]> git.proxmox.com Git - mirror_ovs.git/blob - ofproto/ofproto-dpif.c
nicira-ext: Add Nicira actions NXAST_STACK_PUSH and NXAST_STACK_POP.
[mirror_ovs.git] / ofproto / ofproto-dpif.c
1 /*
2 * Copyright (c) 2009, 2010, 2011, 2012, 2013 Nicira, Inc.
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at:
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <config.h>
18
19 #include "ofproto/ofproto-provider.h"
20
21 #include <errno.h>
22
23 #include "bond.h"
24 #include "bundle.h"
25 #include "byte-order.h"
26 #include "connmgr.h"
27 #include "coverage.h"
28 #include "cfm.h"
29 #include "dpif.h"
30 #include "dynamic-string.h"
31 #include "fail-open.h"
32 #include "hmapx.h"
33 #include "lacp.h"
34 #include "learn.h"
35 #include "mac-learning.h"
36 #include "meta-flow.h"
37 #include "multipath.h"
38 #include "netdev-vport.h"
39 #include "netdev.h"
40 #include "netlink.h"
41 #include "nx-match.h"
42 #include "odp-util.h"
43 #include "ofp-util.h"
44 #include "ofpbuf.h"
45 #include "ofp-actions.h"
46 #include "ofp-parse.h"
47 #include "ofp-print.h"
48 #include "ofproto-dpif-governor.h"
49 #include "ofproto-dpif-sflow.h"
50 #include "poll-loop.h"
51 #include "simap.h"
52 #include "smap.h"
53 #include "timer.h"
54 #include "tunnel.h"
55 #include "unaligned.h"
56 #include "unixctl.h"
57 #include "vlan-bitmap.h"
58 #include "vlog.h"
59
60 VLOG_DEFINE_THIS_MODULE(ofproto_dpif);
61
62 COVERAGE_DEFINE(ofproto_dpif_expired);
63 COVERAGE_DEFINE(ofproto_dpif_xlate);
64 COVERAGE_DEFINE(facet_changed_rule);
65 COVERAGE_DEFINE(facet_revalidate);
66 COVERAGE_DEFINE(facet_unexpected);
67 COVERAGE_DEFINE(facet_suppress);
68
69 /* Maximum depth of flow table recursion (due to resubmit actions) in a
70 * flow translation. */
71 #define MAX_RESUBMIT_RECURSION 64
72
73 /* Number of implemented OpenFlow tables. */
74 enum { N_TABLES = 255 };
75 enum { TBL_INTERNAL = N_TABLES - 1 }; /* Used for internal hidden rules. */
76 BUILD_ASSERT_DECL(N_TABLES >= 2 && N_TABLES <= 255);
77
78 struct ofport_dpif;
79 struct ofproto_dpif;
80 struct flow_miss;
81
82 struct rule_dpif {
83 struct rule up;
84
85 /* These statistics:
86 *
87 * - Do include packets and bytes from facets that have been deleted or
88 * whose own statistics have been folded into the rule.
89 *
90 * - Do include packets and bytes sent "by hand" that were accounted to
91 * the rule without any facet being involved (this is a rare corner
92 * case in rule_execute()).
93 *
94 * - Do not include packet or bytes that can be obtained from any facet's
95 * packet_count or byte_count member or that can be obtained from the
96 * datapath by, e.g., dpif_flow_get() for any subfacet.
97 */
98 uint64_t packet_count; /* Number of packets received. */
99 uint64_t byte_count; /* Number of bytes received. */
100
101 tag_type tag; /* Caches rule_calculate_tag() result. */
102
103 struct list facets; /* List of "struct facet"s. */
104 };
105
106 static struct rule_dpif *rule_dpif_cast(const struct rule *rule)
107 {
108 return rule ? CONTAINER_OF(rule, struct rule_dpif, up) : NULL;
109 }
110
111 static struct rule_dpif *rule_dpif_lookup(struct ofproto_dpif *,
112 const struct flow *);
113 static struct rule_dpif *rule_dpif_lookup__(struct ofproto_dpif *,
114 const struct flow *,
115 uint8_t table);
116 static struct rule_dpif *rule_dpif_miss_rule(struct ofproto_dpif *ofproto,
117 const struct flow *flow);
118
119 static void rule_credit_stats(struct rule_dpif *,
120 const struct dpif_flow_stats *);
121 static void flow_push_stats(struct rule_dpif *, const struct flow *,
122 const struct dpif_flow_stats *);
123 static tag_type rule_calculate_tag(const struct flow *,
124 const struct minimask *, uint32_t basis);
125 static void rule_invalidate(const struct rule_dpif *);
126
127 #define MAX_MIRRORS 32
128 typedef uint32_t mirror_mask_t;
129 #define MIRROR_MASK_C(X) UINT32_C(X)
130 BUILD_ASSERT_DECL(sizeof(mirror_mask_t) * CHAR_BIT >= MAX_MIRRORS);
131 struct ofmirror {
132 struct ofproto_dpif *ofproto; /* Owning ofproto. */
133 size_t idx; /* In ofproto's "mirrors" array. */
134 void *aux; /* Key supplied by ofproto's client. */
135 char *name; /* Identifier for log messages. */
136
137 /* Selection criteria. */
138 struct hmapx srcs; /* Contains "struct ofbundle *"s. */
139 struct hmapx dsts; /* Contains "struct ofbundle *"s. */
140 unsigned long *vlans; /* Bitmap of chosen VLANs, NULL selects all. */
141
142 /* Output (exactly one of out == NULL and out_vlan == -1 is true). */
143 struct ofbundle *out; /* Output port or NULL. */
144 int out_vlan; /* Output VLAN or -1. */
145 mirror_mask_t dup_mirrors; /* Bitmap of mirrors with the same output. */
146
147 /* Counters. */
148 int64_t packet_count; /* Number of packets sent. */
149 int64_t byte_count; /* Number of bytes sent. */
150 };
151
152 static void mirror_destroy(struct ofmirror *);
153 static void update_mirror_stats(struct ofproto_dpif *ofproto,
154 mirror_mask_t mirrors,
155 uint64_t packets, uint64_t bytes);
156
157 struct ofbundle {
158 struct hmap_node hmap_node; /* In struct ofproto's "bundles" hmap. */
159 struct ofproto_dpif *ofproto; /* Owning ofproto. */
160 void *aux; /* Key supplied by ofproto's client. */
161 char *name; /* Identifier for log messages. */
162
163 /* Configuration. */
164 struct list ports; /* Contains "struct ofport"s. */
165 enum port_vlan_mode vlan_mode; /* VLAN mode */
166 int vlan; /* -1=trunk port, else a 12-bit VLAN ID. */
167 unsigned long *trunks; /* Bitmap of trunked VLANs, if 'vlan' == -1.
168 * NULL if all VLANs are trunked. */
169 struct lacp *lacp; /* LACP if LACP is enabled, otherwise NULL. */
170 struct bond *bond; /* Nonnull iff more than one port. */
171 bool use_priority_tags; /* Use 802.1p tag for frames in VLAN 0? */
172
173 /* Status. */
174 bool floodable; /* True if no port has OFPUTIL_PC_NO_FLOOD set. */
175
176 /* Port mirroring info. */
177 mirror_mask_t src_mirrors; /* Mirrors triggered when packet received. */
178 mirror_mask_t dst_mirrors; /* Mirrors triggered when packet sent. */
179 mirror_mask_t mirror_out; /* Mirrors that output to this bundle. */
180 };
181
182 static void bundle_remove(struct ofport *);
183 static void bundle_update(struct ofbundle *);
184 static void bundle_destroy(struct ofbundle *);
185 static void bundle_del_port(struct ofport_dpif *);
186 static void bundle_run(struct ofbundle *);
187 static void bundle_wait(struct ofbundle *);
188 static struct ofbundle *lookup_input_bundle(const struct ofproto_dpif *,
189 uint16_t in_port, bool warn,
190 struct ofport_dpif **in_ofportp);
191
192 /* A controller may use OFPP_NONE as the ingress port to indicate that
193 * it did not arrive on a "real" port. 'ofpp_none_bundle' exists for
194 * when an input bundle is needed for validation (e.g., mirroring or
195 * OFPP_NORMAL processing). It is not connected to an 'ofproto' or have
196 * any 'port' structs, so care must be taken when dealing with it. */
197 static struct ofbundle ofpp_none_bundle = {
198 .name = "OFPP_NONE",
199 .vlan_mode = PORT_VLAN_TRUNK
200 };
201
202 static void stp_run(struct ofproto_dpif *ofproto);
203 static void stp_wait(struct ofproto_dpif *ofproto);
204 static int set_stp_port(struct ofport *,
205 const struct ofproto_port_stp_settings *);
206
207 static bool ofbundle_includes_vlan(const struct ofbundle *, uint16_t vlan);
208
209 struct action_xlate_ctx {
210 /* action_xlate_ctx_init() initializes these members. */
211
212 /* The ofproto. */
213 struct ofproto_dpif *ofproto;
214
215 /* Flow to which the OpenFlow actions apply. xlate_actions() will modify
216 * this flow when actions change header fields. */
217 struct flow flow;
218
219 /* stack for the push and pop actions.
220 * Each stack element is of the type "union mf_subvalue". */
221 struct ofpbuf stack;
222 union mf_subvalue init_stack[1024 / sizeof(union mf_subvalue)];
223
224 /* The packet corresponding to 'flow', or a null pointer if we are
225 * revalidating without a packet to refer to. */
226 const struct ofpbuf *packet;
227
228 /* Should OFPP_NORMAL update the MAC learning table? Should "learn"
229 * actions update the flow table?
230 *
231 * We want to update these tables if we are actually processing a packet,
232 * or if we are accounting for packets that the datapath has processed, but
233 * not if we are just revalidating. */
234 bool may_learn;
235
236 /* The rule that we are currently translating, or NULL. */
237 struct rule_dpif *rule;
238
239 /* Union of the set of TCP flags seen so far in this flow. (Used only by
240 * NXAST_FIN_TIMEOUT. Set to zero to avoid updating updating rules'
241 * timeouts.) */
242 uint8_t tcp_flags;
243
244 /* If nonnull, flow translation calls this function just before executing a
245 * resubmit or OFPP_TABLE action. In addition, disables logging of traces
246 * when the recursion depth is exceeded.
247 *
248 * 'rule' is the rule being submitted into. It will be null if the
249 * resubmit or OFPP_TABLE action didn't find a matching rule.
250 *
251 * This is normally null so the client has to set it manually after
252 * calling action_xlate_ctx_init(). */
253 void (*resubmit_hook)(struct action_xlate_ctx *, struct rule_dpif *rule);
254
255 /* If nonnull, flow translation calls this function to report some
256 * significant decision, e.g. to explain why OFPP_NORMAL translation
257 * dropped a packet. */
258 void (*report_hook)(struct action_xlate_ctx *, const char *s);
259
260 /* If nonnull, flow translation credits the specified statistics to each
261 * rule reached through a resubmit or OFPP_TABLE action.
262 *
263 * This is normally null so the client has to set it manually after
264 * calling action_xlate_ctx_init(). */
265 const struct dpif_flow_stats *resubmit_stats;
266
267 /* xlate_actions() initializes and uses these members. The client might want
268 * to look at them after it returns. */
269
270 struct ofpbuf *odp_actions; /* Datapath actions. */
271 tag_type tags; /* Tags associated with actions. */
272 enum slow_path_reason slow; /* 0 if fast path may be used. */
273 bool has_learn; /* Actions include NXAST_LEARN? */
274 bool has_normal; /* Actions output to OFPP_NORMAL? */
275 bool has_fin_timeout; /* Actions include NXAST_FIN_TIMEOUT? */
276 uint16_t nf_output_iface; /* Output interface index for NetFlow. */
277 mirror_mask_t mirrors; /* Bitmap of associated mirrors. */
278
279 /* xlate_actions() initializes and uses these members, but the client has no
280 * reason to look at them. */
281
282 int recurse; /* Recursion level, via xlate_table_action. */
283 bool max_resubmit_trigger; /* Recursed too deeply during translation. */
284 struct flow base_flow; /* Flow at the last commit. */
285 uint32_t orig_skb_priority; /* Priority when packet arrived. */
286 uint8_t table_id; /* OpenFlow table ID where flow was found. */
287 uint32_t sflow_n_outputs; /* Number of output ports. */
288 uint32_t sflow_odp_port; /* Output port for composing sFlow action. */
289 uint16_t user_cookie_offset;/* Used for user_action_cookie fixup. */
290 bool exit; /* No further actions should be processed. */
291 };
292
293 static void action_xlate_ctx_init(struct action_xlate_ctx *,
294 struct ofproto_dpif *, const struct flow *,
295 ovs_be16 initial_tci, struct rule_dpif *,
296 uint8_t tcp_flags, const struct ofpbuf *);
297 static void xlate_actions(struct action_xlate_ctx *,
298 const struct ofpact *ofpacts, size_t ofpacts_len,
299 struct ofpbuf *odp_actions);
300 static void xlate_actions_for_side_effects(struct action_xlate_ctx *,
301 const struct ofpact *ofpacts,
302 size_t ofpacts_len);
303 static void xlate_table_action(struct action_xlate_ctx *, uint16_t in_port,
304 uint8_t table_id, bool may_packet_in);
305
306 static size_t put_userspace_action(const struct ofproto_dpif *,
307 struct ofpbuf *odp_actions,
308 const struct flow *,
309 const union user_action_cookie *);
310
311 static void compose_slow_path(const struct ofproto_dpif *, const struct flow *,
312 enum slow_path_reason,
313 uint64_t *stub, size_t stub_size,
314 const struct nlattr **actionsp,
315 size_t *actions_lenp);
316
317 static void xlate_report(struct action_xlate_ctx *ctx, const char *s);
318
319 /* A subfacet (see "struct subfacet" below) has three possible installation
320 * states:
321 *
322 * - SF_NOT_INSTALLED: Not installed in the datapath. This will only be the
323 * case just after the subfacet is created, just before the subfacet is
324 * destroyed, or if the datapath returns an error when we try to install a
325 * subfacet.
326 *
327 * - SF_FAST_PATH: The subfacet's actions are installed in the datapath.
328 *
329 * - SF_SLOW_PATH: An action that sends every packet for the subfacet through
330 * ofproto_dpif is installed in the datapath.
331 */
332 enum subfacet_path {
333 SF_NOT_INSTALLED, /* No datapath flow for this subfacet. */
334 SF_FAST_PATH, /* Full actions are installed. */
335 SF_SLOW_PATH, /* Send-to-userspace action is installed. */
336 };
337
338 static const char *subfacet_path_to_string(enum subfacet_path);
339
340 /* A dpif flow and actions associated with a facet.
341 *
342 * See also the large comment on struct facet. */
343 struct subfacet {
344 /* Owners. */
345 struct hmap_node hmap_node; /* In struct ofproto_dpif 'subfacets' list. */
346 struct list list_node; /* In struct facet's 'facets' list. */
347 struct facet *facet; /* Owning facet. */
348
349 enum odp_key_fitness key_fitness;
350 struct nlattr *key;
351 int key_len;
352
353 long long int used; /* Time last used; time created if not used. */
354
355 uint64_t dp_packet_count; /* Last known packet count in the datapath. */
356 uint64_t dp_byte_count; /* Last known byte count in the datapath. */
357
358 /* Datapath actions.
359 *
360 * These should be essentially identical for every subfacet in a facet, but
361 * may differ in trivial ways due to VLAN splinters. */
362 size_t actions_len; /* Number of bytes in actions[]. */
363 struct nlattr *actions; /* Datapath actions. */
364
365 enum slow_path_reason slow; /* 0 if fast path may be used. */
366 enum subfacet_path path; /* Installed in datapath? */
367
368 /* This value is normally the same as ->facet->flow.vlan_tci. Only VLAN
369 * splinters can cause it to differ. This value should be removed when
370 * the VLAN splinters feature is no longer needed. */
371 ovs_be16 initial_tci; /* Initial VLAN TCI value. */
372
373 /* Datapath port the packet arrived on. This is needed to remove
374 * flows for ports that are no longer part of the bridge. Since the
375 * flow definition only has the OpenFlow port number and the port is
376 * no longer part of the bridge, we can't determine the datapath port
377 * number needed to delete the flow from the datapath. */
378 uint32_t odp_in_port;
379 };
380
381 #define SUBFACET_DESTROY_MAX_BATCH 50
382
383 static struct subfacet *subfacet_create(struct facet *, struct flow_miss *miss,
384 long long int now);
385 static struct subfacet *subfacet_find(struct ofproto_dpif *,
386 const struct nlattr *key, size_t key_len,
387 uint32_t key_hash);
388 static void subfacet_destroy(struct subfacet *);
389 static void subfacet_destroy__(struct subfacet *);
390 static void subfacet_destroy_batch(struct ofproto_dpif *,
391 struct subfacet **, int n);
392 static void subfacet_reset_dp_stats(struct subfacet *,
393 struct dpif_flow_stats *);
394 static void subfacet_update_time(struct subfacet *, long long int used);
395 static void subfacet_update_stats(struct subfacet *,
396 const struct dpif_flow_stats *);
397 static void subfacet_make_actions(struct subfacet *,
398 const struct ofpbuf *packet,
399 struct ofpbuf *odp_actions);
400 static int subfacet_install(struct subfacet *,
401 const struct nlattr *actions, size_t actions_len,
402 struct dpif_flow_stats *, enum slow_path_reason);
403 static void subfacet_uninstall(struct subfacet *);
404
405 static enum subfacet_path subfacet_want_path(enum slow_path_reason);
406
407 /* An exact-match instantiation of an OpenFlow flow.
408 *
409 * A facet associates a "struct flow", which represents the Open vSwitch
410 * userspace idea of an exact-match flow, with one or more subfacets. Each
411 * subfacet tracks the datapath's idea of the exact-match flow equivalent to
412 * the facet. When the kernel module (or other dpif implementation) and Open
413 * vSwitch userspace agree on the definition of a flow key, there is exactly
414 * one subfacet per facet. If the dpif implementation supports more-specific
415 * flow matching than userspace, however, a facet can have more than one
416 * subfacet, each of which corresponds to some distinction in flow that
417 * userspace simply doesn't understand.
418 *
419 * Flow expiration works in terms of subfacets, so a facet must have at least
420 * one subfacet or it will never expire, leaking memory. */
421 struct facet {
422 /* Owners. */
423 struct hmap_node hmap_node; /* In owning ofproto's 'facets' hmap. */
424 struct list list_node; /* In owning rule's 'facets' list. */
425 struct rule_dpif *rule; /* Owning rule. */
426
427 /* Owned data. */
428 struct list subfacets;
429 long long int used; /* Time last used; time created if not used. */
430
431 /* Key. */
432 struct flow flow;
433
434 /* These statistics:
435 *
436 * - Do include packets and bytes sent "by hand", e.g. with
437 * dpif_execute().
438 *
439 * - Do include packets and bytes that were obtained from the datapath
440 * when a subfacet's statistics were reset (e.g. dpif_flow_put() with
441 * DPIF_FP_ZERO_STATS).
442 *
443 * - Do not include packets or bytes that can be obtained from the
444 * datapath for any existing subfacet.
445 */
446 uint64_t packet_count; /* Number of packets received. */
447 uint64_t byte_count; /* Number of bytes received. */
448
449 /* Resubmit statistics. */
450 uint64_t prev_packet_count; /* Number of packets from last stats push. */
451 uint64_t prev_byte_count; /* Number of bytes from last stats push. */
452 long long int prev_used; /* Used time from last stats push. */
453
454 /* Accounting. */
455 uint64_t accounted_bytes; /* Bytes processed by facet_account(). */
456 struct netflow_flow nf_flow; /* Per-flow NetFlow tracking data. */
457 uint8_t tcp_flags; /* TCP flags seen for this 'rule'. */
458
459 /* Properties of datapath actions.
460 *
461 * Every subfacet has its own actions because actions can differ slightly
462 * between splintered and non-splintered subfacets due to the VLAN tag
463 * being initially different (present vs. absent). All of them have these
464 * properties in common so we just store one copy of them here. */
465 bool has_learn; /* Actions include NXAST_LEARN? */
466 bool has_normal; /* Actions output to OFPP_NORMAL? */
467 bool has_fin_timeout; /* Actions include NXAST_FIN_TIMEOUT? */
468 tag_type tags; /* Tags that would require revalidation. */
469 mirror_mask_t mirrors; /* Bitmap of dependent mirrors. */
470
471 /* Storage for a single subfacet, to reduce malloc() time and space
472 * overhead. (A facet always has at least one subfacet and in the common
473 * case has exactly one subfacet.) */
474 struct subfacet one_subfacet;
475 };
476
477 static struct facet *facet_create(struct rule_dpif *,
478 const struct flow *, uint32_t hash);
479 static void facet_remove(struct facet *);
480 static void facet_free(struct facet *);
481
482 static struct facet *facet_find(struct ofproto_dpif *,
483 const struct flow *, uint32_t hash);
484 static struct facet *facet_lookup_valid(struct ofproto_dpif *,
485 const struct flow *, uint32_t hash);
486 static void facet_revalidate(struct facet *);
487 static bool facet_check_consistency(struct facet *);
488
489 static void facet_flush_stats(struct facet *);
490
491 static void facet_update_time(struct facet *, long long int used);
492 static void facet_reset_counters(struct facet *);
493 static void facet_push_stats(struct facet *);
494 static void facet_learn(struct facet *);
495 static void facet_account(struct facet *);
496
497 static bool facet_is_controller_flow(struct facet *);
498
499 struct ofport_dpif {
500 struct hmap_node odp_port_node; /* In dpif_backer's "odp_to_ofport_map". */
501 struct ofport up;
502
503 uint32_t odp_port;
504 struct ofbundle *bundle; /* Bundle that contains this port, if any. */
505 struct list bundle_node; /* In struct ofbundle's "ports" list. */
506 struct cfm *cfm; /* Connectivity Fault Management, if any. */
507 tag_type tag; /* Tag associated with this port. */
508 bool may_enable; /* May be enabled in bonds. */
509 long long int carrier_seq; /* Carrier status changes. */
510 struct tnl_port *tnl_port; /* Tunnel handle, or null. */
511
512 /* Spanning tree. */
513 struct stp_port *stp_port; /* Spanning Tree Protocol, if any. */
514 enum stp_state stp_state; /* Always STP_DISABLED if STP not in use. */
515 long long int stp_state_entered;
516
517 struct hmap priorities; /* Map of attached 'priority_to_dscp's. */
518
519 /* Linux VLAN device support (e.g. "eth0.10" for VLAN 10.)
520 *
521 * This is deprecated. It is only for compatibility with broken device
522 * drivers in old versions of Linux that do not properly support VLANs when
523 * VLAN devices are not used. When broken device drivers are no longer in
524 * widespread use, we will delete these interfaces. */
525 uint16_t realdev_ofp_port;
526 int vlandev_vid;
527 };
528
529 /* Node in 'ofport_dpif''s 'priorities' map. Used to maintain a map from
530 * 'priority' (the datapath's term for QoS queue) to the dscp bits which all
531 * traffic egressing the 'ofport' with that priority should be marked with. */
532 struct priority_to_dscp {
533 struct hmap_node hmap_node; /* Node in 'ofport_dpif''s 'priorities' map. */
534 uint32_t priority; /* Priority of this queue (see struct flow). */
535
536 uint8_t dscp; /* DSCP bits to mark outgoing traffic with. */
537 };
538
539 /* Linux VLAN device support (e.g. "eth0.10" for VLAN 10.)
540 *
541 * This is deprecated. It is only for compatibility with broken device drivers
542 * in old versions of Linux that do not properly support VLANs when VLAN
543 * devices are not used. When broken device drivers are no longer in
544 * widespread use, we will delete these interfaces. */
545 struct vlan_splinter {
546 struct hmap_node realdev_vid_node;
547 struct hmap_node vlandev_node;
548 uint16_t realdev_ofp_port;
549 uint16_t vlandev_ofp_port;
550 int vid;
551 };
552
553 static uint32_t vsp_realdev_to_vlandev(const struct ofproto_dpif *,
554 uint32_t realdev, ovs_be16 vlan_tci);
555 static bool vsp_adjust_flow(const struct ofproto_dpif *, struct flow *);
556 static void vsp_remove(struct ofport_dpif *);
557 static void vsp_add(struct ofport_dpif *, uint16_t realdev_ofp_port, int vid);
558
559 static uint32_t ofp_port_to_odp_port(const struct ofproto_dpif *,
560 uint16_t ofp_port);
561 static uint16_t odp_port_to_ofp_port(const struct ofproto_dpif *,
562 uint32_t odp_port);
563
564 static struct ofport_dpif *
565 ofport_dpif_cast(const struct ofport *ofport)
566 {
567 ovs_assert(ofport->ofproto->ofproto_class == &ofproto_dpif_class);
568 return ofport ? CONTAINER_OF(ofport, struct ofport_dpif, up) : NULL;
569 }
570
571 static void port_run(struct ofport_dpif *);
572 static void port_run_fast(struct ofport_dpif *);
573 static void port_wait(struct ofport_dpif *);
574 static int set_cfm(struct ofport *, const struct cfm_settings *);
575 static void ofport_clear_priorities(struct ofport_dpif *);
576
577 struct dpif_completion {
578 struct list list_node;
579 struct ofoperation *op;
580 };
581
582 /* Extra information about a classifier table.
583 * Currently used just for optimized flow revalidation. */
584 struct table_dpif {
585 /* If either of these is nonnull, then this table has a form that allows
586 * flows to be tagged to avoid revalidating most flows for the most common
587 * kinds of flow table changes. */
588 struct cls_table *catchall_table; /* Table that wildcards all fields. */
589 struct cls_table *other_table; /* Table with any other wildcard set. */
590 uint32_t basis; /* Keeps each table's tags separate. */
591 };
592
593 /* Reasons that we might need to revalidate every facet, and corresponding
594 * coverage counters.
595 *
596 * A value of 0 means that there is no need to revalidate.
597 *
598 * It would be nice to have some cleaner way to integrate with coverage
599 * counters, but with only a few reasons I guess this is good enough for
600 * now. */
601 enum revalidate_reason {
602 REV_RECONFIGURE = 1, /* Switch configuration changed. */
603 REV_STP, /* Spanning tree protocol port status change. */
604 REV_PORT_TOGGLED, /* Port enabled or disabled by CFM, LACP, ...*/
605 REV_FLOW_TABLE, /* Flow table changed. */
606 REV_INCONSISTENCY /* Facet self-check failed. */
607 };
608 COVERAGE_DEFINE(rev_reconfigure);
609 COVERAGE_DEFINE(rev_stp);
610 COVERAGE_DEFINE(rev_port_toggled);
611 COVERAGE_DEFINE(rev_flow_table);
612 COVERAGE_DEFINE(rev_inconsistency);
613
614 /* Drop keys are odp flow keys which have drop flows installed in the kernel.
615 * These are datapath flows which have no associated ofproto, if they did we
616 * would use facets. */
617 struct drop_key {
618 struct hmap_node hmap_node;
619 struct nlattr *key;
620 size_t key_len;
621 };
622
623 /* All datapaths of a given type share a single dpif backer instance. */
624 struct dpif_backer {
625 char *type;
626 int refcount;
627 struct dpif *dpif;
628 struct timer next_expiration;
629 struct hmap odp_to_ofport_map; /* ODP port to ofport mapping. */
630
631 struct simap tnl_backers; /* Set of dpif ports backing tunnels. */
632
633 /* Facet revalidation flags applying to facets which use this backer. */
634 enum revalidate_reason need_revalidate; /* Revalidate every facet. */
635 struct tag_set revalidate_set; /* Revalidate only matching facets. */
636
637 struct hmap drop_keys; /* Set of dropped odp keys. */
638 };
639
640 /* All existing ofproto_backer instances, indexed by ofproto->up.type. */
641 static struct shash all_dpif_backers = SHASH_INITIALIZER(&all_dpif_backers);
642
643 static void drop_key_clear(struct dpif_backer *);
644 static struct ofport_dpif *
645 odp_port_to_ofport(const struct dpif_backer *, uint32_t odp_port);
646
647 struct ofproto_dpif {
648 struct hmap_node all_ofproto_dpifs_node; /* In 'all_ofproto_dpifs'. */
649 struct ofproto up;
650 struct dpif_backer *backer;
651
652 /* Special OpenFlow rules. */
653 struct rule_dpif *miss_rule; /* Sends flow table misses to controller. */
654 struct rule_dpif *no_packet_in_rule; /* Drops flow table misses. */
655
656 /* Statistics. */
657 uint64_t n_matches;
658
659 /* Bridging. */
660 struct netflow *netflow;
661 struct dpif_sflow *sflow;
662 struct hmap bundles; /* Contains "struct ofbundle"s. */
663 struct mac_learning *ml;
664 struct ofmirror *mirrors[MAX_MIRRORS];
665 bool has_mirrors;
666 bool has_bonded_bundles;
667
668 /* Facets. */
669 struct hmap facets;
670 struct hmap subfacets;
671 struct governor *governor;
672
673 /* Revalidation. */
674 struct table_dpif tables[N_TABLES];
675
676 /* Support for debugging async flow mods. */
677 struct list completions;
678
679 bool has_bundle_action; /* True when the first bundle action appears. */
680 struct netdev_stats stats; /* To account packets generated and consumed in
681 * userspace. */
682
683 /* Spanning tree. */
684 struct stp *stp;
685 long long int stp_last_tick;
686
687 /* VLAN splinters. */
688 struct hmap realdev_vid_map; /* (realdev,vid) -> vlandev. */
689 struct hmap vlandev_map; /* vlandev -> (realdev,vid). */
690
691 /* Ports. */
692 struct sset ports; /* Set of standard port names. */
693 struct sset ghost_ports; /* Ports with no datapath port. */
694 struct sset port_poll_set; /* Queued names for port_poll() reply. */
695 int port_poll_errno; /* Last errno for port_poll() reply. */
696 };
697
698 /* Defer flow mod completion until "ovs-appctl ofproto/unclog"? (Useful only
699 * for debugging the asynchronous flow_mod implementation.) */
700 static bool clogged;
701
702 /* All existing ofproto_dpif instances, indexed by ->up.name. */
703 static struct hmap all_ofproto_dpifs = HMAP_INITIALIZER(&all_ofproto_dpifs);
704
705 static void ofproto_dpif_unixctl_init(void);
706
707 static struct ofproto_dpif *
708 ofproto_dpif_cast(const struct ofproto *ofproto)
709 {
710 ovs_assert(ofproto->ofproto_class == &ofproto_dpif_class);
711 return CONTAINER_OF(ofproto, struct ofproto_dpif, up);
712 }
713
714 static struct ofport_dpif *get_ofp_port(const struct ofproto_dpif *,
715 uint16_t ofp_port);
716 static struct ofport_dpif *get_odp_port(const struct ofproto_dpif *,
717 uint32_t odp_port);
718 static void ofproto_trace(struct ofproto_dpif *, const struct flow *,
719 const struct ofpbuf *, ovs_be16 initial_tci,
720 struct ds *);
721
722 /* Packet processing. */
723 static void update_learning_table(struct ofproto_dpif *,
724 const struct flow *, int vlan,
725 struct ofbundle *);
726 /* Upcalls. */
727 #define FLOW_MISS_MAX_BATCH 50
728 static int handle_upcalls(struct dpif_backer *, unsigned int max_batch);
729
730 /* Flow expiration. */
731 static int expire(struct dpif_backer *);
732
733 /* NetFlow. */
734 static void send_netflow_active_timeouts(struct ofproto_dpif *);
735
736 /* Utilities. */
737 static int send_packet(const struct ofport_dpif *, struct ofpbuf *packet);
738 static size_t compose_sflow_action(const struct ofproto_dpif *,
739 struct ofpbuf *odp_actions,
740 const struct flow *, uint32_t odp_port);
741 static void add_mirror_actions(struct action_xlate_ctx *ctx,
742 const struct flow *flow);
743 /* Global variables. */
744 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
745
746 /* Initial mappings of port to bridge mappings. */
747 static struct shash init_ofp_ports = SHASH_INITIALIZER(&init_ofp_ports);
748 \f
749 /* Factory functions. */
750
751 static void
752 init(const struct shash *iface_hints)
753 {
754 struct shash_node *node;
755
756 /* Make a local copy, since we don't own 'iface_hints' elements. */
757 SHASH_FOR_EACH(node, iface_hints) {
758 const struct iface_hint *orig_hint = node->data;
759 struct iface_hint *new_hint = xmalloc(sizeof *new_hint);
760
761 new_hint->br_name = xstrdup(orig_hint->br_name);
762 new_hint->br_type = xstrdup(orig_hint->br_type);
763 new_hint->ofp_port = orig_hint->ofp_port;
764
765 shash_add(&init_ofp_ports, node->name, new_hint);
766 }
767 }
768
769 static void
770 enumerate_types(struct sset *types)
771 {
772 dp_enumerate_types(types);
773 }
774
775 static int
776 enumerate_names(const char *type, struct sset *names)
777 {
778 struct ofproto_dpif *ofproto;
779
780 sset_clear(names);
781 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
782 if (strcmp(type, ofproto->up.type)) {
783 continue;
784 }
785 sset_add(names, ofproto->up.name);
786 }
787
788 return 0;
789 }
790
791 static int
792 del(const char *type, const char *name)
793 {
794 struct dpif *dpif;
795 int error;
796
797 error = dpif_open(name, type, &dpif);
798 if (!error) {
799 error = dpif_delete(dpif);
800 dpif_close(dpif);
801 }
802 return error;
803 }
804 \f
805 static const char *
806 port_open_type(const char *datapath_type, const char *port_type)
807 {
808 return dpif_port_open_type(datapath_type, port_type);
809 }
810
811 /* Type functions. */
812
813 static struct ofproto_dpif *
814 lookup_ofproto_dpif_by_port_name(const char *name)
815 {
816 struct ofproto_dpif *ofproto;
817
818 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
819 if (sset_contains(&ofproto->ports, name)) {
820 return ofproto;
821 }
822 }
823
824 return NULL;
825 }
826
827 static int
828 type_run(const char *type)
829 {
830 struct dpif_backer *backer;
831 char *devname;
832 int error;
833
834 backer = shash_find_data(&all_dpif_backers, type);
835 if (!backer) {
836 /* This is not necessarily a problem, since backers are only
837 * created on demand. */
838 return 0;
839 }
840
841 dpif_run(backer->dpif);
842
843 if (backer->need_revalidate
844 || !tag_set_is_empty(&backer->revalidate_set)) {
845 struct tag_set revalidate_set = backer->revalidate_set;
846 bool need_revalidate = backer->need_revalidate;
847 struct ofproto_dpif *ofproto;
848 struct simap_node *node;
849 struct simap tmp_backers;
850
851 /* Handle tunnel garbage collection. */
852 simap_init(&tmp_backers);
853 simap_swap(&backer->tnl_backers, &tmp_backers);
854
855 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
856 struct ofport_dpif *iter;
857
858 if (backer != ofproto->backer) {
859 continue;
860 }
861
862 HMAP_FOR_EACH (iter, up.hmap_node, &ofproto->up.ports) {
863 const char *dp_port;
864
865 if (!iter->tnl_port) {
866 continue;
867 }
868
869 dp_port = netdev_vport_get_dpif_port(iter->up.netdev);
870 node = simap_find(&tmp_backers, dp_port);
871 if (node) {
872 simap_put(&backer->tnl_backers, dp_port, node->data);
873 simap_delete(&tmp_backers, node);
874 node = simap_find(&backer->tnl_backers, dp_port);
875 } else {
876 node = simap_find(&backer->tnl_backers, dp_port);
877 if (!node) {
878 uint32_t odp_port = UINT32_MAX;
879
880 if (!dpif_port_add(backer->dpif, iter->up.netdev,
881 &odp_port)) {
882 simap_put(&backer->tnl_backers, dp_port, odp_port);
883 node = simap_find(&backer->tnl_backers, dp_port);
884 }
885 }
886 }
887
888 iter->odp_port = node ? node->data : OVSP_NONE;
889 if (tnl_port_reconfigure(&iter->up, iter->odp_port,
890 &iter->tnl_port)) {
891 backer->need_revalidate = REV_RECONFIGURE;
892 }
893 }
894 }
895
896 SIMAP_FOR_EACH (node, &tmp_backers) {
897 dpif_port_del(backer->dpif, node->data);
898 }
899 simap_destroy(&tmp_backers);
900
901 switch (backer->need_revalidate) {
902 case REV_RECONFIGURE: COVERAGE_INC(rev_reconfigure); break;
903 case REV_STP: COVERAGE_INC(rev_stp); break;
904 case REV_PORT_TOGGLED: COVERAGE_INC(rev_port_toggled); break;
905 case REV_FLOW_TABLE: COVERAGE_INC(rev_flow_table); break;
906 case REV_INCONSISTENCY: COVERAGE_INC(rev_inconsistency); break;
907 }
908
909 if (backer->need_revalidate) {
910 /* Clear the drop_keys in case we should now be accepting some
911 * formerly dropped flows. */
912 drop_key_clear(backer);
913 }
914
915 /* Clear the revalidation flags. */
916 tag_set_init(&backer->revalidate_set);
917 backer->need_revalidate = 0;
918
919 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
920 struct facet *facet, *next;
921
922 if (ofproto->backer != backer) {
923 continue;
924 }
925
926 HMAP_FOR_EACH_SAFE (facet, next, hmap_node, &ofproto->facets) {
927 if (need_revalidate
928 || tag_set_intersects(&revalidate_set, facet->tags)) {
929 facet_revalidate(facet);
930 }
931 }
932 }
933 }
934
935 if (timer_expired(&backer->next_expiration)) {
936 int delay = expire(backer);
937 timer_set_duration(&backer->next_expiration, delay);
938 }
939
940 /* Check for port changes in the dpif. */
941 while ((error = dpif_port_poll(backer->dpif, &devname)) == 0) {
942 struct ofproto_dpif *ofproto;
943 struct dpif_port port;
944
945 /* Don't report on the datapath's device. */
946 if (!strcmp(devname, dpif_base_name(backer->dpif))) {
947 goto next;
948 }
949
950 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node,
951 &all_ofproto_dpifs) {
952 if (simap_contains(&ofproto->backer->tnl_backers, devname)) {
953 goto next;
954 }
955 }
956
957 ofproto = lookup_ofproto_dpif_by_port_name(devname);
958 if (dpif_port_query_by_name(backer->dpif, devname, &port)) {
959 /* The port was removed. If we know the datapath,
960 * report it through poll_set(). If we don't, it may be
961 * notifying us of a removal we initiated, so ignore it.
962 * If there's a pending ENOBUFS, let it stand, since
963 * everything will be reevaluated. */
964 if (ofproto && ofproto->port_poll_errno != ENOBUFS) {
965 sset_add(&ofproto->port_poll_set, devname);
966 ofproto->port_poll_errno = 0;
967 }
968 } else if (!ofproto) {
969 /* The port was added, but we don't know with which
970 * ofproto we should associate it. Delete it. */
971 dpif_port_del(backer->dpif, port.port_no);
972 }
973 dpif_port_destroy(&port);
974
975 next:
976 free(devname);
977 }
978
979 if (error != EAGAIN) {
980 struct ofproto_dpif *ofproto;
981
982 /* There was some sort of error, so propagate it to all
983 * ofprotos that use this backer. */
984 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node,
985 &all_ofproto_dpifs) {
986 if (ofproto->backer == backer) {
987 sset_clear(&ofproto->port_poll_set);
988 ofproto->port_poll_errno = error;
989 }
990 }
991 }
992
993 return 0;
994 }
995
996 static int
997 type_run_fast(const char *type)
998 {
999 struct dpif_backer *backer;
1000 unsigned int work;
1001
1002 backer = shash_find_data(&all_dpif_backers, type);
1003 if (!backer) {
1004 /* This is not necessarily a problem, since backers are only
1005 * created on demand. */
1006 return 0;
1007 }
1008
1009 /* Handle one or more batches of upcalls, until there's nothing left to do
1010 * or until we do a fixed total amount of work.
