]> git.proxmox.com Git - mirror_ovs.git/blob - ofproto/ofproto-dpif.c
ofproto-dpif: Never wildcard dl_type for "normal" action.
[mirror_ovs.git] / ofproto / ofproto-dpif.c
1 /*
2 * Copyright (c) 2009, 2010, 2011, 2012, 2013 Nicira, Inc.
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at:
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <config.h>
18
19 #include "ofproto/ofproto-provider.h"
20
21 #include <errno.h>
22
23 #include "bfd.h"
24 #include "bond.h"
25 #include "bundle.h"
26 #include "byte-order.h"
27 #include "connmgr.h"
28 #include "coverage.h"
29 #include "cfm.h"
30 #include "dpif.h"
31 #include "dynamic-string.h"
32 #include "fail-open.h"
33 #include "hmapx.h"
34 #include "lacp.h"
35 #include "learn.h"
36 #include "mac-learning.h"
37 #include "meta-flow.h"
38 #include "multipath.h"
39 #include "netdev-vport.h"
40 #include "netdev.h"
41 #include "netlink.h"
42 #include "nx-match.h"
43 #include "odp-util.h"
44 #include "odp-execute.h"
45 #include "ofp-util.h"
46 #include "ofpbuf.h"
47 #include "ofp-actions.h"
48 #include "ofp-parse.h"
49 #include "ofp-print.h"
50 #include "ofproto-dpif-governor.h"
51 #include "ofproto-dpif-ipfix.h"
52 #include "ofproto-dpif-sflow.h"
53 #include "poll-loop.h"
54 #include "simap.h"
55 #include "smap.h"
56 #include "timer.h"
57 #include "tunnel.h"
58 #include "unaligned.h"
59 #include "unixctl.h"
60 #include "vlan-bitmap.h"
61 #include "vlog.h"
62
63 VLOG_DEFINE_THIS_MODULE(ofproto_dpif);
64
65 COVERAGE_DEFINE(ofproto_dpif_expired);
66 COVERAGE_DEFINE(ofproto_dpif_xlate);
67 COVERAGE_DEFINE(facet_changed_rule);
68 COVERAGE_DEFINE(facet_revalidate);
69 COVERAGE_DEFINE(facet_unexpected);
70 COVERAGE_DEFINE(facet_suppress);
71
72 /* Maximum depth of flow table recursion (due to resubmit actions) in a
73 * flow translation. */
74 #define MAX_RESUBMIT_RECURSION 64
75
76 /* Number of implemented OpenFlow tables. */
77 enum { N_TABLES = 255 };
78 enum { TBL_INTERNAL = N_TABLES - 1 }; /* Used for internal hidden rules. */
79 BUILD_ASSERT_DECL(N_TABLES >= 2 && N_TABLES <= 255);
80
81 struct ofport_dpif;
82 struct ofproto_dpif;
83 struct flow_miss;
84 struct facet;
85
86 struct rule_dpif {
87 struct rule up;
88
89 /* These statistics:
90 *
91 * - Do include packets and bytes from facets that have been deleted or
92 * whose own statistics have been folded into the rule.
93 *
94 * - Do include packets and bytes sent "by hand" that were accounted to
95 * the rule without any facet being involved (this is a rare corner
96 * case in rule_execute()).
97 *
98 * - Do not include packet or bytes that can be obtained from any facet's
99 * packet_count or byte_count member or that can be obtained from the
100 * datapath by, e.g., dpif_flow_get() for any subfacet.
101 */
102 uint64_t packet_count; /* Number of packets received. */
103 uint64_t byte_count; /* Number of bytes received. */
104
105 tag_type tag; /* Caches rule_calculate_tag() result. */
106
107 struct list facets; /* List of "struct facet"s. */
108 };
109
110 static struct rule_dpif *rule_dpif_cast(const struct rule *rule)
111 {
112 return rule ? CONTAINER_OF(rule, struct rule_dpif, up) : NULL;
113 }
114
115 static struct rule_dpif *rule_dpif_lookup(struct ofproto_dpif *,
116 const struct flow *,
117 struct flow_wildcards *wc);
118 static struct rule_dpif *rule_dpif_lookup__(struct ofproto_dpif *,
119 const struct flow *,
120 struct flow_wildcards *wc,
121 uint8_t table);
122 static struct rule_dpif *rule_dpif_miss_rule(struct ofproto_dpif *ofproto,
123 const struct flow *flow);
124
125 static void rule_get_stats(struct rule *, uint64_t *packets, uint64_t *bytes);
126 static void rule_credit_stats(struct rule_dpif *,
127 const struct dpif_flow_stats *);
128 static tag_type rule_calculate_tag(const struct flow *,
129 const struct minimask *, uint32_t basis);
130 static void rule_invalidate(const struct rule_dpif *);
131
132 #define MAX_MIRRORS 32
133 typedef uint32_t mirror_mask_t;
134 #define MIRROR_MASK_C(X) UINT32_C(X)
135 BUILD_ASSERT_DECL(sizeof(mirror_mask_t) * CHAR_BIT >= MAX_MIRRORS);
136 struct ofmirror {
137 struct ofproto_dpif *ofproto; /* Owning ofproto. */
138 size_t idx; /* In ofproto's "mirrors" array. */
139 void *aux; /* Key supplied by ofproto's client. */
140 char *name; /* Identifier for log messages. */
141
142 /* Selection criteria. */
143 struct hmapx srcs; /* Contains "struct ofbundle *"s. */
144 struct hmapx dsts; /* Contains "struct ofbundle *"s. */
145 unsigned long *vlans; /* Bitmap of chosen VLANs, NULL selects all. */
146
147 /* Output (exactly one of out == NULL and out_vlan == -1 is true). */
148 struct ofbundle *out; /* Output port or NULL. */
149 int out_vlan; /* Output VLAN or -1. */
150 mirror_mask_t dup_mirrors; /* Bitmap of mirrors with the same output. */
151
152 /* Counters. */
153 int64_t packet_count; /* Number of packets sent. */
154 int64_t byte_count; /* Number of bytes sent. */
155 };
156
157 static void mirror_destroy(struct ofmirror *);
158 static void update_mirror_stats(struct ofproto_dpif *ofproto,
159 mirror_mask_t mirrors,
160 uint64_t packets, uint64_t bytes);
161
162 struct ofbundle {
163 struct hmap_node hmap_node; /* In struct ofproto's "bundles" hmap. */
164 struct ofproto_dpif *ofproto; /* Owning ofproto. */
165 void *aux; /* Key supplied by ofproto's client. */
166 char *name; /* Identifier for log messages. */
167
168 /* Configuration. */
169 struct list ports; /* Contains "struct ofport"s. */
170 enum port_vlan_mode vlan_mode; /* VLAN mode */
171 int vlan; /* -1=trunk port, else a 12-bit VLAN ID. */
172 unsigned long *trunks; /* Bitmap of trunked VLANs, if 'vlan' == -1.
173 * NULL if all VLANs are trunked. */
174 struct lacp *lacp; /* LACP if LACP is enabled, otherwise NULL. */
175 struct bond *bond; /* Nonnull iff more than one port. */
176 bool use_priority_tags; /* Use 802.1p tag for frames in VLAN 0? */
177
178 /* Status. */
179 bool floodable; /* True if no port has OFPUTIL_PC_NO_FLOOD set. */
180
181 /* Port mirroring info. */
182 mirror_mask_t src_mirrors; /* Mirrors triggered when packet received. */
183 mirror_mask_t dst_mirrors; /* Mirrors triggered when packet sent. */
184 mirror_mask_t mirror_out; /* Mirrors that output to this bundle. */
185 };
186
187 static void bundle_remove(struct ofport *);
188 static void bundle_update(struct ofbundle *);
189 static void bundle_destroy(struct ofbundle *);
190 static void bundle_del_port(struct ofport_dpif *);
191 static void bundle_run(struct ofbundle *);
192 static void bundle_wait(struct ofbundle *);
193 static struct ofbundle *lookup_input_bundle(const struct ofproto_dpif *,
194 uint16_t in_port, bool warn,
195 struct ofport_dpif **in_ofportp);
196
197 /* A controller may use OFPP_NONE as the ingress port to indicate that
198 * it did not arrive on a "real" port. 'ofpp_none_bundle' exists for
199 * when an input bundle is needed for validation (e.g., mirroring or
200 * OFPP_NORMAL processing). It is not connected to an 'ofproto' or have
201 * any 'port' structs, so care must be taken when dealing with it. */
202 static struct ofbundle ofpp_none_bundle = {
203 .name = "OFPP_NONE",
204 .vlan_mode = PORT_VLAN_TRUNK
205 };
206
207 static void stp_run(struct ofproto_dpif *ofproto);
208 static void stp_wait(struct ofproto_dpif *ofproto);
209 static int set_stp_port(struct ofport *,
210 const struct ofproto_port_stp_settings *);
211
212 static bool ofbundle_includes_vlan(const struct ofbundle *, uint16_t vlan);
213
214 struct xlate_ctx;
215
216 struct xlate_out {
217 /* Wildcards relevant in translation. Any fields that were used to
218 * calculate the action must be set for caching and kernel
219 * wildcarding to work. For example, if the flow lookup involved
220 * performing the "normal" action on IPv4 and ARP packets, 'wc'
221 * would have the 'in_port' (always set), 'dl_type' (flow match),
222 * 'vlan_tci' (normal action), and 'dl_dst' (normal action) fields
223 * set. */
224 struct flow_wildcards wc;
225
226 tag_type tags; /* Tags associated with actions. */
227 enum slow_path_reason slow; /* 0 if fast path may be used. */
228 bool has_learn; /* Actions include NXAST_LEARN? */
229 bool has_normal; /* Actions output to OFPP_NORMAL? */
230 bool has_fin_timeout; /* Actions include NXAST_FIN_TIMEOUT? */
231 uint16_t nf_output_iface; /* Output interface index for NetFlow. */
232 mirror_mask_t mirrors; /* Bitmap of associated mirrors. */
233
234 uint64_t odp_actions_stub[256 / 8];
235 struct ofpbuf odp_actions;
236 };
237
238 struct xlate_in {
239 struct ofproto_dpif *ofproto;
240
241 /* Flow to which the OpenFlow actions apply. xlate_actions() will modify
242 * this flow when actions change header fields. */
243 struct flow flow;
244
245 /* The packet corresponding to 'flow', or a null pointer if we are
246 * revalidating without a packet to refer to. */
247 const struct ofpbuf *packet;
248
249 /* Should OFPP_NORMAL update the MAC learning table? Should "learn"
250 * actions update the flow table?
251 *
252 * We want to update these tables if we are actually processing a packet,
253 * or if we are accounting for packets that the datapath has processed, but
254 * not if we are just revalidating. */
255 bool may_learn;
256
257 /* The rule initiating translation or NULL. */
258 struct rule_dpif *rule;
259
260 /* The actions to translate. If 'rule' is not NULL, these may be NULL. */
261 const struct ofpact *ofpacts;
262 size_t ofpacts_len;
263
264 /* Union of the set of TCP flags seen so far in this flow. (Used only by
265 * NXAST_FIN_TIMEOUT. Set to zero to avoid updating updating rules'
266 * timeouts.) */
267 uint8_t tcp_flags;
268
269 /* If nonnull, flow translation calls this function just before executing a
270 * resubmit or OFPP_TABLE action. In addition, disables logging of traces
271 * when the recursion depth is exceeded.
272 *
273 * 'rule' is the rule being submitted into. It will be null if the
274 * resubmit or OFPP_TABLE action didn't find a matching rule.
275 *
276 * This is normally null so the client has to set it manually after
277 * calling xlate_in_init(). */
278 void (*resubmit_hook)(struct xlate_ctx *, struct rule_dpif *rule);
279
280 /* If nonnull, flow translation calls this function to report some
281 * significant decision, e.g. to explain why OFPP_NORMAL translation
282 * dropped a packet. */
283 void (*report_hook)(struct xlate_ctx *, const char *s);
284
285 /* If nonnull, flow translation credits the specified statistics to each
286 * rule reached through a resubmit or OFPP_TABLE action.
287 *
288 * This is normally null so the client has to set it manually after
289 * calling xlate_in_init(). */
290 const struct dpif_flow_stats *resubmit_stats;
291 };
292
293 /* Context used by xlate_actions() and its callees. */
294 struct xlate_ctx {
295 struct xlate_in *xin;
296 struct xlate_out *xout;
297
298 struct ofproto_dpif *ofproto;
299
300 /* Flow at the last commit. */
301 struct flow base_flow;
302
303 /* Tunnel IP destination address as received. This is stored separately
304 * as the base_flow.tunnel is cleared on init to reflect the datapath
305 * behavior. Used to make sure not to send tunneled output to ourselves,
306 * which might lead to an infinite loop. This could happen easily
307 * if a tunnel is marked as 'ip_remote=flow', and the flow does not
308 * actually set the tun_dst field. */
309 ovs_be32 orig_tunnel_ip_dst;
310
311 /* Stack for the push and pop actions. Each stack element is of type
312 * "union mf_subvalue". */
313 union mf_subvalue init_stack[1024 / sizeof(union mf_subvalue)];
314 struct ofpbuf stack;
315
316 /* The rule that we are currently translating, or NULL. */
317 struct rule_dpif *rule;
318
319 int recurse; /* Recursion level, via xlate_table_action. */
320 bool max_resubmit_trigger; /* Recursed too deeply during translation. */
321 uint32_t orig_skb_priority; /* Priority when packet arrived. */
322 uint8_t table_id; /* OpenFlow table ID where flow was found. */
323 uint32_t sflow_n_outputs; /* Number of output ports. */
324 uint32_t sflow_odp_port; /* Output port for composing sFlow action. */
325 uint16_t user_cookie_offset;/* Used for user_action_cookie fixup. */
326 bool exit; /* No further actions should be processed. */
327 };
328
329 static void xlate_in_init(struct xlate_in *, struct ofproto_dpif *,
330 const struct flow *, struct rule_dpif *,
331 uint8_t tcp_flags, const struct ofpbuf *);
332
333 static void xlate_out_uninit(struct xlate_out *);
334
335 static void xlate_actions(struct xlate_in *, struct xlate_out *);
336
337 static void xlate_actions_for_side_effects(struct xlate_in *);
338
339 static void xlate_table_action(struct xlate_ctx *, uint16_t in_port,
340 uint8_t table_id, bool may_packet_in);
341
342 static size_t put_userspace_action(const struct ofproto_dpif *,
343 struct ofpbuf *odp_actions,
344 const struct flow *,
345 const union user_action_cookie *,
346 const size_t);
347
348 static void compose_slow_path(const struct ofproto_dpif *, const struct flow *,
349 enum slow_path_reason,
350 uint64_t *stub, size_t stub_size,
351 const struct nlattr **actionsp,
352 size_t *actions_lenp);
353
354 static void xlate_report(struct xlate_ctx *ctx, const char *s);
355
356 static void xlate_out_copy(struct xlate_out *dst, const struct xlate_out *src);
357
358 /* A subfacet (see "struct subfacet" below) has three possible installation
359 * states:
360 *
361 * - SF_NOT_INSTALLED: Not installed in the datapath. This will only be the
362 * case just after the subfacet is created, just before the subfacet is
363 * destroyed, or if the datapath returns an error when we try to install a
364 * subfacet.
365 *
366 * - SF_FAST_PATH: The subfacet's actions are installed in the datapath.
367 *
368 * - SF_SLOW_PATH: An action that sends every packet for the subfacet through
369 * ofproto_dpif is installed in the datapath.
370 */
371 enum subfacet_path {
372 SF_NOT_INSTALLED, /* No datapath flow for this subfacet. */
373 SF_FAST_PATH, /* Full actions are installed. */
374 SF_SLOW_PATH, /* Send-to-userspace action is installed. */
375 };
376
377 /* A dpif flow and actions associated with a facet.
378 *
379 * See also the large comment on struct facet. */
380 struct subfacet {
381 /* Owners. */
382 struct hmap_node hmap_node; /* In struct ofproto_dpif 'subfacets' list. */
383 struct list list_node; /* In struct facet's 'facets' list. */
384 struct facet *facet; /* Owning facet. */
385 struct dpif_backer *backer; /* Owning backer. */
386
387 enum odp_key_fitness key_fitness;
388 struct nlattr *key;
389 int key_len;
390
391 long long int used; /* Time last used; time created if not used. */
392 long long int created; /* Time created. */
393
394 uint64_t dp_packet_count; /* Last known packet count in the datapath. */
395 uint64_t dp_byte_count; /* Last known byte count in the datapath. */
396
397 enum subfacet_path path; /* Installed in datapath? */
398 };
399
400 #define SUBFACET_DESTROY_MAX_BATCH 50
401
402 static struct subfacet *subfacet_create(struct facet *, struct flow_miss *miss,
403 long long int now);
404 static struct subfacet *subfacet_find(struct dpif_backer *,
405 const struct nlattr *key, size_t key_len,
406 uint32_t key_hash);
407 static void subfacet_destroy(struct subfacet *);
408 static void subfacet_destroy__(struct subfacet *);
409 static void subfacet_destroy_batch(struct dpif_backer *,
410 struct subfacet **, int n);
411 static void subfacet_reset_dp_stats(struct subfacet *,
412 struct dpif_flow_stats *);
413 static void subfacet_update_stats(struct subfacet *,
414 const struct dpif_flow_stats *);
415 static int subfacet_install(struct subfacet *,
416 const struct ofpbuf *odp_actions,
417 struct dpif_flow_stats *);
418 static void subfacet_uninstall(struct subfacet *);
419
420 /* A unique, non-overlapping instantiation of an OpenFlow flow.
421 *
422 * A facet associates a "struct flow", which represents the Open vSwitch
423 * userspace idea of an exact-match flow, with one or more subfacets.
424 * While the facet is created based on an exact-match flow, it is stored
425 * within the ofproto based on the wildcards that could be expressed
426 * based on the flow table and other configuration. (See the 'wc'
427 * description in "struct xlate_out" for more details.)
428 *
429 * Each subfacet tracks the datapath's idea of the flow equivalent to
430 * the facet. When the kernel module (or other dpif implementation) and
431 * Open vSwitch userspace agree on the definition of a flow key, there
432 * is exactly one subfacet per facet. If the dpif implementation
433 * supports more-specific flow matching than userspace, however, a facet
434 * can have more than one subfacet. Examples include the dpif
435 * implementation not supporting the same wildcards as userspace or some
436 * distinction in flow that userspace simply doesn't understand.
437 *
438 * Flow expiration works in terms of subfacets, so a facet must have at
439 * least one subfacet or it will never expire, leaking memory. */
440 struct facet {
441 /* Owners. */
442 struct hmap_node hmap_node; /* In owning ofproto's 'facets' hmap. */
443 struct list list_node; /* In owning rule's 'facets' list. */
444 struct rule_dpif *rule; /* Owning rule. */
445
446 /* Owned data. */
447 struct list subfacets;
448 long long int used; /* Time last used; time created if not used. */
449
450 /* Key. */
451 struct flow flow; /* Flow of the creating subfacet. */
452 struct cls_rule cr; /* In 'ofproto_dpif's facets classifier. */
453
454 /* These statistics:
455 *
456 * - Do include packets and bytes sent "by hand", e.g. with
457 * dpif_execute().
458 *
459 * - Do include packets and bytes that were obtained from the datapath
460 * when a subfacet's statistics were reset (e.g. dpif_flow_put() with
461 * DPIF_FP_ZERO_STATS).
462 *
463 * - Do not include packets or bytes that can be obtained from the
464 * datapath for any existing subfacet.
465 */
466 uint64_t packet_count; /* Number of packets received. */
467 uint64_t byte_count; /* Number of bytes received. */
468
469 /* Resubmit statistics. */
470 uint64_t prev_packet_count; /* Number of packets from last stats push. */
471 uint64_t prev_byte_count; /* Number of bytes from last stats push. */
472 long long int prev_used; /* Used time from last stats push. */
473
474 /* Accounting. */
475 uint64_t accounted_bytes; /* Bytes processed by facet_account(). */
476 struct netflow_flow nf_flow; /* Per-flow NetFlow tracking data. */
477 uint8_t tcp_flags; /* TCP flags seen for this 'rule'. */
478
479 struct xlate_out xout;
480
481 /* Storage for a single subfacet, to reduce malloc() time and space
482 * overhead. (A facet always has at least one subfacet and in the common
483 * case has exactly one subfacet. However, 'one_subfacet' may not
484 * always be valid, since it could have been removed after newer
485 * subfacets were pushed onto the 'subfacets' list.) */
486 struct subfacet one_subfacet;
487
488 long long int learn_rl; /* Rate limiter for facet_learn(). */
489 };
490
491 static struct facet *facet_create(const struct flow_miss *, struct rule_dpif *,
492 struct xlate_out *,
493 struct dpif_flow_stats *);
494 static void facet_remove(struct facet *);
495 static void facet_free(struct facet *);
496
497 static struct facet *facet_find(struct ofproto_dpif *, const struct flow *);
498 static struct facet *facet_lookup_valid(struct ofproto_dpif *,
499 const struct flow *);
500 static bool facet_revalidate(struct facet *);
501 static bool facet_check_consistency(struct facet *);
502
503 static void facet_flush_stats(struct facet *);
504
505 static void facet_reset_counters(struct facet *);
506 static void facet_push_stats(struct facet *, bool may_learn);
507 static void facet_learn(struct facet *);
508 static void facet_account(struct facet *);
509 static void push_all_stats(void);
510
511 static bool facet_is_controller_flow(struct facet *);
512
513 struct ofport_dpif {
514 struct hmap_node odp_port_node; /* In dpif_backer's "odp_to_ofport_map". */
515 struct ofport up;
516
517 uint32_t odp_port;
518 struct ofbundle *bundle; /* Bundle that contains this port, if any. */
519 struct list bundle_node; /* In struct ofbundle's "ports" list. */
520 struct cfm *cfm; /* Connectivity Fault Management, if any. */
521 struct bfd *bfd; /* BFD, if any. */
522 tag_type tag; /* Tag associated with this port. */
523 bool may_enable; /* May be enabled in bonds. */
524 long long int carrier_seq; /* Carrier status changes. */
525 struct tnl_port *tnl_port; /* Tunnel handle, or null. */
526
527 /* Spanning tree. */
528 struct stp_port *stp_port; /* Spanning Tree Protocol, if any. */
529 enum stp_state stp_state; /* Always STP_DISABLED if STP not in use. */
530 long long int stp_state_entered;
531
532 struct hmap priorities; /* Map of attached 'priority_to_dscp's. */
533
534 /* Linux VLAN device support (e.g. "eth0.10" for VLAN 10.)
535 *
536 * This is deprecated. It is only for compatibility with broken device
537 * drivers in old versions of Linux that do not properly support VLANs when
538 * VLAN devices are not used. When broken device drivers are no longer in
539 * widespread use, we will delete these interfaces. */
540 uint16_t realdev_ofp_port;
541 int vlandev_vid;
542 };
543
544 /* Node in 'ofport_dpif''s 'priorities' map. Used to maintain a map from
545 * 'priority' (the datapath's term for QoS queue) to the dscp bits which all
546 * traffic egressing the 'ofport' with that priority should be marked with. */
547 struct priority_to_dscp {
548 struct hmap_node hmap_node; /* Node in 'ofport_dpif''s 'priorities' map. */
549 uint32_t priority; /* Priority of this queue (see struct flow). */
550
551 uint8_t dscp; /* DSCP bits to mark outgoing traffic with. */
552 };
553
554 /* Linux VLAN device support (e.g. "eth0.10" for VLAN 10.)
555 *
556 * This is deprecated. It is only for compatibility with broken device drivers
557 * in old versions of Linux that do not properly support VLANs when VLAN
558 * devices are not used. When broken device drivers are no longer in
559 * widespread use, we will delete these interfaces. */
560 struct vlan_splinter {
561 struct hmap_node realdev_vid_node;
562 struct hmap_node vlandev_node;
563 uint16_t realdev_ofp_port;
564 uint16_t vlandev_ofp_port;
565 int vid;
566 };
567
568 static uint16_t vsp_realdev_to_vlandev(const struct ofproto_dpif *,
569 uint16_t realdev_ofp_port,
570 ovs_be16 vlan_tci);
571 static bool vsp_adjust_flow(const struct ofproto_dpif *, struct flow *);
572 static void vsp_remove(struct ofport_dpif *);
573 static void vsp_add(struct ofport_dpif *, uint16_t realdev_ofp_port, int vid);
574
575 static uint32_t ofp_port_to_odp_port(const struct ofproto_dpif *,
576 uint16_t ofp_port);
577 static uint16_t odp_port_to_ofp_port(const struct ofproto_dpif *,
578 uint32_t odp_port);
579
580 static struct ofport_dpif *
581 ofport_dpif_cast(const struct ofport *ofport)
582 {
583 return ofport ? CONTAINER_OF(ofport, struct ofport_dpif, up) : NULL;
584 }
585
586 static void port_run(struct ofport_dpif *);
587 static void port_run_fast(struct ofport_dpif *);
588 static void port_wait(struct ofport_dpif *);
589 static int set_bfd(struct ofport *, const struct smap *);
590 static int set_cfm(struct ofport *, const struct cfm_settings *);
591 static void ofport_clear_priorities(struct ofport_dpif *);
592 static void run_fast_rl(void);
593
594 struct dpif_completion {
595 struct list list_node;
596 struct ofoperation *op;
597 };
598
599 /* Extra information about a classifier table.
600 * Currently used just for optimized flow revalidation. */
601 struct table_dpif {
602 /* If either of these is nonnull, then this table has a form that allows
603 * flows to be tagged to avoid revalidating most flows for the most common
604 * kinds of flow table changes. */
605 struct cls_table *catchall_table; /* Table that wildcards all fields. */
606 struct cls_table *other_table; /* Table with any other wildcard set. */
607 uint32_t basis; /* Keeps each table's tags separate. */
608 };
609
610 /* Reasons that we might need to revalidate every facet, and corresponding
611 * coverage counters.
612 *
613 * A value of 0 means that there is no need to revalidate.
614 *
615 * It would be nice to have some cleaner way to integrate with coverage
616 * counters, but with only a few reasons I guess this is good enough for
617 * now. */
618 enum revalidate_reason {
619 REV_RECONFIGURE = 1, /* Switch configuration changed. */
620 REV_STP, /* Spanning tree protocol port status change. */
621 REV_PORT_TOGGLED, /* Port enabled or disabled by CFM, LACP, ...*/
622 REV_FLOW_TABLE, /* Flow table changed. */
623 REV_INCONSISTENCY /* Facet self-check failed. */
624 };
625 COVERAGE_DEFINE(rev_reconfigure);
626 COVERAGE_DEFINE(rev_stp);
627 COVERAGE_DEFINE(rev_port_toggled);
628 COVERAGE_DEFINE(rev_flow_table);
629 COVERAGE_DEFINE(rev_inconsistency);
630
631 /* Drop keys are odp flow keys which have drop flows installed in the kernel.
632 * These are datapath flows which have no associated ofproto, if they did we
633 * would use facets. */
634 struct drop_key {
635 struct hmap_node hmap_node;
636 struct nlattr *key;
637 size_t key_len;
638 };
639
640 struct avg_subfacet_rates {
641 double add_rate; /* Moving average of new flows created per minute. */
642 double del_rate; /* Moving average of flows deleted per minute. */
643 };
644
645 /* All datapaths of a given type share a single dpif backer instance. */
646 struct dpif_backer {
647 char *type;
648 int refcount;
649 struct dpif *dpif;
650 struct timer next_expiration;
651 struct hmap odp_to_ofport_map; /* ODP port to ofport mapping. */
652
653 struct simap tnl_backers; /* Set of dpif ports backing tunnels. */
654
655 /* Facet revalidation flags applying to facets which use this backer. */
656 enum revalidate_reason need_revalidate; /* Revalidate every facet. */
657 struct tag_set revalidate_set; /* Revalidate only matching facets. */
658
659 struct hmap drop_keys; /* Set of dropped odp keys. */
660 bool recv_set_enable; /* Enables or disables receiving packets. */
661
662 struct hmap subfacets;
663 struct governor *governor;
664
665 /* Subfacet statistics.
666 *
667 * These keep track of the total number of subfacets added and deleted and
668 * flow life span. They are useful for computing the flow rates stats
669 * exposed via "ovs-appctl dpif/show". The goal is to learn about
670 * traffic patterns in ways that we can use later to improve Open vSwitch
671 * performance in new situations. */
672 long long int created; /* Time when it is created. */
673 unsigned max_n_subfacet; /* Maximum number of flows */
674 unsigned avg_n_subfacet; /* Average number of flows. */
675 long long int avg_subfacet_life; /* Average life span of subfacets. */
676
677 /* The average number of subfacets... */
678 struct avg_subfacet_rates hourly; /* ...over the last hour. */
679 struct avg_subfacet_rates daily; /* ...over the last day. */
680 struct avg_subfacet_rates lifetime; /* ...over the switch lifetime. */
681 long long int last_minute; /* Last time 'hourly' was updated. */
682
683 /* Number of subfacets added or deleted since 'last_minute'. */
684 unsigned subfacet_add_count;
685 unsigned subfacet_del_count;
686
687 /* Number of subfacets added or deleted from 'created' to 'last_minute.' */
688 unsigned long long int total_subfacet_add_count;
689 unsigned long long int total_subfacet_del_count;
690 };
691
692 /* All existing ofproto_backer instances, indexed by ofproto->up.type. */
693 static struct shash all_dpif_backers = SHASH_INITIALIZER(&all_dpif_backers);
694
695 static void drop_key_clear(struct dpif_backer *);
696 static struct ofport_dpif *
697 odp_port_to_ofport(const struct dpif_backer *, uint32_t odp_port);
698 static void update_moving_averages(struct dpif_backer *backer);
699
700 struct ofproto_dpif {
701 struct hmap_node all_ofproto_dpifs_node; /* In 'all_ofproto_dpifs'. */
702 struct ofproto up;
703 struct dpif_backer *backer;
704
705 /* Special OpenFlow rules. */
706 struct rule_dpif *miss_rule; /* Sends flow table misses to controller. */
707 struct rule_dpif *no_packet_in_rule; /* Drops flow table misses. */
708 struct rule_dpif *drop_frags_rule; /* Used in OFPC_FRAG_DROP mode. */
709
710 /* Bridging. */
711 struct netflow *netflow;
712 struct dpif_sflow *sflow;
713 struct dpif_ipfix *ipfix;
714 struct hmap bundles; /* Contains "struct ofbundle"s. */
715 struct mac_learning *ml;
716 struct ofmirror *mirrors[MAX_MIRRORS];
717 bool has_mirrors;
718 bool has_bonded_bundles;
719
720 /* Facets. */
721 struct classifier facets; /* Contains 'struct facet's. */
722 long long int consistency_rl;
723
724 /* Revalidation. */
725 struct table_dpif tables[N_TABLES];
726
727 /* Support for debugging async flow mods. */
728 struct list completions;
729
730 bool has_bundle_action; /* True when the first bundle action appears. */
731 struct netdev_stats stats; /* To account packets generated and consumed in
732 * userspace. */
733
734 /* Spanning tree. */
735 struct stp *stp;
736 long long int stp_last_tick;
737
738 /* VLAN splinters. */
739 struct hmap realdev_vid_map; /* (realdev,vid) -> vlandev. */
740 struct hmap vlandev_map; /* vlandev -> (realdev,vid). */
741
742 /* Ports. */
743 struct sset ports; /* Set of standard port names. */
744 struct sset ghost_ports; /* Ports with no datapath port. */
745 struct sset port_poll_set; /* Queued names for port_poll() reply. */
746 int port_poll_errno; /* Last errno for port_poll() reply. */
747
748 /* Per ofproto's dpif stats. */
749 uint64_t n_hit;
750 uint64_t n_missed;
751 };
752
753 /* Defer flow mod completion until "ovs-appctl ofproto/unclog"? (Useful only
754 * for debugging the asynchronous flow_mod implementation.) */
755 static bool clogged;
756
757 /* All existing ofproto_dpif instances, indexed by ->up.name. */
758 static struct hmap all_ofproto_dpifs = HMAP_INITIALIZER(&all_ofproto_dpifs);
759
760 static void ofproto_dpif_unixctl_init(void);
761
762 static struct ofproto_dpif *
763 ofproto_dpif_cast(const struct ofproto *ofproto)
764 {
765 ovs_assert(ofproto->ofproto_class == &ofproto_dpif_class);
766 return CONTAINER_OF(ofproto, struct ofproto_dpif, up);
767 }
768
769 static struct ofport_dpif *get_ofp_port(const struct ofproto_dpif *,
770 uint16_t ofp_port);
771 static struct ofport_dpif *get_odp_port(const struct ofproto_dpif *,
772 uint32_t odp_port);
773 static void ofproto_trace(struct ofproto_dpif *, const struct flow *,
774 const struct ofpbuf *, struct ds *);
775
776 /* Packet processing. */
777 static void update_learning_table(struct ofproto_dpif *, const struct flow *,
778 struct flow_wildcards *, int vlan,
779 struct ofbundle *);
780 /* Upcalls. */
781 #define FLOW_MISS_MAX_BATCH 50
782 static int handle_upcalls(struct dpif_backer *, unsigned int max_batch);
783
784 /* Flow expiration. */
785 static int expire(struct dpif_backer *);
786
787 /* NetFlow. */
788 static void send_netflow_active_timeouts(struct ofproto_dpif *);
789
790 /* Utilities. */
791 static int send_packet(const struct ofport_dpif *, struct ofpbuf *packet);
792 static size_t compose_sflow_action(const struct ofproto_dpif *,
793 struct ofpbuf *odp_actions,
794 const struct flow *, uint32_t odp_port);
795 static void compose_ipfix_action(const struct ofproto_dpif *,
796 struct ofpbuf *odp_actions,
797 const struct flow *);
798 static void add_mirror_actions(struct xlate_ctx *ctx,
799 const struct flow *flow);
800 /* Global variables. */
801 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
802
803 /* Initial mappings of port to bridge mappings. */
804 static struct shash init_ofp_ports = SHASH_INITIALIZER(&init_ofp_ports);
805 \f
806 /* Factory functions. */
807
808 static void
809 init(const struct shash *iface_hints)
810 {
811 struct shash_node *node;
812
813 /* Make a local copy, since we don't own 'iface_hints' elements. */
814 SHASH_FOR_EACH(node, iface_hints) {
815 const struct iface_hint *orig_hint = node->data;
816 struct iface_hint *new_hint = xmalloc(sizeof *new_hint);
817
818 new_hint->br_name = xstrdup(orig_hint->br_name);
819 new_hint->br_type = xstrdup(orig_hint->br_type);
820 new_hint->ofp_port = orig_hint->ofp_port;
821
822 shash_add(&init_ofp_ports, node->name, new_hint);
823 }
824 }
825
826 static void
827 enumerate_types(struct sset *types)
828 {
829 dp_enumerate_types(types);
830 }
831
832 static int
833 enumerate_names(const char *type, struct sset *names)
834 {
835 struct ofproto_dpif *ofproto;
836
837 sset_clear(names);
838 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
839 if (strcmp(type, ofproto->up.type)) {
840 continue;
841 }
842 sset_add(names, ofproto->up.name);
843 }
844
845 return 0;
846 }
847
848 static int
849 del(const char *type, const char *name)
850 {
851 struct dpif *dpif;
852 int error;
853
854 error = dpif_open(name, type, &dpif);
855 if (!error) {
856 error = dpif_delete(dpif);
857 dpif_close(dpif);
858 }
859 return error;
860 }
861 \f
862 static const char *
863 port_open_type(const char *datapath_type, const char *port_type)
864 {
865 return dpif_port_open_type(datapath_type, port_type);
866 }
867
868 /* Type functions. */
869
870 static struct ofproto_dpif *
871 lookup_ofproto_dpif_by_port_name(const char *name)
872 {
873 struct ofproto_dpif *ofproto;
874
875 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
876 if (sset_contains(&ofproto->ports, name)) {
877 return ofproto;
878 }
879 }
880
881 return NULL;
882 }
883
884 static int
885 type_run(const char *type)
886 {
887 static long long int push_timer = LLONG_MIN;
888 struct dpif_backer *backer;
889 char *devname;
890 int error;
891
892 backer = shash_find_data(&all_dpif_backers, type);
893 if (!backer) {
894 /* This is not necessarily a problem, since backers are only
895 * created on demand. */
896 return 0;
897 }
898
899 dpif_run(backer->dpif);
900
901 /* The most natural place to push facet statistics is when they're pulled
902 * from the datapath. However, when there are many flows in the datapath,
903 * this expensive operation can occur so frequently, that it reduces our
904 * ability to quickly set up flows. To reduce the cost, we push statistics
905 * here instead. */
906 if (time_msec() > push_timer) {
907 push_timer = time_msec() + 2000;
908 push_all_stats();
909 }
910
911 /* If vswitchd started with other_config:flow_restore_wait set as "true",
912 * and the configuration has now changed to "false", enable receiving
913 * packets from the datapath. */
914 if (!backer->recv_set_enable && !ofproto_get_flow_restore_wait()) {
915 backer->recv_set_enable = true;
916
917 error = dpif_recv_set(backer->dpif, backer->recv_set_enable);
918 if (error) {
919 VLOG_ERR("Failed to enable receiving packets in dpif.");
920 return error;
921 }
922 dpif_flow_flush(backer->dpif);
923 backer->need_revalidate = REV_RECONFIGURE;
924 }
925
926 if (backer->need_revalidate
927 || !tag_set_is_empty(&backer->revalidate_set)) {
928 struct tag_set revalidate_set = backer->revalidate_set;
929 bool need_revalidate = backer->need_revalidate;
930 struct ofproto_dpif *ofproto;
931 struct simap_node *node;
932 struct simap tmp_backers;
933
934 /* Handle tunnel garbage collection. */
935 simap_init(&tmp_backers);
936 simap_swap(&backer->tnl_backers, &tmp_backers);
937
938 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
939 struct ofport_dpif *iter;
940
941 if (backer != ofproto->backer) {
942 continue;
943 }
944
945 HMAP_FOR_EACH (iter, up.hmap_node, &ofproto->up.ports) {
946 char namebuf[NETDEV_VPORT_NAME_BUFSIZE];
947 const char *dp_port;
948
949 if (!iter->tnl_port) {
950 continue;
951 }
952
953 dp_port = netdev_vport_get_dpif_port(iter->up.netdev,
954 namebuf, sizeof namebuf);
955 node = simap_find(&tmp_backers, dp_port);
956 if (node) {
957 simap_put(&backer->tnl_backers, dp_port, node->data);
958 simap_delete(&tmp_backers, node);
959 node = simap_find(&backer->tnl_backers, dp_port);
960 } else {
961 node = simap_find(&backer->tnl_backers, dp_port);
962 if (!node) {
963 uint32_t odp_port = UINT32_MAX;
964
965 if (!dpif_port_add(backer->dpif, iter->up.netdev,
966 &odp_port)) {
967 simap_put(&backer->tnl_backers, dp_port, odp_port);
968 node = simap_find(&backer->tnl_backers, dp_port);
969 }
970 }
971 }
972
973 iter->odp_port = node ? node->data : OVSP_NONE;
974 if (tnl_port_reconfigure(&iter->up, iter->odp_port,
975 &iter->tnl_port)) {
976 backer->need_revalidate = REV_RECONFIGURE;
977 }
978 }
979 }
980
981 SIMAP_FOR_EACH (node, &tmp_backers) {
982 dpif_port_del(backer->dpif, node->data);
983 }
984 simap_destroy(&tmp_backers);
985
986 switch (backer->need_revalidate) {
987 case REV_RECONFIGURE: COVERAGE_INC(rev_reconfigure); break;
988 case REV_STP: COVERAGE_INC(rev_stp); break;
989 case REV_PORT_TOGGLED: COVERAGE_INC(rev_port_toggled); break;
990 case REV_FLOW_TABLE: COVERAGE_INC(rev_flow_table); break;
991 case REV_INCONSISTENCY: COVERAGE_INC(rev_inconsistency); break;
992 }
993
994 if (backer->need_revalidate) {
995 /* Clear the drop_keys in case we should now be accepting some
996 * formerly dropped flows. */
997 drop_key_clear(backer);
998 }
999
1000 /* Clear the revalidation flags. */
1001 tag_set_init(&backer->revalidate_set);
1002 backer->need_revalidate = 0;
1003
1004 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
1005 struct facet *facet, *next;
1006 struct cls_cursor cursor;
1007
1008 if (ofproto->backer != backer) {
1009 continue;
1010 }
1011
1012 cls_cursor_init(&cursor, &ofproto->facets, NULL);
1013 CLS_CURSOR_FOR_EACH_SAFE (facet, next, cr, &cursor) {
1014 if (need_revalidate
1015 || tag_set_intersects(&revalidate_set, facet->xout.tags)) {
1016 facet_revalidate(facet);
1017 run_fast_rl();
1018 }
1019 }
1020 }
1021 }
1022
1023 if (!backer->recv_set_enable) {
1024 /* Wake up before a max of 1000ms. */
1025 timer_set_duration(&backer->next_expiration, 1000);
1026 } else if (timer_expired(&backer->next_expiration)) {
1027 int delay = expire(backer);
1028 timer_set_duration(&backer->next_expiration, delay);
1029 }
1030
1031 /* Check for port changes in the dpif. */
1032 while ((error = dpif_port_poll(backer->dpif, &devname)) == 0) {
1033 struct ofproto_dpif *ofproto;
1034 struct dpif_port port;
1035
1036 /* Don't report on the datapath's device. */
1037 if (!strcmp(devname, dpif_base_name(backer->dpif))) {
1038 goto next;
1039 }
1040
1041 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node,
1042 &all_ofproto_dpifs) {
1043 if (simap_contains(&ofproto->backer->tnl_backers, devname)) {
1044 goto next;
1045 }
1046 }
1047
1048 ofproto = lookup_ofproto_dpif_by_port_name(devname);
1049 if (dpif_port_query_by_name(backer->dpif, devname, &port)) {
1050 /* The port was removed. If we know the datapath,
1051 * report it through poll_set(). If we don't, it may be
1052 * notifying us of a removal we initiated, so ignore it.
1053 * If there's a pending ENOBUFS, let it stand, since
1054 * everything will be reevaluated. */
1055 if (ofproto && ofproto->port_poll_errno != ENOBUFS) {
1056 sset_add(&ofproto->port_poll_set, devname);
1057 ofproto->port_poll_errno = 0;
1058 }
1059 } else if (!ofproto) {
1060 /* The port was added, but we don't know with which
1061 * ofproto we should associate it. Delete it. */
1062 dpif_port_del(backer->dpif, port.port_no);
1063 }
1064 dpif_port_destroy(&port);
1065
1066 next:
1067 free(devname);
1068 }
1069
1070 if (error != EAGAIN) {
1071 struct ofproto_dpif *ofproto;
1072
1073 /* There was some sort of error, so propagate it to all
1074 * ofprotos that use this backer. */
1075 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node,
1076 &all_ofproto_dpifs) {
1077 if (ofproto->backer == backer) {
1078 sset_clear(&ofproto->port_poll_set);
1079 ofproto->port_poll_errno = error;
1080 }
1081 }
1082 }
1083
1084 if (backer->governor) {
1085 size_t n_subfacets;
1086
1087 governor_run(backer->governor);
1088
1089 /* If the governor has shrunk to its minimum size and the number of
1090 * subfacets has dwindled, then drop the governor entirely.
