flow_wildcards *wc = ctx->wc;
6501 struct ofpbuf *encap_data = NULL;
6502
6503 /* Ensure that any pending actions on the inner packet are applied before
6504 * rewriting the flow */
6505 xlate_commit_actions(ctx);
6506
6507 /* Rewrite the flow to reflect the effect of pushing the new encap header. */
6508 switch (ntohl(encap->new_pkt_type)) {
6509 case PT_ETH:
6510 rewrite_flow_encap_ethernet(ctx, flow, wc);
6511 break;
6512 case PT_NSH:
6513 encap_data = rewrite_flow_push_nsh(ctx, encap, flow, wc);
6514 break;
6515 default:
6516 /* New packet type was checked during decoding. */
6517 OVS_NOT_REACHED();
6518 }
6519
6520 if (!ctx->error) {
6521 /* The actual encap datapath action will be generated at next commit. */
6522 ctx->pending_encap = true;
6523 ctx->encap_data = encap_data;
6524 }
6525 }
6526
6527 /* Returns true if packet must be recirculated after decapsulation. */
6528 static bool
6529 xlate_generic_decap_action(struct xlate_ctx *ctx,
6530 const struct ofpact_decap *decap OVS_UNUSED)
6531 {
6532 struct flow *flow = &ctx->xin->flow;
6533
6534 /* Ensure that any pending actions on the current packet are applied
6535 * before generating the decap action. */
6536 xlate_commit_actions(ctx);
6537
6538 /* We assume for now that the new_pkt_type is PT_USE_NEXT_PROTO. */
6539 switch (ntohl(flow->packet_type)) {
6540 case PT_ETH:
6541 if (flow->vlans[0].tci & htons(VLAN_CFI)) {
6542 /* Error handling: drop packet. */
6543 xlate_report_debug(ctx, OFT_ACTION, "Dropping packet, cannot "
6544 "decap Ethernet if VLAN is present.");
6545 ctx->error = XLATE_UNSUPPORTED_PACKET_TYPE;
6546 } else {
6547 /* Just change the packet_type.
6548 * Delay generating pop_eth to the next commit. */
6549 flow->packet_type = htonl(PACKET_TYPE(OFPHTN_ETHERTYPE,
6550 ntohs(flow->dl_type)));
6551 ctx->wc->masks.dl_type = OVS_BE16_MAX;
6552 }
6553 return false;
6554 case PT_NSH:
6555 /* The pop_nsh action is generated at the commit executed as
6556 * part of freezing the ctx for recirculation. Here we just set
6557 * the new packet type based on the NSH next protocol field. */
6558 switch (flow->nsh.np) {
6559 case NSH_P_ETHERNET:
6560 flow->packet_type = htonl(PT_ETH);
6561 break;
6562 case NSH_P_IPV4:
6563 flow->packet_type = htonl(PT_IPV4);
6564 break;
6565 case NSH_P_IPV6:
6566 flow->packet_type = htonl(PT_IPV6);
6567 break;
6568 case NSH_P_NSH:
6569 flow->packet_type = htonl(PT_NSH);
6570 break;
6571 default:
6572 /* Error handling: drop packet. */
6573 xlate_report_debug(ctx, OFT_ACTION,
6574 "Dropping packet as NSH next protocol %d "
6575 "is not supported", flow->nsh.np);
6576 ctx->error = XLATE_UNSUPPORTED_PACKET_TYPE;
6577 return false;
6578 break;
6579 }
6580 ctx->wc->masks.nsh.np = UINT8_MAX;
6581 ctx->pending_decap = true;
6582 /* Trigger recirculation. */
6583 return true;
6584 default:
6585 /* Error handling: drop packet. */
6586 xlate_report_debug(
6587 ctx, OFT_ACTION,
6588 "Dropping packet as the decap() does not support "
6589 "packet type (%d,0x%x)",
6590 pt_ns(flow->packet_type), pt_ns_type(flow->packet_type));
6591 ctx->error = XLATE_UNSUPPORTED_PACKET_TYPE;
6592 return false;
6593 }
6594 }
6595
6596 static void
6597 recirc_for_mpls(const struct ofpact *a, struct xlate_ctx *ctx)
6598 {
6599 /* No need to recirculate if already exiting. */
6600 if (ctx->exit) {
6601 return;
6602 }
6603
6604 /* Do not consider recirculating unless the packet was previously MPLS. */
6605 if (!ctx->was_mpls) {
6606 return;
6607 }
6608
6609 /* Special case these actions, only recirculating if necessary.
6610 * This avoids the overhead of recirculation in common use-cases.
6611 */
6612 switch (a->type) {
6613
6614 /* Output actions do not require recirculation. */
6615 case OFPACT_OUTPUT:
6616 case OFPACT_OUTPUT_TRUNC:
6617 case OFPACT_ENQUEUE:
6618 case OFPACT_OUTPUT_REG:
6619 /* Set actions that don't touch L3+ fields do not require recirculation. */
6620 case OFPACT_SET_VLAN_VID:
6621 case OFPACT_SET_VLAN_PCP:
6622 case OFPACT_SET_ETH_SRC:
6623 case OFPACT_SET_ETH_DST:
6624 case OFPACT_SET_TUNNEL:
6625 case OFPACT_SET_QUEUE:
6626 /* If actions of a group require recirculation that can be detected
6627 * when translating them. */
6628 case OFPACT_GROUP:
6629 return;
6630
6631 /* Set field that don't touch L3+ fields don't require recirculation. */
6632 case OFPACT_SET_FIELD:
6633 if (mf_is_l3_or_higher(ofpact_get_SET_FIELD(a)->field)) {
6634 break;
6635 }
6636 return;
6637
6638 /* For simplicity, recirculate in all other cases. */
6639 case OFPACT_CONTROLLER:
6640 case OFPACT_BUNDLE:
6641 case OFPACT_STRIP_VLAN:
6642 case OFPACT_PUSH_VLAN:
6643 case OFPACT_SET_IPV4_SRC:
6644 case OFPACT_SET_IPV4_DST:
6645 case OFPACT_SET_IP_DSCP:
6646 case OFPACT_SET_IP_ECN:
6647 case OFPACT_SET_IP_TTL:
6648 case OFPACT_SET_L4_SRC_PORT:
6649 case OFPACT_SET_L4_DST_PORT:
6650 case OFPACT_REG_MOVE:
6651 case OFPACT_STACK_PUSH:
6652 case OFPACT_STACK_POP:
6653 case OFPACT_DEC_TTL:
6654 case OFPACT_SET_MPLS_LABEL:
6655 case OFPACT_SET_MPLS_TC:
6656 case OFPACT_SET_MPLS_TTL:
6657 case OFPACT_DEC_MPLS_TTL:
6658 case OFPACT_PUSH_MPLS:
6659 case OFPACT_POP_MPLS:
6660 case OFPACT_POP_QUEUE:
6661 case OFPACT_FIN_TIMEOUT:
6662 case OFPACT_RESUBMIT:
6663 case OFPACT_LEARN:
6664 case OFPACT_CONJUNCTION:
6665 case OFPACT_MULTIPATH:
6666 case OFPACT_NOTE:
6667 case OFPACT_EXIT:
6668 case OFPACT_SAMPLE:
6669 case OFPACT_CLONE:
6670 case OFPACT_ENCAP:
6671 case OFPACT_DECAP:
6672 case OFPACT_DEC_NSH_TTL:
6673 case OFPACT_UNROLL_XLATE:
6674 case OFPACT_CT:
6675 case OFPACT_CT_CLEAR:
6676 case OFPACT_NAT:
6677 case OFPACT_DEBUG_RECIRC:
6678 case OFPACT_DEBUG_SLOW:
6679 case OFPACT_METER:
6680 case OFPACT_CLEAR_ACTIONS:
6681 case OFPACT_WRITE_ACTIONS:
6682 case OFPACT_WRITE_METADATA:
6683 case OFPACT_GOTO_TABLE:
6684 case OFPACT_CHECK_PKT_LARGER:
6685 case OFPACT_DELETE_FIELD:
6686 default:
6687 break;
6688 }
6689
6690 /* Recirculate */
6691 ctx_trigger_freeze(ctx);
6692 }
6693
6694 static void
6695 xlate_ofpact_reg_move(struct xlate_ctx *ctx, const struct ofpact_reg_move *a)
6696 {
6697 mf_subfield_copy(&a->src, &a->dst, &ctx->xin->flow, ctx->wc);
6698 xlate_report_subfield(ctx, &a->dst);
6699 }
6700
6701 static void
6702 xlate_ofpact_stack_pop(struct xlate_ctx *ctx, const struct ofpact_stack *a)
6703 {
6704 if (nxm_execute_stack_pop(a, &ctx->xin->flow, ctx->wc, &ctx->stack)) {
6705 xlate_report_subfield(ctx, &a->subfield);
6706 } else {
6707 xlate_report_error(ctx, "stack underflow");
