]> git.proxmox.com Git - mirror_ovs.git/blob - ofproto/ofproto-dpif-xlate.c
ofproto-dpif: Removed unused struct facet 'hmap_node' member.
[mirror_ovs.git] / ofproto / ofproto-dpif-xlate.c
1 /* Copyright (c) 2009, 2010, 2011, 2012, 2013 Nicira, Inc.
2 *
3 * Licensed under the Apache License, Version 2.0 (the "License");
4 * you may not use this file except in compliance with the License.
5 * You may obtain a copy of the License at:
6 *
7 * http://www.apache.org/licenses/LICENSE-2.0
8 *
9 * Unless required by applicable law or agreed to in writing, software
10 * distributed under the License is distributed on an "AS IS" BASIS,
11 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 * See the License for the specific language governing permissions and
13 * limitations under the License. */
14
15 #include <config.h>
16
17 #include "ofproto/ofproto-dpif-xlate.h"
18
19 #include <errno.h>
20
21 #include "bfd.h"
22 #include "bitmap.h"
23 #include "bond.h"
24 #include "bundle.h"
25 #include "byte-order.h"
26 #include "cfm.h"
27 #include "connmgr.h"
28 #include "coverage.h"
29 #include "dpif.h"
30 #include "dynamic-string.h"
31 #include "in-band.h"
32 #include "lacp.h"
33 #include "learn.h"
34 #include "list.h"
35 #include "mac-learning.h"
36 #include "meta-flow.h"
37 #include "multipath.h"
38 #include "netdev-vport.h"
39 #include "netlink.h"
40 #include "nx-match.h"
41 #include "odp-execute.h"
42 #include "ofp-actions.h"
43 #include "ofproto/ofproto-dpif-ipfix.h"
44 #include "ofproto/ofproto-dpif-mirror.h"
45 #include "ofproto/ofproto-dpif-sflow.h"
46 #include "ofproto/ofproto-dpif.h"
47 #include "tunnel.h"
48 #include "vlog.h"
49
50 COVERAGE_DEFINE(xlate_actions);
51
52 VLOG_DEFINE_THIS_MODULE(ofproto_dpif_xlate);
53
54 /* Maximum depth of flow table recursion (due to resubmit actions) in a
55 * flow translation. */
56 #define MAX_RESUBMIT_RECURSION 64
57
58 struct ovs_rwlock xlate_rwlock = OVS_RWLOCK_INITIALIZER;
59
60 struct xbridge {
61 struct hmap_node hmap_node; /* Node in global 'xbridges' map. */
62 struct ofproto_dpif *ofproto; /* Key in global 'xbridges' map. */
63
64 struct list xbundles; /* Owned xbundles. */
65 struct hmap xports; /* Indexed by ofp_port. */
66
67 char *name; /* Name used in log messages. */
68 struct dpif *dpif; /* Datapath interface. */
69 struct mac_learning *ml; /* Mac learning handle. */
70 struct mbridge *mbridge; /* Mirroring. */
71 struct dpif_sflow *sflow; /* SFlow handle, or null. */
72 struct dpif_ipfix *ipfix; /* Ipfix handle, or null. */
73 struct stp *stp; /* STP or null if disabled. */
74
75 /* Special rules installed by ofproto-dpif. */
76 struct rule_dpif *miss_rule;
77 struct rule_dpif *no_packet_in_rule;
78
79 enum ofp_config_flags frag; /* Fragmentation handling. */
80 bool has_netflow; /* Bridge runs netflow? */
81 bool has_in_band; /* Bridge has in band control? */
82 bool forward_bpdu; /* Bridge forwards STP BPDUs? */
83 };
84
85 struct xbundle {
86 struct hmap_node hmap_node; /* In global 'xbundles' map. */
87 struct ofbundle *ofbundle; /* Key in global 'xbundles' map. */
88
89 struct list list_node; /* In parent 'xbridges' list. */
90 struct xbridge *xbridge; /* Parent xbridge. */
91
92 struct list xports; /* Contains "struct xport"s. */
93
94 char *name; /* Name used in log messages. */
95 struct bond *bond; /* Nonnull iff more than one port. */
96 struct lacp *lacp; /* LACP handle or null. */
97
98 enum port_vlan_mode vlan_mode; /* VLAN mode. */
99 int vlan; /* -1=trunk port, else a 12-bit VLAN ID. */
100 unsigned long *trunks; /* Bitmap of trunked VLANs, if 'vlan' == -1.
101 * NULL if all VLANs are trunked. */
102 bool use_priority_tags; /* Use 802.1p tag for frames in VLAN 0? */
103 bool floodable; /* No port has OFPUTIL_PC_NO_FLOOD set? */
104 };
105
106 struct xport {
107 struct hmap_node hmap_node; /* Node in global 'xports' map. */
108 struct ofport_dpif *ofport; /* Key in global 'xports map. */
109
110 struct hmap_node ofp_node; /* Node in parent xbridge 'xports' map. */
111 ofp_port_t ofp_port; /* Key in parent xbridge 'xports' map. */
112
113 odp_port_t odp_port; /* Datapath port number or ODPP_NONE. */
114
115 struct list bundle_node; /* In parent xbundle (if it exists). */
116 struct xbundle *xbundle; /* Parent xbundle or null. */
117
118 struct netdev *netdev; /* 'ofport''s netdev. */
119
120 struct xbridge *xbridge; /* Parent bridge. */
121 struct xport *peer; /* Patch port peer or null. */
122
123 enum ofputil_port_config config; /* OpenFlow port configuration. */
124 int stp_port_no; /* STP port number or 0 if not in use. */
125
126 struct hmap skb_priorities; /* Map of 'skb_priority_to_dscp's. */
127
128 bool may_enable; /* May be enabled in bonds. */
129 bool is_tunnel; /* Is a tunnel port. */
130
131 struct cfm *cfm; /* CFM handle or null. */
132 struct bfd *bfd; /* BFD handle or null. */
133 };
134
135 struct xlate_ctx {
136 struct xlate_in *xin;
137 struct xlate_out *xout;
138
139 const struct xbridge *xbridge;
140
141 /* Flow at the last commit. */
142 struct flow base_flow;
143
144 /* Tunnel IP destination address as received. This is stored separately
145 * as the base_flow.tunnel is cleared on init to reflect the datapath
146 * behavior. Used to make sure not to send tunneled output to ourselves,
147 * which might lead to an infinite loop. This could happen easily
148 * if a tunnel is marked as 'ip_remote=flow', and the flow does not
149 * actually set the tun_dst field. */
150 ovs_be32 orig_tunnel_ip_dst;
151
152 /* Stack for the push and pop actions. Each stack element is of type
153 * "union mf_subvalue". */
154 union mf_subvalue init_stack[1024 / sizeof(union mf_subvalue)];
155 struct ofpbuf stack;
156
157 /* The rule that we are currently translating, or NULL. */
158 struct rule_dpif *rule;
159
160 int recurse; /* Recursion level, via xlate_table_action. */
161 uint32_t orig_skb_priority; /* Priority when packet arrived. */
162 uint8_t table_id; /* OpenFlow table ID where flow was found. */
163 uint32_t sflow_n_outputs; /* Number of output ports. */
164 odp_port_t sflow_odp_port; /* Output port for composing sFlow action. */
165 uint16_t user_cookie_offset;/* Used for user_action_cookie fixup. */
166 bool exit; /* No further actions should be processed. */
167 };
168
169 /* A controller may use OFPP_NONE as the ingress port to indicate that
170 * it did not arrive on a "real" port. 'ofpp_none_bundle' exists for
171 * when an input bundle is needed for validation (e.g., mirroring or
172 * OFPP_NORMAL processing). It is not connected to an 'ofproto' or have
173 * any 'port' structs, so care must be taken when dealing with it.
174 * The bundle's name and vlan mode are initialized in lookup_input_bundle() */
175 static struct xbundle ofpp_none_bundle;
176
177 /* Node in 'xport''s 'skb_priorities' map. Used to maintain a map from
178 * 'priority' (the datapath's term for QoS queue) to the dscp bits which all
179 * traffic egressing the 'ofport' with that priority should be marked with. */
180 struct skb_priority_to_dscp {
181 struct hmap_node hmap_node; /* Node in 'ofport_dpif''s 'skb_priorities'. */
182 uint32_t skb_priority; /* Priority of this queue (see struct flow). */
183
184 uint8_t dscp; /* DSCP bits to mark outgoing traffic with. */
185 };
186
187 static struct hmap xbridges = HMAP_INITIALIZER(&xbridges);
188 static struct hmap xbundles = HMAP_INITIALIZER(&xbundles);
189 static struct hmap xports = HMAP_INITIALIZER(&xports);
190
191 static bool may_receive(const struct xport *, struct xlate_ctx *);
192 static void do_xlate_actions(const struct ofpact *, size_t ofpacts_len,
193 struct xlate_ctx *);
194 static void xlate_normal(struct xlate_ctx *);
195 static void xlate_report(struct xlate_ctx *, const char *);
196 static void xlate_table_action(struct xlate_ctx *, ofp_port_t in_port,
197 uint8_t table_id, bool may_packet_in);
198 static bool input_vid_is_valid(uint16_t vid, struct xbundle *, bool warn);
199 static uint16_t input_vid_to_vlan(const struct xbundle *, uint16_t vid);
200 static void output_normal(struct xlate_ctx *, const struct xbundle *,
201 uint16_t vlan);
202 static void compose_output_action(struct xlate_ctx *, ofp_port_t ofp_port);
203
204 static struct xbridge *xbridge_lookup(const struct ofproto_dpif *);
205 static struct xbundle *xbundle_lookup(const struct ofbundle *);
206 static struct xport *xport_lookup(const struct ofport_dpif *);
207 static struct xport *get_ofp_port(const struct xbridge *, ofp_port_t ofp_port);
208 static struct skb_priority_to_dscp *get_skb_priority(const struct xport *,
209 uint32_t skb_priority);
210 static void clear_skb_priorities(struct xport *);
211 static bool dscp_from_skb_priority(const struct xport *, uint32_t skb_priority,
212 uint8_t *dscp);
213
214 void
215 xlate_ofproto_set(struct ofproto_dpif *ofproto, const char *name,
216 struct dpif *dpif, struct rule_dpif *miss_rule,
217 struct rule_dpif *no_packet_in_rule,
218 const struct mac_learning *ml, struct stp *stp,
219 const struct mbridge *mbridge,
220 const struct dpif_sflow *sflow,
221 const struct dpif_ipfix *ipfix, enum ofp_config_flags frag,
222 bool forward_bpdu, bool has_in_band, bool has_netflow)
223 {
224 struct xbridge *xbridge = xbridge_lookup(ofproto);
225
226 if (!xbridge) {
227 xbridge = xzalloc(sizeof *xbridge);
228 xbridge->ofproto = ofproto;
229
230 hmap_insert(&xbridges, &xbridge->hmap_node, hash_pointer(ofproto, 0));
231 hmap_init(&xbridge->xports);
232 list_init(&xbridge->xbundles);
233 }
234
235 if (xbridge->ml != ml) {
236 mac_learning_unref(xbridge->ml);
237 xbridge->ml = mac_learning_ref(ml);
238 }
239
240 if (xbridge->mbridge != mbridge) {
241 mbridge_unref(xbridge->mbridge);
242 xbridge->mbridge = mbridge_ref(mbridge);
243 }
244
245 if (xbridge->sflow != sflow) {
246 dpif_sflow_unref(xbridge->sflow);
247 xbridge->sflow = dpif_sflow_ref(sflow);
248 }
249
250 if (xbridge->ipfix != ipfix) {
251 dpif_ipfix_unref(xbridge->ipfix);
252 xbridge->ipfix = dpif_ipfix_ref(ipfix);
253 }
254
255 if (xbridge->stp != stp) {
256 stp_unref(xbridge->stp);
257 xbridge->stp = stp_ref(stp);
258 }
259
260 free(xbridge->name);
261 xbridge->name = xstrdup(name);
262
263 xbridge->dpif = dpif;
264 xbridge->forward_bpdu = forward_bpdu;
265 xbridge->has_in_band = has_in_band;
266 xbridge->has_netflow = has_netflow;
267 xbridge->frag = frag;
268 xbridge->miss_rule = miss_rule;
269 xbridge->no_packet_in_rule = no_packet_in_rule;
270 }
271
272 void
273 xlate_remove_ofproto(struct ofproto_dpif *ofproto)
274 {
275 struct xbridge *xbridge = xbridge_lookup(ofproto);
276 struct xbundle *xbundle, *next_xbundle;
277 struct xport *xport, *next_xport;
278
279 if (!xbridge) {
280 return;
281 }
282
283 HMAP_FOR_EACH_SAFE (xport, next_xport, ofp_node, &xbridge->xports) {
284 xlate_ofport_remove(xport->ofport);
285 }
286
287 LIST_FOR_EACH_SAFE (xbundle, next_xbundle, list_node, &xbridge->xbundles) {
288 xlate_bundle_remove(xbundle->ofbundle);
289 }
290
291 hmap_remove(&xbridges, &xbridge->hmap_node);
292 mac_learning_unref(xbridge->ml);
293 mbridge_unref(xbridge->mbridge);
294 dpif_sflow_unref(xbridge->sflow);
295 dpif_ipfix_unref(xbridge->ipfix);
296 stp_unref(xbridge->stp);
297 hmap_destroy(&xbridge->xports);
298 free(xbridge->name);
299 free(xbridge);
300 }
301
302 void
303 xlate_bundle_set(struct ofproto_dpif *ofproto, struct ofbundle *ofbundle,
304 const char *name, enum port_vlan_mode vlan_mode, int vlan,
305 unsigned long *trunks, bool use_priority_tags,
306 const struct bond *bond, const struct lacp *lacp,
307 bool floodable)
308 {
309 struct xbundle *xbundle = xbundle_lookup(ofbundle);
310
311 if (!xbundle) {
312 xbundle = xzalloc(sizeof *xbundle);
313 xbundle->ofbundle = ofbundle;
314 xbundle->xbridge = xbridge_lookup(ofproto);
315
316 hmap_insert(&xbundles, &xbundle->hmap_node, hash_pointer(ofbundle, 0));
317 list_insert(&xbundle->xbridge->xbundles, &xbundle->list_node);
318 list_init(&xbundle->xports);
319 }
320
321 ovs_assert(xbundle->xbridge);
322
323 free(xbundle->name);
324 xbundle->name = xstrdup(name);
325
326 xbundle->vlan_mode = vlan_mode;
327 xbundle->vlan = vlan;
328 xbundle->trunks = trunks;
329 xbundle->use_priority_tags = use_priority_tags;
330 xbundle->floodable = floodable;
331
332 if (xbundle->bond != bond) {
333 bond_unref(xbundle->bond);
334 xbundle->bond = bond_ref(bond);
335 }
336