1091 *
1092 * For hysteresis, the number of subfacets to drop the governor is
1093 * smaller than the number needed to trigger its creation. */
1094 n_subfacets = hmap_count(&backer->subfacets);
1095 if (n_subfacets * 4 < flow_eviction_threshold
1096 && governor_is_idle(backer->governor)) {
1097 governor_destroy(backer->governor);
1098 backer->governor = NULL;
1099 }
1100 }
1101
1102 return 0;
1103 }
1104
1105 static int
1106 dpif_backer_run_fast(struct dpif_backer *backer, int max_batch)
1107 {
1108 unsigned int work;
1109
1110 /* If recv_set_enable is false, we should not handle upcalls. */
1111 if (!backer->recv_set_enable) {
1112 return 0;
1113 }
1114
1115 /* Handle one or more batches of upcalls, until there's nothing left to do
1116 * or until we do a fixed total amount of work.
1117 *
1118 * We do work in batches because it can be much cheaper to set up a number
1119 * of flows and fire off their patches all at once. We do multiple batches
1120 * because in some cases handling a packet can cause another packet to be
1121 * queued almost immediately as part of the return flow. Both
1122 * optimizations can make major improvements on some benchmarks and
1123 * presumably for real traffic as well. */
1124 work = 0;
1125 while (work < max_batch) {
1126 int retval = handle_upcalls(backer, max_batch - work);
1127 if (retval <= 0) {
1128 return -retval;
1129 }
1130 work += retval;
1131 }
1132
1133 return 0;
1134 }
1135
1136 static int
1137 type_run_fast(const char *type)
1138 {
1139 struct dpif_backer *backer;
1140
1141 backer = shash_find_data(&all_dpif_backers, type);
1142 if (!backer) {
1143 /* This is not necessarily a problem, since backers are only
1144 * created on demand. */
1145 return 0;
1146 }
1147
1148 return dpif_backer_run_fast(backer, FLOW_MISS_MAX_BATCH);
1149 }
1150
1151 static void
1152 run_fast_rl(void)
1153 {
1154 static long long int port_rl = LLONG_MIN;
1155 static unsigned int backer_rl = 0;
1156
1157 if (time_msec() >= port_rl) {
1158 struct ofproto_dpif *ofproto;
1159 struct ofport_dpif *ofport;
1160
1161 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
1162
1163 HMAP_FOR_EACH (ofport, up.hmap_node, &ofproto->up.ports) {
1164 port_run_fast(ofport);
1165 }
1166 }
1167 port_rl = time_msec() + 200;
1168 }
1169
1170 /* XXX: We have to be careful not to do too much work in this function. If
1171 * we call dpif_backer_run_fast() too often, or with too large a batch,
1172 * performance improves signifcantly, but at a cost. It's possible for the
1173 * number of flows in the datapath to increase without bound, and for poll
1174 * loops to take 10s of seconds. The correct solution to this problem,
1175 * long term, is to separate flow miss handling into it's own thread so it
1176 * isn't affected by revalidations, and expirations. Until then, this is
1177 * the best we can do. */
1178 if (++backer_rl >= 10) {
1179 struct shash_node *node;
1180
1181 backer_rl = 0;
1182 SHASH_FOR_EACH (node, &all_dpif_backers) {
1183 dpif_backer_run_fast(node->data, 1);
1184 }
1185 }
1186 }
1187
1188 static void
1189 type_wait(const char *type)
1190 {
1191 struct dpif_backer *backer;
1192
1193 backer = shash_find_data(&all_dpif_backers, type);
1194 if (!backer) {
1195 /* This is not necessarily a problem, since backers are only
1196 * created on demand. */
1197 return;
1198 }
1199
1200 if (backer->governor) {
1201 governor_wait(backer->governor);
1202 }
1203
1204 timer_wait(&backer->next_expiration);
1205 }
1206 \f
1207 /* Basic life-cycle. */
1208
1209 static int add_internal_flows(struct ofproto_dpif *);
1210
1211 static struct ofproto *
1212 alloc(void)
1213 {
1214 struct ofproto_dpif *ofproto = xmalloc(sizeof *ofproto);
1215 return &ofproto->up;
1216 }
1217
1218 static void
1219 dealloc(struct ofproto *ofproto_)
1220 {
1221 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1222 free(ofproto);
1223 }
1224
1225 static void
1226 close_dpif_backer(struct dpif_backer *backer)
1227 {
1228 struct shash_node *node;
1229
1230 ovs_assert(backer->refcount > 0);
1231
1232 if (--backer->refcount) {
1233 return;
1234 }
1235
1236 drop_key_clear(backer);
1237 hmap_destroy(&backer->drop_keys);
1238
1239 simap_destroy(&backer->tnl_backers);
1240 hmap_destroy(&backer->odp_to_ofport_map);
1241 node = shash_find(&all_dpif_backers, backer->type);
1242 free(backer->type);
1243 shash_delete(&all_dpif_backers, node);
1244 dpif_close(backer->dpif);
1245
1246 ovs_assert(hmap_is_empty(&backer->subfacets));
1247 hmap_destroy(&backer->subfacets);
1248 governor_destroy(backer->governor);
1249
1250 free(backer);
1251 }
1252
1253 /* Datapath port slated for removal from datapath. */
1254 struct odp_garbage {
1255 struct list list_node;
1256 uint32_t odp_port;
1257 };
1258
1259 static int
1260 open_dpif_backer(const char *type, struct dpif_backer **backerp)
1261 {
1262 struct dpif_backer *backer;
1263 struct dpif_port_dump port_dump;
1264 struct dpif_port port;
1265 struct shash_node *node;
1266 struct list garbage_list;
1267 struct odp_garbage *garbage, *next;
1268 struct sset names;
1269 char *backer_name;
1270 const char *name;
1271 int error;
1272
1273 backer = shash_find_data(&all_dpif_backers, type);
1274 if (backer) {
1275 backer->refcount++;
1276 *backerp = backer;
1277 return 0;
1278 }
1279
1280 backer_name = xasprintf("ovs-%s", type);
1281
1282 /* Remove any existing datapaths, since we assume we're the only
1283 * userspace controlling the datapath. */
1284 sset_init(&names);
1285 dp_enumerate_names(type, &names);
1286 SSET_FOR_EACH(name, &names) {
1287 struct dpif *old_dpif;
1288
1289 /* Don't remove our backer if it exists. */
1290 if (!strcmp(name, backer_name)) {
1291 continue;
1292 }
1293
1294 if (dpif_open(name, type, &old_dpif)) {
1295 VLOG_WARN("couldn't open old datapath %s to remove it", name);
1296 } else {
1297 dpif_delete(old_dpif);
1298 dpif_close(old_dpif);
1299 }
1300 }
1301 sset_destroy(&names);
1302
1303 backer = xmalloc(sizeof *backer);
1304
1305 error = dpif_create_and_open(backer_name, type, &backer->dpif);
1306 free(backer_name);
1307 if (error) {
1308 VLOG_ERR("failed to open datapath of type %s: %s", type,
1309 strerror(error));
1310 free(backer);
1311 return error;
1312 }
1313
1314 backer->type = xstrdup(type);
1315 backer->governor = NULL;
1316 backer->refcount = 1;
1317 hmap_init(&backer->odp_to_ofport_map);
1318 hmap_init(&backer->drop_keys);
1319 hmap_init(&backer->subfacets);
1320 timer_set_duration(&backer->next_expiration, 1000);
1321 backer->need_revalidate = 0;
1322 simap_init(&backer->tnl_backers);
1323 tag_set_init(&backer->revalidate_set);
1324 backer->recv_set_enable = !ofproto_get_flow_restore_wait();
1325 *backerp = backer;
1326
1327 if (backer->recv_set_enable) {
1328 dpif_flow_flush(backer->dpif);
1329 }
1330
1331 /* Loop through the ports already on the datapath and remove any
1332 * that we don't need anymore. */
1333 list_init(&garbage_list);
1334 dpif_port_dump_start(&port_dump, backer->dpif);
1335 while (dpif_port_dump_next(&port_dump, &port)) {
1336 node = shash_find(&init_ofp_ports, port.name);
1337 if (!node && strcmp(port.name, dpif_base_name(backer->dpif))) {
1338 garbage = xmalloc(sizeof *garbage);
1339 garbage->odp_port = port.port_no;
1340 list_push_front(&garbage_list, &garbage->list_node);
1341 }
1342 }
1343 dpif_port_dump_done(&port_dump);
1344
1345 LIST_FOR_EACH_SAFE (garbage, next, list_node, &garbage_list) {
1346 dpif_port_del(backer->dpif, garbage->odp_port);
1347 list_remove(&garbage->list_node);
1348 free(garbage);
1349 }
1350
1351 shash_add(&all_dpif_backers, type, backer);
1352
1353 error = dpif_recv_set(backer->dpif, backer->recv_set_enable);
1354 if (error) {
1355 VLOG_ERR("failed to listen on datapath of type %s: %s",
1356 type, strerror(error));
1357 close_dpif_backer(backer);
1358 return error;
1359 }
1360
1361 backer->max_n_subfacet = 0;
1362 backer->created = time_msec();
1363 backer->last_minute = backer->created;
1364 memset(&backer->hourly, 0, sizeof backer->hourly);
1365 memset(&backer->daily, 0, sizeof backer->daily);
1366 memset(&backer->lifetime, 0, sizeof backer->lifetime);
1367 backer->subfacet_add_count = 0;
1368 backer->subfacet_del_count = 0;
1369 backer->total_subfacet_add_count = 0;
1370 backer->total_subfacet_del_count = 0;
1371 backer->avg_n_subfacet = 0;
1372 backer->avg_subfacet_life = 0;
1373
1374 return error;
1375 }
1376
1377 static int
1378 construct(struct ofproto *ofproto_)
1379 {
1380 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1381 struct shash_node *node, *next;
1382 int max_ports;
1383 int error;
1384 int i;
1385
1386 error = open_dpif_backer(ofproto->up.type, &ofproto->backer);
1387 if (error) {
1388 return error;
1389 }
1390
1391 max_ports = dpif_get_max_ports(ofproto->backer->dpif);
1392 ofproto_init_max_ports(ofproto_, MIN(max_ports, OFPP_MAX));
1393
1394 ofproto->netflow = NULL;
1395 ofproto->sflow = NULL;
1396 ofproto->ipfix = NULL;
1397 ofproto->stp = NULL;
1398 hmap_init(&ofproto->bundles);
1399 ofproto->ml = mac_learning_create(MAC_ENTRY_DEFAULT_IDLE_TIME);
1400 for (i = 0; i < MAX_MIRRORS; i++) {
1401 ofproto->mirrors[i] = NULL;
1402 }
1403 ofproto->has_bonded_bundles = false;
1404
1405 classifier_init(&ofproto->facets);
1406 ofproto->consistency_rl = LLONG_MIN;
1407
1408 for (i = 0; i < N_TABLES; i++) {
1409 struct table_dpif *table = &ofproto->tables[i];
1410
1411 table->catchall_table = NULL;
1412 table->other_table = NULL;
1413 table->basis = random_uint32();
1414 }
1415
1416 list_init(&ofproto->completions);
1417
1418 ofproto_dpif_unixctl_init();
1419
1420 ofproto->has_mirrors = false;
1421 ofproto->has_bundle_action = false;
1422
1423 hmap_init(&ofproto->vlandev_map);
1424 hmap_init(&ofproto->realdev_vid_map);
1425
1426 sset_init(&ofproto->ports);
1427 sset_init(&ofproto->ghost_ports);
1428 sset_init(&ofproto->port_poll_set);
1429 ofproto->port_poll_errno = 0;
1430
1431 SHASH_FOR_EACH_SAFE (node, next, &init_ofp_ports) {
1432 struct iface_hint *iface_hint = node->data;
1433
1434 if (!strcmp(iface_hint->br_name, ofproto->up.name)) {
1435 /* Check if the datapath already has this port. */
1436 if (dpif_port_exists(ofproto->backer->dpif, node->name)) {
1437 sset_add(&ofproto->ports, node->name);
1438 }
1439
1440 free(iface_hint->br_name);
1441 free(iface_hint->br_type);
1442 free(iface_hint);
1443 shash_delete(&init_ofp_ports, node);
1444 }
1445 }
1446
1447 hmap_insert(&all_ofproto_dpifs, &ofproto->all_ofproto_dpifs_node,
1448 hash_string(ofproto->up.name, 0));
1449 memset(&ofproto->stats, 0, sizeof ofproto->stats);
1450
1451 ofproto_init_tables(ofproto_, N_TABLES);
1452 error = add_internal_flows(ofproto);
1453 ofproto->up.tables[TBL_INTERNAL].flags = OFTABLE_HIDDEN | OFTABLE_READONLY;
1454
1455 ofproto->n_hit = 0;
1456 ofproto->n_missed = 0;
1457
1458 return error;
1459 }
1460
1461 static int
1462 add_internal_flow(struct ofproto_dpif *ofproto, int id,
1463 const struct ofpbuf *ofpacts, struct rule_dpif **rulep)
1464 {
1465 struct ofputil_flow_mod fm;
1466 int error;
1467
1468 match_init_catchall(&fm.match);
1469 fm.priority = 0;
1470 match_set_reg(&fm.match, 0, id);
1471 fm.new_cookie = htonll(0);
1472 fm.cookie = htonll(0);
1473 fm.cookie_mask = htonll(0);
1474 fm.table_id = TBL_INTERNAL;
1475 fm.command = OFPFC_ADD;
1476 fm.idle_timeout = 0;
1477 fm.hard_timeout = 0;
1478 fm.buffer_id = 0;
1479 fm.out_port = 0;
1480 fm.flags = 0;
1481 fm.ofpacts = ofpacts->data;
1482 fm.ofpacts_len = ofpacts->size;
1483
1484 error = ofproto_flow_mod(&ofproto->up, &fm);
1485 if (error) {
1486 VLOG_ERR_RL(&rl, "failed to add internal flow %d (%s)",
1487 id, ofperr_to_string(error));
1488 return error;
1489 }
1490
1491 *rulep = rule_dpif_lookup__(ofproto, &fm.match.flow, NULL, TBL_INTERNAL);
1492 ovs_assert(*rulep != NULL);
1493
1494 return 0;
1495 }
1496
1497 static int
1498 add_internal_flows(struct ofproto_dpif *ofproto)
1499 {
1500 struct ofpact_controller *controller;
1501 uint64_t ofpacts_stub[128 / 8];
1502 struct ofpbuf ofpacts;
1503 int error;
1504 int id;
1505
1506 ofpbuf_use_stack(&ofpacts, ofpacts_stub, sizeof ofpacts_stub);
1507 id = 1;
1508
1509 controller = ofpact_put_CONTROLLER(&ofpacts);
1510 controller->max_len = UINT16_MAX;
1511 controller->controller_id = 0;
1512 controller->reason = OFPR_NO_MATCH;
1513 ofpact_pad(&ofpacts);
1514
1515 error = add_internal_flow(ofproto, id++, &ofpacts, &ofproto->miss_rule);
1516 if (error) {
1517 return error;
1518 }
1519
1520 ofpbuf_clear(&ofpacts);
1521 error = add_internal_flow(ofproto, id++, &ofpacts,
1522 &ofproto->no_packet_in_rule);
1523 if (error) {
1524 return error;
1525 }
1526
1527 error = add_internal_flow(ofproto, id++, &ofpacts,
1528 &ofproto->drop_frags_rule);
1529 return error;
1530 }
1531
1532 static void
1533 complete_operations(struct ofproto_dpif *ofproto)
1534 {
1535 struct dpif_completion *c, *next;
1536
1537 LIST_FOR_EACH_SAFE (c, next, list_node, &ofproto->completions) {
1538 ofoperation_complete(c->op, 0);
1539 list_remove(&c->list_node);
1540 free(c);
1541 }
1542 }
1543
1544 static void
1545 destruct(struct ofproto *ofproto_)
1546 {
1547 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1548 struct rule_dpif *rule, *next_rule;
1549 struct oftable *table;
1550 int i;
1551
1552 hmap_remove(&all_ofproto_dpifs, &ofproto->all_ofproto_dpifs_node);
1553 complete_operations(ofproto);
1554
1555 OFPROTO_FOR_EACH_TABLE (table, &ofproto->up) {
1556 struct cls_cursor cursor;
1557
1558 cls_cursor_init(&cursor, &table->cls, NULL);
1559 CLS_CURSOR_FOR_EACH_SAFE (rule, next_rule, up.cr, &cursor) {
1560 ofproto_rule_destroy(&rule->up);
1561 }
1562 }
1563
1564 for (i = 0; i < MAX_MIRRORS; i++) {
1565 mirror_destroy(ofproto->mirrors[i]);
1566 }
1567
1568 netflow_destroy(ofproto->netflow);
1569 dpif_sflow_destroy(ofproto->sflow);
1570 hmap_destroy(&ofproto->bundles);
1571 mac_learning_destroy(ofproto->ml);
1572
1573 classifier_destroy(&ofproto->facets);
1574
1575 hmap_destroy(&ofproto->vlandev_map);
1576 hmap_destroy(&ofproto->realdev_vid_map);
1577
1578 sset_destroy(&ofproto->ports);
1579 sset_destroy(&ofproto->ghost_ports);
1580 sset_destroy(&ofproto->port_poll_set);
1581
1582 close_dpif_backer(ofproto->backer);
1583 }
1584
1585 static int
1586 run_fast(struct ofproto *ofproto_)
1587 {
1588 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1589 struct ofport_dpif *ofport;
1590
1591 /* Do not perform any periodic activity required by 'ofproto' while
1592 * waiting for flow restore to complete. */
1593 if (ofproto_get_flow_restore_wait()) {
1594 return 0;
1595 }
1596
1597 HMAP_FOR_EACH (ofport, up.hmap_node, &ofproto->up.ports) {
1598 port_run_fast(ofport);
1599 }
1600
1601 return 0;
1602 }
1603
1604 static int
1605 run(struct ofproto *ofproto_)
1606 {
1607 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1608 struct ofport_dpif *ofport;
1609 struct ofbundle *bundle;
1610 int error;
1611
1612 if (!clogged) {
1613 complete_operations(ofproto);
1614 }
1615
1616 /* Do not perform any periodic activity below required by 'ofproto' while
1617 * waiting for flow restore to complete. */
1618 if (ofproto_get_flow_restore_wait()) {
1619 return 0;
1620 }
1621
1622 error = run_fast(ofproto_);
1623 if (error) {
1624 return error;
1625 }
1626
1627 if (ofproto->netflow) {
1628 if (netflow_run(ofproto->netflow)) {
1629 send_netflow_active_timeouts(ofproto);
1630 }
1631 }
1632 if (ofproto->sflow) {
1633 dpif_sflow_run(ofproto->sflow);
1634 }
1635
1636 HMAP_FOR_EACH (ofport, up.hmap_node, &ofproto->up.ports) {
1637 port_run(ofport);
1638 }
1639 HMAP_FOR_EACH (bundle, hmap_node, &ofproto->bundles) {
1640 bundle_run(bundle);
1641 }
1642
1643 stp_run(ofproto);
1644 mac_learning_run(ofproto->ml, &ofproto->backer->revalidate_set);
1645
1646 /* Check the consistency of a random facet, to aid debugging. */
1647 if (time_msec() >= ofproto->consistency_rl
1648 && !classifier_is_empty(&ofproto->facets)
1649 && !ofproto->backer->need_revalidate) {
1650 struct cls_table *table;
1651 struct cls_rule *cr;
1652 struct facet *facet;
1653
1654 ofproto->consistency_rl = time_msec() + 250;
1655
1656 table = CONTAINER_OF(hmap_random_node(&ofproto->facets.tables),
1657 struct cls_table, hmap_node);
1658 cr = CONTAINER_OF(hmap_random_node(&table->rules), struct cls_rule,
1659 hmap_node);
1660 facet = CONTAINER_OF(cr, struct facet, cr);
1661
1662 if (!tag_set_intersects(&ofproto->backer->revalidate_set,
1663 facet->xout.tags)) {
1664 if (!facet_check_consistency(facet)) {
1665 ofproto->backer->need_revalidate = REV_INCONSISTENCY;
1666 }
1667 }
1668 }
1669
1670 return 0;
1671 }
1672
1673 static void
1674 wait(struct ofproto *ofproto_)
1675 {
1676 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1677 struct ofport_dpif *ofport;
1678 struct ofbundle *bundle;
1679
1680 if (!clogged && !list_is_empty(&ofproto->completions)) {
1681 poll_immediate_wake();
1682 }
1683
1684 if (ofproto_get_flow_restore_wait()) {
1685 return;
1686 }
1687
1688 dpif_wait(ofproto->backer->dpif);
1689 dpif_recv_wait(ofproto->backer->dpif);
1690 if (ofproto->sflow) {
1691 dpif_sflow_wait(ofproto->sflow);
1692 }
1693 if (!tag_set_is_empty(&ofproto->backer->revalidate_set)) {
1694 poll_immediate_wake();
1695 }
1696 HMAP_FOR_EACH (ofport, up.hmap_node, &ofproto->up.ports) {
1697 port_wait(ofport);
1698 }
1699 HMAP_FOR_EACH (bundle, hmap_node, &ofproto->bundles) {
1700 bundle_wait(bundle);
1701 }
1702 if (ofproto->netflow) {
1703 netflow_wait(ofproto->netflow);
1704 }
1705 mac_learning_wait(ofproto->ml);
1706 stp_wait(ofproto);
1707 if (ofproto->backer->need_revalidate) {
1708 /* Shouldn't happen, but if it does just go around again. */
1709 VLOG_DBG_RL(&rl, "need revalidate in ofproto_wait_cb()");
1710 poll_immediate_wake();
1711 }
1712 }
1713
1714 static void
1715 get_memory_usage(const struct ofproto *ofproto_, struct simap *usage)
1716 {
1717 const struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1718 struct cls_cursor cursor;
1719 size_t n_subfacets = 0;
1720 struct facet *facet;
1721
1722 simap_increase(usage, "facets", classifier_count(&ofproto->facets));
1723
1724 cls_cursor_init(&cursor, &ofproto->facets, NULL);
1725 CLS_CURSOR_FOR_EACH (facet, cr, &cursor) {
1726 n_subfacets += list_size(&facet->subfacets);
1727 }
1728 simap_increase(usage, "subfacets", n_subfacets);
1729 }
1730
1731 static void
1732 flush(struct ofproto *ofproto_)
1733 {
1734 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1735 struct subfacet *subfacet, *next_subfacet;
1736 struct subfacet *batch[SUBFACET_DESTROY_MAX_BATCH];
1737 int n_batch;
1738
1739 n_batch = 0;
1740 HMAP_FOR_EACH_SAFE (subfacet, next_subfacet, hmap_node,
1741 &ofproto->backer->subfacets) {
1742 if (ofproto_dpif_cast(subfacet->facet->rule->up.ofproto) != ofproto) {
1743 continue;
1744 }
1745
1746 if (subfacet->path != SF_NOT_INSTALLED) {
1747 batch[n_batch++] = subfacet;
1748 if (n_batch >= SUBFACET_DESTROY_MAX_BATCH) {
1749 subfacet_destroy_batch(ofproto->backer, batch, n_batch);
1750 n_batch = 0;
1751 }
1752 } else {
1753 subfacet_destroy(subfacet);
1754 }
1755 }
1756
1757 if (n_batch > 0) {
1758 subfacet_destroy_batch(ofproto->backer, batch, n_batch);
1759 }
1760 }
1761
1762 static void
1763 get_features(struct ofproto *ofproto_ OVS_UNUSED,
1764 bool *arp_match_ip, enum ofputil_action_bitmap *actions)
1765 {
1766 *arp_match_ip = true;
1767 *actions = (OFPUTIL_A_OUTPUT |
1768 OFPUTIL_A_SET_VLAN_VID |
1769 OFPUTIL_A_SET_VLAN_PCP |
1770 OFPUTIL_A_STRIP_VLAN |
1771 OFPUTIL_A_SET_DL_SRC |
1772 OFPUTIL_A_SET_DL_DST |
1773 OFPUTIL_A_SET_NW_SRC |
1774 OFPUTIL_A_SET_NW_DST |
1775 OFPUTIL_A_SET_NW_TOS |
1776 OFPUTIL_A_SET_TP_SRC |
1777 OFPUTIL_A_SET_TP_DST |
1778 OFPUTIL_A_ENQUEUE);
1779 }
1780
1781 static void
1782 get_tables(struct ofproto *ofproto_, struct ofp12_table_stats *ots)
1783 {
1784 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1785 struct dpif_dp_stats s;
1786 uint64_t n_miss, n_no_pkt_in, n_bytes, n_dropped_frags;
1787 uint64_t n_lookup;
1788
1789 strcpy(ots->name, "classifier");
1790
1791 dpif_get_dp_stats(ofproto->backer->dpif, &s);
1792 rule_get_stats(&ofproto->miss_rule->up, &n_miss, &n_bytes);
1793 rule_get_stats(&ofproto->no_packet_in_rule->up, &n_no_pkt_in, &n_bytes);
1794 rule_get_stats(&ofproto->drop_frags_rule->up, &n_dropped_frags, &n_bytes);
1795
1796 n_lookup = s.n_hit + s.n_missed - n_dropped_frags;
1797 ots->lookup_count = htonll(n_lookup);
1798 ots->matched_count = htonll(n_lookup - n_miss - n_no_pkt_in);
1799 }
1800
1801 static struct ofport *
1802 port_alloc(void)
1803 {
1804 struct ofport_dpif *port = xmalloc(sizeof *port);
1805 return &port->up;
1806 }
1807
1808 static void
1809 port_dealloc(struct ofport *port_)
1810 {
1811 struct ofport_dpif *port = ofport_dpif_cast(port_);
1812 free(port);
1813 }
1814
1815 static int
1816 port_construct(struct ofport *port_)
1817 {
1818 struct ofport_dpif *port = ofport_dpif_cast(port_);
1819 struct ofproto_dpif *ofproto = ofproto_dpif_cast(port->up.ofproto);
1820 const struct netdev *netdev = port->up.netdev;
1821 char namebuf[NETDEV_VPORT_NAME_BUFSIZE];
1822 struct dpif_port dpif_port;
1823 int error;
1824
1825 ofproto->backer->need_revalidate = REV_RECONFIGURE;
1826 port->bundle = NULL;
1827 port->cfm = NULL;
1828 port->bfd = NULL;
1829 port->tag = tag_create_random();
1830 port->may_enable = true;
1831 port->stp_port = NULL;
1832 port->stp_state = STP_DISABLED;
1833 port->tnl_port = NULL;
1834 hmap_init(&port->priorities);
1835 port->realdev_ofp_port = 0;
1836 port->vlandev_vid = 0;
1837 port->carrier_seq = netdev_get_carrier_resets(netdev);
1838
1839 if (netdev_vport_is_patch(netdev)) {
1840 /* By bailing out here, we don't submit the port to the sFlow module
1841 * to be considered for counter polling export. This is correct
1842 * because the patch port represents an interface that sFlow considers
1843 * to be "internal" to the switch as a whole, and therefore not an
1844 * candidate for counter polling. */
1845 port->odp_port = OVSP_NONE;
1846 return 0;
1847 }
1848
1849 error = dpif_port_query_by_name(ofproto->backer->dpif,
1850 netdev_vport_get_dpif_port(netdev, namebuf,
1851 sizeof namebuf),
1852 &dpif_port);
1853 if (error) {
1854 return error;
1855 }
1856
1857 port->odp_port = dpif_port.port_no;
1858
1859 if (netdev_get_tunnel_config(netdev)) {
1860 port->tnl_port = tnl_port_add(&port->up, port->odp_port);
1861 } else {
1862 /* Sanity-check that a mapping doesn't already exist. This
1863 * shouldn't happen for non-tunnel ports. */
1864 if (odp_port_to_ofp_port(ofproto, port->odp_port) != OFPP_NONE) {
1865 VLOG_ERR("port %s already has an OpenFlow port number",
1866 dpif_port.name);
1867 dpif_port_destroy(&dpif_port);
1868 return EBUSY;
1869 }
1870
1871 hmap_insert(&ofproto->backer->odp_to_ofport_map, &port->odp_port_node,
1872 hash_int(port->odp_port, 0));
1873 }
1874 dpif_port_destroy(&dpif_port);
1875
1876 if (ofproto->sflow) {
1877 dpif_sflow_add_port(ofproto->sflow, port_, port->odp_port);
1878 }
1879
1880 return 0;
1881 }
1882
1883 static void
1884 port_destruct(struct ofport *port_)
1885 {
1886 struct ofport_dpif *port = ofport_dpif_cast(port_);
1887 struct ofproto_dpif *ofproto = ofproto_dpif_cast(port->up.ofproto);
1888 const char *devname = netdev_get_name(port->up.netdev);
1889 char namebuf[NETDEV_VPORT_NAME_BUFSIZE];
1890 const char *dp_port_name;
1891
1892 dp_port_name = netdev_vport_get_dpif_port(port->up.netdev, namebuf,
1893 sizeof namebuf);
1894 if (dpif_port_exists(ofproto->backer->dpif, dp_port_name)) {
1895 /* The underlying device is still there, so delete it. This
1896 * happens when the ofproto is being destroyed, since the caller
1897 * assumes that removal of attached ports will happen as part of
1898 * destruction. */
1899 if (!port->tnl_port) {
1900 dpif_port_del(ofproto->backer->dpif, port->odp_port);
1901 }
1902 ofproto->backer->need_revalidate = REV_RECONFIGURE;
1903 }
1904
1905 if (port->odp_port != OVSP_NONE && !port->tnl_port) {
1906 hmap_remove(&ofproto->backer->odp_to_ofport_map, &port->odp_port_node);
1907 }
1908
1909 tnl_port_del(port->tnl_port);
1910 sset_find_and_delete(&ofproto->ports, devname);
1911 sset_find_and_delete(&ofproto->ghost_ports, devname);
1912 ofproto->backer->need_revalidate = REV_RECONFIGURE;
1913 bundle_remove(port_);
1914 set_cfm(port_, NULL);
1915 set_bfd(port_, NULL);
1916 if (ofproto->sflow) {
1917 dpif_sflow_del_port(ofproto->sflow, port->odp_port);
1918 }
1919
1920 ofport_clear_priorities(port);
1921 hmap_destroy(&port->priorities);
1922 }
1923
1924 static void
1925 port_modified(struct ofport *port_)
1926 {
1927 struct ofport_dpif *port = ofport_dpif_cast(port_);
1928
1929 if (port->bundle && port->bundle->bond) {
1930 bond_slave_set_netdev(port->bundle->bond, port, port->up.netdev);
1931 }
1932
1933 if (port->cfm) {
1934 cfm_set_netdev(port->cfm, port->up.netdev);
1935 }
1936 }
1937
1938 static void
1939 port_reconfigured(struct ofport *port_, enum ofputil_port_config old_config)
1940 {
1941 struct ofport_dpif *port = ofport_dpif_cast(port_);
1942 struct ofproto_dpif *ofproto = ofproto_dpif_cast(port->up.ofproto);
1943 enum ofputil_port_config changed = old_config ^ port->up.pp.config;
1944
1945 if (changed & (OFPUTIL_PC_NO_RECV | OFPUTIL_PC_NO_RECV_STP |
1946 OFPUTIL_PC_NO_FWD | OFPUTIL_PC_NO_FLOOD |
1947 OFPUTIL_PC_NO_PACKET_IN)) {
1948 ofproto->backer->need_revalidate = REV_RECONFIGURE;
1949
1950 if (changed & OFPUTIL_PC_NO_FLOOD && port->bundle) {
1951 bundle_update(port->bundle);
1952 }
1953 }
1954 }
1955
1956 static int
1957 set_sflow(struct ofproto *ofproto_,
1958 const struct ofproto_sflow_options *sflow_options)
1959 {
1960 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1961 struct dpif_sflow *ds = ofproto->sflow;
1962
1963 if (sflow_options) {
1964 if (!ds) {
1965 struct ofport_dpif *ofport;
1966
1967 ds = ofproto->sflow = dpif_sflow_create();
1968 HMAP_FOR_EACH (ofport, up.hmap_node, &ofproto->up.ports) {
1969 dpif_sflow_add_port(ds, &ofport->up, ofport->odp_port);
1970 }
1971 ofproto->backer->need_revalidate = REV_RECONFIGURE;
1972 }
1973 dpif_sflow_set_options(ds, sflow_options);
1974 } else {
1975 if (ds) {
1976 dpif_sflow_destroy(ds);
1977 ofproto->backer->need_revalidate = REV_RECONFIGURE;
1978 ofproto->sflow = NULL;
1979 }
1980 }
1981 return 0;
1982 }
1983
1984 static int
1985 set_ipfix(
1986 struct ofproto *ofproto_,
1987 const struct ofproto_ipfix_bridge_exporter_options *bridge_exporter_options,
1988 const struct ofproto_ipfix_flow_exporter_options *flow_exporters_options,
1989 size_t n_flow_exporters_options)
1990 {
1991 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1992 struct dpif_ipfix *di = ofproto->ipfix;
1993
1994 if (bridge_exporter_options || flow_exporters_options) {
1995 if (!di) {
1996 di = ofproto->ipfix = dpif_ipfix_create();
1997 }
1998 dpif_ipfix_set_options(
1999 di, bridge_exporter_options, flow_exporters_options,
2000 n_flow_exporters_options);
2001 } else {
2002 if (di) {
2003 dpif_ipfix_destroy(di);
2004 ofproto->ipfix = NULL;
2005 }
2006 }
2007 return 0;
2008 }
2009
2010 static int
2011 set_cfm(struct ofport *ofport_, const struct cfm_settings *s)
2012 {
2013 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
2014 int error;
2015
2016 if (!s) {
2017 error = 0;
2018 } else {
2019 if (!ofport->cfm) {
2020 struct ofproto_dpif *ofproto;
2021
2022 ofproto = ofproto_dpif_cast(ofport->up.ofproto);
2023 ofproto->backer->need_revalidate = REV_RECONFIGURE;
2024 ofport->cfm = cfm_create(ofport->up.netdev);
2025 }
2026
2027 if (cfm_configure(ofport->cfm, s)) {
2028 return 0;
2029 }
2030
2031 error = EINVAL;
2032 }
2033 cfm_destroy(ofport->cfm);
2034 ofport->cfm = NULL;
2035 return error;
2036 }
2037
2038 static bool
2039 get_cfm_status(const struct ofport *ofport_,
2040 struct ofproto_cfm_status *status)
2041 {
2042 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
2043
2044 if (ofport->cfm) {
2045 status->faults = cfm_get_fault(ofport->cfm);
2046 status->remote_opstate = cfm_get_opup(ofport->cfm);
2047 status->health = cfm_get_health(ofport->cfm);
2048 cfm_get_remote_mpids(ofport->cfm, &status->rmps, &status->n_rmps);
2049 return true;
2050 } else {
2051 return false;
2052 }
2053 }
2054
2055 static int
2056 set_bfd(struct ofport *ofport_, const struct smap *cfg)
2057 {
2058 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport_->ofproto);
2059 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
2060 struct bfd *old;
2061
2062 old = ofport->bfd;
2063 ofport->bfd = bfd_configure(old, netdev_get_name(ofport->up.netdev), cfg);
2064 if (ofport->bfd != old) {
2065 ofproto->backer->need_revalidate = REV_RECONFIGURE;
2066 }
2067
2068 return 0;
2069 }
2070
2071 static int
2072 get_bfd_status(struct ofport *ofport_, struct smap *smap)
2073 {
2074 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
2075
2076 if (ofport->bfd) {
2077 bfd_get_status(ofport->bfd, smap);
2078 return 0;
2079 } else {
2080 return ENOENT;
2081 }
2082 }
2083 \f
2084 /* Spanning Tree. */
2085
2086 static void
2087 send_bpdu_cb(struct ofpbuf *pkt, int port_num, void *ofproto_)
2088 {
2089 struct ofproto_dpif *ofproto = ofproto_;
2090 struct stp_port *sp = stp_get_port(ofproto->stp, port_num);
2091 struct ofport_dpif *ofport;
2092
2093 ofport = stp_port_get_aux(sp);
2094 if (!ofport) {
2095 VLOG_WARN_RL(&rl, "%s: cannot send BPDU on unknown port %d",
2096 ofproto->up.name, port_num);
2097 } else {
2098 struct eth_header *eth = pkt->l2;
2099
2100 netdev_get_etheraddr(ofport->up.netdev, eth->eth_src);
2101 if (eth_addr_is_zero(eth->eth_src)) {
2102 VLOG_WARN_RL(&rl, "%s: cannot send BPDU on port %d "
2103 "with unknown MAC", ofproto->up.name, port_num);
2104 } else {
2105 send_packet(ofport, pkt);
2106 }
2107 }
2108 ofpbuf_delete(pkt);
2109 }
2110
2111 /* Configures STP on 'ofproto_' using the settings defined in 's'. */
2112 static int
2113 set_stp(struct ofproto *ofproto_, const struct ofproto_stp_settings *s)
2114 {
2115 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2116
2117 /* Only revalidate flows if the configuration changed. */
2118 if (!s != !ofproto->stp) {
2119 ofproto->backer->need_revalidate = REV_RECONFIGURE;
2120 }
2121
2122 if (s) {
2123 if (!ofproto->stp) {
2124 ofproto->stp = stp_create(ofproto_->name, s->system_id,
2125 send_bpdu_cb, ofproto);
2126 ofproto->stp_last_tick = time_msec();
2127 }
2128
2129 stp_set_bridge_id(ofproto->stp, s->system_id);
2130 stp_set_bridge_priority(ofproto->stp, s->priority);
2131 stp_set_hello_time(ofproto->stp, s->hello_time);
2132 stp_set_max_age(ofproto->stp, s->max_age);
2133 stp_set_forward_delay(ofproto->stp, s->fwd_delay);
2134 } else {
2135 struct ofport *ofport;
2136
2137 HMAP_FOR_EACH (ofport, hmap_node, &ofproto->up.ports) {
2138 set_stp_port(ofport, NULL);
2139 }
2140
2141 stp_destroy(ofproto->stp);
2142 ofproto->stp = NULL;
2143 }
2144
2145 return 0;
2146 }
2147
2148 static int
2149 get_stp_status(struct ofproto *ofproto_, struct ofproto_stp_status *s)
2150 {
2151 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2152
2153 if (ofproto->stp) {
2154 s->enabled = true;
2155 s->bridge_id = stp_get_bridge_id(ofproto->stp);
2156 s->designated_root = stp_get_designated_root(ofproto->stp);
2157 s->root_path_cost = stp_get_root_path_cost(ofproto->stp);
2158 } else {
2159 s->enabled = false;
2160 }
2161
2162 return 0;
2163 }
2164
2165 static void
2166 update_stp_port_state(struct ofport_dpif *ofport)
2167 {
2168 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
2169 enum stp_state state;
2170
2171 /* Figure out new state. */
2172 state = ofport->stp_port ? stp_port_get_state(ofport->stp_port)
2173 : STP_DISABLED;
2174
2175 /* Update state. */
2176 if (ofport->stp_state != state) {
2177 enum ofputil_port_state of_state;
2178 bool fwd_change;
2179
2180 VLOG_DBG_RL(&rl, "port %s: STP state changed from %s to %s",
2181 netdev_get_name(ofport->up.netdev),
2182 stp_state_name(ofport->stp_state),
2183 stp_state_name(state));
2184 if (stp_learn_in_state(ofport->stp_state)
2185 != stp_learn_in_state(state)) {
2186 /* xxx Learning action flows should also be flushed. */
2187 mac_learning_flush(ofproto->ml,
2188 &ofproto->backer->revalidate_set);
2189 }
2190 fwd_change = stp_forward_in_state(ofport->stp_state)
2191 != stp_forward_in_state(state);
2192
2193 ofproto->backer->need_revalidate = REV_STP;
2194 ofport->stp_state = state;
2195 ofport->stp_state_entered = time_msec();
2196
2197 if (fwd_change && ofport->bundle) {
2198 bundle_update(ofport->bundle);
2199 }
2200
2201 /* Update the STP state bits in the OpenFlow port description. */
2202 of_state = ofport->up.pp.state & ~OFPUTIL_PS_STP_MASK;
2203 of_state |= (state == STP_LISTENING ? OFPUTIL_PS_STP_LISTEN
2204 : state == STP_LEARNING ? OFPUTIL_PS_STP_LEARN
2205 : state == STP_FORWARDING ? OFPUTIL_PS_STP_FORWARD
2206 : state == STP_BLOCKING ? OFPUTIL_PS_STP_BLOCK
2207 : 0);
2208 ofproto_port_set_state(&ofport->up, of_state);
2209 }
2210 }
2211
2212 /* Configures STP on 'ofport_' using the settings defined in 's'. The
2213 * caller is responsible for assigning STP port numbers and ensuring
2214 * there are no duplicates. */
2215 static int
2216 set_stp_port(struct ofport *ofport_,
2217 const struct ofproto_port_stp_settings *s)
2218 {
2219 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
2220 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
2221 struct stp_port *sp = ofport->stp_port;
2222
2223 if (!s || !s->enable) {
2224 if (sp) {
2225 ofport->stp_port = NULL;
2226 stp_port_disable(sp);
2227 update_stp_port_state(ofport);
2228 }
2229 return 0;
2230 } else if (sp && stp_port_no(sp) != s->port_num
2231 && ofport == stp_port_get_aux(sp)) {
2232 /* The port-id changed, so disable the old one if it's not
2233 * already in use by another port. */
2234 stp_port_disable(sp);
2235 }
2236
2237 sp = ofport->stp_port = stp_get_port(ofproto->stp, s->port_num);
2238 stp_port_enable(sp);
2239
2240 stp_port_set_aux(sp, ofport);
2241 stp_port_set_priority(sp, s->priority);
2242 stp_port_set_path_cost(sp, s->path_cost);
2243
2244 update_stp_port_state(ofport);
2245
2246 return 0;
2247 }
2248
2249 static int
2250 get_stp_port_status(struct ofport *ofport_,
2251 struct ofproto_port_stp_status *s)
2252 {
2253 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
2254 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
2255 struct stp_port *sp = ofport->stp_port;
2256
2257 if (!ofproto->stp || !sp) {
2258 s->enabled = false;
2259 return 0;
2260 }
2261
2262 s->enabled = true;
2263 s->port_id = stp_port_get_id(sp);
2264 s->state = stp_port_get_state(sp);
2265 s->sec_in_state = (time_msec() - ofport->stp_state_entered) / 1000;
2266 s->role = stp_port_get_role(sp);
2267 stp_port_get_counts(sp, &s->tx_count, &s->rx_count, &s->error_count);
2268
2269 return 0;
2270 }
2271
2272 static void
2273 stp_run(struct ofproto_dpif *ofproto)
2274 {
2275 if (ofproto->stp) {
2276 long long int now = time_msec();
2277 long long int elapsed = now - ofproto->stp_last_tick;
2278 struct stp_port *sp;
2279
2280 if (elapsed > 0) {
2281 stp_tick(ofproto->stp, MIN(INT_MAX, elapsed));
2282 ofproto->stp_last_tick = now;
2283 }
2284 while (stp_get_changed_port(ofproto->stp, &sp)) {
2285 struct ofport_dpif *ofport = stp_port_get_aux(sp);
2286
2287 if (ofport) {
2288 update_stp_port_state(ofport);
2289 }
2290 }
2291
2292 if (stp_check_and_reset_fdb_flush(ofproto->stp)) {
2293 mac_learning_flush(ofproto->ml, &ofproto->backer->revalidate_set);
2294 }
2295 }
2296 }
2297
2298 static void
2299 stp_wait(struct ofproto_dpif *ofproto)
2300 {
2301 if (ofproto->stp) {
2302 poll_timer_wait(1000);
2303 }
2304 }
2305
2306 /* Returns true if STP should process 'flow'. */
2307 static bool
2308 stp_should_process_flow(const struct flow *flow)
2309 {
2310 return eth_addr_equals(flow->dl_dst, eth_addr_stp);
2311 }
2312
2313 static void
2314 stp_process_packet(const struct ofport_dpif *ofport,
2315 const struct ofpbuf *packet)
2316 {
2317 struct ofpbuf payload = *packet;
2318 struct eth_header *eth = payload.data;
2319 struct stp_port *sp = ofport->stp_port;
2320
2321 /* Sink packets on ports that have STP disabled when the bridge has
2322 * STP enabled. */
2323 if (!sp || stp_port_get_state(sp) == STP_DISABLED) {
2324 return;
2325 }
2326
2327 /* Trim off padding on payload. */
2328 if (payload.size > ntohs(eth->eth_type) + ETH_HEADER_LEN) {
2329 payload.size = ntohs(eth->eth_type) + ETH_HEADER_LEN;
2330 }
2331
2332 if (ofpbuf_try_pull(&payload, ETH_HEADER_LEN + LLC_HEADER_LEN)) {
2333 stp_received_bpdu(sp, payload.data, payload.size);
2334 }
2335 }
2336 \f
2337 static struct priority_to_dscp *
2338 get_priority(const struct ofport_dpif *ofport, uint32_t priority)
2339 {
2340 struct priority_to_dscp *pdscp;
2341 uint32_t hash;
2342
2343 hash = hash_int(priority, 0);
2344 HMAP_FOR_EACH_IN_BUCKET (pdscp, hmap_node, hash, &ofport->priorities) {
2345 if (pdscp->priority == priority) {
2346 return pdscp;
2347 }
2348 }
2349 return NULL;
2350 }
2351
2352 static void
2353 ofport_clear_priorities(struct ofport_dpif *ofport)
2354 {
2355 struct priority_to_dscp *pdscp, *next;
2356
2357 HMAP_FOR_EACH_SAFE (pdscp, next, hmap_node, &ofport->priorities) {
2358 hmap_remove(&ofport->priorities, &pdscp->hmap_node);
2359 free(pdscp);
2360 }
2361 }
2362
2363 static int
2364 set_queues(struct ofport *ofport_,
2365 const struct ofproto_port_queue *qdscp_list,
2366 size_t n_qdscp)
2367 {
2368 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
2369 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
2370 struct hmap new = HMAP_INITIALIZER(&new);
2371 size_t i;
2372
2373 for (i = 0; i < n_qdscp; i++) {
2374 struct priority_to_dscp *pdscp;
2375 uint32_t priority;
2376 uint8_t dscp;
2377
2378 dscp = (qdscp_list[i].dscp << 2) & IP_DSCP_MASK;
2379 if (dpif_queue_to_priority(ofproto->backer->dpif, qdscp_list[i].queue,
2380 &priority)) {
2381 continue;
2382 }
2383
2384 pdscp = get_priority(ofport, priority);
2385 if (pdscp) {
2386 hmap_remove(&ofport->priorities, &pdscp->hmap_node);
2387 } else {
2388 pdscp = xmalloc(sizeof *pdscp);
2389 pdscp->priority = priority;
2390 pdscp->dscp = dscp;
2391 ofproto->backer->need_revalidate = REV_RECONFIGURE;
2392 }
2393
2394 if (pdscp->dscp != dscp) {
2395 pdscp->dscp = dscp;
2396 ofproto->backer->need_revalidate = REV_RECONFIGURE;
2397 }
2398
2399 hmap_insert(&new, &pdscp->hmap_node, hash_int(pdscp->priority, 0));
2400 }
2401
2402 if (!hmap_is_empty(&ofport->priorities)) {
2403 ofport_clear_priorities(ofport);
2404 ofproto->backer->need_revalidate = REV_RECONFIGURE;
2405 }
2406
2407 hmap_swap(&new, &ofport->priorities);
2408 hmap_destroy(&new);
2409
2410 return 0;
2411 }
2412 \f
2413 /* Bundles. */
2414
2415 /* Expires all MAC learning entries associated with 'bundle' and forces its
2416 * ofproto to revalidate every flow.