1011 *
1012 * We do work in batches because it can be much cheaper to set up a number
1013 * of flows and fire off their patches all at once. We do multiple batches
1014 * because in some cases handling a packet can cause another packet to be
1015 * queued almost immediately as part of the return flow. Both
1016 * optimizations can make major improvements on some benchmarks and
1017 * presumably for real traffic as well. */
1018 work = 0;
1019 while (work < FLOW_MISS_MAX_BATCH) {
1020 int retval = handle_upcalls(backer, FLOW_MISS_MAX_BATCH - work);
1021 if (retval <= 0) {
1022 return -retval;
1023 }
1024 work += retval;
1025 }
1026
1027 return 0;
1028 }
1029
1030 static void
1031 type_wait(const char *type)
1032 {
1033 struct dpif_backer *backer;
1034
1035 backer = shash_find_data(&all_dpif_backers, type);
1036 if (!backer) {
1037 /* This is not necessarily a problem, since backers are only
1038 * created on demand. */
1039 return;
1040 }
1041
1042 timer_wait(&backer->next_expiration);
1043 }
1044 \f
1045 /* Basic life-cycle. */
1046
1047 static int add_internal_flows(struct ofproto_dpif *);
1048
1049 static struct ofproto *
1050 alloc(void)
1051 {
1052 struct ofproto_dpif *ofproto = xmalloc(sizeof *ofproto);
1053 return &ofproto->up;
1054 }
1055
1056 static void
1057 dealloc(struct ofproto *ofproto_)
1058 {
1059 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1060 free(ofproto);
1061 }
1062
1063 static void
1064 close_dpif_backer(struct dpif_backer *backer)
1065 {
1066 struct shash_node *node;
1067
1068 ovs_assert(backer->refcount > 0);
1069
1070 if (--backer->refcount) {
1071 return;
1072 }
1073
1074 drop_key_clear(backer);
1075 hmap_destroy(&backer->drop_keys);
1076
1077 simap_destroy(&backer->tnl_backers);
1078 hmap_destroy(&backer->odp_to_ofport_map);
1079 node = shash_find(&all_dpif_backers, backer->type);
1080 free(backer->type);
1081 shash_delete(&all_dpif_backers, node);
1082 dpif_close(backer->dpif);
1083
1084 free(backer);
1085 }
1086
1087 /* Datapath port slated for removal from datapath. */
1088 struct odp_garbage {
1089 struct list list_node;
1090 uint32_t odp_port;
1091 };
1092
1093 static int
1094 open_dpif_backer(const char *type, struct dpif_backer **backerp)
1095 {
1096 struct dpif_backer *backer;
1097 struct dpif_port_dump port_dump;
1098 struct dpif_port port;
1099 struct shash_node *node;
1100 struct list garbage_list;
1101 struct odp_garbage *garbage, *next;
1102 struct sset names;
1103 char *backer_name;
1104 const char *name;
1105 int error;
1106
1107 backer = shash_find_data(&all_dpif_backers, type);
1108 if (backer) {
1109 backer->refcount++;
1110 *backerp = backer;
1111 return 0;
1112 }
1113
1114 backer_name = xasprintf("ovs-%s", type);
1115
1116 /* Remove any existing datapaths, since we assume we're the only
1117 * userspace controlling the datapath. */
1118 sset_init(&names);
1119 dp_enumerate_names(type, &names);
1120 SSET_FOR_EACH(name, &names) {
1121 struct dpif *old_dpif;
1122
1123 /* Don't remove our backer if it exists. */
1124 if (!strcmp(name, backer_name)) {
1125 continue;
1126 }
1127
1128 if (dpif_open(name, type, &old_dpif)) {
1129 VLOG_WARN("couldn't open old datapath %s to remove it", name);
1130 } else {
1131 dpif_delete(old_dpif);
1132 dpif_close(old_dpif);
1133 }
1134 }
1135 sset_destroy(&names);
1136
1137 backer = xmalloc(sizeof *backer);
1138
1139 error = dpif_create_and_open(backer_name, type, &backer->dpif);
1140 free(backer_name);
1141 if (error) {
1142 VLOG_ERR("failed to open datapath of type %s: %s", type,
1143 strerror(error));
1144 free(backer);
1145 return error;
1146 }
1147
1148 backer->type = xstrdup(type);
1149 backer->refcount = 1;
1150 hmap_init(&backer->odp_to_ofport_map);
1151 hmap_init(&backer->drop_keys);
1152 timer_set_duration(&backer->next_expiration, 1000);
1153 backer->need_revalidate = 0;
1154 simap_init(&backer->tnl_backers);
1155 tag_set_init(&backer->revalidate_set);
1156 *backerp = backer;
1157
1158 dpif_flow_flush(backer->dpif);
1159
1160 /* Loop through the ports already on the datapath and remove any
1161 * that we don't need anymore. */
1162 list_init(&garbage_list);
1163 dpif_port_dump_start(&port_dump, backer->dpif);
1164 while (dpif_port_dump_next(&port_dump, &port)) {
1165 node = shash_find(&init_ofp_ports, port.name);
1166 if (!node && strcmp(port.name, dpif_base_name(backer->dpif))) {
1167 garbage = xmalloc(sizeof *garbage);
1168 garbage->odp_port = port.port_no;
1169 list_push_front(&garbage_list, &garbage->list_node);
1170 }
1171 }
1172 dpif_port_dump_done(&port_dump);
1173
1174 LIST_FOR_EACH_SAFE (garbage, next, list_node, &garbage_list) {
1175 dpif_port_del(backer->dpif, garbage->odp_port);
1176 list_remove(&garbage->list_node);
1177 free(garbage);
1178 }
1179
1180 shash_add(&all_dpif_backers, type, backer);
1181
1182 error = dpif_recv_set(backer->dpif, true);
1183 if (error) {
1184 VLOG_ERR("failed to listen on datapath of type %s: %s",
1185 type, strerror(error));
1186 close_dpif_backer(backer);
1187 return error;
1188 }
1189
1190 return error;
1191 }
1192
1193 static int
1194 construct(struct ofproto *ofproto_)
1195 {
1196 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1197 struct shash_node *node, *next;
1198 int max_ports;
1199 int error;
1200 int i;
1201
1202 error = open_dpif_backer(ofproto->up.type, &ofproto->backer);
1203 if (error) {
1204 return error;
1205 }
1206
1207 max_ports = dpif_get_max_ports(ofproto->backer->dpif);
1208 ofproto_init_max_ports(ofproto_, MIN(max_ports, OFPP_MAX));
1209
1210 ofproto->n_matches = 0;
1211
1212 ofproto->netflow = NULL;
1213 ofproto->sflow = NULL;
1214 ofproto->stp = NULL;
1215 hmap_init(&ofproto->bundles);
1216 ofproto->ml = mac_learning_create(MAC_ENTRY_DEFAULT_IDLE_TIME);
1217 for (i = 0; i < MAX_MIRRORS; i++) {
1218 ofproto->mirrors[i] = NULL;
1219 }
1220 ofproto->has_bonded_bundles = false;
1221
1222 hmap_init(&ofproto->facets);
1223 hmap_init(&ofproto->subfacets);
1224 ofproto->governor = NULL;
1225
1226 for (i = 0; i < N_TABLES; i++) {
1227 struct table_dpif *table = &ofproto->tables[i];
1228
1229 table->catchall_table = NULL;
1230 table->other_table = NULL;
1231 table->basis = random_uint32();
1232 }
1233
1234 list_init(&ofproto->completions);
1235
1236 ofproto_dpif_unixctl_init();
1237
1238 ofproto->has_mirrors = false;
1239 ofproto->has_bundle_action = false;
1240
1241 hmap_init(&ofproto->vlandev_map);
1242 hmap_init(&ofproto->realdev_vid_map);
1243
1244 sset_init(&ofproto->ports);
1245 sset_init(&ofproto->ghost_ports);
1246 sset_init(&ofproto->port_poll_set);
1247 ofproto->port_poll_errno = 0;
1248
1249 SHASH_FOR_EACH_SAFE (node, next, &init_ofp_ports) {
1250 struct iface_hint *iface_hint = node->data;
1251
1252 if (!strcmp(iface_hint->br_name, ofproto->up.name)) {
1253 /* Check if the datapath already has this port. */
1254 if (dpif_port_exists(ofproto->backer->dpif, node->name)) {
1255 sset_add(&ofproto->ports, node->name);
1256 }
1257
1258 free(iface_hint->br_name);
1259 free(iface_hint->br_type);
1260 free(iface_hint);
1261 shash_delete(&init_ofp_ports, node);
1262 }
1263 }
1264
1265 hmap_insert(&all_ofproto_dpifs, &ofproto->all_ofproto_dpifs_node,
1266 hash_string(ofproto->up.name, 0));
1267 memset(&ofproto->stats, 0, sizeof ofproto->stats);
1268
1269 ofproto_init_tables(ofproto_, N_TABLES);
1270 error = add_internal_flows(ofproto);
1271 ofproto->up.tables[TBL_INTERNAL].flags = OFTABLE_HIDDEN | OFTABLE_READONLY;
1272
1273 return error;
1274 }
1275
1276 static int
1277 add_internal_flow(struct ofproto_dpif *ofproto, int id,
1278 const struct ofpbuf *ofpacts, struct rule_dpif **rulep)
1279 {
1280 struct ofputil_flow_mod fm;
1281 int error;
1282
1283 match_init_catchall(&fm.match);
1284 fm.priority = 0;
1285 match_set_reg(&fm.match, 0, id);
1286 fm.new_cookie = htonll(0);
1287 fm.cookie = htonll(0);
1288 fm.cookie_mask = htonll(0);
1289 fm.table_id = TBL_INTERNAL;
1290 fm.command = OFPFC_ADD;
1291 fm.idle_timeout = 0;
1292 fm.hard_timeout = 0;
1293 fm.buffer_id = 0;
1294 fm.out_port = 0;
1295 fm.flags = 0;
1296 fm.ofpacts = ofpacts->data;
1297 fm.ofpacts_len = ofpacts->size;
1298
1299 error = ofproto_flow_mod(&ofproto->up, &fm);
1300 if (error) {
1301 VLOG_ERR_RL(&rl, "failed to add internal flow %d (%s)",
1302 id, ofperr_to_string(error));
1303 return error;
1304 }
1305
1306 *rulep = rule_dpif_lookup__(ofproto, &fm.match.flow, TBL_INTERNAL);
1307 ovs_assert(*rulep != NULL);
1308
1309 return 0;
1310 }
1311
1312 static int
1313 add_internal_flows(struct ofproto_dpif *ofproto)
1314 {
1315 struct ofpact_controller *controller;
1316 uint64_t ofpacts_stub[128 / 8];
1317 struct ofpbuf ofpacts;
1318 int error;
1319 int id;
1320
1321 ofpbuf_use_stack(&ofpacts, ofpacts_stub, sizeof ofpacts_stub);
1322 id = 1;
1323
1324 controller = ofpact_put_CONTROLLER(&ofpacts);
1325 controller->max_len = UINT16_MAX;
1326 controller->controller_id = 0;
1327 controller->reason = OFPR_NO_MATCH;
1328 ofpact_pad(&ofpacts);
1329
1330 error = add_internal_flow(ofproto, id++, &ofpacts, &ofproto->miss_rule);
1331 if (error) {
1332 return error;
1333 }
1334
1335 ofpbuf_clear(&ofpacts);
1336 error = add_internal_flow(ofproto, id++, &ofpacts,
1337 &ofproto->no_packet_in_rule);
1338 return error;
1339 }
1340
1341 static void
1342 complete_operations(struct ofproto_dpif *ofproto)
1343 {
1344 struct dpif_completion *c, *next;
1345
1346 LIST_FOR_EACH_SAFE (c, next, list_node, &ofproto->completions) {
1347 ofoperation_complete(c->op, 0);
1348 list_remove(&c->list_node);
1349 free(c);
1350 }
1351 }
1352
1353 static void
1354 destruct(struct ofproto *ofproto_)
1355 {
1356 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1357 struct rule_dpif *rule, *next_rule;
1358 struct oftable *table;
1359 int i;
1360
1361 hmap_remove(&all_ofproto_dpifs, &ofproto->all_ofproto_dpifs_node);
1362 complete_operations(ofproto);
1363
1364 OFPROTO_FOR_EACH_TABLE (table, &ofproto->up) {
1365 struct cls_cursor cursor;
1366
1367 cls_cursor_init(&cursor, &table->cls, NULL);
1368 CLS_CURSOR_FOR_EACH_SAFE (rule, next_rule, up.cr, &cursor) {
1369 ofproto_rule_destroy(&rule->up);
1370 }
1371 }
1372
1373 for (i = 0; i < MAX_MIRRORS; i++) {
1374 mirror_destroy(ofproto->mirrors[i]);
1375 }
1376
1377 netflow_destroy(ofproto->netflow);
1378 dpif_sflow_destroy(ofproto->sflow);
1379 hmap_destroy(&ofproto->bundles);
1380 mac_learning_destroy(ofproto->ml);
1381
1382 hmap_destroy(&ofproto->facets);
1383 hmap_destroy(&ofproto->subfacets);
1384 governor_destroy(ofproto->governor);
1385
1386 hmap_destroy(&ofproto->vlandev_map);
1387 hmap_destroy(&ofproto->realdev_vid_map);
1388
1389 sset_destroy(&ofproto->ports);
1390 sset_destroy(&ofproto->ghost_ports);
1391 sset_destroy(&ofproto->port_poll_set);
1392
1393 close_dpif_backer(ofproto->backer);
1394 }
1395
1396 static int
1397 run_fast(struct ofproto *ofproto_)
1398 {
1399 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1400 struct ofport_dpif *ofport;
1401
1402 HMAP_FOR_EACH (ofport, up.hmap_node, &ofproto->up.ports) {
1403 port_run_fast(ofport);
1404 }
1405
1406 return 0;
1407 }
1408
1409 static int
1410 run(struct ofproto *ofproto_)
1411 {
1412 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1413 struct ofport_dpif *ofport;
1414 struct ofbundle *bundle;
1415 int error;
1416
1417 if (!clogged) {
1418 complete_operations(ofproto);
1419 }
1420
1421 error = run_fast(ofproto_);
1422 if (error) {
1423 return error;
1424 }
1425
1426 if (ofproto->netflow) {
1427 if (netflow_run(ofproto->netflow)) {
1428 send_netflow_active_timeouts(ofproto);
1429 }
1430 }
1431 if (ofproto->sflow) {
1432 dpif_sflow_run(ofproto->sflow);
1433 }
1434
1435 HMAP_FOR_EACH (ofport, up.hmap_node, &ofproto->up.ports) {
1436 port_run(ofport);
1437 }
1438 HMAP_FOR_EACH (bundle, hmap_node, &ofproto->bundles) {
1439 bundle_run(bundle);
1440 }
1441
1442 stp_run(ofproto);
1443 mac_learning_run(ofproto->ml, &ofproto->backer->revalidate_set);
1444
1445 /* Check the consistency of a random facet, to aid debugging. */
1446 if (!hmap_is_empty(&ofproto->facets)
1447 && !ofproto->backer->need_revalidate) {
1448 struct facet *facet;
1449
1450 facet = CONTAINER_OF(hmap_random_node(&ofproto->facets),
1451 struct facet, hmap_node);
1452 if (!tag_set_intersects(&ofproto->backer->revalidate_set,
1453 facet->tags)) {
1454 if (!facet_check_consistency(facet)) {
1455 ofproto->backer->need_revalidate = REV_INCONSISTENCY;
1456 }
1457 }
1458 }
1459
1460 if (ofproto->governor) {
1461 size_t n_subfacets;
1462
1463 governor_run(ofproto->governor);
1464
1465 /* If the governor has shrunk to its minimum size and the number of
1466 * subfacets has dwindled, then drop the governor entirely.
1467 *
1468 * For hysteresis, the number of subfacets to drop the governor is
1469 * smaller than the number needed to trigger its creation. */
1470 n_subfacets = hmap_count(&ofproto->subfacets);
1471 if (n_subfacets * 4 < ofproto->up.flow_eviction_threshold
1472 && governor_is_idle(ofproto->governor)) {
1473 governor_destroy(ofproto->governor);
1474 ofproto->governor = NULL;
1475 }
1476 }
1477
1478 return 0;
1479 }
1480
1481 static void
1482 wait(struct ofproto *ofproto_)
1483 {
1484 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1485 struct ofport_dpif *ofport;
1486 struct ofbundle *bundle;
1487
1488 if (!clogged && !list_is_empty(&ofproto->completions)) {
1489 poll_immediate_wake();
1490 }
1491
1492 dpif_wait(ofproto->backer->dpif);
1493 dpif_recv_wait(ofproto->backer->dpif);
1494 if (ofproto->sflow) {
1495 dpif_sflow_wait(ofproto->sflow);
1496 }
1497 if (!tag_set_is_empty(&ofproto->backer->revalidate_set)) {
1498 poll_immediate_wake();
1499 }
1500 HMAP_FOR_EACH (ofport, up.hmap_node, &ofproto->up.ports) {
1501 port_wait(ofport);
1502 }
1503 HMAP_FOR_EACH (bundle, hmap_node, &ofproto->bundles) {
1504 bundle_wait(bundle);
1505 }
1506 if (ofproto->netflow) {
1507 netflow_wait(ofproto->netflow);
1508 }
1509 mac_learning_wait(ofproto->ml);
1510 stp_wait(ofproto);
1511 if (ofproto->backer->need_revalidate) {
1512 /* Shouldn't happen, but if it does just go around again. */
1513 VLOG_DBG_RL(&rl, "need revalidate in ofproto_wait_cb()");
1514 poll_immediate_wake();
1515 }
1516 if (ofproto->governor) {
1517 governor_wait(ofproto->governor);
1518 }
1519 }
1520
1521 static void
1522 get_memory_usage(const struct ofproto *ofproto_, struct simap *usage)
1523 {
1524 const struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1525
1526 simap_increase(usage, "facets", hmap_count(&ofproto->facets));
1527 simap_increase(usage, "subfacets", hmap_count(&ofproto->subfacets));
1528 }
1529
1530 static void
1531 flush(struct ofproto *ofproto_)
1532 {
1533 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1534 struct subfacet *subfacet, *next_subfacet;
1535 struct subfacet *batch[SUBFACET_DESTROY_MAX_BATCH];
1536 int n_batch;
1537
1538 n_batch = 0;
1539 HMAP_FOR_EACH_SAFE (subfacet, next_subfacet, hmap_node,
1540 &ofproto->subfacets) {
1541 if (subfacet->path != SF_NOT_INSTALLED) {
1542 batch[n_batch++] = subfacet;
1543 if (n_batch >= SUBFACET_DESTROY_MAX_BATCH) {
1544 subfacet_destroy_batch(ofproto, batch, n_batch);
1545 n_batch = 0;
1546 }
1547 } else {
1548 subfacet_destroy(subfacet);
1549 }
1550 }
1551
1552 if (n_batch > 0) {
1553 subfacet_destroy_batch(ofproto, batch, n_batch);
1554 }
1555 }
1556
1557 static void
1558 get_features(struct ofproto *ofproto_ OVS_UNUSED,
1559 bool *arp_match_ip, enum ofputil_action_bitmap *actions)
1560 {
1561 *arp_match_ip = true;
1562 *actions = (OFPUTIL_A_OUTPUT |
1563 OFPUTIL_A_SET_VLAN_VID |
1564 OFPUTIL_A_SET_VLAN_PCP |
1565 OFPUTIL_A_STRIP_VLAN |
1566 OFPUTIL_A_SET_DL_SRC |
1567 OFPUTIL_A_SET_DL_DST |
1568 OFPUTIL_A_SET_NW_SRC |
1569 OFPUTIL_A_SET_NW_DST |
1570 OFPUTIL_A_SET_NW_TOS |
1571 OFPUTIL_A_SET_TP_SRC |
1572 OFPUTIL_A_SET_TP_DST |
1573 OFPUTIL_A_ENQUEUE);
1574 }
1575
1576 static void
1577 get_tables(struct ofproto *ofproto_, struct ofp12_table_stats *ots)
1578 {
1579 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1580 struct dpif_dp_stats s;
1581
1582 strcpy(ots->name, "classifier");
1583
1584 dpif_get_dp_stats(ofproto->backer->dpif, &s);
1585
1586 ots->lookup_count = htonll(s.n_hit + s.n_missed);
1587 ots->matched_count = htonll(s.n_hit + ofproto->n_matches);
1588 }
1589
1590 static struct ofport *
1591 port_alloc(void)
1592 {
1593 struct ofport_dpif *port = xmalloc(sizeof *port);
1594 return &port->up;
1595 }
1596
1597 static void
1598 port_dealloc(struct ofport *port_)
1599 {
1600 struct ofport_dpif *port = ofport_dpif_cast(port_);
1601 free(port);
1602 }
1603
1604 static int
1605 port_construct(struct ofport *port_)
1606 {
1607 struct ofport_dpif *port = ofport_dpif_cast(port_);
1608 struct ofproto_dpif *ofproto = ofproto_dpif_cast(port->up.ofproto);
1609 const struct netdev *netdev = port->up.netdev;
1610 struct dpif_port dpif_port;
1611 int error;
1612
1613 ofproto->backer->need_revalidate = REV_RECONFIGURE;
1614 port->bundle = NULL;
1615 port->cfm = NULL;
1616 port->tag = tag_create_random();
1617 port->may_enable = true;
1618 port->stp_port = NULL;
1619 port->stp_state = STP_DISABLED;
1620 port->tnl_port = NULL;
1621 hmap_init(&port->priorities);
1622 port->realdev_ofp_port = 0;
1623 port->vlandev_vid = 0;
1624 port->carrier_seq = netdev_get_carrier_resets(netdev);
1625
1626 if (netdev_vport_is_patch(netdev)) {
1627 /* XXX By bailing out here, we don't do required sFlow work. */
1628 port->odp_port = OVSP_NONE;
1629 return 0;
1630 }
1631
1632 error = dpif_port_query_by_name(ofproto->backer->dpif,
1633 netdev_vport_get_dpif_port(netdev),
1634 &dpif_port);
1635 if (error) {
1636 return error;
1637 }
1638
1639 port->odp_port = dpif_port.port_no;
1640
1641 if (netdev_get_tunnel_config(netdev)) {
1642 port->tnl_port = tnl_port_add(&port->up, port->odp_port);
1643 } else {
1644 /* Sanity-check that a mapping doesn't already exist. This
1645 * shouldn't happen for non-tunnel ports. */
1646 if (odp_port_to_ofp_port(ofproto, port->odp_port) != OFPP_NONE) {
1647 VLOG_ERR("port %s already has an OpenFlow port number",
1648 dpif_port.name);
1649 dpif_port_destroy(&dpif_port);
1650 return EBUSY;
1651 }
1652
1653 hmap_insert(&ofproto->backer->odp_to_ofport_map, &port->odp_port_node,
1654 hash_int(port->odp_port, 0));
1655 }
1656 dpif_port_destroy(&dpif_port);
1657
1658 if (ofproto->sflow) {
1659 dpif_sflow_add_port(ofproto->sflow, port_, port->odp_port);
1660 }
1661
1662 return 0;
1663 }
1664
1665 static void
1666 port_destruct(struct ofport *port_)
1667 {
1668 struct ofport_dpif *port = ofport_dpif_cast(port_);
1669 struct ofproto_dpif *ofproto = ofproto_dpif_cast(port->up.ofproto);
1670 const char *dp_port_name = netdev_vport_get_dpif_port(port->up.netdev);
1671 const char *devname = netdev_get_name(port->up.netdev);
1672
1673 if (dpif_port_exists(ofproto->backer->dpif, dp_port_name)) {
1674 /* The underlying device is still there, so delete it. This
1675 * happens when the ofproto is being destroyed, since the caller
1676 * assumes that removal of attached ports will happen as part of
1677 * destruction. */
1678 if (!port->tnl_port) {
1679 dpif_port_del(ofproto->backer->dpif, port->odp_port);
1680 }
1681 ofproto->backer->need_revalidate = REV_RECONFIGURE;
1682 }
1683
1684 if (port->odp_port != OVSP_NONE && !port->tnl_port) {
1685 hmap_remove(&ofproto->backer->odp_to_ofport_map, &port->odp_port_node);
1686 }
1687
1688 tnl_port_del(port->tnl_port);
1689 sset_find_and_delete(&ofproto->ports, devname);
1690 sset_find_and_delete(&ofproto->ghost_ports, devname);
1691 ofproto->backer->need_revalidate = REV_RECONFIGURE;
1692 bundle_remove(port_);
1693 set_cfm(port_, NULL);
1694 if (ofproto->sflow) {
1695 dpif_sflow_del_port(ofproto->sflow, port->odp_port);
1696 }
1697
1698 ofport_clear_priorities(port);
1699 hmap_destroy(&port->priorities);
1700 }
1701
1702 static void
1703 port_modified(struct ofport *port_)
1704 {
1705 struct ofport_dpif *port = ofport_dpif_cast(port_);
1706
1707 if (port->bundle && port->bundle->bond) {
1708 bond_slave_set_netdev(port->bundle->bond, port, port->up.netdev);
1709 }
1710 }
1711
1712 static void
1713 port_reconfigured(struct ofport *port_, enum ofputil_port_config old_config)
1714 {
1715 struct ofport_dpif *port = ofport_dpif_cast(port_);
1716 struct ofproto_dpif *ofproto = ofproto_dpif_cast(port->up.ofproto);
1717 enum ofputil_port_config changed = old_config ^ port->up.pp.config;
1718
1719 if (changed & (OFPUTIL_PC_NO_RECV | OFPUTIL_PC_NO_RECV_STP |
1720 OFPUTIL_PC_NO_FWD | OFPUTIL_PC_NO_FLOOD |
1721 OFPUTIL_PC_NO_PACKET_IN)) {
1722 ofproto->backer->need_revalidate = REV_RECONFIGURE;
1723
1724 if (changed & OFPUTIL_PC_NO_FLOOD && port->bundle) {
1725 bundle_update(port->bundle);
1726 }
1727 }
1728 }
1729
1730 static int
1731 set_sflow(struct ofproto *ofproto_,
1732 const struct ofproto_sflow_options *sflow_options)
1733 {
1734 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1735 struct dpif_sflow *ds = ofproto->sflow;
1736
1737 if (sflow_options) {
1738 if (!ds) {
1739 struct ofport_dpif *ofport;
1740
1741 ds = ofproto->sflow = dpif_sflow_create();
1742 HMAP_FOR_EACH (ofport, up.hmap_node, &ofproto->up.ports) {
1743 dpif_sflow_add_port(ds, &ofport->up, ofport->odp_port);
1744 }
1745 ofproto->backer->need_revalidate = REV_RECONFIGURE;
1746 }
1747 dpif_sflow_set_options(ds, sflow_options);
1748 } else {
1749 if (ds) {
1750 dpif_sflow_destroy(ds);
1751 ofproto->backer->need_revalidate = REV_RECONFIGURE;
1752 ofproto->sflow = NULL;
1753 }
1754 }
1755 return 0;
1756 }
1757
1758 static int
1759 set_cfm(struct ofport *ofport_, const struct cfm_settings *s)
1760 {
1761 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
1762 int error;
1763
1764 if (!s) {
1765 error = 0;
1766 } else {
1767 if (!ofport->cfm) {
1768 struct ofproto_dpif *ofproto;
1769
1770 ofproto = ofproto_dpif_cast(ofport->up.ofproto);
1771 ofproto->backer->need_revalidate = REV_RECONFIGURE;
1772 ofport->cfm = cfm_create(netdev_get_name(ofport->up.netdev));
1773 }
1774
1775 if (cfm_configure(ofport->cfm, s)) {
1776 return 0;
1777 }
1778
1779 error = EINVAL;
1780 }
1781 cfm_destroy(ofport->cfm);
1782 ofport->cfm = NULL;
1783 return error;
1784 }
1785
1786 static bool
1787 get_cfm_status(const struct ofport *ofport_,
1788 struct ofproto_cfm_status *status)
1789 {
1790 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
1791
1792 if (ofport->cfm) {
1793 status->faults = cfm_get_fault(ofport->cfm);
1794 status->remote_opstate = cfm_get_opup(ofport->cfm);
1795 status->health = cfm_get_health(ofport->cfm);
1796 cfm_get_remote_mpids(ofport->cfm, &status->rmps, &status->n_rmps);
1797 return true;
1798 } else {
1799 return false;
1800 }
1801 }
1802 \f
1803 /* Spanning Tree. */
1804
1805 static void
1806 send_bpdu_cb(struct ofpbuf *pkt, int port_num, void *ofproto_)
1807 {
1808 struct ofproto_dpif *ofproto = ofproto_;
1809 struct stp_port *sp = stp_get_port(ofproto->stp, port_num);
1810 struct ofport_dpif *ofport;
1811
1812 ofport = stp_port_get_aux(sp);
1813 if (!ofport) {
1814 VLOG_WARN_RL(&rl, "%s: cannot send BPDU on unknown port %d",
1815 ofproto->up.name, port_num);
1816 } else {
1817 struct eth_header *eth = pkt->l2;
1818
1819 netdev_get_etheraddr(ofport->up.netdev, eth->eth_src);
1820 if (eth_addr_is_zero(eth->eth_src)) {
1821 VLOG_WARN_RL(&rl, "%s: cannot send BPDU on port %d "
1822 "with unknown MAC", ofproto->up.name, port_num);
1823 } else {
1824 send_packet(ofport, pkt);
1825 }
1826 }
1827 ofpbuf_delete(pkt);
1828 }
1829
1830 /* Configures STP on 'ofproto_' using the settings defined in 's'. */
1831 static int
1832 set_stp(struct ofproto *ofproto_, const struct ofproto_stp_settings *s)
1833 {
1834 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1835
1836 /* Only revalidate flows if the configuration changed. */
1837 if (!s != !ofproto->stp) {
1838 ofproto->backer->need_revalidate = REV_RECONFIGURE;
1839 }
1840
1841 if (s) {
1842 if (!ofproto->stp) {
1843 ofproto->stp = stp_create(ofproto_->name, s->system_id,
1844 send_bpdu_cb, ofproto);
1845 ofproto->stp_last_tick = time_msec();
1846 }
1847
1848 stp_set_bridge_id(ofproto->stp, s->system_id);
1849 stp_set_bridge_priority(ofproto->stp, s->priority);
1850 stp_set_hello_time(ofproto->stp, s->hello_time);
1851 stp_set_max_age(ofproto->stp, s->max_age);
1852 stp_set_forward_delay(ofproto->stp, s->fwd_delay);
1853 } else {
1854 struct ofport *ofport;
1855
1856 HMAP_FOR_EACH (ofport, hmap_node, &ofproto->up.ports) {
1857 set_stp_port(ofport, NULL);
1858 }
1859
1860 stp_destroy(ofproto->stp);
1861 ofproto->stp = NULL;
1862 }
1863
1864 return 0;
1865 }
1866
1867 static int
1868 get_stp_status(struct ofproto *ofproto_, struct ofproto_stp_status *s)
1869 {
1870 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1871
1872 if (ofproto->stp) {
1873 s->enabled = true;
1874 s->bridge_id = stp_get_bridge_id(ofproto->stp);
1875 s->designated_root = stp_get_designated_root(ofproto->stp);
1876 s->root_path_cost = stp_get_root_path_cost(ofproto->stp);
1877 } else {
1878 s->enabled = false;
1879 }
1880
1881 return 0;
1882 }
1883
1884 static void
1885 update_stp_port_state(struct ofport_dpif *ofport)
1886 {
1887 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
1888 enum stp_state state;
1889
1890 /* Figure out new state. */
1891 state = ofport->stp_port ? stp_port_get_state(ofport->stp_port)
1892 : STP_DISABLED;
1893
1894 /* Update state. */
1895 if (ofport->stp_state != state) {
1896 enum ofputil_port_state of_state;
1897 bool fwd_change;
1898
1899 VLOG_DBG_RL(&rl, "port %s: STP state changed from %s to %s",
1900 netdev_get_name(ofport->up.netdev),
1901 stp_state_name(ofport->stp_state),
1902 stp_state_name(state));
1903 if (stp_learn_in_state(ofport->stp_state)
1904 != stp_learn_in_state(state)) {
1905 /* xxx Learning action flows should also be flushed. */
1906 mac_learning_flush(ofproto->ml,
1907 &ofproto->backer->revalidate_set);
1908 }
1909 fwd_change = stp_forward_in_state(ofport->stp_state)
1910 != stp_forward_in_state(state);
1911
1912 ofproto->backer->need_revalidate = REV_STP;
1913 ofport->stp_state = state;
1914 ofport->stp_state_entered = time_msec();
1915
1916 if (fwd_change && ofport->bundle) {
1917 bundle_update(ofport->bundle);
1918 }
1919
1920 /* Update the STP state bits in the OpenFlow port description. */
1921 of_state = ofport->up.pp.state & ~OFPUTIL_PS_STP_MASK;
1922 of_state |= (state == STP_LISTENING ? OFPUTIL_PS_STP_LISTEN
1923 : state == STP_LEARNING ? OFPUTIL_PS_STP_LEARN
1924 : state == STP_FORWARDING ? OFPUTIL_PS_STP_FORWARD
1925 : state == STP_BLOCKING ? OFPUTIL_PS_STP_BLOCK
1926 : 0);
1927 ofproto_port_set_state(&ofport->up, of_state);
1928 }
1929 }
1930
1931 /* Configures STP on 'ofport_' using the settings defined in 's'. The
1932 * caller is responsible for assigning STP port numbers and ensuring
1933 * there are no duplicates. */
1934 static int
1935 set_stp_port(struct ofport *ofport_,
1936 const struct ofproto_port_stp_settings *s)
1937 {
1938 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
1939 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
1940 struct stp_port *sp = ofport->stp_port;
1941
1942 if (!s || !s->enable) {
1943 if (sp) {
1944 ofport->stp_port = NULL;
1945 stp_port_disable(sp);
1946 update_stp_port_state(ofport);
1947 }
1948 return 0;
1949 } else if (sp && stp_port_no(sp) != s->port_num
1950 && ofport == stp_port_get_aux(sp)) {
1951 /* The port-id changed, so disable the old one if it's not
1952 * already in use by another port. */
1953 stp_port_disable(sp);
1954 }
1955
1956 sp = ofport->stp_port = stp_get_port(ofproto->stp, s->port_num);
1957 stp_port_enable(sp);
1958
1959 stp_port_set_aux(sp, ofport);
1960 stp_port_set_priority(sp, s->priority);
1961 stp_port_set_path_cost(sp, s->path_cost);
1962
1963 update_stp_port_state(ofport);
1964
1965 return 0;
1966 }
1967
1968 static int
1969 get_stp_port_status(struct ofport *ofport_,
1970 struct ofproto_port_stp_status *s)
1971 {
1972 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
1973 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
1974 struct stp_port *sp = ofport->stp_port;
1975
1976 if (!ofproto->stp || !sp) {
1977 s->enabled = false;
1978 return 0;
1979 }
1980
1981 s->enabled = true;
1982 s->port_id = stp_port_get_id(sp);
1983 s->state = stp_port_get_state(sp);
1984 s->sec_in_state = (time_msec() - ofport->stp_state_entered) / 1000;
1985 s->role = stp_port_get_role(sp);
1986 stp_port_get_counts(sp, &s->tx_count, &s->rx_count, &s->error_count);
1987
1988 return 0;
1989 }
1990
1991 static void
1992 stp_run(struct ofproto_dpif *ofproto)
1993 {
1994 if (ofproto->stp) {
1995 long long int now = time_msec();
1996 long long int elapsed = now - ofproto->stp_last_tick;
1997 struct stp_port *sp;
1998
1999 if (elapsed > 0) {
2000 stp_tick(ofproto->stp, MIN(INT_MAX, elapsed));
2001 ofproto->stp_last_tick = now;
2002 }
2003 while (stp_get_changed_port(ofproto->stp, &sp)) {
2004 struct ofport_dpif *ofport = stp_port_get_aux(sp);
2005
2006 if (ofport) {
2007 update_stp_port_state(ofport);
2008 }
2009 }
2010
2011 if (stp_check_and_reset_fdb_flush(ofproto->stp)) {
2012 mac_learning_flush(ofproto->ml, &ofproto->backer->revalidate_set);
2013 }
2014 }
2015 }
2016
2017 static void
2018 stp_wait(struct ofproto_dpif *ofproto)
2019 {
2020 if (ofproto->stp) {
2021 poll_timer_wait(1000);
2022 }
2023 }
2024
2025 /* Returns true if STP should process 'flow'. */
2026 static bool
2027 stp_should_process_flow(const struct flow *flow)
2028 {
2029 return eth_addr_equals(flow->dl_dst, eth_addr_stp);
2030 }
2031
2032 static void
2033 stp_process_packet(const struct ofport_dpif *ofport,
2034 const struct ofpbuf *packet)
2035 {
2036 struct ofpbuf payload = *packet;
2037 struct eth_header *eth = payload.data;
2038 struct stp_port *sp = ofport->stp_port;
2039
2040 /* Sink packets on ports that have STP disabled when the bridge has
2041 * STP enabled. */
2042 if (!sp || stp_port_get_state(sp) == STP_DISABLED) {
2043 return;
2044 }
2045
2046 /* Trim off padding on payload. */
2047 if (payload.size > ntohs(eth->eth_type) + ETH_HEADER_LEN) {
2048 payload.size = ntohs(eth->eth_type) + ETH_HEADER_LEN;
2049 }
2050
2051 if (ofpbuf_try_pull(&payload, ETH_HEADER_LEN + LLC_HEADER_LEN)) {
2052 stp_received_bpdu(sp, payload.data, payload.size);
2053 }
2054 }
2055 \f
2056 static struct priority_to_dscp *
2057 get_priority(const struct ofport_dpif *ofport, uint32_t priority)
2058 {
2059 struct priority_to_dscp *pdscp;
2060 uint32_t hash;
2061
2062 hash = hash_int(priority, 0);
2063 HMAP_FOR_EACH_IN_BUCKET (pdscp, hmap_node, hash, &ofport->priorities) {
2064 if (pdscp->priority == priority) {
2065 return pdscp;
2066 }
2067 }
2068 return NULL;
2069 }
2070
2071 static void
2072 ofport_clear_priorities(struct ofport_dpif *ofport)
2073 {
2074 struct priority_to_dscp *pdscp, *next;
2075
2076 HMAP_FOR_EACH_SAFE (pdscp, next, hmap_node, &ofport->priorities) {
2077 hmap_remove(&ofport->priorities, &pdscp->hmap_node);
2078 free(pdscp);
2079 }
2080 }
2081
2082 static int
2083 set_queues(struct ofport *ofport_,
2084 const struct ofproto_port_queue *qdscp_list,
2085 size_t n_qdscp)
2086 {
2087 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
2088 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
2089 struct hmap new = HMAP_INITIALIZER(&new);
2090 size_t i;
2091
2092 for (i = 0; i < n_qdscp; i++) {
2093 struct priority_to_dscp *pdscp;
2094 uint32_t priority;
2095 uint8_t dscp;
2096
2097 dscp = (qdscp_list[i].dscp << 2) & IP_DSCP_MASK;
2098 if (dpif_queue_to_priority(ofproto->backer->dpif, qdscp_list[i].queue,
2099 &priority)) {
2100 continue;
2101 }
2102
2103 pdscp = get_priority(ofport, priority);
2104 if (pdscp) {
2105 hmap_remove(&ofport->priorities, &pdscp->hmap_node);
2106 } else {
2107 pdscp = xmalloc(sizeof *pdscp);
2108 pdscp->priority = priority;
2109 pdscp->dscp = dscp;
2110 ofproto->backer->need_revalidate = REV_RECONFIGURE;
2111 }
2112
2113 if (pdscp->dscp != dscp) {
2114 pdscp->dscp = dscp;
2115 ofproto->backer->need_revalidate = REV_RECONFIGURE;
2116 }
2117
2118 hmap_insert(&new, &pdscp->hmap_node, hash_int(pdscp->priority, 0));
2119 }
2120
2121 if (!hmap_is_empty(&ofport->priorities)) {
2122 ofport_clear_priorities(ofport);
2123 ofproto->backer->need_revalidate = REV_RECONFIGURE;
2124 }
2125
2126 hmap_swap(&new, &ofport->priorities);
2127 hmap_destroy(&new);
2128
2129 return 0;
2130 }
2131 \f
2132 /* Bundles. */
2133
2134 /* Expires all MAC learning entries associated with 'bundle' and forces its
2135 * ofproto to revalidate every flow.
