]> git.proxmox.com Git - mirror_ovs.git/blob - ofproto/ofproto-dpif.c
ofproto-dpif: Removed unused struct facet 'hmap_node' member.
[mirror_ovs.git] / ofproto / ofproto-dpif.c
1 /*
2 * Copyright (c) 2009, 2010, 2011, 2012, 2013 Nicira, Inc.
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at:
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <config.h>
18
19 #include "ofproto/ofproto-dpif.h"
20 #include "ofproto/ofproto-provider.h"
21
22 #include <errno.h>
23
24 #include "bfd.h"
25 #include "bond.h"
26 #include "bundle.h"
27 #include "byte-order.h"
28 #include "connmgr.h"
29 #include "coverage.h"
30 #include "cfm.h"
31 #include "dpif.h"
32 #include "dynamic-string.h"
33 #include "fail-open.h"
34 #include "hmapx.h"
35 #include "lacp.h"
36 #include "learn.h"
37 #include "mac-learning.h"
38 #include "meta-flow.h"
39 #include "multipath.h"
40 #include "netdev-vport.h"
41 #include "netdev.h"
42 #include "netlink.h"
43 #include "nx-match.h"
44 #include "odp-util.h"
45 #include "odp-execute.h"
46 #include "ofp-util.h"
47 #include "ofpbuf.h"
48 #include "ofp-actions.h"
49 #include "ofp-parse.h"
50 #include "ofp-print.h"
51 #include "ofproto-dpif-governor.h"
52 #include "ofproto-dpif-ipfix.h"
53 #include "ofproto-dpif-mirror.h"
54 #include "ofproto-dpif-sflow.h"
55 #include "ofproto-dpif-upcall.h"
56 #include "ofproto-dpif-xlate.h"
57 #include "poll-loop.h"
58 #include "simap.h"
59 #include "smap.h"
60 #include "timer.h"
61 #include "tunnel.h"
62 #include "unaligned.h"
63 #include "unixctl.h"
64 #include "vlan-bitmap.h"
65 #include "vlog.h"
66
67 VLOG_DEFINE_THIS_MODULE(ofproto_dpif);
68
69 COVERAGE_DEFINE(ofproto_dpif_expired);
70 COVERAGE_DEFINE(facet_changed_rule);
71 COVERAGE_DEFINE(facet_revalidate);
72 COVERAGE_DEFINE(facet_unexpected);
73 COVERAGE_DEFINE(facet_suppress);
74 COVERAGE_DEFINE(subfacet_install_fail);
75 COVERAGE_DEFINE(packet_in_overflow);
76 COVERAGE_DEFINE(flow_mod_overflow);
77
78 /* Number of implemented OpenFlow tables. */
79 enum { N_TABLES = 255 };
80 enum { TBL_INTERNAL = N_TABLES - 1 }; /* Used for internal hidden rules. */
81 BUILD_ASSERT_DECL(N_TABLES >= 2 && N_TABLES <= 255);
82
83 struct flow_miss;
84 struct facet;
85
86 static void rule_get_stats(struct rule *, uint64_t *packets, uint64_t *bytes);
87
88 struct ofbundle {
89 struct hmap_node hmap_node; /* In struct ofproto's "bundles" hmap. */
90 struct ofproto_dpif *ofproto; /* Owning ofproto. */
91 void *aux; /* Key supplied by ofproto's client. */
92 char *name; /* Identifier for log messages. */
93
94 /* Configuration. */
95 struct list ports; /* Contains "struct ofport"s. */
96 enum port_vlan_mode vlan_mode; /* VLAN mode */
97 int vlan; /* -1=trunk port, else a 12-bit VLAN ID. */
98 unsigned long *trunks; /* Bitmap of trunked VLANs, if 'vlan' == -1.
99 * NULL if all VLANs are trunked. */
100 struct lacp *lacp; /* LACP if LACP is enabled, otherwise NULL. */
101 struct bond *bond; /* Nonnull iff more than one port. */
102 bool use_priority_tags; /* Use 802.1p tag for frames in VLAN 0? */
103
104 /* Status. */
105 bool floodable; /* True if no port has OFPUTIL_PC_NO_FLOOD set. */
106 };
107
108 static void bundle_remove(struct ofport *);
109 static void bundle_update(struct ofbundle *);
110 static void bundle_destroy(struct ofbundle *);
111 static void bundle_del_port(struct ofport_dpif *);
112 static void bundle_run(struct ofbundle *);
113 static void bundle_wait(struct ofbundle *);
114
115 static void stp_run(struct ofproto_dpif *ofproto);
116 static void stp_wait(struct ofproto_dpif *ofproto);
117 static int set_stp_port(struct ofport *,
118 const struct ofproto_port_stp_settings *);
119
120 static void compose_slow_path(const struct ofproto_dpif *, const struct flow *,
121 enum slow_path_reason,
122 uint64_t *stub, size_t stub_size,
123 const struct nlattr **actionsp,
124 size_t *actions_lenp);
125
126 /* A subfacet (see "struct subfacet" below) has three possible installation
127 * states:
128 *
129 * - SF_NOT_INSTALLED: Not installed in the datapath. This will only be the
130 * case just after the subfacet is created, just before the subfacet is
131 * destroyed, or if the datapath returns an error when we try to install a
132 * subfacet.
133 *
134 * - SF_FAST_PATH: The subfacet's actions are installed in the datapath.
135 *
136 * - SF_SLOW_PATH: An action that sends every packet for the subfacet through
137 * ofproto_dpif is installed in the datapath.
138 */
139 enum subfacet_path {
140 SF_NOT_INSTALLED, /* No datapath flow for this subfacet. */
141 SF_FAST_PATH, /* Full actions are installed. */
142 SF_SLOW_PATH, /* Send-to-userspace action is installed. */
143 };
144
145 /* A dpif flow and actions associated with a facet.
146 *
147 * See also the large comment on struct facet. */
148 struct subfacet {
149 /* Owners. */
150 struct hmap_node hmap_node; /* In struct ofproto_dpif 'subfacets' list. */
151 struct list list_node; /* In struct facet's 'facets' list. */
152 struct facet *facet; /* Owning facet. */
153 struct dpif_backer *backer; /* Owning backer. */
154
155 enum odp_key_fitness key_fitness;
156 struct nlattr *key;
157 int key_len;
158
159 long long int used; /* Time last used; time created if not used. */
160 long long int created; /* Time created. */
161
162 uint64_t dp_packet_count; /* Last known packet count in the datapath. */
163 uint64_t dp_byte_count; /* Last known byte count in the datapath. */
164
165 enum subfacet_path path; /* Installed in datapath? */
166 };
167
168 #define SUBFACET_DESTROY_MAX_BATCH 50
169
170 static struct subfacet *subfacet_create(struct facet *, struct flow_miss *);
171 static struct subfacet *subfacet_find(struct dpif_backer *,
172 const struct nlattr *key, size_t key_len,
173 uint32_t key_hash);
174 static void subfacet_destroy(struct subfacet *);
175 static void subfacet_destroy__(struct subfacet *);
176 static void subfacet_destroy_batch(struct dpif_backer *,
177 struct subfacet **, int n);
178 static void subfacet_reset_dp_stats(struct subfacet *,
179 struct dpif_flow_stats *);
180 static void subfacet_update_stats(struct subfacet *,
181 const struct dpif_flow_stats *);
182 static int subfacet_install(struct subfacet *,
183 const struct ofpbuf *odp_actions,
184 struct dpif_flow_stats *);
185 static void subfacet_uninstall(struct subfacet *);
186
187 /* A unique, non-overlapping instantiation of an OpenFlow flow.
188 *
189 * A facet associates a "struct flow", which represents the Open vSwitch
190 * userspace idea of an exact-match flow, with one or more subfacets.
191 * While the facet is created based on an exact-match flow, it is stored
192 * within the ofproto based on the wildcards that could be expressed
193 * based on the flow table and other configuration. (See the 'wc'
194 * description in "struct xlate_out" for more details.)
195 *
196 * Each subfacet tracks the datapath's idea of the flow equivalent to
197 * the facet. When the kernel module (or other dpif implementation) and
198 * Open vSwitch userspace agree on the definition of a flow key, there
199 * is exactly one subfacet per facet. If the dpif implementation
200 * supports more-specific flow matching than userspace, however, a facet
201 * can have more than one subfacet. Examples include the dpif
202 * implementation not supporting the same wildcards as userspace or some
203 * distinction in flow that userspace simply doesn't understand.
204 *
205 * Flow expiration works in terms of subfacets, so a facet must have at
206 * least one subfacet or it will never expire, leaking memory. */
207 struct facet {
208 /* Owner. */
209 struct ofproto_dpif *ofproto;
210
211 /* Owned data. */
212 struct list subfacets;
213 long long int used; /* Time last used; time created if not used. */
214
215 /* Key. */
216 struct flow flow; /* Flow of the creating subfacet. */
217 struct cls_rule cr; /* In 'ofproto_dpif's facets classifier. */
218
219 /* These statistics:
220 *
221 * - Do include packets and bytes sent "by hand", e.g. with
222 * dpif_execute().
223 *
224 * - Do include packets and bytes that were obtained from the datapath
225 * when a subfacet's statistics were reset (e.g. dpif_flow_put() with
226 * DPIF_FP_ZERO_STATS).
227 *
228 * - Do not include packets or bytes that can be obtained from the
229 * datapath for any existing subfacet.
230 */
231 uint64_t packet_count; /* Number of packets received. */
232 uint64_t byte_count; /* Number of bytes received. */
233
234 /* Resubmit statistics. */
235 uint64_t prev_packet_count; /* Number of packets from last stats push. */
236 uint64_t prev_byte_count; /* Number of bytes from last stats push. */
237 long long int prev_used; /* Used time from last stats push. */
238
239 /* Accounting. */
240 uint64_t accounted_bytes; /* Bytes processed by facet_account(). */
241 struct netflow_flow nf_flow; /* Per-flow NetFlow tracking data. */
242 uint8_t tcp_flags; /* TCP flags seen for this 'rule'. */
243
244 struct xlate_out xout;
245
246 /* Storage for a single subfacet, to reduce malloc() time and space
247 * overhead. (A facet always has at least one subfacet and in the common
248 * case has exactly one subfacet. However, 'one_subfacet' may not
249 * always be valid, since it could have been removed after newer
250 * subfacets were pushed onto the 'subfacets' list.) */
251 struct subfacet one_subfacet;
252
253 long long int learn_rl; /* Rate limiter for facet_learn(). */
254 };
255
256 static struct facet *facet_create(const struct flow_miss *);
257 static void facet_remove(struct facet *);
258 static void facet_free(struct facet *);
259
260 static struct facet *facet_find(struct ofproto_dpif *, const struct flow *);
261 static struct facet *facet_lookup_valid(struct ofproto_dpif *,
262 const struct flow *);
263 static bool facet_revalidate(struct facet *);
264 static bool facet_check_consistency(struct facet *);
265
266 static void facet_flush_stats(struct facet *);
267
268 static void facet_reset_counters(struct facet *);
269 static void flow_push_stats(struct ofproto_dpif *, struct flow *,
270 struct dpif_flow_stats *, bool may_learn);
271 static void facet_push_stats(struct facet *, bool may_learn);
272 static void facet_learn(struct facet *);
273 static void facet_account(struct facet *);
274 static void push_all_stats(void);
275
276 static bool facet_is_controller_flow(struct facet *);
277
278 struct ofport_dpif {
279 struct hmap_node odp_port_node; /* In dpif_backer's "odp_to_ofport_map". */
280 struct ofport up;
281
282 odp_port_t odp_port;
283 struct ofbundle *bundle; /* Bundle that contains this port, if any. */
284 struct list bundle_node; /* In struct ofbundle's "ports" list. */
285 struct cfm *cfm; /* Connectivity Fault Management, if any. */
286 struct bfd *bfd; /* BFD, if any. */
287 bool may_enable; /* May be enabled in bonds. */
288 bool is_tunnel; /* This port is a tunnel. */
289 long long int carrier_seq; /* Carrier status changes. */
290 struct ofport_dpif *peer; /* Peer if patch port. */
291
292 /* Spanning tree. */
293 struct stp_port *stp_port; /* Spanning Tree Protocol, if any. */
294 enum stp_state stp_state; /* Always STP_DISABLED if STP not in use. */
295 long long int stp_state_entered;
296
297 /* Queue to DSCP mapping. */
298 struct ofproto_port_queue *qdscp;
299 size_t n_qdscp;
300
301 /* Linux VLAN device support (e.g. "eth0.10" for VLAN 10.)
302 *
303 * This is deprecated. It is only for compatibility with broken device
304 * drivers in old versions of Linux that do not properly support VLANs when
305 * VLAN devices are not used. When broken device drivers are no longer in
306 * widespread use, we will delete these interfaces. */
307 ofp_port_t realdev_ofp_port;
308 int vlandev_vid;
309 };
310
311 /* Linux VLAN device support (e.g. "eth0.10" for VLAN 10.)
312 *
313 * This is deprecated. It is only for compatibility with broken device drivers
314 * in old versions of Linux that do not properly support VLANs when VLAN
315 * devices are not used. When broken device drivers are no longer in
316 * widespread use, we will delete these interfaces. */
317 struct vlan_splinter {
318 struct hmap_node realdev_vid_node;
319 struct hmap_node vlandev_node;
320 ofp_port_t realdev_ofp_port;
321 ofp_port_t vlandev_ofp_port;
322 int vid;
323 };
324
325 static void vsp_remove(struct ofport_dpif *);
326 static void vsp_add(struct ofport_dpif *, ofp_port_t realdev_ofp_port, int vid);
327
328 static odp_port_t ofp_port_to_odp_port(const struct ofproto_dpif *,
329 ofp_port_t);
330
331 static ofp_port_t odp_port_to_ofp_port(const struct ofproto_dpif *,
332 odp_port_t);
333
334 static struct ofport_dpif *
335 ofport_dpif_cast(const struct ofport *ofport)
336 {
337 return ofport ? CONTAINER_OF(ofport, struct ofport_dpif, up) : NULL;
338 }
339
340 static void port_run(struct ofport_dpif *);
341 static void port_run_fast(struct ofport_dpif *);
342 static void port_wait(struct ofport_dpif *);
343 static int set_bfd(struct ofport *, const struct smap *);
344 static int set_cfm(struct ofport *, const struct cfm_settings *);
345 static void ofport_update_peer(struct ofport_dpif *);
346 static void run_fast_rl(void);
347 static int run_fast(struct ofproto *);
348
349 struct dpif_completion {
350 struct list list_node;
351 struct ofoperation *op;
352 };
353
354 /* Reasons that we might need to revalidate every facet, and corresponding
355 * coverage counters.
356 *
357 * A value of 0 means that there is no need to revalidate.
358 *
359 * It would be nice to have some cleaner way to integrate with coverage
360 * counters, but with only a few reasons I guess this is good enough for
361 * now. */
362 enum revalidate_reason {
363 REV_RECONFIGURE = 1, /* Switch configuration changed. */
364 REV_STP, /* Spanning tree protocol port status change. */
365 REV_BOND, /* Bonding changed. */
366 REV_PORT_TOGGLED, /* Port enabled or disabled by CFM, LACP, ...*/
367 REV_FLOW_TABLE, /* Flow table changed. */
368 REV_MAC_LEARNING, /* Mac learning changed. */
369 REV_INCONSISTENCY /* Facet self-check failed. */
370 };
371 COVERAGE_DEFINE(rev_reconfigure);
372 COVERAGE_DEFINE(rev_stp);
373 COVERAGE_DEFINE(rev_bond);
374 COVERAGE_DEFINE(rev_port_toggled);
375 COVERAGE_DEFINE(rev_flow_table);
376 COVERAGE_DEFINE(rev_mac_learning);
377 COVERAGE_DEFINE(rev_inconsistency);
378
379 struct avg_subfacet_rates {
380 double add_rate; /* Moving average of new flows created per minute. */
381 double del_rate; /* Moving average of flows deleted per minute. */
382 };
383
384 /* All datapaths of a given type share a single dpif backer instance. */
385 struct dpif_backer {
386 char *type;
387 int refcount;
388 struct dpif *dpif;
389 struct udpif *udpif;
390 struct timer next_expiration;
391
392 struct ovs_rwlock odp_to_ofport_lock;
393 struct hmap odp_to_ofport_map OVS_GUARDED; /* ODP port to ofport map. */
394
395 struct simap tnl_backers; /* Set of dpif ports backing tunnels. */
396
397 /* Facet revalidation flags applying to facets which use this backer. */
398 enum revalidate_reason need_revalidate; /* Revalidate every facet. */
399
400 struct hmap drop_keys; /* Set of dropped odp keys. */
401 bool recv_set_enable; /* Enables or disables receiving packets. */
402
403 struct hmap subfacets;
404 struct governor *governor;
405
406 /* Subfacet statistics.
407 *
408 * These keep track of the total number of subfacets added and deleted and
409 * flow life span. They are useful for computing the flow rates stats
410 * exposed via "ovs-appctl dpif/show". The goal is to learn about
411 * traffic patterns in ways that we can use later to improve Open vSwitch
412 * performance in new situations. */
413 long long int created; /* Time when it is created. */
414 unsigned max_n_subfacet; /* Maximum number of flows */
415 unsigned avg_n_subfacet; /* Average number of flows. */
416 long long int avg_subfacet_life; /* Average life span of subfacets. */
417
418 /* The average number of subfacets... */
419 struct avg_subfacet_rates hourly; /* ...over the last hour. */
420 struct avg_subfacet_rates daily; /* ...over the last day. */
421 struct avg_subfacet_rates lifetime; /* ...over the switch lifetime. */
422 long long int last_minute; /* Last time 'hourly' was updated. */
423
424 /* Number of subfacets added or deleted since 'last_minute'. */
425 unsigned subfacet_add_count;
426 unsigned subfacet_del_count;
427
428 /* Number of subfacets added or deleted from 'created' to 'last_minute.' */
429 unsigned long long int total_subfacet_add_count;
430 unsigned long long int total_subfacet_del_count;
431
432 /* Number of upcall handling threads. */
433 unsigned int n_handler_threads;
434 };
435
436 /* All existing ofproto_backer instances, indexed by ofproto->up.type. */
437 static struct shash all_dpif_backers = SHASH_INITIALIZER(&all_dpif_backers);
438
439 static void drop_key_clear(struct dpif_backer *);
440 static void update_moving_averages(struct dpif_backer *backer);
441
442 struct ofproto_dpif {
443 struct hmap_node all_ofproto_dpifs_node; /* In 'all_ofproto_dpifs'. */
444 struct ofproto up;
445 struct dpif_backer *backer;
446
447 /* Special OpenFlow rules. */
448 struct rule_dpif *miss_rule; /* Sends flow table misses to controller. */
449 struct rule_dpif *no_packet_in_rule; /* Drops flow table misses. */
450 struct rule_dpif *drop_frags_rule; /* Used in OFPC_FRAG_DROP mode. */
451
452 /* Bridging. */
453 struct netflow *netflow;
454 struct dpif_sflow *sflow;
455 struct dpif_ipfix *ipfix;
456 struct hmap bundles; /* Contains "struct ofbundle"s. */
457 struct mac_learning *ml;
458 bool has_bonded_bundles;
459 struct mbridge *mbridge;
460
461 /* Facets. */
462 struct classifier facets; /* Contains 'struct facet's. */
463 long long int consistency_rl;
464
465 /* Support for debugging async flow mods. */
466 struct list completions;
467
468 struct netdev_stats stats; /* To account packets generated and consumed in
469 * userspace. */
470
471 /* Spanning tree. */
472 struct stp *stp;
473 long long int stp_last_tick;
474
475 /* VLAN splinters. */
476 struct ovs_mutex vsp_mutex;
477 struct hmap realdev_vid_map OVS_GUARDED; /* (realdev,vid) -> vlandev. */
478 struct hmap vlandev_map OVS_GUARDED; /* vlandev -> (realdev,vid). */
479
480 /* Ports. */
481 struct sset ports; /* Set of standard port names. */
482 struct sset ghost_ports; /* Ports with no datapath port. */
483 struct sset port_poll_set; /* Queued names for port_poll() reply. */
484 int port_poll_errno; /* Last errno for port_poll() reply. */
485
486 /* Per ofproto's dpif stats. */
487 uint64_t n_hit;
488 uint64_t n_missed;
489
490 /* Work queues. */
491 struct ovs_mutex flow_mod_mutex;
492 struct list flow_mods OVS_GUARDED;
493 size_t n_flow_mods OVS_GUARDED;
494
495 struct ovs_mutex pin_mutex;
496 struct list pins OVS_GUARDED;
497 size_t n_pins OVS_GUARDED;
498 };
499
500 /* Defer flow mod completion until "ovs-appctl ofproto/unclog"? (Useful only
501 * for debugging the asynchronous flow_mod implementation.) */
502 static bool clogged;
503
504 /* By default, flows in the datapath are wildcarded (megaflows). They
505 * may be disabled with the "ovs-appctl dpif/disable-megaflows" command. */
506 static bool enable_megaflows = true;
507
508 /* All existing ofproto_dpif instances, indexed by ->up.name. */
509 static struct hmap all_ofproto_dpifs = HMAP_INITIALIZER(&all_ofproto_dpifs);
510
511 static void ofproto_dpif_unixctl_init(void);
512
513 static inline struct ofproto_dpif *
514 ofproto_dpif_cast(const struct ofproto *ofproto)
515 {
516 ovs_assert(ofproto->ofproto_class == &ofproto_dpif_class);
517 return CONTAINER_OF(ofproto, struct ofproto_dpif, up);
518 }
519
520 static struct ofport_dpif *get_ofp_port(const struct ofproto_dpif *ofproto,
521 ofp_port_t ofp_port);
522 static void ofproto_trace(struct ofproto_dpif *, const struct flow *,
523 const struct ofpbuf *packet, struct ds *);
524
525 /* Upcalls. */
526 static void handle_upcalls(struct dpif_backer *);
527
528 /* Flow expiration. */
529 static int expire(struct dpif_backer *);
530
531 /* NetFlow. */
532 static void send_netflow_active_timeouts(struct ofproto_dpif *);
533
534 /* Utilities. */
535 static int send_packet(const struct ofport_dpif *, struct ofpbuf *packet);
536
537 /* Global variables. */
538 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
539
540 /* Initial mappings of port to bridge mappings. */
541 static struct shash init_ofp_ports = SHASH_INITIALIZER(&init_ofp_ports);
542
543 /* Executes and takes ownership of 'fm'. */
544 void
545 ofproto_dpif_flow_mod(struct ofproto_dpif *ofproto,
546 struct ofputil_flow_mod *fm)
547 {
548 ovs_mutex_lock(&ofproto->flow_mod_mutex);
549 if (ofproto->n_flow_mods > 1024) {
550 ovs_mutex_unlock(&ofproto->flow_mod_mutex);
551 COVERAGE_INC(flow_mod_overflow);
552 free(fm->ofpacts);
553 free(fm);
554 return;
555 }
556
557 list_push_back(&ofproto->flow_mods, &fm->list_node);
558 ofproto->n_flow_mods++;
559 ovs_mutex_unlock(&ofproto->flow_mod_mutex);
560 }
561
562 /* Appends 'pin' to the queue of "packet ins" to be sent to the controller.
563 * Takes ownership of 'pin' and pin->packet. */
564 void
565 ofproto_dpif_send_packet_in(struct ofproto_dpif *ofproto,
566 struct ofputil_packet_in *pin)
567 {
568 ovs_mutex_lock(&ofproto->pin_mutex);
569 if (ofproto->n_pins > 1024) {
570 ovs_mutex_unlock(&ofproto->pin_mutex);
571 COVERAGE_INC(packet_in_overflow);
572 free(CONST_CAST(void *, pin->packet));
573 free(pin);
574 return;
575 }
576
577 list_push_back(&ofproto->pins, &pin->list_node);
578 ofproto->n_pins++;
579 ovs_mutex_unlock(&ofproto->pin_mutex);
580 }
581 \f
582 /* Factory functions. */
583
584 static void
585 init(const struct shash *iface_hints)
586 {
587 struct shash_node *node;
588
589 /* Make a local copy, since we don't own 'iface_hints' elements. */
590 SHASH_FOR_EACH(node, iface_hints) {
591 const struct iface_hint *orig_hint = node->data;
592 struct iface_hint *new_hint = xmalloc(sizeof *new_hint);
593
594 new_hint->br_name = xstrdup(orig_hint->br_name);
595 new_hint->br_type = xstrdup(orig_hint->br_type);
596 new_hint->ofp_port = orig_hint->ofp_port;
597
598 shash_add(&init_ofp_ports, node->name, new_hint);
599 }
600 }
601
602 static void
603 enumerate_types(struct sset *types)
604 {
605 dp_enumerate_types(types);
606 }
607
608 static int
609 enumerate_names(const char *type, struct sset *names)
610 {
611 struct ofproto_dpif *ofproto;
612
613 sset_clear(names);
614 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
615 if (strcmp(type, ofproto->up.type)) {
616 continue;
617 }
618 sset_add(names, ofproto->up.name);
619 }
620
621 return 0;
622 }
623
624 static int
625 del(const char *type, const char *name)
626 {
627 struct dpif *dpif;
628 int error;
629
630 error = dpif_open(name, type, &dpif);
631 if (!error) {
632 error = dpif_delete(dpif);
633 dpif_close(dpif);
634 }
635 return error;
636 }
637 \f
638 static const char *
639 port_open_type(const char *datapath_type, const char *port_type)
640 {
641 return dpif_port_open_type(datapath_type, port_type);
642 }
643
644 /* Type functions. */
645
646 static void process_dpif_port_changes(struct dpif_backer *);
647 static void process_dpif_all_ports_changed(struct dpif_backer *);
648 static void process_dpif_port_change(struct dpif_backer *,
649 const char *devname);
650 static void process_dpif_port_error(struct dpif_backer *, int error);
651
652 static struct ofproto_dpif *
653 lookup_ofproto_dpif_by_port_name(const char *name)
654 {
655 struct ofproto_dpif *ofproto;
656
657 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
658 if (sset_contains(&ofproto->ports, name)) {
659 return ofproto;
660 }
661 }
662
663 return NULL;
664 }
665
666 static int
667 type_run(const char *type)
668 {
669 static long long int push_timer = LLONG_MIN;
670 struct dpif_backer *backer;
671
672 backer = shash_find_data(&all_dpif_backers, type);
673 if (!backer) {
674 /* This is not necessarily a problem, since backers are only
675 * created on demand. */
676 return 0;
677 }
678
679 dpif_run(backer->dpif);
680
681 /* The most natural place to push facet statistics is when they're pulled
682 * from the datapath. However, when there are many flows in the datapath,
683 * this expensive operation can occur so frequently, that it reduces our
684 * ability to quickly set up flows. To reduce the cost, we push statistics
685 * here instead. */
686 if (time_msec() > push_timer) {
687 push_timer = time_msec() + 2000;
688 push_all_stats();
689 }
690
691 /* If vswitchd started with other_config:flow_restore_wait set as "true",
692 * and the configuration has now changed to "false", enable receiving
693 * packets from the datapath. */
694 if (!backer->recv_set_enable && !ofproto_get_flow_restore_wait()) {
695 int error;
696
697 backer->recv_set_enable = true;
698
699 error = dpif_recv_set(backer->dpif, backer->recv_set_enable);
700 if (error) {
701 udpif_recv_set(backer->udpif, 0, false);
702 VLOG_ERR("Failed to enable receiving packets in dpif.");
703 return error;
704 }
705 udpif_recv_set(backer->udpif, n_handler_threads,
706 backer->recv_set_enable);
707 dpif_flow_flush(backer->dpif);
708 backer->need_revalidate = REV_RECONFIGURE;
709 }
710
711 /* If the n_handler_threads is reconfigured, call udpif_recv_set()
712 * to reset the handler threads. */
713 if (backer->n_handler_threads != n_handler_threads) {
714 udpif_recv_set(backer->udpif, n_handler_threads,
715 backer->recv_set_enable);
716 backer->n_handler_threads = n_handler_threads;
717 }
718
719 if (backer->need_revalidate) {
720 struct ofproto_dpif *ofproto;
721 struct simap_node *node;
722 struct simap tmp_backers;
723
724 /* Handle tunnel garbage collection. */
725 simap_init(&tmp_backers);
726 simap_swap(&backer->tnl_backers, &tmp_backers);
727
728 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
729 struct ofport_dpif *iter;
730
731 if (backer != ofproto->backer) {
732 continue;
733 }
734
735 HMAP_FOR_EACH (iter, up.hmap_node, &ofproto->up.ports) {
736 char namebuf[NETDEV_VPORT_NAME_BUFSIZE];
737 const char *dp_port;
738
739 if (!iter->is_tunnel) {
740 continue;
741 }
742
743 dp_port = netdev_vport_get_dpif_port(iter->up.netdev,
744 namebuf, sizeof namebuf);
745 node = simap_find(&tmp_backers, dp_port);
746 if (node) {
747 simap_put(&backer->tnl_backers, dp_port, node->data);
748 simap_delete(&tmp_backers, node);
749 node = simap_find(&backer->tnl_backers, dp_port);
750 } else {
751 node = simap_find(&backer->tnl_backers, dp_port);
752 if (!node) {
753 odp_port_t odp_port = ODPP_NONE;
754
755 if (!dpif_port_add(backer->dpif, iter->up.netdev,
756 &odp_port)) {
757 simap_put(&backer->tnl_backers, dp_port,
758 odp_to_u32(odp_port));
759 node = simap_find(&backer->tnl_backers, dp_port);
760 }
761 }
762 }
763
764 iter->odp_port = node ? u32_to_odp(node->data) : ODPP_NONE;
765 if (tnl_port_reconfigure(iter, iter->up.netdev,
766 iter->odp_port)) {
767 backer->need_revalidate = REV_RECONFIGURE;
768 }
769 }
770 }
771
772 SIMAP_FOR_EACH (node, &tmp_backers) {
773 dpif_port_del(backer->dpif, u32_to_odp(node->data));
774 }
775 simap_destroy(&tmp_backers);
776
777 switch (backer->need_revalidate) {
778 case REV_RECONFIGURE: COVERAGE_INC(rev_reconfigure); break;
779 case REV_STP: COVERAGE_INC(rev_stp); break;
780 case REV_BOND: COVERAGE_INC(rev_bond); break;
781 case REV_PORT_TOGGLED: COVERAGE_INC(rev_port_toggled); break;
782 case REV_FLOW_TABLE: COVERAGE_INC(rev_flow_table); break;
783 case REV_MAC_LEARNING: COVERAGE_INC(rev_mac_learning); break;
784 case REV_INCONSISTENCY: COVERAGE_INC(rev_inconsistency); break;
785 }
786 backer->need_revalidate = 0;
787
788 /* Clear the drop_keys in case we should now be accepting some
789 * formerly dropped flows. */
790 drop_key_clear(backer);
791
792 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
793 struct facet *facet, *next;
794 struct ofport_dpif *ofport;
795 struct cls_cursor cursor;
796 struct ofbundle *bundle;
797
798 if (ofproto->backer != backer) {
799 continue;
800 }
801
802 ovs_rwlock_wrlock(&xlate_rwlock);
803 xlate_ofproto_set(ofproto, ofproto->up.name,
804 ofproto->backer->dpif, ofproto->miss_rule,
805 ofproto->no_packet_in_rule, ofproto->ml,
806 ofproto->stp, ofproto->mbridge,
807 ofproto->sflow, ofproto->ipfix,
808 ofproto->up.frag_handling,
809 ofproto->up.forward_bpdu,
810 connmgr_has_in_band(ofproto->up.connmgr),
811 ofproto->netflow != NULL);
812
813 HMAP_FOR_EACH (bundle, hmap_node, &ofproto->bundles) {
814 xlate_bundle_set(ofproto, bundle, bundle->name,
815 bundle->vlan_mode, bundle->vlan,
816 bundle->trunks, bundle->use_priority_tags,
817 bundle->bond, bundle->lacp,
818 bundle->floodable);
819 }
820
821 HMAP_FOR_EACH (ofport, up.hmap_node, &ofproto->up.ports) {
822 int stp_port = ofport->stp_port
823 ? stp_port_no(ofport->stp_port)
824 : 0;
825 xlate_ofport_set(ofproto, ofport->bundle, ofport,
826 ofport->up.ofp_port, ofport->odp_port,
827 ofport->up.netdev, ofport->cfm,
828 ofport->bfd, ofport->peer, stp_port,
829 ofport->qdscp, ofport->n_qdscp,
830 ofport->up.pp.config, ofport->is_tunnel,
831 ofport->may_enable);
832 }
833 ovs_rwlock_unlock(&xlate_rwlock);
834
835 /* Only ofproto-dpif cares about the facet classifier so we just
836 * lock cls_cursor_init() to appease the thread safety analysis. */
837 ovs_rwlock_rdlock(&ofproto->facets.rwlock);
838 cls_cursor_init(&cursor, &ofproto->facets, NULL);
839 ovs_rwlock_unlock(&ofproto->facets.rwlock);
840 CLS_CURSOR_FOR_EACH_SAFE (facet, next, cr, &cursor) {
841 facet_revalidate(facet);
842 run_fast_rl();
843 }
844 }
845
846 udpif_revalidate(backer->udpif);
847 }
848
849 if (!backer->recv_set_enable) {
850 /* Wake up before a max of 1000ms. */
851 timer_set_duration(&backer->next_expiration, 1000);
852 } else if (timer_expired(&backer->next_expiration)) {
853 int delay = expire(backer);
854 timer_set_duration(&backer->next_expiration, delay);
855 }
856
857 process_dpif_port_changes(backer);
858
859 if (backer->governor) {
860 size_t n_subfacets;
861
862 governor_run(backer->governor);
863
864 /* If the governor has shrunk to its minimum size and the number of
865 * subfacets has dwindled, then drop the governor entirely.