2417 *
2418 * Normally MAC learning entries are removed only from the ofproto associated
2419 * with 'bundle', but if 'all_ofprotos' is true, then the MAC learning entries
2420 * are removed from every ofproto. When patch ports and SLB bonds are in use
2421 * and a VM migration happens and the gratuitous ARPs are somehow lost, this
2422 * avoids a MAC_ENTRY_IDLE_TIME delay before the migrated VM can communicate
2423 * with the host from which it migrated. */
2424 static void
2425 bundle_flush_macs(struct ofbundle *bundle, bool all_ofprotos)
2426 {
2427 struct ofproto_dpif *ofproto = bundle->ofproto;
2428 struct mac_learning *ml = ofproto->ml;
2429 struct mac_entry *mac, *next_mac;
2430
2431 ofproto->backer->need_revalidate = REV_RECONFIGURE;
2432 LIST_FOR_EACH_SAFE (mac, next_mac, lru_node, &ml->lrus) {
2433 if (mac->port.p == bundle) {
2434 if (all_ofprotos) {
2435 struct ofproto_dpif *o;
2436
2437 HMAP_FOR_EACH (o, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
2438 if (o != ofproto) {
2439 struct mac_entry *e;
2440
2441 e = mac_learning_lookup(o->ml, mac->mac, mac->vlan,
2442 NULL);
2443 if (e) {
2444 mac_learning_expire(o->ml, e);
2445 }
2446 }
2447 }
2448 }
2449
2450 mac_learning_expire(ml, mac);
2451 }
2452 }
2453 }
2454
2455 static struct ofbundle *
2456 bundle_lookup(const struct ofproto_dpif *ofproto, void *aux)
2457 {
2458 struct ofbundle *bundle;
2459
2460 HMAP_FOR_EACH_IN_BUCKET (bundle, hmap_node, hash_pointer(aux, 0),
2461 &ofproto->bundles) {
2462 if (bundle->aux == aux) {
2463 return bundle;
2464 }
2465 }
2466 return NULL;
2467 }
2468
2469 /* Looks up each of the 'n_auxes' pointers in 'auxes' as bundles and adds the
2470 * ones that are found to 'bundles'. */
2471 static void
2472 bundle_lookup_multiple(struct ofproto_dpif *ofproto,
2473 void **auxes, size_t n_auxes,
2474 struct hmapx *bundles)
2475 {
2476 size_t i;
2477
2478 hmapx_init(bundles);
2479 for (i = 0; i < n_auxes; i++) {
2480 struct ofbundle *bundle = bundle_lookup(ofproto, auxes[i]);
2481 if (bundle) {
2482 hmapx_add(bundles, bundle);
2483 }
2484 }
2485 }
2486
2487 static void
2488 bundle_update(struct ofbundle *bundle)
2489 {
2490 struct ofport_dpif *port;
2491
2492 bundle->floodable = true;
2493 LIST_FOR_EACH (port, bundle_node, &bundle->ports) {
2494 if (port->up.pp.config & OFPUTIL_PC_NO_FLOOD
2495 || !stp_forward_in_state(port->stp_state)) {
2496 bundle->floodable = false;
2497 break;
2498 }
2499 }
2500 }
2501
2502 static void
2503 bundle_del_port(struct ofport_dpif *port)
2504 {
2505 struct ofbundle *bundle = port->bundle;
2506
2507 bundle->ofproto->backer->need_revalidate = REV_RECONFIGURE;
2508
2509 list_remove(&port->bundle_node);
2510 port->bundle = NULL;
2511
2512 if (bundle->lacp) {
2513 lacp_slave_unregister(bundle->lacp, port);
2514 }
2515 if (bundle->bond) {
2516 bond_slave_unregister(bundle->bond, port);
2517 }
2518
2519 bundle_update(bundle);
2520 }
2521
2522 static bool
2523 bundle_add_port(struct ofbundle *bundle, uint16_t ofp_port,
2524 struct lacp_slave_settings *lacp)
2525 {
2526 struct ofport_dpif *port;
2527
2528 port = get_ofp_port(bundle->ofproto, ofp_port);
2529 if (!port) {
2530 return false;
2531 }
2532
2533 if (port->bundle != bundle) {
2534 bundle->ofproto->backer->need_revalidate = REV_RECONFIGURE;
2535 if (port->bundle) {
2536 bundle_del_port(port);
2537 }
2538
2539 port->bundle = bundle;
2540 list_push_back(&bundle->ports, &port->bundle_node);
2541 if (port->up.pp.config & OFPUTIL_PC_NO_FLOOD
2542 || !stp_forward_in_state(port->stp_state)) {
2543 bundle->floodable = false;
2544 }
2545 }
2546 if (lacp) {
2547 bundle->ofproto->backer->need_revalidate = REV_RECONFIGURE;
2548 lacp_slave_register(bundle->lacp, port, lacp);
2549 }
2550
2551 return true;
2552 }
2553
2554 static void
2555 bundle_destroy(struct ofbundle *bundle)
2556 {
2557 struct ofproto_dpif *ofproto;
2558 struct ofport_dpif *port, *next_port;
2559 int i;
2560
2561 if (!bundle) {
2562 return;
2563 }
2564
2565 ofproto = bundle->ofproto;
2566 for (i = 0; i < MAX_MIRRORS; i++) {
2567 struct ofmirror *m = ofproto->mirrors[i];
2568 if (m) {
2569 if (m->out == bundle) {
2570 mirror_destroy(m);
2571 } else if (hmapx_find_and_delete(&m->srcs, bundle)
2572 || hmapx_find_and_delete(&m->dsts, bundle)) {
2573 ofproto->backer->need_revalidate = REV_RECONFIGURE;
2574 }
2575 }
2576 }
2577
2578 LIST_FOR_EACH_SAFE (port, next_port, bundle_node, &bundle->ports) {
2579 bundle_del_port(port);
2580 }
2581
2582 bundle_flush_macs(bundle, true);
2583 hmap_remove(&ofproto->bundles, &bundle->hmap_node);
2584 free(bundle->name);
2585 free(bundle->trunks);
2586 lacp_destroy(bundle->lacp);
2587 bond_destroy(bundle->bond);
2588 free(bundle);
2589 }
2590
2591 static int
2592 bundle_set(struct ofproto *ofproto_, void *aux,
2593 const struct ofproto_bundle_settings *s)
2594 {
2595 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2596 bool need_flush = false;
2597 struct ofport_dpif *port;
2598 struct ofbundle *bundle;
2599 unsigned long *trunks;
2600 int vlan;
2601 size_t i;
2602 bool ok;
2603
2604 if (!s) {
2605 bundle_destroy(bundle_lookup(ofproto, aux));
2606 return 0;
2607 }
2608
2609 ovs_assert(s->n_slaves == 1 || s->bond != NULL);
2610 ovs_assert((s->lacp != NULL) == (s->lacp_slaves != NULL));
2611
2612 bundle = bundle_lookup(ofproto, aux);
2613 if (!bundle) {
2614 bundle = xmalloc(sizeof *bundle);
2615
2616 bundle->ofproto = ofproto;
2617 hmap_insert(&ofproto->bundles, &bundle->hmap_node,
2618 hash_pointer(aux, 0));
2619 bundle->aux = aux;
2620 bundle->name = NULL;
2621
2622 list_init(&bundle->ports);
2623 bundle->vlan_mode = PORT_VLAN_TRUNK;
2624 bundle->vlan = -1;
2625 bundle->trunks = NULL;
2626 bundle->use_priority_tags = s->use_priority_tags;
2627 bundle->lacp = NULL;
2628 bundle->bond = NULL;
2629
2630 bundle->floodable = true;
2631
2632 bundle->src_mirrors = 0;
2633 bundle->dst_mirrors = 0;
2634 bundle->mirror_out = 0;
2635 }
2636
2637 if (!bundle->name || strcmp(s->name, bundle->name)) {
2638 free(bundle->name);
2639 bundle->name = xstrdup(s->name);
2640 }
2641
2642 /* LACP. */
2643 if (s->lacp) {
2644 if (!bundle->lacp) {
2645 ofproto->backer->need_revalidate = REV_RECONFIGURE;
2646 bundle->lacp = lacp_create();
2647 }
2648 lacp_configure(bundle->lacp, s->lacp);
2649 } else {
2650 lacp_destroy(bundle->lacp);
2651 bundle->lacp = NULL;
2652 }
2653
2654 /* Update set of ports. */
2655 ok = true;
2656 for (i = 0; i < s->n_slaves; i++) {
2657 if (!bundle_add_port(bundle, s->slaves[i],
2658 s->lacp ? &s->lacp_slaves[i] : NULL)) {
2659 ok = false;
2660 }
2661 }
2662 if (!ok || list_size(&bundle->ports) != s->n_slaves) {
2663 struct ofport_dpif *next_port;
2664
2665 LIST_FOR_EACH_SAFE (port, next_port, bundle_node, &bundle->ports) {
2666 for (i = 0; i < s->n_slaves; i++) {
2667 if (s->slaves[i] == port->up.ofp_port) {
2668 goto found;
2669 }
2670 }
2671
2672 bundle_del_port(port);
2673 found: ;
2674 }
2675 }
2676 ovs_assert(list_size(&bundle->ports) <= s->n_slaves);
2677
2678 if (list_is_empty(&bundle->ports)) {
2679 bundle_destroy(bundle);
2680 return EINVAL;
2681 }
2682
2683 /* Set VLAN tagging mode */
2684 if (s->vlan_mode != bundle->vlan_mode
2685 || s->use_priority_tags != bundle->use_priority_tags) {
2686 bundle->vlan_mode = s->vlan_mode;
2687 bundle->use_priority_tags = s->use_priority_tags;
2688 need_flush = true;
2689 }
2690
2691 /* Set VLAN tag. */
2692 vlan = (s->vlan_mode == PORT_VLAN_TRUNK ? -1
2693 : s->vlan >= 0 && s->vlan <= 4095 ? s->vlan
2694 : 0);
2695 if (vlan != bundle->vlan) {
2696 bundle->vlan = vlan;
2697 need_flush = true;
2698 }
2699
2700 /* Get trunked VLANs. */
2701 switch (s->vlan_mode) {
2702 case PORT_VLAN_ACCESS:
2703 trunks = NULL;
2704 break;
2705
2706 case PORT_VLAN_TRUNK:
2707 trunks = CONST_CAST(unsigned long *, s->trunks);
2708 break;
2709
2710 case PORT_VLAN_NATIVE_UNTAGGED:
2711 case PORT_VLAN_NATIVE_TAGGED:
2712 if (vlan != 0 && (!s->trunks
2713 || !bitmap_is_set(s->trunks, vlan)
2714 || bitmap_is_set(s->trunks, 0))) {
2715 /* Force trunking the native VLAN and prohibit trunking VLAN 0. */
2716 if (s->trunks) {
2717 trunks = bitmap_clone(s->trunks, 4096);
2718 } else {
2719 trunks = bitmap_allocate1(4096);
2720 }
2721 bitmap_set1(trunks, vlan);
2722 bitmap_set0(trunks, 0);
2723 } else {
2724 trunks = CONST_CAST(unsigned long *, s->trunks);
2725 }
2726 break;
2727
2728 default:
2729 NOT_REACHED();
2730 }
2731 if (!vlan_bitmap_equal(trunks, bundle->trunks)) {
2732 free(bundle->trunks);
2733 if (trunks == s->trunks) {
2734 bundle->trunks = vlan_bitmap_clone(trunks);
2735 } else {
2736 bundle->trunks = trunks;
2737 trunks = NULL;
2738 }
2739 need_flush = true;
2740 }
2741 if (trunks != s->trunks) {
2742 free(trunks);
2743 }
2744
2745 /* Bonding. */
2746 if (!list_is_short(&bundle->ports)) {
2747 bundle->ofproto->has_bonded_bundles = true;
2748 if (bundle->bond) {
2749 if (bond_reconfigure(bundle->bond, s->bond)) {
2750 ofproto->backer->need_revalidate = REV_RECONFIGURE;
2751 }
2752 } else {
2753 bundle->bond = bond_create(s->bond);
2754 ofproto->backer->need_revalidate = REV_RECONFIGURE;
2755 }
2756
2757 LIST_FOR_EACH (port, bundle_node, &bundle->ports) {
2758 bond_slave_register(bundle->bond, port, port->up.netdev);
2759 }
2760 } else {
2761 bond_destroy(bundle->bond);
2762 bundle->bond = NULL;
2763 }
2764
2765 /* If we changed something that would affect MAC learning, un-learn
2766 * everything on this port and force flow revalidation. */
2767 if (need_flush) {
2768 bundle_flush_macs(bundle, false);
2769 }
2770
2771 return 0;
2772 }
2773
2774 static void
2775 bundle_remove(struct ofport *port_)
2776 {
2777 struct ofport_dpif *port = ofport_dpif_cast(port_);
2778 struct ofbundle *bundle = port->bundle;
2779
2780 if (bundle) {
2781 bundle_del_port(port);
2782 if (list_is_empty(&bundle->ports)) {
2783 bundle_destroy(bundle);
2784 } else if (list_is_short(&bundle->ports)) {
2785 bond_destroy(bundle->bond);
2786 bundle->bond = NULL;
2787 }
2788 }
2789 }
2790
2791 static void
2792 send_pdu_cb(void *port_, const void *pdu, size_t pdu_size)
2793 {
2794 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 10);
2795 struct ofport_dpif *port = port_;
2796 uint8_t ea[ETH_ADDR_LEN];
2797 int error;
2798
2799 error = netdev_get_etheraddr(port->up.netdev, ea);
2800 if (!error) {
2801 struct ofpbuf packet;
2802 void *packet_pdu;
2803
2804 ofpbuf_init(&packet, 0);
2805 packet_pdu = eth_compose(&packet, eth_addr_lacp, ea, ETH_TYPE_LACP,
2806 pdu_size);
2807 memcpy(packet_pdu, pdu, pdu_size);
2808
2809 send_packet(port, &packet);
2810 ofpbuf_uninit(&packet);
2811 } else {
2812 VLOG_ERR_RL(&rl, "port %s: cannot obtain Ethernet address of iface "
2813 "%s (%s)", port->bundle->name,
2814 netdev_get_name(port->up.netdev), strerror(error));
2815 }
2816 }
2817
2818 static void
2819 bundle_send_learning_packets(struct ofbundle *bundle)
2820 {
2821 struct ofproto_dpif *ofproto = bundle->ofproto;
2822 int error, n_packets, n_errors;
2823 struct mac_entry *e;
2824
2825 error = n_packets = n_errors = 0;
2826 LIST_FOR_EACH (e, lru_node, &ofproto->ml->lrus) {
2827 if (e->port.p != bundle) {
2828 struct ofpbuf *learning_packet;
2829 struct ofport_dpif *port;
2830 void *port_void;
2831 int ret;
2832
2833 /* The assignment to "port" is unnecessary but makes "grep"ing for
2834 * struct ofport_dpif more effective. */
2835 learning_packet = bond_compose_learning_packet(bundle->bond,
2836 e->mac, e->vlan,
2837 &port_void);
2838 port = port_void;
2839 ret = send_packet(port, learning_packet);
2840 ofpbuf_delete(learning_packet);
2841 if (ret) {
2842 error = ret;
2843 n_errors++;
2844 }
2845 n_packets++;
2846 }
2847 }
2848
2849 if (n_errors) {
2850 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
2851 VLOG_WARN_RL(&rl, "bond %s: %d errors sending %d gratuitous learning "
2852 "packets, last error was: %s",
2853 bundle->name, n_errors, n_packets, strerror(error));
2854 } else {
2855 VLOG_DBG("bond %s: sent %d gratuitous learning packets",
2856 bundle->name, n_packets);
2857 }
2858 }
2859
2860 static void
2861 bundle_run(struct ofbundle *bundle)
2862 {
2863 if (bundle->lacp) {
2864 lacp_run(bundle->lacp, send_pdu_cb);
2865 }
2866 if (bundle->bond) {
2867 struct ofport_dpif *port;
2868
2869 LIST_FOR_EACH (port, bundle_node, &bundle->ports) {
2870 bond_slave_set_may_enable(bundle->bond, port, port->may_enable);
2871 }
2872
2873 bond_run(bundle->bond, &bundle->ofproto->backer->revalidate_set,
2874 lacp_status(bundle->lacp));
2875 if (bond_should_send_learning_packets(bundle->bond)) {
2876 bundle_send_learning_packets(bundle);
2877 }
2878 }
2879 }
2880
2881 static void
2882 bundle_wait(struct ofbundle *bundle)
2883 {
2884 if (bundle->lacp) {
2885 lacp_wait(bundle->lacp);
2886 }
2887 if (bundle->bond) {
2888 bond_wait(bundle->bond);
2889 }
2890 }
2891 \f
2892 /* Mirrors. */
2893
2894 static int
2895 mirror_scan(struct ofproto_dpif *ofproto)
2896 {
2897 int idx;
2898
2899 for (idx = 0; idx < MAX_MIRRORS; idx++) {
2900 if (!ofproto->mirrors[idx]) {
2901 return idx;
2902 }
2903 }
2904 return -1;
2905 }
2906
2907 static struct ofmirror *
2908 mirror_lookup(struct ofproto_dpif *ofproto, void *aux)
2909 {
2910 int i;
2911
2912 for (i = 0; i < MAX_MIRRORS; i++) {
2913 struct ofmirror *mirror = ofproto->mirrors[i];
2914 if (mirror && mirror->aux == aux) {
2915 return mirror;
2916 }
2917 }
2918
2919 return NULL;
2920 }
2921
2922 /* Update the 'dup_mirrors' member of each of the ofmirrors in 'ofproto'. */
2923 static void
2924 mirror_update_dups(struct ofproto_dpif *ofproto)
2925 {
2926 int i;
2927
2928 for (i = 0; i < MAX_MIRRORS; i++) {
2929 struct ofmirror *m = ofproto->mirrors[i];
2930
2931 if (m) {
2932 m->dup_mirrors = MIRROR_MASK_C(1) << i;
2933 }
2934 }
2935
2936 for (i = 0; i < MAX_MIRRORS; i++) {
2937 struct ofmirror *m1 = ofproto->mirrors[i];
2938 int j;
2939
2940 if (!m1) {
2941 continue;
2942 }
2943
2944 for (j = i + 1; j < MAX_MIRRORS; j++) {
2945 struct ofmirror *m2 = ofproto->mirrors[j];
2946
2947 if (m2 && m1->out == m2->out && m1->out_vlan == m2->out_vlan) {
2948 m1->dup_mirrors |= MIRROR_MASK_C(1) << j;
2949 m2->dup_mirrors |= m1->dup_mirrors;
2950 }
2951 }
2952 }
2953 }
2954
2955 static int
2956 mirror_set(struct ofproto *ofproto_, void *aux,
2957 const struct ofproto_mirror_settings *s)
2958 {
2959 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2960 mirror_mask_t mirror_bit;
2961 struct ofbundle *bundle;
2962 struct ofmirror *mirror;
2963 struct ofbundle *out;
2964 struct hmapx srcs; /* Contains "struct ofbundle *"s. */
2965 struct hmapx dsts; /* Contains "struct ofbundle *"s. */
2966 int out_vlan;
2967
2968 mirror = mirror_lookup(ofproto, aux);
2969 if (!s) {
2970 mirror_destroy(mirror);
2971 return 0;
2972 }
2973 if (!mirror) {
2974 int idx;
2975
2976 idx = mirror_scan(ofproto);
2977 if (idx < 0) {
2978 VLOG_WARN("bridge %s: maximum of %d port mirrors reached, "
2979 "cannot create %s",
2980 ofproto->up.name, MAX_MIRRORS, s->name);
2981 return EFBIG;
2982 }
2983
2984 mirror = ofproto->mirrors[idx] = xzalloc(sizeof *mirror);
2985 mirror->ofproto = ofproto;
2986 mirror->idx = idx;
2987 mirror->aux = aux;
2988 mirror->out_vlan = -1;
2989 mirror->name = NULL;
2990 }
2991
2992 if (!mirror->name || strcmp(s->name, mirror->name)) {
2993 free(mirror->name);
2994 mirror->name = xstrdup(s->name);
2995 }
2996
2997 /* Get the new configuration. */
2998 if (s->out_bundle) {
2999 out = bundle_lookup(ofproto, s->out_bundle);
3000 if (!out) {
3001 mirror_destroy(mirror);
3002 return EINVAL;
3003 }
3004 out_vlan = -1;
3005 } else {
3006 out = NULL;
3007 out_vlan = s->out_vlan;
3008 }
3009 bundle_lookup_multiple(ofproto, s->srcs, s->n_srcs, &srcs);
3010 bundle_lookup_multiple(ofproto, s->dsts, s->n_dsts, &dsts);
3011
3012 /* If the configuration has not changed, do nothing. */
3013 if (hmapx_equals(&srcs, &mirror->srcs)
3014 && hmapx_equals(&dsts, &mirror->dsts)
3015 && vlan_bitmap_equal(mirror->vlans, s->src_vlans)
3016 && mirror->out == out
3017 && mirror->out_vlan == out_vlan)
3018 {
3019 hmapx_destroy(&srcs);
3020 hmapx_destroy(&dsts);
3021 return 0;
3022 }
3023
3024 hmapx_swap(&srcs, &mirror->srcs);
3025 hmapx_destroy(&srcs);
3026
3027 hmapx_swap(&dsts, &mirror->dsts);
3028 hmapx_destroy(&dsts);
3029
3030 free(mirror->vlans);
3031 mirror->vlans = vlan_bitmap_clone(s->src_vlans);
3032
3033 mirror->out = out;
3034 mirror->out_vlan = out_vlan;
3035
3036 /* Update bundles. */
3037 mirror_bit = MIRROR_MASK_C(1) << mirror->idx;
3038 HMAP_FOR_EACH (bundle, hmap_node, &mirror->ofproto->bundles) {
3039 if (hmapx_contains(&mirror->srcs, bundle)) {
3040 bundle->src_mirrors |= mirror_bit;
3041 } else {
3042 bundle->src_mirrors &= ~mirror_bit;
3043 }
3044
3045 if (hmapx_contains(&mirror->dsts, bundle)) {
3046 bundle->dst_mirrors |= mirror_bit;
3047 } else {
3048 bundle->dst_mirrors &= ~mirror_bit;
3049 }
3050
3051 if (mirror->out == bundle) {
3052 bundle->mirror_out |= mirror_bit;
3053 } else {
3054 bundle->mirror_out &= ~mirror_bit;
3055 }
3056 }
3057
3058 ofproto->backer->need_revalidate = REV_RECONFIGURE;
3059 ofproto->has_mirrors = true;
3060 mac_learning_flush(ofproto->ml,
3061 &ofproto->backer->revalidate_set);
3062 mirror_update_dups(ofproto);
3063
3064 return 0;
3065 }
3066
3067 static void
3068 mirror_destroy(struct ofmirror *mirror)
3069 {
3070 struct ofproto_dpif *ofproto;
3071 mirror_mask_t mirror_bit;
3072 struct ofbundle *bundle;
3073 int i;
3074
3075 if (!mirror) {
3076 return;
3077 }
3078
3079 ofproto = mirror->ofproto;
3080 ofproto->backer->need_revalidate = REV_RECONFIGURE;
3081 mac_learning_flush(ofproto->ml, &ofproto->backer->revalidate_set);
3082
3083 mirror_bit = MIRROR_MASK_C(1) << mirror->idx;
3084 HMAP_FOR_EACH (bundle, hmap_node, &ofproto->bundles) {
3085 bundle->src_mirrors &= ~mirror_bit;
3086 bundle->dst_mirrors &= ~mirror_bit;
3087 bundle->mirror_out &= ~mirror_bit;
3088 }
3089
3090 hmapx_destroy(&mirror->srcs);
3091 hmapx_destroy(&mirror->dsts);
3092 free(mirror->vlans);
3093
3094 ofproto->mirrors[mirror->idx] = NULL;
3095 free(mirror->name);
3096 free(mirror);
3097
3098 mirror_update_dups(ofproto);
3099
3100 ofproto->has_mirrors = false;
3101 for (i = 0; i < MAX_MIRRORS; i++) {
3102 if (ofproto->mirrors[i]) {
3103 ofproto->has_mirrors = true;
3104 break;
3105 }
3106 }
3107 }
3108
3109 static int
3110 mirror_get_stats(struct ofproto *ofproto_, void *aux,
3111 uint64_t *packets, uint64_t *bytes)
3112 {
3113 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
3114 struct ofmirror *mirror = mirror_lookup(ofproto, aux);
3115
3116 if (!mirror) {
3117 *packets = *bytes = UINT64_MAX;
3118 return 0;
3119 }
3120
3121 push_all_stats();
3122
3123 *packets = mirror->packet_count;
3124 *bytes = mirror->byte_count;
3125
3126 return 0;
3127 }
3128
3129 static int
3130 set_flood_vlans(struct ofproto *ofproto_, unsigned long *flood_vlans)
3131 {
3132 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
3133 if (mac_learning_set_flood_vlans(ofproto->ml, flood_vlans)) {
3134 mac_learning_flush(ofproto->ml, &ofproto->backer->revalidate_set);
3135 }
3136 return 0;
3137 }
3138
3139 static bool
3140 is_mirror_output_bundle(const struct ofproto *ofproto_, void *aux)
3141 {
3142 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
3143 struct ofbundle *bundle = bundle_lookup(ofproto, aux);
3144 return bundle && bundle->mirror_out != 0;
3145 }
3146
3147 static void
3148 forward_bpdu_changed(struct ofproto *ofproto_)
3149 {
3150 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
3151 ofproto->backer->need_revalidate = REV_RECONFIGURE;
3152 }
3153
3154 static void
3155 set_mac_table_config(struct ofproto *ofproto_, unsigned int idle_time,
3156 size_t max_entries)
3157 {
3158 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
3159 mac_learning_set_idle_time(ofproto->ml, idle_time);
3160 mac_learning_set_max_entries(ofproto->ml, max_entries);
3161 }
3162 \f
3163 /* Ports. */
3164
3165 static struct ofport_dpif *
3166 get_ofp_port(const struct ofproto_dpif *ofproto, uint16_t ofp_port)
3167 {
3168 struct ofport *ofport = ofproto_get_port(&ofproto->up, ofp_port);
3169 return ofport ? ofport_dpif_cast(ofport) : NULL;
3170 }
3171
3172 static struct ofport_dpif *
3173 get_odp_port(const struct ofproto_dpif *ofproto, uint32_t odp_port)
3174 {
3175 struct ofport_dpif *port = odp_port_to_ofport(ofproto->backer, odp_port);
3176 return port && &ofproto->up == port->up.ofproto ? port : NULL;
3177 }
3178
3179 static void
3180 ofproto_port_from_dpif_port(struct ofproto_dpif *ofproto,
3181 struct ofproto_port *ofproto_port,
3182 struct dpif_port *dpif_port)
3183 {
3184 ofproto_port->name = dpif_port->name;
3185 ofproto_port->type = dpif_port->type;
3186 ofproto_port->ofp_port = odp_port_to_ofp_port(ofproto, dpif_port->port_no);
3187 }
3188
3189 static struct ofport_dpif *
3190 ofport_get_peer(const struct ofport_dpif *ofport_dpif)
3191 {
3192 const struct ofproto_dpif *ofproto;
3193 const char *peer;
3194
3195 peer = netdev_vport_patch_peer(ofport_dpif->up.netdev);
3196 if (!peer) {
3197 return NULL;
3198 }
3199
3200 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
3201 struct ofport *ofport;
3202
3203 ofport = shash_find_data(&ofproto->up.port_by_name, peer);
3204 if (ofport && ofport->ofproto->ofproto_class == &ofproto_dpif_class) {
3205 return ofport_dpif_cast(ofport);
3206 }
3207 }
3208 return NULL;
3209 }
3210
3211 static void
3212 port_run_fast(struct ofport_dpif *ofport)
3213 {
3214 if (ofport->cfm && cfm_should_send_ccm(ofport->cfm)) {
3215 struct ofpbuf packet;
3216
3217 ofpbuf_init(&packet, 0);
3218 cfm_compose_ccm(ofport->cfm, &packet, ofport->up.pp.hw_addr);
3219 send_packet(ofport, &packet);
3220 ofpbuf_uninit(&packet);
3221 }
3222
3223 if (ofport->bfd && bfd_should_send_packet(ofport->bfd)) {
3224 struct ofpbuf packet;
3225
3226 ofpbuf_init(&packet, 0);
3227 bfd_put_packet(ofport->bfd, &packet, ofport->up.pp.hw_addr);
3228 send_packet(ofport, &packet);
3229 ofpbuf_uninit(&packet);
3230 }
3231 }
3232
3233 static void
3234 port_run(struct ofport_dpif *ofport)
3235 {
3236 long long int carrier_seq = netdev_get_carrier_resets(ofport->up.netdev);
3237 bool carrier_changed = carrier_seq != ofport->carrier_seq;
3238 bool enable = netdev_get_carrier(ofport->up.netdev);
3239
3240 ofport->carrier_seq = carrier_seq;
3241
3242 port_run_fast(ofport);
3243
3244 if (ofport->tnl_port
3245 && tnl_port_reconfigure(&ofport->up, ofport->odp_port,
3246 &ofport->tnl_port)) {
3247 ofproto_dpif_cast(ofport->up.ofproto)->backer->need_revalidate = true;
3248 }
3249
3250 if (ofport->cfm) {
3251 int cfm_opup = cfm_get_opup(ofport->cfm);
3252
3253 cfm_run(ofport->cfm);
3254 enable = enable && !cfm_get_fault(ofport->cfm);
3255
3256 if (cfm_opup >= 0) {
3257 enable = enable && cfm_opup;
3258 }
3259 }
3260
3261 if (ofport->bfd) {
3262 bfd_run(ofport->bfd);
3263 enable = enable && bfd_forwarding(ofport->bfd);
3264 }
3265
3266 if (ofport->bundle) {
3267 enable = enable && lacp_slave_may_enable(ofport->bundle->lacp, ofport);
3268 if (carrier_changed) {
3269 lacp_slave_carrier_changed(ofport->bundle->lacp, ofport);
3270 }
3271 }
3272
3273 if (ofport->may_enable != enable) {
3274 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
3275
3276 if (ofproto->has_bundle_action) {
3277 ofproto->backer->need_revalidate = REV_PORT_TOGGLED;
3278 }
3279 }
3280
3281 ofport->may_enable = enable;
3282 }
3283
3284 static void
3285 port_wait(struct ofport_dpif *ofport)
3286 {
3287 if (ofport->cfm) {
3288 cfm_wait(ofport->cfm);
3289 }
3290
3291 if (ofport->bfd) {
3292 bfd_wait(ofport->bfd);
3293 }
3294 }
3295
3296 static int
3297 port_query_by_name(const struct ofproto *ofproto_, const char *devname,
3298 struct ofproto_port *ofproto_port)
3299 {
3300 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
3301 struct dpif_port dpif_port;
3302 int error;
3303
3304 if (sset_contains(&ofproto->ghost_ports, devname)) {
3305 const char *type = netdev_get_type_from_name(devname);
3306
3307 /* We may be called before ofproto->up.port_by_name is populated with
3308 * the appropriate ofport. For this reason, we must get the name and
3309 * type from the netdev layer directly. */
3310 if (type) {
3311 const struct ofport *ofport;
3312
3313 ofport = shash_find_data(&ofproto->up.port_by_name, devname);
3314 ofproto_port->ofp_port = ofport ? ofport->ofp_port : OFPP_NONE;
3315 ofproto_port->name = xstrdup(devname);
3316 ofproto_port->type = xstrdup(type);
3317 return 0;
3318 }
3319 return ENODEV;
3320 }
3321
3322 if (!sset_contains(&ofproto->ports, devname)) {
3323 return ENODEV;
3324 }
3325 error = dpif_port_query_by_name(ofproto->backer->dpif,
3326 devname, &dpif_port);
3327 if (!error) {
3328 ofproto_port_from_dpif_port(ofproto, ofproto_port, &dpif_port);
3329 }
3330 return error;
3331 }
3332
3333 static int
3334 port_add(struct ofproto *ofproto_, struct netdev *netdev)
3335 {
3336 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
3337 const char *devname = netdev_get_name(netdev);
3338 char namebuf[NETDEV_VPORT_NAME_BUFSIZE];
3339 const char *dp_port_name;
3340
3341 if (netdev_vport_is_patch(netdev)) {
3342 sset_add(&ofproto->ghost_ports, netdev_get_name(netdev));
3343 return 0;
3344 }
3345
3346 dp_port_name = netdev_vport_get_dpif_port(netdev, namebuf, sizeof namebuf);
3347 if (!dpif_port_exists(ofproto->backer->dpif, dp_port_name)) {
3348 uint32_t port_no = UINT32_MAX;
3349 int error;
3350
3351 error = dpif_port_add(ofproto->backer->dpif, netdev, &port_no);
3352 if (error) {
3353 return error;
3354 }
3355 if (netdev_get_tunnel_config(netdev)) {
3356 simap_put(&ofproto->backer->tnl_backers, dp_port_name, port_no);
3357 }
3358 }
3359
3360 if (netdev_get_tunnel_config(netdev)) {
3361 sset_add(&ofproto->ghost_ports, devname);
3362 } else {
3363 sset_add(&ofproto->ports, devname);
3364 }
3365 return 0;
3366 }
3367
3368 static int
3369 port_del(struct ofproto *ofproto_, uint16_t ofp_port)
3370 {
3371 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
3372 struct ofport_dpif *ofport = get_ofp_port(ofproto, ofp_port);
3373 int error = 0;
3374
3375 if (!ofport) {
3376 return 0;
3377 }
3378
3379 sset_find_and_delete(&ofproto->ghost_ports,
3380 netdev_get_name(ofport->up.netdev));
3381 ofproto->backer->need_revalidate = REV_RECONFIGURE;
3382 if (!ofport->tnl_port) {
3383 error = dpif_port_del(ofproto->backer->dpif, ofport->odp_port);
3384 if (!error) {
3385 /* The caller is going to close ofport->up.netdev. If this is a
3386 * bonded port, then the bond is using that netdev, so remove it
3387 * from the bond. The client will need to reconfigure everything
3388 * after deleting ports, so then the slave will get re-added. */
3389 bundle_remove(&ofport->up);
3390 }
3391 }
3392 return error;
3393 }
3394
3395 static int
3396 port_get_stats(const struct ofport *ofport_, struct netdev_stats *stats)
3397 {
3398 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
3399 int error;
3400
3401 push_all_stats();
3402
3403 error = netdev_get_stats(ofport->up.netdev, stats);
3404
3405 if (!error && ofport_->ofp_port == OFPP_LOCAL) {
3406 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
3407
3408 /* ofproto->stats.tx_packets represents packets that we created
3409 * internally and sent to some port (e.g. packets sent with
3410 * send_packet()). Account for them as if they had come from
3411 * OFPP_LOCAL and got forwarded. */
3412
3413 if (stats->rx_packets != UINT64_MAX) {
3414 stats->rx_packets += ofproto->stats.tx_packets;
3415 }
3416
3417 if (stats->rx_bytes != UINT64_MAX) {
3418 stats->rx_bytes += ofproto->stats.tx_bytes;
3419 }
3420
3421 /* ofproto->stats.rx_packets represents packets that were received on
3422 * some port and we processed internally and dropped (e.g. STP).
3423 * Account for them as if they had been forwarded to OFPP_LOCAL. */
3424
3425 if (stats->tx_packets != UINT64_MAX) {
3426 stats->tx_packets += ofproto->stats.rx_packets;
3427 }
3428
3429 if (stats->tx_bytes != UINT64_MAX) {
3430 stats->tx_bytes += ofproto->stats.rx_bytes;
3431 }
3432 }
3433
3434 return error;
3435 }
3436
3437 struct port_dump_state {
3438 uint32_t bucket;
3439 uint32_t offset;
3440 bool ghost;
3441
3442 struct ofproto_port port;
3443 bool has_port;
3444 };
3445
3446 static int
3447 port_dump_start(const struct ofproto *ofproto_ OVS_UNUSED, void **statep)
3448 {
3449 *statep = xzalloc(sizeof(struct port_dump_state));
3450 return 0;
3451 }
3452
3453 static int
3454 port_dump_next(const struct ofproto *ofproto_, void *state_,
3455 struct ofproto_port *port)
3456 {
3457 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
3458 struct port_dump_state *state = state_;
3459 const struct sset *sset;
3460 struct sset_node *node;
3461
3462 if (state->has_port) {
3463 ofproto_port_destroy(&state->port);
3464 state->has_port = false;
3465 }
3466 sset = state->ghost ? &ofproto->ghost_ports : &ofproto->ports;
3467 while ((node = sset_at_position(sset, &state->bucket, &state->offset))) {
3468 int error;
3469
3470 error = port_query_by_name(ofproto_, node->name, &state->port);
3471 if (!error) {
3472 *port = state->port;
3473 state->has_port = true;
3474 return 0;
3475 } else if (error != ENODEV) {
3476 return error;
3477 }
3478 }
3479
3480 if (!state->ghost) {
3481 state->ghost = true;
3482 state->bucket = 0;
3483 state->offset = 0;
3484 return port_dump_next(ofproto_, state_, port);
3485 }
3486
3487 return EOF;
3488 }
3489
3490 static int
3491 port_dump_done(const struct ofproto *ofproto_ OVS_UNUSED, void *state_)
3492 {
3493 struct port_dump_state *state = state_;
3494
3495 if (state->has_port) {
3496 ofproto_port_destroy(&state->port);
3497 }
3498 free(state);
3499 return 0;
3500 }
3501
3502 static int
3503 port_poll(const struct ofproto *ofproto_, char **devnamep)
3504 {
3505 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
3506
3507 if (ofproto->port_poll_errno) {
3508 int error = ofproto->port_poll_errno;
3509 ofproto->port_poll_errno = 0;
3510 return error;
3511 }
3512
3513 if (sset_is_empty(&ofproto->port_poll_set)) {
3514 return EAGAIN;
3515 }
3516
3517 *devnamep = sset_pop(&ofproto->port_poll_set);
3518 return 0;
3519 }
3520
3521 static void
3522 port_poll_wait(const struct ofproto *ofproto_)
3523 {
3524 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
3525 dpif_port_poll_wait(ofproto->backer->dpif);
3526 }
3527
3528 static int
3529 port_is_lacp_current(const struct ofport *ofport_)
3530 {
3531 const struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
3532 return (ofport->bundle && ofport->bundle->lacp
3533 ? lacp_slave_is_current(ofport->bundle->lacp, ofport)
3534 : -1);
3535 }
3536 \f
3537 /* Upcall handling. */
3538
3539 /* Flow miss batching.
3540 *
3541 * Some dpifs implement operations faster when you hand them off in a batch.
3542 * To allow batching, "struct flow_miss" queues the dpif-related work needed
3543 * for a given flow. Each "struct flow_miss" corresponds to sending one or
3544 * more packets, plus possibly installing the flow in the dpif.
3545 *
3546 * So far we only batch the operations that affect flow setup time the most.
