]> git.proxmox.com Git - ovs.git/blob - ofproto/ofproto-dpif.c
Replace most uses of assert by ovs_assert.
[ovs.git] / ofproto / ofproto-dpif.c
1 /*
2 * Copyright (c) 2009, 2010, 2011, 2012, 2013 Nicira, Inc.
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at:
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <config.h>
18
19 #include "ofproto/ofproto-provider.h"
20
21 #include <errno.h>
22
23 #include "autopath.h"
24 #include "bond.h"
25 #include "bundle.h"
26 #include "byte-order.h"
27 #include "connmgr.h"
28 #include "coverage.h"
29 #include "cfm.h"
30 #include "dpif.h"
31 #include "dynamic-string.h"
32 #include "fail-open.h"
33 #include "hmapx.h"
34 #include "lacp.h"
35 #include "learn.h"
36 #include "mac-learning.h"
37 #include "meta-flow.h"
38 #include "multipath.h"
39 #include "netdev.h"
40 #include "netlink.h"
41 #include "nx-match.h"
42 #include "odp-util.h"
43 #include "ofp-util.h"
44 #include "ofpbuf.h"
45 #include "ofp-actions.h"
46 #include "ofp-parse.h"
47 #include "ofp-print.h"
48 #include "ofproto-dpif-governor.h"
49 #include "ofproto-dpif-sflow.h"
50 #include "poll-loop.h"
51 #include "simap.h"
52 #include "smap.h"
53 #include "timer.h"
54 #include "unaligned.h"
55 #include "unixctl.h"
56 #include "vlan-bitmap.h"
57 #include "vlog.h"
58
59 VLOG_DEFINE_THIS_MODULE(ofproto_dpif);
60
61 COVERAGE_DEFINE(ofproto_dpif_expired);
62 COVERAGE_DEFINE(ofproto_dpif_xlate);
63 COVERAGE_DEFINE(facet_changed_rule);
64 COVERAGE_DEFINE(facet_revalidate);
65 COVERAGE_DEFINE(facet_unexpected);
66 COVERAGE_DEFINE(facet_suppress);
67
68 /* Maximum depth of flow table recursion (due to resubmit actions) in a
69 * flow translation. */
70 #define MAX_RESUBMIT_RECURSION 64
71
72 /* Number of implemented OpenFlow tables. */
73 enum { N_TABLES = 255 };
74 enum { TBL_INTERNAL = N_TABLES - 1 }; /* Used for internal hidden rules. */
75 BUILD_ASSERT_DECL(N_TABLES >= 2 && N_TABLES <= 255);
76
77 struct ofport_dpif;
78 struct ofproto_dpif;
79 struct flow_miss;
80
81 struct rule_dpif {
82 struct rule up;
83
84 /* These statistics:
85 *
86 * - Do include packets and bytes from facets that have been deleted or
87 * whose own statistics have been folded into the rule.
88 *
89 * - Do include packets and bytes sent "by hand" that were accounted to
90 * the rule without any facet being involved (this is a rare corner
91 * case in rule_execute()).
92 *
93 * - Do not include packet or bytes that can be obtained from any facet's
94 * packet_count or byte_count member or that can be obtained from the
95 * datapath by, e.g., dpif_flow_get() for any subfacet.
96 */
97 uint64_t packet_count; /* Number of packets received. */
98 uint64_t byte_count; /* Number of bytes received. */
99
100 tag_type tag; /* Caches rule_calculate_tag() result. */
101
102 struct list facets; /* List of "struct facet"s. */
103 };
104
105 static struct rule_dpif *rule_dpif_cast(const struct rule *rule)
106 {
107 return rule ? CONTAINER_OF(rule, struct rule_dpif, up) : NULL;
108 }
109
110 static struct rule_dpif *rule_dpif_lookup(struct ofproto_dpif *,
111 const struct flow *);
112 static struct rule_dpif *rule_dpif_lookup__(struct ofproto_dpif *,
113 const struct flow *,
114 uint8_t table);
115 static struct rule_dpif *rule_dpif_miss_rule(struct ofproto_dpif *ofproto,
116 const struct flow *flow);
117
118 static void rule_credit_stats(struct rule_dpif *,
119 const struct dpif_flow_stats *);
120 static void flow_push_stats(struct rule_dpif *, const struct flow *,
121 const struct dpif_flow_stats *);
122 static tag_type rule_calculate_tag(const struct flow *,
123 const struct minimask *, uint32_t basis);
124 static void rule_invalidate(const struct rule_dpif *);
125
126 #define MAX_MIRRORS 32
127 typedef uint32_t mirror_mask_t;
128 #define MIRROR_MASK_C(X) UINT32_C(X)
129 BUILD_ASSERT_DECL(sizeof(mirror_mask_t) * CHAR_BIT >= MAX_MIRRORS);
130 struct ofmirror {
131 struct ofproto_dpif *ofproto; /* Owning ofproto. */
132 size_t idx; /* In ofproto's "mirrors" array. */
133 void *aux; /* Key supplied by ofproto's client. */
134 char *name; /* Identifier for log messages. */
135
136 /* Selection criteria. */
137 struct hmapx srcs; /* Contains "struct ofbundle *"s. */
138 struct hmapx dsts; /* Contains "struct ofbundle *"s. */