6708 }
6709 }
6710
6711 /* Restore translation context data that was stored earlier. */
6712 static void
6713 xlate_ofpact_unroll_xlate(struct xlate_ctx *ctx,
6714 const struct ofpact_unroll_xlate *a)
6715 {
6716 ctx->table_id = a->rule_table_id;
6717 ctx->rule_cookie = a->rule_cookie;
6718 xlate_report(ctx, OFT_THAW, "restored state: table=%"PRIu8", "
6719 "cookie=%#"PRIx64, a->rule_table_id, a->rule_cookie);
6720 }
6721
6722 static void
6723 do_xlate_actions(const struct ofpact *ofpacts, size_t ofpacts_len,
6724 struct xlate_ctx *ctx, bool is_last_action,
6725 bool group_bucket_action)
6726 {
6727 struct flow_wildcards *wc = ctx->wc;
6728 struct flow *flow = &ctx->xin->flow;
6729 const struct ofpact *a;
6730
6731 /* dl_type already in the mask, not set below. */
6732
6733 if (!ofpacts_len) {
6734 xlate_report(ctx, OFT_ACTION, "drop");
6735 return;
6736 }
6737
6738 OFPACT_FOR_EACH (a, ofpacts, ofpacts_len) {
6739 struct ofpact_controller *controller;
6740 const struct ofpact_metadata *metadata;
6741 const struct ofpact_set_field *set_field;
6742 const struct mf_field *mf;
6743 bool last = is_last_action && ofpact_last(a, ofpacts, ofpacts_len)
6744 && ctx->action_set.size;
6745
6746 if (ctx->error) {
6747 break;
6748 }
6749
6750 recirc_for_mpls(a, ctx);
6751
6752 if (ctx->exit) {
6753 /* Check if need to store the remaining actions for later
6754 * execution. */
6755 if (ctx->freezing) {
6756 freeze_unroll_actions(a, ofpact_end(ofpacts, ofpacts_len),
6757 ctx);
6758 }
6759 break;
6760 }
6761
6762 if (OVS_UNLIKELY(ctx->xin->trace)) {
6763 struct ds s = DS_EMPTY_INITIALIZER;
6764 struct ofpact_format_params fp = { .s = &s };
6765 ofpacts_format(a, OFPACT_ALIGN(a->len), &fp);
6766 xlate_report(ctx, OFT_ACTION, "%s", ds_cstr(&s));
6767 ds_destroy(&s);
6768 }
6769
6770 switch (a->type) {
6771 case OFPACT_OUTPUT:
6772 xlate_output_action(ctx, ofpact_get_OUTPUT(a)->port,
6773 ofpact_get_OUTPUT(a)->max_len, true, last,
6774 false, group_bucket_action);
6775 break;
6776
6777 case OFPACT_GROUP:
6778 if (xlate_group_action(ctx, ofpact_get_GROUP(a)->group_id, last)) {
6779 /* Group could not be found. */
6780
6781 /* XXX: Terminates action list translation, but does not
6782 * terminate the pipeline. */
6783 return;
6784 }
6785 break;
6786
6787 case OFPACT_CONTROLLER:
6788 controller = ofpact_get_CONTROLLER(a);
6789 if (controller->pause) {
6790 ctx->pause = controller;
6791 ctx_trigger_freeze(ctx);
6792 a = ofpact_next(a);
6793 } else {
6794 xlate_controller_action(ctx, controller->max_len,
6795 controller->reason,
6796 controller->controller_id,
6797 controller->provider_meter_id,
6798 controller->userdata,
6799 controller->userdata_len);
6800 }
6801 break;
6802
6803 case OFPACT_ENQUEUE:
6804 memset(&wc->masks.skb_priority, 0xff,
6805 sizeof wc->masks.skb_priority);
6806 xlate_enqueue_action(ctx, ofpact_get_ENQUEUE(a), last,
6807 group_bucket_action);
6808 break;
6809
6810 case OFPACT_SET_VLAN_VID:
6811 wc->masks.vlans[0].tci |= htons(VLAN_VID_MASK | VLAN_CFI);
6812 if (flow->vlans[0].tci & htons(VLAN_CFI) ||
6813 ofpact_get_SET_VLAN_VID(a)->push_vlan_if_needed) {
6814 if (!flow->vlans[0].tpid) {
6815 flow->vlans[0].tpid = htons(ETH_TYPE_VLAN);
6816 }
6817 flow->vlans[0].tci &= ~htons(VLAN_VID_MASK);
6818 flow->vlans[0].tci |=
6819 (htons(ofpact_get_SET_VLAN_VID(a)->vlan_vid) |
6820 htons(VLAN_CFI));
6821 }
6822 break;
6823
6824 case OFPACT_SET_VLAN_PCP:
6825 wc->masks.vlans[0].tci |= htons(VLAN_PCP_MASK | VLAN_CFI);
6826 if (flow->vlans[0].tci & htons(VLAN_CFI) ||
6827 ofpact_get_SET_VLAN_PCP(a)->push_vlan_if_needed) {
6828 if (!flow->vlans[0].tpid) {
6829 flow->vlans[0].tpid = htons(ETH_TYPE_VLAN);
6830 }
6831 flow->vlans[0].tci &= ~htons(VLAN_PCP_MASK);
6832 flow->vlans[0].tci |=
6833 htons((ofpact_get_SET_VLAN_PCP(a)->vlan_pcp
6834 << VLAN_PCP_SHIFT) | VLAN_CFI);
6835 }
6836 break;
6837
6838 case OFPACT_STRIP_VLAN:
6839 flow_pop_vlan(flow, wc);
6840 break;
6841
6842 case OFPACT_PUSH_VLAN:
6843 flow_push_vlan_uninit(flow, wc);
6844 flow->vlans[0].tpid = ofpact_get_PUSH_VLAN(a)->ethertype;
6845 flow->vlans[0].tci = htons(VLAN_CFI);
6846 break;
6847
6848 case OFPACT_SET_ETH_SRC:
6849 WC_MASK_FIELD(wc, dl_src);
6850 flow->dl_src = ofpact_get_SET_ETH_SRC(a)->mac;
6851 break;
6852
6853 case OFPACT_SET_ETH_DST:
6854 WC_MASK_FIELD(wc, dl_dst);
6855 flow->dl_dst = ofpact_get_SET_ETH_DST(a)->mac;
6856 break;
6857
6858 case OFPACT_SET_IPV4_SRC:
6859 if (flow->dl_type == htons(ETH_TYPE_IP)) {
6860 memset(&wc->masks.nw_src, 0xff, sizeof wc->masks.nw_src);
6861 flow->nw_src = ofpact_get_SET_IPV4_SRC(a)->ipv4;
6862 }
6863 break;
6864
6865 case OFPACT_SET_IPV4_DST:
6866 if (flow->dl_type == htons(ETH_TYPE_IP)) {
6867 memset(&wc->masks.nw_dst, 0xff, sizeof wc->masks.nw_dst);
6868 flow->nw_dst = ofpact_get_SET_IPV4_DST(a)->ipv4;
6869 }
6870 break;
6871
6872 case OFPACT_SET_IP_DSCP:
6873 if (is_ip_any(flow)) {
6874 wc->masks.nw_tos |= IP_DSCP_MASK;
6875 flow->nw_tos &= ~IP_DSCP_MASK;
6876 flow->nw_tos |= ofpact_get_SET_IP_DSCP(a)->dscp;
6877 }
6878 break;
6879
6880 case OFPACT_SET_IP_ECN:
6881 if (is_ip_any(flow)) {
6882 wc->masks.nw_tos |= IP_ECN_MASK;
6883 flow->nw_tos &= ~IP_ECN_MASK;
6884 flow->nw_tos |= ofpact_get_SET_IP_ECN(a)->ecn;
6885 }
6886 break;
6887
6888 case OFPACT_SET_IP_TTL:
6889 if (is_ip_any(flow)) {
6890 wc->masks.nw_ttl = 0xff;
6891 flow->nw_ttl = ofpact_get_SET_IP_TTL(a)->ttl;
6892 }
6893 break;
6894
6895 case OFPACT_SET_L4_SRC_PORT:
6896 if (is_ip_any(flow) && !(flow->nw_frag & FLOW_NW_FRAG_LATER)) {
6897 memset(&wc->masks.nw_proto, 0xff, sizeof wc->masks.nw_proto);
6898 memset(&wc->masks.tp_src, 0xff, sizeof wc->masks.tp_src);
6899 flow->tp_src = htons(ofpact_get_SET_L4_SRC_PORT(a)->port);
6900 }
6901 break;
6902
6903 case OFPACT_SET_L4_DST_PORT:
6904 if (is_ip_any(flow) && !(flow->nw_frag & FLOW_NW_FRAG_LATER)) {
6905 memset(&wc->masks.nw_proto, 0xff, sizeof wc->masks.nw_proto);
6906 memset(&wc->masks.tp_dst, 0xff, sizeof wc->masks.tp_dst);
6907 flow->tp_dst = htons(ofpact_get_SET_L4_DST_PORT(a)->port);
6908 }
6909 break;
6910
6911 case OFPACT_RESUBMIT:
6912 /* Freezing complicates resubmit. Some action in the flow
6913 * entry found by resubmit might trigger freezing. If that
6914 * happens, then we do not want to execute the resubmit again after
6915 * during thawing, so we want to skip back to the head of the loop
6916 * to avoid that, only adding any actions that follow the resubmit
6917 * to the frozen actions.