866 *
867 * For hysteresis, the number of subfacets to drop the governor is
868 * smaller than the number needed to trigger its creation. */
869 n_subfacets = hmap_count(&backer->subfacets);
870 if (n_subfacets * 4 < flow_eviction_threshold
871 && governor_is_idle(backer->governor)) {
872 governor_destroy(backer->governor);
873 backer->governor = NULL;
874 }
875 }
876
877 return 0;
878 }
879
880 /* Check for and handle port changes in 'backer''s dpif. */
881 static void
882 process_dpif_port_changes(struct dpif_backer *backer)
883 {
884 for (;;) {
885 char *devname;
886 int error;
887
888 error = dpif_port_poll(backer->dpif, &devname);
889 switch (error) {
890 case EAGAIN:
891 return;
892
893 case ENOBUFS:
894 process_dpif_all_ports_changed(backer);
895 break;
896
897 case 0:
898 process_dpif_port_change(backer, devname);
899 free(devname);
900 break;
901
902 default:
903 process_dpif_port_error(backer, error);
904 break;
905 }
906 }
907 }
908
909 static void
910 process_dpif_all_ports_changed(struct dpif_backer *backer)
911 {
912 struct ofproto_dpif *ofproto;
913 struct dpif_port dpif_port;
914 struct dpif_port_dump dump;
915 struct sset devnames;
916 const char *devname;
917
918 sset_init(&devnames);
919 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
920 if (ofproto->backer == backer) {
921 struct ofport *ofport;
922
923 HMAP_FOR_EACH (ofport, hmap_node, &ofproto->up.ports) {
924 sset_add(&devnames, netdev_get_name(ofport->netdev));
925 }
926 }
927 }
928 DPIF_PORT_FOR_EACH (&dpif_port, &dump, backer->dpif) {
929 sset_add(&devnames, dpif_port.name);
930 }
931
932 SSET_FOR_EACH (devname, &devnames) {
933 process_dpif_port_change(backer, devname);
934 }
935 sset_destroy(&devnames);
936 }
937
938 static void
939 process_dpif_port_change(struct dpif_backer *backer, const char *devname)
940 {
941 struct ofproto_dpif *ofproto;
942 struct dpif_port port;
943
944 /* Don't report on the datapath's device. */
945 if (!strcmp(devname, dpif_base_name(backer->dpif))) {
946 return;
947 }
948
949 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node,
950 &all_ofproto_dpifs) {
951 if (simap_contains(&ofproto->backer->tnl_backers, devname)) {
952 return;
953 }
954 }
955
956 ofproto = lookup_ofproto_dpif_by_port_name(devname);
957 if (dpif_port_query_by_name(backer->dpif, devname, &port)) {
958 /* The port was removed. If we know the datapath,
959 * report it through poll_set(). If we don't, it may be
960 * notifying us of a removal we initiated, so ignore it.
961 * If there's a pending ENOBUFS, let it stand, since
962 * everything will be reevaluated. */
963 if (ofproto && ofproto->port_poll_errno != ENOBUFS) {
964 sset_add(&ofproto->port_poll_set, devname);
965 ofproto->port_poll_errno = 0;
966 }
967 } else if (!ofproto) {
968 /* The port was added, but we don't know with which
969 * ofproto we should associate it. Delete it. */
970 dpif_port_del(backer->dpif, port.port_no);
971 } else {
972 struct ofport_dpif *ofport;
973
974 ofport = ofport_dpif_cast(shash_find_data(
975 &ofproto->up.port_by_name, devname));
976 if (ofport
977 && ofport->odp_port != port.port_no
978 && !odp_port_to_ofport(backer, port.port_no))
979 {
980 /* 'ofport''s datapath port number has changed from
981 * 'ofport->odp_port' to 'port.port_no'. Update our internal data
982 * structures to match. */
983 ovs_rwlock_wrlock(&backer->odp_to_ofport_lock);
984 hmap_remove(&backer->odp_to_ofport_map, &ofport->odp_port_node);
985 ofport->odp_port = port.port_no;
986 hmap_insert(&backer->odp_to_ofport_map, &ofport->odp_port_node,
987 hash_odp_port(port.port_no));
988 ovs_rwlock_unlock(&backer->odp_to_ofport_lock);
989 backer->need_revalidate = REV_RECONFIGURE;
990 }
991 }
992 dpif_port_destroy(&port);
993 }
994
995 /* Propagate 'error' to all ofprotos based on 'backer'. */
996 static void
997 process_dpif_port_error(struct dpif_backer *backer, int error)
998 {
999 struct ofproto_dpif *ofproto;
1000
1001 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
1002 if (ofproto->backer == backer) {
1003 sset_clear(&ofproto->port_poll_set);
1004 ofproto->port_poll_errno = error;
1005 }
1006 }
1007 }
1008
1009 static int
1010 dpif_backer_run_fast(struct dpif_backer *backer)
1011 {
1012 udpif_run(backer->udpif);
1013 handle_upcalls(backer);
1014
1015 return 0;
1016 }
1017
1018 static int
1019 type_run_fast(const char *type)
1020 {
1021 struct dpif_backer *backer;
1022
1023 backer = shash_find_data(&all_dpif_backers, type);
1024 if (!backer) {
1025 /* This is not necessarily a problem, since backers are only
1026 * created on demand. */
1027 return 0;
1028 }
1029
1030 return dpif_backer_run_fast(backer);
1031 }
1032
1033 static void
1034 run_fast_rl(void)
1035 {
1036 static long long int port_rl = LLONG_MIN;
1037
1038 if (time_msec() >= port_rl) {
1039 struct ofproto_dpif *ofproto;
1040
1041 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
1042 run_fast(&ofproto->up);
1043 }
1044 port_rl = time_msec() + 200;
1045 }
1046 }
1047
1048 static void
1049 type_wait(const char *type)
1050 {
1051 struct dpif_backer *backer;
1052
1053 backer = shash_find_data(&all_dpif_backers, type);
1054 if (!backer) {
1055 /* This is not necessarily a problem, since backers are only
1056 * created on demand. */
1057 return;
1058 }
1059
1060 if (backer->governor) {
1061 governor_wait(backer->governor);
1062 }
1063
1064 timer_wait(&backer->next_expiration);
1065 dpif_wait(backer->dpif);
1066 udpif_wait(backer->udpif);
1067 }
1068 \f
1069 /* Basic life-cycle. */
1070
1071 static int add_internal_flows(struct ofproto_dpif *);
1072
1073 static struct ofproto *
1074 alloc(void)
1075 {
1076 struct ofproto_dpif *ofproto = xmalloc(sizeof *ofproto);
1077 return &ofproto->up;
1078 }
1079
1080 static void
1081 dealloc(struct ofproto *ofproto_)
1082 {
1083 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1084 free(ofproto);
1085 }
1086
1087 static void
1088 close_dpif_backer(struct dpif_backer *backer)
1089 {
1090 struct shash_node *node;
1091
1092 ovs_assert(backer->refcount > 0);
1093
1094 if (--backer->refcount) {
1095 return;
1096 }
1097
1098 drop_key_clear(backer);
1099 hmap_destroy(&backer->drop_keys);
1100
1101 simap_destroy(&backer->tnl_backers);
1102 ovs_rwlock_destroy(&backer->odp_to_ofport_lock);
1103 hmap_destroy(&backer->odp_to_ofport_map);
1104 node = shash_find(&all_dpif_backers, backer->type);
1105 free(backer->type);
1106 shash_delete(&all_dpif_backers, node);
1107 udpif_destroy(backer->udpif);
1108 dpif_close(backer->dpif);
1109
1110 ovs_assert(hmap_is_empty(&backer->subfacets));
1111 hmap_destroy(&backer->subfacets);
1112 governor_destroy(backer->governor);
1113
1114 free(backer);
1115 }
1116
1117 /* Datapath port slated for removal from datapath. */
1118 struct odp_garbage {
1119 struct list list_node;
1120 odp_port_t odp_port;
1121 };
1122
1123 static int
1124 open_dpif_backer(const char *type, struct dpif_backer **backerp)
1125 {
1126 struct dpif_backer *backer;
1127 struct dpif_port_dump port_dump;
1128 struct dpif_port port;
1129 struct shash_node *node;
1130 struct list garbage_list;
1131 struct odp_garbage *garbage, *next;
1132 struct sset names;
1133 char *backer_name;
1134 const char *name;
1135 int error;
1136
1137 backer = shash_find_data(&all_dpif_backers, type);
1138 if (backer) {
1139 backer->refcount++;
1140 *backerp = backer;
1141 return 0;
1142 }
1143
1144 backer_name = xasprintf("ovs-%s", type);
1145
1146 /* Remove any existing datapaths, since we assume we're the only
1147 * userspace controlling the datapath. */
1148 sset_init(&names);
1149 dp_enumerate_names(type, &names);
1150 SSET_FOR_EACH(name, &names) {
1151 struct dpif *old_dpif;
1152
1153 /* Don't remove our backer if it exists. */
1154 if (!strcmp(name, backer_name)) {
1155 continue;
1156 }
1157
1158 if (dpif_open(name, type, &old_dpif)) {
1159 VLOG_WARN("couldn't open old datapath %s to remove it", name);
1160 } else {
1161 dpif_delete(old_dpif);
1162 dpif_close(old_dpif);
1163 }
1164 }
1165 sset_destroy(&names);
1166
1167 backer = xmalloc(sizeof *backer);
1168
1169 error = dpif_create_and_open(backer_name, type, &backer->dpif);
1170 free(backer_name);
1171 if (error) {
1172 VLOG_ERR("failed to open datapath of type %s: %s", type,
1173 ovs_strerror(error));
1174 free(backer);
1175 return error;
1176 }
1177 backer->udpif = udpif_create(backer, backer->dpif);
1178
1179 backer->type = xstrdup(type);
1180 backer->governor = NULL;
1181 backer->refcount = 1;
1182 hmap_init(&backer->odp_to_ofport_map);
1183 ovs_rwlock_init(&backer->odp_to_ofport_lock);
1184 hmap_init(&backer->drop_keys);
1185 hmap_init(&backer->subfacets);
1186 timer_set_duration(&backer->next_expiration, 1000);
1187 backer->need_revalidate = 0;
1188 simap_init(&backer->tnl_backers);
1189 backer->recv_set_enable = !ofproto_get_flow_restore_wait();
1190 *backerp = backer;
1191
1192 if (backer->recv_set_enable) {
1193 dpif_flow_flush(backer->dpif);
1194 }
1195
1196 /* Loop through the ports already on the datapath and remove any
1197 * that we don't need anymore. */
1198 list_init(&garbage_list);
1199 dpif_port_dump_start(&port_dump, backer->dpif);
1200 while (dpif_port_dump_next(&port_dump, &port)) {
1201 node = shash_find(&init_ofp_ports, port.name);
1202 if (!node && strcmp(port.name, dpif_base_name(backer->dpif))) {
1203 garbage = xmalloc(sizeof *garbage);
1204 garbage->odp_port = port.port_no;
1205 list_push_front(&garbage_list, &garbage->list_node);
1206 }
1207 }
1208 dpif_port_dump_done(&port_dump);
1209
1210 LIST_FOR_EACH_SAFE (garbage, next, list_node, &garbage_list) {
1211 dpif_port_del(backer->dpif, garbage->odp_port);
1212 list_remove(&garbage->list_node);
1213 free(garbage);
1214 }
1215
1216 shash_add(&all_dpif_backers, type, backer);
1217
1218 error = dpif_recv_set(backer->dpif, backer->recv_set_enable);
1219 if (error) {
1220 VLOG_ERR("failed to listen on datapath of type %s: %s",
1221 type, ovs_strerror(error));
1222 close_dpif_backer(backer);
1223 return error;
1224 }
1225 udpif_recv_set(backer->udpif, n_handler_threads,
1226 backer->recv_set_enable);
1227 backer->n_handler_threads = n_handler_threads;
1228
1229 backer->max_n_subfacet = 0;
1230 backer->created = time_msec();
1231 backer->last_minute = backer->created;
1232 memset(&backer->hourly, 0, sizeof backer->hourly);
1233 memset(&backer->daily, 0, sizeof backer->daily);
1234 memset(&backer->lifetime, 0, sizeof backer->lifetime);
1235 backer->subfacet_add_count = 0;
1236 backer->subfacet_del_count = 0;
1237 backer->total_subfacet_add_count = 0;
1238 backer->total_subfacet_del_count = 0;
1239 backer->avg_n_subfacet = 0;
1240 backer->avg_subfacet_life = 0;
1241
1242 return error;
1243 }
1244
1245 static int
1246 construct(struct ofproto *ofproto_)
1247 {
1248 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1249 struct shash_node *node, *next;
1250 uint32_t max_ports;
1251 int error;
1252
1253 error = open_dpif_backer(ofproto->up.type, &ofproto->backer);
1254 if (error) {
1255 return error;
1256 }
1257
1258 max_ports = dpif_get_max_ports(ofproto->backer->dpif);
1259 ofproto_init_max_ports(ofproto_, MIN(max_ports, ofp_to_u16(OFPP_MAX)));
1260
1261 ofproto->netflow = NULL;
1262 ofproto->sflow = NULL;
1263 ofproto->ipfix = NULL;
1264 ofproto->stp = NULL;
1265 hmap_init(&ofproto->bundles);
1266 ofproto->ml = mac_learning_create(MAC_ENTRY_DEFAULT_IDLE_TIME);
1267 ofproto->mbridge = mbridge_create();
1268 ofproto->has_bonded_bundles = false;
1269 ovs_mutex_init(&ofproto->vsp_mutex);
1270
1271 classifier_init(&ofproto->facets);
1272 ofproto->consistency_rl = LLONG_MIN;
1273
1274 list_init(&ofproto->completions);
1275
1276 ovs_mutex_init(&ofproto->flow_mod_mutex);
1277 ovs_mutex_lock(&ofproto->flow_mod_mutex);
1278 list_init(&ofproto->flow_mods);
1279 ofproto->n_flow_mods = 0;
1280 ovs_mutex_unlock(&ofproto->flow_mod_mutex);
1281
1282 ovs_mutex_init(&ofproto->pin_mutex);
1283 ovs_mutex_lock(&ofproto->pin_mutex);
1284 list_init(&ofproto->pins);
1285 ofproto->n_pins = 0;
1286 ovs_mutex_unlock(&ofproto->pin_mutex);
1287
1288 ofproto_dpif_unixctl_init();
1289
1290 hmap_init(&ofproto->vlandev_map);
1291 hmap_init(&ofproto->realdev_vid_map);
1292
1293 sset_init(&ofproto->ports);
1294 sset_init(&ofproto->ghost_ports);
1295 sset_init(&ofproto->port_poll_set);
1296 ofproto->port_poll_errno = 0;
1297
1298 SHASH_FOR_EACH_SAFE (node, next, &init_ofp_ports) {
1299 struct iface_hint *iface_hint = node->data;
1300
1301 if (!strcmp(iface_hint->br_name, ofproto->up.name)) {
1302 /* Check if the datapath already has this port. */
1303 if (dpif_port_exists(ofproto->backer->dpif, node->name)) {
1304 sset_add(&ofproto->ports, node->name);
1305 }
1306
1307 free(iface_hint->br_name);
1308 free(iface_hint->br_type);
1309 free(iface_hint);
1310 shash_delete(&init_ofp_ports, node);
1311 }
1312 }
1313
1314 hmap_insert(&all_ofproto_dpifs, &ofproto->all_ofproto_dpifs_node,
1315 hash_string(ofproto->up.name, 0));
1316 memset(&ofproto->stats, 0, sizeof ofproto->stats);
1317
1318 ofproto_init_tables(ofproto_, N_TABLES);
1319 error = add_internal_flows(ofproto);
1320 ofproto->up.tables[TBL_INTERNAL].flags = OFTABLE_HIDDEN | OFTABLE_READONLY;
1321
1322 ofproto->n_hit = 0;
1323 ofproto->n_missed = 0;
1324
1325 return error;
1326 }
1327
1328 static int
1329 add_internal_flow(struct ofproto_dpif *ofproto, int id,
1330 const struct ofpbuf *ofpacts, struct rule_dpif **rulep)
1331 {
1332 struct ofputil_flow_mod fm;
1333 int error;
1334
1335 match_init_catchall(&fm.match);
1336 fm.priority = 0;
1337 match_set_reg(&fm.match, 0, id);
1338 fm.new_cookie = htonll(0);
1339 fm.cookie = htonll(0);
1340 fm.cookie_mask = htonll(0);
1341 fm.modify_cookie = false;
1342 fm.table_id = TBL_INTERNAL;
1343 fm.command = OFPFC_ADD;
1344 fm.idle_timeout = 0;
1345 fm.hard_timeout = 0;
1346 fm.buffer_id = 0;
1347 fm.out_port = 0;
1348 fm.flags = 0;
1349 fm.ofpacts = ofpacts->data;
1350 fm.ofpacts_len = ofpacts->size;
1351
1352 error = ofproto_flow_mod(&ofproto->up, &fm);
1353 if (error) {
1354 VLOG_ERR_RL(&rl, "failed to add internal flow %d (%s)",
1355 id, ofperr_to_string(error));
1356 return error;
1357 }
1358
1359 if (rule_dpif_lookup_in_table(ofproto, &fm.match.flow, NULL, TBL_INTERNAL,
1360 rulep)) {
1361 ovs_rwlock_unlock(&(*rulep)->up.evict);
1362 } else {
1363 NOT_REACHED();
1364 }
1365
1366 return 0;
1367 }
1368
1369 static int
1370 add_internal_flows(struct ofproto_dpif *ofproto)
1371 {
1372 struct ofpact_controller *controller;
1373 uint64_t ofpacts_stub[128 / 8];
1374 struct ofpbuf ofpacts;
1375 int error;
1376 int id;
1377
1378 ofpbuf_use_stack(&ofpacts, ofpacts_stub, sizeof ofpacts_stub);
1379 id = 1;
1380
1381 controller = ofpact_put_CONTROLLER(&ofpacts);
1382 controller->max_len = UINT16_MAX;
1383 controller->controller_id = 0;
1384 controller->reason = OFPR_NO_MATCH;
1385 ofpact_pad(&ofpacts);
1386
1387 error = add_internal_flow(ofproto, id++, &ofpacts, &ofproto->miss_rule);
1388 if (error) {
1389 return error;
1390 }
1391
1392 ofpbuf_clear(&ofpacts);
1393 error = add_internal_flow(ofproto, id++, &ofpacts,
1394 &ofproto->no_packet_in_rule);
1395 if (error) {
1396 return error;
1397 }
1398
1399 error = add_internal_flow(ofproto, id++, &ofpacts,
1400 &ofproto->drop_frags_rule);
1401 return error;
1402 }
1403
1404 static void
1405 complete_operations(struct ofproto_dpif *ofproto)
1406 {
1407 struct dpif_completion *c, *next;
1408
1409 LIST_FOR_EACH_SAFE (c, next, list_node, &ofproto->completions) {
1410 ofoperation_complete(c->op, 0);
1411 list_remove(&c->list_node);
1412 free(c);
1413 }
1414 }
1415
1416 static void
1417 destruct(struct ofproto *ofproto_)
1418 {
1419 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1420 struct rule_dpif *rule, *next_rule;
1421 struct ofputil_packet_in *pin, *next_pin;
1422 struct ofputil_flow_mod *fm, *next_fm;
1423 struct facet *facet, *next_facet;
1424 struct cls_cursor cursor;
1425 struct oftable *table;
1426
1427 ovs_rwlock_rdlock(&ofproto->facets.rwlock);
1428 cls_cursor_init(&cursor, &ofproto->facets, NULL);
1429 ovs_rwlock_unlock(&ofproto->facets.rwlock);
1430 CLS_CURSOR_FOR_EACH_SAFE (facet, next_facet, cr, &cursor) {
1431 facet_remove(facet);
1432 }
1433
1434 ofproto->backer->need_revalidate = REV_RECONFIGURE;
1435 ovs_rwlock_wrlock(&xlate_rwlock);
1436 xlate_remove_ofproto(ofproto);
1437 ovs_rwlock_unlock(&xlate_rwlock);
1438
1439 flow_miss_batch_ofproto_destroyed(ofproto->backer->udpif, ofproto);
1440
1441 hmap_remove(&all_ofproto_dpifs, &ofproto->all_ofproto_dpifs_node);
1442 complete_operations(ofproto);
1443
1444 OFPROTO_FOR_EACH_TABLE (table, &ofproto->up) {
1445 struct cls_cursor cursor;
1446
1447 ovs_rwlock_wrlock(&table->cls.rwlock);
1448 cls_cursor_init(&cursor, &table->cls, NULL);
1449 CLS_CURSOR_FOR_EACH_SAFE (rule, next_rule, up.cr, &cursor) {
1450 ofproto_rule_delete(&ofproto->up, &table->cls, &rule->up);
1451 }
1452 ovs_rwlock_unlock(&table->cls.rwlock);
1453 }
1454 complete_operations(ofproto);
1455
1456 ovs_mutex_lock(&ofproto->flow_mod_mutex);
1457 LIST_FOR_EACH_SAFE (fm, next_fm, list_node, &ofproto->flow_mods) {
1458 list_remove(&fm->list_node);
1459 ofproto->n_flow_mods--;
1460 free(fm->ofpacts);
1461 free(fm);
1462 }
1463 ovs_mutex_unlock(&ofproto->flow_mod_mutex);
1464 ovs_mutex_destroy(&ofproto->flow_mod_mutex);
1465
1466 ovs_mutex_lock(&ofproto->pin_mutex);
1467 LIST_FOR_EACH_SAFE (pin, next_pin, list_node, &ofproto->pins) {
1468 list_remove(&pin->list_node);
1469 ofproto->n_pins--;
1470 free(CONST_CAST(void *, pin->packet));
1471 free(pin);
1472 }
1473 ovs_mutex_unlock(&ofproto->pin_mutex);
1474 ovs_mutex_destroy(&ofproto->pin_mutex);
1475
1476 mbridge_unref(ofproto->mbridge);
1477
1478 netflow_destroy(ofproto->netflow);
1479 dpif_sflow_unref(ofproto->sflow);
1480 hmap_destroy(&ofproto->bundles);
1481 mac_learning_unref(ofproto->ml);
1482
1483 classifier_destroy(&ofproto->facets);
1484
1485 hmap_destroy(&ofproto->vlandev_map);
1486 hmap_destroy(&ofproto->realdev_vid_map);
1487
1488 sset_destroy(&ofproto->ports);
1489 sset_destroy(&ofproto->ghost_ports);
1490 sset_destroy(&ofproto->port_poll_set);
1491
1492 ovs_mutex_destroy(&ofproto->vsp_mutex);
1493
1494 close_dpif_backer(ofproto->backer);
1495 }
1496
1497 static int
1498 run_fast(struct ofproto *ofproto_)
1499 {
1500 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1501 struct ofputil_packet_in *pin, *next_pin;
1502 struct ofputil_flow_mod *fm, *next_fm;
1503 struct list flow_mods, pins;
1504 struct ofport_dpif *ofport;
1505
1506 /* Do not perform any periodic activity required by 'ofproto' while
1507 * waiting for flow restore to complete. */
1508 if (ofproto_get_flow_restore_wait()) {
1509 return 0;
1510 }
1511
1512 ovs_mutex_lock(&ofproto->flow_mod_mutex);
1513 list_move(&flow_mods, &ofproto->flow_mods);
1514 list_init(&ofproto->flow_mods);
1515 ofproto->n_flow_mods = 0;
1516 ovs_mutex_unlock(&ofproto->flow_mod_mutex);
1517
1518 LIST_FOR_EACH_SAFE (fm, next_fm, list_node, &flow_mods) {
1519 int error = ofproto_flow_mod(&ofproto->up, fm);
1520 if (error && !VLOG_DROP_WARN(&rl)) {
1521 VLOG_WARN("learning action failed to modify flow table (%s)",
1522 ofperr_get_name(error));
1523 }
1524
1525 list_remove(&fm->list_node);
1526 free(fm->ofpacts);
1527 free(fm);
1528 }
1529
1530 ovs_mutex_lock(&ofproto->pin_mutex);
1531 list_move(&pins, &ofproto->pins);
1532 list_init(&ofproto->pins);
1533 ofproto->n_pins = 0;
1534 ovs_mutex_unlock(&ofproto->pin_mutex);
1535
1536 LIST_FOR_EACH_SAFE (pin, next_pin, list_node, &pins) {
1537 connmgr_send_packet_in(ofproto->up.connmgr, pin);
1538 list_remove(&pin->list_node);
1539 free(CONST_CAST(void *, pin->packet));
1540 free(pin);
1541 }
1542
1543 HMAP_FOR_EACH (ofport, up.hmap_node, &ofproto->up.ports) {
1544 port_run_fast(ofport);
1545 }
1546
1547 return 0;
1548 }
1549
1550 static int
1551 run(struct ofproto *ofproto_)
1552 {
1553 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1554 struct ofport_dpif *ofport;
1555 struct ofbundle *bundle;
1556 int error;
1557
1558 if (!clogged) {
1559 complete_operations(ofproto);
1560 }
1561
1562 if (mbridge_need_revalidate(ofproto->mbridge)) {
1563 ofproto->backer->need_revalidate = REV_RECONFIGURE;
1564 ovs_rwlock_wrlock(&ofproto->ml->rwlock);
1565 mac_learning_flush(ofproto->ml);
1566 ovs_rwlock_unlock(&ofproto->ml->rwlock);
1567 }
1568
1569 /* Do not perform any periodic activity below required by 'ofproto' while
1570 * waiting for flow restore to complete. */
1571 if (ofproto_get_flow_restore_wait()) {
1572 return 0;
1573 }
1574
1575 error = run_fast(ofproto_);
1576 if (error) {
1577 return error;
1578 }
1579
1580 if (ofproto->netflow) {
1581 if (netflow_run(ofproto->netflow)) {
1582 send_netflow_active_timeouts(ofproto);
1583 }
1584 }
1585 if (ofproto->sflow) {
1586 dpif_sflow_run(ofproto->sflow);
1587 }
1588 if (ofproto->ipfix) {
1589 dpif_ipfix_run(ofproto->ipfix);
1590 }
1591
1592 HMAP_FOR_EACH (ofport, up.hmap_node, &ofproto->up.ports) {
1593 port_run(ofport);
1594 }
1595 HMAP_FOR_EACH (bundle, hmap_node, &ofproto->bundles) {
1596 bundle_run(bundle);
1597 }
1598
1599 stp_run(ofproto);
1600 ovs_rwlock_wrlock(&ofproto->ml->rwlock);
1601 if (mac_learning_run(ofproto->ml)) {
1602 ofproto->backer->need_revalidate = REV_MAC_LEARNING;
1603 }
1604 ovs_rwlock_unlock(&ofproto->ml->rwlock);
1605
1606 /* Check the consistency of a random facet, to aid debugging. */
1607 ovs_rwlock_rdlock(&ofproto->facets.rwlock);
1608 if (time_msec() >= ofproto->consistency_rl
1609 && !classifier_is_empty(&ofproto->facets)
1610 && !ofproto->backer->need_revalidate) {