337 if (xbundle->lacp != lacp) {
338 lacp_unref(xbundle->lacp);
339 xbundle->lacp = lacp_ref(lacp);
340 }
341 }
342
343 void
344 xlate_bundle_remove(struct ofbundle *ofbundle)
345 {
346 struct xbundle *xbundle = xbundle_lookup(ofbundle);
347 struct xport *xport, *next;
348
349 if (!xbundle) {
350 return;
351 }
352
353 LIST_FOR_EACH_SAFE (xport, next, bundle_node, &xbundle->xports) {
354 list_remove(&xport->bundle_node);
355 xport->xbundle = NULL;
356 }
357
358 hmap_remove(&xbundles, &xbundle->hmap_node);
359 list_remove(&xbundle->list_node);
360 bond_unref(xbundle->bond);
361 lacp_unref(xbundle->lacp);
362 free(xbundle->name);
363 free(xbundle);
364 }
365
366 void
367 xlate_ofport_set(struct ofproto_dpif *ofproto, struct ofbundle *ofbundle,
368 struct ofport_dpif *ofport, ofp_port_t ofp_port,
369 odp_port_t odp_port, const struct netdev *netdev,
370 const struct cfm *cfm, const struct bfd *bfd,
371 struct ofport_dpif *peer, int stp_port_no,
372 const struct ofproto_port_queue *qdscp_list, size_t n_qdscp,
373 enum ofputil_port_config config, bool is_tunnel,
374 bool may_enable)
375 {
376 struct xport *xport = xport_lookup(ofport);
377 size_t i;
378
379 if (!xport) {
380 xport = xzalloc(sizeof *xport);
381 xport->ofport = ofport;
382 xport->xbridge = xbridge_lookup(ofproto);
383 xport->ofp_port = ofp_port;
384
385 hmap_init(&xport->skb_priorities);
386 hmap_insert(&xports, &xport->hmap_node, hash_pointer(ofport, 0));
387 hmap_insert(&xport->xbridge->xports, &xport->ofp_node,
388 hash_ofp_port(xport->ofp_port));
389 }
390
391 ovs_assert(xport->ofp_port == ofp_port);
392
393 xport->config = config;
394 xport->stp_port_no = stp_port_no;
395 xport->is_tunnel = is_tunnel;
396 xport->may_enable = may_enable;
397 xport->odp_port = odp_port;
398
399 if (xport->netdev != netdev) {
400 netdev_close(xport->netdev);
401 xport->netdev = netdev_ref(netdev);
402 }
403
404 if (xport->cfm != cfm) {
405 cfm_unref(xport->cfm);
406 xport->cfm = cfm_ref(cfm);
407 }
408
409 if (xport->bfd != bfd) {
410 bfd_unref(xport->bfd);
411 xport->bfd = bfd_ref(bfd);
412 }
413
414 if (xport->peer) {
415 xport->peer->peer = NULL;
416 }
417 xport->peer = xport_lookup(peer);
418 if (xport->peer) {
419 xport->peer->peer = xport;
420 }
421
422 if (xport->xbundle) {
423 list_remove(&xport->bundle_node);
424 }
425 xport->xbundle = xbundle_lookup(ofbundle);
426 if (xport->xbundle) {
427 list_insert(&xport->xbundle->xports, &xport->bundle_node);
428 }
429
430 clear_skb_priorities(xport);
431 for (i = 0; i < n_qdscp; i++) {
432 struct skb_priority_to_dscp *pdscp;
433 uint32_t skb_priority;
434
435 if (dpif_queue_to_priority(xport->xbridge->dpif, qdscp_list[i].queue,
436 &skb_priority)) {
437 continue;
438 }
439
440 pdscp = xmalloc(sizeof *pdscp);
441 pdscp->skb_priority = skb_priority;
442 pdscp->dscp = (qdscp_list[i].dscp << 2) & IP_DSCP_MASK;
443 hmap_insert(&xport->skb_priorities, &pdscp->hmap_node,
444 hash_int(pdscp->skb_priority, 0));
445 }
446 }
447
448 void
449 xlate_ofport_remove(struct ofport_dpif *ofport)
450 {
451 struct xport *xport = xport_lookup(ofport);
452
453 if (!xport) {
454 return;
455 }
456
457 if (xport->peer) {
458 xport->peer->peer = NULL;
459 xport->peer = NULL;
460 }
461
462 if (xport->xbundle) {
463 list_remove(&xport->bundle_node);
464 }
465
466 clear_skb_priorities(xport);
467 hmap_destroy(&xport->skb_priorities);
468
469 hmap_remove(&xports, &xport->hmap_node);
470 hmap_remove(&xport->xbridge->xports, &xport->ofp_node);
471
472 netdev_close(xport->netdev);
473 cfm_unref(xport->cfm);
474 bfd_unref(xport->bfd);
475 free(xport);
476 }
477
478 /* Given a datpath, packet, and flow metadata ('backer', 'packet', and 'key'
479 * respectively), populates 'flow' with the result of odp_flow_key_to_flow().
480 * Optionally, if nonnull, populates 'fitnessp' with the fitness of 'flow' as
481 * returned by odp_flow_key_to_flow(). Also, optionally populates 'ofproto'
482 * with the ofproto_dpif, and 'odp_in_port' with the datapath in_port, that
483 * 'packet' ingressed.
484 *
485 * If 'ofproto' is nonnull, requires 'flow''s in_port to exist. Otherwise sets
486 * 'flow''s in_port to OFPP_NONE.
487 *
488 * This function does post-processing on data returned from
489 * odp_flow_key_to_flow() to help make VLAN splinters transparent to the rest
490 * of the upcall processing logic. In particular, if the extracted in_port is
491 * a VLAN splinter port, it replaces flow->in_port by the "real" port, sets
492 * flow->vlan_tci correctly for the VLAN of the VLAN splinter port, and pushes
493 * a VLAN header onto 'packet' (if it is nonnull).
494 *
495 * Similarly, this function also includes some logic to help with tunnels. It
496 * may modify 'flow' as necessary to make the tunneling implementation
497 * transparent to the upcall processing logic.
498 *
499 * Returns 0 if successful, ENODEV if the parsed flow has no associated ofport,
500 * or some other positive errno if there are other problems. */
501 int
502 xlate_receive(const struct dpif_backer *backer, struct ofpbuf *packet,
503 const struct nlattr *key, size_t key_len,
504 struct flow *flow, enum odp_key_fitness *fitnessp,
505 struct ofproto_dpif **ofproto, odp_port_t *odp_in_port)
506 {
507 enum odp_key_fitness fitness;
508 const struct xport *xport;
509 int error = ENODEV;
510
511 ovs_rwlock_rdlock(&xlate_rwlock);
512 fitness = odp_flow_key_to_flow(key, key_len, flow);
513 if (fitness == ODP_FIT_ERROR) {
514 error = EINVAL;
515 goto exit;
516 }
517
518 if (odp_in_port) {
519 *odp_in_port = flow->in_port.odp_port;
520 }
521
522 xport = xport_lookup(tnl_port_should_receive(flow)
523 ? tnl_port_receive(flow)
524 : odp_port_to_ofport(backer, flow->in_port.odp_port));
525
526 flow->in_port.ofp_port = xport ? xport->ofp_port : OFPP_NONE;
527 if (!xport) {
528 goto exit;
529 }
530
531 if (vsp_adjust_flow(xport->xbridge->ofproto, flow)) {
532 if (packet) {
533 /* Make the packet resemble the flow, so that it gets sent to
534 * an OpenFlow controller properly, so that it looks correct
535 * for sFlow, and so that flow_extract() will get the correct
536 * vlan_tci if it is called on 'packet'.
537 *
538 * The allocated space inside 'packet' probably also contains
539 * 'key', that is, both 'packet' and 'key' are probably part of
540 * a struct dpif_upcall (see the large comment on that
541 * structure definition), so pushing data on 'packet' is in
542 * general not a good idea since it could overwrite 'key' or
543 * free it as a side effect. However, it's OK in this special
544 * case because we know that 'packet' is inside a Netlink
545 * attribute: pushing 4 bytes will just overwrite the 4-byte
546 * "struct nlattr", which is fine since we don't need that
547 * header anymore. */
548 eth_push_vlan(packet, flow->vlan_tci);
549 }
550 /* We can't reproduce 'key' from 'flow'. */
551 fitness = fitness == ODP_FIT_PERFECT ? ODP_FIT_TOO_MUCH : fitness;
552 }
553 error = 0;
554
555 if (ofproto) {
556 *ofproto = xport->xbridge->ofproto;
557 }
558
559 exit:
560 if (fitnessp) {
561 *fitnessp = fitness;
562 }
563 ovs_rwlock_unlock(&xlate_rwlock);
564 return error;
565 }
566
567 static struct xbridge *
568 xbridge_lookup(const struct ofproto_dpif *ofproto)
569 {
570 struct xbridge *xbridge;
571
572 if (!ofproto) {
573 return NULL;
574 }
575
576 HMAP_FOR_EACH_IN_BUCKET (xbridge, hmap_node, hash_pointer(ofproto, 0),
577 &xbridges) {
578 if (xbridge->ofproto == ofproto) {
579 return xbridge;
580 }
581 }
582 return NULL;
583 }
584
585 static struct xbundle *
586 xbundle_lookup(const struct ofbundle *ofbundle)
587 {
588 struct xbundle *xbundle;
589
590 if (!ofbundle) {
591 return NULL;
592 }
593
594 HMAP_FOR_EACH_IN_BUCKET (xbundle, hmap_node, hash_pointer(ofbundle, 0),
595 &xbundles) {
596 if (xbundle->ofbundle == ofbundle) {
597 return xbundle;
598 }
599 }
600 return NULL;
601 }
602
603 static struct xport *
604 xport_lookup(const struct ofport_dpif *ofport)
605 {
606 struct xport *xport;
607
608 if (!ofport) {
609 return NULL;
610 }
611
612 HMAP_FOR_EACH_IN_BUCKET (xport, hmap_node, hash_pointer(ofport, 0),
613 &xports) {
614 if (xport->ofport == ofport) {
615 return xport;
616 }
617 }
618 return NULL;
619 }
620
621 static struct stp_port *
622 xport_get_stp_port(const struct xport *xport)
623 {
624 return xport->xbridge->stp && xport->stp_port_no
625 ? stp_get_port(xport->xbridge->stp, xport->stp_port_no)
626 : NULL;
627 }
628
629 static enum stp_state
630 xport_stp_learn_state(const struct xport *xport)
631 {
632 struct stp_port *sp = xport_get_stp_port(xport);
633 return stp_learn_in_state(sp ? stp_port_get_state(sp) : STP_DISABLED);
634 }
635
636 static bool
637 xport_stp_forward_state(const struct xport *xport)
638 {
639 struct stp_port *sp = xport_get_stp_port(xport);
640 return stp_forward_in_state(sp ? stp_port_get_state(sp) : STP_DISABLED);
641 }
642
643 /* Returns true if STP should process 'flow'. Sets fields in 'wc' that
644 * were used to make the determination.*/
645 static bool
646 stp_should_process_flow(const struct flow *flow, struct flow_wildcards *wc)
647 {
648 memset(&wc->masks.dl_dst, 0xff, sizeof wc->masks.dl_dst);
649 return eth_addr_equals(flow->dl_dst, eth_addr_stp);
650 }
651
652 static void
653 stp_process_packet(const struct xport *xport, const struct ofpbuf *packet)
654 {
655 struct stp_port *sp = xport_get_stp_port(xport);
656 struct ofpbuf payload = *packet;
657 struct eth_header *eth = payload.data;
658
659 /* Sink packets on ports that have STP disabled when the bridge has
660 * STP enabled. */
661 if (!sp || stp_port_get_state(sp) == STP_DISABLED) {
662 return;
663 }
664
665 /* Trim off padding on payload. */
666 if (payload.size > ntohs(eth->eth_type) + ETH_HEADER_LEN) {
667 payload.size = ntohs(eth->eth_type) + ETH_HEADER_LEN;
668 }
669
670 if (ofpbuf_try_pull(&payload, ETH_HEADER_LEN + LLC_HEADER_LEN)) {
671 stp_received_bpdu(sp, payload.data, payload.size);
672 }
673 }
674
675 static struct xport *
676 get_ofp_port(const struct xbridge *xbridge, ofp_port_t ofp_port)
677 {
678 struct xport *xport;
679
680 HMAP_FOR_EACH_IN_BUCKET (xport, ofp_node, hash_ofp_port(ofp_port),
681 &xbridge->xports) {
682 if (xport->ofp_port == ofp_port) {
683 return xport;
684 }
685 }
686 return NULL;
687 }
688
689 static odp_port_t
690 ofp_port_to_odp_port(const struct xbridge *xbridge, ofp_port_t ofp_port)
691 {
692 const struct xport *xport = get_ofp_port(xbridge, ofp_port);
693 return xport ? xport->odp_port : ODPP_NONE;
694 }
695
696 static bool
697 xbundle_trunks_vlan(const struct xbundle *bundle, uint16_t vlan)
698 {
699 return (bundle->vlan_mode != PORT_VLAN_ACCESS
700 && (!bundle->trunks || bitmap_is_set(bundle->trunks, vlan)));
701 }
702
703 static bool
704 xbundle_includes_vlan(const struct xbundle *xbundle, uint16_t vlan)
705 {
706 return vlan == xbundle->vlan || xbundle_trunks_vlan(xbundle, vlan);
707 }
708
709 static mirror_mask_t
710 xbundle_mirror_out(const struct xbridge *xbridge, struct xbundle *xbundle)
711 {
712 return xbundle != &ofpp_none_bundle
713 ? mirror_bundle_out(xbridge->mbridge, xbundle->ofbundle)
714 : 0;
715 }
716
717 static mirror_mask_t
718 xbundle_mirror_src(const struct xbridge *xbridge, struct xbundle *xbundle)
719 {
720 return xbundle != &ofpp_none_bundle
721 ? mirror_bundle_src(xbridge->mbridge, xbundle->ofbundle)
722 : 0;
723 }
724
725 static mirror_mask_t
726 xbundle_mirror_dst(const struct xbridge *xbridge, struct xbundle *xbundle)
727 {
728 return xbundle != &ofpp_none_bundle
729 ? mirror_bundle_dst(xbridge->mbridge, xbundle->ofbundle)
730 : 0;
731 }
732
733 static struct xbundle *
734 lookup_input_bundle(const struct xbridge *xbridge, ofp_port_t in_port,
735 bool warn, struct xport **in_xportp)
736 {
737 struct xport *xport;
738
739 /* Find the port and bundle for the received packet. */
740 xport = get_ofp_port(xbridge, in_port);
741 if (in_xportp) {
742 *in_xportp = xport;
743 }
744 if (xport && xport->xbundle) {
745 return xport->xbundle;
746 }
747
748 /* Special-case OFPP_NONE, which a controller may use as the ingress
749 * port for traffic that it is sourcing. */
750 if (in_port == OFPP_NONE) {
751 ofpp_none_bundle.name = "OFPP_NONE";
752 ofpp_none_bundle.vlan_mode = PORT_VLAN_TRUNK;
753 return &ofpp_none_bundle;
754 }
755
756 /* Odd. A few possible reasons here:
757 *
758 * - We deleted a port but there are still a few packets queued up
759 * from it.