6918 */
6919 xlate_ofpact_resubmit(ctx, ofpact_get_RESUBMIT(a), last);
6920 continue;
6921
6922 case OFPACT_SET_TUNNEL:
6923 flow->tunnel.tun_id = htonll(ofpact_get_SET_TUNNEL(a)->tun_id);
6924 break;
6925
6926 case OFPACT_SET_QUEUE:
6927 memset(&wc->masks.skb_priority, 0xff,
6928 sizeof wc->masks.skb_priority);
6929 xlate_set_queue_action(ctx, ofpact_get_SET_QUEUE(a)->queue_id);
6930 break;
6931
6932 case OFPACT_POP_QUEUE:
6933 memset(&wc->masks.skb_priority, 0xff,
6934 sizeof wc->masks.skb_priority);
6935 if (flow->skb_priority != ctx->orig_skb_priority) {
6936 flow->skb_priority = ctx->orig_skb_priority;
6937 xlate_report(ctx, OFT_DETAIL, "queue = %#"PRIx32,
6938 flow->skb_priority);
6939 }
6940 break;
6941
6942 case OFPACT_REG_MOVE:
6943 xlate_ofpact_reg_move(ctx, ofpact_get_REG_MOVE(a));
6944 break;
6945
6946 case OFPACT_SET_FIELD:
6947 set_field = ofpact_get_SET_FIELD(a);
6948 mf = set_field->field;
6949
6950 /* Set the field only if the packet actually has it. */
6951 if (mf_are_prereqs_ok(mf, flow, wc)) {
6952 mf_mask_field_masked(mf, ofpact_set_field_mask(set_field), wc);
6953 mf_set_flow_value_masked(mf, set_field->value,
6954 ofpact_set_field_mask(set_field),
6955 flow);
6956 } else {
6957 xlate_report(ctx, OFT_WARN,
6958 "unmet prerequisites for %s, set_field ignored",
6959 mf->name);
6960
6961 }
6962 break;
6963
6964 case OFPACT_STACK_PUSH:
6965 nxm_execute_stack_push(ofpact_get_STACK_PUSH(a), flow, wc,
6966 &ctx->stack);
6967 break;
6968
6969 case OFPACT_STACK_POP:
6970 xlate_ofpact_stack_pop(ctx, ofpact_get_STACK_POP(a));
6971 break;
6972
6973 case OFPACT_PUSH_MPLS:
6974 compose_mpls_push_action(ctx, ofpact_get_PUSH_MPLS(a));
6975 break;
6976
6977 case OFPACT_POP_MPLS:
6978 compose_mpls_pop_action(ctx, ofpact_get_POP_MPLS(a)->ethertype);
6979 break;
6980
6981 case OFPACT_SET_MPLS_LABEL:
6982 compose_set_mpls_label_action(
6983 ctx, ofpact_get_SET_MPLS_LABEL(a)->label);
6984 break;
6985
6986 case OFPACT_SET_MPLS_TC:
6987 compose_set_mpls_tc_action(ctx, ofpact_get_SET_MPLS_TC(a)->tc);
6988 break;
6989
6990 case OFPACT_SET_MPLS_TTL:
6991 compose_set_mpls_ttl_action(ctx, ofpact_get_SET_MPLS_TTL(a)->ttl);
6992 break;
6993
6994 case OFPACT_DEC_MPLS_TTL:
6995 if (compose_dec_mpls_ttl_action(ctx)) {
6996 return;
6997 }
6998 break;
6999
7000 case OFPACT_DEC_NSH_TTL:
7001 if (compose_dec_nsh_ttl_action(ctx)) {
7002 return;
7003 }
7004 break;
7005
7006 case OFPACT_DEC_TTL:
7007 wc->masks.nw_ttl = 0xff;
7008 if (compose_dec_ttl(ctx, ofpact_get_DEC_TTL(a))) {
7009 return;
7010 }
7011 break;
7012
7013 case OFPACT_NOTE:
7014 /* Nothing to do. */
7015 break;
7016
7017 case OFPACT_MULTIPATH:
7018 multipath_execute(ofpact_get_MULTIPATH(a), flow, wc);
7019 xlate_report_subfield(ctx, &ofpact_get_MULTIPATH(a)->dst);
7020 break;
7021
7022 case OFPACT_BUNDLE:
7023 xlate_bundle_action(ctx, ofpact_get_BUNDLE(a), last,
7024 group_bucket_action);
7025 break;
7026
7027 case OFPACT_OUTPUT_REG:
7028 xlate_output_reg_action(ctx, ofpact_get_OUTPUT_REG(a), last,
7029 group_bucket_action);
7030 break;
7031
7032 case OFPACT_OUTPUT_TRUNC:
7033 xlate_output_trunc_action(ctx, ofpact_get_OUTPUT_TRUNC(a)->port,
7034 ofpact_get_OUTPUT_TRUNC(a)->max_len, last,
7035 group_bucket_action);
7036 break;
7037
7038 case OFPACT_LEARN:
7039 xlate_learn_action(ctx, ofpact_get_LEARN(a));
7040 break;
7041
7042 case OFPACT_CONJUNCTION:
7043 /* A flow with a "conjunction" action represents part of a special
7044 * kind of "set membership match". Such a flow should not actually
7045 * get executed, but it could via, say, a "packet-out", even though
7046 * that wouldn't be useful. Log it to help debugging. */
7047 xlate_report_error(ctx, "executing no-op conjunction action");
7048 break;
7049
7050 case OFPACT_EXIT:
7051 ctx->exit = true;
7052 break;
7053
7054 case OFPACT_UNROLL_XLATE:
7055 xlate_ofpact_unroll_xlate(ctx, ofpact_get_UNROLL_XLATE(a));
7056 break;
7057
7058 case OFPACT_FIN_TIMEOUT:
7059 memset(&wc->masks.nw_proto, 0xff, sizeof wc->masks.nw_proto);
7060 xlate_fin_timeout(ctx, ofpact_get_FIN_TIMEOUT(a));
7061 break;
7062
7063 case OFPACT_DELETE_FIELD:
7064 xlate_delete_field(ctx, flow, ofpact_get_DELETE_FIELD(a));
7065 break;
7066
7067 case OFPACT_CLEAR_ACTIONS:
7068 xlate_report_action_set(ctx, "was");
7069 ofpbuf_clear(&ctx->action_set);
7070 ctx->xin->flow.actset_output = OFPP_UNSET;
7071 ctx->action_set_has_group = false;
7072 break;
7073
7074 case OFPACT_WRITE_ACTIONS:
7075 xlate_write_actions(ctx, ofpact_get_WRITE_ACTIONS(a));
7076 xlate_report_action_set(ctx, "is");
7077 break;
7078
7079 case OFPACT_WRITE_METADATA:
7080 metadata = ofpact_get_WRITE_METADATA(a);
7081 flow->metadata &= ~metadata->mask;
7082 flow->metadata |= metadata->metadata & metadata->mask;
7083 break;
7084
7085 case OFPACT_METER:
7086 xlate_meter_action(ctx, ofpact_get_METER(a));
7087 break;
7088
7089 case OFPACT_GOTO_TABLE: {
7090 struct ofpact_goto_table *ogt = ofpact_get_GOTO_TABLE(a);
7091
7092 ovs_assert(ctx->table_id < ogt->table_id);
7093
7094 xlate_table_action(ctx, ctx->xin->flow.in_port.ofp_port,
7095 ogt->table_id, true, true, false, last,
7096 do_xlate_actions);
7097 break;
7098 }
7099
7100 case OFPACT_SAMPLE:
7101 xlate_sample_action(ctx, ofpact_get_SAMPLE(a));
7102 break;
7103
7104 case OFPACT_CLONE:
7105 compose_clone(ctx, ofpact_get_CLONE(a), last);
7106 break;
7107
7108 case OFPACT_ENCAP:
7109 xlate_generic_encap_action(ctx, ofpact_get_ENCAP(a));
7110 break;
7111
7112 case OFPACT_DECAP: {