2136 *
2137 * Normally MAC learning entries are removed only from the ofproto associated
2138 * with 'bundle', but if 'all_ofprotos' is true, then the MAC learning entries
2139 * are removed from every ofproto. When patch ports and SLB bonds are in use
2140 * and a VM migration happens and the gratuitous ARPs are somehow lost, this
2141 * avoids a MAC_ENTRY_IDLE_TIME delay before the migrated VM can communicate
2142 * with the host from which it migrated. */
2143 static void
2144 bundle_flush_macs(struct ofbundle *bundle, bool all_ofprotos)
2145 {
2146 struct ofproto_dpif *ofproto = bundle->ofproto;
2147 struct mac_learning *ml = ofproto->ml;
2148 struct mac_entry *mac, *next_mac;
2149
2150 ofproto->backer->need_revalidate = REV_RECONFIGURE;
2151 LIST_FOR_EACH_SAFE (mac, next_mac, lru_node, &ml->lrus) {
2152 if (mac->port.p == bundle) {
2153 if (all_ofprotos) {
2154 struct ofproto_dpif *o;
2155
2156 HMAP_FOR_EACH (o, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
2157 if (o != ofproto) {
2158 struct mac_entry *e;
2159
2160 e = mac_learning_lookup(o->ml, mac->mac, mac->vlan,
2161 NULL);
2162 if (e) {
2163 mac_learning_expire(o->ml, e);
2164 }
2165 }
2166 }
2167 }
2168
2169 mac_learning_expire(ml, mac);
2170 }
2171 }
2172 }
2173
2174 static struct ofbundle *
2175 bundle_lookup(const struct ofproto_dpif *ofproto, void *aux)
2176 {
2177 struct ofbundle *bundle;
2178
2179 HMAP_FOR_EACH_IN_BUCKET (bundle, hmap_node, hash_pointer(aux, 0),
2180 &ofproto->bundles) {
2181 if (bundle->aux == aux) {
2182 return bundle;
2183 }
2184 }
2185 return NULL;
2186 }
2187
2188 /* Looks up each of the 'n_auxes' pointers in 'auxes' as bundles and adds the
2189 * ones that are found to 'bundles'. */
2190 static void
2191 bundle_lookup_multiple(struct ofproto_dpif *ofproto,
2192 void **auxes, size_t n_auxes,
2193 struct hmapx *bundles)
2194 {
2195 size_t i;
2196
2197 hmapx_init(bundles);
2198 for (i = 0; i < n_auxes; i++) {
2199 struct ofbundle *bundle = bundle_lookup(ofproto, auxes[i]);
2200 if (bundle) {
2201 hmapx_add(bundles, bundle);
2202 }
2203 }
2204 }
2205
2206 static void
2207 bundle_update(struct ofbundle *bundle)
2208 {
2209 struct ofport_dpif *port;
2210
2211 bundle->floodable = true;
2212 LIST_FOR_EACH (port, bundle_node, &bundle->ports) {
2213 if (port->up.pp.config & OFPUTIL_PC_NO_FLOOD
2214 || !stp_forward_in_state(port->stp_state)) {
2215 bundle->floodable = false;
2216 break;
2217 }
2218 }
2219 }
2220
2221 static void
2222 bundle_del_port(struct ofport_dpif *port)
2223 {
2224 struct ofbundle *bundle = port->bundle;
2225
2226 bundle->ofproto->backer->need_revalidate = REV_RECONFIGURE;
2227
2228 list_remove(&port->bundle_node);
2229 port->bundle = NULL;
2230
2231 if (bundle->lacp) {
2232 lacp_slave_unregister(bundle->lacp, port);
2233 }
2234 if (bundle->bond) {
2235 bond_slave_unregister(bundle->bond, port);
2236 }
2237
2238 bundle_update(bundle);
2239 }
2240
2241 static bool
2242 bundle_add_port(struct ofbundle *bundle, uint32_t ofp_port,
2243 struct lacp_slave_settings *lacp)
2244 {
2245 struct ofport_dpif *port;
2246
2247 port = get_ofp_port(bundle->ofproto, ofp_port);
2248 if (!port) {
2249 return false;
2250 }
2251
2252 if (port->bundle != bundle) {
2253 bundle->ofproto->backer->need_revalidate = REV_RECONFIGURE;
2254 if (port->bundle) {
2255 bundle_del_port(port);
2256 }
2257
2258 port->bundle = bundle;
2259 list_push_back(&bundle->ports, &port->bundle_node);
2260 if (port->up.pp.config & OFPUTIL_PC_NO_FLOOD
2261 || !stp_forward_in_state(port->stp_state)) {
2262 bundle->floodable = false;
2263 }
2264 }
2265 if (lacp) {
2266 bundle->ofproto->backer->need_revalidate = REV_RECONFIGURE;
2267 lacp_slave_register(bundle->lacp, port, lacp);
2268 }
2269
2270 return true;
2271 }
2272
2273 static void
2274 bundle_destroy(struct ofbundle *bundle)
2275 {
2276 struct ofproto_dpif *ofproto;
2277 struct ofport_dpif *port, *next_port;
2278 int i;
2279
2280 if (!bundle) {
2281 return;
2282 }
2283
2284 ofproto = bundle->ofproto;
2285 for (i = 0; i < MAX_MIRRORS; i++) {
2286 struct ofmirror *m = ofproto->mirrors[i];
2287 if (m) {
2288 if (m->out == bundle) {
2289 mirror_destroy(m);
2290 } else if (hmapx_find_and_delete(&m->srcs, bundle)
2291 || hmapx_find_and_delete(&m->dsts, bundle)) {
2292 ofproto->backer->need_revalidate = REV_RECONFIGURE;
2293 }
2294 }
2295 }
2296
2297 LIST_FOR_EACH_SAFE (port, next_port, bundle_node, &bundle->ports) {
2298 bundle_del_port(port);
2299 }
2300
2301 bundle_flush_macs(bundle, true);
2302 hmap_remove(&ofproto->bundles, &bundle->hmap_node);
2303 free(bundle->name);
2304 free(bundle->trunks);
2305 lacp_destroy(bundle->lacp);
2306 bond_destroy(bundle->bond);
2307 free(bundle);
2308 }
2309
2310 static int
2311 bundle_set(struct ofproto *ofproto_, void *aux,
2312 const struct ofproto_bundle_settings *s)
2313 {
2314 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2315 bool need_flush = false;
2316 struct ofport_dpif *port;
2317 struct ofbundle *bundle;
2318 unsigned long *trunks;
2319 int vlan;
2320 size_t i;
2321 bool ok;
2322
2323 if (!s) {
2324 bundle_destroy(bundle_lookup(ofproto, aux));
2325 return 0;
2326 }
2327
2328 ovs_assert(s->n_slaves == 1 || s->bond != NULL);
2329 ovs_assert((s->lacp != NULL) == (s->lacp_slaves != NULL));
2330
2331 bundle = bundle_lookup(ofproto, aux);
2332 if (!bundle) {
2333 bundle = xmalloc(sizeof *bundle);
2334
2335 bundle->ofproto = ofproto;
2336 hmap_insert(&ofproto->bundles, &bundle->hmap_node,
2337 hash_pointer(aux, 0));
2338 bundle->aux = aux;
2339 bundle->name = NULL;
2340
2341 list_init(&bundle->ports);
2342 bundle->vlan_mode = PORT_VLAN_TRUNK;
2343 bundle->vlan = -1;
2344 bundle->trunks = NULL;
2345 bundle->use_priority_tags = s->use_priority_tags;
2346 bundle->lacp = NULL;
2347 bundle->bond = NULL;
2348
2349 bundle->floodable = true;
2350
2351 bundle->src_mirrors = 0;
2352 bundle->dst_mirrors = 0;
2353 bundle->mirror_out = 0;
2354 }
2355
2356 if (!bundle->name || strcmp(s->name, bundle->name)) {
2357 free(bundle->name);
2358 bundle->name = xstrdup(s->name);
2359 }
2360
2361 /* LACP. */
2362 if (s->lacp) {
2363 if (!bundle->lacp) {
2364 ofproto->backer->need_revalidate = REV_RECONFIGURE;
2365 bundle->lacp = lacp_create();
2366 }
2367 lacp_configure(bundle->lacp, s->lacp);
2368 } else {
2369 lacp_destroy(bundle->lacp);
2370 bundle->lacp = NULL;
2371 }
2372
2373 /* Update set of ports. */
2374 ok = true;
2375 for (i = 0; i < s->n_slaves; i++) {
2376 if (!bundle_add_port(bundle, s->slaves[i],
2377 s->lacp ? &s->lacp_slaves[i] : NULL)) {
2378 ok = false;
2379 }
2380 }
2381 if (!ok || list_size(&bundle->ports) != s->n_slaves) {
2382 struct ofport_dpif *next_port;
2383
2384 LIST_FOR_EACH_SAFE (port, next_port, bundle_node, &bundle->ports) {
2385 for (i = 0; i < s->n_slaves; i++) {
2386 if (s->slaves[i] == port->up.ofp_port) {
2387 goto found;
2388 }
2389 }
2390
2391 bundle_del_port(port);
2392 found: ;
2393 }
2394 }
2395 ovs_assert(list_size(&bundle->ports) <= s->n_slaves);
2396
2397 if (list_is_empty(&bundle->ports)) {
2398 bundle_destroy(bundle);
2399 return EINVAL;
2400 }
2401
2402 /* Set VLAN tagging mode */
2403 if (s->vlan_mode != bundle->vlan_mode
2404 || s->use_priority_tags != bundle->use_priority_tags) {
2405 bundle->vlan_mode = s->vlan_mode;
2406 bundle->use_priority_tags = s->use_priority_tags;
2407 need_flush = true;
2408 }
2409
2410 /* Set VLAN tag. */
2411 vlan = (s->vlan_mode == PORT_VLAN_TRUNK ? -1
2412 : s->vlan >= 0 && s->vlan <= 4095 ? s->vlan
2413 : 0);
2414 if (vlan != bundle->vlan) {
2415 bundle->vlan = vlan;
2416 need_flush = true;
2417 }
2418
2419 /* Get trunked VLANs. */
2420 switch (s->vlan_mode) {
2421 case PORT_VLAN_ACCESS:
2422 trunks = NULL;
2423 break;
2424
2425 case PORT_VLAN_TRUNK:
2426 trunks = CONST_CAST(unsigned long *, s->trunks);
2427 break;
2428
2429 case PORT_VLAN_NATIVE_UNTAGGED:
2430 case PORT_VLAN_NATIVE_TAGGED:
2431 if (vlan != 0 && (!s->trunks
2432 || !bitmap_is_set(s->trunks, vlan)
2433 || bitmap_is_set(s->trunks, 0))) {
2434 /* Force trunking the native VLAN and prohibit trunking VLAN 0. */
2435 if (s->trunks) {
2436 trunks = bitmap_clone(s->trunks, 4096);
2437 } else {
2438 trunks = bitmap_allocate1(4096);
2439 }
2440 bitmap_set1(trunks, vlan);
2441 bitmap_set0(trunks, 0);
2442 } else {
2443 trunks = CONST_CAST(unsigned long *, s->trunks);
2444 }
2445 break;
2446
2447 default:
2448 NOT_REACHED();
2449 }
2450 if (!vlan_bitmap_equal(trunks, bundle->trunks)) {
2451 free(bundle->trunks);
2452 if (trunks == s->trunks) {
2453 bundle->trunks = vlan_bitmap_clone(trunks);
2454 } else {
2455 bundle->trunks = trunks;
2456 trunks = NULL;
2457 }
2458 need_flush = true;
2459 }
2460 if (trunks != s->trunks) {
2461 free(trunks);
2462 }
2463
2464 /* Bonding. */
2465 if (!list_is_short(&bundle->ports)) {
2466 bundle->ofproto->has_bonded_bundles = true;
2467 if (bundle->bond) {
2468 if (bond_reconfigure(bundle->bond, s->bond)) {
2469 ofproto->backer->need_revalidate = REV_RECONFIGURE;
2470 }
2471 } else {
2472 bundle->bond = bond_create(s->bond);
2473 ofproto->backer->need_revalidate = REV_RECONFIGURE;
2474 }
2475
2476 LIST_FOR_EACH (port, bundle_node, &bundle->ports) {
2477 bond_slave_register(bundle->bond, port, port->up.netdev);
2478 }
2479 } else {
2480 bond_destroy(bundle->bond);
2481 bundle->bond = NULL;
2482 }
2483
2484 /* If we changed something that would affect MAC learning, un-learn
2485 * everything on this port and force flow revalidation. */
2486 if (need_flush) {
2487 bundle_flush_macs(bundle, false);
2488 }
2489
2490 return 0;
2491 }
2492
2493 static void
2494 bundle_remove(struct ofport *port_)
2495 {
2496 struct ofport_dpif *port = ofport_dpif_cast(port_);
2497 struct ofbundle *bundle = port->bundle;
2498
2499 if (bundle) {
2500 bundle_del_port(port);
2501 if (list_is_empty(&bundle->ports)) {
2502 bundle_destroy(bundle);
2503 } else if (list_is_short(&bundle->ports)) {
2504 bond_destroy(bundle->bond);
2505 bundle->bond = NULL;
2506 }
2507 }
2508 }
2509
2510 static void
2511 send_pdu_cb(void *port_, const void *pdu, size_t pdu_size)
2512 {
2513 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 10);
2514 struct ofport_dpif *port = port_;
2515 uint8_t ea[ETH_ADDR_LEN];
2516 int error;
2517
2518 error = netdev_get_etheraddr(port->up.netdev, ea);
2519 if (!error) {
2520 struct ofpbuf packet;
2521 void *packet_pdu;
2522
2523 ofpbuf_init(&packet, 0);
2524 packet_pdu = eth_compose(&packet, eth_addr_lacp, ea, ETH_TYPE_LACP,
2525 pdu_size);
2526 memcpy(packet_pdu, pdu, pdu_size);
2527
2528 send_packet(port, &packet);
2529 ofpbuf_uninit(&packet);
2530 } else {
2531 VLOG_ERR_RL(&rl, "port %s: cannot obtain Ethernet address of iface "
2532 "%s (%s)", port->bundle->name,
2533 netdev_get_name(port->up.netdev), strerror(error));
2534 }
2535 }
2536
2537 static void
2538 bundle_send_learning_packets(struct ofbundle *bundle)
2539 {
2540 struct ofproto_dpif *ofproto = bundle->ofproto;
2541 int error, n_packets, n_errors;
2542 struct mac_entry *e;
2543
2544 error = n_packets = n_errors = 0;
2545 LIST_FOR_EACH (e, lru_node, &ofproto->ml->lrus) {
2546 if (e->port.p != bundle) {
2547 struct ofpbuf *learning_packet;
2548 struct ofport_dpif *port;
2549 void *port_void;
2550 int ret;
2551
2552 /* The assignment to "port" is unnecessary but makes "grep"ing for
2553 * struct ofport_dpif more effective. */
2554 learning_packet = bond_compose_learning_packet(bundle->bond,
2555 e->mac, e->vlan,
2556 &port_void);
2557 port = port_void;
2558 ret = send_packet(port, learning_packet);
2559 ofpbuf_delete(learning_packet);
2560 if (ret) {
2561 error = ret;
2562 n_errors++;
2563 }
2564 n_packets++;
2565 }
2566 }
2567
2568 if (n_errors) {
2569 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
2570 VLOG_WARN_RL(&rl, "bond %s: %d errors sending %d gratuitous learning "
2571 "packets, last error was: %s",
2572 bundle->name, n_errors, n_packets, strerror(error));
2573 } else {
2574 VLOG_DBG("bond %s: sent %d gratuitous learning packets",
2575 bundle->name, n_packets);
2576 }
2577 }
2578
2579 static void
2580 bundle_run(struct ofbundle *bundle)
2581 {
2582 if (bundle->lacp) {
2583 lacp_run(bundle->lacp, send_pdu_cb);
2584 }
2585 if (bundle->bond) {
2586 struct ofport_dpif *port;
2587
2588 LIST_FOR_EACH (port, bundle_node, &bundle->ports) {
2589 bond_slave_set_may_enable(bundle->bond, port, port->may_enable);
2590 }
2591
2592 bond_run(bundle->bond, &bundle->ofproto->backer->revalidate_set,
2593 lacp_status(bundle->lacp));
2594 if (bond_should_send_learning_packets(bundle->bond)) {
2595 bundle_send_learning_packets(bundle);
2596 }
2597 }
2598 }
2599
2600 static void
2601 bundle_wait(struct ofbundle *bundle)
2602 {
2603 if (bundle->lacp) {
2604 lacp_wait(bundle->lacp);
2605 }
2606 if (bundle->bond) {
2607 bond_wait(bundle->bond);
2608 }
2609 }
2610 \f
2611 /* Mirrors. */
2612
2613 static int
2614 mirror_scan(struct ofproto_dpif *ofproto)
2615 {
2616 int idx;
2617
2618 for (idx = 0; idx < MAX_MIRRORS; idx++) {
2619 if (!ofproto->mirrors[idx]) {
2620 return idx;
2621 }
2622 }
2623 return -1;
2624 }
2625
2626 static struct ofmirror *
2627 mirror_lookup(struct ofproto_dpif *ofproto, void *aux)
2628 {
2629 int i;
2630
2631 for (i = 0; i < MAX_MIRRORS; i++) {
2632 struct ofmirror *mirror = ofproto->mirrors[i];
2633 if (mirror && mirror->aux == aux) {
2634 return mirror;
2635 }
2636 }
2637
2638 return NULL;
2639 }
2640
2641 /* Update the 'dup_mirrors' member of each of the ofmirrors in 'ofproto'. */
2642 static void
2643 mirror_update_dups(struct ofproto_dpif *ofproto)
2644 {
2645 int i;
2646
2647 for (i = 0; i < MAX_MIRRORS; i++) {
2648 struct ofmirror *m = ofproto->mirrors[i];
2649
2650 if (m) {
2651 m->dup_mirrors = MIRROR_MASK_C(1) << i;
2652 }
2653 }
2654
2655 for (i = 0; i < MAX_MIRRORS; i++) {
2656 struct ofmirror *m1 = ofproto->mirrors[i];
2657 int j;
2658
2659 if (!m1) {
2660 continue;
2661 }
2662
2663 for (j = i + 1; j < MAX_MIRRORS; j++) {
2664 struct ofmirror *m2 = ofproto->mirrors[j];
2665
2666 if (m2 && m1->out == m2->out && m1->out_vlan == m2->out_vlan) {
2667 m1->dup_mirrors |= MIRROR_MASK_C(1) << j;
2668 m2->dup_mirrors |= m1->dup_mirrors;
2669 }
2670 }
2671 }
2672 }
2673
2674 static int
2675 mirror_set(struct ofproto *ofproto_, void *aux,
2676 const struct ofproto_mirror_settings *s)
2677 {
2678 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2679 mirror_mask_t mirror_bit;
2680 struct ofbundle *bundle;
2681 struct ofmirror *mirror;
2682 struct ofbundle *out;
2683 struct hmapx srcs; /* Contains "struct ofbundle *"s. */
2684 struct hmapx dsts; /* Contains "struct ofbundle *"s. */
2685 int out_vlan;
2686
2687 mirror = mirror_lookup(ofproto, aux);
2688 if (!s) {
2689 mirror_destroy(mirror);
2690 return 0;
2691 }
2692 if (!mirror) {
2693 int idx;
2694
2695 idx = mirror_scan(ofproto);
2696 if (idx < 0) {
2697 VLOG_WARN("bridge %s: maximum of %d port mirrors reached, "
2698 "cannot create %s",
2699 ofproto->up.name, MAX_MIRRORS, s->name);
2700 return EFBIG;
2701 }
2702
2703 mirror = ofproto->mirrors[idx] = xzalloc(sizeof *mirror);
2704 mirror->ofproto = ofproto;
2705 mirror->idx = idx;
2706 mirror->aux = aux;
2707 mirror->out_vlan = -1;
2708 mirror->name = NULL;
2709 }
2710
2711 if (!mirror->name || strcmp(s->name, mirror->name)) {
2712 free(mirror->name);
2713 mirror->name = xstrdup(s->name);
2714 }
2715
2716 /* Get the new configuration. */
2717 if (s->out_bundle) {
2718 out = bundle_lookup(ofproto, s->out_bundle);
2719 if (!out) {
2720 mirror_destroy(mirror);
2721 return EINVAL;
2722 }
2723 out_vlan = -1;
2724 } else {
2725 out = NULL;
2726 out_vlan = s->out_vlan;
2727 }
2728 bundle_lookup_multiple(ofproto, s->srcs, s->n_srcs, &srcs);
2729 bundle_lookup_multiple(ofproto, s->dsts, s->n_dsts, &dsts);
2730
2731 /* If the configuration has not changed, do nothing. */
2732 if (hmapx_equals(&srcs, &mirror->srcs)
2733 && hmapx_equals(&dsts, &mirror->dsts)
2734 && vlan_bitmap_equal(mirror->vlans, s->src_vlans)
2735 && mirror->out == out
2736 && mirror->out_vlan == out_vlan)
2737 {
2738 hmapx_destroy(&srcs);
2739 hmapx_destroy(&dsts);
2740 return 0;
2741 }
2742
2743 hmapx_swap(&srcs, &mirror->srcs);
2744 hmapx_destroy(&srcs);
2745
2746 hmapx_swap(&dsts, &mirror->dsts);
2747 hmapx_destroy(&dsts);
2748
2749 free(mirror->vlans);
2750 mirror->vlans = vlan_bitmap_clone(s->src_vlans);
2751
2752 mirror->out = out;
2753 mirror->out_vlan = out_vlan;
2754
2755 /* Update bundles. */
2756 mirror_bit = MIRROR_MASK_C(1) << mirror->idx;
2757 HMAP_FOR_EACH (bundle, hmap_node, &mirror->ofproto->bundles) {
2758 if (hmapx_contains(&mirror->srcs, bundle)) {
2759 bundle->src_mirrors |= mirror_bit;
2760 } else {
2761 bundle->src_mirrors &= ~mirror_bit;
2762 }
2763
2764 if (hmapx_contains(&mirror->dsts, bundle)) {
2765 bundle->dst_mirrors |= mirror_bit;
2766 } else {
2767 bundle->dst_mirrors &= ~mirror_bit;
2768 }
2769
2770 if (mirror->out == bundle) {
2771 bundle->mirror_out |= mirror_bit;
2772 } else {
2773 bundle->mirror_out &= ~mirror_bit;
2774 }
2775 }
2776
2777 ofproto->backer->need_revalidate = REV_RECONFIGURE;
2778 ofproto->has_mirrors = true;
2779 mac_learning_flush(ofproto->ml,
2780 &ofproto->backer->revalidate_set);
2781 mirror_update_dups(ofproto);
2782
2783 return 0;
2784 }
2785
2786 static void
2787 mirror_destroy(struct ofmirror *mirror)
2788 {
2789 struct ofproto_dpif *ofproto;
2790 mirror_mask_t mirror_bit;
2791 struct ofbundle *bundle;
2792 int i;
2793
2794 if (!mirror) {
2795 return;
2796 }
2797
2798 ofproto = mirror->ofproto;
2799 ofproto->backer->need_revalidate = REV_RECONFIGURE;
2800 mac_learning_flush(ofproto->ml, &ofproto->backer->revalidate_set);
2801
2802 mirror_bit = MIRROR_MASK_C(1) << mirror->idx;
2803 HMAP_FOR_EACH (bundle, hmap_node, &ofproto->bundles) {
2804 bundle->src_mirrors &= ~mirror_bit;
2805 bundle->dst_mirrors &= ~mirror_bit;
2806 bundle->mirror_out &= ~mirror_bit;
2807 }
2808
2809 hmapx_destroy(&mirror->srcs);
2810 hmapx_destroy(&mirror->dsts);
2811 free(mirror->vlans);
2812
2813 ofproto->mirrors[mirror->idx] = NULL;
2814 free(mirror->name);
2815 free(mirror);
2816
2817 mirror_update_dups(ofproto);
2818
2819 ofproto->has_mirrors = false;
2820 for (i = 0; i < MAX_MIRRORS; i++) {
2821 if (ofproto->mirrors[i]) {
2822 ofproto->has_mirrors = true;
2823 break;
2824 }
2825 }
2826 }
2827
2828 static int
2829 mirror_get_stats(struct ofproto *ofproto_, void *aux,
2830 uint64_t *packets, uint64_t *bytes)
2831 {
2832 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2833 struct ofmirror *mirror = mirror_lookup(ofproto, aux);
2834
2835 if (!mirror) {
2836 *packets = *bytes = UINT64_MAX;
2837 return 0;
2838 }
2839
2840 *packets = mirror->packet_count;
2841 *bytes = mirror->byte_count;
2842
2843 return 0;
2844 }
2845
2846 static int
2847 set_flood_vlans(struct ofproto *ofproto_, unsigned long *flood_vlans)
2848 {
2849 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2850 if (mac_learning_set_flood_vlans(ofproto->ml, flood_vlans)) {
2851 mac_learning_flush(ofproto->ml, &ofproto->backer->revalidate_set);
2852 }
2853 return 0;
2854 }
2855
2856 static bool
2857 is_mirror_output_bundle(const struct ofproto *ofproto_, void *aux)
2858 {
2859 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2860 struct ofbundle *bundle = bundle_lookup(ofproto, aux);
2861 return bundle && bundle->mirror_out != 0;
2862 }
2863
2864 static void
2865 forward_bpdu_changed(struct ofproto *ofproto_)
2866 {
2867 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2868 ofproto->backer->need_revalidate = REV_RECONFIGURE;
2869 }
2870
2871 static void
2872 set_mac_table_config(struct ofproto *ofproto_, unsigned int idle_time,
2873 size_t max_entries)
2874 {
2875 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2876 mac_learning_set_idle_time(ofproto->ml, idle_time);
2877 mac_learning_set_max_entries(ofproto->ml, max_entries);
2878 }
2879 \f
2880 /* Ports. */
2881
2882 static struct ofport_dpif *
2883 get_ofp_port(const struct ofproto_dpif *ofproto, uint16_t ofp_port)
2884 {
2885 struct ofport *ofport = ofproto_get_port(&ofproto->up, ofp_port);
2886 return ofport ? ofport_dpif_cast(ofport) : NULL;
2887 }
2888
2889 static struct ofport_dpif *
2890 get_odp_port(const struct ofproto_dpif *ofproto, uint32_t odp_port)
2891 {
2892 struct ofport_dpif *port = odp_port_to_ofport(ofproto->backer, odp_port);
2893 return port && &ofproto->up == port->up.ofproto ? port : NULL;
2894 }
2895
2896 static void
2897 ofproto_port_from_dpif_port(struct ofproto_dpif *ofproto,
2898 struct ofproto_port *ofproto_port,
2899 struct dpif_port *dpif_port)
2900 {
2901 ofproto_port->name = dpif_port->name;
2902 ofproto_port->type = dpif_port->type;
2903 ofproto_port->ofp_port = odp_port_to_ofp_port(ofproto, dpif_port->port_no);
2904 }
2905
2906 static struct ofport_dpif *
2907 ofport_get_peer(const struct ofport_dpif *ofport_dpif)
2908 {
2909 const struct ofproto_dpif *ofproto;
2910 const char *peer;
2911
2912 peer = netdev_vport_patch_peer(ofport_dpif->up.netdev);
2913 if (!peer) {
2914 return NULL;
2915 }
2916
2917 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
2918 struct ofport *ofport;
2919
2920 ofport = shash_find_data(&ofproto->up.port_by_name, peer);
2921 if (ofport && ofport->ofproto->ofproto_class == &ofproto_dpif_class) {
2922 return ofport_dpif_cast(ofport);
2923 }
2924 }
2925 return NULL;
2926 }
2927
2928 static void
2929 port_run_fast(struct ofport_dpif *ofport)
2930 {
2931 if (ofport->cfm && cfm_should_send_ccm(ofport->cfm)) {
2932 struct ofpbuf packet;
2933
2934 ofpbuf_init(&packet, 0);
2935 cfm_compose_ccm(ofport->cfm, &packet, ofport->up.pp.hw_addr);
2936 send_packet(ofport, &packet);
2937 ofpbuf_uninit(&packet);
2938 }
2939 }
2940
2941 static void
2942 port_run(struct ofport_dpif *ofport)
2943 {
2944 long long int carrier_seq = netdev_get_carrier_resets(ofport->up.netdev);
2945 bool carrier_changed = carrier_seq != ofport->carrier_seq;
2946 bool enable = netdev_get_carrier(ofport->up.netdev);
2947
2948 ofport->carrier_seq = carrier_seq;
2949
2950 port_run_fast(ofport);
2951
2952 if (ofport->tnl_port
2953 && tnl_port_reconfigure(&ofport->up, ofport->odp_port,
2954 &ofport->tnl_port)) {
2955 ofproto_dpif_cast(ofport->up.ofproto)->backer->need_revalidate = true;
2956 }
2957
2958 if (ofport->cfm) {
2959 int cfm_opup = cfm_get_opup(ofport->cfm);
2960
2961 cfm_run(ofport->cfm);
2962 enable = enable && !cfm_get_fault(ofport->cfm);
2963
2964 if (cfm_opup >= 0) {
2965 enable = enable && cfm_opup;
2966 }
2967 }
2968
2969 if (ofport->bundle) {
2970 enable = enable && lacp_slave_may_enable(ofport->bundle->lacp, ofport);
2971 if (carrier_changed) {
2972 lacp_slave_carrier_changed(ofport->bundle->lacp, ofport);
2973 }
2974 }
2975
2976 if (ofport->may_enable != enable) {
2977 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
2978
2979 if (ofproto->has_bundle_action) {
2980 ofproto->backer->need_revalidate = REV_PORT_TOGGLED;
2981 }
2982 }
2983
2984 ofport->may_enable = enable;
2985 }
2986
2987 static void
2988 port_wait(struct ofport_dpif *ofport)
2989 {
2990 if (ofport->cfm) {
2991 cfm_wait(ofport->cfm);
2992 }
2993 }
2994
2995 static int
2996 port_query_by_name(const struct ofproto *ofproto_, const char *devname,
2997 struct ofproto_port *ofproto_port)
2998 {
2999 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
3000 struct dpif_port dpif_port;
3001 int error;
3002
3003 if (sset_contains(&ofproto->ghost_ports, devname)) {
3004 const char *type = netdev_get_type_from_name(devname);
3005
3006 /* We may be called before ofproto->up.port_by_name is populated with
3007 * the appropriate ofport. For this reason, we must get the name and
3008 * type from the netdev layer directly. */
3009 if (type) {
3010 const struct ofport *ofport;
3011
3012 ofport = shash_find_data(&ofproto->up.port_by_name, devname);
3013 ofproto_port->ofp_port = ofport ? ofport->ofp_port : OFPP_NONE;
3014 ofproto_port->name = xstrdup(devname);
3015 ofproto_port->type = xstrdup(type);
3016 return 0;
3017 }
3018 return ENODEV;
3019 }
3020
3021 if (!sset_contains(&ofproto->ports, devname)) {
3022 return ENODEV;
3023 }
3024 error = dpif_port_query_by_name(ofproto->backer->dpif,
3025 devname, &dpif_port);
3026 if (!error) {
3027 ofproto_port_from_dpif_port(ofproto, ofproto_port, &dpif_port);
3028 }
3029 return error;
3030 }
3031
3032 static int
3033 port_add(struct ofproto *ofproto_, struct netdev *netdev)
3034 {
3035 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
3036 const char *dp_port_name = netdev_vport_get_dpif_port(netdev);
3037 const char *devname = netdev_get_name(netdev);
3038
3039 if (netdev_vport_is_patch(netdev)) {
3040 sset_add(&ofproto->ghost_ports, netdev_get_name(netdev));
3041 return 0;
3042 }
3043
3044 if (!dpif_port_exists(ofproto->backer->dpif, dp_port_name)) {
3045 uint32_t port_no = UINT32_MAX;
3046 int error;
3047
3048 error = dpif_port_add(ofproto->backer->dpif, netdev, &port_no);
3049 if (error) {
3050 return error;
3051 }
3052 if (netdev_get_tunnel_config(netdev)) {
3053 simap_put(&ofproto->backer->tnl_backers, dp_port_name, port_no);
3054 }
3055 }
3056
3057 if (netdev_get_tunnel_config(netdev)) {
3058 sset_add(&ofproto->ghost_ports, devname);
3059 } else {
3060 sset_add(&ofproto->ports, devname);
3061 }
3062 return 0;
3063 }
3064
3065 static int
3066 port_del(struct ofproto *ofproto_, uint16_t ofp_port)
3067 {
3068 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
3069 struct ofport_dpif *ofport = get_ofp_port(ofproto, ofp_port);
3070 int error = 0;
3071
3072 if (!ofport) {
3073 return 0;
3074 }
3075
3076 sset_find_and_delete(&ofproto->ghost_ports,
3077 netdev_get_name(ofport->up.netdev));
3078 ofproto->backer->need_revalidate = REV_RECONFIGURE;
3079 if (!ofport->tnl_port) {
3080 error = dpif_port_del(ofproto->backer->dpif, ofport->odp_port);
3081 if (!error) {
3082 /* The caller is going to close ofport->up.netdev. If this is a
3083 * bonded port, then the bond is using that netdev, so remove it
3084 * from the bond. The client will need to reconfigure everything
3085 * after deleting ports, so then the slave will get re-added. */
3086 bundle_remove(&ofport->up);
3087 }
3088 }
3089 return error;
3090 }
3091
3092 static int
3093 port_get_stats(const struct ofport *ofport_, struct netdev_stats *stats)
3094 {
3095 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
3096 int error;
3097
3098 error = netdev_get_stats(ofport->up.netdev, stats);
3099
3100 if (!error && ofport_->ofp_port == OFPP_LOCAL) {
3101 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
3102
3103 /* ofproto->stats.tx_packets represents packets that we created
3104 * internally and sent to some port (e.g. packets sent with
3105 * send_packet()). Account for them as if they had come from
3106 * OFPP_LOCAL and got forwarded. */
3107
3108 if (stats->rx_packets != UINT64_MAX) {
3109 stats->rx_packets += ofproto->stats.tx_packets;
3110 }
3111
3112 if (stats->rx_bytes != UINT64_MAX) {
3113 stats->rx_bytes += ofproto->stats.tx_bytes;
3114 }
3115
3116 /* ofproto->stats.rx_packets represents packets that were received on
3117 * some port and we processed internally and dropped (e.g. STP).
3118 * Account for them as if they had been forwarded to OFPP_LOCAL. */
3119
3120 if (stats->tx_packets != UINT64_MAX) {
3121 stats->tx_packets += ofproto->stats.rx_packets;
3122 }
3123
3124 if (stats->tx_bytes != UINT64_MAX) {
3125 stats->tx_bytes += ofproto->stats.rx_bytes;
3126 }
3127 }
3128
3129 return error;
3130 }
3131
3132 /* Account packets for LOCAL port. */
3133 static void
3134 ofproto_update_local_port_stats(const struct ofproto *ofproto_,
3135 size_t tx_size, size_t rx_size)
3136 {
3137 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
3138
3139 if (rx_size) {
3140 ofproto->stats.rx_packets++;
3141 ofproto->stats.rx_bytes += rx_size;
3142 }
3143 if (tx_size) {
3144 ofproto->stats.tx_packets++;
3145 ofproto->stats.tx_bytes += tx_size;
3146 }
3147 }
3148
3149 struct port_dump_state {
3150 uint32_t bucket;
3151 uint32_t offset;
3152 bool ghost;
3153
3154 struct ofproto_port port;
3155 bool has_port;
3156 };
3157
3158 static int
3159 port_dump_start(const struct ofproto *ofproto_ OVS_UNUSED, void **statep)
3160 {
3161 *statep = xzalloc(sizeof(struct port_dump_state));
3162 return 0;
3163 }
3164
3165 static int
3166 port_dump_next(const struct ofproto *ofproto_, void *state_,
3167 struct ofproto_port *port)
3168 {
3169 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
3170 struct port_dump_state *state = state_;
3171 const struct sset *sset;
3172 struct sset_node *node;
3173
3174 if (state->has_port) {
3175 ofproto_port_destroy(&state->port);
3176 state->has_port = false;
3177 }
3178 sset = state->ghost ? &ofproto->ghost_ports : &ofproto->ports;
3179 while ((node = sset_at_position(sset, &state->bucket, &state->offset))) {
3180 int error;
3181
3182 error = port_query_by_name(ofproto_, node->name, &state->port);
3183 if (!error) {
3184 *port = state->port;
3185 state->has_port = true;
3186 return 0;
3187 } else if (error != ENODEV) {
3188 return error;
3189 }
3190 }
3191
3192 if (!state->ghost) {
3193 state->ghost = true;
3194 state->bucket = 0;
3195 state->offset = 0;
3196 return port_dump_next(ofproto_, state_, port);
3197 }
3198
3199 return EOF;
3200 }
3201
3202 static int
3203 port_dump_done(const struct ofproto *ofproto_ OVS_UNUSED, void *state_)
3204 {
3205 struct port_dump_state *state = state_;
3206
3207 if (state->has_port) {
3208 ofproto_port_destroy(&state->port);
3209 }
3210 free(state);
3211 return 0;
3212 }
3213
3214 static int
3215 port_poll(const struct ofproto *ofproto_, char **devnamep)
3216 {
3217 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
3218
3219 if (ofproto->port_poll_errno) {
3220 int error = ofproto->port_poll_errno;
3221 ofproto->port_poll_errno = 0;
3222 return error;
3223 }
3224
3225 if (sset_is_empty(&ofproto->port_poll_set)) {
3226 return EAGAIN;
3227 }
3228
3229 *devnamep = sset_pop(&ofproto->port_poll_set);
3230 return 0;
3231 }
3232
3233 static void
3234 port_poll_wait(const struct ofproto *ofproto_)
3235 {
3236 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
3237 dpif_port_poll_wait(ofproto->backer->dpif);
3238 }
3239
3240 static int
3241 port_is_lacp_current(const struct ofport *ofport_)
3242 {
3243 const struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
3244 return (ofport->bundle && ofport->bundle->lacp
3245 ? lacp_slave_is_current(ofport->bundle->lacp, ofport)
3246 : -1);
3247 }
3248 \f
3249 /* Upcall handling. */
3250
3251 /* Flow miss batching.
3252 *
3253 * Some dpifs implement operations faster when you hand them off in a batch.
3254 * To allow batching, "struct flow_miss" queues the dpif-related work needed
3255 * for a given flow. Each "struct flow_miss" corresponds to sending one or
3256 * more packets, plus possibly installing the flow in the dpif.
3257 *
3258 * So far we only batch the operations that affect flow setup time the most.