139 unsigned long *vlans; /* Bitmap of chosen VLANs, NULL selects all. */
140
141 /* Output (exactly one of out == NULL and out_vlan == -1 is true). */
142 struct ofbundle *out; /* Output port or NULL. */
143 int out_vlan; /* Output VLAN or -1. */
144 mirror_mask_t dup_mirrors; /* Bitmap of mirrors with the same output. */
145
146 /* Counters. */
147 int64_t packet_count; /* Number of packets sent. */
148 int64_t byte_count; /* Number of bytes sent. */
149 };
150
151 static void mirror_destroy(struct ofmirror *);
152 static void update_mirror_stats(struct ofproto_dpif *ofproto,
153 mirror_mask_t mirrors,
154 uint64_t packets, uint64_t bytes);
155
156 struct ofbundle {
157 struct hmap_node hmap_node; /* In struct ofproto's "bundles" hmap. */
158 struct ofproto_dpif *ofproto; /* Owning ofproto. */
159 void *aux; /* Key supplied by ofproto's client. */
160 char *name; /* Identifier for log messages. */
161
162 /* Configuration. */
163 struct list ports; /* Contains "struct ofport"s. */
164 enum port_vlan_mode vlan_mode; /* VLAN mode */
165 int vlan; /* -1=trunk port, else a 12-bit VLAN ID. */
166 unsigned long *trunks; /* Bitmap of trunked VLANs, if 'vlan' == -1.
167 * NULL if all VLANs are trunked. */
168 struct lacp *lacp; /* LACP if LACP is enabled, otherwise NULL. */
169 struct bond *bond; /* Nonnull iff more than one port. */
170 bool use_priority_tags; /* Use 802.1p tag for frames in VLAN 0? */
171
172 /* Status. */
173 bool floodable; /* True if no port has OFPUTIL_PC_NO_FLOOD set. */
174
175 /* Port mirroring info. */
176 mirror_mask_t src_mirrors; /* Mirrors triggered when packet received. */
177 mirror_mask_t dst_mirrors; /* Mirrors triggered when packet sent. */
178 mirror_mask_t mirror_out; /* Mirrors that output to this bundle. */
179 };
180
181 static void bundle_remove(struct ofport *);
182 static void bundle_update(struct ofbundle *);
183 static void bundle_destroy(struct ofbundle *);
184 static void bundle_del_port(struct ofport_dpif *);
185 static void bundle_run(struct ofbundle *);
186 static void bundle_wait(struct ofbundle *);
187 static struct ofbundle *lookup_input_bundle(const struct ofproto_dpif *,
188 uint16_t in_port, bool warn,
189 struct ofport_dpif **in_ofportp);
190
191 /* A controller may use OFPP_NONE as the ingress port to indicate that
192 * it did not arrive on a "real" port. 'ofpp_none_bundle' exists for
193 * when an input bundle is needed for validation (e.g., mirroring or
194 * OFPP_NORMAL processing). It is not connected to an 'ofproto' or have
195 * any 'port' structs, so care must be taken when dealing with it. */
196 static struct ofbundle ofpp_none_bundle = {
197 .name = "OFPP_NONE",
198 .vlan_mode = PORT_VLAN_TRUNK
199 };
200
201 static void stp_run(struct ofproto_dpif *ofproto);
202 static void stp_wait(struct ofproto_dpif *ofproto);
203 static int set_stp_port(struct ofport *,
204 const struct ofproto_port_stp_settings *);
205
206 static bool ofbundle_includes_vlan(const struct ofbundle *, uint16_t vlan);
207
208 struct action_xlate_ctx {
209 /* action_xlate_ctx_init() initializes these members. */
210
211 /* The ofproto. */
212 struct ofproto_dpif *ofproto;
213
214 /* Flow to which the OpenFlow actions apply. xlate_actions() will modify
215 * this flow when actions change header fields. */
216 struct flow flow;
217
218 /* The packet corresponding to 'flow', or a null pointer if we are
219 * revalidating without a packet to refer to. */
220 const struct ofpbuf *packet;
221
222 /* Should OFPP_NORMAL update the MAC learning table? Should "learn"
223 * actions update the flow table?
224 *
225 * We want to update these tables if we are actually processing a packet,
226 * or if we are accounting for packets that the datapath has processed, but
227 * not if we are just revalidating. */
228 bool may_learn;
229
230 /* The rule that we are currently translating, or NULL. */
231 struct rule_dpif *rule;
232
233 /* Union of the set of TCP flags seen so far in this flow. (Used only by
234 * NXAST_FIN_TIMEOUT. Set to zero to avoid updating updating rules'
235 * timeouts.) */
236 uint8_t tcp_flags;
237
238 /* If nonnull, flow translation calls this function just before executing a
239 * resubmit or OFPP_TABLE action. In addition, disables logging of traces
240 * when the recursion depth is exceeded.