3547 * It's possible to batch more than that, but the benefit might be minimal. */
3548 struct flow_miss {
3549 struct hmap_node hmap_node;
3550 struct ofproto_dpif *ofproto;
3551 struct flow flow;
3552 enum odp_key_fitness key_fitness;
3553 const struct nlattr *key;
3554 size_t key_len;
3555 struct list packets;
3556 enum dpif_upcall_type upcall_type;
3557 };
3558
3559 struct flow_miss_op {
3560 struct dpif_op dpif_op;
3561
3562 uint64_t slow_stub[128 / 8]; /* Buffer for compose_slow_path() */
3563 struct xlate_out xout;
3564 bool xout_garbage; /* 'xout' needs to be uninitialized? */
3565 };
3566
3567 /* Sends an OFPT_PACKET_IN message for 'packet' of type OFPR_NO_MATCH to each
3568 * OpenFlow controller as necessary according to their individual
3569 * configurations. */
3570 static void
3571 send_packet_in_miss(struct ofproto_dpif *ofproto, const struct ofpbuf *packet,
3572 const struct flow *flow)
3573 {
3574 struct ofputil_packet_in pin;
3575
3576 pin.packet = packet->data;
3577 pin.packet_len = packet->size;
3578 pin.reason = OFPR_NO_MATCH;
3579 pin.controller_id = 0;
3580
3581 pin.table_id = 0;
3582 pin.cookie = 0;
3583
3584 pin.send_len = 0; /* not used for flow table misses */
3585
3586 flow_get_metadata(flow, &pin.fmd);
3587
3588 connmgr_send_packet_in(ofproto->up.connmgr, &pin);
3589 }
3590
3591 static enum slow_path_reason
3592 process_special(struct ofproto_dpif *ofproto, const struct flow *flow,
3593 const struct ofport_dpif *ofport, const struct ofpbuf *packet)
3594 {
3595 if (!ofport) {
3596 return 0;
3597 } else if (ofport->cfm && cfm_should_process_flow(ofport->cfm, flow)) {
3598 if (packet) {
3599 cfm_process_heartbeat(ofport->cfm, packet);
3600 }
3601 return SLOW_CFM;
3602 } else if (ofport->bfd && bfd_should_process_flow(flow)) {
3603 if (packet) {
3604 bfd_process_packet(ofport->bfd, flow, packet);
3605 }
3606 return SLOW_BFD;
3607 } else if (ofport->bundle && ofport->bundle->lacp
3608 && flow->dl_type == htons(ETH_TYPE_LACP)) {
3609 if (packet) {
3610 lacp_process_packet(ofport->bundle->lacp, ofport, packet);
3611 }
3612 return SLOW_LACP;
3613 } else if (ofproto->stp && stp_should_process_flow(flow)) {
3614 if (packet) {
3615 stp_process_packet(ofport, packet);
3616 }
3617 return SLOW_STP;
3618 } else {
3619 return 0;
3620 }
3621 }
3622
3623 static struct flow_miss *
3624 flow_miss_find(struct hmap *todo, const struct ofproto_dpif *ofproto,
3625 const struct flow *flow, uint32_t hash)
3626 {
3627 struct flow_miss *miss;
3628
3629 HMAP_FOR_EACH_WITH_HASH (miss, hmap_node, hash, todo) {
3630 if (miss->ofproto == ofproto && flow_equal(&miss->flow, flow)) {
3631 return miss;
3632 }
3633 }
3634
3635 return NULL;
3636 }
3637
3638 /* Partially Initializes 'op' as an "execute" operation for 'miss' and
3639 * 'packet'. The caller must initialize op->actions and op->actions_len. If
3640 * 'miss' is associated with a subfacet the caller must also initialize the
3641 * returned op->subfacet, and if anything needs to be freed after processing
3642 * the op, the caller must initialize op->garbage also. */
3643 static void
3644 init_flow_miss_execute_op(struct flow_miss *miss, struct ofpbuf *packet,
3645 struct flow_miss_op *op)
3646 {
3647 if (miss->flow.in_port
3648 != vsp_realdev_to_vlandev(miss->ofproto, miss->flow.in_port,
3649 miss->flow.vlan_tci)) {
3650 /* This packet was received on a VLAN splinter port. We
3651 * added a VLAN to the packet to make the packet resemble
3652 * the flow, but the actions were composed assuming that
3653 * the packet contained no VLAN. So, we must remove the
3654 * VLAN header from the packet before trying to execute the
3655 * actions. */
3656 eth_pop_vlan(packet);
3657 }
3658
3659 op->xout_garbage = false;
3660 op->dpif_op.type = DPIF_OP_EXECUTE;
3661 op->dpif_op.u.execute.key = miss->key;
3662 op->dpif_op.u.execute.key_len = miss->key_len;
3663 op->dpif_op.u.execute.packet = packet;
3664 }
3665
3666 /* Helper for handle_flow_miss_without_facet() and
3667 * handle_flow_miss_with_facet(). */
3668 static void
3669 handle_flow_miss_common(struct rule_dpif *rule,
3670 struct ofpbuf *packet, const struct flow *flow)
3671 {
3672 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
3673
3674 if (rule->up.cr.priority == FAIL_OPEN_PRIORITY) {
3675 /*
3676 * Extra-special case for fail-open mode.
3677 *
3678 * We are in fail-open mode and the packet matched the fail-open
3679 * rule, but we are connected to a controller too. We should send
3680 * the packet up to the controller in the hope that it will try to
3681 * set up a flow and thereby allow us to exit fail-open.
3682 *
3683 * See the top-level comment in fail-open.c for more information.
3684 */
3685 send_packet_in_miss(ofproto, packet, flow);
3686 }
3687 }
3688
3689 /* Figures out whether a flow that missed in 'ofproto', whose details are in
3690 * 'miss' masked by 'wc', is likely to be worth tracking in detail in userspace
3691 * and (usually) installing a datapath flow. The answer is usually "yes" (a
3692 * return value of true). However, for short flows the cost of bookkeeping is
3693 * much higher than the benefits, so when the datapath holds a large number of
3694 * flows we impose some heuristics to decide which flows are likely to be worth
3695 * tracking. */
3696 static bool
3697 flow_miss_should_make_facet(struct flow_miss *miss, struct flow_wildcards *wc)
3698 {
3699 struct dpif_backer *backer = miss->ofproto->backer;
3700 uint32_t hash;
3701
3702 if (!backer->governor) {
3703 size_t n_subfacets;
3704
3705 n_subfacets = hmap_count(&backer->subfacets);
3706 if (n_subfacets * 2 <= flow_eviction_threshold) {
3707 return true;
3708 }
3709
3710 backer->governor = governor_create();
3711 }
3712
3713 hash = flow_hash_in_wildcards(&miss->flow, wc, 0);
3714 return governor_should_install_flow(backer->governor, hash,
3715 list_size(&miss->packets));
3716 }
3717
3718 /* Handles 'miss' without creating a facet or subfacet or creating any datapath
3719 * flow. 'miss->flow' must have matched 'rule' and been xlated into 'xout'.
3720 * May add an "execute" operation to 'ops' and increment '*n_ops'. */
3721 static void
3722 handle_flow_miss_without_facet(struct rule_dpif *rule, struct xlate_out *xout,
3723 struct flow_miss *miss,
3724 struct flow_miss_op *ops, size_t *n_ops)
3725 {
3726 struct ofpbuf *packet;
3727
3728 LIST_FOR_EACH (packet, list_node, &miss->packets) {
3729
3730 COVERAGE_INC(facet_suppress);
3731
3732 handle_flow_miss_common(rule, packet, &miss->flow);
3733
3734 if (xout->slow) {
3735 struct xlate_in xin;
3736
3737 xlate_in_init(&xin, miss->ofproto, &miss->flow, rule, 0, packet);
3738 xlate_actions_for_side_effects(&xin);
3739 }
3740
3741 if (xout->odp_actions.size) {
3742 struct flow_miss_op *op = &ops[*n_ops];
3743 struct dpif_execute *execute = &op->dpif_op.u.execute;
3744
3745 init_flow_miss_execute_op(miss, packet, op);
3746 xlate_out_copy(&op->xout, xout);
3747 execute->actions = op->xout.odp_actions.data;
3748 execute->actions_len = op->xout.odp_actions.size;
3749 op->xout_garbage = true;
3750
3751 (*n_ops)++;
3752 }
3753 }
3754 }
3755
3756 /* Handles 'miss', which matches 'facet'. May add any required datapath
3757 * operations to 'ops', incrementing '*n_ops' for each new op.
3758 *
3759 * All of the packets in 'miss' are considered to have arrived at time 'now'.
3760 * This is really important only for new facets: if we just called time_msec()
3761 * here, then the new subfacet or its packets could look (occasionally) as
3762 * though it was used some time after the facet was used. That can make a
3763 * one-packet flow look like it has a nonzero duration, which looks odd in
3764 * e.g. NetFlow statistics.
3765 *
3766 * If non-null, 'stats' will be folded into 'facet'. */
3767 static void
3768 handle_flow_miss_with_facet(struct flow_miss *miss, struct facet *facet,
3769 long long int now, struct dpif_flow_stats *stats,
3770 struct flow_miss_op *ops, size_t *n_ops)
3771 {
3772 struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto);
3773 enum subfacet_path want_path;
3774 struct subfacet *subfacet;
3775 struct ofpbuf *packet;
3776
3777 subfacet = subfacet_create(facet, miss, now);
3778 want_path = facet->xout.slow ? SF_SLOW_PATH : SF_FAST_PATH;
3779 if (stats) {
3780 subfacet_update_stats(subfacet, stats);
3781 }
3782
3783 LIST_FOR_EACH (packet, list_node, &miss->packets) {
3784 struct flow_miss_op *op = &ops[*n_ops];
3785
3786 handle_flow_miss_common(facet->rule, packet, &miss->flow);
3787
3788 if (want_path != SF_FAST_PATH) {
3789 struct xlate_in xin;
3790
3791 xlate_in_init(&xin, ofproto, &facet->flow, facet->rule, 0, packet);
3792 xlate_actions_for_side_effects(&xin);
3793 }
3794
3795 if (facet->xout.odp_actions.size) {
3796 struct dpif_execute *execute = &op->dpif_op.u.execute;
3797
3798 init_flow_miss_execute_op(miss, packet, op);
3799 execute->actions = facet->xout.odp_actions.data,
3800 execute->actions_len = facet->xout.odp_actions.size;
3801 (*n_ops)++;
3802 }
3803 }
3804
3805 if (miss->upcall_type == DPIF_UC_MISS || subfacet->path != want_path) {
3806 struct flow_miss_op *op = &ops[(*n_ops)++];
3807 struct dpif_flow_put *put = &op->dpif_op.u.flow_put;
3808
3809 subfacet->path = want_path;
3810
3811 op->xout_garbage = false;
3812 op->dpif_op.type = DPIF_OP_FLOW_PUT;
3813 put->flags = DPIF_FP_CREATE | DPIF_FP_MODIFY;
3814 put->key = miss->key;
3815 put->key_len = miss->key_len;
3816 if (want_path == SF_FAST_PATH) {
3817 put->actions = facet->xout.odp_actions.data;
3818 put->actions_len = facet->xout.odp_actions.size;
3819 } else {
3820 compose_slow_path(ofproto, &facet->flow, facet->xout.slow,
3821 op->slow_stub, sizeof op->slow_stub,
3822 &put->actions, &put->actions_len);
3823 }
3824 put->stats = NULL;
3825 }
3826 }
3827
3828 /* Handles flow miss 'miss'. May add any required datapath operations
3829 * to 'ops', incrementing '*n_ops' for each new op. */
3830 static void
3831 handle_flow_miss(struct flow_miss *miss, struct flow_miss_op *ops,
3832 size_t *n_ops)
3833 {
3834 struct ofproto_dpif *ofproto = miss->ofproto;
3835 struct dpif_flow_stats stats__;
3836 struct dpif_flow_stats *stats = &stats__;
3837 struct ofpbuf *packet;
3838 struct facet *facet;
3839 long long int now;
3840
3841 now = time_msec();
3842 memset(stats, 0, sizeof *stats);
3843 stats->used = now;
3844 LIST_FOR_EACH (packet, list_node, &miss->packets) {
3845 stats->tcp_flags |= packet_get_tcp_flags(packet, &miss->flow);
3846 stats->n_bytes += packet->size;
3847 stats->n_packets++;
3848 }
3849
3850 facet = facet_lookup_valid(ofproto, &miss->flow);
3851 if (!facet) {
3852 struct flow_wildcards wc;
3853 struct rule_dpif *rule;
3854 struct xlate_out xout;
3855 struct xlate_in xin;
3856
3857 flow_wildcards_init_catchall(&wc);
3858 rule = rule_dpif_lookup(ofproto, &miss->flow, &wc);
3859 rule_credit_stats(rule, stats);
3860
3861 xlate_in_init(&xin, ofproto, &miss->flow, rule, stats->tcp_flags,
3862 NULL);
3863 xin.resubmit_stats = stats;
3864 xin.may_learn = true;
3865 xlate_actions(&xin, &xout);
3866 flow_wildcards_or(&xout.wc, &xout.wc, &wc);
3867
3868 /* There does not exist a bijection between 'struct flow' and datapath
3869 * flow keys with fitness ODP_FIT_TO_LITTLE. This breaks a fundamental
3870 * assumption used throughout the facet and subfacet handling code.
3871 * Since we have to handle these misses in userspace anyway, we simply
3872 * skip facet creation, avoiding the problem altogether. */
3873 if (miss->key_fitness == ODP_FIT_TOO_LITTLE
3874 || !flow_miss_should_make_facet(miss, &xout.wc)) {
3875 handle_flow_miss_without_facet(rule, &xout, miss, ops, n_ops);
3876 return;
3877 }
3878
3879 facet = facet_create(miss, rule, &xout, stats);
3880 stats = NULL;
3881 }
3882 handle_flow_miss_with_facet(miss, facet, now, stats, ops, n_ops);
3883 }
3884
3885 static struct drop_key *
3886 drop_key_lookup(const struct dpif_backer *backer, const struct nlattr *key,
3887 size_t key_len)
3888 {
3889 struct drop_key *drop_key;
3890
3891 HMAP_FOR_EACH_WITH_HASH (drop_key, hmap_node, hash_bytes(key, key_len, 0),
3892 &backer->drop_keys) {
3893 if (drop_key->key_len == key_len
3894 && !memcmp(drop_key->key, key, key_len)) {
3895 return drop_key;
3896 }
3897 }
3898 return NULL;
3899 }
3900
3901 static void
3902 drop_key_clear(struct dpif_backer *backer)
3903 {
3904 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 15);
3905 struct drop_key *drop_key, *next;
3906
3907 HMAP_FOR_EACH_SAFE (drop_key, next, hmap_node, &backer->drop_keys) {
3908 int error;
3909
3910 error = dpif_flow_del(backer->dpif, drop_key->key, drop_key->key_len,
3911 NULL);
3912 if (error && !VLOG_DROP_WARN(&rl)) {
3913 struct ds ds = DS_EMPTY_INITIALIZER;
3914 odp_flow_key_format(drop_key->key, drop_key->key_len, &ds);
3915 VLOG_WARN("Failed to delete drop key (%s) (%s)", strerror(error),
3916 ds_cstr(&ds));
3917 ds_destroy(&ds);
3918 }
3919
3920 hmap_remove(&backer->drop_keys, &drop_key->hmap_node);
3921 free(drop_key->key);
3922 free(drop_key);
3923 }
3924 }
3925
3926 /* Given a datpath, packet, and flow metadata ('backer', 'packet', and 'key'
3927 * respectively), populates 'flow' with the result of odp_flow_key_to_flow().
3928 * Optionally, if nonnull, populates 'fitnessp' with the fitness of 'flow' as
3929 * returned by odp_flow_key_to_flow(). Also, optionally populates 'ofproto'
3930 * with the ofproto_dpif, and 'odp_in_port' with the datapath in_port, that
3931 * 'packet' ingressed.
3932 *
3933 * If 'ofproto' is nonnull, requires 'flow''s in_port to exist. Otherwise sets
3934 * 'flow''s in_port to OFPP_NONE.
3935 *
3936 * This function does post-processing on data returned from
3937 * odp_flow_key_to_flow() to help make VLAN splinters transparent to the rest
3938 * of the upcall processing logic. In particular, if the extracted in_port is
3939 * a VLAN splinter port, it replaces flow->in_port by the "real" port, sets
3940 * flow->vlan_tci correctly for the VLAN of the VLAN splinter port, and pushes
3941 * a VLAN header onto 'packet' (if it is nonnull).
3942 *
3943 * Similarly, this function also includes some logic to help with tunnels. It
3944 * may modify 'flow' as necessary to make the tunneling implementation
3945 * transparent to the upcall processing logic.
3946 *
3947 * Returns 0 if successful, ENODEV if the parsed flow has no associated ofport,
3948 * or some other positive errno if there are other problems. */
3949 static int
3950 ofproto_receive(const struct dpif_backer *backer, struct ofpbuf *packet,
3951 const struct nlattr *key, size_t key_len,
3952 struct flow *flow, enum odp_key_fitness *fitnessp,
3953 struct ofproto_dpif **ofproto, uint32_t *odp_in_port)
3954 {
3955 const struct ofport_dpif *port;
3956 enum odp_key_fitness fitness;
3957 int error = ENODEV;
3958
3959 fitness = odp_flow_key_to_flow(key, key_len, flow);
3960 if (fitness == ODP_FIT_ERROR) {
3961 error = EINVAL;
3962 goto exit;
3963 }
3964
3965 if (odp_in_port) {
3966 *odp_in_port = flow->in_port;
3967 }
3968
3969 port = (tnl_port_should_receive(flow)
3970 ? ofport_dpif_cast(tnl_port_receive(flow))
3971 : odp_port_to_ofport(backer, flow->in_port));
3972 flow->in_port = port ? port->up.ofp_port : OFPP_NONE;
3973 if (!port) {
3974 goto exit;
3975 }
3976
3977 /* XXX: Since the tunnel module is not scoped per backer, for a tunnel port
3978 * it's theoretically possible that we'll receive an ofport belonging to an
3979 * entirely different datapath. In practice, this can't happen because no
3980 * platforms has two separate datapaths which each support tunneling. */
3981 ovs_assert(ofproto_dpif_cast(port->up.ofproto)->backer == backer);
3982
3983 if (vsp_adjust_flow(ofproto_dpif_cast(port->up.ofproto), flow)) {
3984 if (packet) {
3985 /* Make the packet resemble the flow, so that it gets sent to
3986 * an OpenFlow controller properly, so that it looks correct
3987 * for sFlow, and so that flow_extract() will get the correct
3988 * vlan_tci if it is called on 'packet'.
3989 *
3990 * The allocated space inside 'packet' probably also contains
3991 * 'key', that is, both 'packet' and 'key' are probably part of
3992 * a struct dpif_upcall (see the large comment on that
3993 * structure definition), so pushing data on 'packet' is in
3994 * general not a good idea since it could overwrite 'key' or
3995 * free it as a side effect. However, it's OK in this special
3996 * case because we know that 'packet' is inside a Netlink
3997 * attribute: pushing 4 bytes will just overwrite the 4-byte
3998 * "struct nlattr", which is fine since we don't need that
3999 * header anymore. */
4000 eth_push_vlan(packet, flow->vlan_tci);
4001 }
4002 /* We can't reproduce 'key' from 'flow'. */
4003 fitness = fitness == ODP_FIT_PERFECT ? ODP_FIT_TOO_MUCH : fitness;
4004 }
4005 error = 0;
4006
4007 if (ofproto) {
4008 *ofproto = ofproto_dpif_cast(port->up.ofproto);
4009 }
4010
4011 exit:
4012 if (fitnessp) {
4013 *fitnessp = fitness;
4014 }
4015 return error;
4016 }
4017
4018 static void
4019 handle_miss_upcalls(struct dpif_backer *backer, struct dpif_upcall *upcalls,
4020 size_t n_upcalls)
4021 {
4022 struct dpif_upcall *upcall;
4023 struct flow_miss *miss;
4024 struct flow_miss misses[FLOW_MISS_MAX_BATCH];
4025 struct flow_miss_op flow_miss_ops[FLOW_MISS_MAX_BATCH * 2];
4026 struct dpif_op *dpif_ops[FLOW_MISS_MAX_BATCH * 2];
4027 struct hmap todo;
4028 int n_misses;
4029 size_t n_ops;
4030 size_t i;
4031
4032 if (!n_upcalls) {
4033 return;
4034 }
4035
4036 /* Construct the to-do list.
4037 *
4038 * This just amounts to extracting the flow from each packet and sticking
4039 * the packets that have the same flow in the same "flow_miss" structure so
4040 * that we can process them together. */
4041 hmap_init(&todo);
4042 n_misses = 0;
4043 for (upcall = upcalls; upcall < &upcalls[n_upcalls]; upcall++) {
4044 struct flow_miss *miss = &misses[n_misses];
4045 struct flow_miss *existing_miss;
4046 struct ofproto_dpif *ofproto;
4047 uint32_t odp_in_port;
4048 struct flow flow;
4049 uint32_t hash;
4050 int error;
4051
4052 error = ofproto_receive(backer, upcall->packet, upcall->key,
4053 upcall->key_len, &flow, &miss->key_fitness,
4054 &ofproto, &odp_in_port);
4055 if (error == ENODEV) {
4056 struct drop_key *drop_key;
4057
4058 /* Received packet on datapath port for which we couldn't
4059 * associate an ofproto. This can happen if a port is removed
4060 * while traffic is being received. Print a rate-limited message
4061 * in case it happens frequently. Install a drop flow so
4062 * that future packets of the flow are inexpensively dropped
4063 * in the kernel. */
4064 VLOG_INFO_RL(&rl, "received packet on unassociated datapath port "
4065 "%"PRIu32, odp_in_port);
4066
4067 drop_key = drop_key_lookup(backer, upcall->key, upcall->key_len);
4068 if (!drop_key) {
4069 drop_key = xmalloc(sizeof *drop_key);
4070 drop_key->key = xmemdup(upcall->key, upcall->key_len);
4071 drop_key->key_len = upcall->key_len;
4072
4073 hmap_insert(&backer->drop_keys, &drop_key->hmap_node,
4074 hash_bytes(drop_key->key, drop_key->key_len, 0));
4075 dpif_flow_put(backer->dpif, DPIF_FP_CREATE | DPIF_FP_MODIFY,
4076 drop_key->key, drop_key->key_len, NULL, 0, NULL);
4077 }
4078 continue;
4079 }
4080 if (error) {
4081 continue;
4082 }
4083
4084 ofproto->n_missed++;
4085 flow_extract(upcall->packet, flow.skb_priority, flow.skb_mark,
4086 &flow.tunnel, flow.in_port, &miss->flow);
4087
4088 /* Add other packets to a to-do list. */
4089 hash = flow_hash(&miss->flow, 0);
4090 existing_miss = flow_miss_find(&todo, ofproto, &miss->flow, hash);
4091 if (!existing_miss) {
4092 hmap_insert(&todo, &miss->hmap_node, hash);
4093 miss->ofproto = ofproto;
4094 miss->key = upcall->key;
4095 miss->key_len = upcall->key_len;
4096 miss->upcall_type = upcall->type;
4097 list_init(&miss->packets);
4098
4099 n_misses++;
4100 } else {
4101 miss = existing_miss;
4102 }
4103 list_push_back(&miss->packets, &upcall->packet->list_node);
4104 }
4105
4106 /* Process each element in the to-do list, constructing the set of
4107 * operations to batch. */
4108 n_ops = 0;
4109 HMAP_FOR_EACH (miss, hmap_node, &todo) {
4110 handle_flow_miss(miss, flow_miss_ops, &n_ops);
4111 }
4112 ovs_assert(n_ops <= ARRAY_SIZE(flow_miss_ops));
4113
4114 /* Execute batch. */
4115 for (i = 0; i < n_ops; i++) {
4116 dpif_ops[i] = &flow_miss_ops[i].dpif_op;
4117 }
4118 dpif_operate(backer->dpif, dpif_ops, n_ops);
4119
4120 /* Free memory. */
4121 for (i = 0; i < n_ops; i++) {
4122 if (flow_miss_ops[i].xout_garbage) {
4123 xlate_out_uninit(&flow_miss_ops[i].xout);
4124 }
4125 }
4126 hmap_destroy(&todo);
4127 }
4128
4129 static enum { SFLOW_UPCALL, MISS_UPCALL, BAD_UPCALL, FLOW_SAMPLE_UPCALL,
4130 IPFIX_UPCALL }
4131 classify_upcall(const struct dpif_upcall *upcall)
4132 {
4133 size_t userdata_len;
4134 union user_action_cookie cookie;
4135
4136 /* First look at the upcall type. */
4137 switch (upcall->type) {
4138 case DPIF_UC_ACTION:
4139 break;
4140
4141 case DPIF_UC_MISS:
4142 return MISS_UPCALL;
4143
4144 case DPIF_N_UC_TYPES:
4145 default:
4146 VLOG_WARN_RL(&rl, "upcall has unexpected type %"PRIu32, upcall->type);
4147 return BAD_UPCALL;
4148 }
4149
4150 /* "action" upcalls need a closer look. */
4151 if (!upcall->userdata) {
4152 VLOG_WARN_RL(&rl, "action upcall missing cookie");
4153 return BAD_UPCALL;
4154 }
4155 userdata_len = nl_attr_get_size(upcall->userdata);
4156 if (userdata_len < sizeof cookie.type
4157 || userdata_len > sizeof cookie) {
4158 VLOG_WARN_RL(&rl, "action upcall cookie has unexpected size %zu",
4159 userdata_len);
4160 return BAD_UPCALL;
4161 }
4162 memset(&cookie, 0, sizeof cookie);
4163 memcpy(&cookie, nl_attr_get(upcall->userdata), userdata_len);
4164 if (userdata_len == sizeof cookie.sflow
4165 && cookie.type == USER_ACTION_COOKIE_SFLOW) {
4166 return SFLOW_UPCALL;
4167 } else if (userdata_len == sizeof cookie.slow_path
4168 && cookie.type == USER_ACTION_COOKIE_SLOW_PATH) {
4169 return MISS_UPCALL;
4170 } else if (userdata_len == sizeof cookie.flow_sample
4171 && cookie.type == USER_ACTION_COOKIE_FLOW_SAMPLE) {
4172 return FLOW_SAMPLE_UPCALL;
4173 } else if (userdata_len == sizeof cookie.ipfix
4174 && cookie.type == USER_ACTION_COOKIE_IPFIX) {
4175 return IPFIX_UPCALL;
4176 } else {
4177 VLOG_WARN_RL(&rl, "invalid user cookie of type %"PRIu16
4178 " and size %zu", cookie.type, userdata_len);
4179 return BAD_UPCALL;
4180 }
4181 }
4182
4183 static void
4184 handle_sflow_upcall(struct dpif_backer *backer,
4185 const struct dpif_upcall *upcall)
4186 {
4187 struct ofproto_dpif *ofproto;
4188 union user_action_cookie cookie;
4189 struct flow flow;
4190 uint32_t odp_in_port;
4191
4192 if (ofproto_receive(backer, upcall->packet, upcall->key, upcall->key_len,
4193 &flow, NULL, &ofproto, &odp_in_port)
4194 || !ofproto->sflow) {
4195 return;
4196 }
4197
4198 memset(&cookie, 0, sizeof cookie);
4199 memcpy(&cookie, nl_attr_get(upcall->userdata), sizeof cookie.sflow);
4200 dpif_sflow_received(ofproto->sflow, upcall->packet, &flow,
4201 odp_in_port, &cookie);
4202 }
4203
4204 static void
4205 handle_flow_sample_upcall(struct dpif_backer *backer,
4206 const struct dpif_upcall *upcall)
4207 {
4208 struct ofproto_dpif *ofproto;
4209 union user_action_cookie cookie;
4210 struct flow flow;
4211
4212 if (ofproto_receive(backer, upcall->packet, upcall->key, upcall->key_len,
4213 &flow, NULL, &ofproto, NULL)
4214 || !ofproto->ipfix) {
4215 return;
4216 }
4217
4218 memset(&cookie, 0, sizeof cookie);
4219 memcpy(&cookie, nl_attr_get(upcall->userdata), sizeof cookie.flow_sample);
4220
4221 /* The flow reflects exactly the contents of the packet. Sample
4222 * the packet using it. */
4223 dpif_ipfix_flow_sample(ofproto->ipfix, upcall->packet, &flow,
4224 cookie.flow_sample.collector_set_id,
4225 cookie.flow_sample.probability,
4226 cookie.flow_sample.obs_domain_id,
4227 cookie.flow_sample.obs_point_id);
4228 }
4229
4230 static void
4231 handle_ipfix_upcall(struct dpif_backer *backer,
4232 const struct dpif_upcall *upcall)
4233 {
4234 struct ofproto_dpif *ofproto;
4235 struct flow flow;
4236
4237 if (ofproto_receive(backer, upcall->packet, upcall->key, upcall->key_len,
4238 &flow, NULL, &ofproto, NULL)
4239 || !ofproto->ipfix) {
4240 return;
4241 }
4242
4243 /* The flow reflects exactly the contents of the packet. Sample
4244 * the packet using it. */
4245 dpif_ipfix_bridge_sample(ofproto->ipfix, upcall->packet, &flow);
4246 }
4247
4248 static int
4249 handle_upcalls(struct dpif_backer *backer, unsigned int max_batch)
4250 {
4251 struct dpif_upcall misses[FLOW_MISS_MAX_BATCH];
4252 struct ofpbuf miss_bufs[FLOW_MISS_MAX_BATCH];
4253 uint64_t miss_buf_stubs[FLOW_MISS_MAX_BATCH][4096 / 8];
4254 int n_processed;
4255 int n_misses;
4256 int i;
4257
4258 ovs_assert(max_batch <= FLOW_MISS_MAX_BATCH);
4259
4260 n_misses = 0;
4261 for (n_processed = 0; n_processed < max_batch; n_processed++) {
4262 struct dpif_upcall *upcall = &misses[n_misses];
4263 struct ofpbuf *buf = &miss_bufs[n_misses];
4264 int error;
4265
4266 ofpbuf_use_stub(buf, miss_buf_stubs[n_misses],
4267 sizeof miss_buf_stubs[n_misses]);
4268 error = dpif_recv(backer->dpif, upcall, buf);
4269 if (error) {
4270 ofpbuf_uninit(buf);
4271 break;
4272 }
4273
4274 switch (classify_upcall(upcall)) {
4275 case MISS_UPCALL:
4276 /* Handle it later. */
4277 n_misses++;
4278 break;
4279
4280 case SFLOW_UPCALL:
4281 handle_sflow_upcall(backer, upcall);
4282 ofpbuf_uninit(buf);
4283 break;
4284
4285 case FLOW_SAMPLE_UPCALL:
4286 handle_flow_sample_upcall(backer, upcall);
4287 ofpbuf_uninit(buf);
4288 break;
4289
4290 case IPFIX_UPCALL:
4291 handle_ipfix_upcall(backer, upcall);
4292 ofpbuf_uninit(buf);
4293 break;
4294
4295 case BAD_UPCALL:
4296 ofpbuf_uninit(buf);
4297 break;
4298 }
4299 }
4300
4301 /* Handle deferred MISS_UPCALL processing. */
4302 handle_miss_upcalls(backer, misses, n_misses);
4303 for (i = 0; i < n_misses; i++) {
4304 ofpbuf_uninit(&miss_bufs[i]);
4305 }
4306
4307 return n_processed;
4308 }
4309 \f
4310 /* Flow expiration. */
4311
4312 static int subfacet_max_idle(const struct dpif_backer *);
4313 static void update_stats(struct dpif_backer *);
4314 static void rule_expire(struct rule_dpif *);
4315 static void expire_subfacets(struct dpif_backer *, int dp_max_idle);
4316
4317 /* This function is called periodically by run(). Its job is to collect
4318 * updates for the flows that have been installed into the datapath, most
4319 * importantly when they last were used, and then use that information to
4320 * expire flows that have not been used recently.
4321 *
4322 * Returns the number of milliseconds after which it should be called again. */
4323 static int
4324 expire(struct dpif_backer *backer)
4325 {
4326 struct ofproto_dpif *ofproto;
4327 size_t n_subfacets;
4328 int max_idle;
4329
4330 /* Periodically clear out the drop keys in an effort to keep them
4331 * relatively few. */
4332 drop_key_clear(backer);
4333
4334 /* Update stats for each flow in the backer. */
4335 update_stats(backer);
4336
4337 n_subfacets = hmap_count(&backer->subfacets);
4338 if (n_subfacets) {
4339 struct subfacet *subfacet;
4340 long long int total, now;
4341
4342 total = 0;
4343 now = time_msec();
4344 HMAP_FOR_EACH (subfacet, hmap_node, &backer->subfacets) {
4345 total += now - subfacet->created;
4346 }
4347 backer->avg_subfacet_life += total / n_subfacets;
4348 }
4349 backer->avg_subfacet_life /= 2;
4350
4351 backer->avg_n_subfacet += n_subfacets;
4352 backer->avg_n_subfacet /= 2;
4353
4354 backer->max_n_subfacet = MAX(backer->max_n_subfacet, n_subfacets);
4355
4356 max_idle = subfacet_max_idle(backer);
4357 expire_subfacets(backer, max_idle);
4358
4359 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
4360 struct rule *rule, *next_rule;
4361
4362 if (ofproto->backer != backer) {
4363 continue;
4364 }
4365
4366 /* Expire OpenFlow flows whose idle_timeout or hard_timeout
4367 * has passed. */
4368 LIST_FOR_EACH_SAFE (rule, next_rule, expirable,
4369 &ofproto->up.expirable) {
4370 rule_expire(rule_dpif_cast(rule));
4371 }
4372
4373 /* All outstanding data in existing flows has been accounted, so it's a
4374 * good time to do bond rebalancing. */
4375 if (ofproto->has_bonded_bundles) {
4376 struct ofbundle *bundle;
4377
4378 HMAP_FOR_EACH (bundle, hmap_node, &ofproto->bundles) {
4379 if (bundle->bond) {
4380 bond_rebalance(bundle->bond, &backer->revalidate_set);
4381 }
4382 }
4383 }
4384 }
4385
4386 return MIN(max_idle, 1000);
4387 }
4388
4389 /* Updates flow table statistics given that the datapath just reported 'stats'
4390 * as 'subfacet''s statistics. */
4391 static void
4392 update_subfacet_stats(struct subfacet *subfacet,
4393 const struct dpif_flow_stats *stats)
4394 {
4395 struct facet *facet = subfacet->facet;
4396 struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto);
4397 struct dpif_flow_stats diff;
4398
4399 diff.tcp_flags = stats->tcp_flags;
4400 diff.used = stats->used;
4401
4402 if (stats->n_packets >= subfacet->dp_packet_count) {
4403 diff.n_packets = stats->n_packets - subfacet->dp_packet_count;
4404 } else {
4405 VLOG_WARN_RL(&rl, "unexpected packet count from the datapath");
4406 diff.n_packets = 0;
4407 }
4408
4409 if (stats->n_bytes >= subfacet->dp_byte_count) {
4410 diff.n_bytes = stats->n_bytes - subfacet->dp_byte_count;
4411 } else {
4412 VLOG_WARN_RL(&rl, "unexpected byte count from datapath");
4413 diff.n_bytes = 0;
4414 }
4415
4416 ofproto->n_hit += diff.n_packets;
4417 subfacet->dp_packet_count = stats->n_packets;
4418 subfacet->dp_byte_count = stats->n_bytes;
4419 subfacet_update_stats(subfacet, &diff);
4420
4421 if (facet->accounted_bytes < facet->byte_count) {
4422 facet_learn(facet);
4423 facet_account(facet);
4424 facet->accounted_bytes = facet->byte_count;
4425 }
4426 }
4427
4428 /* 'key' with length 'key_len' bytes is a flow in 'dpif' that we know nothing
4429 * about, or a flow that shouldn't be installed but was anyway. Delete it. */
4430 static void
4431 delete_unexpected_flow(struct dpif_backer *backer,
4432 const struct nlattr *key, size_t key_len)
4433 {
4434 if (!VLOG_DROP_WARN(&rl)) {
4435 struct ds s;
4436
4437 ds_init(&s);
4438 odp_flow_key_format(key, key_len, &s);
4439 VLOG_WARN("unexpected flow: %s", ds_cstr(&s));
4440 ds_destroy(&s);
4441 }
4442
4443 COVERAGE_INC(facet_unexpected);
4444 dpif_flow_del(backer->dpif, key, key_len, NULL);
4445 }
4446
4447 /* Update 'packet_count', 'byte_count', and 'used' members of installed facets.
4448 *
4449 * This function also pushes statistics updates to rules which each facet
4450 * resubmits into. Generally these statistics will be accurate. However, if a
4451 * facet changes the rule it resubmits into at some time in between
4452 * update_stats() runs, it is possible that statistics accrued to the
4453 * old rule will be incorrectly attributed to the new rule. This could be
4454 * avoided by calling update_stats() whenever rules are created or
4455 * deleted. However, the performance impact of making so many calls to the
4456 * datapath do not justify the benefit of having perfectly accurate statistics.
4457 *
4458 * In addition, this function maintains per ofproto flow hit counts. The patch
4459 * port is not treated specially. e.g. A packet ingress from br0 patched into
4460 * br1 will increase the hit count of br0 by 1, however, does not affect
4461 * the hit or miss counts of br1.
4462 */
4463 static void
4464 update_stats(struct dpif_backer *backer)
4465 {
4466 const struct dpif_flow_stats *stats;
4467 struct dpif_flow_dump dump;
4468 const struct nlattr *key;
4469 size_t key_len;
4470
4471 dpif_flow_dump_start(&dump, backer->dpif);
4472 while (dpif_flow_dump_next(&dump, &key, &key_len, NULL, NULL, &stats)) {
4473 struct subfacet *subfacet;
4474 uint32_t key_hash;
4475
4476 key_hash = odp_flow_key_hash(key, key_len);
4477 subfacet = subfacet_find(backer, key, key_len, key_hash);
4478 switch (subfacet ? subfacet->path : SF_NOT_INSTALLED) {
4479 case SF_FAST_PATH:
4480 update_subfacet_stats(subfacet, stats);
4481 break;
4482
4483 case SF_SLOW_PATH:
4484 /* Stats are updated per-packet. */
4485 break;
4486
4487 case SF_NOT_INSTALLED:
4488 default:
4489 delete_unexpected_flow(backer, key, key_len);
4490 break;
4491 }
4492 run_fast_rl();
4493 }
4494 dpif_flow_dump_done(&dump);
4495
4496 update_moving_averages(backer);
4497 }
4498
4499 /* Calculates and returns the number of milliseconds of idle time after which
4500 * subfacets should expire from the datapath. When a subfacet expires, we fold
4501 * its statistics into its facet, and when a facet's last subfacet expires, we
4502 * fold its statistic into its rule. */
4503 static int
4504 subfacet_max_idle(const struct dpif_backer *backer)
4505 {
4506 /*
4507 * Idle time histogram.
4508 *
4509 * Most of the time a switch has a relatively small number of subfacets.
4510 * When this is the case we might as well keep statistics for all of them
4511 * in userspace and to cache them in the kernel datapath for performance as
4512 * well.
4513 *
4514 * As the number of subfacets increases, the memory required to maintain
4515 * statistics about them in userspace and in the kernel becomes
4516 * significant. However, with a large number of subfacets it is likely
4517 * that only a few of them are "heavy hitters" that consume a large amount
4518 * of bandwidth. At this point, only heavy hitters are worth caching in
4519 * the kernel and maintaining in userspaces; other subfacets we can
4520 * discard.
4521 *
4522 * The technique used to compute the idle time is to build a histogram with
4523 * N_BUCKETS buckets whose width is BUCKET_WIDTH msecs each. Each subfacet
4524 * that is installed in the kernel gets dropped in the appropriate bucket.
4525 * After the histogram has been built, we compute the cutoff so that only
4526 * the most-recently-used 1% of subfacets (but at least
4527 * flow_eviction_threshold flows) are kept cached. At least
4528 * the most-recently-used bucket of subfacets is kept, so actually an
4529 * arbitrary number of subfacets can be kept in any given expiration run
4530 * (though the next run will delete most of those unless they receive
4531 * additional data).
4532 *
4533 * This requires a second pass through the subfacets, in addition to the
4534 * pass made by update_stats(), because the former function never looks at
4535 * uninstallable subfacets.
4536 */
4537 enum { BUCKET_WIDTH = ROUND_UP(100, TIME_UPDATE_INTERVAL) };
4538 enum { N_BUCKETS = 5000 / BUCKET_WIDTH };
4539 int buckets[N_BUCKETS] = { 0 };
4540 int total, subtotal, bucket;
4541 struct subfacet *subfacet;
4542 long long int now;
4543 int i;
4544
4545 total = hmap_count(&backer->subfacets);
4546 if (total <= flow_eviction_threshold) {
4547 return N_BUCKETS * BUCKET_WIDTH;
4548 }
4549
4550 /* Build histogram. */
4551 now = time_msec();
4552 HMAP_FOR_EACH (subfacet, hmap_node, &backer->subfacets) {
4553 long long int idle = now - subfacet->used;
4554 int bucket = (idle <= 0 ? 0
4555 : idle >= BUCKET_WIDTH * N_BUCKETS ? N_BUCKETS - 1
4556 : (unsigned int) idle / BUCKET_WIDTH);
4557 buckets[bucket]++;
4558 }
4559
4560 /* Find the first bucket whose flows should be expired. */
4561 subtotal = bucket = 0;
4562 do {
4563 subtotal += buckets[bucket++];
4564 } while (bucket < N_BUCKETS &&
4565 subtotal < MAX(flow_eviction_threshold, total / 100));
4566
4567 if (VLOG_IS_DBG_ENABLED()) {
4568 struct ds s;
4569
4570 ds_init(&s);
4571 ds_put_cstr(&s, "keep");
4572 for (i = 0; i < N_BUCKETS; i++) {
4573 if (i == bucket) {
4574 ds_put_cstr(&s, ", drop");
4575 }
4576 if (buckets[i]) {
4577 ds_put_format(&s, " %d:%d", i * BUCKET_WIDTH, buckets[i]);
4578 }
4579 }
4580 VLOG_INFO("%s (msec:count)", ds_cstr(&s));
4581 ds_destroy(&s);
4582 }
4583
4584 return bucket * BUCKET_WIDTH;
4585 }
4586
4587 static void
4588 expire_subfacets(struct dpif_backer *backer, int dp_max_idle)
4589 {
4590 /* Cutoff time for most flows. */
4591 long long int normal_cutoff = time_msec() - dp_max_idle;
4592
4593 /* We really want to keep flows for special protocols around, so use a more
4594 * conservative cutoff. */
4595 long long int special_cutoff = time_msec() - 10000;
4596
4597 struct subfacet *subfacet, *next_subfacet;
4598 struct subfacet *batch[SUBFACET_DESTROY_MAX_BATCH];
4599 int n_batch;
4600
4601 n_batch = 0;
4602 HMAP_FOR_EACH_SAFE (subfacet, next_subfacet, hmap_node,
4603 &backer->subfacets) {
4604 long long int cutoff;
4605
4606 cutoff = (subfacet->facet->xout.slow & (SLOW_CFM | SLOW_BFD | SLOW_LACP
4607 | SLOW_STP)
4608 ? special_cutoff
4609 : normal_cutoff);
4610 if (subfacet->used < cutoff) {
4611 if (subfacet->path != SF_NOT_INSTALLED) {
4612 batch[n_batch++] = subfacet;
4613 if (n_batch >= SUBFACET_DESTROY_MAX_BATCH) {
4614 subfacet_destroy_batch(backer, batch, n_batch);
4615 n_batch = 0;
4616 }
4617 } else {
4618 subfacet_destroy(subfacet);
4619 }
4620 }
4621 }
4622
4623 if (n_batch > 0) {
4624 subfacet_destroy_batch(backer, batch, n_batch);
4625 }
4626 }
4627
4628 /* If 'rule' is an OpenFlow rule, that has expired according to OpenFlow rules,
4629 * then delete it entirely. */
4630 static void
4631 rule_expire(struct rule_dpif *rule)
4632 {
4633 struct facet *facet, *next_facet;
4634 long long int now;
4635 uint8_t reason;
4636
4637 if (rule->up.pending) {
4638 /* We'll have to expire it later. */
4639 return;
4640 }
4641
4642 /* Has 'rule' expired? */
4643 now = time_msec();
4644 if (rule->up.hard_timeout
4645 && now > rule->up.modified + rule->up.hard_timeout * 1000) {
4646 reason = OFPRR_HARD_TIMEOUT;
4647 } else if (rule->up.idle_timeout
4648 && now > rule->up.used + rule->up.idle_timeout * 1000) {
4649 reason = OFPRR_IDLE_TIMEOUT;
4650 } else {
4651 return;
4652 }
4653
4654 COVERAGE_INC(ofproto_dpif_expired);
4655
4656 /* Update stats. (This is a no-op if the rule expired due to an idle
4657 * timeout, because that only happens when the rule has no facets left.) */
4658 LIST_FOR_EACH_SAFE (facet, next_facet, list_node, &rule->facets) {
4659 facet_remove(facet);
4660 }
4661
4662 /* Get rid of the rule. */
4663 ofproto_rule_expire(&rule->up, reason);
4664 }
4665 \f
4666 /* Facets. */
4667
4668 /* Creates and returns a new facet based on 'miss'.