7113 bool recirc_needed =
7114 xlate_generic_decap_action(ctx, ofpact_get_DECAP(a));
7115 if (!ctx->error && recirc_needed) {
7116 /* Recirculate for parsing of inner packet. */
7117 ctx_trigger_freeze(ctx);
7118 /* Then continue with next action. */
7119 a = ofpact_next(a);
7120 }
7121 break;
7122 }
7123
7124 case OFPACT_CT:
7125 compose_conntrack_action(ctx, ofpact_get_CT(a), last);
7126 break;
7127
7128 case OFPACT_CT_CLEAR:
7129 compose_ct_clear_action(ctx);
7130 break;
7131
7132 case OFPACT_NAT:
7133 /* This will be processed by compose_conntrack_action(). */
7134 ctx->ct_nat_action = ofpact_get_NAT(a);
7135 break;
7136
7137 case OFPACT_DEBUG_RECIRC:
7138 ctx_trigger_freeze(ctx);
7139 a = ofpact_next(a);
7140 break;
7141
7142 case OFPACT_DEBUG_SLOW:
7143 ctx->xout->slow |= SLOW_ACTION;
7144 break;
7145
7146 case OFPACT_CHECK_PKT_LARGER: {
7147 if (last) {
7148 /* If this is last action, then there is no need to
7149 * translate the action. */
7150 break;
7151 }
7152 const struct ofpact *remaining_acts = ofpact_next(a);
7153 size_t remaining_acts_len = ofpact_remaining_len(remaining_acts,
7154 ofpacts,
7155 ofpacts_len);
7156 xlate_check_pkt_larger(ctx, ofpact_get_CHECK_PKT_LARGER(a),
7157 remaining_acts, remaining_acts_len);
7158 break;
7159 }
7160 }
7161
7162 /* Check if need to store this and the remaining actions for later
7163 * execution. */
7164 if (!ctx->error && ctx->exit && ctx_first_frozen_action(ctx)) {
7165 freeze_unroll_actions(a, ofpact_end(ofpacts, ofpacts_len), ctx);
7166 break;
7167 }
7168 }
7169 }
7170
7171 void
7172 xlate_in_init(struct xlate_in *xin, struct ofproto_dpif *ofproto,
7173 ovs_version_t version, const struct flow *flow,
7174 ofp_port_t in_port, struct rule_dpif *rule, uint16_t tcp_flags,
7175 const struct dp_packet *packet, struct flow_wildcards *wc,
7176 struct ofpbuf *odp_actions)
7177 {
7178 xin->ofproto = ofproto;
7179 xin->tables_version = version;
7180 xin->flow = *flow;
7181 xin->upcall_flow = flow;
7182 xin->flow.in_port.ofp_port = in_port;
7183 xin->flow.actset_output = OFPP_UNSET;
7184 xin->packet = packet;
7185 xin->allow_side_effects = packet != NULL;
7186 xin->rule = rule;
7187 xin->xcache = NULL;
7188 xin->ofpacts = NULL;
7189 xin->ofpacts_len = 0;
7190 xin->tcp_flags = tcp_flags;
7191 xin->trace = NULL;
7192 xin->resubmit_stats = NULL;
7193 xin->depth = 0;
7194 xin->resubmits = 0;
7195 xin->wc = wc;
7196 xin->odp_actions = odp_actions;
7197 xin->in_packet_out = false;
7198 xin->recirc_queue = NULL;
7199 xin->xport_uuid = UUID_ZERO;
7200
7201 /* Do recirc lookup. */
7202 xin->frozen_state = NULL;
7203 if (flow->recirc_id) {
7204 const struct recirc_id_node *node
7205 = recirc_id_node_find(flow->recirc_id);
7206 if (node) {
7207 xin->frozen_state = &node->state;
7208 }
7209 }
7210 }
7211
7212 void
7213 xlate_out_uninit(struct xlate_out *xout)
7214 {
7215 if (xout) {
7216 recirc_refs_unref(&xout->recircs);
7217 }
7218 }
7219 \f
7220 static struct skb_priority_to_dscp *
7221 get_skb_priority(const struct xport *xport, uint32_t skb_priority)
7222 {
7223 struct skb_priority_to_dscp *pdscp;
7224 uint32_t hash;
7225
7226 hash = hash_int(skb_priority, 0);
7227 HMAP_FOR_EACH_IN_BUCKET (pdscp, hmap_node, hash, &xport->skb_priorities) {
7228 if (pdscp->skb_priority == skb_priority) {
7229 return pdscp;
7230 }
7231 }
7232 return NULL;
7233 }
7234
7235 static bool
7236 dscp_from_skb_priority(const struct xport *xport, uint32_t skb_priority,
7237 uint8_t *dscp)
7238 {
7239 struct skb_priority_to_dscp *pdscp = get_skb_priority(xport, skb_priority);
7240 *dscp = pdscp ? pdscp->dscp : 0;
7241 return pdscp != NULL;
7242 }
7243
7244 static size_t
7245 count_skb_priorities(const struct xport *xport)
7246 {
7247 return hmap_count(&xport->skb_priorities);
7248 }
7249
7250 static void
7251 clear_skb_priorities(struct xport *xport)
7252 {
7253 struct skb_priority_to_dscp *pdscp;
7254
7255 HMAP_FOR_EACH_POP (pdscp, hmap_node, &xport->skb_priorities) {
7256 free(pdscp);
7257 }
7258 }
7259
7260 static bool
7261 actions_output_to_local_port(const struct xlate_ctx *ctx)
7262 {
7263 odp_port_t local_odp_port = ofp_port_to_odp_port(ctx->xbridge, OFPP_LOCAL);
7264 const struct nlattr *a;
7265 unsigned int left;
7266
7267 NL_ATTR_FOR_EACH_UNSAFE (a, left, ctx->odp_actions->data,
7268 ctx->odp_actions->size) {
7269 if (nl_attr_type(a) == OVS_ACTION_ATTR_OUTPUT
7270 && nl_attr_get_odp_port(a) == local_odp_port) {
7271 return true;
7272 }
7273 }
7274 return false;
7275 }
7276
7277 #if defined(__linux__)
7278 /* Returns the maximum number of packets that the Linux kernel is willing to
7279 * queue up internally to certain kinds of software-implemented ports, or the
7280 * default (and rarely modified) value if it cannot be determined. */
7281 static int
7282 netdev_max_backlog(void)
7283 {
7284 static struct ovsthread_once once = OVSTHREAD_ONCE_INITIALIZER;
7285 static int max_backlog = 1000; /* The normal default value. */
7286
7287 if (ovsthread_once_start(&once)) {
7288 static const char filename[] = "/proc/sys/net/core/netdev_max_backlog";
7289 FILE *stream;
7290 int n;
7291
7292 stream = fopen(filename, "r");
7293 if (!stream) {
7294 VLOG_INFO("%s: open failed (%s)", filename, ovs_strerror(errno));
7295 } else {
7296 if (fscanf(stream, "%d", &n) != 1) {
7297 VLOG_WARN("%s: read error", filename);
7298 } else if (n <= 100) {
7299 VLOG_WARN("%s: unexpectedly small value %d", filename, n);
7300 } else {
7301 max_backlog = n;
7302 }
7303 fclose(stream);
