]> git.proxmox.com Git - mirror_ovs.git/blob - ofproto/ofproto-dpif-xlate.c
ofproto-dpif-xlate: Handle oversized actions more gracefully.
[mirror_ovs.git] / ofproto / ofproto-dpif-xlate.c
1 /* Copyright (c) 2009, 2010, 2011, 2012, 2013 Nicira, Inc.
2 *
3 * Licensed under the Apache License, Version 2.0 (the "License");
4 * you may not use this file except in compliance with the License.
5 * You may obtain a copy of the License at:
6 *
7 * http://www.apache.org/licenses/LICENSE-2.0
8 *
9 * Unless required by applicable law or agreed to in writing, software
10 * distributed under the License is distributed on an "AS IS" BASIS,
11 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 * See the License for the specific language governing permissions and
13 * limitations under the License. */
14
15 #include <config.h>
16
17 #include "ofproto/ofproto-dpif-xlate.h"
18
19 #include <errno.h>
20
21 #include "bfd.h"
22 #include "bitmap.h"
23 #include "bond.h"
24 #include "bundle.h"
25 #include "byte-order.h"
26 #include "cfm.h"
27 #include "connmgr.h"
28 #include "coverage.h"
29 #include "dpif.h"
30 #include "dynamic-string.h"
31 #include "in-band.h"
32 #include "lacp.h"
33 #include "learn.h"
34 #include "list.h"
35 #include "mac-learning.h"
36 #include "meta-flow.h"
37 #include "multipath.h"
38 #include "netdev-vport.h"
39 #include "netlink.h"
40 #include "nx-match.h"
41 #include "odp-execute.h"
42 #include "ofp-actions.h"
43 #include "ofproto/ofproto-dpif-ipfix.h"
44 #include "ofproto/ofproto-dpif-mirror.h"
45 #include "ofproto/ofproto-dpif-sflow.h"
46 #include "ofproto/ofproto-dpif.h"
47 #include "ofproto/ofproto-provider.h"
48 #include "tunnel.h"
49 #include "vlog.h"
50
51 COVERAGE_DEFINE(xlate_actions);
52 COVERAGE_DEFINE(xlate_actions_oversize);
53
54 VLOG_DEFINE_THIS_MODULE(ofproto_dpif_xlate);
55
56 /* Maximum depth of flow table recursion (due to resubmit actions) in a
57 * flow translation. */
58 #define MAX_RESUBMIT_RECURSION 64
59
60 /* Maximum number of resubmit actions in a flow translation, whether they are
61 * recursive or not. */
62 #define MAX_RESUBMITS (MAX_RESUBMIT_RECURSION * MAX_RESUBMIT_RECURSION)
63
64 struct ovs_rwlock xlate_rwlock = OVS_RWLOCK_INITIALIZER;
65
66 struct xbridge {
67 struct hmap_node hmap_node; /* Node in global 'xbridges' map. */
68 struct ofproto_dpif *ofproto; /* Key in global 'xbridges' map. */
69
70 struct list xbundles; /* Owned xbundles. */
71 struct hmap xports; /* Indexed by ofp_port. */
72
73 char *name; /* Name used in log messages. */
74 struct dpif *dpif; /* Datapath interface. */
75 struct mac_learning *ml; /* Mac learning handle. */
76 struct mbridge *mbridge; /* Mirroring. */
77 struct dpif_sflow *sflow; /* SFlow handle, or null. */
78 struct dpif_ipfix *ipfix; /* Ipfix handle, or null. */
79 struct stp *stp; /* STP or null if disabled. */
80
81 /* Special rules installed by ofproto-dpif. */
82 struct rule_dpif *miss_rule;
83 struct rule_dpif *no_packet_in_rule;
84
85 enum ofp_config_flags frag; /* Fragmentation handling. */
86 bool has_netflow; /* Bridge runs netflow? */
87 bool has_in_band; /* Bridge has in band control? */
88 bool forward_bpdu; /* Bridge forwards STP BPDUs? */
89 };
90
91 struct xbundle {
92 struct hmap_node hmap_node; /* In global 'xbundles' map. */
93 struct ofbundle *ofbundle; /* Key in global 'xbundles' map. */
94
95 struct list list_node; /* In parent 'xbridges' list. */
96 struct xbridge *xbridge; /* Parent xbridge. */
97
98 struct list xports; /* Contains "struct xport"s. */
99
100 char *name; /* Name used in log messages. */
101 struct bond *bond; /* Nonnull iff more than one port. */
102 struct lacp *lacp; /* LACP handle or null. */
103
104 enum port_vlan_mode vlan_mode; /* VLAN mode. */
105 int vlan; /* -1=trunk port, else a 12-bit VLAN ID. */
106 unsigned long *trunks; /* Bitmap of trunked VLANs, if 'vlan' == -1.
107 * NULL if all VLANs are trunked. */
108 bool use_priority_tags; /* Use 802.1p tag for frames in VLAN 0? */
109 bool floodable; /* No port has OFPUTIL_PC_NO_FLOOD set? */
110 };
111
112 struct xport {
113 struct hmap_node hmap_node; /* Node in global 'xports' map. */
114 struct ofport_dpif *ofport; /* Key in global 'xports map. */
115
116 struct hmap_node ofp_node; /* Node in parent xbridge 'xports' map. */
117 ofp_port_t ofp_port; /* Key in parent xbridge 'xports' map. */
118
119 odp_port_t odp_port; /* Datapath port number or ODPP_NONE. */
120
121 struct list bundle_node; /* In parent xbundle (if it exists). */
122 struct xbundle *xbundle; /* Parent xbundle or null. */
123
124 struct netdev *netdev; /* 'ofport''s netdev. */
125
126 struct xbridge *xbridge; /* Parent bridge. */
127 struct xport *peer; /* Patch port peer or null. */
128
129 enum ofputil_port_config config; /* OpenFlow port configuration. */
130 int stp_port_no; /* STP port number or -1 if not in use. */
131
132 struct hmap skb_priorities; /* Map of 'skb_priority_to_dscp's. */
133
134 bool may_enable; /* May be enabled in bonds. */
135 bool is_tunnel; /* Is a tunnel port. */
136
137 struct cfm *cfm; /* CFM handle or null. */
138 struct bfd *bfd; /* BFD handle or null. */
139 };
140
141 struct xlate_ctx {
142 struct xlate_in *xin;
143 struct xlate_out *xout;
144
145 const struct xbridge *xbridge;
146
147 /* Flow at the last commit. */
148 struct flow base_flow;
149
150 /* Tunnel IP destination address as received. This is stored separately
151 * as the base_flow.tunnel is cleared on init to reflect the datapath
152 * behavior. Used to make sure not to send tunneled output to ourselves,
153 * which might lead to an infinite loop. This could happen easily
154 * if a tunnel is marked as 'ip_remote=flow', and the flow does not
155 * actually set the tun_dst field. */
156 ovs_be32 orig_tunnel_ip_dst;
157
158 /* Stack for the push and pop actions. Each stack element is of type
159 * "union mf_subvalue". */
160 union mf_subvalue init_stack[1024 / sizeof(union mf_subvalue)];
161 struct ofpbuf stack;
162
163 /* The rule that we are currently translating, or NULL. */
164 struct rule_dpif *rule;
165
166 int mpls_depth_delta; /* Delta of the mpls stack depth since
167 * actions were last committed.
168 * Must be between -1 and 1 inclusive. */
169 ovs_be32 pre_push_mpls_lse; /* Used to record the top-most MPLS LSE
170 * prior to an mpls_push so that it may be
171 * used for a subsequent mpls_pop. */
172
173 /* Resubmit statistics, via xlate_table_action(). */
174 int recurse; /* Current resubmit nesting depth. */
175 int resubmits; /* Total number of resubmits. */
176
177 uint32_t orig_skb_priority; /* Priority when packet arrived. */
178 uint8_t table_id; /* OpenFlow table ID where flow was found. */
179 uint32_t sflow_n_outputs; /* Number of output ports. */
180 odp_port_t sflow_odp_port; /* Output port for composing sFlow action. */
181 uint16_t user_cookie_offset;/* Used for user_action_cookie fixup. */
182 bool exit; /* No further actions should be processed. */
183
184 /* OpenFlow 1.1+ action set.
185 *
186 * 'action_set' accumulates "struct ofpact"s added by OFPACT_WRITE_ACTIONS.
187 * When translation is otherwise complete, ofpacts_execute_action_set()
188 * converts it to a set of "struct ofpact"s that can be translated into
189 * datapath actions. */
190 struct ofpbuf action_set; /* Action set. */
191 uint64_t action_set_stub[1024 / 8];
192 };
193
194 /* A controller may use OFPP_NONE as the ingress port to indicate that
195 * it did not arrive on a "real" port. 'ofpp_none_bundle' exists for
196 * when an input bundle is needed for validation (e.g., mirroring or
197 * OFPP_NORMAL processing). It is not connected to an 'ofproto' or have
198 * any 'port' structs, so care must be taken when dealing with it.
199 * The bundle's name and vlan mode are initialized in lookup_input_bundle() */
200 static struct xbundle ofpp_none_bundle;
201
202 /* Node in 'xport''s 'skb_priorities' map. Used to maintain a map from
203 * 'priority' (the datapath's term for QoS queue) to the dscp bits which all
204 * traffic egressing the 'ofport' with that priority should be marked with. */
205 struct skb_priority_to_dscp {
206 struct hmap_node hmap_node; /* Node in 'ofport_dpif''s 'skb_priorities'. */
207 uint32_t skb_priority; /* Priority of this queue (see struct flow). */
208
209 uint8_t dscp; /* DSCP bits to mark outgoing traffic with. */
210 };
211
212 static struct hmap xbridges = HMAP_INITIALIZER(&xbridges);
213 static struct hmap xbundles = HMAP_INITIALIZER(&xbundles);
214 static struct hmap xports = HMAP_INITIALIZER(&xports);
215
216 static bool may_receive(const struct xport *, struct xlate_ctx *);
217 static void do_xlate_actions(const struct ofpact *, size_t ofpacts_len,
218 struct xlate_ctx *);
219 static void xlate_actions__(struct xlate_in *, struct xlate_out *)
220 OVS_REQ_RDLOCK(xlate_rwlock);
221 static void xlate_normal(struct xlate_ctx *);
222 static void xlate_report(struct xlate_ctx *, const char *);
223 static void xlate_table_action(struct xlate_ctx *, ofp_port_t in_port,
224 uint8_t table_id, bool may_packet_in);
225 static bool input_vid_is_valid(uint16_t vid, struct xbundle *, bool warn);
226 static uint16_t input_vid_to_vlan(const struct xbundle *, uint16_t vid);
227 static void output_normal(struct xlate_ctx *, const struct xbundle *,
228 uint16_t vlan);
229 static void compose_output_action(struct xlate_ctx *, ofp_port_t ofp_port);
230
231 static struct xbridge *xbridge_lookup(const struct ofproto_dpif *);
232 static struct xbundle *xbundle_lookup(const struct ofbundle *);
233 static struct xport *xport_lookup(const struct ofport_dpif *);
234 static struct xport *get_ofp_port(const struct xbridge *, ofp_port_t ofp_port);
235 static struct skb_priority_to_dscp *get_skb_priority(const struct xport *,
236 uint32_t skb_priority);
237 static void clear_skb_priorities(struct xport *);
238 static bool dscp_from_skb_priority(const struct xport *, uint32_t skb_priority,
239 uint8_t *dscp);
240
241 void
242 xlate_ofproto_set(struct ofproto_dpif *ofproto, const char *name,
243 struct dpif *dpif, struct rule_dpif *miss_rule,
244 struct rule_dpif *no_packet_in_rule,
245 const struct mac_learning *ml, struct stp *stp,
246 const struct mbridge *mbridge,
247 const struct dpif_sflow *sflow,
248 const struct dpif_ipfix *ipfix, enum ofp_config_flags frag,
249 bool forward_bpdu, bool has_in_band, bool has_netflow)
250 {
251 struct xbridge *xbridge = xbridge_lookup(ofproto);
252
253 if (!xbridge) {
254 xbridge = xzalloc(sizeof *xbridge);
255 xbridge->ofproto = ofproto;
256
257 hmap_insert(&xbridges, &xbridge->hmap_node, hash_pointer(ofproto, 0));
258 hmap_init(&xbridge->xports);
259 list_init(&xbridge->xbundles);
260 }
261
262 if (xbridge->ml != ml) {
263 mac_learning_unref(xbridge->ml);
264 xbridge->ml = mac_learning_ref(ml);
265 }
266
267 if (xbridge->mbridge != mbridge) {
268 mbridge_unref(xbridge->mbridge);
269 xbridge->mbridge = mbridge_ref(mbridge);
270 }
271
272 if (xbridge->sflow != sflow) {
273 dpif_sflow_unref(xbridge->sflow);
274 xbridge->sflow = dpif_sflow_ref(sflow);
275 }
276
277 if (xbridge->ipfix != ipfix) {
278 dpif_ipfix_unref(xbridge->ipfix);
279 xbridge->ipfix = dpif_ipfix_ref(ipfix);
280 }
281
282 if (xbridge->stp != stp) {
283 stp_unref(xbridge->stp);
284 xbridge->stp = stp_ref(stp);
285 }
286
287 free(xbridge->name);
288 xbridge->name = xstrdup(name);
289
290 xbridge->dpif = dpif;
291 xbridge->forward_bpdu = forward_bpdu;
292 xbridge->has_in_band = has_in_band;
293 xbridge->has_netflow = has_netflow;
294 xbridge->frag = frag;
295 xbridge->miss_rule = miss_rule;
296 xbridge->no_packet_in_rule = no_packet_in_rule;
297 }
298
299 void
300 xlate_remove_ofproto(struct ofproto_dpif *ofproto)
301 {
302 struct xbridge *xbridge = xbridge_lookup(ofproto);
303 struct xbundle *xbundle, *next_xbundle;
304 struct xport *xport, *next_xport;
305
306 if (!xbridge) {
307 return;
308 }
309
310 HMAP_FOR_EACH_SAFE (xport, next_xport, ofp_node, &xbridge->xports) {
311 xlate_ofport_remove(xport->ofport);
312 }
313
314 LIST_FOR_EACH_SAFE (xbundle, next_xbundle, list_node, &xbridge->xbundles) {
315 xlate_bundle_remove(xbundle->ofbundle);
316 }
317
318 hmap_remove(&xbridges, &xbridge->hmap_node);
319 mac_learning_unref(xbridge->ml);
320 mbridge_unref(xbridge->mbridge);
321 dpif_sflow_unref(xbridge->sflow);
322 dpif_ipfix_unref(xbridge->ipfix);
323 stp_unref(xbridge->stp);
324 hmap_destroy(&xbridge->xports);
325 free(xbridge->name);
326 free(xbridge);
327 }
328
329 void
330 xlate_bundle_set(struct ofproto_dpif *ofproto, struct ofbundle *ofbundle,
331 const char *name, enum port_vlan_mode vlan_mode, int vlan,
332 unsigned long *trunks, bool use_priority_tags,
333 const struct bond *bond, const struct lacp *lacp,
334 bool floodable)
335 {
336 struct xbundle *xbundle = xbundle_lookup(ofbundle);
337
338 if (!xbundle) {
339 xbundle = xzalloc(sizeof *xbundle);
340 xbundle->ofbundle = ofbundle;
341 xbundle->xbridge = xbridge_lookup(ofproto);
342