1611 struct cls_table *table;
1612 struct cls_rule *cr;
1613 struct facet *facet;
1614
1615 ofproto->consistency_rl = time_msec() + 250;
1616
1617 table = CONTAINER_OF(hmap_random_node(&ofproto->facets.tables),
1618 struct cls_table, hmap_node);
1619 cr = CONTAINER_OF(hmap_random_node(&table->rules), struct cls_rule,
1620 hmap_node);
1621 facet = CONTAINER_OF(cr, struct facet, cr);
1622
1623 if (!facet_check_consistency(facet)) {
1624 ofproto->backer->need_revalidate = REV_INCONSISTENCY;
1625 }
1626 }
1627 ovs_rwlock_unlock(&ofproto->facets.rwlock);
1628
1629 return 0;
1630 }
1631
1632 static void
1633 wait(struct ofproto *ofproto_)
1634 {
1635 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1636 struct ofport_dpif *ofport;
1637 struct ofbundle *bundle;
1638
1639 if (!clogged && !list_is_empty(&ofproto->completions)) {
1640 poll_immediate_wake();
1641 }
1642
1643 if (ofproto_get_flow_restore_wait()) {
1644 return;
1645 }
1646
1647 if (ofproto->sflow) {
1648 dpif_sflow_wait(ofproto->sflow);
1649 }
1650 if (ofproto->ipfix) {
1651 dpif_ipfix_wait(ofproto->ipfix);
1652 }
1653 HMAP_FOR_EACH (ofport, up.hmap_node, &ofproto->up.ports) {
1654 port_wait(ofport);
1655 }
1656 HMAP_FOR_EACH (bundle, hmap_node, &ofproto->bundles) {
1657 bundle_wait(bundle);
1658 }
1659 if (ofproto->netflow) {
1660 netflow_wait(ofproto->netflow);
1661 }
1662 ovs_rwlock_rdlock(&ofproto->ml->rwlock);
1663 mac_learning_wait(ofproto->ml);
1664 ovs_rwlock_unlock(&ofproto->ml->rwlock);
1665 stp_wait(ofproto);
1666 if (ofproto->backer->need_revalidate) {
1667 /* Shouldn't happen, but if it does just go around again. */
1668 VLOG_DBG_RL(&rl, "need revalidate in ofproto_wait_cb()");
1669 poll_immediate_wake();
1670 }
1671 }
1672
1673 static void
1674 get_memory_usage(const struct ofproto *ofproto_, struct simap *usage)
1675 {
1676 const struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1677 struct cls_cursor cursor;
1678 size_t n_subfacets = 0;
1679 struct facet *facet;
1680
1681 ovs_rwlock_rdlock(&ofproto->facets.rwlock);
1682 simap_increase(usage, "facets", classifier_count(&ofproto->facets));
1683 ovs_rwlock_unlock(&ofproto->facets.rwlock);
1684
1685 ovs_rwlock_rdlock(&ofproto->facets.rwlock);
1686 cls_cursor_init(&cursor, &ofproto->facets, NULL);
1687 CLS_CURSOR_FOR_EACH (facet, cr, &cursor) {
1688 n_subfacets += list_size(&facet->subfacets);
1689 }
1690 ovs_rwlock_unlock(&ofproto->facets.rwlock);
1691 simap_increase(usage, "subfacets", n_subfacets);
1692 }
1693
1694 static void
1695 flush(struct ofproto *ofproto_)
1696 {
1697 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1698 struct subfacet *subfacet, *next_subfacet;
1699 struct subfacet *batch[SUBFACET_DESTROY_MAX_BATCH];
1700 int n_batch;
1701
1702 n_batch = 0;
1703 HMAP_FOR_EACH_SAFE (subfacet, next_subfacet, hmap_node,
1704 &ofproto->backer->subfacets) {
1705 if (subfacet->facet->ofproto != ofproto) {
1706 continue;
1707 }
1708
1709 if (subfacet->path != SF_NOT_INSTALLED) {
1710 batch[n_batch++] = subfacet;
1711 if (n_batch >= SUBFACET_DESTROY_MAX_BATCH) {
1712 subfacet_destroy_batch(ofproto->backer, batch, n_batch);
1713 n_batch = 0;
1714 }
1715 } else {
1716 subfacet_destroy(subfacet);
1717 }
1718 }
1719
1720 if (n_batch > 0) {
1721 subfacet_destroy_batch(ofproto->backer, batch, n_batch);
1722 }
1723 }
1724
1725 static void
1726 get_features(struct ofproto *ofproto_ OVS_UNUSED,
1727 bool *arp_match_ip, enum ofputil_action_bitmap *actions)
1728 {
1729 *arp_match_ip = true;
1730 *actions = (OFPUTIL_A_OUTPUT |
1731 OFPUTIL_A_SET_VLAN_VID |
1732 OFPUTIL_A_SET_VLAN_PCP |
1733 OFPUTIL_A_STRIP_VLAN |
1734 OFPUTIL_A_SET_DL_SRC |
1735 OFPUTIL_A_SET_DL_DST |
1736 OFPUTIL_A_SET_NW_SRC |
1737 OFPUTIL_A_SET_NW_DST |
1738 OFPUTIL_A_SET_NW_TOS |
1739 OFPUTIL_A_SET_TP_SRC |
1740 OFPUTIL_A_SET_TP_DST |
1741 OFPUTIL_A_ENQUEUE);
1742 }
1743
1744 static void
1745 get_tables(struct ofproto *ofproto_, struct ofp12_table_stats *ots)
1746 {
1747 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1748 struct dpif_dp_stats s;
1749 uint64_t n_miss, n_no_pkt_in, n_bytes, n_dropped_frags;
1750 uint64_t n_lookup;
1751
1752 strcpy(ots->name, "classifier");
1753
1754 dpif_get_dp_stats(ofproto->backer->dpif, &s);
1755 rule_get_stats(&ofproto->miss_rule->up, &n_miss, &n_bytes);
1756 rule_get_stats(&ofproto->no_packet_in_rule->up, &n_no_pkt_in, &n_bytes);
1757 rule_get_stats(&ofproto->drop_frags_rule->up, &n_dropped_frags, &n_bytes);
1758
1759 n_lookup = s.n_hit + s.n_missed - n_dropped_frags;
1760 ots->lookup_count = htonll(n_lookup);
1761 ots->matched_count = htonll(n_lookup - n_miss - n_no_pkt_in);
1762 }
1763
1764 static struct ofport *
1765 port_alloc(void)
1766 {
1767 struct ofport_dpif *port = xmalloc(sizeof *port);
1768 return &port->up;
1769 }
1770
1771 static void
1772 port_dealloc(struct ofport *port_)
1773 {
1774 struct ofport_dpif *port = ofport_dpif_cast(port_);
1775 free(port);
1776 }
1777
1778 static int
1779 port_construct(struct ofport *port_)
1780 {
1781 struct ofport_dpif *port = ofport_dpif_cast(port_);
1782 struct ofproto_dpif *ofproto = ofproto_dpif_cast(port->up.ofproto);
1783 const struct netdev *netdev = port->up.netdev;
1784 char namebuf[NETDEV_VPORT_NAME_BUFSIZE];
1785 struct dpif_port dpif_port;
1786 int error;
1787
1788 ofproto->backer->need_revalidate = REV_RECONFIGURE;
1789 port->bundle = NULL;
1790 port->cfm = NULL;
1791 port->bfd = NULL;
1792 port->may_enable = true;
1793 port->stp_port = NULL;
1794 port->stp_state = STP_DISABLED;
1795 port->is_tunnel = false;
1796 port->peer = NULL;
1797 port->qdscp = NULL;
1798 port->n_qdscp = 0;
1799 port->realdev_ofp_port = 0;
1800 port->vlandev_vid = 0;
1801 port->carrier_seq = netdev_get_carrier_resets(netdev);
1802
1803 if (netdev_vport_is_patch(netdev)) {
1804 /* By bailing out here, we don't submit the port to the sFlow module
1805 * to be considered for counter polling export. This is correct
1806 * because the patch port represents an interface that sFlow considers
1807 * to be "internal" to the switch as a whole, and therefore not an
1808 * candidate for counter polling. */
1809 port->odp_port = ODPP_NONE;
1810 ofport_update_peer(port);
1811 return 0;
1812 }
1813
1814 error = dpif_port_query_by_name(ofproto->backer->dpif,
1815 netdev_vport_get_dpif_port(netdev, namebuf,
1816 sizeof namebuf),
1817 &dpif_port);
1818 if (error) {
1819 return error;
1820 }
1821
1822 port->odp_port = dpif_port.port_no;
1823
1824 if (netdev_get_tunnel_config(netdev)) {
1825 tnl_port_add(port, port->up.netdev, port->odp_port);
1826 port->is_tunnel = true;
1827 } else {
1828 /* Sanity-check that a mapping doesn't already exist. This
1829 * shouldn't happen for non-tunnel ports. */
1830 if (odp_port_to_ofp_port(ofproto, port->odp_port) != OFPP_NONE) {
1831 VLOG_ERR("port %s already has an OpenFlow port number",
1832 dpif_port.name);
1833 dpif_port_destroy(&dpif_port);
1834 return EBUSY;
1835 }
1836
1837 ovs_rwlock_wrlock(&ofproto->backer->odp_to_ofport_lock);
1838 hmap_insert(&ofproto->backer->odp_to_ofport_map, &port->odp_port_node,
1839 hash_odp_port(port->odp_port));
1840 ovs_rwlock_unlock(&ofproto->backer->odp_to_ofport_lock);
1841 }
1842 dpif_port_destroy(&dpif_port);
1843
1844 if (ofproto->sflow) {
1845 dpif_sflow_add_port(ofproto->sflow, port_, port->odp_port);
1846 }
1847
1848 return 0;
1849 }
1850
1851 static void
1852 port_destruct(struct ofport *port_)
1853 {
1854 struct ofport_dpif *port = ofport_dpif_cast(port_);
1855 struct ofproto_dpif *ofproto = ofproto_dpif_cast(port->up.ofproto);
1856 const char *devname = netdev_get_name(port->up.netdev);
1857 char namebuf[NETDEV_VPORT_NAME_BUFSIZE];
1858 const char *dp_port_name;
1859
1860 ofproto->backer->need_revalidate = REV_RECONFIGURE;
1861 ovs_rwlock_wrlock(&xlate_rwlock);
1862 xlate_ofport_remove(port);
1863 ovs_rwlock_unlock(&xlate_rwlock);
1864
1865 dp_port_name = netdev_vport_get_dpif_port(port->up.netdev, namebuf,
1866 sizeof namebuf);
1867 if (dpif_port_exists(ofproto->backer->dpif, dp_port_name)) {
1868 /* The underlying device is still there, so delete it. This
1869 * happens when the ofproto is being destroyed, since the caller
1870 * assumes that removal of attached ports will happen as part of
1871 * destruction. */
1872 if (!port->is_tunnel) {
1873 dpif_port_del(ofproto->backer->dpif, port->odp_port);
1874 }
1875 }
1876
1877 if (port->peer) {
1878 port->peer->peer = NULL;
1879 port->peer = NULL;
1880 }
1881
1882 if (port->odp_port != ODPP_NONE && !port->is_tunnel) {
1883 ovs_rwlock_wrlock(&ofproto->backer->odp_to_ofport_lock);
1884 hmap_remove(&ofproto->backer->odp_to_ofport_map, &port->odp_port_node);
1885 ovs_rwlock_unlock(&ofproto->backer->odp_to_ofport_lock);
1886 }
1887
1888 tnl_port_del(port);
1889 sset_find_and_delete(&ofproto->ports, devname);
1890 sset_find_and_delete(&ofproto->ghost_ports, devname);
1891 bundle_remove(port_);
1892 set_cfm(port_, NULL);
1893 set_bfd(port_, NULL);
1894 if (ofproto->sflow) {
1895 dpif_sflow_del_port(ofproto->sflow, port->odp_port);
1896 }
1897
1898 free(port->qdscp);
1899 }
1900
1901 static void
1902 port_modified(struct ofport *port_)
1903 {
1904 struct ofport_dpif *port = ofport_dpif_cast(port_);
1905
1906 if (port->bundle && port->bundle->bond) {
1907 bond_slave_set_netdev(port->bundle->bond, port, port->up.netdev);
1908 }
1909
1910 if (port->cfm) {
1911 cfm_set_netdev(port->cfm, port->up.netdev);
1912 }
1913
1914 if (port->bfd) {
1915 bfd_set_netdev(port->bfd, port->up.netdev);
1916 }
1917
1918 if (port->is_tunnel && tnl_port_reconfigure(port, port->up.netdev,
1919 port->odp_port)) {
1920 ofproto_dpif_cast(port->up.ofproto)->backer->need_revalidate =
1921 REV_RECONFIGURE;
1922 }
1923
1924 ofport_update_peer(port);
1925 }
1926
1927 static void
1928 port_reconfigured(struct ofport *port_, enum ofputil_port_config old_config)
1929 {
1930 struct ofport_dpif *port = ofport_dpif_cast(port_);
1931 struct ofproto_dpif *ofproto = ofproto_dpif_cast(port->up.ofproto);
1932 enum ofputil_port_config changed = old_config ^ port->up.pp.config;
1933
1934 if (changed & (OFPUTIL_PC_NO_RECV | OFPUTIL_PC_NO_RECV_STP |
1935 OFPUTIL_PC_NO_FWD | OFPUTIL_PC_NO_FLOOD |
1936 OFPUTIL_PC_NO_PACKET_IN)) {
1937 ofproto->backer->need_revalidate = REV_RECONFIGURE;
1938
1939 if (changed & OFPUTIL_PC_NO_FLOOD && port->bundle) {
1940 bundle_update(port->bundle);
1941 }
1942 }
1943 }
1944
1945 static int
1946 set_sflow(struct ofproto *ofproto_,
1947 const struct ofproto_sflow_options *sflow_options)
1948 {
1949 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1950 struct dpif_sflow *ds = ofproto->sflow;
1951
1952 if (sflow_options) {
1953 if (!ds) {
1954 struct ofport_dpif *ofport;
1955
1956 ds = ofproto->sflow = dpif_sflow_create();
1957 HMAP_FOR_EACH (ofport, up.hmap_node, &ofproto->up.ports) {
1958 dpif_sflow_add_port(ds, &ofport->up, ofport->odp_port);
1959 }
1960 ofproto->backer->need_revalidate = REV_RECONFIGURE;
1961 }
1962 dpif_sflow_set_options(ds, sflow_options);
1963 } else {
1964 if (ds) {
1965 dpif_sflow_unref(ds);
1966 ofproto->backer->need_revalidate = REV_RECONFIGURE;
1967 ofproto->sflow = NULL;
1968 }
1969 }
1970 return 0;
1971 }
1972
1973 static int
1974 set_ipfix(
1975 struct ofproto *ofproto_,
1976 const struct ofproto_ipfix_bridge_exporter_options *bridge_exporter_options,
1977 const struct ofproto_ipfix_flow_exporter_options *flow_exporters_options,
1978 size_t n_flow_exporters_options)
1979 {
1980 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1981 struct dpif_ipfix *di = ofproto->ipfix;
1982 bool has_options = bridge_exporter_options || flow_exporters_options;
1983
1984 if (has_options && !di) {
1985 di = ofproto->ipfix = dpif_ipfix_create();
1986 }
1987
1988 if (di) {
1989 /* Call set_options in any case to cleanly flush the flow
1990 * caches in the last exporters that are to be destroyed. */
1991 dpif_ipfix_set_options(
1992 di, bridge_exporter_options, flow_exporters_options,
1993 n_flow_exporters_options);
1994
1995 if (!has_options) {
1996 dpif_ipfix_unref(di);
1997 ofproto->ipfix = NULL;
1998 }
1999 }
2000
2001 return 0;
2002 }
2003
2004 static int
2005 set_cfm(struct ofport *ofport_, const struct cfm_settings *s)
2006 {
2007 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
2008 int error;
2009
2010 if (!s) {
2011 error = 0;
2012 } else {
2013 if (!ofport->cfm) {
2014 struct ofproto_dpif *ofproto;
2015
2016 ofproto = ofproto_dpif_cast(ofport->up.ofproto);
2017 ofproto->backer->need_revalidate = REV_RECONFIGURE;
2018 ofport->cfm = cfm_create(ofport->up.netdev);
2019 }
2020
2021 if (cfm_configure(ofport->cfm, s)) {
2022 return 0;
2023 }
2024
2025 error = EINVAL;
2026 }
2027 cfm_unref(ofport->cfm);
2028 ofport->cfm = NULL;
2029 return error;
2030 }
2031
2032 static bool
2033 get_cfm_status(const struct ofport *ofport_,
2034 struct ofproto_cfm_status *status)
2035 {
2036 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
2037
2038 if (ofport->cfm) {
2039 status->faults = cfm_get_fault(ofport->cfm);
2040 status->remote_opstate = cfm_get_opup(ofport->cfm);
2041 status->health = cfm_get_health(ofport->cfm);
2042 cfm_get_remote_mpids(ofport->cfm, &status->rmps, &status->n_rmps);
2043 return true;
2044 } else {
2045 return false;
2046 }
2047 }
2048
2049 static int
2050 set_bfd(struct ofport *ofport_, const struct smap *cfg)
2051 {
2052 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport_->ofproto);
2053 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
2054 struct bfd *old;
2055
2056 old = ofport->bfd;
2057 ofport->bfd = bfd_configure(old, netdev_get_name(ofport->up.netdev),
2058 cfg, ofport->up.netdev);
2059 if (ofport->bfd != old) {
2060 ofproto->backer->need_revalidate = REV_RECONFIGURE;
2061 }
2062
2063 return 0;
2064 }
2065
2066 static int
2067 get_bfd_status(struct ofport *ofport_, struct smap *smap)
2068 {
2069 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
2070
2071 if (ofport->bfd) {
2072 bfd_get_status(ofport->bfd, smap);
2073 return 0;
2074 } else {
2075 return ENOENT;
2076 }
2077 }
2078 \f
2079 /* Spanning Tree. */
2080
2081 static void
2082 send_bpdu_cb(struct ofpbuf *pkt, int port_num, void *ofproto_)
2083 {
2084 struct ofproto_dpif *ofproto = ofproto_;
2085 struct stp_port *sp = stp_get_port(ofproto->stp, port_num);
2086 struct ofport_dpif *ofport;
2087
2088 ofport = stp_port_get_aux(sp);
2089 if (!ofport) {
2090 VLOG_WARN_RL(&rl, "%s: cannot send BPDU on unknown port %d",
2091 ofproto->up.name, port_num);
2092 } else {
2093 struct eth_header *eth = pkt->l2;
2094
2095 netdev_get_etheraddr(ofport->up.netdev, eth->eth_src);
2096 if (eth_addr_is_zero(eth->eth_src)) {
2097 VLOG_WARN_RL(&rl, "%s: cannot send BPDU on port %d "
2098 "with unknown MAC", ofproto->up.name, port_num);
2099 } else {
2100 send_packet(ofport, pkt);
2101 }
2102 }
2103 ofpbuf_delete(pkt);
2104 }
2105
2106 /* Configures STP on 'ofproto_' using the settings defined in 's'. */
2107 static int
2108 set_stp(struct ofproto *ofproto_, const struct ofproto_stp_settings *s)
2109 {
2110 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2111
2112 /* Only revalidate flows if the configuration changed. */
2113 if (!s != !ofproto->stp) {
2114 ofproto->backer->need_revalidate = REV_RECONFIGURE;
2115 }
2116
2117 if (s) {
2118 if (!ofproto->stp) {
2119 ofproto->stp = stp_create(ofproto_->name, s->system_id,
2120 send_bpdu_cb, ofproto);
2121 ofproto->stp_last_tick = time_msec();
2122 }
2123
2124 stp_set_bridge_id(ofproto->stp, s->system_id);
2125 stp_set_bridge_priority(ofproto->stp, s->priority);
2126 stp_set_hello_time(ofproto->stp, s->hello_time);
2127 stp_set_max_age(ofproto->stp, s->max_age);
2128 stp_set_forward_delay(ofproto->stp, s->fwd_delay);
2129 } else {
2130 struct ofport *ofport;
2131
2132 HMAP_FOR_EACH (ofport, hmap_node, &ofproto->up.ports) {
2133 set_stp_port(ofport, NULL);
2134 }
2135
2136 stp_unref(ofproto->stp);
2137 ofproto->stp = NULL;
2138 }
2139
2140 return 0;
2141 }
2142
2143 static int
2144 get_stp_status(struct ofproto *ofproto_, struct ofproto_stp_status *s)
2145 {
2146 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2147
2148 if (ofproto->stp) {
2149 s->enabled = true;
2150 s->bridge_id = stp_get_bridge_id(ofproto->stp);
2151 s->designated_root = stp_get_designated_root(ofproto->stp);
2152 s->root_path_cost = stp_get_root_path_cost(ofproto->stp);
2153 } else {
2154 s->enabled = false;
2155 }
2156
2157 return 0;
2158 }
2159
2160 static void
2161 update_stp_port_state(struct ofport_dpif *ofport)
2162 {
2163 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
2164 enum stp_state state;
2165
2166 /* Figure out new state. */
2167 state = ofport->stp_port ? stp_port_get_state(ofport->stp_port)
2168 : STP_DISABLED;
2169
2170 /* Update state. */
2171 if (ofport->stp_state != state) {
2172 enum ofputil_port_state of_state;
2173 bool fwd_change;
2174
2175 VLOG_DBG_RL(&rl, "port %s: STP state changed from %s to %s",
2176 netdev_get_name(ofport->up.netdev),
2177 stp_state_name(ofport->stp_state),
2178 stp_state_name(state));
2179 if (stp_learn_in_state(ofport->stp_state)
2180 != stp_learn_in_state(state)) {
2181 /* xxx Learning action flows should also be flushed. */
2182 ovs_rwlock_wrlock(&ofproto->ml->rwlock);
2183 mac_learning_flush(ofproto->ml);
2184 ovs_rwlock_unlock(&ofproto->ml->rwlock);
2185 }
2186 fwd_change = stp_forward_in_state(ofport->stp_state)
2187 != stp_forward_in_state(state);
2188
2189 ofproto->backer->need_revalidate = REV_STP;
2190 ofport->stp_state = state;
2191 ofport->stp_state_entered = time_msec();
2192
2193 if (fwd_change && ofport->bundle) {
2194 bundle_update(ofport->bundle);
2195 }
2196
2197 /* Update the STP state bits in the OpenFlow port description. */
2198 of_state = ofport->up.pp.state & ~OFPUTIL_PS_STP_MASK;
2199 of_state |= (state == STP_LISTENING ? OFPUTIL_PS_STP_LISTEN
2200 : state == STP_LEARNING ? OFPUTIL_PS_STP_LEARN
2201 : state == STP_FORWARDING ? OFPUTIL_PS_STP_FORWARD
2202 : state == STP_BLOCKING ? OFPUTIL_PS_STP_BLOCK
2203 : 0);
2204 ofproto_port_set_state(&ofport->up, of_state);
2205 }
2206 }
2207
2208 /* Configures STP on 'ofport_' using the settings defined in 's'. The
2209 * caller is responsible for assigning STP port numbers and ensuring
2210 * there are no duplicates. */
2211 static int
2212 set_stp_port(struct ofport *ofport_,
2213 const struct ofproto_port_stp_settings *s)
2214 {
2215 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
2216 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
2217 struct stp_port *sp = ofport->stp_port;
2218
2219 if (!s || !s->enable) {
2220 if (sp) {
2221 ofport->stp_port = NULL;
2222 stp_port_disable(sp);
2223 update_stp_port_state(ofport);
2224 }
2225 return 0;
2226 } else if (sp && stp_port_no(sp) != s->port_num
2227 && ofport == stp_port_get_aux(sp)) {
2228 /* The port-id changed, so disable the old one if it's not
2229 * already in use by another port. */
2230 stp_port_disable(sp);
2231 }
2232
2233 sp = ofport->stp_port = stp_get_port(ofproto->stp, s->port_num);
2234 stp_port_enable(sp);
2235
2236 stp_port_set_aux(sp, ofport);
2237 stp_port_set_priority(sp, s->priority);
2238 stp_port_set_path_cost(sp, s->path_cost);
2239
2240 update_stp_port_state(ofport);
2241
2242 return 0;
2243 }
2244
2245 static int
2246 get_stp_port_status(struct ofport *ofport_,
2247 struct ofproto_port_stp_status *s)
2248 {
2249 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
2250 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
2251 struct stp_port *sp = ofport->stp_port;
2252
2253 if (!ofproto->stp || !sp) {
2254 s->enabled = false;
2255 return 0;
2256 }
2257
2258 s->enabled = true;
2259 s->port_id = stp_port_get_id(sp);
2260 s->state = stp_port_get_state(sp);
2261 s->sec_in_state = (time_msec() - ofport->stp_state_entered) / 1000;
2262 s->role = stp_port_get_role(sp);
2263 stp_port_get_counts(sp, &s->tx_count, &s->rx_count, &s->error_count);
2264
2265 return 0;
2266 }
2267
2268 static void
2269 stp_run(struct ofproto_dpif *ofproto)
2270 {
2271 if (ofproto->stp) {
2272 long long int now = time_msec();
2273 long long int elapsed = now - ofproto->stp_last_tick;
2274 struct stp_port *sp;
2275
2276 if (elapsed > 0) {
2277 stp_tick(ofproto->stp, MIN(INT_MAX, elapsed));
2278 ofproto->stp_last_tick = now;
2279 }
2280 while (stp_get_changed_port(ofproto->stp, &sp)) {
2281 struct ofport_dpif *ofport = stp_port_get_aux(sp);
2282
2283 if (ofport) {
2284 update_stp_port_state(ofport);
2285 }
2286 }
2287
2288 if (stp_check_and_reset_fdb_flush(ofproto->stp)) {
2289 ovs_rwlock_wrlock(&ofproto->ml->rwlock);
2290 mac_learning_flush(ofproto->ml);
2291 ovs_rwlock_unlock(&ofproto->ml->rwlock);
2292 }
2293 }
2294 }
2295
2296 static void
2297 stp_wait(struct ofproto_dpif *ofproto)
2298 {
2299 if (ofproto->stp) {
2300 poll_timer_wait(1000);
2301 }
2302 }
2303 \f
2304 static int
2305 set_queues(struct ofport *ofport_, const struct ofproto_port_queue *qdscp,
2306 size_t n_qdscp)
2307 {
2308 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
2309 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
2310
2311 if (ofport->n_qdscp != n_qdscp
2312 || (n_qdscp && memcmp(ofport->qdscp, qdscp,
2313 n_qdscp * sizeof *qdscp))) {
2314 ofproto->backer->need_revalidate = REV_RECONFIGURE;
2315 free(ofport->qdscp);
2316 ofport->qdscp = n_qdscp
2317 ? xmemdup(qdscp, n_qdscp * sizeof *qdscp)
2318 : NULL;
2319 ofport->n_qdscp = n_qdscp;
2320 }
2321
2322 return 0;
2323 }
2324 \f
2325 /* Bundles. */
2326
2327 /* Expires all MAC learning entries associated with 'bundle' and forces its
2328 * ofproto to revalidate every flow.