241 *
242 * 'rule' is the rule being submitted into. It will be null if the
243 * resubmit or OFPP_TABLE action didn't find a matching rule.
244 *
245 * This is normally null so the client has to set it manually after
246 * calling action_xlate_ctx_init(). */
247 void (*resubmit_hook)(struct action_xlate_ctx *, struct rule_dpif *rule);
248
249 /* If nonnull, flow translation calls this function to report some
250 * significant decision, e.g. to explain why OFPP_NORMAL translation
251 * dropped a packet. */
252 void (*report_hook)(struct action_xlate_ctx *, const char *s);
253
254 /* If nonnull, flow translation credits the specified statistics to each
255 * rule reached through a resubmit or OFPP_TABLE action.
256 *
257 * This is normally null so the client has to set it manually after
258 * calling action_xlate_ctx_init(). */
259 const struct dpif_flow_stats *resubmit_stats;
260
261 /* xlate_actions() initializes and uses these members. The client might want
262 * to look at them after it returns. */
263
264 struct ofpbuf *odp_actions; /* Datapath actions. */
265 tag_type tags; /* Tags associated with actions. */
266 enum slow_path_reason slow; /* 0 if fast path may be used. */
267 bool has_learn; /* Actions include NXAST_LEARN? */
268 bool has_normal; /* Actions output to OFPP_NORMAL? */
269 bool has_fin_timeout; /* Actions include NXAST_FIN_TIMEOUT? */
270 uint16_t nf_output_iface; /* Output interface index for NetFlow. */
271 mirror_mask_t mirrors; /* Bitmap of associated mirrors. */
272
273 /* xlate_actions() initializes and uses these members, but the client has no
274 * reason to look at them. */
275
276 int recurse; /* Recursion level, via xlate_table_action. */
277 bool max_resubmit_trigger; /* Recursed too deeply during translation. */
278 struct flow base_flow; /* Flow at the last commit. */
279 uint32_t orig_skb_priority; /* Priority when packet arrived. */
280 uint8_t table_id; /* OpenFlow table ID where flow was found. */
281 uint32_t sflow_n_outputs; /* Number of output ports. */
282 uint32_t sflow_odp_port; /* Output port for composing sFlow action. */
283 uint16_t user_cookie_offset;/* Used for user_action_cookie fixup. */
284 bool exit; /* No further actions should be processed. */
285 struct flow orig_flow; /* Copy of original flow. */
286 };
287
288 static void action_xlate_ctx_init(struct action_xlate_ctx *,
289 struct ofproto_dpif *, const struct flow *,
290 ovs_be16 initial_tci, struct rule_dpif *,
291 uint8_t tcp_flags, const struct ofpbuf *);
292 static void xlate_actions(struct action_xlate_ctx *,
293 const struct ofpact *ofpacts, size_t ofpacts_len,
294 struct ofpbuf *odp_actions);
295 static void xlate_actions_for_side_effects(struct action_xlate_ctx *,
296 const struct ofpact *ofpacts,
297 size_t ofpacts_len);
298
299 static size_t put_userspace_action(const struct ofproto_dpif *,
300 struct ofpbuf *odp_actions,
301 const struct flow *,
302 const union user_action_cookie *);
303
304 static void compose_slow_path(const struct ofproto_dpif *, const struct flow *,
305 enum slow_path_reason,
306 uint64_t *stub, size_t stub_size,
307 const struct nlattr **actionsp,
308 size_t *actions_lenp);
309
310 static void xlate_report(struct action_xlate_ctx *ctx, const char *s);
311
312 /* A subfacet (see "struct subfacet" below) has three possible installation
313 * states:
314 *
315 * - SF_NOT_INSTALLED: Not installed in the datapath. This will only be the
316 * case just after the subfacet is created, just before the subfacet is
317 * destroyed, or if the datapath returns an error when we try to install a
318 * subfacet.
319 *
320 * - SF_FAST_PATH: The subfacet's actions are installed in the datapath.
321 *
322 * - SF_SLOW_PATH: An action that sends every packet for the subfacet through
323 * ofproto_dpif is installed in the datapath.
324 */
325 enum subfacet_path {
326 SF_NOT_INSTALLED, /* No datapath flow for this subfacet. */
327 SF_FAST_PATH, /* Full actions are installed. */
328 SF_SLOW_PATH, /* Send-to-userspace action is installed. */
329 };
330
331 static const char *subfacet_path_to_string(enum subfacet_path);
332
333 /* A dpif flow and actions associated with a facet.
334 *
335 * See also the large comment on struct facet. */
336 struct subfacet {
337 /* Owners. */
338 struct hmap_node hmap_node; /* In struct ofproto_dpif 'subfacets' list. */
339 struct list list_node; /* In struct facet's 'facets' list. */
340 struct facet *facet; /* Owning facet. */
341
342 /* Key.