343 hmap_insert(&xbundles, &xbundle->hmap_node, hash_pointer(ofbundle, 0));
344 list_insert(&xbundle->xbridge->xbundles, &xbundle->list_node);
345 list_init(&xbundle->xports);
346 }
347
348 ovs_assert(xbundle->xbridge);
349
350 free(xbundle->name);
351 xbundle->name = xstrdup(name);
352
353 xbundle->vlan_mode = vlan_mode;
354 xbundle->vlan = vlan;
355 xbundle->trunks = trunks;
356 xbundle->use_priority_tags = use_priority_tags;
357 xbundle->floodable = floodable;
358
359 if (xbundle->bond != bond) {
360 bond_unref(xbundle->bond);
361 xbundle->bond = bond_ref(bond);
362 }
363
364 if (xbundle->lacp != lacp) {
365 lacp_unref(xbundle->lacp);
366 xbundle->lacp = lacp_ref(lacp);
367 }
368 }
369
370 void
371 xlate_bundle_remove(struct ofbundle *ofbundle)
372 {
373 struct xbundle *xbundle = xbundle_lookup(ofbundle);
374 struct xport *xport, *next;
375
376 if (!xbundle) {
377 return;
378 }
379
380 LIST_FOR_EACH_SAFE (xport, next, bundle_node, &xbundle->xports) {
381 list_remove(&xport->bundle_node);
382 xport->xbundle = NULL;
383 }
384
385 hmap_remove(&xbundles, &xbundle->hmap_node);
386 list_remove(&xbundle->list_node);
387 bond_unref(xbundle->bond);
388 lacp_unref(xbundle->lacp);
389 free(xbundle->name);
390 free(xbundle);
391 }
392
393 void
394 xlate_ofport_set(struct ofproto_dpif *ofproto, struct ofbundle *ofbundle,
395 struct ofport_dpif *ofport, ofp_port_t ofp_port,
396 odp_port_t odp_port, const struct netdev *netdev,
397 const struct cfm *cfm, const struct bfd *bfd,
398 struct ofport_dpif *peer, int stp_port_no,
399 const struct ofproto_port_queue *qdscp_list, size_t n_qdscp,
400 enum ofputil_port_config config, bool is_tunnel,
401 bool may_enable)
402 {
403 struct xport *xport = xport_lookup(ofport);
404 size_t i;
405
406 if (!xport) {
407 xport = xzalloc(sizeof *xport);
408 xport->ofport = ofport;
409 xport->xbridge = xbridge_lookup(ofproto);
410 xport->ofp_port = ofp_port;
411
412 hmap_init(&xport->skb_priorities);
413 hmap_insert(&xports, &xport->hmap_node, hash_pointer(ofport, 0));
414 hmap_insert(&xport->xbridge->xports, &xport->ofp_node,
415 hash_ofp_port(xport->ofp_port));
416 }
417
418 ovs_assert(xport->ofp_port == ofp_port);
419
420 xport->config = config;
421 xport->stp_port_no = stp_port_no;
422 xport->is_tunnel = is_tunnel;
423 xport->may_enable = may_enable;
424 xport->odp_port = odp_port;
425
426 if (xport->netdev != netdev) {
427 netdev_close(xport->netdev);
428 xport->netdev = netdev_ref(netdev);
429 }
430
431 if (xport->cfm != cfm) {
432 cfm_unref(xport->cfm);
433 xport->cfm = cfm_ref(cfm);
434 }
435
436 if (xport->bfd != bfd) {
437 bfd_unref(xport->bfd);
438 xport->bfd = bfd_ref(bfd);
439 }
440
441 if (xport->peer) {
442 xport->peer->peer = NULL;
443 }
444 xport->peer = xport_lookup(peer);
445 if (xport->peer) {
446 xport->peer->peer = xport;
447 }
448
449 if (xport->xbundle) {
450 list_remove(&xport->bundle_node);
451 }
452 xport->xbundle = xbundle_lookup(ofbundle);
453 if (xport->xbundle) {
454 list_insert(&xport->xbundle->xports, &xport->bundle_node);
455 }
456
457 clear_skb_priorities(xport);
458 for (i = 0; i < n_qdscp; i++) {
459 struct skb_priority_to_dscp *pdscp;
460 uint32_t skb_priority;
461
462 if (dpif_queue_to_priority(xport->xbridge->dpif, qdscp_list[i].queue,
463 &skb_priority)) {
464 continue;
465 }
466
467 pdscp = xmalloc(sizeof *pdscp);
468 pdscp->skb_priority = skb_priority;
469 pdscp->dscp = (qdscp_list[i].dscp << 2) & IP_DSCP_MASK;
470 hmap_insert(&xport->skb_priorities, &pdscp->hmap_node,
471 hash_int(pdscp->skb_priority, 0));
472 }
473 }
474
475 void
476 xlate_ofport_remove(struct ofport_dpif *ofport)
477 {
478 struct xport *xport = xport_lookup(ofport);
479
480 if (!xport) {
481 return;
482 }
483
484 if (xport->peer) {
485 xport->peer->peer = NULL;
486 xport->peer = NULL;
487 }
488
489 if (xport->xbundle) {
490 list_remove(&xport->bundle_node);
491 }
492
493 clear_skb_priorities(xport);
494 hmap_destroy(&xport->skb_priorities);
495
496 hmap_remove(&xports, &xport->hmap_node);
497 hmap_remove(&xport->xbridge->xports, &xport->ofp_node);
498
499 netdev_close(xport->netdev);
500 cfm_unref(xport->cfm);
501 bfd_unref(xport->bfd);
502 free(xport);
503 }
504
505 /* Given a datpath, packet, and flow metadata ('backer', 'packet', and 'key'
506 * respectively), populates 'flow' with the result of odp_flow_key_to_flow().
507 * Optionally, if nonnull, populates 'fitnessp' with the fitness of 'flow' as
508 * returned by odp_flow_key_to_flow(). Also, optionally populates 'ofproto'
509 * with the ofproto_dpif, and 'odp_in_port' with the datapath in_port, that
510 * 'packet' ingressed.
511 *
512 * If 'ofproto' is nonnull, requires 'flow''s in_port to exist. Otherwise sets
513 * 'flow''s in_port to OFPP_NONE.
514 *
515 * This function does post-processing on data returned from
516 * odp_flow_key_to_flow() to help make VLAN splinters transparent to the rest
517 * of the upcall processing logic. In particular, if the extracted in_port is
518 * a VLAN splinter port, it replaces flow->in_port by the "real" port, sets
519 * flow->vlan_tci correctly for the VLAN of the VLAN splinter port, and pushes
520 * a VLAN header onto 'packet' (if it is nonnull).
521 *
522 * Similarly, this function also includes some logic to help with tunnels. It
523 * may modify 'flow' as necessary to make the tunneling implementation
524 * transparent to the upcall processing logic.
525 *
526 * Returns 0 if successful, ENODEV if the parsed flow has no associated ofport,
527 * or some other positive errno if there are other problems. */
528 int
529 xlate_receive(const struct dpif_backer *backer, struct ofpbuf *packet,
530 const struct nlattr *key, size_t key_len,
531 struct flow *flow, enum odp_key_fitness *fitnessp,
532 struct ofproto_dpif **ofproto, odp_port_t *odp_in_port)
533 {
534 enum odp_key_fitness fitness;
535 const struct xport *xport;
536 int error = ENODEV;
537
538 ovs_rwlock_rdlock(&xlate_rwlock);
539 fitness = odp_flow_key_to_flow(key, key_len, flow);
540 if (fitness == ODP_FIT_ERROR) {
541 error = EINVAL;
542 goto exit;
543 }
544
545 if (odp_in_port) {
546 *odp_in_port = flow->in_port.odp_port;
547 }
548
549 xport = xport_lookup(tnl_port_should_receive(flow)
550 ? tnl_port_receive(flow)
551 : odp_port_to_ofport(backer, flow->in_port.odp_port));
552
553 flow->in_port.ofp_port = xport ? xport->ofp_port : OFPP_NONE;
554 if (!xport) {
555 goto exit;
556 }
557
558 if (vsp_adjust_flow(xport->xbridge->ofproto, flow)) {
559 if (packet) {
560 /* Make the packet resemble the flow, so that it gets sent to
561 * an OpenFlow controller properly, so that it looks correct
562 * for sFlow, and so that flow_extract() will get the correct
563 * vlan_tci if it is called on 'packet'.
564 *
565 * The allocated space inside 'packet' probably also contains
566 * 'key', that is, both 'packet' and 'key' are probably part of
567 * a struct dpif_upcall (see the large comment on that
568 * structure definition), so pushing data on 'packet' is in
569 * general not a good idea since it could overwrite 'key' or
570 * free it as a side effect. However, it's OK in this special
571 * case because we know that 'packet' is inside a Netlink
572 * attribute: pushing 4 bytes will just overwrite the 4-byte
573 * "struct nlattr", which is fine since we don't need that
574 * header anymore. */
575 eth_push_vlan(packet, flow->vlan_tci);
576 }
577 /* We can't reproduce 'key' from 'flow'. */
578 fitness = fitness == ODP_FIT_PERFECT ? ODP_FIT_TOO_MUCH : fitness;
579 }
580 error = 0;
581
582 if (ofproto) {
583 *ofproto = xport->xbridge->ofproto;
584 }
585
586 exit:
587 if (fitnessp) {
588 *fitnessp = fitness;
589 }
590 ovs_rwlock_unlock(&xlate_rwlock);
591 return error;
592 }
593
594 static struct xbridge *
595 xbridge_lookup(const struct ofproto_dpif *ofproto)
596 {
597 struct xbridge *xbridge;
598
599 if (!ofproto) {
600 return NULL;
601 }
602
603 HMAP_FOR_EACH_IN_BUCKET (xbridge, hmap_node, hash_pointer(ofproto, 0),
604 &xbridges) {
605 if (xbridge->ofproto == ofproto) {
606 return xbridge;
607 }
608 }
609 return NULL;
610 }
611
612 static struct xbundle *
613 xbundle_lookup(const struct ofbundle *ofbundle)
614 {
615 struct xbundle *xbundle;
616
617 if (!ofbundle) {
618 return NULL;
619 }
620
621 HMAP_FOR_EACH_IN_BUCKET (xbundle, hmap_node, hash_pointer(ofbundle, 0),
622 &xbundles) {
623 if (xbundle->ofbundle == ofbundle) {
624 return xbundle;
625 }
626 }
627 return NULL;
628 }
629
630 static struct xport *
631 xport_lookup(const struct ofport_dpif *ofport)
632 {
633 struct xport *xport;
634
635 if (!ofport) {
636 return NULL;
637 }
638
639 HMAP_FOR_EACH_IN_BUCKET (xport, hmap_node, hash_pointer(ofport, 0),
640 &xports) {
641 if (xport->ofport == ofport) {
642 return xport;
643 }
644 }
645 return NULL;
646 }
647
648 static struct stp_port *
649 xport_get_stp_port(const struct xport *xport)
650 {
651 return xport->xbridge->stp && xport->stp_port_no != -1
652 ? stp_get_port(xport->xbridge->stp, xport->stp_port_no)
653 : NULL;
654 }
655
656 static enum stp_state
657 xport_stp_learn_state(const struct xport *xport)
658 {
659 struct stp_port *sp = xport_get_stp_port(xport);
660 return stp_learn_in_state(sp ? stp_port_get_state(sp) : STP_DISABLED);
661 }
662
663 static bool
664 xport_stp_forward_state(const struct xport *xport)
665 {
666 struct stp_port *sp = xport_get_stp_port(xport);
667 return stp_forward_in_state(sp ? stp_port_get_state(sp) : STP_DISABLED);
668 }
669
670 /* Returns true if STP should process 'flow'. Sets fields in 'wc' that
671 * were used to make the determination.*/
672 static bool
673 stp_should_process_flow(const struct flow *flow, struct flow_wildcards *wc)
674 {
675 memset(&wc->masks.dl_dst, 0xff, sizeof wc->masks.dl_dst);
676 return eth_addr_equals(flow->dl_dst, eth_addr_stp);
677 }
678
679 static void
680 stp_process_packet(const struct xport *xport, const struct ofpbuf *packet)
681 {
682 struct stp_port *sp = xport_get_stp_port(xport);
683 struct ofpbuf payload = *packet;
684 struct eth_header *eth = payload.data;
685
686 /* Sink packets on ports that have STP disabled when the bridge has
687 * STP enabled. */
688 if (!sp || stp_port_get_state(sp) == STP_DISABLED) {
689 return;
690 }
691
692 /* Trim off padding on payload. */
693 if (payload.size > ntohs(eth->eth_type) + ETH_HEADER_LEN) {
694 payload.size = ntohs(eth->eth_type) + ETH_HEADER_LEN;
695 }
696
697 if (ofpbuf_try_pull(&payload, ETH_HEADER_LEN + LLC_HEADER_LEN)) {
698 stp_received_bpdu(sp, payload.data, payload.size);
699 }
700 }
701
702 static struct xport *
703 get_ofp_port(const struct xbridge *xbridge, ofp_port_t ofp_port)
704 {
705 struct xport *xport;
706
707 HMAP_FOR_EACH_IN_BUCKET (xport, ofp_node, hash_ofp_port(ofp_port),
708 &xbridge->xports) {
709 if (xport->ofp_port == ofp_port) {
710 return xport;
711 }
712 }
713 return NULL;
714 }
715
716 static odp_port_t
717 ofp_port_to_odp_port(const struct xbridge *xbridge, ofp_port_t ofp_port)
718 {
719 const struct xport *xport = get_ofp_port(xbridge, ofp_port);
720 return xport ? xport->odp_port : ODPP_NONE;
721 }
722
723 static bool
724 xbundle_trunks_vlan(const struct xbundle *bundle, uint16_t vlan)
725 {
726 return (bundle->vlan_mode != PORT_VLAN_ACCESS
727 && (!bundle->trunks || bitmap_is_set(bundle->trunks, vlan)));
728 }
729
730 static bool
731 xbundle_includes_vlan(const struct xbundle *xbundle, uint16_t vlan)
732 {
733 return vlan == xbundle->vlan || xbundle_trunks_vlan(xbundle, vlan);
734 }
735
736 static mirror_mask_t
737 xbundle_mirror_out(const struct xbridge *xbridge, struct xbundle *xbundle)
738 {
739 return xbundle != &ofpp_none_bundle
740 ? mirror_bundle_out(xbridge->mbridge, xbundle->ofbundle)
741 : 0;
742 }
743
744 static mirror_mask_t
745 xbundle_mirror_src(const struct xbridge *xbridge, struct xbundle *xbundle)
746 {
747 return xbundle != &ofpp_none_bundle
748 ? mirror_bundle_src(xbridge->mbridge, xbundle->ofbundle)
749 : 0;
750 }
751
752 static mirror_mask_t
753 xbundle_mirror_dst(const struct xbridge *xbridge, struct xbundle *xbundle)
754 {
755 return xbundle != &ofpp_none_bundle
756 ? mirror_bundle_dst(xbridge->mbridge, xbundle->ofbundle)
757 : 0;
758 }
759
760 static struct xbundle *
761 lookup_input_bundle(const struct xbridge *xbridge, ofp_port_t in_port,
762 bool warn, struct xport **in_xportp)
763 {
764 struct xport *xport;
765
766 /* Find the port and bundle for the received packet. */
767 xport = get_ofp_port(xbridge, in_port);
768 if (in_xportp) {
769 *in_xportp = xport;
770 }
771 if (xport && xport->xbundle) {
772 return xport->xbundle;
773 }
774
775 /* Special-case OFPP_NONE, which a controller may use as the ingress
776 * port for traffic that it is sourcing. */
777 if (in_port == OFPP_NONE) {
778 ofpp_none_bundle.name = "OFPP_NONE";
779 ofpp_none_bundle.vlan_mode = PORT_VLAN_TRUNK;
780 return &ofpp_none_bundle;
781 }
782
783 /* Odd. A few possible reasons here:
784 *
785 * - We deleted a port but there are still a few packets queued up
786 * from it.