4669 *
4670 * The caller must already have determined that no facet with an identical
4671 * 'miss->flow' exists in 'miss->ofproto'.
4672 *
4673 * 'rule' and 'xout' must have been created based on 'miss'.
4674 *
4675 * 'facet'' statistics are initialized based on 'stats'.
4676 *
4677 * The facet will initially have no subfacets. The caller should create (at
4678 * least) one subfacet with subfacet_create(). */
4679 static struct facet *
4680 facet_create(const struct flow_miss *miss, struct rule_dpif *rule,
4681 struct xlate_out *xout, struct dpif_flow_stats *stats)
4682 {
4683 struct ofproto_dpif *ofproto = miss->ofproto;
4684 struct facet *facet;
4685 struct match match;
4686
4687 facet = xzalloc(sizeof *facet);
4688 facet->packet_count = facet->prev_packet_count = stats->n_packets;
4689 facet->byte_count = facet->prev_byte_count = stats->n_bytes;
4690 facet->tcp_flags = stats->tcp_flags;
4691 facet->used = stats->used;
4692 facet->flow = miss->flow;
4693 facet->learn_rl = time_msec() + 500;
4694 facet->rule = rule;
4695
4696 list_push_back(&facet->rule->facets, &facet->list_node);
4697 list_init(&facet->subfacets);
4698 netflow_flow_init(&facet->nf_flow);
4699 netflow_flow_update_time(ofproto->netflow, &facet->nf_flow, facet->used);
4700
4701 xlate_out_copy(&facet->xout, xout);
4702
4703 match_init(&match, &facet->flow, &facet->xout.wc);
4704 cls_rule_init(&facet->cr, &match, OFP_DEFAULT_PRIORITY);
4705 classifier_insert(&ofproto->facets, &facet->cr);
4706
4707 facet->nf_flow.output_iface = facet->xout.nf_output_iface;
4708
4709 return facet;
4710 }
4711
4712 static void
4713 facet_free(struct facet *facet)
4714 {
4715 if (facet) {
4716 xlate_out_uninit(&facet->xout);
4717 free(facet);
4718 }
4719 }
4720
4721 /* Executes, within 'ofproto', the 'n_actions' actions in 'actions' on
4722 * 'packet', which arrived on 'in_port'. */
4723 static bool
4724 execute_odp_actions(struct ofproto_dpif *ofproto, const struct flow *flow,
4725 const struct nlattr *odp_actions, size_t actions_len,
4726 struct ofpbuf *packet)
4727 {
4728 struct odputil_keybuf keybuf;
4729 struct ofpbuf key;
4730 int error;
4731
4732 ofpbuf_use_stack(&key, &keybuf, sizeof keybuf);
4733 odp_flow_key_from_flow(&key, flow,
4734 ofp_port_to_odp_port(ofproto, flow->in_port));
4735
4736 error = dpif_execute(ofproto->backer->dpif, key.data, key.size,
4737 odp_actions, actions_len, packet);
4738 return !error;
4739 }
4740
4741 /* Remove 'facet' from its ofproto and free up the associated memory:
4742 *
4743 * - If 'facet' was installed in the datapath, uninstalls it and updates its
4744 * rule's statistics, via subfacet_uninstall().
4745 *
4746 * - Removes 'facet' from its rule and from ofproto->facets.
4747 */
4748 static void
4749 facet_remove(struct facet *facet)
4750 {
4751 struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto);
4752 struct subfacet *subfacet, *next_subfacet;
4753
4754 ovs_assert(!list_is_empty(&facet->subfacets));
4755
4756 /* First uninstall all of the subfacets to get final statistics. */
4757 LIST_FOR_EACH (subfacet, list_node, &facet->subfacets) {
4758 subfacet_uninstall(subfacet);
4759 }
4760
4761 /* Flush the final stats to the rule.
4762 *
4763 * This might require us to have at least one subfacet around so that we
4764 * can use its actions for accounting in facet_account(), which is why we
4765 * have uninstalled but not yet destroyed the subfacets. */
4766 facet_flush_stats(facet);
4767
4768 /* Now we're really all done so destroy everything. */
4769 LIST_FOR_EACH_SAFE (subfacet, next_subfacet, list_node,
4770 &facet->subfacets) {
4771 subfacet_destroy__(subfacet);
4772 }
4773 classifier_remove(&ofproto->facets, &facet->cr);
4774 cls_rule_destroy(&facet->cr);
4775 list_remove(&facet->list_node);
4776 facet_free(facet);
4777 }
4778
4779 /* Feed information from 'facet' back into the learning table to keep it in
4780 * sync with what is actually flowing through the datapath. */
4781 static void
4782 facet_learn(struct facet *facet)
4783 {
4784 long long int now = time_msec();
4785
4786 if (!facet->xout.has_fin_timeout && now < facet->learn_rl) {
4787 return;
4788 }
4789
4790 facet->learn_rl = now + 500;
4791
4792 if (!facet->xout.has_learn
4793 && !facet->xout.has_normal
4794 && (!facet->xout.has_fin_timeout
4795 || !(facet->tcp_flags & (TCP_FIN | TCP_RST)))) {
4796 return;
4797 }
4798
4799 facet_push_stats(facet, true);
4800 }
4801
4802 static void
4803 facet_account(struct facet *facet)
4804 {
4805 struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto);
4806 const struct nlattr *a;
4807 unsigned int left;
4808 ovs_be16 vlan_tci;
4809 uint64_t n_bytes;
4810
4811 if (!facet->xout.has_normal || !ofproto->has_bonded_bundles) {
4812 return;
4813 }
4814 n_bytes = facet->byte_count - facet->accounted_bytes;
4815
4816 /* This loop feeds byte counters to bond_account() for rebalancing to use
4817 * as a basis. We also need to track the actual VLAN on which the packet
4818 * is going to be sent to ensure that it matches the one passed to
4819 * bond_choose_output_slave(). (Otherwise, we will account to the wrong
4820 * hash bucket.)
4821 *
4822 * We use the actions from an arbitrary subfacet because they should all
4823 * be equally valid for our purpose. */
4824 vlan_tci = facet->flow.vlan_tci;
4825 NL_ATTR_FOR_EACH_UNSAFE (a, left, facet->xout.odp_actions.data,
4826 facet->xout.odp_actions.size) {
4827 const struct ovs_action_push_vlan *vlan;
4828 struct ofport_dpif *port;
4829
4830 switch (nl_attr_type(a)) {
4831 case OVS_ACTION_ATTR_OUTPUT:
4832 port = get_odp_port(ofproto, nl_attr_get_u32(a));
4833 if (port && port->bundle && port->bundle->bond) {
4834 bond_account(port->bundle->bond, &facet->flow,
4835 vlan_tci_to_vid(vlan_tci), n_bytes);
4836 }
4837 break;
4838
4839 case OVS_ACTION_ATTR_POP_VLAN:
4840 vlan_tci = htons(0);
4841 break;
4842
4843 case OVS_ACTION_ATTR_PUSH_VLAN:
4844 vlan = nl_attr_get(a);
4845 vlan_tci = vlan->vlan_tci;
4846 break;
4847 }
4848 }
4849 }
4850
4851 /* Returns true if the only action for 'facet' is to send to the controller.
4852 * (We don't report NetFlow expiration messages for such facets because they
4853 * are just part of the control logic for the network, not real traffic). */
4854 static bool
4855 facet_is_controller_flow(struct facet *facet)
4856 {
4857 if (facet) {
4858 const struct rule *rule = &facet->rule->up;
4859 const struct ofpact *ofpacts = rule->ofpacts;
4860 size_t ofpacts_len = rule->ofpacts_len;
4861
4862 if (ofpacts_len > 0 &&
4863 ofpacts->type == OFPACT_CONTROLLER &&
4864 ofpact_next(ofpacts) >= ofpact_end(ofpacts, ofpacts_len)) {
4865 return true;
4866 }
4867 }
4868 return false;
4869 }
4870
4871 /* Folds all of 'facet''s statistics into its rule. Also updates the
4872 * accounting ofhook and emits a NetFlow expiration if appropriate. All of
4873 * 'facet''s statistics in the datapath should have been zeroed and folded into
4874 * its packet and byte counts before this function is called. */
4875 static void
4876 facet_flush_stats(struct facet *facet)
4877 {
4878 struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto);
4879 struct subfacet *subfacet;
4880
4881 LIST_FOR_EACH (subfacet, list_node, &facet->subfacets) {
4882 ovs_assert(!subfacet->dp_byte_count);
4883 ovs_assert(!subfacet->dp_packet_count);
4884 }
4885
4886 facet_push_stats(facet, false);
4887 if (facet->accounted_bytes < facet->byte_count) {
4888 facet_account(facet);
4889 facet->accounted_bytes = facet->byte_count;
4890 }
4891
4892 if (ofproto->netflow && !facet_is_controller_flow(facet)) {
4893 struct ofexpired expired;
4894 expired.flow = facet->flow;
4895 expired.packet_count = facet->packet_count;
4896 expired.byte_count = facet->byte_count;
4897 expired.used = facet->used;
4898 netflow_expire(ofproto->netflow, &facet->nf_flow, &expired);
4899 }
4900
4901 /* Reset counters to prevent double counting if 'facet' ever gets
4902 * reinstalled. */
4903 facet_reset_counters(facet);
4904
4905 netflow_flow_clear(&facet->nf_flow);
4906 facet->tcp_flags = 0;
4907 }
4908
4909 /* Searches 'ofproto''s table of facets for one which would be responsible for
4910 * 'flow'. Returns it if found, otherwise a null pointer.
4911 *
4912 * The returned facet might need revalidation; use facet_lookup_valid()
4913 * instead if that is important. */
4914 static struct facet *
4915 facet_find(struct ofproto_dpif *ofproto, const struct flow *flow)
4916 {
4917 struct cls_rule *cr = classifier_lookup(&ofproto->facets, flow, NULL);
4918 return cr ? CONTAINER_OF(cr, struct facet, cr) : NULL;
4919 }
4920
4921 /* Searches 'ofproto''s table of facets for one capable that covers
4922 * 'flow'. Returns it if found, otherwise a null pointer.
4923 *
4924 * The returned facet is guaranteed to be valid. */
4925 static struct facet *
4926 facet_lookup_valid(struct ofproto_dpif *ofproto, const struct flow *flow)
4927 {
4928 struct facet *facet;
4929
4930 facet = facet_find(ofproto, flow);
4931 if (facet
4932 && (ofproto->backer->need_revalidate
4933 || tag_set_intersects(&ofproto->backer->revalidate_set,
4934 facet->xout.tags))
4935 && !facet_revalidate(facet)) {
4936 return NULL;
4937 }
4938
4939 return facet;
4940 }
4941
4942 static bool
4943 facet_check_consistency(struct facet *facet)
4944 {
4945 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 15);
4946
4947 struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto);
4948
4949 struct xlate_out xout;
4950 struct xlate_in xin;
4951
4952 struct rule_dpif *rule;
4953 bool ok;
4954
4955 /* Check the rule for consistency. */
4956 rule = rule_dpif_lookup(ofproto, &facet->flow, NULL);
4957 if (rule != facet->rule) {
4958 if (!VLOG_DROP_WARN(&rl)) {
4959 struct ds s = DS_EMPTY_INITIALIZER;
4960
4961 flow_format(&s, &facet->flow);
4962 ds_put_format(&s, ": facet associated with wrong rule (was "
4963 "table=%"PRIu8",", facet->rule->up.table_id);
4964 cls_rule_format(&facet->rule->up.cr, &s);
4965 ds_put_format(&s, ") (should have been table=%"PRIu8",",
4966 rule->up.table_id);
4967 cls_rule_format(&rule->up.cr, &s);
4968 ds_put_char(&s, ')');
4969
4970 VLOG_WARN("%s", ds_cstr(&s));
4971 ds_destroy(&s);
4972 }
4973 return false;
4974 }
4975
4976 /* Check the datapath actions for consistency. */
4977 xlate_in_init(&xin, ofproto, &facet->flow, rule, 0, NULL);
4978 xlate_actions(&xin, &xout);
4979
4980 ok = ofpbuf_equal(&facet->xout.odp_actions, &xout.odp_actions)
4981 && facet->xout.slow == xout.slow;
4982 if (!ok && !VLOG_DROP_WARN(&rl)) {
4983 struct ds s = DS_EMPTY_INITIALIZER;
4984
4985 flow_format(&s, &facet->flow);
4986 ds_put_cstr(&s, ": inconsistency in facet");
4987
4988 if (!ofpbuf_equal(&facet->xout.odp_actions, &xout.odp_actions)) {
4989 ds_put_cstr(&s, " (actions were: ");
4990 format_odp_actions(&s, facet->xout.odp_actions.data,
4991 facet->xout.odp_actions.size);
4992 ds_put_cstr(&s, ") (correct actions: ");
4993 format_odp_actions(&s, xout.odp_actions.data,
4994 xout.odp_actions.size);
4995 ds_put_char(&s, ')');
4996 }
4997
4998 if (facet->xout.slow != xout.slow) {
4999 ds_put_format(&s, " slow path incorrect. should be %d", xout.slow);
5000 }
5001
5002 VLOG_WARN("%s", ds_cstr(&s));
5003 ds_destroy(&s);
5004 }
5005 xlate_out_uninit(&xout);
5006
5007 return ok;
5008 }
5009
5010 /* Re-searches the classifier for 'facet':
5011 *
5012 * - If the rule found is different from 'facet''s current rule, moves
5013 * 'facet' to the new rule and recompiles its actions.
5014 *
5015 * - If the rule found is the same as 'facet''s current rule, leaves 'facet'
5016 * where it is and recompiles its actions anyway.
5017 *
5018 * - If any of 'facet''s subfacets correspond to a new flow according to
5019 * ofproto_receive(), 'facet' is removed.
5020 *
5021 * Returns true if 'facet' is still valid. False if 'facet' was removed. */
5022 static bool
5023 facet_revalidate(struct facet *facet)
5024 {
5025 struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto);
5026 struct rule_dpif *new_rule;
5027 struct subfacet *subfacet;
5028 struct flow_wildcards wc;
5029 struct xlate_out xout;
5030 struct xlate_in xin;
5031
5032 COVERAGE_INC(facet_revalidate);
5033
5034 /* Check that child subfacets still correspond to this facet. Tunnel
5035 * configuration changes could cause a subfacet's OpenFlow in_port to
5036 * change. */
5037 LIST_FOR_EACH (subfacet, list_node, &facet->subfacets) {
5038 struct ofproto_dpif *recv_ofproto;
5039 struct flow recv_flow;
5040 int error;
5041
5042 error = ofproto_receive(ofproto->backer, NULL, subfacet->key,
5043 subfacet->key_len, &recv_flow, NULL,
5044 &recv_ofproto, NULL);
5045 if (error
5046 || recv_ofproto != ofproto
5047 || facet != facet_find(ofproto, &recv_flow)) {
5048 facet_remove(facet);
5049 return false;
5050 }
5051 }
5052
5053 flow_wildcards_init_catchall(&wc);
5054 new_rule = rule_dpif_lookup(ofproto, &facet->flow, &wc);
5055
5056 /* Calculate new datapath actions.
5057 *
5058 * We do not modify any 'facet' state yet, because we might need to, e.g.,
5059 * emit a NetFlow expiration and, if so, we need to have the old state
5060 * around to properly compose it. */
5061 xlate_in_init(&xin, ofproto, &facet->flow, new_rule, 0, NULL);
5062 xlate_actions(&xin, &xout);
5063 flow_wildcards_or(&xout.wc, &xout.wc, &wc);
5064
5065 /* A facet's slow path reason should only change under dramatic
5066 * circumstances. Rather than try to update everything, it's simpler to
5067 * remove the facet and start over.
5068 *
5069 * More importantly, if a facet's wildcards change, it will be relatively
5070 * difficult to figure out if its subfacets still belong to it, and if not
5071 * which facet they may belong to. Again, to avoid the complexity, we
5072 * simply give up instead. */
5073 if (facet->xout.slow != xout.slow
5074 || memcmp(&facet->xout.wc, &xout.wc, sizeof xout.wc)) {
5075 facet_remove(facet);
5076 xlate_out_uninit(&xout);
5077 return false;
5078 }
5079
5080 if (!ofpbuf_equal(&facet->xout.odp_actions, &xout.odp_actions)) {
5081 LIST_FOR_EACH(subfacet, list_node, &facet->subfacets) {
5082 if (subfacet->path == SF_FAST_PATH) {
5083 struct dpif_flow_stats stats;
5084
5085 subfacet_install(subfacet, &xout.odp_actions, &stats);
5086 subfacet_update_stats(subfacet, &stats);
5087 }
5088 }
5089
5090 facet_flush_stats(facet);
5091
5092 ofpbuf_clear(&facet->xout.odp_actions);
5093 ofpbuf_put(&facet->xout.odp_actions, xout.odp_actions.data,
5094 xout.odp_actions.size);
5095 }
5096
5097 /* Update 'facet' now that we've taken care of all the old state. */
5098 facet->xout.tags = xout.tags;
5099 facet->xout.slow = xout.slow;
5100 facet->xout.has_learn = xout.has_learn;
5101 facet->xout.has_normal = xout.has_normal;
5102 facet->xout.has_fin_timeout = xout.has_fin_timeout;
5103 facet->xout.nf_output_iface = xout.nf_output_iface;
5104 facet->xout.mirrors = xout.mirrors;
5105 facet->nf_flow.output_iface = facet->xout.nf_output_iface;
5106
5107 if (facet->rule != new_rule) {
5108 COVERAGE_INC(facet_changed_rule);
5109 list_remove(&facet->list_node);
5110 list_push_back(&new_rule->facets, &facet->list_node);
5111 facet->rule = new_rule;
5112 facet->used = new_rule->up.created;
5113 facet->prev_used = facet->used;
5114 }
5115
5116 xlate_out_uninit(&xout);
5117 return true;
5118 }
5119
5120 static void
5121 facet_reset_counters(struct facet *facet)
5122 {
5123 facet->packet_count = 0;
5124 facet->byte_count = 0;
5125 facet->prev_packet_count = 0;
5126 facet->prev_byte_count = 0;
5127 facet->accounted_bytes = 0;
5128 }
5129
5130 static void
5131 facet_push_stats(struct facet *facet, bool may_learn)
5132 {
5133 struct dpif_flow_stats stats;
5134
5135 ovs_assert(facet->packet_count >= facet->prev_packet_count);
5136 ovs_assert(facet->byte_count >= facet->prev_byte_count);
5137 ovs_assert(facet->used >= facet->prev_used);
5138
5139 stats.n_packets = facet->packet_count - facet->prev_packet_count;
5140 stats.n_bytes = facet->byte_count - facet->prev_byte_count;
5141 stats.used = facet->used;
5142 stats.tcp_flags = facet->tcp_flags;
5143
5144 if (may_learn || stats.n_packets || facet->used > facet->prev_used) {
5145 struct ofproto_dpif *ofproto =
5146 ofproto_dpif_cast(facet->rule->up.ofproto);
5147
5148 struct ofport_dpif *in_port;
5149 struct xlate_in xin;
5150
5151 facet->prev_packet_count = facet->packet_count;
5152 facet->prev_byte_count = facet->byte_count;
5153 facet->prev_used = facet->used;
5154
5155 in_port = get_ofp_port(ofproto, facet->flow.in_port);
5156 if (in_port && in_port->tnl_port) {
5157 netdev_vport_inc_rx(in_port->up.netdev, &stats);
5158 }
5159
5160 rule_credit_stats(facet->rule, &stats);
5161 netflow_flow_update_time(ofproto->netflow, &facet->nf_flow,
5162 facet->used);
5163 netflow_flow_update_flags(&facet->nf_flow, facet->tcp_flags);
5164 update_mirror_stats(ofproto, facet->xout.mirrors, stats.n_packets,
5165 stats.n_bytes);
5166
5167 xlate_in_init(&xin, ofproto, &facet->flow, facet->rule,
5168 stats.tcp_flags, NULL);
5169 xin.resubmit_stats = &stats;
5170 xin.may_learn = may_learn;
5171 xlate_actions_for_side_effects(&xin);
5172 }
5173 }
5174
5175 static void
5176 push_all_stats__(bool run_fast)
5177 {
5178 static long long int rl = LLONG_MIN;
5179 struct ofproto_dpif *ofproto;
5180
5181 if (time_msec() < rl) {
5182 return;
5183 }
5184
5185 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
5186 struct cls_cursor cursor;
5187 struct facet *facet;
5188
5189 cls_cursor_init(&cursor, &ofproto->facets, NULL);
5190 CLS_CURSOR_FOR_EACH (facet, cr, &cursor) {
5191 facet_push_stats(facet, false);
5192 if (run_fast) {
5193 run_fast_rl();
5194 }
5195 }
5196 }
5197
5198 rl = time_msec() + 100;
5199 }
5200
5201 static void
5202 push_all_stats(void)
5203 {
5204 push_all_stats__(true);
5205 }
5206
5207 static void
5208 rule_credit_stats(struct rule_dpif *rule, const struct dpif_flow_stats *stats)
5209 {
5210 rule->packet_count += stats->n_packets;
5211 rule->byte_count += stats->n_bytes;
5212 ofproto_rule_update_used(&rule->up, stats->used);
5213 }
5214 \f
5215 /* Subfacets. */
5216
5217 static struct subfacet *
5218 subfacet_find(struct dpif_backer *backer, const struct nlattr *key,
5219 size_t key_len, uint32_t key_hash)
5220 {
5221 struct subfacet *subfacet;
5222
5223 HMAP_FOR_EACH_WITH_HASH (subfacet, hmap_node, key_hash,
5224 &backer->subfacets) {
5225 if (subfacet->key_len == key_len
5226 && !memcmp(key, subfacet->key, key_len)) {
5227 return subfacet;
5228 }
5229 }
5230
5231 return NULL;
5232 }
5233
5234 /* Searches 'facet' (within 'ofproto') for a subfacet with the specified
5235 * 'key_fitness', 'key', and 'key_len' members in 'miss'. Returns the
5236 * existing subfacet if there is one, otherwise creates and returns a
5237 * new subfacet. */
5238 static struct subfacet *
5239 subfacet_create(struct facet *facet, struct flow_miss *miss,
5240 long long int now)
5241 {
5242 struct dpif_backer *backer = miss->ofproto->backer;
5243 enum odp_key_fitness key_fitness = miss->key_fitness;
5244 const struct nlattr *key = miss->key;
5245 size_t key_len = miss->key_len;
5246 uint32_t key_hash;
5247 struct subfacet *subfacet;
5248
5249 key_hash = odp_flow_key_hash(key, key_len);
5250
5251 if (list_is_empty(&facet->subfacets)) {
5252 subfacet = &facet->one_subfacet;
5253 } else {
5254 subfacet = subfacet_find(backer, key, key_len, key_hash);
5255 if (subfacet) {
5256 if (subfacet->facet == facet) {
5257 return subfacet;
5258 }
5259
5260 /* This shouldn't happen. */
5261 VLOG_ERR_RL(&rl, "subfacet with wrong facet");
5262 subfacet_destroy(subfacet);
5263 }
5264
5265 subfacet = xmalloc(sizeof *subfacet);
5266 }
5267
5268 hmap_insert(&backer->subfacets, &subfacet->hmap_node, key_hash);
5269 list_push_back(&facet->subfacets, &subfacet->list_node);
5270 subfacet->facet = facet;
5271 subfacet->key_fitness = key_fitness;
5272 subfacet->key = xmemdup(key, key_len);
5273 subfacet->key_len = key_len;
5274 subfacet->used = now;
5275 subfacet->created = now;
5276 subfacet->dp_packet_count = 0;
5277 subfacet->dp_byte_count = 0;
5278 subfacet->path = SF_NOT_INSTALLED;
5279 subfacet->backer = backer;
5280
5281 backer->subfacet_add_count++;
5282 return subfacet;
5283 }
5284
5285 /* Uninstalls 'subfacet' from the datapath, if it is installed, removes it from
5286 * its facet within 'ofproto', and frees it. */
5287 static void
5288 subfacet_destroy__(struct subfacet *subfacet)
5289 {
5290 struct facet *facet = subfacet->facet;
5291 struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto);
5292
5293 /* Update ofproto stats before uninstall the subfacet. */
5294 ofproto->backer->subfacet_del_count++;
5295
5296 subfacet_uninstall(subfacet);
5297 hmap_remove(&subfacet->backer->subfacets, &subfacet->hmap_node);
5298 list_remove(&subfacet->list_node);
5299 free(subfacet->key);
5300 if (subfacet != &facet->one_subfacet) {
5301 free(subfacet);
5302 }
5303 }
5304
5305 /* Destroys 'subfacet', as with subfacet_destroy__(), and then if this was the
5306 * last remaining subfacet in its facet destroys the facet too. */
5307 static void
5308 subfacet_destroy(struct subfacet *subfacet)
5309 {
5310 struct facet *facet = subfacet->facet;
5311
5312 if (list_is_singleton(&facet->subfacets)) {
5313 /* facet_remove() needs at least one subfacet (it will remove it). */
5314 facet_remove(facet);
5315 } else {
5316 subfacet_destroy__(subfacet);
5317 }
5318 }
5319
5320 static void
5321 subfacet_destroy_batch(struct dpif_backer *backer,
5322 struct subfacet **subfacets, int n)
5323 {
5324 struct dpif_op ops[SUBFACET_DESTROY_MAX_BATCH];
5325 struct dpif_op *opsp[SUBFACET_DESTROY_MAX_BATCH];
5326 struct dpif_flow_stats stats[SUBFACET_DESTROY_MAX_BATCH];
5327 int i;
5328
5329 for (i = 0; i < n; i++) {
5330 ops[i].type = DPIF_OP_FLOW_DEL;
5331 ops[i].u.flow_del.key = subfacets[i]->key;
5332 ops[i].u.flow_del.key_len = subfacets[i]->key_len;
5333 ops[i].u.flow_del.stats = &stats[i];
5334 opsp[i] = &ops[i];
5335 }
5336
5337 dpif_operate(backer->dpif, opsp, n);
5338 for (i = 0; i < n; i++) {
5339 subfacet_reset_dp_stats(subfacets[i], &stats[i]);
5340 subfacets[i]->path = SF_NOT_INSTALLED;
5341 subfacet_destroy(subfacets[i]);
5342 run_fast_rl();
5343 }
5344 }
5345
5346 /* Updates 'subfacet''s datapath flow, setting its actions to 'actions_len'
5347 * bytes of actions in 'actions'. If 'stats' is non-null, statistics counters
5348 * in the datapath will be zeroed and 'stats' will be updated with traffic new
5349 * since 'subfacet' was last updated.
5350 *
5351 * Returns 0 if successful, otherwise a positive errno value. */
5352 static int
5353 subfacet_install(struct subfacet *subfacet, const struct ofpbuf *odp_actions,
5354 struct dpif_flow_stats *stats)
5355 {
5356 struct facet *facet = subfacet->facet;
5357 struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto);
5358 enum subfacet_path path = facet->xout.slow ? SF_SLOW_PATH : SF_FAST_PATH;
5359 const struct nlattr *actions = odp_actions->data;
5360 size_t actions_len = odp_actions->size;
5361
5362 uint64_t slow_path_stub[128 / 8];
5363 enum dpif_flow_put_flags flags;
5364 int ret;
5365
5366 flags = DPIF_FP_CREATE | DPIF_FP_MODIFY;
5367 if (stats) {
5368 flags |= DPIF_FP_ZERO_STATS;
5369 }
5370
5371 if (path == SF_SLOW_PATH) {
5372 compose_slow_path(ofproto, &facet->flow, facet->xout.slow,
5373 slow_path_stub, sizeof slow_path_stub,
5374 &actions, &actions_len);
5375 }
5376
5377 ret = dpif_flow_put(subfacet->backer->dpif, flags, subfacet->key,
5378 subfacet->key_len, actions, actions_len, stats);
5379
5380 if (stats) {
5381 subfacet_reset_dp_stats(subfacet, stats);
5382 }
5383
5384 if (!ret) {
5385 subfacet->path = path;
5386 }
5387 return ret;
5388 }
5389
5390 /* If 'subfacet' is installed in the datapath, uninstalls it. */
5391 static void
5392 subfacet_uninstall(struct subfacet *subfacet)
5393 {
5394 if (subfacet->path != SF_NOT_INSTALLED) {
5395 struct rule_dpif *rule = subfacet->facet->rule;
5396 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
5397 struct dpif_flow_stats stats;
5398 int error;
5399
5400 error = dpif_flow_del(ofproto->backer->dpif, subfacet->key,
5401 subfacet->key_len, &stats);
5402 subfacet_reset_dp_stats(subfacet, &stats);
5403 if (!error) {
5404 subfacet_update_stats(subfacet, &stats);
5405 }
5406 subfacet->path = SF_NOT_INSTALLED;
5407 } else {
5408 ovs_assert(subfacet->dp_packet_count == 0);
5409 ovs_assert(subfacet->dp_byte_count == 0);
5410 }
5411 }
5412
5413 /* Resets 'subfacet''s datapath statistics counters. This should be called
5414 * when 'subfacet''s statistics are cleared in the datapath. If 'stats' is
5415 * non-null, it should contain the statistics returned by dpif when 'subfacet'
5416 * was reset in the datapath. 'stats' will be modified to include only
5417 * statistics new since 'subfacet' was last updated. */
5418 static void
5419 subfacet_reset_dp_stats(struct subfacet *subfacet,
5420 struct dpif_flow_stats *stats)
5421 {
5422 if (stats
5423 && subfacet->dp_packet_count <= stats->n_packets
5424 && subfacet->dp_byte_count <= stats->n_bytes) {
5425 stats->n_packets -= subfacet->dp_packet_count;
5426 stats->n_bytes -= subfacet->dp_byte_count;
5427 }
5428
5429 subfacet->dp_packet_count = 0;
5430 subfacet->dp_byte_count = 0;
5431 }
5432
5433 /* Folds the statistics from 'stats' into the counters in 'subfacet'.
5434 *
5435 * Because of the meaning of a subfacet's counters, it only makes sense to do
5436 * this if 'stats' are not tracked in the datapath, that is, if 'stats'
5437 * represents a packet that was sent by hand or if it represents statistics
5438 * that have been cleared out of the datapath. */
5439 static void
5440 subfacet_update_stats(struct subfacet *subfacet,
5441 const struct dpif_flow_stats *stats)
5442 {
5443 if (stats->n_packets || stats->used > subfacet->used) {
5444 struct facet *facet = subfacet->facet;
5445
5446 subfacet->used = MAX(subfacet->used, stats->used);
5447 facet->used = MAX(facet->used, stats->used);
5448 facet->packet_count += stats->n_packets;
5449 facet->byte_count += stats->n_bytes;
5450 facet->tcp_flags |= stats->tcp_flags;
5451 }
5452 }
5453 \f
5454 /* Rules. */
5455
5456 /* Lookup 'flow' in 'ofproto''s classifier. If 'wc' is non-null, sets
5457 * the fields that were relevant as part of the lookup. */
5458 static struct rule_dpif *
5459 rule_dpif_lookup(struct ofproto_dpif *ofproto, const struct flow *flow,
5460 struct flow_wildcards *wc)
5461 {
5462 struct rule_dpif *rule;
5463
5464 rule = rule_dpif_lookup__(ofproto, flow, wc, 0);
5465 if (rule) {
5466 return rule;
5467 }
5468
5469 return rule_dpif_miss_rule(ofproto, flow);
5470 }
5471
5472 static struct rule_dpif *
5473 rule_dpif_lookup__(struct ofproto_dpif *ofproto, const struct flow *flow,
5474 struct flow_wildcards *wc, uint8_t table_id)
5475 {
5476 struct cls_rule *cls_rule;
5477 struct classifier *cls;
5478 bool frag;
5479
5480 if (table_id >= N_TABLES) {
5481 return NULL;
5482 }
5483
5484 cls = &ofproto->up.tables[table_id].cls;
5485 frag = (flow->nw_frag & FLOW_NW_FRAG_ANY) != 0;
5486 if (frag && ofproto->up.frag_handling == OFPC_FRAG_NORMAL) {
5487 /* We must pretend that transport ports are unavailable. */
5488 struct flow ofpc_normal_flow = *flow;
5489 ofpc_normal_flow.tp_src = htons(0);
5490 ofpc_normal_flow.tp_dst = htons(0);
5491 cls_rule = classifier_lookup(cls, &ofpc_normal_flow, wc);
5492 } else if (frag && ofproto->up.frag_handling == OFPC_FRAG_DROP) {
5493 cls_rule = &ofproto->drop_frags_rule->up.cr;
5494 if (wc) {
5495 flow_wildcards_init_exact(wc);
5496 }
5497 } else {
5498 cls_rule = classifier_lookup(cls, flow, wc);
5499 }
5500 return rule_dpif_cast(rule_from_cls_rule(cls_rule));
5501 }
5502
5503 static struct rule_dpif *
5504 rule_dpif_miss_rule(struct ofproto_dpif *ofproto, const struct flow *flow)
5505 {
5506 struct ofport_dpif *port;
5507
5508 port = get_ofp_port(ofproto, flow->in_port);
5509 if (!port) {
5510 VLOG_WARN_RL(&rl, "packet-in on unknown port %"PRIu16, flow->in_port);
5511 return ofproto->miss_rule;
5512 }
5513
5514 if (port->up.pp.config & OFPUTIL_PC_NO_PACKET_IN) {
5515 return ofproto->no_packet_in_rule;
5516 }
5517 return ofproto->miss_rule;
5518 }
5519
5520 static void
5521 complete_operation(struct rule_dpif *rule)
5522 {
5523 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
5524
5525 rule_invalidate(rule);
5526 if (clogged) {
5527 struct dpif_completion *c = xmalloc(sizeof *c);
5528 c->op = rule->up.pending;
5529 list_push_back(&ofproto->completions, &c->list_node);
5530 } else {
5531 ofoperation_complete(rule->up.pending, 0);
5532 }
5533 }
5534
5535 static struct rule *
5536 rule_alloc(void)
5537 {
5538 struct rule_dpif *rule = xmalloc(sizeof *rule);
5539 return &rule->up;
5540 }
5541
5542 static void
5543 rule_dealloc(struct rule *rule_)
5544 {
5545 struct rule_dpif *rule = rule_dpif_cast(rule_);
5546 free(rule);
5547 }
5548
5549 static enum ofperr
5550 rule_construct(struct rule *rule_)
5551 {
5552 struct rule_dpif *rule = rule_dpif_cast(rule_);
5553 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
5554 struct rule_dpif *victim;
5555 uint8_t table_id;
5556
5557 rule->packet_count = 0;
5558 rule->byte_count = 0;
5559
5560 victim = rule_dpif_cast(ofoperation_get_victim(rule->up.pending));
5561 if (victim && !list_is_empty(&victim->facets)) {
5562 struct facet *facet;
5563
5564 rule->facets = victim->facets;
5565 list_moved(&rule->facets);
5566 LIST_FOR_EACH (facet, list_node, &rule->facets) {
5567 /* XXX: We're only clearing our local counters here. It's possible
5568 * that quite a few packets are unaccounted for in the datapath
5569 * statistics. These will be accounted to the new rule instead of
5570 * cleared as required. This could be fixed by clearing out the
5571 * datapath statistics for this facet, but currently it doesn't
5572 * seem worth it. */
5573 facet_reset_counters(facet);
5574 facet->rule = rule;
5575 }
5576 } else {
5577 /* Must avoid list_moved() in this case. */
5578 list_init(&rule->facets);
5579 }
5580
5581 table_id = rule->up.table_id;
5582 if (victim) {
5583 rule->tag = victim->tag;
5584 } else if (table_id == 0) {
5585 rule->tag = 0;
5586 } else {
5587 struct flow flow;
5588
5589 miniflow_expand(&rule->up.cr.match.flow, &flow);
5590 rule->tag = rule_calculate_tag(&flow, &rule->up.cr.match.mask,
5591 ofproto->tables[table_id].basis);
5592 }
5593
5594 complete_operation(rule);
5595 return 0;
5596 }
5597
5598 static void
5599 rule_destruct(struct rule *rule_)
5600 {
5601 struct rule_dpif *rule = rule_dpif_cast(rule_);
5602 struct facet *facet, *next_facet;
5603
5604 LIST_FOR_EACH_SAFE (facet, next_facet, list_node, &rule->facets) {
5605 facet_revalidate(facet);
5606 }
5607
5608 complete_operation(rule);
5609 }
5610
5611 static void
5612 rule_get_stats(struct rule *rule_, uint64_t *packets, uint64_t *bytes)
5613 {
5614 struct rule_dpif *rule = rule_dpif_cast(rule_);
5615
5616 /* push_all_stats() can handle flow misses which, when using the learn
5617 * action, can cause rules to be added and deleted. This can corrupt our
5618 * caller's datastructures which assume that rule_get_stats() doesn't have
5619 * an impact on the flow table. To be safe, we disable miss handling. */
5620 push_all_stats__(false);
5621
5622 /* Start from historical data for 'rule' itself that are no longer tracked
5623 * in facets. This counts, for example, facets that have expired. */
5624 *packets = rule->packet_count;
5625 *bytes = rule->byte_count;
5626 }
5627
5628 static void
5629 rule_dpif_execute(struct rule_dpif *rule, const struct flow *flow,
5630 struct ofpbuf *packet)
5631 {
5632 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
5633 struct dpif_flow_stats stats;
5634 struct xlate_out xout;
5635 struct xlate_in xin;
5636
5637 dpif_flow_stats_extract(flow, packet, time_msec(), &stats);
5638 rule_credit_stats(rule, &stats);
5639
5640 xlate_in_init(&xin, ofproto, flow, rule, stats.tcp_flags, packet);
5641 xin.resubmit_stats = &stats;
5642 xlate_actions(&xin, &xout);
5643
5644 execute_odp_actions(ofproto, flow, xout.odp_actions.data,
5645 xout.odp_actions.size, packet);
5646
5647 xlate_out_uninit(&xout);
5648 }
5649
5650 static enum ofperr
5651 rule_execute(struct rule *rule, const struct flow *flow,
5652 struct ofpbuf *packet)
5653 {
5654 rule_dpif_execute(rule_dpif_cast(rule), flow, packet);
5655 ofpbuf_delete(packet);
5656 return 0;
5657 }
5658
5659 static void
5660 rule_modify_actions(struct rule *rule_)
5661 {
5662 struct rule_dpif *rule = rule_dpif_cast(rule_);
5663
5664 complete_operation(rule);
5665 }
5666 \f
5667 /* Sends 'packet' out 'ofport'.
5668 * May modify 'packet'.
5669 * Returns 0 if successful, otherwise a positive errno value. */
5670 static int
5671 send_packet(const struct ofport_dpif *ofport, struct ofpbuf *packet)
5672 {
5673 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
5674 uint64_t odp_actions_stub[1024 / 8];
5675 struct ofpbuf key, odp_actions;
5676 struct dpif_flow_stats stats;
5677 struct odputil_keybuf keybuf;
5678 struct ofpact_output output;
5679 struct xlate_out xout;
5680 struct xlate_in xin;
5681 struct flow flow;
5682 int error;
5683
5684 ofpbuf_use_stub(&odp_actions, odp_actions_stub, sizeof odp_actions_stub);
5685 ofpbuf_use_stack(&key, &keybuf, sizeof keybuf);
5686
5687 /* Use OFPP_NONE as the in_port to avoid special packet processing. */
5688 flow_extract(packet, 0, 0, NULL, OFPP_NONE, &flow);
5689 odp_flow_key_from_flow(&key, &flow, ofp_port_to_odp_port(ofproto,
5690 OFPP_LOCAL));
5691 dpif_flow_stats_extract(&flow, packet, time_msec(), &stats);
5692
5693 ofpact_init(&output.ofpact, OFPACT_OUTPUT, sizeof output);
5694 output.port = ofport->up.ofp_port;
5695 output.max_len = 0;
5696
5697 xlate_in_init(&xin, ofproto, &flow, NULL, 0, packet);
5698 xin.ofpacts_len = sizeof output;
5699 xin.ofpacts = &output.ofpact;
5700 xin.resubmit_stats = &stats;
5701 xlate_actions(&xin, &xout);
5702
5703 error = dpif_execute(ofproto->backer->dpif,
5704 key.data, key.size,
5705 xout.odp_actions.data, xout.odp_actions.size,
5706 packet);
5707 xlate_out_uninit(&xout);
5708
5709 if (error) {
5710 VLOG_WARN_RL(&rl, "%s: failed to send packet on port %s (%s)",
5711 ofproto->up.name, netdev_get_name(ofport->up.netdev),
5712 strerror(error));
5713 }
5714
5715 ofproto->stats.tx_packets++;
5716 ofproto->stats.tx_bytes += packet->size;
5717 return error;
5718 }
5719 \f
5720 /* OpenFlow to datapath action translation. */
5721
5722 static bool may_receive(const struct ofport_dpif *, struct xlate_ctx *);
5723 static void do_xlate_actions(const struct ofpact *, size_t ofpacts_len,
5724 struct xlate_ctx *);
5725 static void xlate_normal(struct xlate_ctx *);
5726
5727 /* Composes an ODP action for a "slow path" action for 'flow' within 'ofproto'.
5728 * The action will state 'slow' as the reason that the action is in the slow
5729 * path. (This is purely informational: it allows a human viewing "ovs-dpctl
5730 * dump-flows" output to see why a flow is in the slow path.)
5731 *
5732 * The 'stub_size' bytes in 'stub' will be used to store the action.
5733 * 'stub_size' must be large enough for the action.
5734 *
5735 * The action and its size will be stored in '*actionsp' and '*actions_lenp',
5736 * respectively. */
5737 static void
5738 compose_slow_path(const struct ofproto_dpif *ofproto, const struct flow *flow,
5739 enum slow_path_reason slow,
5740 uint64_t *stub, size_t stub_size,
5741 const struct nlattr **actionsp, size_t *actions_lenp)
5742 {
5743 union user_action_cookie cookie;
5744 struct ofpbuf buf;
5745
5746 cookie.type = USER_ACTION_COOKIE_SLOW_PATH;
5747 cookie.slow_path.unused = 0;
5748 cookie.slow_path.reason = slow;
5749
5750 ofpbuf_use_stack(&buf, stub, stub_size);
5751 if (slow & (SLOW_CFM | SLOW_BFD | SLOW_LACP | SLOW_STP)) {
5752 uint32_t pid = dpif_port_get_pid(ofproto->backer->dpif, UINT32_MAX);
5753 odp_put_userspace_action(pid, &cookie, sizeof cookie.slow_path, &buf);
5754 } else {
5755 put_userspace_action(ofproto, &buf, flow, &cookie,
5756 sizeof cookie.slow_path);
5757 }
5758 *actionsp = buf.data;
5759 *actions_lenp = buf.size;
5760 }
5761
5762 static size_t
5763 put_userspace_action(const struct ofproto_dpif *ofproto,
5764 struct ofpbuf *odp_actions,
5765 const struct flow *flow,
5766 const union user_action_cookie *cookie,
5767 const size_t cookie_size)
5768 {
5769 uint32_t pid;
5770
5771 pid = dpif_port_get_pid(ofproto->backer->dpif,
5772 ofp_port_to_odp_port(ofproto, flow->in_port));
5773
5774 return odp_put_userspace_action(pid, cookie, cookie_size, odp_actions);
5775 }
5776
5777 /* Compose SAMPLE action for sFlow or IPFIX. The given probability is
5778 * the number of packets out of UINT32_MAX to sample. The given
5779 * cookie is passed back in the callback for each sampled packet.