2329 *
2330 * Normally MAC learning entries are removed only from the ofproto associated
2331 * with 'bundle', but if 'all_ofprotos' is true, then the MAC learning entries
2332 * are removed from every ofproto. When patch ports and SLB bonds are in use
2333 * and a VM migration happens and the gratuitous ARPs are somehow lost, this
2334 * avoids a MAC_ENTRY_IDLE_TIME delay before the migrated VM can communicate
2335 * with the host from which it migrated. */
2336 static void
2337 bundle_flush_macs(struct ofbundle *bundle, bool all_ofprotos)
2338 {
2339 struct ofproto_dpif *ofproto = bundle->ofproto;
2340 struct mac_learning *ml = ofproto->ml;
2341 struct mac_entry *mac, *next_mac;
2342
2343 ofproto->backer->need_revalidate = REV_RECONFIGURE;
2344 ovs_rwlock_wrlock(&ml->rwlock);
2345 LIST_FOR_EACH_SAFE (mac, next_mac, lru_node, &ml->lrus) {
2346 if (mac->port.p == bundle) {
2347 if (all_ofprotos) {
2348 struct ofproto_dpif *o;
2349
2350 HMAP_FOR_EACH (o, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
2351 if (o != ofproto) {
2352 struct mac_entry *e;
2353
2354 ovs_rwlock_wrlock(&o->ml->rwlock);
2355 e = mac_learning_lookup(o->ml, mac->mac, mac->vlan);
2356 if (e) {
2357 mac_learning_expire(o->ml, e);
2358 }
2359 ovs_rwlock_unlock(&o->ml->rwlock);
2360 }
2361 }
2362 }
2363
2364 mac_learning_expire(ml, mac);
2365 }
2366 }
2367 ovs_rwlock_unlock(&ml->rwlock);
2368 }
2369
2370 static struct ofbundle *
2371 bundle_lookup(const struct ofproto_dpif *ofproto, void *aux)
2372 {
2373 struct ofbundle *bundle;
2374
2375 HMAP_FOR_EACH_IN_BUCKET (bundle, hmap_node, hash_pointer(aux, 0),
2376 &ofproto->bundles) {
2377 if (bundle->aux == aux) {
2378 return bundle;
2379 }
2380 }
2381 return NULL;
2382 }
2383
2384 static void
2385 bundle_update(struct ofbundle *bundle)
2386 {
2387 struct ofport_dpif *port;
2388
2389 bundle->floodable = true;
2390 LIST_FOR_EACH (port, bundle_node, &bundle->ports) {
2391 if (port->up.pp.config & OFPUTIL_PC_NO_FLOOD
2392 || !stp_forward_in_state(port->stp_state)) {
2393 bundle->floodable = false;
2394 break;
2395 }
2396 }
2397 }
2398
2399 static void
2400 bundle_del_port(struct ofport_dpif *port)
2401 {
2402 struct ofbundle *bundle = port->bundle;
2403
2404 bundle->ofproto->backer->need_revalidate = REV_RECONFIGURE;
2405
2406 list_remove(&port->bundle_node);
2407 port->bundle = NULL;
2408
2409 if (bundle->lacp) {
2410 lacp_slave_unregister(bundle->lacp, port);
2411 }
2412 if (bundle->bond) {
2413 bond_slave_unregister(bundle->bond, port);
2414 }
2415
2416 bundle_update(bundle);
2417 }
2418
2419 static bool
2420 bundle_add_port(struct ofbundle *bundle, ofp_port_t ofp_port,
2421 struct lacp_slave_settings *lacp)
2422 {
2423 struct ofport_dpif *port;
2424
2425 port = get_ofp_port(bundle->ofproto, ofp_port);
2426 if (!port) {
2427 return false;
2428 }
2429
2430 if (port->bundle != bundle) {
2431 bundle->ofproto->backer->need_revalidate = REV_RECONFIGURE;
2432 if (port->bundle) {
2433 bundle_remove(&port->up);
2434 }
2435
2436 port->bundle = bundle;
2437 list_push_back(&bundle->ports, &port->bundle_node);
2438 if (port->up.pp.config & OFPUTIL_PC_NO_FLOOD
2439 || !stp_forward_in_state(port->stp_state)) {
2440 bundle->floodable = false;
2441 }
2442 }
2443 if (lacp) {
2444 bundle->ofproto->backer->need_revalidate = REV_RECONFIGURE;
2445 lacp_slave_register(bundle->lacp, port, lacp);
2446 }
2447
2448 return true;
2449 }
2450
2451 static void
2452 bundle_destroy(struct ofbundle *bundle)
2453 {
2454 struct ofproto_dpif *ofproto;
2455 struct ofport_dpif *port, *next_port;
2456
2457 if (!bundle) {
2458 return;
2459 }
2460
2461 ofproto = bundle->ofproto;
2462 mbridge_unregister_bundle(ofproto->mbridge, bundle->aux);
2463
2464 ovs_rwlock_wrlock(&xlate_rwlock);
2465 xlate_bundle_remove(bundle);
2466 ovs_rwlock_unlock(&xlate_rwlock);
2467
2468 LIST_FOR_EACH_SAFE (port, next_port, bundle_node, &bundle->ports) {
2469 bundle_del_port(port);
2470 }
2471
2472 bundle_flush_macs(bundle, true);
2473 hmap_remove(&ofproto->bundles, &bundle->hmap_node);
2474 free(bundle->name);
2475 free(bundle->trunks);
2476 lacp_unref(bundle->lacp);
2477 bond_unref(bundle->bond);
2478 free(bundle);
2479 }
2480
2481 static int
2482 bundle_set(struct ofproto *ofproto_, void *aux,
2483 const struct ofproto_bundle_settings *s)
2484 {
2485 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2486 bool need_flush = false;
2487 struct ofport_dpif *port;
2488 struct ofbundle *bundle;
2489 unsigned long *trunks;
2490 int vlan;
2491 size_t i;
2492 bool ok;
2493
2494 if (!s) {
2495 bundle_destroy(bundle_lookup(ofproto, aux));
2496 return 0;
2497 }
2498
2499 ovs_assert(s->n_slaves == 1 || s->bond != NULL);
2500 ovs_assert((s->lacp != NULL) == (s->lacp_slaves != NULL));
2501
2502 bundle = bundle_lookup(ofproto, aux);
2503 if (!bundle) {
2504 bundle = xmalloc(sizeof *bundle);
2505
2506 bundle->ofproto = ofproto;
2507 hmap_insert(&ofproto->bundles, &bundle->hmap_node,
2508 hash_pointer(aux, 0));
2509 bundle->aux = aux;
2510 bundle->name = NULL;
2511
2512 list_init(&bundle->ports);
2513 bundle->vlan_mode = PORT_VLAN_TRUNK;
2514 bundle->vlan = -1;
2515 bundle->trunks = NULL;
2516 bundle->use_priority_tags = s->use_priority_tags;
2517 bundle->lacp = NULL;
2518 bundle->bond = NULL;
2519
2520 bundle->floodable = true;
2521 mbridge_register_bundle(ofproto->mbridge, bundle);
2522 }
2523
2524 if (!bundle->name || strcmp(s->name, bundle->name)) {
2525 free(bundle->name);
2526 bundle->name = xstrdup(s->name);
2527 }
2528
2529 /* LACP. */
2530 if (s->lacp) {
2531 if (!bundle->lacp) {
2532 ofproto->backer->need_revalidate = REV_RECONFIGURE;
2533 bundle->lacp = lacp_create();
2534 }
2535 lacp_configure(bundle->lacp, s->lacp);
2536 } else {
2537 lacp_unref(bundle->lacp);
2538 bundle->lacp = NULL;
2539 }
2540
2541 /* Update set of ports. */
2542 ok = true;
2543 for (i = 0; i < s->n_slaves; i++) {
2544 if (!bundle_add_port(bundle, s->slaves[i],
2545 s->lacp ? &s->lacp_slaves[i] : NULL)) {
2546 ok = false;
2547 }
2548 }
2549 if (!ok || list_size(&bundle->ports) != s->n_slaves) {
2550 struct ofport_dpif *next_port;
2551
2552 LIST_FOR_EACH_SAFE (port, next_port, bundle_node, &bundle->ports) {
2553 for (i = 0; i < s->n_slaves; i++) {
2554 if (s->slaves[i] == port->up.ofp_port) {
2555 goto found;
2556 }
2557 }
2558
2559 bundle_del_port(port);
2560 found: ;
2561 }
2562 }
2563 ovs_assert(list_size(&bundle->ports) <= s->n_slaves);
2564
2565 if (list_is_empty(&bundle->ports)) {
2566 bundle_destroy(bundle);
2567 return EINVAL;
2568 }
2569
2570 /* Set VLAN tagging mode */
2571 if (s->vlan_mode != bundle->vlan_mode
2572 || s->use_priority_tags != bundle->use_priority_tags) {
2573 bundle->vlan_mode = s->vlan_mode;
2574 bundle->use_priority_tags = s->use_priority_tags;
2575 need_flush = true;
2576 }
2577
2578 /* Set VLAN tag. */
2579 vlan = (s->vlan_mode == PORT_VLAN_TRUNK ? -1
2580 : s->vlan >= 0 && s->vlan <= 4095 ? s->vlan
2581 : 0);
2582 if (vlan != bundle->vlan) {
2583 bundle->vlan = vlan;
2584 need_flush = true;
2585 }
2586
2587 /* Get trunked VLANs. */
2588 switch (s->vlan_mode) {
2589 case PORT_VLAN_ACCESS:
2590 trunks = NULL;
2591 break;
2592
2593 case PORT_VLAN_TRUNK:
2594 trunks = CONST_CAST(unsigned long *, s->trunks);
2595 break;
2596
2597 case PORT_VLAN_NATIVE_UNTAGGED:
2598 case PORT_VLAN_NATIVE_TAGGED:
2599 if (vlan != 0 && (!s->trunks
2600 || !bitmap_is_set(s->trunks, vlan)
2601 || bitmap_is_set(s->trunks, 0))) {
2602 /* Force trunking the native VLAN and prohibit trunking VLAN 0. */
2603 if (s->trunks) {
2604 trunks = bitmap_clone(s->trunks, 4096);
2605 } else {
2606 trunks = bitmap_allocate1(4096);
2607 }
2608 bitmap_set1(trunks, vlan);
2609 bitmap_set0(trunks, 0);
2610 } else {
2611 trunks = CONST_CAST(unsigned long *, s->trunks);
2612 }
2613 break;
2614
2615 default:
2616 NOT_REACHED();
2617 }
2618 if (!vlan_bitmap_equal(trunks, bundle->trunks)) {
2619 free(bundle->trunks);
2620 if (trunks == s->trunks) {
2621 bundle->trunks = vlan_bitmap_clone(trunks);
2622 } else {
2623 bundle->trunks = trunks;
2624 trunks = NULL;
2625 }
2626 need_flush = true;
2627 }
2628 if (trunks != s->trunks) {
2629 free(trunks);
2630 }
2631
2632 /* Bonding. */
2633 if (!list_is_short(&bundle->ports)) {
2634 bundle->ofproto->has_bonded_bundles = true;
2635 if (bundle->bond) {
2636 if (bond_reconfigure(bundle->bond, s->bond)) {
2637 ofproto->backer->need_revalidate = REV_RECONFIGURE;
2638 }
2639 } else {
2640 bundle->bond = bond_create(s->bond);
2641 ofproto->backer->need_revalidate = REV_RECONFIGURE;
2642 }
2643
2644 LIST_FOR_EACH (port, bundle_node, &bundle->ports) {
2645 bond_slave_register(bundle->bond, port, port->up.netdev);
2646 }
2647 } else {
2648 bond_unref(bundle->bond);
2649 bundle->bond = NULL;
2650 }
2651
2652 /* If we changed something that would affect MAC learning, un-learn
2653 * everything on this port and force flow revalidation. */
2654 if (need_flush) {
2655 bundle_flush_macs(bundle, false);
2656 }
2657
2658 return 0;
2659 }
2660
2661 static void
2662 bundle_remove(struct ofport *port_)
2663 {
2664 struct ofport_dpif *port = ofport_dpif_cast(port_);
2665 struct ofbundle *bundle = port->bundle;
2666
2667 if (bundle) {
2668 bundle_del_port(port);
2669 if (list_is_empty(&bundle->ports)) {
2670 bundle_destroy(bundle);
2671 } else if (list_is_short(&bundle->ports)) {
2672 bond_unref(bundle->bond);
2673 bundle->bond = NULL;
2674 }
2675 }
2676 }
2677
2678 static void
2679 send_pdu_cb(void *port_, const void *pdu, size_t pdu_size)
2680 {
2681 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 10);
2682 struct ofport_dpif *port = port_;
2683 uint8_t ea[ETH_ADDR_LEN];
2684 int error;
2685
2686 error = netdev_get_etheraddr(port->up.netdev, ea);
2687 if (!error) {
2688 struct ofpbuf packet;
2689 void *packet_pdu;
2690
2691 ofpbuf_init(&packet, 0);
2692 packet_pdu = eth_compose(&packet, eth_addr_lacp, ea, ETH_TYPE_LACP,
2693 pdu_size);
2694 memcpy(packet_pdu, pdu, pdu_size);
2695
2696 send_packet(port, &packet);
2697 ofpbuf_uninit(&packet);
2698 } else {
2699 VLOG_ERR_RL(&rl, "port %s: cannot obtain Ethernet address of iface "
2700 "%s (%s)", port->bundle->name,
2701 netdev_get_name(port->up.netdev), ovs_strerror(error));
2702 }
2703 }
2704
2705 static void
2706 bundle_send_learning_packets(struct ofbundle *bundle)
2707 {
2708 struct ofproto_dpif *ofproto = bundle->ofproto;
2709 int error, n_packets, n_errors;
2710 struct mac_entry *e;
2711
2712 error = n_packets = n_errors = 0;
2713 ovs_rwlock_rdlock(&ofproto->ml->rwlock);
2714 LIST_FOR_EACH (e, lru_node, &ofproto->ml->lrus) {
2715 if (e->port.p != bundle) {
2716 struct ofpbuf *learning_packet;
2717 struct ofport_dpif *port;
2718 void *port_void;
2719 int ret;
2720
2721 /* The assignment to "port" is unnecessary but makes "grep"ing for
2722 * struct ofport_dpif more effective. */
2723 learning_packet = bond_compose_learning_packet(bundle->bond,
2724 e->mac, e->vlan,
2725 &port_void);
2726 port = port_void;
2727 ret = send_packet(port, learning_packet);
2728 ofpbuf_delete(learning_packet);
2729 if (ret) {
2730 error = ret;
2731 n_errors++;
2732 }
2733 n_packets++;
2734 }
2735 }
2736 ovs_rwlock_unlock(&ofproto->ml->rwlock);
2737
2738 if (n_errors) {
2739 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
2740 VLOG_WARN_RL(&rl, "bond %s: %d errors sending %d gratuitous learning "
2741 "packets, last error was: %s",
2742 bundle->name, n_errors, n_packets, ovs_strerror(error));
2743 } else {
2744 VLOG_DBG("bond %s: sent %d gratuitous learning packets",
2745 bundle->name, n_packets);
2746 }
2747 }
2748
2749 static void
2750 bundle_run(struct ofbundle *bundle)
2751 {
2752 if (bundle->lacp) {
2753 lacp_run(bundle->lacp, send_pdu_cb);
2754 }
2755 if (bundle->bond) {
2756 struct ofport_dpif *port;
2757
2758 LIST_FOR_EACH (port, bundle_node, &bundle->ports) {
2759 bond_slave_set_may_enable(bundle->bond, port, port->may_enable);
2760 }
2761
2762 if (bond_run(bundle->bond, lacp_status(bundle->lacp))) {
2763 bundle->ofproto->backer->need_revalidate = REV_BOND;
2764 }
2765
2766 if (bond_should_send_learning_packets(bundle->bond)) {
2767 bundle_send_learning_packets(bundle);
2768 }
2769 }
2770 }
2771
2772 static void
2773 bundle_wait(struct ofbundle *bundle)
2774 {
2775 if (bundle->lacp) {
2776 lacp_wait(bundle->lacp);
2777 }
2778 if (bundle->bond) {
2779 bond_wait(bundle->bond);
2780 }
2781 }
2782 \f
2783 /* Mirrors. */
2784
2785 static int
2786 mirror_set__(struct ofproto *ofproto_, void *aux,
2787 const struct ofproto_mirror_settings *s)
2788 {
2789 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2790 struct ofbundle **srcs, **dsts;
2791 int error;
2792 size_t i;
2793
2794 if (!s) {
2795 mirror_destroy(ofproto->mbridge, aux);
2796 return 0;
2797 }
2798
2799 srcs = xmalloc(s->n_srcs * sizeof *srcs);
2800 dsts = xmalloc(s->n_dsts * sizeof *dsts);
2801
2802 for (i = 0; i < s->n_srcs; i++) {
2803 srcs[i] = bundle_lookup(ofproto, s->srcs[i]);
2804 }
2805
2806 for (i = 0; i < s->n_dsts; i++) {
2807 dsts[i] = bundle_lookup(ofproto, s->dsts[i]);
2808 }
2809
2810 error = mirror_set(ofproto->mbridge, aux, s->name, srcs, s->n_srcs, dsts,
2811 s->n_dsts, s->src_vlans,
2812 bundle_lookup(ofproto, s->out_bundle), s->out_vlan);
2813 free(srcs);
2814 free(dsts);
2815 return error;
2816 }
2817
2818 static int
2819 mirror_get_stats__(struct ofproto *ofproto, void *aux,
2820 uint64_t *packets, uint64_t *bytes)
2821 {
2822 push_all_stats();
2823 return mirror_get_stats(ofproto_dpif_cast(ofproto)->mbridge, aux, packets,
2824 bytes);
2825 }
2826
2827 static int
2828 set_flood_vlans(struct ofproto *ofproto_, unsigned long *flood_vlans)
2829 {
2830 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2831 ovs_rwlock_wrlock(&ofproto->ml->rwlock);
2832 if (mac_learning_set_flood_vlans(ofproto->ml, flood_vlans)) {
2833 mac_learning_flush(ofproto->ml);
2834 }
2835 ovs_rwlock_unlock(&ofproto->ml->rwlock);
2836 return 0;
2837 }
2838
2839 static bool
2840 is_mirror_output_bundle(const struct ofproto *ofproto_, void *aux)
2841 {
2842 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2843 struct ofbundle *bundle = bundle_lookup(ofproto, aux);
2844 return bundle && mirror_bundle_out(ofproto->mbridge, bundle) != 0;
2845 }
2846
2847 static void
2848 forward_bpdu_changed(struct ofproto *ofproto_)
2849 {
2850 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2851 ofproto->backer->need_revalidate = REV_RECONFIGURE;
2852 }
2853
2854 static void
2855 set_mac_table_config(struct ofproto *ofproto_, unsigned int idle_time,
2856 size_t max_entries)
2857 {
2858 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2859 ovs_rwlock_wrlock(&ofproto->ml->rwlock);
2860 mac_learning_set_idle_time(ofproto->ml, idle_time);
2861 mac_learning_set_max_entries(ofproto->ml, max_entries);
2862 ovs_rwlock_unlock(&ofproto->ml->rwlock);
2863 }
2864 \f
2865 /* Ports. */
2866
2867 static struct ofport_dpif *
2868 get_ofp_port(const struct ofproto_dpif *ofproto, ofp_port_t ofp_port)
2869 {
2870 struct ofport *ofport = ofproto_get_port(&ofproto->up, ofp_port);
2871 return ofport ? ofport_dpif_cast(ofport) : NULL;
2872 }
2873
2874 static struct ofport_dpif *
2875 get_odp_port(const struct ofproto_dpif *ofproto, odp_port_t odp_port)
2876 {
2877 struct ofport_dpif *port = odp_port_to_ofport(ofproto->backer, odp_port);
2878 return port && &ofproto->up == port->up.ofproto ? port : NULL;
2879 }
2880
2881 static void
2882 ofproto_port_from_dpif_port(struct ofproto_dpif *ofproto,
2883 struct ofproto_port *ofproto_port,
2884 struct dpif_port *dpif_port)
2885 {
2886 ofproto_port->name = dpif_port->name;
2887 ofproto_port->type = dpif_port->type;
2888 ofproto_port->ofp_port = odp_port_to_ofp_port(ofproto, dpif_port->port_no);
2889 }
2890
2891 static void
2892 ofport_update_peer(struct ofport_dpif *ofport)
2893 {
2894 const struct ofproto_dpif *ofproto;
2895 struct dpif_backer *backer;
2896 char *peer_name;
2897
2898 if (!netdev_vport_is_patch(ofport->up.netdev)) {
2899 return;
2900 }
2901
2902 backer = ofproto_dpif_cast(ofport->up.ofproto)->backer;
2903 backer->need_revalidate = REV_RECONFIGURE;
2904
2905 if (ofport->peer) {
2906 ofport->peer->peer = NULL;
2907 ofport->peer = NULL;
2908 }
2909
2910 peer_name = netdev_vport_patch_peer(ofport->up.netdev);
2911 if (!peer_name) {
2912 return;
2913 }
2914
2915 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
2916 struct ofport *peer_ofport;
2917 struct ofport_dpif *peer;
2918 char *peer_peer;
2919
2920 if (ofproto->backer != backer) {
2921 continue;
2922 }
2923
2924 peer_ofport = shash_find_data(&ofproto->up.port_by_name, peer_name);
2925 if (!peer_ofport) {
2926 continue;
2927 }
2928
2929 peer = ofport_dpif_cast(peer_ofport);
2930 peer_peer = netdev_vport_patch_peer(peer->up.netdev);
2931 if (peer_peer && !strcmp(netdev_get_name(ofport->up.netdev),
2932 peer_peer)) {
2933 ofport->peer = peer;
2934 ofport->peer->peer = ofport;
2935 }
2936 free(peer_peer);
2937
2938 break;
2939 }
2940 free(peer_name);
2941 }
2942
2943 static void
2944 port_run_fast(struct ofport_dpif *ofport)
2945 {
2946 if (ofport->cfm && cfm_should_send_ccm(ofport->cfm)) {
2947 struct ofpbuf packet;
2948
2949 ofpbuf_init(&packet, 0);
2950 cfm_compose_ccm(ofport->cfm, &packet, ofport->up.pp.hw_addr);
2951 send_packet(ofport, &packet);
2952 ofpbuf_uninit(&packet);
2953 }
2954
2955 if (ofport->bfd && bfd_should_send_packet(ofport->bfd)) {
2956 struct ofpbuf packet;
2957
2958 ofpbuf_init(&packet, 0);
2959 bfd_put_packet(ofport->bfd, &packet, ofport->up.pp.hw_addr);
2960 send_packet(ofport, &packet);
2961 ofpbuf_uninit(&packet);
2962 }
2963 }
2964
2965 static void
2966 port_run(struct ofport_dpif *ofport)
2967 {
2968 long long int carrier_seq = netdev_get_carrier_resets(ofport->up.netdev);
2969 bool carrier_changed = carrier_seq != ofport->carrier_seq;
2970 bool enable = netdev_get_carrier(ofport->up.netdev);
2971 bool cfm_enable = false;
2972 bool bfd_enable = false;
2973
2974 ofport->carrier_seq = carrier_seq;
2975
2976 port_run_fast(ofport);
2977
2978 if (ofport->cfm) {
2979 int cfm_opup = cfm_get_opup(ofport->cfm);
2980
2981 cfm_run(ofport->cfm);
2982 cfm_enable = !cfm_get_fault(ofport->cfm);
2983
2984 if (cfm_opup >= 0) {
2985 cfm_enable = cfm_enable && cfm_opup;
2986 }
2987 }
2988
2989 if (ofport->bfd) {
2990 bfd_run(ofport->bfd);
2991 bfd_enable = bfd_forwarding(ofport->bfd);
2992 }
2993
2994 if (ofport->bfd || ofport->cfm) {
2995 enable = enable && (cfm_enable || bfd_enable);
2996 }
2997
2998 if (ofport->bundle) {
2999 enable = enable && lacp_slave_may_enable(ofport->bundle->lacp, ofport);
3000 if (carrier_changed) {
3001 lacp_slave_carrier_changed(ofport->bundle->lacp, ofport);
3002 }
3003 }
3004
3005 if (ofport->may_enable != enable) {
3006 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
3007 ofproto->backer->need_revalidate = REV_PORT_TOGGLED;
3008 }
3009
3010 ofport->may_enable = enable;
3011 }
3012
3013 static void
3014 port_wait(struct ofport_dpif *ofport)
3015 {
3016 if (ofport->cfm) {
3017 cfm_wait(ofport->cfm);
3018 }
3019
3020 if (ofport->bfd) {
3021 bfd_wait(ofport->bfd);
3022 }
3023 }
3024
3025 static int
3026 port_query_by_name(const struct ofproto *ofproto_, const char *devname,
3027 struct ofproto_port *ofproto_port)
3028 {
3029 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
3030 struct dpif_port dpif_port;
3031 int error;
3032
3033 if (sset_contains(&ofproto->ghost_ports, devname)) {
3034 const char *type = netdev_get_type_from_name(devname);
3035
3036 /* We may be called before ofproto->up.port_by_name is populated with
3037 * the appropriate ofport. For this reason, we must get the name and
3038 * type from the netdev layer directly. */
3039 if (type) {
3040 const struct ofport *ofport;
3041
3042 ofport = shash_find_data(&ofproto->up.port_by_name, devname);
3043 ofproto_port->ofp_port = ofport ? ofport->ofp_port : OFPP_NONE;
3044 ofproto_port->name = xstrdup(devname);
3045 ofproto_port->type = xstrdup(type);
3046 return 0;
3047 }
3048 return ENODEV;
3049 }
3050
3051 if (!sset_contains(&ofproto->ports, devname)) {
3052 return ENODEV;
3053 }
3054 error = dpif_port_query_by_name(ofproto->backer->dpif,
3055 devname, &dpif_port);
3056 if (!error) {
3057 ofproto_port_from_dpif_port(ofproto, ofproto_port, &dpif_port);
3058 }
3059 return error;
3060 }
3061
3062 static int
3063 port_add(struct ofproto *ofproto_, struct netdev *netdev)
3064 {
3065 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
3066 const char *devname = netdev_get_name(netdev);
3067 char namebuf[NETDEV_VPORT_NAME_BUFSIZE];
3068 const char *dp_port_name;
3069
3070 if (netdev_vport_is_patch(netdev)) {
3071 sset_add(&ofproto->ghost_ports, netdev_get_name(netdev));
3072 return 0;
3073 }
3074
3075 dp_port_name = netdev_vport_get_dpif_port(netdev, namebuf, sizeof namebuf);
3076 if (!dpif_port_exists(ofproto->backer->dpif, dp_port_name)) {
3077 odp_port_t port_no = ODPP_NONE;
3078 int error;
3079
3080 error = dpif_port_add(ofproto->backer->dpif, netdev, &port_no);
3081 if (error) {
3082 return error;
3083 }
3084 if (netdev_get_tunnel_config(netdev)) {
3085 simap_put(&ofproto->backer->tnl_backers,
3086 dp_port_name, odp_to_u32(port_no));
3087 }
3088 }
3089
3090 if (netdev_get_tunnel_config(netdev)) {
3091 sset_add(&ofproto->ghost_ports, devname);
3092 } else {
3093 sset_add(&ofproto->ports, devname);
3094 }
3095 return 0;
3096 }
3097
3098 static int
3099 port_del(struct ofproto *ofproto_, ofp_port_t ofp_port)
3100 {
3101 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
3102 struct ofport_dpif *ofport = get_ofp_port(ofproto, ofp_port);
3103 int error = 0;
3104
3105 if (!ofport) {
3106 return 0;
3107 }
3108
3109 sset_find_and_delete(&ofproto->ghost_ports,
3110 netdev_get_name(ofport->up.netdev));
3111 ofproto->backer->need_revalidate = REV_RECONFIGURE;
3112 if (!ofport->is_tunnel) {
3113 error = dpif_port_del(ofproto->backer->dpif, ofport->odp_port);
3114 if (!error) {
3115 /* The caller is going to close ofport->up.netdev. If this is a
3116 * bonded port, then the bond is using that netdev, so remove it
3117 * from the bond. The client will need to reconfigure everything
3118 * after deleting ports, so then the slave will get re-added. */
3119 bundle_remove(&ofport->up);
3120 }
3121 }
3122 return error;
3123 }
3124
3125 static int
3126 port_get_stats(const struct ofport *ofport_, struct netdev_stats *stats)
3127 {
3128 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
3129 int error;
3130
3131 push_all_stats();
3132
3133 error = netdev_get_stats(ofport->up.netdev, stats);
3134
3135 if (!error && ofport_->ofp_port == OFPP_LOCAL) {
3136 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
3137
3138 /* ofproto->stats.tx_packets represents packets that we created
3139 * internally and sent to some port (e.g. packets sent with
3140 * send_packet()). Account for them as if they had come from
3141 * OFPP_LOCAL and got forwarded. */
3142
3143 if (stats->rx_packets != UINT64_MAX) {
3144 stats->rx_packets += ofproto->stats.tx_packets;
3145 }
3146
3147 if (stats->rx_bytes != UINT64_MAX) {
3148 stats->rx_bytes += ofproto->stats.tx_bytes;
3149 }
3150
3151 /* ofproto->stats.rx_packets represents packets that were received on
3152 * some port and we processed internally and dropped (e.g. STP).
3153 * Account for them as if they had been forwarded to OFPP_LOCAL. */
3154
3155 if (stats->tx_packets != UINT64_MAX) {
3156 stats->tx_packets += ofproto->stats.rx_packets;
3157 }
3158
3159 if (stats->tx_bytes != UINT64_MAX) {
3160 stats->tx_bytes += ofproto->stats.rx_bytes;
3161 }
3162 }
3163
3164 return error;
3165 }
3166
3167 struct port_dump_state {
3168 uint32_t bucket;
3169 uint32_t offset;
3170 bool ghost;
3171
3172 struct ofproto_port port;
3173 bool has_port;
3174 };
3175
3176 static int
3177 port_dump_start(const struct ofproto *ofproto_ OVS_UNUSED, void **statep)
3178 {
3179 *statep = xzalloc(sizeof(struct port_dump_state));
3180 return 0;
3181 }
3182
3183 static int
3184 port_dump_next(const struct ofproto *ofproto_, void *state_,
3185 struct ofproto_port *port)
3186 {
3187 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
3188 struct port_dump_state *state = state_;
3189 const struct sset *sset;
3190 struct sset_node *node;
3191
3192 if (state->has_port) {
3193 ofproto_port_destroy(&state->port);
3194 state->has_port = false;
3195 }
3196 sset = state->ghost ? &ofproto->ghost_ports : &ofproto->ports;
3197 while ((node = sset_at_position(sset, &state->bucket, &state->offset))) {
3198 int error;
3199
3200 error = port_query_by_name(ofproto_, node->name, &state->port);
3201 if (!error) {
3202 *port = state->port;
3203 state->has_port = true;
3204 return 0;
3205 } else if (error != ENODEV) {
3206 return error;
3207 }
3208 }
3209
3210 if (!state->ghost) {
3211 state->ghost = true;
3212 state->bucket = 0;
3213 state->offset = 0;
3214 return port_dump_next(ofproto_, state_, port);
3215 }
3216
3217 return EOF;
3218 }
3219
3220 static int
3221 port_dump_done(const struct ofproto *ofproto_ OVS_UNUSED, void *state_)
3222 {
3223 struct port_dump_state *state = state_;
3224
3225 if (state->has_port) {
3226 ofproto_port_destroy(&state->port);
3227 }
3228 free(state);
3229 return 0;
3230 }
3231
3232 static int
3233 port_poll(const struct ofproto *ofproto_, char **devnamep)
3234 {
3235 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
3236
3237 if (ofproto->port_poll_errno) {
3238 int error = ofproto->port_poll_errno;
3239 ofproto->port_poll_errno = 0;
3240 return error;
3241 }
3242
3243 if (sset_is_empty(&ofproto->port_poll_set)) {
3244 return EAGAIN;
3245 }
3246
3247 *devnamep = sset_pop(&ofproto->port_poll_set);
3248 return 0;
3249 }
3250
3251 static void
3252 port_poll_wait(const struct ofproto *ofproto_)
3253 {
3254 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
3255 dpif_port_poll_wait(ofproto->backer->dpif);
3256 }
3257
3258 static int
3259 port_is_lacp_current(const struct ofport *ofport_)
3260 {
3261 const struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
3262 return (ofport->bundle && ofport->bundle->lacp
3263 ? lacp_slave_is_current(ofport->bundle->lacp, ofport)
3264 : -1);
3265 }
3266 \f
3267 /* Upcall handling. */
3268
3269 struct flow_miss_op {
3270 struct dpif_op dpif_op;
3271
3272 uint64_t slow_stub[128 / 8]; /* Buffer for compose_slow_path() */
3273 struct xlate_out xout;
3274 bool xout_garbage; /* 'xout' needs to be uninitialized? */
3275
3276 struct ofpbuf mask; /* Flow mask for "put" ops. */
3277 struct odputil_keybuf maskbuf;
3278
3279 /* If this is a "put" op, then a pointer to the subfacet that should
3280 * be marked as uninstalled if the operation fails. */
3281 struct subfacet *subfacet;
3282 };
3283
3284 /* Figures out whether a flow that missed in 'ofproto', whose details are in
3285 * 'miss' masked by 'wc', is likely to be worth tracking in detail in userspace
3286 * and (usually) installing a datapath flow. The answer is usually "yes" (a
3287 * return value of true). However, for short flows the cost of bookkeeping is
3288 * much higher than the benefits, so when the datapath holds a large number of
3289 * flows we impose some heuristics to decide which flows are likely to be worth
3290 * tracking. */
3291 static bool
3292 flow_miss_should_make_facet(struct flow_miss *miss)
3293 {
3294 struct dpif_backer *backer = miss->ofproto->backer;
3295 uint32_t hash;
3296
3297 switch (flow_miss_model) {
3298 case OFPROTO_HANDLE_MISS_AUTO:
3299 break;
3300 case OFPROTO_HANDLE_MISS_WITH_FACETS:
3301 return true;
3302 case OFPROTO_HANDLE_MISS_WITHOUT_FACETS:
3303 return false;
3304 }
3305
3306 if (!backer->governor) {
3307 size_t n_subfacets;
3308
3309 n_subfacets = hmap_count(&backer->subfacets);
3310 if (n_subfacets * 2 <= flow_eviction_threshold) {
3311 return true;
3312 }
3313
3314 backer->governor = governor_create();
3315 }
3316
3317 hash = flow_hash_in_wildcards(&miss->flow, &miss->xout.wc, 0);
3318 return governor_should_install_flow(backer->governor, hash,
3319 list_size(&miss->packets));
3320 }
3321
3322 /* Handles 'miss', which matches 'facet'. May add any required datapath
3323 * operations to 'ops', incrementing '*n_ops' for each new op.
