]> git.proxmox.com Git - mirror_ovs.git/blob - ofproto/ofproto-dpif.c
Rename NOT_REACHED to OVS_NOT_REACHED
[mirror_ovs.git] / ofproto / ofproto-dpif.c
1 /*
2 * Copyright (c) 2009, 2010, 2011, 2012, 2013 Nicira, Inc.
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at:
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <config.h>
18
19 #include "ofproto/ofproto-dpif.h"
20 #include "ofproto/ofproto-provider.h"
21
22 #include <errno.h>
23
24 #include "bfd.h"
25 #include "bond.h"
26 #include "bundle.h"
27 #include "byte-order.h"
28 #include "connectivity.h"
29 #include "connmgr.h"
30 #include "coverage.h"
31 #include "cfm.h"
32 #include "dpif.h"
33 #include "dynamic-string.h"
34 #include "fail-open.h"
35 #include "guarded-list.h"
36 #include "hmapx.h"
37 #include "lacp.h"
38 #include "learn.h"
39 #include "mac-learning.h"
40 #include "meta-flow.h"
41 #include "multipath.h"
42 #include "netdev-vport.h"
43 #include "netdev.h"
44 #include "netlink.h"
45 #include "nx-match.h"
46 #include "odp-util.h"
47 #include "odp-execute.h"
48 #include "ofp-util.h"
49 #include "ofpbuf.h"
50 #include "ofp-actions.h"
51 #include "ofp-parse.h"
52 #include "ofp-print.h"
53 #include "ofproto-dpif-governor.h"
54 #include "ofproto-dpif-ipfix.h"
55 #include "ofproto-dpif-mirror.h"
56 #include "ofproto-dpif-monitor.h"
57 #include "ofproto-dpif-sflow.h"
58 #include "ofproto-dpif-upcall.h"
59 #include "ofproto-dpif-xlate.h"
60 #include "poll-loop.h"
61 #include "seq.h"
62 #include "simap.h"
63 #include "smap.h"
64 #include "timer.h"
65 #include "tunnel.h"
66 #include "unaligned.h"
67 #include "unixctl.h"
68 #include "vlan-bitmap.h"
69 #include "vlog.h"
70
71 VLOG_DEFINE_THIS_MODULE(ofproto_dpif);
72
73 COVERAGE_DEFINE(ofproto_dpif_expired);
74 COVERAGE_DEFINE(facet_revalidate);
75 COVERAGE_DEFINE(facet_unexpected);
76 COVERAGE_DEFINE(facet_create);
77 COVERAGE_DEFINE(facet_remove);
78 COVERAGE_DEFINE(subfacet_create);
79 COVERAGE_DEFINE(subfacet_destroy);
80 COVERAGE_DEFINE(subfacet_install_fail);
81 COVERAGE_DEFINE(packet_in_overflow);
82
83 /* Number of implemented OpenFlow tables. */
84 enum { N_TABLES = 255 };
85 enum { TBL_INTERNAL = N_TABLES - 1 }; /* Used for internal hidden rules. */
86 BUILD_ASSERT_DECL(N_TABLES >= 2 && N_TABLES <= 255);
87
88 struct flow_miss;
89 struct facet;
90
91 struct rule_dpif {
92 struct rule up;
93
94 /* These statistics:
95 *
96 * - Do include packets and bytes from facets that have been deleted or
97 * whose own statistics have been folded into the rule.
98 *
99 * - Do include packets and bytes sent "by hand" that were accounted to
100 * the rule without any facet being involved (this is a rare corner
101 * case in rule_execute()).
102 *
103 * - Do not include packet or bytes that can be obtained from any facet's
104 * packet_count or byte_count member or that can be obtained from the
105 * datapath by, e.g., dpif_flow_get() for any subfacet.
106 */
107 struct ovs_mutex stats_mutex;
108 uint64_t packet_count OVS_GUARDED; /* Number of packets received. */
109 uint64_t byte_count OVS_GUARDED; /* Number of bytes received. */
110 };
111
112 static void rule_get_stats(struct rule *, uint64_t *packets, uint64_t *bytes);
113 static struct rule_dpif *rule_dpif_cast(const struct rule *);
114
115 struct group_dpif {
116 struct ofgroup up;
117
118 /* These statistics:
119 *
120 * - Do include packets and bytes from facets that have been deleted or
121 * whose own statistics have been folded into the rule.
122 *
123 * - Do include packets and bytes sent "by hand" that were accounted to
124 * the rule without any facet being involved (this is a rare corner
125 * case in rule_execute()).
126 *
127 * - Do not include packet or bytes that can be obtained from any facet's
128 * packet_count or byte_count member or that can be obtained from the
129 * datapath by, e.g., dpif_flow_get() for any subfacet.
130 */
131 struct ovs_mutex stats_mutex;
132 uint64_t packet_count OVS_GUARDED; /* Number of packets received. */
133 uint64_t byte_count OVS_GUARDED; /* Number of bytes received. */
134 struct bucket_counter *bucket_stats OVS_GUARDED; /* Bucket statistics. */
135 };
136
137 struct ofbundle {
138 struct hmap_node hmap_node; /* In struct ofproto's "bundles" hmap. */
139 struct ofproto_dpif *ofproto; /* Owning ofproto. */
140 void *aux; /* Key supplied by ofproto's client. */
141 char *name; /* Identifier for log messages. */
142
143 /* Configuration. */
144 struct list ports; /* Contains "struct ofport"s. */
145 enum port_vlan_mode vlan_mode; /* VLAN mode */
146 int vlan; /* -1=trunk port, else a 12-bit VLAN ID. */
147 unsigned long *trunks; /* Bitmap of trunked VLANs, if 'vlan' == -1.
148 * NULL if all VLANs are trunked. */
149 struct lacp *lacp; /* LACP if LACP is enabled, otherwise NULL. */
150 struct bond *bond; /* Nonnull iff more than one port. */
151 bool use_priority_tags; /* Use 802.1p tag for frames in VLAN 0? */
152
153 /* Status. */
154 bool floodable; /* True if no port has OFPUTIL_PC_NO_FLOOD set. */
155 };
156
157 static void bundle_remove(struct ofport *);
158 static void bundle_update(struct ofbundle *);
159 static void bundle_destroy(struct ofbundle *);
160 static void bundle_del_port(struct ofport_dpif *);
161 static void bundle_run(struct ofbundle *);
162 static void bundle_wait(struct ofbundle *);
163
164 static void stp_run(struct ofproto_dpif *ofproto);
165 static void stp_wait(struct ofproto_dpif *ofproto);
166 static int set_stp_port(struct ofport *,
167 const struct ofproto_port_stp_settings *);
168
169 static void compose_slow_path(const struct ofproto_dpif *, const struct flow *,
170 enum slow_path_reason,
171 uint64_t *stub, size_t stub_size,
172 const struct nlattr **actionsp,
173 size_t *actions_lenp);
174
175 /* A subfacet (see "struct subfacet" below) has three possible installation
176 * states:
177 *
178 * - SF_NOT_INSTALLED: Not installed in the datapath. This will only be the
179 * case just after the subfacet is created, just before the subfacet is
180 * destroyed, or if the datapath returns an error when we try to install a
181 * subfacet.
182 *
183 * - SF_FAST_PATH: The subfacet's actions are installed in the datapath.
184 *
185 * - SF_SLOW_PATH: An action that sends every packet for the subfacet through
186 * ofproto_dpif is installed in the datapath.
187 */
188 enum subfacet_path {
189 SF_NOT_INSTALLED, /* No datapath flow for this subfacet. */
190 SF_FAST_PATH, /* Full actions are installed. */
191 SF_SLOW_PATH, /* Send-to-userspace action is installed. */
192 };
193
194 /* A dpif flow and actions associated with a facet.
195 *
196 * See also the large comment on struct facet. */
197 struct subfacet {
198 /* Owners. */
199 struct hmap_node hmap_node; /* In struct ofproto_dpif 'subfacets' list. */
200 struct list list_node; /* In struct facet's 'facets' list. */
201 struct facet *facet; /* Owning facet. */
202 struct dpif_backer *backer; /* Owning backer. */
203
204 struct nlattr *key;
205 int key_len;
206
207 long long int used; /* Time last used; time created if not used. */
208 long long int created; /* Time created. */
209
210 uint64_t dp_packet_count; /* Last known packet count in the datapath. */
211 uint64_t dp_byte_count; /* Last known byte count in the datapath. */
212
213 enum subfacet_path path; /* Installed in datapath? */
214 };
215
216 #define SUBFACET_DESTROY_MAX_BATCH 50
217
218 static struct subfacet *subfacet_create(struct facet *, struct flow_miss *,
219 uint32_t key_hash);
220 static struct subfacet *subfacet_find(struct dpif_backer *,
221 const struct nlattr *key, size_t key_len,
222 uint32_t key_hash);
223 static void subfacet_destroy(struct subfacet *);
224 static void subfacet_destroy__(struct subfacet *);
225 static void subfacet_destroy_batch(struct dpif_backer *,
226 struct subfacet **, int n);
227 static void subfacet_reset_dp_stats(struct subfacet *,
228 struct dpif_flow_stats *);
229 static void subfacet_update_stats(struct subfacet *,
230 const struct dpif_flow_stats *);
231 static int subfacet_install(struct subfacet *,
232 const struct ofpbuf *odp_actions,
233 struct dpif_flow_stats *);
234 static void subfacet_uninstall(struct subfacet *);
235
236 /* A unique, non-overlapping instantiation of an OpenFlow flow.
237 *
238 * A facet associates a "struct flow", which represents the Open vSwitch
239 * userspace idea of an exact-match flow, with one or more subfacets.
240 * While the facet is created based on an exact-match flow, it is stored
241 * within the ofproto based on the wildcards that could be expressed
242 * based on the flow table and other configuration. (See the 'wc'
243 * description in "struct xlate_out" for more details.)
244 *
245 * Each subfacet tracks the datapath's idea of the flow equivalent to
246 * the facet. When the kernel module (or other dpif implementation) and
247 * Open vSwitch userspace agree on the definition of a flow key, there
248 * is exactly one subfacet per facet. If the dpif implementation
249 * supports more-specific flow matching than userspace, however, a facet
250 * can have more than one subfacet. Examples include the dpif
251 * implementation not supporting the same wildcards as userspace or some
252 * distinction in flow that userspace simply doesn't understand.
253 *
254 * Flow expiration works in terms of subfacets, so a facet must have at
255 * least one subfacet or it will never expire, leaking memory. */
256 struct facet {
257 /* Owner. */
258 struct ofproto_dpif *ofproto;
259
260 /* Owned data. */
261 struct list subfacets;
262 long long int used; /* Time last used; time created if not used. */
263
264 /* Key. */
265 struct flow flow; /* Flow of the creating subfacet. */
266 struct cls_rule cr; /* In 'ofproto_dpif's facets classifier. */
267
268 /* These statistics:
269 *
270 * - Do include packets and bytes sent "by hand", e.g. with
271 * dpif_execute().
272 *
273 * - Do include packets and bytes that were obtained from the datapath
274 * when a subfacet's statistics were reset (e.g. dpif_flow_put() with
275 * DPIF_FP_ZERO_STATS).
276 *
277 * - Do not include packets or bytes that can be obtained from the
278 * datapath for any existing subfacet.
279 */
280 uint64_t packet_count; /* Number of packets received. */
281 uint64_t byte_count; /* Number of bytes received. */
282
283 /* Resubmit statistics. */
284 uint64_t prev_packet_count; /* Number of packets from last stats push. */
285 uint64_t prev_byte_count; /* Number of bytes from last stats push. */
286 long long int prev_used; /* Used time from last stats push. */
287
288 /* Accounting. */
289 uint16_t tcp_flags; /* TCP flags seen for this 'rule'. */
290
291 struct xlate_out xout;
292
293 /* Storage for a single subfacet, to reduce malloc() time and space
294 * overhead. (A facet always has at least one subfacet and in the common
295 * case has exactly one subfacet. However, 'one_subfacet' may not
296 * always be valid, since it could have been removed after newer
297 * subfacets were pushed onto the 'subfacets' list.) */
298 struct subfacet one_subfacet;
299
300 long long int learn_rl; /* Rate limiter for facet_learn(). */
301 };
302
303 static struct facet *facet_create(const struct flow_miss *);
304 static void facet_remove(struct facet *);
305 static void facet_free(struct facet *);
306
307 static struct facet *facet_find(struct ofproto_dpif *, const struct flow *);
308 static struct facet *facet_lookup_valid(struct ofproto_dpif *,
309 const struct flow *);
310 static bool facet_revalidate(struct facet *);
311 static bool facet_check_consistency(struct facet *);
312
313 static void facet_flush_stats(struct facet *);
314
315 static void facet_reset_counters(struct facet *);
316 static void flow_push_stats(struct ofproto_dpif *, struct flow *,
317 struct dpif_flow_stats *, bool may_learn);
318 static void facet_push_stats(struct facet *, bool may_learn);
319 static void facet_learn(struct facet *);
320 static void push_all_stats(void);
321
322 static bool facet_is_controller_flow(struct facet *);
323
324 struct ofport_dpif {
325 struct hmap_node odp_port_node; /* In dpif_backer's "odp_to_ofport_map". */
326 struct ofport up;
327
328 odp_port_t odp_port;
329 struct ofbundle *bundle; /* Bundle that contains this port, if any. */
330 struct list bundle_node; /* In struct ofbundle's "ports" list. */
331 struct cfm *cfm; /* Connectivity Fault Management, if any. */
332 struct bfd *bfd; /* BFD, if any. */
333 bool may_enable; /* May be enabled in bonds. */
334 bool is_tunnel; /* This port is a tunnel. */
335 bool is_layer3; /* This is a layer 3 port. */
336 long long int carrier_seq; /* Carrier status changes. */
337 struct ofport_dpif *peer; /* Peer if patch port. */
338
339 /* Spanning tree. */
340 struct stp_port *stp_port; /* Spanning Tree Protocol, if any. */
341 enum stp_state stp_state; /* Always STP_DISABLED if STP not in use. */
342 long long int stp_state_entered;
343
344 /* Queue to DSCP mapping. */
345 struct ofproto_port_queue *qdscp;
346 size_t n_qdscp;
347
348 /* Linux VLAN device support (e.g. "eth0.10" for VLAN 10.)
349 *
350 * This is deprecated. It is only for compatibility with broken device
351 * drivers in old versions of Linux that do not properly support VLANs when
352 * VLAN devices are not used. When broken device drivers are no longer in
353 * widespread use, we will delete these interfaces. */
354 ofp_port_t realdev_ofp_port;
355 int vlandev_vid;
356 };
357
358 /* Linux VLAN device support (e.g. "eth0.10" for VLAN 10.)
359 *
360 * This is deprecated. It is only for compatibility with broken device drivers
361 * in old versions of Linux that do not properly support VLANs when VLAN
362 * devices are not used. When broken device drivers are no longer in
363 * widespread use, we will delete these interfaces. */
364 struct vlan_splinter {
365 struct hmap_node realdev_vid_node;
366 struct hmap_node vlandev_node;
367 ofp_port_t realdev_ofp_port;
368 ofp_port_t vlandev_ofp_port;
369 int vid;
370 };
371
372 static void vsp_remove(struct ofport_dpif *);
373 static void vsp_add(struct ofport_dpif *, ofp_port_t realdev_ofp_port, int vid);
374
375 static odp_port_t ofp_port_to_odp_port(const struct ofproto_dpif *,
376 ofp_port_t);
377
378 static ofp_port_t odp_port_to_ofp_port(const struct ofproto_dpif *,
379 odp_port_t);
380
381 static struct ofport_dpif *
382 ofport_dpif_cast(const struct ofport *ofport)
383 {
384 return ofport ? CONTAINER_OF(ofport, struct ofport_dpif, up) : NULL;
385 }
386
387 static void port_run(struct ofport_dpif *);
388 static int set_bfd(struct ofport *, const struct smap *);
389 static int set_cfm(struct ofport *, const struct cfm_settings *);
390 static void ofport_update_peer(struct ofport_dpif *);
391
392 struct dpif_completion {
393 struct list list_node;
394 struct ofoperation *op;
395 };
396
397 /* Reasons that we might need to revalidate every facet, and corresponding
398 * coverage counters.
399 *
400 * A value of 0 means that there is no need to revalidate.
401 *
402 * It would be nice to have some cleaner way to integrate with coverage
403 * counters, but with only a few reasons I guess this is good enough for
404 * now. */
405 enum revalidate_reason {
406 REV_RECONFIGURE = 1, /* Switch configuration changed. */
407 REV_STP, /* Spanning tree protocol port status change. */
408 REV_BOND, /* Bonding changed. */
409 REV_PORT_TOGGLED, /* Port enabled or disabled by CFM, LACP, ...*/
410 REV_FLOW_TABLE, /* Flow table changed. */
411 REV_MAC_LEARNING, /* Mac learning changed. */
412 REV_INCONSISTENCY /* Facet self-check failed. */
413 };
414 COVERAGE_DEFINE(rev_reconfigure);
415 COVERAGE_DEFINE(rev_stp);
416 COVERAGE_DEFINE(rev_bond);
417 COVERAGE_DEFINE(rev_port_toggled);
418 COVERAGE_DEFINE(rev_flow_table);
419 COVERAGE_DEFINE(rev_mac_learning);
420 COVERAGE_DEFINE(rev_inconsistency);
421
422 /* All datapaths of a given type share a single dpif backer instance. */
423 struct dpif_backer {
424 char *type;
425 int refcount;
426 struct dpif *dpif;
427 struct udpif *udpif;
428 struct timer next_expiration;
429
430 struct ovs_rwlock odp_to_ofport_lock;
431 struct hmap odp_to_ofport_map OVS_GUARDED; /* Contains "struct ofport"s. */
432
433 struct simap tnl_backers; /* Set of dpif ports backing tunnels. */
434
435 /* Facet revalidation flags applying to facets which use this backer. */
436 enum revalidate_reason need_revalidate; /* Revalidate every facet. */
437
438 struct hmap drop_keys; /* Set of dropped odp keys. */
439 bool recv_set_enable; /* Enables or disables receiving packets. */
440
441 struct hmap subfacets;
442 struct governor *governor;
443
444 /* Subfacet statistics.
445 *
446 * These keep track of the total number of subfacets added and deleted and
447 * flow life span. They are useful for computing the flow rates stats
448 * exposed via "ovs-appctl dpif/show". The goal is to learn about
449 * traffic patterns in ways that we can use later to improve Open vSwitch
450 * performance in new situations. */
451 unsigned max_n_subfacet; /* Maximum number of flows */
452 unsigned avg_n_subfacet; /* Average number of flows. */
453 };
454
455 /* All existing ofproto_backer instances, indexed by ofproto->up.type. */
456 static struct shash all_dpif_backers = SHASH_INITIALIZER(&all_dpif_backers);
457
458 static void drop_key_clear(struct dpif_backer *);
459
460 struct ofproto_dpif {
461 struct hmap_node all_ofproto_dpifs_node; /* In 'all_ofproto_dpifs'. */
462 struct ofproto up;
463 struct dpif_backer *backer;
464
465 /* Special OpenFlow rules. */
466 struct rule_dpif *miss_rule; /* Sends flow table misses to controller. */
467 struct rule_dpif *no_packet_in_rule; /* Drops flow table misses. */
468 struct rule_dpif *drop_frags_rule; /* Used in OFPC_FRAG_DROP mode. */
469
470 /* Bridging. */
471 struct netflow *netflow;
472 struct dpif_sflow *sflow;
473 struct dpif_ipfix *ipfix;
474 struct hmap bundles; /* Contains "struct ofbundle"s. */
475 struct mac_learning *ml;
476 bool has_bonded_bundles;
477 bool lacp_enabled;
478 struct mbridge *mbridge;
479
480 /* Facets. */
481 struct classifier facets; /* Contains 'struct facet's. */
482 long long int consistency_rl;
483
484 struct ovs_mutex stats_mutex;
485 struct netdev_stats stats OVS_GUARDED; /* To account packets generated and
486 * consumed in userspace. */
487
488 /* Spanning tree. */
489 struct stp *stp;
490 long long int stp_last_tick;
491
492 /* VLAN splinters. */
493 struct ovs_mutex vsp_mutex;
494 struct hmap realdev_vid_map OVS_GUARDED; /* (realdev,vid) -> vlandev. */
495 struct hmap vlandev_map OVS_GUARDED; /* vlandev -> (realdev,vid). */
496
497 /* Ports. */
498 struct sset ports; /* Set of standard port names. */
499 struct sset ghost_ports; /* Ports with no datapath port. */
500 struct sset port_poll_set; /* Queued names for port_poll() reply. */
501 int port_poll_errno; /* Last errno for port_poll() reply. */
502 uint64_t change_seq; /* Connectivity status changes. */
503
504 /* Per ofproto's dpif stats. */
505 uint64_t n_hit;
506 uint64_t n_missed;
507
508 /* Work queues. */
509 struct guarded_list pins; /* Contains "struct ofputil_packet_in"s. */
510 };
511
512 /* By default, flows in the datapath are wildcarded (megaflows). They
513 * may be disabled with the "ovs-appctl dpif/disable-megaflows" command. */
514 static bool enable_megaflows = true;
515
516 /* All existing ofproto_dpif instances, indexed by ->up.name. */
517 static struct hmap all_ofproto_dpifs = HMAP_INITIALIZER(&all_ofproto_dpifs);
518
519 static void ofproto_dpif_unixctl_init(void);
520
521 static inline struct ofproto_dpif *
522 ofproto_dpif_cast(const struct ofproto *ofproto)
523 {
524 ovs_assert(ofproto->ofproto_class == &ofproto_dpif_class);
525 return CONTAINER_OF(ofproto, struct ofproto_dpif, up);
526 }
527
528 static struct ofport_dpif *get_ofp_port(const struct ofproto_dpif *ofproto,
529 ofp_port_t ofp_port);
530 static void ofproto_trace(struct ofproto_dpif *, const struct flow *,
531 const struct ofpbuf *packet,
532 const struct ofpact[], size_t ofpacts_len,
533 struct ds *);
534
535 /* Upcalls. */
536 static void handle_upcalls(struct dpif_backer *);
537
538 /* Flow expiration. */
539 static int expire(struct dpif_backer *);
540
541 /* Global variables. */
542 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
543
544 /* Initial mappings of port to bridge mappings. */
545 static struct shash init_ofp_ports = SHASH_INITIALIZER(&init_ofp_ports);
546
547 /* Executes 'fm'. The caller retains ownership of 'fm' and everything in
548 * it. */
549 void
550 ofproto_dpif_flow_mod(struct ofproto_dpif *ofproto,
551 struct ofputil_flow_mod *fm)
552 {
553 ofproto_flow_mod(&ofproto->up, fm);
554 }
555
556 /* Appends 'pin' to the queue of "packet ins" to be sent to the controller.
557 * Takes ownership of 'pin' and pin->packet. */
558 void
559 ofproto_dpif_send_packet_in(struct ofproto_dpif *ofproto,
560 struct ofproto_packet_in *pin)
561 {
562 if (!guarded_list_push_back(&ofproto->pins, &pin->list_node, 1024)) {
563 COVERAGE_INC(packet_in_overflow);
564 free(CONST_CAST(void *, pin->up.packet));
565 free(pin);
566 }
567 }
568 \f
569 /* Factory functions. */
570
571 static void
572 init(const struct shash *iface_hints)
573 {
574 struct shash_node *node;
575
576 /* Make a local copy, since we don't own 'iface_hints' elements. */
577 SHASH_FOR_EACH(node, iface_hints) {
578 const struct iface_hint *orig_hint = node->data;
579 struct iface_hint *new_hint = xmalloc(sizeof *new_hint);
580
581 new_hint->br_name = xstrdup(orig_hint->br_name);
582 new_hint->br_type = xstrdup(orig_hint->br_type);
583 new_hint->ofp_port = orig_hint->ofp_port;
584
585 shash_add(&init_ofp_ports, node->name, new_hint);
586 }
587 }
588
589 static void
590 enumerate_types(struct sset *types)
591 {
592 dp_enumerate_types(types);
593 }
594
595 static int
596 enumerate_names(const char *type, struct sset *names)
597 {
598 struct ofproto_dpif *ofproto;
599
600 sset_clear(names);
601 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
602 if (strcmp(type, ofproto->up.type)) {
603 continue;
604 }
605 sset_add(names, ofproto->up.name);
606 }
607
608 return 0;
609 }
610
611 static int
612 del(const char *type, const char *name)
613 {
614 struct dpif *dpif;
615 int error;
616
617 error = dpif_open(name, type, &dpif);
618 if (!error) {
619 error = dpif_delete(dpif);
620 dpif_close(dpif);
621 }
622 return error;
623 }
624 \f
625 static const char *
626 port_open_type(const char *datapath_type, const char *port_type)
627 {
628 return dpif_port_open_type(datapath_type, port_type);
629 }
630
631 /* Type functions. */
632
633 static void process_dpif_port_changes(struct dpif_backer *);
634 static void process_dpif_all_ports_changed(struct dpif_backer *);
635 static void process_dpif_port_change(struct dpif_backer *,
636 const char *devname);
637 static void process_dpif_port_error(struct dpif_backer *, int error);
638
639 static struct ofproto_dpif *
640 lookup_ofproto_dpif_by_port_name(const char *name)
641 {
642 struct ofproto_dpif *ofproto;
643
644 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
645 if (sset_contains(&ofproto->ports, name)) {
646 return ofproto;
647 }
648 }
649
650 return NULL;
651 }
652
653 static int
654 type_run(const char *type)
655 {
656 static long long int push_timer = LLONG_MIN;
657 struct dpif_backer *backer;
658
659 backer = shash_find_data(&all_dpif_backers, type);
660 if (!backer) {
661 /* This is not necessarily a problem, since backers are only
662 * created on demand. */
663 return 0;
664 }
665
666 dpif_run(backer->dpif);
667
668 handle_upcalls(backer);
669
670 /* The most natural place to push facet statistics is when they're pulled
671 * from the datapath. However, when there are many flows in the datapath,
672 * this expensive operation can occur so frequently, that it reduces our
673 * ability to quickly set up flows. To reduce the cost, we push statistics
674 * here instead. */
675 if (time_msec() > push_timer) {
676 push_timer = time_msec() + 2000;
677 push_all_stats();
678 }
679
680 /* If vswitchd started with other_config:flow_restore_wait set as "true",
681 * and the configuration has now changed to "false", enable receiving
682 * packets from the datapath. */
683 if (!backer->recv_set_enable && !ofproto_get_flow_restore_wait()) {
684 int error;
685
686 backer->recv_set_enable = true;
687
688 error = dpif_recv_set(backer->dpif, backer->recv_set_enable);
689 if (error) {
690 VLOG_ERR("Failed to enable receiving packets in dpif.");
691 return error;
692 }
693 dpif_flow_flush(backer->dpif);
694 backer->need_revalidate = REV_RECONFIGURE;
695 }
696
697 if (backer->recv_set_enable) {
698 udpif_set_threads(backer->udpif, n_handlers);
699 }
700
701 if (backer->need_revalidate) {
702 struct ofproto_dpif *ofproto;
703 struct simap_node *node;
704 struct simap tmp_backers;
705
706 /* Handle tunnel garbage collection. */
707 simap_init(&tmp_backers);
708 simap_swap(&backer->tnl_backers, &tmp_backers);
709
710 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
711 struct ofport_dpif *iter;
712
713 if (backer != ofproto->backer) {
714 continue;
715 }
716
717 HMAP_FOR_EACH (iter, up.hmap_node, &ofproto->up.ports) {
718 char namebuf[NETDEV_VPORT_NAME_BUFSIZE];
719 const char *dp_port;
720
721 if (!iter->is_tunnel) {
722 continue;
723 }
724
725 dp_port = netdev_vport_get_dpif_port(iter->up.netdev,
726 namebuf, sizeof namebuf);
727 node = simap_find(&tmp_backers, dp_port);
728 if (node) {
729 simap_put(&backer->tnl_backers, dp_port, node->data);
730 simap_delete(&tmp_backers, node);
731 node = simap_find(&backer->tnl_backers, dp_port);
732 } else {
733 node = simap_find(&backer->tnl_backers, dp_port);
734 if (!node) {
735 odp_port_t odp_port = ODPP_NONE;
736
737 if (!dpif_port_add(backer->dpif, iter->up.netdev,
738 &odp_port)) {
739 simap_put(&backer->tnl_backers, dp_port,
740 odp_to_u32(odp_port));
741 node = simap_find(&backer->tnl_backers, dp_port);
742 }
743 }
744 }
745
746 iter->odp_port = node ? u32_to_odp(node->data) : ODPP_NONE;
747 if (tnl_port_reconfigure(iter, iter->up.netdev,
748 iter->odp_port)) {
749 backer->need_revalidate = REV_RECONFIGURE;
750 }
751 }
752 }
753
754 SIMAP_FOR_EACH (node, &tmp_backers) {
755 dpif_port_del(backer->dpif, u32_to_odp(node->data));
756 }
757 simap_destroy(&tmp_backers);
758
759 switch (backer->need_revalidate) {
760 case REV_RECONFIGURE: COVERAGE_INC(rev_reconfigure); break;
761 case REV_STP: COVERAGE_INC(rev_stp); break;
762 case REV_BOND: COVERAGE_INC(rev_bond); break;
763 case REV_PORT_TOGGLED: COVERAGE_INC(rev_port_toggled); break;
764 case REV_FLOW_TABLE: COVERAGE_INC(rev_flow_table); break;
765 case REV_MAC_LEARNING: COVERAGE_INC(rev_mac_learning); break;
766 case REV_INCONSISTENCY: COVERAGE_INC(rev_inconsistency); break;
767 }
768 backer->need_revalidate = 0;
769
770 /* Clear the drop_keys in case we should now be accepting some
771 * formerly dropped flows. */
772 drop_key_clear(backer);
773
774 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
775 struct facet *facet, *next;
776 struct ofport_dpif *ofport;
777 struct cls_cursor cursor;
778 struct ofbundle *bundle;
779
780 if (ofproto->backer != backer) {
781 continue;
782 }
783
784 ovs_rwlock_wrlock(&xlate_rwlock);
785 xlate_ofproto_set(ofproto, ofproto->up.name,
786 ofproto->backer->dpif, ofproto->miss_rule,
787 ofproto->no_packet_in_rule, ofproto->ml,
788 ofproto->stp, ofproto->mbridge,
789 ofproto->sflow, ofproto->ipfix,
790 ofproto->netflow, ofproto->up.frag_handling,
791 ofproto->up.forward_bpdu,
792 connmgr_has_in_band(ofproto->up.connmgr));
793
794 HMAP_FOR_EACH (bundle, hmap_node, &ofproto->bundles) {
795 xlate_bundle_set(ofproto, bundle, bundle->name,
796 bundle->vlan_mode, bundle->vlan,
797 bundle->trunks, bundle->use_priority_tags,
798 bundle->bond, bundle->lacp,
799 bundle->floodable);
800 }
801
802 HMAP_FOR_EACH (ofport, up.hmap_node, &ofproto->up.ports) {
803 int stp_port = ofport->stp_port
804 ? stp_port_no(ofport->stp_port)
805 : -1;
806 xlate_ofport_set(ofproto, ofport->bundle, ofport,
807 ofport->up.ofp_port, ofport->odp_port,
808 ofport->up.netdev, ofport->cfm,
809 ofport->bfd, ofport->peer, stp_port,
810 ofport->qdscp, ofport->n_qdscp,
811 ofport->up.pp.config, ofport->up.pp.state,
812 ofport->is_tunnel, ofport->may_enable);
813 }
814 ovs_rwlock_unlock(&xlate_rwlock);
815
816 /* Only ofproto-dpif cares about the facet classifier so we just
817 * lock cls_cursor_init() to appease the thread safety analysis. */
818 ovs_rwlock_rdlock(&ofproto->facets.rwlock);
819 cls_cursor_init(&cursor, &ofproto->facets, NULL);
820 ovs_rwlock_unlock(&ofproto->facets.rwlock);
821 CLS_CURSOR_FOR_EACH_SAFE (facet, next, cr, &cursor) {
822 facet_revalidate(facet);
823 }
824 }
825
826 udpif_revalidate(backer->udpif);
827 }
828
829 if (!backer->recv_set_enable) {
830 /* Wake up before a max of 1000ms. */
831 timer_set_duration(&backer->next_expiration, 1000);
832 } else if (timer_expired(&backer->next_expiration)) {
833 int delay = expire(backer);
834 timer_set_duration(&backer->next_expiration, delay);
835 }
836
837 process_dpif_port_changes(backer);
838
839 if (backer->governor) {
840 size_t n_subfacets;
841
842 governor_run(backer->governor);
843
844 /* If the governor has shrunk to its minimum size and the number of
845 * subfacets has dwindled, then drop the governor entirely.