787 *
788 * - Someone externally added a port (e.g. "ovs-dpctl add-if") that
789 * we don't know about.
790 *
791 * - The ofproto client didn't configure the port as part of a bundle.
792 * This is particularly likely to happen if a packet was received on the
793 * port after it was created, but before the client had a chance to
794 * configure its bundle.
795 */
796 if (warn) {
797 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
798
799 VLOG_WARN_RL(&rl, "bridge %s: received packet on unknown "
800 "port %"PRIu16, xbridge->name, in_port);
801 }
802 return NULL;
803 }
804
805 static void
806 add_mirror_actions(struct xlate_ctx *ctx, const struct flow *orig_flow)
807 {
808 const struct xbridge *xbridge = ctx->xbridge;
809 mirror_mask_t mirrors;
810 struct xbundle *in_xbundle;
811 uint16_t vlan;
812 uint16_t vid;
813
814 mirrors = ctx->xout->mirrors;
815 ctx->xout->mirrors = 0;
816
817 in_xbundle = lookup_input_bundle(xbridge, orig_flow->in_port.ofp_port,
818 ctx->xin->packet != NULL, NULL);
819 if (!in_xbundle) {
820 return;
821 }
822 mirrors |= xbundle_mirror_src(xbridge, in_xbundle);
823
824 /* Drop frames on bundles reserved for mirroring. */
825 if (xbundle_mirror_out(xbridge, in_xbundle)) {
826 if (ctx->xin->packet != NULL) {
827 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
828 VLOG_WARN_RL(&rl, "bridge %s: dropping packet received on port "
829 "%s, which is reserved exclusively for mirroring",
830 ctx->xbridge->name, in_xbundle->name);
831 }
832 ofpbuf_clear(&ctx->xout->odp_actions);
833 return;
834 }
835
836 /* Check VLAN. */
837 vid = vlan_tci_to_vid(orig_flow->vlan_tci);
838 if (!input_vid_is_valid(vid, in_xbundle, ctx->xin->packet != NULL)) {
839 return;
840 }
841 vlan = input_vid_to_vlan(in_xbundle, vid);
842
843 if (!mirrors) {
844 return;
845 }
846
847 /* Restore the original packet before adding the mirror actions. */
848 ctx->xin->flow = *orig_flow;
849
850 while (mirrors) {
851 mirror_mask_t dup_mirrors;
852 struct ofbundle *out;
853 unsigned long *vlans;
854 bool vlan_mirrored;
855 bool has_mirror;
856 int out_vlan;
857
858 has_mirror = mirror_get(xbridge->mbridge, mirror_mask_ffs(mirrors) - 1,
859 &vlans, &dup_mirrors, &out, &out_vlan);
860 ovs_assert(has_mirror);
861
862 if (vlans) {
863 ctx->xout->wc.masks.vlan_tci |= htons(VLAN_CFI | VLAN_VID_MASK);
864 }
865 vlan_mirrored = !vlans || bitmap_is_set(vlans, vlan);
866 free(vlans);
867
868 if (!vlan_mirrored) {
869 mirrors = zero_rightmost_1bit(mirrors);
870 continue;
871 }
872
873 mirrors &= ~dup_mirrors;
874 ctx->xout->mirrors |= dup_mirrors;
875 if (out) {
876 struct xbundle *out_xbundle = xbundle_lookup(out);
877 if (out_xbundle) {
878 output_normal(ctx, out_xbundle, vlan);
879 }
880 } else if (vlan != out_vlan
881 && !eth_addr_is_reserved(orig_flow->dl_dst)) {
882 struct xbundle *xbundle;
883
884 LIST_FOR_EACH (xbundle, list_node, &xbridge->xbundles) {
885 if (xbundle_includes_vlan(xbundle, out_vlan)
886 && !xbundle_mirror_out(xbridge, xbundle)) {
887 output_normal(ctx, xbundle, out_vlan);
888 }
889 }
890 }
891 }
892 }
893
894 /* Given 'vid', the VID obtained from the 802.1Q header that was received as
895 * part of a packet (specify 0 if there was no 802.1Q header), and 'in_xbundle',
896 * the bundle on which the packet was received, returns the VLAN to which the
897 * packet belongs.
898 *
899 * Both 'vid' and the return value are in the range 0...4095. */
900 static uint16_t
901 input_vid_to_vlan(const struct xbundle *in_xbundle, uint16_t vid)
902 {
903 switch (in_xbundle->vlan_mode) {
904 case PORT_VLAN_ACCESS:
905 return in_xbundle->vlan;
906 break;
907
908 case PORT_VLAN_TRUNK:
909 return vid;
910
911 case PORT_VLAN_NATIVE_UNTAGGED:
912 case PORT_VLAN_NATIVE_TAGGED:
913 return vid ? vid : in_xbundle->vlan;
914
915 default:
916 NOT_REACHED();
917 }
918 }
919
920 /* Checks whether a packet with the given 'vid' may ingress on 'in_xbundle'.
921 * If so, returns true. Otherwise, returns false and, if 'warn' is true, logs
922 * a warning.
923 *
924 * 'vid' should be the VID obtained from the 802.1Q header that was received as
925 * part of a packet (specify 0 if there was no 802.1Q header), in the range
926 * 0...4095. */
927 static bool
928 input_vid_is_valid(uint16_t vid, struct xbundle *in_xbundle, bool warn)
929 {
930 /* Allow any VID on the OFPP_NONE port. */
931 if (in_xbundle == &ofpp_none_bundle) {
932 return true;
933 }
934
935 switch (in_xbundle->vlan_mode) {
936 case PORT_VLAN_ACCESS:
937 if (vid) {
938 if (warn) {
939 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
940 VLOG_WARN_RL(&rl, "dropping VLAN %"PRIu16" tagged "
941 "packet received on port %s configured as VLAN "
942 "%"PRIu16" access port", vid, in_xbundle->name,
943 in_xbundle->vlan);
944 }
945 return false;
946 }
947 return true;
948
949 case PORT_VLAN_NATIVE_UNTAGGED:
950 case PORT_VLAN_NATIVE_TAGGED:
951 if (!vid) {
952 /* Port must always carry its native VLAN. */
953 return true;
954 }
955 /* Fall through. */
956 case PORT_VLAN_TRUNK:
957 if (!xbundle_includes_vlan(in_xbundle, vid)) {
958 if (warn) {
959 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
960 VLOG_WARN_RL(&rl, "dropping VLAN %"PRIu16" packet "
961 "received on port %s not configured for trunking "
962 "VLAN %"PRIu16, vid, in_xbundle->name, vid);
963 }
964 return false;
965 }
966 return true;
967
968 default:
969 NOT_REACHED();
970 }
971
972 }
973
974 /* Given 'vlan', the VLAN that a packet belongs to, and
975 * 'out_xbundle', a bundle on which the packet is to be output, returns the VID
976 * that should be included in the 802.1Q header. (If the return value is 0,
977 * then the 802.1Q header should only be included in the packet if there is a
978 * nonzero PCP.)
979 *
980 * Both 'vlan' and the return value are in the range 0...4095. */
981 static uint16_t
982 output_vlan_to_vid(const struct xbundle *out_xbundle, uint16_t vlan)
983 {
984 switch (out_xbundle->vlan_mode) {
985 case PORT_VLAN_ACCESS:
986 return 0;
987
988 case PORT_VLAN_TRUNK:
989 case PORT_VLAN_NATIVE_TAGGED:
990 return vlan;
991
992 case PORT_VLAN_NATIVE_UNTAGGED:
993 return vlan == out_xbundle->vlan ? 0 : vlan;
994
995 default:
996 NOT_REACHED();
997 }
998 }
999
1000 static void
1001 output_normal(struct xlate_ctx *ctx, const struct xbundle *out_xbundle,
1002 uint16_t vlan)
1003 {
1004 ovs_be16 *flow_tci = &ctx->xin->flow.vlan_tci;
1005 uint16_t vid;
1006 ovs_be16 tci, old_tci;
1007 struct xport *xport;
1008
1009 vid = output_vlan_to_vid(out_xbundle, vlan);
1010 if (list_is_empty(&out_xbundle->xports)) {
1011 /* Partially configured bundle with no slaves. Drop the packet. */
1012 return;
1013 } else if (!out_xbundle->bond) {
1014 xport = CONTAINER_OF(list_front(&out_xbundle->xports), struct xport,
1015 bundle_node);
1016 } else {
1017 struct ofport_dpif *ofport;
1018
1019 ofport = bond_choose_output_slave(out_xbundle->bond, &ctx->xin->flow,
1020 &ctx->xout->wc, vid);
1021 xport = xport_lookup(ofport);
1022
1023 if (!xport) {
1024 /* No slaves enabled, so drop packet. */
1025 return;
1026 }
1027 }
1028
1029 old_tci = *flow_tci;
1030 tci = htons(vid);
1031 if (tci || out_xbundle->use_priority_tags) {
1032 tci |= *flow_tci & htons(VLAN_PCP_MASK);
1033 if (tci) {
1034 tci |= htons(VLAN_CFI);
1035 }
1036 }
1037 *flow_tci = tci;
1038
1039 compose_output_action(ctx, xport->ofp_port);
1040 *flow_tci = old_tci;
1041 }
1042
1043 /* A VM broadcasts a gratuitous ARP to indicate that it has resumed after
1044 * migration. Older Citrix-patched Linux DomU used gratuitous ARP replies to
1045 * indicate this; newer upstream kernels use gratuitous ARP requests. */
1046 static bool
1047 is_gratuitous_arp(const struct flow *flow, struct flow_wildcards *wc)
1048 {
1049 if (flow->dl_type != htons(ETH_TYPE_ARP)) {
1050 return false;
1051 }
1052
1053 memset(&wc->masks.dl_dst, 0xff, sizeof wc->masks.dl_dst);
1054 if (!eth_addr_is_broadcast(flow->dl_dst)) {
1055 return false;
1056 }
1057
1058 memset(&wc->masks.nw_proto, 0xff, sizeof wc->masks.nw_proto);
1059 if (flow->nw_proto == ARP_OP_REPLY) {
1060 return true;
1061 } else if (flow->nw_proto == ARP_OP_REQUEST) {
1062 memset(&wc->masks.nw_src, 0xff, sizeof wc->masks.nw_src);
1063 memset(&wc->masks.nw_dst, 0xff, sizeof wc->masks.nw_dst);
1064
1065 return flow->nw_src == flow->nw_dst;
1066 } else {
1067 return false;
1068 }
1069 }
1070
1071 /* Checks whether a MAC learning update is necessary for MAC learning table
1072 * 'ml' given that a packet matching 'flow' was received on 'in_xbundle' in
1073 * 'vlan'.
1074 *
1075 * Most packets processed through the MAC learning table do not actually
1076 * change it in any way. This function requires only a read lock on the MAC
1077 * learning table, so it is much cheaper in this common case.
1078 *
1079 * Keep the code here synchronized with that in update_learning_table__()
1080 * below. */
1081 static bool
1082 is_mac_learning_update_needed(const struct mac_learning *ml,
1083 const struct flow *flow,
1084 struct flow_wildcards *wc,
1085 int vlan, struct xbundle *in_xbundle)
1086 OVS_REQ_RDLOCK(ml->rwlock)
1087 {
1088 struct mac_entry *mac;
1089
1090 if (!mac_learning_may_learn(ml, flow->dl_src, vlan)) {
1091 return false;
1092 }
1093
1094 mac = mac_learning_lookup(ml, flow->dl_src, vlan);
1095 if (!mac || mac_entry_age(ml, mac)) {
1096 return true;
1097 }
1098
1099 if (is_gratuitous_arp(flow, wc)) {
1100 /* We don't want to learn from gratuitous ARP packets that are
1101 * reflected back over bond slaves so we lock the learning table. */
1102 if (!in_xbundle->bond) {
1103 return true;
1104 } else if (mac_entry_is_grat_arp_locked(mac)) {
1105 return false;
1106 }
1107 }
1108
1109 return mac->port.p != in_xbundle->ofbundle;
1110 }
1111
1112
1113 /* Updates MAC learning table 'ml' given that a packet matching 'flow' was
1114 * received on 'in_xbundle' in 'vlan'.
1115 *
1116 * This code repeats all the checks in is_mac_learning_update_needed() because
1117 * the lock was released between there and here and thus the MAC learning state
1118 * could have changed.
1119 *
1120 * Keep the code here synchronized with that in is_mac_learning_update_needed()
1121 * above. */
1122 static void
1123 update_learning_table__(const struct xbridge *xbridge,
1124 const struct flow *flow, struct flow_wildcards *wc,
1125 int vlan, struct xbundle *in_xbundle)
1126 OVS_REQ_WRLOCK(xbridge->ml->rwlock)
1127 {
1128 struct mac_entry *mac;
1129
1130 if (!mac_learning_may_learn(xbridge->ml, flow->dl_src, vlan)) {
1131 return;
1132 }
1133
1134 mac = mac_learning_insert(xbridge->ml, flow->dl_src, vlan);
1135 if (is_gratuitous_arp(flow, wc)) {
1136 /* We don't want to learn from gratuitous ARP packets that are
1137 * reflected back over bond slaves so we lock the learning table. */
1138 if (!in_xbundle->bond) {
1139 mac_entry_set_grat_arp_lock(mac);
1140 } else if (mac_entry_is_grat_arp_locked(mac)) {
1141 return;
1142 }
1143 }
1144
1145 if (mac->port.p != in_xbundle->ofbundle) {
1146 /* The log messages here could actually be useful in debugging,
1147 * so keep the rate limit relatively high. */
1148 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(30, 300);
1149
1150 VLOG_DBG_RL(&rl, "bridge %s: learned that "ETH_ADDR_FMT" is "
1151 "on port %s in VLAN %d",
1152 xbridge->name, ETH_ADDR_ARGS(flow->dl_src),
1153 in_xbundle->name, vlan);
1154
1155 mac->port.p = in_xbundle->ofbundle;
1156 mac_learning_changed(xbridge->ml);
1157 }
1158 }
1159
1160 static void
1161 update_learning_table(const struct xbridge *xbridge,
1162 const struct flow *flow, struct flow_wildcards *wc,
1163 int vlan, struct xbundle *in_xbundle)
1164 {
1165 bool need_update;
1166
1167 /* Don't learn the OFPP_NONE port. */
1168 if (in_xbundle == &ofpp_none_bundle) {
1169 return;
1170 }
1171
1172 /* First try the common case: no change to MAC learning table. */
1173 ovs_rwlock_rdlock(&xbridge->ml->rwlock);
1174 need_update = is_mac_learning_update_needed(xbridge->ml, flow, wc, vlan,
1175 in_xbundle);
1176 ovs_rwlock_unlock(&xbridge->ml->rwlock);
1177
1178 if (need_update) {
1179 /* Slow path: MAC learning table might need an update. */
1180 ovs_rwlock_wrlock(&xbridge->ml->rwlock);
1181 update_learning_table__(xbridge, flow, wc, vlan, in_xbundle);
1182 ovs_rwlock_unlock(&xbridge->ml->rwlock);
1183 }
1184 }
1185
1186 /* Determines whether packets in 'flow' within 'xbridge' should be forwarded or
1187 * dropped. Returns true if they may be forwarded, false if they should be
1188 * dropped.