3259 * It's possible to batch more than that, but the benefit might be minimal. */
3260 struct flow_miss {
3261 struct hmap_node hmap_node;
3262 struct ofproto_dpif *ofproto;
3263 struct flow flow;
3264 enum odp_key_fitness key_fitness;
3265 const struct nlattr *key;
3266 size_t key_len;
3267 ovs_be16 initial_tci;
3268 struct list packets;
3269 enum dpif_upcall_type upcall_type;
3270 uint32_t odp_in_port;
3271 };
3272
3273 struct flow_miss_op {
3274 struct dpif_op dpif_op;
3275 void *garbage; /* Pointer to pass to free(), NULL if none. */
3276 uint64_t stub[1024 / 8]; /* Temporary buffer. */
3277 };
3278
3279 /* Sends an OFPT_PACKET_IN message for 'packet' of type OFPR_NO_MATCH to each
3280 * OpenFlow controller as necessary according to their individual
3281 * configurations. */
3282 static void
3283 send_packet_in_miss(struct ofproto_dpif *ofproto, const struct ofpbuf *packet,
3284 const struct flow *flow)
3285 {
3286 struct ofputil_packet_in pin;
3287
3288 pin.packet = packet->data;
3289 pin.packet_len = packet->size;
3290 pin.reason = OFPR_NO_MATCH;
3291 pin.controller_id = 0;
3292
3293 pin.table_id = 0;
3294 pin.cookie = 0;
3295
3296 pin.send_len = 0; /* not used for flow table misses */
3297
3298 flow_get_metadata(flow, &pin.fmd);
3299
3300 connmgr_send_packet_in(ofproto->up.connmgr, &pin);
3301 }
3302
3303 static enum slow_path_reason
3304 process_special(struct ofproto_dpif *ofproto, const struct flow *flow,
3305 const struct ofport_dpif *ofport, const struct ofpbuf *packet)
3306 {
3307 if (!ofport) {
3308 return 0;
3309 } else if (ofport->cfm && cfm_should_process_flow(ofport->cfm, flow)) {
3310 if (packet) {
3311 cfm_process_heartbeat(ofport->cfm, packet);
3312 }
3313 return SLOW_CFM;
3314 } else if (ofport->bundle && ofport->bundle->lacp
3315 && flow->dl_type == htons(ETH_TYPE_LACP)) {
3316 if (packet) {
3317 lacp_process_packet(ofport->bundle->lacp, ofport, packet);
3318 }
3319 return SLOW_LACP;
3320 } else if (ofproto->stp && stp_should_process_flow(flow)) {
3321 if (packet) {
3322 stp_process_packet(ofport, packet);
3323 }
3324 return SLOW_STP;
3325 } else {
3326 return 0;
3327 }
3328 }
3329
3330 static struct flow_miss *
3331 flow_miss_find(struct hmap *todo, const struct ofproto_dpif *ofproto,
3332 const struct flow *flow, uint32_t hash)
3333 {
3334 struct flow_miss *miss;
3335
3336 HMAP_FOR_EACH_WITH_HASH (miss, hmap_node, hash, todo) {
3337 if (miss->ofproto == ofproto && flow_equal(&miss->flow, flow)) {
3338 return miss;
3339 }
3340 }
3341
3342 return NULL;
3343 }
3344
3345 /* Partially Initializes 'op' as an "execute" operation for 'miss' and
3346 * 'packet'. The caller must initialize op->actions and op->actions_len. If
3347 * 'miss' is associated with a subfacet the caller must also initialize the
3348 * returned op->subfacet, and if anything needs to be freed after processing
3349 * the op, the caller must initialize op->garbage also. */
3350 static void
3351 init_flow_miss_execute_op(struct flow_miss *miss, struct ofpbuf *packet,
3352 struct flow_miss_op *op)
3353 {
3354 if (miss->flow.vlan_tci != miss->initial_tci) {
3355 /* This packet was received on a VLAN splinter port. We
3356 * added a VLAN to the packet to make the packet resemble
3357 * the flow, but the actions were composed assuming that
3358 * the packet contained no VLAN. So, we must remove the
3359 * VLAN header from the packet before trying to execute the
3360 * actions. */
3361 eth_pop_vlan(packet);
3362 }
3363
3364 op->garbage = NULL;
3365 op->dpif_op.type = DPIF_OP_EXECUTE;
3366 op->dpif_op.u.execute.key = miss->key;
3367 op->dpif_op.u.execute.key_len = miss->key_len;
3368 op->dpif_op.u.execute.packet = packet;
3369 }
3370
3371 /* Helper for handle_flow_miss_without_facet() and
3372 * handle_flow_miss_with_facet(). */
3373 static void
3374 handle_flow_miss_common(struct rule_dpif *rule,
3375 struct ofpbuf *packet, const struct flow *flow)
3376 {
3377 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
3378
3379 ofproto->n_matches++;
3380
3381 if (rule->up.cr.priority == FAIL_OPEN_PRIORITY) {
3382 /*
3383 * Extra-special case for fail-open mode.
3384 *
3385 * We are in fail-open mode and the packet matched the fail-open
3386 * rule, but we are connected to a controller too. We should send
3387 * the packet up to the controller in the hope that it will try to
3388 * set up a flow and thereby allow us to exit fail-open.
3389 *
3390 * See the top-level comment in fail-open.c for more information.
3391 */
3392 send_packet_in_miss(ofproto, packet, flow);
3393 }
3394 }
3395
3396 /* Figures out whether a flow that missed in 'ofproto', whose details are in
3397 * 'miss', is likely to be worth tracking in detail in userspace and (usually)
3398 * installing a datapath flow. The answer is usually "yes" (a return value of
3399 * true). However, for short flows the cost of bookkeeping is much higher than
3400 * the benefits, so when the datapath holds a large number of flows we impose
3401 * some heuristics to decide which flows are likely to be worth tracking. */
3402 static bool
3403 flow_miss_should_make_facet(struct ofproto_dpif *ofproto,
3404 struct flow_miss *miss, uint32_t hash)
3405 {
3406 if (!ofproto->governor) {
3407 size_t n_subfacets;
3408
3409 n_subfacets = hmap_count(&ofproto->subfacets);
3410 if (n_subfacets * 2 <= ofproto->up.flow_eviction_threshold) {
3411 return true;
3412 }
3413
3414 ofproto->governor = governor_create(ofproto->up.name);
3415 }
3416
3417 return governor_should_install_flow(ofproto->governor, hash,
3418 list_size(&miss->packets));
3419 }
3420
3421 /* Handles 'miss', which matches 'rule', without creating a facet or subfacet
3422 * or creating any datapath flow. May add an "execute" operation to 'ops' and
3423 * increment '*n_ops'. */
3424 static void
3425 handle_flow_miss_without_facet(struct flow_miss *miss,
3426 struct rule_dpif *rule,
3427 struct flow_miss_op *ops, size_t *n_ops)
3428 {
3429 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
3430 long long int now = time_msec();
3431 struct action_xlate_ctx ctx;
3432 struct ofpbuf *packet;
3433
3434 LIST_FOR_EACH (packet, list_node, &miss->packets) {
3435 struct flow_miss_op *op = &ops[*n_ops];
3436 struct dpif_flow_stats stats;
3437 struct ofpbuf odp_actions;
3438
3439 COVERAGE_INC(facet_suppress);
3440
3441 ofpbuf_use_stub(&odp_actions, op->stub, sizeof op->stub);
3442
3443 dpif_flow_stats_extract(&miss->flow, packet, now, &stats);
3444 rule_credit_stats(rule, &stats);
3445
3446 action_xlate_ctx_init(&ctx, ofproto, &miss->flow, miss->initial_tci,
3447 rule, 0, packet);
3448 ctx.resubmit_stats = &stats;
3449 xlate_actions(&ctx, rule->up.ofpacts, rule->up.ofpacts_len,
3450 &odp_actions);
3451
3452 if (odp_actions.size) {
3453 struct dpif_execute *execute = &op->dpif_op.u.execute;
3454
3455 init_flow_miss_execute_op(miss, packet, op);
3456 execute->actions = odp_actions.data;
3457 execute->actions_len = odp_actions.size;
3458 op->garbage = ofpbuf_get_uninit_pointer(&odp_actions);
3459
3460 (*n_ops)++;
3461 } else {
3462 ofpbuf_uninit(&odp_actions);
3463 }
3464 }
3465 }
3466
3467 /* Handles 'miss', which matches 'facet'. May add any required datapath
3468 * operations to 'ops', incrementing '*n_ops' for each new op.
3469 *
3470 * All of the packets in 'miss' are considered to have arrived at time 'now'.
3471 * This is really important only for new facets: if we just called time_msec()
3472 * here, then the new subfacet or its packets could look (occasionally) as
3473 * though it was used some time after the facet was used. That can make a
3474 * one-packet flow look like it has a nonzero duration, which looks odd in
3475 * e.g. NetFlow statistics. */
3476 static void
3477 handle_flow_miss_with_facet(struct flow_miss *miss, struct facet *facet,
3478 long long int now,
3479 struct flow_miss_op *ops, size_t *n_ops)
3480 {
3481 struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto);
3482 enum subfacet_path want_path;
3483 struct subfacet *subfacet;
3484 struct ofpbuf *packet;
3485
3486 subfacet = subfacet_create(facet, miss, now);
3487
3488 LIST_FOR_EACH (packet, list_node, &miss->packets) {
3489 struct flow_miss_op *op = &ops[*n_ops];
3490 struct dpif_flow_stats stats;
3491 struct ofpbuf odp_actions;
3492
3493 handle_flow_miss_common(facet->rule, packet, &miss->flow);
3494
3495 ofpbuf_use_stub(&odp_actions, op->stub, sizeof op->stub);
3496 if (!subfacet->actions || subfacet->slow) {
3497 subfacet_make_actions(subfacet, packet, &odp_actions);
3498 }
3499
3500 dpif_flow_stats_extract(&facet->flow, packet, now, &stats);
3501 subfacet_update_stats(subfacet, &stats);
3502
3503 if (subfacet->actions_len) {
3504 struct dpif_execute *execute = &op->dpif_op.u.execute;
3505
3506 init_flow_miss_execute_op(miss, packet, op);
3507 if (!subfacet->slow) {
3508 execute->actions = subfacet->actions;
3509 execute->actions_len = subfacet->actions_len;
3510 ofpbuf_uninit(&odp_actions);
3511 } else {
3512 execute->actions = odp_actions.data;
3513 execute->actions_len = odp_actions.size;
3514 op->garbage = ofpbuf_get_uninit_pointer(&odp_actions);
3515 }
3516
3517 (*n_ops)++;
3518 } else {
3519 ofpbuf_uninit(&odp_actions);
3520 }
3521 }
3522
3523 want_path = subfacet_want_path(subfacet->slow);
3524 if (miss->upcall_type == DPIF_UC_MISS || subfacet->path != want_path) {
3525 struct flow_miss_op *op = &ops[(*n_ops)++];
3526 struct dpif_flow_put *put = &op->dpif_op.u.flow_put;
3527
3528 subfacet->path = want_path;
3529
3530 op->garbage = NULL;
3531 op->dpif_op.type = DPIF_OP_FLOW_PUT;
3532 put->flags = DPIF_FP_CREATE | DPIF_FP_MODIFY;
3533 put->key = miss->key;
3534 put->key_len = miss->key_len;
3535 if (want_path == SF_FAST_PATH) {
3536 put->actions = subfacet->actions;
3537 put->actions_len = subfacet->actions_len;
3538 } else {
3539 compose_slow_path(ofproto, &facet->flow, subfacet->slow,
3540 op->stub, sizeof op->stub,
3541 &put->actions, &put->actions_len);
3542 }
3543 put->stats = NULL;
3544 }
3545 }
3546
3547 /* Handles flow miss 'miss'. May add any required datapath operations
3548 * to 'ops', incrementing '*n_ops' for each new op. */
3549 static void
3550 handle_flow_miss(struct flow_miss *miss, struct flow_miss_op *ops,
3551 size_t *n_ops)
3552 {
3553 struct ofproto_dpif *ofproto = miss->ofproto;
3554 struct facet *facet;
3555 long long int now;
3556 uint32_t hash;
3557
3558 /* The caller must ensure that miss->hmap_node.hash contains
3559 * flow_hash(miss->flow, 0). */
3560 hash = miss->hmap_node.hash;
3561
3562 facet = facet_lookup_valid(ofproto, &miss->flow, hash);
3563 if (!facet) {
3564 struct rule_dpif *rule = rule_dpif_lookup(ofproto, &miss->flow);
3565
3566 if (!flow_miss_should_make_facet(ofproto, miss, hash)) {
3567 handle_flow_miss_without_facet(miss, rule, ops, n_ops);
3568 return;
3569 }
3570
3571 facet = facet_create(rule, &miss->flow, hash);
3572 now = facet->used;
3573 } else {
3574 now = time_msec();
3575 }
3576 handle_flow_miss_with_facet(miss, facet, now, ops, n_ops);
3577 }
3578
3579 static struct drop_key *
3580 drop_key_lookup(const struct dpif_backer *backer, const struct nlattr *key,
3581 size_t key_len)
3582 {
3583 struct drop_key *drop_key;
3584
3585 HMAP_FOR_EACH_WITH_HASH (drop_key, hmap_node, hash_bytes(key, key_len, 0),
3586 &backer->drop_keys) {
3587 if (drop_key->key_len == key_len
3588 && !memcmp(drop_key->key, key, key_len)) {
3589 return drop_key;
3590 }
3591 }
3592 return NULL;
3593 }
3594
3595 static void
3596 drop_key_clear(struct dpif_backer *backer)
3597 {
3598 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 15);
3599 struct drop_key *drop_key, *next;
3600
3601 HMAP_FOR_EACH_SAFE (drop_key, next, hmap_node, &backer->drop_keys) {
3602 int error;
3603
3604 error = dpif_flow_del(backer->dpif, drop_key->key, drop_key->key_len,
3605 NULL);
3606 if (error && !VLOG_DROP_WARN(&rl)) {
3607 struct ds ds = DS_EMPTY_INITIALIZER;
3608 odp_flow_key_format(drop_key->key, drop_key->key_len, &ds);
3609 VLOG_WARN("Failed to delete drop key (%s) (%s)", strerror(error),
3610 ds_cstr(&ds));
3611 ds_destroy(&ds);
3612 }
3613
3614 hmap_remove(&backer->drop_keys, &drop_key->hmap_node);
3615 free(drop_key->key);
3616 free(drop_key);
3617 }
3618 }
3619
3620 /* Given a datpath, packet, and flow metadata ('backer', 'packet', and 'key'
3621 * respectively), populates 'flow' with the result of odp_flow_key_to_flow().
3622 * Optionally, if nonnull, populates 'fitnessp' with the fitness of 'flow' as
3623 * returned by odp_flow_key_to_flow(). Also, optionally populates 'ofproto'
3624 * with the ofproto_dpif, and 'odp_in_port' with the datapath in_port, that
3625 * 'packet' ingressed.
3626 *
3627 * If 'ofproto' is nonnull, requires 'flow''s in_port to exist. Otherwise sets
3628 * 'flow''s in_port to OFPP_NONE.
3629 *
3630 * This function does post-processing on data returned from
3631 * odp_flow_key_to_flow() to help make VLAN splinters transparent to the rest
3632 * of the upcall processing logic. In particular, if the extracted in_port is
3633 * a VLAN splinter port, it replaces flow->in_port by the "real" port, sets
3634 * flow->vlan_tci correctly for the VLAN of the VLAN splinter port, and pushes
3635 * a VLAN header onto 'packet' (if it is nonnull).
3636 *
3637 * Optionally, if nonnull, sets '*initial_tci' to the VLAN TCI with which the
3638 * packet was really received, that is, the actual VLAN TCI extracted by
3639 * odp_flow_key_to_flow(). (This differs from the value returned in
3640 * flow->vlan_tci only for packets received on VLAN splinters.)
3641 *
3642 * Similarly, this function also includes some logic to help with tunnels. It
3643 * may modify 'flow' as necessary to make the tunneling implementation
3644 * transparent to the upcall processing logic.
3645 *
3646 * Returns 0 if successful, ENODEV if the parsed flow has no associated ofport,
3647 * or some other positive errno if there are other problems. */
3648 static int
3649 ofproto_receive(const struct dpif_backer *backer, struct ofpbuf *packet,
3650 const struct nlattr *key, size_t key_len,
3651 struct flow *flow, enum odp_key_fitness *fitnessp,
3652 struct ofproto_dpif **ofproto, uint32_t *odp_in_port,
3653 ovs_be16 *initial_tci)
3654 {
3655 const struct ofport_dpif *port;
3656 enum odp_key_fitness fitness;
3657 int error = ENODEV;
3658
3659 fitness = odp_flow_key_to_flow(key, key_len, flow);
3660 if (fitness == ODP_FIT_ERROR) {
3661 error = EINVAL;
3662 goto exit;
3663 }
3664
3665 if (initial_tci) {
3666 *initial_tci = flow->vlan_tci;
3667 }
3668
3669 if (odp_in_port) {
3670 *odp_in_port = flow->in_port;
3671 }
3672
3673 if (tnl_port_should_receive(flow)) {
3674 const struct ofport *ofport = tnl_port_receive(flow);
3675 if (!ofport) {
3676 flow->in_port = OFPP_NONE;
3677 goto exit;
3678 }
3679 port = ofport_dpif_cast(ofport);
3680
3681 /* We can't reproduce 'key' from 'flow'. */
3682 fitness = fitness == ODP_FIT_PERFECT ? ODP_FIT_TOO_MUCH : fitness;
3683
3684 /* XXX: Since the tunnel module is not scoped per backer, it's
3685 * theoretically possible that we'll receive an ofport belonging to an
3686 * entirely different datapath. In practice, this can't happen because
3687 * no platforms has two separate datapaths which each support
3688 * tunneling. */
3689 ovs_assert(ofproto_dpif_cast(port->up.ofproto)->backer == backer);
3690 } else {
3691 port = odp_port_to_ofport(backer, flow->in_port);
3692 if (!port) {
3693 flow->in_port = OFPP_NONE;
3694 goto exit;
3695 }
3696
3697 flow->in_port = port->up.ofp_port;
3698 if (vsp_adjust_flow(ofproto_dpif_cast(port->up.ofproto), flow)) {
3699 if (packet) {
3700 /* Make the packet resemble the flow, so that it gets sent to
3701 * an OpenFlow controller properly, so that it looks correct
3702 * for sFlow, and so that flow_extract() will get the correct
3703 * vlan_tci if it is called on 'packet'.
3704 *
3705 * The allocated space inside 'packet' probably also contains
3706 * 'key', that is, both 'packet' and 'key' are probably part of
3707 * a struct dpif_upcall (see the large comment on that
3708 * structure definition), so pushing data on 'packet' is in
3709 * general not a good idea since it could overwrite 'key' or
3710 * free it as a side effect. However, it's OK in this special
3711 * case because we know that 'packet' is inside a Netlink
3712 * attribute: pushing 4 bytes will just overwrite the 4-byte
3713 * "struct nlattr", which is fine since we don't need that
3714 * header anymore. */
3715 eth_push_vlan(packet, flow->vlan_tci);
3716 }
3717 /* We can't reproduce 'key' from 'flow'. */
3718 fitness = fitness == ODP_FIT_PERFECT ? ODP_FIT_TOO_MUCH : fitness;
3719 }
3720 }
3721 error = 0;
3722
3723 if (ofproto) {
3724 *ofproto = ofproto_dpif_cast(port->up.ofproto);
3725 }
3726
3727 exit:
3728 if (fitnessp) {
3729 *fitnessp = fitness;
3730 }
3731 return error;
3732 }
3733
3734 static void
3735 handle_miss_upcalls(struct dpif_backer *backer, struct dpif_upcall *upcalls,
3736 size_t n_upcalls)
3737 {
3738 struct dpif_upcall *upcall;
3739 struct flow_miss *miss;
3740 struct flow_miss misses[FLOW_MISS_MAX_BATCH];
3741 struct flow_miss_op flow_miss_ops[FLOW_MISS_MAX_BATCH * 2];
3742 struct dpif_op *dpif_ops[FLOW_MISS_MAX_BATCH * 2];
3743 struct hmap todo;
3744 int n_misses;
3745 size_t n_ops;
3746 size_t i;
3747
3748 if (!n_upcalls) {
3749 return;
3750 }
3751
3752 /* Construct the to-do list.
3753 *
3754 * This just amounts to extracting the flow from each packet and sticking
3755 * the packets that have the same flow in the same "flow_miss" structure so
3756 * that we can process them together. */
3757 hmap_init(&todo);
3758 n_misses = 0;
3759 for (upcall = upcalls; upcall < &upcalls[n_upcalls]; upcall++) {
3760 struct flow_miss *miss = &misses[n_misses];
3761 struct flow_miss *existing_miss;
3762 struct ofproto_dpif *ofproto;
3763 uint32_t odp_in_port;
3764 struct flow flow;
3765 uint32_t hash;
3766 int error;
3767
3768 error = ofproto_receive(backer, upcall->packet, upcall->key,
3769 upcall->key_len, &flow, &miss->key_fitness,
3770 &ofproto, &odp_in_port, &miss->initial_tci);
3771 if (error == ENODEV) {
3772 struct drop_key *drop_key;
3773
3774 /* Received packet on port for which we couldn't associate
3775 * an ofproto. This can happen if a port is removed while
3776 * traffic is being received. Print a rate-limited message
3777 * in case it happens frequently. Install a drop flow so
3778 * that future packets of the flow are inexpensively dropped
3779 * in the kernel. */
3780 VLOG_INFO_RL(&rl, "received packet on unassociated port %"PRIu32,
3781 flow.in_port);
3782
3783 drop_key = drop_key_lookup(backer, upcall->key, upcall->key_len);
3784 if (!drop_key) {
3785 drop_key = xmalloc(sizeof *drop_key);
3786 drop_key->key = xmemdup(upcall->key, upcall->key_len);
3787 drop_key->key_len = upcall->key_len;
3788
3789 hmap_insert(&backer->drop_keys, &drop_key->hmap_node,
3790 hash_bytes(drop_key->key, drop_key->key_len, 0));
3791 dpif_flow_put(backer->dpif, DPIF_FP_CREATE | DPIF_FP_MODIFY,
3792 drop_key->key, drop_key->key_len, NULL, 0, NULL);
3793 }
3794 continue;
3795 }
3796 if (error) {
3797 continue;
3798 }
3799 flow_extract(upcall->packet, flow.skb_priority, flow.skb_mark,
3800 &flow.tunnel, flow.in_port, &miss->flow);
3801
3802 /* Add other packets to a to-do list. */
3803 hash = flow_hash(&miss->flow, 0);
3804 existing_miss = flow_miss_find(&todo, ofproto, &miss->flow, hash);
3805 if (!existing_miss) {
3806 hmap_insert(&todo, &miss->hmap_node, hash);
3807 miss->ofproto = ofproto;
3808 miss->key = upcall->key;
3809 miss->key_len = upcall->key_len;
3810 miss->upcall_type = upcall->type;
3811 miss->odp_in_port = odp_in_port;
3812 list_init(&miss->packets);
3813
3814 n_misses++;
3815 } else {
3816 miss = existing_miss;
3817 }
3818 list_push_back(&miss->packets, &upcall->packet->list_node);
3819 }
3820
3821 /* Process each element in the to-do list, constructing the set of
3822 * operations to batch. */
3823 n_ops = 0;
3824 HMAP_FOR_EACH (miss, hmap_node, &todo) {
3825 handle_flow_miss(miss, flow_miss_ops, &n_ops);
3826 }
3827 ovs_assert(n_ops <= ARRAY_SIZE(flow_miss_ops));
3828
3829 /* Execute batch. */
3830 for (i = 0; i < n_ops; i++) {
3831 dpif_ops[i] = &flow_miss_ops[i].dpif_op;
3832 }
3833 dpif_operate(backer->dpif, dpif_ops, n_ops);
3834
3835 /* Free memory. */
3836 for (i = 0; i < n_ops; i++) {
3837 free(flow_miss_ops[i].garbage);
3838 }
3839 hmap_destroy(&todo);
3840 }
3841
3842 static enum { SFLOW_UPCALL, MISS_UPCALL, BAD_UPCALL }
3843 classify_upcall(const struct dpif_upcall *upcall)
3844 {
3845 union user_action_cookie cookie;
3846
3847 /* First look at the upcall type. */
3848 switch (upcall->type) {
3849 case DPIF_UC_ACTION:
3850 break;
3851
3852 case DPIF_UC_MISS:
3853 return MISS_UPCALL;
3854
3855 case DPIF_N_UC_TYPES:
3856 default:
3857 VLOG_WARN_RL(&rl, "upcall has unexpected type %"PRIu32, upcall->type);
3858 return BAD_UPCALL;
3859 }
3860
3861 /* "action" upcalls need a closer look. */
3862 if (!upcall->userdata) {
3863 VLOG_WARN_RL(&rl, "action upcall missing cookie");
3864 return BAD_UPCALL;
3865 }
3866 if (nl_attr_get_size(upcall->userdata) != sizeof(cookie)) {
3867 VLOG_WARN_RL(&rl, "action upcall cookie has unexpected size %zu",
3868 nl_attr_get_size(upcall->userdata));
3869 return BAD_UPCALL;
3870 }
3871 memcpy(&cookie, nl_attr_get(upcall->userdata), sizeof(cookie));
3872 switch (cookie.type) {
3873 case USER_ACTION_COOKIE_SFLOW:
3874 return SFLOW_UPCALL;
3875
3876 case USER_ACTION_COOKIE_SLOW_PATH:
3877 return MISS_UPCALL;
3878
3879 case USER_ACTION_COOKIE_UNSPEC:
3880 default:
3881 VLOG_WARN_RL(&rl, "invalid user cookie : 0x%"PRIx64,
3882 nl_attr_get_u64(upcall->userdata));
3883 return BAD_UPCALL;
3884 }
3885 }
3886
3887 static void
3888 handle_sflow_upcall(struct dpif_backer *backer,
3889 const struct dpif_upcall *upcall)
3890 {
3891 struct ofproto_dpif *ofproto;
3892 union user_action_cookie cookie;
3893 struct flow flow;
3894 uint32_t odp_in_port;
3895
3896 if (ofproto_receive(backer, upcall->packet, upcall->key, upcall->key_len,
3897 &flow, NULL, &ofproto, &odp_in_port, NULL)
3898 || !ofproto->sflow) {
3899 return;
3900 }
3901
3902 memcpy(&cookie, nl_attr_get(upcall->userdata), sizeof(cookie));
3903 dpif_sflow_received(ofproto->sflow, upcall->packet, &flow,
3904 odp_in_port, &cookie);
3905 }
3906
3907 static int
3908 handle_upcalls(struct dpif_backer *backer, unsigned int max_batch)
3909 {
3910 struct dpif_upcall misses[FLOW_MISS_MAX_BATCH];
3911 struct ofpbuf miss_bufs[FLOW_MISS_MAX_BATCH];
3912 uint64_t miss_buf_stubs[FLOW_MISS_MAX_BATCH][4096 / 8];
3913 int n_processed;
3914 int n_misses;
3915 int i;
3916
3917 ovs_assert(max_batch <= FLOW_MISS_MAX_BATCH);
3918
3919 n_misses = 0;
3920 for (n_processed = 0; n_processed < max_batch; n_processed++) {
3921 struct dpif_upcall *upcall = &misses[n_misses];
3922 struct ofpbuf *buf = &miss_bufs[n_misses];
3923 int error;
3924
3925 ofpbuf_use_stub(buf, miss_buf_stubs[n_misses],
3926 sizeof miss_buf_stubs[n_misses]);
3927 error = dpif_recv(backer->dpif, upcall, buf);
3928 if (error) {
3929 ofpbuf_uninit(buf);
3930 break;
3931 }
3932
3933 switch (classify_upcall(upcall)) {
3934 case MISS_UPCALL:
3935 /* Handle it later. */
3936 n_misses++;
3937 break;
3938
3939 case SFLOW_UPCALL:
3940 handle_sflow_upcall(backer, upcall);
3941 ofpbuf_uninit(buf);
3942 break;
3943
3944 case BAD_UPCALL:
3945 ofpbuf_uninit(buf);
3946 break;
3947 }
3948 }
3949
3950 /* Handle deferred MISS_UPCALL processing. */
3951 handle_miss_upcalls(backer, misses, n_misses);
3952 for (i = 0; i < n_misses; i++) {
3953 ofpbuf_uninit(&miss_bufs[i]);
3954 }
3955
3956 return n_processed;
3957 }
3958 \f
3959 /* Flow expiration. */
3960
3961 static int subfacet_max_idle(const struct ofproto_dpif *);
3962 static void update_stats(struct dpif_backer *);
3963 static void rule_expire(struct rule_dpif *);
3964 static void expire_subfacets(struct ofproto_dpif *, int dp_max_idle);
3965
3966 /* This function is called periodically by run(). Its job is to collect
3967 * updates for the flows that have been installed into the datapath, most
3968 * importantly when they last were used, and then use that information to
3969 * expire flows that have not been used recently.
3970 *
3971 * Returns the number of milliseconds after which it should be called again. */
3972 static int
3973 expire(struct dpif_backer *backer)
3974 {
3975 struct ofproto_dpif *ofproto;
3976 int max_idle = INT32_MAX;
3977
3978 /* Periodically clear out the drop keys in an effort to keep them
3979 * relatively few. */
3980 drop_key_clear(backer);
3981
3982 /* Update stats for each flow in the backer. */
3983 update_stats(backer);
3984
3985 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
3986 struct rule *rule, *next_rule;
3987 int dp_max_idle;
3988
3989 if (ofproto->backer != backer) {
3990 continue;
3991 }
3992
3993 /* Expire subfacets that have been idle too long. */
3994 dp_max_idle = subfacet_max_idle(ofproto);
3995 expire_subfacets(ofproto, dp_max_idle);
3996
3997 max_idle = MIN(max_idle, dp_max_idle);
3998
3999 /* Expire OpenFlow flows whose idle_timeout or hard_timeout
4000 * has passed. */
4001 LIST_FOR_EACH_SAFE (rule, next_rule, expirable,
4002 &ofproto->up.expirable) {
4003 rule_expire(rule_dpif_cast(rule));
4004 }
4005
4006 /* All outstanding data in existing flows has been accounted, so it's a
4007 * good time to do bond rebalancing. */
4008 if (ofproto->has_bonded_bundles) {
4009 struct ofbundle *bundle;
4010
4011 HMAP_FOR_EACH (bundle, hmap_node, &ofproto->bundles) {
4012 if (bundle->bond) {
4013 bond_rebalance(bundle->bond, &backer->revalidate_set);
4014 }
4015 }
4016 }
4017 }
4018
4019 return MIN(max_idle, 1000);
4020 }
4021
4022 /* Updates flow table statistics given that the datapath just reported 'stats'
4023 * as 'subfacet''s statistics. */
4024 static void
4025 update_subfacet_stats(struct subfacet *subfacet,
4026 const struct dpif_flow_stats *stats)
4027 {
4028 struct facet *facet = subfacet->facet;
4029
4030 if (stats->n_packets >= subfacet->dp_packet_count) {
4031 uint64_t extra = stats->n_packets - subfacet->dp_packet_count;
4032 facet->packet_count += extra;
4033 } else {
4034 VLOG_WARN_RL(&rl, "unexpected packet count from the datapath");
4035 }
4036
4037 if (stats->n_bytes >= subfacet->dp_byte_count) {
4038 facet->byte_count += stats->n_bytes - subfacet->dp_byte_count;
4039 } else {
4040 VLOG_WARN_RL(&rl, "unexpected byte count from datapath");
4041 }
4042
4043 subfacet->dp_packet_count = stats->n_packets;
4044 subfacet->dp_byte_count = stats->n_bytes;
4045
4046 facet->tcp_flags |= stats->tcp_flags;
4047
4048 subfacet_update_time(subfacet, stats->used);
4049 if (facet->accounted_bytes < facet->byte_count) {
4050 facet_learn(facet);
4051 facet_account(facet);
4052 facet->accounted_bytes = facet->byte_count;
4053 }
4054 facet_push_stats(facet);
4055 }
4056
4057 /* 'key' with length 'key_len' bytes is a flow in 'dpif' that we know nothing
4058 * about, or a flow that shouldn't be installed but was anyway. Delete it. */
4059 static void
4060 delete_unexpected_flow(struct ofproto_dpif *ofproto,
4061 const struct nlattr *key, size_t key_len)
4062 {
4063 if (!VLOG_DROP_WARN(&rl)) {
4064 struct ds s;
4065
4066 ds_init(&s);
4067 odp_flow_key_format(key, key_len, &s);
4068 VLOG_WARN("unexpected flow on %s: %s", ofproto->up.name, ds_cstr(&s));
4069 ds_destroy(&s);
4070 }
4071
4072 COVERAGE_INC(facet_unexpected);
4073 dpif_flow_del(ofproto->backer->dpif, key, key_len, NULL);
4074 }
4075
4076 /* Update 'packet_count', 'byte_count', and 'used' members of installed facets.
4077 *
4078 * This function also pushes statistics updates to rules which each facet
4079 * resubmits into. Generally these statistics will be accurate. However, if a
4080 * facet changes the rule it resubmits into at some time in between
4081 * update_stats() runs, it is possible that statistics accrued to the
4082 * old rule will be incorrectly attributed to the new rule. This could be
4083 * avoided by calling update_stats() whenever rules are created or
4084 * deleted. However, the performance impact of making so many calls to the
4085 * datapath do not justify the benefit of having perfectly accurate statistics.
4086 */
4087 static void
4088 update_stats(struct dpif_backer *backer)
4089 {
4090 const struct dpif_flow_stats *stats;
4091 struct dpif_flow_dump dump;
4092 const struct nlattr *key;
4093 size_t key_len;
4094
4095 dpif_flow_dump_start(&dump, backer->dpif);
4096 while (dpif_flow_dump_next(&dump, &key, &key_len, NULL, NULL, &stats)) {
4097 struct flow flow;
4098 struct subfacet *subfacet;
4099 struct ofproto_dpif *ofproto;
4100 struct ofport_dpif *ofport;
4101 uint32_t key_hash;
4102
4103 if (ofproto_receive(backer, NULL, key, key_len, &flow, NULL, &ofproto,
4104 NULL, NULL)) {
4105 continue;
4106 }
4107
4108 ofport = get_ofp_port(ofproto, flow.in_port);
4109 if (ofport && ofport->tnl_port) {
4110 netdev_vport_inc_rx(ofport->up.netdev, stats);
4111 }
4112
4113 key_hash = odp_flow_key_hash(key, key_len);
4114 subfacet = subfacet_find(ofproto, key, key_len, key_hash);
4115 switch (subfacet ? subfacet->path : SF_NOT_INSTALLED) {
4116 case SF_FAST_PATH:
4117 update_subfacet_stats(subfacet, stats);
4118 break;
4119
4120 case SF_SLOW_PATH:
4121 /* Stats are updated per-packet. */
4122 break;
4123
4124 case SF_NOT_INSTALLED:
4125 default:
4126 delete_unexpected_flow(ofproto, key, key_len);
4127 break;
4128 }
4129 }
4130 dpif_flow_dump_done(&dump);
4131 }
4132
4133 /* Calculates and returns the number of milliseconds of idle time after which
4134 * subfacets should expire from the datapath. When a subfacet expires, we fold
4135 * its statistics into its facet, and when a facet's last subfacet expires, we
4136 * fold its statistic into its rule. */
4137 static int
4138 subfacet_max_idle(const struct ofproto_dpif *ofproto)
4139 {
4140 /*
4141 * Idle time histogram.
4142 *
4143 * Most of the time a switch has a relatively small number of subfacets.
4144 * When this is the case we might as well keep statistics for all of them
4145 * in userspace and to cache them in the kernel datapath for performance as
4146 * well.
4147 *
4148 * As the number of subfacets increases, the memory required to maintain
4149 * statistics about them in userspace and in the kernel becomes
4150 * significant. However, with a large number of subfacets it is likely
4151 * that only a few of them are "heavy hitters" that consume a large amount
4152 * of bandwidth. At this point, only heavy hitters are worth caching in
4153 * the kernel and maintaining in userspaces; other subfacets we can
4154 * discard.
4155 *
4156 * The technique used to compute the idle time is to build a histogram with
4157 * N_BUCKETS buckets whose width is BUCKET_WIDTH msecs each. Each subfacet
4158 * that is installed in the kernel gets dropped in the appropriate bucket.
4159 * After the histogram has been built, we compute the cutoff so that only
4160 * the most-recently-used 1% of subfacets (but at least
4161 * ofproto->up.flow_eviction_threshold flows) are kept cached. At least
4162 * the most-recently-used bucket of subfacets is kept, so actually an
4163 * arbitrary number of subfacets can be kept in any given expiration run
4164 * (though the next run will delete most of those unless they receive
4165 * additional data).
4166 *
4167 * This requires a second pass through the subfacets, in addition to the
4168 * pass made by update_stats(), because the former function never looks at
4169 * uninstallable subfacets.
4170 */
4171 enum { BUCKET_WIDTH = ROUND_UP(100, TIME_UPDATE_INTERVAL) };
4172 enum { N_BUCKETS = 5000 / BUCKET_WIDTH };
4173 int buckets[N_BUCKETS] = { 0 };
4174 int total, subtotal, bucket;
4175 struct subfacet *subfacet;
4176 long long int now;
4177 int i;
4178
4179 total = hmap_count(&ofproto->subfacets);
4180 if (total <= ofproto->up.flow_eviction_threshold) {
4181 return N_BUCKETS * BUCKET_WIDTH;
4182 }
4183
4184 /* Build histogram. */
4185 now = time_msec();
4186 HMAP_FOR_EACH (subfacet, hmap_node, &ofproto->subfacets) {
4187 long long int idle = now - subfacet->used;
4188 int bucket = (idle <= 0 ? 0
4189 : idle >= BUCKET_WIDTH * N_BUCKETS ? N_BUCKETS - 1
4190 : (unsigned int) idle / BUCKET_WIDTH);
4191 buckets[bucket]++;
4192 }
4193
4194 /* Find the first bucket whose flows should be expired. */
4195 subtotal = bucket = 0;
4196 do {
4197 subtotal += buckets[bucket++];
4198 } while (bucket < N_BUCKETS &&
4199 subtotal < MAX(ofproto->up.flow_eviction_threshold, total / 100));
4200
4201 if (VLOG_IS_DBG_ENABLED()) {
4202 struct ds s;
4203
4204 ds_init(&s);
4205 ds_put_cstr(&s, "keep");
4206 for (i = 0; i < N_BUCKETS; i++) {
4207 if (i == bucket) {
4208 ds_put_cstr(&s, ", drop");
4209 }
4210 if (buckets[i]) {
4211 ds_put_format(&s, " %d:%d", i * BUCKET_WIDTH, buckets[i]);
4212 }
4213 }
4214 VLOG_INFO("%s: %s (msec:count)", ofproto->up.name, ds_cstr(&s));
4215 ds_destroy(&s);
4216 }
4217
4218 return bucket * BUCKET_WIDTH;
4219 }
4220
4221 static void
4222 expire_subfacets(struct ofproto_dpif *ofproto, int dp_max_idle)
4223 {
4224 /* Cutoff time for most flows. */
4225 long long int normal_cutoff = time_msec() - dp_max_idle;
4226
4227 /* We really want to keep flows for special protocols around, so use a more
4228 * conservative cutoff. */
4229 long long int special_cutoff = time_msec() - 10000;
4230
4231 struct subfacet *subfacet, *next_subfacet;
4232 struct subfacet *batch[SUBFACET_DESTROY_MAX_BATCH];
4233 int n_batch;
4234
4235 n_batch = 0;
4236 HMAP_FOR_EACH_SAFE (subfacet, next_subfacet, hmap_node,
4237 &ofproto->subfacets) {
4238 long long int cutoff;
4239
4240 cutoff = (subfacet->slow & (SLOW_CFM | SLOW_LACP | SLOW_STP)
4241 ? special_cutoff
4242 : normal_cutoff);
4243 if (subfacet->used < cutoff) {
4244 if (subfacet->path != SF_NOT_INSTALLED) {
4245 batch[n_batch++] = subfacet;
4246 if (n_batch >= SUBFACET_DESTROY_MAX_BATCH) {
4247 subfacet_destroy_batch(ofproto, batch, n_batch);
4248 n_batch = 0;
4249 }
4250 } else {
4251 subfacet_destroy(subfacet);
4252 }
4253 }
4254 }
4255
4256 if (n_batch > 0) {
4257 subfacet_destroy_batch(ofproto, batch, n_batch);
4258 }
4259 }
4260
4261 /* If 'rule' is an OpenFlow rule, that has expired according to OpenFlow rules,
4262 * then delete it entirely. */
4263 static void
4264 rule_expire(struct rule_dpif *rule)
4265 {
4266 struct facet *facet, *next_facet;
4267 long long int now;
4268 uint8_t reason;
4269
4270 if (rule->up.pending) {
4271 /* We'll have to expire it later. */
4272 return;
4273 }
4274
4275 /* Has 'rule' expired? */
4276 now = time_msec();
4277 if (rule->up.hard_timeout
4278 && now > rule->up.modified + rule->up.hard_timeout * 1000) {
4279 reason = OFPRR_HARD_TIMEOUT;
4280 } else if (rule->up.idle_timeout
4281 && now > rule->up.used + rule->up.idle_timeout * 1000) {
4282 reason = OFPRR_IDLE_TIMEOUT;
4283 } else {
4284 return;
4285 }
4286
4287 COVERAGE_INC(ofproto_dpif_expired);
4288
4289 /* Update stats. (This is a no-op if the rule expired due to an idle
4290 * timeout, because that only happens when the rule has no facets left.) */
4291 LIST_FOR_EACH_SAFE (facet, next_facet, list_node, &rule->facets) {
4292 facet_remove(facet);
4293 }
4294
4295 /* Get rid of the rule. */
4296 ofproto_rule_expire(&rule->up, reason);
4297 }
4298 \f
4299 /* Facets. */
4300
4301 /* Creates and returns a new facet owned by 'rule', given a 'flow'.
4302 *
4303 * The caller must already have determined that no facet with an identical
4304 * 'flow' exists in 'ofproto' and that 'flow' is the best match for 'rule' in
4305 * the ofproto's classifier table.
4306 *
4307 * 'hash' must be the return value of flow_hash(flow, 0).