3324 *
3325 * All of the packets in 'miss' are considered to have arrived at time
3326 * 'miss->stats.used'. This is really important only for new facets: if we
3327 * just called time_msec() here, then the new subfacet or its packets could
3328 * look (occasionally) as though it was used some time after the facet was
3329 * used. That can make a one-packet flow look like it has a nonzero duration,
3330 * which looks odd in e.g. NetFlow statistics. */
3331 static void
3332 handle_flow_miss_with_facet(struct flow_miss *miss, struct facet *facet,
3333 struct flow_miss_op *ops, size_t *n_ops)
3334 {
3335 enum subfacet_path want_path;
3336 struct subfacet *subfacet;
3337
3338 facet->packet_count += miss->stats.n_packets;
3339 facet->prev_packet_count += miss->stats.n_packets;
3340 facet->byte_count += miss->stats.n_bytes;
3341 facet->prev_byte_count += miss->stats.n_bytes;
3342
3343 want_path = facet->xout.slow ? SF_SLOW_PATH : SF_FAST_PATH;
3344
3345 /* Don't install the flow if it's the result of the "userspace"
3346 * action for an already installed facet. This can occur when a
3347 * datapath flow with wildcards has a "userspace" action and flows
3348 * sent to userspace result in a different subfacet, which will then
3349 * be rejected as overlapping by the datapath. */
3350 if (miss->upcall_type == DPIF_UC_ACTION
3351 && !list_is_empty(&facet->subfacets)) {
3352 return;
3353 }
3354
3355 subfacet = subfacet_create(facet, miss);
3356 if (subfacet->path != want_path) {
3357 struct flow_miss_op *op = &ops[(*n_ops)++];
3358 struct dpif_flow_put *put = &op->dpif_op.u.flow_put;
3359
3360 subfacet->path = want_path;
3361
3362 ofpbuf_use_stack(&op->mask, &op->maskbuf, sizeof op->maskbuf);
3363 if (enable_megaflows) {
3364 odp_flow_key_from_mask(&op->mask, &facet->xout.wc.masks,
3365 &miss->flow, UINT32_MAX);
3366 }
3367
3368 op->xout_garbage = false;
3369 op->dpif_op.type = DPIF_OP_FLOW_PUT;
3370 op->subfacet = subfacet;
3371 put->flags = DPIF_FP_CREATE;
3372 put->key = miss->key;
3373 put->key_len = miss->key_len;
3374 put->mask = op->mask.data;
3375 put->mask_len = op->mask.size;
3376
3377 if (want_path == SF_FAST_PATH) {
3378 put->actions = facet->xout.odp_actions.data;
3379 put->actions_len = facet->xout.odp_actions.size;
3380 } else {
3381 compose_slow_path(facet->ofproto, &miss->flow, facet->xout.slow,
3382 op->slow_stub, sizeof op->slow_stub,
3383 &put->actions, &put->actions_len);
3384 }
3385 put->stats = NULL;
3386 }
3387 }
3388
3389 /* Handles flow miss 'miss'. May add any required datapath operations
3390 * to 'ops', incrementing '*n_ops' for each new op. */
3391 static void
3392 handle_flow_miss(struct flow_miss *miss, struct flow_miss_op *ops,
3393 size_t *n_ops)
3394 {
3395 struct facet *facet;
3396
3397 miss->ofproto->n_missed += list_size(&miss->packets);
3398
3399 facet = facet_lookup_valid(miss->ofproto, &miss->flow);
3400 if (!facet) {
3401 /* There does not exist a bijection between 'struct flow' and datapath
3402 * flow keys with fitness ODP_FIT_TO_LITTLE. This breaks a fundamental
3403 * assumption used throughout the facet and subfacet handling code.
3404 * Since we have to handle these misses in userspace anyway, we simply
3405 * skip facet creation, avoiding the problem altogether. */
3406 if (miss->key_fitness == ODP_FIT_TOO_LITTLE
3407 || !flow_miss_should_make_facet(miss)) {
3408 return;
3409 }
3410
3411 facet = facet_create(miss);
3412 }
3413 handle_flow_miss_with_facet(miss, facet, ops, n_ops);
3414 }
3415
3416 static struct drop_key *
3417 drop_key_lookup(const struct dpif_backer *backer, const struct nlattr *key,
3418 size_t key_len)
3419 {
3420 struct drop_key *drop_key;
3421
3422 HMAP_FOR_EACH_WITH_HASH (drop_key, hmap_node, hash_bytes(key, key_len, 0),
3423 &backer->drop_keys) {
3424 if (drop_key->key_len == key_len
3425 && !memcmp(drop_key->key, key, key_len)) {
3426 return drop_key;
3427 }
3428 }
3429 return NULL;
3430 }
3431
3432 static void
3433 drop_key_clear(struct dpif_backer *backer)
3434 {
3435 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 15);
3436 struct drop_key *drop_key, *next;
3437
3438 HMAP_FOR_EACH_SAFE (drop_key, next, hmap_node, &backer->drop_keys) {
3439 int error;
3440
3441 error = dpif_flow_del(backer->dpif, drop_key->key, drop_key->key_len,
3442 NULL);
3443 if (error && !VLOG_DROP_WARN(&rl)) {
3444 struct ds ds = DS_EMPTY_INITIALIZER;
3445 odp_flow_key_format(drop_key->key, drop_key->key_len, &ds);
3446 VLOG_WARN("Failed to delete drop key (%s) (%s)",
3447 ovs_strerror(error), ds_cstr(&ds));
3448 ds_destroy(&ds);
3449 }
3450
3451 hmap_remove(&backer->drop_keys, &drop_key->hmap_node);
3452 drop_key_destroy(drop_key);
3453 }
3454
3455 udpif_drop_key_clear(backer->udpif);
3456 }
3457
3458 static void
3459 handle_flow_misses(struct dpif_backer *backer, struct flow_miss_batch *fmb)
3460 {
3461 struct flow_miss_op flow_miss_ops[FLOW_MISS_MAX_BATCH];
3462 struct dpif_op *dpif_ops[FLOW_MISS_MAX_BATCH];
3463 struct flow_miss *miss;
3464 size_t n_ops, i;
3465
3466 /* Process each element in the to-do list, constructing the set of
3467 * operations to batch. */
3468 n_ops = 0;
3469 HMAP_FOR_EACH (miss, hmap_node, &fmb->misses) {
3470 handle_flow_miss(miss, flow_miss_ops, &n_ops);
3471 }
3472 ovs_assert(n_ops <= ARRAY_SIZE(flow_miss_ops));
3473
3474 /* Execute batch. */
3475 for (i = 0; i < n_ops; i++) {
3476 dpif_ops[i] = &flow_miss_ops[i].dpif_op;
3477 }
3478 dpif_operate(backer->dpif, dpif_ops, n_ops);
3479
3480 for (i = 0; i < n_ops; i++) {
3481 if (dpif_ops[i]->error != 0
3482 && flow_miss_ops[i].dpif_op.type == DPIF_OP_FLOW_PUT
3483 && flow_miss_ops[i].subfacet) {
3484 struct subfacet *subfacet = flow_miss_ops[i].subfacet;
3485
3486 COVERAGE_INC(subfacet_install_fail);
3487
3488 /* Zero-out subfacet counters when installation failed, but
3489 * datapath reported hits. This should not happen and
3490 * indicates a bug, since if the datapath flow exists, we
3491 * should not be attempting to create a new subfacet. A
3492 * buggy datapath could trigger this, so just zero out the
3493 * counters and log an error. */
3494 if (subfacet->dp_packet_count || subfacet->dp_byte_count) {
3495 VLOG_ERR_RL(&rl, "failed to install subfacet for which "
3496 "datapath reported hits");
3497 subfacet->dp_packet_count = subfacet->dp_byte_count = 0;
3498 }
3499
3500 subfacet->path = SF_NOT_INSTALLED;
3501 }
3502 }
3503 }
3504
3505 static void
3506 handle_sflow_upcall(struct dpif_backer *backer,
3507 const struct dpif_upcall *upcall)
3508 {
3509 struct ofproto_dpif *ofproto;
3510 union user_action_cookie cookie;
3511 struct flow flow;
3512 odp_port_t odp_in_port;
3513
3514 if (xlate_receive(backer, upcall->packet, upcall->key, upcall->key_len,
3515 &flow, NULL, &ofproto, &odp_in_port)
3516 || !ofproto->sflow) {
3517 return;
3518 }
3519
3520 memset(&cookie, 0, sizeof cookie);
3521 memcpy(&cookie, nl_attr_get(upcall->userdata), sizeof cookie.sflow);
3522 dpif_sflow_received(ofproto->sflow, upcall->packet, &flow,
3523 odp_in_port, &cookie);
3524 }
3525
3526 static void
3527 handle_flow_sample_upcall(struct dpif_backer *backer,
3528 const struct dpif_upcall *upcall)
3529 {
3530 struct ofproto_dpif *ofproto;
3531 union user_action_cookie cookie;
3532 struct flow flow;
3533
3534 if (xlate_receive(backer, upcall->packet, upcall->key, upcall->key_len,
3535 &flow, NULL, &ofproto, NULL)
3536 || !ofproto->ipfix) {
3537 return;
3538 }
3539
3540 memset(&cookie, 0, sizeof cookie);
3541 memcpy(&cookie, nl_attr_get(upcall->userdata), sizeof cookie.flow_sample);
3542
3543 /* The flow reflects exactly the contents of the packet. Sample
3544 * the packet using it. */
3545 dpif_ipfix_flow_sample(ofproto->ipfix, upcall->packet, &flow,
3546 cookie.flow_sample.collector_set_id,
3547 cookie.flow_sample.probability,
3548 cookie.flow_sample.obs_domain_id,
3549 cookie.flow_sample.obs_point_id);
3550 }
3551
3552 static void
3553 handle_ipfix_upcall(struct dpif_backer *backer,
3554 const struct dpif_upcall *upcall)
3555 {
3556 struct ofproto_dpif *ofproto;
3557 struct flow flow;
3558
3559 if (xlate_receive(backer, upcall->packet, upcall->key, upcall->key_len,
3560 &flow, NULL, &ofproto, NULL)
3561 || !ofproto->ipfix) {
3562 return;
3563 }
3564
3565 /* The flow reflects exactly the contents of the packet. Sample
3566 * the packet using it. */
3567 dpif_ipfix_bridge_sample(ofproto->ipfix, upcall->packet, &flow);
3568 }
3569
3570 static void
3571 handle_upcalls(struct dpif_backer *backer)
3572 {
3573 struct flow_miss_batch *fmb;
3574 int n_processed;
3575
3576 for (n_processed = 0; n_processed < FLOW_MISS_MAX_BATCH; n_processed++) {
3577 struct upcall *upcall = upcall_next(backer->udpif);
3578
3579 if (!upcall) {
3580 break;
3581 }
3582
3583 switch (upcall->type) {
3584 case SFLOW_UPCALL:
3585 handle_sflow_upcall(backer, &upcall->dpif_upcall);
3586 break;
3587
3588 case FLOW_SAMPLE_UPCALL:
3589 handle_flow_sample_upcall(backer, &upcall->dpif_upcall);
3590 break;
3591
3592 case IPFIX_UPCALL:
3593 handle_ipfix_upcall(backer, &upcall->dpif_upcall);
3594 break;
3595
3596 case BAD_UPCALL:
3597 break;
3598
3599 case MISS_UPCALL:
3600 NOT_REACHED();
3601 }
3602
3603 upcall_destroy(upcall);
3604 }
3605
3606 for (n_processed = 0; n_processed < FLOW_MISS_MAX_BATCH; n_processed++) {
3607 struct drop_key *drop_key = drop_key_next(backer->udpif);
3608 if (!drop_key) {
3609 break;
3610 }
3611
3612 if (!drop_key_lookup(backer, drop_key->key, drop_key->key_len)) {
3613 hmap_insert(&backer->drop_keys, &drop_key->hmap_node,
3614 hash_bytes(drop_key->key, drop_key->key_len, 0));
3615 dpif_flow_put(backer->dpif, DPIF_FP_CREATE | DPIF_FP_MODIFY,
3616 drop_key->key, drop_key->key_len,
3617 NULL, 0, NULL, 0, NULL);
3618 } else {
3619 drop_key_destroy(drop_key);
3620 }
3621 }
3622
3623 fmb = flow_miss_batch_next(backer->udpif);
3624 if (fmb) {
3625 handle_flow_misses(backer, fmb);
3626 flow_miss_batch_destroy(fmb);
3627 }
3628 }
3629 \f
3630 /* Flow expiration. */
3631
3632 static int subfacet_max_idle(const struct dpif_backer *);
3633 static void update_stats(struct dpif_backer *);
3634 static void rule_expire(struct rule_dpif *);
3635 static void expire_subfacets(struct dpif_backer *, int dp_max_idle);
3636
3637 /* This function is called periodically by run(). Its job is to collect
3638 * updates for the flows that have been installed into the datapath, most
3639 * importantly when they last were used, and then use that information to
3640 * expire flows that have not been used recently.
3641 *
3642 * Returns the number of milliseconds after which it should be called again. */
3643 static int
3644 expire(struct dpif_backer *backer)
3645 {
3646 struct ofproto_dpif *ofproto;
3647 size_t n_subfacets;
3648 int max_idle;
3649
3650 /* Periodically clear out the drop keys in an effort to keep them
3651 * relatively few. */
3652 drop_key_clear(backer);
3653
3654 /* Update stats for each flow in the backer. */
3655 update_stats(backer);
3656
3657 n_subfacets = hmap_count(&backer->subfacets);
3658 if (n_subfacets) {
3659 struct subfacet *subfacet;
3660 long long int total, now;
3661
3662 total = 0;
3663 now = time_msec();
3664 HMAP_FOR_EACH (subfacet, hmap_node, &backer->subfacets) {
3665 total += now - subfacet->created;
3666 }
3667 backer->avg_subfacet_life += total / n_subfacets;
3668 }
3669 backer->avg_subfacet_life /= 2;
3670
3671 backer->avg_n_subfacet += n_subfacets;
3672 backer->avg_n_subfacet /= 2;
3673
3674 backer->max_n_subfacet = MAX(backer->max_n_subfacet, n_subfacets);
3675
3676 max_idle = subfacet_max_idle(backer);
3677 expire_subfacets(backer, max_idle);
3678
3679 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
3680 struct rule *rule, *next_rule;
3681
3682 if (ofproto->backer != backer) {
3683 continue;
3684 }
3685
3686 /* Expire OpenFlow flows whose idle_timeout or hard_timeout
3687 * has passed. */
3688 ovs_mutex_lock(&ofproto->up.expirable_mutex);
3689 LIST_FOR_EACH_SAFE (rule, next_rule, expirable,
3690 &ofproto->up.expirable) {
3691 rule_expire(rule_dpif_cast(rule));
3692 }
3693 ovs_mutex_unlock(&ofproto->up.expirable_mutex);
3694
3695 /* All outstanding data in existing flows has been accounted, so it's a
3696 * good time to do bond rebalancing. */
3697 if (ofproto->has_bonded_bundles) {
3698 struct ofbundle *bundle;
3699
3700 HMAP_FOR_EACH (bundle, hmap_node, &ofproto->bundles) {
3701 if (bundle->bond) {
3702 bond_rebalance(bundle->bond);
3703 }
3704 }
3705 }
3706 }
3707
3708 return MIN(max_idle, 1000);
3709 }
3710
3711 /* Updates flow table statistics given that the datapath just reported 'stats'
3712 * as 'subfacet''s statistics. */
3713 static void
3714 update_subfacet_stats(struct subfacet *subfacet,
3715 const struct dpif_flow_stats *stats)
3716 {
3717 struct facet *facet = subfacet->facet;
3718 struct dpif_flow_stats diff;
3719
3720 diff.tcp_flags = stats->tcp_flags;
3721 diff.used = stats->used;
3722
3723 if (stats->n_packets >= subfacet->dp_packet_count) {
3724 diff.n_packets = stats->n_packets - subfacet->dp_packet_count;
3725 } else {
3726 VLOG_WARN_RL(&rl, "unexpected packet count from the datapath");
3727 diff.n_packets = 0;
3728 }
3729
3730 if (stats->n_bytes >= subfacet->dp_byte_count) {
3731 diff.n_bytes = stats->n_bytes - subfacet->dp_byte_count;
3732 } else {
3733 VLOG_WARN_RL(&rl, "unexpected byte count from datapath");
3734 diff.n_bytes = 0;
3735 }
3736
3737 facet->ofproto->n_hit += diff.n_packets;
3738 subfacet->dp_packet_count = stats->n_packets;
3739 subfacet->dp_byte_count = stats->n_bytes;
3740 subfacet_update_stats(subfacet, &diff);
3741
3742 if (facet->accounted_bytes < facet->byte_count) {
3743 facet_learn(facet);
3744 facet_account(facet);
3745 facet->accounted_bytes = facet->byte_count;
3746 }
3747 }
3748
3749 /* 'key' with length 'key_len' bytes is a flow in 'dpif' that we know nothing
3750 * about, or a flow that shouldn't be installed but was anyway. Delete it. */
3751 static void
3752 delete_unexpected_flow(struct dpif_backer *backer,
3753 const struct nlattr *key, size_t key_len)
3754 {
3755 if (!VLOG_DROP_WARN(&rl)) {
3756 struct ds s;
3757
3758 ds_init(&s);
3759 odp_flow_key_format(key, key_len, &s);
3760 VLOG_WARN("unexpected flow: %s", ds_cstr(&s));
3761 ds_destroy(&s);
3762 }
3763
3764 COVERAGE_INC(facet_unexpected);
3765 dpif_flow_del(backer->dpif, key, key_len, NULL);
3766 }
3767
3768 /* Update 'packet_count', 'byte_count', and 'used' members of installed facets.
3769 *
3770 * This function also pushes statistics updates to rules which each facet
3771 * resubmits into. Generally these statistics will be accurate. However, if a
3772 * facet changes the rule it resubmits into at some time in between
3773 * update_stats() runs, it is possible that statistics accrued to the
3774 * old rule will be incorrectly attributed to the new rule. This could be
3775 * avoided by calling update_stats() whenever rules are created or
3776 * deleted. However, the performance impact of making so many calls to the
3777 * datapath do not justify the benefit of having perfectly accurate statistics.
3778 *
3779 * In addition, this function maintains per ofproto flow hit counts. The patch
3780 * port is not treated specially. e.g. A packet ingress from br0 patched into
3781 * br1 will increase the hit count of br0 by 1, however, does not affect
3782 * the hit or miss counts of br1.
3783 */
3784 static void
3785 update_stats(struct dpif_backer *backer)
3786 {
3787 const struct dpif_flow_stats *stats;
3788 struct dpif_flow_dump dump;
3789 const struct nlattr *key, *mask;
3790 size_t key_len, mask_len;
3791
3792 dpif_flow_dump_start(&dump, backer->dpif);
3793 while (dpif_flow_dump_next(&dump, &key, &key_len,
3794 &mask, &mask_len, NULL, NULL, &stats)) {
3795 struct subfacet *subfacet;
3796 uint32_t key_hash;
3797
3798 key_hash = odp_flow_key_hash(key, key_len);
3799 subfacet = subfacet_find(backer, key, key_len, key_hash);
3800 switch (subfacet ? subfacet->path : SF_NOT_INSTALLED) {
3801 case SF_FAST_PATH:
3802 update_subfacet_stats(subfacet, stats);
3803 break;
3804
3805 case SF_SLOW_PATH:
3806 /* Stats are updated per-packet. */
3807 break;
3808
3809 case SF_NOT_INSTALLED:
3810 default:
3811 delete_unexpected_flow(backer, key, key_len);
3812 break;
3813 }
3814 run_fast_rl();
3815 }
3816 dpif_flow_dump_done(&dump);
3817
3818 update_moving_averages(backer);
3819 }
3820
3821 /* Calculates and returns the number of milliseconds of idle time after which
3822 * subfacets should expire from the datapath. When a subfacet expires, we fold
3823 * its statistics into its facet, and when a facet's last subfacet expires, we
3824 * fold its statistic into its rule. */
3825 static int
3826 subfacet_max_idle(const struct dpif_backer *backer)
3827 {
3828 /*
3829 * Idle time histogram.
3830 *
3831 * Most of the time a switch has a relatively small number of subfacets.
3832 * When this is the case we might as well keep statistics for all of them
3833 * in userspace and to cache them in the kernel datapath for performance as
3834 * well.
3835 *
3836 * As the number of subfacets increases, the memory required to maintain
3837 * statistics about them in userspace and in the kernel becomes
3838 * significant. However, with a large number of subfacets it is likely
3839 * that only a few of them are "heavy hitters" that consume a large amount
3840 * of bandwidth. At this point, only heavy hitters are worth caching in
3841 * the kernel and maintaining in userspaces; other subfacets we can
3842 * discard.
3843 *
3844 * The technique used to compute the idle time is to build a histogram with
3845 * N_BUCKETS buckets whose width is BUCKET_WIDTH msecs each. Each subfacet
3846 * that is installed in the kernel gets dropped in the appropriate bucket.
3847 * After the histogram has been built, we compute the cutoff so that only
3848 * the most-recently-used 1% of subfacets (but at least
3849 * flow_eviction_threshold flows) are kept cached. At least
3850 * the most-recently-used bucket of subfacets is kept, so actually an
3851 * arbitrary number of subfacets can be kept in any given expiration run
3852 * (though the next run will delete most of those unless they receive
3853 * additional data).
3854 *
3855 * This requires a second pass through the subfacets, in addition to the
3856 * pass made by update_stats(), because the former function never looks at
3857 * uninstallable subfacets.
3858 */
3859 enum { BUCKET_WIDTH = ROUND_UP(100, TIME_UPDATE_INTERVAL) };
3860 enum { N_BUCKETS = 5000 / BUCKET_WIDTH };
3861 int buckets[N_BUCKETS] = { 0 };
3862 int total, subtotal, bucket;
3863 struct subfacet *subfacet;
3864 long long int now;
3865 int i;
3866
3867 total = hmap_count(&backer->subfacets);
3868 if (total <= flow_eviction_threshold) {
3869 return N_BUCKETS * BUCKET_WIDTH;
3870 }
3871
3872 /* Build histogram. */
3873 now = time_msec();
3874 HMAP_FOR_EACH (subfacet, hmap_node, &backer->subfacets) {
3875 long long int idle = now - subfacet->used;
3876 int bucket = (idle <= 0 ? 0
3877 : idle >= BUCKET_WIDTH * N_BUCKETS ? N_BUCKETS - 1
3878 : (unsigned int) idle / BUCKET_WIDTH);
3879 buckets[bucket]++;
3880 }
3881
3882 /* Find the first bucket whose flows should be expired. */
3883 subtotal = bucket = 0;
3884 do {
3885 subtotal += buckets[bucket++];
3886 } while (bucket < N_BUCKETS &&
3887 subtotal < MAX(flow_eviction_threshold, total / 100));
3888
3889 if (VLOG_IS_DBG_ENABLED()) {
3890 struct ds s;
3891
3892 ds_init(&s);
3893 ds_put_cstr(&s, "keep");
3894 for (i = 0; i < N_BUCKETS; i++) {
3895 if (i == bucket) {
3896 ds_put_cstr(&s, ", drop");
3897 }
3898 if (buckets[i]) {
3899 ds_put_format(&s, " %d:%d", i * BUCKET_WIDTH, buckets[i]);
3900 }
3901 }
3902 VLOG_INFO("%s (msec:count)", ds_cstr(&s));
3903 ds_destroy(&s);
3904 }
3905
3906 return bucket * BUCKET_WIDTH;
3907 }
3908
3909 static void
3910 expire_subfacets(struct dpif_backer *backer, int dp_max_idle)
3911 {
3912 /* Cutoff time for most flows. */
3913 long long int normal_cutoff = time_msec() - dp_max_idle;
3914
3915 /* We really want to keep flows for special protocols around, so use a more
3916 * conservative cutoff. */
3917 long long int special_cutoff = time_msec() - 10000;
3918
3919 struct subfacet *subfacet, *next_subfacet;
3920 struct subfacet *batch[SUBFACET_DESTROY_MAX_BATCH];
3921 int n_batch;
3922
3923 n_batch = 0;
3924 HMAP_FOR_EACH_SAFE (subfacet, next_subfacet, hmap_node,
3925 &backer->subfacets) {
3926 long long int cutoff;
3927
3928 cutoff = (subfacet->facet->xout.slow & (SLOW_CFM | SLOW_BFD | SLOW_LACP
3929 | SLOW_STP)
3930 ? special_cutoff
3931 : normal_cutoff);
3932 if (subfacet->used < cutoff) {
3933 if (subfacet->path != SF_NOT_INSTALLED) {
3934 batch[n_batch++] = subfacet;
3935 if (n_batch >= SUBFACET_DESTROY_MAX_BATCH) {
3936 subfacet_destroy_batch(backer, batch, n_batch);
3937 n_batch = 0;
3938 }
3939 } else {
3940 subfacet_destroy(subfacet);
3941 }
3942 }
3943 }
3944
3945 if (n_batch > 0) {
3946 subfacet_destroy_batch(backer, batch, n_batch);
3947 }
3948 }
3949
3950 /* If 'rule' is an OpenFlow rule, that has expired according to OpenFlow rules,
3951 * then delete it entirely. */
3952 static void
3953 rule_expire(struct rule_dpif *rule)
3954 {
3955 uint16_t idle_timeout, hard_timeout;
3956 long long int now;
3957 uint8_t reason;
3958
3959 if (rule->up.pending) {
3960 /* We'll have to expire it later. */
3961 return;
3962 }
3963
3964 ovs_mutex_lock(&rule->up.timeout_mutex);
3965 hard_timeout = rule->up.hard_timeout;
3966 idle_timeout = rule->up.idle_timeout;
3967 ovs_mutex_unlock(&rule->up.timeout_mutex);
3968
3969 /* Has 'rule' expired? */
3970 now = time_msec();
3971 if (hard_timeout && now > rule->up.modified + hard_timeout * 1000) {
3972 reason = OFPRR_HARD_TIMEOUT;
3973 } else if (idle_timeout && now > rule->up.used + idle_timeout * 1000) {
3974 reason = OFPRR_IDLE_TIMEOUT;
3975 } else {
3976 return;
3977 }
3978
3979 COVERAGE_INC(ofproto_dpif_expired);
3980 ofproto_rule_expire(&rule->up, reason);
3981 }
3982 \f
3983 /* Facets. */
3984
3985 /* Creates and returns a new facet based on 'miss'.
3986 *
3987 * The caller must already have determined that no facet with an identical
3988 * 'miss->flow' exists in 'miss->ofproto'.
3989 *
3990 * 'rule' and 'xout' must have been created based on 'miss'.
3991 *
3992 * 'facet'' statistics are initialized based on 'stats'.
3993 *
3994 * The facet will initially have no subfacets. The caller should create (at
3995 * least) one subfacet with subfacet_create(). */
3996 static struct facet *
3997 facet_create(const struct flow_miss *miss)
3998 {
3999 struct ofproto_dpif *ofproto = miss->ofproto;
4000 struct facet *facet;
4001 struct match match;
4002
4003 facet = xzalloc(sizeof *facet);
4004 facet->ofproto = miss->ofproto;
4005 facet->used = miss->stats.used;
4006 facet->flow = miss->flow;
4007 facet->learn_rl = time_msec() + 500;
4008
4009 list_init(&facet->subfacets);
4010 netflow_flow_init(&facet->nf_flow);
4011 netflow_flow_update_time(ofproto->netflow, &facet->nf_flow, facet->used);
4012
4013 xlate_out_copy(&facet->xout, &miss->xout);
4014
4015 match_init(&match, &facet->flow, &facet->xout.wc);
4016 cls_rule_init(&facet->cr, &match, OFP_DEFAULT_PRIORITY);
4017 ovs_rwlock_wrlock(&ofproto->facets.rwlock);
4018 classifier_insert(&ofproto->facets, &facet->cr);
4019 ovs_rwlock_unlock(&ofproto->facets.rwlock);
4020
4021 facet->nf_flow.output_iface = facet->xout.nf_output_iface;
4022 return facet;
4023 }
4024
4025 static void
4026 facet_free(struct facet *facet)
4027 {
4028 if (facet) {
4029 xlate_out_uninit(&facet->xout);
4030 free(facet);
4031 }
4032 }
4033
4034 /* Executes, within 'ofproto', the 'n_actions' actions in 'actions' on
4035 * 'packet', which arrived on 'in_port'. */
4036 static bool
4037 execute_odp_actions(struct ofproto_dpif *ofproto, const struct flow *flow,
4038 const struct nlattr *odp_actions, size_t actions_len,
4039 struct ofpbuf *packet)
4040 {
4041 struct odputil_keybuf keybuf;
4042 struct ofpbuf key;
4043 int error;
4044
4045 ofpbuf_use_stack(&key, &keybuf, sizeof keybuf);
4046 odp_flow_key_from_flow(&key, flow,
4047 ofp_port_to_odp_port(ofproto, flow->in_port.ofp_port));
4048
4049 error = dpif_execute(ofproto->backer->dpif, key.data, key.size,
4050 odp_actions, actions_len, packet);
4051 return !error;
4052 }
4053
4054 /* Remove 'facet' from its ofproto and free up the associated memory:
4055 *
4056 * - If 'facet' was installed in the datapath, uninstalls it and updates its
4057 * rule's statistics, via subfacet_uninstall().
4058 *
4059 * - Removes 'facet' from its rule and from ofproto->facets.
4060 */
4061 static void
4062 facet_remove(struct facet *facet)
4063 {
4064 struct subfacet *subfacet, *next_subfacet;
4065
4066 ovs_assert(!list_is_empty(&facet->subfacets));
4067
4068 /* First uninstall all of the subfacets to get final statistics. */
4069 LIST_FOR_EACH (subfacet, list_node, &facet->subfacets) {
4070 subfacet_uninstall(subfacet);
4071 }
4072
4073 /* Flush the final stats to the rule.