1189 *
1190 * 'in_port' must be the xport that corresponds to flow->in_port.
1191 * 'in_port' must be part of a bundle (e.g. in_port->bundle must be nonnull).
1192 *
1193 * 'vlan' must be the VLAN that corresponds to flow->vlan_tci on 'in_port', as
1194 * returned by input_vid_to_vlan(). It must be a valid VLAN for 'in_port', as
1195 * checked by input_vid_is_valid().
1196 *
1197 * May also add tags to '*tags', although the current implementation only does
1198 * so in one special case.
1199 */
1200 static bool
1201 is_admissible(struct xlate_ctx *ctx, struct xport *in_port,
1202 uint16_t vlan)
1203 {
1204 struct xbundle *in_xbundle = in_port->xbundle;
1205 const struct xbridge *xbridge = ctx->xbridge;
1206 struct flow *flow = &ctx->xin->flow;
1207
1208 /* Drop frames for reserved multicast addresses
1209 * only if forward_bpdu option is absent. */
1210 if (!xbridge->forward_bpdu && eth_addr_is_reserved(flow->dl_dst)) {
1211 xlate_report(ctx, "packet has reserved destination MAC, dropping");
1212 return false;
1213 }
1214
1215 if (in_xbundle->bond) {
1216 struct mac_entry *mac;
1217
1218 switch (bond_check_admissibility(in_xbundle->bond, in_port->ofport,
1219 flow->dl_dst)) {
1220 case BV_ACCEPT:
1221 break;
1222
1223 case BV_DROP:
1224 xlate_report(ctx, "bonding refused admissibility, dropping");
1225 return false;
1226
1227 case BV_DROP_IF_MOVED:
1228 ovs_rwlock_rdlock(&xbridge->ml->rwlock);
1229 mac = mac_learning_lookup(xbridge->ml, flow->dl_src, vlan);
1230 if (mac && mac->port.p != in_xbundle->ofbundle &&
1231 (!is_gratuitous_arp(flow, &ctx->xout->wc)
1232 || mac_entry_is_grat_arp_locked(mac))) {
1233 ovs_rwlock_unlock(&xbridge->ml->rwlock);
1234 xlate_report(ctx, "SLB bond thinks this packet looped back, "
1235 "dropping");
1236 return false;
1237 }
1238 ovs_rwlock_unlock(&xbridge->ml->rwlock);
1239 break;
1240 }
1241 }
1242
1243 return true;
1244 }
1245
1246 static void
1247 xlate_normal(struct xlate_ctx *ctx)
1248 {
1249 struct flow_wildcards *wc = &ctx->xout->wc;
1250 struct flow *flow = &ctx->xin->flow;
1251 struct xbundle *in_xbundle;
1252 struct xport *in_port;
1253 struct mac_entry *mac;
1254 void *mac_port;
1255 uint16_t vlan;
1256 uint16_t vid;
1257
1258 ctx->xout->has_normal = true;
1259
1260 memset(&wc->masks.dl_src, 0xff, sizeof wc->masks.dl_src);
1261 memset(&wc->masks.dl_dst, 0xff, sizeof wc->masks.dl_dst);
1262 wc->masks.vlan_tci |= htons(VLAN_VID_MASK | VLAN_CFI);
1263
1264 in_xbundle = lookup_input_bundle(ctx->xbridge, flow->in_port.ofp_port,
1265 ctx->xin->packet != NULL, &in_port);
1266 if (!in_xbundle) {
1267 xlate_report(ctx, "no input bundle, dropping");
1268 return;
1269 }
1270
1271 /* Drop malformed frames. */
1272 if (flow->dl_type == htons(ETH_TYPE_VLAN) &&
1273 !(flow->vlan_tci & htons(VLAN_CFI))) {
1274 if (ctx->xin->packet != NULL) {
1275 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
1276 VLOG_WARN_RL(&rl, "bridge %s: dropping packet with partial "
1277 "VLAN tag received on port %s",
1278 ctx->xbridge->name, in_xbundle->name);
1279 }
1280 xlate_report(ctx, "partial VLAN tag, dropping");
1281 return;
1282 }
1283
1284 /* Drop frames on bundles reserved for mirroring. */
1285 if (xbundle_mirror_out(ctx->xbridge, in_xbundle)) {
1286 if (ctx->xin->packet != NULL) {
1287 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
1288 VLOG_WARN_RL(&rl, "bridge %s: dropping packet received on port "
1289 "%s, which is reserved exclusively for mirroring",
1290 ctx->xbridge->name, in_xbundle->name);
1291 }
1292 xlate_report(ctx, "input port is mirror output port, dropping");
1293 return;
1294 }
1295
1296 /* Check VLAN. */
1297 vid = vlan_tci_to_vid(flow->vlan_tci);
1298 if (!input_vid_is_valid(vid, in_xbundle, ctx->xin->packet != NULL)) {
1299 xlate_report(ctx, "disallowed VLAN VID for this input port, dropping");
1300 return;
1301 }
1302 vlan = input_vid_to_vlan(in_xbundle, vid);
1303
1304 /* Check other admissibility requirements. */
1305 if (in_port && !is_admissible(ctx, in_port, vlan)) {
1306 return;
1307 }
1308
1309 /* Learn source MAC. */
1310 if (ctx->xin->may_learn) {
1311 update_learning_table(ctx->xbridge, flow, wc, vlan, in_xbundle);
1312 }
1313
1314 /* Determine output bundle. */
1315 ovs_rwlock_rdlock(&ctx->xbridge->ml->rwlock);
1316 mac = mac_learning_lookup(ctx->xbridge->ml, flow->dl_dst, vlan);
1317 mac_port = mac ? mac->port.p : NULL;
1318 ovs_rwlock_unlock(&ctx->xbridge->ml->rwlock);
1319
1320 if (mac_port) {
1321 struct xbundle *mac_xbundle = xbundle_lookup(mac_port);
1322 if (mac_xbundle && mac_xbundle != in_xbundle) {
1323 xlate_report(ctx, "forwarding to learned port");
1324 output_normal(ctx, mac_xbundle, vlan);
1325 } else if (!mac_xbundle) {
1326 xlate_report(ctx, "learned port is unknown, dropping");
1327 } else {
1328 xlate_report(ctx, "learned port is input port, dropping");
1329 }
1330 } else {
1331 struct xbundle *xbundle;
1332
1333 xlate_report(ctx, "no learned MAC for destination, flooding");
1334 LIST_FOR_EACH (xbundle, list_node, &ctx->xbridge->xbundles) {
1335 if (xbundle != in_xbundle
1336 && xbundle_includes_vlan(xbundle, vlan)
1337 && xbundle->floodable
1338 && !xbundle_mirror_out(ctx->xbridge, xbundle)) {
1339 output_normal(ctx, xbundle, vlan);
1340 }
1341 }
1342 ctx->xout->nf_output_iface = NF_OUT_FLOOD;
1343 }
1344 }
1345
1346 /* Compose SAMPLE action for sFlow or IPFIX. The given probability is
1347 * the number of packets out of UINT32_MAX to sample. The given
1348 * cookie is passed back in the callback for each sampled packet.
1349 */
1350 static size_t
1351 compose_sample_action(const struct xbridge *xbridge,
1352 struct ofpbuf *odp_actions,
1353 const struct flow *flow,
1354 const uint32_t probability,
1355 const union user_action_cookie *cookie,
1356 const size_t cookie_size)
1357 {
1358 size_t sample_offset, actions_offset;
1359 odp_port_t odp_port;
1360 int cookie_offset;
1361 uint32_t pid;
1362
1363 sample_offset = nl_msg_start_nested(odp_actions, OVS_ACTION_ATTR_SAMPLE);
1364
1365 nl_msg_put_u32(odp_actions, OVS_SAMPLE_ATTR_PROBABILITY, probability);
1366
1367 actions_offset = nl_msg_start_nested(odp_actions, OVS_SAMPLE_ATTR_ACTIONS);
1368
1369 odp_port = ofp_port_to_odp_port(xbridge, flow->in_port.ofp_port);
1370 pid = dpif_port_get_pid(xbridge->dpif, odp_port);
1371 cookie_offset = odp_put_userspace_action(pid, cookie, cookie_size, odp_actions);
1372
1373 nl_msg_end_nested(odp_actions, actions_offset);
1374 nl_msg_end_nested(odp_actions, sample_offset);
1375 return cookie_offset;
1376 }
1377
1378 static void
1379 compose_sflow_cookie(const struct xbridge *xbridge, ovs_be16 vlan_tci,
1380 odp_port_t odp_port, unsigned int n_outputs,
1381 union user_action_cookie *cookie)
1382 {
1383 int ifindex;
1384
1385 cookie->type = USER_ACTION_COOKIE_SFLOW;
1386 cookie->sflow.vlan_tci = vlan_tci;
1387
1388 /* See http://www.sflow.org/sflow_version_5.txt (search for "Input/output
1389 * port information") for the interpretation of cookie->output. */
1390 switch (n_outputs) {
1391 case 0:
1392 /* 0x40000000 | 256 means "packet dropped for unknown reason". */
1393 cookie->sflow.output = 0x40000000 | 256;
1394 break;
1395
1396 case 1:
1397 ifindex = dpif_sflow_odp_port_to_ifindex(xbridge->sflow, odp_port);
1398 if (ifindex) {
1399 cookie->sflow.output = ifindex;
1400 break;
1401 }
1402 /* Fall through. */
1403 default:
1404 /* 0x80000000 means "multiple output ports. */
1405 cookie->sflow.output = 0x80000000 | n_outputs;
1406 break;
1407 }
1408 }
1409
1410 /* Compose SAMPLE action for sFlow bridge sampling. */
1411 static size_t
1412 compose_sflow_action(const struct xbridge *xbridge,
1413 struct ofpbuf *odp_actions,
1414 const struct flow *flow,
1415 odp_port_t odp_port)
1416 {
1417 uint32_t probability;
1418 union user_action_cookie cookie;
1419
1420 if (!xbridge->sflow || flow->in_port.ofp_port == OFPP_NONE) {
1421 return 0;
1422 }
1423
1424 probability = dpif_sflow_get_probability(xbridge->sflow);
1425 compose_sflow_cookie(xbridge, htons(0), odp_port,
1426 odp_port == ODPP_NONE ? 0 : 1, &cookie);
1427
1428 return compose_sample_action(xbridge, odp_actions, flow, probability,
1429 &cookie, sizeof cookie.sflow);
1430 }
1431
1432 static void
1433 compose_flow_sample_cookie(uint16_t probability, uint32_t collector_set_id,
1434 uint32_t obs_domain_id, uint32_t obs_point_id,
1435 union user_action_cookie *cookie)
1436 {
1437 cookie->type = USER_ACTION_COOKIE_FLOW_SAMPLE;
1438 cookie->flow_sample.probability = probability;
1439 cookie->flow_sample.collector_set_id = collector_set_id;
1440 cookie->flow_sample.obs_domain_id = obs_domain_id;
1441 cookie->flow_sample.obs_point_id = obs_point_id;
1442 }
1443
1444 static void
1445 compose_ipfix_cookie(union user_action_cookie *cookie)
1446 {
1447 cookie->type = USER_ACTION_COOKIE_IPFIX;
1448 }
1449
1450 /* Compose SAMPLE action for IPFIX bridge sampling. */
1451 static void
1452 compose_ipfix_action(const struct xbridge *xbridge,
1453 struct ofpbuf *odp_actions,
1454 const struct flow *flow)
1455 {
1456 uint32_t probability;
1457 union user_action_cookie cookie;
1458
1459 if (!xbridge->ipfix || flow->in_port.ofp_port == OFPP_NONE) {
1460 return;
1461 }
1462
1463 probability = dpif_ipfix_get_bridge_exporter_probability(xbridge->ipfix);
1464 compose_ipfix_cookie(&cookie);
1465
1466 compose_sample_action(xbridge, odp_actions, flow, probability,
1467 &cookie, sizeof cookie.ipfix);
1468 }
1469
1470 /* SAMPLE action for sFlow must be first action in any given list of
1471 * actions. At this point we do not have all information required to
1472 * build it. So try to build sample action as complete as possible. */
1473 static void
1474 add_sflow_action(struct xlate_ctx *ctx)
1475 {
1476 ctx->user_cookie_offset = compose_sflow_action(ctx->xbridge,
1477 &ctx->xout->odp_actions,
1478 &ctx->xin->flow, ODPP_NONE);
1479 ctx->sflow_odp_port = 0;
1480 ctx->sflow_n_outputs = 0;
1481 }
1482
1483 /* SAMPLE action for IPFIX must be 1st or 2nd action in any given list
1484 * of actions, eventually after the SAMPLE action for sFlow. */
1485 static void
1486 add_ipfix_action(struct xlate_ctx *ctx)
1487 {
1488 compose_ipfix_action(ctx->xbridge, &ctx->xout->odp_actions,
1489 &ctx->xin->flow);
1490 }
1491
1492 /* Fix SAMPLE action according to data collected while composing ODP actions.