760 *
761 * - Someone externally added a port (e.g. "ovs-dpctl add-if") that
762 * we don't know about.
763 *
764 * - The ofproto client didn't configure the port as part of a bundle.
765 * This is particularly likely to happen if a packet was received on the
766 * port after it was created, but before the client had a chance to
767 * configure its bundle.
768 */
769 if (warn) {
770 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
771
772 VLOG_WARN_RL(&rl, "bridge %s: received packet on unknown "
773 "port %"PRIu16, xbridge->name, in_port);
774 }
775 return NULL;
776 }
777
778 static void
779 add_mirror_actions(struct xlate_ctx *ctx, const struct flow *orig_flow)
780 {
781 const struct xbridge *xbridge = ctx->xbridge;
782 mirror_mask_t mirrors;
783 struct xbundle *in_xbundle;
784 uint16_t vlan;
785 uint16_t vid;
786
787 mirrors = ctx->xout->mirrors;
788 ctx->xout->mirrors = 0;
789
790 in_xbundle = lookup_input_bundle(xbridge, orig_flow->in_port.ofp_port,
791 ctx->xin->packet != NULL, NULL);
792 if (!in_xbundle) {
793 return;
794 }
795 mirrors |= xbundle_mirror_src(xbridge, in_xbundle);
796
797 /* Drop frames on bundles reserved for mirroring. */
798 if (xbundle_mirror_out(xbridge, in_xbundle)) {
799 if (ctx->xin->packet != NULL) {
800 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
801 VLOG_WARN_RL(&rl, "bridge %s: dropping packet received on port "
802 "%s, which is reserved exclusively for mirroring",
803 ctx->xbridge->name, in_xbundle->name);
804 }
805 ofpbuf_clear(&ctx->xout->odp_actions);
806 return;
807 }
808
809 /* Check VLAN. */
810 vid = vlan_tci_to_vid(orig_flow->vlan_tci);
811 if (!input_vid_is_valid(vid, in_xbundle, ctx->xin->packet != NULL)) {
812 return;
813 }
814 vlan = input_vid_to_vlan(in_xbundle, vid);
815
816 if (!mirrors) {
817 return;
818 }
819
820 /* Restore the original packet before adding the mirror actions. */
821 ctx->xin->flow = *orig_flow;
822
823 while (mirrors) {
824 mirror_mask_t dup_mirrors;
825 struct ofbundle *out;
826 unsigned long *vlans;
827 bool vlan_mirrored;
828 bool has_mirror;
829 int out_vlan;
830
831 has_mirror = mirror_get(xbridge->mbridge, mirror_mask_ffs(mirrors) - 1,
832 &vlans, &dup_mirrors, &out, &out_vlan);
833 ovs_assert(has_mirror);
834
835 if (vlans) {
836 ctx->xout->wc.masks.vlan_tci |= htons(VLAN_CFI | VLAN_VID_MASK);
837 }
838 vlan_mirrored = !vlans || bitmap_is_set(vlans, vlan);
839 free(vlans);
840
841 if (!vlan_mirrored) {
842 mirrors = zero_rightmost_1bit(mirrors);
843 continue;
844 }
845
846 mirrors &= ~dup_mirrors;
847 ctx->xout->mirrors |= dup_mirrors;
848 if (out) {
849 struct xbundle *out_xbundle = xbundle_lookup(out);
850 if (out_xbundle) {
851 output_normal(ctx, out_xbundle, vlan);
852 }
853 } else if (vlan != out_vlan
854 && !eth_addr_is_reserved(orig_flow->dl_dst)) {
855 struct xbundle *xbundle;
856
857 LIST_FOR_EACH (xbundle, list_node, &xbridge->xbundles) {
858 if (xbundle_includes_vlan(xbundle, out_vlan)
859 && !xbundle_mirror_out(xbridge, xbundle)) {
860 output_normal(ctx, xbundle, out_vlan);
861 }
862 }
863 }
864 }
865 }
866
867 /* Given 'vid', the VID obtained from the 802.1Q header that was received as
868 * part of a packet (specify 0 if there was no 802.1Q header), and 'in_xbundle',
869 * the bundle on which the packet was received, returns the VLAN to which the
870 * packet belongs.
871 *
872 * Both 'vid' and the return value are in the range 0...4095. */
873 static uint16_t
874 input_vid_to_vlan(const struct xbundle *in_xbundle, uint16_t vid)
875 {
876 switch (in_xbundle->vlan_mode) {
877 case PORT_VLAN_ACCESS:
878 return in_xbundle->vlan;
879 break;
880
881 case PORT_VLAN_TRUNK:
882 return vid;
883
884 case PORT_VLAN_NATIVE_UNTAGGED:
885 case PORT_VLAN_NATIVE_TAGGED:
886 return vid ? vid : in_xbundle->vlan;
887
888 default:
889 NOT_REACHED();
890 }
891 }
892
893 /* Checks whether a packet with the given 'vid' may ingress on 'in_xbundle'.
894 * If so, returns true. Otherwise, returns false and, if 'warn' is true, logs
895 * a warning.
896 *
897 * 'vid' should be the VID obtained from the 802.1Q header that was received as
898 * part of a packet (specify 0 if there was no 802.1Q header), in the range
899 * 0...4095. */
900 static bool
901 input_vid_is_valid(uint16_t vid, struct xbundle *in_xbundle, bool warn)
902 {
903 /* Allow any VID on the OFPP_NONE port. */
904 if (in_xbundle == &ofpp_none_bundle) {
905 return true;
906 }
907
908 switch (in_xbundle->vlan_mode) {
909 case PORT_VLAN_ACCESS:
910 if (vid) {
911 if (warn) {
912 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
913 VLOG_WARN_RL(&rl, "dropping VLAN %"PRIu16" tagged "
914 "packet received on port %s configured as VLAN "
915 "%"PRIu16" access port", vid, in_xbundle->name,
916 in_xbundle->vlan);
917 }
918 return false;
919 }
920 return true;
921
922 case PORT_VLAN_NATIVE_UNTAGGED:
923 case PORT_VLAN_NATIVE_TAGGED:
924 if (!vid) {
925 /* Port must always carry its native VLAN. */
926 return true;
927 }
928 /* Fall through. */
929 case PORT_VLAN_TRUNK:
930 if (!xbundle_includes_vlan(in_xbundle, vid)) {
931 if (warn) {
932 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
933 VLOG_WARN_RL(&rl, "dropping VLAN %"PRIu16" packet "
934 "received on port %s not configured for trunking "
935 "VLAN %"PRIu16, vid, in_xbundle->name, vid);
936 }
937 return false;
938 }
939 return true;
940
941 default:
942 NOT_REACHED();
943 }
944
945 }
946
947 /* Given 'vlan', the VLAN that a packet belongs to, and
948 * 'out_xbundle', a bundle on which the packet is to be output, returns the VID
949 * that should be included in the 802.1Q header. (If the return value is 0,
950 * then the 802.1Q header should only be included in the packet if there is a
951 * nonzero PCP.)
952 *
953 * Both 'vlan' and the return value are in the range 0...4095. */
954 static uint16_t
955 output_vlan_to_vid(const struct xbundle *out_xbundle, uint16_t vlan)
956 {
957 switch (out_xbundle->vlan_mode) {
958 case PORT_VLAN_ACCESS:
959 return 0;
960
961 case PORT_VLAN_TRUNK:
962 case PORT_VLAN_NATIVE_TAGGED:
963 return vlan;
964
965 case PORT_VLAN_NATIVE_UNTAGGED:
966 return vlan == out_xbundle->vlan ? 0 : vlan;
967
968 default:
969 NOT_REACHED();
970 }
971 }
972
973 static void
974 output_normal(struct xlate_ctx *ctx, const struct xbundle *out_xbundle,
975 uint16_t vlan)
976 {
977 ovs_be16 *flow_tci = &ctx->xin->flow.vlan_tci;
978 uint16_t vid;
979 ovs_be16 tci, old_tci;
980 struct xport *xport;
981
982 vid = output_vlan_to_vid(out_xbundle, vlan);
983 if (list_is_empty(&out_xbundle->xports)) {
984 /* Partially configured bundle with no slaves. Drop the packet. */
985 return;
986 } else if (!out_xbundle->bond) {
987 xport = CONTAINER_OF(list_front(&out_xbundle->xports), struct xport,
988 bundle_node);
989 } else {
990 struct ofport_dpif *ofport;
991
992 ofport = bond_choose_output_slave(out_xbundle->bond, &ctx->xin->flow,
993 &ctx->xout->wc, vid);
994 xport = xport_lookup(ofport);
995
996 if (!xport) {
997 /* No slaves enabled, so drop packet. */
998 return;
999 }
1000 }
1001
1002 old_tci = *flow_tci;
1003 tci = htons(vid);
1004 if (tci || out_xbundle->use_priority_tags) {
1005 tci |= *flow_tci & htons(VLAN_PCP_MASK);
1006 if (tci) {
1007 tci |= htons(VLAN_CFI);
1008 }
1009 }
1010 *flow_tci = tci;
1011
1012 compose_output_action(ctx, xport->ofp_port);
1013 *flow_tci = old_tci;
1014 }
1015
1016 /* A VM broadcasts a gratuitous ARP to indicate that it has resumed after
1017 * migration. Older Citrix-patched Linux DomU used gratuitous ARP replies to
1018 * indicate this; newer upstream kernels use gratuitous ARP requests. */
1019 static bool
1020 is_gratuitous_arp(const struct flow *flow, struct flow_wildcards *wc)
1021 {
1022 if (flow->dl_type != htons(ETH_TYPE_ARP)) {
1023 return false;
1024 }
1025
1026 memset(&wc->masks.dl_dst, 0xff, sizeof wc->masks.dl_dst);
1027 if (!eth_addr_is_broadcast(flow->dl_dst)) {
1028 return false;
1029 }
1030
1031 memset(&wc->masks.nw_proto, 0xff, sizeof wc->masks.nw_proto);
1032 if (flow->nw_proto == ARP_OP_REPLY) {
1033 return true;
1034 } else if (flow->nw_proto == ARP_OP_REQUEST) {
1035 memset(&wc->masks.nw_src, 0xff, sizeof wc->masks.nw_src);
1036 memset(&wc->masks.nw_dst, 0xff, sizeof wc->masks.nw_dst);
1037
1038 return flow->nw_src == flow->nw_dst;
1039 } else {
1040 return false;
1041 }
1042 }
1043
1044 /* Checks whether a MAC learning update is necessary for MAC learning table
1045 * 'ml' given that a packet matching 'flow' was received on 'in_xbundle' in
1046 * 'vlan'.
1047 *
1048 * Most packets processed through the MAC learning table do not actually
1049 * change it in any way. This function requires only a read lock on the MAC
1050 * learning table, so it is much cheaper in this common case.