5780 */
5781 static size_t
5782 compose_sample_action(const struct ofproto_dpif *ofproto,
5783 struct ofpbuf *odp_actions,
5784 const struct flow *flow,
5785 const uint32_t probability,
5786 const union user_action_cookie *cookie,
5787 const size_t cookie_size)
5788 {
5789 size_t sample_offset, actions_offset;
5790 int cookie_offset;
5791
5792 sample_offset = nl_msg_start_nested(odp_actions, OVS_ACTION_ATTR_SAMPLE);
5793
5794 nl_msg_put_u32(odp_actions, OVS_SAMPLE_ATTR_PROBABILITY, probability);
5795
5796 actions_offset = nl_msg_start_nested(odp_actions, OVS_SAMPLE_ATTR_ACTIONS);
5797 cookie_offset = put_userspace_action(ofproto, odp_actions, flow, cookie,
5798 cookie_size);
5799
5800 nl_msg_end_nested(odp_actions, actions_offset);
5801 nl_msg_end_nested(odp_actions, sample_offset);
5802 return cookie_offset;
5803 }
5804
5805 static void
5806 compose_sflow_cookie(const struct ofproto_dpif *ofproto,
5807 ovs_be16 vlan_tci, uint32_t odp_port,
5808 unsigned int n_outputs, union user_action_cookie *cookie)
5809 {
5810 int ifindex;
5811
5812 cookie->type = USER_ACTION_COOKIE_SFLOW;
5813 cookie->sflow.vlan_tci = vlan_tci;
5814
5815 /* See http://www.sflow.org/sflow_version_5.txt (search for "Input/output
5816 * port information") for the interpretation of cookie->output. */
5817 switch (n_outputs) {
5818 case 0:
5819 /* 0x40000000 | 256 means "packet dropped for unknown reason". */
5820 cookie->sflow.output = 0x40000000 | 256;
5821 break;
5822
5823 case 1:
5824 ifindex = dpif_sflow_odp_port_to_ifindex(ofproto->sflow, odp_port);
5825 if (ifindex) {
5826 cookie->sflow.output = ifindex;
5827 break;
5828 }
5829 /* Fall through. */
5830 default:
5831 /* 0x80000000 means "multiple output ports. */
5832 cookie->sflow.output = 0x80000000 | n_outputs;
5833 break;
5834 }
5835 }
5836
5837 /* Compose SAMPLE action for sFlow bridge sampling. */
5838 static size_t
5839 compose_sflow_action(const struct ofproto_dpif *ofproto,
5840 struct ofpbuf *odp_actions,
5841 const struct flow *flow,
5842 uint32_t odp_port)
5843 {
5844 uint32_t probability;
5845 union user_action_cookie cookie;
5846
5847 if (!ofproto->sflow || flow->in_port == OFPP_NONE) {
5848 return 0;
5849 }
5850
5851 probability = dpif_sflow_get_probability(ofproto->sflow);
5852 compose_sflow_cookie(ofproto, htons(0), odp_port,
5853 odp_port == OVSP_NONE ? 0 : 1, &cookie);
5854
5855 return compose_sample_action(ofproto, odp_actions, flow, probability,
5856 &cookie, sizeof cookie.sflow);
5857 }
5858
5859 static void
5860 compose_flow_sample_cookie(uint16_t probability, uint32_t collector_set_id,
5861 uint32_t obs_domain_id, uint32_t obs_point_id,
5862 union user_action_cookie *cookie)
5863 {
5864 cookie->type = USER_ACTION_COOKIE_FLOW_SAMPLE;
5865 cookie->flow_sample.probability = probability;
5866 cookie->flow_sample.collector_set_id = collector_set_id;
5867 cookie->flow_sample.obs_domain_id = obs_domain_id;
5868 cookie->flow_sample.obs_point_id = obs_point_id;
5869 }
5870
5871 static void
5872 compose_ipfix_cookie(union user_action_cookie *cookie)
5873 {
5874 cookie->type = USER_ACTION_COOKIE_IPFIX;
5875 }
5876
5877 /* Compose SAMPLE action for IPFIX bridge sampling. */
5878 static void
5879 compose_ipfix_action(const struct ofproto_dpif *ofproto,
5880 struct ofpbuf *odp_actions,
5881 const struct flow *flow)
5882 {
5883 uint32_t probability;
5884 union user_action_cookie cookie;
5885
5886 if (!ofproto->ipfix || flow->in_port == OFPP_NONE) {
5887 return;
5888 }
5889
5890 probability = dpif_ipfix_get_bridge_exporter_probability(ofproto->ipfix);
5891 compose_ipfix_cookie(&cookie);
5892
5893 compose_sample_action(ofproto, odp_actions, flow, probability,
5894 &cookie, sizeof cookie.ipfix);
5895 }
5896
5897 /* SAMPLE action for sFlow must be first action in any given list of
5898 * actions. At this point we do not have all information required to
5899 * build it. So try to build sample action as complete as possible. */
5900 static void
5901 add_sflow_action(struct xlate_ctx *ctx)
5902 {
5903 ctx->user_cookie_offset = compose_sflow_action(ctx->ofproto,
5904 &ctx->xout->odp_actions,
5905 &ctx->xin->flow, OVSP_NONE);
5906 ctx->sflow_odp_port = 0;
5907 ctx->sflow_n_outputs = 0;
5908 }
5909
5910 /* SAMPLE action for IPFIX must be 1st or 2nd action in any given list
5911 * of actions, eventually after the SAMPLE action for sFlow. */
5912 static void
5913 add_ipfix_action(struct xlate_ctx *ctx)
5914 {
5915 compose_ipfix_action(ctx->ofproto, &ctx->xout->odp_actions,
5916 &ctx->xin->flow);
5917 }
5918
5919 /* Fix SAMPLE action according to data collected while composing ODP actions.
5920 * We need to fix SAMPLE actions OVS_SAMPLE_ATTR_ACTIONS attribute, i.e. nested
5921 * USERSPACE action's user-cookie which is required for sflow. */
5922 static void
5923 fix_sflow_action(struct xlate_ctx *ctx)
5924 {
5925 const struct flow *base = &ctx->base_flow;
5926 union user_action_cookie *cookie;
5927
5928 if (!ctx->user_cookie_offset) {
5929 return;
5930 }
5931
5932 cookie = ofpbuf_at(&ctx->xout->odp_actions, ctx->user_cookie_offset,
5933 sizeof cookie->sflow);
5934 ovs_assert(cookie->type == USER_ACTION_COOKIE_SFLOW);
5935
5936 compose_sflow_cookie(ctx->ofproto, base->vlan_tci,
5937 ctx->sflow_odp_port, ctx->sflow_n_outputs, cookie);
5938 }
5939
5940 static void
5941 compose_output_action__(struct xlate_ctx *ctx, uint16_t ofp_port,
5942 bool check_stp)
5943 {
5944 const struct ofport_dpif *ofport = get_ofp_port(ctx->ofproto, ofp_port);
5945 ovs_be16 flow_vlan_tci;
5946 uint32_t flow_skb_mark;
5947 uint8_t flow_nw_tos;
5948 struct priority_to_dscp *pdscp;
5949 uint32_t out_port, odp_port;
5950
5951 /* If 'struct flow' gets additional metadata, we'll need to zero it out
5952 * before traversing a patch port. */
5953 BUILD_ASSERT_DECL(FLOW_WC_SEQ == 20);
5954
5955 if (!ofport) {
5956 xlate_report(ctx, "Nonexistent output port");
5957 return;
5958 } else if (ofport->up.pp.config & OFPUTIL_PC_NO_FWD) {
5959 xlate_report(ctx, "OFPPC_NO_FWD set, skipping output");
5960 return;
5961 } else if (check_stp && !stp_forward_in_state(ofport->stp_state)) {
5962 xlate_report(ctx, "STP not in forwarding state, skipping output");
5963 return;
5964 }
5965
5966 if (netdev_vport_is_patch(ofport->up.netdev)) {
5967 struct ofport_dpif *peer = ofport_get_peer(ofport);
5968 struct flow old_flow = ctx->xin->flow;
5969 const struct ofproto_dpif *peer_ofproto;
5970 enum slow_path_reason special;
5971 struct ofport_dpif *in_port;
5972
5973 if (!peer) {
5974 xlate_report(ctx, "Nonexistent patch port peer");
5975 return;
5976 }
5977
5978 peer_ofproto = ofproto_dpif_cast(peer->up.ofproto);
5979 if (peer_ofproto->backer != ctx->ofproto->backer) {
5980 xlate_report(ctx, "Patch port peer on a different datapath");
5981 return;
5982 }
5983
5984 ctx->ofproto = ofproto_dpif_cast(peer->up.ofproto);
5985 ctx->xin->flow.in_port = peer->up.ofp_port;
5986 ctx->xin->flow.metadata = htonll(0);
5987 memset(&ctx->xin->flow.tunnel, 0, sizeof ctx->xin->flow.tunnel);
5988 memset(ctx->xin->flow.regs, 0, sizeof ctx->xin->flow.regs);
5989
5990 in_port = get_ofp_port(ctx->ofproto, ctx->xin->flow.in_port);
5991 special = process_special(ctx->ofproto, &ctx->xin->flow, in_port,
5992 ctx->xin->packet);
5993 if (special) {
5994 ctx->xout->slow = special;
5995 } else if (!in_port || may_receive(in_port, ctx)) {
5996 if (!in_port || stp_forward_in_state(in_port->stp_state)) {
5997 xlate_table_action(ctx, ctx->xin->flow.in_port, 0, true);
5998 } else {
5999 /* Forwarding is disabled by STP. Let OFPP_NORMAL and the
6000 * learning action look at the packet, then drop it. */
6001 struct flow old_base_flow = ctx->base_flow;
6002 size_t old_size = ctx->xout->odp_actions.size;
6003 xlate_table_action(ctx, ctx->xin->flow.in_port, 0, true);
6004 ctx->base_flow = old_base_flow;
6005 ctx->xout->odp_actions.size = old_size;
6006 }
6007 }
6008
6009 ctx->xin->flow = old_flow;
6010 ctx->ofproto = ofproto_dpif_cast(ofport->up.ofproto);
6011
6012 if (ctx->xin->resubmit_stats) {
6013 netdev_vport_inc_tx(ofport->up.netdev, ctx->xin->resubmit_stats);
6014 netdev_vport_inc_rx(peer->up.netdev, ctx->xin->resubmit_stats);
6015 }
6016
6017 return;
6018 }
6019
6020 flow_vlan_tci = ctx->xin->flow.vlan_tci;
6021 flow_skb_mark = ctx->xin->flow.skb_mark;
6022 flow_nw_tos = ctx->xin->flow.nw_tos;
6023
6024 pdscp = get_priority(ofport, ctx->xin->flow.skb_priority);
6025 if (pdscp) {
6026 ctx->xin->flow.nw_tos &= ~IP_DSCP_MASK;
6027 ctx->xin->flow.nw_tos |= pdscp->dscp;
6028 }
6029
6030 if (ofport->tnl_port) {
6031 /* Save tunnel metadata so that changes made due to
6032 * the Logical (tunnel) Port are not visible for any further
6033 * matches, while explicit set actions on tunnel metadata are.
6034 */
6035 struct flow_tnl flow_tnl = ctx->xin->flow.tunnel;
6036 odp_port = tnl_port_send(ofport->tnl_port, &ctx->xin->flow);
6037 if (odp_port == OVSP_NONE) {
6038 xlate_report(ctx, "Tunneling decided against output");
6039 goto out; /* restore flow_nw_tos */
6040 }
6041 if (ctx->xin->flow.tunnel.ip_dst == ctx->orig_tunnel_ip_dst) {
6042 xlate_report(ctx, "Not tunneling to our own address");
6043 goto out; /* restore flow_nw_tos */
6044 }
6045 if (ctx->xin->resubmit_stats) {
6046 netdev_vport_inc_tx(ofport->up.netdev, ctx->xin->resubmit_stats);
6047 }
6048 out_port = odp_port;
6049 commit_odp_tunnel_action(&ctx->xin->flow, &ctx->base_flow,
6050 &ctx->xout->odp_actions);
6051 ctx->xin->flow.tunnel = flow_tnl; /* Restore tunnel metadata */
6052 } else {
6053 uint16_t vlandev_port;
6054 odp_port = ofport->odp_port;
6055 vlandev_port = vsp_realdev_to_vlandev(ctx->ofproto, ofp_port,
6056 ctx->xin->flow.vlan_tci);
6057 if (vlandev_port == ofp_port) {
6058 out_port = odp_port;
6059 } else {
6060 out_port = ofp_port_to_odp_port(ctx->ofproto, vlandev_port);
6061 ctx->xin->flow.vlan_tci = htons(0);
6062 }
6063 ctx->xin->flow.skb_mark &= ~IPSEC_MARK;
6064 }
6065 commit_odp_actions(&ctx->xin->flow, &ctx->base_flow,
6066 &ctx->xout->odp_actions);
6067 nl_msg_put_u32(&ctx->xout->odp_actions, OVS_ACTION_ATTR_OUTPUT, out_port);
6068
6069 ctx->sflow_odp_port = odp_port;
6070 ctx->sflow_n_outputs++;
6071 ctx->xout->nf_output_iface = ofp_port;
6072
6073 /* Restore flow */
6074 ctx->xin->flow.vlan_tci = flow_vlan_tci;
6075 ctx->xin->flow.skb_mark = flow_skb_mark;
6076 out:
6077 ctx->xin->flow.nw_tos = flow_nw_tos;
6078 }
6079
6080 static void
6081 compose_output_action(struct xlate_ctx *ctx, uint16_t ofp_port)
6082 {
6083 compose_output_action__(ctx, ofp_port, true);
6084 }
6085
6086 static void
6087 tag_the_flow(struct xlate_ctx *ctx, struct rule_dpif *rule)
6088 {
6089 struct ofproto_dpif *ofproto = ctx->ofproto;
6090 uint8_t table_id = ctx->table_id;
6091
6092 if (table_id > 0 && table_id < N_TABLES) {
6093 struct table_dpif *table = &ofproto->tables[table_id];
6094 if (table->other_table) {
6095 ctx->xout->tags |= (rule && rule->tag
6096 ? rule->tag
6097 : rule_calculate_tag(&ctx->xin->flow,
6098 &table->other_table->mask,
6099 table->basis));
6100 }
6101 }
6102 }
6103
6104 /* Common rule processing in one place to avoid duplicating code. */
6105 static struct rule_dpif *
6106 ctx_rule_hooks(struct xlate_ctx *ctx, struct rule_dpif *rule,
6107 bool may_packet_in)
6108 {
6109 if (ctx->xin->resubmit_hook) {
6110 ctx->xin->resubmit_hook(ctx, rule);
6111 }
6112 if (rule == NULL && may_packet_in) {
6113 /* XXX
6114 * check if table configuration flags
6115 * OFPTC_TABLE_MISS_CONTROLLER, default.
6116 * OFPTC_TABLE_MISS_CONTINUE,
6117 * OFPTC_TABLE_MISS_DROP
6118 * When OF1.0, OFPTC_TABLE_MISS_CONTINUE is used. What to do?
6119 */
6120 rule = rule_dpif_miss_rule(ctx->ofproto, &ctx->xin->flow);
6121 }
6122 if (rule && ctx->xin->resubmit_stats) {
6123 rule_credit_stats(rule, ctx->xin->resubmit_stats);
6124 }
6125 return rule;
6126 }
6127
6128 static void
6129 xlate_table_action(struct xlate_ctx *ctx,
6130 uint16_t in_port, uint8_t table_id, bool may_packet_in)
6131 {
6132 if (ctx->recurse < MAX_RESUBMIT_RECURSION) {
6133 struct rule_dpif *rule;
6134 uint16_t old_in_port = ctx->xin->flow.in_port;
6135 uint8_t old_table_id = ctx->table_id;
6136
6137 ctx->table_id = table_id;
6138
6139 /* Look up a flow with 'in_port' as the input port. */
6140 ctx->xin->flow.in_port = in_port;
6141 rule = rule_dpif_lookup__(ctx->ofproto, &ctx->xin->flow,
6142 &ctx->xout->wc, table_id);
6143
6144 tag_the_flow(ctx, rule);
6145
6146 /* Restore the original input port. Otherwise OFPP_NORMAL and
6147 * OFPP_IN_PORT will have surprising behavior. */
6148 ctx->xin->flow.in_port = old_in_port;
6149
6150 rule = ctx_rule_hooks(ctx, rule, may_packet_in);
6151
6152 if (rule) {
6153 struct rule_dpif *old_rule = ctx->rule;
6154
6155 ctx->recurse++;
6156 ctx->rule = rule;
6157 do_xlate_actions(rule->up.ofpacts, rule->up.ofpacts_len, ctx);
6158 ctx->rule = old_rule;
6159 ctx->recurse--;
6160 }
6161
6162 ctx->table_id = old_table_id;
6163 } else {
6164 static struct vlog_rate_limit recurse_rl = VLOG_RATE_LIMIT_INIT(1, 1);
6165
6166 VLOG_ERR_RL(&recurse_rl, "resubmit actions recursed over %d times",
6167 MAX_RESUBMIT_RECURSION);
6168 ctx->max_resubmit_trigger = true;
6169 }
6170 }
6171
6172 static void
6173 xlate_ofpact_resubmit(struct xlate_ctx *ctx,
6174 const struct ofpact_resubmit *resubmit)
6175 {
6176 uint16_t in_port;
6177 uint8_t table_id;
6178
6179 in_port = resubmit->in_port;
6180 if (in_port == OFPP_IN_PORT) {
6181 in_port = ctx->xin->flow.in_port;
6182 }
6183
6184 table_id = resubmit->table_id;
6185 if (table_id == 255) {
6186 table_id = ctx->table_id;
6187 }
6188
6189 xlate_table_action(ctx, in_port, table_id, false);
6190 }
6191
6192 static void
6193 flood_packets(struct xlate_ctx *ctx, bool all)
6194 {
6195 struct ofport_dpif *ofport;
6196
6197 HMAP_FOR_EACH (ofport, up.hmap_node, &ctx->ofproto->up.ports) {
6198 uint16_t ofp_port = ofport->up.ofp_port;
6199
6200 if (ofp_port == ctx->xin->flow.in_port) {
6201 continue;
6202 }
6203
6204 if (all) {
6205 compose_output_action__(ctx, ofp_port, false);
6206 } else if (!(ofport->up.pp.config & OFPUTIL_PC_NO_FLOOD)) {
6207 compose_output_action(ctx, ofp_port);
6208 }
6209 }
6210
6211 ctx->xout->nf_output_iface = NF_OUT_FLOOD;
6212 }
6213
6214 static void
6215 execute_controller_action(struct xlate_ctx *ctx, int len,
6216 enum ofp_packet_in_reason reason,
6217 uint16_t controller_id)
6218 {
6219 struct ofputil_packet_in pin;
6220 struct ofpbuf *packet;
6221 struct flow key;
6222
6223 ovs_assert(!ctx->xout->slow || ctx->xout->slow == SLOW_CONTROLLER);
6224 ctx->xout->slow = SLOW_CONTROLLER;
6225 if (!ctx->xin->packet) {
6226 return;
6227 }
6228
6229 packet = ofpbuf_clone(ctx->xin->packet);
6230
6231 key.skb_priority = 0;
6232 key.skb_mark = 0;
6233 memset(&key.tunnel, 0, sizeof key.tunnel);
6234
6235 commit_odp_actions(&ctx->xin->flow, &ctx->base_flow,
6236 &ctx->xout->odp_actions);
6237
6238 odp_execute_actions(NULL, packet, &key, ctx->xout->odp_actions.data,
6239 ctx->xout->odp_actions.size, NULL, NULL);
6240
6241 pin.packet = packet->data;
6242 pin.packet_len = packet->size;
6243 pin.reason = reason;
6244 pin.controller_id = controller_id;
6245 pin.table_id = ctx->table_id;
6246 pin.cookie = ctx->rule ? ctx->rule->up.flow_cookie : 0;
6247
6248 pin.send_len = len;
6249 flow_get_metadata(&ctx->xin->flow, &pin.fmd);
6250
6251 connmgr_send_packet_in(ctx->ofproto->up.connmgr, &pin);
6252 ofpbuf_delete(packet);
6253 }
6254
6255 static void
6256 execute_mpls_push_action(struct xlate_ctx *ctx, ovs_be16 eth_type)
6257 {
6258 ovs_assert(eth_type_mpls(eth_type));
6259
6260 memset(&ctx->xout->wc.masks.dl_type, 0xff,
6261 sizeof ctx->xout->wc.masks.dl_type);
6262 memset(&ctx->xout->wc.masks.mpls_lse, 0xff,
6263 sizeof ctx->xout->wc.masks.mpls_lse);
6264 memset(&ctx->xout->wc.masks.mpls_depth, 0xff,
6265 sizeof ctx->xout->wc.masks.mpls_depth);
6266
6267 if (ctx->base_flow.mpls_depth) {
6268 ctx->xin->flow.mpls_lse &= ~htonl(MPLS_BOS_MASK);
6269 ctx->xin->flow.mpls_depth++;
6270 } else {
6271 ovs_be32 label;
6272 uint8_t tc, ttl;
6273
6274 if (ctx->xin->flow.dl_type == htons(ETH_TYPE_IPV6)) {
6275 label = htonl(0x2); /* IPV6 Explicit Null. */
6276 } else {
6277 label = htonl(0x0); /* IPV4 Explicit Null. */
6278 }
6279 tc = (ctx->xin->flow.nw_tos & IP_DSCP_MASK) >> 2;
6280 ttl = ctx->xin->flow.nw_ttl ? ctx->xin->flow.nw_ttl : 0x40;
6281 ctx->xin->flow.mpls_lse = set_mpls_lse_values(ttl, tc, 1, label);
6282 ctx->xin->flow.mpls_depth = 1;
6283 }
6284 ctx->xin->flow.dl_type = eth_type;
6285 }
6286
6287 static void
6288 execute_mpls_pop_action(struct xlate_ctx *ctx, ovs_be16 eth_type)
6289 {
6290 ovs_assert(eth_type_mpls(ctx->xin->flow.dl_type));
6291 ovs_assert(!eth_type_mpls(eth_type));
6292
6293 memset(&ctx->xout->wc.masks.dl_type, 0xff,
6294 sizeof ctx->xout->wc.masks.dl_type);
6295 memset(&ctx->xout->wc.masks.mpls_lse, 0xff,
6296 sizeof ctx->xout->wc.masks.mpls_lse);
6297 memset(&ctx->xout->wc.masks.mpls_depth, 0xff,
6298 sizeof ctx->xout->wc.masks.mpls_depth);
6299
6300 if (ctx->xin->flow.mpls_depth) {
6301 ctx->xin->flow.mpls_depth--;
6302 ctx->xin->flow.mpls_lse = htonl(0);
6303 if (!ctx->xin->flow.mpls_depth) {
6304 ctx->xin->flow.dl_type = eth_type;
6305 }
6306 }
6307 }
6308
6309 static bool
6310 compose_dec_ttl(struct xlate_ctx *ctx, struct ofpact_cnt_ids *ids)
6311 {
6312 if (ctx->xin->flow.dl_type != htons(ETH_TYPE_IP) &&
6313 ctx->xin->flow.dl_type != htons(ETH_TYPE_IPV6)) {
6314 return false;
6315 }
6316
6317 if (ctx->xin->flow.nw_ttl > 1) {
6318 ctx->xin->flow.nw_ttl--;
6319 return false;
6320 } else {
6321 size_t i;
6322
6323 for (i = 0; i < ids->n_controllers; i++) {
6324 execute_controller_action(ctx, UINT16_MAX, OFPR_INVALID_TTL,
6325 ids->cnt_ids[i]);
6326 }
6327
6328 /* Stop processing for current table. */
6329 return true;
6330 }
6331 }
6332
6333 static bool
6334 execute_set_mpls_ttl_action(struct xlate_ctx *ctx, uint8_t ttl)
6335 {
6336 if (!eth_type_mpls(ctx->xin->flow.dl_type)) {
6337 return true;
6338 }
6339
6340 set_mpls_lse_ttl(&ctx->xin->flow.mpls_lse, ttl);
6341 return false;
6342 }
6343
6344 static bool
6345 execute_dec_mpls_ttl_action(struct xlate_ctx *ctx)
6346 {
6347 uint8_t ttl = mpls_lse_to_ttl(ctx->xin->flow.mpls_lse);
6348
6349 if (!eth_type_mpls(ctx->xin->flow.dl_type)) {
6350 return false;
6351 }
6352
6353 if (ttl > 1) {
6354 ttl--;
6355 set_mpls_lse_ttl(&ctx->xin->flow.mpls_lse, ttl);
6356 return false;
6357 } else {
6358 execute_controller_action(ctx, UINT16_MAX, OFPR_INVALID_TTL, 0);
6359
6360 /* Stop processing for current table. */
6361 return true;
6362 }
6363 }
6364
6365 static void
6366 xlate_output_action(struct xlate_ctx *ctx,
6367 uint16_t port, uint16_t max_len, bool may_packet_in)
6368 {
6369 uint16_t prev_nf_output_iface = ctx->xout->nf_output_iface;
6370
6371 ctx->xout->nf_output_iface = NF_OUT_DROP;
6372
6373 switch (port) {
6374 case OFPP_IN_PORT:
6375 compose_output_action(ctx, ctx->xin->flow.in_port);
6376 break;
6377 case OFPP_TABLE:
6378 xlate_table_action(ctx, ctx->xin->flow.in_port, 0, may_packet_in);
6379 break;
6380 case OFPP_NORMAL:
6381 xlate_normal(ctx);
6382 break;
6383 case OFPP_FLOOD:
6384 flood_packets(ctx, false);
6385 break;
6386 case OFPP_ALL:
6387 flood_packets(ctx, true);
6388 break;
6389 case OFPP_CONTROLLER:
6390 execute_controller_action(ctx, max_len, OFPR_ACTION, 0);
6391 break;
6392 case OFPP_NONE:
6393 break;
6394 case OFPP_LOCAL:
6395 default:
6396 if (port != ctx->xin->flow.in_port) {
6397 compose_output_action(ctx, port);
6398 } else {
6399 xlate_report(ctx, "skipping output to input port");
6400 }
6401 break;
6402 }
6403
6404 if (prev_nf_output_iface == NF_OUT_FLOOD) {
6405 ctx->xout->nf_output_iface = NF_OUT_FLOOD;
6406 } else if (ctx->xout->nf_output_iface == NF_OUT_DROP) {
6407 ctx->xout->nf_output_iface = prev_nf_output_iface;
6408 } else if (prev_nf_output_iface != NF_OUT_DROP &&
6409 ctx->xout->nf_output_iface != NF_OUT_FLOOD) {
6410 ctx->xout->nf_output_iface = NF_OUT_MULTI;
6411 }
6412 }
6413
6414 static void
6415 xlate_output_reg_action(struct xlate_ctx *ctx,
6416 const struct ofpact_output_reg *or)
6417 {
6418 uint64_t port = mf_get_subfield(&or->src, &ctx->xin->flow);
6419 if (port <= UINT16_MAX) {
6420 union mf_subvalue value;
6421
6422 memset(&value, 0xff, sizeof value);
6423 mf_write_subfield_flow(&or->src, &value, &ctx->xout->wc.masks);
6424 xlate_output_action(ctx, port, or->max_len, false);
6425 }
6426 }
6427
6428 static void
6429 xlate_enqueue_action(struct xlate_ctx *ctx,
6430 const struct ofpact_enqueue *enqueue)
6431 {
6432 uint16_t ofp_port = enqueue->port;
6433 uint32_t queue_id = enqueue->queue;
6434 uint32_t flow_priority, priority;
6435 int error;
6436
6437 /* Translate queue to priority. */
6438 error = dpif_queue_to_priority(ctx->ofproto->backer->dpif,
6439 queue_id, &priority);
6440 if (error) {
6441 /* Fall back to ordinary output action. */
6442 xlate_output_action(ctx, enqueue->port, 0, false);
6443 return;
6444 }
6445
6446 /* Check output port. */
6447 if (ofp_port == OFPP_IN_PORT) {
6448 ofp_port = ctx->xin->flow.in_port;
6449 } else if (ofp_port == ctx->xin->flow.in_port) {
6450 return;
6451 }
6452
6453 /* Add datapath actions. */
6454 flow_priority = ctx->xin->flow.skb_priority;
6455 ctx->xin->flow.skb_priority = priority;
6456 compose_output_action(ctx, ofp_port);
6457 ctx->xin->flow.skb_priority = flow_priority;
6458
6459 /* Update NetFlow output port. */
6460 if (ctx->xout->nf_output_iface == NF_OUT_DROP) {
6461 ctx->xout->nf_output_iface = ofp_port;
6462 } else if (ctx->xout->nf_output_iface != NF_OUT_FLOOD) {
6463 ctx->xout->nf_output_iface = NF_OUT_MULTI;
6464 }
6465 }
6466
6467 static void
6468 xlate_set_queue_action(struct xlate_ctx *ctx, uint32_t queue_id)
6469 {
6470 uint32_t skb_priority;
6471
6472 if (!dpif_queue_to_priority(ctx->ofproto->backer->dpif,
6473 queue_id, &skb_priority)) {
6474 ctx->xin->flow.skb_priority = skb_priority;
6475 } else {
6476 /* Couldn't translate queue to a priority. Nothing to do. A warning
6477 * has already been logged. */
6478 }
6479 }
6480
6481 static bool
6482 slave_enabled_cb(uint16_t ofp_port, void *ofproto_)
6483 {
6484 struct ofproto_dpif *ofproto = ofproto_;
6485 struct ofport_dpif *port;
6486
6487 switch (ofp_port) {
6488 case OFPP_IN_PORT:
6489 case OFPP_TABLE:
6490 case OFPP_NORMAL:
6491 case OFPP_FLOOD:
6492 case OFPP_ALL:
6493 case OFPP_NONE:
6494 return true;
6495 case OFPP_CONTROLLER: /* Not supported by the bundle action. */
6496 return false;
6497 default:
6498 port = get_ofp_port(ofproto, ofp_port);
6499 return port ? port->may_enable : false;
6500 }
6501 }
6502
6503 static void
6504 xlate_bundle_action(struct xlate_ctx *ctx,
6505 const struct ofpact_bundle *bundle)
6506 {
6507 uint16_t port;
6508
6509 port = bundle_execute(bundle, &ctx->xin->flow, &ctx->xout->wc,
6510 slave_enabled_cb, ctx->ofproto);
6511 if (bundle->dst.field) {
6512 nxm_reg_load(&bundle->dst, port, &ctx->xin->flow);
6513 } else {
6514 xlate_output_action(ctx, port, 0, false);
6515 }
6516 }
6517
6518 static void
6519 xlate_learn_action(struct xlate_ctx *ctx,
6520 const struct ofpact_learn *learn)
6521 {
6522 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(5, 1);
6523 struct ofputil_flow_mod fm;
6524 uint64_t ofpacts_stub[1024 / 8];
6525 struct ofpbuf ofpacts;
6526 int error;
6527
6528 ctx->xout->has_learn = true;
6529
6530 learn_mask(learn, &ctx->xout->wc);
6531
6532 if (!ctx->xin->may_learn) {
6533 return;
6534 }
6535
6536 ofpbuf_use_stack(&ofpacts, ofpacts_stub, sizeof ofpacts_stub);
6537 learn_execute(learn, &ctx->xin->flow, &fm, &ofpacts);
6538
6539 error = ofproto_flow_mod(&ctx->ofproto->up, &fm);
6540 if (error && !VLOG_DROP_WARN(&rl)) {
6541 VLOG_WARN("learning action failed to modify flow table (%s)",
6542 ofperr_get_name(error));
6543 }
6544
6545 ofpbuf_uninit(&ofpacts);
6546 }
6547
6548 /* Reduces '*timeout' to no more than 'max'. A value of zero in either case
6549 * means "infinite". */
6550 static void
6551 reduce_timeout(uint16_t max, uint16_t *timeout)
6552 {
6553 if (max && (!*timeout || *timeout > max)) {
6554 *timeout = max;
6555 }
6556 }
6557
6558 static void
6559 xlate_fin_timeout(struct xlate_ctx *ctx,
6560 const struct ofpact_fin_timeout *oft)
6561 {
6562 if (ctx->xin->tcp_flags & (TCP_FIN | TCP_RST) && ctx->rule) {
6563 struct rule_dpif *rule = ctx->rule;
6564
6565 reduce_timeout(oft->fin_idle_timeout, &rule->up.idle_timeout);
6566 reduce_timeout(oft->fin_hard_timeout, &rule->up.hard_timeout);
6567 }
6568 }
6569
6570 static void
6571 xlate_sample_action(struct xlate_ctx *ctx,
6572 const struct ofpact_sample *os)
6573 {
6574 union user_action_cookie cookie;
6575 /* Scale the probability from 16-bit to 32-bit while representing
6576 * the same percentage. */
6577 uint32_t probability = (os->probability << 16) | os->probability;
6578
6579 commit_odp_actions(&ctx->xin->flow, &ctx->base_flow,
6580 &ctx->xout->odp_actions);
6581
6582 compose_flow_sample_cookie(os->probability, os->collector_set_id,
6583 os->obs_domain_id, os->obs_point_id, &cookie);
6584 compose_sample_action(ctx->ofproto, &ctx->xout->odp_actions, &ctx->xin->flow,
6585 probability, &cookie, sizeof cookie.flow_sample);
6586 }
6587
6588 static bool
6589 may_receive(const struct ofport_dpif *port, struct xlate_ctx *ctx)
6590 {
6591 if (port->up.pp.config & (eth_addr_equals(ctx->xin->flow.dl_dst,
6592 eth_addr_stp)
6593 ? OFPUTIL_PC_NO_RECV_STP
6594 : OFPUTIL_PC_NO_RECV)) {
6595 return false;
6596 }
6597
6598 /* Only drop packets here if both forwarding and learning are
6599 * disabled. If just learning is enabled, we need to have
6600 * OFPP_NORMAL and the learning action have a look at the packet
6601 * before we can drop it. */
6602 if (!stp_forward_in_state(port->stp_state)
6603 && !stp_learn_in_state(port->stp_state)) {
6604 return false;
6605 }
6606
6607 return true;
6608 }
6609
6610 static bool
6611 tunnel_ecn_ok(struct xlate_ctx *ctx)
6612 {
6613 if (is_ip_any(&ctx->base_flow)
6614 && (ctx->xin->flow.tunnel.ip_tos & IP_ECN_MASK) == IP_ECN_CE) {
6615 if ((ctx->base_flow.nw_tos & IP_ECN_MASK) == IP_ECN_NOT_ECT) {
6616 VLOG_WARN_RL(&rl, "dropping tunnel packet marked ECN CE"
6617 " but is not ECN capable");
6618 return false;
6619 } else {
6620 /* Set the ECN CE value in the tunneled packet. */
6621 ctx->xin->flow.nw_tos |= IP_ECN_CE;
6622 }
6623 }
6624
6625 return true;
6626 }
6627
6628 static void
6629 do_xlate_actions(const struct ofpact *ofpacts, size_t ofpacts_len,
6630 struct xlate_ctx *ctx)
6631 {
6632 bool was_evictable = true;
6633 const struct ofpact *a;
6634
6635 if (ctx->rule) {
6636 /* Don't let the rule we're working on get evicted underneath us. */
6637 was_evictable = ctx->rule->up.evictable;
6638 ctx->rule->up.evictable = false;
6639 }
6640
6641 do_xlate_actions_again:
6642 OFPACT_FOR_EACH (a, ofpacts, ofpacts_len) {
6643 struct ofpact_controller *controller;
6644 const struct ofpact_metadata *metadata;
6645
6646 if (ctx->exit) {
6647 break;
6648 }
6649
6650 switch (a->type) {
6651 case OFPACT_OUTPUT:
6652 xlate_output_action(ctx, ofpact_get_OUTPUT(a)->port,
6653 ofpact_get_OUTPUT(a)->max_len, true);
6654 break;
6655
6656 case OFPACT_CONTROLLER:
6657 controller = ofpact_get_CONTROLLER(a);
6658 execute_controller_action(ctx, controller->max_len,
6659 controller->reason,
6660 controller->controller_id);
6661 break;
6662
6663 case OFPACT_ENQUEUE:
6664 xlate_enqueue_action(ctx, ofpact_get_ENQUEUE(a));
6665 break;
6666
6667 case OFPACT_SET_VLAN_VID:
6668 ctx->xin->flow.vlan_tci &= ~htons(VLAN_VID_MASK);
6669 ctx->xin->flow.vlan_tci |=
6670 (htons(ofpact_get_SET_VLAN_VID(a)->vlan_vid)
6671 | htons(VLAN_CFI));
6672 break;
6673
6674 case OFPACT_SET_VLAN_PCP:
6675 ctx->xin->flow.vlan_tci &= ~htons(VLAN_PCP_MASK);
6676 ctx->xin->flow.vlan_tci |=
6677 htons((ofpact_get_SET_VLAN_PCP(a)->vlan_pcp << VLAN_PCP_SHIFT)
6678 | VLAN_CFI);
6679 break;
6680
6681 case OFPACT_STRIP_VLAN:
6682 ctx->xin->flow.vlan_tci = htons(0);
6683 break;
6684
6685 case OFPACT_PUSH_VLAN:
6686 /* XXX 802.1AD(QinQ) */
6687 ctx->xin->flow.vlan_tci = htons(VLAN_CFI);
6688 break;
6689
6690 case OFPACT_SET_ETH_SRC:
6691 memcpy(ctx->xin->flow.dl_src, ofpact_get_SET_ETH_SRC(a)->mac,
6692 ETH_ADDR_LEN);
6693 break;
6694
6695 case OFPACT_SET_ETH_DST:
6696 memcpy(ctx->xin->flow.dl_dst, ofpact_get_SET_ETH_DST(a)->mac,
6697 ETH_ADDR_LEN);
6698 break;
6699
6700 case OFPACT_SET_IPV4_SRC:
6701 memset(&ctx->xout->wc.masks.dl_type, 0xff,
6702 sizeof ctx->xout->wc.masks.dl_type);
6703 if (ctx->xin->flow.dl_type == htons(ETH_TYPE_IP)) {
6704 ctx->xin->flow.nw_src = ofpact_get_SET_IPV4_SRC(a)->ipv4;
6705 }
6706 break;
6707
6708 case OFPACT_SET_IPV4_DST:
6709 memset(&ctx->xout->wc.masks.dl_type, 0xff,
6710 sizeof ctx->xout->wc.masks.dl_type);
6711 if (ctx->xin->flow.dl_type == htons(ETH_TYPE_IP)) {
6712 ctx->xin->flow.nw_dst = ofpact_get_SET_IPV4_DST(a)->ipv4;
6713 }
6714 break;
6715
6716 case OFPACT_SET_IPV4_DSCP:
6717 /* OpenFlow 1.0 only supports IPv4. */
6718 memset(&ctx->xout->wc.masks.dl_type, 0xff,
6719 sizeof ctx->xout->wc.masks.dl_type);
6720 if (ctx->xin->flow.dl_type == htons(ETH_TYPE_IP)) {
6721 ctx->xin->flow.nw_tos &= ~IP_DSCP_MASK;
6722 ctx->xin->flow.nw_tos |= ofpact_get_SET_IPV4_DSCP(a)->dscp;
6723 }
6724 break;
6725
6726 case OFPACT_SET_L4_SRC_PORT:
6727 memset(&ctx->xout->wc.masks.dl_type, 0xff,
6728 sizeof ctx->xout->wc.masks.dl_type);
6729 memset(&ctx->xout->wc.masks.nw_proto, 0xff,
6730 sizeof ctx->xout->wc.masks.nw_proto);
6731 if (is_ip_any(&ctx->xin->flow)) {
6732 ctx->xin->flow.tp_src =
6733 htons(ofpact_get_SET_L4_SRC_PORT(a)->port);
6734 }
6735 break;
6736
6737 case OFPACT_SET_L4_DST_PORT:
6738 memset(&ctx->xout->wc.masks.dl_type, 0xff,
6739 sizeof ctx->xout->wc.masks.dl_type);
6740 memset(&ctx->xout->wc.masks.nw_proto, 0xff,
6741 sizeof ctx->xout->wc.masks.nw_proto);
6742 if (is_ip_any(&ctx->xin->flow)) {
6743 ctx->xin->flow.tp_dst =
6744 htons(ofpact_get_SET_L4_DST_PORT(a)->port);
6745 }
6746 break;
6747
6748 case OFPACT_RESUBMIT:
6749 xlate_ofpact_resubmit(ctx, ofpact_get_RESUBMIT(a));
6750 break;
6751
6752 case OFPACT_SET_TUNNEL:
6753 ctx->xin->flow.tunnel.tun_id =
6754 htonll(ofpact_get_SET_TUNNEL(a)->tun_id);
6755 break;
6756
6757 case OFPACT_SET_QUEUE:
6758 xlate_set_queue_action(ctx, ofpact_get_SET_QUEUE(a)->queue_id);
6759 break;
6760
6761 case OFPACT_POP_QUEUE:
6762 memset(&ctx->xout->wc.masks.skb_priority, 0xff,
6763 sizeof ctx->xout->wc.masks.skb_priority);
6764
6765 ctx->xin->flow.skb_priority = ctx->orig_skb_priority;
6766 break;
6767
6768 case OFPACT_REG_MOVE:
6769 nxm_execute_reg_move(ofpact_get_REG_MOVE(a), &ctx->xin->flow,
6770 &ctx->xout->wc);
6771 break;
6772
6773 case OFPACT_REG_LOAD:
6774 nxm_execute_reg_load(ofpact_get_REG_LOAD(a), &ctx->xin->flow);
6775 break;
6776
6777 case OFPACT_STACK_PUSH:
6778 nxm_execute_stack_push(ofpact_get_STACK_PUSH(a), &ctx->xin->flow,
6779 &ctx->xout->wc, &ctx->stack);
6780 break;
6781
6782 case OFPACT_STACK_POP:
6783 nxm_execute_stack_pop(ofpact_get_STACK_POP(a), &ctx->xin->flow,
6784 &ctx->stack);
6785 break;
6786
6787 case OFPACT_PUSH_MPLS:
6788 execute_mpls_push_action(ctx, ofpact_get_PUSH_MPLS(a)->ethertype);
6789 break;
6790
6791 case OFPACT_POP_MPLS:
6792 execute_mpls_pop_action(ctx, ofpact_get_POP_MPLS(a)->ethertype);
6793 break;
6794
6795 case OFPACT_SET_MPLS_TTL:
6796 if (execute_set_mpls_ttl_action(ctx,
6797 ofpact_get_SET_MPLS_TTL(a)->ttl)) {
6798 goto out;
6799 }
6800 break;
6801
6802 case OFPACT_DEC_MPLS_TTL:
6803 if (execute_dec_mpls_ttl_action(ctx)) {
6804 goto out;
6805 }
6806 break;
6807
6808 case OFPACT_DEC_TTL:
6809 memset(&ctx->xout->wc.masks.dl_type, 0xff,
6810 sizeof ctx->xout->wc.masks.dl_type);
6811 if (compose_dec_ttl(ctx, ofpact_get_DEC_TTL(a))) {
6812 goto out;
6813 }
6814 break;
6815
6816 case OFPACT_NOTE:
6817 /* Nothing to do. */
6818 break;
6819
6820 case OFPACT_MULTIPATH:
6821 multipath_execute(ofpact_get_MULTIPATH(a), &ctx->xin->flow,
6822 &ctx->xout->wc);
6823 break;
6824
6825 case OFPACT_BUNDLE:
6826 ctx->ofproto->has_bundle_action = true;
6827 xlate_bundle_action(ctx, ofpact_get_BUNDLE(a));
6828 break;
6829
6830 case OFPACT_OUTPUT_REG:
6831 xlate_output_reg_action(ctx, ofpact_get_OUTPUT_REG(a));
6832 break;
6833
6834 case OFPACT_LEARN:
6835 xlate_learn_action(ctx, ofpact_get_LEARN(a));
6836 break;
6837
6838 case OFPACT_EXIT:
6839 ctx->exit = true;
6840 break;
6841
6842 case OFPACT_FIN_TIMEOUT:
6843 memset(&ctx->xout->wc.masks.dl_type, 0xff,
6844 sizeof ctx->xout->wc.masks.dl_type);
6845 memset(&ctx->xout->wc.masks.nw_proto, 0xff,
6846 sizeof ctx->xout->wc.masks.nw_proto);
6847 ctx->xout->has_fin_timeout = true;
6848 xlate_fin_timeout(ctx, ofpact_get_FIN_TIMEOUT(a));
6849 break;
6850
6851 case OFPACT_CLEAR_ACTIONS:
6852 /* XXX
6853 * Nothing to do because writa-actions is not supported for now.