846 *
847 * For hysteresis, the number of subfacets to drop the governor is
848 * smaller than the number needed to trigger its creation. */
849 n_subfacets = hmap_count(&backer->subfacets);
850 if (n_subfacets * 4 < flow_eviction_threshold
851 && governor_is_idle(backer->governor)) {
852 governor_destroy(backer->governor);
853 backer->governor = NULL;
854 }
855 }
856
857 return 0;
858 }
859
860 /* Check for and handle port changes in 'backer''s dpif. */
861 static void
862 process_dpif_port_changes(struct dpif_backer *backer)
863 {
864 for (;;) {
865 char *devname;
866 int error;
867
868 error = dpif_port_poll(backer->dpif, &devname);
869 switch (error) {
870 case EAGAIN:
871 return;
872
873 case ENOBUFS:
874 process_dpif_all_ports_changed(backer);
875 break;
876
877 case 0:
878 process_dpif_port_change(backer, devname);
879 free(devname);
880 break;
881
882 default:
883 process_dpif_port_error(backer, error);
884 break;
885 }
886 }
887 }
888
889 static void
890 process_dpif_all_ports_changed(struct dpif_backer *backer)
891 {
892 struct ofproto_dpif *ofproto;
893 struct dpif_port dpif_port;
894 struct dpif_port_dump dump;
895 struct sset devnames;
896 const char *devname;
897
898 sset_init(&devnames);
899 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
900 if (ofproto->backer == backer) {
901 struct ofport *ofport;
902
903 HMAP_FOR_EACH (ofport, hmap_node, &ofproto->up.ports) {
904 sset_add(&devnames, netdev_get_name(ofport->netdev));
905 }
906 }
907 }
908 DPIF_PORT_FOR_EACH (&dpif_port, &dump, backer->dpif) {
909 sset_add(&devnames, dpif_port.name);
910 }
911
912 SSET_FOR_EACH (devname, &devnames) {
913 process_dpif_port_change(backer, devname);
914 }
915 sset_destroy(&devnames);
916 }
917
918 static void
919 process_dpif_port_change(struct dpif_backer *backer, const char *devname)
920 {
921 struct ofproto_dpif *ofproto;
922 struct dpif_port port;
923
924 /* Don't report on the datapath's device. */
925 if (!strcmp(devname, dpif_base_name(backer->dpif))) {
926 return;
927 }
928
929 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node,
930 &all_ofproto_dpifs) {
931 if (simap_contains(&ofproto->backer->tnl_backers, devname)) {
932 return;
933 }
934 }
935
936 ofproto = lookup_ofproto_dpif_by_port_name(devname);
937 if (dpif_port_query_by_name(backer->dpif, devname, &port)) {
938 /* The port was removed. If we know the datapath,
939 * report it through poll_set(). If we don't, it may be
940 * notifying us of a removal we initiated, so ignore it.
941 * If there's a pending ENOBUFS, let it stand, since
942 * everything will be reevaluated. */
943 if (ofproto && ofproto->port_poll_errno != ENOBUFS) {
944 sset_add(&ofproto->port_poll_set, devname);
945 ofproto->port_poll_errno = 0;
946 }
947 } else if (!ofproto) {
948 /* The port was added, but we don't know with which
949 * ofproto we should associate it. Delete it. */
950 dpif_port_del(backer->dpif, port.port_no);
951 } else {
952 struct ofport_dpif *ofport;
953
954 ofport = ofport_dpif_cast(shash_find_data(
955 &ofproto->up.port_by_name, devname));
956 if (ofport
957 && ofport->odp_port != port.port_no
958 && !odp_port_to_ofport(backer, port.port_no))
959 {
960 /* 'ofport''s datapath port number has changed from
961 * 'ofport->odp_port' to 'port.port_no'. Update our internal data
962 * structures to match. */
963 ovs_rwlock_wrlock(&backer->odp_to_ofport_lock);
964 hmap_remove(&backer->odp_to_ofport_map, &ofport->odp_port_node);
965 ofport->odp_port = port.port_no;
966 hmap_insert(&backer->odp_to_ofport_map, &ofport->odp_port_node,
967 hash_odp_port(port.port_no));
968 ovs_rwlock_unlock(&backer->odp_to_ofport_lock);
969 backer->need_revalidate = REV_RECONFIGURE;
970 }
971 }
972 dpif_port_destroy(&port);
973 }
974
975 /* Propagate 'error' to all ofprotos based on 'backer'. */
976 static void
977 process_dpif_port_error(struct dpif_backer *backer, int error)
978 {
979 struct ofproto_dpif *ofproto;
980
981 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
982 if (ofproto->backer == backer) {
983 sset_clear(&ofproto->port_poll_set);
984 ofproto->port_poll_errno = error;
985 }
986 }
987 }
988
989 static void
990 type_wait(const char *type)
991 {
992 struct dpif_backer *backer;
993
994 backer = shash_find_data(&all_dpif_backers, type);
995 if (!backer) {
996 /* This is not necessarily a problem, since backers are only
997 * created on demand. */
998 return;
999 }
1000
1001 if (backer->governor) {
1002 governor_wait(backer->governor);
1003 }
1004
1005 timer_wait(&backer->next_expiration);
1006 dpif_wait(backer->dpif);
1007 udpif_wait(backer->udpif);
1008 }
1009 \f
1010 /* Basic life-cycle. */
1011
1012 static int add_internal_flows(struct ofproto_dpif *);
1013
1014 static struct ofproto *
1015 alloc(void)
1016 {
1017 struct ofproto_dpif *ofproto = xmalloc(sizeof *ofproto);
1018 return &ofproto->up;
1019 }
1020
1021 static void
1022 dealloc(struct ofproto *ofproto_)
1023 {
1024 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1025 free(ofproto);
1026 }
1027
1028 static void
1029 close_dpif_backer(struct dpif_backer *backer)
1030 {
1031 ovs_assert(backer->refcount > 0);
1032
1033 if (--backer->refcount) {
1034 return;
1035 }
1036
1037 drop_key_clear(backer);
1038 hmap_destroy(&backer->drop_keys);
1039
1040 udpif_destroy(backer->udpif);
1041
1042 simap_destroy(&backer->tnl_backers);
1043 ovs_rwlock_destroy(&backer->odp_to_ofport_lock);
1044 hmap_destroy(&backer->odp_to_ofport_map);
1045 shash_find_and_delete(&all_dpif_backers, backer->type);
1046 free(backer->type);
1047 dpif_close(backer->dpif);
1048
1049 ovs_assert(hmap_is_empty(&backer->subfacets));
1050 hmap_destroy(&backer->subfacets);
1051 governor_destroy(backer->governor);
1052
1053 free(backer);
1054 }
1055
1056 /* Datapath port slated for removal from datapath. */
1057 struct odp_garbage {
1058 struct list list_node;
1059 odp_port_t odp_port;
1060 };
1061
1062 static int
1063 open_dpif_backer(const char *type, struct dpif_backer **backerp)
1064 {
1065 struct dpif_backer *backer;
1066 struct dpif_port_dump port_dump;
1067 struct dpif_port port;
1068 struct shash_node *node;
1069 struct list garbage_list;
1070 struct odp_garbage *garbage, *next;
1071 struct sset names;
1072 char *backer_name;
1073 const char *name;
1074 int error;
1075
1076 backer = shash_find_data(&all_dpif_backers, type);
1077 if (backer) {
1078 backer->refcount++;
1079 *backerp = backer;
1080 return 0;
1081 }
1082
1083 backer_name = xasprintf("ovs-%s", type);
1084
1085 /* Remove any existing datapaths, since we assume we're the only
1086 * userspace controlling the datapath. */
1087 sset_init(&names);
1088 dp_enumerate_names(type, &names);
1089 SSET_FOR_EACH(name, &names) {
1090 struct dpif *old_dpif;
1091
1092 /* Don't remove our backer if it exists. */
1093 if (!strcmp(name, backer_name)) {
1094 continue;
1095 }
1096
1097 if (dpif_open(name, type, &old_dpif)) {
1098 VLOG_WARN("couldn't open old datapath %s to remove it", name);
1099 } else {
1100 dpif_delete(old_dpif);
1101 dpif_close(old_dpif);
1102 }
1103 }
1104 sset_destroy(&names);
1105
1106 backer = xmalloc(sizeof *backer);
1107
1108 error = dpif_create_and_open(backer_name, type, &backer->dpif);
1109 free(backer_name);
1110 if (error) {
1111 VLOG_ERR("failed to open datapath of type %s: %s", type,
1112 ovs_strerror(error));
1113 free(backer);
1114 return error;
1115 }
1116 backer->udpif = udpif_create(backer, backer->dpif);
1117
1118 backer->type = xstrdup(type);
1119 backer->governor = NULL;
1120 backer->refcount = 1;
1121 hmap_init(&backer->odp_to_ofport_map);
1122 ovs_rwlock_init(&backer->odp_to_ofport_lock);
1123 hmap_init(&backer->drop_keys);
1124 hmap_init(&backer->subfacets);
1125 timer_set_duration(&backer->next_expiration, 1000);
1126 backer->need_revalidate = 0;
1127 simap_init(&backer->tnl_backers);
1128 backer->recv_set_enable = !ofproto_get_flow_restore_wait();
1129 *backerp = backer;
1130
1131 if (backer->recv_set_enable) {
1132 dpif_flow_flush(backer->dpif);
1133 }
1134
1135 /* Loop through the ports already on the datapath and remove any
1136 * that we don't need anymore. */
1137 list_init(&garbage_list);
1138 dpif_port_dump_start(&port_dump, backer->dpif);
1139 while (dpif_port_dump_next(&port_dump, &port)) {
1140 node = shash_find(&init_ofp_ports, port.name);
1141 if (!node && strcmp(port.name, dpif_base_name(backer->dpif))) {
1142 garbage = xmalloc(sizeof *garbage);
1143 garbage->odp_port = port.port_no;
1144 list_push_front(&garbage_list, &garbage->list_node);
1145 }
1146 }
1147 dpif_port_dump_done(&port_dump);
1148
1149 LIST_FOR_EACH_SAFE (garbage, next, list_node, &garbage_list) {
1150 dpif_port_del(backer->dpif, garbage->odp_port);
1151 list_remove(&garbage->list_node);
1152 free(garbage);
1153 }
1154
1155 shash_add(&all_dpif_backers, type, backer);
1156
1157 error = dpif_recv_set(backer->dpif, backer->recv_set_enable);
1158 if (error) {
1159 VLOG_ERR("failed to listen on datapath of type %s: %s",
1160 type, ovs_strerror(error));
1161 close_dpif_backer(backer);
1162 return error;
1163 }
1164
1165 if (backer->recv_set_enable) {
1166 udpif_set_threads(backer->udpif, n_handlers);
1167 }
1168
1169 backer->max_n_subfacet = 0;
1170 backer->avg_n_subfacet = 0;
1171
1172 return error;
1173 }
1174
1175 static int
1176 construct(struct ofproto *ofproto_)
1177 {
1178 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1179 struct shash_node *node, *next;
1180 int error;
1181
1182 error = open_dpif_backer(ofproto->up.type, &ofproto->backer);
1183 if (error) {
1184 return error;
1185 }
1186
1187 ofproto->netflow = NULL;
1188 ofproto->sflow = NULL;
1189 ofproto->ipfix = NULL;
1190 ofproto->stp = NULL;
1191 hmap_init(&ofproto->bundles);
1192 ofproto->ml = mac_learning_create(MAC_ENTRY_DEFAULT_IDLE_TIME);
1193 ofproto->mbridge = mbridge_create();
1194 ofproto->has_bonded_bundles = false;
1195 ofproto->lacp_enabled = false;
1196 ovs_mutex_init(&ofproto->stats_mutex);
1197 ovs_mutex_init(&ofproto->vsp_mutex);
1198
1199 classifier_init(&ofproto->facets, NULL);
1200 ofproto->consistency_rl = LLONG_MIN;
1201
1202 guarded_list_init(&ofproto->pins);
1203
1204 ofproto_dpif_unixctl_init();
1205
1206 hmap_init(&ofproto->vlandev_map);
1207 hmap_init(&ofproto->realdev_vid_map);
1208
1209 sset_init(&ofproto->ports);
1210 sset_init(&ofproto->ghost_ports);
1211 sset_init(&ofproto->port_poll_set);
1212 ofproto->port_poll_errno = 0;
1213 ofproto->change_seq = 0;
1214
1215 SHASH_FOR_EACH_SAFE (node, next, &init_ofp_ports) {
1216 struct iface_hint *iface_hint = node->data;
1217
1218 if (!strcmp(iface_hint->br_name, ofproto->up.name)) {
1219 /* Check if the datapath already has this port. */
1220 if (dpif_port_exists(ofproto->backer->dpif, node->name)) {
1221 sset_add(&ofproto->ports, node->name);
1222 }
1223
1224 free(iface_hint->br_name);
1225 free(iface_hint->br_type);
1226 free(iface_hint);
1227 shash_delete(&init_ofp_ports, node);
1228 }
1229 }
1230
1231 hmap_insert(&all_ofproto_dpifs, &ofproto->all_ofproto_dpifs_node,
1232 hash_string(ofproto->up.name, 0));
1233 memset(&ofproto->stats, 0, sizeof ofproto->stats);
1234
1235 ofproto_init_tables(ofproto_, N_TABLES);
1236 error = add_internal_flows(ofproto);
1237 ofproto->up.tables[TBL_INTERNAL].flags = OFTABLE_HIDDEN | OFTABLE_READONLY;
1238
1239 ofproto->n_hit = 0;
1240 ofproto->n_missed = 0;
1241
1242 return error;
1243 }
1244
1245 static int
1246 add_internal_flow(struct ofproto_dpif *ofproto, int id,
1247 const struct ofpbuf *ofpacts, struct rule_dpif **rulep)
1248 {
1249 struct ofputil_flow_mod fm;
1250 int error;
1251
1252 match_init_catchall(&fm.match);
1253 fm.priority = 0;
1254 match_set_reg(&fm.match, 0, id);
1255 fm.new_cookie = htonll(0);
1256 fm.cookie = htonll(0);
1257 fm.cookie_mask = htonll(0);
1258 fm.modify_cookie = false;
1259 fm.table_id = TBL_INTERNAL;
1260 fm.command = OFPFC_ADD;
1261 fm.idle_timeout = 0;
1262 fm.hard_timeout = 0;
1263 fm.buffer_id = 0;
1264 fm.out_port = 0;
1265 fm.flags = 0;
1266 fm.ofpacts = ofpacts->data;
1267 fm.ofpacts_len = ofpacts->size;
1268
1269 error = ofproto_flow_mod(&ofproto->up, &fm);
1270 if (error) {
1271 VLOG_ERR_RL(&rl, "failed to add internal flow %d (%s)",
1272 id, ofperr_to_string(error));
1273 return error;
1274 }
1275
1276 if (rule_dpif_lookup_in_table(ofproto, &fm.match.flow, NULL, TBL_INTERNAL,
1277 rulep)) {
1278 rule_dpif_unref(*rulep);
1279 } else {
1280 OVS_NOT_REACHED();
1281 }
1282
1283 return 0;
1284 }
1285
1286 static int
1287 add_internal_flows(struct ofproto_dpif *ofproto)
1288 {
1289 struct ofpact_controller *controller;
1290 uint64_t ofpacts_stub[128 / 8];
1291 struct ofpbuf ofpacts;
1292 int error;
1293 int id;
1294
1295 ofpbuf_use_stack(&ofpacts, ofpacts_stub, sizeof ofpacts_stub);
1296 id = 1;
1297
1298 controller = ofpact_put_CONTROLLER(&ofpacts);
1299 controller->max_len = UINT16_MAX;
1300 controller->controller_id = 0;
1301 controller->reason = OFPR_NO_MATCH;
1302 ofpact_pad(&ofpacts);
1303
1304 error = add_internal_flow(ofproto, id++, &ofpacts, &ofproto->miss_rule);
1305 if (error) {
1306 return error;
1307 }
1308
1309 ofpbuf_clear(&ofpacts);
1310 error = add_internal_flow(ofproto, id++, &ofpacts,
1311 &ofproto->no_packet_in_rule);
1312 if (error) {
1313 return error;
1314 }
1315
1316 error = add_internal_flow(ofproto, id++, &ofpacts,
1317 &ofproto->drop_frags_rule);
1318 return error;
1319 }
1320
1321 static void
1322 destruct(struct ofproto *ofproto_)
1323 {
1324 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1325 struct rule_dpif *rule, *next_rule;
1326 struct ofproto_packet_in *pin, *next_pin;
1327 struct facet *facet, *next_facet;
1328 struct cls_cursor cursor;
1329 struct oftable *table;
1330 struct list pins;
1331
1332 ovs_rwlock_rdlock(&ofproto->facets.rwlock);
1333 cls_cursor_init(&cursor, &ofproto->facets, NULL);
1334 ovs_rwlock_unlock(&ofproto->facets.rwlock);
1335 CLS_CURSOR_FOR_EACH_SAFE (facet, next_facet, cr, &cursor) {
1336 facet_remove(facet);
1337 }
1338
1339 ofproto->backer->need_revalidate = REV_RECONFIGURE;
1340 ovs_rwlock_wrlock(&xlate_rwlock);
1341 xlate_remove_ofproto(ofproto);
1342 ovs_rwlock_unlock(&xlate_rwlock);
1343
1344 /* Discard any flow_miss_batches queued up for 'ofproto', avoiding a
1345 * use-after-free error. */
1346 udpif_revalidate(ofproto->backer->udpif);
1347
1348 hmap_remove(&all_ofproto_dpifs, &ofproto->all_ofproto_dpifs_node);
1349
1350 OFPROTO_FOR_EACH_TABLE (table, &ofproto->up) {
1351 struct cls_cursor cursor;
1352
1353 ovs_rwlock_rdlock(&table->cls.rwlock);
1354 cls_cursor_init(&cursor, &table->cls, NULL);
1355 ovs_rwlock_unlock(&table->cls.rwlock);
1356 CLS_CURSOR_FOR_EACH_SAFE (rule, next_rule, up.cr, &cursor) {
1357 ofproto_rule_delete(&ofproto->up, &rule->up);
1358 }
1359 }
1360
1361 guarded_list_pop_all(&ofproto->pins, &pins);
1362 LIST_FOR_EACH_SAFE (pin, next_pin, list_node, &pins) {
1363 list_remove(&pin->list_node);
1364 free(CONST_CAST(void *, pin->up.packet));
1365 free(pin);
1366 }
1367 guarded_list_destroy(&ofproto->pins);
1368
1369 mbridge_unref(ofproto->mbridge);
1370
1371 netflow_unref(ofproto->netflow);
1372 dpif_sflow_unref(ofproto->sflow);
1373 hmap_destroy(&ofproto->bundles);
1374 mac_learning_unref(ofproto->ml);
1375
1376 classifier_destroy(&ofproto->facets);
1377
1378 hmap_destroy(&ofproto->vlandev_map);
1379 hmap_destroy(&ofproto->realdev_vid_map);
1380
1381 sset_destroy(&ofproto->ports);
1382 sset_destroy(&ofproto->ghost_ports);
1383 sset_destroy(&ofproto->port_poll_set);
1384
1385 ovs_mutex_destroy(&ofproto->stats_mutex);
1386 ovs_mutex_destroy(&ofproto->vsp_mutex);
1387
1388 close_dpif_backer(ofproto->backer);
1389 }
1390
1391 static int
1392 run(struct ofproto *ofproto_)
1393 {
1394 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1395 uint64_t new_seq;
1396
1397 if (mbridge_need_revalidate(ofproto->mbridge)) {
1398 ofproto->backer->need_revalidate = REV_RECONFIGURE;
1399 ovs_rwlock_wrlock(&ofproto->ml->rwlock);
1400 mac_learning_flush(ofproto->ml);
1401 ovs_rwlock_unlock(&ofproto->ml->rwlock);
1402 }
1403
1404 /* Do not perform any periodic activity required by 'ofproto' while
1405 * waiting for flow restore to complete. */
1406 if (!ofproto_get_flow_restore_wait()) {
1407 struct ofproto_packet_in *pin, *next_pin;
1408 struct list pins;
1409
1410 guarded_list_pop_all(&ofproto->pins, &pins);
1411 LIST_FOR_EACH_SAFE (pin, next_pin, list_node, &pins) {
1412 connmgr_send_packet_in(ofproto->up.connmgr, pin);
1413 list_remove(&pin->list_node);
1414 free(CONST_CAST(void *, pin->up.packet));
1415 free(pin);
1416 }
1417 }
1418
1419 if (ofproto->netflow) {
1420 netflow_run(ofproto->netflow);
1421 }
1422 if (ofproto->sflow) {
1423 dpif_sflow_run(ofproto->sflow);
1424 }
1425 if (ofproto->ipfix) {
1426 dpif_ipfix_run(ofproto->ipfix);
1427 }
1428
1429 new_seq = seq_read(connectivity_seq_get());
1430 if (ofproto->change_seq != new_seq) {
1431 struct ofport_dpif *ofport;
1432
1433 HMAP_FOR_EACH (ofport, up.hmap_node, &ofproto->up.ports) {
1434 port_run(ofport);
1435 }
1436
1437 ofproto->change_seq = new_seq;
1438 }
1439 if (ofproto->lacp_enabled || ofproto->has_bonded_bundles) {
1440 struct ofbundle *bundle;
1441
1442 HMAP_FOR_EACH (bundle, hmap_node, &ofproto->bundles) {
1443 bundle_run(bundle);
1444 }
1445 }
1446
1447 stp_run(ofproto);
1448 ovs_rwlock_wrlock(&ofproto->ml->rwlock);
1449 if (mac_learning_run(ofproto->ml)) {
1450 ofproto->backer->need_revalidate = REV_MAC_LEARNING;
1451 }
1452 ovs_rwlock_unlock(&ofproto->ml->rwlock);
1453
1454 /* Check the consistency of a random facet, to aid debugging. */
1455 ovs_rwlock_rdlock(&ofproto->facets.rwlock);
1456 if (time_msec() >= ofproto->consistency_rl
1457 && !classifier_is_empty(&ofproto->facets)
1458 && !ofproto->backer->need_revalidate) {
1459 struct cls_subtable *table;
1460 struct cls_rule *cr;
1461 struct facet *facet;
1462
1463 ofproto->consistency_rl = time_msec() + 250;
1464
1465 table = CONTAINER_OF(hmap_random_node(&ofproto->facets.subtables),
1466 struct cls_subtable, hmap_node);
1467 cr = CONTAINER_OF(hmap_random_node(&table->rules), struct cls_rule,
1468 hmap_node);
1469 facet = CONTAINER_OF(cr, struct facet, cr);
1470
1471 if (!facet_check_consistency(facet)) {
1472 ofproto->backer->need_revalidate = REV_INCONSISTENCY;
1473 }
1474 }
1475 ovs_rwlock_unlock(&ofproto->facets.rwlock);
1476
1477 return 0;
1478 }
1479
1480 static void
1481 wait(struct ofproto *ofproto_)
1482 {
1483 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1484
1485 if (ofproto_get_flow_restore_wait()) {
1486 return;
1487 }
1488
1489 if (ofproto->sflow) {
1490 dpif_sflow_wait(ofproto->sflow);
1491 }
1492 if (ofproto->ipfix) {
1493 dpif_ipfix_wait(ofproto->ipfix);
1494 }
1495 if (ofproto->lacp_enabled || ofproto->has_bonded_bundles) {
1496 struct ofbundle *bundle;
1497
1498 HMAP_FOR_EACH (bundle, hmap_node, &ofproto->bundles) {
1499 bundle_wait(bundle);
1500 }
1501 }
1502 if (ofproto->netflow) {
1503 netflow_wait(ofproto->netflow);
1504 }
1505 ovs_rwlock_rdlock(&ofproto->ml->rwlock);
1506 mac_learning_wait(ofproto->ml);
1507 ovs_rwlock_unlock(&ofproto->ml->rwlock);
1508 stp_wait(ofproto);
1509 if (ofproto->backer->need_revalidate) {
1510 /* Shouldn't happen, but if it does just go around again. */
1511 VLOG_DBG_RL(&rl, "need revalidate in ofproto_wait_cb()");
1512 poll_immediate_wake();
1513 }
1514 }
1515
1516 static void
1517 get_memory_usage(const struct ofproto *ofproto_, struct simap *usage)
1518 {
1519 const struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1520 struct cls_cursor cursor;
1521 size_t n_subfacets = 0;
1522 struct facet *facet;
1523
1524 ovs_rwlock_rdlock(&ofproto->facets.rwlock);
1525 simap_increase(usage, "facets", classifier_count(&ofproto->facets));
1526 ovs_rwlock_unlock(&ofproto->facets.rwlock);
1527
1528 ovs_rwlock_rdlock(&ofproto->facets.rwlock);
1529 cls_cursor_init(&cursor, &ofproto->facets, NULL);
1530 CLS_CURSOR_FOR_EACH (facet, cr, &cursor) {
1531 n_subfacets += list_size(&facet->subfacets);
1532 }
1533 ovs_rwlock_unlock(&ofproto->facets.rwlock);
1534 simap_increase(usage, "subfacets", n_subfacets);
1535 }
1536
1537 static void