4074 *
4075 * This might require us to have at least one subfacet around so that we
4076 * can use its actions for accounting in facet_account(), which is why we
4077 * have uninstalled but not yet destroyed the subfacets. */
4078 facet_flush_stats(facet);
4079
4080 /* Now we're really all done so destroy everything. */
4081 LIST_FOR_EACH_SAFE (subfacet, next_subfacet, list_node,
4082 &facet->subfacets) {
4083 subfacet_destroy__(subfacet);
4084 }
4085 ovs_rwlock_wrlock(&facet->ofproto->facets.rwlock);
4086 classifier_remove(&facet->ofproto->facets, &facet->cr);
4087 ovs_rwlock_unlock(&facet->ofproto->facets.rwlock);
4088 cls_rule_destroy(&facet->cr);
4089 facet_free(facet);
4090 }
4091
4092 /* Feed information from 'facet' back into the learning table to keep it in
4093 * sync with what is actually flowing through the datapath. */
4094 static void
4095 facet_learn(struct facet *facet)
4096 {
4097 long long int now = time_msec();
4098
4099 if (!facet->xout.has_fin_timeout && now < facet->learn_rl) {
4100 return;
4101 }
4102
4103 facet->learn_rl = now + 500;
4104
4105 if (!facet->xout.has_learn
4106 && !facet->xout.has_normal
4107 && (!facet->xout.has_fin_timeout
4108 || !(facet->tcp_flags & (TCP_FIN | TCP_RST)))) {
4109 return;
4110 }
4111
4112 facet_push_stats(facet, true);
4113 }
4114
4115 static void
4116 facet_account(struct facet *facet)
4117 {
4118 const struct nlattr *a;
4119 unsigned int left;
4120 ovs_be16 vlan_tci;
4121 uint64_t n_bytes;
4122
4123 if (!facet->xout.has_normal || !facet->ofproto->has_bonded_bundles) {
4124 return;
4125 }
4126 n_bytes = facet->byte_count - facet->accounted_bytes;
4127
4128 /* This loop feeds byte counters to bond_account() for rebalancing to use
4129 * as a basis. We also need to track the actual VLAN on which the packet
4130 * is going to be sent to ensure that it matches the one passed to
4131 * bond_choose_output_slave(). (Otherwise, we will account to the wrong
4132 * hash bucket.)
4133 *
4134 * We use the actions from an arbitrary subfacet because they should all
4135 * be equally valid for our purpose. */
4136 vlan_tci = facet->flow.vlan_tci;
4137 NL_ATTR_FOR_EACH_UNSAFE (a, left, facet->xout.odp_actions.data,
4138 facet->xout.odp_actions.size) {
4139 const struct ovs_action_push_vlan *vlan;
4140 struct ofport_dpif *port;
4141
4142 switch (nl_attr_type(a)) {
4143 case OVS_ACTION_ATTR_OUTPUT:
4144 port = get_odp_port(facet->ofproto, nl_attr_get_odp_port(a));
4145 if (port && port->bundle && port->bundle->bond) {
4146 bond_account(port->bundle->bond, &facet->flow,
4147 vlan_tci_to_vid(vlan_tci), n_bytes);
4148 }
4149 break;
4150
4151 case OVS_ACTION_ATTR_POP_VLAN:
4152 vlan_tci = htons(0);
4153 break;
4154
4155 case OVS_ACTION_ATTR_PUSH_VLAN:
4156 vlan = nl_attr_get(a);
4157 vlan_tci = vlan->vlan_tci;
4158 break;
4159 }
4160 }
4161 }
4162
4163 /* Returns true if the only action for 'facet' is to send to the controller.
4164 * (We don't report NetFlow expiration messages for such facets because they
4165 * are just part of the control logic for the network, not real traffic). */
4166 static bool
4167 facet_is_controller_flow(struct facet *facet)
4168 {
4169 if (facet) {
4170 struct ofproto_dpif *ofproto = facet->ofproto;
4171 const struct ofpact *ofpacts;
4172 struct rule_dpif *rule;
4173 size_t ofpacts_len;
4174 bool is_controller;
4175
4176 rule_dpif_lookup(ofproto, &facet->flow, NULL, &rule);
4177 ofpacts_len = rule->up.ofpacts_len;
4178 ofpacts = rule->up.ofpacts;
4179 is_controller = ofpacts_len > 0
4180 && ofpacts->type == OFPACT_CONTROLLER
4181 && ofpact_next(ofpacts) >= ofpact_end(ofpacts, ofpacts_len);
4182 rule_release(rule);
4183 return is_controller;
4184 }
4185 return false;
4186 }
4187
4188 /* Folds all of 'facet''s statistics into its rule. Also updates the
4189 * accounting ofhook and emits a NetFlow expiration if appropriate. All of
4190 * 'facet''s statistics in the datapath should have been zeroed and folded into
4191 * its packet and byte counts before this function is called. */
4192 static void
4193 facet_flush_stats(struct facet *facet)
4194 {
4195 struct ofproto_dpif *ofproto = facet->ofproto;
4196 struct subfacet *subfacet;
4197
4198 LIST_FOR_EACH (subfacet, list_node, &facet->subfacets) {
4199 ovs_assert(!subfacet->dp_byte_count);
4200 ovs_assert(!subfacet->dp_packet_count);
4201 }
4202
4203 facet_push_stats(facet, false);
4204 if (facet->accounted_bytes < facet->byte_count) {
4205 facet_account(facet);
4206 facet->accounted_bytes = facet->byte_count;
4207 }
4208
4209 if (ofproto->netflow && !facet_is_controller_flow(facet)) {
4210 struct ofexpired expired;
4211 expired.flow = facet->flow;
4212 expired.packet_count = facet->packet_count;
4213 expired.byte_count = facet->byte_count;
4214 expired.used = facet->used;
4215 netflow_expire(ofproto->netflow, &facet->nf_flow, &expired);
4216 }
4217
4218 /* Reset counters to prevent double counting if 'facet' ever gets
4219 * reinstalled. */
4220 facet_reset_counters(facet);
4221
4222 netflow_flow_clear(&facet->nf_flow);
4223 facet->tcp_flags = 0;
4224 }
4225
4226 /* Searches 'ofproto''s table of facets for one which would be responsible for
4227 * 'flow'. Returns it if found, otherwise a null pointer.
4228 *
4229 * The returned facet might need revalidation; use facet_lookup_valid()
4230 * instead if that is important. */
4231 static struct facet *
4232 facet_find(struct ofproto_dpif *ofproto, const struct flow *flow)
4233 {
4234 struct cls_rule *cr;
4235
4236 ovs_rwlock_rdlock(&ofproto->facets.rwlock);
4237 cr = classifier_lookup(&ofproto->facets, flow, NULL);
4238 ovs_rwlock_unlock(&ofproto->facets.rwlock);
4239 return cr ? CONTAINER_OF(cr, struct facet, cr) : NULL;
4240 }
4241
4242 /* Searches 'ofproto''s table of facets for one capable that covers
4243 * 'flow'. Returns it if found, otherwise a null pointer.
4244 *
4245 * The returned facet is guaranteed to be valid. */
4246 static struct facet *
4247 facet_lookup_valid(struct ofproto_dpif *ofproto, const struct flow *flow)
4248 {
4249 struct facet *facet;
4250
4251 facet = facet_find(ofproto, flow);
4252 if (facet
4253 && ofproto->backer->need_revalidate
4254 && !facet_revalidate(facet)) {
4255 return NULL;
4256 }
4257
4258 return facet;
4259 }
4260
4261 static bool
4262 facet_check_consistency(struct facet *facet)
4263 {
4264 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 15);
4265
4266 struct xlate_out xout;
4267 struct xlate_in xin;
4268
4269 struct rule_dpif *rule;
4270 bool ok;
4271
4272 /* Check the datapath actions for consistency. */
4273 rule_dpif_lookup(facet->ofproto, &facet->flow, NULL, &rule);
4274 xlate_in_init(&xin, facet->ofproto, &facet->flow, rule, 0, NULL);
4275 xlate_actions(&xin, &xout);
4276 rule_release(rule);
4277
4278 ok = ofpbuf_equal(&facet->xout.odp_actions, &xout.odp_actions)
4279 && facet->xout.slow == xout.slow;
4280 if (!ok && !VLOG_DROP_WARN(&rl)) {
4281 struct ds s = DS_EMPTY_INITIALIZER;
4282
4283 flow_format(&s, &facet->flow);
4284 ds_put_cstr(&s, ": inconsistency in facet");
4285
4286 if (!ofpbuf_equal(&facet->xout.odp_actions, &xout.odp_actions)) {
4287 ds_put_cstr(&s, " (actions were: ");
4288 format_odp_actions(&s, facet->xout.odp_actions.data,
4289 facet->xout.odp_actions.size);
4290 ds_put_cstr(&s, ") (correct actions: ");
4291 format_odp_actions(&s, xout.odp_actions.data,
4292 xout.odp_actions.size);
4293 ds_put_char(&s, ')');
4294 }
4295
4296 if (facet->xout.slow != xout.slow) {
4297 ds_put_format(&s, " slow path incorrect. should be %d", xout.slow);
4298 }
4299
4300 ds_destroy(&s);
4301 }
4302 xlate_out_uninit(&xout);
4303
4304 return ok;
4305 }
4306
4307 /* Re-searches the classifier for 'facet':
4308 *
4309 * - If the rule found is different from 'facet''s current rule, moves
4310 * 'facet' to the new rule and recompiles its actions.
4311 *
4312 * - If the rule found is the same as 'facet''s current rule, leaves 'facet'
4313 * where it is and recompiles its actions anyway.
4314 *
4315 * - If any of 'facet''s subfacets correspond to a new flow according to
4316 * xlate_receive(), 'facet' is removed.
4317 *
4318 * Returns true if 'facet' is still valid. False if 'facet' was removed. */
4319 static bool
4320 facet_revalidate(struct facet *facet)
4321 {
4322 struct ofproto_dpif *ofproto = facet->ofproto;
4323 struct rule_dpif *new_rule;
4324 struct subfacet *subfacet;
4325 struct flow_wildcards wc;
4326 struct xlate_out xout;
4327 struct xlate_in xin;
4328
4329 COVERAGE_INC(facet_revalidate);
4330
4331 /* Check that child subfacets still correspond to this facet. Tunnel
4332 * configuration changes could cause a subfacet's OpenFlow in_port to
4333 * change. */
4334 LIST_FOR_EACH (subfacet, list_node, &facet->subfacets) {
4335 struct ofproto_dpif *recv_ofproto;
4336 struct flow recv_flow;
4337 int error;
4338
4339 error = xlate_receive(ofproto->backer, NULL, subfacet->key,
4340 subfacet->key_len, &recv_flow, NULL,
4341 &recv_ofproto, NULL);
4342 if (error
4343 || recv_ofproto != ofproto
4344 || facet != facet_find(ofproto, &recv_flow)) {
4345 facet_remove(facet);
4346 return false;
4347 }
4348 }
4349
4350 flow_wildcards_init_catchall(&wc);
4351 rule_dpif_lookup(ofproto, &facet->flow, &wc, &new_rule);
4352
4353 /* Calculate new datapath actions.
4354 *
4355 * We do not modify any 'facet' state yet, because we might need to, e.g.,
4356 * emit a NetFlow expiration and, if so, we need to have the old state
4357 * around to properly compose it. */
4358 xlate_in_init(&xin, ofproto, &facet->flow, new_rule, 0, NULL);
4359 xlate_actions(&xin, &xout);
4360 flow_wildcards_or(&xout.wc, &xout.wc, &wc);
4361
4362 /* A facet's slow path reason should only change under dramatic
4363 * circumstances. Rather than try to update everything, it's simpler to
4364 * remove the facet and start over.
4365 *
4366 * More importantly, if a facet's wildcards change, it will be relatively
4367 * difficult to figure out if its subfacets still belong to it, and if not
4368 * which facet they may belong to. Again, to avoid the complexity, we
4369 * simply give up instead. */
4370 if (facet->xout.slow != xout.slow
4371 || memcmp(&facet->xout.wc, &xout.wc, sizeof xout.wc)) {
4372 facet_remove(facet);
4373 xlate_out_uninit(&xout);
4374 rule_release(new_rule);
4375 return false;
4376 }
4377
4378 if (!ofpbuf_equal(&facet->xout.odp_actions, &xout.odp_actions)) {
4379 LIST_FOR_EACH(subfacet, list_node, &facet->subfacets) {
4380 if (subfacet->path == SF_FAST_PATH) {
4381 struct dpif_flow_stats stats;
4382
4383 subfacet_install(subfacet, &xout.odp_actions, &stats);
4384 subfacet_update_stats(subfacet, &stats);
4385 }
4386 }
4387
4388 facet_flush_stats(facet);
4389
4390 ofpbuf_clear(&facet->xout.odp_actions);
4391 ofpbuf_put(&facet->xout.odp_actions, xout.odp_actions.data,
4392 xout.odp_actions.size);
4393 }
4394
4395 /* Update 'facet' now that we've taken care of all the old state. */
4396 facet->xout.slow = xout.slow;
4397 facet->xout.has_learn = xout.has_learn;
4398 facet->xout.has_normal = xout.has_normal;
4399 facet->xout.has_fin_timeout = xout.has_fin_timeout;
4400 facet->xout.nf_output_iface = xout.nf_output_iface;
4401 facet->xout.mirrors = xout.mirrors;
4402 facet->nf_flow.output_iface = facet->xout.nf_output_iface;
4403 facet->used = MAX(facet->used, new_rule->up.created);
4404
4405 xlate_out_uninit(&xout);
4406 rule_release(new_rule);
4407 return true;
4408 }
4409
4410 static void
4411 facet_reset_counters(struct facet *facet)
4412 {
4413 facet->packet_count = 0;
4414 facet->byte_count = 0;
4415 facet->prev_packet_count = 0;
4416 facet->prev_byte_count = 0;
4417 facet->accounted_bytes = 0;
4418 }
4419
4420 static void
4421 flow_push_stats(struct ofproto_dpif *ofproto, struct flow *flow,
4422 struct dpif_flow_stats *stats, bool may_learn)
4423 {
4424 struct ofport_dpif *in_port;
4425 struct rule_dpif *rule;
4426 struct xlate_in xin;
4427
4428 in_port = get_ofp_port(ofproto, flow->in_port.ofp_port);
4429 if (in_port && in_port->is_tunnel) {
4430 netdev_vport_inc_rx(in_port->up.netdev, stats);
4431 }
4432
4433 rule_dpif_lookup(ofproto, flow, NULL, &rule);
4434 rule_credit_stats(rule, stats);
4435 xlate_in_init(&xin, ofproto, flow, rule, stats->tcp_flags, NULL);
4436 xin.resubmit_stats = stats;
4437 xin.may_learn = may_learn;
4438 xlate_actions_for_side_effects(&xin);
4439 rule_release(rule);
4440 }
4441
4442 static void
4443 facet_push_stats(struct facet *facet, bool may_learn)
4444 {
4445 struct dpif_flow_stats stats;
4446
4447 ovs_assert(facet->packet_count >= facet->prev_packet_count);
4448 ovs_assert(facet->byte_count >= facet->prev_byte_count);
4449 ovs_assert(facet->used >= facet->prev_used);
4450
4451 stats.n_packets = facet->packet_count - facet->prev_packet_count;
4452 stats.n_bytes = facet->byte_count - facet->prev_byte_count;
4453 stats.used = facet->used;
4454 stats.tcp_flags = facet->tcp_flags;
4455
4456 if (may_learn || stats.n_packets || facet->used > facet->prev_used) {
4457 facet->prev_packet_count = facet->packet_count;
4458 facet->prev_byte_count = facet->byte_count;
4459 facet->prev_used = facet->used;
4460
4461 netflow_flow_update_time(facet->ofproto->netflow, &facet->nf_flow,
4462 facet->used);
4463 netflow_flow_update_flags(&facet->nf_flow, facet->tcp_flags);
4464 mirror_update_stats(facet->ofproto->mbridge, facet->xout.mirrors,
4465 stats.n_packets, stats.n_bytes);
4466 flow_push_stats(facet->ofproto, &facet->flow, &stats, may_learn);
4467 }
4468 }
4469
4470 static void
4471 push_all_stats__(bool run_fast)
4472 {
4473 static long long int rl = LLONG_MIN;
4474 struct ofproto_dpif *ofproto;
4475
4476 if (time_msec() < rl) {
4477 return;
4478 }
4479
4480 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
4481 struct cls_cursor cursor;
4482 struct facet *facet;
4483
4484 ovs_rwlock_rdlock(&ofproto->facets.rwlock);
4485 cls_cursor_init(&cursor, &ofproto->facets, NULL);
4486 CLS_CURSOR_FOR_EACH (facet, cr, &cursor) {
4487 facet_push_stats(facet, false);
4488 if (run_fast) {
4489 run_fast_rl();
4490 }
4491 }
4492 ovs_rwlock_unlock(&ofproto->facets.rwlock);
4493 }
4494
4495 rl = time_msec() + 100;
4496 }
4497
4498 static void
4499 push_all_stats(void)
4500 {
4501 push_all_stats__(true);
4502 }
4503
4504 void
4505 rule_credit_stats(struct rule_dpif *rule, const struct dpif_flow_stats *stats)
4506 {
4507 ovs_mutex_lock(&rule->stats_mutex);
4508 rule->packet_count += stats->n_packets;
4509 rule->byte_count += stats->n_bytes;
4510 ofproto_rule_update_used(&rule->up, stats->used);
4511 ovs_mutex_unlock(&rule->stats_mutex);
4512 }
4513 \f
4514 /* Subfacets. */
4515
4516 static struct subfacet *
4517 subfacet_find(struct dpif_backer *backer, const struct nlattr *key,
4518 size_t key_len, uint32_t key_hash)
4519 {
4520 struct subfacet *subfacet;
4521
4522 HMAP_FOR_EACH_WITH_HASH (subfacet, hmap_node, key_hash,
4523 &backer->subfacets) {
4524 if (subfacet->key_len == key_len
4525 && !memcmp(key, subfacet->key, key_len)) {
4526 return subfacet;
4527 }
4528 }
4529
4530 return NULL;
4531 }
4532
4533 /* Searches 'facet' (within 'ofproto') for a subfacet with the specified
4534 * 'key_fitness', 'key', and 'key_len' members in 'miss'. Returns the
4535 * existing subfacet if there is one, otherwise creates and returns a
4536 * new subfacet. */
4537 static struct subfacet *
4538 subfacet_create(struct facet *facet, struct flow_miss *miss)
4539 {
4540 struct dpif_backer *backer = miss->ofproto->backer;
4541 enum odp_key_fitness key_fitness = miss->key_fitness;
4542 const struct nlattr *key = miss->key;
4543 size_t key_len = miss->key_len;
4544 uint32_t key_hash;
4545 struct subfacet *subfacet;
4546
4547 key_hash = odp_flow_key_hash(key, key_len);
4548
4549 if (list_is_empty(&facet->subfacets)) {
4550 subfacet = &facet->one_subfacet;
4551 } else {
4552 subfacet = subfacet_find(backer, key, key_len, key_hash);
4553 if (subfacet) {
4554 if (subfacet->facet == facet) {
4555 return subfacet;
4556 }
4557
4558 /* This shouldn't happen. */
4559 VLOG_ERR_RL(&rl, "subfacet with wrong facet");
4560 subfacet_destroy(subfacet);
4561 }
4562
4563 subfacet = xmalloc(sizeof *subfacet);
4564 }
4565
4566 hmap_insert(&backer->subfacets, &subfacet->hmap_node, key_hash);
4567 list_push_back(&facet->subfacets, &subfacet->list_node);
4568 subfacet->facet = facet;
4569 subfacet->key_fitness = key_fitness;
4570 subfacet->key = xmemdup(key, key_len);
4571 subfacet->key_len = key_len;
4572 subfacet->used = miss->stats.used;
4573 subfacet->created = subfacet->used;
4574 subfacet->dp_packet_count = 0;
4575 subfacet->dp_byte_count = 0;
4576 subfacet->path = SF_NOT_INSTALLED;
4577 subfacet->backer = backer;
4578
4579 backer->subfacet_add_count++;
4580 return subfacet;
4581 }
4582
4583 /* Uninstalls 'subfacet' from the datapath, if it is installed, removes it from
4584 * its facet within 'ofproto', and frees it. */
4585 static void
4586 subfacet_destroy__(struct subfacet *subfacet)
4587 {
4588 struct facet *facet = subfacet->facet;
4589 struct ofproto_dpif *ofproto = facet->ofproto;
4590
4591 /* Update ofproto stats before uninstall the subfacet. */
4592 ofproto->backer->subfacet_del_count++;
4593
4594 subfacet_uninstall(subfacet);
4595 hmap_remove(&subfacet->backer->subfacets, &subfacet->hmap_node);
4596 list_remove(&subfacet->list_node);
4597 free(subfacet->key);
4598 if (subfacet != &facet->one_subfacet) {
4599 free(subfacet);
4600 }
4601 }
4602
4603 /* Destroys 'subfacet', as with subfacet_destroy__(), and then if this was the
4604 * last remaining subfacet in its facet destroys the facet too. */
4605 static void
4606 subfacet_destroy(struct subfacet *subfacet)
4607 {
4608 struct facet *facet = subfacet->facet;
4609
4610 if (list_is_singleton(&facet->subfacets)) {
4611 /* facet_remove() needs at least one subfacet (it will remove it). */
4612 facet_remove(facet);
4613 } else {
4614 subfacet_destroy__(subfacet);
4615 }
4616 }
4617
4618 static void
4619 subfacet_destroy_batch(struct dpif_backer *backer,
4620 struct subfacet **subfacets, int n)
4621 {
4622 struct dpif_op ops[SUBFACET_DESTROY_MAX_BATCH];
4623 struct dpif_op *opsp[SUBFACET_DESTROY_MAX_BATCH];
4624 struct dpif_flow_stats stats[SUBFACET_DESTROY_MAX_BATCH];
4625 int i;
4626
4627 for (i = 0; i < n; i++) {
4628 ops[i].type = DPIF_OP_FLOW_DEL;
4629 ops[i].u.flow_del.key = subfacets[i]->key;
4630 ops[i].u.flow_del.key_len = subfacets[i]->key_len;
4631 ops[i].u.flow_del.stats = &stats[i];
4632 opsp[i] = &ops[i];
4633 }
4634
4635 dpif_operate(backer->dpif, opsp, n);
4636 for (i = 0; i < n; i++) {
4637 subfacet_reset_dp_stats(subfacets[i], &stats[i]);
4638 subfacets[i]->path = SF_NOT_INSTALLED;
4639 subfacet_destroy(subfacets[i]);
4640 run_fast_rl();
4641 }
4642 }
4643
4644 /* Updates 'subfacet''s datapath flow, setting its actions to 'actions_len'
4645 * bytes of actions in 'actions'. If 'stats' is non-null, statistics counters
4646 * in the datapath will be zeroed and 'stats' will be updated with traffic new
4647 * since 'subfacet' was last updated.
4648 *
4649 * Returns 0 if successful, otherwise a positive errno value. */
4650 static int
4651 subfacet_install(struct subfacet *subfacet, const struct ofpbuf *odp_actions,
4652 struct dpif_flow_stats *stats)
4653 {
4654 struct facet *facet = subfacet->facet;
4655 enum subfacet_path path = facet->xout.slow ? SF_SLOW_PATH : SF_FAST_PATH;
4656 const struct nlattr *actions = odp_actions->data;
4657 size_t actions_len = odp_actions->size;
4658 struct odputil_keybuf maskbuf;
4659 struct ofpbuf mask;
4660
4661 uint64_t slow_path_stub[128 / 8];
4662 enum dpif_flow_put_flags flags;
4663 int ret;
4664
4665 flags = subfacet->path == SF_NOT_INSTALLED ? DPIF_FP_CREATE
4666 : DPIF_FP_MODIFY;
4667 if (stats) {
4668 flags |= DPIF_FP_ZERO_STATS;
4669 }
4670
4671 if (path == SF_SLOW_PATH) {
4672 compose_slow_path(facet->ofproto, &facet->flow, facet->xout.slow,
4673 slow_path_stub, sizeof slow_path_stub,
4674 &actions, &actions_len);
4675 }
4676
4677 ofpbuf_use_stack(&mask, &maskbuf, sizeof maskbuf);
4678 if (enable_megaflows) {
4679 odp_flow_key_from_mask(&mask, &facet->xout.wc.masks,
4680 &facet->flow, UINT32_MAX);
4681 }
4682
4683 ret = dpif_flow_put(subfacet->backer->dpif, flags, subfacet->key,
4684 subfacet->key_len, mask.data, mask.size,
4685 actions, actions_len, stats);
4686
4687 if (stats) {
4688 subfacet_reset_dp_stats(subfacet, stats);
4689 }
4690
4691 if (ret) {
4692 COVERAGE_INC(subfacet_install_fail);
4693 } else {
4694 subfacet->path = path;
4695 }
4696 return ret;
4697 }
4698
4699 /* If 'subfacet' is installed in the datapath, uninstalls it. */
4700 static void
4701 subfacet_uninstall(struct subfacet *subfacet)
4702 {
4703 if (subfacet->path != SF_NOT_INSTALLED) {
4704 struct ofproto_dpif *ofproto = subfacet->facet->ofproto;
4705 struct dpif_flow_stats stats;
4706 int error;
4707
4708 error = dpif_flow_del(ofproto->backer->dpif, subfacet->key,
4709 subfacet->key_len, &stats);
4710 subfacet_reset_dp_stats(subfacet, &stats);
4711 if (!error) {
4712 subfacet_update_stats(subfacet, &stats);
4713 }
4714 subfacet->path = SF_NOT_INSTALLED;
4715 } else {
4716 ovs_assert(subfacet->dp_packet_count == 0);
4717 ovs_assert(subfacet->dp_byte_count == 0);
4718 }
4719 }
4720
4721 /* Resets 'subfacet''s datapath statistics counters. This should be called
4722 * when 'subfacet''s statistics are cleared in the datapath. If 'stats' is
4723 * non-null, it should contain the statistics returned by dpif when 'subfacet'
4724 * was reset in the datapath. 'stats' will be modified to include only
4725 * statistics new since 'subfacet' was last updated. */
4726 static void
4727 subfacet_reset_dp_stats(struct subfacet *subfacet,
4728 struct dpif_flow_stats *stats)
4729 {
4730 if (stats
4731 && subfacet->dp_packet_count <= stats->n_packets
4732 && subfacet->dp_byte_count <= stats->n_bytes) {
4733 stats->n_packets -= subfacet->dp_packet_count;
4734 stats->n_bytes -= subfacet->dp_byte_count;
4735 }
4736
4737 subfacet->dp_packet_count = 0;
4738 subfacet->dp_byte_count = 0;
4739 }
4740
4741 /* Folds the statistics from 'stats' into the counters in 'subfacet'.
4742 *
4743 * Because of the meaning of a subfacet's counters, it only makes sense to do
4744 * this if 'stats' are not tracked in the datapath, that is, if 'stats'
4745 * represents a packet that was sent by hand or if it represents statistics
4746 * that have been cleared out of the datapath. */
4747 static void
4748 subfacet_update_stats(struct subfacet *subfacet,
4749 const struct dpif_flow_stats *stats)
4750 {
4751 if (stats->n_packets || stats->used > subfacet->used) {
4752 struct facet *facet = subfacet->facet;
4753
4754 subfacet->used = MAX(subfacet->used, stats->used);
4755 facet->used = MAX(facet->used, stats->used);
4756 facet->packet_count += stats->n_packets;
4757 facet->byte_count += stats->n_bytes;
4758 facet->tcp_flags |= stats->tcp_flags;
4759 }
4760 }
4761 \f
4762 /* Rules. */
4763
4764 /* Lookup 'flow' in 'ofproto''s classifier. If 'wc' is non-null, sets
4765 * the fields that were relevant as part of the lookup. */
4766 void
4767 rule_dpif_lookup(struct ofproto_dpif *ofproto, const struct flow *flow,
4768 struct flow_wildcards *wc, struct rule_dpif **rule)
4769 {
4770 struct ofport_dpif *port;
4771
4772 if (rule_dpif_lookup_in_table(ofproto, flow, wc, 0, rule)) {
4773 return;
4774 }
4775 port = get_ofp_port(ofproto, flow->in_port.ofp_port);
4776 if (!port) {
4777 VLOG_WARN_RL(&rl, "packet-in on unknown OpenFlow port %"PRIu16,
4778 flow->in_port.ofp_port);
4779 }
4780
4781 *rule = choose_miss_rule(port ? port->up.pp.config : 0, ofproto->miss_rule,
4782 ofproto->no_packet_in_rule);
4783 ovs_rwlock_rdlock(&(*rule)->up.evict);
4784 }
4785
4786 bool
4787 rule_dpif_lookup_in_table(struct ofproto_dpif *ofproto,
4788 const struct flow *flow, struct flow_wildcards *wc,
4789 uint8_t table_id, struct rule_dpif **rule)
4790 OVS_TRY_RDLOCK(true, (*rule)->up.evict)
4791 {
4792 struct cls_rule *cls_rule;
4793 struct classifier *cls;
4794 bool frag;
4795
4796 *rule = NULL;
4797 if (table_id >= N_TABLES) {
4798 return false;
4799 }
4800
4801 if (wc) {
4802 memset(&wc->masks.dl_type, 0xff, sizeof wc->masks.dl_type);
4803 wc->masks.nw_frag |= FLOW_NW_FRAG_MASK;
4804 }
4805
4806 cls = &ofproto->up.tables[table_id].cls;
4807 ovs_rwlock_rdlock(&cls->rwlock);
4808 frag = (flow->nw_frag & FLOW_NW_FRAG_ANY) != 0;
4809 if (frag && ofproto->up.frag_handling == OFPC_FRAG_NORMAL) {
4810 /* We must pretend that transport ports are unavailable. */
4811 struct flow ofpc_normal_flow = *flow;
4812 ofpc_normal_flow.tp_src = htons(0);
4813 ofpc_normal_flow.tp_dst = htons(0);
4814 cls_rule = classifier_lookup(cls, &ofpc_normal_flow, wc);
4815 } else if (frag && ofproto->up.frag_handling == OFPC_FRAG_DROP) {
4816 cls_rule = &ofproto->drop_frags_rule->up.cr;
4817 if (wc) {
4818 flow_wildcards_init_exact(wc);
4819 }
4820 } else {
4821 cls_rule = classifier_lookup(cls, flow, wc);
4822 }
4823
4824 *rule = rule_dpif_cast(rule_from_cls_rule(cls_rule));
4825 if (*rule && ovs_rwlock_tryrdlock(&(*rule)->up.evict)) {
4826 /* The rule is in the process of being removed. Best we can do is
4827 * pretend it isn't there. */
4828 *rule = NULL;
4829 }
4830 ovs_rwlock_unlock(&cls->rwlock);
4831
4832 return *rule != NULL;
4833 }
4834
4835 /* Given a port configuration (specified as zero if there's no port), chooses
4836 * which of 'miss_rule' and 'no_packet_in_rule' should be used in case of a
4837 * flow table miss. */
4838 struct rule_dpif *
4839 choose_miss_rule(enum ofputil_port_config config, struct rule_dpif *miss_rule,
4840 struct rule_dpif *no_packet_in_rule)
4841 {
4842 return config & OFPUTIL_PC_NO_PACKET_IN ? no_packet_in_rule : miss_rule;
4843 }
4844
4845 void
4846 rule_release(struct rule_dpif *rule)
4847 OVS_NO_THREAD_SAFETY_ANALYSIS
4848 {
4849 if (rule) {
4850 ovs_rwlock_unlock(&rule->up.evict);
4851 }
4852 }
4853
4854 static void
4855 complete_operation(struct rule_dpif *rule)
4856 {
4857 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
4858
4859 ofproto->backer->need_revalidate = REV_FLOW_TABLE;
4860 if (clogged) {
4861 struct dpif_completion *c = xmalloc(sizeof *c);
4862 c->op = rule->up.pending;
4863 list_push_back(&ofproto->completions, &c->list_node);
4864 } else {
4865 ofoperation_complete(rule->up.pending, 0);
4866 }
4867 }
4868
4869 static struct rule *
4870 rule_alloc(void)
4871 {
4872 struct rule_dpif *rule = xmalloc(sizeof *rule);
4873 return &rule->up;
4874 }
4875
4876 static void
4877 rule_dealloc(struct rule *rule_)
4878 {
4879 struct rule_dpif *rule = rule_dpif_cast(rule_);
4880 free(rule);
4881 }
4882
4883 static enum ofperr
4884 rule_construct(struct rule *rule_)
4885 {
4886 struct rule_dpif *rule = rule_dpif_cast(rule_);
4887 ovs_mutex_init(&rule->stats_mutex);
4888 ovs_mutex_lock(&rule->stats_mutex);
4889 rule->packet_count = 0;
4890 rule->byte_count = 0;
4891 ovs_mutex_unlock(&rule->stats_mutex);
4892 return 0;
4893 }
4894
4895 static void
4896 rule_insert(struct rule *rule_)
4897 {
4898 struct rule_dpif *rule = rule_dpif_cast(rule_);
4899 complete_operation(rule);
4900 }
4901
4902 static void
4903 rule_delete(struct rule *rule_)
4904 {
4905 struct rule_dpif *rule = rule_dpif_cast(rule_);
4906 complete_operation(rule);
4907 }
4908
4909 static void
4910 rule_destruct(struct rule *rule_)
4911 {
4912 struct rule_dpif *rule = rule_dpif_cast(rule_);
4913 ovs_mutex_destroy(&rule->stats_mutex);
4914 }
4915
4916 static void
4917 rule_get_stats(struct rule *rule_, uint64_t *packets, uint64_t *bytes)
4918 {
4919 struct rule_dpif *rule = rule_dpif_cast(rule_);
4920
4921 /* push_all_stats() can handle flow misses which, when using the learn
4922 * action, can cause rules to be added and deleted. This can corrupt our
4923 * caller's datastructures which assume that rule_get_stats() doesn't have
4924 * an impact on the flow table. To be safe, we disable miss handling. */
4925 push_all_stats__(false);
4926
4927 /* Start from historical data for 'rule' itself that are no longer tracked
4928 * in facets. This counts, for example, facets that have expired. */
4929 ovs_mutex_lock(&rule->stats_mutex);
4930 *packets = rule->packet_count;
4931 *bytes = rule->byte_count;
4932 ovs_mutex_unlock(&rule->stats_mutex);
4933 }
4934
4935 static void
4936 rule_dpif_execute(struct rule_dpif *rule, const struct flow *flow,
4937 struct ofpbuf *packet)
4938 {
4939 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
4940 struct dpif_flow_stats stats;
4941 struct xlate_out xout;
4942 struct xlate_in xin;
4943
4944 dpif_flow_stats_extract(flow, packet, time_msec(), &stats);
4945 rule_credit_stats(rule, &stats);
4946
4947 xlate_in_init(&xin, ofproto, flow, rule, stats.tcp_flags, packet);
4948 xin.resubmit_stats = &stats;
4949 xlate_actions(&xin, &xout);
4950
4951 execute_odp_actions(ofproto, flow, xout.odp_actions.data,
4952 xout.odp_actions.size, packet);
4953
4954 xlate_out_uninit(&xout);
4955 }
4956
4957 static enum ofperr
4958 rule_execute(struct rule *rule, const struct flow *flow,
4959 struct ofpbuf *packet)
4960 {
4961 rule_dpif_execute(rule_dpif_cast(rule), flow, packet);
4962 ofpbuf_delete(packet);
4963 return 0;
4964 }
4965
4966 static void
4967 rule_modify_actions(struct rule *rule_, bool reset_counters)
4968 {
4969 struct rule_dpif *rule = rule_dpif_cast(rule_);
4970
4971 if (reset_counters) {
4972 ovs_mutex_lock(&rule->stats_mutex);
4973 rule->packet_count = 0;
4974 rule->byte_count = 0;
4975 ovs_mutex_unlock(&rule->stats_mutex);
4976 }
4977
4978 complete_operation(rule);
4979 }
4980 \f
4981 /* Sends 'packet' out 'ofport'.