343 *
344 * To save memory in the common case, 'key' is NULL if 'key_fitness' is
345 * ODP_FIT_PERFECT, that is, odp_flow_key_from_flow() can accurately
346 * regenerate the ODP flow key from ->facet->flow. */
347 enum odp_key_fitness key_fitness;
348 struct nlattr *key;
349 int key_len;
350
351 long long int used; /* Time last used; time created if not used. */
352
353 uint64_t dp_packet_count; /* Last known packet count in the datapath. */
354 uint64_t dp_byte_count; /* Last known byte count in the datapath. */
355
356 /* Datapath actions.
357 *
358 * These should be essentially identical for every subfacet in a facet, but
359 * may differ in trivial ways due to VLAN splinters. */
360 size_t actions_len; /* Number of bytes in actions[]. */
361 struct nlattr *actions; /* Datapath actions. */
362
363 enum slow_path_reason slow; /* 0 if fast path may be used. */
364 enum subfacet_path path; /* Installed in datapath? */
365
366 /* This value is normally the same as ->facet->flow.vlan_tci. Only VLAN
367 * splinters can cause it to differ. This value should be removed when
368 * the VLAN splinters feature is no longer needed. */
369 ovs_be16 initial_tci; /* Initial VLAN TCI value. */
370
371 /* Datapath port the packet arrived on. This is needed to remove
372 * flows for ports that are no longer part of the bridge. Since the
373 * flow definition only has the OpenFlow port number and the port is
374 * no longer part of the bridge, we can't determine the datapath port
375 * number needed to delete the flow from the datapath. */
376 uint32_t odp_in_port;
377 };
378
379 #define SUBFACET_DESTROY_MAX_BATCH 50
380
381 static struct subfacet *subfacet_create(struct facet *, struct flow_miss *miss,
382 long long int now);
383 static struct subfacet *subfacet_find(struct ofproto_dpif *,
384 const struct nlattr *key, size_t key_len,
385 uint32_t key_hash,
386 const struct flow *flow);
387 static void subfacet_destroy(struct subfacet *);
388 static void subfacet_destroy__(struct subfacet *);
389 static void subfacet_destroy_batch(struct ofproto_dpif *,
390 struct subfacet **, int n);
391 static void subfacet_get_key(struct subfacet *, struct odputil_keybuf *,
392 struct ofpbuf *key);
393 static void subfacet_reset_dp_stats(struct subfacet *,
394 struct dpif_flow_stats *);
395 static void subfacet_update_time(struct subfacet *, long long int used);
396 static void subfacet_update_stats(struct subfacet *,
397 const struct dpif_flow_stats *);
398 static void subfacet_make_actions(struct subfacet *,
399 const struct ofpbuf *packet,
400 struct ofpbuf *odp_actions);
401 static int subfacet_install(struct subfacet *,
402 const struct nlattr *actions, size_t actions_len,
403 struct dpif_flow_stats *, enum slow_path_reason);
404 static void subfacet_uninstall(struct subfacet *);
405
406 static enum subfacet_path subfacet_want_path(enum slow_path_reason);
407
408 /* An exact-match instantiation of an OpenFlow flow.
409 *
410 * A facet associates a "struct flow", which represents the Open vSwitch
411 * userspace idea of an exact-match flow, with one or more subfacets. Each
412 * subfacet tracks the datapath's idea of the exact-match flow equivalent to
413 * the facet. When the kernel module (or other dpif implementation) and Open
414 * vSwitch userspace agree on the definition of a flow key, there is exactly
415 * one subfacet per facet. If the dpif implementation supports more-specific
416 * flow matching than userspace, however, a facet can have more than one
417 * subfacet, each of which corresponds to some distinction in flow that
418 * userspace simply doesn't understand.
419 *
420 * Flow expiration works in terms of subfacets, so a facet must have at least
421 * one subfacet or it will never expire, leaking memory. */
422 struct facet {
423 /* Owners. */
424 struct hmap_node hmap_node; /* In owning ofproto's 'facets' hmap. */
425 struct list list_node; /* In owning rule's 'facets' list. */
426 struct rule_dpif *rule; /* Owning rule. */
427
428 /* Owned data. */
429 struct list subfacets;
430 long long int used; /* Time last used; time created if not used. */
431
432 /* Key. */
433 struct flow flow;
434
435 /* These statistics:
436 *
437 * - Do include packets and bytes sent "by hand", e.g. with
438 * dpif_execute().
439 *
440 * - Do include packets and bytes that were obtained from the datapath
441 * when a subfacet's statistics were reset (e.g. dpif_flow_put() with
442 * DPIF_FP_ZERO_STATS).
443 *
444 * - Do not include packets or bytes that can be obtained from the
445 * datapath for any existing subfacet.