1538 type_get_memory_usage(const char *type, struct simap *usage)
1539 {
1540 struct dpif_backer *backer;
1541
1542 backer = shash_find_data(&all_dpif_backers, type);
1543 if (backer) {
1544 udpif_get_memory_usage(backer->udpif, usage);
1545 }
1546 }
1547
1548 static void
1549 flush(struct ofproto *ofproto_)
1550 {
1551 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1552 struct subfacet *subfacet, *next_subfacet;
1553 struct subfacet *batch[SUBFACET_DESTROY_MAX_BATCH];
1554 int n_batch;
1555
1556 n_batch = 0;
1557 HMAP_FOR_EACH_SAFE (subfacet, next_subfacet, hmap_node,
1558 &ofproto->backer->subfacets) {
1559 if (subfacet->facet->ofproto != ofproto) {
1560 continue;
1561 }
1562
1563 if (subfacet->path != SF_NOT_INSTALLED) {
1564 batch[n_batch++] = subfacet;
1565 if (n_batch >= SUBFACET_DESTROY_MAX_BATCH) {
1566 subfacet_destroy_batch(ofproto->backer, batch, n_batch);
1567 n_batch = 0;
1568 }
1569 } else {
1570 subfacet_destroy(subfacet);
1571 }
1572 }
1573
1574 if (n_batch > 0) {
1575 subfacet_destroy_batch(ofproto->backer, batch, n_batch);
1576 }
1577 }
1578
1579 static void
1580 get_features(struct ofproto *ofproto_ OVS_UNUSED,
1581 bool *arp_match_ip, enum ofputil_action_bitmap *actions)
1582 {
1583 *arp_match_ip = true;
1584 *actions = (OFPUTIL_A_OUTPUT |
1585 OFPUTIL_A_SET_VLAN_VID |
1586 OFPUTIL_A_SET_VLAN_PCP |
1587 OFPUTIL_A_STRIP_VLAN |
1588 OFPUTIL_A_SET_DL_SRC |
1589 OFPUTIL_A_SET_DL_DST |
1590 OFPUTIL_A_SET_NW_SRC |
1591 OFPUTIL_A_SET_NW_DST |
1592 OFPUTIL_A_SET_NW_TOS |
1593 OFPUTIL_A_SET_TP_SRC |
1594 OFPUTIL_A_SET_TP_DST |
1595 OFPUTIL_A_ENQUEUE);
1596 }
1597
1598 static void
1599 get_tables(struct ofproto *ofproto_, struct ofp12_table_stats *ots)
1600 {
1601 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1602 struct dpif_dp_stats s;
1603 uint64_t n_miss, n_no_pkt_in, n_bytes, n_dropped_frags;
1604 uint64_t n_lookup;
1605
1606 strcpy(ots->name, "classifier");
1607
1608 dpif_get_dp_stats(ofproto->backer->dpif, &s);
1609 rule_get_stats(&ofproto->miss_rule->up, &n_miss, &n_bytes);
1610 rule_get_stats(&ofproto->no_packet_in_rule->up, &n_no_pkt_in, &n_bytes);
1611 rule_get_stats(&ofproto->drop_frags_rule->up, &n_dropped_frags, &n_bytes);
1612
1613 n_lookup = s.n_hit + s.n_missed - n_dropped_frags;
1614 ots->lookup_count = htonll(n_lookup);
1615 ots->matched_count = htonll(n_lookup - n_miss - n_no_pkt_in);
1616 }
1617
1618 static struct ofport *
1619 port_alloc(void)
1620 {
1621 struct ofport_dpif *port = xmalloc(sizeof *port);
1622 return &port->up;
1623 }
1624
1625 static void
1626 port_dealloc(struct ofport *port_)
1627 {
1628 struct ofport_dpif *port = ofport_dpif_cast(port_);
1629 free(port);
1630 }
1631
1632 static int
1633 port_construct(struct ofport *port_)
1634 {
1635 struct ofport_dpif *port = ofport_dpif_cast(port_);
1636 struct ofproto_dpif *ofproto = ofproto_dpif_cast(port->up.ofproto);
1637 const struct netdev *netdev = port->up.netdev;
1638 char namebuf[NETDEV_VPORT_NAME_BUFSIZE];
1639 struct dpif_port dpif_port;
1640 int error;
1641
1642 ofproto->backer->need_revalidate = REV_RECONFIGURE;
1643 port->bundle = NULL;
1644 port->cfm = NULL;
1645 port->bfd = NULL;
1646 port->may_enable = true;
1647 port->stp_port = NULL;
1648 port->stp_state = STP_DISABLED;
1649 port->is_tunnel = false;
1650 port->peer = NULL;
1651 port->qdscp = NULL;
1652 port->n_qdscp = 0;
1653 port->realdev_ofp_port = 0;
1654 port->vlandev_vid = 0;
1655 port->carrier_seq = netdev_get_carrier_resets(netdev);
1656 port->is_layer3 = netdev_vport_is_layer3(netdev);
1657
1658 if (netdev_vport_is_patch(netdev)) {
1659 /* By bailing out here, we don't submit the port to the sFlow module
1660 * to be considered for counter polling export. This is correct
1661 * because the patch port represents an interface that sFlow considers
1662 * to be "internal" to the switch as a whole, and therefore not an
1663 * candidate for counter polling. */
1664 port->odp_port = ODPP_NONE;
1665 ofport_update_peer(port);
1666 return 0;
1667 }
1668
1669 error = dpif_port_query_by_name(ofproto->backer->dpif,
1670 netdev_vport_get_dpif_port(netdev, namebuf,
1671 sizeof namebuf),
1672 &dpif_port);
1673 if (error) {
1674 return error;
1675 }
1676
1677 port->odp_port = dpif_port.port_no;
1678
1679 if (netdev_get_tunnel_config(netdev)) {
1680 tnl_port_add(port, port->up.netdev, port->odp_port);
1681 port->is_tunnel = true;
1682 } else {
1683 /* Sanity-check that a mapping doesn't already exist. This
1684 * shouldn't happen for non-tunnel ports. */
1685 if (odp_port_to_ofp_port(ofproto, port->odp_port) != OFPP_NONE) {
1686 VLOG_ERR("port %s already has an OpenFlow port number",
1687 dpif_port.name);
1688 dpif_port_destroy(&dpif_port);
1689 return EBUSY;
1690 }
1691
1692 ovs_rwlock_wrlock(&ofproto->backer->odp_to_ofport_lock);
1693 hmap_insert(&ofproto->backer->odp_to_ofport_map, &port->odp_port_node,
1694 hash_odp_port(port->odp_port));
1695 ovs_rwlock_unlock(&ofproto->backer->odp_to_ofport_lock);
1696 }
1697 dpif_port_destroy(&dpif_port);
1698
1699 if (ofproto->sflow) {
1700 dpif_sflow_add_port(ofproto->sflow, port_, port->odp_port);
1701 }
1702
1703 return 0;
1704 }
1705
1706 static void
1707 port_destruct(struct ofport *port_)
1708 {
1709 struct ofport_dpif *port = ofport_dpif_cast(port_);
1710 struct ofproto_dpif *ofproto = ofproto_dpif_cast(port->up.ofproto);
1711 const char *devname = netdev_get_name(port->up.netdev);
1712 char namebuf[NETDEV_VPORT_NAME_BUFSIZE];
1713 const char *dp_port_name;
1714
1715 ofproto->backer->need_revalidate = REV_RECONFIGURE;
1716 ovs_rwlock_wrlock(&xlate_rwlock);
1717 xlate_ofport_remove(port);
1718 ovs_rwlock_unlock(&xlate_rwlock);
1719
1720 dp_port_name = netdev_vport_get_dpif_port(port->up.netdev, namebuf,
1721 sizeof namebuf);
1722 if (dpif_port_exists(ofproto->backer->dpif, dp_port_name)) {
1723 /* The underlying device is still there, so delete it. This
1724 * happens when the ofproto is being destroyed, since the caller
1725 * assumes that removal of attached ports will happen as part of
1726 * destruction. */
1727 if (!port->is_tunnel) {
1728 dpif_port_del(ofproto->backer->dpif, port->odp_port);
1729 }
1730 }
1731
1732 if (port->peer) {
1733 port->peer->peer = NULL;
1734 port->peer = NULL;
1735 }
1736
1737 if (port->odp_port != ODPP_NONE && !port->is_tunnel) {
1738 ovs_rwlock_wrlock(&ofproto->backer->odp_to_ofport_lock);
1739 hmap_remove(&ofproto->backer->odp_to_ofport_map, &port->odp_port_node);
1740 ovs_rwlock_unlock(&ofproto->backer->odp_to_ofport_lock);
1741 }
1742
1743 tnl_port_del(port);
1744 sset_find_and_delete(&ofproto->ports, devname);
1745 sset_find_and_delete(&ofproto->ghost_ports, devname);
1746 bundle_remove(port_);
1747 set_cfm(port_, NULL);
1748 set_bfd(port_, NULL);
1749 if (ofproto->sflow) {
1750 dpif_sflow_del_port(ofproto->sflow, port->odp_port);
1751 }
1752
1753 free(port->qdscp);
1754 }
1755
1756 static void
1757 port_modified(struct ofport *port_)
1758 {
1759 struct ofport_dpif *port = ofport_dpif_cast(port_);
1760
1761 if (port->bundle && port->bundle->bond) {
1762 bond_slave_set_netdev(port->bundle->bond, port, port->up.netdev);
1763 }
1764
1765 if (port->cfm) {
1766 cfm_set_netdev(port->cfm, port->up.netdev);
1767 }
1768
1769 if (port->bfd) {
1770 bfd_set_netdev(port->bfd, port->up.netdev);
1771 }
1772
1773 ofproto_dpif_monitor_port_update(port, port->bfd, port->cfm,
1774 port->up.pp.hw_addr);
1775
1776 if (port->is_tunnel && tnl_port_reconfigure(port, port->up.netdev,
1777 port->odp_port)) {
1778 ofproto_dpif_cast(port->up.ofproto)->backer->need_revalidate =
1779 REV_RECONFIGURE;
1780 }
1781
1782 ofport_update_peer(port);
1783 }
1784
1785 static void
1786 port_reconfigured(struct ofport *port_, enum ofputil_port_config old_config)
1787 {
1788 struct ofport_dpif *port = ofport_dpif_cast(port_);
1789 struct ofproto_dpif *ofproto = ofproto_dpif_cast(port->up.ofproto);
1790 enum ofputil_port_config changed = old_config ^ port->up.pp.config;
1791
1792 if (changed & (OFPUTIL_PC_NO_RECV | OFPUTIL_PC_NO_RECV_STP |
1793 OFPUTIL_PC_NO_FWD | OFPUTIL_PC_NO_FLOOD |
1794 OFPUTIL_PC_NO_PACKET_IN)) {
1795 ofproto->backer->need_revalidate = REV_RECONFIGURE;
1796
1797 if (changed & OFPUTIL_PC_NO_FLOOD && port->bundle) {
1798 bundle_update(port->bundle);
1799 }
1800 }
1801 }
1802
1803 static int
1804 set_sflow(struct ofproto *ofproto_,
1805 const struct ofproto_sflow_options *sflow_options)
1806 {
1807 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1808 struct dpif_sflow *ds = ofproto->sflow;
1809
1810 if (sflow_options) {
1811 if (!ds) {
1812 struct ofport_dpif *ofport;
1813
1814 ds = ofproto->sflow = dpif_sflow_create();
1815 HMAP_FOR_EACH (ofport, up.hmap_node, &ofproto->up.ports) {
1816 dpif_sflow_add_port(ds, &ofport->up, ofport->odp_port);
1817 }
1818 ofproto->backer->need_revalidate = REV_RECONFIGURE;
1819 }
1820 dpif_sflow_set_options(ds, sflow_options);
1821 } else {
1822 if (ds) {
1823 dpif_sflow_unref(ds);
1824 ofproto->backer->need_revalidate = REV_RECONFIGURE;
1825 ofproto->sflow = NULL;
1826 }
1827 }
1828 return 0;
1829 }
1830
1831 static int
1832 set_ipfix(
1833 struct ofproto *ofproto_,
1834 const struct ofproto_ipfix_bridge_exporter_options *bridge_exporter_options,
1835 const struct ofproto_ipfix_flow_exporter_options *flow_exporters_options,
1836 size_t n_flow_exporters_options)
1837 {
1838 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1839 struct dpif_ipfix *di = ofproto->ipfix;
1840 bool has_options = bridge_exporter_options || flow_exporters_options;
1841
1842 if (has_options && !di) {
1843 di = ofproto->ipfix = dpif_ipfix_create();
1844 }
1845
1846 if (di) {
1847 /* Call set_options in any case to cleanly flush the flow
1848 * caches in the last exporters that are to be destroyed. */
1849 dpif_ipfix_set_options(
1850 di, bridge_exporter_options, flow_exporters_options,
1851 n_flow_exporters_options);
1852
1853 if (!has_options) {
1854 dpif_ipfix_unref(di);
1855 ofproto->ipfix = NULL;
1856 }
1857 }
1858
1859 return 0;
1860 }
1861
1862 static int
1863 set_cfm(struct ofport *ofport_, const struct cfm_settings *s)
1864 {
1865 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
1866 int error = 0;
1867
1868 if (s) {
1869 if (!ofport->cfm) {
1870 struct ofproto_dpif *ofproto;
1871
1872 ofproto = ofproto_dpif_cast(ofport->up.ofproto);
1873 ofproto->backer->need_revalidate = REV_RECONFIGURE;
1874 ofport->cfm = cfm_create(ofport->up.netdev);
1875 }
1876
1877 if (cfm_configure(ofport->cfm, s)) {
1878 error = 0;
1879 goto out;
1880 }
1881
1882 error = EINVAL;
1883 }
1884 cfm_unref(ofport->cfm);
1885 ofport->cfm = NULL;
1886 out:
1887 ofproto_dpif_monitor_port_update(ofport, ofport->bfd, ofport->cfm,
1888 ofport->up.pp.hw_addr);
1889 return error;
1890 }
1891
1892 static bool
1893 get_cfm_status(const struct ofport *ofport_,
1894 struct ofproto_cfm_status *status)
1895 {
1896 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
1897
1898 if (ofport->cfm) {
1899 status->faults = cfm_get_fault(ofport->cfm);
1900 status->flap_count = cfm_get_flap_count(ofport->cfm);
1901 status->remote_opstate = cfm_get_opup(ofport->cfm);
1902 status->health = cfm_get_health(ofport->cfm);
1903 cfm_get_remote_mpids(ofport->cfm, &status->rmps, &status->n_rmps);
1904 return true;
1905 } else {
1906 return false;
1907 }
1908 }
1909
1910 static int
1911 set_bfd(struct ofport *ofport_, const struct smap *cfg)
1912 {
1913 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport_->ofproto);
1914 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
1915 struct bfd *old;
1916
1917 old = ofport->bfd;
1918 ofport->bfd = bfd_configure(old, netdev_get_name(ofport->up.netdev),
1919 cfg, ofport->up.netdev);
1920 if (ofport->bfd != old) {
1921 ofproto->backer->need_revalidate = REV_RECONFIGURE;
1922 }
1923 ofproto_dpif_monitor_port_update(ofport, ofport->bfd, ofport->cfm,
1924 ofport->up.pp.hw_addr);
1925 return 0;
1926 }
1927
1928 static int
1929 get_bfd_status(struct ofport *ofport_, struct smap *smap)
1930 {
1931 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
1932
1933 if (ofport->bfd) {
1934 bfd_get_status(ofport->bfd, smap);
1935 return 0;
1936 } else {
1937 return ENOENT;
1938 }
1939 }
1940 \f
1941 /* Spanning Tree. */
1942
1943 static void
1944 send_bpdu_cb(struct ofpbuf *pkt, int port_num, void *ofproto_)
1945 {
1946 struct ofproto_dpif *ofproto = ofproto_;
1947 struct stp_port *sp = stp_get_port(ofproto->stp, port_num);
1948 struct ofport_dpif *ofport;
1949
1950 ofport = stp_port_get_aux(sp);
1951 if (!ofport) {
1952 VLOG_WARN_RL(&rl, "%s: cannot send BPDU on unknown port %d",
1953 ofproto->up.name, port_num);
1954 } else {
1955 struct eth_header *eth = pkt->l2;
1956
1957 netdev_get_etheraddr(ofport->up.netdev, eth->eth_src);
1958 if (eth_addr_is_zero(eth->eth_src)) {
1959 VLOG_WARN_RL(&rl, "%s: cannot send BPDU on port %d "
1960 "with unknown MAC", ofproto->up.name, port_num);
1961 } else {
1962 ofproto_dpif_send_packet(ofport, pkt);
1963 }
1964 }
1965 ofpbuf_delete(pkt);
1966 }
1967
1968 /* Configures STP on 'ofproto_' using the settings defined in 's'. */
1969 static int
1970 set_stp(struct ofproto *ofproto_, const struct ofproto_stp_settings *s)
1971 {
1972 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1973
1974 /* Only revalidate flows if the configuration changed. */
1975 if (!s != !ofproto->stp) {
1976 ofproto->backer->need_revalidate = REV_RECONFIGURE;
1977 }
1978
1979 if (s) {
1980 if (!ofproto->stp) {
1981 ofproto->stp = stp_create(ofproto_->name, s->system_id,
1982 send_bpdu_cb, ofproto);
1983 ofproto->stp_last_tick = time_msec();
1984 }
1985
1986 stp_set_bridge_id(ofproto->stp, s->system_id);
1987 stp_set_bridge_priority(ofproto->stp, s->priority);
1988 stp_set_hello_time(ofproto->stp, s->hello_time);
1989 stp_set_max_age(ofproto->stp, s->max_age);
1990 stp_set_forward_delay(ofproto->stp, s->fwd_delay);
1991 } else {
1992 struct ofport *ofport;
1993
1994 HMAP_FOR_EACH (ofport, hmap_node, &ofproto->up.ports) {
1995 set_stp_port(ofport, NULL);
1996 }
1997
1998 stp_unref(ofproto->stp);
1999 ofproto->stp = NULL;
2000 }
2001
2002 return 0;
2003 }
2004
2005 static int
2006 get_stp_status(struct ofproto *ofproto_, struct ofproto_stp_status *s)
2007 {
2008 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2009
2010 if (ofproto->stp) {
2011 s->enabled = true;
2012 s->bridge_id = stp_get_bridge_id(ofproto->stp);
2013 s->designated_root = stp_get_designated_root(ofproto->stp);
2014 s->root_path_cost = stp_get_root_path_cost(ofproto->stp);
2015 } else {
2016 s->enabled = false;
2017 }
2018
2019 return 0;
2020 }
2021
2022 static void
2023 update_stp_port_state(struct ofport_dpif *ofport)
2024 {
2025 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
2026 enum stp_state state;
2027
2028 /* Figure out new state. */
2029 state = ofport->stp_port ? stp_port_get_state(ofport->stp_port)
2030 : STP_DISABLED;
2031
2032 /* Update state. */
2033 if (ofport->stp_state != state) {
2034 enum ofputil_port_state of_state;
2035 bool fwd_change;
2036
2037 VLOG_DBG_RL(&rl, "port %s: STP state changed from %s to %s",
2038 netdev_get_name(ofport->up.netdev),
2039 stp_state_name(ofport->stp_state),
2040 stp_state_name(state));
2041 if (stp_learn_in_state(ofport->stp_state)
2042 != stp_learn_in_state(state)) {
2043 /* xxx Learning action flows should also be flushed. */
2044 ovs_rwlock_wrlock(&ofproto->ml->rwlock);
2045 mac_learning_flush(ofproto->ml);
2046 ovs_rwlock_unlock(&ofproto->ml->rwlock);
2047 }
2048 fwd_change = stp_forward_in_state(ofport->stp_state)
2049 != stp_forward_in_state(state);
2050
2051 ofproto->backer->need_revalidate = REV_STP;
2052 ofport->stp_state = state;
2053 ofport->stp_state_entered = time_msec();
2054
2055 if (fwd_change && ofport->bundle) {
2056 bundle_update(ofport->bundle);
2057 }
2058
2059 /* Update the STP state bits in the OpenFlow port description. */
2060 of_state = ofport->up.pp.state & ~OFPUTIL_PS_STP_MASK;
2061 of_state |= (state == STP_LISTENING ? OFPUTIL_PS_STP_LISTEN
2062 : state == STP_LEARNING ? OFPUTIL_PS_STP_LEARN
2063 : state == STP_FORWARDING ? OFPUTIL_PS_STP_FORWARD
2064 : state == STP_BLOCKING ? OFPUTIL_PS_STP_BLOCK
2065 : 0);
2066 ofproto_port_set_state(&ofport->up, of_state);
2067 }
2068 }
2069
2070 /* Configures STP on 'ofport_' using the settings defined in 's'. The
2071 * caller is responsible for assigning STP port numbers and ensuring
2072 * there are no duplicates. */
2073 static int
2074 set_stp_port(struct ofport *ofport_,
2075 const struct ofproto_port_stp_settings *s)
2076 {
2077 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
2078 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
2079 struct stp_port *sp = ofport->stp_port;
2080
2081 if (!s || !s->enable) {
2082 if (sp) {
2083 ofport->stp_port = NULL;
2084 stp_port_disable(sp);
2085 update_stp_port_state(ofport);
2086 }
2087 return 0;
2088 } else if (sp && stp_port_no(sp) != s->port_num
2089 && ofport == stp_port_get_aux(sp)) {
2090 /* The port-id changed, so disable the old one if it's not
2091 * already in use by another port. */
2092 stp_port_disable(sp);
2093 }
2094
2095 sp = ofport->stp_port = stp_get_port(ofproto->stp, s->port_num);
2096 stp_port_enable(sp);
2097
2098 stp_port_set_aux(sp, ofport);
2099 stp_port_set_priority(sp, s->priority);
2100 stp_port_set_path_cost(sp, s->path_cost);
2101
2102 update_stp_port_state(ofport);
2103
2104 return 0;
2105 }
2106
2107 static int
2108 get_stp_port_status(struct ofport *ofport_,
2109 struct ofproto_port_stp_status *s)
2110 {
2111 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
2112 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
2113 struct stp_port *sp = ofport->stp_port;
2114
2115 if (!ofproto->stp || !sp) {
2116 s->enabled = false;
2117 return 0;
2118 }
2119
2120 s->enabled = true;
2121 s->port_id = stp_port_get_id(sp);
2122 s->state = stp_port_get_state(sp);
2123 s->sec_in_state = (time_msec() - ofport->stp_state_entered) / 1000;
2124 s->role = stp_port_get_role(sp);
2125
2126 return 0;
2127 }
2128
2129 static int
2130 get_stp_port_stats(struct ofport *ofport_,
2131 struct ofproto_port_stp_stats *s)
2132 {
2133 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
2134 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
2135 struct stp_port *sp = ofport->stp_port;
2136
2137 if (!ofproto->stp || !sp) {
2138 s->enabled = false;
2139 return 0;
2140 }
2141
2142 s->enabled = true;
2143 stp_port_get_counts(sp, &s->tx_count, &s->rx_count, &s->error_count);
2144
2145 return 0;
2146 }
2147
2148 static void
2149 stp_run(struct ofproto_dpif *ofproto)
2150 {
2151 if (ofproto->stp) {
2152 long long int now = time_msec();
2153 long long int elapsed = now - ofproto->stp_last_tick;
2154 struct stp_port *sp;
2155
2156 if (elapsed > 0) {
2157 stp_tick(ofproto->stp, MIN(INT_MAX, elapsed));
2158 ofproto->stp_last_tick = now;
2159 }
2160 while (stp_get_changed_port(ofproto->stp, &sp)) {
2161 struct ofport_dpif *ofport = stp_port_get_aux(sp);
2162
2163 if (ofport) {
2164 update_stp_port_state(ofport);
2165 }
2166 }
2167
2168 if (stp_check_and_reset_fdb_flush(ofproto->stp)) {
2169 ovs_rwlock_wrlock(&ofproto->ml->rwlock);
2170 mac_learning_flush(ofproto->ml);
2171 ovs_rwlock_unlock(&ofproto->ml->rwlock);
2172 }
2173 }
2174 }
2175
2176 static void
2177 stp_wait(struct ofproto_dpif *ofproto)
2178 {
2179 if (ofproto->stp) {
2180 poll_timer_wait(1000);
2181 }
2182 }
2183 \f
2184 static int
2185 set_queues(struct ofport *ofport_, const struct ofproto_port_queue *qdscp,
2186 size_t n_qdscp)
2187 {
2188 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
2189 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
2190
2191 if (ofport->n_qdscp != n_qdscp
2192 || (n_qdscp && memcmp(ofport->qdscp, qdscp,
2193 n_qdscp * sizeof *qdscp))) {
2194 ofproto->backer->need_revalidate = REV_RECONFIGURE;
2195 free(ofport->qdscp);
2196 ofport->qdscp = n_qdscp
2197 ? xmemdup(qdscp, n_qdscp * sizeof *qdscp)
2198 : NULL;
2199 ofport->n_qdscp = n_qdscp;
2200 }
2201
2202 return 0;
2203 }
2204 \f
2205 /* Bundles. */
2206
2207 /* Expires all MAC learning entries associated with 'bundle' and forces its
2208 * ofproto to revalidate every flow.