4308 *
4309 * The facet will initially have no subfacets. The caller should create (at
4310 * least) one subfacet with subfacet_create(). */
4311 static struct facet *
4312 facet_create(struct rule_dpif *rule, const struct flow *flow, uint32_t hash)
4313 {
4314 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
4315 struct facet *facet;
4316
4317 facet = xzalloc(sizeof *facet);
4318 facet->used = time_msec();
4319 hmap_insert(&ofproto->facets, &facet->hmap_node, hash);
4320 list_push_back(&rule->facets, &facet->list_node);
4321 facet->rule = rule;
4322 facet->flow = *flow;
4323 list_init(&facet->subfacets);
4324 netflow_flow_init(&facet->nf_flow);
4325 netflow_flow_update_time(ofproto->netflow, &facet->nf_flow, facet->used);
4326
4327 return facet;
4328 }
4329
4330 static void
4331 facet_free(struct facet *facet)
4332 {
4333 free(facet);
4334 }
4335
4336 /* Executes, within 'ofproto', the 'n_actions' actions in 'actions' on
4337 * 'packet', which arrived on 'in_port'. */
4338 static bool
4339 execute_odp_actions(struct ofproto_dpif *ofproto, const struct flow *flow,
4340 const struct nlattr *odp_actions, size_t actions_len,
4341 struct ofpbuf *packet)
4342 {
4343 struct odputil_keybuf keybuf;
4344 struct ofpbuf key;
4345 int error;
4346
4347 ofpbuf_use_stack(&key, &keybuf, sizeof keybuf);
4348 odp_flow_key_from_flow(&key, flow,
4349 ofp_port_to_odp_port(ofproto, flow->in_port));
4350
4351 error = dpif_execute(ofproto->backer->dpif, key.data, key.size,
4352 odp_actions, actions_len, packet);
4353 return !error;
4354 }
4355
4356 /* Remove 'facet' from 'ofproto' and free up the associated memory:
4357 *
4358 * - If 'facet' was installed in the datapath, uninstalls it and updates its
4359 * rule's statistics, via subfacet_uninstall().
4360 *
4361 * - Removes 'facet' from its rule and from ofproto->facets.
4362 */
4363 static void
4364 facet_remove(struct facet *facet)
4365 {
4366 struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto);
4367 struct subfacet *subfacet, *next_subfacet;
4368
4369 ovs_assert(!list_is_empty(&facet->subfacets));
4370
4371 /* First uninstall all of the subfacets to get final statistics. */
4372 LIST_FOR_EACH (subfacet, list_node, &facet->subfacets) {
4373 subfacet_uninstall(subfacet);
4374 }
4375
4376 /* Flush the final stats to the rule.
4377 *
4378 * This might require us to have at least one subfacet around so that we
4379 * can use its actions for accounting in facet_account(), which is why we
4380 * have uninstalled but not yet destroyed the subfacets. */
4381 facet_flush_stats(facet);
4382
4383 /* Now we're really all done so destroy everything. */
4384 LIST_FOR_EACH_SAFE (subfacet, next_subfacet, list_node,
4385 &facet->subfacets) {
4386 subfacet_destroy__(subfacet);
4387 }
4388 hmap_remove(&ofproto->facets, &facet->hmap_node);
4389 list_remove(&facet->list_node);
4390 facet_free(facet);
4391 }
4392
4393 /* Feed information from 'facet' back into the learning table to keep it in
4394 * sync with what is actually flowing through the datapath. */
4395 static void
4396 facet_learn(struct facet *facet)
4397 {
4398 struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto);
4399 struct action_xlate_ctx ctx;
4400
4401 if (!facet->has_learn
4402 && !facet->has_normal
4403 && (!facet->has_fin_timeout
4404 || !(facet->tcp_flags & (TCP_FIN | TCP_RST)))) {
4405 return;
4406 }
4407
4408 action_xlate_ctx_init(&ctx, ofproto, &facet->flow,
4409 facet->flow.vlan_tci,
4410 facet->rule, facet->tcp_flags, NULL);
4411 ctx.may_learn = true;
4412 xlate_actions_for_side_effects(&ctx, facet->rule->up.ofpacts,
4413 facet->rule->up.ofpacts_len);
4414 }
4415
4416 static void
4417 facet_account(struct facet *facet)
4418 {
4419 struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto);
4420 struct subfacet *subfacet;
4421 const struct nlattr *a;
4422 unsigned int left;
4423 ovs_be16 vlan_tci;
4424 uint64_t n_bytes;
4425
4426 if (!facet->has_normal || !ofproto->has_bonded_bundles) {
4427 return;
4428 }
4429 n_bytes = facet->byte_count - facet->accounted_bytes;
4430
4431 /* This loop feeds byte counters to bond_account() for rebalancing to use
4432 * as a basis. We also need to track the actual VLAN on which the packet
4433 * is going to be sent to ensure that it matches the one passed to
4434 * bond_choose_output_slave(). (Otherwise, we will account to the wrong
4435 * hash bucket.)
4436 *
4437 * We use the actions from an arbitrary subfacet because they should all
4438 * be equally valid for our purpose. */
4439 subfacet = CONTAINER_OF(list_front(&facet->subfacets),
4440 struct subfacet, list_node);
4441 vlan_tci = facet->flow.vlan_tci;
4442 NL_ATTR_FOR_EACH_UNSAFE (a, left,
4443 subfacet->actions, subfacet->actions_len) {
4444 const struct ovs_action_push_vlan *vlan;
4445 struct ofport_dpif *port;
4446
4447 switch (nl_attr_type(a)) {
4448 case OVS_ACTION_ATTR_OUTPUT:
4449 port = get_odp_port(ofproto, nl_attr_get_u32(a));
4450 if (port && port->bundle && port->bundle->bond) {
4451 bond_account(port->bundle->bond, &facet->flow,
4452 vlan_tci_to_vid(vlan_tci), n_bytes);
4453 }
4454 break;
4455
4456 case OVS_ACTION_ATTR_POP_VLAN:
4457 vlan_tci = htons(0);
4458 break;
4459
4460 case OVS_ACTION_ATTR_PUSH_VLAN:
4461 vlan = nl_attr_get(a);
4462 vlan_tci = vlan->vlan_tci;
4463 break;
4464 }
4465 }
4466 }
4467
4468 /* Returns true if the only action for 'facet' is to send to the controller.
4469 * (We don't report NetFlow expiration messages for such facets because they
4470 * are just part of the control logic for the network, not real traffic). */
4471 static bool
4472 facet_is_controller_flow(struct facet *facet)
4473 {
4474 if (facet) {
4475 const struct rule *rule = &facet->rule->up;
4476 const struct ofpact *ofpacts = rule->ofpacts;
4477 size_t ofpacts_len = rule->ofpacts_len;
4478
4479 if (ofpacts_len > 0 &&
4480 ofpacts->type == OFPACT_CONTROLLER &&
4481 ofpact_next(ofpacts) >= ofpact_end(ofpacts, ofpacts_len)) {
4482 return true;
4483 }
4484 }
4485 return false;
4486 }
4487
4488 /* Folds all of 'facet''s statistics into its rule. Also updates the
4489 * accounting ofhook and emits a NetFlow expiration if appropriate. All of
4490 * 'facet''s statistics in the datapath should have been zeroed and folded into
4491 * its packet and byte counts before this function is called. */
4492 static void
4493 facet_flush_stats(struct facet *facet)
4494 {
4495 struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto);
4496 struct subfacet *subfacet;
4497
4498 LIST_FOR_EACH (subfacet, list_node, &facet->subfacets) {
4499 ovs_assert(!subfacet->dp_byte_count);
4500 ovs_assert(!subfacet->dp_packet_count);
4501 }
4502
4503 facet_push_stats(facet);
4504 if (facet->accounted_bytes < facet->byte_count) {
4505 facet_account(facet);
4506 facet->accounted_bytes = facet->byte_count;
4507 }
4508
4509 if (ofproto->netflow && !facet_is_controller_flow(facet)) {
4510 struct ofexpired expired;
4511 expired.flow = facet->flow;
4512 expired.packet_count = facet->packet_count;
4513 expired.byte_count = facet->byte_count;
4514 expired.used = facet->used;
4515 netflow_expire(ofproto->netflow, &facet->nf_flow, &expired);
4516 }
4517
4518 facet->rule->packet_count += facet->packet_count;
4519 facet->rule->byte_count += facet->byte_count;
4520
4521 /* Reset counters to prevent double counting if 'facet' ever gets
4522 * reinstalled. */
4523 facet_reset_counters(facet);
4524
4525 netflow_flow_clear(&facet->nf_flow);
4526 facet->tcp_flags = 0;
4527 }
4528
4529 /* Searches 'ofproto''s table of facets for one exactly equal to 'flow'.
4530 * Returns it if found, otherwise a null pointer.
4531 *
4532 * 'hash' must be the return value of flow_hash(flow, 0).
4533 *
4534 * The returned facet might need revalidation; use facet_lookup_valid()
4535 * instead if that is important. */
4536 static struct facet *
4537 facet_find(struct ofproto_dpif *ofproto,
4538 const struct flow *flow, uint32_t hash)
4539 {
4540 struct facet *facet;
4541
4542 HMAP_FOR_EACH_WITH_HASH (facet, hmap_node, hash, &ofproto->facets) {
4543 if (flow_equal(flow, &facet->flow)) {
4544 return facet;
4545 }
4546 }
4547
4548 return NULL;
4549 }
4550
4551 /* Searches 'ofproto''s table of facets for one exactly equal to 'flow'.
4552 * Returns it if found, otherwise a null pointer.
4553 *
4554 * 'hash' must be the return value of flow_hash(flow, 0).
4555 *
4556 * The returned facet is guaranteed to be valid. */
4557 static struct facet *
4558 facet_lookup_valid(struct ofproto_dpif *ofproto, const struct flow *flow,
4559 uint32_t hash)
4560 {
4561 struct facet *facet;
4562
4563 facet = facet_find(ofproto, flow, hash);
4564 if (facet
4565 && (ofproto->backer->need_revalidate
4566 || tag_set_intersects(&ofproto->backer->revalidate_set,
4567 facet->tags))) {
4568 facet_revalidate(facet);
4569
4570 /* facet_revalidate() may have destroyed 'facet'. */
4571 facet = facet_find(ofproto, flow, hash);
4572 }
4573
4574 return facet;
4575 }
4576
4577 static const char *
4578 subfacet_path_to_string(enum subfacet_path path)
4579 {
4580 switch (path) {
4581 case SF_NOT_INSTALLED:
4582 return "not installed";
4583 case SF_FAST_PATH:
4584 return "in fast path";
4585 case SF_SLOW_PATH:
4586 return "in slow path";
4587 default:
4588 return "<error>";
4589 }
4590 }
4591
4592 /* Returns the path in which a subfacet should be installed if its 'slow'
4593 * member has the specified value. */
4594 static enum subfacet_path
4595 subfacet_want_path(enum slow_path_reason slow)
4596 {
4597 return slow ? SF_SLOW_PATH : SF_FAST_PATH;
4598 }
4599
4600 /* Returns true if 'subfacet' needs to have its datapath flow updated,
4601 * supposing that its actions have been recalculated as 'want_actions' and that
4602 * 'slow' is nonzero iff 'subfacet' should be in the slow path. */
4603 static bool
4604 subfacet_should_install(struct subfacet *subfacet, enum slow_path_reason slow,
4605 const struct ofpbuf *want_actions)
4606 {
4607 enum subfacet_path want_path = subfacet_want_path(slow);
4608 return (want_path != subfacet->path
4609 || (want_path == SF_FAST_PATH
4610 && (subfacet->actions_len != want_actions->size
4611 || memcmp(subfacet->actions, want_actions->data,
4612 subfacet->actions_len))));
4613 }
4614
4615 static bool
4616 facet_check_consistency(struct facet *facet)
4617 {
4618 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 15);
4619
4620 struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto);
4621
4622 uint64_t odp_actions_stub[1024 / 8];
4623 struct ofpbuf odp_actions;
4624
4625 struct rule_dpif *rule;
4626 struct subfacet *subfacet;
4627 bool may_log = false;
4628 bool ok;
4629
4630 /* Check the rule for consistency. */
4631 rule = rule_dpif_lookup(ofproto, &facet->flow);
4632 ok = rule == facet->rule;
4633 if (!ok) {
4634 may_log = !VLOG_DROP_WARN(&rl);
4635 if (may_log) {
4636 struct ds s;
4637
4638 ds_init(&s);
4639 flow_format(&s, &facet->flow);
4640 ds_put_format(&s, ": facet associated with wrong rule (was "
4641 "table=%"PRIu8",", facet->rule->up.table_id);
4642 cls_rule_format(&facet->rule->up.cr, &s);
4643 ds_put_format(&s, ") (should have been table=%"PRIu8",",
4644 rule->up.table_id);
4645 cls_rule_format(&rule->up.cr, &s);
4646 ds_put_char(&s, ')');
4647
4648 VLOG_WARN("%s", ds_cstr(&s));
4649 ds_destroy(&s);
4650 }
4651 }
4652
4653 /* Check the datapath actions for consistency. */
4654 ofpbuf_use_stub(&odp_actions, odp_actions_stub, sizeof odp_actions_stub);
4655 LIST_FOR_EACH (subfacet, list_node, &facet->subfacets) {
4656 enum subfacet_path want_path;
4657 struct action_xlate_ctx ctx;
4658 struct ds s;
4659
4660 action_xlate_ctx_init(&ctx, ofproto, &facet->flow,
4661 subfacet->initial_tci, rule, 0, NULL);
4662 xlate_actions(&ctx, rule->up.ofpacts, rule->up.ofpacts_len,
4663 &odp_actions);
4664
4665 if (subfacet->path == SF_NOT_INSTALLED) {
4666 /* This only happens if the datapath reported an error when we
4667 * tried to install the flow. Don't flag another error here. */
4668 continue;
4669 }
4670
4671 want_path = subfacet_want_path(subfacet->slow);
4672 if (want_path == SF_SLOW_PATH && subfacet->path == SF_SLOW_PATH) {
4673 /* The actions for slow-path flows may legitimately vary from one
4674 * packet to the next. We're done. */
4675 continue;
4676 }
4677
4678 if (!subfacet_should_install(subfacet, subfacet->slow, &odp_actions)) {
4679 continue;
4680 }
4681
4682 /* Inconsistency! */
4683 if (ok) {
4684 may_log = !VLOG_DROP_WARN(&rl);
4685 ok = false;
4686 }
4687 if (!may_log) {
4688 /* Rate-limited, skip reporting. */
4689 continue;
4690 }
4691
4692 ds_init(&s);
4693 odp_flow_key_format(subfacet->key, subfacet->key_len, &s);
4694
4695 ds_put_cstr(&s, ": inconsistency in subfacet");
4696 if (want_path != subfacet->path) {
4697 enum odp_key_fitness fitness = subfacet->key_fitness;
4698
4699 ds_put_format(&s, " (%s, fitness=%s)",
4700 subfacet_path_to_string(subfacet->path),
4701 odp_key_fitness_to_string(fitness));
4702 ds_put_format(&s, " (should have been %s)",
4703 subfacet_path_to_string(want_path));
4704 } else if (want_path == SF_FAST_PATH) {
4705 ds_put_cstr(&s, " (actions were: ");
4706 format_odp_actions(&s, subfacet->actions,
4707 subfacet->actions_len);
4708 ds_put_cstr(&s, ") (correct actions: ");
4709 format_odp_actions(&s, odp_actions.data, odp_actions.size);
4710 ds_put_char(&s, ')');
4711 } else {
4712 ds_put_cstr(&s, " (actions: ");
4713 format_odp_actions(&s, subfacet->actions,
4714 subfacet->actions_len);
4715 ds_put_char(&s, ')');
4716 }
4717 VLOG_WARN("%s", ds_cstr(&s));
4718 ds_destroy(&s);
4719 }
4720 ofpbuf_uninit(&odp_actions);
4721
4722 return ok;
4723 }
4724
4725 /* Re-searches the classifier for 'facet':
4726 *
4727 * - If the rule found is different from 'facet''s current rule, moves
4728 * 'facet' to the new rule and recompiles its actions.
4729 *
4730 * - If the rule found is the same as 'facet''s current rule, leaves 'facet'
4731 * where it is and recompiles its actions anyway.
4732 *
4733 * - If any of 'facet''s subfacets correspond to a new flow according to
4734 * ofproto_receive(), 'facet' is removed. */
4735 static void
4736 facet_revalidate(struct facet *facet)
4737 {
4738 struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto);
4739 struct actions {
4740 struct nlattr *odp_actions;
4741 size_t actions_len;
4742 };
4743 struct actions *new_actions;
4744
4745 struct action_xlate_ctx ctx;
4746 uint64_t odp_actions_stub[1024 / 8];
4747 struct ofpbuf odp_actions;
4748
4749 struct rule_dpif *new_rule;
4750 struct subfacet *subfacet;
4751 int i;
4752
4753 COVERAGE_INC(facet_revalidate);
4754
4755 /* Check that child subfacets still correspond to this facet. Tunnel
4756 * configuration changes could cause a subfacet's OpenFlow in_port to
4757 * change. */
4758 LIST_FOR_EACH (subfacet, list_node, &facet->subfacets) {
4759 struct ofproto_dpif *recv_ofproto;
4760 struct flow recv_flow;
4761 int error;
4762
4763 error = ofproto_receive(ofproto->backer, NULL, subfacet->key,
4764 subfacet->key_len, &recv_flow, NULL,
4765 &recv_ofproto, NULL, NULL);
4766 if (error
4767 || recv_ofproto != ofproto
4768 || memcmp(&recv_flow, &facet->flow, sizeof recv_flow)) {
4769 facet_remove(facet);
4770 return;
4771 }
4772 }
4773
4774 new_rule = rule_dpif_lookup(ofproto, &facet->flow);
4775
4776 /* Calculate new datapath actions.
4777 *
4778 * We do not modify any 'facet' state yet, because we might need to, e.g.,
4779 * emit a NetFlow expiration and, if so, we need to have the old state
4780 * around to properly compose it. */
4781
4782 /* If the datapath actions changed or the installability changed,
4783 * then we need to talk to the datapath. */
4784 i = 0;
4785 new_actions = NULL;
4786 memset(&ctx, 0, sizeof ctx);
4787 ofpbuf_use_stub(&odp_actions, odp_actions_stub, sizeof odp_actions_stub);
4788 LIST_FOR_EACH (subfacet, list_node, &facet->subfacets) {
4789 enum slow_path_reason slow;
4790
4791 action_xlate_ctx_init(&ctx, ofproto, &facet->flow,
4792 subfacet->initial_tci, new_rule, 0, NULL);
4793 xlate_actions(&ctx, new_rule->up.ofpacts, new_rule->up.ofpacts_len,
4794 &odp_actions);
4795
4796 slow = (subfacet->slow & SLOW_MATCH) | ctx.slow;
4797 if (subfacet_should_install(subfacet, slow, &odp_actions)) {
4798 struct dpif_flow_stats stats;
4799
4800 subfacet_install(subfacet,
4801 odp_actions.data, odp_actions.size, &stats, slow);
4802 subfacet_update_stats(subfacet, &stats);
4803
4804 if (!new_actions) {
4805 new_actions = xcalloc(list_size(&facet->subfacets),
4806 sizeof *new_actions);
4807 }
4808 new_actions[i].odp_actions = xmemdup(odp_actions.data,
4809 odp_actions.size);
4810 new_actions[i].actions_len = odp_actions.size;
4811 }
4812
4813 i++;
4814 }
4815 ofpbuf_uninit(&odp_actions);
4816
4817 if (new_actions) {
4818 facet_flush_stats(facet);
4819 }
4820
4821 /* Update 'facet' now that we've taken care of all the old state. */
4822 facet->tags = ctx.tags;
4823 facet->nf_flow.output_iface = ctx.nf_output_iface;
4824 facet->has_learn = ctx.has_learn;
4825 facet->has_normal = ctx.has_normal;
4826 facet->has_fin_timeout = ctx.has_fin_timeout;
4827 facet->mirrors = ctx.mirrors;
4828
4829 i = 0;
4830 LIST_FOR_EACH (subfacet, list_node, &facet->subfacets) {
4831 subfacet->slow = (subfacet->slow & SLOW_MATCH) | ctx.slow;
4832
4833 if (new_actions && new_actions[i].odp_actions) {
4834 free(subfacet->actions);
4835 subfacet->actions = new_actions[i].odp_actions;
4836 subfacet->actions_len = new_actions[i].actions_len;
4837 }
4838 i++;
4839 }
4840 free(new_actions);
4841
4842 if (facet->rule != new_rule) {
4843 COVERAGE_INC(facet_changed_rule);
4844 list_remove(&facet->list_node);
4845 list_push_back(&new_rule->facets, &facet->list_node);
4846 facet->rule = new_rule;
4847 facet->used = new_rule->up.created;
4848 facet->prev_used = facet->used;
4849 }
4850 }
4851
4852 /* Updates 'facet''s used time. Caller is responsible for calling
4853 * facet_push_stats() to update the flows which 'facet' resubmits into. */
4854 static void
4855 facet_update_time(struct facet *facet, long long int used)
4856 {
4857 struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto);
4858 if (used > facet->used) {
4859 facet->used = used;
4860 ofproto_rule_update_used(&facet->rule->up, used);
4861 netflow_flow_update_time(ofproto->netflow, &facet->nf_flow, used);
4862 }
4863 }
4864
4865 static void
4866 facet_reset_counters(struct facet *facet)
4867 {
4868 facet->packet_count = 0;
4869 facet->byte_count = 0;
4870 facet->prev_packet_count = 0;
4871 facet->prev_byte_count = 0;
4872 facet->accounted_bytes = 0;
4873 }
4874
4875 static void
4876 facet_push_stats(struct facet *facet)
4877 {
4878 struct dpif_flow_stats stats;
4879
4880 ovs_assert(facet->packet_count >= facet->prev_packet_count);
4881 ovs_assert(facet->byte_count >= facet->prev_byte_count);
4882 ovs_assert(facet->used >= facet->prev_used);
4883
4884 stats.n_packets = facet->packet_count - facet->prev_packet_count;
4885 stats.n_bytes = facet->byte_count - facet->prev_byte_count;
4886 stats.used = facet->used;
4887 stats.tcp_flags = 0;
4888
4889 if (stats.n_packets || stats.n_bytes || facet->used > facet->prev_used) {
4890 facet->prev_packet_count = facet->packet_count;
4891 facet->prev_byte_count = facet->byte_count;
4892 facet->prev_used = facet->used;
4893
4894 flow_push_stats(facet->rule, &facet->flow, &stats);
4895
4896 update_mirror_stats(ofproto_dpif_cast(facet->rule->up.ofproto),
4897 facet->mirrors, stats.n_packets, stats.n_bytes);
4898 }
4899 }
4900
4901 static void
4902 rule_credit_stats(struct rule_dpif *rule, const struct dpif_flow_stats *stats)
4903 {
4904 rule->packet_count += stats->n_packets;
4905 rule->byte_count += stats->n_bytes;
4906 ofproto_rule_update_used(&rule->up, stats->used);
4907 }
4908
4909 /* Pushes flow statistics to the rules which 'flow' resubmits into given
4910 * 'rule''s actions and mirrors. */
4911 static void
4912 flow_push_stats(struct rule_dpif *rule,
4913 const struct flow *flow, const struct dpif_flow_stats *stats)
4914 {
4915 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
4916 struct action_xlate_ctx ctx;
4917
4918 ofproto_rule_update_used(&rule->up, stats->used);
4919
4920 action_xlate_ctx_init(&ctx, ofproto, flow, flow->vlan_tci, rule,
4921 0, NULL);
4922 ctx.resubmit_stats = stats;
4923 xlate_actions_for_side_effects(&ctx, rule->up.ofpacts,
4924 rule->up.ofpacts_len);
4925 }
4926 \f
4927 /* Subfacets. */
4928
4929 static struct subfacet *
4930 subfacet_find(struct ofproto_dpif *ofproto,
4931 const struct nlattr *key, size_t key_len, uint32_t key_hash)
4932 {
4933 struct subfacet *subfacet;
4934
4935 HMAP_FOR_EACH_WITH_HASH (subfacet, hmap_node, key_hash,
4936 &ofproto->subfacets) {
4937 if (subfacet->key_len == key_len
4938 && !memcmp(key, subfacet->key, key_len)) {
4939 return subfacet;
4940 }
4941 }
4942
4943 return NULL;
4944 }
4945
4946 /* Searches 'facet' (within 'ofproto') for a subfacet with the specified
4947 * 'key_fitness', 'key', and 'key_len' members in 'miss'. Returns the
4948 * existing subfacet if there is one, otherwise creates and returns a
4949 * new subfacet.
4950 *
4951 * If the returned subfacet is new, then subfacet->actions will be NULL, in
4952 * which case the caller must populate the actions with
4953 * subfacet_make_actions(). */
4954 static struct subfacet *
4955 subfacet_create(struct facet *facet, struct flow_miss *miss,
4956 long long int now)
4957 {
4958 struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto);
4959 enum odp_key_fitness key_fitness = miss->key_fitness;
4960 const struct nlattr *key = miss->key;
4961 size_t key_len = miss->key_len;
4962 uint32_t key_hash;
4963 struct subfacet *subfacet;
4964
4965 key_hash = odp_flow_key_hash(key, key_len);
4966
4967 if (list_is_empty(&facet->subfacets)) {
4968 subfacet = &facet->one_subfacet;
4969 } else {
4970 subfacet = subfacet_find(ofproto, key, key_len, key_hash);
4971 if (subfacet) {
4972 if (subfacet->facet == facet) {
4973 return subfacet;
4974 }
4975
4976 /* This shouldn't happen. */
4977 VLOG_ERR_RL(&rl, "subfacet with wrong facet");
4978 subfacet_destroy(subfacet);
4979 }
4980
4981 subfacet = xmalloc(sizeof *subfacet);
4982 }
4983
4984 hmap_insert(&ofproto->subfacets, &subfacet->hmap_node, key_hash);
4985 list_push_back(&facet->subfacets, &subfacet->list_node);
4986 subfacet->facet = facet;
4987 subfacet->key_fitness = key_fitness;
4988 subfacet->key = xmemdup(key, key_len);
4989 subfacet->key_len = key_len;
4990 subfacet->used = now;
4991 subfacet->dp_packet_count = 0;
4992 subfacet->dp_byte_count = 0;
4993 subfacet->actions_len = 0;
4994 subfacet->actions = NULL;
4995 subfacet->slow = (subfacet->key_fitness == ODP_FIT_TOO_LITTLE
4996 ? SLOW_MATCH
4997 : 0);
4998 subfacet->path = SF_NOT_INSTALLED;
4999 subfacet->initial_tci = miss->initial_tci;
5000 subfacet->odp_in_port = miss->odp_in_port;
5001
5002 return subfacet;
5003 }
5004
5005 /* Uninstalls 'subfacet' from the datapath, if it is installed, removes it from
5006 * its facet within 'ofproto', and frees it. */
5007 static void
5008 subfacet_destroy__(struct subfacet *subfacet)
5009 {
5010 struct facet *facet = subfacet->facet;
5011 struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto);
5012
5013 subfacet_uninstall(subfacet);
5014 hmap_remove(&ofproto->subfacets, &subfacet->hmap_node);
5015 list_remove(&subfacet->list_node);
5016 free(subfacet->key);
5017 free(subfacet->actions);
5018 if (subfacet != &facet->one_subfacet) {
5019 free(subfacet);
5020 }
5021 }
5022
5023 /* Destroys 'subfacet', as with subfacet_destroy__(), and then if this was the
5024 * last remaining subfacet in its facet destroys the facet too. */
5025 static void
5026 subfacet_destroy(struct subfacet *subfacet)
5027 {
5028 struct facet *facet = subfacet->facet;
5029
5030 if (list_is_singleton(&facet->subfacets)) {
5031 /* facet_remove() needs at least one subfacet (it will remove it). */
5032 facet_remove(facet);
5033 } else {
5034 subfacet_destroy__(subfacet);
5035 }
5036 }
5037
5038 static void
5039 subfacet_destroy_batch(struct ofproto_dpif *ofproto,
5040 struct subfacet **subfacets, int n)
5041 {
5042 struct dpif_op ops[SUBFACET_DESTROY_MAX_BATCH];
5043 struct dpif_op *opsp[SUBFACET_DESTROY_MAX_BATCH];
5044 struct dpif_flow_stats stats[SUBFACET_DESTROY_MAX_BATCH];
5045 int i;
5046
5047 for (i = 0; i < n; i++) {
5048 ops[i].type = DPIF_OP_FLOW_DEL;
5049 ops[i].u.flow_del.key = subfacets[i]->key;
5050 ops[i].u.flow_del.key_len = subfacets[i]->key_len;
5051 ops[i].u.flow_del.stats = &stats[i];
5052 opsp[i] = &ops[i];
5053 }
5054
5055 dpif_operate(ofproto->backer->dpif, opsp, n);
5056 for (i = 0; i < n; i++) {
5057 subfacet_reset_dp_stats(subfacets[i], &stats[i]);
5058 subfacets[i]->path = SF_NOT_INSTALLED;
5059 subfacet_destroy(subfacets[i]);
5060 }
5061 }
5062
5063 /* Composes the datapath actions for 'subfacet' based on its rule's actions.
5064 * Translates the actions into 'odp_actions', which the caller must have
5065 * initialized and is responsible for uninitializing. */
5066 static void
5067 subfacet_make_actions(struct subfacet *subfacet, const struct ofpbuf *packet,
5068 struct ofpbuf *odp_actions)
5069 {
5070 struct facet *facet = subfacet->facet;
5071 struct rule_dpif *rule = facet->rule;
5072 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
5073
5074 struct action_xlate_ctx ctx;
5075
5076 action_xlate_ctx_init(&ctx, ofproto, &facet->flow, subfacet->initial_tci,
5077 rule, 0, packet);
5078 xlate_actions(&ctx, rule->up.ofpacts, rule->up.ofpacts_len, odp_actions);
5079 facet->tags = ctx.tags;
5080 facet->has_learn = ctx.has_learn;
5081 facet->has_normal = ctx.has_normal;
5082 facet->has_fin_timeout = ctx.has_fin_timeout;
5083 facet->nf_flow.output_iface = ctx.nf_output_iface;
5084 facet->mirrors = ctx.mirrors;
5085
5086 subfacet->slow = (subfacet->slow & SLOW_MATCH) | ctx.slow;
5087 if (subfacet->actions_len != odp_actions->size
5088 || memcmp(subfacet->actions, odp_actions->data, odp_actions->size)) {
5089 free(subfacet->actions);
5090 subfacet->actions_len = odp_actions->size;
5091 subfacet->actions = xmemdup(odp_actions->data, odp_actions->size);
5092 }
5093 }
5094
5095 /* Updates 'subfacet''s datapath flow, setting its actions to 'actions_len'
5096 * bytes of actions in 'actions'. If 'stats' is non-null, statistics counters
5097 * in the datapath will be zeroed and 'stats' will be updated with traffic new
5098 * since 'subfacet' was last updated.
5099 *
5100 * Returns 0 if successful, otherwise a positive errno value. */
5101 static int
5102 subfacet_install(struct subfacet *subfacet,
5103 const struct nlattr *actions, size_t actions_len,
5104 struct dpif_flow_stats *stats,
5105 enum slow_path_reason slow)
5106 {
5107 struct facet *facet = subfacet->facet;
5108 struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto);
5109 enum subfacet_path path = subfacet_want_path(slow);
5110 uint64_t slow_path_stub[128 / 8];
5111 enum dpif_flow_put_flags flags;
5112 int ret;
5113
5114 flags = DPIF_FP_CREATE | DPIF_FP_MODIFY;
5115 if (stats) {
5116 flags |= DPIF_FP_ZERO_STATS;
5117 }
5118
5119 if (path == SF_SLOW_PATH) {
5120 compose_slow_path(ofproto, &facet->flow, slow,
5121 slow_path_stub, sizeof slow_path_stub,
5122 &actions, &actions_len);
5123 }
5124
5125 ret = dpif_flow_put(ofproto->backer->dpif, flags, subfacet->key,
5126 subfacet->key_len, actions, actions_len, stats);
5127
5128 if (stats) {
5129 subfacet_reset_dp_stats(subfacet, stats);
5130 }
5131
5132 if (!ret) {
5133 subfacet->path = path;
5134 }
5135 return ret;
5136 }
5137
5138 static int
5139 subfacet_reinstall(struct subfacet *subfacet, struct dpif_flow_stats *stats)
5140 {
5141 return subfacet_install(subfacet, subfacet->actions, subfacet->actions_len,
5142 stats, subfacet->slow);
5143 }
5144
5145 /* If 'subfacet' is installed in the datapath, uninstalls it. */
5146 static void
5147 subfacet_uninstall(struct subfacet *subfacet)
5148 {
5149 if (subfacet->path != SF_NOT_INSTALLED) {
5150 struct rule_dpif *rule = subfacet->facet->rule;
5151 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
5152 struct dpif_flow_stats stats;
5153 int error;
5154
5155 error = dpif_flow_del(ofproto->backer->dpif, subfacet->key,
5156 subfacet->key_len, &stats);
5157 subfacet_reset_dp_stats(subfacet, &stats);
5158 if (!error) {
5159 subfacet_update_stats(subfacet, &stats);
5160 }
5161 subfacet->path = SF_NOT_INSTALLED;
5162 } else {
5163 ovs_assert(subfacet->dp_packet_count == 0);
5164 ovs_assert(subfacet->dp_byte_count == 0);
5165 }
5166 }
5167
5168 /* Resets 'subfacet''s datapath statistics counters. This should be called
5169 * when 'subfacet''s statistics are cleared in the datapath. If 'stats' is
5170 * non-null, it should contain the statistics returned by dpif when 'subfacet'
5171 * was reset in the datapath. 'stats' will be modified to include only
5172 * statistics new since 'subfacet' was last updated. */
5173 static void
5174 subfacet_reset_dp_stats(struct subfacet *subfacet,
5175 struct dpif_flow_stats *stats)
5176 {
5177 if (stats
5178 && subfacet->dp_packet_count <= stats->n_packets
5179 && subfacet->dp_byte_count <= stats->n_bytes) {
5180 stats->n_packets -= subfacet->dp_packet_count;
5181 stats->n_bytes -= subfacet->dp_byte_count;
5182 }
5183
5184 subfacet->dp_packet_count = 0;
5185 subfacet->dp_byte_count = 0;
5186 }
5187
5188 /* Updates 'subfacet''s used time. The caller is responsible for calling
5189 * facet_push_stats() to update the flows which 'subfacet' resubmits into. */
5190 static void
5191 subfacet_update_time(struct subfacet *subfacet, long long int used)
5192 {
5193 if (used > subfacet->used) {
5194 subfacet->used = used;
5195 facet_update_time(subfacet->facet, used);
5196 }
5197 }
5198
5199 /* Folds the statistics from 'stats' into the counters in 'subfacet'.
5200 *
5201 * Because of the meaning of a subfacet's counters, it only makes sense to do
5202 * this if 'stats' are not tracked in the datapath, that is, if 'stats'
5203 * represents a packet that was sent by hand or if it represents statistics
5204 * that have been cleared out of the datapath. */
5205 static void
5206 subfacet_update_stats(struct subfacet *subfacet,
5207 const struct dpif_flow_stats *stats)
5208 {
5209 if (stats->n_packets || stats->used > subfacet->used) {
5210 struct facet *facet = subfacet->facet;
5211
5212 subfacet_update_time(subfacet, stats->used);
5213 facet->packet_count += stats->n_packets;
5214 facet->byte_count += stats->n_bytes;
5215 facet->tcp_flags |= stats->tcp_flags;
5216 facet_push_stats(facet);
5217 netflow_flow_update_flags(&facet->nf_flow, stats->tcp_flags);
5218 }
5219 }
5220 \f
5221 /* Rules. */
5222
5223 static struct rule_dpif *
5224 rule_dpif_lookup(struct ofproto_dpif *ofproto, const struct flow *flow)
5225 {
5226 struct rule_dpif *rule;
5227
5228 rule = rule_dpif_lookup__(ofproto, flow, 0);
5229 if (rule) {
5230 return rule;
5231 }
5232
5233 return rule_dpif_miss_rule(ofproto, flow);
5234 }
5235
5236 static struct rule_dpif *
5237 rule_dpif_lookup__(struct ofproto_dpif *ofproto, const struct flow *flow,
5238 uint8_t table_id)
5239 {
5240 struct cls_rule *cls_rule;
5241 struct classifier *cls;
5242
5243 if (table_id >= N_TABLES) {
5244 return NULL;
5245 }
5246
5247 cls = &ofproto->up.tables[table_id].cls;
5248 if (flow->nw_frag & FLOW_NW_FRAG_ANY
5249 && ofproto->up.frag_handling == OFPC_FRAG_NORMAL) {
5250 /* For OFPC_NORMAL frag_handling, we must pretend that transport ports
5251 * are unavailable. */
5252 struct flow ofpc_normal_flow = *flow;
5253 ofpc_normal_flow.tp_src = htons(0);
5254 ofpc_normal_flow.tp_dst = htons(0);
5255 cls_rule = classifier_lookup(cls, &ofpc_normal_flow);
5256 } else {
5257 cls_rule = classifier_lookup(cls, flow);
5258 }
5259 return rule_dpif_cast(rule_from_cls_rule(cls_rule));
5260 }
5261
5262 static struct rule_dpif *
5263 rule_dpif_miss_rule(struct ofproto_dpif *ofproto, const struct flow *flow)
5264 {
5265 struct ofport_dpif *port;
5266
5267 port = get_ofp_port(ofproto, flow->in_port);
5268 if (!port) {
5269 VLOG_WARN_RL(&rl, "packet-in on unknown port %"PRIu16, flow->in_port);
5270 return ofproto->miss_rule;
5271 }
5272
5273 if (port->up.pp.config & OFPUTIL_PC_NO_PACKET_IN) {
5274 return ofproto->no_packet_in_rule;
5275 }
5276 return ofproto->miss_rule;
5277 }
5278
5279 static void
5280 complete_operation(struct rule_dpif *rule)
5281 {
5282 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
5283
5284 rule_invalidate(rule);
5285 if (clogged) {
5286 struct dpif_completion *c = xmalloc(sizeof *c);
5287 c->op = rule->up.pending;
5288 list_push_back(&ofproto->completions, &c->list_node);
5289 } else {
5290 ofoperation_complete(rule->up.pending, 0);
5291 }
5292 }
5293
5294 static struct rule *
5295 rule_alloc(void)
5296 {
5297 struct rule_dpif *rule = xmalloc(sizeof *rule);
5298 return &rule->up;
5299 }
5300
5301 static void
5302 rule_dealloc(struct rule *rule_)
5303 {
5304 struct rule_dpif *rule = rule_dpif_cast(rule_);
5305 free(rule);
5306 }
5307
5308 static enum ofperr
5309 rule_construct(struct rule *rule_)
5310 {
5311 struct rule_dpif *rule = rule_dpif_cast(rule_);
5312 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
5313 struct rule_dpif *victim;
5314 uint8_t table_id;
5315
5316 rule->packet_count = 0;
5317 rule->byte_count = 0;
5318
5319 victim = rule_dpif_cast(ofoperation_get_victim(rule->up.pending));
5320 if (victim && !list_is_empty(&victim->facets)) {
5321 struct facet *facet;
5322
5323 rule->facets = victim->facets;
5324 list_moved(&rule->facets);
5325 LIST_FOR_EACH (facet, list_node, &rule->facets) {
5326 /* XXX: We're only clearing our local counters here. It's possible
5327 * that quite a few packets are unaccounted for in the datapath
5328 * statistics. These will be accounted to the new rule instead of
5329 * cleared as required. This could be fixed by clearing out the
5330 * datapath statistics for this facet, but currently it doesn't
5331 * seem worth it. */
5332 facet_reset_counters(facet);
5333 facet->rule = rule;
5334 }
5335 } else {
5336 /* Must avoid list_moved() in this case. */
5337 list_init(&rule->facets);
5338 }
5339
5340 table_id = rule->up.table_id;
5341 if (victim) {
5342 rule->tag = victim->tag;
5343 } else if (table_id == 0) {
5344 rule->tag = 0;
5345 } else {
5346 struct flow flow;
5347
5348 miniflow_expand(&rule->up.cr.match.flow, &flow);
5349 rule->tag = rule_calculate_tag(&flow, &rule->up.cr.match.mask,
5350 ofproto->tables[table_id].basis);
5351 }
5352
5353 complete_operation(rule);
5354 return 0;
5355 }
5356
5357 static void
5358 rule_destruct(struct rule *rule_)
5359 {
5360 struct rule_dpif *rule = rule_dpif_cast(rule_);
5361 struct facet *facet, *next_facet;
5362
5363 LIST_FOR_EACH_SAFE (facet, next_facet, list_node, &rule->facets) {
5364 facet_revalidate(facet);
5365 }
5366
5367 complete_operation(rule);
5368 }
5369
5370 static void
5371 rule_get_stats(struct rule *rule_, uint64_t *packets, uint64_t *bytes)
5372 {
5373 struct rule_dpif *rule = rule_dpif_cast(rule_);
5374 struct facet *facet;
5375
5376 /* Start from historical data for 'rule' itself that are no longer tracked
5377 * in facets. This counts, for example, facets that have expired. */
5378 *packets = rule->packet_count;
5379 *bytes = rule->byte_count;
5380
5381 /* Add any statistics that are tracked by facets. This includes
5382 * statistical data recently updated by ofproto_update_stats() as well as
5383 * stats for packets that were executed "by hand" via dpif_execute(). */
5384 LIST_FOR_EACH (facet, list_node, &rule->facets) {
5385 *packets += facet->packet_count;
5386 *bytes += facet->byte_count;
5387 }
5388 }
5389
5390 static void
5391 rule_dpif_execute(struct rule_dpif *rule, const struct flow *flow,
5392 struct ofpbuf *packet)
5393 {
5394 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
5395
5396 struct dpif_flow_stats stats;
5397
5398 struct action_xlate_ctx ctx;
5399 uint64_t odp_actions_stub[1024 / 8];
5400 struct ofpbuf odp_actions;
5401
5402 dpif_flow_stats_extract(flow, packet, time_msec(), &stats);
5403 rule_credit_stats(rule, &stats);
5404
5405 ofpbuf_use_stub(&odp_actions, odp_actions_stub, sizeof odp_actions_stub);
5406 action_xlate_ctx_init(&ctx, ofproto, flow, flow->vlan_tci,
5407 rule, stats.tcp_flags, packet);
5408 ctx.resubmit_stats = &stats;
5409 xlate_actions(&ctx, rule->up.ofpacts, rule->up.ofpacts_len, &odp_actions);
5410
5411 execute_odp_actions(ofproto, flow, odp_actions.data,
5412 odp_actions.size, packet);
5413
5414 ofpbuf_uninit(&odp_actions);
5415 }
5416
5417 static enum ofperr
5418 rule_execute(struct rule *rule, const struct flow *flow,
5419 struct ofpbuf *packet)
5420 {
5421 rule_dpif_execute(rule_dpif_cast(rule), flow, packet);
5422 ofpbuf_delete(packet);
5423 return 0;
5424 }
5425
5426 static void
5427 rule_modify_actions(struct rule *rule_)
5428 {
5429 struct rule_dpif *rule = rule_dpif_cast(rule_);
5430
5431 complete_operation(rule);
5432 }
5433 \f
5434 /* Sends 'packet' out 'ofport'.