446 */
447 uint64_t packet_count; /* Number of packets received. */
448 uint64_t byte_count; /* Number of bytes received. */
449
450 /* Resubmit statistics. */
451 uint64_t prev_packet_count; /* Number of packets from last stats push. */
452 uint64_t prev_byte_count; /* Number of bytes from last stats push. */
453 long long int prev_used; /* Used time from last stats push. */
454
455 /* Accounting. */
456 uint64_t accounted_bytes; /* Bytes processed by facet_account(). */
457 struct netflow_flow nf_flow; /* Per-flow NetFlow tracking data. */
458 uint8_t tcp_flags; /* TCP flags seen for this 'rule'. */
459
460 /* Properties of datapath actions.
461 *
462 * Every subfacet has its own actions because actions can differ slightly
463 * between splintered and non-splintered subfacets due to the VLAN tag
464 * being initially different (present vs. absent). All of them have these
465 * properties in common so we just store one copy of them here. */
466 bool has_learn; /* Actions include NXAST_LEARN? */
467 bool has_normal; /* Actions output to OFPP_NORMAL? */
468 bool has_fin_timeout; /* Actions include NXAST_FIN_TIMEOUT? */
469 tag_type tags; /* Tags that would require revalidation. */
470 mirror_mask_t mirrors; /* Bitmap of dependent mirrors. */
471
472 /* Storage for a single subfacet, to reduce malloc() time and space
473 * overhead. (A facet always has at least one subfacet and in the common
474 * case has exactly one subfacet.) */
475 struct subfacet one_subfacet;
476 };
477
478 static struct facet *facet_create(struct rule_dpif *,
479 const struct flow *, uint32_t hash);
480 static void facet_remove(struct facet *);
481 static void facet_free(struct facet *);
482
483 static struct facet *facet_find(struct ofproto_dpif *,
484 const struct flow *, uint32_t hash);
485 static struct facet *facet_lookup_valid(struct ofproto_dpif *,
486 const struct flow *, uint32_t hash);
487 static void facet_revalidate(struct facet *);
488 static bool facet_check_consistency(struct facet *);
489
490 static void facet_flush_stats(struct facet *);
491
492 static void facet_update_time(struct facet *, long long int used);
493 static void facet_reset_counters(struct facet *);
494 static void facet_push_stats(struct facet *);
495 static void facet_learn(struct facet *);
496 static void facet_account(struct facet *);
497
498 static bool facet_is_controller_flow(struct facet *);
499
500 struct ofport_dpif {
501 struct hmap_node odp_port_node; /* In dpif_backer's "odp_to_ofport_map". */
502 struct ofport up;
503
504 uint32_t odp_port;
505 struct ofbundle *bundle; /* Bundle that contains this port, if any. */
506 struct list bundle_node; /* In struct ofbundle's "ports" list. */
507 struct cfm *cfm; /* Connectivity Fault Management, if any. */
508 tag_type tag; /* Tag associated with this port. */
509 uint32_t bond_stable_id; /* stable_id to use as bond slave, or 0. */
510 bool may_enable; /* May be enabled in bonds. */
511 long long int carrier_seq; /* Carrier status changes. */
512
513 /* Spanning tree. */
514 struct stp_port *stp_port; /* Spanning Tree Protocol, if any. */
515 enum stp_state stp_state; /* Always STP_DISABLED if STP not in use. */
516 long long int stp_state_entered;
517
518 struct hmap priorities; /* Map of attached 'priority_to_dscp's. */
519
520 /* Linux VLAN device support (e.g. "eth0.10" for VLAN 10.)
521 *
522 * This is deprecated. It is only for compatibility with broken device
523 * drivers in old versions of Linux that do not properly support VLANs when
524 * VLAN devices are not used. When broken device drivers are no longer in
525 * widespread use, we will delete these interfaces. */
526 uint16_t realdev_ofp_port;
527 int vlandev_vid;
528 };
529
530 /* Node in 'ofport_dpif''s 'priorities' map. Used to maintain a map from
531 * 'priority' (the datapath's term for QoS queue) to the dscp bits which all
532 * traffic egressing the 'ofport' with that priority should be marked with. */
533 struct priority_to_dscp {
534 struct hmap_node hmap_node; /* Node in 'ofport_dpif''s 'priorities' map. */
535 uint32_t priority; /* Priority of this queue (see struct flow). */
536
537 uint8_t dscp; /* DSCP bits to mark outgoing traffic with. */
538 };
539
540 /* Linux VLAN device support (e.g. "eth0.10" for VLAN 10.)