7304 }
7305 ovsthread_once_done(&once);
7306
7307 VLOG_DBG("%s: using %d max_backlog", filename, max_backlog);
7308 }
7309
7310 return max_backlog;
7311 }
7312
7313 /* Counts and returns the number of OVS_ACTION_ATTR_OUTPUT actions in
7314 * 'odp_actions'. */
7315 static int
7316 count_output_actions(const struct ofpbuf *odp_actions)
7317 {
7318 const struct nlattr *a;
7319 size_t left;
7320 int n = 0;
7321
7322 NL_ATTR_FOR_EACH_UNSAFE (a, left, odp_actions->data, odp_actions->size) {
7323 if ((a->nla_type == OVS_ACTION_ATTR_OUTPUT) ||
7324 (a->nla_type == OVS_ACTION_ATTR_LB_OUTPUT)) {
7325 n++;
7326 }
7327 }
7328 return n;
7329 }
7330 #endif /* defined(__linux__) */
7331
7332 /* Returns true if 'odp_actions' contains more output actions than the datapath
7333 * can reliably handle in one go. On Linux, this is the value of the
7334 * net.core.netdev_max_backlog sysctl, which limits the maximum number of
7335 * packets that the kernel is willing to queue up for processing while the
7336 * datapath is processing a set of actions. */
7337 static bool
7338 too_many_output_actions(const struct ofpbuf *odp_actions OVS_UNUSED)
7339 {
7340 #ifdef __linux__
7341 return (odp_actions->size / NL_A_U32_SIZE > netdev_max_backlog()
7342 && count_output_actions(odp_actions) > netdev_max_backlog());
7343 #else
7344 /* OSes other than Linux might have similar limits, but we don't know how
7345 * to determine them.*/
7346 return false;
7347 #endif
7348 }
7349
7350 static void
7351 xlate_wc_init(struct xlate_ctx *ctx)
7352 {
7353 flow_wildcards_init_catchall(ctx->wc);
7354
7355 /* Some fields we consider to always be examined. */
7356 WC_MASK_FIELD(ctx->wc, packet_type);
7357 WC_MASK_FIELD(ctx->wc, in_port);
7358 WC_MASK_FIELD(ctx->wc, dl_type);
7359 if (is_ip_any(&ctx->xin->flow)) {
7360 WC_MASK_FIELD_MASK(ctx->wc, nw_frag, FLOW_NW_FRAG_MASK);
7361 }
7362
7363 if (ctx->xbridge->support.odp.recirc) {
7364 /* Always exactly match recirc_id when datapath supports
7365 * recirculation. */
7366 WC_MASK_FIELD(ctx->wc, recirc_id);
7367 }
7368
7369 if (ctx->xbridge->netflow) {
7370 netflow_mask_wc(&ctx->xin->flow, ctx->wc);
7371 }
7372
7373 tnl_wc_init(&ctx->xin->flow, ctx->wc);
7374 }
7375
7376 static void
7377 xlate_wc_finish(struct xlate_ctx *ctx)
7378 {
7379 int i;
7380
7381 /* Clear the metadata and register wildcard masks, because we won't
7382 * use non-header fields as part of the cache. */
7383 flow_wildcards_clear_non_packet_fields(ctx->wc);
7384
7385 /* Wildcard Ethernet address fields if the original packet type was not
7386 * Ethernet.
7387 *
7388 * (The Ethertype field is used even when the original packet type is not
7389 * Ethernet.) */
7390 if (ctx->xin->upcall_flow->packet_type != htonl(PT_ETH)) {
7391 ctx->wc->masks.dl_dst = eth_addr_zero;
7392 ctx->wc->masks.dl_src = eth_addr_zero;
7393 }
7394
7395 /* ICMPv4 and ICMPv6 have 8-bit "type" and "code" fields. struct flow
7396 * uses the low 8 bits of the 16-bit tp_src and tp_dst members to
7397 * represent these fields. The datapath interface, on the other hand,
7398 * represents them with just 8 bits each. This means that if the high
7399 * 8 bits of the masks for these fields somehow become set, then they
7400 * will get chopped off by a round trip through the datapath, and
7401 * revalidation will spot that as an inconsistency and delete the flow.
7402 * Avoid the problem here by making sure that only the low 8 bits of
7403 * either field can be unwildcarded for ICMP.
7404 */
7405 if (is_icmpv4(&ctx->xin->flow, NULL) || is_icmpv6(&ctx->xin->flow, NULL)) {
7406 ctx->wc->masks.tp_src &= htons(UINT8_MAX);
7407 ctx->wc->masks.tp_dst &= htons(UINT8_MAX);
7408 }
7409 /* VLAN_TCI CFI bit must be matched if any of the TCI is matched. */
7410 for (i = 0; i < FLOW_MAX_VLAN_HEADERS; i++) {
7411 if (ctx->wc->masks.vlans[i].tci) {
7412 ctx->wc->masks.vlans[i].tci |= htons(VLAN_CFI);
7413 }
7414 }
7415
7416 /* The classifier might return masks that match on tp_src and tp_dst even
7417 * for later fragments. This happens because there might be flows that
7418 * match on tp_src or tp_dst without matching on the frag bits, because
7419 * it is not a prerequisite for OpenFlow. Since it is a prerequisite for
7420 * datapath flows and since tp_src and tp_dst are always going to be 0,
7421 * wildcard the fields here. */
7422 if (ctx->xin->flow.nw_frag & FLOW_NW_FRAG_LATER) {
7423 ctx->wc->masks.tp_src = 0;
7424 ctx->wc->masks.tp_dst = 0;
7425 }
7426
7427 /* Clear flow wildcard bits for fields which are not present
7428 * in the original packet header. These wildcards may get set
7429 * due to push/set_field actions. This results into frequent
7430 * invalidation of datapath flows by revalidator thread. */
7431
7432 /* Clear mpls label wc bits if original packet is non-mpls. */
7433 if (!eth_type_mpls(ctx->xin->upcall_flow->dl_type)) {
7434 for (i = 0; i < FLOW_MAX_MPLS_LABELS; i++) {
7435 ctx->wc->masks.mpls_lse[i] = 0;
7436 }
7437 }
7438 /* Clear vlan header wc bits if original packet does not have
7439 * vlan header. */
7440 for (i = 0; i < FLOW_MAX_VLAN_HEADERS; i++) {
7441 if (!eth_type_vlan(ctx->xin->upcall_flow->vlans[i].tpid)) {
7442 ctx->wc->masks.vlans[i].tpid = 0;
7443 ctx->wc->masks.vlans[i].tci = 0;
7444 }
7445 }
7446 }
7447
7448 /* Translates the flow, actions, or rule in 'xin' into datapath actions in
7449 * 'xout'.
7450 * The caller must take responsibility for eventually freeing 'xout', with
7451 * xlate_out_uninit().