2209 *
2210 * Normally MAC learning entries are removed only from the ofproto associated
2211 * with 'bundle', but if 'all_ofprotos' is true, then the MAC learning entries
2212 * are removed from every ofproto. When patch ports and SLB bonds are in use
2213 * and a VM migration happens and the gratuitous ARPs are somehow lost, this
2214 * avoids a MAC_ENTRY_IDLE_TIME delay before the migrated VM can communicate
2215 * with the host from which it migrated. */
2216 static void
2217 bundle_flush_macs(struct ofbundle *bundle, bool all_ofprotos)
2218 {
2219 struct ofproto_dpif *ofproto = bundle->ofproto;
2220 struct mac_learning *ml = ofproto->ml;
2221 struct mac_entry *mac, *next_mac;
2222
2223 ofproto->backer->need_revalidate = REV_RECONFIGURE;
2224 ovs_rwlock_wrlock(&ml->rwlock);
2225 LIST_FOR_EACH_SAFE (mac, next_mac, lru_node, &ml->lrus) {
2226 if (mac->port.p == bundle) {
2227 if (all_ofprotos) {
2228 struct ofproto_dpif *o;
2229
2230 HMAP_FOR_EACH (o, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
2231 if (o != ofproto) {
2232 struct mac_entry *e;
2233
2234 ovs_rwlock_wrlock(&o->ml->rwlock);
2235 e = mac_learning_lookup(o->ml, mac->mac, mac->vlan);
2236 if (e) {
2237 mac_learning_expire(o->ml, e);
2238 }
2239 ovs_rwlock_unlock(&o->ml->rwlock);
2240 }
2241 }
2242 }
2243
2244 mac_learning_expire(ml, mac);
2245 }
2246 }
2247 ovs_rwlock_unlock(&ml->rwlock);
2248 }
2249
2250 static struct ofbundle *
2251 bundle_lookup(const struct ofproto_dpif *ofproto, void *aux)
2252 {
2253 struct ofbundle *bundle;
2254
2255 HMAP_FOR_EACH_IN_BUCKET (bundle, hmap_node, hash_pointer(aux, 0),
2256 &ofproto->bundles) {
2257 if (bundle->aux == aux) {
2258 return bundle;
2259 }
2260 }
2261 return NULL;
2262 }
2263
2264 static void
2265 bundle_update(struct ofbundle *bundle)
2266 {
2267 struct ofport_dpif *port;
2268
2269 bundle->floodable = true;
2270 LIST_FOR_EACH (port, bundle_node, &bundle->ports) {
2271 if (port->up.pp.config & OFPUTIL_PC_NO_FLOOD
2272 || port->is_layer3
2273 || !stp_forward_in_state(port->stp_state)) {
2274 bundle->floodable = false;
2275 break;
2276 }
2277 }
2278 }
2279
2280 static void
2281 bundle_del_port(struct ofport_dpif *port)
2282 {
2283 struct ofbundle *bundle = port->bundle;
2284
2285 bundle->ofproto->backer->need_revalidate = REV_RECONFIGURE;
2286
2287 list_remove(&port->bundle_node);
2288 port->bundle = NULL;
2289
2290 if (bundle->lacp) {
2291 lacp_slave_unregister(bundle->lacp, port);
2292 }
2293 if (bundle->bond) {
2294 bond_slave_unregister(bundle->bond, port);
2295 }
2296
2297 bundle_update(bundle);
2298 }
2299
2300 static bool
2301 bundle_add_port(struct ofbundle *bundle, ofp_port_t ofp_port,
2302 struct lacp_slave_settings *lacp)
2303 {
2304 struct ofport_dpif *port;
2305
2306 port = get_ofp_port(bundle->ofproto, ofp_port);
2307 if (!port) {
2308 return false;
2309 }
2310
2311 if (port->bundle != bundle) {
2312 bundle->ofproto->backer->need_revalidate = REV_RECONFIGURE;
2313 if (port->bundle) {
2314 bundle_remove(&port->up);
2315 }
2316
2317 port->bundle = bundle;
2318 list_push_back(&bundle->ports, &port->bundle_node);
2319 if (port->up.pp.config & OFPUTIL_PC_NO_FLOOD
2320 || port->is_layer3
2321 || !stp_forward_in_state(port->stp_state)) {
2322 bundle->floodable = false;
2323 }
2324 }
2325 if (lacp) {
2326 bundle->ofproto->backer->need_revalidate = REV_RECONFIGURE;
2327 lacp_slave_register(bundle->lacp, port, lacp);
2328 }
2329
2330 return true;
2331 }
2332
2333 static void
2334 bundle_destroy(struct ofbundle *bundle)
2335 {
2336 struct ofproto_dpif *ofproto;
2337 struct ofport_dpif *port, *next_port;
2338
2339 if (!bundle) {
2340 return;
2341 }
2342
2343 ofproto = bundle->ofproto;
2344 mbridge_unregister_bundle(ofproto->mbridge, bundle->aux);
2345
2346 ovs_rwlock_wrlock(&xlate_rwlock);
2347 xlate_bundle_remove(bundle);
2348 ovs_rwlock_unlock(&xlate_rwlock);
2349
2350 LIST_FOR_EACH_SAFE (port, next_port, bundle_node, &bundle->ports) {
2351 bundle_del_port(port);
2352 }
2353
2354 bundle_flush_macs(bundle, true);
2355 hmap_remove(&ofproto->bundles, &bundle->hmap_node);
2356 free(bundle->name);
2357 free(bundle->trunks);
2358 lacp_unref(bundle->lacp);
2359 bond_unref(bundle->bond);
2360 free(bundle);
2361 }
2362
2363 static int
2364 bundle_set(struct ofproto *ofproto_, void *aux,
2365 const struct ofproto_bundle_settings *s)
2366 {
2367 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2368 bool need_flush = false;
2369 struct ofport_dpif *port;
2370 struct ofbundle *bundle;
2371 unsigned long *trunks;
2372 int vlan;
2373 size_t i;
2374 bool ok;
2375
2376 if (!s) {
2377 bundle_destroy(bundle_lookup(ofproto, aux));
2378 return 0;
2379 }
2380
2381 ovs_assert(s->n_slaves == 1 || s->bond != NULL);
2382 ovs_assert((s->lacp != NULL) == (s->lacp_slaves != NULL));
2383
2384 bundle = bundle_lookup(ofproto, aux);
2385 if (!bundle) {
2386 bundle = xmalloc(sizeof *bundle);
2387
2388 bundle->ofproto = ofproto;
2389 hmap_insert(&ofproto->bundles, &bundle->hmap_node,
2390 hash_pointer(aux, 0));
2391 bundle->aux = aux;
2392 bundle->name = NULL;
2393
2394 list_init(&bundle->ports);
2395 bundle->vlan_mode = PORT_VLAN_TRUNK;
2396 bundle->vlan = -1;
2397 bundle->trunks = NULL;
2398 bundle->use_priority_tags = s->use_priority_tags;
2399 bundle->lacp = NULL;
2400 bundle->bond = NULL;
2401
2402 bundle->floodable = true;
2403 mbridge_register_bundle(ofproto->mbridge, bundle);
2404 }
2405
2406 if (!bundle->name || strcmp(s->name, bundle->name)) {
2407 free(bundle->name);
2408 bundle->name = xstrdup(s->name);
2409 }
2410
2411 /* LACP. */
2412 if (s->lacp) {
2413 ofproto->lacp_enabled = true;
2414 if (!bundle->lacp) {
2415 ofproto->backer->need_revalidate = REV_RECONFIGURE;
2416 bundle->lacp = lacp_create();
2417 }
2418 lacp_configure(bundle->lacp, s->lacp);
2419 } else {
2420 lacp_unref(bundle->lacp);
2421 bundle->lacp = NULL;
2422 }
2423
2424 /* Update set of ports. */
2425 ok = true;
2426 for (i = 0; i < s->n_slaves; i++) {
2427 if (!bundle_add_port(bundle, s->slaves[i],
2428 s->lacp ? &s->lacp_slaves[i] : NULL)) {
2429 ok = false;
2430 }
2431 }
2432 if (!ok || list_size(&bundle->ports) != s->n_slaves) {
2433 struct ofport_dpif *next_port;
2434
2435 LIST_FOR_EACH_SAFE (port, next_port, bundle_node, &bundle->ports) {
2436 for (i = 0; i < s->n_slaves; i++) {
2437 if (s->slaves[i] == port->up.ofp_port) {
2438 goto found;
2439 }
2440 }
2441
2442 bundle_del_port(port);
2443 found: ;
2444 }
2445 }
2446 ovs_assert(list_size(&bundle->ports) <= s->n_slaves);
2447
2448 if (list_is_empty(&bundle->ports)) {
2449 bundle_destroy(bundle);
2450 return EINVAL;
2451 }
2452
2453 /* Set VLAN tagging mode */
2454 if (s->vlan_mode != bundle->vlan_mode
2455 || s->use_priority_tags != bundle->use_priority_tags) {
2456 bundle->vlan_mode = s->vlan_mode;
2457 bundle->use_priority_tags = s->use_priority_tags;
2458 need_flush = true;
2459 }
2460
2461 /* Set VLAN tag. */
2462 vlan = (s->vlan_mode == PORT_VLAN_TRUNK ? -1
2463 : s->vlan >= 0 && s->vlan <= 4095 ? s->vlan
2464 : 0);
2465 if (vlan != bundle->vlan) {
2466 bundle->vlan = vlan;
2467 need_flush = true;
2468 }
2469
2470 /* Get trunked VLANs. */
2471 switch (s->vlan_mode) {
2472 case PORT_VLAN_ACCESS:
2473 trunks = NULL;
2474 break;
2475
2476 case PORT_VLAN_TRUNK:
2477 trunks = CONST_CAST(unsigned long *, s->trunks);
2478 break;
2479
2480 case PORT_VLAN_NATIVE_UNTAGGED:
2481 case PORT_VLAN_NATIVE_TAGGED:
2482 if (vlan != 0 && (!s->trunks
2483 || !bitmap_is_set(s->trunks, vlan)
2484 || bitmap_is_set(s->trunks, 0))) {
2485 /* Force trunking the native VLAN and prohibit trunking VLAN 0. */
2486 if (s->trunks) {
2487 trunks = bitmap_clone(s->trunks, 4096);
2488 } else {
2489 trunks = bitmap_allocate1(4096);
2490 }
2491 bitmap_set1(trunks, vlan);
2492 bitmap_set0(trunks, 0);
2493 } else {
2494 trunks = CONST_CAST(unsigned long *, s->trunks);
2495 }
2496 break;
2497
2498 default:
2499 OVS_NOT_REACHED();
2500 }
2501 if (!vlan_bitmap_equal(trunks, bundle->trunks)) {
2502 free(bundle->trunks);
2503 if (trunks == s->trunks) {
2504 bundle->trunks = vlan_bitmap_clone(trunks);
2505 } else {
2506 bundle->trunks = trunks;
2507 trunks = NULL;
2508 }
2509 need_flush = true;
2510 }
2511 if (trunks != s->trunks) {
2512 free(trunks);
2513 }
2514
2515 /* Bonding. */
2516 if (!list_is_short(&bundle->ports)) {
2517 bundle->ofproto->has_bonded_bundles = true;
2518 if (bundle->bond) {
2519 if (bond_reconfigure(bundle->bond, s->bond)) {
2520 ofproto->backer->need_revalidate = REV_RECONFIGURE;
2521 }
2522 } else {
2523 bundle->bond = bond_create(s->bond);
2524 ofproto->backer->need_revalidate = REV_RECONFIGURE;
2525 }
2526
2527 LIST_FOR_EACH (port, bundle_node, &bundle->ports) {
2528 bond_slave_register(bundle->bond, port, port->up.netdev);
2529 }
2530 } else {
2531 bond_unref(bundle->bond);
2532 bundle->bond = NULL;
2533 }
2534
2535 /* If we changed something that would affect MAC learning, un-learn
2536 * everything on this port and force flow revalidation. */
2537 if (need_flush) {
2538 bundle_flush_macs(bundle, false);
2539 }
2540
2541 return 0;
2542 }
2543
2544 static void
2545 bundle_remove(struct ofport *port_)
2546 {
2547 struct ofport_dpif *port = ofport_dpif_cast(port_);
2548 struct ofbundle *bundle = port->bundle;
2549
2550 if (bundle) {
2551 bundle_del_port(port);
2552 if (list_is_empty(&bundle->ports)) {
2553 bundle_destroy(bundle);
2554 } else if (list_is_short(&bundle->ports)) {
2555 bond_unref(bundle->bond);
2556 bundle->bond = NULL;
2557 }
2558 }
2559 }
2560
2561 static void
2562 send_pdu_cb(void *port_, const void *pdu, size_t pdu_size)
2563 {
2564 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 10);
2565 struct ofport_dpif *port = port_;
2566 uint8_t ea[ETH_ADDR_LEN];
2567 int error;
2568
2569 error = netdev_get_etheraddr(port->up.netdev, ea);
2570 if (!error) {
2571 struct ofpbuf packet;
2572 void *packet_pdu;
2573
2574 ofpbuf_init(&packet, 0);
2575 packet_pdu = eth_compose(&packet, eth_addr_lacp, ea, ETH_TYPE_LACP,
2576 pdu_size);
2577 memcpy(packet_pdu, pdu, pdu_size);
2578
2579 ofproto_dpif_send_packet(port, &packet);
2580 ofpbuf_uninit(&packet);
2581 } else {
2582 VLOG_ERR_RL(&rl, "port %s: cannot obtain Ethernet address of iface "
2583 "%s (%s)", port->bundle->name,
2584 netdev_get_name(port->up.netdev), ovs_strerror(error));
2585 }
2586 }
2587
2588 static void
2589 bundle_send_learning_packets(struct ofbundle *bundle)
2590 {
2591 struct ofproto_dpif *ofproto = bundle->ofproto;
2592 struct ofpbuf *learning_packet;
2593 int error, n_packets, n_errors;
2594 struct mac_entry *e;
2595 struct list packets;
2596
2597 list_init(&packets);
2598 ovs_rwlock_rdlock(&ofproto->ml->rwlock);
2599 LIST_FOR_EACH (e, lru_node, &ofproto->ml->lrus) {
2600 if (e->port.p != bundle) {
2601 void *port_void;
2602
2603 learning_packet = bond_compose_learning_packet(bundle->bond,
2604 e->mac, e->vlan,
2605 &port_void);
2606 learning_packet->private_p = port_void;
2607 list_push_back(&packets, &learning_packet->list_node);
2608 }
2609 }
2610 ovs_rwlock_unlock(&ofproto->ml->rwlock);
2611
2612 error = n_packets = n_errors = 0;
2613 LIST_FOR_EACH (learning_packet, list_node, &packets) {
2614 int ret;
2615
2616 ret = ofproto_dpif_send_packet(learning_packet->private_p, learning_packet);
2617 if (ret) {
2618 error = ret;
2619 n_errors++;
2620 }
2621 n_packets++;
2622 }
2623 ofpbuf_list_delete(&packets);
2624
2625 if (n_errors) {
2626 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
2627 VLOG_WARN_RL(&rl, "bond %s: %d errors sending %d gratuitous learning "
2628 "packets, last error was: %s",
2629 bundle->name, n_errors, n_packets, ovs_strerror(error));
2630 } else {
2631 VLOG_DBG("bond %s: sent %d gratuitous learning packets",
2632 bundle->name, n_packets);
2633 }
2634 }
2635
2636 static void
2637 bundle_run(struct ofbundle *bundle)
2638 {
2639 if (bundle->lacp) {
2640 lacp_run(bundle->lacp, send_pdu_cb);
2641 }
2642 if (bundle->bond) {
2643 struct ofport_dpif *port;
2644
2645 LIST_FOR_EACH (port, bundle_node, &bundle->ports) {
2646 bond_slave_set_may_enable(bundle->bond, port, port->may_enable);
2647 }
2648
2649 if (bond_run(bundle->bond, lacp_status(bundle->lacp))) {
2650 bundle->ofproto->backer->need_revalidate = REV_BOND;
2651 }
2652
2653 if (bond_should_send_learning_packets(bundle->bond)) {
2654 bundle_send_learning_packets(bundle);
2655 }
2656 }
2657 }
2658
2659 static void
2660 bundle_wait(struct ofbundle *bundle)
2661 {
2662 if (bundle->lacp) {
2663 lacp_wait(bundle->lacp);
2664 }
2665 if (bundle->bond) {
2666 bond_wait(bundle->bond);
2667 }
2668 }
2669 \f
2670 /* Mirrors. */
2671
2672 static int
2673 mirror_set__(struct ofproto *ofproto_, void *aux,
2674 const struct ofproto_mirror_settings *s)
2675 {
2676 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2677 struct ofbundle **srcs, **dsts;
2678 int error;
2679 size_t i;
2680
2681 if (!s) {
2682 mirror_destroy(ofproto->mbridge, aux);
2683 return 0;
2684 }
2685
2686 srcs = xmalloc(s->n_srcs * sizeof *srcs);
2687 dsts = xmalloc(s->n_dsts * sizeof *dsts);
2688
2689 for (i = 0; i < s->n_srcs; i++) {
2690 srcs[i] = bundle_lookup(ofproto, s->srcs[i]);
2691 }
2692
2693 for (i = 0; i < s->n_dsts; i++) {
2694 dsts[i] = bundle_lookup(ofproto, s->dsts[i]);
2695 }
2696
2697 error = mirror_set(ofproto->mbridge, aux, s->name, srcs, s->n_srcs, dsts,
2698 s->n_dsts, s->src_vlans,
2699 bundle_lookup(ofproto, s->out_bundle), s->out_vlan);
2700 free(srcs);
2701 free(dsts);
2702 return error;
2703 }
2704
2705 static int
2706 mirror_get_stats__(struct ofproto *ofproto, void *aux,
2707 uint64_t *packets, uint64_t *bytes)
2708 {
2709 push_all_stats();
2710 return mirror_get_stats(ofproto_dpif_cast(ofproto)->mbridge, aux, packets,
2711 bytes);
2712 }
2713
2714 static int
2715 set_flood_vlans(struct ofproto *ofproto_, unsigned long *flood_vlans)
2716 {
2717 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2718 ovs_rwlock_wrlock(&ofproto->ml->rwlock);
2719 if (mac_learning_set_flood_vlans(ofproto->ml, flood_vlans)) {
2720 mac_learning_flush(ofproto->ml);
2721 }
2722 ovs_rwlock_unlock(&ofproto->ml->rwlock);
2723 return 0;
2724 }
2725
2726 static bool
2727 is_mirror_output_bundle(const struct ofproto *ofproto_, void *aux)
2728 {
2729 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2730 struct ofbundle *bundle = bundle_lookup(ofproto, aux);
2731 return bundle && mirror_bundle_out(ofproto->mbridge, bundle) != 0;
2732 }
2733
2734 static void
2735 forward_bpdu_changed(struct ofproto *ofproto_)
2736 {
2737 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2738 ofproto->backer->need_revalidate = REV_RECONFIGURE;
2739 }
2740
2741 static void
2742 set_mac_table_config(struct ofproto *ofproto_, unsigned int idle_time,
2743 size_t max_entries)
2744 {
2745 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2746 ovs_rwlock_wrlock(&ofproto->ml->rwlock);
2747 mac_learning_set_idle_time(ofproto->ml, idle_time);
2748 mac_learning_set_max_entries(ofproto->ml, max_entries);
2749 ovs_rwlock_unlock(&ofproto->ml->rwlock);
2750 }
2751 \f
2752 /* Ports. */
2753
2754 static struct ofport_dpif *
2755 get_ofp_port(const struct ofproto_dpif *ofproto, ofp_port_t ofp_port)
2756 {
2757 struct ofport *ofport = ofproto_get_port(&ofproto->up, ofp_port);
2758 return ofport ? ofport_dpif_cast(ofport) : NULL;
2759 }
2760
2761 static void
2762 ofproto_port_from_dpif_port(struct ofproto_dpif *ofproto,
2763 struct ofproto_port *ofproto_port,
2764 struct dpif_port *dpif_port)
2765 {
2766 ofproto_port->name = dpif_port->name;
2767 ofproto_port->type = dpif_port->type;
2768 ofproto_port->ofp_port = odp_port_to_ofp_port(ofproto, dpif_port->port_no);
2769 }
2770
2771 static void
2772 ofport_update_peer(struct ofport_dpif *ofport)
2773 {
2774 const struct ofproto_dpif *ofproto;
2775 struct dpif_backer *backer;
2776 char *peer_name;
2777
2778 if (!netdev_vport_is_patch(ofport->up.netdev)) {
2779 return;
2780 }
2781
2782 backer = ofproto_dpif_cast(ofport->up.ofproto)->backer;
2783 backer->need_revalidate = REV_RECONFIGURE;
2784
2785 if (ofport->peer) {
2786 ofport->peer->peer = NULL;
2787 ofport->peer = NULL;
2788 }
2789
2790 peer_name = netdev_vport_patch_peer(ofport->up.netdev);
2791 if (!peer_name) {
2792 return;
2793 }
2794
2795 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
2796 struct ofport *peer_ofport;
2797 struct ofport_dpif *peer;
2798 char *peer_peer;
2799
2800 if (ofproto->backer != backer) {
2801 continue;
2802 }
2803
2804 peer_ofport = shash_find_data(&ofproto->up.port_by_name, peer_name);
2805 if (!peer_ofport) {
2806 continue;
2807 }
2808
2809 peer = ofport_dpif_cast(peer_ofport);
2810 peer_peer = netdev_vport_patch_peer(peer->up.netdev);
2811 if (peer_peer && !strcmp(netdev_get_name(ofport->up.netdev),
2812 peer_peer)) {
2813 ofport->peer = peer;
2814 ofport->peer->peer = ofport;
2815 }
2816 free(peer_peer);
2817
2818 break;
2819 }
2820 free(peer_name);
2821 }
2822
2823 static void
2824 port_run(struct ofport_dpif *ofport)
2825 {
2826 long long int carrier_seq = netdev_get_carrier_resets(ofport->up.netdev);
2827 bool carrier_changed = carrier_seq != ofport->carrier_seq;
2828 bool enable = netdev_get_carrier(ofport->up.netdev);
2829 bool cfm_enable = false;
2830 bool bfd_enable = false;
2831
2832 ofport->carrier_seq = carrier_seq;
2833
2834 if (ofport->cfm) {
2835 int cfm_opup = cfm_get_opup(ofport->cfm);
2836
2837 cfm_enable = !cfm_get_fault(ofport->cfm);
2838
2839 if (cfm_opup >= 0) {
2840 cfm_enable = cfm_enable && cfm_opup;
2841 }
2842 }
2843
2844 if (ofport->bfd) {
2845 bfd_enable = bfd_forwarding(ofport->bfd);
2846 }
2847
2848 if (ofport->bfd || ofport->cfm) {
2849 enable = enable && (cfm_enable || bfd_enable);
2850 }
2851
2852 if (ofport->bundle) {
2853 enable = enable && lacp_slave_may_enable(ofport->bundle->lacp, ofport);
2854 if (carrier_changed) {
2855 lacp_slave_carrier_changed(ofport->bundle->lacp, ofport);
2856 }
2857 }
2858
2859 if (ofport->may_enable != enable) {
2860 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
2861 ofproto->backer->need_revalidate = REV_PORT_TOGGLED;
2862 }
2863
2864 ofport->may_enable = enable;
2865 }
2866
2867 static int
2868 port_query_by_name(const struct ofproto *ofproto_, const char *devname,
2869 struct ofproto_port *ofproto_port)
2870 {
2871 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2872 struct dpif_port dpif_port;
2873 int error;
2874
2875 if (sset_contains(&ofproto->ghost_ports, devname)) {
2876 const char *type = netdev_get_type_from_name(devname);
2877
2878 /* We may be called before ofproto->up.port_by_name is populated with
2879 * the appropriate ofport. For this reason, we must get the name and
2880 * type from the netdev layer directly. */
2881 if (type) {
2882 const struct ofport *ofport;
2883
2884 ofport = shash_find_data(&ofproto->up.port_by_name, devname);
2885 ofproto_port->ofp_port = ofport ? ofport->ofp_port : OFPP_NONE;
2886 ofproto_port->name = xstrdup(devname);
2887 ofproto_port->type = xstrdup(type);
2888 return 0;
2889 }
2890 return ENODEV;
2891 }
2892
2893 if (!sset_contains(&ofproto->ports, devname)) {
2894 return ENODEV;
2895 }
2896 error = dpif_port_query_by_name(ofproto->backer->dpif,
2897 devname, &dpif_port);
2898 if (!error) {
2899 ofproto_port_from_dpif_port(ofproto, ofproto_port, &dpif_port);
2900 }
2901 return error;
2902 }
2903
2904 static int
2905 port_add(struct ofproto *ofproto_, struct netdev *netdev)
2906 {
2907 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2908 const char *devname = netdev_get_name(netdev);
2909 char namebuf[NETDEV_VPORT_NAME_BUFSIZE];
2910 const char *dp_port_name;
2911
2912 if (netdev_vport_is_patch(netdev)) {
2913 sset_add(&ofproto->ghost_ports, netdev_get_name(netdev));
2914 return 0;
2915 }
2916
2917 dp_port_name = netdev_vport_get_dpif_port(netdev, namebuf, sizeof namebuf);
2918 if (!dpif_port_exists(ofproto->backer->dpif, dp_port_name)) {
2919 odp_port_t port_no = ODPP_NONE;
2920 int error;
2921
2922 error = dpif_port_add(ofproto->backer->dpif, netdev, &port_no);
2923 if (error) {
2924 return error;
2925 }
2926 if (netdev_get_tunnel_config(netdev)) {
2927 simap_put(&ofproto->backer->tnl_backers,
2928 dp_port_name, odp_to_u32(port_no));
2929 }
2930 }
2931
2932 if (netdev_get_tunnel_config(netdev)) {
2933 sset_add(&ofproto->ghost_ports, devname);
2934 } else {
2935 sset_add(&ofproto->ports, devname);
2936 }
2937 return 0;
2938 }
2939
2940 static int
2941 port_del(struct ofproto *ofproto_, ofp_port_t ofp_port)
2942 {
2943 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2944 struct ofport_dpif *ofport = get_ofp_port(ofproto, ofp_port);
2945 int error = 0;
2946
2947 if (!ofport) {
2948 return 0;
2949 }
2950
2951 sset_find_and_delete(&ofproto->ghost_ports,
2952 netdev_get_name(ofport->up.netdev));
2953 ofproto->backer->need_revalidate = REV_RECONFIGURE;
2954 if (!ofport->is_tunnel && !netdev_vport_is_patch(ofport->up.netdev)) {
2955 error = dpif_port_del(ofproto->backer->dpif, ofport->odp_port);
2956 if (!error) {
2957 /* The caller is going to close ofport->up.netdev. If this is a
2958 * bonded port, then the bond is using that netdev, so remove it
2959 * from the bond. The client will need to reconfigure everything
2960 * after deleting ports, so then the slave will get re-added. */
2961 bundle_remove(&ofport->up);
2962 }
2963 }
2964 return error;
2965 }
2966
2967 static int
2968 port_get_stats(const struct ofport *ofport_, struct netdev_stats *stats)
2969 {
2970 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
2971 int error;
2972
2973 push_all_stats();
2974
2975 error = netdev_get_stats(ofport->up.netdev, stats);
2976
2977 if (!error && ofport_->ofp_port == OFPP_LOCAL) {
2978 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
2979
2980 ovs_mutex_lock(&ofproto->stats_mutex);
2981 /* ofproto->stats.tx_packets represents packets that we created
2982 * internally and sent to some port (e.g. packets sent with
2983 * ofproto_dpif_send_packet()). Account for them as if they had
2984 * come from OFPP_LOCAL and got forwarded. */
2985
2986 if (stats->rx_packets != UINT64_MAX) {
2987 stats->rx_packets += ofproto->stats.tx_packets;
2988 }
2989
2990 if (stats->rx_bytes != UINT64_MAX) {
2991 stats->rx_bytes += ofproto->stats.tx_bytes;
2992 }
2993
2994 /* ofproto->stats.rx_packets represents packets that were received on
2995 * some port and we processed internally and dropped (e.g. STP).
2996 * Account for them as if they had been forwarded to OFPP_LOCAL. */
2997
2998 if (stats->tx_packets != UINT64_MAX) {
2999 stats->tx_packets += ofproto->stats.rx_packets;
3000 }
3001
3002 if (stats->tx_bytes != UINT64_MAX) {
3003 stats->tx_bytes += ofproto->stats.rx_bytes;
3004 }
3005 ovs_mutex_unlock(&ofproto->stats_mutex);
3006 }
3007
3008 return error;
3009 }
3010
3011 struct port_dump_state {
3012 uint32_t bucket;
3013 uint32_t offset;
3014 bool ghost;
3015
3016 struct ofproto_port port;
3017 bool has_port;
3018 };
3019
3020 static int
3021 port_dump_start(const struct ofproto *ofproto_ OVS_UNUSED, void **statep)
3022 {
3023 *statep = xzalloc(sizeof(struct port_dump_state));
3024 return 0;
3025 }
3026
3027 static int
3028 port_dump_next(const struct ofproto *ofproto_, void *state_,
3029 struct ofproto_port *port)
3030 {
3031 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
3032 struct port_dump_state *state = state_;
3033 const struct sset *sset;
3034 struct sset_node *node;
3035
3036 if (state->has_port) {
3037 ofproto_port_destroy(&state->port);
3038 state->has_port = false;
3039 }
3040 sset = state->ghost ? &ofproto->ghost_ports : &ofproto->ports;
3041 while ((node = sset_at_position(sset, &state->bucket, &state->offset))) {
3042 int error;
3043
3044 error = port_query_by_name(ofproto_, node->name, &state->port);
3045 if (!error) {
3046 *port = state->port;
3047 state->has_port = true;
3048 return 0;
3049 } else if (error != ENODEV) {
3050 return error;
3051 }
3052 }
3053
3054 if (!state->ghost) {
3055 state->ghost = true;
3056 state->bucket = 0;
3057 state->offset = 0;
3058 return port_dump_next(ofproto_, state_, port);
3059 }
3060
3061 return EOF;
3062 }
3063
3064 static int
3065 port_dump_done(const struct ofproto *ofproto_ OVS_UNUSED, void *state_)
3066 {
3067 struct port_dump_state *state = state_;
3068
3069 if (state->has_port) {
3070 ofproto_port_destroy(&state->port);
3071 }
3072 free(state);
3073 return 0;
3074 }
3075
3076 static int
3077 port_poll(const struct ofproto *ofproto_, char **devnamep)
3078 {
3079 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
3080
3081 if (ofproto->port_poll_errno) {
3082 int error = ofproto->port_poll_errno;
3083 ofproto->port_poll_errno = 0;
3084 return error;
3085 }
3086
3087 if (sset_is_empty(&ofproto->port_poll_set)) {
3088 return EAGAIN;
3089 }
3090
3091 *devnamep = sset_pop(&ofproto->port_poll_set);
3092 return 0;
3093 }
3094
3095 static void
3096 port_poll_wait(const struct ofproto *ofproto_)
3097 {
3098 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
3099 dpif_port_poll_wait(ofproto->backer->dpif);
3100 }
3101
3102 static int
3103 port_is_lacp_current(const struct ofport *ofport_)
3104 {
3105 const struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
3106 return (ofport->bundle && ofport->bundle->lacp
3107 ? lacp_slave_is_current(ofport->bundle->lacp, ofport)
3108 : -1);
3109 }
3110 \f
3111 /* Upcall handling. */
3112
3113 struct flow_miss_op {
3114 struct dpif_op dpif_op;
3115
3116 uint64_t slow_stub[128 / 8]; /* Buffer for compose_slow_path() */
3117 struct xlate_out xout;
3118 bool xout_garbage; /* 'xout' needs to be uninitialized? */
3119
3120 struct ofpbuf mask; /* Flow mask for "put" ops. */
3121 struct odputil_keybuf maskbuf;
3122
3123 /* If this is a "put" op, then a pointer to the subfacet that should
3124 * be marked as uninstalled if the operation fails. */
3125 struct subfacet *subfacet;
3126 };
3127
3128 /* Figures out whether a flow that missed in 'ofproto', whose details are in
3129 * 'miss' masked by 'wc', is likely to be worth tracking in detail in userspace
3130 * and (usually) installing a datapath flow. The answer is usually "yes" (a
3131 * return value of true). However, for short flows the cost of bookkeeping is
3132 * much higher than the benefits, so when the datapath holds a large number of
3133 * flows we impose some heuristics to decide which flows are likely to be worth
3134 * tracking. */
3135 static bool
3136 flow_miss_should_make_facet(struct flow_miss *miss)
3137 {
3138 struct dpif_backer *backer = miss->ofproto->backer;
3139 uint32_t hash;
3140
3141 switch (flow_miss_model) {
3142 case OFPROTO_HANDLE_MISS_AUTO:
3143 break;
3144 case OFPROTO_HANDLE_MISS_WITH_FACETS:
3145 return true;
3146 case OFPROTO_HANDLE_MISS_WITHOUT_FACETS:
3147 return false;
3148 }
3149
3150 if (!backer->governor) {
3151 size_t n_subfacets;
3152
3153 n_subfacets = hmap_count(&backer->subfacets);
3154 if (n_subfacets * 2 <= flow_eviction_threshold) {
3155 return true;
3156 }
3157
3158 backer->governor = governor_create();
3159 }
3160
3161 hash = flow_hash_in_wildcards(&miss->flow, &miss->xout.wc, 0);
3162 return governor_should_install_flow(backer->governor, hash,
3163 miss->stats.n_packets);
3164 }
3165
3166 /* Handles 'miss', which matches 'facet'. May add any required datapath
3167 * operations to 'ops', incrementing '*n_ops' for each new op.