1493 * We need to fix SAMPLE actions OVS_SAMPLE_ATTR_ACTIONS attribute, i.e. nested
1494 * USERSPACE action's user-cookie which is required for sflow. */
1495 static void
1496 fix_sflow_action(struct xlate_ctx *ctx)
1497 {
1498 const struct flow *base = &ctx->base_flow;
1499 union user_action_cookie *cookie;
1500
1501 if (!ctx->user_cookie_offset) {
1502 return;
1503 }
1504
1505 cookie = ofpbuf_at(&ctx->xout->odp_actions, ctx->user_cookie_offset,
1506 sizeof cookie->sflow);
1507 ovs_assert(cookie->type == USER_ACTION_COOKIE_SFLOW);
1508
1509 compose_sflow_cookie(ctx->xbridge, base->vlan_tci,
1510 ctx->sflow_odp_port, ctx->sflow_n_outputs, cookie);
1511 }
1512
1513 static enum slow_path_reason
1514 process_special(struct xlate_ctx *ctx, const struct flow *flow,
1515 const struct xport *xport, const struct ofpbuf *packet)
1516 {
1517 struct flow_wildcards *wc = &ctx->xout->wc;
1518 const struct xbridge *xbridge = ctx->xbridge;
1519
1520 if (!xport) {
1521 return 0;
1522 } else if (xport->cfm && cfm_should_process_flow(xport->cfm, flow, wc)) {
1523 if (packet) {
1524 cfm_process_heartbeat(xport->cfm, packet);
1525 }
1526 return SLOW_CFM;
1527 } else if (xport->bfd && bfd_should_process_flow(xport->bfd, flow, wc)) {
1528 if (packet) {
1529 bfd_process_packet(xport->bfd, flow, packet);
1530 }
1531 return SLOW_BFD;
1532 } else if (xport->xbundle && xport->xbundle->lacp
1533 && flow->dl_type == htons(ETH_TYPE_LACP)) {
1534 if (packet) {
1535 lacp_process_packet(xport->xbundle->lacp, xport->ofport, packet);
1536 }
1537 return SLOW_LACP;
1538 } else if (xbridge->stp && stp_should_process_flow(flow, wc)) {
1539 if (packet) {
1540 stp_process_packet(xport, packet);
1541 }
1542 return SLOW_STP;
1543 } else {
1544 return 0;
1545 }
1546 }
1547
1548 static void
1549 compose_output_action__(struct xlate_ctx *ctx, ofp_port_t ofp_port,
1550 bool check_stp)
1551 {
1552 const struct xport *xport = get_ofp_port(ctx->xbridge, ofp_port);
1553 struct flow_wildcards *wc = &ctx->xout->wc;
1554 struct flow *flow = &ctx->xin->flow;
1555 ovs_be16 flow_vlan_tci;
1556 uint32_t flow_pkt_mark;
1557 uint8_t flow_nw_tos;
1558 odp_port_t out_port, odp_port;
1559 uint8_t dscp;
1560
1561 /* If 'struct flow' gets additional metadata, we'll need to zero it out
1562 * before traversing a patch port. */
1563 BUILD_ASSERT_DECL(FLOW_WC_SEQ == 22);
1564
1565 if (!xport) {
1566 xlate_report(ctx, "Nonexistent output port");
1567 return;
1568 } else if (xport->config & OFPUTIL_PC_NO_FWD) {
1569 xlate_report(ctx, "OFPPC_NO_FWD set, skipping output");
1570 return;
1571 } else if (check_stp && !xport_stp_forward_state(xport)) {
1572 xlate_report(ctx, "STP not in forwarding state, skipping output");
1573 return;
1574 }
1575
1576 if (mbridge_has_mirrors(ctx->xbridge->mbridge) && xport->xbundle) {
1577 ctx->xout->mirrors |= xbundle_mirror_dst(xport->xbundle->xbridge,
1578 xport->xbundle);
1579 }
1580
1581 if (xport->peer) {
1582 const struct xport *peer = xport->peer;
1583 struct flow old_flow = ctx->xin->flow;
1584 enum slow_path_reason special;
1585
1586 ctx->xbridge = peer->xbridge;
1587 flow->in_port.ofp_port = peer->ofp_port;
1588 flow->metadata = htonll(0);
1589 memset(&flow->tunnel, 0, sizeof flow->tunnel);
1590 memset(flow->regs, 0, sizeof flow->regs);
1591
1592 special = process_special(ctx, &ctx->xin->flow, peer,
1593 ctx->xin->packet);
1594 if (special) {
1595 ctx->xout->slow |= special;
1596 } else if (may_receive(peer, ctx)) {
1597 if (xport_stp_forward_state(peer)) {
1598 xlate_table_action(ctx, flow->in_port.ofp_port, 0, true);
1599 } else {
1600 /* Forwarding is disabled by STP. Let OFPP_NORMAL and the
1601 * learning action look at the packet, then drop it. */
1602 struct flow old_base_flow = ctx->base_flow;
1603 size_t old_size = ctx->xout->odp_actions.size;
1604 mirror_mask_t old_mirrors = ctx->xout->mirrors;
1605 xlate_table_action(ctx, flow->in_port.ofp_port, 0, true);
1606 ctx->xout->mirrors = old_mirrors;
1607 ctx->base_flow = old_base_flow;
1608 ctx->xout->odp_actions.size = old_size;
1609 }
1610 }
1611
1612 ctx->xin->flow = old_flow;
1613 ctx->xbridge = xport->xbridge;
1614
1615 if (ctx->xin->resubmit_stats) {
1616 netdev_vport_inc_tx(xport->netdev, ctx->xin->resubmit_stats);
1617 netdev_vport_inc_rx(peer->netdev, ctx->xin->resubmit_stats);
1618 }
1619
1620 return;
1621 }
1622
1623 flow_vlan_tci = flow->vlan_tci;
1624 flow_pkt_mark = flow->pkt_mark;
1625 flow_nw_tos = flow->nw_tos;
1626
1627 if (dscp_from_skb_priority(xport, flow->skb_priority, &dscp)) {
1628 wc->masks.nw_tos |= IP_ECN_MASK;
1629 flow->nw_tos &= ~IP_DSCP_MASK;
1630 flow->nw_tos |= dscp;
1631 }
1632
1633 if (xport->is_tunnel) {
1634 /* Save tunnel metadata so that changes made due to
1635 * the Logical (tunnel) Port are not visible for any further
1636 * matches, while explicit set actions on tunnel metadata are.
1637 */
1638 struct flow_tnl flow_tnl = flow->tunnel;
1639 odp_port = tnl_port_send(xport->ofport, flow, &ctx->xout->wc);
1640 if (odp_port == ODPP_NONE) {
1641 xlate_report(ctx, "Tunneling decided against output");
1642 goto out; /* restore flow_nw_tos */
1643 }
1644 if (flow->tunnel.ip_dst == ctx->orig_tunnel_ip_dst) {
1645 xlate_report(ctx, "Not tunneling to our own address");
1646 goto out; /* restore flow_nw_tos */
1647 }
1648 if (ctx->xin->resubmit_stats) {
1649 netdev_vport_inc_tx(xport->netdev, ctx->xin->resubmit_stats);
1650 }
1651 out_port = odp_port;
1652 commit_odp_tunnel_action(flow, &ctx->base_flow,
1653 &ctx->xout->odp_actions);
1654 flow->tunnel = flow_tnl; /* Restore tunnel metadata */
1655 } else {
1656 ofp_port_t vlandev_port;
1657
1658 odp_port = xport->odp_port;
1659 if (ofproto_has_vlan_splinters(ctx->xbridge->ofproto)) {
1660 wc->masks.vlan_tci |= htons(VLAN_VID_MASK | VLAN_CFI);
1661 }
1662 vlandev_port = vsp_realdev_to_vlandev(ctx->xbridge->ofproto, ofp_port,
1663 flow->vlan_tci);
1664 if (vlandev_port == ofp_port) {
1665 out_port = odp_port;
1666 } else {
1667 out_port = ofp_port_to_odp_port(ctx->xbridge, vlandev_port);
1668 flow->vlan_tci = htons(0);
1669 }
1670 }
1671
1672 if (out_port != ODPP_NONE) {
1673 ctx->xout->slow |= commit_odp_actions(flow, &ctx->base_flow,
1674 &ctx->xout->odp_actions,
1675 &ctx->xout->wc,
1676 &ctx->mpls_depth_delta);
1677 nl_msg_put_odp_port(&ctx->xout->odp_actions, OVS_ACTION_ATTR_OUTPUT,
1678 out_port);
1679
1680 ctx->sflow_odp_port = odp_port;
1681 ctx->sflow_n_outputs++;
1682 ctx->xout->nf_output_iface = ofp_port;
1683 }
1684
1685 out:
1686 /* Restore flow */
1687 flow->vlan_tci = flow_vlan_tci;
1688 flow->pkt_mark = flow_pkt_mark;
1689 flow->nw_tos = flow_nw_tos;
1690 }
1691
1692 static void
1693 compose_output_action(struct xlate_ctx *ctx, ofp_port_t ofp_port)
1694 {
1695 compose_output_action__(ctx, ofp_port, true);
1696 }
1697
1698 static void
1699 xlate_recursively(struct xlate_ctx *ctx, struct rule_dpif *rule)
1700 {
1701 struct rule_dpif *old_rule = ctx->rule;
1702 struct rule_actions *actions;
1703
1704 if (ctx->xin->resubmit_stats) {
1705 rule_dpif_credit_stats(rule, ctx->xin->resubmit_stats);
1706 }
1707
1708 ctx->resubmits++;
1709 ctx->recurse++;
1710 ctx->rule = rule;
1711 actions = rule_dpif_get_actions(rule);
1712 do_xlate_actions(actions->ofpacts, actions->ofpacts_len, ctx);
1713 rule_actions_unref(actions);
1714 ctx->rule = old_rule;
1715 ctx->recurse--;
1716 }
1717
1718 static void
1719 xlate_table_action(struct xlate_ctx *ctx,
1720 ofp_port_t in_port, uint8_t table_id, bool may_packet_in)
1721 {
1722 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 1);
1723
1724 if (ctx->recurse >= MAX_RESUBMIT_RECURSION) {
1725 VLOG_ERR_RL(&rl, "resubmit actions recursed over %d times",
1726 MAX_RESUBMIT_RECURSION);
1727 } else if (ctx->resubmits >= MAX_RESUBMITS) {
1728 VLOG_ERR_RL(&rl, "over %d resubmit actions", MAX_RESUBMITS);
1729 } else if (ctx->xout->odp_actions.size > UINT16_MAX) {
1730 VLOG_ERR_RL(&rl, "resubmits yielded over 64 kB of actions");
1731 } else if (ctx->stack.size >= 65536) {
1732 VLOG_ERR_RL(&rl, "resubmits yielded over 64 kB of stack");
1733 } else {
1734 struct rule_dpif *rule;
1735 ofp_port_t old_in_port = ctx->xin->flow.in_port.ofp_port;
1736 uint8_t old_table_id = ctx->table_id;
1737
1738 ctx->table_id = table_id;
1739
1740 /* Look up a flow with 'in_port' as the input port. Then restore the
1741 * original input port (otherwise OFPP_NORMAL and OFPP_IN_PORT will
1742 * have surprising behavior). */
1743 ctx->xin->flow.in_port.ofp_port = in_port;
1744 rule_dpif_lookup_in_table(ctx->xbridge->ofproto,
1745 &ctx->xin->flow, &ctx->xout->wc,
1746 table_id, &rule);
1747 ctx->xin->flow.in_port.ofp_port = old_in_port;
1748
1749 if (ctx->xin->resubmit_hook) {
1750 ctx->xin->resubmit_hook(ctx->xin, rule, ctx->recurse);
1751 }
1752
1753 if (!rule && may_packet_in) {
1754 struct xport *xport;
1755
1756 /* XXX
1757 * check if table configuration flags
1758 * OFPTC_TABLE_MISS_CONTROLLER, default.
1759 * OFPTC_TABLE_MISS_CONTINUE,
1760 * OFPTC_TABLE_MISS_DROP
1761 * When OF1.0, OFPTC_TABLE_MISS_CONTINUE is used. What to do? */
1762 xport = get_ofp_port(ctx->xbridge, ctx->xin->flow.in_port.ofp_port);
1763 choose_miss_rule(xport ? xport->config : 0,
1764 ctx->xbridge->miss_rule,
1765 ctx->xbridge->no_packet_in_rule, &rule);
1766 }
1767 if (rule) {
1768 xlate_recursively(ctx, rule);
1769 rule_dpif_unref(rule);
1770 }
1771
1772 ctx->table_id = old_table_id;
1773 return;
1774 }
1775
1776 ctx->exit = true;
1777 }
1778
1779 static void
1780 xlate_ofpact_resubmit(struct xlate_ctx *ctx,
1781 const struct ofpact_resubmit *resubmit)
1782 {
1783 ofp_port_t in_port;
1784 uint8_t table_id;
1785
1786 in_port = resubmit->in_port;
1787 if (in_port == OFPP_IN_PORT) {
1788 in_port = ctx->xin->flow.in_port.ofp_port;
1789 }
1790
1791 table_id = resubmit->table_id;
1792 if (table_id == 255) {
1793 table_id = ctx->table_id;
1794 }
1795
1796 xlate_table_action(ctx, in_port, table_id, false);
1797 }
1798
1799 static void
1800 flood_packets(struct xlate_ctx *ctx, bool all)
1801 {
1802 const struct xport *xport;
1803
1804 HMAP_FOR_EACH (xport, ofp_node, &ctx->xbridge->xports) {
1805 if (xport->ofp_port == ctx->xin->flow.in_port.ofp_port) {
1806 continue;
1807 }
1808
1809 if (all) {
1810 compose_output_action__(ctx, xport->ofp_port, false);
1811 } else if (!(xport->config & OFPUTIL_PC_NO_FLOOD)) {
1812 compose_output_action(ctx, xport->ofp_port);
1813 }
1814 }
1815
1816 ctx->xout->nf_output_iface = NF_OUT_FLOOD;
1817 }
1818
1819 static void
1820 execute_controller_action(struct xlate_ctx *ctx, int len,
1821 enum ofp_packet_in_reason reason,
1822 uint16_t controller_id)
1823 {
1824 struct ofproto_packet_in *pin;
1825 struct ofpbuf *packet;
1826 struct flow key;
1827
1828 ctx->xout->slow |= SLOW_CONTROLLER;
1829 if (!ctx->xin->packet) {
1830 return;
1831 }
1832
1833 packet = ofpbuf_clone(ctx->xin->packet);
1834
1835 key.skb_priority = 0;
1836 key.pkt_mark = 0;
1837 memset(&key.tunnel, 0, sizeof key.tunnel);
1838
1839 ctx->xout->slow |= commit_odp_actions(&ctx->xin->flow, &ctx->base_flow,
1840 &ctx->xout->odp_actions,
1841 &ctx->xout->wc,
1842 &ctx->mpls_depth_delta);
1843
1844 odp_execute_actions(NULL, packet, &key, ctx->xout->odp_actions.data,
1845 ctx->xout->odp_actions.size, NULL, NULL);
1846
1847 pin = xmalloc(sizeof *pin);
1848 pin->up.packet_len = packet->size;
1849 pin->up.packet = ofpbuf_steal_data(packet);
1850 pin->up.reason = reason;
1851 pin->up.table_id = ctx->table_id;
1852 pin->up.cookie = (ctx->rule
1853 ? rule_dpif_get_flow_cookie(ctx->rule)
1854 : OVS_BE64_MAX);
1855
1856 flow_get_metadata(&ctx->xin->flow, &pin->up.fmd);
1857
1858 pin->controller_id = controller_id;
1859 pin->send_len = len;
1860 pin->generated_by_table_miss = (ctx->rule
1861 && rule_dpif_is_table_miss(ctx->rule));
1862 ofproto_dpif_send_packet_in(ctx->xbridge->ofproto, pin);
1863 ofpbuf_delete(packet);
1864 }
1865
1866 static bool
1867 compose_mpls_push_action(struct xlate_ctx *ctx, ovs_be16 eth_type)
1868 {
1869 struct flow_wildcards *wc = &ctx->xout->wc;
1870 struct flow *flow = &ctx->xin->flow;
1871
1872 ovs_assert(eth_type_mpls(eth_type));
1873
1874 /* If mpls_depth_delta is negative then an MPLS POP action has been
1875 * composed and the resulting MPLS label stack is unknown. This means
1876 * an MPLS PUSH action can't be composed as it needs to know either the
1877 * top-most MPLS LSE to use as a template for the new MPLS LSE, or that
1878 * there is no MPLS label stack present. Thus, stop processing.
1879 *
1880 * If mpls_depth_delta is positive then an MPLS PUSH action has been
1881 * composed and no further MPLS PUSH action may be performed without
1882 * losing MPLS LSE and ether type information held in xtx->xin->flow.
1883 * Thus, stop processing.
1884 *
1885 * If the MPLS LSE of the flow and base_flow differ then the MPLS LSE
1886 * has been updated. Performing a MPLS PUSH action may be would result in
1887 * losing MPLS LSE and ether type information held in xtx->xin->flow.
1888 * Thus, stop processing.