7452 * Returns 'XLATE_OK' if translation was successful. In case of an error an
7453 * empty set of actions will be returned in 'xin->odp_actions' (if non-NULL),
7454 * so that most callers may ignore the return value and transparently install a
7455 * drop flow when the translation fails. */
7456 enum xlate_error
7457 xlate_actions(struct xlate_in *xin, struct xlate_out *xout)
7458 {
7459 *xout = (struct xlate_out) {
7460 .slow = 0,
7461 .recircs = RECIRC_REFS_EMPTY_INITIALIZER,
7462 };
7463
7464 struct xlate_cfg *xcfg = ovsrcu_get(struct xlate_cfg *, &xcfgp);
7465 struct xbridge *xbridge = xbridge_lookup(xcfg, xin->ofproto);
7466 if (!xbridge) {
7467 return XLATE_BRIDGE_NOT_FOUND;
7468 }
7469
7470 struct flow *flow = &xin->flow;
7471
7472 uint8_t stack_stub[1024];
7473 uint64_t action_set_stub[1024 / 8];
7474 uint64_t frozen_actions_stub[1024 / 8];
7475 uint64_t actions_stub[256 / 8];
7476 struct ofpbuf scratch_actions = OFPBUF_STUB_INITIALIZER(actions_stub);
7477 struct xlate_ctx ctx = {
7478 .xin = xin,
7479 .xout = xout,
7480 .base_flow = *flow,
7481 .orig_tunnel_ipv6_dst = flow_tnl_dst(&flow->tunnel),
7482 .xcfg = xcfg,
7483 .xbridge = xbridge,
7484 .stack = OFPBUF_STUB_INITIALIZER(stack_stub),
7485 .rule = xin->rule,
7486 .wc = (xin->wc
7487 ? xin->wc
7488 : &(struct flow_wildcards) { .masks = { .dl_type = 0 } }),
7489 .odp_actions = xin->odp_actions ? xin->odp_actions : &scratch_actions,
7490
7491 .depth = xin->depth,
7492 .resubmits = xin->resubmits,
7493 .in_action_set = false,
7494 .in_packet_out = xin->in_packet_out,
7495 .pending_encap = false,
7496 .pending_decap = false,
7497 .encap_data = NULL,
7498
7499 .table_id = 0,
7500 .rule_cookie = OVS_BE64_MAX,
7501 .orig_skb_priority = flow->skb_priority,
7502 .sflow_n_outputs = 0,
7503 .sflow_odp_port = 0,
7504 .nf_output_iface = NF_OUT_DROP,
7505 .exit = false,
7506 .error = XLATE_OK,
7507 .mirrors = 0,
7508
7509 .freezing = false,
7510 .recirc_update_dp_hash = false,
7511 .frozen_actions = OFPBUF_STUB_INITIALIZER(frozen_actions_stub),
7512 .pause = NULL,
7513
7514 .was_mpls = false,
7515 .conntracked = false,
7516
7517 .ct_nat_action = NULL,
7518
7519 .action_set_has_group = false,
7520 .action_set = OFPBUF_STUB_INITIALIZER(action_set_stub),
7521 };
7522
7523 /* 'base_flow' reflects the packet as it came in, but we need it to reflect
7524 * the packet as the datapath will treat it for output actions. Our
7525 * datapath doesn't retain tunneling information without us re-setting
7526 * it, so clear the tunnel data.
7527 */
7528
7529 memset(&ctx.base_flow.tunnel, 0, sizeof ctx.base_flow.tunnel);
7530
7531 ofpbuf_reserve(ctx.odp_actions, NL_A_U32_SIZE);
7532 xlate_wc_init(&ctx);
7533
7534 COVERAGE_INC(xlate_actions);
7535
7536 xin->trace = xlate_report(&ctx, OFT_BRIDGE, "bridge(\"%s\")",
7537 xbridge->name);
7538 if (xin->frozen_state) {
7539 const struct frozen_state *state = xin->frozen_state;
7540
7541 struct ovs_list *old_trace = xin->trace;
7542 xin->trace = xlate_report(&ctx, OFT_THAW, "thaw");
7543
7544 if (xin->ofpacts_len > 0 || ctx.rule) {
7545 xlate_report_error(&ctx, "Recirculation conflict (%s)!",
7546 xin->ofpacts_len ? "actions" : "rule");
7547 ctx.error = XLATE_RECIRCULATION_CONFLICT;
7548 goto exit;
7549 }
7550
7551 /* Set the bridge for post-recirculation processing if needed. */
7552 if (!uuid_equals(&ctx.xbridge->ofproto->uuid, &state->ofproto_uuid)) {
7553 const struct xbridge *new_bridge
7554 = xbridge_lookup_by_uuid(xcfg, &state->ofproto_uuid);
7555
7556 if (OVS_UNLIKELY(!new_bridge)) {
7557 /* Drop the packet if the bridge cannot be found. */
7558 xlate_report_error(&ctx, "Frozen bridge no longer exists.");
7559 ctx.error = XLATE_BRIDGE_NOT_FOUND;
7560 xin->trace = old_trace;
7561 goto exit;
7562 }
7563 ctx.xbridge = new_bridge;
7564 /* The bridge is now known so obtain its table version. */
7565 ctx.xin->tables_version
7566 = ofproto_dpif_get_tables_version(ctx.xbridge->ofproto);
7567 }
7568
7569 /* Set the thawed table id. Note: A table lookup is done only if there
7570 * are no frozen actions. */
7571 ctx.table_id = state->table_id;
7572 xlate_report(&ctx, OFT_THAW,
7573 "Resuming from table %"PRIu8, ctx.table_id);
7574
7575 ctx.conntracked = state->conntracked;
7576 if (!state->conntracked) {
7577 clear_conntrack(&ctx);
7578 }
7579
7580 /* Restore pipeline metadata. May change flow's in_port and other
7581 * metadata to the values that existed when freezing was triggered. */
7582 frozen_metadata_to_flow(&ctx.xbridge->ofproto->up,
7583 &state->metadata, flow);
7584
7585 /* Restore stack, if any. */
7586 if (state->stack) {
7587 ofpbuf_put(&ctx.stack, state->stack, state->stack_size);
7588 }
7589
7590 /* Restore mirror state. */
7591 ctx.mirrors = state->mirrors;
7592
7593 /* Restore action set, if any. */
7594 if (state->action_set_len) {
7595 xlate_report_actions(&ctx, OFT_THAW, "Restoring action set",
7596 state->action_set, state->action_set_len);
7597
7598 flow->actset_output = OFPP_UNSET;
7599 xlate_write_actions__(&ctx, state->action_set,
7600 state->action_set_len);
7601 }
7602
7603 /* Restore frozen actions. If there are no actions, processing will
7604 * start with a lookup in the table set above. */
7605 xin->ofpacts = state->ofpacts;
7606 xin->ofpacts_len = state->ofpacts_len;
7607 if (state->ofpacts_len) {
7608 xlate_report_actions(&ctx, OFT_THAW, "Restoring actions",
7609 xin->ofpacts, xin->ofpacts_len);
7610 }
7611
7612 xin->trace = old_trace;
7613 } else if (OVS_UNLIKELY(flow->recirc_id)) {
7614 xlate_report_error(&ctx,
7615 "Recirculation context not found for ID %"PRIx32,
7616 flow->recirc_id);
7617 ctx.error = XLATE_NO_RECIRCULATION_CONTEXT;
7618 goto exit;
7619 }
7620
7621 /* Tunnel metadata in udpif format must be normalized before translation. */
7622 if (flow->tunnel.flags & FLOW_TNL_F_UDPIF) {
7623 const struct tun_table *tun_tab = ofproto_get_tun_tab(
7624 &ctx.xbridge->ofproto->up);
7625 int err;
7626
7627 err = tun_metadata_from_geneve_udpif(tun_tab, &xin->upcall_flow->tunnel,
7628 &xin->upcall_flow->tunnel,
7629 &flow->tunnel);
7630 if (err) {
7631 xlate_report_error(&ctx, "Invalid Geneve tunnel metadata");
7632 ctx.error = XLATE_INVALID_TUNNEL_METADATA;
7633 goto exit;
7634 }
7635 } else if (!flow->tunnel.metadata.tab) {
7636 /* If the original flow did not come in on a tunnel, then it won't have
7637 * FLOW_TNL_F_UDPIF set. However, we still need to have a metadata
7638 * table in case we generate tunnel actions. */
7639 flow->tunnel.metadata.tab = ofproto_get_tun_tab(
7640 &ctx.xbridge->ofproto->up);
7641 }
7642 ctx.wc->masks.tunnel.metadata.tab = flow->tunnel.metadata.tab;
7643
7644 /* Get the proximate input port of the packet. (If xin->frozen_state,
7645 * flow->in_port is the ultimate input port of the packet.) */
7646 struct xport *in_port = get_ofp_port(xbridge,
7647 ctx.base_flow.in_port.ofp_port);
7648 if (in_port && !in_port->peer) {
7649 ctx.xin->xport_uuid = in_port->uuid;
7650 }
7651
7652 if (flow->packet_type != htonl(PT_ETH) && in_port &&
7653 in_port->pt_mode == NETDEV_PT_LEGACY_L3 && ctx.table_id == 0) {
7654 /* Add dummy Ethernet header to non-L2 packet if it's coming from a
7655 * L3 port. So all packets will be L2 packets for lookup.