3168 *
3169 * All of the packets in 'miss' are considered to have arrived at time
3170 * 'miss->stats.used'. This is really important only for new facets: if we
3171 * just called time_msec() here, then the new subfacet or its packets could
3172 * look (occasionally) as though it was used some time after the facet was
3173 * used. That can make a one-packet flow look like it has a nonzero duration,
3174 * which looks odd in e.g. NetFlow statistics. */
3175 static void
3176 handle_flow_miss_with_facet(struct flow_miss *miss, struct facet *facet,
3177 struct flow_miss_op *ops, size_t *n_ops)
3178 {
3179 enum subfacet_path want_path;
3180 struct subfacet *subfacet;
3181 uint32_t key_hash;
3182
3183 /* Update facet stats. */
3184 facet->packet_count += miss->stats.n_packets;
3185 facet->prev_packet_count += miss->stats.n_packets;
3186 facet->byte_count += miss->stats.n_bytes;
3187 facet->prev_byte_count += miss->stats.n_bytes;
3188
3189 /* Look for an existing subfacet. If we find one, update its used time. */
3190 key_hash = odp_flow_key_hash(miss->key, miss->key_len);
3191 if (!list_is_empty(&facet->subfacets)) {
3192 subfacet = subfacet_find(miss->ofproto->backer,
3193 miss->key, miss->key_len, key_hash);
3194 if (subfacet) {
3195 if (subfacet->facet == facet) {
3196 subfacet->used = MAX(subfacet->used, miss->stats.used);
3197 } else {
3198 /* This shouldn't happen. */
3199 VLOG_ERR_RL(&rl, "subfacet with wrong facet");
3200 subfacet_destroy(subfacet);
3201 subfacet = NULL;
3202 }
3203 }
3204 } else {
3205 subfacet = NULL;
3206 }
3207
3208 /* Don't install the flow if it's the result of the "userspace"
3209 * action for an already installed facet. This can occur when a
3210 * datapath flow with wildcards has a "userspace" action and flows
3211 * sent to userspace result in a different subfacet, which will then
3212 * be rejected as overlapping by the datapath. */
3213 if (miss->upcall_type == DPIF_UC_ACTION
3214 && !list_is_empty(&facet->subfacets)) {
3215 return;
3216 }
3217
3218 /* Create a subfacet, if we don't already have one. */
3219 if (!subfacet) {
3220 subfacet = subfacet_create(facet, miss, key_hash);
3221 }
3222
3223 /* Install the subfacet, if it's not already installed. */
3224 want_path = facet->xout.slow ? SF_SLOW_PATH : SF_FAST_PATH;
3225 if (subfacet->path != want_path) {
3226 struct flow_miss_op *op = &ops[(*n_ops)++];
3227 struct dpif_flow_put *put = &op->dpif_op.u.flow_put;
3228
3229 subfacet->path = want_path;
3230
3231 ofpbuf_use_stack(&op->mask, &op->maskbuf, sizeof op->maskbuf);
3232 if (enable_megaflows) {
3233 odp_flow_key_from_mask(&op->mask, &facet->xout.wc.masks,
3234 &miss->flow, UINT32_MAX);
3235 }
3236
3237 op->xout_garbage = false;
3238 op->dpif_op.type = DPIF_OP_FLOW_PUT;
3239 op->subfacet = subfacet;
3240 put->flags = DPIF_FP_CREATE;
3241 put->key = miss->key;
3242 put->key_len = miss->key_len;
3243 put->mask = op->mask.data;
3244 put->mask_len = op->mask.size;
3245
3246 if (want_path == SF_FAST_PATH) {
3247 put->actions = facet->xout.odp_actions.data;
3248 put->actions_len = facet->xout.odp_actions.size;
3249 } else {
3250 compose_slow_path(facet->ofproto, &miss->flow, facet->xout.slow,
3251 op->slow_stub, sizeof op->slow_stub,
3252 &put->actions, &put->actions_len);
3253 }
3254 put->stats = NULL;
3255 }
3256 }
3257
3258 /* Handles flow miss 'miss'. May add any required datapath operations
3259 * to 'ops', incrementing '*n_ops' for each new op. */
3260 static void
3261 handle_flow_miss(struct flow_miss *miss, struct flow_miss_op *ops,
3262 size_t *n_ops)
3263 {
3264 struct facet *facet;
3265
3266 miss->ofproto->n_missed += miss->stats.n_packets;
3267
3268 facet = facet_lookup_valid(miss->ofproto, &miss->flow);
3269 if (!facet) {
3270 /* There does not exist a bijection between 'struct flow' and datapath
3271 * flow keys with fitness ODP_FIT_TO_LITTLE. This breaks a fundamental
3272 * assumption used throughout the facet and subfacet handling code.
3273 * Since we have to handle these misses in userspace anyway, we simply
3274 * skip facet creation, avoiding the problem altogether. */
3275 if (miss->key_fitness == ODP_FIT_TOO_LITTLE
3276 || !flow_miss_should_make_facet(miss)) {
3277 return;
3278 }
3279
3280 facet = facet_create(miss);
3281 }
3282 handle_flow_miss_with_facet(miss, facet, ops, n_ops);
3283 }
3284
3285 static struct drop_key *
3286 drop_key_lookup(const struct dpif_backer *backer, const struct nlattr *key,
3287 size_t key_len)
3288 {
3289 struct drop_key *drop_key;
3290
3291 HMAP_FOR_EACH_WITH_HASH (drop_key, hmap_node, hash_bytes(key, key_len, 0),
3292 &backer->drop_keys) {
3293 if (drop_key->key_len == key_len
3294 && !memcmp(drop_key->key, key, key_len)) {
3295 return drop_key;
3296 }
3297 }
3298 return NULL;
3299 }
3300
3301 static void
3302 drop_key_clear(struct dpif_backer *backer)
3303 {
3304 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 15);
3305 struct drop_key *drop_key, *next;
3306
3307 HMAP_FOR_EACH_SAFE (drop_key, next, hmap_node, &backer->drop_keys) {
3308 int error;
3309
3310 error = dpif_flow_del(backer->dpif, drop_key->key, drop_key->key_len,
3311 NULL);
3312 if (error && !VLOG_DROP_WARN(&rl)) {
3313 struct ds ds = DS_EMPTY_INITIALIZER;
3314 odp_flow_key_format(drop_key->key, drop_key->key_len, &ds);
3315 VLOG_WARN("Failed to delete drop key (%s) (%s)",
3316 ovs_strerror(error), ds_cstr(&ds));
3317 ds_destroy(&ds);
3318 }
3319
3320 hmap_remove(&backer->drop_keys, &drop_key->hmap_node);
3321 drop_key_destroy(drop_key);
3322 }
3323
3324 udpif_drop_key_clear(backer->udpif);
3325 }
3326
3327 static void
3328 handle_flow_misses(struct dpif_backer *backer, struct flow_miss_batch *fmb)
3329 {
3330 struct flow_miss_op flow_miss_ops[FLOW_MISS_MAX_BATCH];
3331 struct dpif_op *dpif_ops[FLOW_MISS_MAX_BATCH];
3332 struct flow_miss *miss;
3333 size_t n_ops, i;
3334
3335 /* Process each element in the to-do list, constructing the set of
3336 * operations to batch. */
3337 n_ops = 0;
3338 HMAP_FOR_EACH (miss, hmap_node, &fmb->misses) {
3339 handle_flow_miss(miss, flow_miss_ops, &n_ops);
3340 }
3341 ovs_assert(n_ops <= ARRAY_SIZE(flow_miss_ops));
3342
3343 /* Execute batch. */
3344 for (i = 0; i < n_ops; i++) {
3345 dpif_ops[i] = &flow_miss_ops[i].dpif_op;
3346 }
3347 dpif_operate(backer->dpif, dpif_ops, n_ops);
3348
3349 for (i = 0; i < n_ops; i++) {
3350 if (dpif_ops[i]->error != 0
3351 && flow_miss_ops[i].dpif_op.type == DPIF_OP_FLOW_PUT
3352 && flow_miss_ops[i].subfacet) {
3353 struct subfacet *subfacet = flow_miss_ops[i].subfacet;
3354
3355 COVERAGE_INC(subfacet_install_fail);
3356
3357 /* Zero-out subfacet counters when installation failed, but
3358 * datapath reported hits. This should not happen and
3359 * indicates a bug, since if the datapath flow exists, we
3360 * should not be attempting to create a new subfacet. A
3361 * buggy datapath could trigger this, so just zero out the
3362 * counters and log an error. */
3363 if (subfacet->dp_packet_count || subfacet->dp_byte_count) {
3364 VLOG_ERR_RL(&rl, "failed to install subfacet for which "
3365 "datapath reported hits");
3366 subfacet->dp_packet_count = subfacet->dp_byte_count = 0;
3367 }
3368
3369 subfacet->path = SF_NOT_INSTALLED;
3370 }
3371 }
3372 }
3373
3374 static void
3375 handle_upcalls(struct dpif_backer *backer)
3376 {
3377 struct flow_miss_batch *fmb;
3378 int n_processed;
3379
3380 for (n_processed = 0; n_processed < FLOW_MISS_MAX_BATCH; n_processed++) {
3381 struct drop_key *drop_key = drop_key_next(backer->udpif);
3382 if (!drop_key) {
3383 break;
3384 }
3385
3386 if (!drop_key_lookup(backer, drop_key->key, drop_key->key_len)) {
3387 hmap_insert(&backer->drop_keys, &drop_key->hmap_node,
3388 hash_bytes(drop_key->key, drop_key->key_len, 0));
3389 dpif_flow_put(backer->dpif, DPIF_FP_CREATE | DPIF_FP_MODIFY,
3390 drop_key->key, drop_key->key_len,
3391 NULL, 0, NULL, 0, NULL);
3392 } else {
3393 drop_key_destroy(drop_key);
3394 }
3395 }
3396
3397 fmb = flow_miss_batch_next(backer->udpif);
3398 if (fmb) {
3399 handle_flow_misses(backer, fmb);
3400 flow_miss_batch_destroy(fmb);
3401 }
3402 }
3403 \f
3404 /* Flow expiration. */
3405
3406 static int subfacet_max_idle(const struct dpif_backer *);
3407 static void update_stats(struct dpif_backer *);
3408 static void rule_expire(struct rule_dpif *) OVS_REQUIRES(ofproto_mutex);
3409 static void expire_subfacets(struct dpif_backer *, int dp_max_idle);
3410
3411 /* This function is called periodically by run(). Its job is to collect
3412 * updates for the flows that have been installed into the datapath, most
3413 * importantly when they last were used, and then use that information to
3414 * expire flows that have not been used recently.
3415 *
3416 * Returns the number of milliseconds after which it should be called again. */
3417 static int
3418 expire(struct dpif_backer *backer)
3419 {
3420 struct ofproto_dpif *ofproto;
3421 size_t n_subfacets;
3422 int max_idle;
3423
3424 /* Periodically clear out the drop keys in an effort to keep them
3425 * relatively few. */
3426 drop_key_clear(backer);
3427
3428 /* Update stats for each flow in the backer. */
3429 update_stats(backer);
3430
3431 n_subfacets = hmap_count(&backer->subfacets);
3432 backer->avg_n_subfacet += n_subfacets;
3433 backer->avg_n_subfacet /= 2;
3434
3435 backer->max_n_subfacet = MAX(backer->max_n_subfacet, n_subfacets);
3436
3437 max_idle = subfacet_max_idle(backer);
3438 expire_subfacets(backer, max_idle);
3439
3440 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
3441 struct rule *rule, *next_rule;
3442
3443 if (ofproto->backer != backer) {
3444 continue;
3445 }
3446
3447 /* Expire OpenFlow flows whose idle_timeout or hard_timeout
3448 * has passed. */
3449 ovs_mutex_lock(&ofproto_mutex);
3450 LIST_FOR_EACH_SAFE (rule, next_rule, expirable,
3451 &ofproto->up.expirable) {
3452 rule_expire(rule_dpif_cast(rule));
3453 }
3454 ovs_mutex_unlock(&ofproto_mutex);
3455
3456 /* All outstanding data in existing flows has been accounted, so it's a
3457 * good time to do bond rebalancing. */
3458 if (ofproto->has_bonded_bundles) {
3459 struct ofbundle *bundle;
3460
3461 HMAP_FOR_EACH (bundle, hmap_node, &ofproto->bundles) {
3462 if (bundle->bond) {
3463 bond_rebalance(bundle->bond);
3464 }
3465 }
3466 }
3467 }
3468
3469 return MIN(max_idle, 1000);
3470 }
3471
3472 /* Updates flow table statistics given that the datapath just reported 'stats'
3473 * as 'subfacet''s statistics. */
3474 static void
3475 update_subfacet_stats(struct subfacet *subfacet,
3476 const struct dpif_flow_stats *stats)
3477 {
3478 struct facet *facet = subfacet->facet;
3479 struct dpif_flow_stats diff;
3480
3481 diff.tcp_flags = stats->tcp_flags;
3482 diff.used = stats->used;
3483
3484 if (stats->n_packets >= subfacet->dp_packet_count) {
3485 diff.n_packets = stats->n_packets - subfacet->dp_packet_count;
3486 } else {
3487 VLOG_WARN_RL(&rl, "unexpected packet count from the datapath");
3488 diff.n_packets = 0;
3489 }
3490
3491 if (stats->n_bytes >= subfacet->dp_byte_count) {
3492 diff.n_bytes = stats->n_bytes - subfacet->dp_byte_count;
3493 } else {
3494 VLOG_WARN_RL(&rl, "unexpected byte count from datapath");
3495 diff.n_bytes = 0;
3496 }
3497
3498 facet->ofproto->n_hit += diff.n_packets;
3499 subfacet->dp_packet_count = stats->n_packets;
3500 subfacet->dp_byte_count = stats->n_bytes;
3501 subfacet_update_stats(subfacet, &diff);
3502
3503 if (diff.n_packets) {
3504 facet_learn(facet);
3505 }
3506 }
3507
3508 /* 'key' with length 'key_len' bytes is a flow in 'dpif' that we know nothing
3509 * about, or a flow that shouldn't be installed but was anyway. Delete it. */
3510 static void
3511 delete_unexpected_flow(struct dpif_backer *backer,
3512 const struct nlattr *key, size_t key_len)
3513 {
3514 if (!VLOG_DROP_WARN(&rl)) {
3515 struct ds s;
3516
3517 ds_init(&s);
3518 odp_flow_key_format(key, key_len, &s);
3519 VLOG_WARN("unexpected flow: %s", ds_cstr(&s));
3520 ds_destroy(&s);
3521 }
3522
3523 COVERAGE_INC(facet_unexpected);
3524 dpif_flow_del(backer->dpif, key, key_len, NULL);
3525 }
3526
3527 /* Update 'packet_count', 'byte_count', and 'used' members of installed facets.
3528 *
3529 * This function also pushes statistics updates to rules which each facet
3530 * resubmits into. Generally these statistics will be accurate. However, if a
3531 * facet changes the rule it resubmits into at some time in between
3532 * update_stats() runs, it is possible that statistics accrued to the
3533 * old rule will be incorrectly attributed to the new rule. This could be
3534 * avoided by calling update_stats() whenever rules are created or
3535 * deleted. However, the performance impact of making so many calls to the
3536 * datapath do not justify the benefit of having perfectly accurate statistics.
3537 *
3538 * In addition, this function maintains per ofproto flow hit counts. The patch
3539 * port is not treated specially. e.g. A packet ingress from br0 patched into
3540 * br1 will increase the hit count of br0 by 1, however, does not affect
3541 * the hit or miss counts of br1.
3542 */
3543 static void
3544 update_stats(struct dpif_backer *backer)
3545 {
3546 const struct dpif_flow_stats *stats;
3547 struct dpif_flow_dump dump;
3548 const struct nlattr *key, *mask;
3549 size_t key_len, mask_len;
3550
3551 dpif_flow_dump_start(&dump, backer->dpif);
3552 while (dpif_flow_dump_next(&dump, &key, &key_len,
3553 &mask, &mask_len, NULL, NULL, &stats)) {
3554 struct subfacet *subfacet;
3555 uint32_t key_hash;
3556
3557 key_hash = odp_flow_key_hash(key, key_len);
3558 subfacet = subfacet_find(backer, key, key_len, key_hash);
3559 switch (subfacet ? subfacet->path : SF_NOT_INSTALLED) {
3560 case SF_FAST_PATH:
3561 update_subfacet_stats(subfacet, stats);
3562 break;
3563
3564 case SF_SLOW_PATH:
3565 /* Stats are updated per-packet. */
3566 break;
3567
3568 case SF_NOT_INSTALLED:
3569 default:
3570 delete_unexpected_flow(backer, key, key_len);
3571 break;
3572 }
3573 }
3574 dpif_flow_dump_done(&dump);
3575 }
3576
3577 /* Calculates and returns the number of milliseconds of idle time after which
3578 * subfacets should expire from the datapath. When a subfacet expires, we fold
3579 * its statistics into its facet, and when a facet's last subfacet expires, we
3580 * fold its statistic into its rule. */
3581 static int
3582 subfacet_max_idle(const struct dpif_backer *backer)
3583 {
3584 /*
3585 * Idle time histogram.
3586 *
3587 * Most of the time a switch has a relatively small number of subfacets.
3588 * When this is the case we might as well keep statistics for all of them
3589 * in userspace and to cache them in the kernel datapath for performance as
3590 * well.
3591 *
3592 * As the number of subfacets increases, the memory required to maintain
3593 * statistics about them in userspace and in the kernel becomes
3594 * significant. However, with a large number of subfacets it is likely
3595 * that only a few of them are "heavy hitters" that consume a large amount
3596 * of bandwidth. At this point, only heavy hitters are worth caching in
3597 * the kernel and maintaining in userspaces; other subfacets we can
3598 * discard.
3599 *
3600 * The technique used to compute the idle time is to build a histogram with
3601 * N_BUCKETS buckets whose width is BUCKET_WIDTH msecs each. Each subfacet
3602 * that is installed in the kernel gets dropped in the appropriate bucket.
3603 * After the histogram has been built, we compute the cutoff so that only
3604 * the most-recently-used 1% of subfacets (but at least
3605 * flow_eviction_threshold flows) are kept cached. At least
3606 * the most-recently-used bucket of subfacets is kept, so actually an
3607 * arbitrary number of subfacets can be kept in any given expiration run
3608 * (though the next run will delete most of those unless they receive
3609 * additional data).
3610 *
3611 * This requires a second pass through the subfacets, in addition to the
3612 * pass made by update_stats(), because the former function never looks at
3613 * uninstallable subfacets.
3614 */
3615 enum { BUCKET_WIDTH = 100 };
3616 enum { N_BUCKETS = 5000 / BUCKET_WIDTH };
3617 int buckets[N_BUCKETS] = { 0 };
3618 int total, subtotal, bucket;
3619 struct subfacet *subfacet;
3620 long long int now;
3621 int i;
3622
3623 total = hmap_count(&backer->subfacets);
3624 if (total <= flow_eviction_threshold) {
3625 return N_BUCKETS * BUCKET_WIDTH;
3626 }
3627
3628 /* Build histogram. */
3629 now = time_msec();
3630 HMAP_FOR_EACH (subfacet, hmap_node, &backer->subfacets) {
3631 long long int idle = now - subfacet->used;
3632 int bucket = (idle <= 0 ? 0
3633 : idle >= BUCKET_WIDTH * N_BUCKETS ? N_BUCKETS - 1
3634 : (unsigned int) idle / BUCKET_WIDTH);
3635 buckets[bucket]++;
3636 }
3637
3638 /* Find the first bucket whose flows should be expired. */
3639 subtotal = bucket = 0;
3640 do {
3641 subtotal += buckets[bucket++];
3642 } while (bucket < N_BUCKETS &&
3643 subtotal < MAX(flow_eviction_threshold, total / 100));
3644
3645 if (VLOG_IS_DBG_ENABLED()) {
3646 struct ds s;
3647
3648 ds_init(&s);
3649 ds_put_cstr(&s, "keep");
3650 for (i = 0; i < N_BUCKETS; i++) {
3651 if (i == bucket) {
3652 ds_put_cstr(&s, ", drop");
3653 }
3654 if (buckets[i]) {
3655 ds_put_format(&s, " %d:%d", i * BUCKET_WIDTH, buckets[i]);
3656 }
3657 }
3658 VLOG_INFO("%s (msec:count)", ds_cstr(&s));
3659 ds_destroy(&s);
3660 }
3661
3662 return bucket * BUCKET_WIDTH;
3663 }
3664
3665 static void
3666 expire_subfacets(struct dpif_backer *backer, int dp_max_idle)
3667 {
3668 /* Cutoff time for most flows. */
3669 long long int normal_cutoff = time_msec() - dp_max_idle;
3670
3671 /* We really want to keep flows for special protocols around, so use a more
3672 * conservative cutoff. */
3673 long long int special_cutoff = time_msec() - 10000;
3674
3675 struct subfacet *subfacet, *next_subfacet;
3676 struct subfacet *batch[SUBFACET_DESTROY_MAX_BATCH];
3677 int n_batch;
3678
3679 n_batch = 0;
3680 HMAP_FOR_EACH_SAFE (subfacet, next_subfacet, hmap_node,
3681 &backer->subfacets) {
3682 long long int cutoff;
3683
3684 cutoff = (subfacet->facet->xout.slow & (SLOW_CFM | SLOW_BFD | SLOW_LACP
3685 | SLOW_STP)
3686 ? special_cutoff
3687 : normal_cutoff);
3688 if (subfacet->used < cutoff) {
3689 if (subfacet->path != SF_NOT_INSTALLED) {
3690 batch[n_batch++] = subfacet;
3691 if (n_batch >= SUBFACET_DESTROY_MAX_BATCH) {
3692 subfacet_destroy_batch(backer, batch, n_batch);
3693 n_batch = 0;
3694 }
3695 } else {
3696 subfacet_destroy(subfacet);
3697 }
3698 }
3699 }
3700
3701 if (n_batch > 0) {
3702 subfacet_destroy_batch(backer, batch, n_batch);
3703 }
3704 }
3705
3706 /* If 'rule' is an OpenFlow rule, that has expired according to OpenFlow rules,
3707 * then delete it entirely. */
3708 static void
3709 rule_expire(struct rule_dpif *rule)
3710 OVS_REQUIRES(ofproto_mutex)
3711 {
3712 uint16_t idle_timeout, hard_timeout;
3713 long long int now = time_msec();
3714 int reason;
3715
3716 ovs_assert(!rule->up.pending);
3717
3718 /* Has 'rule' expired? */
3719 ovs_mutex_lock(&rule->up.mutex);
3720 hard_timeout = rule->up.hard_timeout;
3721 idle_timeout = rule->up.idle_timeout;
3722 if (hard_timeout && now > rule->up.modified + hard_timeout * 1000) {
3723 reason = OFPRR_HARD_TIMEOUT;
3724 } else if (idle_timeout && now > rule->up.used + idle_timeout * 1000) {
3725 reason = OFPRR_IDLE_TIMEOUT;
3726 } else {
3727 reason = -1;
3728 }
3729 ovs_mutex_unlock(&rule->up.mutex);
3730
3731 if (reason >= 0) {
3732 COVERAGE_INC(ofproto_dpif_expired);
3733 ofproto_rule_expire(&rule->up, reason);
3734 }
3735 }
3736 \f
3737 /* Facets. */
3738
3739 /* Creates and returns a new facet based on 'miss'.
3740 *
3741 * The caller must already have determined that no facet with an identical
3742 * 'miss->flow' exists in 'miss->ofproto'.
3743 *
3744 * 'rule' and 'xout' must have been created based on 'miss'.
3745 *
3746 * 'facet'' statistics are initialized based on 'stats'.
3747 *
3748 * The facet will initially have no subfacets. The caller should create (at
3749 * least) one subfacet with subfacet_create(). */
3750 static struct facet *
3751 facet_create(const struct flow_miss *miss)
3752 {
3753 struct ofproto_dpif *ofproto = miss->ofproto;
3754 struct facet *facet;
3755 struct match match;
3756
3757 COVERAGE_INC(facet_create);
3758 facet = xzalloc(sizeof *facet);
3759 facet->ofproto = miss->ofproto;
3760 facet->used = miss->stats.used;
3761 facet->flow = miss->flow;
3762 facet->learn_rl = time_msec() + 500;
3763
3764 list_init(&facet->subfacets);
3765
3766 xlate_out_copy(&facet->xout, &miss->xout);
3767
3768 match_init(&match, &facet->flow, &facet->xout.wc);
3769 cls_rule_init(&facet->cr, &match, OFP_DEFAULT_PRIORITY);
3770 ovs_rwlock_wrlock(&ofproto->facets.rwlock);
3771 classifier_insert(&ofproto->facets, &facet->cr);
3772 ovs_rwlock_unlock(&ofproto->facets.rwlock);
3773
3774 return facet;
3775 }
3776
3777 static void
3778 facet_free(struct facet *facet)
3779 {
3780 if (facet) {
3781 xlate_out_uninit(&facet->xout);
3782 free(facet);
3783 }
3784 }
3785
3786 /* Executes, within 'ofproto', the actions in 'rule' or 'ofpacts' on 'packet'.
3787 * 'flow' must reflect the data in 'packet'. */
3788 int
3789 ofproto_dpif_execute_actions(struct ofproto_dpif *ofproto,
3790 const struct flow *flow,
3791 struct rule_dpif *rule,
3792 const struct ofpact *ofpacts, size_t ofpacts_len,
3793 struct ofpbuf *packet)
3794 {
3795 struct odputil_keybuf keybuf;
3796 struct dpif_flow_stats stats;
3797 struct xlate_out xout;
3798 struct xlate_in xin;
3799 ofp_port_t in_port;
3800 struct ofpbuf key;
3801 int error;
3802
3803 ovs_assert((rule != NULL) != (ofpacts != NULL));
3804
3805 dpif_flow_stats_extract(flow, packet, time_msec(), &stats);
3806 if (rule) {
3807 rule_dpif_credit_stats(rule, &stats);
3808 }
3809
3810 xlate_in_init(&xin, ofproto, flow, rule, stats.tcp_flags, packet);
3811 xin.ofpacts = ofpacts;
3812 xin.ofpacts_len = ofpacts_len;
3813 xin.resubmit_stats = &stats;
3814 xlate_actions(&xin, &xout);
3815
3816 ofpbuf_use_stack(&key, &keybuf, sizeof keybuf);
3817 in_port = flow->in_port.ofp_port;
3818 if (in_port == OFPP_NONE) {
3819 in_port = OFPP_LOCAL;
3820 }
3821 odp_flow_key_from_flow(&key, flow, ofp_port_to_odp_port(ofproto, in_port));
3822
3823 error = dpif_execute(ofproto->backer->dpif, key.data, key.size,
3824 xout.odp_actions.data, xout.odp_actions.size, packet,
3825 (xout.slow & SLOW_ACTION) != 0);
3826 xlate_out_uninit(&xout);
3827
3828 return error;
3829 }
3830
3831 /* Remove 'facet' from its ofproto and free up the associated memory:
3832 *
3833 * - If 'facet' was installed in the datapath, uninstalls it and updates its
3834 * rule's statistics, via subfacet_uninstall().
3835 *
3836 * - Removes 'facet' from its rule and from ofproto->facets.
3837 */
3838 static void
3839 facet_remove(struct facet *facet)
3840 {
3841 struct subfacet *subfacet, *next_subfacet;
3842
3843 COVERAGE_INC(facet_remove);
3844 ovs_assert(!list_is_empty(&facet->subfacets));
3845
3846 /* First uninstall all of the subfacets to get final statistics. */
3847 LIST_FOR_EACH (subfacet, list_node, &facet->subfacets) {
3848 subfacet_uninstall(subfacet);
3849 }
3850
3851 /* Flush the final stats to the rule.
3852 *
3853 * This might require us to have at least one subfacet around so that we
3854 * can use its actions for accounting in facet_account(), which is why we
3855 * have uninstalled but not yet destroyed the subfacets. */
3856 facet_flush_stats(facet);
3857
3858 /* Now we're really all done so destroy everything. */
3859 LIST_FOR_EACH_SAFE (subfacet, next_subfacet, list_node,
3860 &facet->subfacets) {
3861 subfacet_destroy__(subfacet);
3862 }
3863 ovs_rwlock_wrlock(&facet->ofproto->facets.rwlock);
3864 classifier_remove(&facet->ofproto->facets, &facet->cr);
3865 ovs_rwlock_unlock(&facet->ofproto->facets.rwlock);
3866 cls_rule_destroy(&facet->cr);
3867 facet_free(facet);
3868 }
3869
3870 /* Feed information from 'facet' back into the learning table to keep it in
3871 * sync with what is actually flowing through the datapath. */
3872 static void
3873 facet_learn(struct facet *facet)
3874 {
3875 long long int now = time_msec();
3876
3877 if (!facet->xout.has_fin_timeout && now < facet->learn_rl) {
3878 return;
3879 }
3880
3881 facet->learn_rl = now + 500;
3882
3883 if (!facet->xout.has_learn
3884 && !facet->xout.has_normal
3885 && (!facet->xout.has_fin_timeout
3886 || !(facet->tcp_flags & (TCP_FIN | TCP_RST)))) {
3887 return;
3888 }
3889
3890 facet_push_stats(facet, true);
3891 }
3892
3893 /* Returns true if the only action for 'facet' is to send to the controller.
3894 * (We don't report NetFlow expiration messages for such facets because they
3895 * are just part of the control logic for the network, not real traffic). */
3896 static bool
3897 facet_is_controller_flow(struct facet *facet)
3898 {
3899 if (facet) {
3900 struct ofproto_dpif *ofproto = facet->ofproto;
3901 const struct ofpact *ofpacts;
3902 struct rule_actions *actions;
3903 struct rule_dpif *rule;
3904 size_t ofpacts_len;
3905 bool is_controller;
3906
3907 rule_dpif_lookup(ofproto, &facet->flow, NULL, &rule);
3908 actions = rule_dpif_get_actions(rule);
3909 rule_dpif_unref(rule);
3910
3911 ofpacts_len = actions->ofpacts_len;
3912 ofpacts = actions->ofpacts;
3913 is_controller = ofpacts_len > 0
3914 && ofpacts->type == OFPACT_CONTROLLER
3915 && ofpact_next(ofpacts) >= ofpact_end(ofpacts, ofpacts_len);
3916 rule_actions_unref(actions);
3917
3918 return is_controller;
3919 }
3920 return false;
3921 }
3922
3923 /* Folds all of 'facet''s statistics into its rule. Also updates the
3924 * accounting ofhook and emits a NetFlow expiration if appropriate. All of
3925 * 'facet''s statistics in the datapath should have been zeroed and folded into
3926 * its packet and byte counts before this function is called. */
3927 static void
3928 facet_flush_stats(struct facet *facet)
3929 {
3930 struct ofproto_dpif *ofproto = facet->ofproto;
3931 struct subfacet *subfacet;
3932
3933 LIST_FOR_EACH (subfacet, list_node, &facet->subfacets) {
3934 ovs_assert(!subfacet->dp_byte_count);
3935 ovs_assert(!subfacet->dp_packet_count);
3936 }
3937
3938 facet_push_stats(facet, false);
3939
3940 if (ofproto->netflow && !facet_is_controller_flow(facet)) {
3941 netflow_expire(ofproto->netflow, &facet->flow);
3942 netflow_flow_clear(ofproto->netflow, &facet->flow);
3943 }
3944
3945 /* Reset counters to prevent double counting if 'facet' ever gets
3946 * reinstalled. */
3947 facet_reset_counters(facet);
3948 facet->tcp_flags = 0;
3949 }
3950
3951 /* Searches 'ofproto''s table of facets for one which would be responsible for
3952 * 'flow'. Returns it if found, otherwise a null pointer.