5435 * May modify 'packet'.
5436 * Returns 0 if successful, otherwise a positive errno value. */
5437 static int
5438 send_packet(const struct ofport_dpif *ofport, struct ofpbuf *packet)
5439 {
5440 const struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
5441 uint64_t odp_actions_stub[1024 / 8];
5442 struct ofpbuf key, odp_actions;
5443 struct odputil_keybuf keybuf;
5444 uint32_t odp_port;
5445 struct flow flow;
5446 int error;
5447
5448 flow_extract(packet, 0, 0, NULL, OFPP_LOCAL, &flow);
5449 if (netdev_vport_is_patch(ofport->up.netdev)) {
5450 struct ofproto_dpif *peer_ofproto;
5451 struct dpif_flow_stats stats;
5452 struct ofport_dpif *peer;
5453 struct rule_dpif *rule;
5454
5455 peer = ofport_get_peer(ofport);
5456 if (!peer) {
5457 return ENODEV;
5458 }
5459
5460 dpif_flow_stats_extract(&flow, packet, time_msec(), &stats);
5461 netdev_vport_inc_tx(ofport->up.netdev, &stats);
5462 netdev_vport_inc_rx(peer->up.netdev, &stats);
5463
5464 flow.in_port = peer->up.ofp_port;
5465 peer_ofproto = ofproto_dpif_cast(peer->up.ofproto);
5466 rule = rule_dpif_lookup(peer_ofproto, &flow);
5467 rule_dpif_execute(rule, &flow, packet);
5468
5469 return 0;
5470 }
5471
5472 ofpbuf_use_stub(&odp_actions, odp_actions_stub, sizeof odp_actions_stub);
5473
5474 if (ofport->tnl_port) {
5475 struct dpif_flow_stats stats;
5476
5477 odp_port = tnl_port_send(ofport->tnl_port, &flow);
5478 if (odp_port == OVSP_NONE) {
5479 return ENODEV;
5480 }
5481
5482 dpif_flow_stats_extract(&flow, packet, time_msec(), &stats);
5483 netdev_vport_inc_tx(ofport->up.netdev, &stats);
5484 odp_put_tunnel_action(&flow.tunnel, &odp_actions);
5485 odp_put_skb_mark_action(flow.skb_mark, &odp_actions);
5486 } else {
5487 odp_port = vsp_realdev_to_vlandev(ofproto, ofport->odp_port,
5488 flow.vlan_tci);
5489 if (odp_port != ofport->odp_port) {
5490 eth_pop_vlan(packet);
5491 flow.vlan_tci = htons(0);
5492 }
5493 }
5494
5495 ofpbuf_use_stack(&key, &keybuf, sizeof keybuf);
5496 odp_flow_key_from_flow(&key, &flow,
5497 ofp_port_to_odp_port(ofproto, flow.in_port));
5498
5499 compose_sflow_action(ofproto, &odp_actions, &flow, odp_port);
5500
5501 nl_msg_put_u32(&odp_actions, OVS_ACTION_ATTR_OUTPUT, odp_port);
5502 error = dpif_execute(ofproto->backer->dpif,
5503 key.data, key.size,
5504 odp_actions.data, odp_actions.size,
5505 packet);
5506 ofpbuf_uninit(&odp_actions);
5507
5508 if (error) {
5509 VLOG_WARN_RL(&rl, "%s: failed to send packet on port %"PRIu32" (%s)",
5510 ofproto->up.name, odp_port, strerror(error));
5511 }
5512 ofproto_update_local_port_stats(ofport->up.ofproto, packet->size, 0);
5513 return error;
5514 }
5515 \f
5516 /* OpenFlow to datapath action translation. */
5517
5518 static bool may_receive(const struct ofport_dpif *, struct action_xlate_ctx *);
5519 static void do_xlate_actions(const struct ofpact *, size_t ofpacts_len,
5520 struct action_xlate_ctx *);
5521 static void xlate_normal(struct action_xlate_ctx *);
5522
5523 /* Composes an ODP action for a "slow path" action for 'flow' within 'ofproto'.
5524 * The action will state 'slow' as the reason that the action is in the slow
5525 * path. (This is purely informational: it allows a human viewing "ovs-dpctl
5526 * dump-flows" output to see why a flow is in the slow path.)
5527 *
5528 * The 'stub_size' bytes in 'stub' will be used to store the action.
5529 * 'stub_size' must be large enough for the action.
5530 *
5531 * The action and its size will be stored in '*actionsp' and '*actions_lenp',
5532 * respectively. */
5533 static void
5534 compose_slow_path(const struct ofproto_dpif *ofproto, const struct flow *flow,
5535 enum slow_path_reason slow,
5536 uint64_t *stub, size_t stub_size,
5537 const struct nlattr **actionsp, size_t *actions_lenp)
5538 {
5539 union user_action_cookie cookie;
5540 struct ofpbuf buf;
5541
5542 cookie.type = USER_ACTION_COOKIE_SLOW_PATH;
5543 cookie.slow_path.unused = 0;
5544 cookie.slow_path.reason = slow;
5545
5546 ofpbuf_use_stack(&buf, stub, stub_size);
5547 if (slow & (SLOW_CFM | SLOW_LACP | SLOW_STP)) {
5548 uint32_t pid = dpif_port_get_pid(ofproto->backer->dpif, UINT32_MAX);
5549 odp_put_userspace_action(pid, &cookie, sizeof cookie, &buf);
5550 } else {
5551 put_userspace_action(ofproto, &buf, flow, &cookie);
5552 }
5553 *actionsp = buf.data;
5554 *actions_lenp = buf.size;
5555 }
5556
5557 static size_t
5558 put_userspace_action(const struct ofproto_dpif *ofproto,
5559 struct ofpbuf *odp_actions,
5560 const struct flow *flow,
5561 const union user_action_cookie *cookie)
5562 {
5563 uint32_t pid;
5564
5565 pid = dpif_port_get_pid(ofproto->backer->dpif,
5566 ofp_port_to_odp_port(ofproto, flow->in_port));
5567
5568 return odp_put_userspace_action(pid, cookie, sizeof *cookie, odp_actions);
5569 }
5570
5571 static void
5572 compose_sflow_cookie(const struct ofproto_dpif *ofproto,
5573 ovs_be16 vlan_tci, uint32_t odp_port,
5574 unsigned int n_outputs, union user_action_cookie *cookie)
5575 {
5576 int ifindex;
5577
5578 cookie->type = USER_ACTION_COOKIE_SFLOW;
5579 cookie->sflow.vlan_tci = vlan_tci;
5580
5581 /* See http://www.sflow.org/sflow_version_5.txt (search for "Input/output
5582 * port information") for the interpretation of cookie->output. */
5583 switch (n_outputs) {
5584 case 0:
5585 /* 0x40000000 | 256 means "packet dropped for unknown reason". */
5586 cookie->sflow.output = 0x40000000 | 256;
5587 break;
5588
5589 case 1:
5590 ifindex = dpif_sflow_odp_port_to_ifindex(ofproto->sflow, odp_port);
5591 if (ifindex) {
5592 cookie->sflow.output = ifindex;
5593 break;
5594 }
5595 /* Fall through. */
5596 default:
5597 /* 0x80000000 means "multiple output ports. */
5598 cookie->sflow.output = 0x80000000 | n_outputs;
5599 break;
5600 }
5601 }
5602
5603 /* Compose SAMPLE action for sFlow. */
5604 static size_t
5605 compose_sflow_action(const struct ofproto_dpif *ofproto,
5606 struct ofpbuf *odp_actions,
5607 const struct flow *flow,
5608 uint32_t odp_port)
5609 {
5610 uint32_t probability;
5611 union user_action_cookie cookie;
5612 size_t sample_offset, actions_offset;
5613 int cookie_offset;
5614
5615 if (!ofproto->sflow || flow->in_port == OFPP_NONE) {
5616 return 0;
5617 }
5618
5619 sample_offset = nl_msg_start_nested(odp_actions, OVS_ACTION_ATTR_SAMPLE);
5620
5621 /* Number of packets out of UINT_MAX to sample. */
5622 probability = dpif_sflow_get_probability(ofproto->sflow);
5623 nl_msg_put_u32(odp_actions, OVS_SAMPLE_ATTR_PROBABILITY, probability);
5624
5625 actions_offset = nl_msg_start_nested(odp_actions, OVS_SAMPLE_ATTR_ACTIONS);
5626 compose_sflow_cookie(ofproto, htons(0), odp_port,
5627 odp_port == OVSP_NONE ? 0 : 1, &cookie);
5628 cookie_offset = put_userspace_action(ofproto, odp_actions, flow, &cookie);
5629
5630 nl_msg_end_nested(odp_actions, actions_offset);
5631 nl_msg_end_nested(odp_actions, sample_offset);
5632 return cookie_offset;
5633 }
5634
5635 /* SAMPLE action must be first action in any given list of actions.
5636 * At this point we do not have all information required to build it. So try to
5637 * build sample action as complete as possible. */
5638 static void
5639 add_sflow_action(struct action_xlate_ctx *ctx)
5640 {
5641 ctx->user_cookie_offset = compose_sflow_action(ctx->ofproto,
5642 ctx->odp_actions,
5643 &ctx->flow, OVSP_NONE);
5644 ctx->sflow_odp_port = 0;
5645 ctx->sflow_n_outputs = 0;
5646 }
5647
5648 /* Fix SAMPLE action according to data collected while composing ODP actions.
5649 * We need to fix SAMPLE actions OVS_SAMPLE_ATTR_ACTIONS attribute, i.e. nested
5650 * USERSPACE action's user-cookie which is required for sflow. */
5651 static void
5652 fix_sflow_action(struct action_xlate_ctx *ctx)
5653 {
5654 const struct flow *base = &ctx->base_flow;
5655 union user_action_cookie *cookie;
5656
5657 if (!ctx->user_cookie_offset) {
5658 return;
5659 }
5660
5661 cookie = ofpbuf_at(ctx->odp_actions, ctx->user_cookie_offset,
5662 sizeof(*cookie));
5663 ovs_assert(cookie->type == USER_ACTION_COOKIE_SFLOW);
5664
5665 compose_sflow_cookie(ctx->ofproto, base->vlan_tci,
5666 ctx->sflow_odp_port, ctx->sflow_n_outputs, cookie);
5667 }
5668
5669 static void
5670 compose_output_action__(struct action_xlate_ctx *ctx, uint16_t ofp_port,
5671 bool check_stp)
5672 {
5673 const struct ofport_dpif *ofport = get_ofp_port(ctx->ofproto, ofp_port);
5674 ovs_be16 flow_vlan_tci = ctx->flow.vlan_tci;
5675 ovs_be64 flow_tun_id = ctx->flow.tunnel.tun_id;
5676 uint8_t flow_nw_tos = ctx->flow.nw_tos;
5677 struct priority_to_dscp *pdscp;
5678 uint32_t out_port, odp_port;
5679
5680 /* If 'struct flow' gets additional metadata, we'll need to zero it out
5681 * before traversing a patch port. */
5682 BUILD_ASSERT_DECL(FLOW_WC_SEQ == 19);
5683
5684 if (!ofport) {
5685 xlate_report(ctx, "Nonexistent output port");
5686 return;
5687 } else if (ofport->up.pp.config & OFPUTIL_PC_NO_FWD) {
5688 xlate_report(ctx, "OFPPC_NO_FWD set, skipping output");
5689 return;
5690 } else if (check_stp && !stp_forward_in_state(ofport->stp_state)) {
5691 xlate_report(ctx, "STP not in forwarding state, skipping output");
5692 return;
5693 }
5694
5695 if (netdev_vport_is_patch(ofport->up.netdev)) {
5696 struct ofport_dpif *peer = ofport_get_peer(ofport);
5697 struct flow old_flow = ctx->flow;
5698 const struct ofproto_dpif *peer_ofproto;
5699 enum slow_path_reason special;
5700 struct ofport_dpif *in_port;
5701
5702 if (!peer) {
5703 xlate_report(ctx, "Nonexistent patch port peer");
5704 return;
5705 }
5706
5707 peer_ofproto = ofproto_dpif_cast(peer->up.ofproto);
5708 if (peer_ofproto->backer != ctx->ofproto->backer) {
5709 xlate_report(ctx, "Patch port peer on a different datapath");
5710 return;
5711 }
5712
5713 ctx->ofproto = ofproto_dpif_cast(peer->up.ofproto);
5714 ctx->flow.in_port = peer->up.ofp_port;
5715 ctx->flow.metadata = htonll(0);
5716 memset(&ctx->flow.tunnel, 0, sizeof ctx->flow.tunnel);
5717 memset(ctx->flow.regs, 0, sizeof ctx->flow.regs);
5718
5719 in_port = get_ofp_port(ctx->ofproto, ctx->flow.in_port);
5720 special = process_special(ctx->ofproto, &ctx->flow, in_port,
5721 ctx->packet);
5722 if (special) {
5723 ctx->slow |= special;
5724 } else if (!in_port || may_receive(in_port, ctx)) {
5725 if (!in_port || stp_forward_in_state(in_port->stp_state)) {
5726 xlate_table_action(ctx, ctx->flow.in_port, 0, true);
5727 } else {
5728 /* Forwarding is disabled by STP. Let OFPP_NORMAL and the
5729 * learning action look at the packet, then drop it. */
5730 struct flow old_base_flow = ctx->base_flow;
5731 size_t old_size = ctx->odp_actions->size;
5732 xlate_table_action(ctx, ctx->flow.in_port, 0, true);
5733 ctx->base_flow = old_base_flow;
5734 ctx->odp_actions->size = old_size;
5735 }
5736 }
5737
5738 ctx->flow = old_flow;
5739 ctx->ofproto = ofproto_dpif_cast(ofport->up.ofproto);
5740
5741 if (ctx->resubmit_stats) {
5742 netdev_vport_inc_tx(ofport->up.netdev, ctx->resubmit_stats);
5743 netdev_vport_inc_rx(peer->up.netdev, ctx->resubmit_stats);
5744 }
5745
5746 return;
5747 }
5748
5749 pdscp = get_priority(ofport, ctx->flow.skb_priority);
5750 if (pdscp) {
5751 ctx->flow.nw_tos &= ~IP_DSCP_MASK;
5752 ctx->flow.nw_tos |= pdscp->dscp;
5753 }
5754
5755 odp_port = ofp_port_to_odp_port(ctx->ofproto, ofp_port);
5756 if (ofport->tnl_port) {
5757 odp_port = tnl_port_send(ofport->tnl_port, &ctx->flow);
5758 if (odp_port == OVSP_NONE) {
5759 xlate_report(ctx, "Tunneling decided against output");
5760 return;
5761 }
5762
5763 if (ctx->resubmit_stats) {
5764 netdev_vport_inc_tx(ofport->up.netdev, ctx->resubmit_stats);
5765 }
5766 out_port = odp_port;
5767 commit_odp_tunnel_action(&ctx->flow, &ctx->base_flow,
5768 ctx->odp_actions);
5769 } else {
5770 out_port = vsp_realdev_to_vlandev(ctx->ofproto, odp_port,
5771 ctx->flow.vlan_tci);
5772 if (out_port != odp_port) {
5773 ctx->flow.vlan_tci = htons(0);
5774 }
5775 }
5776 commit_odp_actions(&ctx->flow, &ctx->base_flow, ctx->odp_actions);
5777 nl_msg_put_u32(ctx->odp_actions, OVS_ACTION_ATTR_OUTPUT, out_port);
5778
5779 ctx->sflow_odp_port = odp_port;
5780 ctx->sflow_n_outputs++;
5781 ctx->nf_output_iface = ofp_port;
5782 ctx->flow.tunnel.tun_id = flow_tun_id;
5783 ctx->flow.vlan_tci = flow_vlan_tci;
5784 ctx->flow.nw_tos = flow_nw_tos;
5785 }
5786
5787 static void
5788 compose_output_action(struct action_xlate_ctx *ctx, uint16_t ofp_port)
5789 {
5790 compose_output_action__(ctx, ofp_port, true);
5791 }
5792
5793 static void
5794 xlate_table_action(struct action_xlate_ctx *ctx,
5795 uint16_t in_port, uint8_t table_id, bool may_packet_in)
5796 {
5797 if (ctx->recurse < MAX_RESUBMIT_RECURSION) {
5798 struct ofproto_dpif *ofproto = ctx->ofproto;
5799 struct rule_dpif *rule;
5800 uint16_t old_in_port;
5801 uint8_t old_table_id;
5802
5803 old_table_id = ctx->table_id;
5804 ctx->table_id = table_id;
5805
5806 /* Look up a flow with 'in_port' as the input port. */
5807 old_in_port = ctx->flow.in_port;
5808 ctx->flow.in_port = in_port;
5809 rule = rule_dpif_lookup__(ofproto, &ctx->flow, table_id);
5810
5811 /* Tag the flow. */
5812 if (table_id > 0 && table_id < N_TABLES) {
5813 struct table_dpif *table = &ofproto->tables[table_id];
5814 if (table->other_table) {
5815 ctx->tags |= (rule && rule->tag
5816 ? rule->tag
5817 : rule_calculate_tag(&ctx->flow,
5818 &table->other_table->mask,
5819 table->basis));
5820 }
5821 }
5822
5823 /* Restore the original input port. Otherwise OFPP_NORMAL and
5824 * OFPP_IN_PORT will have surprising behavior. */
5825 ctx->flow.in_port = old_in_port;
5826
5827 if (ctx->resubmit_hook) {
5828 ctx->resubmit_hook(ctx, rule);
5829 }
5830
5831 if (rule == NULL && may_packet_in) {
5832 /* XXX
5833 * check if table configuration flags
5834 * OFPTC_TABLE_MISS_CONTROLLER, default.
5835 * OFPTC_TABLE_MISS_CONTINUE,
5836 * OFPTC_TABLE_MISS_DROP
5837 * When OF1.0, OFPTC_TABLE_MISS_CONTINUE is used. What to do?
5838 */
5839 rule = rule_dpif_miss_rule(ofproto, &ctx->flow);
5840 }
5841
5842 if (rule) {
5843 struct rule_dpif *old_rule = ctx->rule;
5844
5845 if (ctx->resubmit_stats) {
5846 rule_credit_stats(rule, ctx->resubmit_stats);
5847 }
5848
5849 ctx->recurse++;
5850 ctx->rule = rule;
5851 do_xlate_actions(rule->up.ofpacts, rule->up.ofpacts_len, ctx);
5852 ctx->rule = old_rule;
5853 ctx->recurse--;
5854 }
5855
5856 ctx->table_id = old_table_id;
5857 } else {
5858 static struct vlog_rate_limit recurse_rl = VLOG_RATE_LIMIT_INIT(1, 1);
5859
5860 VLOG_ERR_RL(&recurse_rl, "resubmit actions recursed over %d times",
5861 MAX_RESUBMIT_RECURSION);
5862 ctx->max_resubmit_trigger = true;
5863 }
5864 }
5865
5866 static void
5867 xlate_ofpact_resubmit(struct action_xlate_ctx *ctx,
5868 const struct ofpact_resubmit *resubmit)
5869 {
5870 uint16_t in_port;
5871 uint8_t table_id;
5872
5873 in_port = resubmit->in_port;
5874 if (in_port == OFPP_IN_PORT) {
5875 in_port = ctx->flow.in_port;
5876 }
5877
5878 table_id = resubmit->table_id;
5879 if (table_id == 255) {
5880 table_id = ctx->table_id;
5881 }
5882
5883 xlate_table_action(ctx, in_port, table_id, false);
5884 }
5885
5886 static void
5887 flood_packets(struct action_xlate_ctx *ctx, bool all)
5888 {
5889 struct ofport_dpif *ofport;
5890
5891 HMAP_FOR_EACH (ofport, up.hmap_node, &ctx->ofproto->up.ports) {
5892 uint16_t ofp_port = ofport->up.ofp_port;
5893
5894 if (ofp_port == ctx->flow.in_port) {
5895 continue;
5896 }
5897
5898 if (all) {
5899 compose_output_action__(ctx, ofp_port, false);
5900 } else if (!(ofport->up.pp.config & OFPUTIL_PC_NO_FLOOD)) {
5901 compose_output_action(ctx, ofp_port);
5902 }
5903 }
5904
5905 ctx->nf_output_iface = NF_OUT_FLOOD;
5906 }
5907
5908 static void
5909 execute_controller_action(struct action_xlate_ctx *ctx, int len,
5910 enum ofp_packet_in_reason reason,
5911 uint16_t controller_id)
5912 {
5913 struct ofputil_packet_in pin;
5914 struct ofpbuf *packet;
5915
5916 ctx->slow |= SLOW_CONTROLLER;
5917 if (!ctx->packet) {
5918 return;
5919 }
5920
5921 packet = ofpbuf_clone(ctx->packet);
5922
5923 if (packet->l2 && packet->l3) {
5924 struct eth_header *eh;
5925 uint16_t mpls_depth;
5926
5927 eth_pop_vlan(packet);
5928 eh = packet->l2;
5929
5930 memcpy(eh->eth_src, ctx->flow.dl_src, sizeof eh->eth_src);
5931 memcpy(eh->eth_dst, ctx->flow.dl_dst, sizeof eh->eth_dst);
5932
5933 if (ctx->flow.vlan_tci & htons(VLAN_CFI)) {
5934 eth_push_vlan(packet, ctx->flow.vlan_tci);
5935 }
5936
5937 mpls_depth = eth_mpls_depth(packet);
5938
5939 if (mpls_depth < ctx->flow.mpls_depth) {
5940 push_mpls(packet, ctx->flow.dl_type, ctx->flow.mpls_lse);
5941 } else if (mpls_depth > ctx->flow.mpls_depth) {
5942 pop_mpls(packet, ctx->flow.dl_type);
5943 } else if (mpls_depth) {
5944 set_mpls_lse(packet, ctx->flow.mpls_lse);
5945 }
5946
5947 if (packet->l4) {
5948 if (ctx->flow.dl_type == htons(ETH_TYPE_IP)) {
5949 packet_set_ipv4(packet, ctx->flow.nw_src, ctx->flow.nw_dst,
5950 ctx->flow.nw_tos, ctx->flow.nw_ttl);
5951 }
5952
5953 if (packet->l7) {
5954 if (ctx->flow.nw_proto == IPPROTO_TCP) {
5955 packet_set_tcp_port(packet, ctx->flow.tp_src,
5956 ctx->flow.tp_dst);
5957 } else if (ctx->flow.nw_proto == IPPROTO_UDP) {
5958 packet_set_udp_port(packet, ctx->flow.tp_src,
5959 ctx->flow.tp_dst);
5960 }
5961 }
5962 }
5963 }
5964
5965 pin.packet = packet->data;
5966 pin.packet_len = packet->size;
5967 pin.reason = reason;
5968 pin.controller_id = controller_id;
5969 pin.table_id = ctx->table_id;
5970 pin.cookie = ctx->rule ? ctx->rule->up.flow_cookie : 0;
5971
5972 pin.send_len = len;
5973 flow_get_metadata(&ctx->flow, &pin.fmd);
5974
5975 connmgr_send_packet_in(ctx->ofproto->up.connmgr, &pin);
5976 ofpbuf_delete(packet);
5977 }
5978
5979 static void
5980 execute_mpls_push_action(struct action_xlate_ctx *ctx, ovs_be16 eth_type)
5981 {
5982 ovs_assert(eth_type_mpls(eth_type));
5983
5984 if (ctx->base_flow.mpls_depth) {
5985 ctx->flow.mpls_lse &= ~htonl(MPLS_BOS_MASK);
5986 ctx->flow.mpls_depth++;
5987 } else {
5988 ovs_be32 label;
5989 uint8_t tc, ttl;
5990
5991 if (ctx->flow.dl_type == htons(ETH_TYPE_IPV6)) {
5992 label = htonl(0x2); /* IPV6 Explicit Null. */
5993 } else {
5994 label = htonl(0x0); /* IPV4 Explicit Null. */
5995 }
5996 tc = (ctx->flow.nw_tos & IP_DSCP_MASK) >> 2;
5997 ttl = ctx->flow.nw_ttl ? ctx->flow.nw_ttl : 0x40;
5998 ctx->flow.mpls_lse = set_mpls_lse_values(ttl, tc, 1, label);
5999 ctx->flow.encap_dl_type = ctx->flow.dl_type;
6000 ctx->flow.mpls_depth = 1;
6001 }
6002 ctx->flow.dl_type = eth_type;
6003 }
6004
6005 static void
6006 execute_mpls_pop_action(struct action_xlate_ctx *ctx, ovs_be16 eth_type)
6007 {
6008 ovs_assert(eth_type_mpls(ctx->flow.dl_type));
6009 ovs_assert(!eth_type_mpls(eth_type));
6010
6011 if (ctx->flow.mpls_depth) {
6012 ctx->flow.mpls_depth--;
6013 ctx->flow.mpls_lse = htonl(0);
6014 if (!ctx->flow.mpls_depth) {
6015 ctx->flow.dl_type = eth_type;
6016 ctx->flow.encap_dl_type = htons(0);
6017 }
6018 }
6019 }
6020
6021 static bool
6022 compose_dec_ttl(struct action_xlate_ctx *ctx, struct ofpact_cnt_ids *ids)
6023 {
6024 if (ctx->flow.dl_type != htons(ETH_TYPE_IP) &&
6025 ctx->flow.dl_type != htons(ETH_TYPE_IPV6)) {
6026 return false;
6027 }
6028
6029 if (ctx->flow.nw_ttl > 1) {
6030 ctx->flow.nw_ttl--;
6031 return false;
6032 } else {
6033 size_t i;
6034
6035 for (i = 0; i < ids->n_controllers; i++) {
6036 execute_controller_action(ctx, UINT16_MAX, OFPR_INVALID_TTL,
6037 ids->cnt_ids[i]);
6038 }
6039
6040 /* Stop processing for current table. */
6041 return true;
6042 }
6043 }
6044
6045 static bool
6046 execute_set_mpls_ttl_action(struct action_xlate_ctx *ctx, uint8_t ttl)
6047 {
6048 if (!eth_type_mpls(ctx->flow.dl_type)) {
6049 return true;
6050 }
6051
6052 set_mpls_lse_ttl(&ctx->flow.mpls_lse, ttl);
6053 return false;
6054 }
6055
6056 static bool
6057 execute_dec_mpls_ttl_action(struct action_xlate_ctx *ctx)
6058 {
6059 uint8_t ttl = mpls_lse_to_ttl(ctx->flow.mpls_lse);
6060
6061 if (!eth_type_mpls(ctx->flow.dl_type)) {
6062 return false;
6063 }
6064
6065 if (ttl > 0) {
6066 ttl--;
6067 set_mpls_lse_ttl(&ctx->flow.mpls_lse, ttl);
6068 return false;
6069 } else {
6070 execute_controller_action(ctx, UINT16_MAX, OFPR_INVALID_TTL, 0);
6071
6072 /* Stop processing for current table. */
6073 return true;
6074 }
6075 }
6076
6077 static void
6078 xlate_output_action(struct action_xlate_ctx *ctx,
6079 uint16_t port, uint16_t max_len, bool may_packet_in)
6080 {
6081 uint16_t prev_nf_output_iface = ctx->nf_output_iface;
6082
6083 ctx->nf_output_iface = NF_OUT_DROP;
6084
6085 switch (port) {
6086 case OFPP_IN_PORT:
6087 compose_output_action(ctx, ctx->flow.in_port);
6088 break;
6089 case OFPP_TABLE:
6090 xlate_table_action(ctx, ctx->flow.in_port, 0, may_packet_in);
6091 break;
6092 case OFPP_NORMAL:
6093 xlate_normal(ctx);
6094 break;
6095 case OFPP_FLOOD:
6096 flood_packets(ctx, false);
6097 break;
6098 case OFPP_ALL:
6099 flood_packets(ctx, true);
6100 break;
6101 case OFPP_CONTROLLER:
6102 execute_controller_action(ctx, max_len, OFPR_ACTION, 0);
6103 break;
6104 case OFPP_NONE:
6105 break;
6106 case OFPP_LOCAL:
6107 default:
6108 if (port != ctx->flow.in_port) {
6109 compose_output_action(ctx, port);
6110 } else {
6111 xlate_report(ctx, "skipping output to input port");
6112 }
6113 break;
6114 }
6115
6116 if (prev_nf_output_iface == NF_OUT_FLOOD) {
6117 ctx->nf_output_iface = NF_OUT_FLOOD;
6118 } else if (ctx->nf_output_iface == NF_OUT_DROP) {
6119 ctx->nf_output_iface = prev_nf_output_iface;
6120 } else if (prev_nf_output_iface != NF_OUT_DROP &&
6121 ctx->nf_output_iface != NF_OUT_FLOOD) {
6122 ctx->nf_output_iface = NF_OUT_MULTI;
6123 }
6124 }
6125
6126 static void
6127 xlate_output_reg_action(struct action_xlate_ctx *ctx,
6128 const struct ofpact_output_reg *or)
6129 {
6130 uint64_t port = mf_get_subfield(&or->src, &ctx->flow);
6131 if (port <= UINT16_MAX) {
6132 xlate_output_action(ctx, port, or->max_len, false);
6133 }
6134 }
6135
6136 static void
6137 xlate_enqueue_action(struct action_xlate_ctx *ctx,
6138 const struct ofpact_enqueue *enqueue)
6139 {
6140 uint16_t ofp_port = enqueue->port;
6141 uint32_t queue_id = enqueue->queue;
6142 uint32_t flow_priority, priority;
6143 int error;
6144
6145 /* Translate queue to priority. */
6146 error = dpif_queue_to_priority(ctx->ofproto->backer->dpif,
6147 queue_id, &priority);
6148 if (error) {
6149 /* Fall back to ordinary output action. */
6150 xlate_output_action(ctx, enqueue->port, 0, false);
6151 return;
6152 }
6153
6154 /* Check output port. */
6155 if (ofp_port == OFPP_IN_PORT) {
6156 ofp_port = ctx->flow.in_port;
6157 } else if (ofp_port == ctx->flow.in_port) {
6158 return;
6159 }
6160
6161 /* Add datapath actions. */
6162 flow_priority = ctx->flow.skb_priority;
6163 ctx->flow.skb_priority = priority;
6164 compose_output_action(ctx, ofp_port);
6165 ctx->flow.skb_priority = flow_priority;
6166
6167 /* Update NetFlow output port. */
6168 if (ctx->nf_output_iface == NF_OUT_DROP) {
6169 ctx->nf_output_iface = ofp_port;
6170 } else if (ctx->nf_output_iface != NF_OUT_FLOOD) {
6171 ctx->nf_output_iface = NF_OUT_MULTI;
6172 }
6173 }
6174
6175 static void
6176 xlate_set_queue_action(struct action_xlate_ctx *ctx, uint32_t queue_id)
6177 {
6178 uint32_t skb_priority;
6179
6180 if (!dpif_queue_to_priority(ctx->ofproto->backer->dpif,
6181 queue_id, &skb_priority)) {
6182 ctx->flow.skb_priority = skb_priority;
6183 } else {
6184 /* Couldn't translate queue to a priority. Nothing to do. A warning
6185 * has already been logged. */
6186 }
6187 }
6188
6189 struct xlate_reg_state {
6190 ovs_be16 vlan_tci;
6191 ovs_be64 tun_id;
6192 };
6193
6194 static bool
6195 slave_enabled_cb(uint16_t ofp_port, void *ofproto_)
6196 {
6197 struct ofproto_dpif *ofproto = ofproto_;
6198 struct ofport_dpif *port;
6199
6200 switch (ofp_port) {
6201 case OFPP_IN_PORT:
6202 case OFPP_TABLE:
6203 case OFPP_NORMAL:
6204 case OFPP_FLOOD:
6205 case OFPP_ALL:
6206 case OFPP_NONE:
6207 return true;
6208 case OFPP_CONTROLLER: /* Not supported by the bundle action. */
6209 return false;
6210 default:
6211 port = get_ofp_port(ofproto, ofp_port);
6212 return port ? port->may_enable : false;
6213 }
6214 }
6215
6216 static void
6217 xlate_bundle_action(struct action_xlate_ctx *ctx,
6218 const struct ofpact_bundle *bundle)
6219 {
6220 uint16_t port;
6221
6222 port = bundle_execute(bundle, &ctx->flow, slave_enabled_cb, ctx->ofproto);
6223 if (bundle->dst.field) {
6224 nxm_reg_load(&bundle->dst, port, &ctx->flow);
6225 } else {
6226 xlate_output_action(ctx, port, 0, false);
6227 }
6228 }
6229
6230 static void
6231 xlate_learn_action(struct action_xlate_ctx *ctx,
6232 const struct ofpact_learn *learn)
6233 {
6234 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(5, 1);
6235 struct ofputil_flow_mod fm;
6236 uint64_t ofpacts_stub[1024 / 8];
6237 struct ofpbuf ofpacts;
6238 int error;
6239
6240 ofpbuf_use_stack(&ofpacts, ofpacts_stub, sizeof ofpacts_stub);
6241 learn_execute(learn, &ctx->flow, &fm, &ofpacts);
6242
6243 error = ofproto_flow_mod(&ctx->ofproto->up, &fm);
6244 if (error && !VLOG_DROP_WARN(&rl)) {
6245 VLOG_WARN("learning action failed to modify flow table (%s)",
6246 ofperr_get_name(error));
6247 }
6248
6249 ofpbuf_uninit(&ofpacts);
6250 }
6251
6252 /* Reduces '*timeout' to no more than 'max'. A value of zero in either case
6253 * means "infinite". */
6254 static void
6255 reduce_timeout(uint16_t max, uint16_t *timeout)
6256 {
6257 if (max && (!*timeout || *timeout > max)) {
6258 *timeout = max;
6259 }
6260 }
6261
6262 static void
6263 xlate_fin_timeout(struct action_xlate_ctx *ctx,
6264 const struct ofpact_fin_timeout *oft)
6265 {
6266 if (ctx->tcp_flags & (TCP_FIN | TCP_RST) && ctx->rule) {
6267 struct rule_dpif *rule = ctx->rule;
6268
6269 reduce_timeout(oft->fin_idle_timeout, &rule->up.idle_timeout);
6270 reduce_timeout(oft->fin_hard_timeout, &rule->up.hard_timeout);
6271 }
6272 }
6273
6274 static bool
6275 may_receive(const struct ofport_dpif *port, struct action_xlate_ctx *ctx)
6276 {
6277 if (port->up.pp.config & (eth_addr_equals(ctx->flow.dl_dst, eth_addr_stp)
6278 ? OFPUTIL_PC_NO_RECV_STP
6279 : OFPUTIL_PC_NO_RECV)) {
6280 return false;
6281 }
6282
6283 /* Only drop packets here if both forwarding and learning are
6284 * disabled. If just learning is enabled, we need to have
6285 * OFPP_NORMAL and the learning action have a look at the packet
6286 * before we can drop it. */
6287 if (!stp_forward_in_state(port->stp_state)
6288 && !stp_learn_in_state(port->stp_state)) {
6289 return false;
6290 }
6291
6292 return true;
6293 }
6294
6295 static void
6296 do_xlate_actions(const struct ofpact *ofpacts, size_t ofpacts_len,
6297 struct action_xlate_ctx *ctx)
6298 {
6299 bool was_evictable = true;
6300 const struct ofpact *a;
6301
6302 if (ctx->rule) {
6303 /* Don't let the rule we're working on get evicted underneath us. */
6304 was_evictable = ctx->rule->up.evictable;
6305 ctx->rule->up.evictable = false;
6306 }
6307 OFPACT_FOR_EACH (a, ofpacts, ofpacts_len) {
6308 struct ofpact_controller *controller;
6309 const struct ofpact_metadata *metadata;
6310
6311 if (ctx->exit) {
6312 break;
6313 }
6314
6315 switch (a->type) {
6316 case OFPACT_OUTPUT:
6317 xlate_output_action(ctx, ofpact_get_OUTPUT(a)->port,
6318 ofpact_get_OUTPUT(a)->max_len, true);
6319 break;
6320
6321 case OFPACT_CONTROLLER:
6322 controller = ofpact_get_CONTROLLER(a);
6323 execute_controller_action(ctx, controller->max_len,
6324 controller->reason,
6325 controller->controller_id);
6326 break;
6327
6328 case OFPACT_ENQUEUE:
6329 xlate_enqueue_action(ctx, ofpact_get_ENQUEUE(a));
6330 break;
6331
6332 case OFPACT_SET_VLAN_VID:
6333 ctx->flow.vlan_tci &= ~htons(VLAN_VID_MASK);
6334 ctx->flow.vlan_tci |= (htons(ofpact_get_SET_VLAN_VID(a)->vlan_vid)
6335 | htons(VLAN_CFI));
6336 break;
6337
6338 case OFPACT_SET_VLAN_PCP:
6339 ctx->flow.vlan_tci &= ~htons(VLAN_PCP_MASK);
6340 ctx->flow.vlan_tci |= htons((ofpact_get_SET_VLAN_PCP(a)->vlan_pcp
6341 << VLAN_PCP_SHIFT)
6342 | VLAN_CFI);
6343 break;
6344
6345 case OFPACT_STRIP_VLAN:
6346 ctx->flow.vlan_tci = htons(0);
6347 break;
6348
6349 case OFPACT_PUSH_VLAN:
6350 /* XXX 802.1AD(QinQ) */
6351 ctx->flow.vlan_tci = htons(VLAN_CFI);
6352 break;
6353
6354 case OFPACT_SET_ETH_SRC:
6355 memcpy(ctx->flow.dl_src, ofpact_get_SET_ETH_SRC(a)->mac,
6356 ETH_ADDR_LEN);
6357 break;
6358
6359 case OFPACT_SET_ETH_DST:
6360 memcpy(ctx->flow.dl_dst, ofpact_get_SET_ETH_DST(a)->mac,
6361 ETH_ADDR_LEN);
6362 break;
6363
6364 case OFPACT_SET_IPV4_SRC:
6365 ctx->flow.nw_src = ofpact_get_SET_IPV4_SRC(a)->ipv4;
6366 break;
6367
6368 case OFPACT_SET_IPV4_DST:
6369 ctx->flow.nw_dst = ofpact_get_SET_IPV4_DST(a)->ipv4;
6370 break;
6371
6372 case OFPACT_SET_IPV4_DSCP:
6373 /* OpenFlow 1.0 only supports IPv4. */
6374 if (ctx->flow.dl_type == htons(ETH_TYPE_IP)) {
6375 ctx->flow.nw_tos &= ~IP_DSCP_MASK;
6376 ctx->flow.nw_tos |= ofpact_get_SET_IPV4_DSCP(a)->dscp;
6377 }
6378 break;
6379
6380 case OFPACT_SET_L4_SRC_PORT:
6381 ctx->flow.tp_src = htons(ofpact_get_SET_L4_SRC_PORT(a)->port);
6382 break;
6383
6384 case OFPACT_SET_L4_DST_PORT:
6385 ctx->flow.tp_dst = htons(ofpact_get_SET_L4_DST_PORT(a)->port);
6386 break;
6387
6388 case OFPACT_RESUBMIT:
6389 xlate_ofpact_resubmit(ctx, ofpact_get_RESUBMIT(a));
6390 break;
6391
6392 case OFPACT_SET_TUNNEL:
6393 ctx->flow.tunnel.tun_id = htonll(ofpact_get_SET_TUNNEL(a)->tun_id);
6394 break;
6395
6396 case OFPACT_SET_QUEUE:
6397 xlate_set_queue_action(ctx, ofpact_get_SET_QUEUE(a)->queue_id);
6398 break;
6399
6400 case OFPACT_POP_QUEUE:
6401 ctx->flow.skb_priority = ctx->orig_skb_priority;
6402 break;
6403
6404 case OFPACT_REG_MOVE:
6405 nxm_execute_reg_move(ofpact_get_REG_MOVE(a), &ctx->flow);
6406 break;
6407
6408 case OFPACT_REG_LOAD:
6409 nxm_execute_reg_load(ofpact_get_REG_LOAD(a), &ctx->flow);
6410 break;
6411
6412 case OFPACT_STACK_PUSH:
6413 nxm_execute_stack_push(ofpact_get_STACK_PUSH(a), &ctx->flow,
6414 &ctx->stack);
6415 break;
6416
6417 case OFPACT_STACK_POP:
6418 nxm_execute_stack_pop(ofpact_get_STACK_POP(a), &ctx->flow,
6419 &ctx->stack);
6420 break;
6421
6422 case OFPACT_PUSH_MPLS:
6423 execute_mpls_push_action(ctx, ofpact_get_PUSH_MPLS(a)->ethertype);
6424 break;
6425
6426 case OFPACT_POP_MPLS:
6427 execute_mpls_pop_action(ctx, ofpact_get_POP_MPLS(a)->ethertype);
6428 break;
6429
6430 case OFPACT_SET_MPLS_TTL:
6431 if (execute_set_mpls_ttl_action(ctx, ofpact_get_SET_MPLS_TTL(a)->ttl)) {
6432 goto out;
6433 }
6434 break;
6435
6436 case OFPACT_DEC_MPLS_TTL:
6437 if (execute_dec_mpls_ttl_action(ctx)) {
6438 goto out;
6439 }
6440 break;
6441
6442 case OFPACT_DEC_TTL:
6443 if (compose_dec_ttl(ctx, ofpact_get_DEC_TTL(a))) {
6444 goto out;
6445 }
6446 break;
6447
6448 case OFPACT_NOTE:
6449 /* Nothing to do. */
6450 break;
6451
6452 case OFPACT_MULTIPATH:
6453 multipath_execute(ofpact_get_MULTIPATH(a), &ctx->flow);
6454 break;
6455
6456 case OFPACT_BUNDLE:
6457 ctx->ofproto->has_bundle_action = true;
6458 xlate_bundle_action(ctx, ofpact_get_BUNDLE(a));
6459 break;
6460
6461 case OFPACT_OUTPUT_REG:
6462 xlate_output_reg_action(ctx, ofpact_get_OUTPUT_REG(a));
6463 break;
6464
6465 case OFPACT_LEARN:
6466 ctx->has_learn = true;
6467 if (ctx->may_learn) {
6468 xlate_learn_action(ctx, ofpact_get_LEARN(a));
6469 }
6470 break;
6471
6472 case OFPACT_EXIT:
6473 ctx->exit = true;
6474 break;
6475
6476 case OFPACT_FIN_TIMEOUT:
6477 ctx->has_fin_timeout = true;
6478 xlate_fin_timeout(ctx, ofpact_get_FIN_TIMEOUT(a));
6479 break;
6480
6481 case OFPACT_CLEAR_ACTIONS:
6482 /* XXX
6483 * Nothing to do because writa-actions is not supported for now.