7656 * The dl_type has already been set from the packet_type. */
7657 flow->packet_type = htonl(PT_ETH);
7658 flow->dl_src = eth_addr_zero;
7659 flow->dl_dst = eth_addr_zero;
7660 ctx.pending_encap = true;
7661 }
7662
7663 if (!xin->ofpacts && !ctx.rule) {
7664 ctx.rule = rule_dpif_lookup_from_table(
7665 ctx.xbridge->ofproto, ctx.xin->tables_version, flow, ctx.wc,
7666 ctx.xin->resubmit_stats, &ctx.table_id,
7667 flow->in_port.ofp_port, true, true, ctx.xin->xcache);
7668 if (ctx.xin->resubmit_stats) {
7669 rule_dpif_credit_stats(ctx.rule, ctx.xin->resubmit_stats, false);
7670 }
7671 if (ctx.xin->xcache) {
7672 struct xc_entry *entry;
7673
7674 entry = xlate_cache_add_entry(ctx.xin->xcache, XC_RULE);
7675 entry->rule = ctx.rule;
7676 ofproto_rule_ref(&ctx.rule->up);
7677 }
7678
7679 xlate_report_table(&ctx, ctx.rule, ctx.table_id);
7680 }
7681
7682 /* Tunnel stats only for not-thawed packets. */
7683 if (!xin->frozen_state && in_port && in_port->is_tunnel) {
7684 if (ctx.xin->resubmit_stats) {
7685 netdev_vport_inc_rx(in_port->netdev, ctx.xin->resubmit_stats);
7686 if (in_port->bfd) {
7687 bfd_account_rx(in_port->bfd, ctx.xin->resubmit_stats);
7688 }
7689 }
7690 if (ctx.xin->xcache) {
7691 struct xc_entry *entry;
7692
7693 entry = xlate_cache_add_entry(ctx.xin->xcache, XC_NETDEV);
7694 entry->dev.rx = netdev_ref(in_port->netdev);
7695 entry->dev.bfd = bfd_ref(in_port->bfd);
7696 }
7697 }
7698
7699 if (!xin->frozen_state && process_special(&ctx, in_port)) {
7700 /* process_special() did all the processing for this packet.
7701 *
7702 * We do not perform special processing on thawed packets, since that
7703 * was done before they were frozen and should not be redone. */
7704 mirror_ingress_packet(&ctx);
7705 } else if (in_port && in_port->xbundle
7706 && xbundle_mirror_out(xbridge, in_port->xbundle)) {
7707 xlate_report_error(&ctx, "dropping packet received on port "
7708 "%s, which is reserved exclusively for mirroring",
7709 in_port->xbundle->name);
7710 } else {
7711 /* Sampling is done on initial reception; don't redo after thawing. */
7712 unsigned int user_cookie_offset = 0;
7713 if (!xin->frozen_state) {
7714 user_cookie_offset = compose_sflow_action(&ctx);
7715 compose_ipfix_action(&ctx, ODPP_NONE);
7716 }
7717 size_t sample_actions_len = ctx.odp_actions->size;
7718 bool ecn_drop = !tnl_process_ecn(flow);
7719
7720 if (!ecn_drop
7721 && (!in_port || may_receive(in_port, &ctx))) {
7722 const struct ofpact *ofpacts;
7723 size_t ofpacts_len;
7724
7725 if (xin->ofpacts) {
7726 ofpacts = xin->ofpacts;
7727 ofpacts_len = xin->ofpacts_len;
7728 } else if (ctx.rule) {
7729 const struct rule_actions *actions
7730 = rule_get_actions(&ctx.rule->up);
7731 ofpacts = actions->ofpacts;
7732 ofpacts_len = actions->ofpacts_len;
7733 ctx.rule_cookie = ctx.rule->up.flow_cookie;
7734 } else {
7735 OVS_NOT_REACHED();
7736 }
7737
7738 mirror_ingress_packet(&ctx);
7739 do_xlate_actions(ofpacts, ofpacts_len, &ctx, true, false);
7740 if (ctx.error) {
7741 goto exit;
7742 }
7743
7744 /* We've let OFPP_NORMAL and the learning action look at the
7745 * packet, so cancel all actions and freezing if forwarding is
7746 * disabled. */
7747 if (in_port && (!xport_stp_forward_state(in_port) ||
7748 !xport_rstp_forward_state(in_port))) {
7749 ctx.odp_actions->size = sample_actions_len;
7750 ctx_cancel_freeze(&ctx);
7751 ofpbuf_clear(&ctx.action_set);
7752 ctx.error = XLATE_FORWARDING_DISABLED;
7753 }
7754
7755 if (!ctx.freezing) {
7756 xlate_action_set(&ctx);
7757 }
7758 if (ctx.freezing) {
7759 finish_freezing(&ctx);
7760 }
7761 } else if (ecn_drop) {
7762 ctx.error = XLATE_CONGESTION_DROP;
7763 }
7764
7765 /* Output only fully processed packets. */
7766 if (!ctx.freezing
7767 && xbridge->has_in_band
7768 && in_band_must_output_to_local_port(flow)
7769 && !actions_output_to_local_port(&ctx)) {
7770 WC_MASK_FIELD(ctx.wc, nw_proto);
7771 WC_MASK_FIELD(ctx.wc, tp_src);
7772 WC_MASK_FIELD(ctx.wc, tp_dst);
7773 WC_MASK_FIELD(ctx.wc, dl_type);
7774 xlate_report(&ctx, OFT_DETAIL, "outputting DHCP packet "
7775 "to local port for in-band control");
7776 compose_output_action(&ctx, OFPP_LOCAL, NULL, false, false);
7777 }
7778
7779 if (user_cookie_offset) {
7780 fix_sflow_action(&ctx, user_cookie_offset);
7781 }
7782 }
7783
7784 if (nl_attr_oversized(ctx.odp_actions->size)) {
7785 /* These datapath actions are too big for a Netlink attribute, so we
7786 * can't hand them to the kernel directly. dpif_execute() can execute
7787 * them one by one with help, so just mark the result as SLOW_ACTION to
7788 * prevent the flow from being installed. */
7789 COVERAGE_INC(xlate_actions_oversize);
7790 ctx.xout->slow |= SLOW_ACTION;
7791 } else if (too_many_output_actions(ctx.odp_actions)) {
7792 COVERAGE_INC(xlate_actions_too_many_output);
7793 ctx.xout->slow |= SLOW_ACTION;
7794 }
7795
7796 /* Update NetFlow for non-frozen traffic. */
7797 if (xbridge->netflow && !xin->frozen_state) {
7798 if (ctx.xin->resubmit_stats) {
7799 netflow_flow_update(xbridge->netflow, flow,
7800 ctx.nf_output_iface,
7801 ctx.xin->resubmit_stats);
7802 }
7803 if (ctx.xin->xcache) {
7804 struct xc_entry *entry;
7805
7806 entry = xlate_cache_add_entry(ctx.xin->xcache, XC_NETFLOW);
7807 entry->nf.netflow = netflow_ref(xbridge->netflow);
7808 entry->nf.flow = xmemdup(flow, sizeof *flow);
7809 entry->nf.iface = ctx.nf_output_iface;
7810 }
7811 }
7812
7813 /* Translate tunnel metadata masks to udpif format if necessary. */
7814 if (xin->upcall_flow->tunnel.flags & FLOW_TNL_F_UDPIF) {
7815 if (ctx.wc->masks.tunnel.metadata.present.map) {
7816 const struct flow_tnl *upcall_tnl = &xin->upcall_flow->tunnel;
7817 struct geneve_opt opts[TLV_TOT_OPT_SIZE /
7818 sizeof(struct geneve_opt)];
7819
7820 tun_metadata_to_geneve_udpif_mask(&flow->tunnel,
7821 &ctx.wc->masks.tunnel,
7822 upcall_tnl->metadata.opts.gnv,
7823 upcall_tnl->metadata.present.len,
7824 opts);
7825 memset(&ctx.wc->masks.tunnel.metadata, 0,
7826 sizeof ctx.wc->masks.tunnel.metadata);
7827 memcpy(&ctx.wc->masks.tunnel.metadata.opts.gnv, opts,
7828 upcall_tnl->metadata.present.len);
7829 }
7830 ctx.wc->masks.tunnel.metadata.present.len = 0xff;
7831 ctx.wc->masks.tunnel.metadata.tab = NULL;
7832 ctx.wc->masks.tunnel.flags |= FLOW_TNL_F_UDPIF;
7833 } else if (!xin->upcall_flow->tunnel.metadata.tab) {
7834 /* If we didn't have options in UDPIF format and didn't have an existing
7835 * metadata table, then it means that there were no options at all when
7836 * we started processing and any wildcards we picked up were from
7837 * action generation. Without options on the incoming packet, wildcards
7838 * aren't meaningful. To avoid them possibly getting misinterpreted,
7839 * just clear everything. */
7840 if (ctx.wc->masks.tunnel.metadata.present.map) {
7841 memset(&ctx.wc->masks.tunnel.metadata, 0,
7842 sizeof ctx.wc->masks.tunnel.metadata);
7843 } else {
7844 ctx.wc->masks.tunnel.metadata.tab = NULL;
7845 }
7846 }
7847
7848 xlate_wc_finish(&ctx);
7849
7850 exit:
7851 /* Reset the table to what it was when we came in. If we only fetched
7852 * it locally, then it has no meaning outside of flow translation. */
7853 flow->tunnel.metadata.tab = xin->upcall_flow->tunnel.metadata.tab;
7854
7855 ofpbuf_uninit(&ctx.stack);
7856 ofpbuf_uninit(&ctx.action_set);
7857 ofpbuf_uninit(&ctx.frozen_actions);
7858 ofpbuf_uninit(&scratch_actions);
7859 ofpbuf_delete(ctx.encap_data);
7860
7861 /* Make sure we return a "drop flow" in case of an error. */
7862 if (ctx.error) {
7863 xout->slow = 0;
7864 if (xin->odp_actions) {
7865 ofpbuf_clear(xin->odp_actions);
7866 }
7867 }
7868
7869 /* Install drop action if datapath supports explicit drop action. */
7870 if (xin->odp_actions && !xin->odp_actions->size &&
7871 ovs_explicit_drop_action_supported(ctx.xbridge->ofproto)) {
7872 put_drop_action(xin->odp_actions, ctx.error);
7873 }
7874
7875 /* Since congestion drop and forwarding drop are not exactly
7876 * translation error, we are resetting the translation error.