1051 *
1052 * Keep the code here synchronized with that in update_learning_table__()
1053 * below. */
1054 static bool
1055 is_mac_learning_update_needed(const struct mac_learning *ml,
1056 const struct flow *flow,
1057 struct flow_wildcards *wc,
1058 int vlan, struct xbundle *in_xbundle)
1059 OVS_REQ_RDLOCK(ml->rwlock)
1060 {
1061 struct mac_entry *mac;
1062
1063 if (!mac_learning_may_learn(ml, flow->dl_src, vlan)) {
1064 return false;
1065 }
1066
1067 mac = mac_learning_lookup(ml, flow->dl_src, vlan);
1068 if (!mac || mac_entry_age(ml, mac)) {
1069 return true;
1070 }
1071
1072 if (is_gratuitous_arp(flow, wc)) {
1073 /* We don't want to learn from gratuitous ARP packets that are
1074 * reflected back over bond slaves so we lock the learning table. */
1075 if (!in_xbundle->bond) {
1076 return true;
1077 } else if (mac_entry_is_grat_arp_locked(mac)) {
1078 return false;
1079 }
1080 }
1081
1082 return mac->port.p != in_xbundle->ofbundle;
1083 }
1084
1085
1086 /* Updates MAC learning table 'ml' given that a packet matching 'flow' was
1087 * received on 'in_xbundle' in 'vlan'.
1088 *
1089 * This code repeats all the checks in is_mac_learning_update_needed() because
1090 * the lock was released between there and here and thus the MAC learning state
1091 * could have changed.
1092 *
1093 * Keep the code here synchronized with that in is_mac_learning_update_needed()
1094 * above. */
1095 static void
1096 update_learning_table__(const struct xbridge *xbridge,
1097 const struct flow *flow, struct flow_wildcards *wc,
1098 int vlan, struct xbundle *in_xbundle)
1099 OVS_REQ_WRLOCK(xbridge->ml->rwlock)
1100 {
1101 struct mac_entry *mac;
1102
1103 if (!mac_learning_may_learn(xbridge->ml, flow->dl_src, vlan)) {
1104 return;
1105 }
1106
1107 mac = mac_learning_insert(xbridge->ml, flow->dl_src, vlan);
1108 if (is_gratuitous_arp(flow, wc)) {
1109 /* We don't want to learn from gratuitous ARP packets that are
1110 * reflected back over bond slaves so we lock the learning table. */
1111 if (!in_xbundle->bond) {
1112 mac_entry_set_grat_arp_lock(mac);
1113 } else if (mac_entry_is_grat_arp_locked(mac)) {
1114 return;
1115 }
1116 }
1117
1118 if (mac->port.p != in_xbundle->ofbundle) {
1119 /* The log messages here could actually be useful in debugging,
1120 * so keep the rate limit relatively high. */
1121 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(30, 300);
1122
1123 VLOG_DBG_RL(&rl, "bridge %s: learned that "ETH_ADDR_FMT" is "
1124 "on port %s in VLAN %d",
1125 xbridge->name, ETH_ADDR_ARGS(flow->dl_src),
1126 in_xbundle->name, vlan);
1127
1128 mac->port.p = in_xbundle->ofbundle;
1129 mac_learning_changed(xbridge->ml);
1130 }
1131 }
1132
1133 static void
1134 update_learning_table(const struct xbridge *xbridge,
1135 const struct flow *flow, struct flow_wildcards *wc,
1136 int vlan, struct xbundle *in_xbundle)
1137 {
1138 bool need_update;
1139
1140 /* Don't learn the OFPP_NONE port. */
1141 if (in_xbundle == &ofpp_none_bundle) {
1142 return;
1143 }
1144
1145 /* First try the common case: no change to MAC learning table. */
1146 ovs_rwlock_rdlock(&xbridge->ml->rwlock);
1147 need_update = is_mac_learning_update_needed(xbridge->ml, flow, wc, vlan,
1148 in_xbundle);
1149 ovs_rwlock_unlock(&xbridge->ml->rwlock);
1150
1151 if (need_update) {
1152 /* Slow path: MAC learning table might need an update. */
1153 ovs_rwlock_wrlock(&xbridge->ml->rwlock);
1154 update_learning_table__(xbridge, flow, wc, vlan, in_xbundle);
1155 ovs_rwlock_unlock(&xbridge->ml->rwlock);
1156 }
1157 }
1158
1159 /* Determines whether packets in 'flow' within 'xbridge' should be forwarded or
1160 * dropped. Returns true if they may be forwarded, false if they should be
1161 * dropped.
1162 *
1163 * 'in_port' must be the xport that corresponds to flow->in_port.
1164 * 'in_port' must be part of a bundle (e.g. in_port->bundle must be nonnull).
1165 *
1166 * 'vlan' must be the VLAN that corresponds to flow->vlan_tci on 'in_port', as
1167 * returned by input_vid_to_vlan(). It must be a valid VLAN for 'in_port', as
1168 * checked by input_vid_is_valid().
1169 *
1170 * May also add tags to '*tags', although the current implementation only does
1171 * so in one special case.
1172 */
1173 static bool
1174 is_admissible(struct xlate_ctx *ctx, struct xport *in_port,
1175 uint16_t vlan)
1176 {
1177 struct xbundle *in_xbundle = in_port->xbundle;
1178 const struct xbridge *xbridge = ctx->xbridge;
1179 struct flow *flow = &ctx->xin->flow;
1180
1181 /* Drop frames for reserved multicast addresses
1182 * only if forward_bpdu option is absent. */
1183 if (!xbridge->forward_bpdu && eth_addr_is_reserved(flow->dl_dst)) {
1184 xlate_report(ctx, "packet has reserved destination MAC, dropping");
1185 return false;
1186 }
1187
1188 if (in_xbundle->bond) {
1189 struct mac_entry *mac;
1190
1191 switch (bond_check_admissibility(in_xbundle->bond, in_port->ofport,
1192 flow->dl_dst)) {
1193 case BV_ACCEPT:
1194 break;
1195
1196 case BV_DROP:
1197 xlate_report(ctx, "bonding refused admissibility, dropping");
1198 return false;
1199
1200 case BV_DROP_IF_MOVED:
1201 ovs_rwlock_rdlock(&xbridge->ml->rwlock);
1202 mac = mac_learning_lookup(xbridge->ml, flow->dl_src, vlan);
1203 if (mac && mac->port.p != in_xbundle->ofbundle &&
1204 (!is_gratuitous_arp(flow, &ctx->xout->wc)
1205 || mac_entry_is_grat_arp_locked(mac))) {
1206 ovs_rwlock_unlock(&xbridge->ml->rwlock);
1207 xlate_report(ctx, "SLB bond thinks this packet looped back, "
1208 "dropping");
1209 return false;
1210 }
1211 ovs_rwlock_unlock(&xbridge->ml->rwlock);
1212 break;
1213 }
1214 }
1215
1216 return true;
1217 }
1218
1219 static void
1220 xlate_normal(struct xlate_ctx *ctx)
1221 {
1222 struct flow_wildcards *wc = &ctx->xout->wc;
1223 struct flow *flow = &ctx->xin->flow;
1224 struct xbundle *in_xbundle;
1225 struct xport *in_port;
1226 struct mac_entry *mac;
1227 void *mac_port;
1228 uint16_t vlan;
1229 uint16_t vid;
1230
1231 ctx->xout->has_normal = true;
1232
1233 memset(&wc->masks.dl_src, 0xff, sizeof wc->masks.dl_src);
1234 memset(&wc->masks.dl_dst, 0xff, sizeof wc->masks.dl_dst);
1235 wc->masks.vlan_tci |= htons(VLAN_VID_MASK | VLAN_CFI);
1236
1237 in_xbundle = lookup_input_bundle(ctx->xbridge, flow->in_port.ofp_port,
1238 ctx->xin->packet != NULL, &in_port);
1239 if (!in_xbundle) {
1240 xlate_report(ctx, "no input bundle, dropping");
1241 return;
1242 }
1243
1244 /* Drop malformed frames. */
1245 if (flow->dl_type == htons(ETH_TYPE_VLAN) &&
1246 !(flow->vlan_tci & htons(VLAN_CFI))) {
1247 if (ctx->xin->packet != NULL) {
1248 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
1249 VLOG_WARN_RL(&rl, "bridge %s: dropping packet with partial "
1250 "VLAN tag received on port %s",
1251 ctx->xbridge->name, in_xbundle->name);
1252 }
1253 xlate_report(ctx, "partial VLAN tag, dropping");
1254 return;
1255 }
1256
1257 /* Drop frames on bundles reserved for mirroring. */
1258 if (xbundle_mirror_out(ctx->xbridge, in_xbundle)) {
1259 if (ctx->xin->packet != NULL) {
1260 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
1261 VLOG_WARN_RL(&rl, "bridge %s: dropping packet received on port "
1262 "%s, which is reserved exclusively for mirroring",
1263 ctx->xbridge->name, in_xbundle->name);
1264 }
1265 xlate_report(ctx, "input port is mirror output port, dropping");
1266 return;
1267 }
1268
1269 /* Check VLAN. */
1270 vid = vlan_tci_to_vid(flow->vlan_tci);
1271 if (!input_vid_is_valid(vid, in_xbundle, ctx->xin->packet != NULL)) {
1272 xlate_report(ctx, "disallowed VLAN VID for this input port, dropping");
1273 return;
1274 }
1275 vlan = input_vid_to_vlan(in_xbundle, vid);
1276
1277 /* Check other admissibility requirements. */
1278 if (in_port && !is_admissible(ctx, in_port, vlan)) {
1279 return;
1280 }
1281
1282 /* Learn source MAC. */
1283 if (ctx->xin->may_learn) {
1284 update_learning_table(ctx->xbridge, flow, wc, vlan, in_xbundle);
1285 }
1286
1287 /* Determine output bundle. */
1288 ovs_rwlock_rdlock(&ctx->xbridge->ml->rwlock);
1289 mac = mac_learning_lookup(ctx->xbridge->ml, flow->dl_dst, vlan);
1290 mac_port = mac ? mac->port.p : NULL;
1291 ovs_rwlock_unlock(&ctx->xbridge->ml->rwlock);
1292
1293 if (mac_port) {
1294 struct xbundle *mac_xbundle = xbundle_lookup(mac_port);
1295 if (mac_xbundle && mac_xbundle != in_xbundle) {
1296 xlate_report(ctx, "forwarding to learned port");
1297 output_normal(ctx, mac_xbundle, vlan);
1298 } else if (!mac_xbundle) {
1299 xlate_report(ctx, "learned port is unknown, dropping");
1300 } else {
1301 xlate_report(ctx, "learned port is input port, dropping");
1302 }
1303 } else {
1304 struct xbundle *xbundle;
1305
1306 xlate_report(ctx, "no learned MAC for destination, flooding");
1307 LIST_FOR_EACH (xbundle, list_node, &ctx->xbridge->xbundles) {
1308 if (xbundle != in_xbundle
1309 && xbundle_includes_vlan(xbundle, vlan)
1310 && xbundle->floodable
1311 && !xbundle_mirror_out(ctx->xbridge, xbundle)) {
1312 output_normal(ctx, xbundle, vlan);
1313 }
1314 }
1315 ctx->xout->nf_output_iface = NF_OUT_FLOOD;
1316 }
1317 }
1318
1319 /* Compose SAMPLE action for sFlow or IPFIX. The given probability is
1320 * the number of packets out of UINT32_MAX to sample. The given
1321 * cookie is passed back in the callback for each sampled packet.