541 *
542 * This is deprecated. It is only for compatibility with broken device drivers
543 * in old versions of Linux that do not properly support VLANs when VLAN
544 * devices are not used. When broken device drivers are no longer in
545 * widespread use, we will delete these interfaces. */
546 struct vlan_splinter {
547 struct hmap_node realdev_vid_node;
548 struct hmap_node vlandev_node;
549 uint16_t realdev_ofp_port;
550 uint16_t vlandev_ofp_port;
551 int vid;
552 };
553
554 static uint32_t vsp_realdev_to_vlandev(const struct ofproto_dpif *,
555 uint32_t realdev, ovs_be16 vlan_tci);
556 static bool vsp_adjust_flow(const struct ofproto_dpif *, struct flow *);
557 static void vsp_remove(struct ofport_dpif *);
558 static void vsp_add(struct ofport_dpif *, uint16_t realdev_ofp_port, int vid);
559
560 static uint32_t ofp_port_to_odp_port(const struct ofproto_dpif *,
561 uint16_t ofp_port);
562 static uint16_t odp_port_to_ofp_port(const struct ofproto_dpif *,
563 uint32_t odp_port);
564
565 static struct ofport_dpif *
566 ofport_dpif_cast(const struct ofport *ofport)
567 {
568 ovs_assert(ofport->ofproto->ofproto_class == &ofproto_dpif_class);
569 return ofport ? CONTAINER_OF(ofport, struct ofport_dpif, up) : NULL;
570 }
571
572 static void port_run(struct ofport_dpif *);
573 static void port_run_fast(struct ofport_dpif *);
574 static void port_wait(struct ofport_dpif *);
575 static int set_cfm(struct ofport *, const struct cfm_settings *);
576 static void ofport_clear_priorities(struct ofport_dpif *);
577
578 struct dpif_completion {
579 struct list list_node;
580 struct ofoperation *op;
581 };
582
583 /* Extra information about a classifier table.
584 * Currently used just for optimized flow revalidation. */
585 struct table_dpif {
586 /* If either of these is nonnull, then this table has a form that allows
587 * flows to be tagged to avoid revalidating most flows for the most common
588 * kinds of flow table changes. */
589 struct cls_table *catchall_table; /* Table that wildcards all fields. */
590 struct cls_table *other_table; /* Table with any other wildcard set. */
591 uint32_t basis; /* Keeps each table's tags separate. */
592 };
593
594 /* Reasons that we might need to revalidate every facet, and corresponding
595 * coverage counters.
596 *
597 * A value of 0 means that there is no need to revalidate.
598 *
599 * It would be nice to have some cleaner way to integrate with coverage
600 * counters, but with only a few reasons I guess this is good enough for
601 * now. */
602 enum revalidate_reason {
603 REV_RECONFIGURE = 1, /* Switch configuration changed. */
604 REV_STP, /* Spanning tree protocol port status change. */
605 REV_PORT_TOGGLED, /* Port enabled or disabled by CFM, LACP, ...*/
606 REV_FLOW_TABLE, /* Flow table changed. */
607 REV_INCONSISTENCY /* Facet self-check failed. */
608 };
609 COVERAGE_DEFINE(rev_reconfigure);
610 COVERAGE_DEFINE(rev_stp);
611 COVERAGE_DEFINE(rev_port_toggled);
612 COVERAGE_DEFINE(rev_flow_table);
613 COVERAGE_DEFINE(rev_inconsistency);
614
615 /* All datapaths of a given type share a single dpif backer instance. */
616 struct dpif_backer {
617 char *type;
618 int refcount;
619 struct dpif *dpif;
620 struct timer next_expiration;
621 struct hmap odp_to_ofport_map; /* ODP port to ofport mapping. */
622 };
623
624 /* All existing ofproto_backer instances, indexed by ofproto->up.type. */
625 static struct shash all_dpif_backers = SHASH_INITIALIZER(&all_dpif_backers);
626
627 static struct ofport_dpif *
628 odp_port_to_ofport(const struct dpif_backer *, uint32_t odp_port);
629
630 struct ofproto_dpif {
631 struct hmap_node all_ofproto_dpifs_node; /* In 'all_ofproto_dpifs'. */
632 struct ofproto up;
633 struct dpif_backer *backer;
634
635 /* Special OpenFlow rules. */
636 struct rule_dpif *miss_rule; /* Sends flow table misses to controller. */
637 struct rule_dpif *no_packet_in_rule; /* Drops flow table misses. */
638
639 /* Statistics. */
640 uint64_t n_matches;
641
642 /* Bridging. */
643 struct netflow *netflow;
644 struct dpif_sflow *sflow;
645 struct hmap bundles; /* Contains "struct ofbundle"s. */
646 struct mac_learning *ml;
647 struct ofmirror *mirrors[MAX_MIRRORS];
648 bool has_mirrors;
649 bool has_bonded_bundles;
650
651 /* Facets. */
652 struct hmap facets;
653 struct hmap subfacets;
654 struct governor *governor;
655
656 /* Revalidation. */
657 struct table_dpif tables[N_TABLES];
658 enum revalidate_reason need_revalidate;
659 struct tag_set revalidate_set;
660
661 /* Support for debugging async flow mods. */
662 struct list completions;
663
664 bool has_bundle_action; /* True when the first bundle action appears. */
665 struct netdev_stats stats; /* To account packets generated and consumed in
666 * userspace. */
667
668 /* Spanning tree. */
669 struct stp *stp;
670 long long int stp_last_tick;
671
672 /* VLAN splinters. */
673 struct hmap realdev_vid_map; /* (realdev,vid) -> vlandev. */
674 struct hmap vlandev_map; /* vlandev -> (realdev,vid). */
675
676 /* Ports. */