3953 *
3954 * The returned facet might need revalidation; use facet_lookup_valid()
3955 * instead if that is important. */
3956 static struct facet *
3957 facet_find(struct ofproto_dpif *ofproto, const struct flow *flow)
3958 {
3959 struct cls_rule *cr;
3960
3961 ovs_rwlock_rdlock(&ofproto->facets.rwlock);
3962 cr = classifier_lookup(&ofproto->facets, flow, NULL);
3963 ovs_rwlock_unlock(&ofproto->facets.rwlock);
3964 return cr ? CONTAINER_OF(cr, struct facet, cr) : NULL;
3965 }
3966
3967 /* Searches 'ofproto''s table of facets for one capable that covers
3968 * 'flow'. Returns it if found, otherwise a null pointer.
3969 *
3970 * The returned facet is guaranteed to be valid. */
3971 static struct facet *
3972 facet_lookup_valid(struct ofproto_dpif *ofproto, const struct flow *flow)
3973 {
3974 struct facet *facet;
3975
3976 facet = facet_find(ofproto, flow);
3977 if (facet
3978 && ofproto->backer->need_revalidate
3979 && !facet_revalidate(facet)) {
3980 return NULL;
3981 }
3982
3983 return facet;
3984 }
3985
3986 static bool
3987 facet_check_consistency(struct facet *facet)
3988 {
3989 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 15);
3990
3991 struct xlate_out xout;
3992 struct xlate_in xin;
3993 bool ok;
3994
3995 /* Check the datapath actions for consistency. */
3996 xlate_in_init(&xin, facet->ofproto, &facet->flow, NULL, 0, NULL);
3997 xlate_actions(&xin, &xout);
3998
3999 ok = ofpbuf_equal(&facet->xout.odp_actions, &xout.odp_actions)
4000 && facet->xout.slow == xout.slow;
4001 if (!ok && !VLOG_DROP_WARN(&rl)) {
4002 struct ds s = DS_EMPTY_INITIALIZER;
4003
4004 flow_format(&s, &facet->flow);
4005 ds_put_cstr(&s, ": inconsistency in facet");
4006
4007 if (!ofpbuf_equal(&facet->xout.odp_actions, &xout.odp_actions)) {
4008 ds_put_cstr(&s, " (actions were: ");
4009 format_odp_actions(&s, facet->xout.odp_actions.data,
4010 facet->xout.odp_actions.size);
4011 ds_put_cstr(&s, ") (correct actions: ");
4012 format_odp_actions(&s, xout.odp_actions.data,
4013 xout.odp_actions.size);
4014 ds_put_char(&s, ')');
4015 }
4016
4017 if (facet->xout.slow != xout.slow) {
4018 ds_put_format(&s, " slow path incorrect. should be %d", xout.slow);
4019 }
4020
4021 ds_destroy(&s);
4022 }
4023 xlate_out_uninit(&xout);
4024
4025 return ok;
4026 }
4027
4028 /* Re-searches the classifier for 'facet':
4029 *
4030 * - If the rule found is different from 'facet''s current rule, moves
4031 * 'facet' to the new rule and recompiles its actions.
4032 *
4033 * - If the rule found is the same as 'facet''s current rule, leaves 'facet'
4034 * where it is and recompiles its actions anyway.
4035 *
4036 * - If any of 'facet''s subfacets correspond to a new flow according to
4037 * xlate_receive(), 'facet' is removed.
4038 *
4039 * Returns true if 'facet' is still valid. False if 'facet' was removed. */
4040 static bool
4041 facet_revalidate(struct facet *facet)
4042 {
4043 struct ofproto_dpif *ofproto = facet->ofproto;
4044 struct rule_dpif *new_rule;
4045 struct subfacet *subfacet;
4046 struct flow_wildcards wc;
4047 struct xlate_out xout;
4048 struct xlate_in xin;
4049
4050 COVERAGE_INC(facet_revalidate);
4051
4052 /* Check that child subfacets still correspond to this facet. Tunnel
4053 * configuration changes could cause a subfacet's OpenFlow in_port to
4054 * change. */
4055 LIST_FOR_EACH (subfacet, list_node, &facet->subfacets) {
4056 struct ofproto_dpif *recv_ofproto;
4057 struct flow recv_flow;
4058 int error;
4059
4060 error = xlate_receive(ofproto->backer, NULL, subfacet->key,
4061 subfacet->key_len, &recv_flow, NULL,
4062 &recv_ofproto, NULL, NULL, NULL, NULL);
4063 if (error
4064 || recv_ofproto != ofproto
4065 || facet != facet_find(ofproto, &recv_flow)) {
4066 facet_remove(facet);
4067 return false;
4068 }
4069 }
4070
4071 flow_wildcards_init_catchall(&wc);
4072 rule_dpif_lookup(ofproto, &facet->flow, &wc, &new_rule);
4073
4074 /* Calculate new datapath actions.
4075 *
4076 * We do not modify any 'facet' state yet, because we might need to, e.g.,
4077 * emit a NetFlow expiration and, if so, we need to have the old state
4078 * around to properly compose it. */
4079 xlate_in_init(&xin, ofproto, &facet->flow, new_rule, 0, NULL);
4080 xlate_actions(&xin, &xout);
4081 flow_wildcards_or(&xout.wc, &xout.wc, &wc);
4082 /* Make sure non -packet fields are not masked. If not cleared,
4083 * the memcmp() below may fail, causing an otherwise valid facet
4084 * to be removed. */
4085 flow_wildcards_clear_non_packet_fields(&xout.wc);
4086
4087 /* A facet's slow path reason should only change under dramatic
4088 * circumstances. Rather than try to update everything, it's simpler to
4089 * remove the facet and start over.
4090 *
4091 * More importantly, if a facet's wildcards change, it will be relatively
4092 * difficult to figure out if its subfacets still belong to it, and if not
4093 * which facet they may belong to. Again, to avoid the complexity, we
4094 * simply give up instead. */
4095 if (facet->xout.slow != xout.slow
4096 || memcmp(&facet->xout.wc, &xout.wc, sizeof xout.wc)) {
4097 facet_remove(facet);
4098 xlate_out_uninit(&xout);
4099 rule_dpif_unref(new_rule);
4100 return false;
4101 }
4102
4103 if (!ofpbuf_equal(&facet->xout.odp_actions, &xout.odp_actions)) {
4104 LIST_FOR_EACH(subfacet, list_node, &facet->subfacets) {
4105 if (subfacet->path == SF_FAST_PATH) {
4106 struct dpif_flow_stats stats;
4107
4108 subfacet_install(subfacet, &xout.odp_actions, &stats);
4109 subfacet_update_stats(subfacet, &stats);
4110 }
4111 }
4112
4113 facet_flush_stats(facet);
4114
4115 ofpbuf_clear(&facet->xout.odp_actions);
4116 ofpbuf_put(&facet->xout.odp_actions, xout.odp_actions.data,
4117 xout.odp_actions.size);
4118 }
4119
4120 /* Update 'facet' now that we've taken care of all the old state. */
4121 facet->xout.slow = xout.slow;
4122 facet->xout.has_learn = xout.has_learn;
4123 facet->xout.has_normal = xout.has_normal;
4124 facet->xout.has_fin_timeout = xout.has_fin_timeout;
4125 facet->xout.nf_output_iface = xout.nf_output_iface;
4126 facet->xout.mirrors = xout.mirrors;
4127
4128 ovs_mutex_lock(&new_rule->up.mutex);
4129 facet->used = MAX(facet->used, new_rule->up.created);
4130 ovs_mutex_unlock(&new_rule->up.mutex);
4131
4132 xlate_out_uninit(&xout);
4133 rule_dpif_unref(new_rule);
4134 return true;
4135 }
4136
4137 static void
4138 facet_reset_counters(struct facet *facet)
4139 {
4140 facet->packet_count = 0;
4141 facet->byte_count = 0;
4142 facet->prev_packet_count = 0;
4143 facet->prev_byte_count = 0;
4144 }
4145
4146 static void
4147 flow_push_stats(struct ofproto_dpif *ofproto, struct flow *flow,
4148 struct dpif_flow_stats *stats, bool may_learn)
4149 {
4150 struct xlate_in xin;
4151
4152 xlate_in_init(&xin, ofproto, flow, NULL, stats->tcp_flags, NULL);
4153 xin.resubmit_stats = stats;
4154 xin.may_learn = may_learn;
4155 xlate_actions_for_side_effects(&xin);
4156 }
4157
4158 static void
4159 facet_push_stats(struct facet *facet, bool may_learn)
4160 {
4161 struct dpif_flow_stats stats;
4162
4163 ovs_assert(facet->packet_count >= facet->prev_packet_count);
4164 ovs_assert(facet->byte_count >= facet->prev_byte_count);
4165 ovs_assert(facet->used >= facet->prev_used);
4166
4167 stats.n_packets = facet->packet_count - facet->prev_packet_count;
4168 stats.n_bytes = facet->byte_count - facet->prev_byte_count;
4169 stats.used = facet->used;
4170 stats.tcp_flags = facet->tcp_flags;
4171
4172 if (may_learn || stats.n_packets || facet->used > facet->prev_used) {
4173 facet->prev_packet_count = facet->packet_count;
4174 facet->prev_byte_count = facet->byte_count;
4175 facet->prev_used = facet->used;
4176 flow_push_stats(facet->ofproto, &facet->flow, &stats, may_learn);
4177 }
4178 }
4179
4180 static void
4181 push_all_stats(void)
4182 {
4183 static long long int rl = LLONG_MIN;
4184 struct ofproto_dpif *ofproto;
4185
4186 if (time_msec() < rl) {
4187 return;
4188 }
4189
4190 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
4191 struct cls_cursor cursor;
4192 struct facet *facet;
4193
4194 ovs_rwlock_rdlock(&ofproto->facets.rwlock);
4195 cls_cursor_init(&cursor, &ofproto->facets, NULL);
4196 CLS_CURSOR_FOR_EACH (facet, cr, &cursor) {
4197 facet_push_stats(facet, false);
4198 }
4199 ovs_rwlock_unlock(&ofproto->facets.rwlock);
4200 }
4201
4202 rl = time_msec() + 100;
4203 }
4204
4205 void
4206 rule_dpif_credit_stats(struct rule_dpif *rule,
4207 const struct dpif_flow_stats *stats)
4208 {
4209 ovs_mutex_lock(&rule->stats_mutex);
4210 rule->packet_count += stats->n_packets;
4211 rule->byte_count += stats->n_bytes;
4212 rule->up.used = MAX(rule->up.used, stats->used);
4213 ovs_mutex_unlock(&rule->stats_mutex);
4214 }
4215
4216 bool
4217 rule_dpif_is_fail_open(const struct rule_dpif *rule)
4218 {
4219 return is_fail_open_rule(&rule->up);
4220 }
4221
4222 bool
4223 rule_dpif_is_table_miss(const struct rule_dpif *rule)
4224 {
4225 return rule_is_table_miss(&rule->up);
4226 }
4227
4228 ovs_be64
4229 rule_dpif_get_flow_cookie(const struct rule_dpif *rule)
4230 OVS_REQUIRES(rule->up.mutex)
4231 {
4232 return rule->up.flow_cookie;
4233 }
4234
4235 void
4236 rule_dpif_reduce_timeouts(struct rule_dpif *rule, uint16_t idle_timeout,
4237 uint16_t hard_timeout)
4238 {
4239 ofproto_rule_reduce_timeouts(&rule->up, idle_timeout, hard_timeout);
4240 }
4241
4242 /* Returns 'rule''s actions. The caller owns a reference on the returned
4243 * actions and must eventually release it (with rule_actions_unref()) to avoid
4244 * a memory leak. */
4245 struct rule_actions *
4246 rule_dpif_get_actions(const struct rule_dpif *rule)
4247 {
4248 return rule_get_actions(&rule->up);
4249 }
4250 \f
4251 /* Subfacets. */
4252
4253 static struct subfacet *
4254 subfacet_find(struct dpif_backer *backer, const struct nlattr *key,
4255 size_t key_len, uint32_t key_hash)
4256 {
4257 struct subfacet *subfacet;
4258
4259 HMAP_FOR_EACH_WITH_HASH (subfacet, hmap_node, key_hash,
4260 &backer->subfacets) {
4261 if (subfacet->key_len == key_len
4262 && !memcmp(key, subfacet->key, key_len)) {
4263 return subfacet;
4264 }
4265 }
4266
4267 return NULL;
4268 }
4269
4270 /* Creates and returns a new subfacet within 'facet' for the flow in 'miss'.
4271 * 'key_hash' must be a hash over miss->key. The caller must have already
4272 * ensured that no subfacet subfacet already exists. */
4273 static struct subfacet *
4274 subfacet_create(struct facet *facet, struct flow_miss *miss, uint32_t key_hash)
4275 {
4276 struct dpif_backer *backer = miss->ofproto->backer;
4277 const struct nlattr *key = miss->key;
4278 size_t key_len = miss->key_len;
4279 struct subfacet *subfacet;
4280
4281 subfacet = (list_is_empty(&facet->subfacets)
4282 ? &facet->one_subfacet
4283 : xmalloc(sizeof *subfacet));
4284
4285 COVERAGE_INC(subfacet_create);
4286 hmap_insert(&backer->subfacets, &subfacet->hmap_node, key_hash);
4287 list_push_back(&facet->subfacets, &subfacet->list_node);
4288 subfacet->facet = facet;
4289 subfacet->key = xmemdup(key, key_len);
4290 subfacet->key_len = key_len;
4291 subfacet->used = miss->stats.used;
4292 subfacet->created = subfacet->used;
4293 subfacet->dp_packet_count = 0;
4294 subfacet->dp_byte_count = 0;
4295 subfacet->path = SF_NOT_INSTALLED;
4296 subfacet->backer = backer;
4297
4298 return subfacet;
4299 }
4300
4301 /* Uninstalls 'subfacet' from the datapath, if it is installed, removes it from
4302 * its facet within 'ofproto', and frees it. */
4303 static void
4304 subfacet_destroy__(struct subfacet *subfacet)
4305 {
4306 struct facet *facet = subfacet->facet;
4307
4308 COVERAGE_INC(subfacet_destroy);
4309 subfacet_uninstall(subfacet);
4310 hmap_remove(&subfacet->backer->subfacets, &subfacet->hmap_node);
4311 list_remove(&subfacet->list_node);
4312 free(subfacet->key);
4313 if (subfacet != &facet->one_subfacet) {
4314 free(subfacet);
4315 }
4316 }
4317
4318 /* Destroys 'subfacet', as with subfacet_destroy__(), and then if this was the
4319 * last remaining subfacet in its facet destroys the facet too. */
4320 static void
4321 subfacet_destroy(struct subfacet *subfacet)
4322 {
4323 struct facet *facet = subfacet->facet;
4324
4325 if (list_is_singleton(&facet->subfacets)) {
4326 /* facet_remove() needs at least one subfacet (it will remove it). */
4327 facet_remove(facet);
4328 } else {
4329 subfacet_destroy__(subfacet);
4330 }
4331 }
4332
4333 static void
4334 subfacet_destroy_batch(struct dpif_backer *backer,
4335 struct subfacet **subfacets, int n)
4336 {
4337 struct dpif_op ops[SUBFACET_DESTROY_MAX_BATCH];
4338 struct dpif_op *opsp[SUBFACET_DESTROY_MAX_BATCH];
4339 struct dpif_flow_stats stats[SUBFACET_DESTROY_MAX_BATCH];
4340 int i;
4341
4342 for (i = 0; i < n; i++) {
4343 ops[i].type = DPIF_OP_FLOW_DEL;
4344 ops[i].u.flow_del.key = subfacets[i]->key;
4345 ops[i].u.flow_del.key_len = subfacets[i]->key_len;
4346 ops[i].u.flow_del.stats = &stats[i];
4347 opsp[i] = &ops[i];
4348 }
4349
4350 dpif_operate(backer->dpif, opsp, n);
4351 for (i = 0; i < n; i++) {
4352 subfacet_reset_dp_stats(subfacets[i], &stats[i]);
4353 subfacets[i]->path = SF_NOT_INSTALLED;
4354 subfacet_destroy(subfacets[i]);
4355 }
4356 }
4357
4358 /* Updates 'subfacet''s datapath flow, setting its actions to 'actions_len'
4359 * bytes of actions in 'actions'. If 'stats' is non-null, statistics counters
4360 * in the datapath will be zeroed and 'stats' will be updated with traffic new
4361 * since 'subfacet' was last updated.
4362 *
4363 * Returns 0 if successful, otherwise a positive errno value. */
4364 static int
4365 subfacet_install(struct subfacet *subfacet, const struct ofpbuf *odp_actions,
4366 struct dpif_flow_stats *stats)
4367 {
4368 struct facet *facet = subfacet->facet;
4369 enum subfacet_path path = facet->xout.slow ? SF_SLOW_PATH : SF_FAST_PATH;
4370 const struct nlattr *actions = odp_actions->data;
4371 size_t actions_len = odp_actions->size;
4372 struct odputil_keybuf maskbuf;
4373 struct ofpbuf mask;
4374
4375 uint64_t slow_path_stub[128 / 8];
4376 enum dpif_flow_put_flags flags;
4377 int ret;
4378
4379 flags = subfacet->path == SF_NOT_INSTALLED ? DPIF_FP_CREATE
4380 : DPIF_FP_MODIFY;
4381 if (stats) {
4382 flags |= DPIF_FP_ZERO_STATS;
4383 }
4384
4385 if (path == SF_SLOW_PATH) {
4386 compose_slow_path(facet->ofproto, &facet->flow, facet->xout.slow,
4387 slow_path_stub, sizeof slow_path_stub,
4388 &actions, &actions_len);
4389 }
4390
4391 ofpbuf_use_stack(&mask, &maskbuf, sizeof maskbuf);
4392 if (enable_megaflows) {
4393 odp_flow_key_from_mask(&mask, &facet->xout.wc.masks,
4394 &facet->flow, UINT32_MAX);
4395 }
4396
4397 ret = dpif_flow_put(subfacet->backer->dpif, flags, subfacet->key,
4398 subfacet->key_len, mask.data, mask.size,
4399 actions, actions_len, stats);
4400
4401 if (stats) {
4402 subfacet_reset_dp_stats(subfacet, stats);
4403 }
4404
4405 if (ret) {
4406 COVERAGE_INC(subfacet_install_fail);
4407 } else {
4408 subfacet->path = path;
4409 }
4410 return ret;
4411 }
4412
4413 /* If 'subfacet' is installed in the datapath, uninstalls it. */
4414 static void
4415 subfacet_uninstall(struct subfacet *subfacet)
4416 {
4417 if (subfacet->path != SF_NOT_INSTALLED) {
4418 struct ofproto_dpif *ofproto = subfacet->facet->ofproto;
4419 struct dpif_flow_stats stats;
4420 int error;
4421
4422 error = dpif_flow_del(ofproto->backer->dpif, subfacet->key,
4423 subfacet->key_len, &stats);
4424 subfacet_reset_dp_stats(subfacet, &stats);
4425 if (!error) {
4426 subfacet_update_stats(subfacet, &stats);
4427 }
4428 subfacet->path = SF_NOT_INSTALLED;
4429 } else {
4430 ovs_assert(subfacet->dp_packet_count == 0);
4431 ovs_assert(subfacet->dp_byte_count == 0);
4432 }
4433 }
4434
4435 /* Resets 'subfacet''s datapath statistics counters. This should be called
4436 * when 'subfacet''s statistics are cleared in the datapath. If 'stats' is
4437 * non-null, it should contain the statistics returned by dpif when 'subfacet'
4438 * was reset in the datapath. 'stats' will be modified to include only
4439 * statistics new since 'subfacet' was last updated. */
4440 static void
4441 subfacet_reset_dp_stats(struct subfacet *subfacet,
4442 struct dpif_flow_stats *stats)
4443 {
4444 if (stats
4445 && subfacet->dp_packet_count <= stats->n_packets
4446 && subfacet->dp_byte_count <= stats->n_bytes) {
4447 stats->n_packets -= subfacet->dp_packet_count;
4448 stats->n_bytes -= subfacet->dp_byte_count;
4449 }
4450
4451 subfacet->dp_packet_count = 0;
4452 subfacet->dp_byte_count = 0;
4453 }
4454
4455 /* Folds the statistics from 'stats' into the counters in 'subfacet'.
4456 *
4457 * Because of the meaning of a subfacet's counters, it only makes sense to do
4458 * this if 'stats' are not tracked in the datapath, that is, if 'stats'
4459 * represents a packet that was sent by hand or if it represents statistics
4460 * that have been cleared out of the datapath. */
4461 static void
4462 subfacet_update_stats(struct subfacet *subfacet,
4463 const struct dpif_flow_stats *stats)
4464 {
4465 if (stats->n_packets || stats->used > subfacet->used) {
4466 struct facet *facet = subfacet->facet;
4467
4468 subfacet->used = MAX(subfacet->used, stats->used);
4469 facet->used = MAX(facet->used, stats->used);
4470 facet->packet_count += stats->n_packets;
4471 facet->byte_count += stats->n_bytes;
4472 facet->tcp_flags |= stats->tcp_flags;
4473 }
4474 }
4475 \f
4476 /* Rules. */
4477
4478 /* Lookup 'flow' in 'ofproto''s classifier. If 'wc' is non-null, sets
4479 * the fields that were relevant as part of the lookup. */
4480 void
4481 rule_dpif_lookup(struct ofproto_dpif *ofproto, const struct flow *flow,
4482 struct flow_wildcards *wc, struct rule_dpif **rule)
4483 {
4484 struct ofport_dpif *port;
4485
4486 if (rule_dpif_lookup_in_table(ofproto, flow, wc, 0, rule)) {
4487 return;
4488 }
4489 port = get_ofp_port(ofproto, flow->in_port.ofp_port);
4490 if (!port) {
4491 VLOG_WARN_RL(&rl, "packet-in on unknown OpenFlow port %"PRIu16,
4492 flow->in_port.ofp_port);
4493 }
4494
4495 choose_miss_rule(port ? port->up.pp.config : 0, ofproto->miss_rule,
4496 ofproto->no_packet_in_rule, rule);
4497 }
4498
4499 bool
4500 rule_dpif_lookup_in_table(struct ofproto_dpif *ofproto,
4501 const struct flow *flow, struct flow_wildcards *wc,
4502 uint8_t table_id, struct rule_dpif **rule)
4503 {
4504 const struct cls_rule *cls_rule;
4505 struct classifier *cls;
4506 bool frag;
4507
4508 *rule = NULL;
4509 if (table_id >= N_TABLES) {
4510 return false;
4511 }
4512
4513 if (wc) {
4514 memset(&wc->masks.dl_type, 0xff, sizeof wc->masks.dl_type);
4515 wc->masks.nw_frag |= FLOW_NW_FRAG_MASK;
4516 }
4517
4518 cls = &ofproto->up.tables[table_id].cls;
4519 ovs_rwlock_rdlock(&cls->rwlock);
4520 frag = (flow->nw_frag & FLOW_NW_FRAG_ANY) != 0;
4521 if (frag && ofproto->up.frag_handling == OFPC_FRAG_NORMAL) {
4522 /* We must pretend that transport ports are unavailable. */
4523 struct flow ofpc_normal_flow = *flow;
4524 ofpc_normal_flow.tp_src = htons(0);
4525 ofpc_normal_flow.tp_dst = htons(0);
4526 cls_rule = classifier_lookup(cls, &ofpc_normal_flow, wc);
4527 } else if (frag && ofproto->up.frag_handling == OFPC_FRAG_DROP) {
4528 cls_rule = &ofproto->drop_frags_rule->up.cr;
4529 /* Frag mask in wc already set above. */
4530 } else {
4531 cls_rule = classifier_lookup(cls, flow, wc);
4532 }
4533
4534 *rule = rule_dpif_cast(rule_from_cls_rule(cls_rule));
4535 rule_dpif_ref(*rule);
4536 ovs_rwlock_unlock(&cls->rwlock);
4537
4538 return *rule != NULL;
4539 }
4540
4541 /* Given a port configuration (specified as zero if there's no port), chooses
4542 * which of 'miss_rule' and 'no_packet_in_rule' should be used in case of a
4543 * flow table miss. */
4544 void
4545 choose_miss_rule(enum ofputil_port_config config, struct rule_dpif *miss_rule,
4546 struct rule_dpif *no_packet_in_rule, struct rule_dpif **rule)
4547 {
4548 *rule = config & OFPUTIL_PC_NO_PACKET_IN ? no_packet_in_rule : miss_rule;
4549 rule_dpif_ref(*rule);
4550 }
4551
4552 void
4553 rule_dpif_ref(struct rule_dpif *rule)
4554 {
4555 if (rule) {
4556 ofproto_rule_ref(&rule->up);
4557 }
4558 }
4559
4560 void
4561 rule_dpif_unref(struct rule_dpif *rule)
4562 {
4563 if (rule) {
4564 ofproto_rule_unref(&rule->up);
4565 }
4566 }
4567
4568 static void
4569 complete_operation(struct rule_dpif *rule)
4570 OVS_REQUIRES(ofproto_mutex)
4571 {
4572 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
4573
4574 ofproto->backer->need_revalidate = REV_FLOW_TABLE;
4575 ofoperation_complete(rule->up.pending, 0);
4576 }
4577
4578 static struct rule_dpif *rule_dpif_cast(const struct rule *rule)
4579 {
4580 return rule ? CONTAINER_OF(rule, struct rule_dpif, up) : NULL;
4581 }
4582
4583 static struct rule *
4584 rule_alloc(void)
4585 {
4586 struct rule_dpif *rule = xmalloc(sizeof *rule);
4587 return &rule->up;
4588 }
4589
4590 static void
4591 rule_dealloc(struct rule *rule_)
4592 {
4593 struct rule_dpif *rule = rule_dpif_cast(rule_);
4594 free(rule);
4595 }
4596
4597 static enum ofperr
4598 rule_construct(struct rule *rule_)
4599 {
4600 struct rule_dpif *rule = rule_dpif_cast(rule_);
4601 ovs_mutex_init(&rule->stats_mutex);
4602 ovs_mutex_lock(&rule->stats_mutex);
4603 rule->packet_count = 0;
4604 rule->byte_count = 0;
4605 ovs_mutex_unlock(&rule->stats_mutex);
4606 return 0;
4607 }
4608
4609 static void
4610 rule_insert(struct rule *rule_)
4611 OVS_REQUIRES(ofproto_mutex)
4612 {
4613 struct rule_dpif *rule = rule_dpif_cast(rule_);
4614 complete_operation(rule);
4615 }
4616
4617 static void
4618 rule_delete(struct rule *rule_)
4619 OVS_REQUIRES(ofproto_mutex)
4620 {
4621 struct rule_dpif *rule = rule_dpif_cast(rule_);
4622 complete_operation(rule);
4623 }
4624
4625 static void
4626 rule_destruct(struct rule *rule_)
4627 {
4628 struct rule_dpif *rule = rule_dpif_cast(rule_);
4629 ovs_mutex_destroy(&rule->stats_mutex);
4630 }
4631
4632 static void
4633 rule_get_stats(struct rule *rule_, uint64_t *packets, uint64_t *bytes)
4634 {
4635 struct rule_dpif *rule = rule_dpif_cast(rule_);
4636
4637 push_all_stats();
4638
4639 /* Start from historical data for 'rule' itself that are no longer tracked
4640 * in facets. This counts, for example, facets that have expired. */
4641 ovs_mutex_lock(&rule->stats_mutex);
4642 *packets = rule->packet_count;
4643 *bytes = rule->byte_count;
4644 ovs_mutex_unlock(&rule->stats_mutex);
4645 }
4646
4647 static void
4648 rule_dpif_execute(struct rule_dpif *rule, const struct flow *flow,
4649 struct ofpbuf *packet)
4650 {
4651 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
4652
4653 ofproto_dpif_execute_actions(ofproto, flow, rule, NULL, 0, packet);
4654 }
4655
4656 static enum ofperr
4657 rule_execute(struct rule *rule, const struct flow *flow,
4658 struct ofpbuf *packet)
4659 {
4660 rule_dpif_execute(rule_dpif_cast(rule), flow, packet);
4661 ofpbuf_delete(packet);
4662 return 0;
4663 }
4664
4665 static void
4666 rule_modify_actions(struct rule *rule_, bool reset_counters)
4667 OVS_REQUIRES(ofproto_mutex)
4668 {
4669 struct rule_dpif *rule = rule_dpif_cast(rule_);
4670
4671 if (reset_counters) {
4672 ovs_mutex_lock(&rule->stats_mutex);
4673 rule->packet_count = 0;
4674 rule->byte_count = 0;
4675 ovs_mutex_unlock(&rule->stats_mutex);
4676 }
4677
4678 complete_operation(rule);
4679 }
4680
4681 static struct group_dpif *group_dpif_cast(const struct ofgroup *group)
4682 {
4683 return group ? CONTAINER_OF(group, struct group_dpif, up) : NULL;
4684 }
4685
4686 static struct ofgroup *
4687 group_alloc(void)
4688 {
4689 struct group_dpif *group = xzalloc(sizeof *group);
4690 return &group->up;
4691 }
4692
4693 static void
4694 group_dealloc(struct ofgroup *group_)
4695 {
4696 struct group_dpif *group = group_dpif_cast(group_);
4697 free(group);
4698 }
4699
4700 static void
4701 group_construct_stats(struct group_dpif *group)
4702 OVS_REQUIRES(group->stats_mutex)
4703 {
4704 group->packet_count = 0;
4705 group->byte_count = 0;
4706 if (!group->bucket_stats) {
4707 group->bucket_stats = xcalloc(group->up.n_buckets,
4708 sizeof *group->bucket_stats);
4709 } else {
4710 memset(group->bucket_stats, 0, group->up.n_buckets *
4711 sizeof *group->bucket_stats);
4712 }
4713 }
4714
4715 static enum ofperr
4716 group_construct(struct ofgroup *group_)
4717 {
4718 struct group_dpif *group = group_dpif_cast(group_);
4719 ovs_mutex_init(&group->stats_mutex);
4720 ovs_mutex_lock(&group->stats_mutex);
4721 group_construct_stats(group);
4722 ovs_mutex_unlock(&group->stats_mutex);
4723 return 0;
4724 }
4725
4726 static void
4727 group_destruct__(struct group_dpif *group)
4728 OVS_REQUIRES(group->stats_mutex)
4729 {
4730 free(group->bucket_stats);
4731 group->bucket_stats = NULL;
4732 }
4733
4734 static void
4735 group_destruct(struct ofgroup *group_)
4736 {
4737 struct group_dpif *group = group_dpif_cast(group_);
4738 ovs_mutex_lock(&group->stats_mutex);
4739 group_destruct__(group);
4740 ovs_mutex_unlock(&group->stats_mutex);
4741 ovs_mutex_destroy(&group->stats_mutex);
4742 }
4743
4744 static enum ofperr
4745 group_modify(struct ofgroup *group_, struct ofgroup *victim_)
4746 {
4747 struct group_dpif *group = group_dpif_cast(group_);
4748 struct group_dpif *victim = group_dpif_cast(victim_);
4749
4750 ovs_mutex_lock(&group->stats_mutex);
4751 if (victim->up.n_buckets < group->up.n_buckets) {
4752 group_destruct__(group);
4753 }
4754 group_construct_stats(group);
4755 ovs_mutex_unlock(&group->stats_mutex);
4756
4757 return 0;
4758 }
4759
4760 static enum ofperr
4761 group_get_stats(const struct ofgroup *group_, struct ofputil_group_stats *ogs)
4762 {
4763 struct group_dpif *group = group_dpif_cast(group_);
4764
4765 /* Start from historical data for 'group' itself that are no longer tracked
4766 * in facets. This counts, for example, facets that have expired. */
4767 ovs_mutex_lock(&group->stats_mutex);
4768 ogs->packet_count = group->packet_count;
4769 ogs->byte_count = group->byte_count;
4770 memcpy(ogs->bucket_stats, group->bucket_stats,
4771 group->up.n_buckets * sizeof *group->bucket_stats);
4772 ovs_mutex_unlock(&group->stats_mutex);
4773
4774 return 0;
4775 }
4776
4777 bool
4778 group_dpif_lookup(struct ofproto_dpif *ofproto, uint32_t group_id,
4779 struct group_dpif **group)
4780 OVS_TRY_RDLOCK(true, (*group)->up.rwlock)
4781 {
4782 struct ofgroup *ofgroup;
4783 bool found;
4784
4785 *group = NULL;
4786 found = ofproto_group_lookup(&ofproto->up, group_id, &ofgroup);
4787 *group = found ? group_dpif_cast(ofgroup) : NULL;
4788
4789 return found;
4790 }
4791
4792 void
4793 group_dpif_release(struct group_dpif *group)
4794 OVS_RELEASES(group->up.rwlock)
4795 {
4796 ofproto_group_release(&group->up);
4797 }
4798
4799 void
4800 group_dpif_get_buckets(const struct group_dpif *group,
4801 const struct list **buckets)
4802 {
4803 *buckets = &group->up.buckets;
4804 }
4805
4806 enum ofp11_group_type
4807 group_dpif_get_type(const struct group_dpif *group)
4808 {
4809 return group->up.type;
4810 }
4811 \f
4812 /* Sends 'packet' out 'ofport'.