1889 *
1890 * It is planned that in the future this case will be handled
1891 * by recirculation */
1892 if (ctx->mpls_depth_delta ||
1893 ctx->xin->flow.mpls_lse != ctx->base_flow.mpls_lse) {
1894 return true;
1895 }
1896
1897 memset(&wc->masks.mpls_lse, 0xff, sizeof wc->masks.mpls_lse);
1898
1899 ctx->pre_push_mpls_lse = ctx->xin->flow.mpls_lse;
1900
1901 if (eth_type_mpls(ctx->xin->flow.dl_type)) {
1902 flow->mpls_lse &= ~htonl(MPLS_BOS_MASK);
1903 } else {
1904 ovs_be32 label;
1905 uint8_t tc, ttl;
1906
1907 if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
1908 label = htonl(0x2); /* IPV6 Explicit Null. */
1909 } else {
1910 label = htonl(0x0); /* IPV4 Explicit Null. */
1911 }
1912 wc->masks.nw_tos |= IP_DSCP_MASK;
1913 wc->masks.nw_ttl = 0xff;
1914 tc = (flow->nw_tos & IP_DSCP_MASK) >> 2;
1915 ttl = flow->nw_ttl ? flow->nw_ttl : 0x40;
1916 flow->mpls_lse = set_mpls_lse_values(ttl, tc, 1, label);
1917 }
1918 flow->dl_type = eth_type;
1919 ctx->mpls_depth_delta++;
1920
1921 return false;
1922 }
1923
1924 static bool
1925 compose_mpls_pop_action(struct xlate_ctx *ctx, ovs_be16 eth_type)
1926 {
1927 struct flow_wildcards *wc = &ctx->xout->wc;
1928
1929 if (!eth_type_mpls(ctx->xin->flow.dl_type)) {
1930 return true;
1931 }
1932
1933 /* If mpls_depth_delta is negative then an MPLS POP action has been
1934 * composed. Performing another MPLS POP action
1935 * would result in losing ether type that results from
1936 * the already composed MPLS POP. Thus, stop processing.
1937 *
1938 * It is planned that in the future this case will be handled
1939 * by recirculation */
1940 if (ctx->mpls_depth_delta < 0) {
1941 return true;
1942 }
1943
1944 memset(&wc->masks.mpls_lse, 0xff, sizeof wc->masks.mpls_lse);
1945
1946 /* If mpls_depth_delta is positive then an MPLS PUSH action has been
1947 * executed and the previous MPLS LSE saved in ctx->pre_push_mpls_lse. The
1948 * flow's MPLS LSE should be restored to that value to allow any
1949 * subsequent actions that update of the LSE to be executed correctly.
1950 */
1951 if (ctx->mpls_depth_delta > 0) {
1952 ctx->xin->flow.mpls_lse = ctx->pre_push_mpls_lse;
1953 }
1954
1955 ctx->xin->flow.dl_type = eth_type;
1956 ctx->mpls_depth_delta--;
1957
1958 return false;
1959 }
1960
1961 static bool
1962 compose_dec_ttl(struct xlate_ctx *ctx, struct ofpact_cnt_ids *ids)
1963 {
1964 struct flow *flow = &ctx->xin->flow;
1965
1966 if (!is_ip_any(flow)) {
1967 return false;
1968 }
1969
1970 ctx->xout->wc.masks.nw_ttl = 0xff;
1971 if (flow->nw_ttl > 1) {
1972 flow->nw_ttl--;
1973 return false;
1974 } else {
1975 size_t i;
1976
1977 for (i = 0; i < ids->n_controllers; i++) {
1978 execute_controller_action(ctx, UINT16_MAX, OFPR_INVALID_TTL,
1979 ids->cnt_ids[i]);
1980 }
1981
1982 /* Stop processing for current table. */
1983 return true;
1984 }
1985 }
1986
1987 static bool
1988 compose_set_mpls_label_action(struct xlate_ctx *ctx, ovs_be32 label)
1989 {
1990 if (!eth_type_mpls(ctx->xin->flow.dl_type)) {
1991 return true;
1992 }
1993
1994 /* If mpls_depth_delta is negative then an MPLS POP action has been
1995 * executed and the resulting MPLS label stack is unknown. This means
1996 * a SET MPLS LABEL action can't be executed as it needs to manipulate
1997 * the top-most MPLS LSE. Thus, stop processing.
1998 *
1999 * It is planned that in the future this case will be handled
2000 * by recirculation.
2001 */
2002 if (ctx->mpls_depth_delta < 0) {
2003 return true;
2004 }
2005
2006 ctx->xout->wc.masks.mpls_lse |= htonl(MPLS_LABEL_MASK);
2007 set_mpls_lse_label(&ctx->xin->flow.mpls_lse, label);
2008 return false;
2009 }
2010
2011 static bool
2012 compose_set_mpls_tc_action(struct xlate_ctx *ctx, uint8_t tc)
2013 {
2014 if (!eth_type_mpls(ctx->xin->flow.dl_type)) {
2015 return true;
2016 }
2017
2018 /* If mpls_depth_delta is negative then an MPLS POP action has been
2019 * executed and the resulting MPLS label stack is unknown. This means
2020 * a SET MPLS TC action can't be executed as it needs to manipulate
2021 * the top-most MPLS LSE. Thus, stop processing.
2022 *
2023 * It is planned that in the future this case will be handled
2024 * by recirculation.
2025 */
2026 if (ctx->mpls_depth_delta < 0) {
2027 return true;
2028 }
2029
2030 ctx->xout->wc.masks.mpls_lse |= htonl(MPLS_TC_MASK);
2031 set_mpls_lse_tc(&ctx->xin->flow.mpls_lse, tc);
2032 return false;
2033 }
2034
2035 static bool
2036 compose_set_mpls_ttl_action(struct xlate_ctx *ctx, uint8_t ttl)
2037 {
2038 if (!eth_type_mpls(ctx->xin->flow.dl_type)) {
2039 return true;
2040 }
2041
2042 /* If mpls_depth_delta is negative then an MPLS POP action has been
2043 * executed and the resulting MPLS label stack is unknown. This means
2044 * a SET MPLS TTL push action can't be executed as it needs to manipulate
2045 * the top-most MPLS LSE. Thus, stop processing.
2046 *
2047 * It is planned that in the future this case will be handled
2048 * by recirculation.
2049 */
2050 if (ctx->mpls_depth_delta < 0) {
2051 return true;
2052 }
2053
2054 ctx->xout->wc.masks.mpls_lse |= htonl(MPLS_TTL_MASK);
2055 set_mpls_lse_ttl(&ctx->xin->flow.mpls_lse, ttl);
2056 return false;
2057 }
2058
2059 static bool
2060 compose_dec_mpls_ttl_action(struct xlate_ctx *ctx)
2061 {
2062 struct flow *flow = &ctx->xin->flow;
2063 uint8_t ttl = mpls_lse_to_ttl(flow->mpls_lse);
2064 struct flow_wildcards *wc = &ctx->xout->wc;
2065
2066 memset(&wc->masks.mpls_lse, 0xff, sizeof wc->masks.mpls_lse);
2067
2068 if (!eth_type_mpls(flow->dl_type)) {
2069 return false;
2070 }
2071
2072 if (ttl > 1) {
2073 ttl--;
2074 set_mpls_lse_ttl(&flow->mpls_lse, ttl);
2075 return false;
2076 } else {
2077 execute_controller_action(ctx, UINT16_MAX, OFPR_INVALID_TTL, 0);
2078
2079 /* Stop processing for current table. */
2080 return true;
2081 }
2082 }
2083
2084 static void
2085 xlate_output_action(struct xlate_ctx *ctx,
2086 ofp_port_t port, uint16_t max_len, bool may_packet_in)
2087 {
2088 ofp_port_t prev_nf_output_iface = ctx->xout->nf_output_iface;
2089
2090 ctx->xout->nf_output_iface = NF_OUT_DROP;
2091
2092 switch (port) {
2093 case OFPP_IN_PORT:
2094 compose_output_action(ctx, ctx->xin->flow.in_port.ofp_port);
2095 break;
2096 case OFPP_TABLE:
2097 xlate_table_action(ctx, ctx->xin->flow.in_port.ofp_port,
2098 0, may_packet_in);
2099 break;
2100 case OFPP_NORMAL:
2101 xlate_normal(ctx);
2102 break;
2103 case OFPP_FLOOD:
2104 flood_packets(ctx, false);
2105 break;
2106 case OFPP_ALL:
2107 flood_packets(ctx, true);
2108 break;
2109 case OFPP_CONTROLLER:
2110 execute_controller_action(ctx, max_len, OFPR_ACTION, 0);
2111 break;
2112 case OFPP_NONE:
2113 break;
2114 case OFPP_LOCAL:
2115 default:
2116 if (port != ctx->xin->flow.in_port.ofp_port) {
2117 compose_output_action(ctx, port);
2118 } else {
2119 xlate_report(ctx, "skipping output to input port");
2120 }
2121 break;
2122 }
2123
2124 if (prev_nf_output_iface == NF_OUT_FLOOD) {
2125 ctx->xout->nf_output_iface = NF_OUT_FLOOD;
2126 } else if (ctx->xout->nf_output_iface == NF_OUT_DROP) {
2127 ctx->xout->nf_output_iface = prev_nf_output_iface;
2128 } else if (prev_nf_output_iface != NF_OUT_DROP &&
2129 ctx->xout->nf_output_iface != NF_OUT_FLOOD) {
2130 ctx->xout->nf_output_iface = NF_OUT_MULTI;
2131 }
2132 }
2133
2134 static void
2135 xlate_output_reg_action(struct xlate_ctx *ctx,
2136 const struct ofpact_output_reg *or)
2137 {
2138 uint64_t port = mf_get_subfield(&or->src, &ctx->xin->flow);
2139 if (port <= UINT16_MAX) {
2140 union mf_subvalue value;
2141
2142 memset(&value, 0xff, sizeof value);
2143 mf_write_subfield_flow(&or->src, &value, &ctx->xout->wc.masks);
2144 xlate_output_action(ctx, u16_to_ofp(port),
2145 or->max_len, false);
2146 }
2147 }
2148
2149 static void
2150 xlate_enqueue_action(struct xlate_ctx *ctx,
2151 const struct ofpact_enqueue *enqueue)
2152 {
2153 ofp_port_t ofp_port = enqueue->port;
2154 uint32_t queue_id = enqueue->queue;
2155 uint32_t flow_priority, priority;
2156 int error;
2157
2158 /* Translate queue to priority. */
2159 error = dpif_queue_to_priority(ctx->xbridge->dpif, queue_id, &priority);
2160 if (error) {
2161 /* Fall back to ordinary output action. */
2162 xlate_output_action(ctx, enqueue->port, 0, false);
2163 return;
2164 }
2165
2166 /* Check output port. */
2167 if (ofp_port == OFPP_IN_PORT) {
2168 ofp_port = ctx->xin->flow.in_port.ofp_port;
2169 } else if (ofp_port == ctx->xin->flow.in_port.ofp_port) {
2170 return;
2171 }
2172
2173 /* Add datapath actions. */
2174 flow_priority = ctx->xin->flow.skb_priority;
2175 ctx->xin->flow.skb_priority = priority;
2176 compose_output_action(ctx, ofp_port);
2177 ctx->xin->flow.skb_priority = flow_priority;
2178
2179 /* Update NetFlow output port. */
2180 if (ctx->xout->nf_output_iface == NF_OUT_DROP) {
2181 ctx->xout->nf_output_iface = ofp_port;
2182 } else if (ctx->xout->nf_output_iface != NF_OUT_FLOOD) {
2183 ctx->xout->nf_output_iface = NF_OUT_MULTI;
2184 }
2185 }
2186
2187 static void
2188 xlate_set_queue_action(struct xlate_ctx *ctx, uint32_t queue_id)
2189 {
2190 uint32_t skb_priority;
2191
2192 if (!dpif_queue_to_priority(ctx->xbridge->dpif, queue_id, &skb_priority)) {
2193 ctx->xin->flow.skb_priority = skb_priority;
2194 } else {
2195 /* Couldn't translate queue to a priority. Nothing to do. A warning
2196 * has already been logged. */
2197 }
2198 }
2199
2200 static bool
2201 slave_enabled_cb(ofp_port_t ofp_port, void *xbridge_)
2202 {
2203 const struct xbridge *xbridge = xbridge_;
2204 struct xport *port;
2205
2206 switch (ofp_port) {
2207 case OFPP_IN_PORT:
2208 case OFPP_TABLE:
2209 case OFPP_NORMAL:
2210 case OFPP_FLOOD:
2211 case OFPP_ALL:
2212 case OFPP_NONE:
2213 return true;
2214 case OFPP_CONTROLLER: /* Not supported by the bundle action. */
2215 return false;
2216 default:
2217 port = get_ofp_port(xbridge, ofp_port);
2218 return port ? port->may_enable : false;
2219 }
2220 }
2221
2222 static void
2223 xlate_bundle_action(struct xlate_ctx *ctx,
2224 const struct ofpact_bundle *bundle)
2225 {
2226 ofp_port_t port;
2227
2228 port = bundle_execute(bundle, &ctx->xin->flow, &ctx->xout->wc,
2229 slave_enabled_cb,
2230 CONST_CAST(struct xbridge *, ctx->xbridge));
2231 if (bundle->dst.field) {
2232 nxm_reg_load(&bundle->dst, ofp_to_u16(port), &ctx->xin->flow,
2233 &ctx->xout->wc);
2234 } else {
2235 xlate_output_action(ctx, port, 0, false);
2236 }
2237 }
2238
2239 static void
2240 xlate_learn_action(struct xlate_ctx *ctx,
2241 const struct ofpact_learn *learn)
2242 {
2243 uint64_t ofpacts_stub[1024 / 8];
2244 struct ofputil_flow_mod fm;
2245 struct ofpbuf ofpacts;
2246
2247 ctx->xout->has_learn = true;
2248
2249 learn_mask(learn, &ctx->xout->wc);
2250
2251 if (!ctx->xin->may_learn) {
2252 return;
2253 }
2254
2255 ofpbuf_use_stub(&ofpacts, ofpacts_stub, sizeof ofpacts_stub);
2256 learn_execute(learn, &ctx->xin->flow, &fm, &ofpacts);
2257 ofproto_dpif_flow_mod(ctx->xbridge->ofproto, &fm);
2258 ofpbuf_uninit(&ofpacts);
2259 }
2260
2261 static void
2262 xlate_fin_timeout(struct xlate_ctx *ctx,
2263 const struct ofpact_fin_timeout *oft)
2264 {
2265 if (ctx->xin->tcp_flags & (TCP_FIN | TCP_RST) && ctx->rule) {
2266 rule_dpif_reduce_timeouts(ctx->rule, oft->fin_idle_timeout,
2267 oft->fin_hard_timeout);
2268 }
2269 }
2270
2271 static void
2272 xlate_sample_action(struct xlate_ctx *ctx,
2273 const struct ofpact_sample *os)
2274 {
2275 union user_action_cookie cookie;