7877 */
7878 if (ctx.error == XLATE_CONGESTION_DROP ||
7879 ctx.error == XLATE_FORWARDING_DISABLED) {
7880 ctx.error = XLATE_OK;
7881 }
7882
7883 return ctx.error;
7884 }
7885
7886 enum ofperr
7887 xlate_resume(struct ofproto_dpif *ofproto,
7888 const struct ofputil_packet_in_private *pin,
7889 struct ofpbuf *odp_actions,
7890 enum slow_path_reason *slow,
7891 struct flow *flow,
7892 struct xlate_cache *xcache)
7893 {
7894 struct dp_packet packet;
7895 dp_packet_use_const(&packet, pin->base.packet,
7896 pin->base.packet_len);
7897
7898 pkt_metadata_from_flow(&packet.md, &pin->base.flow_metadata.flow);
7899 flow_extract(&packet, flow);
7900
7901 struct xlate_in xin;
7902 xlate_in_init(&xin, ofproto, ofproto_dpif_get_tables_version(ofproto),
7903 flow, 0, NULL, ntohs(flow->tcp_flags),
7904 &packet, NULL, odp_actions);
7905 xin.xcache = xcache;
7906
7907 struct ofpact_note noop;
7908 ofpact_init_NOTE(&noop);
7909 noop.length = 0;
7910
7911 bool any_actions = pin->actions_len > 0;
7912 struct frozen_state state = {
7913 .table_id = 0, /* Not the table where NXAST_PAUSE was executed. */
7914 .ofproto_uuid = pin->bridge,
7915 .stack = pin->stack,
7916 .stack_size = pin->stack_size,
7917 .mirrors = pin->mirrors,
7918 .conntracked = pin->conntracked,
7919 .xport_uuid = UUID_ZERO,
7920
7921 /* When there are no actions, xlate_actions() will search the flow
7922 * table. We don't want it to do that (we want it to resume), so
7923 * supply a no-op action if there aren't any.
7924 *
7925 * (We can't necessarily avoid translating actions entirely if there
7926 * aren't any actions, because there might be some finishing-up to do
7927 * at the end of the pipeline, and we don't check for those
7928 * conditions.) */
7929 .ofpacts = any_actions ? pin->actions : &noop.ofpact,
7930 .ofpacts_len = any_actions ? pin->actions_len : sizeof noop,
7931
7932 .action_set = pin->action_set,
7933 .action_set_len = pin->action_set_len,
7934 };
7935 frozen_metadata_from_flow(&state.metadata,
7936 &pin->base.flow_metadata.flow);
7937 xin.frozen_state = &state;
7938
7939 struct xlate_out xout;
7940 enum xlate_error error = xlate_actions(&xin, &xout);
7941 *slow = xout.slow;
7942 xlate_out_uninit(&xout);
7943
7944 /* xlate_actions() can generate a number of errors, but only
7945 * XLATE_BRIDGE_NOT_FOUND really stands out to me as one that we should be
7946 * sure to report over OpenFlow. The others could come up in packet-outs
7947 * or regular flow translation and I don't think that it's going to be too
7948 * useful to report them to the controller. */
7949 return error == XLATE_BRIDGE_NOT_FOUND ? OFPERR_NXR_STALE : 0;
7950 }
7951
7952 /* Sends 'packet' out 'ofport'. If 'port' is a tunnel and that tunnel type
7953 * supports a notion of an OAM flag, sets it if 'oam' is true.
7954 * May modify 'packet'.
7955 * Returns 0 if successful, otherwise a positive errno value. */
7956 int
7957 xlate_send_packet(const struct ofport_dpif *ofport, bool oam,
7958 struct dp_packet *packet)
7959 {
7960 struct xlate_cfg *xcfg = ovsrcu_get(struct xlate_cfg *, &xcfgp);
7961 struct xport *xport;
7962 uint64_t ofpacts_stub[1024 / 8];
7963 struct ofpbuf ofpacts;
7964 struct flow flow;
7965
7966 ofpbuf_use_stack(&ofpacts, ofpacts_stub, sizeof ofpacts_stub);
7967 /* Use OFPP_NONE as the in_port to avoid special packet processing. */
7968 flow_extract(packet, &flow);
7969 flow.in_port.ofp_port = OFPP_NONE;
7970
7971 xport = xport_lookup(xcfg, ofport);
7972 if (!xport) {
7973 return EINVAL;
7974 }
7975
7976 if (oam) {
7977 const ovs_be16 flag = htons(NX_TUN_FLAG_OAM);
7978 ofpact_put_set_field(&ofpacts, mf_from_id(MFF_TUN_FLAGS),
7979 &flag, &flag);
7980 }
7981
7982 ofpact_put_OUTPUT(&ofpacts)->port = xport->ofp_port;
7983
7984 /* Actions here are not referring to anything versionable (flow tables or
7985 * groups) so we don't need to worry about the version here. */
7986 return ofproto_dpif_execute_actions(xport->xbridge->ofproto,
7987 OVS_VERSION_MAX, &flow, NULL,
7988 ofpacts.data, ofpacts.size, packet);
7989 }
7990
7991 void
7992 xlate_mac_learning_update(const struct ofproto_dpif *ofproto,
7993 ofp_port_t in_port, struct eth_addr dl_src,
7994 int vlan, bool is_grat_arp)
7995 {
7996 struct xlate_cfg *xcfg = ovsrcu_get(struct xlate_cfg *, &xcfgp);
7997 struct xbridge *xbridge;
7998 struct xbundle *xbundle;
7999
8000 xbridge = xbridge_lookup(xcfg, ofproto);
8001 if (!xbridge) {
8002 return;
8003 }
8004
8005 xbundle = lookup_input_bundle__(xbridge, in_port, NULL);
8006 if (!xbundle) {
8007 return;
8008 }
8009
8010 update_learning_table__(xbridge, xbundle, dl_src, vlan, is_grat_arp);
8011 }
8012
8013 void
8014 xlate_set_support(const struct ofproto_dpif *ofproto,
8015 const struct dpif_backer_support *support)
8016 {
8017 struct xlate_cfg *xcfg = ovsrcu_get(struct xlate_cfg *, &xcfgp);
8018 struct xbridge *xbridge = xbridge_lookup(xcfg, ofproto);
8019
8020 if (xbridge) {
8021 xbridge->support = *support;
8022 }
8023 }