4813 * May modify 'packet'.
4814 * Returns 0 if successful, otherwise a positive errno value. */
4815 int
4816 ofproto_dpif_send_packet(const struct ofport_dpif *ofport, struct ofpbuf *packet)
4817 {
4818 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
4819 int error;
4820
4821 error = xlate_send_packet(ofport, packet);
4822
4823 ovs_mutex_lock(&ofproto->stats_mutex);
4824 ofproto->stats.tx_packets++;
4825 ofproto->stats.tx_bytes += packet->size;
4826 ovs_mutex_unlock(&ofproto->stats_mutex);
4827 return error;
4828 }
4829
4830 /* Composes an ODP action for a "slow path" action for 'flow' within 'ofproto'.
4831 * The action will state 'slow' as the reason that the action is in the slow
4832 * path. (This is purely informational: it allows a human viewing "ovs-dpctl
4833 * dump-flows" output to see why a flow is in the slow path.)
4834 *
4835 * The 'stub_size' bytes in 'stub' will be used to store the action.
4836 * 'stub_size' must be large enough for the action.
4837 *
4838 * The action and its size will be stored in '*actionsp' and '*actions_lenp',
4839 * respectively. */
4840 static void
4841 compose_slow_path(const struct ofproto_dpif *ofproto, const struct flow *flow,
4842 enum slow_path_reason slow,
4843 uint64_t *stub, size_t stub_size,
4844 const struct nlattr **actionsp, size_t *actions_lenp)
4845 {
4846 union user_action_cookie cookie;
4847 struct ofpbuf buf;
4848
4849 cookie.type = USER_ACTION_COOKIE_SLOW_PATH;
4850 cookie.slow_path.unused = 0;
4851 cookie.slow_path.reason = slow;
4852
4853 ofpbuf_use_stack(&buf, stub, stub_size);
4854 if (slow & (SLOW_CFM | SLOW_BFD | SLOW_LACP | SLOW_STP)) {
4855 uint32_t pid = dpif_port_get_pid(ofproto->backer->dpif,
4856 ODPP_NONE);
4857 odp_put_userspace_action(pid, &cookie, sizeof cookie.slow_path, &buf);
4858 } else {
4859 odp_port_t odp_port;
4860 uint32_t pid;
4861
4862 odp_port = ofp_port_to_odp_port(ofproto, flow->in_port.ofp_port);
4863 pid = dpif_port_get_pid(ofproto->backer->dpif, odp_port);
4864 odp_put_userspace_action(pid, &cookie, sizeof cookie.slow_path, &buf);
4865 }
4866 *actionsp = buf.data;
4867 *actions_lenp = buf.size;
4868 }
4869 \f
4870 static bool
4871 set_frag_handling(struct ofproto *ofproto_,
4872 enum ofp_config_flags frag_handling)
4873 {
4874 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
4875 if (frag_handling != OFPC_FRAG_REASM) {
4876 ofproto->backer->need_revalidate = REV_RECONFIGURE;
4877 return true;
4878 } else {
4879 return false;
4880 }
4881 }
4882
4883 static enum ofperr
4884 packet_out(struct ofproto *ofproto_, struct ofpbuf *packet,
4885 const struct flow *flow,
4886 const struct ofpact *ofpacts, size_t ofpacts_len)
4887 {
4888 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
4889
4890 ofproto_dpif_execute_actions(ofproto, flow, NULL, ofpacts,
4891 ofpacts_len, packet);
4892 return 0;
4893 }
4894 \f
4895 /* NetFlow. */
4896
4897 static int
4898 set_netflow(struct ofproto *ofproto_,
4899 const struct netflow_options *netflow_options)
4900 {
4901 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
4902
4903 if (netflow_options) {
4904 if (!ofproto->netflow) {
4905 ofproto->netflow = netflow_create();
4906 ofproto->backer->need_revalidate = REV_RECONFIGURE;
4907 }
4908 return netflow_set_options(ofproto->netflow, netflow_options);
4909 } else if (ofproto->netflow) {
4910 ofproto->backer->need_revalidate = REV_RECONFIGURE;
4911 netflow_unref(ofproto->netflow);
4912 ofproto->netflow = NULL;
4913 }
4914
4915 return 0;
4916 }
4917
4918 static void
4919 get_netflow_ids(const struct ofproto *ofproto_,
4920 uint8_t *engine_type, uint8_t *engine_id)
4921 {
4922 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
4923
4924 dpif_get_netflow_ids(ofproto->backer->dpif, engine_type, engine_id);
4925 }
4926 \f
4927 static struct ofproto_dpif *
4928 ofproto_dpif_lookup(const char *name)
4929 {
4930 struct ofproto_dpif *ofproto;
4931
4932 HMAP_FOR_EACH_WITH_HASH (ofproto, all_ofproto_dpifs_node,
4933 hash_string(name, 0), &all_ofproto_dpifs) {
4934 if (!strcmp(ofproto->up.name, name)) {
4935 return ofproto;
4936 }
4937 }
4938 return NULL;
4939 }
4940
4941 static void
4942 ofproto_unixctl_fdb_flush(struct unixctl_conn *conn, int argc,
4943 const char *argv[], void *aux OVS_UNUSED)
4944 {
4945 struct ofproto_dpif *ofproto;
4946
4947 if (argc > 1) {
4948 ofproto = ofproto_dpif_lookup(argv[1]);
4949 if (!ofproto) {
4950 unixctl_command_reply_error(conn, "no such bridge");
4951 return;
4952 }
4953 ovs_rwlock_wrlock(&ofproto->ml->rwlock);
4954 mac_learning_flush(ofproto->ml);
4955 ovs_rwlock_unlock(&ofproto->ml->rwlock);
4956 } else {
4957 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
4958 ovs_rwlock_wrlock(&ofproto->ml->rwlock);
4959 mac_learning_flush(ofproto->ml);
4960 ovs_rwlock_unlock(&ofproto->ml->rwlock);
4961 }
4962 }
4963
4964 unixctl_command_reply(conn, "table successfully flushed");
4965 }
4966
4967 static struct ofport_dpif *
4968 ofbundle_get_a_port(const struct ofbundle *bundle)
4969 {
4970 return CONTAINER_OF(list_front(&bundle->ports), struct ofport_dpif,
4971 bundle_node);
4972 }
4973
4974 static void
4975 ofproto_unixctl_fdb_show(struct unixctl_conn *conn, int argc OVS_UNUSED,
4976 const char *argv[], void *aux OVS_UNUSED)
4977 {
4978 struct ds ds = DS_EMPTY_INITIALIZER;
4979 const struct ofproto_dpif *ofproto;
4980 const struct mac_entry *e;
4981
4982 ofproto = ofproto_dpif_lookup(argv[1]);
4983 if (!ofproto) {
4984 unixctl_command_reply_error(conn, "no such bridge");
4985 return;
4986 }
4987
4988 ds_put_cstr(&ds, " port VLAN MAC Age\n");
4989 ovs_rwlock_rdlock(&ofproto->ml->rwlock);
4990 LIST_FOR_EACH (e, lru_node, &ofproto->ml->lrus) {
4991 struct ofbundle *bundle = e->port.p;
4992 char name[OFP_MAX_PORT_NAME_LEN];
4993
4994 ofputil_port_to_string(ofbundle_get_a_port(bundle)->up.ofp_port,
4995 name, sizeof name);
4996 ds_put_format(&ds, "%5s %4d "ETH_ADDR_FMT" %3d\n",
4997 name, e->vlan, ETH_ADDR_ARGS(e->mac),
4998 mac_entry_age(ofproto->ml, e));
4999 }
5000 ovs_rwlock_unlock(&ofproto->ml->rwlock);
5001 unixctl_command_reply(conn, ds_cstr(&ds));
5002 ds_destroy(&ds);
5003 }
5004
5005 struct trace_ctx {
5006 struct xlate_out xout;
5007 struct xlate_in xin;
5008 struct flow flow;
5009 struct ds *result;
5010 };
5011
5012 static void
5013 trace_format_rule(struct ds *result, int level, const struct rule_dpif *rule)
5014 {
5015 struct rule_actions *actions;
5016 ovs_be64 cookie;
5017
5018 ds_put_char_multiple(result, '\t', level);
5019 if (!rule) {
5020 ds_put_cstr(result, "No match\n");
5021 return;
5022 }
5023
5024 ovs_mutex_lock(&rule->up.mutex);
5025 cookie = rule->up.flow_cookie;
5026 ovs_mutex_unlock(&rule->up.mutex);
5027
5028 ds_put_format(result, "Rule: table=%"PRIu8" cookie=%#"PRIx64" ",
5029 rule ? rule->up.table_id : 0, ntohll(cookie));
5030 cls_rule_format(&rule->up.cr, result);
5031 ds_put_char(result, '\n');
5032
5033 actions = rule_dpif_get_actions(rule);
5034
5035 ds_put_char_multiple(result, '\t', level);
5036 ds_put_cstr(result, "OpenFlow actions=");
5037 ofpacts_format(actions->ofpacts, actions->ofpacts_len, result);
5038 ds_put_char(result, '\n');
5039
5040 rule_actions_unref(actions);
5041 }
5042
5043 static void
5044 trace_format_flow(struct ds *result, int level, const char *title,
5045 struct trace_ctx *trace)
5046 {
5047 ds_put_char_multiple(result, '\t', level);
5048 ds_put_format(result, "%s: ", title);
5049 if (flow_equal(&trace->xin.flow, &trace->flow)) {
5050 ds_put_cstr(result, "unchanged");
5051 } else {
5052 flow_format(result, &trace->xin.flow);
5053 trace->flow = trace->xin.flow;
5054 }
5055 ds_put_char(result, '\n');
5056 }
5057
5058 static void
5059 trace_format_regs(struct ds *result, int level, const char *title,
5060 struct trace_ctx *trace)
5061 {
5062 size_t i;
5063
5064 ds_put_char_multiple(result, '\t', level);
5065 ds_put_format(result, "%s:", title);
5066 for (i = 0; i < FLOW_N_REGS; i++) {
5067 ds_put_format(result, " reg%"PRIuSIZE"=0x%"PRIx32, i, trace->flow.regs[i]);
5068 }
5069 ds_put_char(result, '\n');
5070 }
5071
5072 static void
5073 trace_format_odp(struct ds *result, int level, const char *title,
5074 struct trace_ctx *trace)
5075 {
5076 struct ofpbuf *odp_actions = &trace->xout.odp_actions;
5077
5078 ds_put_char_multiple(result, '\t', level);
5079 ds_put_format(result, "%s: ", title);
5080 format_odp_actions(result, odp_actions->data, odp_actions->size);
5081 ds_put_char(result, '\n');
5082 }
5083
5084 static void
5085 trace_resubmit(struct xlate_in *xin, struct rule_dpif *rule, int recurse)
5086 {
5087 struct trace_ctx *trace = CONTAINER_OF(xin, struct trace_ctx, xin);
5088 struct ds *result = trace->result;
5089
5090 ds_put_char(result, '\n');
5091 trace_format_flow(result, recurse + 1, "Resubmitted flow", trace);
5092 trace_format_regs(result, recurse + 1, "Resubmitted regs", trace);
5093 trace_format_odp(result, recurse + 1, "Resubmitted odp", trace);
5094 trace_format_rule(result, recurse + 1, rule);
5095 }
5096
5097 static void
5098 trace_report(struct xlate_in *xin, const char *s, int recurse)
5099 {
5100 struct trace_ctx *trace = CONTAINER_OF(xin, struct trace_ctx, xin);
5101 struct ds *result = trace->result;
5102
5103 ds_put_char_multiple(result, '\t', recurse);
5104 ds_put_cstr(result, s);
5105 ds_put_char(result, '\n');
5106 }
5107
5108 /* Parses the 'argc' elements of 'argv', ignoring argv[0]. The following
5109 * forms are supported:
5110 *
5111 * - [dpname] odp_flow [-generate | packet]
5112 * - bridge br_flow [-generate | packet]
5113 *
5114 * On success, initializes '*ofprotop' and 'flow' and returns NULL. On failure
5115 * returns a nonnull malloced error message. */
5116 static char * WARN_UNUSED_RESULT
5117 parse_flow_and_packet(int argc, const char *argv[],
5118 struct ofproto_dpif **ofprotop, struct flow *flow,
5119 struct ofpbuf **packetp)
5120 {
5121 const struct dpif_backer *backer = NULL;
5122 const char *error = NULL;
5123 char *m_err = NULL;
5124 struct simap port_names = SIMAP_INITIALIZER(&port_names);
5125 struct ofpbuf *packet;
5126 struct ofpbuf odp_key;
5127 struct ofpbuf odp_mask;
5128
5129 ofpbuf_init(&odp_key, 0);
5130 ofpbuf_init(&odp_mask, 0);
5131
5132 /* Handle "-generate" or a hex string as the last argument. */
5133 if (!strcmp(argv[argc - 1], "-generate")) {
5134 packet = ofpbuf_new(0);
5135 argc--;
5136 } else {
5137 error = eth_from_hex(argv[argc - 1], &packet);
5138 if (!error) {
5139 argc--;
5140 } else if (argc == 4) {
5141 /* The 3-argument form must end in "-generate' or a hex string. */
5142 goto exit;
5143 }
5144 error = NULL;
5145 }
5146
5147 /* odp_flow can have its in_port specified as a name instead of port no.
5148 * We do not yet know whether a given flow is a odp_flow or a br_flow.
5149 * But, to know whether a flow is odp_flow through odp_flow_from_string(),
5150 * we need to create a simap of name to port no. */
5151 if (argc == 3) {
5152 const char *dp_type;
5153 if (!strncmp(argv[1], "ovs-", 4)) {
5154 dp_type = argv[1] + 4;
5155 } else {
5156 dp_type = argv[1];
5157 }
5158 backer = shash_find_data(&all_dpif_backers, dp_type);
5159 } else if (argc == 2) {
5160 struct shash_node *node;
5161 if (shash_count(&all_dpif_backers) == 1) {
5162 node = shash_first(&all_dpif_backers);
5163 backer = node->data;
5164 }
5165 } else {
5166 error = "Syntax error";
5167 goto exit;
5168 }
5169 if (backer && backer->dpif) {
5170 struct dpif_port dpif_port;
5171 struct dpif_port_dump port_dump;
5172 DPIF_PORT_FOR_EACH (&dpif_port, &port_dump, backer->dpif) {
5173 simap_put(&port_names, dpif_port.name,
5174 odp_to_u32(dpif_port.port_no));
5175 }
5176 }
5177
5178 /* Parse the flow and determine whether a datapath or
5179 * bridge is specified. If function odp_flow_key_from_string()
5180 * returns 0, the flow is a odp_flow. If function
5181 * parse_ofp_exact_flow() returns NULL, the flow is a br_flow. */
5182 if (!odp_flow_from_string(argv[argc - 1], &port_names,
5183 &odp_key, &odp_mask)) {
5184 if (!backer) {
5185 error = "Cannot find the datapath";
5186 goto exit;
5187 }
5188
5189 if (xlate_receive(backer, NULL, odp_key.data, odp_key.size, flow,
5190 NULL, ofprotop, NULL, NULL, NULL, NULL)) {
5191 error = "Invalid datapath flow";
5192 goto exit;
5193 }
5194 } else {
5195 char *err = parse_ofp_exact_flow(flow, NULL, argv[argc - 1], NULL);
5196
5197 if (err) {
5198 m_err = xasprintf("Bad flow syntax: %s", err);
5199 free(err);
5200 goto exit;
5201 } else {
5202 if (argc != 3) {
5203 error = "Must specify bridge name";
5204 goto exit;
5205 }
5206
5207 *ofprotop = ofproto_dpif_lookup(argv[1]);
5208 if (!*ofprotop) {
5209 error = "Unknown bridge name";
5210 goto exit;
5211 }
5212 }
5213 }
5214
5215 /* Generate a packet, if requested. */
5216 if (packet) {
5217 if (!packet->size) {
5218 flow_compose(packet, flow);
5219 } else {
5220 union flow_in_port in_port = flow->in_port;
5221
5222 /* Use the metadata from the flow and the packet argument
5223 * to reconstruct the flow. */
5224 flow_extract(packet, flow->skb_priority, flow->pkt_mark, NULL,
5225 &in_port, flow);
5226 }
5227 }
5228
5229 exit:
5230 if (error && !m_err) {
5231 m_err = xstrdup(error);
5232 }
5233 if (m_err) {
5234 ofpbuf_delete(packet);
5235 packet = NULL;
5236 }
5237 *packetp = packet;
5238 ofpbuf_uninit(&odp_key);
5239 ofpbuf_uninit(&odp_mask);
5240 simap_destroy(&port_names);
5241 return m_err;
5242 }
5243
5244 static void
5245 ofproto_unixctl_trace(struct unixctl_conn *conn, int argc, const char *argv[],
5246 void *aux OVS_UNUSED)
5247 {
5248 struct ofproto_dpif *ofproto;
5249 struct ofpbuf *packet;
5250 char *error;
5251 struct flow flow;
5252
5253 error = parse_flow_and_packet(argc, argv, &ofproto, &flow, &packet);
5254 if (!error) {
5255 struct ds result;
5256
5257 ds_init(&result);
5258 ofproto_trace(ofproto, &flow, packet, NULL, 0, &result);
5259 unixctl_command_reply(conn, ds_cstr(&result));
5260 ds_destroy(&result);
5261 ofpbuf_delete(packet);
5262 } else {
5263 unixctl_command_reply_error(conn, error);
5264 free(error);
5265 }
5266 }
5267
5268 static void
5269 ofproto_unixctl_trace_actions(struct unixctl_conn *conn, int argc,
5270 const char *argv[], void *aux OVS_UNUSED)
5271 {
5272 enum ofputil_protocol usable_protocols;
5273 struct ofproto_dpif *ofproto;
5274 bool enforce_consistency;
5275 struct ofpbuf ofpacts;
5276 struct ofpbuf *packet;
5277 struct ds result;
5278 struct flow flow;
5279 uint16_t in_port;
5280
5281 /* Three kinds of error return values! */
5282 enum ofperr retval;
5283 char *error;
5284
5285 packet = NULL;
5286 ds_init(&result);
5287 ofpbuf_init(&ofpacts, 0);
5288
5289 /* Parse actions. */
5290 error = parse_ofpacts(argv[--argc], &ofpacts, &usable_protocols);
5291 if (error) {
5292 unixctl_command_reply_error(conn, error);
5293 free(error);
5294 goto exit;
5295 }
5296
5297 /* OpenFlow 1.1 and later suggest that the switch enforces certain forms of
5298 * consistency between the flow and the actions. With -consistent, we
5299 * enforce consistency even for a flow supported in OpenFlow 1.0. */
5300 if (!strcmp(argv[1], "-consistent")) {
5301 enforce_consistency = true;
5302 argv++;
5303 argc--;
5304 } else {
5305 enforce_consistency = false;
5306 }
5307
5308 error = parse_flow_and_packet(argc, argv, &ofproto, &flow, &packet);
5309 if (error) {
5310 unixctl_command_reply_error(conn, error);
5311 free(error);
5312 goto exit;
5313 }
5314
5315 /* Do the same checks as handle_packet_out() in ofproto.c.
5316 *
5317 * We pass a 'table_id' of 0 to ofproto_check_ofpacts(), which isn't
5318 * strictly correct because these actions aren't in any table, but it's OK
5319 * because it 'table_id' is used only to check goto_table instructions, but
5320 * packet-outs take a list of actions and therefore it can't include
5321 * instructions.
5322 *
5323 * We skip the "meter" check here because meter is an instruction, not an
5324 * action, and thus cannot appear in ofpacts. */
5325 in_port = ofp_to_u16(flow.in_port.ofp_port);
5326 if (in_port >= ofproto->up.max_ports && in_port < ofp_to_u16(OFPP_MAX)) {
5327 unixctl_command_reply_error(conn, "invalid in_port");
5328 goto exit;
5329 }
5330 if (enforce_consistency) {
5331 retval = ofpacts_check_consistency(ofpacts.data, ofpacts.size, &flow,
5332 u16_to_ofp(ofproto->up.max_ports),
5333 0, 0, usable_protocols);
5334 } else {
5335 retval = ofpacts_check(ofpacts.data, ofpacts.size, &flow,
5336 u16_to_ofp(ofproto->up.max_ports), 0, 0,
5337 &usable_protocols);
5338 }
5339
5340 if (retval) {
5341 ds_clear(&result);
5342 ds_put_format(&result, "Bad actions: %s", ofperr_to_string(retval));
5343 unixctl_command_reply_error(conn, ds_cstr(&result));
5344 goto exit;
5345 }
5346
5347 ofproto_trace(ofproto, &flow, packet, ofpacts.data, ofpacts.size, &result);
5348 unixctl_command_reply(conn, ds_cstr(&result));
5349
5350 exit:
5351 ds_destroy(&result);
5352 ofpbuf_delete(packet);
5353 ofpbuf_uninit(&ofpacts);
5354 }
5355
5356 /* Implements a "trace" through 'ofproto''s flow table, appending a textual
5357 * description of the results to 'ds'.
5358 *
5359 * The trace follows a packet with the specified 'flow' through the flow
5360 * table. 'packet' may be nonnull to trace an actual packet, with consequent
5361 * side effects (if it is nonnull then its flow must be 'flow').