2276 /* Scale the probability from 16-bit to 32-bit while representing
2277 * the same percentage. */
2278 uint32_t probability = (os->probability << 16) | os->probability;
2279
2280 ctx->xout->slow |= commit_odp_actions(&ctx->xin->flow, &ctx->base_flow,
2281 &ctx->xout->odp_actions,
2282 &ctx->xout->wc,
2283 &ctx->mpls_depth_delta);
2284
2285 compose_flow_sample_cookie(os->probability, os->collector_set_id,
2286 os->obs_domain_id, os->obs_point_id, &cookie);
2287 compose_sample_action(ctx->xbridge, &ctx->xout->odp_actions, &ctx->xin->flow,
2288 probability, &cookie, sizeof cookie.flow_sample);
2289 }
2290
2291 static bool
2292 may_receive(const struct xport *xport, struct xlate_ctx *ctx)
2293 {
2294 if (xport->config & (eth_addr_equals(ctx->xin->flow.dl_dst, eth_addr_stp)
2295 ? OFPUTIL_PC_NO_RECV_STP
2296 : OFPUTIL_PC_NO_RECV)) {
2297 return false;
2298 }
2299
2300 /* Only drop packets here if both forwarding and learning are
2301 * disabled. If just learning is enabled, we need to have
2302 * OFPP_NORMAL and the learning action have a look at the packet
2303 * before we can drop it. */
2304 if (!xport_stp_forward_state(xport) && !xport_stp_learn_state(xport)) {
2305 return false;
2306 }
2307
2308 return true;
2309 }
2310
2311 static void
2312 xlate_write_actions(struct xlate_ctx *ctx, const struct ofpact *a)
2313 {
2314 struct ofpact_nest *on = ofpact_get_WRITE_ACTIONS(a);
2315 ofpbuf_put(&ctx->action_set, on->actions, ofpact_nest_get_action_len(on));
2316 ofpact_pad(&ctx->action_set);
2317 }
2318
2319 static void
2320 xlate_action_set(struct xlate_ctx *ctx)
2321 {
2322 uint64_t action_list_stub[1024 / 64];
2323 struct ofpbuf action_list;
2324
2325 ofpbuf_use_stub(&action_list, action_list_stub, sizeof action_list_stub);
2326 ofpacts_execute_action_set(&action_list, &ctx->action_set);
2327 do_xlate_actions(action_list.data, action_list.size, ctx);
2328 ofpbuf_uninit(&action_list);
2329 }
2330
2331 static void
2332 do_xlate_actions(const struct ofpact *ofpacts, size_t ofpacts_len,
2333 struct xlate_ctx *ctx)
2334 {
2335 struct flow_wildcards *wc = &ctx->xout->wc;
2336 struct flow *flow = &ctx->xin->flow;
2337 const struct ofpact *a;
2338
2339 /* dl_type already in the mask, not set below. */
2340
2341 OFPACT_FOR_EACH (a, ofpacts, ofpacts_len) {
2342 struct ofpact_controller *controller;
2343 const struct ofpact_metadata *metadata;
2344 const struct ofpact_set_field *set_field;
2345 const struct mf_field *mf;
2346
2347 if (ctx->exit) {
2348 break;
2349 }
2350
2351 switch (a->type) {
2352 case OFPACT_OUTPUT:
2353 xlate_output_action(ctx, ofpact_get_OUTPUT(a)->port,
2354 ofpact_get_OUTPUT(a)->max_len, true);
2355 break;
2356
2357 case OFPACT_GROUP:
2358 /* XXX not yet implemented */
2359 break;
2360
2361 case OFPACT_CONTROLLER:
2362 controller = ofpact_get_CONTROLLER(a);
2363 execute_controller_action(ctx, controller->max_len,
2364 controller->reason,
2365 controller->controller_id);
2366 break;
2367
2368 case OFPACT_ENQUEUE:
2369 xlate_enqueue_action(ctx, ofpact_get_ENQUEUE(a));
2370 break;
2371
2372 case OFPACT_SET_VLAN_VID:
2373 wc->masks.vlan_tci |= htons(VLAN_VID_MASK | VLAN_CFI);
2374 if (flow->vlan_tci & htons(VLAN_CFI) ||
2375 ofpact_get_SET_VLAN_VID(a)->push_vlan_if_needed) {
2376 flow->vlan_tci &= ~htons(VLAN_VID_MASK);
2377 flow->vlan_tci |= (htons(ofpact_get_SET_VLAN_VID(a)->vlan_vid)
2378 | htons(VLAN_CFI));
2379 }
2380 break;
2381
2382 case OFPACT_SET_VLAN_PCP:
2383 wc->masks.vlan_tci |= htons(VLAN_PCP_MASK | VLAN_CFI);
2384 if (flow->vlan_tci & htons(VLAN_CFI) ||
2385 ofpact_get_SET_VLAN_PCP(a)->push_vlan_if_needed) {
2386 flow->vlan_tci &= ~htons(VLAN_PCP_MASK);
2387 flow->vlan_tci |= htons((ofpact_get_SET_VLAN_PCP(a)->vlan_pcp
2388 << VLAN_PCP_SHIFT) | VLAN_CFI);
2389 }
2390 break;
2391
2392 case OFPACT_STRIP_VLAN:
2393 memset(&wc->masks.vlan_tci, 0xff, sizeof wc->masks.vlan_tci);
2394 flow->vlan_tci = htons(0);
2395 break;
2396
2397 case OFPACT_PUSH_VLAN:
2398 /* XXX 802.1AD(QinQ) */
2399 memset(&wc->masks.vlan_tci, 0xff, sizeof wc->masks.vlan_tci);
2400 flow->vlan_tci = htons(VLAN_CFI);
2401 break;
2402
2403 case OFPACT_SET_ETH_SRC:
2404 memset(&wc->masks.dl_src, 0xff, sizeof wc->masks.dl_src);
2405 memcpy(flow->dl_src, ofpact_get_SET_ETH_SRC(a)->mac, ETH_ADDR_LEN);
2406 break;
2407
2408 case OFPACT_SET_ETH_DST:
2409 memset(&wc->masks.dl_dst, 0xff, sizeof wc->masks.dl_dst);
2410 memcpy(flow->dl_dst, ofpact_get_SET_ETH_DST(a)->mac, ETH_ADDR_LEN);
2411 break;
2412
2413 case OFPACT_SET_IPV4_SRC:
2414 if (flow->dl_type == htons(ETH_TYPE_IP)) {
2415 memset(&wc->masks.nw_src, 0xff, sizeof wc->masks.nw_src);
2416 flow->nw_src = ofpact_get_SET_IPV4_SRC(a)->ipv4;
2417 }
2418 break;
2419
2420 case OFPACT_SET_IPV4_DST:
2421 if (flow->dl_type == htons(ETH_TYPE_IP)) {
2422 memset(&wc->masks.nw_dst, 0xff, sizeof wc->masks.nw_dst);
2423 flow->nw_dst = ofpact_get_SET_IPV4_DST(a)->ipv4;
2424 }
2425 break;
2426
2427 case OFPACT_SET_IP_DSCP:
2428 if (is_ip_any(flow)) {
2429 wc->masks.nw_tos |= IP_DSCP_MASK;
2430 flow->nw_tos &= ~IP_DSCP_MASK;
2431 flow->nw_tos |= ofpact_get_SET_IP_DSCP(a)->dscp;
2432 }
2433 break;
2434
2435 case OFPACT_SET_IP_ECN:
2436 if (is_ip_any(flow)) {
2437 wc->masks.nw_tos |= IP_ECN_MASK;
2438 flow->nw_tos &= ~IP_ECN_MASK;
2439 flow->nw_tos |= ofpact_get_SET_IP_ECN(a)->ecn;
2440 }
2441 break;
2442
2443 case OFPACT_SET_IP_TTL:
2444 if (is_ip_any(flow)) {
2445 wc->masks.nw_ttl = 0xff;
2446 flow->nw_ttl = ofpact_get_SET_IP_TTL(a)->ttl;
2447 }
2448 break;
2449
2450 case OFPACT_SET_L4_SRC_PORT:
2451 if (is_ip_any(flow)) {
2452 memset(&wc->masks.nw_proto, 0xff, sizeof wc->masks.nw_proto);
2453 memset(&wc->masks.tp_src, 0xff, sizeof wc->masks.tp_src);
2454 flow->tp_src = htons(ofpact_get_SET_L4_SRC_PORT(a)->port);
2455 }
2456 break;
2457
2458 case OFPACT_SET_L4_DST_PORT:
2459 if (is_ip_any(flow)) {
2460 memset(&wc->masks.nw_proto, 0xff, sizeof wc->masks.nw_proto);
2461 memset(&wc->masks.tp_dst, 0xff, sizeof wc->masks.tp_dst);
2462 flow->tp_dst = htons(ofpact_get_SET_L4_DST_PORT(a)->port);
2463 }
2464 break;
2465
2466 case OFPACT_RESUBMIT:
2467 xlate_ofpact_resubmit(ctx, ofpact_get_RESUBMIT(a));
2468 break;
2469
2470 case OFPACT_SET_TUNNEL:
2471 flow->tunnel.tun_id = htonll(ofpact_get_SET_TUNNEL(a)->tun_id);
2472 break;
2473
2474 case OFPACT_SET_QUEUE:
2475 xlate_set_queue_action(ctx, ofpact_get_SET_QUEUE(a)->queue_id);
2476 break;
2477
2478 case OFPACT_POP_QUEUE:
2479 flow->skb_priority = ctx->orig_skb_priority;
2480 break;
2481
2482 case OFPACT_REG_MOVE:
2483 nxm_execute_reg_move(ofpact_get_REG_MOVE(a), flow, wc);
2484 break;
2485
2486 case OFPACT_REG_LOAD:
2487 nxm_execute_reg_load(ofpact_get_REG_LOAD(a), flow, wc);
2488 break;
2489
2490 case OFPACT_SET_FIELD:
2491 set_field = ofpact_get_SET_FIELD(a);
2492 mf = set_field->field;
2493 mf_mask_field_and_prereqs(mf, &wc->masks);
2494
2495 /* Set field action only ever overwrites packet's outermost
2496 * applicable header fields. Do nothing if no header exists. */
2497 if ((mf->id != MFF_VLAN_VID || flow->vlan_tci & htons(VLAN_CFI))
2498 && ((mf->id != MFF_MPLS_LABEL && mf->id != MFF_MPLS_TC)
2499 || flow->mpls_lse)) {
2500 mf_set_flow_value(mf, &set_field->value, flow);
2501 }
2502 break;
2503
2504 case OFPACT_STACK_PUSH:
2505 nxm_execute_stack_push(ofpact_get_STACK_PUSH(a), flow, wc,
2506 &ctx->stack);
2507 break;
2508
2509 case OFPACT_STACK_POP:
2510 nxm_execute_stack_pop(ofpact_get_STACK_POP(a), flow, wc,
2511 &ctx->stack);
2512 break;
2513
2514 case OFPACT_PUSH_MPLS:
2515 if (compose_mpls_push_action(ctx,
2516 ofpact_get_PUSH_MPLS(a)->ethertype)) {
2517 return;
2518 }
2519 break;
2520
2521 case OFPACT_POP_MPLS:
2522 if (compose_mpls_pop_action(ctx,
2523 ofpact_get_POP_MPLS(a)->ethertype)) {
2524 return;
2525 }
2526 break;
2527
2528 case OFPACT_SET_MPLS_LABEL:
2529 if (compose_set_mpls_label_action(ctx,
2530 ofpact_get_SET_MPLS_LABEL(a)->label)) {
2531 return;
2532 }
2533 break;
2534
2535 case OFPACT_SET_MPLS_TC:
2536 if (compose_set_mpls_tc_action(ctx,
2537 ofpact_get_SET_MPLS_TC(a)->tc)) {
2538 return;
2539 }
2540 break;
2541
2542 case OFPACT_SET_MPLS_TTL:
2543 if (compose_set_mpls_ttl_action(ctx,
2544 ofpact_get_SET_MPLS_TTL(a)->ttl)) {
2545 return;
2546 }
2547 break;
2548
2549 case OFPACT_DEC_MPLS_TTL:
2550 if (compose_dec_mpls_ttl_action(ctx)) {
2551 return;
2552 }
2553 break;
2554
2555 case OFPACT_DEC_TTL:
2556 wc->masks.nw_ttl = 0xff;
2557 if (compose_dec_ttl(ctx, ofpact_get_DEC_TTL(a))) {
2558 return;
2559 }
2560 break;
2561
2562 case OFPACT_NOTE:
2563 /* Nothing to do. */
2564 break;
2565
2566 case OFPACT_MULTIPATH:
2567 multipath_execute(ofpact_get_MULTIPATH(a), flow, wc);
2568 break;
2569
2570 case OFPACT_BUNDLE:
2571 xlate_bundle_action(ctx, ofpact_get_BUNDLE(a));
2572 break;
2573
2574 case OFPACT_OUTPUT_REG:
2575 xlate_output_reg_action(ctx, ofpact_get_OUTPUT_REG(a));
2576 break;
2577
2578 case OFPACT_LEARN:
2579 xlate_learn_action(ctx, ofpact_get_LEARN(a));
2580 break;
2581
2582 case OFPACT_EXIT:
2583 ctx->exit = true;
2584 break;
2585
2586 case OFPACT_FIN_TIMEOUT:
2587 memset(&wc->masks.nw_proto, 0xff, sizeof wc->masks.nw_proto);
2588 ctx->xout->has_fin_timeout = true;
2589 xlate_fin_timeout(ctx, ofpact_get_FIN_TIMEOUT(a));
2590 break;
2591
2592 case OFPACT_CLEAR_ACTIONS:
2593 ofpbuf_clear(&ctx->action_set);
2594 break;
2595
2596 case OFPACT_WRITE_ACTIONS:
2597 xlate_write_actions(ctx, a);
2598 break;
2599
2600 case OFPACT_WRITE_METADATA:
2601 metadata = ofpact_get_WRITE_METADATA(a);
2602 flow->metadata &= ~metadata->mask;
2603 flow->metadata |= metadata->metadata & metadata->mask;
2604 break;
2605
2606 case OFPACT_METER:
2607 /* Not implemented yet. */
2608 break;
2609
2610 case OFPACT_GOTO_TABLE: {
2611 struct ofpact_goto_table *ogt = ofpact_get_GOTO_TABLE(a);
2612
2613 ovs_assert(ctx->table_id < ogt->table_id);
2614 xlate_table_action(ctx, ctx->xin->flow.in_port.ofp_port,
2615 ogt->table_id, true);
2616 break;
2617 }
2618
2619 case OFPACT_SAMPLE:
2620 xlate_sample_action(ctx, ofpact_get_SAMPLE(a));
2621 break;
2622 }
2623 }
2624 }
2625
2626 void
2627 xlate_in_init(struct xlate_in *xin, struct ofproto_dpif *ofproto,
2628 const struct flow *flow, struct rule_dpif *rule,
2629 uint16_t tcp_flags, const struct ofpbuf *packet)
2630 {
2631 xin->ofproto = ofproto;
2632 xin->flow = *flow;
2633 xin->packet = packet;
2634 xin->may_learn = packet != NULL;
2635 xin->rule = rule;
2636 xin->ofpacts = NULL;
2637 xin->ofpacts_len = 0;
2638 xin->tcp_flags = tcp_flags;
2639 xin->resubmit_hook = NULL;
2640 xin->report_hook = NULL;
2641 xin->resubmit_stats = NULL;
2642 }
2643
2644 void
2645 xlate_out_uninit(struct xlate_out *xout)
2646 {
2647 if (xout) {
2648 ofpbuf_uninit(&xout->odp_actions);
2649 }
2650 }
2651
2652 /* Translates the 'ofpacts_len' bytes of "struct ofpact"s starting at 'ofpacts'
2653 * into datapath actions, using 'ctx', and discards the datapath actions. */
2654 void
2655 xlate_actions_for_side_effects(struct xlate_in *xin)
2656 {
2657 struct xlate_out xout;
2658
2659 xlate_actions(xin, &xout);
2660 xlate_out_uninit(&xout);
2661 }
2662
2663 static void
2664 xlate_report(struct xlate_ctx *ctx, const char *s)
2665 {
2666 if (ctx->xin->report_hook) {
2667 ctx->xin->report_hook(ctx->xin, s, ctx->recurse);
2668 }
2669 }
2670
2671 void
2672 xlate_out_copy(struct xlate_out *dst, const struct xlate_out *src)
2673 {
2674 dst->wc = src->wc;
2675 dst->slow = src->slow;
2676 dst->has_learn = src->has_learn;