6854 * When writa-actions is supported, clear-actions also must
6855 * be supported at the same time.
6856 */
6857 break;
6858
6859 case OFPACT_WRITE_METADATA:
6860 metadata = ofpact_get_WRITE_METADATA(a);
6861 ctx->xin->flow.metadata &= ~metadata->mask;
6862 ctx->xin->flow.metadata |= metadata->metadata & metadata->mask;
6863 break;
6864
6865 case OFPACT_GOTO_TABLE: {
6866 /* It is assumed that goto-table is the last action. */
6867 struct ofpact_goto_table *ogt = ofpact_get_GOTO_TABLE(a);
6868 struct rule_dpif *rule;
6869
6870 ovs_assert(ctx->table_id < ogt->table_id);
6871
6872 ctx->table_id = ogt->table_id;
6873
6874 /* Look up a flow from the new table. */
6875 rule = rule_dpif_lookup__(ctx->ofproto, &ctx->xin->flow,
6876 &ctx->xout->wc, ctx->table_id);
6877
6878 tag_the_flow(ctx, rule);
6879
6880 rule = ctx_rule_hooks(ctx, rule, true);
6881
6882 if (rule) {
6883 if (ctx->rule) {
6884 ctx->rule->up.evictable = was_evictable;
6885 }
6886 ctx->rule = rule;
6887 was_evictable = rule->up.evictable;
6888 rule->up.evictable = false;
6889
6890 /* Tail recursion removal. */
6891 ofpacts = rule->up.ofpacts;
6892 ofpacts_len = rule->up.ofpacts_len;
6893 goto do_xlate_actions_again;
6894 }
6895 break;
6896 }
6897
6898 case OFPACT_SAMPLE:
6899 xlate_sample_action(ctx, ofpact_get_SAMPLE(a));
6900 break;
6901 }
6902 }
6903
6904 out:
6905 if (ctx->rule) {
6906 ctx->rule->up.evictable = was_evictable;
6907 }
6908 }
6909
6910 static void
6911 xlate_in_init(struct xlate_in *xin, struct ofproto_dpif *ofproto,
6912 const struct flow *flow, struct rule_dpif *rule,
6913 uint8_t tcp_flags, const struct ofpbuf *packet)
6914 {
6915 xin->ofproto = ofproto;
6916 xin->flow = *flow;
6917 xin->packet = packet;
6918 xin->may_learn = packet != NULL;
6919 xin->rule = rule;
6920 xin->ofpacts = NULL;
6921 xin->ofpacts_len = 0;
6922 xin->tcp_flags = tcp_flags;
6923 xin->resubmit_hook = NULL;
6924 xin->report_hook = NULL;
6925 xin->resubmit_stats = NULL;
6926 }
6927
6928 static void
6929 xlate_out_uninit(struct xlate_out *xout)
6930 {
6931 if (xout) {
6932 ofpbuf_uninit(&xout->odp_actions);
6933 }
6934 }
6935
6936 /* Translates the 'ofpacts_len' bytes of "struct ofpacts" starting at 'ofpacts'
6937 * into datapath actions in 'odp_actions', using 'ctx'. */
6938 static void
6939 xlate_actions(struct xlate_in *xin, struct xlate_out *xout)
6940 {
6941 /* Normally false. Set to true if we ever hit MAX_RESUBMIT_RECURSION, so
6942 * that in the future we always keep a copy of the original flow for
6943 * tracing purposes. */
6944 static bool hit_resubmit_limit;
6945
6946 enum slow_path_reason special;
6947 const struct ofpact *ofpacts;
6948 struct ofport_dpif *in_port;
6949 struct flow orig_flow;
6950 struct xlate_ctx ctx;
6951 size_t ofpacts_len;
6952
6953 COVERAGE_INC(ofproto_dpif_xlate);
6954
6955 /* Flow initialization rules:
6956 * - 'base_flow' must match the kernel's view of the packet at the
6957 * time that action processing starts. 'flow' represents any
6958 * transformations we wish to make through actions.
6959 * - By default 'base_flow' and 'flow' are the same since the input
6960 * packet matches the output before any actions are applied.
6961 * - When using VLAN splinters, 'base_flow''s VLAN is set to the value
6962 * of the received packet as seen by the kernel. If we later output
6963 * to another device without any modifications this will cause us to
6964 * insert a new tag since the original one was stripped off by the
6965 * VLAN device.
6966 * - Tunnel metadata as received is retained in 'flow'. This allows
6967 * tunnel metadata matching also in later tables.
6968 * Since a kernel action for setting the tunnel metadata will only be
6969 * generated with actual tunnel output, changing the tunnel metadata
6970 * values in 'flow' (such as tun_id) will only have effect with a later
6971 * tunnel output action.
6972 * - Tunnel 'base_flow' is completely cleared since that is what the
6973 * kernel does. If we wish to maintain the original values an action
6974 * needs to be generated. */
6975
6976 ctx.xin = xin;
6977 ctx.xout = xout;
6978
6979 ctx.ofproto = xin->ofproto;
6980 ctx.rule = xin->rule;
6981
6982 ctx.base_flow = ctx.xin->flow;
6983 memset(&ctx.base_flow.tunnel, 0, sizeof ctx.base_flow.tunnel);
6984 ctx.orig_tunnel_ip_dst = ctx.xin->flow.tunnel.ip_dst;
6985
6986 flow_wildcards_init_catchall(&ctx.xout->wc);
6987 memset(&ctx.xout->wc.masks.in_port, 0xff,
6988 sizeof ctx.xout->wc.masks.in_port);
6989
6990 if (tnl_port_should_receive(&ctx.xin->flow)) {
6991 memset(&ctx.xout->wc.masks.tunnel, 0xff,
6992 sizeof ctx.xout->wc.masks.tunnel);
6993 }
6994
6995 /* Disable most wildcarding for NetFlow. */
6996 if (xin->ofproto->netflow) {
6997 memset(&ctx.xout->wc.masks.dl_src, 0xff,
6998 sizeof ctx.xout->wc.masks.dl_src);
6999 memset(&ctx.xout->wc.masks.dl_dst, 0xff,
7000 sizeof ctx.xout->wc.masks.dl_dst);
7001 memset(&ctx.xout->wc.masks.dl_type, 0xff,
7002 sizeof ctx.xout->wc.masks.dl_type);
7003 memset(&ctx.xout->wc.masks.vlan_tci, 0xff,
7004 sizeof ctx.xout->wc.masks.vlan_tci);
7005 memset(&ctx.xout->wc.masks.nw_proto, 0xff,
7006 sizeof ctx.xout->wc.masks.nw_proto);
7007 memset(&ctx.xout->wc.masks.nw_src, 0xff,
7008 sizeof ctx.xout->wc.masks.nw_src);
7009 memset(&ctx.xout->wc.masks.nw_dst, 0xff,
7010 sizeof ctx.xout->wc.masks.nw_dst);
7011 memset(&ctx.xout->wc.masks.tp_src, 0xff,
7012 sizeof ctx.xout->wc.masks.tp_src);
7013 memset(&ctx.xout->wc.masks.tp_dst, 0xff,
7014 sizeof ctx.xout->wc.masks.tp_dst);
7015 }
7016
7017 ctx.xout->tags = 0;
7018 ctx.xout->slow = 0;
7019 ctx.xout->has_learn = false;
7020 ctx.xout->has_normal = false;
7021 ctx.xout->has_fin_timeout = false;
7022 ctx.xout->nf_output_iface = NF_OUT_DROP;
7023 ctx.xout->mirrors = 0;
7024
7025 ofpbuf_use_stub(&ctx.xout->odp_actions, ctx.xout->odp_actions_stub,
7026 sizeof ctx.xout->odp_actions_stub);
7027 ofpbuf_reserve(&ctx.xout->odp_actions, NL_A_U32_SIZE);
7028
7029 ctx.recurse = 0;
7030 ctx.max_resubmit_trigger = false;
7031 ctx.orig_skb_priority = ctx.xin->flow.skb_priority;
7032 ctx.table_id = 0;
7033 ctx.exit = false;
7034
7035 if (xin->ofpacts) {
7036 ofpacts = xin->ofpacts;
7037 ofpacts_len = xin->ofpacts_len;
7038 } else if (xin->rule) {
7039 ofpacts = xin->rule->up.ofpacts;
7040 ofpacts_len = xin->rule->up.ofpacts_len;
7041 } else {
7042 NOT_REACHED();
7043 }
7044
7045 ofpbuf_use_stub(&ctx.stack, ctx.init_stack, sizeof ctx.init_stack);
7046
7047 if (ctx.ofproto->has_mirrors || hit_resubmit_limit) {
7048 /* Do this conditionally because the copy is expensive enough that it
7049 * shows up in profiles. */
7050 orig_flow = ctx.xin->flow;
7051 }
7052
7053 if (ctx.xin->flow.nw_frag & FLOW_NW_FRAG_ANY) {
7054 switch (ctx.ofproto->up.frag_handling) {
7055 case OFPC_FRAG_NORMAL:
7056 /* We must pretend that transport ports are unavailable. */
7057 ctx.xin->flow.tp_src = ctx.base_flow.tp_src = htons(0);
7058 ctx.xin->flow.tp_dst = ctx.base_flow.tp_dst = htons(0);
7059 break;
7060
7061 case OFPC_FRAG_DROP:
7062 return;
7063
7064 case OFPC_FRAG_REASM:
7065 NOT_REACHED();
7066
7067 case OFPC_FRAG_NX_MATCH:
7068 /* Nothing to do. */
7069 break;
7070
7071 case OFPC_INVALID_TTL_TO_CONTROLLER:
7072 NOT_REACHED();
7073 }
7074 }
7075
7076 in_port = get_ofp_port(ctx.ofproto, ctx.xin->flow.in_port);
7077 special = process_special(ctx.ofproto, &ctx.xin->flow, in_port,
7078 ctx.xin->packet);
7079 if (special) {
7080 ctx.xout->slow = special;
7081 } else {
7082 static struct vlog_rate_limit trace_rl = VLOG_RATE_LIMIT_INIT(1, 1);
7083 size_t sample_actions_len;
7084 uint32_t local_odp_port;
7085
7086 if (ctx.xin->flow.in_port
7087 != vsp_realdev_to_vlandev(ctx.ofproto, ctx.xin->flow.in_port,
7088 ctx.xin->flow.vlan_tci)) {
7089 ctx.base_flow.vlan_tci = 0;
7090 }
7091
7092 add_sflow_action(&ctx);
7093 add_ipfix_action(&ctx);
7094 sample_actions_len = ctx.xout->odp_actions.size;
7095
7096 if (tunnel_ecn_ok(&ctx) && (!in_port || may_receive(in_port, &ctx))) {
7097 do_xlate_actions(ofpacts, ofpacts_len, &ctx);
7098
7099 /* We've let OFPP_NORMAL and the learning action look at the
7100 * packet, so drop it now if forwarding is disabled. */
7101 if (in_port && !stp_forward_in_state(in_port->stp_state)) {
7102 ctx.xout->odp_actions.size = sample_actions_len;
7103 }
7104 }
7105
7106 if (ctx.max_resubmit_trigger && !ctx.xin->resubmit_hook) {
7107 if (!hit_resubmit_limit) {
7108 /* We didn't record the original flow. Make sure we do from
7109 * now on. */
7110 hit_resubmit_limit = true;
7111 } else if (!VLOG_DROP_ERR(&trace_rl)) {
7112 struct ds ds = DS_EMPTY_INITIALIZER;
7113
7114 ofproto_trace(ctx.ofproto, &orig_flow, ctx.xin->packet, &ds);
7115 VLOG_ERR("Trace triggered by excessive resubmit "
7116 "recursion:\n%s", ds_cstr(&ds));
7117 ds_destroy(&ds);
7118 }
7119 }
7120
7121 local_odp_port = ofp_port_to_odp_port(ctx.ofproto, OFPP_LOCAL);
7122 if (!connmgr_must_output_local(ctx.ofproto->up.connmgr, &ctx.xin->flow,
7123 local_odp_port,
7124 ctx.xout->odp_actions.data,
7125 ctx.xout->odp_actions.size)) {
7126 compose_output_action(&ctx, OFPP_LOCAL);
7127 }
7128 if (ctx.ofproto->has_mirrors) {
7129 add_mirror_actions(&ctx, &orig_flow);
7130 }
7131 fix_sflow_action(&ctx);
7132 }
7133
7134 ofpbuf_uninit(&ctx.stack);
7135
7136 /* Clear the metadata and register wildcard masks, because we won't
7137 * use non-header fields as part of the cache. */
7138 memset(&ctx.xout->wc.masks.metadata, 0,
7139 sizeof ctx.xout->wc.masks.metadata);
7140 memset(&ctx.xout->wc.masks.regs, 0, sizeof ctx.xout->wc.masks.regs);
7141 }
7142
7143 /* Translates the 'ofpacts_len' bytes of "struct ofpact"s starting at 'ofpacts'
7144 * into datapath actions, using 'ctx', and discards the datapath actions. */
7145 static void
7146 xlate_actions_for_side_effects(struct xlate_in *xin)
7147 {
7148 struct xlate_out xout;
7149
7150 xlate_actions(xin, &xout);
7151 xlate_out_uninit(&xout);
7152 }
7153
7154 static void
7155 xlate_report(struct xlate_ctx *ctx, const char *s)
7156 {
7157 if (ctx->xin->report_hook) {
7158 ctx->xin->report_hook(ctx, s);
7159 }
7160 }
7161
7162 static void
7163 xlate_out_copy(struct xlate_out *dst, const struct xlate_out *src)
7164 {
7165 dst->wc = src->wc;
7166 dst->tags = src->tags;
7167 dst->slow = src->slow;
7168 dst->has_learn = src->has_learn;
7169 dst->has_normal = src->has_normal;
7170 dst->has_fin_timeout = src->has_fin_timeout;
7171 dst->nf_output_iface = src->nf_output_iface;
7172 dst->mirrors = src->mirrors;
7173
7174 ofpbuf_use_stub(&dst->odp_actions, dst->odp_actions_stub,
7175 sizeof dst->odp_actions_stub);
7176 ofpbuf_put(&dst->odp_actions, src->odp_actions.data,
7177 src->odp_actions.size);
7178 }
7179 \f
7180 /* OFPP_NORMAL implementation. */
7181
7182 static struct ofport_dpif *ofbundle_get_a_port(const struct ofbundle *);
7183
7184 /* Given 'vid', the VID obtained from the 802.1Q header that was received as
7185 * part of a packet (specify 0 if there was no 802.1Q header), and 'in_bundle',
7186 * the bundle on which the packet was received, returns the VLAN to which the
7187 * packet belongs.
7188 *
7189 * Both 'vid' and the return value are in the range 0...4095. */
7190 static uint16_t
7191 input_vid_to_vlan(const struct ofbundle *in_bundle, uint16_t vid)
7192 {
7193 switch (in_bundle->vlan_mode) {
7194 case PORT_VLAN_ACCESS:
7195 return in_bundle->vlan;
7196 break;
7197
7198 case PORT_VLAN_TRUNK:
7199 return vid;
7200
7201 case PORT_VLAN_NATIVE_UNTAGGED:
7202 case PORT_VLAN_NATIVE_TAGGED:
7203 return vid ? vid : in_bundle->vlan;
7204
7205 default:
7206 NOT_REACHED();
7207 }
7208 }
7209
7210 /* Checks whether a packet with the given 'vid' may ingress on 'in_bundle'.
7211 * If so, returns true. Otherwise, returns false and, if 'warn' is true, logs
7212 * a warning.
7213 *
7214 * 'vid' should be the VID obtained from the 802.1Q header that was received as
7215 * part of a packet (specify 0 if there was no 802.1Q header), in the range
7216 * 0...4095. */
7217 static bool
7218 input_vid_is_valid(uint16_t vid, struct ofbundle *in_bundle, bool warn)
7219 {
7220 /* Allow any VID on the OFPP_NONE port. */
7221 if (in_bundle == &ofpp_none_bundle) {
7222 return true;
7223 }
7224
7225 switch (in_bundle->vlan_mode) {
7226 case PORT_VLAN_ACCESS:
7227 if (vid) {
7228 if (warn) {
7229 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
7230 VLOG_WARN_RL(&rl, "bridge %s: dropping VLAN %"PRIu16" tagged "
7231 "packet received on port %s configured as VLAN "
7232 "%"PRIu16" access port",
7233 in_bundle->ofproto->up.name, vid,
7234 in_bundle->name, in_bundle->vlan);
7235 }
7236 return false;
7237 }
7238 return true;
7239
7240 case PORT_VLAN_NATIVE_UNTAGGED:
7241 case PORT_VLAN_NATIVE_TAGGED:
7242 if (!vid) {
7243 /* Port must always carry its native VLAN. */
7244 return true;
7245 }
7246 /* Fall through. */
7247 case PORT_VLAN_TRUNK:
7248 if (!ofbundle_includes_vlan(in_bundle, vid)) {
7249 if (warn) {
7250 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
7251 VLOG_WARN_RL(&rl, "bridge %s: dropping VLAN %"PRIu16" packet "
7252 "received on port %s not configured for trunking "
7253 "VLAN %"PRIu16,
7254 in_bundle->ofproto->up.name, vid,
7255 in_bundle->name, vid);
7256 }
7257 return false;
7258 }
7259 return true;
7260
7261 default:
7262 NOT_REACHED();
7263 }
7264
7265 }
7266
7267 /* Given 'vlan', the VLAN that a packet belongs to, and
7268 * 'out_bundle', a bundle on which the packet is to be output, returns the VID
7269 * that should be included in the 802.1Q header. (If the return value is 0,
7270 * then the 802.1Q header should only be included in the packet if there is a
7271 * nonzero PCP.)
7272 *
7273 * Both 'vlan' and the return value are in the range 0...4095. */
7274 static uint16_t
7275 output_vlan_to_vid(const struct ofbundle *out_bundle, uint16_t vlan)
7276 {
7277 switch (out_bundle->vlan_mode) {
7278 case PORT_VLAN_ACCESS:
7279 return 0;
7280
7281 case PORT_VLAN_TRUNK:
7282 case PORT_VLAN_NATIVE_TAGGED:
7283 return vlan;
7284
7285 case PORT_VLAN_NATIVE_UNTAGGED:
7286 return vlan == out_bundle->vlan ? 0 : vlan;
7287
7288 default:
7289 NOT_REACHED();
7290 }
7291 }
7292
7293 static void
7294 output_normal(struct xlate_ctx *ctx, const struct ofbundle *out_bundle,
7295 uint16_t vlan)
7296 {
7297 struct ofport_dpif *port;
7298 uint16_t vid;
7299 ovs_be16 tci, old_tci;
7300
7301 vid = output_vlan_to_vid(out_bundle, vlan);
7302 if (!out_bundle->bond) {
7303 port = ofbundle_get_a_port(out_bundle);
7304 } else {
7305 port = bond_choose_output_slave(out_bundle->bond, &ctx->xin->flow,
7306 &ctx->xout->wc, vid, &ctx->xout->tags);
7307 if (!port) {
7308 /* No slaves enabled, so drop packet. */
7309 return;
7310 }
7311 }
7312
7313 old_tci = ctx->xin->flow.vlan_tci;
7314 tci = htons(vid);
7315 if (tci || out_bundle->use_priority_tags) {
7316 tci |= ctx->xin->flow.vlan_tci & htons(VLAN_PCP_MASK);
7317 if (tci) {
7318 tci |= htons(VLAN_CFI);
7319 }
7320 }
7321 ctx->xin->flow.vlan_tci = tci;
7322
7323 compose_output_action(ctx, port->up.ofp_port);
7324 ctx->xin->flow.vlan_tci = old_tci;
7325 }
7326
7327 static int
7328 mirror_mask_ffs(mirror_mask_t mask)
7329 {
7330 BUILD_ASSERT_DECL(sizeof(unsigned int) >= sizeof(mask));
7331 return ffs(mask);
7332 }
7333
7334 static bool
7335 ofbundle_trunks_vlan(const struct ofbundle *bundle, uint16_t vlan)
7336 {
7337 return (bundle->vlan_mode != PORT_VLAN_ACCESS
7338 && (!bundle->trunks || bitmap_is_set(bundle->trunks, vlan)));
7339 }
7340
7341 static bool
7342 ofbundle_includes_vlan(const struct ofbundle *bundle, uint16_t vlan)
7343 {
7344 return vlan == bundle->vlan || ofbundle_trunks_vlan(bundle, vlan);
7345 }
7346
7347 /* Returns an arbitrary interface within 'bundle'. */
7348 static struct ofport_dpif *
7349 ofbundle_get_a_port(const struct ofbundle *bundle)
7350 {
7351 return CONTAINER_OF(list_front(&bundle->ports),
7352 struct ofport_dpif, bundle_node);
7353 }
7354
7355 static bool
7356 vlan_is_mirrored(const struct ofmirror *m, int vlan)
7357 {
7358 return !m->vlans || bitmap_is_set(m->vlans, vlan);
7359 }
7360
7361 static void
7362 add_mirror_actions(struct xlate_ctx *ctx, const struct flow *orig_flow)
7363 {
7364 struct ofproto_dpif *ofproto = ctx->ofproto;
7365 mirror_mask_t mirrors;
7366 struct ofbundle *in_bundle;
7367 uint16_t vlan;
7368 uint16_t vid;
7369 const struct nlattr *a;
7370 size_t left;
7371
7372 in_bundle = lookup_input_bundle(ctx->ofproto, orig_flow->in_port,
7373 ctx->xin->packet != NULL, NULL);
7374 if (!in_bundle) {
7375 return;
7376 }
7377 mirrors = in_bundle->src_mirrors;
7378
7379 /* Drop frames on bundles reserved for mirroring. */
7380 if (in_bundle->mirror_out) {
7381 if (ctx->xin->packet != NULL) {
7382 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
7383 VLOG_WARN_RL(&rl, "bridge %s: dropping packet received on port "
7384 "%s, which is reserved exclusively for mirroring",
7385 ctx->ofproto->up.name, in_bundle->name);
7386 }
7387 return;
7388 }
7389
7390 /* Check VLAN. */
7391 vid = vlan_tci_to_vid(orig_flow->vlan_tci);
7392 if (!input_vid_is_valid(vid, in_bundle, ctx->xin->packet != NULL)) {
7393 return;
7394 }
7395 vlan = input_vid_to_vlan(in_bundle, vid);
7396
7397 /* Look at the output ports to check for destination selections. */
7398
7399 NL_ATTR_FOR_EACH (a, left, ctx->xout->odp_actions.data,
7400 ctx->xout->odp_actions.size) {
7401 enum ovs_action_attr type = nl_attr_type(a);
7402 struct ofport_dpif *ofport;
7403
7404 if (type != OVS_ACTION_ATTR_OUTPUT) {
7405 continue;
7406 }
7407
7408 ofport = get_odp_port(ofproto, nl_attr_get_u32(a));
7409 if (ofport && ofport->bundle) {
7410 mirrors |= ofport->bundle->dst_mirrors;
7411 }
7412 }
7413
7414 if (!mirrors) {
7415 return;
7416 }
7417
7418 /* Restore the original packet before adding the mirror actions. */
7419 ctx->xin->flow = *orig_flow;
7420
7421 while (mirrors) {
7422 struct ofmirror *m;
7423
7424 m = ofproto->mirrors[mirror_mask_ffs(mirrors) - 1];
7425
7426 if (m->vlans) {
7427 ctx->xout->wc.masks.vlan_tci |= htons(VLAN_CFI | VLAN_VID_MASK);
7428 }
7429
7430 if (!vlan_is_mirrored(m, vlan)) {
7431 mirrors = zero_rightmost_1bit(mirrors);
7432 continue;
7433 }
7434
7435 mirrors &= ~m->dup_mirrors;
7436 ctx->xout->mirrors |= m->dup_mirrors;
7437 if (m->out) {
7438 output_normal(ctx, m->out, vlan);
7439 } else if (vlan != m->out_vlan
7440 && !eth_addr_is_reserved(orig_flow->dl_dst)) {
7441 struct ofbundle *bundle;
7442
7443 HMAP_FOR_EACH (bundle, hmap_node, &ofproto->bundles) {
7444 if (ofbundle_includes_vlan(bundle, m->out_vlan)
7445 && !bundle->mirror_out) {
7446 output_normal(ctx, bundle, m->out_vlan);
7447 }
7448 }
7449 }
7450 }
7451 }
7452
7453 static void
7454 update_mirror_stats(struct ofproto_dpif *ofproto, mirror_mask_t mirrors,
7455 uint64_t packets, uint64_t bytes)
7456 {
7457 if (!mirrors) {
7458 return;
7459 }
7460
7461 for (; mirrors; mirrors = zero_rightmost_1bit(mirrors)) {
7462 struct ofmirror *m;
7463
7464 m = ofproto->mirrors[mirror_mask_ffs(mirrors) - 1];
7465
7466 if (!m) {
7467 /* In normal circumstances 'm' will not be NULL. However,
7468 * if mirrors are reconfigured, we can temporarily get out
7469 * of sync in facet_revalidate(). We could "correct" the
7470 * mirror list before reaching here, but doing that would
7471 * not properly account the traffic stats we've currently
7472 * accumulated for previous mirror configuration. */
7473 continue;
7474 }
7475
7476 m->packet_count += packets;
7477 m->byte_count += bytes;
7478 }
7479 }
7480
7481 /* A VM broadcasts a gratuitous ARP to indicate that it has resumed after
7482 * migration. Older Citrix-patched Linux DomU used gratuitous ARP replies to
7483 * indicate this; newer upstream kernels use gratuitous ARP requests. */
7484 static bool
7485 is_gratuitous_arp(const struct flow *flow, struct flow_wildcards *wc)
7486 {
7487 if (flow->dl_type != htons(ETH_TYPE_ARP)) {
7488 return false;
7489 }
7490
7491 memset(&wc->masks.dl_dst, 0xff, sizeof wc->masks.dl_dst);
7492 if (!eth_addr_is_broadcast(flow->dl_dst)) {
7493 return false;
7494 }
7495
7496 memset(&wc->masks.nw_proto, 0xff, sizeof wc->masks.nw_proto);
7497 if (flow->nw_proto == ARP_OP_REPLY) {
7498 return true;
7499 } else if (flow->nw_proto == ARP_OP_REQUEST) {
7500 memset(&wc->masks.nw_src, 0xff, sizeof wc->masks.nw_src);
7501 memset(&wc->masks.nw_dst, 0xff, sizeof wc->masks.nw_dst);
7502
7503 return flow->nw_src == flow->nw_dst;
7504 } else {
7505 return false;
7506 }
7507 }
7508
7509 static void
7510 update_learning_table(struct ofproto_dpif *ofproto,
7511 const struct flow *flow, struct flow_wildcards *wc,
7512 int vlan, struct ofbundle *in_bundle)
7513 {
7514 struct mac_entry *mac;
7515
7516 /* Don't learn the OFPP_NONE port. */
7517 if (in_bundle == &ofpp_none_bundle) {
7518 return;
7519 }
7520
7521 if (!mac_learning_may_learn(ofproto->ml, flow->dl_src, vlan)) {
7522 return;
7523 }
7524
7525 mac = mac_learning_insert(ofproto->ml, flow->dl_src, vlan);
7526 if (is_gratuitous_arp(flow, wc)) {
7527 /* We don't want to learn from gratuitous ARP packets that are
7528 * reflected back over bond slaves so we lock the learning table. */
7529 if (!in_bundle->bond) {
7530 mac_entry_set_grat_arp_lock(mac);
7531 } else if (mac_entry_is_grat_arp_locked(mac)) {
7532 return;
7533 }
7534 }
7535
7536 if (mac_entry_is_new(mac) || mac->port.p != in_bundle) {
7537 /* The log messages here could actually be useful in debugging,
7538 * so keep the rate limit relatively high. */
7539 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(30, 300);
7540 VLOG_DBG_RL(&rl, "bridge %s: learned that "ETH_ADDR_FMT" is "
7541 "on port %s in VLAN %d",
7542 ofproto->up.name, ETH_ADDR_ARGS(flow->dl_src),
7543 in_bundle->name, vlan);
7544
7545 mac->port.p = in_bundle;
7546 tag_set_add(&ofproto->backer->revalidate_set,
7547 mac_learning_changed(ofproto->ml, mac));
7548 }
7549 }
7550
7551 static struct ofbundle *
7552 lookup_input_bundle(const struct ofproto_dpif *ofproto, uint16_t in_port,
7553 bool warn, struct ofport_dpif **in_ofportp)
7554 {
7555 struct ofport_dpif *ofport;
7556
7557 /* Find the port and bundle for the received packet. */
7558 ofport = get_ofp_port(ofproto, in_port);
7559 if (in_ofportp) {
7560 *in_ofportp = ofport;
7561 }
7562 if (ofport && ofport->bundle) {
7563 return ofport->bundle;
7564 }
7565
7566 /* Special-case OFPP_NONE, which a controller may use as the ingress
7567 * port for traffic that it is sourcing. */
7568 if (in_port == OFPP_NONE) {
7569 return &ofpp_none_bundle;
7570 }
7571
7572 /* Odd. A few possible reasons here:
7573 *
7574 * - We deleted a port but there are still a few packets queued up
7575 * from it.
7576 *
7577 * - Someone externally added a port (e.g. "ovs-dpctl add-if") that
7578 * we don't know about.
7579 *
7580 * - The ofproto client didn't configure the port as part of a bundle.
7581 * This is particularly likely to happen if a packet was received on the
7582 * port after it was created, but before the client had a chance to
7583 * configure its bundle.
7584 */
7585 if (warn) {
7586 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
7587
7588 VLOG_WARN_RL(&rl, "bridge %s: received packet on unknown "
7589 "port %"PRIu16, ofproto->up.name, in_port);
7590 }
7591 return NULL;
7592 }
7593
7594 /* Determines whether packets in 'flow' within 'ofproto' should be forwarded or
7595 * dropped. Returns true if they may be forwarded, false if they should be
7596 * dropped.
7597 *
7598 * 'in_port' must be the ofport_dpif that corresponds to flow->in_port.
7599 * 'in_port' must be part of a bundle (e.g. in_port->bundle must be nonnull).
7600 *
7601 * 'vlan' must be the VLAN that corresponds to flow->vlan_tci on 'in_port', as
7602 * returned by input_vid_to_vlan(). It must be a valid VLAN for 'in_port', as
7603 * checked by input_vid_is_valid().
7604 *
7605 * May also add tags to '*tags', although the current implementation only does
7606 * so in one special case.
7607 */
7608 static bool
7609 is_admissible(struct xlate_ctx *ctx, struct ofport_dpif *in_port,
7610 uint16_t vlan)
7611 {
7612 struct ofproto_dpif *ofproto = ctx->ofproto;
7613 struct flow *flow = &ctx->xin->flow;
7614 struct ofbundle *in_bundle = in_port->bundle;
7615
7616 /* Drop frames for reserved multicast addresses
7617 * only if forward_bpdu option is absent. */
7618 if (!ofproto->up.forward_bpdu && eth_addr_is_reserved(flow->dl_dst)) {
7619 xlate_report(ctx, "packet has reserved destination MAC, dropping");
7620 return false;
7621 }
7622
7623 if (in_bundle->bond) {
7624 struct mac_entry *mac;
7625
7626 switch (bond_check_admissibility(in_bundle->bond, in_port,
7627 flow->dl_dst, &ctx->xout->tags)) {
7628 case BV_ACCEPT:
7629 break;
7630
7631 case BV_DROP:
7632 xlate_report(ctx, "bonding refused admissibility, dropping");
7633 return false;
7634
7635 case BV_DROP_IF_MOVED:
7636 mac = mac_learning_lookup(ofproto->ml, flow->dl_src, vlan, NULL);
7637 if (mac && mac->port.p != in_bundle &&
7638 (!is_gratuitous_arp(flow, &ctx->xout->wc)
7639 || mac_entry_is_grat_arp_locked(mac))) {
7640 xlate_report(ctx, "SLB bond thinks this packet looped back, "
7641 "dropping");
7642 return false;
7643 }
7644 break;
7645 }
7646 }
7647
7648 return true;
7649 }
7650
7651 static void
7652 xlate_normal(struct xlate_ctx *ctx)
7653 {
7654 struct ofport_dpif *in_port;
7655 struct ofbundle *in_bundle;
7656 struct mac_entry *mac;
7657 uint16_t vlan;
7658 uint16_t vid;
7659
7660 ctx->xout->has_normal = true;
7661
7662 /* Check the dl_type, since we may check for gratuituous ARP. */
7663 memset(&ctx->xout->wc.masks.dl_type, 0xff,
7664 sizeof ctx->xout->wc.masks.dl_type);
7665
7666 memset(&ctx->xout->wc.masks.dl_src, 0xff,
7667 sizeof ctx->xout->wc.masks.dl_src);
7668 memset(&ctx->xout->wc.masks.dl_dst, 0xff,
7669 sizeof ctx->xout->wc.masks.dl_dst);
7670 memset(&ctx->xout->wc.masks.vlan_tci, 0xff,
7671 sizeof ctx->xout->wc.masks.vlan_tci);
7672
7673 in_bundle = lookup_input_bundle(ctx->ofproto, ctx->xin->flow.in_port,
7674 ctx->xin->packet != NULL, &in_port);
7675 if (!in_bundle) {
7676 xlate_report(ctx, "no input bundle, dropping");
7677 return;
7678 }
7679
7680 /* Drop malformed frames. */
7681 if (ctx->xin->flow.dl_type == htons(ETH_TYPE_VLAN) &&
7682 !(ctx->xin->flow.vlan_tci & htons(VLAN_CFI))) {
7683 if (ctx->xin->packet != NULL) {
7684 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
7685 VLOG_WARN_RL(&rl, "bridge %s: dropping packet with partial "
7686 "VLAN tag received on port %s",
7687 ctx->ofproto->up.name, in_bundle->name);
7688 }
7689 xlate_report(ctx, "partial VLAN tag, dropping");
7690 return;
7691 }
7692
7693 /* Drop frames on bundles reserved for mirroring. */
7694 if (in_bundle->mirror_out) {
7695 if (ctx->xin->packet != NULL) {
7696 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
7697 VLOG_WARN_RL(&rl, "bridge %s: dropping packet received on port "
7698 "%s, which is reserved exclusively for mirroring",
7699 ctx->ofproto->up.name, in_bundle->name);
7700 }
7701 xlate_report(ctx, "input port is mirror output port, dropping");
7702 return;
7703 }
7704
7705 /* Check VLAN. */
7706 vid = vlan_tci_to_vid(ctx->xin->flow.vlan_tci);
7707 if (!input_vid_is_valid(vid, in_bundle, ctx->xin->packet != NULL)) {
7708 xlate_report(ctx, "disallowed VLAN VID for this input port, dropping");
7709 return;
7710 }
7711 vlan = input_vid_to_vlan(in_bundle, vid);
7712
7713 /* Check other admissibility requirements. */
7714 if (in_port && !is_admissible(ctx, in_port, vlan)) {
7715 return;
7716 }
7717
7718 /* Learn source MAC. */
7719 if (ctx->xin->may_learn) {
7720 update_learning_table(ctx->ofproto, &ctx->xin->flow, &ctx->xout->wc,
7721 vlan, in_bundle);
7722 }
7723
7724 /* Determine output bundle. */
7725 mac = mac_learning_lookup(ctx->ofproto->ml, ctx->xin->flow.dl_dst, vlan,
7726 &ctx->xout->tags);
7727 if (mac) {
7728 if (mac->port.p != in_bundle) {
7729 xlate_report(ctx, "forwarding to learned port");
7730 output_normal(ctx, mac->port.p, vlan);
7731 } else {
7732 xlate_report(ctx, "learned port is input port, dropping");
7733 }
7734 } else {
7735 struct ofbundle *bundle;
7736
7737 xlate_report(ctx, "no learned MAC for destination, flooding");
7738 HMAP_FOR_EACH (bundle, hmap_node, &ctx->ofproto->bundles) {
7739 if (bundle != in_bundle
7740 && ofbundle_includes_vlan(bundle, vlan)
7741 && bundle->floodable
7742 && !bundle->mirror_out) {
7743 output_normal(ctx, bundle, vlan);
7744 }
7745 }
7746 ctx->xout->nf_output_iface = NF_OUT_FLOOD;
7747 }
7748 }
7749 \f
7750 /* Optimized flow revalidation.
7751 *
7752 * It's a difficult problem, in general, to tell which facets need to have
7753 * their actions recalculated whenever the OpenFlow flow table changes. We
7754 * don't try to solve that general problem: for most kinds of OpenFlow flow
7755 * table changes, we recalculate the actions for every facet. This is
7756 * relatively expensive, but it's good enough if the OpenFlow flow table
7757 * doesn't change very often.
7758 *
7759 * However, we can expect one particular kind of OpenFlow flow table change to
7760 * happen frequently: changes caused by MAC learning. To avoid wasting a lot
7761 * of CPU on revalidating every facet whenever MAC learning modifies the flow
7762 * table, we add a special case that applies to flow tables in which every rule
7763 * has the same form (that is, the same wildcards), except that the table is
7764 * also allowed to have a single "catch-all" flow that matches all packets. We
7765 * optimize this case by tagging all of the facets that resubmit into the table
7766 * and invalidating the same tag whenever a flow changes in that table. The
7767 * end result is that we revalidate just the facets that need it (and sometimes
7768 * a few more, but not all of the facets or even all of the facets that
7769 * resubmit to the table modified by MAC learning). */
7770
7771 /* Calculates the tag to use for 'flow' and mask 'mask' when it is inserted
7772 * into an OpenFlow table with the given 'basis'. */
7773 static tag_type
7774 rule_calculate_tag(const struct flow *flow, const struct minimask *mask,
7775 uint32_t secret)
7776 {
7777 if (minimask_is_catchall(mask)) {
7778 return 0;
7779 } else {
7780 uint32_t hash = flow_hash_in_minimask(flow, mask, secret);
7781 return tag_create_deterministic(hash);
7782 }
7783 }
7784
7785 /* Following a change to OpenFlow table 'table_id' in 'ofproto', update the
7786 * taggability of that table.
7787 *
7788 * This function must be called after *each* change to a flow table. If you
7789 * skip calling it on some changes then the pointer comparisons at the end can
7790 * be invalid if you get unlucky. For example, if a flow removal causes a
7791 * cls_table to be destroyed and then a flow insertion causes a cls_table with
7792 * different wildcards to be created with the same address, then this function
7793 * will incorrectly skip revalidation. */
7794 static void
7795 table_update_taggable(struct ofproto_dpif *ofproto, uint8_t table_id)
7796 {
7797 struct table_dpif *table = &ofproto->tables[table_id];
7798 const struct oftable *oftable = &ofproto->up.tables[table_id];
7799 struct cls_table *catchall, *other;
7800 struct cls_table *t;
7801
7802 catchall = other = NULL;
7803
7804 switch (hmap_count(&oftable->cls.tables)) {
7805 case 0:
7806 /* We could tag this OpenFlow table but it would make the logic a
7807 * little harder and it's a corner case that doesn't seem worth it
7808 * yet. */
7809 break;
7810
7811 case 1:
7812 case 2:
7813 HMAP_FOR_EACH (t, hmap_node, &oftable->cls.tables) {
7814 if (cls_table_is_catchall(t)) {
7815 catchall = t;
7816 } else if (!other) {
7817 other = t;
7818 } else {
7819 /* Indicate that we can't tag this by setting both tables to
7820 * NULL. (We know that 'catchall' is already NULL.) */
7821 other = NULL;
7822 }
7823 }
7824 break;
7825
7826 default:
7827 /* Can't tag this table. */
7828 break;
7829 }
7830
7831 if (table->catchall_table != catchall || table->other_table != other) {
7832 table->catchall_table = catchall;
7833 table->other_table = other;
7834 ofproto->backer->need_revalidate = REV_FLOW_TABLE;
7835 }
7836 }
7837
7838 /* Given 'rule' that has changed in some way (either it is a rule being
7839 * inserted, a rule being deleted, or a rule whose actions are being
7840 * modified), marks facets for revalidation to ensure that packets will be
7841 * forwarded correctly according to the new state of the flow table.