1322 */
1323 static size_t
1324 compose_sample_action(const struct xbridge *xbridge,
1325 struct ofpbuf *odp_actions,
1326 const struct flow *flow,
1327 const uint32_t probability,
1328 const union user_action_cookie *cookie,
1329 const size_t cookie_size)
1330 {
1331 size_t sample_offset, actions_offset;
1332 odp_port_t odp_port;
1333 int cookie_offset;
1334 uint32_t pid;
1335
1336 sample_offset = nl_msg_start_nested(odp_actions, OVS_ACTION_ATTR_SAMPLE);
1337
1338 nl_msg_put_u32(odp_actions, OVS_SAMPLE_ATTR_PROBABILITY, probability);
1339
1340 actions_offset = nl_msg_start_nested(odp_actions, OVS_SAMPLE_ATTR_ACTIONS);
1341
1342 odp_port = ofp_port_to_odp_port(xbridge, flow->in_port.ofp_port);
1343 pid = dpif_port_get_pid(xbridge->dpif, odp_port);
1344 cookie_offset = odp_put_userspace_action(pid, cookie, cookie_size, odp_actions);
1345
1346 nl_msg_end_nested(odp_actions, actions_offset);
1347 nl_msg_end_nested(odp_actions, sample_offset);
1348 return cookie_offset;
1349 }
1350
1351 static void
1352 compose_sflow_cookie(const struct xbridge *xbridge, ovs_be16 vlan_tci,
1353 odp_port_t odp_port, unsigned int n_outputs,
1354 union user_action_cookie *cookie)
1355 {
1356 int ifindex;
1357
1358 cookie->type = USER_ACTION_COOKIE_SFLOW;
1359 cookie->sflow.vlan_tci = vlan_tci;
1360
1361 /* See http://www.sflow.org/sflow_version_5.txt (search for "Input/output
1362 * port information") for the interpretation of cookie->output. */
1363 switch (n_outputs) {
1364 case 0:
1365 /* 0x40000000 | 256 means "packet dropped for unknown reason". */
1366 cookie->sflow.output = 0x40000000 | 256;
1367 break;
1368
1369 case 1:
1370 ifindex = dpif_sflow_odp_port_to_ifindex(xbridge->sflow, odp_port);
1371 if (ifindex) {
1372 cookie->sflow.output = ifindex;
1373 break;
1374 }
1375 /* Fall through. */
1376 default:
1377 /* 0x80000000 means "multiple output ports. */
1378 cookie->sflow.output = 0x80000000 | n_outputs;
1379 break;
1380 }
1381 }
1382
1383 /* Compose SAMPLE action for sFlow bridge sampling. */
1384 static size_t
1385 compose_sflow_action(const struct xbridge *xbridge,
1386 struct ofpbuf *odp_actions,
1387 const struct flow *flow,
1388 odp_port_t odp_port)
1389 {
1390 uint32_t probability;
1391 union user_action_cookie cookie;
1392
1393 if (!xbridge->sflow || flow->in_port.ofp_port == OFPP_NONE) {
1394 return 0;
1395 }
1396
1397 probability = dpif_sflow_get_probability(xbridge->sflow);
1398 compose_sflow_cookie(xbridge, htons(0), odp_port,
1399 odp_port == ODPP_NONE ? 0 : 1, &cookie);
1400
1401 return compose_sample_action(xbridge, odp_actions, flow, probability,
1402 &cookie, sizeof cookie.sflow);
1403 }
1404
1405 static void
1406 compose_flow_sample_cookie(uint16_t probability, uint32_t collector_set_id,
1407 uint32_t obs_domain_id, uint32_t obs_point_id,
1408 union user_action_cookie *cookie)
1409 {
1410 cookie->type = USER_ACTION_COOKIE_FLOW_SAMPLE;
1411 cookie->flow_sample.probability = probability;
1412 cookie->flow_sample.collector_set_id = collector_set_id;
1413 cookie->flow_sample.obs_domain_id = obs_domain_id;
1414 cookie->flow_sample.obs_point_id = obs_point_id;
1415 }
1416
1417 static void
1418 compose_ipfix_cookie(union user_action_cookie *cookie)
1419 {
1420 cookie->type = USER_ACTION_COOKIE_IPFIX;
1421 }
1422
1423 /* Compose SAMPLE action for IPFIX bridge sampling. */
1424 static void
1425 compose_ipfix_action(const struct xbridge *xbridge,
1426 struct ofpbuf *odp_actions,
1427 const struct flow *flow)
1428 {
1429 uint32_t probability;
1430 union user_action_cookie cookie;
1431
1432 if (!xbridge->ipfix || flow->in_port.ofp_port == OFPP_NONE) {
1433 return;
1434 }
1435
1436 probability = dpif_ipfix_get_bridge_exporter_probability(xbridge->ipfix);
1437 compose_ipfix_cookie(&cookie);
1438
1439 compose_sample_action(xbridge, odp_actions, flow, probability,
1440 &cookie, sizeof cookie.ipfix);
1441 }
1442
1443 /* SAMPLE action for sFlow must be first action in any given list of
1444 * actions. At this point we do not have all information required to
1445 * build it. So try to build sample action as complete as possible. */
1446 static void
1447 add_sflow_action(struct xlate_ctx *ctx)
1448 {
1449 ctx->user_cookie_offset = compose_sflow_action(ctx->xbridge,
1450 &ctx->xout->odp_actions,
1451 &ctx->xin->flow, ODPP_NONE);
1452 ctx->sflow_odp_port = 0;
1453 ctx->sflow_n_outputs = 0;
1454 }
1455
1456 /* SAMPLE action for IPFIX must be 1st or 2nd action in any given list
1457 * of actions, eventually after the SAMPLE action for sFlow. */
1458 static void
1459 add_ipfix_action(struct xlate_ctx *ctx)
1460 {
1461 compose_ipfix_action(ctx->xbridge, &ctx->xout->odp_actions,
1462 &ctx->xin->flow);
1463 }
1464
1465 /* Fix SAMPLE action according to data collected while composing ODP actions.
1466 * We need to fix SAMPLE actions OVS_SAMPLE_ATTR_ACTIONS attribute, i.e. nested
1467 * USERSPACE action's user-cookie which is required for sflow. */
1468 static void
1469 fix_sflow_action(struct xlate_ctx *ctx)
1470 {
1471 const struct flow *base = &ctx->base_flow;
1472 union user_action_cookie *cookie;
1473
1474 if (!ctx->user_cookie_offset) {
1475 return;
1476 }
1477
1478 cookie = ofpbuf_at(&ctx->xout->odp_actions, ctx->user_cookie_offset,
1479 sizeof cookie->sflow);
1480 ovs_assert(cookie->type == USER_ACTION_COOKIE_SFLOW);
1481
1482 compose_sflow_cookie(ctx->xbridge, base->vlan_tci,
1483 ctx->sflow_odp_port, ctx->sflow_n_outputs, cookie);
1484 }
1485
1486 static enum slow_path_reason
1487 process_special(struct xlate_ctx *ctx, const struct flow *flow,
1488 const struct xport *xport, const struct ofpbuf *packet)
1489 {
1490 struct flow_wildcards *wc = &ctx->xout->wc;
1491 const struct xbridge *xbridge = ctx->xbridge;
1492
1493 if (!xport) {
1494 return 0;
1495 } else if (xport->cfm && cfm_should_process_flow(xport->cfm, flow, wc)) {
1496 if (packet) {
1497 cfm_process_heartbeat(xport->cfm, packet);
1498 }
1499 return SLOW_CFM;
1500 } else if (xport->bfd && bfd_should_process_flow(xport->bfd, flow, wc)) {
1501 if (packet) {
1502 bfd_process_packet(xport->bfd, flow, packet);
1503 }
1504 return SLOW_BFD;
1505 } else if (xport->xbundle && xport->xbundle->lacp
1506 && flow->dl_type == htons(ETH_TYPE_LACP)) {
1507 if (packet) {
1508 lacp_process_packet(xport->xbundle->lacp, xport->ofport, packet);
1509 }
1510 return SLOW_LACP;
1511 } else if (xbridge->stp && stp_should_process_flow(flow, wc)) {
1512 if (packet) {
1513 stp_process_packet(xport, packet);
1514 }
1515 return SLOW_STP;
1516 } else {
1517 return 0;
1518 }
1519 }
1520
1521 static void
1522 compose_output_action__(struct xlate_ctx *ctx, ofp_port_t ofp_port,
1523 bool check_stp)
1524 {
1525 const struct xport *xport = get_ofp_port(ctx->xbridge, ofp_port);
1526 struct flow_wildcards *wc = &ctx->xout->wc;
1527 struct flow *flow = &ctx->xin->flow;
1528 ovs_be16 flow_vlan_tci;
1529 uint32_t flow_pkt_mark;
1530 uint8_t flow_nw_tos;
1531 odp_port_t out_port, odp_port;
1532 uint8_t dscp;
1533
1534 /* If 'struct flow' gets additional metadata, we'll need to zero it out
1535 * before traversing a patch port. */
1536 BUILD_ASSERT_DECL(FLOW_WC_SEQ == 20);
1537
1538 if (!xport) {
1539 xlate_report(ctx, "Nonexistent output port");
1540 return;
1541 } else if (xport->config & OFPUTIL_PC_NO_FWD) {
1542 xlate_report(ctx, "OFPPC_NO_FWD set, skipping output");
1543 return;
1544 } else if (check_stp && !xport_stp_forward_state(xport)) {
1545 xlate_report(ctx, "STP not in forwarding state, skipping output");
1546 return;
1547 }
1548
1549 if (mbridge_has_mirrors(ctx->xbridge->mbridge) && xport->xbundle) {
1550 ctx->xout->mirrors |= xbundle_mirror_dst(xport->xbundle->xbridge,
1551 xport->xbundle);
1552 }
1553
1554 if (xport->peer) {
1555 const struct xport *peer = xport->peer;
1556 struct flow old_flow = ctx->xin->flow;
1557 enum slow_path_reason special;
1558
1559 ctx->xbridge = peer->xbridge;
1560 flow->in_port.ofp_port = peer->ofp_port;
1561 flow->metadata = htonll(0);
1562 memset(&flow->tunnel, 0, sizeof flow->tunnel);
1563 memset(flow->regs, 0, sizeof flow->regs);
1564
1565 special = process_special(ctx, &ctx->xin->flow, peer,
1566 ctx->xin->packet);
1567 if (special) {
1568 ctx->xout->slow = special;
1569 } else if (may_receive(peer, ctx)) {
1570 if (xport_stp_forward_state(peer)) {
1571 xlate_table_action(ctx, flow->in_port.ofp_port, 0, true);
1572 } else {
1573 /* Forwarding is disabled by STP. Let OFPP_NORMAL and the
1574 * learning action look at the packet, then drop it. */
1575 struct flow old_base_flow = ctx->base_flow;
1576 size_t old_size = ctx->xout->odp_actions.size;
1577 mirror_mask_t old_mirrors = ctx->xout->mirrors;
1578 xlate_table_action(ctx, flow->in_port.ofp_port, 0, true);
1579 ctx->xout->mirrors = old_mirrors;
1580 ctx->base_flow = old_base_flow;
1581 ctx->xout->odp_actions.size = old_size;
1582 }
1583 }
1584
1585 ctx->xin->flow = old_flow;
1586 ctx->xbridge = xport->xbridge;
1587
1588 if (ctx->xin->resubmit_stats) {
1589 netdev_vport_inc_tx(xport->netdev, ctx->xin->resubmit_stats);
1590 netdev_vport_inc_rx(peer->netdev, ctx->xin->resubmit_stats);
1591 }
1592
1593 return;
1594 }
1595
1596 flow_vlan_tci = flow->vlan_tci;
1597 flow_pkt_mark = flow->pkt_mark;
1598 flow_nw_tos = flow->nw_tos;
1599
1600 if (dscp_from_skb_priority(xport, flow->skb_priority, &dscp)) {
1601 wc->masks.nw_tos |= IP_ECN_MASK;
1602 flow->nw_tos &= ~IP_DSCP_MASK;
1603 flow->nw_tos |= dscp;
1604 }
1605
1606 if (xport->is_tunnel) {
1607 /* Save tunnel metadata so that changes made due to
1608 * the Logical (tunnel) Port are not visible for any further
1609 * matches, while explicit set actions on tunnel metadata are.
1610 */
1611 struct flow_tnl flow_tnl = flow->tunnel;
1612 odp_port = tnl_port_send(xport->ofport, flow, &ctx->xout->wc);
1613 if (odp_port == ODPP_NONE) {
1614 xlate_report(ctx, "Tunneling decided against output");
1615 goto out; /* restore flow_nw_tos */
1616 }
1617 if (flow->tunnel.ip_dst == ctx->orig_tunnel_ip_dst) {
1618 xlate_report(ctx, "Not tunneling to our own address");
1619 goto out; /* restore flow_nw_tos */
1620 }
1621 if (ctx->xin->resubmit_stats) {
1622 netdev_vport_inc_tx(xport->netdev, ctx->xin->resubmit_stats);
1623 }
1624 out_port = odp_port;
1625 commit_odp_tunnel_action(flow, &ctx->base_flow,
1626 &ctx->xout->odp_actions);
1627 flow->tunnel = flow_tnl; /* Restore tunnel metadata */
1628 } else {
1629 ofp_port_t vlandev_port;
1630
1631 odp_port = xport->odp_port;
1632 if (ofproto_has_vlan_splinters(ctx->xbridge->ofproto)) {
1633 wc->masks.vlan_tci |= htons(VLAN_VID_MASK | VLAN_CFI);
1634 }
1635 vlandev_port = vsp_realdev_to_vlandev(ctx->xbridge->ofproto, ofp_port,
1636 flow->vlan_tci);
1637 if (vlandev_port == ofp_port) {
1638 out_port = odp_port;
1639 } else {
1640 out_port = ofp_port_to_odp_port(ctx->xbridge, vlandev_port);
1641 flow->vlan_tci = htons(0);
1642 }
1643 }
1644
1645 if (out_port != ODPP_NONE) {
1646 commit_odp_actions(flow, &ctx->base_flow,
1647 &ctx->xout->odp_actions, &ctx->xout->wc);
1648 nl_msg_put_odp_port(&ctx->xout->odp_actions, OVS_ACTION_ATTR_OUTPUT,
1649 out_port);
1650
1651 ctx->sflow_odp_port = odp_port;
1652 ctx->sflow_n_outputs++;
1653 ctx->xout->nf_output_iface = ofp_port;
1654 }
1655
1656 out:
1657 /* Restore flow */
1658 flow->vlan_tci = flow_vlan_tci;
1659 flow->pkt_mark = flow_pkt_mark;
1660 flow->nw_tos = flow_nw_tos;
1661 }
1662
1663 static void
1664 compose_output_action(struct xlate_ctx *ctx, ofp_port_t ofp_port)
1665 {
1666 compose_output_action__(ctx, ofp_port, true);
1667 }
1668
1669 static void
1670 xlate_recursively(struct xlate_ctx *ctx, struct rule_dpif *rule)
1671 OVS_RELEASES(rule->up.evict)
1672 {
1673 struct rule_dpif *old_rule = ctx->rule;
1674
1675 if (ctx->xin->resubmit_stats) {
1676 rule_credit_stats(rule, ctx->xin->resubmit_stats);
1677 }
1678
1679 ctx->recurse++;
1680 ctx->rule = rule;
1681 do_xlate_actions(rule->up.ofpacts, rule->up.ofpacts_len, ctx);
1682 ctx->rule = old_rule;
1683 ctx->recurse--;
1684
1685 rule_release(rule);
1686 }
1687
1688 static void
1689 xlate_table_action(struct xlate_ctx *ctx,
1690 ofp_port_t in_port, uint8_t table_id, bool may_packet_in)
1691 {
1692 if (ctx->recurse < MAX_RESUBMIT_RECURSION) {
1693 struct rule_dpif *rule;
1694 ofp_port_t old_in_port = ctx->xin->flow.in_port.ofp_port;
1695 uint8_t old_table_id = ctx->table_id;
1696 bool got_rule;
1697
1698 ctx->table_id = table_id;
1699
1700 /* Look up a flow with 'in_port' as the input port. Then restore the
1701 * original input port (otherwise OFPP_NORMAL and OFPP_IN_PORT will
1702 * have surprising behavior). */
1703 ctx->xin->flow.in_port.ofp_port = in_port;
1704 got_rule = rule_dpif_lookup_in_table(ctx->xbridge->ofproto,
1705 &ctx->xin->flow, &ctx->xout->wc,
1706 table_id, &rule);
1707 ctx->xin->flow.in_port.ofp_port = old_in_port;
1708
1709 if (ctx->xin->resubmit_hook) {
1710 ctx->xin->resubmit_hook(ctx->xin, rule, ctx->recurse);
1711 }
1712
1713 if (got_rule) {
1714 xlate_recursively(ctx, rule);
1715 } else if (may_packet_in) {
1716 struct xport *xport;
1717
1718 /* XXX
1719 * check if table configuration flags
1720 * OFPTC_TABLE_MISS_CONTROLLER, default.