4982 * May modify 'packet'.
4983 * Returns 0 if successful, otherwise a positive errno value. */
4984 static int
4985 send_packet(const struct ofport_dpif *ofport, struct ofpbuf *packet)
4986 {
4987 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
4988 uint64_t odp_actions_stub[1024 / 8];
4989 struct ofpbuf key, odp_actions;
4990 struct dpif_flow_stats stats;
4991 struct odputil_keybuf keybuf;
4992 struct ofpact_output output;
4993 struct xlate_out xout;
4994 struct xlate_in xin;
4995 struct flow flow;
4996 union flow_in_port in_port_;
4997 int error;
4998
4999 ofpbuf_use_stub(&odp_actions, odp_actions_stub, sizeof odp_actions_stub);
5000 ofpbuf_use_stack(&key, &keybuf, sizeof keybuf);
5001
5002 /* Use OFPP_NONE as the in_port to avoid special packet processing. */
5003 in_port_.ofp_port = OFPP_NONE;
5004 flow_extract(packet, 0, 0, NULL, &in_port_, &flow);
5005 odp_flow_key_from_flow(&key, &flow, ofp_port_to_odp_port(ofproto,
5006 OFPP_LOCAL));
5007 dpif_flow_stats_extract(&flow, packet, time_msec(), &stats);
5008
5009 ofpact_init(&output.ofpact, OFPACT_OUTPUT, sizeof output);
5010 output.port = ofport->up.ofp_port;
5011 output.max_len = 0;
5012
5013 xlate_in_init(&xin, ofproto, &flow, NULL, 0, packet);
5014 xin.ofpacts_len = sizeof output;
5015 xin.ofpacts = &output.ofpact;
5016 xin.resubmit_stats = &stats;
5017 xlate_actions(&xin, &xout);
5018
5019 error = dpif_execute(ofproto->backer->dpif,
5020 key.data, key.size,
5021 xout.odp_actions.data, xout.odp_actions.size,
5022 packet);
5023 xlate_out_uninit(&xout);
5024
5025 if (error) {
5026 VLOG_WARN_RL(&rl, "%s: failed to send packet on port %s (%s)",
5027 ofproto->up.name, netdev_get_name(ofport->up.netdev),
5028 ovs_strerror(error));
5029 }
5030
5031 ofproto->stats.tx_packets++;
5032 ofproto->stats.tx_bytes += packet->size;
5033 return error;
5034 }
5035
5036 /* Composes an ODP action for a "slow path" action for 'flow' within 'ofproto'.
5037 * The action will state 'slow' as the reason that the action is in the slow
5038 * path. (This is purely informational: it allows a human viewing "ovs-dpctl
5039 * dump-flows" output to see why a flow is in the slow path.)
5040 *
5041 * The 'stub_size' bytes in 'stub' will be used to store the action.
5042 * 'stub_size' must be large enough for the action.
5043 *
5044 * The action and its size will be stored in '*actionsp' and '*actions_lenp',
5045 * respectively. */
5046 static void
5047 compose_slow_path(const struct ofproto_dpif *ofproto, const struct flow *flow,
5048 enum slow_path_reason slow,
5049 uint64_t *stub, size_t stub_size,
5050 const struct nlattr **actionsp, size_t *actions_lenp)
5051 {
5052 union user_action_cookie cookie;
5053 struct ofpbuf buf;
5054
5055 cookie.type = USER_ACTION_COOKIE_SLOW_PATH;
5056 cookie.slow_path.unused = 0;
5057 cookie.slow_path.reason = slow;
5058
5059 ofpbuf_use_stack(&buf, stub, stub_size);
5060 if (slow & (SLOW_CFM | SLOW_BFD | SLOW_LACP | SLOW_STP)) {
5061 uint32_t pid = dpif_port_get_pid(ofproto->backer->dpif,
5062 ODPP_NONE);
5063 odp_put_userspace_action(pid, &cookie, sizeof cookie.slow_path, &buf);
5064 } else {
5065 odp_port_t odp_port;
5066 uint32_t pid;
5067
5068 odp_port = ofp_port_to_odp_port(ofproto, flow->in_port.ofp_port);
5069 pid = dpif_port_get_pid(ofproto->backer->dpif, odp_port);
5070 odp_put_userspace_action(pid, &cookie, sizeof cookie.slow_path, &buf);
5071 }
5072 *actionsp = buf.data;
5073 *actions_lenp = buf.size;
5074 }
5075 \f
5076 static bool
5077 set_frag_handling(struct ofproto *ofproto_,
5078 enum ofp_config_flags frag_handling)
5079 {
5080 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
5081 if (frag_handling != OFPC_FRAG_REASM) {
5082 ofproto->backer->need_revalidate = REV_RECONFIGURE;
5083 return true;
5084 } else {
5085 return false;
5086 }
5087 }
5088
5089 static enum ofperr
5090 packet_out(struct ofproto *ofproto_, struct ofpbuf *packet,
5091 const struct flow *flow,
5092 const struct ofpact *ofpacts, size_t ofpacts_len)
5093 {
5094 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
5095 struct odputil_keybuf keybuf;
5096 struct dpif_flow_stats stats;
5097 struct xlate_out xout;
5098 struct xlate_in xin;
5099 struct ofpbuf key;
5100
5101
5102 ofpbuf_use_stack(&key, &keybuf, sizeof keybuf);
5103 odp_flow_key_from_flow(&key, flow,
5104 ofp_port_to_odp_port(ofproto,
5105 flow->in_port.ofp_port));
5106
5107 dpif_flow_stats_extract(flow, packet, time_msec(), &stats);
5108
5109 xlate_in_init(&xin, ofproto, flow, NULL, stats.tcp_flags, packet);
5110 xin.resubmit_stats = &stats;
5111 xin.ofpacts_len = ofpacts_len;
5112 xin.ofpacts = ofpacts;
5113
5114 xlate_actions(&xin, &xout);
5115 dpif_execute(ofproto->backer->dpif, key.data, key.size,
5116 xout.odp_actions.data, xout.odp_actions.size, packet);
5117 xlate_out_uninit(&xout);
5118
5119 return 0;
5120 }
5121 \f
5122 /* NetFlow. */
5123
5124 static int
5125 set_netflow(struct ofproto *ofproto_,
5126 const struct netflow_options *netflow_options)
5127 {
5128 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
5129
5130 if (netflow_options) {
5131 if (!ofproto->netflow) {
5132 ofproto->netflow = netflow_create();
5133 ofproto->backer->need_revalidate = REV_RECONFIGURE;
5134 }
5135 return netflow_set_options(ofproto->netflow, netflow_options);
5136 } else if (ofproto->netflow) {
5137 ofproto->backer->need_revalidate = REV_RECONFIGURE;
5138 netflow_destroy(ofproto->netflow);
5139 ofproto->netflow = NULL;
5140 }
5141
5142 return 0;
5143 }
5144
5145 static void
5146 get_netflow_ids(const struct ofproto *ofproto_,
5147 uint8_t *engine_type, uint8_t *engine_id)
5148 {
5149 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
5150
5151 dpif_get_netflow_ids(ofproto->backer->dpif, engine_type, engine_id);
5152 }
5153
5154 static void
5155 send_active_timeout(struct ofproto_dpif *ofproto, struct facet *facet)
5156 {
5157 if (!facet_is_controller_flow(facet) &&
5158 netflow_active_timeout_expired(ofproto->netflow, &facet->nf_flow)) {
5159 struct subfacet *subfacet;
5160 struct ofexpired expired;
5161
5162 LIST_FOR_EACH (subfacet, list_node, &facet->subfacets) {
5163 if (subfacet->path == SF_FAST_PATH) {
5164 struct dpif_flow_stats stats;
5165
5166 subfacet_install(subfacet, &facet->xout.odp_actions,
5167 &stats);
5168 subfacet_update_stats(subfacet, &stats);
5169 }
5170 }
5171
5172 expired.flow = facet->flow;
5173 expired.packet_count = facet->packet_count;
5174 expired.byte_count = facet->byte_count;
5175 expired.used = facet->used;
5176 netflow_expire(ofproto->netflow, &facet->nf_flow, &expired);
5177 }
5178 }
5179
5180 static void
5181 send_netflow_active_timeouts(struct ofproto_dpif *ofproto)
5182 {
5183 struct cls_cursor cursor;
5184 struct facet *facet;
5185
5186 ovs_rwlock_rdlock(&ofproto->facets.rwlock);
5187 cls_cursor_init(&cursor, &ofproto->facets, NULL);
5188 CLS_CURSOR_FOR_EACH (facet, cr, &cursor) {
5189 send_active_timeout(ofproto, facet);
5190 }
5191 ovs_rwlock_unlock(&ofproto->facets.rwlock);
5192 }
5193 \f
5194 static struct ofproto_dpif *
5195 ofproto_dpif_lookup(const char *name)
5196 {
5197 struct ofproto_dpif *ofproto;
5198
5199 HMAP_FOR_EACH_WITH_HASH (ofproto, all_ofproto_dpifs_node,
5200 hash_string(name, 0), &all_ofproto_dpifs) {
5201 if (!strcmp(ofproto->up.name, name)) {
5202 return ofproto;
5203 }
5204 }
5205 return NULL;
5206 }
5207
5208 static void
5209 ofproto_unixctl_fdb_flush(struct unixctl_conn *conn, int argc,
5210 const char *argv[], void *aux OVS_UNUSED)
5211 {
5212 struct ofproto_dpif *ofproto;
5213
5214 if (argc > 1) {
5215 ofproto = ofproto_dpif_lookup(argv[1]);
5216 if (!ofproto) {
5217 unixctl_command_reply_error(conn, "no such bridge");
5218 return;
5219 }
5220 ovs_rwlock_wrlock(&ofproto->ml->rwlock);
5221 mac_learning_flush(ofproto->ml);
5222 ovs_rwlock_unlock(&ofproto->ml->rwlock);
5223 } else {
5224 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
5225 ovs_rwlock_wrlock(&ofproto->ml->rwlock);
5226 mac_learning_flush(ofproto->ml);
5227 ovs_rwlock_unlock(&ofproto->ml->rwlock);
5228 }
5229 }
5230
5231 unixctl_command_reply(conn, "table successfully flushed");
5232 }
5233
5234 static struct ofport_dpif *
5235 ofbundle_get_a_port(const struct ofbundle *bundle)
5236 {
5237 return CONTAINER_OF(list_front(&bundle->ports), struct ofport_dpif,
5238 bundle_node);
5239 }
5240
5241 static void
5242 ofproto_unixctl_fdb_show(struct unixctl_conn *conn, int argc OVS_UNUSED,
5243 const char *argv[], void *aux OVS_UNUSED)
5244 {
5245 struct ds ds = DS_EMPTY_INITIALIZER;
5246 const struct ofproto_dpif *ofproto;
5247 const struct mac_entry *e;
5248
5249 ofproto = ofproto_dpif_lookup(argv[1]);
5250 if (!ofproto) {
5251 unixctl_command_reply_error(conn, "no such bridge");
5252 return;
5253 }
5254
5255 ds_put_cstr(&ds, " port VLAN MAC Age\n");
5256 ovs_rwlock_rdlock(&ofproto->ml->rwlock);
5257 LIST_FOR_EACH (e, lru_node, &ofproto->ml->lrus) {
5258 struct ofbundle *bundle = e->port.p;
5259 char name[OFP_MAX_PORT_NAME_LEN];
5260
5261 ofputil_port_to_string(ofbundle_get_a_port(bundle)->up.ofp_port,
5262 name, sizeof name);
5263 ds_put_format(&ds, "%5s %4d "ETH_ADDR_FMT" %3d\n",
5264 name, e->vlan, ETH_ADDR_ARGS(e->mac),
5265 mac_entry_age(ofproto->ml, e));
5266 }
5267 ovs_rwlock_unlock(&ofproto->ml->rwlock);
5268 unixctl_command_reply(conn, ds_cstr(&ds));
5269 ds_destroy(&ds);
5270 }
5271
5272 struct trace_ctx {
5273 struct xlate_out xout;
5274 struct xlate_in xin;
5275 struct flow flow;
5276 struct ds *result;
5277 };
5278
5279 static void
5280 trace_format_rule(struct ds *result, int level, const struct rule_dpif *rule)
5281 {
5282 ds_put_char_multiple(result, '\t', level);
5283 if (!rule) {
5284 ds_put_cstr(result, "No match\n");
5285 return;
5286 }
5287
5288 ds_put_format(result, "Rule: table=%"PRIu8" cookie=%#"PRIx64" ",
5289 rule ? rule->up.table_id : 0, ntohll(rule->up.flow_cookie));
5290 cls_rule_format(&rule->up.cr, result);
5291 ds_put_char(result, '\n');
5292
5293 ds_put_char_multiple(result, '\t', level);
5294 ds_put_cstr(result, "OpenFlow ");
5295 ofpacts_format(rule->up.ofpacts, rule->up.ofpacts_len, result);
5296 ds_put_char(result, '\n');
5297 }
5298
5299 static void
5300 trace_format_flow(struct ds *result, int level, const char *title,
5301 struct trace_ctx *trace)
5302 {
5303 ds_put_char_multiple(result, '\t', level);
5304 ds_put_format(result, "%s: ", title);
5305 if (flow_equal(&trace->xin.flow, &trace->flow)) {
5306 ds_put_cstr(result, "unchanged");
5307 } else {
5308 flow_format(result, &trace->xin.flow);
5309 trace->flow = trace->xin.flow;
5310 }
5311 ds_put_char(result, '\n');
5312 }
5313
5314 static void
5315 trace_format_regs(struct ds *result, int level, const char *title,
5316 struct trace_ctx *trace)
5317 {
5318 size_t i;
5319
5320 ds_put_char_multiple(result, '\t', level);
5321 ds_put_format(result, "%s:", title);
5322 for (i = 0; i < FLOW_N_REGS; i++) {
5323 ds_put_format(result, " reg%zu=0x%"PRIx32, i, trace->flow.regs[i]);
5324 }
5325 ds_put_char(result, '\n');
5326 }
5327
5328 static void
5329 trace_format_odp(struct ds *result, int level, const char *title,
5330 struct trace_ctx *trace)
5331 {
5332 struct ofpbuf *odp_actions = &trace->xout.odp_actions;
5333
5334 ds_put_char_multiple(result, '\t', level);
5335 ds_put_format(result, "%s: ", title);
5336 format_odp_actions(result, odp_actions->data, odp_actions->size);
5337 ds_put_char(result, '\n');
5338 }
5339
5340 static void
5341 trace_resubmit(struct xlate_in *xin, struct rule_dpif *rule, int recurse)
5342 {
5343 struct trace_ctx *trace = CONTAINER_OF(xin, struct trace_ctx, xin);
5344 struct ds *result = trace->result;
5345
5346 ds_put_char(result, '\n');
5347 trace_format_flow(result, recurse + 1, "Resubmitted flow", trace);
5348 trace_format_regs(result, recurse + 1, "Resubmitted regs", trace);
5349 trace_format_odp(result, recurse + 1, "Resubmitted odp", trace);
5350 trace_format_rule(result, recurse + 1, rule);
5351 }
5352
5353 static void
5354 trace_report(struct xlate_in *xin, const char *s, int recurse)
5355 {
5356 struct trace_ctx *trace = CONTAINER_OF(xin, struct trace_ctx, xin);
5357 struct ds *result = trace->result;
5358
5359 ds_put_char_multiple(result, '\t', recurse);
5360 ds_put_cstr(result, s);
5361 ds_put_char(result, '\n');
5362 }
5363
5364 static void
5365 ofproto_unixctl_trace(struct unixctl_conn *conn, int argc, const char *argv[],
5366 void *aux OVS_UNUSED)
5367 {
5368 const struct dpif_backer *backer;
5369 struct ofproto_dpif *ofproto;
5370 struct ofpbuf odp_key, odp_mask;
5371 struct ofpbuf *packet;
5372 struct ds result;
5373 struct flow flow;
5374 char *s;
5375
5376 packet = NULL;
5377 backer = NULL;
5378 ds_init(&result);
5379 ofpbuf_init(&odp_key, 0);
5380 ofpbuf_init(&odp_mask, 0);
5381
5382 /* Handle "-generate" or a hex string as the last argument. */
5383 if (!strcmp(argv[argc - 1], "-generate")) {
5384 packet = ofpbuf_new(0);
5385 argc--;
5386 } else {
5387 const char *error = eth_from_hex(argv[argc - 1], &packet);
5388 if (!error) {
5389 argc--;
5390 } else if (argc == 4) {
5391 /* The 3-argument form must end in "-generate' or a hex string. */
5392 unixctl_command_reply_error(conn, error);
5393 goto exit;
5394 }
5395 }
5396
5397 /* Parse the flow and determine whether a datapath or
5398 * bridge is specified. If function odp_flow_key_from_string()
5399 * returns 0, the flow is a odp_flow. If function
5400 * parse_ofp_exact_flow() returns 0, the flow is a br_flow. */
5401 if (!odp_flow_from_string(argv[argc - 1], NULL, &odp_key, &odp_mask)) {
5402 /* If the odp_flow is the second argument,
5403 * the datapath name is the first argument. */
5404 if (argc == 3) {
5405 const char *dp_type;
5406 if (!strncmp(argv[1], "ovs-", 4)) {
5407 dp_type = argv[1] + 4;
5408 } else {
5409 dp_type = argv[1];
5410 }
5411 backer = shash_find_data(&all_dpif_backers, dp_type);
5412 if (!backer) {
5413 unixctl_command_reply_error(conn, "Cannot find datapath "
5414 "of this name");
5415 goto exit;
5416 }
5417 } else {
5418 /* No datapath name specified, so there should be only one
5419 * datapath. */
5420 struct shash_node *node;
5421 if (shash_count(&all_dpif_backers) != 1) {
5422 unixctl_command_reply_error(conn, "Must specify datapath "
5423 "name, there is more than one type of datapath");
5424 goto exit;
5425 }
5426 node = shash_first(&all_dpif_backers);
5427 backer = node->data;
5428 }
5429
5430 if (xlate_receive(backer, NULL, odp_key.data, odp_key.size, &flow,
5431 NULL, &ofproto, NULL)) {
5432 unixctl_command_reply_error(conn, "Invalid datapath flow");
5433 goto exit;
5434 }
5435 ds_put_format(&result, "Bridge: %s\n", ofproto->up.name);
5436 } else if (!parse_ofp_exact_flow(&flow, argv[argc - 1])) {
5437 if (argc != 3) {
5438 unixctl_command_reply_error(conn, "Must specify bridge name");
5439 goto exit;
5440 }
5441
5442 ofproto = ofproto_dpif_lookup(argv[1]);
5443 if (!ofproto) {
5444 unixctl_command_reply_error(conn, "Unknown bridge name");
5445 goto exit;
5446 }
5447 } else {
5448 unixctl_command_reply_error(conn, "Bad flow syntax");
5449 goto exit;
5450 }
5451
5452 /* Generate a packet, if requested. */
5453 if (packet) {
5454 if (!packet->size) {
5455 flow_compose(packet, &flow);
5456 } else {
5457 union flow_in_port in_port_;
5458
5459 in_port_ = flow.in_port;
5460 ds_put_cstr(&result, "Packet: ");
5461 s = ofp_packet_to_string(packet->data, packet->size);
5462 ds_put_cstr(&result, s);
5463 free(s);
5464
5465 /* Use the metadata from the flow and the packet argument
5466 * to reconstruct the flow. */
5467 flow_extract(packet, flow.skb_priority, flow.pkt_mark, NULL,
5468 &in_port_, &flow);
5469 }
5470 }
5471
5472 ofproto_trace(ofproto, &flow, packet, &result);
5473 unixctl_command_reply(conn, ds_cstr(&result));
5474
5475 exit:
5476 ds_destroy(&result);
5477 ofpbuf_delete(packet);
5478 ofpbuf_uninit(&odp_key);
5479 ofpbuf_uninit(&odp_mask);
5480 }
5481
5482 static void
5483 ofproto_trace(struct ofproto_dpif *ofproto, const struct flow *flow,
5484 const struct ofpbuf *packet, struct ds *ds)
5485 {
5486 struct rule_dpif *rule;
5487 struct flow_wildcards wc;
5488
5489 ds_put_cstr(ds, "Flow: ");
5490 flow_format(ds, flow);
5491 ds_put_char(ds, '\n');
5492
5493 flow_wildcards_init_catchall(&wc);
5494 rule_dpif_lookup(ofproto, flow, &wc, &rule);
5495
5496 trace_format_rule(ds, 0, rule);
5497 if (rule == ofproto->miss_rule) {
5498 ds_put_cstr(ds, "\nNo match, flow generates \"packet in\"s.\n");
5499 } else if (rule == ofproto->no_packet_in_rule) {
5500 ds_put_cstr(ds, "\nNo match, packets dropped because "
5501 "OFPPC_NO_PACKET_IN is set on in_port.\n");
5502 } else if (rule == ofproto->drop_frags_rule) {
5503 ds_put_cstr(ds, "\nPackets dropped because they are IP fragments "
5504 "and the fragment handling mode is \"drop\".\n");
5505 }
5506
5507 if (rule) {
5508 uint64_t odp_actions_stub[1024 / 8];
5509 struct ofpbuf odp_actions;
5510 struct trace_ctx trace;
5511 struct match match;
5512 uint8_t tcp_flags;
5513
5514 tcp_flags = packet ? packet_get_tcp_flags(packet, flow) : 0;
5515 trace.result = ds;
5516 trace.flow = *flow;
5517 ofpbuf_use_stub(&odp_actions,
5518 odp_actions_stub, sizeof odp_actions_stub);
5519 xlate_in_init(&trace.xin, ofproto, flow, rule, tcp_flags, packet);
5520 trace.xin.resubmit_hook = trace_resubmit;
5521 trace.xin.report_hook = trace_report;
5522
5523 xlate_actions(&trace.xin, &trace.xout);
5524 flow_wildcards_or(&trace.xout.wc, &trace.xout.wc, &wc);
5525
5526 ds_put_char(ds, '\n');
5527 trace_format_flow(ds, 0, "Final flow", &trace);
5528
5529 match_init(&match, flow, &trace.xout.wc);
5530 ds_put_cstr(ds, "Relevant fields: ");
5531 match_format(&match, ds, OFP_DEFAULT_PRIORITY);
5532 ds_put_char(ds, '\n');
5533
5534 ds_put_cstr(ds, "Datapath actions: ");
5535 format_odp_actions(ds, trace.xout.odp_actions.data,
5536 trace.xout.odp_actions.size);
5537
5538 if (trace.xout.slow) {
5539 ds_put_cstr(ds, "\nThis flow is handled by the userspace "
5540 "slow path because it:");
5541 switch (trace.xout.slow) {
5542 case SLOW_CFM:
5543 ds_put_cstr(ds, "\n\t- Consists of CFM packets.");
5544 break;
5545 case SLOW_LACP:
5546 ds_put_cstr(ds, "\n\t- Consists of LACP packets.");
5547 break;
5548 case SLOW_STP:
5549 ds_put_cstr(ds, "\n\t- Consists of STP packets.");
5550 break;
5551 case SLOW_BFD:
5552 ds_put_cstr(ds, "\n\t- Consists of BFD packets.");
5553 break;
5554 case SLOW_CONTROLLER:
5555 ds_put_cstr(ds, "\n\t- Sends \"packet-in\" messages "
5556 "to the OpenFlow controller.");
5557 break;
5558 case __SLOW_MAX:
5559 NOT_REACHED();
5560 }
5561 }
5562
5563 xlate_out_uninit(&trace.xout);
5564 }
5565
5566 rule_release(rule);
5567 }
5568
5569 static void
5570 ofproto_dpif_clog(struct unixctl_conn *conn OVS_UNUSED, int argc OVS_UNUSED,
5571 const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED)
5572 {
5573 clogged = true;
5574 unixctl_command_reply(conn, NULL);
5575 }
5576
5577 static void
5578 ofproto_dpif_unclog(struct unixctl_conn *conn OVS_UNUSED, int argc OVS_UNUSED,
5579 const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED)
5580 {
5581 clogged = false;
5582 unixctl_command_reply(conn, NULL);
5583 }
5584
5585 /* Runs a self-check of flow translations in 'ofproto'. Appends a message to
5586 * 'reply' describing the results. */
5587 static void
5588 ofproto_dpif_self_check__(struct ofproto_dpif *ofproto, struct ds *reply)
5589 {
5590 struct cls_cursor cursor;
5591 struct facet *facet;
5592 int errors;
5593
5594 errors = 0;
5595 ovs_rwlock_rdlock(&ofproto->facets.rwlock);
5596 cls_cursor_init(&cursor, &ofproto->facets, NULL);
5597 CLS_CURSOR_FOR_EACH (facet, cr, &cursor) {
5598 if (!facet_check_consistency(facet)) {
5599 errors++;
5600 }
5601 }
5602 ovs_rwlock_unlock(&ofproto->facets.rwlock);
5603 if (errors) {
5604 ofproto->backer->need_revalidate = REV_INCONSISTENCY;
5605 }
5606
5607 if (errors) {
5608 ds_put_format(reply, "%s: self-check failed (%d errors)\n",
5609 ofproto->up.name, errors);
5610 } else {
5611 ds_put_format(reply, "%s: self-check passed\n", ofproto->up.name);
5612 }
5613 }
5614
5615 static void
5616 ofproto_dpif_self_check(struct unixctl_conn *conn,
5617 int argc, const char *argv[], void *aux OVS_UNUSED)
5618 {
5619 struct ds reply = DS_EMPTY_INITIALIZER;
5620 struct ofproto_dpif *ofproto;
5621
5622 if (argc > 1) {
5623 ofproto = ofproto_dpif_lookup(argv[1]);
5624 if (!ofproto) {
5625 unixctl_command_reply_error(conn, "Unknown ofproto (use "
5626 "ofproto/list for help)");
5627 return;
5628 }
5629 ofproto_dpif_self_check__(ofproto, &reply);
5630 } else {
5631 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
5632 ofproto_dpif_self_check__(ofproto, &reply);
5633 }
5634 }
5635
5636 unixctl_command_reply(conn, ds_cstr(&reply));
5637 ds_destroy(&reply);
5638 }
5639
5640 /* Store the current ofprotos in 'ofproto_shash'. Returns a sorted list
5641 * of the 'ofproto_shash' nodes. It is the responsibility of the caller
5642 * to destroy 'ofproto_shash' and free the returned value. */
5643 static const struct shash_node **
5644 get_ofprotos(struct shash *ofproto_shash)
5645 {
5646 const struct ofproto_dpif *ofproto;
5647
5648 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
5649 char *name = xasprintf("%s@%s", ofproto->up.type, ofproto->up.name);
5650 shash_add_nocopy(ofproto_shash, name, ofproto);
5651 }
5652
5653 return shash_sort(ofproto_shash);
5654 }
5655
5656 static void
5657 ofproto_unixctl_dpif_dump_dps(struct unixctl_conn *conn, int argc OVS_UNUSED,
5658 const char *argv[] OVS_UNUSED,
5659 void *aux OVS_UNUSED)
5660 {
5661 struct ds ds = DS_EMPTY_INITIALIZER;
5662 struct shash ofproto_shash;
5663 const struct shash_node **sorted_ofprotos;
5664 int i;
5665
5666 shash_init(&ofproto_shash);
5667 sorted_ofprotos = get_ofprotos(&ofproto_shash);
5668 for (i = 0; i < shash_count(&ofproto_shash); i++) {
5669 const struct shash_node *node = sorted_ofprotos[i];
5670 ds_put_format(&ds, "%s\n", node->name);
5671 }
5672
5673 shash_destroy(&ofproto_shash);
5674 free(sorted_ofprotos);
5675
5676 unixctl_command_reply(conn, ds_cstr(&ds));
5677 ds_destroy(&ds);
5678 }
5679
5680 static void
5681 show_dp_rates(struct ds *ds, const char *heading,
5682 const struct avg_subfacet_rates *rates)
5683 {
5684 ds_put_format(ds, "%s add rate: %5.3f/min, del rate: %5.3f/min\n",
5685 heading, rates->add_rate, rates->del_rate);
5686 }
5687
5688 static void
5689 dpif_show_backer(const struct dpif_backer *backer, struct ds *ds)
5690 {
5691 const struct shash_node **ofprotos;
5692 struct ofproto_dpif *ofproto;
5693 struct shash ofproto_shash;
5694 uint64_t n_hit, n_missed;
5695 long long int minutes;
5696 size_t i;
5697
5698 n_hit = n_missed = 0;
5699 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
5700 if (ofproto->backer == backer) {
5701 n_missed += ofproto->n_missed;
5702 n_hit += ofproto->n_hit;
5703 }
5704 }
5705
5706 ds_put_format(ds, "%s: hit:%"PRIu64" missed:%"PRIu64"\n",
5707 dpif_name(backer->dpif), n_hit, n_missed);
5708 ds_put_format(ds, "\tflows: cur: %zu, avg: %u, max: %u,"
5709 " life span: %lldms\n", hmap_count(&backer->subfacets),
5710 backer->avg_n_subfacet, backer->max_n_subfacet,
5711 backer->avg_subfacet_life);
5712
5713 minutes = (time_msec() - backer->created) / (1000 * 60);
5714 if (minutes >= 60) {
5715 show_dp_rates(ds, "\thourly avg:", &backer->hourly);
5716 }
5717 if (minutes >= 60 * 24) {
5718 show_dp_rates(ds, "\tdaily avg:", &backer->daily);
5719 }
5720 show_dp_rates(ds, "\toverall avg:", &backer->lifetime);
5721
5722 shash_init(&ofproto_shash);
5723 ofprotos = get_ofprotos(&ofproto_shash);
5724 for (i = 0; i < shash_count(&ofproto_shash); i++) {
5725 struct ofproto_dpif *ofproto = ofprotos[i]->data;
5726 const struct shash_node **ports;
5727 size_t j;
5728
5729 if (ofproto->backer != backer) {
5730 continue;
5731 }
5732
5733 ds_put_format(ds, "\t%s: hit:%"PRIu64" missed:%"PRIu64"\n",
5734 ofproto->up.name, ofproto->n_hit, ofproto->n_missed);
5735
5736 ports = shash_sort(&ofproto->up.port_by_name);
5737 for (j = 0; j < shash_count(&ofproto->up.port_by_name); j++) {
5738 const struct shash_node *node = ports[j];
5739 struct ofport *ofport = node->data;
5740 struct smap config;
5741 odp_port_t odp_port;
5742
5743 ds_put_format(ds, "\t\t%s %u/", netdev_get_name(ofport->netdev),
5744 ofport->ofp_port);
5745
5746 odp_port = ofp_port_to_odp_port(ofproto, ofport->ofp_port);
5747 if (odp_port != ODPP_NONE) {
5748 ds_put_format(ds, "%"PRIu32":", odp_port);
5749 } else {
5750 ds_put_cstr(ds, "none:");
5751 }
5752
5753 ds_put_format(ds, " (%s", netdev_get_type(ofport->netdev));
5754
5755 smap_init(&config);
5756 if (!netdev_get_config(ofport->netdev, &config)) {
5757 const struct smap_node **nodes;
5758 size_t i;
5759
5760 nodes = smap_sort(&config);
5761 for (i = 0; i < smap_count(&config); i++) {
5762 const struct smap_node *node = nodes[i];
5763 ds_put_format(ds, "%c %s=%s", i ? ',' : ':',
5764 node->key, node->value);
5765 }
5766 free(nodes);
5767 }
5768 smap_destroy(&config);
5769
5770 ds_put_char(ds, ')');
5771 ds_put_char(ds, '\n');
5772 }
5773 free(ports);
5774 }
5775 shash_destroy(&ofproto_shash);
5776 free(ofprotos);
5777 }
5778
5779 static void
5780 ofproto_unixctl_dpif_show(struct unixctl_conn *conn, int argc OVS_UNUSED,
5781 const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED)
5782 {
5783 struct ds ds = DS_EMPTY_INITIALIZER;
5784 const struct shash_node **backers;
5785 int i;
5786
5787 backers = shash_sort(&all_dpif_backers);
5788 for (i = 0; i < shash_count(&all_dpif_backers); i++) {
5789 dpif_show_backer(backers[i]->data, &ds);
5790 }
5791 free(backers);
5792
5793 unixctl_command_reply(conn, ds_cstr(&ds));
5794 ds_destroy(&ds);
5795 }
5796
5797 /* Dump the megaflow (facet) cache. This is useful to check the
5798 * correctness of flow wildcarding, since the same mechanism is used for
5799 * both xlate caching and kernel wildcarding.