7842 *
7843 * This function must be called after *each* change to a flow table. See
7844 * the comment on table_update_taggable() for more information. */
7845 static void
7846 rule_invalidate(const struct rule_dpif *rule)
7847 {
7848 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
7849
7850 table_update_taggable(ofproto, rule->up.table_id);
7851
7852 if (!ofproto->backer->need_revalidate) {
7853 struct table_dpif *table = &ofproto->tables[rule->up.table_id];
7854
7855 if (table->other_table && rule->tag) {
7856 tag_set_add(&ofproto->backer->revalidate_set, rule->tag);
7857 } else {
7858 ofproto->backer->need_revalidate = REV_FLOW_TABLE;
7859 }
7860 }
7861 }
7862 \f
7863 static bool
7864 set_frag_handling(struct ofproto *ofproto_,
7865 enum ofp_config_flags frag_handling)
7866 {
7867 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
7868 if (frag_handling != OFPC_FRAG_REASM) {
7869 ofproto->backer->need_revalidate = REV_RECONFIGURE;
7870 return true;
7871 } else {
7872 return false;
7873 }
7874 }
7875
7876 static enum ofperr
7877 packet_out(struct ofproto *ofproto_, struct ofpbuf *packet,
7878 const struct flow *flow,
7879 const struct ofpact *ofpacts, size_t ofpacts_len)
7880 {
7881 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
7882 struct odputil_keybuf keybuf;
7883 struct dpif_flow_stats stats;
7884 struct xlate_out xout;
7885 struct xlate_in xin;
7886 struct ofpbuf key;
7887
7888
7889 ofpbuf_use_stack(&key, &keybuf, sizeof keybuf);
7890 odp_flow_key_from_flow(&key, flow,
7891 ofp_port_to_odp_port(ofproto, flow->in_port));
7892
7893 dpif_flow_stats_extract(flow, packet, time_msec(), &stats);
7894
7895 xlate_in_init(&xin, ofproto, flow, NULL, stats.tcp_flags, packet);
7896 xin.resubmit_stats = &stats;
7897 xin.ofpacts_len = ofpacts_len;
7898 xin.ofpacts = ofpacts;
7899
7900 xlate_actions(&xin, &xout);
7901 dpif_execute(ofproto->backer->dpif, key.data, key.size,
7902 xout.odp_actions.data, xout.odp_actions.size, packet);
7903 xlate_out_uninit(&xout);
7904
7905 return 0;
7906 }
7907 \f
7908 /* NetFlow. */
7909
7910 static int
7911 set_netflow(struct ofproto *ofproto_,
7912 const struct netflow_options *netflow_options)
7913 {
7914 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
7915
7916 if (netflow_options) {
7917 if (!ofproto->netflow) {
7918 ofproto->netflow = netflow_create();
7919 }
7920 return netflow_set_options(ofproto->netflow, netflow_options);
7921 } else {
7922 netflow_destroy(ofproto->netflow);
7923 ofproto->netflow = NULL;
7924 return 0;
7925 }
7926 }
7927
7928 static void
7929 get_netflow_ids(const struct ofproto *ofproto_,
7930 uint8_t *engine_type, uint8_t *engine_id)
7931 {
7932 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
7933
7934 dpif_get_netflow_ids(ofproto->backer->dpif, engine_type, engine_id);
7935 }
7936
7937 static void
7938 send_active_timeout(struct ofproto_dpif *ofproto, struct facet *facet)
7939 {
7940 if (!facet_is_controller_flow(facet) &&
7941 netflow_active_timeout_expired(ofproto->netflow, &facet->nf_flow)) {
7942 struct subfacet *subfacet;
7943 struct ofexpired expired;
7944
7945 LIST_FOR_EACH (subfacet, list_node, &facet->subfacets) {
7946 if (subfacet->path == SF_FAST_PATH) {
7947 struct dpif_flow_stats stats;
7948
7949 subfacet_install(subfacet, &facet->xout.odp_actions,
7950 &stats);
7951 subfacet_update_stats(subfacet, &stats);
7952 }
7953 }
7954
7955 expired.flow = facet->flow;
7956 expired.packet_count = facet->packet_count;
7957 expired.byte_count = facet->byte_count;
7958 expired.used = facet->used;
7959 netflow_expire(ofproto->netflow, &facet->nf_flow, &expired);
7960 }
7961 }
7962
7963 static void
7964 send_netflow_active_timeouts(struct ofproto_dpif *ofproto)
7965 {
7966 struct cls_cursor cursor;
7967 struct facet *facet;
7968
7969 cls_cursor_init(&cursor, &ofproto->facets, NULL);
7970 CLS_CURSOR_FOR_EACH (facet, cr, &cursor) {
7971 send_active_timeout(ofproto, facet);
7972 }
7973 }
7974 \f
7975 static struct ofproto_dpif *
7976 ofproto_dpif_lookup(const char *name)
7977 {
7978 struct ofproto_dpif *ofproto;
7979
7980 HMAP_FOR_EACH_WITH_HASH (ofproto, all_ofproto_dpifs_node,
7981 hash_string(name, 0), &all_ofproto_dpifs) {
7982 if (!strcmp(ofproto->up.name, name)) {
7983 return ofproto;
7984 }
7985 }
7986 return NULL;
7987 }
7988
7989 static void
7990 ofproto_unixctl_fdb_flush(struct unixctl_conn *conn, int argc,
7991 const char *argv[], void *aux OVS_UNUSED)
7992 {
7993 struct ofproto_dpif *ofproto;
7994
7995 if (argc > 1) {
7996 ofproto = ofproto_dpif_lookup(argv[1]);
7997 if (!ofproto) {
7998 unixctl_command_reply_error(conn, "no such bridge");
7999 return;
8000 }
8001 mac_learning_flush(ofproto->ml, &ofproto->backer->revalidate_set);
8002 } else {
8003 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
8004 mac_learning_flush(ofproto->ml, &ofproto->backer->revalidate_set);
8005 }
8006 }
8007
8008 unixctl_command_reply(conn, "table successfully flushed");
8009 }
8010
8011 static void
8012 ofproto_unixctl_fdb_show(struct unixctl_conn *conn, int argc OVS_UNUSED,
8013 const char *argv[], void *aux OVS_UNUSED)
8014 {
8015 struct ds ds = DS_EMPTY_INITIALIZER;
8016 const struct ofproto_dpif *ofproto;
8017 const struct mac_entry *e;
8018
8019 ofproto = ofproto_dpif_lookup(argv[1]);
8020 if (!ofproto) {
8021 unixctl_command_reply_error(conn, "no such bridge");
8022 return;
8023 }
8024
8025 ds_put_cstr(&ds, " port VLAN MAC Age\n");
8026 LIST_FOR_EACH (e, lru_node, &ofproto->ml->lrus) {
8027 struct ofbundle *bundle = e->port.p;
8028 ds_put_format(&ds, "%5d %4d "ETH_ADDR_FMT" %3d\n",
8029 ofbundle_get_a_port(bundle)->odp_port,
8030 e->vlan, ETH_ADDR_ARGS(e->mac),
8031 mac_entry_age(ofproto->ml, e));
8032 }
8033 unixctl_command_reply(conn, ds_cstr(&ds));
8034 ds_destroy(&ds);
8035 }
8036
8037 struct trace_ctx {
8038 struct xlate_out xout;
8039 struct xlate_in xin;
8040 struct flow flow;
8041 struct ds *result;
8042 };
8043
8044 static void
8045 trace_format_rule(struct ds *result, uint8_t table_id, int level,
8046 const struct rule_dpif *rule)
8047 {
8048 ds_put_char_multiple(result, '\t', level);
8049 if (!rule) {
8050 ds_put_cstr(result, "No match\n");
8051 return;
8052 }
8053
8054 ds_put_format(result, "Rule: table=%"PRIu8" cookie=%#"PRIx64" ",
8055 table_id, ntohll(rule->up.flow_cookie));
8056 cls_rule_format(&rule->up.cr, result);
8057 ds_put_char(result, '\n');
8058
8059 ds_put_char_multiple(result, '\t', level);
8060 ds_put_cstr(result, "OpenFlow ");
8061 ofpacts_format(rule->up.ofpacts, rule->up.ofpacts_len, result);
8062 ds_put_char(result, '\n');
8063 }
8064
8065 static void
8066 trace_format_flow(struct ds *result, int level, const char *title,
8067 struct trace_ctx *trace)
8068 {
8069 ds_put_char_multiple(result, '\t', level);
8070 ds_put_format(result, "%s: ", title);
8071 if (flow_equal(&trace->xin.flow, &trace->flow)) {
8072 ds_put_cstr(result, "unchanged");
8073 } else {
8074 flow_format(result, &trace->xin.flow);
8075 trace->flow = trace->xin.flow;
8076 }
8077 ds_put_char(result, '\n');
8078 }
8079
8080 static void
8081 trace_format_regs(struct ds *result, int level, const char *title,
8082 struct trace_ctx *trace)
8083 {
8084 size_t i;
8085
8086 ds_put_char_multiple(result, '\t', level);
8087 ds_put_format(result, "%s:", title);
8088 for (i = 0; i < FLOW_N_REGS; i++) {
8089 ds_put_format(result, " reg%zu=0x%"PRIx32, i, trace->flow.regs[i]);
8090 }
8091 ds_put_char(result, '\n');
8092 }
8093
8094 static void
8095 trace_format_odp(struct ds *result, int level, const char *title,
8096 struct trace_ctx *trace)
8097 {
8098 struct ofpbuf *odp_actions = &trace->xout.odp_actions;
8099
8100 ds_put_char_multiple(result, '\t', level);
8101 ds_put_format(result, "%s: ", title);
8102 format_odp_actions(result, odp_actions->data, odp_actions->size);
8103 ds_put_char(result, '\n');
8104 }
8105
8106 static void
8107 trace_resubmit(struct xlate_ctx *ctx, struct rule_dpif *rule)
8108 {
8109 struct trace_ctx *trace = CONTAINER_OF(ctx->xin, struct trace_ctx, xin);
8110 struct ds *result = trace->result;
8111
8112 ds_put_char(result, '\n');
8113 trace_format_flow(result, ctx->recurse + 1, "Resubmitted flow", trace);
8114 trace_format_regs(result, ctx->recurse + 1, "Resubmitted regs", trace);
8115 trace_format_odp(result, ctx->recurse + 1, "Resubmitted odp", trace);
8116 trace_format_rule(result, ctx->table_id, ctx->recurse + 1, rule);
8117 }
8118
8119 static void
8120 trace_report(struct xlate_ctx *ctx, const char *s)
8121 {
8122 struct trace_ctx *trace = CONTAINER_OF(ctx->xin, struct trace_ctx, xin);
8123 struct ds *result = trace->result;
8124
8125 ds_put_char_multiple(result, '\t', ctx->recurse);
8126 ds_put_cstr(result, s);
8127 ds_put_char(result, '\n');
8128 }
8129
8130 static void
8131 ofproto_unixctl_trace(struct unixctl_conn *conn, int argc, const char *argv[],
8132 void *aux OVS_UNUSED)
8133 {
8134 const struct dpif_backer *backer;
8135 struct ofproto_dpif *ofproto;
8136 struct ofpbuf odp_key;
8137 struct ofpbuf *packet;
8138 struct ds result;
8139 struct flow flow;
8140 char *s;
8141
8142 packet = NULL;
8143 backer = NULL;
8144 ds_init(&result);
8145 ofpbuf_init(&odp_key, 0);
8146
8147 /* Handle "-generate" or a hex string as the last argument. */
8148 if (!strcmp(argv[argc - 1], "-generate")) {
8149 packet = ofpbuf_new(0);
8150 argc--;
8151 } else {
8152 const char *error = eth_from_hex(argv[argc - 1], &packet);
8153 if (!error) {
8154 argc--;
8155 } else if (argc == 4) {
8156 /* The 3-argument form must end in "-generate' or a hex string. */
8157 unixctl_command_reply_error(conn, error);
8158 goto exit;
8159 }
8160 }
8161
8162 /* Parse the flow and determine whether a datapath or
8163 * bridge is specified. If function odp_flow_key_from_string()
8164 * returns 0, the flow is a odp_flow. If function
8165 * parse_ofp_exact_flow() returns 0, the flow is a br_flow. */
8166 if (!odp_flow_key_from_string(argv[argc - 1], NULL, &odp_key)) {
8167 /* If the odp_flow is the second argument,
8168 * the datapath name is the first argument. */
8169 if (argc == 3) {
8170 const char *dp_type;
8171 if (!strncmp(argv[1], "ovs-", 4)) {
8172 dp_type = argv[1] + 4;
8173 } else {
8174 dp_type = argv[1];
8175 }
8176 backer = shash_find_data(&all_dpif_backers, dp_type);
8177 if (!backer) {
8178 unixctl_command_reply_error(conn, "Cannot find datapath "
8179 "of this name");
8180 goto exit;
8181 }
8182 } else {
8183 /* No datapath name specified, so there should be only one
8184 * datapath. */
8185 struct shash_node *node;
8186 if (shash_count(&all_dpif_backers) != 1) {
8187 unixctl_command_reply_error(conn, "Must specify datapath "
8188 "name, there is more than one type of datapath");
8189 goto exit;
8190 }
8191 node = shash_first(&all_dpif_backers);
8192 backer = node->data;
8193 }
8194
8195 /* Extract the ofproto_dpif object from the ofproto_receive()
8196 * function. */
8197 if (ofproto_receive(backer, NULL, odp_key.data,
8198 odp_key.size, &flow, NULL, &ofproto, NULL)) {
8199 unixctl_command_reply_error(conn, "Invalid datapath flow");
8200 goto exit;
8201 }
8202 ds_put_format(&result, "Bridge: %s\n", ofproto->up.name);
8203 } else if (!parse_ofp_exact_flow(&flow, argv[argc - 1])) {
8204 if (argc != 3) {
8205 unixctl_command_reply_error(conn, "Must specify bridge name");
8206 goto exit;
8207 }
8208
8209 ofproto = ofproto_dpif_lookup(argv[1]);
8210 if (!ofproto) {
8211 unixctl_command_reply_error(conn, "Unknown bridge name");
8212 goto exit;
8213 }
8214 } else {
8215 unixctl_command_reply_error(conn, "Bad flow syntax");
8216 goto exit;
8217 }
8218
8219 /* Generate a packet, if requested. */
8220 if (packet) {
8221 if (!packet->size) {
8222 flow_compose(packet, &flow);
8223 } else {
8224 ds_put_cstr(&result, "Packet: ");
8225 s = ofp_packet_to_string(packet->data, packet->size);
8226 ds_put_cstr(&result, s);
8227 free(s);
8228
8229 /* Use the metadata from the flow and the packet argument
8230 * to reconstruct the flow. */
8231 flow_extract(packet, flow.skb_priority, flow.skb_mark, NULL,
8232 flow.in_port, &flow);
8233 }
8234 }
8235
8236 ofproto_trace(ofproto, &flow, packet, &result);
8237 unixctl_command_reply(conn, ds_cstr(&result));
8238
8239 exit:
8240 ds_destroy(&result);
8241 ofpbuf_delete(packet);
8242 ofpbuf_uninit(&odp_key);
8243 }
8244
8245 static void
8246 ofproto_trace(struct ofproto_dpif *ofproto, const struct flow *flow,
8247 const struct ofpbuf *packet, struct ds *ds)
8248 {
8249 struct rule_dpif *rule;
8250
8251 ds_put_cstr(ds, "Flow: ");
8252 flow_format(ds, flow);
8253 ds_put_char(ds, '\n');
8254
8255 rule = rule_dpif_lookup(ofproto, flow, NULL);
8256
8257 trace_format_rule(ds, 0, 0, rule);
8258 if (rule == ofproto->miss_rule) {
8259 ds_put_cstr(ds, "\nNo match, flow generates \"packet in\"s.\n");
8260 } else if (rule == ofproto->no_packet_in_rule) {
8261 ds_put_cstr(ds, "\nNo match, packets dropped because "
8262 "OFPPC_NO_PACKET_IN is set on in_port.\n");
8263 } else if (rule == ofproto->drop_frags_rule) {
8264 ds_put_cstr(ds, "\nPackets dropped because they are IP fragments "
8265 "and the fragment handling mode is \"drop\".\n");
8266 }
8267
8268 if (rule) {
8269 uint64_t odp_actions_stub[1024 / 8];
8270 struct ofpbuf odp_actions;
8271 struct trace_ctx trace;
8272 struct match match;
8273 uint8_t tcp_flags;
8274
8275 tcp_flags = packet ? packet_get_tcp_flags(packet, flow) : 0;
8276 trace.result = ds;
8277 trace.flow = *flow;
8278 ofpbuf_use_stub(&odp_actions,
8279 odp_actions_stub, sizeof odp_actions_stub);
8280 xlate_in_init(&trace.xin, ofproto, flow, rule, tcp_flags, packet);
8281 trace.xin.resubmit_hook = trace_resubmit;
8282 trace.xin.report_hook = trace_report;
8283
8284 xlate_actions(&trace.xin, &trace.xout);
8285
8286 ds_put_char(ds, '\n');
8287 trace_format_flow(ds, 0, "Final flow", &trace);
8288
8289 match_init(&match, flow, &trace.xout.wc);
8290 ds_put_cstr(ds, "Relevant fields: ");
8291 match_format(&match, ds, OFP_DEFAULT_PRIORITY);
8292 ds_put_char(ds, '\n');
8293
8294 ds_put_cstr(ds, "Datapath actions: ");
8295 format_odp_actions(ds, trace.xout.odp_actions.data,
8296 trace.xout.odp_actions.size);
8297
8298 if (trace.xout.slow) {
8299 ds_put_cstr(ds, "\nThis flow is handled by the userspace "
8300 "slow path because it:");
8301 switch (trace.xout.slow) {
8302 case SLOW_CFM:
8303 ds_put_cstr(ds, "\n\t- Consists of CFM packets.");
8304 break;
8305 case SLOW_LACP:
8306 ds_put_cstr(ds, "\n\t- Consists of LACP packets.");
8307 break;
8308 case SLOW_STP:
8309 ds_put_cstr(ds, "\n\t- Consists of STP packets.");
8310 break;
8311 case SLOW_BFD:
8312 ds_put_cstr(ds, "\n\t- Consists of BFD packets.");
8313 break;
8314 case SLOW_CONTROLLER:
8315 ds_put_cstr(ds, "\n\t- Sends \"packet-in\" messages "
8316 "to the OpenFlow controller.");
8317 break;
8318 case __SLOW_MAX:
8319 NOT_REACHED();
8320 }
8321 }
8322
8323 xlate_out_uninit(&trace.xout);
8324 }
8325 }
8326
8327 static void
8328 ofproto_dpif_clog(struct unixctl_conn *conn OVS_UNUSED, int argc OVS_UNUSED,
8329 const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED)
8330 {
8331 clogged = true;
8332 unixctl_command_reply(conn, NULL);
8333 }
8334
8335 static void
8336 ofproto_dpif_unclog(struct unixctl_conn *conn OVS_UNUSED, int argc OVS_UNUSED,
8337 const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED)
8338 {
8339 clogged = false;
8340 unixctl_command_reply(conn, NULL);
8341 }
8342
8343 /* Runs a self-check of flow translations in 'ofproto'. Appends a message to
8344 * 'reply' describing the results. */
8345 static void
8346 ofproto_dpif_self_check__(struct ofproto_dpif *ofproto, struct ds *reply)
8347 {
8348 struct cls_cursor cursor;
8349 struct facet *facet;
8350 int errors;
8351
8352 errors = 0;
8353 cls_cursor_init(&cursor, &ofproto->facets, NULL);
8354 CLS_CURSOR_FOR_EACH (facet, cr, &cursor) {
8355 if (!facet_check_consistency(facet)) {
8356 errors++;
8357 }
8358 }
8359 if (errors) {
8360 ofproto->backer->need_revalidate = REV_INCONSISTENCY;
8361 }
8362
8363 if (errors) {
8364 ds_put_format(reply, "%s: self-check failed (%d errors)\n",
8365 ofproto->up.name, errors);
8366 } else {
8367 ds_put_format(reply, "%s: self-check passed\n", ofproto->up.name);
8368 }
8369 }
8370
8371 static void
8372 ofproto_dpif_self_check(struct unixctl_conn *conn,
8373 int argc, const char *argv[], void *aux OVS_UNUSED)
8374 {
8375 struct ds reply = DS_EMPTY_INITIALIZER;
8376 struct ofproto_dpif *ofproto;
8377
8378 if (argc > 1) {
8379 ofproto = ofproto_dpif_lookup(argv[1]);
8380 if (!ofproto) {
8381 unixctl_command_reply_error(conn, "Unknown ofproto (use "
8382 "ofproto/list for help)");
8383 return;
8384 }
8385 ofproto_dpif_self_check__(ofproto, &reply);
8386 } else {
8387 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
8388 ofproto_dpif_self_check__(ofproto, &reply);
8389 }
8390 }
8391
8392 unixctl_command_reply(conn, ds_cstr(&reply));
8393 ds_destroy(&reply);
8394 }
8395
8396 /* Store the current ofprotos in 'ofproto_shash'. Returns a sorted list
8397 * of the 'ofproto_shash' nodes. It is the responsibility of the caller
8398 * to destroy 'ofproto_shash' and free the returned value. */
8399 static const struct shash_node **
8400 get_ofprotos(struct shash *ofproto_shash)
8401 {
8402 const struct ofproto_dpif *ofproto;
8403
8404 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
8405 char *name = xasprintf("%s@%s", ofproto->up.type, ofproto->up.name);
8406 shash_add_nocopy(ofproto_shash, name, ofproto);
8407 }
8408
8409 return shash_sort(ofproto_shash);
8410 }
8411
8412 static void
8413 ofproto_unixctl_dpif_dump_dps(struct unixctl_conn *conn, int argc OVS_UNUSED,
8414 const char *argv[] OVS_UNUSED,
8415 void *aux OVS_UNUSED)
8416 {
8417 struct ds ds = DS_EMPTY_INITIALIZER;
8418 struct shash ofproto_shash;
8419 const struct shash_node **sorted_ofprotos;
8420 int i;
8421
8422 shash_init(&ofproto_shash);
8423 sorted_ofprotos = get_ofprotos(&ofproto_shash);
8424 for (i = 0; i < shash_count(&ofproto_shash); i++) {
8425 const struct shash_node *node = sorted_ofprotos[i];
8426 ds_put_format(&ds, "%s\n", node->name);
8427 }
8428
8429 shash_destroy(&ofproto_shash);
8430 free(sorted_ofprotos);
8431
8432 unixctl_command_reply(conn, ds_cstr(&ds));
8433 ds_destroy(&ds);
8434 }
8435
8436 static void
8437 show_dp_rates(struct ds *ds, const char *heading,
8438 const struct avg_subfacet_rates *rates)
8439 {
8440 ds_put_format(ds, "%s add rate: %5.3f/min, del rate: %5.3f/min\n",
8441 heading, rates->add_rate, rates->del_rate);
8442 }
8443
8444 static void
8445 dpif_show_backer(const struct dpif_backer *backer, struct ds *ds)
8446 {
8447 const struct shash_node **ofprotos;
8448 struct ofproto_dpif *ofproto;
8449 struct shash ofproto_shash;
8450 uint64_t n_hit, n_missed;
8451 long long int minutes;
8452 size_t i;
8453
8454 n_hit = n_missed = 0;
8455 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
8456 if (ofproto->backer == backer) {
8457 n_missed += ofproto->n_missed;
8458 n_hit += ofproto->n_hit;
8459 }
8460 }
8461
8462 ds_put_format(ds, "%s: hit:%"PRIu64" missed:%"PRIu64"\n",
8463 dpif_name(backer->dpif), n_hit, n_missed);
8464 ds_put_format(ds, "\tflows: cur: %zu, avg: %u, max: %u,"
8465 " life span: %lldms\n", hmap_count(&backer->subfacets),
8466 backer->avg_n_subfacet, backer->max_n_subfacet,
8467 backer->avg_subfacet_life);
8468
8469 minutes = (time_msec() - backer->created) / (1000 * 60);
8470 if (minutes >= 60) {
8471 show_dp_rates(ds, "\thourly avg:", &backer->hourly);
8472 }
8473 if (minutes >= 60 * 24) {
8474 show_dp_rates(ds, "\tdaily avg:", &backer->daily);
8475 }
8476 show_dp_rates(ds, "\toverall avg:", &backer->lifetime);
8477
8478 shash_init(&ofproto_shash);
8479 ofprotos = get_ofprotos(&ofproto_shash);
8480 for (i = 0; i < shash_count(&ofproto_shash); i++) {
8481 struct ofproto_dpif *ofproto = ofprotos[i]->data;
8482 const struct shash_node **ports;
8483 size_t j;
8484
8485 if (ofproto->backer != backer) {
8486 continue;
8487 }
8488
8489 ds_put_format(ds, "\t%s: hit:%"PRIu64" missed:%"PRIu64"\n",
8490 ofproto->up.name, ofproto->n_hit, ofproto->n_missed);
8491
8492 ports = shash_sort(&ofproto->up.port_by_name);
8493 for (j = 0; j < shash_count(&ofproto->up.port_by_name); j++) {
8494 const struct shash_node *node = ports[j];
8495 struct ofport *ofport = node->data;
8496 struct smap config;
8497 uint32_t odp_port;
8498
8499 ds_put_format(ds, "\t\t%s %u/", netdev_get_name(ofport->netdev),
8500 ofport->ofp_port);
8501
8502 odp_port = ofp_port_to_odp_port(ofproto, ofport->ofp_port);
8503 if (odp_port != OVSP_NONE) {
8504 ds_put_format(ds, "%"PRIu32":", odp_port);
8505 } else {
8506 ds_put_cstr(ds, "none:");
8507 }
8508
8509 ds_put_format(ds, " (%s", netdev_get_type(ofport->netdev));
8510
8511 smap_init(&config);
8512 if (!netdev_get_config(ofport->netdev, &config)) {
8513 const struct smap_node **nodes;
8514 size_t i;
8515
8516 nodes = smap_sort(&config);
8517 for (i = 0; i < smap_count(&config); i++) {
8518 const struct smap_node *node = nodes[i];
8519 ds_put_format(ds, "%c %s=%s", i ? ',' : ':',
8520 node->key, node->value);
8521 }
8522 free(nodes);
8523 }
8524 smap_destroy(&config);
8525
8526 ds_put_char(ds, ')');
8527 ds_put_char(ds, '\n');
8528 }
8529 free(ports);
8530 }
8531 shash_destroy(&ofproto_shash);
8532 free(ofprotos);
8533 }
8534
8535 static void
8536 ofproto_unixctl_dpif_show(struct unixctl_conn *conn, int argc OVS_UNUSED,
8537 const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED)
8538 {
8539 struct ds ds = DS_EMPTY_INITIALIZER;
8540 const struct shash_node **backers;
8541 int i;
8542
8543 backers = shash_sort(&all_dpif_backers);
8544 for (i = 0; i < shash_count(&all_dpif_backers); i++) {
8545 dpif_show_backer(backers[i]->data, &ds);
8546 }
8547 free(backers);
8548
8549 unixctl_command_reply(conn, ds_cstr(&ds));
8550 ds_destroy(&ds);
8551 }
8552
8553 /* Dump the megaflow (facet) cache. This is useful to check the
8554 * correctness of flow wildcarding, since the same mechanism is used for
8555 * both xlate caching and kernel wildcarding.
8556 *
8557 * It's important to note that in the output the flow description uses
8558 * OpenFlow (OFP) ports, but the actions use datapath (ODP) ports.
8559 *
8560 * This command is only needed for advanced debugging, so it's not
8561 * documented in the man page. */
8562 static void
8563 ofproto_unixctl_dpif_dump_megaflows(struct unixctl_conn *conn,
8564 int argc OVS_UNUSED, const char *argv[],
8565 void *aux OVS_UNUSED)
8566 {
8567 struct ds ds = DS_EMPTY_INITIALIZER;
8568 const struct ofproto_dpif *ofproto;
8569 long long int now = time_msec();
8570 struct cls_cursor cursor;
8571 struct facet *facet;
8572
8573 ofproto = ofproto_dpif_lookup(argv[1]);
8574 if (!ofproto) {
8575 unixctl_command_reply_error(conn, "no such bridge");
8576 return;
8577 }
8578
8579 cls_cursor_init(&cursor, &ofproto->facets, NULL);
8580 CLS_CURSOR_FOR_EACH (facet, cr, &cursor) {
8581 cls_rule_format(&facet->cr, &ds);
8582 ds_put_cstr(&ds, ", ");
8583 ds_put_format(&ds, "n_subfacets:%zu, ", list_size(&facet->subfacets));
8584 ds_put_format(&ds, "used:%.3fs, ", (now - facet->used) / 1000.0);
8585 ds_put_cstr(&ds, "Datapath actions: ");
8586 format_odp_actions(&ds, facet->xout.odp_actions.data,
8587 facet->xout.odp_actions.size);
8588 ds_put_cstr(&ds, "\n");
8589 }
8590
8591 ds_chomp(&ds, '\n');
8592 unixctl_command_reply(conn, ds_cstr(&ds));
8593 ds_destroy(&ds);
8594 }
8595
8596 static void
8597 ofproto_unixctl_dpif_dump_flows(struct unixctl_conn *conn,
8598 int argc OVS_UNUSED, const char *argv[],
8599 void *aux OVS_UNUSED)
8600 {
8601 struct ds ds = DS_EMPTY_INITIALIZER;
8602 const struct ofproto_dpif *ofproto;
8603 struct subfacet *subfacet;
8604
8605 ofproto = ofproto_dpif_lookup(argv[1]);
8606 if (!ofproto) {
8607 unixctl_command_reply_error(conn, "no such bridge");
8608 return;
8609 }
8610
8611 update_stats(ofproto->backer);
8612
8613 HMAP_FOR_EACH (subfacet, hmap_node, &ofproto->backer->subfacets) {
8614 struct facet *facet = subfacet->facet;
8615
8616 if (ofproto_dpif_cast(facet->rule->up.ofproto) != ofproto) {
8617 continue;
8618 }
8619
8620 odp_flow_key_format(subfacet->key, subfacet->key_len, &ds);
8621
8622 ds_put_format(&ds, ", packets:%"PRIu64", bytes:%"PRIu64", used:",
8623 subfacet->dp_packet_count, subfacet->dp_byte_count);
8624 if (subfacet->used) {
8625 ds_put_format(&ds, "%.3fs",
8626 (time_msec() - subfacet->used) / 1000.0);
8627 } else {
8628 ds_put_format(&ds, "never");
8629 }
8630 if (subfacet->facet->tcp_flags) {
8631 ds_put_cstr(&ds, ", flags:");
8632 packet_format_tcp_flags(&ds, subfacet->facet->tcp_flags);
8633 }
8634
8635 ds_put_cstr(&ds, ", actions:");
8636 if (facet->xout.slow) {
8637 uint64_t slow_path_stub[128 / 8];
8638 const struct nlattr *actions;
8639 size_t actions_len;
8640
8641 compose_slow_path(ofproto, &facet->flow, facet->xout.slow,
8642 slow_path_stub, sizeof slow_path_stub,
8643 &actions, &actions_len);
8644 format_odp_actions(&ds, actions, actions_len);
8645 } else {
8646 format_odp_actions(&ds, facet->xout.odp_actions.data,
8647 facet->xout.odp_actions.size);
8648 }
8649 ds_put_char(&ds, '\n');
8650 }
8651
8652 unixctl_command_reply(conn, ds_cstr(&ds));
8653 ds_destroy(&ds);
8654 }
8655
8656 static void
8657 ofproto_unixctl_dpif_del_flows(struct unixctl_conn *conn,
8658 int argc OVS_UNUSED, const char *argv[],
8659 void *aux OVS_UNUSED)
8660 {
8661 struct ds ds = DS_EMPTY_INITIALIZER;
8662 struct ofproto_dpif *ofproto;
8663
8664 ofproto = ofproto_dpif_lookup(argv[1]);
8665 if (!ofproto) {
8666 unixctl_command_reply_error(conn, "no such bridge");
8667 return;
8668 }
8669
8670 flush(&ofproto->up);
8671
8672 unixctl_command_reply(conn, ds_cstr(&ds));
8673 ds_destroy(&ds);
8674 }
8675
8676 static void
8677 ofproto_dpif_unixctl_init(void)
8678 {
8679 static bool registered;
8680 if (registered) {
8681 return;
8682 }
8683 registered = true;
8684
8685 unixctl_command_register(
8686 "ofproto/trace",
8687 "[dp_name]|bridge odp_flow|br_flow [-generate|packet]",
8688 1, 3, ofproto_unixctl_trace, NULL);
8689 unixctl_command_register("fdb/flush", "[bridge]", 0, 1,
8690 ofproto_unixctl_fdb_flush, NULL);
8691 unixctl_command_register("fdb/show", "bridge", 1, 1,
8692 ofproto_unixctl_fdb_show, NULL);
8693 unixctl_command_register("ofproto/clog", "", 0, 0,
8694 ofproto_dpif_clog, NULL);
8695 unixctl_command_register("ofproto/unclog", "", 0, 0,
8696 ofproto_dpif_unclog, NULL);
8697 unixctl_command_register("ofproto/self-check", "[bridge]", 0, 1,
8698 ofproto_dpif_self_check, NULL);
8699 unixctl_command_register("dpif/dump-dps", "", 0, 0,
8700 ofproto_unixctl_dpif_dump_dps, NULL);
8701 unixctl_command_register("dpif/show", "", 0, 0, ofproto_unixctl_dpif_show,
8702 NULL);
8703 unixctl_command_register("dpif/dump-flows", "bridge", 1, 1,
8704 ofproto_unixctl_dpif_dump_flows, NULL);
8705 unixctl_command_register("dpif/del-flows", "bridge", 1, 1,
8706 ofproto_unixctl_dpif_del_flows, NULL);
8707 unixctl_command_register("dpif/dump-megaflows", "bridge", 1, 1,
8708 ofproto_unixctl_dpif_dump_megaflows, NULL);
8709 }
8710 \f
8711 /* Linux VLAN device support (e.g. "eth0.10" for VLAN 10.)
8712 *
8713 * This is deprecated. It is only for compatibility with broken device drivers
8714 * in old versions of Linux that do not properly support VLANs when VLAN
8715 * devices are not used. When broken device drivers are no longer in
8716 * widespread use, we will delete these interfaces. */
8717
8718 static int
8719 set_realdev(struct ofport *ofport_, uint16_t realdev_ofp_port, int vid)
8720 {
8721 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport_->ofproto);
8722 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
8723
8724 if (realdev_ofp_port == ofport->realdev_ofp_port
8725 && vid == ofport->vlandev_vid) {
8726 return 0;
8727 }
8728
8729 ofproto->backer->need_revalidate = REV_RECONFIGURE;
8730
8731 if (ofport->realdev_ofp_port) {
8732 vsp_remove(ofport);
8733 }
8734 if (realdev_ofp_port && ofport->bundle) {
8735 /* vlandevs are enslaved to their realdevs, so they are not allowed to
8736 * themselves be part of a bundle. */
8737 bundle_set(ofport->up.ofproto, ofport->bundle, NULL);
8738 }
8739
8740 ofport->realdev_ofp_port = realdev_ofp_port;
8741 ofport->vlandev_vid = vid;
8742
8743 if (realdev_ofp_port) {
8744 vsp_add(ofport, realdev_ofp_port, vid);
8745 }
8746
8747 return 0;
8748 }
8749
8750 static uint32_t
8751 hash_realdev_vid(uint16_t realdev_ofp_port, int vid)
8752 {
8753 return hash_2words(realdev_ofp_port, vid);
8754 }
8755
8756 /* Returns the OFP port number of the Linux VLAN device that corresponds to
8757 * 'vlan_tci' on the network device with port number 'realdev_ofp_port' in
8758 * 'struct ofport_dpif'. For example, given 'realdev_ofp_port' of eth0 and
8759 * 'vlan_tci' 9, it would return the port number of eth0.9.
8760 *
8761 * Unless VLAN splinters are enabled for port 'realdev_ofp_port', this
8762 * function just returns its 'realdev_ofp_port' argument. */
8763 static uint16_t
8764 vsp_realdev_to_vlandev(const struct ofproto_dpif *ofproto,
8765 uint16_t realdev_ofp_port, ovs_be16 vlan_tci)
8766 {
8767 if (!hmap_is_empty(&ofproto->realdev_vid_map)) {
8768 int vid = vlan_tci_to_vid(vlan_tci);
8769 const struct vlan_splinter *vsp;
8770
8771 HMAP_FOR_EACH_WITH_HASH (vsp, realdev_vid_node,
8772 hash_realdev_vid(realdev_ofp_port, vid),
8773 &ofproto->realdev_vid_map) {
8774 if (vsp->realdev_ofp_port == realdev_ofp_port
8775 && vsp->vid == vid) {
8776 return vsp->vlandev_ofp_port;
8777 }
8778 }
8779 }
8780 return realdev_ofp_port;
8781 }
8782
8783 static struct vlan_splinter *
8784 vlandev_find(const struct ofproto_dpif *ofproto, uint16_t vlandev_ofp_port)
8785 {
8786 struct vlan_splinter *vsp;
8787
8788 HMAP_FOR_EACH_WITH_HASH (vsp, vlandev_node, hash_int(vlandev_ofp_port, 0),
8789 &ofproto->vlandev_map) {
8790 if (vsp->vlandev_ofp_port == vlandev_ofp_port) {
8791 return vsp;
8792 }
8793 }
8794
8795 return NULL;
8796 }
8797
8798 /* Returns the OpenFlow port number of the "real" device underlying the Linux
8799 * VLAN device with OpenFlow port number 'vlandev_ofp_port' and stores the
8800 * VLAN VID of the Linux VLAN device in '*vid'. For example, given
8801 * 'vlandev_ofp_port' of eth0.9, it would return the OpenFlow port number of
8802 * eth0 and store 9 in '*vid'.
8803 *
8804 * Returns 0 and does not modify '*vid' if 'vlandev_ofp_port' is not a Linux
8805 * VLAN device. Unless VLAN splinters are enabled, this is what this function
8806 * always does.*/
8807 static uint16_t
8808 vsp_vlandev_to_realdev(const struct ofproto_dpif *ofproto,
8809 uint16_t vlandev_ofp_port, int *vid)
8810 {
8811 if (!hmap_is_empty(&ofproto->vlandev_map)) {
8812 const struct vlan_splinter *vsp;
8813
8814 vsp = vlandev_find(ofproto, vlandev_ofp_port);
8815 if (vsp) {
8816 if (vid) {
8817 *vid = vsp->vid;
8818 }
8819 return vsp->realdev_ofp_port;
8820 }
8821 }
8822 return 0;
8823 }
8824
8825 /* Given 'flow', a flow representing a packet received on 'ofproto', checks
8826 * whether 'flow->in_port' represents a Linux VLAN device. If so, changes
8827 * 'flow->in_port' to the "real" device backing the VLAN device, sets
8828 * 'flow->vlan_tci' to the VLAN VID, and returns true. Otherwise (which is
8829 * always the case unless VLAN splinters are enabled), returns false without
8830 * making any changes. */
8831 static bool
8832 vsp_adjust_flow(const struct ofproto_dpif *ofproto, struct flow *flow)
8833 {
8834 uint16_t realdev;
8835 int vid;
8836
8837 realdev = vsp_vlandev_to_realdev(ofproto, flow->in_port, &vid);
8838 if (!realdev) {
8839 return false;
8840 }
8841
8842 /* Cause the flow to be processed as if it came in on the real device with
8843 * the VLAN device's VLAN ID. */
8844 flow->in_port = realdev;
8845 flow->vlan_tci = htons((vid & VLAN_VID_MASK) | VLAN_CFI);
8846 return true;
8847 }
8848
8849 static void
8850 vsp_remove(struct ofport_dpif *port)
8851 {
8852 struct ofproto_dpif *ofproto = ofproto_dpif_cast(port->up.ofproto);
8853 struct vlan_splinter *vsp;
8854
8855 vsp = vlandev_find(ofproto, port->up.ofp_port);
8856 if (vsp) {
8857 hmap_remove(&ofproto->vlandev_map, &vsp->vlandev_node);
8858 hmap_remove(&ofproto->realdev_vid_map, &vsp->realdev_vid_node);
8859 free(vsp);
8860
8861 port->realdev_ofp_port = 0;
8862 } else {
8863 VLOG_ERR("missing vlan device record");
8864 }
8865 }
8866
8867 static void
8868 vsp_add(struct ofport_dpif *port, uint16_t realdev_ofp_port, int vid)
8869 {
8870 struct ofproto_dpif *ofproto = ofproto_dpif_cast(port->up.ofproto);
8871
8872 if (!vsp_vlandev_to_realdev(ofproto, port->up.ofp_port, NULL)
8873 && (vsp_realdev_to_vlandev(ofproto, realdev_ofp_port, htons(vid))
8874 == realdev_ofp_port)) {
8875 struct vlan_splinter *vsp;
8876
8877 vsp = xmalloc(sizeof *vsp);
8878 hmap_insert(&ofproto->vlandev_map, &vsp->vlandev_node,
8879 hash_int(port->up.ofp_port, 0));
8880 hmap_insert(&ofproto->realdev_vid_map, &vsp->realdev_vid_node,
8881 hash_realdev_vid(realdev_ofp_port, vid));
8882 vsp->realdev_ofp_port = realdev_ofp_port;
8883 vsp->vlandev_ofp_port = port->up.ofp_port;
8884 vsp->vid = vid;
8885
8886 port->realdev_ofp_port = realdev_ofp_port;
8887 } else {
8888 VLOG_ERR("duplicate vlan device record");
8889 }
8890 }
8891
8892 static uint32_t
8893 ofp_port_to_odp_port(const struct ofproto_dpif *ofproto, uint16_t ofp_port)
8894 {
8895 const struct ofport_dpif *ofport = get_ofp_port(ofproto, ofp_port);
8896 return ofport ? ofport->odp_port : OVSP_NONE;
8897 }
8898
8899 static struct ofport_dpif *
8900 odp_port_to_ofport(const struct dpif_backer *backer, uint32_t odp_port)
8901 {
8902 struct ofport_dpif *port;
8903
8904 HMAP_FOR_EACH_IN_BUCKET (port, odp_port_node,
8905 hash_int(odp_port, 0),
8906 &backer->odp_to_ofport_map) {
8907 if (port->odp_port == odp_port) {
8908 return port;
8909 }
8910 }
8911
8912 return NULL;
8913 }
8914
8915 static uint16_t
8916 odp_port_to_ofp_port(const struct ofproto_dpif *ofproto, uint32_t odp_port)
8917 {
8918 struct ofport_dpif *port;
8919
8920 port = odp_port_to_ofport(ofproto->backer, odp_port);
8921 if (port && &ofproto->up == port->up.ofproto) {
8922 return port->up.ofp_port;
8923 } else {
8924 return OFPP_NONE;
8925 }
8926 }
8927
8928 /* Compute exponentially weighted moving average, adding 'new' as the newest,
8929 * most heavily weighted element. 'base' designates the rate of decay: after
8930 * 'base' further updates, 'new''s weight in the EWMA decays to about 1/e
8931 * (about .37). */
8932 static void
8933 exp_mavg(double *avg, int base, double new)
8934 {
8935 *avg = (*avg * (base - 1) + new) / base;
8936 }
8937
8938 static void
8939 update_moving_averages(struct dpif_backer *backer)
8940 {
8941 const int min_ms = 60 * 1000; /* milliseconds in one minute. */
8942 long long int minutes = (time_msec() - backer->created) / min_ms;
8943
8944 if (minutes > 0) {
8945 backer->lifetime.add_rate = (double) backer->total_subfacet_add_count
8946 / minutes;
8947 backer->lifetime.del_rate = (double) backer->total_subfacet_del_count
8948 / minutes;
8949 } else {
8950 backer->lifetime.add_rate = 0.0;
8951 backer->lifetime.del_rate = 0.0;
8952 }
8953
8954 /* Update hourly averages on the minute boundaries. */
8955 if (time_msec() - backer->last_minute >= min_ms) {
8956 exp_mavg(&backer->hourly.add_rate, 60, backer->subfacet_add_count);
8957 exp_mavg(&backer->hourly.del_rate, 60, backer->subfacet_del_count);
8958
8959 /* Update daily averages on the hour boundaries. */
8960 if ((backer->last_minute - backer->created) / min_ms % 60 == 59) {
8961 exp_mavg(&backer->daily.add_rate, 24, backer->hourly.add_rate);
8962 exp_mavg(&backer->daily.del_rate, 24, backer->hourly.del_rate);
8963 }
8964
8965 backer->total_subfacet_add_count += backer->subfacet_add_count;
8966 backer->total_subfacet_del_count += backer->subfacet_del_count;
8967 backer->subfacet_add_count = 0;
8968 backer->subfacet_del_count = 0;
8969 backer->last_minute += min_ms;
8970 }
8971 }
8972
8973 const struct ofproto_class ofproto_dpif_class = {
8974 init,
8975 enumerate_types,
8976 enumerate_names,
8977 del,
8978 port_open_type,
8979 type_run,
8980 type_run_fast,
8981 type_wait,
8982 alloc,
8983 construct,
8984 destruct,
8985 dealloc,
8986 run,
8987 run_fast,
8988 wait,
8989 get_memory_usage,
8990 flush,
8991 get_features,
8992 get_tables,
8993 port_alloc,
8994 port_construct,
8995 port_destruct,
8996 port_dealloc,
8997 port_modified,
8998 port_reconfigured,
8999 port_query_by_name,
9000 port_add,
9001 port_del,
9002 port_get_stats,
9003 port_dump_start,
9004 port_dump_next,
9005 port_dump_done,
9006 port_poll,
9007 port_poll_wait,
9008 port_is_lacp_current,
9009 NULL, /* rule_choose_table */
9010 rule_alloc,
9011 rule_construct,
9012 rule_destruct,
9013 rule_dealloc,
9014 rule_get_stats,
9015 rule_execute,
9016 rule_modify_actions,
9017 set_frag_handling,
9018 packet_out,
9019 set_netflow,
9020 get_netflow_ids,
9021 set_sflow,
9022 set_ipfix,
9023 set_cfm,
9024 get_cfm_status,
9025 set_bfd,
9026 get_bfd_status,
9027 set_stp,
9028 get_stp_status,
9029 set_stp_port,
9030 get_stp_port_status,
9031 set_queues,
9032 bundle_set,
9033 bundle_remove,
9034 mirror_set,
9035 mirror_get_stats,
9036 set_flood_vlans,
9037 is_mirror_output_bundle,
9038 forward_bpdu_changed,
9039 set_mac_table_config,
9040 set_realdev,
9041 };