1721 * OFPTC_TABLE_MISS_CONTINUE,
1722 * OFPTC_TABLE_MISS_DROP
1723 * When OF1.0, OFPTC_TABLE_MISS_CONTINUE is used. What to do? */
1724 xport = get_ofp_port(ctx->xbridge, ctx->xin->flow.in_port.ofp_port);
1725 rule = choose_miss_rule(xport ? xport->config : 0,
1726 ctx->xbridge->miss_rule,
1727 ctx->xbridge->no_packet_in_rule);
1728 ovs_rwlock_rdlock(&rule->up.evict);
1729 xlate_recursively(ctx, rule);
1730 }
1731
1732 ctx->table_id = old_table_id;
1733 } else {
1734 static struct vlog_rate_limit recurse_rl = VLOG_RATE_LIMIT_INIT(1, 1);
1735
1736 VLOG_ERR_RL(&recurse_rl, "resubmit actions recursed over %d times",
1737 MAX_RESUBMIT_RECURSION);
1738 }
1739 }
1740
1741 static void
1742 xlate_ofpact_resubmit(struct xlate_ctx *ctx,
1743 const struct ofpact_resubmit *resubmit)
1744 {
1745 ofp_port_t in_port;
1746 uint8_t table_id;
1747
1748 in_port = resubmit->in_port;
1749 if (in_port == OFPP_IN_PORT) {
1750 in_port = ctx->xin->flow.in_port.ofp_port;
1751 }
1752
1753 table_id = resubmit->table_id;
1754 if (table_id == 255) {
1755 table_id = ctx->table_id;
1756 }
1757
1758 xlate_table_action(ctx, in_port, table_id, false);
1759 }
1760
1761 static void
1762 flood_packets(struct xlate_ctx *ctx, bool all)
1763 {
1764 const struct xport *xport;
1765
1766 HMAP_FOR_EACH (xport, ofp_node, &ctx->xbridge->xports) {
1767 if (xport->ofp_port == ctx->xin->flow.in_port.ofp_port) {
1768 continue;
1769 }
1770
1771 if (all) {
1772 compose_output_action__(ctx, xport->ofp_port, false);
1773 } else if (!(xport->config & OFPUTIL_PC_NO_FLOOD)) {
1774 compose_output_action(ctx, xport->ofp_port);
1775 }
1776 }
1777
1778 ctx->xout->nf_output_iface = NF_OUT_FLOOD;
1779 }
1780
1781 static void
1782 execute_controller_action(struct xlate_ctx *ctx, int len,
1783 enum ofp_packet_in_reason reason,
1784 uint16_t controller_id)
1785 {
1786 struct ofputil_packet_in *pin;
1787 struct ofpbuf *packet;
1788 struct flow key;
1789
1790 ovs_assert(!ctx->xout->slow || ctx->xout->slow == SLOW_CONTROLLER);
1791 ctx->xout->slow = SLOW_CONTROLLER;
1792 if (!ctx->xin->packet) {
1793 return;
1794 }
1795
1796 packet = ofpbuf_clone(ctx->xin->packet);
1797
1798 key.skb_priority = 0;
1799 key.pkt_mark = 0;
1800 memset(&key.tunnel, 0, sizeof key.tunnel);
1801
1802 commit_odp_actions(&ctx->xin->flow, &ctx->base_flow,
1803 &ctx->xout->odp_actions, &ctx->xout->wc);
1804
1805 odp_execute_actions(NULL, packet, &key, ctx->xout->odp_actions.data,
1806 ctx->xout->odp_actions.size, NULL, NULL);
1807
1808 pin = xmalloc(sizeof *pin);
1809 pin->packet_len = packet->size;
1810 pin->packet = ofpbuf_steal_data(packet);
1811 pin->reason = reason;
1812 pin->controller_id = controller_id;
1813 pin->table_id = ctx->table_id;
1814 pin->cookie = ctx->rule ? ctx->rule->up.flow_cookie : 0;
1815
1816 pin->send_len = len;
1817 flow_get_metadata(&ctx->xin->flow, &pin->fmd);
1818
1819 ofproto_dpif_send_packet_in(ctx->xbridge->ofproto, pin);
1820 ofpbuf_delete(packet);
1821 }
1822
1823 static void
1824 compose_mpls_push_action(struct xlate_ctx *ctx, ovs_be16 eth_type)
1825 {
1826 struct flow_wildcards *wc = &ctx->xout->wc;
1827 struct flow *flow = &ctx->xin->flow;
1828
1829 ovs_assert(eth_type_mpls(eth_type));
1830
1831 memset(&wc->masks.mpls_lse, 0xff, sizeof wc->masks.mpls_lse);
1832 memset(&wc->masks.mpls_depth, 0xff, sizeof wc->masks.mpls_depth);
1833
1834 if (flow->mpls_depth) {
1835 flow->mpls_lse &= ~htonl(MPLS_BOS_MASK);
1836 flow->mpls_depth++;
1837 } else {
1838 ovs_be32 label;
1839 uint8_t tc, ttl;
1840
1841 if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
1842 label = htonl(0x2); /* IPV6 Explicit Null. */
1843 } else {
1844 label = htonl(0x0); /* IPV4 Explicit Null. */
1845 }
1846 wc->masks.nw_tos |= IP_DSCP_MASK;
1847 wc->masks.nw_ttl = 0xff;
1848 tc = (flow->nw_tos & IP_DSCP_MASK) >> 2;
1849 ttl = flow->nw_ttl ? flow->nw_ttl : 0x40;
1850 flow->mpls_lse = set_mpls_lse_values(ttl, tc, 1, label);
1851 flow->mpls_depth = 1;
1852 }
1853 flow->dl_type = eth_type;
1854 }
1855
1856 static void
1857 compose_mpls_pop_action(struct xlate_ctx *ctx, ovs_be16 eth_type)
1858 {
1859 struct flow_wildcards *wc = &ctx->xout->wc;
1860 struct flow *flow = &ctx->xin->flow;
1861
1862 ovs_assert(eth_type_mpls(ctx->xin->flow.dl_type));
1863 ovs_assert(!eth_type_mpls(eth_type));
1864
1865 memset(&wc->masks.mpls_lse, 0xff, sizeof wc->masks.mpls_lse);
1866 memset(&wc->masks.mpls_depth, 0xff, sizeof wc->masks.mpls_depth);
1867
1868 if (flow->mpls_depth) {
1869 flow->mpls_depth--;
1870 flow->mpls_lse = htonl(0);
1871 if (!flow->mpls_depth) {
1872 flow->dl_type = eth_type;
1873 }
1874 }
1875 }
1876
1877 static bool
1878 compose_dec_ttl(struct xlate_ctx *ctx, struct ofpact_cnt_ids *ids)
1879 {
1880 struct flow *flow = &ctx->xin->flow;
1881
1882 if (!is_ip_any(flow)) {
1883 return false;
1884 }
1885
1886 ctx->xout->wc.masks.nw_ttl = 0xff;
1887 if (flow->nw_ttl > 1) {
1888 flow->nw_ttl--;
1889 return false;
1890 } else {
1891 size_t i;
1892
1893 for (i = 0; i < ids->n_controllers; i++) {
1894 execute_controller_action(ctx, UINT16_MAX, OFPR_INVALID_TTL,
1895 ids->cnt_ids[i]);
1896 }
1897
1898 /* Stop processing for current table. */
1899 return true;
1900 }
1901 }
1902
1903 static bool
1904 compose_set_mpls_ttl_action(struct xlate_ctx *ctx, uint8_t ttl)
1905 {
1906 if (!eth_type_mpls(ctx->xin->flow.dl_type)) {
1907 return true;
1908 }
1909
1910 ctx->xout->wc.masks.mpls_lse |= htonl(MPLS_TTL_MASK);
1911 set_mpls_lse_ttl(&ctx->xin->flow.mpls_lse, ttl);
1912 return false;
1913 }
1914
1915 static bool
1916 compose_dec_mpls_ttl_action(struct xlate_ctx *ctx)
1917 {
1918 struct flow *flow = &ctx->xin->flow;
1919 uint8_t ttl = mpls_lse_to_ttl(flow->mpls_lse);
1920 struct flow_wildcards *wc = &ctx->xout->wc;
1921
1922 memset(&wc->masks.mpls_lse, 0xff, sizeof wc->masks.mpls_lse);
1923
1924 if (!eth_type_mpls(flow->dl_type)) {
1925 return false;
1926 }
1927
1928 if (ttl > 1) {
1929 ttl--;
1930 set_mpls_lse_ttl(&flow->mpls_lse, ttl);
1931 return false;
1932 } else {
1933 execute_controller_action(ctx, UINT16_MAX, OFPR_INVALID_TTL, 0);
1934
1935 /* Stop processing for current table. */
1936 return true;
1937 }
1938 }
1939
1940 static void
1941 xlate_output_action(struct xlate_ctx *ctx,
1942 ofp_port_t port, uint16_t max_len, bool may_packet_in)
1943 {
1944 ofp_port_t prev_nf_output_iface = ctx->xout->nf_output_iface;
1945
1946 ctx->xout->nf_output_iface = NF_OUT_DROP;
1947
1948 switch (port) {
1949 case OFPP_IN_PORT:
1950 compose_output_action(ctx, ctx->xin->flow.in_port.ofp_port);
1951 break;
1952 case OFPP_TABLE:
1953 xlate_table_action(ctx, ctx->xin->flow.in_port.ofp_port,
1954 0, may_packet_in);
1955 break;
1956 case OFPP_NORMAL:
1957 xlate_normal(ctx);
1958 break;
1959 case OFPP_FLOOD:
1960 flood_packets(ctx, false);
1961 break;
1962 case OFPP_ALL:
1963 flood_packets(ctx, true);
1964 break;
1965 case OFPP_CONTROLLER:
1966 execute_controller_action(ctx, max_len, OFPR_ACTION, 0);
1967 break;
1968 case OFPP_NONE:
1969 break;
1970 case OFPP_LOCAL:
1971 default:
1972 if (port != ctx->xin->flow.in_port.ofp_port) {
1973 compose_output_action(ctx, port);
1974 } else {
1975 xlate_report(ctx, "skipping output to input port");
1976 }
1977 break;
1978 }
1979
1980 if (prev_nf_output_iface == NF_OUT_FLOOD) {
1981 ctx->xout->nf_output_iface = NF_OUT_FLOOD;
1982 } else if (ctx->xout->nf_output_iface == NF_OUT_DROP) {
1983 ctx->xout->nf_output_iface = prev_nf_output_iface;
1984 } else if (prev_nf_output_iface != NF_OUT_DROP &&
1985 ctx->xout->nf_output_iface != NF_OUT_FLOOD) {
1986 ctx->xout->nf_output_iface = NF_OUT_MULTI;
1987 }
1988 }
1989
1990 static void
1991 xlate_output_reg_action(struct xlate_ctx *ctx,
1992 const struct ofpact_output_reg *or)
1993 {
1994 uint64_t port = mf_get_subfield(&or->src, &ctx->xin->flow);
1995 if (port <= UINT16_MAX) {
1996 union mf_subvalue value;
1997
1998 memset(&value, 0xff, sizeof value);
1999 mf_write_subfield_flow(&or->src, &value, &ctx->xout->wc.masks);
2000 xlate_output_action(ctx, u16_to_ofp(port),
2001 or->max_len, false);
2002 }
2003 }
2004
2005 static void
2006 xlate_enqueue_action(struct xlate_ctx *ctx,
2007 const struct ofpact_enqueue *enqueue)
2008 {
2009 ofp_port_t ofp_port = enqueue->port;
2010 uint32_t queue_id = enqueue->queue;
2011 uint32_t flow_priority, priority;
2012 int error;
2013
2014 /* Translate queue to priority. */
2015 error = dpif_queue_to_priority(ctx->xbridge->dpif, queue_id, &priority);
2016 if (error) {
2017 /* Fall back to ordinary output action. */
2018 xlate_output_action(ctx, enqueue->port, 0, false);
2019 return;
2020 }
2021
2022 /* Check output port. */
2023 if (ofp_port == OFPP_IN_PORT) {
2024 ofp_port = ctx->xin->flow.in_port.ofp_port;
2025 } else if (ofp_port == ctx->xin->flow.in_port.ofp_port) {
2026 return;
2027 }
2028
2029 /* Add datapath actions. */
2030 flow_priority = ctx->xin->flow.skb_priority;
2031 ctx->xin->flow.skb_priority = priority;
2032 compose_output_action(ctx, ofp_port);
2033 ctx->xin->flow.skb_priority = flow_priority;
2034
2035 /* Update NetFlow output port. */
2036 if (ctx->xout->nf_output_iface == NF_OUT_DROP) {
2037 ctx->xout->nf_output_iface = ofp_port;
2038 } else if (ctx->xout->nf_output_iface != NF_OUT_FLOOD) {
2039 ctx->xout->nf_output_iface = NF_OUT_MULTI;
2040 }
2041 }
2042
2043 static void
2044 xlate_set_queue_action(struct xlate_ctx *ctx, uint32_t queue_id)