6484 * When writa-actions is supported, clear-actions also must
6485 * be supported at the same time.
6486 */
6487 break;
6488
6489 case OFPACT_WRITE_METADATA:
6490 metadata = ofpact_get_WRITE_METADATA(a);
6491 ctx->flow.metadata &= ~metadata->mask;
6492 ctx->flow.metadata |= metadata->metadata & metadata->mask;
6493 break;
6494
6495 case OFPACT_GOTO_TABLE: {
6496 /* XXX remove recursion */
6497 /* It is assumed that goto-table is last action */
6498 struct ofpact_goto_table *ogt = ofpact_get_GOTO_TABLE(a);
6499 ovs_assert(ctx->table_id < ogt->table_id);
6500 xlate_table_action(ctx, ctx->flow.in_port, ogt->table_id, true);
6501 break;
6502 }
6503 }
6504 }
6505
6506 out:
6507 if (ctx->rule) {
6508 ctx->rule->up.evictable = was_evictable;
6509 }
6510 }
6511
6512 static void
6513 action_xlate_ctx_init(struct action_xlate_ctx *ctx,
6514 struct ofproto_dpif *ofproto, const struct flow *flow,
6515 ovs_be16 initial_tci, struct rule_dpif *rule,
6516 uint8_t tcp_flags, const struct ofpbuf *packet)
6517 {
6518 ovs_be64 initial_tun_id = flow->tunnel.tun_id;
6519
6520 /* Flow initialization rules:
6521 * - 'base_flow' must match the kernel's view of the packet at the
6522 * time that action processing starts. 'flow' represents any
6523 * transformations we wish to make through actions.
6524 * - By default 'base_flow' and 'flow' are the same since the input
6525 * packet matches the output before any actions are applied.
6526 * - When using VLAN splinters, 'base_flow''s VLAN is set to the value
6527 * of the received packet as seen by the kernel. If we later output
6528 * to another device without any modifications this will cause us to
6529 * insert a new tag since the original one was stripped off by the
6530 * VLAN device.
6531 * - Tunnel 'flow' is largely cleared when transitioning between
6532 * the input and output stages since it does not make sense to output
6533 * a packet with the exact headers that it was received with (i.e.
6534 * the destination IP is us). The one exception is the tun_id, which
6535 * is preserved to allow use in later resubmit lookups and loads into
6536 * registers.
6537 * - Tunnel 'base_flow' is completely cleared since that is what the
6538 * kernel does. If we wish to maintain the original values an action
6539 * needs to be generated. */
6540
6541 ctx->ofproto = ofproto;
6542 ctx->flow = *flow;
6543 memset(&ctx->flow.tunnel, 0, sizeof ctx->flow.tunnel);
6544 ctx->base_flow = ctx->flow;
6545 ctx->base_flow.vlan_tci = initial_tci;
6546 ctx->flow.tunnel.tun_id = initial_tun_id;
6547 ctx->rule = rule;
6548 ctx->packet = packet;
6549 ctx->may_learn = packet != NULL;
6550 ctx->tcp_flags = tcp_flags;
6551 ctx->resubmit_hook = NULL;
6552 ctx->report_hook = NULL;
6553 ctx->resubmit_stats = NULL;
6554 }
6555
6556 /* Translates the 'ofpacts_len' bytes of "struct ofpacts" starting at 'ofpacts'
6557 * into datapath actions in 'odp_actions', using 'ctx'. */
6558 static void
6559 xlate_actions(struct action_xlate_ctx *ctx,
6560 const struct ofpact *ofpacts, size_t ofpacts_len,
6561 struct ofpbuf *odp_actions)
6562 {
6563 /* Normally false. Set to true if we ever hit MAX_RESUBMIT_RECURSION, so
6564 * that in the future we always keep a copy of the original flow for
6565 * tracing purposes. */
6566 static bool hit_resubmit_limit;
6567
6568 enum slow_path_reason special;
6569 struct ofport_dpif *in_port;
6570 struct flow orig_flow;
6571
6572 COVERAGE_INC(ofproto_dpif_xlate);
6573
6574 ofpbuf_clear(odp_actions);
6575 ofpbuf_reserve(odp_actions, NL_A_U32_SIZE);
6576
6577 ctx->odp_actions = odp_actions;
6578 ctx->tags = 0;
6579 ctx->slow = 0;
6580 ctx->has_learn = false;
6581 ctx->has_normal = false;
6582 ctx->has_fin_timeout = false;
6583 ctx->nf_output_iface = NF_OUT_DROP;
6584 ctx->mirrors = 0;
6585 ctx->recurse = 0;
6586 ctx->max_resubmit_trigger = false;
6587 ctx->orig_skb_priority = ctx->flow.skb_priority;
6588 ctx->table_id = 0;
6589 ctx->exit = false;
6590
6591 ofpbuf_use_stub(&ctx->stack, ctx->init_stack, sizeof ctx->init_stack);
6592
6593 if (ctx->ofproto->has_mirrors || hit_resubmit_limit) {
6594 /* Do this conditionally because the copy is expensive enough that it
6595 * shows up in profiles. */
6596 orig_flow = ctx->flow;
6597 }
6598
6599 if (ctx->flow.nw_frag & FLOW_NW_FRAG_ANY) {
6600 switch (ctx->ofproto->up.frag_handling) {
6601 case OFPC_FRAG_NORMAL:
6602 /* We must pretend that transport ports are unavailable. */
6603 ctx->flow.tp_src = ctx->base_flow.tp_src = htons(0);
6604 ctx->flow.tp_dst = ctx->base_flow.tp_dst = htons(0);
6605 break;
6606
6607 case OFPC_FRAG_DROP:
6608 return;
6609
6610 case OFPC_FRAG_REASM:
6611 NOT_REACHED();
6612
6613 case OFPC_FRAG_NX_MATCH:
6614 /* Nothing to do. */
6615 break;
6616
6617 case OFPC_INVALID_TTL_TO_CONTROLLER:
6618 NOT_REACHED();
6619 }
6620 }
6621
6622 in_port = get_ofp_port(ctx->ofproto, ctx->flow.in_port);
6623 special = process_special(ctx->ofproto, &ctx->flow, in_port, ctx->packet);
6624 if (special) {
6625 ctx->slow |= special;
6626 } else {
6627 static struct vlog_rate_limit trace_rl = VLOG_RATE_LIMIT_INIT(1, 1);
6628 ovs_be16 initial_tci = ctx->base_flow.vlan_tci;
6629 uint32_t local_odp_port;
6630
6631 add_sflow_action(ctx);
6632
6633 if (!in_port || may_receive(in_port, ctx)) {
6634 do_xlate_actions(ofpacts, ofpacts_len, ctx);
6635
6636 /* We've let OFPP_NORMAL and the learning action look at the
6637 * packet, so drop it now if forwarding is disabled. */
6638 if (in_port && !stp_forward_in_state(in_port->stp_state)) {
6639 ofpbuf_clear(ctx->odp_actions);
6640 add_sflow_action(ctx);
6641 }
6642 }
6643
6644 if (ctx->max_resubmit_trigger && !ctx->resubmit_hook) {
6645 if (!hit_resubmit_limit) {
6646 /* We didn't record the original flow. Make sure we do from
6647 * now on. */
6648 hit_resubmit_limit = true;
6649 } else if (!VLOG_DROP_ERR(&trace_rl)) {
6650 struct ds ds = DS_EMPTY_INITIALIZER;
6651
6652 ofproto_trace(ctx->ofproto, &orig_flow, ctx->packet,
6653 initial_tci, &ds);
6654 VLOG_ERR("Trace triggered by excessive resubmit "
6655 "recursion:\n%s", ds_cstr(&ds));
6656 ds_destroy(&ds);
6657 }
6658 }
6659
6660 local_odp_port = ofp_port_to_odp_port(ctx->ofproto, OFPP_LOCAL);
6661 if (!connmgr_may_set_up_flow(ctx->ofproto->up.connmgr, &ctx->flow,
6662 local_odp_port,
6663 ctx->odp_actions->data,
6664 ctx->odp_actions->size)) {
6665 ctx->slow |= SLOW_IN_BAND;
6666 if (ctx->packet
6667 && connmgr_msg_in_hook(ctx->ofproto->up.connmgr, &ctx->flow,
6668 ctx->packet)) {
6669 compose_output_action(ctx, OFPP_LOCAL);
6670 }
6671 }
6672 if (ctx->ofproto->has_mirrors) {
6673 add_mirror_actions(ctx, &orig_flow);
6674 }
6675 fix_sflow_action(ctx);
6676 }
6677
6678 ofpbuf_uninit(&ctx->stack);
6679 }
6680
6681 /* Translates the 'ofpacts_len' bytes of "struct ofpact"s starting at 'ofpacts'
6682 * into datapath actions, using 'ctx', and discards the datapath actions. */
6683 static void
6684 xlate_actions_for_side_effects(struct action_xlate_ctx *ctx,
6685 const struct ofpact *ofpacts,
6686 size_t ofpacts_len)
6687 {
6688 uint64_t odp_actions_stub[1024 / 8];
6689 struct ofpbuf odp_actions;
6690
6691 ofpbuf_use_stub(&odp_actions, odp_actions_stub, sizeof odp_actions_stub);
6692 xlate_actions(ctx, ofpacts, ofpacts_len, &odp_actions);
6693 ofpbuf_uninit(&odp_actions);
6694 }
6695
6696 static void
6697 xlate_report(struct action_xlate_ctx *ctx, const char *s)
6698 {
6699 if (ctx->report_hook) {
6700 ctx->report_hook(ctx, s);
6701 }
6702 }
6703 \f
6704 /* OFPP_NORMAL implementation. */
6705
6706 static struct ofport_dpif *ofbundle_get_a_port(const struct ofbundle *);
6707
6708 /* Given 'vid', the VID obtained from the 802.1Q header that was received as
6709 * part of a packet (specify 0 if there was no 802.1Q header), and 'in_bundle',
6710 * the bundle on which the packet was received, returns the VLAN to which the
6711 * packet belongs.
6712 *
6713 * Both 'vid' and the return value are in the range 0...4095. */
6714 static uint16_t
6715 input_vid_to_vlan(const struct ofbundle *in_bundle, uint16_t vid)
6716 {
6717 switch (in_bundle->vlan_mode) {
6718 case PORT_VLAN_ACCESS:
6719 return in_bundle->vlan;
6720 break;
6721
6722 case PORT_VLAN_TRUNK:
6723 return vid;
6724
6725 case PORT_VLAN_NATIVE_UNTAGGED:
6726 case PORT_VLAN_NATIVE_TAGGED:
6727 return vid ? vid : in_bundle->vlan;
6728
6729 default:
6730 NOT_REACHED();
6731 }
6732 }
6733
6734 /* Checks whether a packet with the given 'vid' may ingress on 'in_bundle'.
6735 * If so, returns true. Otherwise, returns false and, if 'warn' is true, logs
6736 * a warning.
6737 *
6738 * 'vid' should be the VID obtained from the 802.1Q header that was received as
6739 * part of a packet (specify 0 if there was no 802.1Q header), in the range
6740 * 0...4095. */
6741 static bool
6742 input_vid_is_valid(uint16_t vid, struct ofbundle *in_bundle, bool warn)
6743 {
6744 /* Allow any VID on the OFPP_NONE port. */
6745 if (in_bundle == &ofpp_none_bundle) {
6746 return true;
6747 }
6748
6749 switch (in_bundle->vlan_mode) {
6750 case PORT_VLAN_ACCESS:
6751 if (vid) {
6752 if (warn) {
6753 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
6754 VLOG_WARN_RL(&rl, "bridge %s: dropping VLAN %"PRIu16" tagged "
6755 "packet received on port %s configured as VLAN "
6756 "%"PRIu16" access port",
6757 in_bundle->ofproto->up.name, vid,
6758 in_bundle->name, in_bundle->vlan);
6759 }
6760 return false;
6761 }
6762 return true;
6763
6764 case PORT_VLAN_NATIVE_UNTAGGED:
6765 case PORT_VLAN_NATIVE_TAGGED:
6766 if (!vid) {
6767 /* Port must always carry its native VLAN. */
6768 return true;
6769 }
6770 /* Fall through. */
6771 case PORT_VLAN_TRUNK:
6772 if (!ofbundle_includes_vlan(in_bundle, vid)) {
6773 if (warn) {
6774 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
6775 VLOG_WARN_RL(&rl, "bridge %s: dropping VLAN %"PRIu16" packet "
6776 "received on port %s not configured for trunking "
6777 "VLAN %"PRIu16,
6778 in_bundle->ofproto->up.name, vid,
6779 in_bundle->name, vid);
6780 }
6781 return false;
6782 }
6783 return true;
6784
6785 default:
6786 NOT_REACHED();
6787 }
6788
6789 }
6790
6791 /* Given 'vlan', the VLAN that a packet belongs to, and
6792 * 'out_bundle', a bundle on which the packet is to be output, returns the VID
6793 * that should be included in the 802.1Q header. (If the return value is 0,
6794 * then the 802.1Q header should only be included in the packet if there is a
6795 * nonzero PCP.)
6796 *
6797 * Both 'vlan' and the return value are in the range 0...4095. */
6798 static uint16_t
6799 output_vlan_to_vid(const struct ofbundle *out_bundle, uint16_t vlan)
6800 {
6801 switch (out_bundle->vlan_mode) {
6802 case PORT_VLAN_ACCESS:
6803 return 0;
6804
6805 case PORT_VLAN_TRUNK:
6806 case PORT_VLAN_NATIVE_TAGGED:
6807 return vlan;
6808
6809 case PORT_VLAN_NATIVE_UNTAGGED:
6810 return vlan == out_bundle->vlan ? 0 : vlan;
6811
6812 default:
6813 NOT_REACHED();
6814 }
6815 }
6816
6817 static void
6818 output_normal(struct action_xlate_ctx *ctx, const struct ofbundle *out_bundle,
6819 uint16_t vlan)
6820 {
6821 struct ofport_dpif *port;
6822 uint16_t vid;
6823 ovs_be16 tci, old_tci;
6824
6825 vid = output_vlan_to_vid(out_bundle, vlan);
6826 if (!out_bundle->bond) {
6827 port = ofbundle_get_a_port(out_bundle);
6828 } else {
6829 port = bond_choose_output_slave(out_bundle->bond, &ctx->flow,
6830 vid, &ctx->tags);
6831 if (!port) {
6832 /* No slaves enabled, so drop packet. */
6833 return;
6834 }
6835 }
6836
6837 old_tci = ctx->flow.vlan_tci;
6838 tci = htons(vid);
6839 if (tci || out_bundle->use_priority_tags) {
6840 tci |= ctx->flow.vlan_tci & htons(VLAN_PCP_MASK);
6841 if (tci) {
6842 tci |= htons(VLAN_CFI);
6843 }
6844 }
6845 ctx->flow.vlan_tci = tci;
6846
6847 compose_output_action(ctx, port->up.ofp_port);
6848 ctx->flow.vlan_tci = old_tci;
6849 }
6850
6851 static int
6852 mirror_mask_ffs(mirror_mask_t mask)
6853 {
6854 BUILD_ASSERT_DECL(sizeof(unsigned int) >= sizeof(mask));
6855 return ffs(mask);
6856 }
6857
6858 static bool
6859 ofbundle_trunks_vlan(const struct ofbundle *bundle, uint16_t vlan)
6860 {
6861 return (bundle->vlan_mode != PORT_VLAN_ACCESS
6862 && (!bundle->trunks || bitmap_is_set(bundle->trunks, vlan)));
6863 }
6864
6865 static bool
6866 ofbundle_includes_vlan(const struct ofbundle *bundle, uint16_t vlan)
6867 {
6868 return vlan == bundle->vlan || ofbundle_trunks_vlan(bundle, vlan);
6869 }
6870
6871 /* Returns an arbitrary interface within 'bundle'. */
6872 static struct ofport_dpif *
6873 ofbundle_get_a_port(const struct ofbundle *bundle)
6874 {
6875 return CONTAINER_OF(list_front(&bundle->ports),
6876 struct ofport_dpif, bundle_node);
6877 }
6878
6879 static bool
6880 vlan_is_mirrored(const struct ofmirror *m, int vlan)
6881 {
6882 return !m->vlans || bitmap_is_set(m->vlans, vlan);
6883 }
6884
6885 static void
6886 add_mirror_actions(struct action_xlate_ctx *ctx, const struct flow *orig_flow)
6887 {
6888 struct ofproto_dpif *ofproto = ctx->ofproto;
6889 mirror_mask_t mirrors;
6890 struct ofbundle *in_bundle;
6891 uint16_t vlan;
6892 uint16_t vid;
6893 const struct nlattr *a;
6894 size_t left;
6895
6896 in_bundle = lookup_input_bundle(ctx->ofproto, orig_flow->in_port,
6897 ctx->packet != NULL, NULL);
6898 if (!in_bundle) {
6899 return;
6900 }
6901 mirrors = in_bundle->src_mirrors;
6902
6903 /* Drop frames on bundles reserved for mirroring. */
6904 if (in_bundle->mirror_out) {
6905 if (ctx->packet != NULL) {
6906 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
6907 VLOG_WARN_RL(&rl, "bridge %s: dropping packet received on port "
6908 "%s, which is reserved exclusively for mirroring",
6909 ctx->ofproto->up.name, in_bundle->name);
6910 }
6911 return;
6912 }
6913
6914 /* Check VLAN. */
6915 vid = vlan_tci_to_vid(orig_flow->vlan_tci);
6916 if (!input_vid_is_valid(vid, in_bundle, ctx->packet != NULL)) {
6917 return;
6918 }
6919 vlan = input_vid_to_vlan(in_bundle, vid);
6920
6921 /* Look at the output ports to check for destination selections. */
6922
6923 NL_ATTR_FOR_EACH (a, left, ctx->odp_actions->data,
6924 ctx->odp_actions->size) {
6925 enum ovs_action_attr type = nl_attr_type(a);
6926 struct ofport_dpif *ofport;
6927
6928 if (type != OVS_ACTION_ATTR_OUTPUT) {
6929 continue;
6930 }
6931
6932 ofport = get_odp_port(ofproto, nl_attr_get_u32(a));
6933 if (ofport && ofport->bundle) {
6934 mirrors |= ofport->bundle->dst_mirrors;
6935 }
6936 }
6937
6938 if (!mirrors) {
6939 return;
6940 }
6941
6942 /* Restore the original packet before adding the mirror actions. */
6943 ctx->flow = *orig_flow;
6944
6945 while (mirrors) {
6946 struct ofmirror *m;
6947
6948 m = ofproto->mirrors[mirror_mask_ffs(mirrors) - 1];
6949
6950 if (!vlan_is_mirrored(m, vlan)) {
6951 mirrors = zero_rightmost_1bit(mirrors);
6952 continue;
6953 }
6954
6955 mirrors &= ~m->dup_mirrors;
6956 ctx->mirrors |= m->dup_mirrors;
6957 if (m->out) {
6958 output_normal(ctx, m->out, vlan);
6959 } else if (vlan != m->out_vlan
6960 && !eth_addr_is_reserved(orig_flow->dl_dst)) {
6961 struct ofbundle *bundle;
6962
6963 HMAP_FOR_EACH (bundle, hmap_node, &ofproto->bundles) {
6964 if (ofbundle_includes_vlan(bundle, m->out_vlan)
6965 && !bundle->mirror_out) {
6966 output_normal(ctx, bundle, m->out_vlan);
6967 }
6968 }
6969 }
6970 }
6971 }
6972
6973 static void
6974 update_mirror_stats(struct ofproto_dpif *ofproto, mirror_mask_t mirrors,
6975 uint64_t packets, uint64_t bytes)
6976 {
6977 if (!mirrors) {
6978 return;
6979 }
6980
6981 for (; mirrors; mirrors = zero_rightmost_1bit(mirrors)) {
6982 struct ofmirror *m;
6983
6984 m = ofproto->mirrors[mirror_mask_ffs(mirrors) - 1];
6985
6986 if (!m) {
6987 /* In normal circumstances 'm' will not be NULL. However,
6988 * if mirrors are reconfigured, we can temporarily get out
6989 * of sync in facet_revalidate(). We could "correct" the
6990 * mirror list before reaching here, but doing that would
6991 * not properly account the traffic stats we've currently
6992 * accumulated for previous mirror configuration. */
6993 continue;
6994 }
6995
6996 m->packet_count += packets;
6997 m->byte_count += bytes;
6998 }
6999 }
7000
7001 /* A VM broadcasts a gratuitous ARP to indicate that it has resumed after
7002 * migration. Older Citrix-patched Linux DomU used gratuitous ARP replies to
7003 * indicate this; newer upstream kernels use gratuitous ARP requests. */
7004 static bool
7005 is_gratuitous_arp(const struct flow *flow)
7006 {
7007 return (flow->dl_type == htons(ETH_TYPE_ARP)
7008 && eth_addr_is_broadcast(flow->dl_dst)
7009 && (flow->nw_proto == ARP_OP_REPLY
7010 || (flow->nw_proto == ARP_OP_REQUEST
7011 && flow->nw_src == flow->nw_dst)));
7012 }
7013
7014 static void
7015 update_learning_table(struct ofproto_dpif *ofproto,
7016 const struct flow *flow, int vlan,
7017 struct ofbundle *in_bundle)
7018 {
7019 struct mac_entry *mac;
7020
7021 /* Don't learn the OFPP_NONE port. */
7022 if (in_bundle == &ofpp_none_bundle) {
7023 return;
7024 }
7025
7026 if (!mac_learning_may_learn(ofproto->ml, flow->dl_src, vlan)) {
7027 return;
7028 }
7029
7030 mac = mac_learning_insert(ofproto->ml, flow->dl_src, vlan);
7031 if (is_gratuitous_arp(flow)) {
7032 /* We don't want to learn from gratuitous ARP packets that are
7033 * reflected back over bond slaves so we lock the learning table. */
7034 if (!in_bundle->bond) {
7035 mac_entry_set_grat_arp_lock(mac);
7036 } else if (mac_entry_is_grat_arp_locked(mac)) {
7037 return;
7038 }
7039 }
7040
7041 if (mac_entry_is_new(mac) || mac->port.p != in_bundle) {
7042 /* The log messages here could actually be useful in debugging,
7043 * so keep the rate limit relatively high. */
7044 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(30, 300);
7045 VLOG_DBG_RL(&rl, "bridge %s: learned that "ETH_ADDR_FMT" is "
7046 "on port %s in VLAN %d",
7047 ofproto->up.name, ETH_ADDR_ARGS(flow->dl_src),
7048 in_bundle->name, vlan);
7049
7050 mac->port.p = in_bundle;
7051 tag_set_add(&ofproto->backer->revalidate_set,
7052 mac_learning_changed(ofproto->ml, mac));
7053 }
7054 }
7055
7056 static struct ofbundle *
7057 lookup_input_bundle(const struct ofproto_dpif *ofproto, uint16_t in_port,
7058 bool warn, struct ofport_dpif **in_ofportp)
7059 {
7060 struct ofport_dpif *ofport;
7061
7062 /* Find the port and bundle for the received packet. */
7063 ofport = get_ofp_port(ofproto, in_port);
7064 if (in_ofportp) {
7065 *in_ofportp = ofport;
7066 }
7067 if (ofport && ofport->bundle) {
7068 return ofport->bundle;
7069 }
7070
7071 /* Special-case OFPP_NONE, which a controller may use as the ingress
7072 * port for traffic that it is sourcing. */
7073 if (in_port == OFPP_NONE) {
7074 return &ofpp_none_bundle;
7075 }
7076
7077 /* Odd. A few possible reasons here:
7078 *
7079 * - We deleted a port but there are still a few packets queued up
7080 * from it.
7081 *
7082 * - Someone externally added a port (e.g. "ovs-dpctl add-if") that
7083 * we don't know about.
7084 *
7085 * - The ofproto client didn't configure the port as part of a bundle.
7086 * This is particularly likely to happen if a packet was received on the
7087 * port after it was created, but before the client had a chance to
7088 * configure its bundle.
7089 */
7090 if (warn) {
7091 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
7092
7093 VLOG_WARN_RL(&rl, "bridge %s: received packet on unknown "
7094 "port %"PRIu16, ofproto->up.name, in_port);
7095 }
7096 return NULL;
7097 }
7098
7099 /* Determines whether packets in 'flow' within 'ofproto' should be forwarded or
7100 * dropped. Returns true if they may be forwarded, false if they should be
7101 * dropped.
7102 *
7103 * 'in_port' must be the ofport_dpif that corresponds to flow->in_port.
7104 * 'in_port' must be part of a bundle (e.g. in_port->bundle must be nonnull).
7105 *
7106 * 'vlan' must be the VLAN that corresponds to flow->vlan_tci on 'in_port', as
7107 * returned by input_vid_to_vlan(). It must be a valid VLAN for 'in_port', as
7108 * checked by input_vid_is_valid().
7109 *
7110 * May also add tags to '*tags', although the current implementation only does
7111 * so in one special case.
7112 */
7113 static bool
7114 is_admissible(struct action_xlate_ctx *ctx, struct ofport_dpif *in_port,
7115 uint16_t vlan)
7116 {
7117 struct ofproto_dpif *ofproto = ctx->ofproto;
7118 struct flow *flow = &ctx->flow;
7119 struct ofbundle *in_bundle = in_port->bundle;
7120
7121 /* Drop frames for reserved multicast addresses
7122 * only if forward_bpdu option is absent. */
7123 if (!ofproto->up.forward_bpdu && eth_addr_is_reserved(flow->dl_dst)) {
7124 xlate_report(ctx, "packet has reserved destination MAC, dropping");
7125 return false;
7126 }
7127
7128 if (in_bundle->bond) {
7129 struct mac_entry *mac;
7130
7131 switch (bond_check_admissibility(in_bundle->bond, in_port,
7132 flow->dl_dst, &ctx->tags)) {
7133 case BV_ACCEPT:
7134 break;
7135
7136 case BV_DROP:
7137 xlate_report(ctx, "bonding refused admissibility, dropping");
7138 return false;
7139
7140 case BV_DROP_IF_MOVED:
7141 mac = mac_learning_lookup(ofproto->ml, flow->dl_src, vlan, NULL);
7142 if (mac && mac->port.p != in_bundle &&
7143 (!is_gratuitous_arp(flow)
7144 || mac_entry_is_grat_arp_locked(mac))) {
7145 xlate_report(ctx, "SLB bond thinks this packet looped back, "
7146 "dropping");
7147 return false;
7148 }
7149 break;
7150 }
7151 }
7152
7153 return true;
7154 }
7155
7156 static void
7157 xlate_normal(struct action_xlate_ctx *ctx)
7158 {
7159 struct ofport_dpif *in_port;
7160 struct ofbundle *in_bundle;
7161 struct mac_entry *mac;
7162 uint16_t vlan;
7163 uint16_t vid;
7164
7165 ctx->has_normal = true;
7166
7167 in_bundle = lookup_input_bundle(ctx->ofproto, ctx->flow.in_port,
7168 ctx->packet != NULL, &in_port);
7169 if (!in_bundle) {
7170 xlate_report(ctx, "no input bundle, dropping");
7171 return;
7172 }
7173
7174 /* Drop malformed frames. */
7175 if (ctx->flow.dl_type == htons(ETH_TYPE_VLAN) &&
7176 !(ctx->flow.vlan_tci & htons(VLAN_CFI))) {
7177 if (ctx->packet != NULL) {
7178 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
7179 VLOG_WARN_RL(&rl, "bridge %s: dropping packet with partial "
7180 "VLAN tag received on port %s",
7181 ctx->ofproto->up.name, in_bundle->name);
7182 }
7183 xlate_report(ctx, "partial VLAN tag, dropping");
7184 return;
7185 }
7186
7187 /* Drop frames on bundles reserved for mirroring. */
7188 if (in_bundle->mirror_out) {
7189 if (ctx->packet != NULL) {
7190 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
7191 VLOG_WARN_RL(&rl, "bridge %s: dropping packet received on port "
7192 "%s, which is reserved exclusively for mirroring",
7193 ctx->ofproto->up.name, in_bundle->name);
7194 }
7195 xlate_report(ctx, "input port is mirror output port, dropping");
7196 return;
7197 }
7198
7199 /* Check VLAN. */
7200 vid = vlan_tci_to_vid(ctx->flow.vlan_tci);
7201 if (!input_vid_is_valid(vid, in_bundle, ctx->packet != NULL)) {
7202 xlate_report(ctx, "disallowed VLAN VID for this input port, dropping");
7203 return;
7204 }
7205 vlan = input_vid_to_vlan(in_bundle, vid);
7206
7207 /* Check other admissibility requirements. */
7208 if (in_port && !is_admissible(ctx, in_port, vlan)) {
7209 return;
7210 }
7211
7212 /* Learn source MAC. */
7213 if (ctx->may_learn) {
7214 update_learning_table(ctx->ofproto, &ctx->flow, vlan, in_bundle);
7215 }
7216
7217 /* Determine output bundle. */
7218 mac = mac_learning_lookup(ctx->ofproto->ml, ctx->flow.dl_dst, vlan,
7219 &ctx->tags);
7220 if (mac) {
7221 if (mac->port.p != in_bundle) {
7222 xlate_report(ctx, "forwarding to learned port");
7223 output_normal(ctx, mac->port.p, vlan);
7224 } else {
7225 xlate_report(ctx, "learned port is input port, dropping");
7226 }
7227 } else {
7228 struct ofbundle *bundle;
7229
7230 xlate_report(ctx, "no learned MAC for destination, flooding");
7231 HMAP_FOR_EACH (bundle, hmap_node, &ctx->ofproto->bundles) {
7232 if (bundle != in_bundle
7233 && ofbundle_includes_vlan(bundle, vlan)
7234 && bundle->floodable
7235 && !bundle->mirror_out) {
7236 output_normal(ctx, bundle, vlan);
7237 }
7238 }
7239 ctx->nf_output_iface = NF_OUT_FLOOD;
7240 }
7241 }
7242 \f
7243 /* Optimized flow revalidation.
7244 *
7245 * It's a difficult problem, in general, to tell which facets need to have
7246 * their actions recalculated whenever the OpenFlow flow table changes. We
7247 * don't try to solve that general problem: for most kinds of OpenFlow flow
7248 * table changes, we recalculate the actions for every facet. This is
7249 * relatively expensive, but it's good enough if the OpenFlow flow table
7250 * doesn't change very often.
7251 *
7252 * However, we can expect one particular kind of OpenFlow flow table change to
7253 * happen frequently: changes caused by MAC learning. To avoid wasting a lot
7254 * of CPU on revalidating every facet whenever MAC learning modifies the flow
7255 * table, we add a special case that applies to flow tables in which every rule
7256 * has the same form (that is, the same wildcards), except that the table is
7257 * also allowed to have a single "catch-all" flow that matches all packets. We
7258 * optimize this case by tagging all of the facets that resubmit into the table
7259 * and invalidating the same tag whenever a flow changes in that table. The
7260 * end result is that we revalidate just the facets that need it (and sometimes
7261 * a few more, but not all of the facets or even all of the facets that
7262 * resubmit to the table modified by MAC learning). */
7263
7264 /* Calculates the tag to use for 'flow' and mask 'mask' when it is inserted
7265 * into an OpenFlow table with the given 'basis'. */
7266 static tag_type
7267 rule_calculate_tag(const struct flow *flow, const struct minimask *mask,
7268 uint32_t secret)
7269 {
7270 if (minimask_is_catchall(mask)) {
7271 return 0;
7272 } else {
7273 uint32_t hash = flow_hash_in_minimask(flow, mask, secret);
7274 return tag_create_deterministic(hash);
7275 }
7276 }
7277
7278 /* Following a change to OpenFlow table 'table_id' in 'ofproto', update the
7279 * taggability of that table.
7280 *
7281 * This function must be called after *each* change to a flow table. If you
7282 * skip calling it on some changes then the pointer comparisons at the end can
7283 * be invalid if you get unlucky. For example, if a flow removal causes a
7284 * cls_table to be destroyed and then a flow insertion causes a cls_table with
7285 * different wildcards to be created with the same address, then this function
7286 * will incorrectly skip revalidation. */
7287 static void
7288 table_update_taggable(struct ofproto_dpif *ofproto, uint8_t table_id)
7289 {
7290 struct table_dpif *table = &ofproto->tables[table_id];
7291 const struct oftable *oftable = &ofproto->up.tables[table_id];
7292 struct cls_table *catchall, *other;
7293 struct cls_table *t;
7294
7295 catchall = other = NULL;
7296
7297 switch (hmap_count(&oftable->cls.tables)) {
7298 case 0:
7299 /* We could tag this OpenFlow table but it would make the logic a
7300 * little harder and it's a corner case that doesn't seem worth it
7301 * yet. */
7302 break;
7303
7304 case 1:
7305 case 2:
7306 HMAP_FOR_EACH (t, hmap_node, &oftable->cls.tables) {
7307 if (cls_table_is_catchall(t)) {
7308 catchall = t;
7309 } else if (!other) {
7310 other = t;
7311 } else {
7312 /* Indicate that we can't tag this by setting both tables to
7313 * NULL. (We know that 'catchall' is already NULL.) */
7314 other = NULL;
7315 }
7316 }
7317 break;
7318
7319 default:
7320 /* Can't tag this table. */
7321 break;
7322 }
7323
7324 if (table->catchall_table != catchall || table->other_table != other) {
7325 table->catchall_table = catchall;
7326 table->other_table = other;
7327 ofproto->backer->need_revalidate = REV_FLOW_TABLE;
7328 }
7329 }
7330
7331 /* Given 'rule' that has changed in some way (either it is a rule being
7332 * inserted, a rule being deleted, or a rule whose actions are being
7333 * modified), marks facets for revalidation to ensure that packets will be
7334 * forwarded correctly according to the new state of the flow table.