2677 dst->has_normal = src->has_normal;
2678 dst->has_fin_timeout = src->has_fin_timeout;
2679 dst->nf_output_iface = src->nf_output_iface;
2680 dst->mirrors = src->mirrors;
2681
2682 ofpbuf_use_stub(&dst->odp_actions, dst->odp_actions_stub,
2683 sizeof dst->odp_actions_stub);
2684 ofpbuf_put(&dst->odp_actions, src->odp_actions.data,
2685 src->odp_actions.size);
2686 }
2687
2688 /* Returns a reference to the sflow handled associated with ofproto, or NULL if
2689 * there is none. The caller is responsible for decrementing the results ref
2690 * count with dpif_sflow_unref(). */
2691 struct dpif_sflow *
2692 xlate_get_sflow(const struct ofproto_dpif *ofproto)
2693 {
2694 struct dpif_sflow *sflow = NULL;
2695 struct xbridge *xbridge;
2696
2697 ovs_rwlock_rdlock(&xlate_rwlock);
2698 xbridge = xbridge_lookup(ofproto);
2699 if (xbridge) {
2700 sflow = dpif_sflow_ref(xbridge->sflow);
2701 }
2702 ovs_rwlock_unlock(&xlate_rwlock);
2703
2704 return sflow;
2705 }
2706
2707 /* Returns a reference to the ipfix handled associated with ofproto, or NULL if
2708 * there is none. The caller is responsible for decrementing the results ref
2709 * count with dpif_ipfix_unref(). */
2710 struct dpif_ipfix *
2711 xlate_get_ipfix(const struct ofproto_dpif *ofproto)
2712 {
2713 struct dpif_ipfix *ipfix = NULL;
2714 struct xbridge *xbridge;
2715
2716 ovs_rwlock_rdlock(&xlate_rwlock);
2717 xbridge = xbridge_lookup(ofproto);
2718 if (xbridge) {
2719 ipfix = dpif_ipfix_ref(xbridge->ipfix);
2720 }
2721 ovs_rwlock_unlock(&xlate_rwlock);
2722
2723 return ipfix;
2724 }
2725 \f
2726 static struct skb_priority_to_dscp *
2727 get_skb_priority(const struct xport *xport, uint32_t skb_priority)
2728 {
2729 struct skb_priority_to_dscp *pdscp;
2730 uint32_t hash;
2731
2732 hash = hash_int(skb_priority, 0);
2733 HMAP_FOR_EACH_IN_BUCKET (pdscp, hmap_node, hash, &xport->skb_priorities) {
2734 if (pdscp->skb_priority == skb_priority) {
2735 return pdscp;
2736 }
2737 }
2738 return NULL;
2739 }
2740
2741 static bool
2742 dscp_from_skb_priority(const struct xport *xport, uint32_t skb_priority,
2743 uint8_t *dscp)
2744 {
2745 struct skb_priority_to_dscp *pdscp = get_skb_priority(xport, skb_priority);
2746 *dscp = pdscp ? pdscp->dscp : 0;
2747 return pdscp != NULL;
2748 }
2749
2750 static void
2751 clear_skb_priorities(struct xport *xport)
2752 {
2753 struct skb_priority_to_dscp *pdscp, *next;
2754
2755 HMAP_FOR_EACH_SAFE (pdscp, next, hmap_node, &xport->skb_priorities) {
2756 hmap_remove(&xport->skb_priorities, &pdscp->hmap_node);
2757 free(pdscp);
2758 }
2759 }
2760
2761 static bool
2762 actions_output_to_local_port(const struct xlate_ctx *ctx)
2763 {
2764 odp_port_t local_odp_port = ofp_port_to_odp_port(ctx->xbridge, OFPP_LOCAL);
2765 const struct nlattr *a;
2766 unsigned int left;
2767
2768 NL_ATTR_FOR_EACH_UNSAFE (a, left, ctx->xout->odp_actions.data,
2769 ctx->xout->odp_actions.size) {
2770 if (nl_attr_type(a) == OVS_ACTION_ATTR_OUTPUT
2771 && nl_attr_get_odp_port(a) == local_odp_port) {
2772 return true;
2773 }
2774 }
2775 return false;
2776 }
2777
2778 /* Thread safe call to xlate_actions__(). */
2779 void
2780 xlate_actions(struct xlate_in *xin, struct xlate_out *xout)
2781 {
2782 ovs_rwlock_rdlock(&xlate_rwlock);
2783 xlate_actions__(xin, xout);
2784 ovs_rwlock_unlock(&xlate_rwlock);
2785 }
2786
2787 /* Translates the 'ofpacts_len' bytes of "struct ofpacts" starting at 'ofpacts'
2788 * into datapath actions in 'odp_actions', using 'ctx'.
2789 *
2790 * The caller must take responsibility for eventually freeing 'xout', with
2791 * xlate_out_uninit(). */
2792 static void
2793 xlate_actions__(struct xlate_in *xin, struct xlate_out *xout)
2794 OVS_REQ_RDLOCK(xlate_rwlock)
2795 {
2796 struct flow_wildcards *wc = &xout->wc;
2797 struct flow *flow = &xin->flow;
2798 struct rule_dpif *rule = NULL;
2799
2800 struct rule_actions *actions = NULL;
2801 enum slow_path_reason special;
2802 const struct ofpact *ofpacts;
2803 struct xport *in_port;
2804 struct flow orig_flow;
2805 struct xlate_ctx ctx;
2806 size_t ofpacts_len;
2807 bool tnl_may_send;
2808
2809 COVERAGE_INC(xlate_actions);
2810
2811 /* Flow initialization rules:
2812 * - 'base_flow' must match the kernel's view of the packet at the
2813 * time that action processing starts. 'flow' represents any
2814 * transformations we wish to make through actions.
2815 * - By default 'base_flow' and 'flow' are the same since the input
2816 * packet matches the output before any actions are applied.
2817 * - When using VLAN splinters, 'base_flow''s VLAN is set to the value
2818 * of the received packet as seen by the kernel. If we later output
2819 * to another device without any modifications this will cause us to
2820 * insert a new tag since the original one was stripped off by the
2821 * VLAN device.
2822 * - Tunnel metadata as received is retained in 'flow'. This allows
2823 * tunnel metadata matching also in later tables.
2824 * Since a kernel action for setting the tunnel metadata will only be
2825 * generated with actual tunnel output, changing the tunnel metadata
2826 * values in 'flow' (such as tun_id) will only have effect with a later
2827 * tunnel output action.
2828 * - Tunnel 'base_flow' is completely cleared since that is what the
2829 * kernel does. If we wish to maintain the original values an action
2830 * needs to be generated. */
2831
2832 ctx.xin = xin;
2833 ctx.xout = xout;
2834 ctx.xout->slow = 0;
2835 ctx.xout->has_learn = false;
2836 ctx.xout->has_normal = false;
2837 ctx.xout->has_fin_timeout = false;
2838 ctx.xout->nf_output_iface = NF_OUT_DROP;
2839 ctx.xout->mirrors = 0;
2840 ofpbuf_use_stub(&ctx.xout->odp_actions, ctx.xout->odp_actions_stub,
2841 sizeof ctx.xout->odp_actions_stub);
2842 ofpbuf_reserve(&ctx.xout->odp_actions, NL_A_U32_SIZE);
2843
2844 ctx.xbridge = xbridge_lookup(xin->ofproto);
2845 if (!ctx.xbridge) {
2846 goto out;
2847 }
2848
2849 ctx.rule = xin->rule;
2850
2851 ctx.base_flow = *flow;
2852 memset(&ctx.base_flow.tunnel, 0, sizeof ctx.base_flow.tunnel);
2853 ctx.orig_tunnel_ip_dst = flow->tunnel.ip_dst;
2854
2855 flow_wildcards_init_catchall(wc);
2856 memset(&wc->masks.in_port, 0xff, sizeof wc->masks.in_port);
2857 memset(&wc->masks.skb_priority, 0xff, sizeof wc->masks.skb_priority);
2858 memset(&wc->masks.dl_type, 0xff, sizeof wc->masks.dl_type);
2859 wc->masks.nw_frag |= FLOW_NW_FRAG_MASK;
2860
2861 tnl_may_send = tnl_xlate_init(&ctx.base_flow, flow, wc);
2862 if (ctx.xbridge->has_netflow) {
2863 netflow_mask_wc(flow, wc);
2864 }
2865
2866 ctx.recurse = 0;
2867 ctx.resubmits = 0;
2868 ctx.orig_skb_priority = flow->skb_priority;
2869 ctx.table_id = 0;
2870 ctx.exit = false;
2871 ctx.mpls_depth_delta = 0;
2872
2873 if (!xin->ofpacts && !ctx.rule) {
2874 rule_dpif_lookup(ctx.xbridge->ofproto, flow, wc, &rule);
2875 if (ctx.xin->resubmit_stats) {
2876 rule_dpif_credit_stats(rule, ctx.xin->resubmit_stats);
2877 }
2878 ctx.rule = rule;
2879 }
2880 xout->fail_open = ctx.rule && rule_dpif_is_fail_open(ctx.rule);
2881
2882 if (xin->ofpacts) {
2883 ofpacts = xin->ofpacts;
2884 ofpacts_len = xin->ofpacts_len;
2885 } else if (ctx.rule) {
2886 actions = rule_dpif_get_actions(ctx.rule);
2887 ofpacts = actions->ofpacts;
2888 ofpacts_len = actions->ofpacts_len;
2889 } else {
2890 NOT_REACHED();
2891 }
2892
2893 ofpbuf_use_stub(&ctx.stack, ctx.init_stack, sizeof ctx.init_stack);
2894 ofpbuf_use_stub(&ctx.action_set,
2895 ctx.action_set_stub, sizeof ctx.action_set_stub);
2896
2897 if (mbridge_has_mirrors(ctx.xbridge->mbridge)) {
2898 /* Do this conditionally because the copy is expensive enough that it
2899 * shows up in profiles. */
2900 orig_flow = *flow;
2901 }
2902
2903 if (flow->nw_frag & FLOW_NW_FRAG_ANY) {
2904 switch (ctx.xbridge->frag) {
2905 case OFPC_FRAG_NORMAL:
2906 /* We must pretend that transport ports are unavailable. */
2907 flow->tp_src = ctx.base_flow.tp_src = htons(0);
2908 flow->tp_dst = ctx.base_flow.tp_dst = htons(0);
2909 break;
2910
2911 case OFPC_FRAG_DROP:
2912 goto out;
2913
2914 case OFPC_FRAG_REASM:
2915 NOT_REACHED();
2916
2917 case OFPC_FRAG_NX_MATCH:
2918 /* Nothing to do. */
2919 break;
2920
2921 case OFPC_INVALID_TTL_TO_CONTROLLER:
2922 NOT_REACHED();
2923 }
2924 }
2925
2926 in_port = get_ofp_port(ctx.xbridge, flow->in_port.ofp_port);
2927 special = process_special(&ctx, flow, in_port, ctx.xin->packet);
2928 if (special) {
2929 ctx.xout->slow |= special;
2930 } else {
2931 size_t sample_actions_len;
2932
2933 if (flow->in_port.ofp_port
2934 != vsp_realdev_to_vlandev(ctx.xbridge->ofproto,
2935 flow->in_port.ofp_port,
2936 flow->vlan_tci)) {
2937 ctx.base_flow.vlan_tci = 0;
2938 }
2939
2940 add_sflow_action(&ctx);
2941 add_ipfix_action(&ctx);
2942 sample_actions_len = ctx.xout->odp_actions.size;
2943
2944 if (tnl_may_send && (!in_port || may_receive(in_port, &ctx))) {
2945 do_xlate_actions(ofpacts, ofpacts_len, &ctx);
2946
2947 /* We've let OFPP_NORMAL and the learning action look at the
2948 * packet, so drop it now if forwarding is disabled. */
2949 if (in_port && !xport_stp_forward_state(in_port)) {
2950 ctx.xout->odp_actions.size = sample_actions_len;
2951 }
2952 }
2953
2954 if (ctx.action_set.size) {
2955 xlate_action_set(&ctx);
2956 }
2957
2958 if (ctx.xbridge->has_in_band
2959 && in_band_must_output_to_local_port(flow)
2960 && !actions_output_to_local_port(&ctx)) {
2961 compose_output_action(&ctx, OFPP_LOCAL);
2962 }
2963
2964 fix_sflow_action(&ctx);
2965
2966 if (mbridge_has_mirrors(ctx.xbridge->mbridge)) {
2967 add_mirror_actions(&ctx, &orig_flow);
2968 }
2969 }
2970
2971 if (nl_attr_oversized(ctx.xout->odp_actions.size)) {
2972 /* These datapath actions are too big for a Netlink attribute, so we
2973 * can't hand them to the kernel directly. dpif_execute() can execute
2974 * them one by one with help, so just mark the result as SLOW_ACTION to
2975 * prevent the flow from being installed. */
2976 COVERAGE_INC(xlate_actions_oversize);
2977 ctx.xout->slow |= SLOW_ACTION;
2978 }
2979
2980 ofpbuf_uninit(&ctx.stack);
2981 ofpbuf_uninit(&ctx.action_set);
2982
2983 /* Clear the metadata and register wildcard masks, because we won't
2984 * use non-header fields as part of the cache. */
2985 memset(&wc->masks.metadata, 0, sizeof wc->masks.metadata);
2986 memset(&wc->masks.regs, 0, sizeof wc->masks.regs);
2987
2988 out:
2989 rule_actions_unref(actions);
2990 rule_dpif_unref(rule);
2991 }
2992
2993 /* Sends 'packet' out 'ofport'.
2994 * May modify 'packet'.
2995 * Returns 0 if successful, otherwise a positive errno value. */
2996 int
2997 xlate_send_packet(const struct ofport_dpif *ofport, struct ofpbuf *packet)
2998 {
2999 struct xport *xport;
3000 struct ofpact_output output;
3001 struct flow flow;
3002 union flow_in_port in_port_;
3003 int error;
3004
3005 ofpact_init(&output.ofpact, OFPACT_OUTPUT, sizeof output);
3006 /* Use OFPP_NONE as the in_port to avoid special packet processing. */
3007 in_port_.ofp_port = OFPP_NONE;
3008 flow_extract(packet, 0, 0, NULL, &in_port_, &flow);
3009
3010 ovs_rwlock_rdlock(&xlate_rwlock);
3011 xport = xport_lookup(ofport);
3012 if (!xport) {
3013 ovs_rwlock_unlock(&xlate_rwlock);
3014 return EINVAL;
3015 }
3016 output.port = xport->ofp_port;
3017 output.max_len = 0;
3018 error = ofproto_dpif_execute_actions(xport->xbridge->ofproto, &flow, NULL,
3019 &output.ofpact, sizeof output,
3020 packet);
3021 ovs_rwlock_unlock(&xlate_rwlock);
3022 return error;
3023 }