2045 {
2046 uint32_t skb_priority;
2047
2048 if (!dpif_queue_to_priority(ctx->xbridge->dpif, queue_id, &skb_priority)) {
2049 ctx->xin->flow.skb_priority = skb_priority;
2050 } else {
2051 /* Couldn't translate queue to a priority. Nothing to do. A warning
2052 * has already been logged. */
2053 }
2054 }
2055
2056 static bool
2057 slave_enabled_cb(ofp_port_t ofp_port, void *xbridge_)
2058 {
2059 const struct xbridge *xbridge = xbridge_;
2060 struct xport *port;
2061
2062 switch (ofp_port) {
2063 case OFPP_IN_PORT:
2064 case OFPP_TABLE:
2065 case OFPP_NORMAL:
2066 case OFPP_FLOOD:
2067 case OFPP_ALL:
2068 case OFPP_NONE:
2069 return true;
2070 case OFPP_CONTROLLER: /* Not supported by the bundle action. */
2071 return false;
2072 default:
2073 port = get_ofp_port(xbridge, ofp_port);
2074 return port ? port->may_enable : false;
2075 }
2076 }
2077
2078 static void
2079 xlate_bundle_action(struct xlate_ctx *ctx,
2080 const struct ofpact_bundle *bundle)
2081 {
2082 ofp_port_t port;
2083
2084 port = bundle_execute(bundle, &ctx->xin->flow, &ctx->xout->wc,
2085 slave_enabled_cb,
2086 CONST_CAST(struct xbridge *, ctx->xbridge));
2087 if (bundle->dst.field) {
2088 nxm_reg_load(&bundle->dst, ofp_to_u16(port), &ctx->xin->flow,
2089 &ctx->xout->wc);
2090 } else {
2091 xlate_output_action(ctx, port, 0, false);
2092 }
2093 }
2094
2095 static void
2096 xlate_learn_action(struct xlate_ctx *ctx,
2097 const struct ofpact_learn *learn)
2098 {
2099 struct ofputil_flow_mod *fm;
2100 struct ofpbuf ofpacts;
2101
2102 ctx->xout->has_learn = true;
2103
2104 learn_mask(learn, &ctx->xout->wc);
2105
2106 if (!ctx->xin->may_learn) {
2107 return;
2108 }
2109
2110 fm = xmalloc(sizeof *fm);
2111 ofpbuf_init(&ofpacts, 0);
2112 learn_execute(learn, &ctx->xin->flow, fm, &ofpacts);
2113
2114 ofproto_dpif_flow_mod(ctx->xbridge->ofproto, fm);
2115 }
2116
2117 static void
2118 xlate_fin_timeout(struct xlate_ctx *ctx,
2119 const struct ofpact_fin_timeout *oft)
2120 {
2121 if (ctx->xin->tcp_flags & (TCP_FIN | TCP_RST) && ctx->rule) {
2122 ofproto_rule_reduce_timeouts(&ctx->rule->up, oft->fin_idle_timeout,
2123 oft->fin_hard_timeout);
2124 }
2125 }
2126
2127 static void
2128 xlate_sample_action(struct xlate_ctx *ctx,
2129 const struct ofpact_sample *os)
2130 {
2131 union user_action_cookie cookie;
2132 /* Scale the probability from 16-bit to 32-bit while representing
2133 * the same percentage. */
2134 uint32_t probability = (os->probability << 16) | os->probability;
2135
2136 commit_odp_actions(&ctx->xin->flow, &ctx->base_flow,
2137 &ctx->xout->odp_actions, &ctx->xout->wc);
2138
2139 compose_flow_sample_cookie(os->probability, os->collector_set_id,
2140 os->obs_domain_id, os->obs_point_id, &cookie);
2141 compose_sample_action(ctx->xbridge, &ctx->xout->odp_actions, &ctx->xin->flow,
2142 probability, &cookie, sizeof cookie.flow_sample);
2143 }
2144
2145 static bool
2146 may_receive(const struct xport *xport, struct xlate_ctx *ctx)
2147 {
2148 if (xport->config & (eth_addr_equals(ctx->xin->flow.dl_dst, eth_addr_stp)
2149 ? OFPUTIL_PC_NO_RECV_STP
2150 : OFPUTIL_PC_NO_RECV)) {
2151 return false;
2152 }
2153
2154 /* Only drop packets here if both forwarding and learning are
2155 * disabled. If just learning is enabled, we need to have
2156 * OFPP_NORMAL and the learning action have a look at the packet
2157 * before we can drop it. */
2158 if (!xport_stp_forward_state(xport) && !xport_stp_learn_state(xport)) {
2159 return false;
2160 }
2161
2162 return true;
2163 }
2164
2165 static void
2166 do_xlate_actions(const struct ofpact *ofpacts, size_t ofpacts_len,
2167 struct xlate_ctx *ctx)
2168 {
2169 struct flow_wildcards *wc = &ctx->xout->wc;
2170 struct flow *flow = &ctx->xin->flow;
2171 const struct ofpact *a;
2172
2173 OFPACT_FOR_EACH (a, ofpacts, ofpacts_len) {
2174 struct ofpact_controller *controller;
2175 const struct ofpact_metadata *metadata;
2176
2177 if (ctx->exit) {
2178 break;
2179 }
2180
2181 switch (a->type) {
2182 case OFPACT_OUTPUT:
2183 xlate_output_action(ctx, ofpact_get_OUTPUT(a)->port,
2184 ofpact_get_OUTPUT(a)->max_len, true);
2185 break;
2186
2187 case OFPACT_GROUP:
2188 /* XXX not yet implemented */
2189 break;
2190
2191 case OFPACT_CONTROLLER:
2192 controller = ofpact_get_CONTROLLER(a);
2193 execute_controller_action(ctx, controller->max_len,
2194 controller->reason,
2195 controller->controller_id);
2196 break;
2197
2198 case OFPACT_ENQUEUE:
2199 xlate_enqueue_action(ctx, ofpact_get_ENQUEUE(a));
2200 break;
2201
2202 case OFPACT_SET_VLAN_VID:
2203 wc->masks.vlan_tci |= htons(VLAN_VID_MASK | VLAN_CFI);
2204 flow->vlan_tci &= ~htons(VLAN_VID_MASK);
2205 flow->vlan_tci |= (htons(ofpact_get_SET_VLAN_VID(a)->vlan_vid)
2206 | htons(VLAN_CFI));
2207 break;
2208
2209 case OFPACT_SET_VLAN_PCP:
2210 wc->masks.vlan_tci |= htons(VLAN_PCP_MASK | VLAN_CFI);
2211 flow->vlan_tci &= ~htons(VLAN_PCP_MASK);
2212 flow->vlan_tci |=
2213 htons((ofpact_get_SET_VLAN_PCP(a)->vlan_pcp << VLAN_PCP_SHIFT)
2214 | VLAN_CFI);
2215 break;
2216
2217 case OFPACT_STRIP_VLAN:
2218 memset(&wc->masks.vlan_tci, 0xff, sizeof wc->masks.vlan_tci);
2219 flow->vlan_tci = htons(0);
2220 break;
2221
2222 case OFPACT_PUSH_VLAN:
2223 /* XXX 802.1AD(QinQ) */
2224 memset(&wc->masks.vlan_tci, 0xff, sizeof wc->masks.vlan_tci);
2225 flow->vlan_tci = htons(VLAN_CFI);
2226 break;
2227
2228 case OFPACT_SET_ETH_SRC:
2229 memset(&wc->masks.dl_src, 0xff, sizeof wc->masks.dl_src);
2230 memcpy(flow->dl_src, ofpact_get_SET_ETH_SRC(a)->mac, ETH_ADDR_LEN);
2231 break;
2232
2233 case OFPACT_SET_ETH_DST:
2234 memset(&wc->masks.dl_dst, 0xff, sizeof wc->masks.dl_dst);
2235 memcpy(flow->dl_dst, ofpact_get_SET_ETH_DST(a)->mac, ETH_ADDR_LEN);
2236 break;
2237
2238 case OFPACT_SET_IPV4_SRC:
2239 memset(&wc->masks.nw_src, 0xff, sizeof wc->masks.nw_src);
2240 if (flow->dl_type == htons(ETH_TYPE_IP)) {
2241 flow->nw_src = ofpact_get_SET_IPV4_SRC(a)->ipv4;
2242 }
2243 break;
2244
2245 case OFPACT_SET_IPV4_DST:
2246 memset(&wc->masks.nw_dst, 0xff, sizeof wc->masks.nw_dst);
2247 if (flow->dl_type == htons(ETH_TYPE_IP)) {
2248 flow->nw_dst = ofpact_get_SET_IPV4_DST(a)->ipv4;
2249 }
2250 break;
2251
2252 case OFPACT_SET_IPV4_DSCP:
2253 wc->masks.nw_tos |= IP_DSCP_MASK;
2254 /* OpenFlow 1.0 only supports IPv4. */
2255 if (flow->dl_type == htons(ETH_TYPE_IP)) {
2256 flow->nw_tos &= ~IP_DSCP_MASK;
2257 flow->nw_tos |= ofpact_get_SET_IPV4_DSCP(a)->dscp;
2258 }
2259 break;
2260
2261 case OFPACT_SET_L4_SRC_PORT:
2262 memset(&wc->masks.nw_proto, 0xff, sizeof wc->masks.nw_proto);
2263 memset(&wc->masks.tp_src, 0xff, sizeof wc->masks.tp_src);
2264 if (is_ip_any(flow)) {
2265 flow->tp_src = htons(ofpact_get_SET_L4_SRC_PORT(a)->port);
2266 }
2267 break;
2268
2269 case OFPACT_SET_L4_DST_PORT:
2270 memset(&wc->masks.nw_proto, 0xff, sizeof wc->masks.nw_proto);
2271 memset(&wc->masks.tp_dst, 0xff, sizeof wc->masks.tp_dst);
2272 if (is_ip_any(flow)) {
2273 flow->tp_dst = htons(ofpact_get_SET_L4_DST_PORT(a)->port);
2274 }
2275 break;
2276
2277 case OFPACT_RESUBMIT:
2278 xlate_ofpact_resubmit(ctx, ofpact_get_RESUBMIT(a));
2279 break;
2280
2281 case OFPACT_SET_TUNNEL:
2282 flow->tunnel.tun_id = htonll(ofpact_get_SET_TUNNEL(a)->tun_id);
2283 break;
2284
2285 case OFPACT_SET_QUEUE:
2286 xlate_set_queue_action(ctx, ofpact_get_SET_QUEUE(a)->queue_id);
2287 break;
2288
2289 case OFPACT_POP_QUEUE:
2290 flow->skb_priority = ctx->orig_skb_priority;
2291 break;
2292
2293 case OFPACT_REG_MOVE:
2294 nxm_execute_reg_move(ofpact_get_REG_MOVE(a), flow, wc);
2295 break;
2296
2297 case OFPACT_REG_LOAD:
2298 nxm_execute_reg_load(ofpact_get_REG_LOAD(a), flow);
2299 break;
2300
2301 case OFPACT_STACK_PUSH:
2302 nxm_execute_stack_push(ofpact_get_STACK_PUSH(a), flow, wc,
2303 &ctx->stack);
2304 break;
2305
2306 case OFPACT_STACK_POP:
2307 nxm_execute_stack_pop(ofpact_get_STACK_POP(a), flow, wc,
2308 &ctx->stack);
2309 break;
2310
2311 case OFPACT_PUSH_MPLS:
2312 compose_mpls_push_action(ctx, ofpact_get_PUSH_MPLS(a)->ethertype);
2313 break;
2314
2315 case OFPACT_POP_MPLS:
2316 compose_mpls_pop_action(ctx, ofpact_get_POP_MPLS(a)->ethertype);
2317 break;
2318
2319 case OFPACT_SET_MPLS_TTL:
2320 if (compose_set_mpls_ttl_action(ctx,
2321 ofpact_get_SET_MPLS_TTL(a)->ttl)) {
2322 return;
2323 }
2324 break;
2325
2326 case OFPACT_DEC_MPLS_TTL:
2327 if (compose_dec_mpls_ttl_action(ctx)) {
2328 return;
2329 }
2330 break;
2331
2332 case OFPACT_DEC_TTL:
2333 wc->masks.nw_ttl = 0xff;
2334 if (compose_dec_ttl(ctx, ofpact_get_DEC_TTL(a))) {
2335 return;
2336 }
2337 break;
2338
2339 case OFPACT_NOTE:
2340 /* Nothing to do. */
2341 break;
2342
2343 case OFPACT_MULTIPATH:
2344 multipath_execute(ofpact_get_MULTIPATH(a), flow, wc);
2345 break;
2346
2347 case OFPACT_BUNDLE:
2348 xlate_bundle_action(ctx, ofpact_get_BUNDLE(a));
2349 break;
2350
2351 case OFPACT_OUTPUT_REG:
2352 xlate_output_reg_action(ctx, ofpact_get_OUTPUT_REG(a));
2353 break;
2354
2355 case OFPACT_LEARN:
2356 xlate_learn_action(ctx, ofpact_get_LEARN(a));
2357 break;
2358
2359 case OFPACT_EXIT:
2360 ctx->exit = true;
2361 break;
2362
2363 case OFPACT_FIN_TIMEOUT:
2364 memset(&wc->masks.nw_proto, 0xff, sizeof wc->masks.nw_proto);
2365 ctx->xout->has_fin_timeout = true;
2366 xlate_fin_timeout(ctx, ofpact_get_FIN_TIMEOUT(a));
2367 break;
2368
2369 case OFPACT_CLEAR_ACTIONS:
2370 /* XXX
2371 * Nothing to do because writa-actions is not supported for now.