7335 *
7336 * This function must be called after *each* change to a flow table. See
7337 * the comment on table_update_taggable() for more information. */
7338 static void
7339 rule_invalidate(const struct rule_dpif *rule)
7340 {
7341 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
7342
7343 table_update_taggable(ofproto, rule->up.table_id);
7344
7345 if (!ofproto->backer->need_revalidate) {
7346 struct table_dpif *table = &ofproto->tables[rule->up.table_id];
7347
7348 if (table->other_table && rule->tag) {
7349 tag_set_add(&ofproto->backer->revalidate_set, rule->tag);
7350 } else {
7351 ofproto->backer->need_revalidate = REV_FLOW_TABLE;
7352 }
7353 }
7354 }
7355 \f
7356 static bool
7357 set_frag_handling(struct ofproto *ofproto_,
7358 enum ofp_config_flags frag_handling)
7359 {
7360 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
7361 if (frag_handling != OFPC_FRAG_REASM) {
7362 ofproto->backer->need_revalidate = REV_RECONFIGURE;
7363 return true;
7364 } else {
7365 return false;
7366 }
7367 }
7368
7369 static enum ofperr
7370 packet_out(struct ofproto *ofproto_, struct ofpbuf *packet,
7371 const struct flow *flow,
7372 const struct ofpact *ofpacts, size_t ofpacts_len)
7373 {
7374 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
7375 struct odputil_keybuf keybuf;
7376 struct dpif_flow_stats stats;
7377
7378 struct ofpbuf key;
7379
7380 struct action_xlate_ctx ctx;
7381 uint64_t odp_actions_stub[1024 / 8];
7382 struct ofpbuf odp_actions;
7383
7384 ofpbuf_use_stack(&key, &keybuf, sizeof keybuf);
7385 odp_flow_key_from_flow(&key, flow,
7386 ofp_port_to_odp_port(ofproto, flow->in_port));
7387
7388 dpif_flow_stats_extract(flow, packet, time_msec(), &stats);
7389
7390 action_xlate_ctx_init(&ctx, ofproto, flow, flow->vlan_tci, NULL,
7391 packet_get_tcp_flags(packet, flow), packet);
7392 ctx.resubmit_stats = &stats;
7393
7394 ofpbuf_use_stub(&odp_actions,
7395 odp_actions_stub, sizeof odp_actions_stub);
7396 xlate_actions(&ctx, ofpacts, ofpacts_len, &odp_actions);
7397 dpif_execute(ofproto->backer->dpif, key.data, key.size,
7398 odp_actions.data, odp_actions.size, packet);
7399 ofpbuf_uninit(&odp_actions);
7400
7401 return 0;
7402 }
7403 \f
7404 /* NetFlow. */
7405
7406 static int
7407 set_netflow(struct ofproto *ofproto_,
7408 const struct netflow_options *netflow_options)
7409 {
7410 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
7411
7412 if (netflow_options) {
7413 if (!ofproto->netflow) {
7414 ofproto->netflow = netflow_create();
7415 }
7416 return netflow_set_options(ofproto->netflow, netflow_options);
7417 } else {
7418 netflow_destroy(ofproto->netflow);
7419 ofproto->netflow = NULL;
7420 return 0;
7421 }
7422 }
7423
7424 static void
7425 get_netflow_ids(const struct ofproto *ofproto_,
7426 uint8_t *engine_type, uint8_t *engine_id)
7427 {
7428 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
7429
7430 dpif_get_netflow_ids(ofproto->backer->dpif, engine_type, engine_id);
7431 }
7432
7433 static void
7434 send_active_timeout(struct ofproto_dpif *ofproto, struct facet *facet)
7435 {
7436 if (!facet_is_controller_flow(facet) &&
7437 netflow_active_timeout_expired(ofproto->netflow, &facet->nf_flow)) {
7438 struct subfacet *subfacet;
7439 struct ofexpired expired;
7440
7441 LIST_FOR_EACH (subfacet, list_node, &facet->subfacets) {
7442 if (subfacet->path == SF_FAST_PATH) {
7443 struct dpif_flow_stats stats;
7444
7445 subfacet_reinstall(subfacet, &stats);
7446 subfacet_update_stats(subfacet, &stats);
7447 }
7448 }
7449
7450 expired.flow = facet->flow;
7451 expired.packet_count = facet->packet_count;
7452 expired.byte_count = facet->byte_count;
7453 expired.used = facet->used;
7454 netflow_expire(ofproto->netflow, &facet->nf_flow, &expired);
7455 }
7456 }
7457
7458 static void
7459 send_netflow_active_timeouts(struct ofproto_dpif *ofproto)
7460 {
7461 struct facet *facet;
7462
7463 HMAP_FOR_EACH (facet, hmap_node, &ofproto->facets) {
7464 send_active_timeout(ofproto, facet);
7465 }
7466 }
7467 \f
7468 static struct ofproto_dpif *
7469 ofproto_dpif_lookup(const char *name)
7470 {
7471 struct ofproto_dpif *ofproto;
7472
7473 HMAP_FOR_EACH_WITH_HASH (ofproto, all_ofproto_dpifs_node,
7474 hash_string(name, 0), &all_ofproto_dpifs) {
7475 if (!strcmp(ofproto->up.name, name)) {
7476 return ofproto;
7477 }
7478 }
7479 return NULL;
7480 }
7481
7482 static void
7483 ofproto_unixctl_fdb_flush(struct unixctl_conn *conn, int argc,
7484 const char *argv[], void *aux OVS_UNUSED)
7485 {
7486 struct ofproto_dpif *ofproto;
7487
7488 if (argc > 1) {
7489 ofproto = ofproto_dpif_lookup(argv[1]);
7490 if (!ofproto) {
7491 unixctl_command_reply_error(conn, "no such bridge");
7492 return;
7493 }
7494 mac_learning_flush(ofproto->ml, &ofproto->backer->revalidate_set);
7495 } else {
7496 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
7497 mac_learning_flush(ofproto->ml, &ofproto->backer->revalidate_set);
7498 }
7499 }
7500
7501 unixctl_command_reply(conn, "table successfully flushed");
7502 }
7503
7504 static void
7505 ofproto_unixctl_fdb_show(struct unixctl_conn *conn, int argc OVS_UNUSED,
7506 const char *argv[], void *aux OVS_UNUSED)
7507 {
7508 struct ds ds = DS_EMPTY_INITIALIZER;
7509 const struct ofproto_dpif *ofproto;
7510 const struct mac_entry *e;
7511
7512 ofproto = ofproto_dpif_lookup(argv[1]);
7513 if (!ofproto) {
7514 unixctl_command_reply_error(conn, "no such bridge");
7515 return;
7516 }
7517
7518 ds_put_cstr(&ds, " port VLAN MAC Age\n");
7519 LIST_FOR_EACH (e, lru_node, &ofproto->ml->lrus) {
7520 struct ofbundle *bundle = e->port.p;
7521 ds_put_format(&ds, "%5d %4d "ETH_ADDR_FMT" %3d\n",
7522 ofbundle_get_a_port(bundle)->odp_port,
7523 e->vlan, ETH_ADDR_ARGS(e->mac),
7524 mac_entry_age(ofproto->ml, e));
7525 }
7526 unixctl_command_reply(conn, ds_cstr(&ds));
7527 ds_destroy(&ds);
7528 }
7529
7530 struct trace_ctx {
7531 struct action_xlate_ctx ctx;
7532 struct flow flow;
7533 struct ds *result;
7534 };
7535
7536 static void
7537 trace_format_rule(struct ds *result, uint8_t table_id, int level,
7538 const struct rule_dpif *rule)
7539 {
7540 ds_put_char_multiple(result, '\t', level);
7541 if (!rule) {
7542 ds_put_cstr(result, "No match\n");
7543 return;
7544 }
7545
7546 ds_put_format(result, "Rule: table=%"PRIu8" cookie=%#"PRIx64" ",
7547 table_id, ntohll(rule->up.flow_cookie));
7548 cls_rule_format(&rule->up.cr, result);
7549 ds_put_char(result, '\n');
7550
7551 ds_put_char_multiple(result, '\t', level);
7552 ds_put_cstr(result, "OpenFlow ");
7553 ofpacts_format(rule->up.ofpacts, rule->up.ofpacts_len, result);
7554 ds_put_char(result, '\n');
7555 }
7556
7557 static void
7558 trace_format_flow(struct ds *result, int level, const char *title,
7559 struct trace_ctx *trace)
7560 {
7561 ds_put_char_multiple(result, '\t', level);
7562 ds_put_format(result, "%s: ", title);
7563 if (flow_equal(&trace->ctx.flow, &trace->flow)) {
7564 ds_put_cstr(result, "unchanged");
7565 } else {
7566 flow_format(result, &trace->ctx.flow);
7567 trace->flow = trace->ctx.flow;
7568 }
7569 ds_put_char(result, '\n');
7570 }
7571
7572 static void
7573 trace_format_regs(struct ds *result, int level, const char *title,
7574 struct trace_ctx *trace)
7575 {
7576 size_t i;
7577
7578 ds_put_char_multiple(result, '\t', level);
7579 ds_put_format(result, "%s:", title);
7580 for (i = 0; i < FLOW_N_REGS; i++) {
7581 ds_put_format(result, " reg%zu=0x%"PRIx32, i, trace->flow.regs[i]);
7582 }
7583 ds_put_char(result, '\n');
7584 }
7585
7586 static void
7587 trace_format_odp(struct ds *result, int level, const char *title,
7588 struct trace_ctx *trace)
7589 {
7590 struct ofpbuf *odp_actions = trace->ctx.odp_actions;
7591
7592 ds_put_char_multiple(result, '\t', level);
7593 ds_put_format(result, "%s: ", title);
7594 format_odp_actions(result, odp_actions->data, odp_actions->size);
7595 ds_put_char(result, '\n');
7596 }
7597
7598 static void
7599 trace_resubmit(struct action_xlate_ctx *ctx, struct rule_dpif *rule)
7600 {
7601 struct trace_ctx *trace = CONTAINER_OF(ctx, struct trace_ctx, ctx);
7602 struct ds *result = trace->result;
7603
7604 ds_put_char(result, '\n');
7605 trace_format_flow(result, ctx->recurse + 1, "Resubmitted flow", trace);
7606 trace_format_regs(result, ctx->recurse + 1, "Resubmitted regs", trace);
7607 trace_format_odp(result, ctx->recurse + 1, "Resubmitted odp", trace);
7608 trace_format_rule(result, ctx->table_id, ctx->recurse + 1, rule);
7609 }
7610
7611 static void
7612 trace_report(struct action_xlate_ctx *ctx, const char *s)
7613 {
7614 struct trace_ctx *trace = CONTAINER_OF(ctx, struct trace_ctx, ctx);
7615 struct ds *result = trace->result;
7616
7617 ds_put_char_multiple(result, '\t', ctx->recurse);
7618 ds_put_cstr(result, s);
7619 ds_put_char(result, '\n');
7620 }
7621
7622 static void
7623 ofproto_unixctl_trace(struct unixctl_conn *conn, int argc, const char *argv[],
7624 void *aux OVS_UNUSED)
7625 {
7626 const char *dpname = argv[1];
7627 struct ofproto_dpif *ofproto;
7628 struct ofpbuf odp_key;
7629 struct ofpbuf *packet;
7630 ovs_be16 initial_tci;
7631 struct ds result;
7632 struct flow flow;
7633 char *s;
7634
7635 packet = NULL;
7636 ofpbuf_init(&odp_key, 0);
7637 ds_init(&result);
7638
7639 ofproto = ofproto_dpif_lookup(dpname);
7640 if (!ofproto) {
7641 unixctl_command_reply_error(conn, "Unknown ofproto (use ofproto/list "
7642 "for help)");
7643 goto exit;
7644 }
7645 if (argc == 3 || (argc == 4 && !strcmp(argv[3], "-generate"))) {
7646 /* ofproto/trace dpname flow [-generate] */
7647 const char *flow_s = argv[2];
7648 const char *generate_s = argv[3];
7649
7650 /* Allow 'flow_s' to be either a datapath flow or an OpenFlow-like
7651 * flow. We guess which type it is based on whether 'flow_s' contains
7652 * an '(', since a datapath flow always contains '(') but an
7653 * OpenFlow-like flow should not (in fact it's allowed but I believe
7654 * that's not documented anywhere).
7655 *
7656 * An alternative would be to try to parse 'flow_s' both ways, but then
7657 * it would be tricky giving a sensible error message. After all, do
7658 * you just say "syntax error" or do you present both error messages?
7659 * Both choices seem lousy. */
7660 if (strchr(flow_s, '(')) {
7661 int error;
7662
7663 /* Convert string to datapath key. */
7664 ofpbuf_init(&odp_key, 0);
7665 error = odp_flow_key_from_string(flow_s, NULL, &odp_key);
7666 if (error) {
7667 unixctl_command_reply_error(conn, "Bad flow syntax");
7668 goto exit;
7669 }
7670
7671 /* XXX: Since we allow the user to specify an ofproto, it's
7672 * possible they will specify a different ofproto than the one the
7673 * port actually belongs too. Ideally we should simply remove the
7674 * ability to specify the ofproto. */
7675 if (ofproto_receive(ofproto->backer, NULL, odp_key.data,
7676 odp_key.size, &flow, NULL, NULL, NULL,
7677 &initial_tci)) {
7678 unixctl_command_reply_error(conn, "Invalid flow");
7679 goto exit;
7680 }
7681 } else {
7682 char *error_s;
7683
7684 error_s = parse_ofp_exact_flow(&flow, argv[2]);
7685 if (error_s) {
7686 unixctl_command_reply_error(conn, error_s);
7687 free(error_s);
7688 goto exit;
7689 }
7690
7691 initial_tci = flow.vlan_tci;
7692 }
7693
7694 /* Generate a packet, if requested. */
7695 if (generate_s) {
7696 packet = ofpbuf_new(0);
7697 flow_compose(packet, &flow);
7698 }
7699 } else if (argc == 7) {
7700 /* ofproto/trace dpname priority tun_id in_port mark packet */
7701 const char *priority_s = argv[2];
7702 const char *tun_id_s = argv[3];
7703 const char *in_port_s = argv[4];
7704 const char *mark_s = argv[5];
7705 const char *packet_s = argv[6];
7706 uint32_t in_port = atoi(in_port_s);
7707 ovs_be64 tun_id = htonll(strtoull(tun_id_s, NULL, 0));
7708 uint32_t priority = atoi(priority_s);
7709 uint32_t mark = atoi(mark_s);
7710 const char *msg;
7711
7712 msg = eth_from_hex(packet_s, &packet);
7713 if (msg) {
7714 unixctl_command_reply_error(conn, msg);
7715 goto exit;
7716 }
7717
7718 ds_put_cstr(&result, "Packet: ");
7719 s = ofp_packet_to_string(packet->data, packet->size);
7720 ds_put_cstr(&result, s);
7721 free(s);
7722
7723 flow_extract(packet, priority, mark, NULL, in_port, &flow);
7724 flow.tunnel.tun_id = tun_id;
7725 initial_tci = flow.vlan_tci;
7726 } else {
7727 unixctl_command_reply_error(conn, "Bad command syntax");
7728 goto exit;
7729 }
7730
7731 ofproto_trace(ofproto, &flow, packet, initial_tci, &result);
7732 unixctl_command_reply(conn, ds_cstr(&result));
7733
7734 exit:
7735 ds_destroy(&result);
7736 ofpbuf_delete(packet);
7737 ofpbuf_uninit(&odp_key);
7738 }
7739
7740 static void
7741 ofproto_trace(struct ofproto_dpif *ofproto, const struct flow *flow,
7742 const struct ofpbuf *packet, ovs_be16 initial_tci,
7743 struct ds *ds)
7744 {
7745 struct rule_dpif *rule;
7746
7747 ds_put_cstr(ds, "Flow: ");
7748 flow_format(ds, flow);
7749 ds_put_char(ds, '\n');
7750
7751 rule = rule_dpif_lookup(ofproto, flow);
7752
7753 trace_format_rule(ds, 0, 0, rule);
7754 if (rule == ofproto->miss_rule) {
7755 ds_put_cstr(ds, "\nNo match, flow generates \"packet in\"s.\n");
7756 } else if (rule == ofproto->no_packet_in_rule) {
7757 ds_put_cstr(ds, "\nNo match, packets dropped because "
7758 "OFPPC_NO_PACKET_IN is set on in_port.\n");
7759 }
7760
7761 if (rule) {
7762 uint64_t odp_actions_stub[1024 / 8];
7763 struct ofpbuf odp_actions;
7764
7765 struct trace_ctx trace;
7766 uint8_t tcp_flags;
7767
7768 tcp_flags = packet ? packet_get_tcp_flags(packet, flow) : 0;
7769 trace.result = ds;
7770 trace.flow = *flow;
7771 ofpbuf_use_stub(&odp_actions,
7772 odp_actions_stub, sizeof odp_actions_stub);
7773 action_xlate_ctx_init(&trace.ctx, ofproto, flow, initial_tci,
7774 rule, tcp_flags, packet);
7775 trace.ctx.resubmit_hook = trace_resubmit;
7776 trace.ctx.report_hook = trace_report;
7777 xlate_actions(&trace.ctx, rule->up.ofpacts, rule->up.ofpacts_len,
7778 &odp_actions);
7779
7780 ds_put_char(ds, '\n');
7781 trace_format_flow(ds, 0, "Final flow", &trace);
7782 ds_put_cstr(ds, "Datapath actions: ");
7783 format_odp_actions(ds, odp_actions.data, odp_actions.size);
7784 ofpbuf_uninit(&odp_actions);
7785
7786 if (trace.ctx.slow) {
7787 enum slow_path_reason slow;
7788
7789 ds_put_cstr(ds, "\nThis flow is handled by the userspace "
7790 "slow path because it:");
7791 for (slow = trace.ctx.slow; slow; ) {
7792 enum slow_path_reason bit = rightmost_1bit(slow);
7793
7794 switch (bit) {
7795 case SLOW_CFM:
7796 ds_put_cstr(ds, "\n\t- Consists of CFM packets.");
7797 break;
7798 case SLOW_LACP:
7799 ds_put_cstr(ds, "\n\t- Consists of LACP packets.");
7800 break;
7801 case SLOW_STP:
7802 ds_put_cstr(ds, "\n\t- Consists of STP packets.");
7803 break;
7804 case SLOW_IN_BAND:
7805 ds_put_cstr(ds, "\n\t- Needs in-band special case "
7806 "processing.");
7807 if (!packet) {
7808 ds_put_cstr(ds, "\n\t (The datapath actions are "
7809 "incomplete--for complete actions, "
7810 "please supply a packet.)");
7811 }
7812 break;
7813 case SLOW_CONTROLLER:
7814 ds_put_cstr(ds, "\n\t- Sends \"packet-in\" messages "
7815 "to the OpenFlow controller.");
7816 break;
7817 case SLOW_MATCH:
7818 ds_put_cstr(ds, "\n\t- Needs more specific matching "
7819 "than the datapath supports.");
7820 break;
7821 }
7822
7823 slow &= ~bit;
7824 }
7825
7826 if (slow & ~SLOW_MATCH) {
7827 ds_put_cstr(ds, "\nThe datapath actions above do not reflect "
7828 "the special slow-path processing.");
7829 }
7830 }
7831 }
7832 }
7833
7834 static void
7835 ofproto_dpif_clog(struct unixctl_conn *conn OVS_UNUSED, int argc OVS_UNUSED,
7836 const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED)
7837 {
7838 clogged = true;
7839 unixctl_command_reply(conn, NULL);
7840 }
7841
7842 static void
7843 ofproto_dpif_unclog(struct unixctl_conn *conn OVS_UNUSED, int argc OVS_UNUSED,
7844 const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED)
7845 {
7846 clogged = false;
7847 unixctl_command_reply(conn, NULL);
7848 }
7849
7850 /* Runs a self-check of flow translations in 'ofproto'. Appends a message to
7851 * 'reply' describing the results. */
7852 static void
7853 ofproto_dpif_self_check__(struct ofproto_dpif *ofproto, struct ds *reply)
7854 {
7855 struct facet *facet;
7856 int errors;
7857
7858 errors = 0;
7859 HMAP_FOR_EACH (facet, hmap_node, &ofproto->facets) {
7860 if (!facet_check_consistency(facet)) {
7861 errors++;
7862 }
7863 }
7864 if (errors) {
7865 ofproto->backer->need_revalidate = REV_INCONSISTENCY;
7866 }
7867
7868 if (errors) {
7869 ds_put_format(reply, "%s: self-check failed (%d errors)\n",
7870 ofproto->up.name, errors);
7871 } else {
7872 ds_put_format(reply, "%s: self-check passed\n", ofproto->up.name);
7873 }
7874 }
7875
7876 static void
7877 ofproto_dpif_self_check(struct unixctl_conn *conn,
7878 int argc, const char *argv[], void *aux OVS_UNUSED)
7879 {
7880 struct ds reply = DS_EMPTY_INITIALIZER;
7881 struct ofproto_dpif *ofproto;
7882
7883 if (argc > 1) {
7884 ofproto = ofproto_dpif_lookup(argv[1]);
7885 if (!ofproto) {
7886 unixctl_command_reply_error(conn, "Unknown ofproto (use "
7887 "ofproto/list for help)");
7888 return;
7889 }
7890 ofproto_dpif_self_check__(ofproto, &reply);
7891 } else {
7892 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
7893 ofproto_dpif_self_check__(ofproto, &reply);
7894 }
7895 }
7896
7897 unixctl_command_reply(conn, ds_cstr(&reply));
7898 ds_destroy(&reply);
7899 }
7900
7901 /* Store the current ofprotos in 'ofproto_shash'. Returns a sorted list
7902 * of the 'ofproto_shash' nodes. It is the responsibility of the caller
7903 * to destroy 'ofproto_shash' and free the returned value. */
7904 static const struct shash_node **
7905 get_ofprotos(struct shash *ofproto_shash)
7906 {
7907 const struct ofproto_dpif *ofproto;
7908
7909 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
7910 char *name = xasprintf("%s@%s", ofproto->up.type, ofproto->up.name);
7911 shash_add_nocopy(ofproto_shash, name, ofproto);
7912 }
7913
7914 return shash_sort(ofproto_shash);
7915 }
7916
7917 static void
7918 ofproto_unixctl_dpif_dump_dps(struct unixctl_conn *conn, int argc OVS_UNUSED,
7919 const char *argv[] OVS_UNUSED,
7920 void *aux OVS_UNUSED)
7921 {
7922 struct ds ds = DS_EMPTY_INITIALIZER;
7923 struct shash ofproto_shash;
7924 const struct shash_node **sorted_ofprotos;
7925 int i;
7926
7927 shash_init(&ofproto_shash);
7928 sorted_ofprotos = get_ofprotos(&ofproto_shash);
7929 for (i = 0; i < shash_count(&ofproto_shash); i++) {
7930 const struct shash_node *node = sorted_ofprotos[i];
7931 ds_put_format(&ds, "%s\n", node->name);
7932 }
7933
7934 shash_destroy(&ofproto_shash);
7935 free(sorted_ofprotos);
7936
7937 unixctl_command_reply(conn, ds_cstr(&ds));
7938 ds_destroy(&ds);
7939 }
7940
7941 static void
7942 show_dp_format(const struct ofproto_dpif *ofproto, struct ds *ds)
7943 {
7944 struct dpif_dp_stats s;
7945 const struct shash_node **ports;
7946 int i;
7947
7948 dpif_get_dp_stats(ofproto->backer->dpif, &s);
7949
7950 ds_put_format(ds, "%s (%s):\n", ofproto->up.name,
7951 dpif_name(ofproto->backer->dpif));
7952 /* xxx It would be better to show bridge-specific stats instead
7953 * xxx of dp ones. */
7954 ds_put_format(ds,
7955 "\tlookups: hit:%"PRIu64" missed:%"PRIu64" lost:%"PRIu64"\n",
7956 s.n_hit, s.n_missed, s.n_lost);
7957 ds_put_format(ds, "\tflows: %zu\n",
7958 hmap_count(&ofproto->subfacets));
7959
7960 ports = shash_sort(&ofproto->up.port_by_name);
7961 for (i = 0; i < shash_count(&ofproto->up.port_by_name); i++) {
7962 const struct shash_node *node = ports[i];
7963 struct ofport *ofport = node->data;
7964 const char *name = netdev_get_name(ofport->netdev);
7965 const char *type = netdev_get_type(ofport->netdev);
7966 uint32_t odp_port;
7967
7968 ds_put_format(ds, "\t%s %u/", name, ofport->ofp_port);
7969
7970 odp_port = ofp_port_to_odp_port(ofproto, ofport->ofp_port);
7971 if (odp_port != OVSP_NONE) {
7972 ds_put_format(ds, "%"PRIu32":", odp_port);
7973 } else {
7974 ds_put_cstr(ds, "none:");
7975 }
7976
7977 if (strcmp(type, "system")) {
7978 struct netdev *netdev;
7979 int error;
7980
7981 ds_put_format(ds, " (%s", type);
7982
7983 error = netdev_open(name, type, &netdev);
7984 if (!error) {
7985 struct smap config;
7986
7987 smap_init(&config);
7988 error = netdev_get_config(netdev, &config);
7989 if (!error) {
7990 const struct smap_node **nodes;
7991 size_t i;
7992
7993 nodes = smap_sort(&config);
7994 for (i = 0; i < smap_count(&config); i++) {
7995 const struct smap_node *node = nodes[i];
7996 ds_put_format(ds, "%c %s=%s", i ? ',' : ':',
7997 node->key, node->value);
7998 }
7999 free(nodes);
8000 }
8001 smap_destroy(&config);
8002
8003 netdev_close(netdev);
8004 }
8005 ds_put_char(ds, ')');
8006 }
8007 ds_put_char(ds, '\n');
8008 }
8009 free(ports);
8010 }
8011
8012 static void
8013 ofproto_unixctl_dpif_show(struct unixctl_conn *conn, int argc,
8014 const char *argv[], void *aux OVS_UNUSED)
8015 {
8016 struct ds ds = DS_EMPTY_INITIALIZER;
8017 const struct ofproto_dpif *ofproto;
8018
8019 if (argc > 1) {
8020 int i;
8021 for (i = 1; i < argc; i++) {
8022 ofproto = ofproto_dpif_lookup(argv[i]);
8023 if (!ofproto) {
8024 ds_put_format(&ds, "Unknown bridge %s (use dpif/dump-dps "
8025 "for help)", argv[i]);
8026 unixctl_command_reply_error(conn, ds_cstr(&ds));
8027 return;
8028 }
8029 show_dp_format(ofproto, &ds);
8030 }
8031 } else {
8032 struct shash ofproto_shash;
8033 const struct shash_node **sorted_ofprotos;
8034 int i;
8035
8036 shash_init(&ofproto_shash);
8037 sorted_ofprotos = get_ofprotos(&ofproto_shash);
8038 for (i = 0; i < shash_count(&ofproto_shash); i++) {
8039 const struct shash_node *node = sorted_ofprotos[i];
8040 show_dp_format(node->data, &ds);
8041 }
8042
8043 shash_destroy(&ofproto_shash);
8044 free(sorted_ofprotos);
8045 }
8046
8047 unixctl_command_reply(conn, ds_cstr(&ds));
8048 ds_destroy(&ds);
8049 }
8050
8051 static void
8052 ofproto_unixctl_dpif_dump_flows(struct unixctl_conn *conn,
8053 int argc OVS_UNUSED, const char *argv[],
8054 void *aux OVS_UNUSED)
8055 {
8056 struct ds ds = DS_EMPTY_INITIALIZER;
8057 const struct ofproto_dpif *ofproto;
8058 struct subfacet *subfacet;
8059
8060 ofproto = ofproto_dpif_lookup(argv[1]);
8061 if (!ofproto) {
8062 unixctl_command_reply_error(conn, "no such bridge");
8063 return;
8064 }
8065
8066 update_stats(ofproto->backer);
8067
8068 HMAP_FOR_EACH (subfacet, hmap_node, &ofproto->subfacets) {
8069 odp_flow_key_format(subfacet->key, subfacet->key_len, &ds);
8070
8071 ds_put_format(&ds, ", packets:%"PRIu64", bytes:%"PRIu64", used:",
8072 subfacet->dp_packet_count, subfacet->dp_byte_count);
8073 if (subfacet->used) {
8074 ds_put_format(&ds, "%.3fs",
8075 (time_msec() - subfacet->used) / 1000.0);
8076 } else {
8077 ds_put_format(&ds, "never");
8078 }
8079 if (subfacet->facet->tcp_flags) {
8080 ds_put_cstr(&ds, ", flags:");
8081 packet_format_tcp_flags(&ds, subfacet->facet->tcp_flags);
8082 }
8083
8084 ds_put_cstr(&ds, ", actions:");
8085 format_odp_actions(&ds, subfacet->actions, subfacet->actions_len);
8086 ds_put_char(&ds, '\n');
8087 }
8088
8089 unixctl_command_reply(conn, ds_cstr(&ds));
8090 ds_destroy(&ds);
8091 }
8092
8093 static void
8094 ofproto_unixctl_dpif_del_flows(struct unixctl_conn *conn,
8095 int argc OVS_UNUSED, const char *argv[],
8096 void *aux OVS_UNUSED)
8097 {
8098 struct ds ds = DS_EMPTY_INITIALIZER;
8099 struct ofproto_dpif *ofproto;
8100
8101 ofproto = ofproto_dpif_lookup(argv[1]);
8102 if (!ofproto) {
8103 unixctl_command_reply_error(conn, "no such bridge");
8104 return;
8105 }
8106
8107 flush(&ofproto->up);
8108
8109 unixctl_command_reply(conn, ds_cstr(&ds));
8110 ds_destroy(&ds);
8111 }
8112
8113 static void
8114 ofproto_dpif_unixctl_init(void)
8115 {
8116 static bool registered;
8117 if (registered) {
8118 return;
8119 }
8120 registered = true;
8121
8122 unixctl_command_register(
8123 "ofproto/trace",
8124 "bridge {priority tun_id in_port mark packet | odp_flow [-generate]}",
8125 2, 6, ofproto_unixctl_trace, NULL);
8126 unixctl_command_register("fdb/flush", "[bridge]", 0, 1,
8127 ofproto_unixctl_fdb_flush, NULL);
8128 unixctl_command_register("fdb/show", "bridge", 1, 1,
8129 ofproto_unixctl_fdb_show, NULL);
8130 unixctl_command_register("ofproto/clog", "", 0, 0,
8131 ofproto_dpif_clog, NULL);
8132 unixctl_command_register("ofproto/unclog", "", 0, 0,
8133 ofproto_dpif_unclog, NULL);
8134 unixctl_command_register("ofproto/self-check", "[bridge]", 0, 1,
8135 ofproto_dpif_self_check, NULL);
8136 unixctl_command_register("dpif/dump-dps", "", 0, 0,
8137 ofproto_unixctl_dpif_dump_dps, NULL);
8138 unixctl_command_register("dpif/show", "[bridge]", 0, INT_MAX,
8139 ofproto_unixctl_dpif_show, NULL);
8140 unixctl_command_register("dpif/dump-flows", "bridge", 1, 1,
8141 ofproto_unixctl_dpif_dump_flows, NULL);
8142 unixctl_command_register("dpif/del-flows", "bridge", 1, 1,
8143 ofproto_unixctl_dpif_del_flows, NULL);
8144 }
8145 \f
8146 /* Linux VLAN device support (e.g. "eth0.10" for VLAN 10.)
8147 *
8148 * This is deprecated. It is only for compatibility with broken device drivers
8149 * in old versions of Linux that do not properly support VLANs when VLAN
8150 * devices are not used. When broken device drivers are no longer in
8151 * widespread use, we will delete these interfaces. */
8152
8153 static int
8154 set_realdev(struct ofport *ofport_, uint16_t realdev_ofp_port, int vid)
8155 {
8156 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport_->ofproto);
8157 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
8158
8159 if (realdev_ofp_port == ofport->realdev_ofp_port
8160 && vid == ofport->vlandev_vid) {
8161 return 0;
8162 }
8163
8164 ofproto->backer->need_revalidate = REV_RECONFIGURE;
8165
8166 if (ofport->realdev_ofp_port) {
8167 vsp_remove(ofport);
8168 }
8169 if (realdev_ofp_port && ofport->bundle) {
8170 /* vlandevs are enslaved to their realdevs, so they are not allowed to
8171 * themselves be part of a bundle. */
8172 bundle_set(ofport->up.ofproto, ofport->bundle, NULL);
8173 }
8174
8175 ofport->realdev_ofp_port = realdev_ofp_port;
8176 ofport->vlandev_vid = vid;
8177
8178 if (realdev_ofp_port) {
8179 vsp_add(ofport, realdev_ofp_port, vid);
8180 }
8181
8182 return 0;
8183 }
8184
8185 static uint32_t
8186 hash_realdev_vid(uint16_t realdev_ofp_port, int vid)
8187 {
8188 return hash_2words(realdev_ofp_port, vid);
8189 }
8190
8191 /* Returns the ODP port number of the Linux VLAN device that corresponds to
8192 * 'vlan_tci' on the network device with port number 'realdev_odp_port' in
8193 * 'ofproto'. For example, given 'realdev_odp_port' of eth0 and 'vlan_tci' 9,
8194 * it would return the port number of eth0.9.
8195 *
8196 * Unless VLAN splinters are enabled for port 'realdev_odp_port', this
8197 * function just returns its 'realdev_odp_port' argument. */
8198 static uint32_t
8199 vsp_realdev_to_vlandev(const struct ofproto_dpif *ofproto,
8200 uint32_t realdev_odp_port, ovs_be16 vlan_tci)
8201 {
8202 if (!hmap_is_empty(&ofproto->realdev_vid_map)) {
8203 uint16_t realdev_ofp_port;
8204 int vid = vlan_tci_to_vid(vlan_tci);
8205 const struct vlan_splinter *vsp;
8206
8207 realdev_ofp_port = odp_port_to_ofp_port(ofproto, realdev_odp_port);
8208 HMAP_FOR_EACH_WITH_HASH (vsp, realdev_vid_node,
8209 hash_realdev_vid(realdev_ofp_port, vid),
8210 &ofproto->realdev_vid_map) {
8211 if (vsp->realdev_ofp_port == realdev_ofp_port
8212 && vsp->vid == vid) {
8213 return ofp_port_to_odp_port(ofproto, vsp->vlandev_ofp_port);
8214 }
8215 }
8216 }
8217 return realdev_odp_port;
8218 }
8219
8220 static struct vlan_splinter *
8221 vlandev_find(const struct ofproto_dpif *ofproto, uint16_t vlandev_ofp_port)
8222 {
8223 struct vlan_splinter *vsp;
8224
8225 HMAP_FOR_EACH_WITH_HASH (vsp, vlandev_node, hash_int(vlandev_ofp_port, 0),
8226 &ofproto->vlandev_map) {
8227 if (vsp->vlandev_ofp_port == vlandev_ofp_port) {
8228 return vsp;
8229 }
8230 }
8231
8232 return NULL;
8233 }
8234
8235 /* Returns the OpenFlow port number of the "real" device underlying the Linux
8236 * VLAN device with OpenFlow port number 'vlandev_ofp_port' and stores the
8237 * VLAN VID of the Linux VLAN device in '*vid'. For example, given
8238 * 'vlandev_ofp_port' of eth0.9, it would return the OpenFlow port number of
8239 * eth0 and store 9 in '*vid'.
8240 *
8241 * Returns 0 and does not modify '*vid' if 'vlandev_ofp_port' is not a Linux
8242 * VLAN device. Unless VLAN splinters are enabled, this is what this function
8243 * always does.*/
8244 static uint16_t
8245 vsp_vlandev_to_realdev(const struct ofproto_dpif *ofproto,
8246 uint16_t vlandev_ofp_port, int *vid)
8247 {
8248 if (!hmap_is_empty(&ofproto->vlandev_map)) {
8249 const struct vlan_splinter *vsp;
8250
8251 vsp = vlandev_find(ofproto, vlandev_ofp_port);
8252 if (vsp) {
8253 if (vid) {
8254 *vid = vsp->vid;
8255 }
8256 return vsp->realdev_ofp_port;
8257 }
8258 }
8259 return 0;
8260 }
8261
8262 /* Given 'flow', a flow representing a packet received on 'ofproto', checks
8263 * whether 'flow->in_port' represents a Linux VLAN device. If so, changes
8264 * 'flow->in_port' to the "real" device backing the VLAN device, sets
8265 * 'flow->vlan_tci' to the VLAN VID, and returns true. Otherwise (which is
8266 * always the case unless VLAN splinters are enabled), returns false without
8267 * making any changes. */
8268 static bool
8269 vsp_adjust_flow(const struct ofproto_dpif *ofproto, struct flow *flow)
8270 {
8271 uint16_t realdev;
8272 int vid;
8273
8274 realdev = vsp_vlandev_to_realdev(ofproto, flow->in_port, &vid);
8275 if (!realdev) {
8276 return false;
8277 }
8278
8279 /* Cause the flow to be processed as if it came in on the real device with
8280 * the VLAN device's VLAN ID. */
8281 flow->in_port = realdev;
8282 flow->vlan_tci = htons((vid & VLAN_VID_MASK) | VLAN_CFI);
8283 return true;
8284 }
8285
8286 static void
8287 vsp_remove(struct ofport_dpif *port)
8288 {
8289 struct ofproto_dpif *ofproto = ofproto_dpif_cast(port->up.ofproto);
8290 struct vlan_splinter *vsp;
8291
8292 vsp = vlandev_find(ofproto, port->up.ofp_port);
8293 if (vsp) {
8294 hmap_remove(&ofproto->vlandev_map, &vsp->vlandev_node);
8295 hmap_remove(&ofproto->realdev_vid_map, &vsp->realdev_vid_node);
8296 free(vsp);
8297
8298 port->realdev_ofp_port = 0;
8299 } else {
8300 VLOG_ERR("missing vlan device record");
8301 }
8302 }
8303
8304 static void
8305 vsp_add(struct ofport_dpif *port, uint16_t realdev_ofp_port, int vid)
8306 {
8307 struct ofproto_dpif *ofproto = ofproto_dpif_cast(port->up.ofproto);
8308
8309 if (!vsp_vlandev_to_realdev(ofproto, port->up.ofp_port, NULL)
8310 && (vsp_realdev_to_vlandev(ofproto, realdev_ofp_port, htons(vid))
8311 == realdev_ofp_port)) {
8312 struct vlan_splinter *vsp;
8313
8314 vsp = xmalloc(sizeof *vsp);
8315 hmap_insert(&ofproto->vlandev_map, &vsp->vlandev_node,
8316 hash_int(port->up.ofp_port, 0));
8317 hmap_insert(&ofproto->realdev_vid_map, &vsp->realdev_vid_node,
8318 hash_realdev_vid(realdev_ofp_port, vid));
8319 vsp->realdev_ofp_port = realdev_ofp_port;
8320 vsp->vlandev_ofp_port = port->up.ofp_port;
8321 vsp->vid = vid;
8322
8323 port->realdev_ofp_port = realdev_ofp_port;
8324 } else {
8325 VLOG_ERR("duplicate vlan device record");
8326 }
8327 }
8328
8329 static uint32_t
8330 ofp_port_to_odp_port(const struct ofproto_dpif *ofproto, uint16_t ofp_port)
8331 {
8332 const struct ofport_dpif *ofport = get_ofp_port(ofproto, ofp_port);
8333 return ofport ? ofport->odp_port : OVSP_NONE;
8334 }
8335
8336 static struct ofport_dpif *
8337 odp_port_to_ofport(const struct dpif_backer *backer, uint32_t odp_port)
8338 {
8339 struct ofport_dpif *port;
8340
8341 HMAP_FOR_EACH_IN_BUCKET (port, odp_port_node,
8342 hash_int(odp_port, 0),
8343 &backer->odp_to_ofport_map) {
8344 if (port->odp_port == odp_port) {
8345 return port;
8346 }
8347 }
8348
8349 return NULL;
8350 }
8351
8352 static uint16_t
8353 odp_port_to_ofp_port(const struct ofproto_dpif *ofproto, uint32_t odp_port)
8354 {
8355 struct ofport_dpif *port;
8356
8357 port = odp_port_to_ofport(ofproto->backer, odp_port);
8358 if (port && &ofproto->up == port->up.ofproto) {
8359 return port->up.ofp_port;
8360 } else {
8361 return OFPP_NONE;
8362 }
8363 }
8364
8365 const struct ofproto_class ofproto_dpif_class = {
8366 init,
8367 enumerate_types,
8368 enumerate_names,
8369 del,
8370 port_open_type,
8371 type_run,
8372 type_run_fast,
8373 type_wait,
8374 alloc,
8375 construct,
8376 destruct,
8377 dealloc,
8378 run,
8379 run_fast,
8380 wait,
8381 get_memory_usage,
8382 flush,
8383 get_features,
8384 get_tables,
8385 port_alloc,
8386 port_construct,
8387 port_destruct,
8388 port_dealloc,
8389 port_modified,
8390 port_reconfigured,
8391 port_query_by_name,
8392 port_add,
8393 port_del,
8394 port_get_stats,
8395 port_dump_start,
8396 port_dump_next,
8397 port_dump_done,
8398 port_poll,
8399 port_poll_wait,
8400 port_is_lacp_current,
8401 NULL, /* rule_choose_table */
8402 rule_alloc,
8403 rule_construct,
8404 rule_destruct,
8405 rule_dealloc,
8406 rule_get_stats,
8407 rule_execute,
8408 rule_modify_actions,
8409 set_frag_handling,
8410 packet_out,
8411 set_netflow,
8412 get_netflow_ids,
8413 set_sflow,
8414 set_cfm,
8415 get_cfm_status,
8416 set_stp,
8417 get_stp_status,
8418 set_stp_port,
8419 get_stp_port_status,
8420 set_queues,
8421 bundle_set,
8422 bundle_remove,
8423 mirror_set,
8424 mirror_get_stats,
8425 set_flood_vlans,
8426 is_mirror_output_bundle,
8427 forward_bpdu_changed,
8428 set_mac_table_config,
8429 set_realdev,
8430 };