677 struct sset ports; /* Set of port names. */
678 struct sset port_poll_set; /* Queued names for port_poll() reply. */
679 int port_poll_errno; /* Last errno for port_poll() reply. */
680 };
681
682 /* Defer flow mod completion until "ovs-appctl ofproto/unclog"? (Useful only
683 * for debugging the asynchronous flow_mod implementation.) */
684 static bool clogged;
685
686 /* All existing ofproto_dpif instances, indexed by ->up.name. */
687 static struct hmap all_ofproto_dpifs = HMAP_INITIALIZER(&all_ofproto_dpifs);
688
689 static void ofproto_dpif_unixctl_init(void);
690
691 static struct ofproto_dpif *
692 ofproto_dpif_cast(const struct ofproto *ofproto)
693 {
694 ovs_assert(ofproto->ofproto_class == &ofproto_dpif_class);
695 return CONTAINER_OF(ofproto, struct ofproto_dpif, up);
696 }
697
698 static struct ofport_dpif *get_ofp_port(const struct ofproto_dpif *,
699 uint16_t ofp_port);
700 static struct ofport_dpif *get_odp_port(const struct ofproto_dpif *,
701 uint32_t odp_port);
702 static void ofproto_trace(struct ofproto_dpif *, const struct flow *,
703 const struct ofpbuf *, ovs_be16 initial_tci,
704 struct ds *);
705
706 /* Packet processing. */
707 static void update_learning_table(struct ofproto_dpif *,
708 const struct flow *, int vlan,
709 struct ofbundle *);
710 /* Upcalls. */
711 #define FLOW_MISS_MAX_BATCH 50
712 static int handle_upcalls(struct dpif_backer *, unsigned int max_batch);
713
714 /* Flow expiration. */
715 static int expire(struct dpif_backer *);
716
717 /* NetFlow. */
718 static void send_netflow_active_timeouts(struct ofproto_dpif *);
719
720 /* Utilities. */
721 static int send_packet(const struct ofport_dpif *, struct ofpbuf *packet);
722 static size_t compose_sflow_action(const struct ofproto_dpif *,
723 struct ofpbuf *odp_actions,
724 const struct flow *, uint32_t odp_port);
725 static void add_mirror_actions(struct action_xlate_ctx *ctx,
726 const struct flow *flow);
727 /* Global variables. */
728 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
729
730 /* Initial mappings of port to bridge mappings. */
731 static struct shash init_ofp_ports = SHASH_INITIALIZER(&init_ofp_ports);
732 \f
733 /* Factory functions. */
734
735 static void
736 init(const struct shash *iface_hints)
737 {
738 struct shash_node *node;
739
740 /* Make a local copy, since we don't own 'iface_hints' elements. */
741 SHASH_FOR_EACH(node, iface_hints) {
742 const struct iface_hint *orig_hint = node->data;
743 struct iface_hint *new_hint = xmalloc(sizeof *new_hint);
744
745 new_hint->br_name = xstrdup(orig_hint->br_name);
746 new_hint->br_type = xstrdup(orig_hint->br_type);
747 new_hint->ofp_port = orig_hint->ofp_port;
748
749 shash_add(&init_ofp_ports, node->name, new_hint);
750 }
751 }
752
753 static void
754 enumerate_types(struct sset *types)
755 {
756 dp_enumerate_types(types);
757 }
758
759 static int
760 enumerate_names(const char *type, struct sset *names)
761 {
762 struct ofproto_dpif *ofproto;
763
764 sset_clear(names);
765 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
766 if (strcmp(type, ofproto->up.type)) {
767 continue;
768 }
769 sset_add(names, ofproto->up.name);
770 }
771
772 return 0;
773 }
774
775 static int
776 del(const char *type, const char *name)
777 {
778 struct dpif *dpif;
779 int error;
780
781 error = dpif_open(name, type, &dpif);
782 if (!error) {
783 error = dpif_delete(dpif);
784 dpif_close(dpif);
785 }
786 return error;
787 }
788 \f
789 static const char *
790 port_open_type(const char *datapath_type, const char *port_type)
791 {
792 return dpif_port_open_type(datapath_type, port_type);
793 }
794
795 /* Type functions. */
796
797 static struct ofproto_dpif *
798 lookup_ofproto_dpif_by_port_name(const char *name)
799 {
800 struct ofproto_dpif *ofproto;
801
802 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
803 if (sset_contains(&ofproto->ports, name)) {
804 return ofproto;
805 }
806 }
807
808 return NULL;
809 }
810
811 static int
812 type_run(const char *type)
813 {
814 struct dpif_backer *backer;
815 char *devname;
816 int error;
817
818 backer = shash_find_data(&all_dpif_backers, type);
819 if (!backer) {
820 /* This is not necessarily a problem, since backers are only
821 * created on demand. */
822 return 0;
823 }
824
825 dpif_run(backer->dpif);
826
827 if (timer_expired(&backer->next_expiration)) {
828 int delay = expire(backer);
829 timer_set_duration(&backer->next_expiration, delay);
830 }
831
832 /* Check for port changes in the dpif. */
833 while ((error = dpif_port_poll(backer->dpif, &devname)) == 0) {
834 struct ofproto_dpif *ofproto;
835 struct dpif_port port;
836
837 /* Don't report on the datapath's device. */
838 if (!strcmp(devname, dpif_base_name(backer->dpif))) {
839 goto next;
840 }
841
842 ofproto = lookup_ofproto_dpif_by_port_name(devname);
843 if (dpif_port_query_by_name(backer->dpif, devname, &port)) {
844 /* The port was removed. If we know the datapath,
845 * report it through poll_set(). If we don't, it may be
846 * notifying us of a removal we initiated, so ignore it.