5800 *
5801 * It's important to note that in the output the flow description uses
5802 * OpenFlow (OFP) ports, but the actions use datapath (ODP) ports.
5803 *
5804 * This command is only needed for advanced debugging, so it's not
5805 * documented in the man page. */
5806 static void
5807 ofproto_unixctl_dpif_dump_megaflows(struct unixctl_conn *conn,
5808 int argc OVS_UNUSED, const char *argv[],
5809 void *aux OVS_UNUSED)
5810 {
5811 struct ds ds = DS_EMPTY_INITIALIZER;
5812 const struct ofproto_dpif *ofproto;
5813 long long int now = time_msec();
5814 struct cls_cursor cursor;
5815 struct facet *facet;
5816
5817 ofproto = ofproto_dpif_lookup(argv[1]);
5818 if (!ofproto) {
5819 unixctl_command_reply_error(conn, "no such bridge");
5820 return;
5821 }
5822
5823 ovs_rwlock_rdlock(&ofproto->facets.rwlock);
5824 cls_cursor_init(&cursor, &ofproto->facets, NULL);
5825 CLS_CURSOR_FOR_EACH (facet, cr, &cursor) {
5826 cls_rule_format(&facet->cr, &ds);
5827 ds_put_cstr(&ds, ", ");
5828 ds_put_format(&ds, "n_subfacets:%zu, ", list_size(&facet->subfacets));
5829 ds_put_format(&ds, "used:%.3fs, ", (now - facet->used) / 1000.0);
5830 ds_put_cstr(&ds, "Datapath actions: ");
5831 if (facet->xout.slow) {
5832 uint64_t slow_path_stub[128 / 8];
5833 const struct nlattr *actions;
5834 size_t actions_len;
5835
5836 compose_slow_path(ofproto, &facet->flow, facet->xout.slow,
5837 slow_path_stub, sizeof slow_path_stub,
5838 &actions, &actions_len);
5839 format_odp_actions(&ds, actions, actions_len);
5840 } else {
5841 format_odp_actions(&ds, facet->xout.odp_actions.data,
5842 facet->xout.odp_actions.size);
5843 }
5844 ds_put_cstr(&ds, "\n");
5845 }
5846 ovs_rwlock_unlock(&ofproto->facets.rwlock);
5847
5848 ds_chomp(&ds, '\n');
5849 unixctl_command_reply(conn, ds_cstr(&ds));
5850 ds_destroy(&ds);
5851 }
5852
5853 /* Disable using the megaflows.
5854 *
5855 * This command is only needed for advanced debugging, so it's not
5856 * documented in the man page. */
5857 static void
5858 ofproto_unixctl_dpif_disable_megaflows(struct unixctl_conn *conn,
5859 int argc OVS_UNUSED,
5860 const char *argv[] OVS_UNUSED,
5861 void *aux OVS_UNUSED)
5862 {
5863 struct ofproto_dpif *ofproto;
5864
5865 enable_megaflows = false;
5866
5867 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
5868 flush(&ofproto->up);
5869 }
5870
5871 unixctl_command_reply(conn, "megaflows disabled");
5872 }
5873
5874 /* Re-enable using megaflows.
5875 *
5876 * This command is only needed for advanced debugging, so it's not
5877 * documented in the man page. */
5878 static void
5879 ofproto_unixctl_dpif_enable_megaflows(struct unixctl_conn *conn,
5880 int argc OVS_UNUSED,
5881 const char *argv[] OVS_UNUSED,
5882 void *aux OVS_UNUSED)
5883 {
5884 struct ofproto_dpif *ofproto;
5885
5886 enable_megaflows = true;
5887
5888 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
5889 flush(&ofproto->up);
5890 }
5891
5892 unixctl_command_reply(conn, "megaflows enabled");
5893 }
5894
5895 static void
5896 ofproto_unixctl_dpif_dump_flows(struct unixctl_conn *conn,
5897 int argc OVS_UNUSED, const char *argv[],
5898 void *aux OVS_UNUSED)
5899 {
5900 struct ds ds = DS_EMPTY_INITIALIZER;
5901 const struct ofproto_dpif *ofproto;
5902 struct subfacet *subfacet;
5903
5904 ofproto = ofproto_dpif_lookup(argv[1]);
5905 if (!ofproto) {
5906 unixctl_command_reply_error(conn, "no such bridge");
5907 return;
5908 }
5909
5910 update_stats(ofproto->backer);
5911
5912 HMAP_FOR_EACH (subfacet, hmap_node, &ofproto->backer->subfacets) {
5913 struct facet *facet = subfacet->facet;
5914 struct odputil_keybuf maskbuf;
5915 struct ofpbuf mask;
5916
5917 if (facet->ofproto != ofproto) {
5918 continue;
5919 }
5920
5921 ofpbuf_use_stack(&mask, &maskbuf, sizeof maskbuf);
5922 if (enable_megaflows) {
5923 odp_flow_key_from_mask(&mask, &facet->xout.wc.masks,
5924 &facet->flow, UINT32_MAX);
5925 }
5926
5927 odp_flow_format(subfacet->key, subfacet->key_len,
5928 mask.data, mask.size, &ds, false);
5929
5930 ds_put_format(&ds, ", packets:%"PRIu64", bytes:%"PRIu64", used:",
5931 subfacet->dp_packet_count, subfacet->dp_byte_count);
5932 if (subfacet->used) {
5933 ds_put_format(&ds, "%.3fs",
5934 (time_msec() - subfacet->used) / 1000.0);
5935 } else {
5936 ds_put_format(&ds, "never");
5937 }
5938 if (subfacet->facet->tcp_flags) {
5939 ds_put_cstr(&ds, ", flags:");
5940 packet_format_tcp_flags(&ds, subfacet->facet->tcp_flags);
5941 }
5942
5943 ds_put_cstr(&ds, ", actions:");
5944 if (facet->xout.slow) {
5945 uint64_t slow_path_stub[128 / 8];
5946 const struct nlattr *actions;
5947 size_t actions_len;
5948
5949 compose_slow_path(ofproto, &facet->flow, facet->xout.slow,
5950 slow_path_stub, sizeof slow_path_stub,
5951 &actions, &actions_len);
5952 format_odp_actions(&ds, actions, actions_len);
5953 } else {
5954 format_odp_actions(&ds, facet->xout.odp_actions.data,
5955 facet->xout.odp_actions.size);
5956 }
5957 ds_put_char(&ds, '\n');
5958 }
5959
5960 unixctl_command_reply(conn, ds_cstr(&ds));
5961 ds_destroy(&ds);
5962 }
5963
5964 static void
5965 ofproto_unixctl_dpif_del_flows(struct unixctl_conn *conn,
5966 int argc OVS_UNUSED, const char *argv[],
5967 void *aux OVS_UNUSED)
5968 {
5969 struct ds ds = DS_EMPTY_INITIALIZER;
5970 struct ofproto_dpif *ofproto;
5971
5972 ofproto = ofproto_dpif_lookup(argv[1]);
5973 if (!ofproto) {
5974 unixctl_command_reply_error(conn, "no such bridge");
5975 return;
5976 }
5977
5978 flush(&ofproto->up);
5979
5980 unixctl_command_reply(conn, ds_cstr(&ds));
5981 ds_destroy(&ds);
5982 }
5983
5984 static void
5985 ofproto_dpif_unixctl_init(void)
5986 {
5987 static bool registered;
5988 if (registered) {
5989 return;
5990 }
5991 registered = true;
5992
5993 unixctl_command_register(
5994 "ofproto/trace",
5995 "[dp_name]|bridge odp_flow|br_flow [-generate|packet]",
5996 1, 3, ofproto_unixctl_trace, NULL);
5997 unixctl_command_register("fdb/flush", "[bridge]", 0, 1,
5998 ofproto_unixctl_fdb_flush, NULL);
5999 unixctl_command_register("fdb/show", "bridge", 1, 1,
6000 ofproto_unixctl_fdb_show, NULL);
6001 unixctl_command_register("ofproto/clog", "", 0, 0,
6002 ofproto_dpif_clog, NULL);
6003 unixctl_command_register("ofproto/unclog", "", 0, 0,
6004 ofproto_dpif_unclog, NULL);
6005 unixctl_command_register("ofproto/self-check", "[bridge]", 0, 1,
6006 ofproto_dpif_self_check, NULL);
6007 unixctl_command_register("dpif/dump-dps", "", 0, 0,
6008 ofproto_unixctl_dpif_dump_dps, NULL);
6009 unixctl_command_register("dpif/show", "", 0, 0, ofproto_unixctl_dpif_show,
6010 NULL);
6011 unixctl_command_register("dpif/dump-flows", "bridge", 1, 1,
6012 ofproto_unixctl_dpif_dump_flows, NULL);
6013 unixctl_command_register("dpif/del-flows", "bridge", 1, 1,
6014 ofproto_unixctl_dpif_del_flows, NULL);
6015 unixctl_command_register("dpif/dump-megaflows", "bridge", 1, 1,
6016 ofproto_unixctl_dpif_dump_megaflows, NULL);
6017 unixctl_command_register("dpif/disable-megaflows", "", 0, 0,
6018 ofproto_unixctl_dpif_disable_megaflows, NULL);
6019 unixctl_command_register("dpif/enable-megaflows", "", 0, 0,
6020 ofproto_unixctl_dpif_enable_megaflows, NULL);
6021 }
6022 \f
6023 /* Linux VLAN device support (e.g. "eth0.10" for VLAN 10.)
6024 *
6025 * This is deprecated. It is only for compatibility with broken device drivers
6026 * in old versions of Linux that do not properly support VLANs when VLAN
6027 * devices are not used. When broken device drivers are no longer in
6028 * widespread use, we will delete these interfaces. */
6029
6030 static int
6031 set_realdev(struct ofport *ofport_, ofp_port_t realdev_ofp_port, int vid)
6032 {
6033 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport_->ofproto);
6034 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
6035
6036 if (realdev_ofp_port == ofport->realdev_ofp_port
6037 && vid == ofport->vlandev_vid) {
6038 return 0;
6039 }
6040
6041 ofproto->backer->need_revalidate = REV_RECONFIGURE;
6042
6043 if (ofport->realdev_ofp_port) {
6044 vsp_remove(ofport);
6045 }
6046 if (realdev_ofp_port && ofport->bundle) {
6047 /* vlandevs are enslaved to their realdevs, so they are not allowed to
6048 * themselves be part of a bundle. */
6049 bundle_set(ofport->up.ofproto, ofport->bundle, NULL);
6050 }
6051
6052 ofport->realdev_ofp_port = realdev_ofp_port;
6053 ofport->vlandev_vid = vid;
6054
6055 if (realdev_ofp_port) {
6056 vsp_add(ofport, realdev_ofp_port, vid);
6057 }
6058
6059 return 0;
6060 }
6061
6062 static uint32_t
6063 hash_realdev_vid(ofp_port_t realdev_ofp_port, int vid)
6064 {
6065 return hash_2words(ofp_to_u16(realdev_ofp_port), vid);
6066 }
6067
6068 bool
6069 ofproto_has_vlan_splinters(const struct ofproto_dpif *ofproto)
6070 OVS_EXCLUDED(ofproto->vsp_mutex)
6071 {
6072 bool ret;
6073
6074 ovs_mutex_lock(&ofproto->vsp_mutex);
6075 ret = !hmap_is_empty(&ofproto->realdev_vid_map);
6076 ovs_mutex_unlock(&ofproto->vsp_mutex);
6077 return ret;
6078 }
6079
6080 static ofp_port_t
6081 vsp_realdev_to_vlandev__(const struct ofproto_dpif *ofproto,
6082 ofp_port_t realdev_ofp_port, ovs_be16 vlan_tci)
6083 OVS_REQUIRES(ofproto->vsp_mutex)
6084 {
6085 if (!hmap_is_empty(&ofproto->realdev_vid_map)) {
6086 int vid = vlan_tci_to_vid(vlan_tci);
6087 const struct vlan_splinter *vsp;
6088
6089 HMAP_FOR_EACH_WITH_HASH (vsp, realdev_vid_node,
6090 hash_realdev_vid(realdev_ofp_port, vid),
6091 &ofproto->realdev_vid_map) {
6092 if (vsp->realdev_ofp_port == realdev_ofp_port
6093 && vsp->vid == vid) {
6094 return vsp->vlandev_ofp_port;
6095 }
6096 }
6097 }
6098 return realdev_ofp_port;
6099 }
6100
6101 /* Returns the OFP port number of the Linux VLAN device that corresponds to
6102 * 'vlan_tci' on the network device with port number 'realdev_ofp_port' in
6103 * 'struct ofport_dpif'. For example, given 'realdev_ofp_port' of eth0 and
6104 * 'vlan_tci' 9, it would return the port number of eth0.9.
6105 *
6106 * Unless VLAN splinters are enabled for port 'realdev_ofp_port', this
6107 * function just returns its 'realdev_ofp_port' argument. */
6108 ofp_port_t
6109 vsp_realdev_to_vlandev(const struct ofproto_dpif *ofproto,
6110 ofp_port_t realdev_ofp_port, ovs_be16 vlan_tci)
6111 OVS_EXCLUDED(ofproto->vsp_mutex)
6112 {
6113 ofp_port_t ret;
6114
6115 ovs_mutex_lock(&ofproto->vsp_mutex);
6116 ret = vsp_realdev_to_vlandev__(ofproto, realdev_ofp_port, vlan_tci);
6117 ovs_mutex_unlock(&ofproto->vsp_mutex);
6118 return ret;
6119 }
6120
6121 static struct vlan_splinter *
6122 vlandev_find(const struct ofproto_dpif *ofproto, ofp_port_t vlandev_ofp_port)
6123 {
6124 struct vlan_splinter *vsp;
6125
6126 HMAP_FOR_EACH_WITH_HASH (vsp, vlandev_node,
6127 hash_ofp_port(vlandev_ofp_port),
6128 &ofproto->vlandev_map) {
6129 if (vsp->vlandev_ofp_port == vlandev_ofp_port) {
6130 return vsp;
6131 }
6132 }
6133
6134 return NULL;
6135 }
6136
6137 /* Returns the OpenFlow port number of the "real" device underlying the Linux
6138 * VLAN device with OpenFlow port number 'vlandev_ofp_port' and stores the
6139 * VLAN VID of the Linux VLAN device in '*vid'. For example, given
6140 * 'vlandev_ofp_port' of eth0.9, it would return the OpenFlow port number of
6141 * eth0 and store 9 in '*vid'.
6142 *
6143 * Returns 0 and does not modify '*vid' if 'vlandev_ofp_port' is not a Linux
6144 * VLAN device. Unless VLAN splinters are enabled, this is what this function
6145 * always does.*/
6146 static ofp_port_t
6147 vsp_vlandev_to_realdev(const struct ofproto_dpif *ofproto,
6148 ofp_port_t vlandev_ofp_port, int *vid)
6149 OVS_REQUIRES(ofproto->vsp_mutex)
6150 {
6151 if (!hmap_is_empty(&ofproto->vlandev_map)) {
6152 const struct vlan_splinter *vsp;
6153
6154 vsp = vlandev_find(ofproto, vlandev_ofp_port);
6155 if (vsp) {
6156 if (vid) {
6157 *vid = vsp->vid;
6158 }
6159 return vsp->realdev_ofp_port;
6160 }
6161 }
6162 return 0;
6163 }
6164
6165 /* Given 'flow', a flow representing a packet received on 'ofproto', checks
6166 * whether 'flow->in_port' represents a Linux VLAN device. If so, changes
6167 * 'flow->in_port' to the "real" device backing the VLAN device, sets
6168 * 'flow->vlan_tci' to the VLAN VID, and returns true. Otherwise (which is
6169 * always the case unless VLAN splinters are enabled), returns false without
6170 * making any changes. */
6171 bool
6172 vsp_adjust_flow(const struct ofproto_dpif *ofproto, struct flow *flow)
6173 OVS_EXCLUDED(ofproto->vsp_mutex)
6174 {
6175 ofp_port_t realdev;
6176 int vid;
6177
6178 ovs_mutex_lock(&ofproto->vsp_mutex);
6179 realdev = vsp_vlandev_to_realdev(ofproto, flow->in_port.ofp_port, &vid);
6180 ovs_mutex_unlock(&ofproto->vsp_mutex);
6181 if (!realdev) {
6182 return false;
6183 }
6184
6185 /* Cause the flow to be processed as if it came in on the real device with
6186 * the VLAN device's VLAN ID. */
6187 flow->in_port.ofp_port = realdev;
6188 flow->vlan_tci = htons((vid & VLAN_VID_MASK) | VLAN_CFI);
6189 return true;
6190 }
6191
6192 static void
6193 vsp_remove(struct ofport_dpif *port)
6194 {
6195 struct ofproto_dpif *ofproto = ofproto_dpif_cast(port->up.ofproto);
6196 struct vlan_splinter *vsp;
6197
6198 ovs_mutex_lock(&ofproto->vsp_mutex);
6199 vsp = vlandev_find(ofproto, port->up.ofp_port);
6200 if (vsp) {
6201 hmap_remove(&ofproto->vlandev_map, &vsp->vlandev_node);
6202 hmap_remove(&ofproto->realdev_vid_map, &vsp->realdev_vid_node);
6203 free(vsp);
6204
6205 port->realdev_ofp_port = 0;
6206 } else {
6207 VLOG_ERR("missing vlan device record");
6208 }
6209 ovs_mutex_unlock(&ofproto->vsp_mutex);
6210 }
6211
6212 static void
6213 vsp_add(struct ofport_dpif *port, ofp_port_t realdev_ofp_port, int vid)
6214 {
6215 struct ofproto_dpif *ofproto = ofproto_dpif_cast(port->up.ofproto);
6216
6217 ovs_mutex_lock(&ofproto->vsp_mutex);
6218 if (!vsp_vlandev_to_realdev(ofproto, port->up.ofp_port, NULL)
6219 && (vsp_realdev_to_vlandev__(ofproto, realdev_ofp_port, htons(vid))
6220 == realdev_ofp_port)) {
6221 struct vlan_splinter *vsp;
6222
6223 vsp = xmalloc(sizeof *vsp);
6224 vsp->realdev_ofp_port = realdev_ofp_port;
6225 vsp->vlandev_ofp_port = port->up.ofp_port;
6226 vsp->vid = vid;
6227
6228 port->realdev_ofp_port = realdev_ofp_port;
6229
6230 hmap_insert(&ofproto->vlandev_map, &vsp->vlandev_node,
6231 hash_ofp_port(port->up.ofp_port));
6232 hmap_insert(&ofproto->realdev_vid_map, &vsp->realdev_vid_node,
6233 hash_realdev_vid(realdev_ofp_port, vid));
6234 } else {
6235 VLOG_ERR("duplicate vlan device record");
6236 }
6237 ovs_mutex_unlock(&ofproto->vsp_mutex);
6238 }
6239
6240 static odp_port_t
6241 ofp_port_to_odp_port(const struct ofproto_dpif *ofproto, ofp_port_t ofp_port)
6242 {
6243 const struct ofport_dpif *ofport = get_ofp_port(ofproto, ofp_port);
6244 return ofport ? ofport->odp_port : ODPP_NONE;
6245 }
6246
6247 struct ofport_dpif *
6248 odp_port_to_ofport(const struct dpif_backer *backer, odp_port_t odp_port)
6249 {
6250 struct ofport_dpif *port;
6251
6252 ovs_rwlock_rdlock(&backer->odp_to_ofport_lock);
6253 HMAP_FOR_EACH_IN_BUCKET (port, odp_port_node, hash_odp_port(odp_port),
6254 &backer->odp_to_ofport_map) {
6255 if (port->odp_port == odp_port) {
6256 ovs_rwlock_unlock(&backer->odp_to_ofport_lock);
6257 return port;
6258 }
6259 }
6260
6261 ovs_rwlock_unlock(&backer->odp_to_ofport_lock);
6262 return NULL;
6263 }
6264
6265 static ofp_port_t
6266 odp_port_to_ofp_port(const struct ofproto_dpif *ofproto, odp_port_t odp_port)
6267 {
6268 struct ofport_dpif *port;
6269
6270 port = odp_port_to_ofport(ofproto->backer, odp_port);
6271 if (port && &ofproto->up == port->up.ofproto) {
6272 return port->up.ofp_port;
6273 } else {
6274 return OFPP_NONE;
6275 }
6276 }
6277
6278 /* Compute exponentially weighted moving average, adding 'new' as the newest,
6279 * most heavily weighted element. 'base' designates the rate of decay: after
6280 * 'base' further updates, 'new''s weight in the EWMA decays to about 1/e
6281 * (about .37). */
6282 static void
6283 exp_mavg(double *avg, int base, double new)
6284 {
6285 *avg = (*avg * (base - 1) + new) / base;
6286 }
6287
6288 static void
6289 update_moving_averages(struct dpif_backer *backer)
6290 {
6291 const int min_ms = 60 * 1000; /* milliseconds in one minute. */
6292 long long int minutes = (time_msec() - backer->created) / min_ms;
6293
6294 if (minutes > 0) {
6295 backer->lifetime.add_rate = (double) backer->total_subfacet_add_count
6296 / minutes;
6297 backer->lifetime.del_rate = (double) backer->total_subfacet_del_count
6298 / minutes;
6299 } else {
6300 backer->lifetime.add_rate = 0.0;
6301 backer->lifetime.del_rate = 0.0;
6302 }
6303
6304 /* Update hourly averages on the minute boundaries. */
6305 if (time_msec() - backer->last_minute >= min_ms) {
6306 exp_mavg(&backer->hourly.add_rate, 60, backer->subfacet_add_count);
6307 exp_mavg(&backer->hourly.del_rate, 60, backer->subfacet_del_count);
6308
6309 /* Update daily averages on the hour boundaries. */
6310 if ((backer->last_minute - backer->created) / min_ms % 60 == 59) {
6311 exp_mavg(&backer->daily.add_rate, 24, backer->hourly.add_rate);
6312 exp_mavg(&backer->daily.del_rate, 24, backer->hourly.del_rate);
6313 }
6314
6315 backer->total_subfacet_add_count += backer->subfacet_add_count;
6316 backer->total_subfacet_del_count += backer->subfacet_del_count;
6317 backer->subfacet_add_count = 0;
6318 backer->subfacet_del_count = 0;
6319 backer->last_minute += min_ms;
6320 }
6321 }
6322
6323 const struct ofproto_class ofproto_dpif_class = {
6324 init,
6325 enumerate_types,
6326 enumerate_names,
6327 del,
6328 port_open_type,
6329 type_run,
6330 type_run_fast,
6331 type_wait,
6332 alloc,
6333 construct,
6334 destruct,
6335 dealloc,
6336 run,
6337 run_fast,
6338 wait,
6339 get_memory_usage,
6340 flush,
6341 get_features,
6342 get_tables,
6343 port_alloc,
6344 port_construct,
6345 port_destruct,
6346 port_dealloc,
6347 port_modified,
6348 port_reconfigured,
6349 port_query_by_name,
6350 port_add,
6351 port_del,
6352 port_get_stats,
6353 port_dump_start,
6354 port_dump_next,
6355 port_dump_done,
6356 port_poll,
6357 port_poll_wait,
6358 port_is_lacp_current,
6359 NULL, /* rule_choose_table */
6360 rule_alloc,
6361 rule_construct,
6362 rule_insert,
6363 rule_delete,
6364 rule_destruct,
6365 rule_dealloc,
6366 rule_get_stats,
6367 rule_execute,
6368 rule_modify_actions,
6369 set_frag_handling,
6370 packet_out,
6371 set_netflow,
6372 get_netflow_ids,
6373 set_sflow,
6374 set_ipfix,
6375 set_cfm,
6376 get_cfm_status,
6377 set_bfd,
6378 get_bfd_status,
6379 set_stp,
6380 get_stp_status,
6381 set_stp_port,
6382 get_stp_port_status,
6383 set_queues,
6384 bundle_set,
6385 bundle_remove,
6386 mirror_set__,
6387 mirror_get_stats__,
6388 set_flood_vlans,
6389 is_mirror_output_bundle,
6390 forward_bpdu_changed,
6391 set_mac_table_config,
6392 set_realdev,
6393 NULL, /* meter_get_features */
6394 NULL, /* meter_set */
6395 NULL, /* meter_get */
6396 NULL, /* meter_del */
6397 NULL, /* group_alloc */
6398 NULL, /* group_construct */
6399 NULL, /* group_destruct */
6400 NULL, /* group_dealloc */
6401 NULL, /* group_modify */
6402 NULL, /* group_get_stats */
6403 };