2372 * When writa-actions is supported, clear-actions also must
2373 * be supported at the same time.
2374 */
2375 break;
2376
2377 case OFPACT_WRITE_METADATA:
2378 metadata = ofpact_get_WRITE_METADATA(a);
2379 flow->metadata &= ~metadata->mask;
2380 flow->metadata |= metadata->metadata & metadata->mask;
2381 break;
2382
2383 case OFPACT_METER:
2384 /* Not implemented yet. */
2385 break;
2386
2387 case OFPACT_GOTO_TABLE: {
2388 /* It is assumed that goto-table is the last action. */
2389 struct ofpact_goto_table *ogt = ofpact_get_GOTO_TABLE(a);
2390
2391 ovs_assert(ctx->table_id < ogt->table_id);
2392 xlate_table_action(ctx, ctx->xin->flow.in_port.ofp_port,
2393 ogt->table_id, true);
2394 break;
2395 }
2396
2397 case OFPACT_SAMPLE:
2398 xlate_sample_action(ctx, ofpact_get_SAMPLE(a));
2399 break;
2400 }
2401 }
2402 }
2403
2404 void
2405 xlate_in_init(struct xlate_in *xin, struct ofproto_dpif *ofproto,
2406 const struct flow *flow, struct rule_dpif *rule,
2407 uint8_t tcp_flags, const struct ofpbuf *packet)
2408 {
2409 xin->ofproto = ofproto;
2410 xin->flow = *flow;
2411 xin->packet = packet;
2412 xin->may_learn = packet != NULL;
2413 xin->rule = rule;
2414 xin->ofpacts = NULL;
2415 xin->ofpacts_len = 0;
2416 xin->tcp_flags = tcp_flags;
2417 xin->resubmit_hook = NULL;
2418 xin->report_hook = NULL;
2419 xin->resubmit_stats = NULL;
2420 }
2421
2422 void
2423 xlate_out_uninit(struct xlate_out *xout)
2424 {
2425 if (xout) {
2426 ofpbuf_uninit(&xout->odp_actions);
2427 }
2428 }
2429
2430 /* Translates the 'ofpacts_len' bytes of "struct ofpact"s starting at 'ofpacts'
2431 * into datapath actions, using 'ctx', and discards the datapath actions. */
2432 void
2433 xlate_actions_for_side_effects(struct xlate_in *xin)
2434 {
2435 struct xlate_out xout;
2436
2437 xlate_actions(xin, &xout);
2438 xlate_out_uninit(&xout);
2439 }
2440
2441 static void
2442 xlate_report(struct xlate_ctx *ctx, const char *s)
2443 {
2444 if (ctx->xin->report_hook) {
2445 ctx->xin->report_hook(ctx->xin, s, ctx->recurse);
2446 }
2447 }
2448
2449 void
2450 xlate_out_copy(struct xlate_out *dst, const struct xlate_out *src)
2451 {
2452 dst->wc = src->wc;
2453 dst->slow = src->slow;
2454 dst->has_learn = src->has_learn;
2455 dst->has_normal = src->has_normal;
2456 dst->has_fin_timeout = src->has_fin_timeout;
2457 dst->nf_output_iface = src->nf_output_iface;
2458 dst->mirrors = src->mirrors;
2459
2460 ofpbuf_use_stub(&dst->odp_actions, dst->odp_actions_stub,
2461 sizeof dst->odp_actions_stub);
2462 ofpbuf_put(&dst->odp_actions, src->odp_actions.data,
2463 src->odp_actions.size);
2464 }
2465 \f
2466 static struct skb_priority_to_dscp *
2467 get_skb_priority(const struct xport *xport, uint32_t skb_priority)
2468 {
2469 struct skb_priority_to_dscp *pdscp;
2470 uint32_t hash;
2471
2472 hash = hash_int(skb_priority, 0);
2473 HMAP_FOR_EACH_IN_BUCKET (pdscp, hmap_node, hash, &xport->skb_priorities) {
2474 if (pdscp->skb_priority == skb_priority) {
2475 return pdscp;
2476 }
2477 }
2478 return NULL;
2479 }
2480
2481 static bool
2482 dscp_from_skb_priority(const struct xport *xport, uint32_t skb_priority,
2483 uint8_t *dscp)
2484 {
2485 struct skb_priority_to_dscp *pdscp = get_skb_priority(xport, skb_priority);
2486 *dscp = pdscp ? pdscp->dscp : 0;
2487 return pdscp != NULL;
2488 }
2489
2490 static void
2491 clear_skb_priorities(struct xport *xport)
2492 {
2493 struct skb_priority_to_dscp *pdscp, *next;
2494
2495 HMAP_FOR_EACH_SAFE (pdscp, next, hmap_node, &xport->skb_priorities) {
2496 hmap_remove(&xport->skb_priorities, &pdscp->hmap_node);
2497 free(pdscp);
2498 }
2499 }
2500
2501 static bool
2502 actions_output_to_local_port(const struct xlate_ctx *ctx)
2503 {
2504 odp_port_t local_odp_port = ofp_port_to_odp_port(ctx->xbridge, OFPP_LOCAL);
2505 const struct nlattr *a;
2506 unsigned int left;
2507
2508 NL_ATTR_FOR_EACH_UNSAFE (a, left, ctx->xout->odp_actions.data,
2509 ctx->xout->odp_actions.size) {
2510 if (nl_attr_type(a) == OVS_ACTION_ATTR_OUTPUT
2511 && nl_attr_get_odp_port(a) == local_odp_port) {
2512 return true;
2513 }
2514 }
2515 return false;
2516 }
2517
2518 /* Translates the 'ofpacts_len' bytes of "struct ofpacts" starting at 'ofpacts'
2519 * into datapath actions in 'odp_actions', using 'ctx'.
2520 *
2521 * The caller must take responsibility for eventually freeing 'xout', with
2522 * xlate_out_uninit(). */
2523 void
2524 xlate_actions(struct xlate_in *xin, struct xlate_out *xout)
2525 {
2526 struct flow_wildcards *wc = &xout->wc;
2527 struct flow *flow = &xin->flow;
2528
2529 enum slow_path_reason special;
2530 const struct ofpact *ofpacts;
2531 struct xport *in_port;
2532 struct flow orig_flow;
2533 struct xlate_ctx ctx;
2534 size_t ofpacts_len;
2535 bool tnl_may_send;
2536
2537 COVERAGE_INC(xlate_actions);
2538
2539 ovs_rwlock_rdlock(&xlate_rwlock);
2540
2541 /* Flow initialization rules:
2542 * - 'base_flow' must match the kernel's view of the packet at the
2543 * time that action processing starts. 'flow' represents any
2544 * transformations we wish to make through actions.
2545 * - By default 'base_flow' and 'flow' are the same since the input
2546 * packet matches the output before any actions are applied.
2547 * - When using VLAN splinters, 'base_flow''s VLAN is set to the value
2548 * of the received packet as seen by the kernel. If we later output
2549 * to another device without any modifications this will cause us to
2550 * insert a new tag since the original one was stripped off by the
2551 * VLAN device.
2552 * - Tunnel metadata as received is retained in 'flow'. This allows
2553 * tunnel metadata matching also in later tables.
2554 * Since a kernel action for setting the tunnel metadata will only be
2555 * generated with actual tunnel output, changing the tunnel metadata
2556 * values in 'flow' (such as tun_id) will only have effect with a later
2557 * tunnel output action.
2558 * - Tunnel 'base_flow' is completely cleared since that is what the
2559 * kernel does. If we wish to maintain the original values an action
2560 * needs to be generated. */
2561
2562 ctx.xin = xin;
2563 ctx.xout = xout;
2564 ctx.xout->slow = 0;
2565 ctx.xout->has_learn = false;
2566 ctx.xout->has_normal = false;
2567 ctx.xout->has_fin_timeout = false;
2568 ctx.xout->nf_output_iface = NF_OUT_DROP;
2569 ctx.xout->mirrors = 0;
2570 ofpbuf_use_stub(&ctx.xout->odp_actions, ctx.xout->odp_actions_stub,
2571 sizeof ctx.xout->odp_actions_stub);
2572 ofpbuf_reserve(&ctx.xout->odp_actions, NL_A_U32_SIZE);
2573
2574 ctx.xbridge = xbridge_lookup(xin->ofproto);
2575 if (!ctx.xbridge) {
2576 goto out;
2577 }
2578
2579 ctx.rule = xin->rule;
2580
2581 ctx.base_flow = *flow;
2582 memset(&ctx.base_flow.tunnel, 0, sizeof ctx.base_flow.tunnel);
2583 ctx.orig_tunnel_ip_dst = flow->tunnel.ip_dst;
2584
2585 flow_wildcards_init_catchall(wc);
2586 memset(&wc->masks.in_port, 0xff, sizeof wc->masks.in_port);
2587 memset(&wc->masks.skb_priority, 0xff, sizeof wc->masks.skb_priority);
2588 memset(&wc->masks.dl_type, 0xff, sizeof wc->masks.dl_type);
2589 wc->masks.nw_frag |= FLOW_NW_FRAG_MASK;
2590
2591 tnl_may_send = tnl_xlate_init(&ctx.base_flow, flow, wc);
2592 if (ctx.xbridge->has_netflow) {
2593 netflow_mask_wc(flow, wc);
2594 }
2595
2596 ctx.recurse = 0;
2597 ctx.orig_skb_priority = flow->skb_priority;
2598 ctx.table_id = 0;
2599 ctx.exit = false;
2600
2601 if (xin->ofpacts) {
2602 ofpacts = xin->ofpacts;
2603 ofpacts_len = xin->ofpacts_len;
2604 } else if (xin->rule) {
2605 ofpacts = xin->rule->up.ofpacts;
2606 ofpacts_len = xin->rule->up.ofpacts_len;
2607 } else {
2608 NOT_REACHED();
2609 }
2610
2611 ofpbuf_use_stub(&ctx.stack, ctx.init_stack, sizeof ctx.init_stack);
2612
2613 if (mbridge_has_mirrors(ctx.xbridge->mbridge)) {
2614 /* Do this conditionally because the copy is expensive enough that it
2615 * shows up in profiles. */
2616 orig_flow = *flow;
2617 }
2618
2619 if (flow->nw_frag & FLOW_NW_FRAG_ANY) {
2620 switch (ctx.xbridge->frag) {
2621 case OFPC_FRAG_NORMAL:
2622 /* We must pretend that transport ports are unavailable. */
2623 flow->tp_src = ctx.base_flow.tp_src = htons(0);
2624 flow->tp_dst = ctx.base_flow.tp_dst = htons(0);
2625 break;
2626
2627 case OFPC_FRAG_DROP:
2628 goto out;
2629
2630 case OFPC_FRAG_REASM:
2631 NOT_REACHED();
2632
2633 case OFPC_FRAG_NX_MATCH:
2634 /* Nothing to do. */
2635 break;
2636
2637 case OFPC_INVALID_TTL_TO_CONTROLLER:
2638 NOT_REACHED();
2639 }
2640 }
2641
2642 in_port = get_ofp_port(ctx.xbridge, flow->in_port.ofp_port);
2643 special = process_special(&ctx, flow, in_port, ctx.xin->packet);
2644 if (special) {
2645 ctx.xout->slow = special;
2646 } else {
2647 size_t sample_actions_len;
2648
2649 if (flow->in_port.ofp_port
2650 != vsp_realdev_to_vlandev(ctx.xbridge->ofproto,
2651 flow->in_port.ofp_port,
2652 flow->vlan_tci)) {
2653 ctx.base_flow.vlan_tci = 0;
2654 }
2655
2656 add_sflow_action(&ctx);
2657 add_ipfix_action(&ctx);
2658 sample_actions_len = ctx.xout->odp_actions.size;
2659
2660 if (tnl_may_send && (!in_port || may_receive(in_port, &ctx))) {
2661 do_xlate_actions(ofpacts, ofpacts_len, &ctx);
2662
2663 /* We've let OFPP_NORMAL and the learning action look at the
2664 * packet, so drop it now if forwarding is disabled. */
2665 if (in_port && !xport_stp_forward_state(in_port)) {
2666 ctx.xout->odp_actions.size = sample_actions_len;
2667 }
2668 }
2669
2670 if (ctx.xbridge->has_in_band
2671 && in_band_must_output_to_local_port(flow)
2672 && !actions_output_to_local_port(&ctx)) {
2673 compose_output_action(&ctx, OFPP_LOCAL);
2674 }
2675
2676 fix_sflow_action(&ctx);
2677
2678 if (mbridge_has_mirrors(ctx.xbridge->mbridge)) {
2679 add_mirror_actions(&ctx, &orig_flow);
2680 }
2681 }
2682
2683 ofpbuf_uninit(&ctx.stack);
2684
2685 /* Clear the metadata and register wildcard masks, because we won't
2686 * use non-header fields as part of the cache. */
2687 memset(&wc->masks.metadata, 0, sizeof wc->masks.metadata);
2688 memset(&wc->masks.regs, 0, sizeof wc->masks.regs);
2689
2690 out:
2691 ovs_rwlock_unlock(&xlate_rwlock);
2692 }