5362 *
5363 * If 'ofpacts' is nonnull then its 'ofpacts_len' bytes specify the actions to
5364 * trace, otherwise the actions are determined by a flow table lookup. */
5365 static void
5366 ofproto_trace(struct ofproto_dpif *ofproto, const struct flow *flow,
5367 const struct ofpbuf *packet,
5368 const struct ofpact ofpacts[], size_t ofpacts_len,
5369 struct ds *ds)
5370 {
5371 struct rule_dpif *rule;
5372 struct flow_wildcards wc;
5373
5374 ds_put_format(ds, "Bridge: %s\n", ofproto->up.name);
5375 ds_put_cstr(ds, "Flow: ");
5376 flow_format(ds, flow);
5377 ds_put_char(ds, '\n');
5378
5379 flow_wildcards_init_catchall(&wc);
5380 if (ofpacts) {
5381 rule = NULL;
5382 } else {
5383 rule_dpif_lookup(ofproto, flow, &wc, &rule);
5384
5385 trace_format_rule(ds, 0, rule);
5386 if (rule == ofproto->miss_rule) {
5387 ds_put_cstr(ds, "\nNo match, flow generates \"packet in\"s.\n");
5388 } else if (rule == ofproto->no_packet_in_rule) {
5389 ds_put_cstr(ds, "\nNo match, packets dropped because "
5390 "OFPPC_NO_PACKET_IN is set on in_port.\n");
5391 } else if (rule == ofproto->drop_frags_rule) {
5392 ds_put_cstr(ds, "\nPackets dropped because they are IP fragments "
5393 "and the fragment handling mode is \"drop\".\n");
5394 }
5395 }
5396
5397 if (rule || ofpacts) {
5398 uint64_t odp_actions_stub[1024 / 8];
5399 struct ofpbuf odp_actions;
5400 struct trace_ctx trace;
5401 struct match match;
5402 uint16_t tcp_flags;
5403
5404 tcp_flags = packet ? packet_get_tcp_flags(packet, flow) : 0;
5405 trace.result = ds;
5406 trace.flow = *flow;
5407 ofpbuf_use_stub(&odp_actions,
5408 odp_actions_stub, sizeof odp_actions_stub);
5409 xlate_in_init(&trace.xin, ofproto, flow, rule, tcp_flags, packet);
5410 if (ofpacts) {
5411 trace.xin.ofpacts = ofpacts;
5412 trace.xin.ofpacts_len = ofpacts_len;
5413 }
5414 trace.xin.resubmit_hook = trace_resubmit;
5415 trace.xin.report_hook = trace_report;
5416
5417 xlate_actions(&trace.xin, &trace.xout);
5418 flow_wildcards_or(&trace.xout.wc, &trace.xout.wc, &wc);
5419
5420 ds_put_char(ds, '\n');
5421 trace_format_flow(ds, 0, "Final flow", &trace);
5422
5423 match_init(&match, flow, &trace.xout.wc);
5424 ds_put_cstr(ds, "Relevant fields: ");
5425 match_format(&match, ds, OFP_DEFAULT_PRIORITY);
5426 ds_put_char(ds, '\n');
5427
5428 ds_put_cstr(ds, "Datapath actions: ");
5429 format_odp_actions(ds, trace.xout.odp_actions.data,
5430 trace.xout.odp_actions.size);
5431
5432 if (trace.xout.slow) {
5433 enum slow_path_reason slow;
5434
5435 ds_put_cstr(ds, "\nThis flow is handled by the userspace "
5436 "slow path because it:");
5437
5438 slow = trace.xout.slow;
5439 while (slow) {
5440 enum slow_path_reason bit = rightmost_1bit(slow);
5441
5442 ds_put_format(ds, "\n\t- %s.",
5443 slow_path_reason_to_explanation(bit));
5444
5445 slow &= ~bit;
5446 }
5447 }
5448
5449 xlate_out_uninit(&trace.xout);
5450 }
5451
5452 rule_dpif_unref(rule);
5453 }
5454
5455 /* Runs a self-check of flow translations in 'ofproto'. Appends a message to
5456 * 'reply' describing the results. */
5457 static void
5458 ofproto_dpif_self_check__(struct ofproto_dpif *ofproto, struct ds *reply)
5459 {
5460 struct cls_cursor cursor;
5461 struct facet *facet;
5462 int errors;
5463
5464 errors = 0;
5465 ovs_rwlock_rdlock(&ofproto->facets.rwlock);
5466 cls_cursor_init(&cursor, &ofproto->facets, NULL);
5467 CLS_CURSOR_FOR_EACH (facet, cr, &cursor) {
5468 if (!facet_check_consistency(facet)) {
5469 errors++;
5470 }
5471 }
5472 ovs_rwlock_unlock(&ofproto->facets.rwlock);
5473 if (errors) {
5474 ofproto->backer->need_revalidate = REV_INCONSISTENCY;
5475 }
5476
5477 if (errors) {
5478 ds_put_format(reply, "%s: self-check failed (%d errors)\n",
5479 ofproto->up.name, errors);
5480 } else {
5481 ds_put_format(reply, "%s: self-check passed\n", ofproto->up.name);
5482 }
5483 }
5484
5485 static void
5486 ofproto_dpif_self_check(struct unixctl_conn *conn,
5487 int argc, const char *argv[], void *aux OVS_UNUSED)
5488 {
5489 struct ds reply = DS_EMPTY_INITIALIZER;
5490 struct ofproto_dpif *ofproto;
5491
5492 if (argc > 1) {
5493 ofproto = ofproto_dpif_lookup(argv[1]);
5494 if (!ofproto) {
5495 unixctl_command_reply_error(conn, "Unknown ofproto (use "
5496 "ofproto/list for help)");
5497 return;
5498 }
5499 ofproto_dpif_self_check__(ofproto, &reply);
5500 } else {
5501 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
5502 ofproto_dpif_self_check__(ofproto, &reply);
5503 }
5504 }
5505
5506 unixctl_command_reply(conn, ds_cstr(&reply));
5507 ds_destroy(&reply);
5508 }
5509
5510 /* Store the current ofprotos in 'ofproto_shash'. Returns a sorted list
5511 * of the 'ofproto_shash' nodes. It is the responsibility of the caller
5512 * to destroy 'ofproto_shash' and free the returned value. */
5513 static const struct shash_node **
5514 get_ofprotos(struct shash *ofproto_shash)
5515 {
5516 const struct ofproto_dpif *ofproto;
5517
5518 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
5519 char *name = xasprintf("%s@%s", ofproto->up.type, ofproto->up.name);
5520 shash_add_nocopy(ofproto_shash, name, ofproto);
5521 }
5522
5523 return shash_sort(ofproto_shash);
5524 }
5525
5526 static void
5527 ofproto_unixctl_dpif_dump_dps(struct unixctl_conn *conn, int argc OVS_UNUSED,
5528 const char *argv[] OVS_UNUSED,
5529 void *aux OVS_UNUSED)
5530 {
5531 struct ds ds = DS_EMPTY_INITIALIZER;
5532 struct shash ofproto_shash;
5533 const struct shash_node **sorted_ofprotos;
5534 int i;
5535
5536 shash_init(&ofproto_shash);
5537 sorted_ofprotos = get_ofprotos(&ofproto_shash);
5538 for (i = 0; i < shash_count(&ofproto_shash); i++) {
5539 const struct shash_node *node = sorted_ofprotos[i];
5540 ds_put_format(&ds, "%s\n", node->name);
5541 }
5542
5543 shash_destroy(&ofproto_shash);
5544 free(sorted_ofprotos);
5545
5546 unixctl_command_reply(conn, ds_cstr(&ds));
5547 ds_destroy(&ds);
5548 }
5549
5550 static void
5551 dpif_show_backer(const struct dpif_backer *backer, struct ds *ds)
5552 {
5553 const struct shash_node **ofprotos;
5554 struct ofproto_dpif *ofproto;
5555 struct shash ofproto_shash;
5556 uint64_t n_hit, n_missed;
5557 size_t i;
5558
5559 n_hit = n_missed = 0;
5560 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
5561 if (ofproto->backer == backer) {
5562 n_missed += ofproto->n_missed;
5563 n_hit += ofproto->n_hit;
5564 }
5565 }
5566
5567 ds_put_format(ds, "%s: hit:%"PRIu64" missed:%"PRIu64"\n",
5568 dpif_name(backer->dpif), n_hit, n_missed);
5569
5570 ds_put_format(ds, "\tflows: cur: %"PRIuSIZE", avg: %u, max: %u\n",
5571 hmap_count(&backer->subfacets), backer->avg_n_subfacet,
5572 backer->max_n_subfacet);
5573
5574 shash_init(&ofproto_shash);
5575 ofprotos = get_ofprotos(&ofproto_shash);
5576 for (i = 0; i < shash_count(&ofproto_shash); i++) {
5577 struct ofproto_dpif *ofproto = ofprotos[i]->data;
5578 const struct shash_node **ports;
5579 size_t j;
5580
5581 if (ofproto->backer != backer) {
5582 continue;
5583 }
5584
5585 ds_put_format(ds, "\t%s: hit:%"PRIu64" missed:%"PRIu64"\n",
5586 ofproto->up.name, ofproto->n_hit, ofproto->n_missed);
5587
5588 ports = shash_sort(&ofproto->up.port_by_name);
5589 for (j = 0; j < shash_count(&ofproto->up.port_by_name); j++) {
5590 const struct shash_node *node = ports[j];
5591 struct ofport *ofport = node->data;
5592 struct smap config;
5593 odp_port_t odp_port;
5594
5595 ds_put_format(ds, "\t\t%s %u/", netdev_get_name(ofport->netdev),
5596 ofport->ofp_port);
5597
5598 odp_port = ofp_port_to_odp_port(ofproto, ofport->ofp_port);
5599 if (odp_port != ODPP_NONE) {
5600 ds_put_format(ds, "%"PRIu32":", odp_port);
5601 } else {
5602 ds_put_cstr(ds, "none:");
5603 }
5604
5605 ds_put_format(ds, " (%s", netdev_get_type(ofport->netdev));
5606
5607 smap_init(&config);
5608 if (!netdev_get_config(ofport->netdev, &config)) {
5609 const struct smap_node **nodes;
5610 size_t i;
5611
5612 nodes = smap_sort(&config);
5613 for (i = 0; i < smap_count(&config); i++) {
5614 const struct smap_node *node = nodes[i];
5615 ds_put_format(ds, "%c %s=%s", i ? ',' : ':',
5616 node->key, node->value);
5617 }
5618 free(nodes);
5619 }
5620 smap_destroy(&config);
5621
5622 ds_put_char(ds, ')');
5623 ds_put_char(ds, '\n');
5624 }
5625 free(ports);
5626 }
5627 shash_destroy(&ofproto_shash);
5628 free(ofprotos);
5629 }
5630
5631 static void
5632 ofproto_unixctl_dpif_show(struct unixctl_conn *conn, int argc OVS_UNUSED,
5633 const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED)
5634 {
5635 struct ds ds = DS_EMPTY_INITIALIZER;
5636 const struct shash_node **backers;
5637 int i;
5638
5639 backers = shash_sort(&all_dpif_backers);
5640 for (i = 0; i < shash_count(&all_dpif_backers); i++) {
5641 dpif_show_backer(backers[i]->data, &ds);
5642 }
5643 free(backers);
5644
5645 unixctl_command_reply(conn, ds_cstr(&ds));
5646 ds_destroy(&ds);
5647 }
5648
5649 /* Dump the megaflow (facet) cache. This is useful to check the
5650 * correctness of flow wildcarding, since the same mechanism is used for
5651 * both xlate caching and kernel wildcarding.
5652 *
5653 * It's important to note that in the output the flow description uses
5654 * OpenFlow (OFP) ports, but the actions use datapath (ODP) ports.
5655 *
5656 * This command is only needed for advanced debugging, so it's not
5657 * documented in the man page. */
5658 static void
5659 ofproto_unixctl_dpif_dump_megaflows(struct unixctl_conn *conn,
5660 int argc OVS_UNUSED, const char *argv[],
5661 void *aux OVS_UNUSED)
5662 {
5663 struct ds ds = DS_EMPTY_INITIALIZER;
5664 const struct ofproto_dpif *ofproto;
5665 long long int now = time_msec();
5666 struct cls_cursor cursor;
5667 struct facet *facet;
5668
5669 ofproto = ofproto_dpif_lookup(argv[1]);
5670 if (!ofproto) {
5671 unixctl_command_reply_error(conn, "no such bridge");
5672 return;
5673 }
5674
5675 ovs_rwlock_rdlock(&ofproto->facets.rwlock);
5676 cls_cursor_init(&cursor, &ofproto->facets, NULL);
5677 CLS_CURSOR_FOR_EACH (facet, cr, &cursor) {
5678 cls_rule_format(&facet->cr, &ds);
5679 ds_put_cstr(&ds, ", ");
5680 ds_put_format(&ds, "n_subfacets:%"PRIuSIZE", ", list_size(&facet->subfacets));
5681 ds_put_format(&ds, "used:%.3fs, ", (now - facet->used) / 1000.0);
5682 ds_put_cstr(&ds, "Datapath actions: ");
5683 if (facet->xout.slow) {
5684 uint64_t slow_path_stub[128 / 8];
5685 const struct nlattr *actions;
5686 size_t actions_len;
5687
5688 compose_slow_path(ofproto, &facet->flow, facet->xout.slow,
5689 slow_path_stub, sizeof slow_path_stub,
5690 &actions, &actions_len);
5691 format_odp_actions(&ds, actions, actions_len);
5692 } else {
5693 format_odp_actions(&ds, facet->xout.odp_actions.data,
5694 facet->xout.odp_actions.size);
5695 }
5696 ds_put_cstr(&ds, "\n");
5697 }
5698 ovs_rwlock_unlock(&ofproto->facets.rwlock);
5699
5700 ds_chomp(&ds, '\n');
5701 unixctl_command_reply(conn, ds_cstr(&ds));
5702 ds_destroy(&ds);
5703 }
5704
5705 /* Disable using the megaflows.
5706 *
5707 * This command is only needed for advanced debugging, so it's not
5708 * documented in the man page. */
5709 static void
5710 ofproto_unixctl_dpif_disable_megaflows(struct unixctl_conn *conn,
5711 int argc OVS_UNUSED,
5712 const char *argv[] OVS_UNUSED,
5713 void *aux OVS_UNUSED)
5714 {
5715 struct ofproto_dpif *ofproto;
5716
5717 enable_megaflows = false;
5718
5719 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
5720 flush(&ofproto->up);
5721 }
5722
5723 unixctl_command_reply(conn, "megaflows disabled");
5724 }
5725
5726 /* Re-enable using megaflows.
5727 *
5728 * This command is only needed for advanced debugging, so it's not
5729 * documented in the man page. */
5730 static void
5731 ofproto_unixctl_dpif_enable_megaflows(struct unixctl_conn *conn,
5732 int argc OVS_UNUSED,
5733 const char *argv[] OVS_UNUSED,
5734 void *aux OVS_UNUSED)
5735 {
5736 struct ofproto_dpif *ofproto;
5737
5738 enable_megaflows = true;
5739
5740 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
5741 flush(&ofproto->up);
5742 }
5743
5744 unixctl_command_reply(conn, "megaflows enabled");
5745 }
5746
5747 static void
5748 ofproto_unixctl_dpif_dump_flows(struct unixctl_conn *conn,
5749 int argc OVS_UNUSED, const char *argv[],
5750 void *aux OVS_UNUSED)
5751 {
5752 struct ds ds = DS_EMPTY_INITIALIZER;
5753 const struct ofproto_dpif *ofproto;
5754 struct subfacet *subfacet;
5755
5756 ofproto = ofproto_dpif_lookup(argv[1]);
5757 if (!ofproto) {
5758 unixctl_command_reply_error(conn, "no such bridge");
5759 return;
5760 }
5761
5762 update_stats(ofproto->backer);
5763
5764 HMAP_FOR_EACH (subfacet, hmap_node, &ofproto->backer->subfacets) {
5765 struct facet *facet = subfacet->facet;
5766 struct odputil_keybuf maskbuf;
5767 struct ofpbuf mask;
5768
5769 if (facet->ofproto != ofproto) {
5770 continue;
5771 }
5772
5773 ofpbuf_use_stack(&mask, &maskbuf, sizeof maskbuf);
5774 if (enable_megaflows) {
5775 odp_flow_key_from_mask(&mask, &facet->xout.wc.masks,
5776 &facet->flow, UINT32_MAX);
5777 }
5778
5779 odp_flow_format(subfacet->key, subfacet->key_len,
5780 mask.data, mask.size, NULL, &ds, false);
5781
5782 ds_put_format(&ds, ", packets:%"PRIu64", bytes:%"PRIu64", used:",
5783 subfacet->dp_packet_count, subfacet->dp_byte_count);
5784 if (subfacet->used) {
5785 ds_put_format(&ds, "%.3fs",
5786 (time_msec() - subfacet->used) / 1000.0);
5787 } else {
5788 ds_put_format(&ds, "never");
5789 }
5790 if (subfacet->facet->tcp_flags) {
5791 ds_put_cstr(&ds, ", flags:");
5792 packet_format_tcp_flags(&ds, subfacet->facet->tcp_flags);
5793 }
5794
5795 ds_put_cstr(&ds, ", actions:");
5796 if (facet->xout.slow) {
5797 uint64_t slow_path_stub[128 / 8];
5798 const struct nlattr *actions;
5799 size_t actions_len;
5800
5801 compose_slow_path(ofproto, &facet->flow, facet->xout.slow,
5802 slow_path_stub, sizeof slow_path_stub,
5803 &actions, &actions_len);
5804 format_odp_actions(&ds, actions, actions_len);
5805 } else {
5806 format_odp_actions(&ds, facet->xout.odp_actions.data,
5807 facet->xout.odp_actions.size);
5808 }
5809 ds_put_char(&ds, '\n');
5810 }
5811
5812 unixctl_command_reply(conn, ds_cstr(&ds));
5813 ds_destroy(&ds);
5814 }
5815
5816 static void
5817 ofproto_dpif_unixctl_init(void)
5818 {
5819 static bool registered;
5820 if (registered) {
5821 return;
5822 }
5823 registered = true;
5824
5825 unixctl_command_register(
5826 "ofproto/trace",
5827 "{[dp_name] odp_flow | bridge br_flow} [-generate|packet]",
5828 1, 3, ofproto_unixctl_trace, NULL);
5829 unixctl_command_register(
5830 "ofproto/trace-packet-out",
5831 "[-consistent] {[dp_name] odp_flow | bridge br_flow} [-generate|packet] actions",
5832 2, 6, ofproto_unixctl_trace_actions, NULL);
5833 unixctl_command_register("fdb/flush", "[bridge]", 0, 1,
5834 ofproto_unixctl_fdb_flush, NULL);
5835 unixctl_command_register("fdb/show", "bridge", 1, 1,
5836 ofproto_unixctl_fdb_show, NULL);
5837 unixctl_command_register("ofproto/self-check", "[bridge]", 0, 1,
5838 ofproto_dpif_self_check, NULL);
5839 unixctl_command_register("dpif/dump-dps", "", 0, 0,
5840 ofproto_unixctl_dpif_dump_dps, NULL);
5841 unixctl_command_register("dpif/show", "", 0, 0, ofproto_unixctl_dpif_show,
5842 NULL);
5843 unixctl_command_register("dpif/dump-flows", "bridge", 1, 1,
5844 ofproto_unixctl_dpif_dump_flows, NULL);
5845 unixctl_command_register("dpif/dump-megaflows", "bridge", 1, 1,
5846 ofproto_unixctl_dpif_dump_megaflows, NULL);
5847 unixctl_command_register("dpif/disable-megaflows", "", 0, 0,
5848 ofproto_unixctl_dpif_disable_megaflows, NULL);
5849 unixctl_command_register("dpif/enable-megaflows", "", 0, 0,
5850 ofproto_unixctl_dpif_enable_megaflows, NULL);
5851 }
5852 \f
5853 /* Linux VLAN device support (e.g. "eth0.10" for VLAN 10.)
5854 *
5855 * This is deprecated. It is only for compatibility with broken device drivers
5856 * in old versions of Linux that do not properly support VLANs when VLAN
5857 * devices are not used. When broken device drivers are no longer in
5858 * widespread use, we will delete these interfaces. */
5859
5860 static int
5861 set_realdev(struct ofport *ofport_, ofp_port_t realdev_ofp_port, int vid)
5862 {
5863 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport_->ofproto);
5864 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
5865
5866 if (realdev_ofp_port == ofport->realdev_ofp_port
5867 && vid == ofport->vlandev_vid) {
5868 return 0;
5869 }
5870
5871 ofproto->backer->need_revalidate = REV_RECONFIGURE;
5872
5873 if (ofport->realdev_ofp_port) {
5874 vsp_remove(ofport);
5875 }
5876 if (realdev_ofp_port && ofport->bundle) {
5877 /* vlandevs are enslaved to their realdevs, so they are not allowed to
5878 * themselves be part of a bundle. */
5879 bundle_set(ofport->up.ofproto, ofport->bundle, NULL);
5880 }
5881
5882 ofport->realdev_ofp_port = realdev_ofp_port;
5883 ofport->vlandev_vid = vid;
5884
5885 if (realdev_ofp_port) {
5886 vsp_add(ofport, realdev_ofp_port, vid);
5887 }
5888
5889 return 0;
5890 }
5891
5892 static uint32_t
5893 hash_realdev_vid(ofp_port_t realdev_ofp_port, int vid)
5894 {
5895 return hash_2words(ofp_to_u16(realdev_ofp_port), vid);
5896 }
5897
5898 bool
5899 ofproto_has_vlan_splinters(const struct ofproto_dpif *ofproto)
5900 OVS_EXCLUDED(ofproto->vsp_mutex)
5901 {
5902 bool ret;
5903
5904 ovs_mutex_lock(&ofproto->vsp_mutex);
5905 ret = !hmap_is_empty(&ofproto->realdev_vid_map);
5906 ovs_mutex_unlock(&ofproto->vsp_mutex);
5907 return ret;
5908 }
5909
5910 static ofp_port_t
5911 vsp_realdev_to_vlandev__(const struct ofproto_dpif *ofproto,
5912 ofp_port_t realdev_ofp_port, ovs_be16 vlan_tci)
5913 OVS_REQUIRES(ofproto->vsp_mutex)
5914 {
5915 if (!hmap_is_empty(&ofproto->realdev_vid_map)) {
5916 int vid = vlan_tci_to_vid(vlan_tci);
5917 const struct vlan_splinter *vsp;
5918
5919 HMAP_FOR_EACH_WITH_HASH (vsp, realdev_vid_node,
5920 hash_realdev_vid(realdev_ofp_port, vid),
5921 &ofproto->realdev_vid_map) {
5922 if (vsp->realdev_ofp_port == realdev_ofp_port
5923 && vsp->vid == vid) {
5924 return vsp->vlandev_ofp_port;
5925 }
5926 }
5927 }
5928 return realdev_ofp_port;
5929 }
5930
5931 /* Returns the OFP port number of the Linux VLAN device that corresponds to
5932 * 'vlan_tci' on the network device with port number 'realdev_ofp_port' in
5933 * 'struct ofport_dpif'. For example, given 'realdev_ofp_port' of eth0 and
5934 * 'vlan_tci' 9, it would return the port number of eth0.9.
5935 *
5936 * Unless VLAN splinters are enabled for port 'realdev_ofp_port', this
5937 * function just returns its 'realdev_ofp_port' argument. */
5938 ofp_port_t
5939 vsp_realdev_to_vlandev(const struct ofproto_dpif *ofproto,
5940 ofp_port_t realdev_ofp_port, ovs_be16 vlan_tci)
5941 OVS_EXCLUDED(ofproto->vsp_mutex)
5942 {
5943 ofp_port_t ret;
5944
5945 ovs_mutex_lock(&ofproto->vsp_mutex);
5946 ret = vsp_realdev_to_vlandev__(ofproto, realdev_ofp_port, vlan_tci);
5947 ovs_mutex_unlock(&ofproto->vsp_mutex);
5948 return ret;
5949 }
5950
5951 static struct vlan_splinter *
5952 vlandev_find(const struct ofproto_dpif *ofproto, ofp_port_t vlandev_ofp_port)
5953 {
5954 struct vlan_splinter *vsp;
5955
5956 HMAP_FOR_EACH_WITH_HASH (vsp, vlandev_node,
5957 hash_ofp_port(vlandev_ofp_port),
5958 &ofproto->vlandev_map) {
5959 if (vsp->vlandev_ofp_port == vlandev_ofp_port) {
5960 return vsp;
5961 }
5962 }
5963
5964 return NULL;
5965 }
5966
5967 /* Returns the OpenFlow port number of the "real" device underlying the Linux
5968 * VLAN device with OpenFlow port number 'vlandev_ofp_port' and stores the
5969 * VLAN VID of the Linux VLAN device in '*vid'. For example, given
5970 * 'vlandev_ofp_port' of eth0.9, it would return the OpenFlow port number of
5971 * eth0 and store 9 in '*vid'.
5972 *
5973 * Returns 0 and does not modify '*vid' if 'vlandev_ofp_port' is not a Linux
5974 * VLAN device. Unless VLAN splinters are enabled, this is what this function
5975 * always does.*/
5976 static ofp_port_t
5977 vsp_vlandev_to_realdev(const struct ofproto_dpif *ofproto,
5978 ofp_port_t vlandev_ofp_port, int *vid)
5979 OVS_REQUIRES(ofproto->vsp_mutex)
5980 {
5981 if (!hmap_is_empty(&ofproto->vlandev_map)) {
5982 const struct vlan_splinter *vsp;
5983
5984 vsp = vlandev_find(ofproto, vlandev_ofp_port);
5985 if (vsp) {
5986 if (vid) {
5987 *vid = vsp->vid;
5988 }
5989 return vsp->realdev_ofp_port;
5990 }
5991 }
5992 return 0;
5993 }
5994
5995 /* Given 'flow', a flow representing a packet received on 'ofproto', checks
5996 * whether 'flow->in_port' represents a Linux VLAN device. If so, changes
5997 * 'flow->in_port' to the "real" device backing the VLAN device, sets
5998 * 'flow->vlan_tci' to the VLAN VID, and returns true. Otherwise (which is
5999 * always the case unless VLAN splinters are enabled), returns false without
6000 * making any changes. */
6001 bool
6002 vsp_adjust_flow(const struct ofproto_dpif *ofproto, struct flow *flow)
6003 OVS_EXCLUDED(ofproto->vsp_mutex)
6004 {
6005 ofp_port_t realdev;
6006 int vid;
6007
6008 ovs_mutex_lock(&ofproto->vsp_mutex);
6009 realdev = vsp_vlandev_to_realdev(ofproto, flow->in_port.ofp_port, &vid);
6010 ovs_mutex_unlock(&ofproto->vsp_mutex);
6011 if (!realdev) {
6012 return false;
6013 }
6014
6015 /* Cause the flow to be processed as if it came in on the real device with
6016 * the VLAN device's VLAN ID. */
6017 flow->in_port.ofp_port = realdev;
6018 flow->vlan_tci = htons((vid & VLAN_VID_MASK) | VLAN_CFI);
6019 return true;
6020 }
6021
6022 static void
6023 vsp_remove(struct ofport_dpif *port)
6024 {
6025 struct ofproto_dpif *ofproto = ofproto_dpif_cast(port->up.ofproto);
6026 struct vlan_splinter *vsp;
6027
6028 ovs_mutex_lock(&ofproto->vsp_mutex);
6029 vsp = vlandev_find(ofproto, port->up.ofp_port);
6030 if (vsp) {
6031 hmap_remove(&ofproto->vlandev_map, &vsp->vlandev_node);
6032 hmap_remove(&ofproto->realdev_vid_map, &vsp->realdev_vid_node);
6033 free(vsp);
6034
6035 port->realdev_ofp_port = 0;
6036 } else {
6037 VLOG_ERR("missing vlan device record");
6038 }
6039 ovs_mutex_unlock(&ofproto->vsp_mutex);
6040 }
6041
6042 static void
6043 vsp_add(struct ofport_dpif *port, ofp_port_t realdev_ofp_port, int vid)
6044 {
6045 struct ofproto_dpif *ofproto = ofproto_dpif_cast(port->up.ofproto);
6046
6047 ovs_mutex_lock(&ofproto->vsp_mutex);
6048 if (!vsp_vlandev_to_realdev(ofproto, port->up.ofp_port, NULL)
6049 && (vsp_realdev_to_vlandev__(ofproto, realdev_ofp_port, htons(vid))
6050 == realdev_ofp_port)) {
6051 struct vlan_splinter *vsp;
6052
6053 vsp = xmalloc(sizeof *vsp);
6054 vsp->realdev_ofp_port = realdev_ofp_port;
6055 vsp->vlandev_ofp_port = port->up.ofp_port;
6056 vsp->vid = vid;
6057
6058 port->realdev_ofp_port = realdev_ofp_port;
6059
6060 hmap_insert(&ofproto->vlandev_map, &vsp->vlandev_node,
6061 hash_ofp_port(port->up.ofp_port));
6062 hmap_insert(&ofproto->realdev_vid_map, &vsp->realdev_vid_node,
6063 hash_realdev_vid(realdev_ofp_port, vid));
6064 } else {
6065 VLOG_ERR("duplicate vlan device record");
6066 }
6067 ovs_mutex_unlock(&ofproto->vsp_mutex);
6068 }
6069
6070 static odp_port_t
6071 ofp_port_to_odp_port(const struct ofproto_dpif *ofproto, ofp_port_t ofp_port)
6072 {
6073 const struct ofport_dpif *ofport = get_ofp_port(ofproto, ofp_port);
6074 return ofport ? ofport->odp_port : ODPP_NONE;
6075 }
6076
6077 struct ofport_dpif *
6078 odp_port_to_ofport(const struct dpif_backer *backer, odp_port_t odp_port)
6079 {
6080 struct ofport_dpif *port;
6081
6082 ovs_rwlock_rdlock(&backer->odp_to_ofport_lock);
6083 HMAP_FOR_EACH_IN_BUCKET (port, odp_port_node, hash_odp_port(odp_port),
6084 &backer->odp_to_ofport_map) {
6085 if (port->odp_port == odp_port) {
6086 ovs_rwlock_unlock(&backer->odp_to_ofport_lock);
6087 return port;
6088 }
6089 }
6090
6091 ovs_rwlock_unlock(&backer->odp_to_ofport_lock);
6092 return NULL;
6093 }
6094
6095 static ofp_port_t
6096 odp_port_to_ofp_port(const struct ofproto_dpif *ofproto, odp_port_t odp_port)
6097 {
6098 struct ofport_dpif *port;
6099
6100 port = odp_port_to_ofport(ofproto->backer, odp_port);
6101 if (port && &ofproto->up == port->up.ofproto) {
6102 return port->up.ofp_port;
6103 } else {
6104 return OFPP_NONE;
6105 }
6106 }
6107
6108 const struct ofproto_class ofproto_dpif_class = {
6109 init,
6110 enumerate_types,
6111 enumerate_names,
6112 del,
6113 port_open_type,
6114 type_run,
6115 type_wait,
6116 alloc,
6117 construct,
6118 destruct,
6119 dealloc,
6120 run,
6121 wait,
6122 get_memory_usage,
6123 type_get_memory_usage,
6124 flush,
6125 get_features,
6126 get_tables,
6127 port_alloc,
6128 port_construct,
6129 port_destruct,
6130 port_dealloc,
6131 port_modified,
6132 port_reconfigured,
6133 port_query_by_name,
6134 port_add,
6135 port_del,
6136 port_get_stats,
6137 port_dump_start,
6138 port_dump_next,
6139 port_dump_done,
6140 port_poll,
6141 port_poll_wait,
6142 port_is_lacp_current,
6143 NULL, /* rule_choose_table */
6144 rule_alloc,
6145 rule_construct,
6146 rule_insert,
6147 rule_delete,
6148 rule_destruct,
6149 rule_dealloc,
6150 rule_get_stats,
6151 rule_execute,
6152 rule_modify_actions,
6153 set_frag_handling,
6154 packet_out,
6155 set_netflow,
6156 get_netflow_ids,
6157 set_sflow,
6158 set_ipfix,
6159 set_cfm,
6160 get_cfm_status,
6161 set_bfd,
6162 get_bfd_status,
6163 set_stp,
6164 get_stp_status,
6165 set_stp_port,
6166 get_stp_port_status,
6167 get_stp_port_stats,
6168 set_queues,
6169 bundle_set,
6170 bundle_remove,
6171 mirror_set__,
6172 mirror_get_stats__,
6173 set_flood_vlans,
6174 is_mirror_output_bundle,
6175 forward_bpdu_changed,
6176 set_mac_table_config,
6177 set_realdev,
6178 NULL, /* meter_get_features */
6179 NULL, /* meter_set */
6180 NULL, /* meter_get */
6181 NULL, /* meter_del */
6182 group_alloc, /* group_alloc */
6183 group_construct, /* group_construct */
6184 group_destruct, /* group_destruct */
6185 group_dealloc, /* group_dealloc */
6186 group_modify, /* group_modify */
6187 group_get_stats, /* group_get_stats */
6188 };