847 * If there's a pending ENOBUFS, let it stand, since
848 * everything will be reevaluated. */
849 if (ofproto && ofproto->port_poll_errno != ENOBUFS) {
850 sset_add(&ofproto->port_poll_set, devname);
851 ofproto->port_poll_errno = 0;
852 }
853 } else if (!ofproto) {
854 /* The port was added, but we don't know with which
855 * ofproto we should associate it. Delete it. */
856 dpif_port_del(backer->dpif, port.port_no);
857 }
858 dpif_port_destroy(&port);
859
860 next:
861 free(devname);
862 }
863
864 if (error != EAGAIN) {
865 struct ofproto_dpif *ofproto;
866
867 /* There was some sort of error, so propagate it to all
868 * ofprotos that use this backer. */
869 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node,
870 &all_ofproto_dpifs) {
871 if (ofproto->backer == backer) {
872 sset_clear(&ofproto->port_poll_set);
873 ofproto->port_poll_errno = error;
874 }
875 }
876 }
877
878 return 0;
879 }
880
881 static int
882 type_run_fast(const char *type)
883 {
884 struct dpif_backer *backer;
885 unsigned int work;
886
887 backer = shash_find_data(&all_dpif_backers, type);
888 if (!backer) {
889 /* This is not necessarily a problem, since backers are only
890 * created on demand. */
891 return 0;
892 }
893
894 /* Handle one or more batches of upcalls, until there's nothing left to do
895 * or until we do a fixed total amount of work.
896 *
897 * We do work in batches because it can be much cheaper to set up a number
898 * of flows and fire off their patches all at once. We do multiple batches
899 * because in some cases handling a packet can cause another packet to be
900 * queued almost immediately as part of the return flow. Both
901 * optimizations can make major improvements on some benchmarks and
902 * presumably for real traffic as well. */
903 work = 0;
904 while (work < FLOW_MISS_MAX_BATCH) {
905 int retval = handle_upcalls(backer, FLOW_MISS_MAX_BATCH - work);
906 if (retval <= 0) {
907 return -retval;
908 }
909 work += retval;
910 }
911
912 return 0;
913 }
914
915 static void
916 type_wait(const char *type)
917 {
918 struct dpif_backer *backer;
919
920 backer = shash_find_data(&all_dpif_backers, type);
921 if (!backer) {
922 /* This is not necessarily a problem, since backers are only
923 * created on demand. */
924 return;
925 }
926
927 timer_wait(&backer->next_expiration);
928 }
929 \f
930 /* Basic life-cycle. */
931
932 static int add_internal_flows(struct ofproto_dpif *);
933
934 static struct ofproto *
935 alloc(void)
936 {
937 struct ofproto_dpif *ofproto = xmalloc(sizeof *ofproto);
938 return &ofproto->up;
939 }
940
941 static void
942 dealloc(struct ofproto *ofproto_)
943 {
944 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
945 free(ofproto);
946 }
947
948 static void
949 close_dpif_backer(struct dpif_backer *backer)
950 {
951 struct shash_node *node;
952
953 ovs_assert(backer->refcount > 0);
954
955 if (--backer->refcount) {
956 return;
957 }
958
959 hmap_destroy(&backer->odp_to_ofport_map);
960 node = shash_find(&all_dpif_backers, backer->type);
961 free(backer->type);
962 shash_delete(&all_dpif_backers, node);
963 dpif_close(backer->dpif);
964
965 free(backer);
966 }
967
968 /* Datapath port slated for removal from datapath. */
969 struct odp_garbage {
970 struct list list_node;
971 uint32_t odp_port;
972 };
973
974 static int
975 open_dpif_backer(const char *type, struct dpif_backer **backerp)
976 {
977 struct dpif_backer *backer;
978 struct dpif_port_dump port_dump;
979 struct dpif_port port;
980 struct shash_node *node;
981 struct list garbage_list;
982 struct odp_garbage *garbage, *next;
983 struct sset names;
984 char *backer_name;
985 const char *name;
986 int error;
987
988 backer = shash_find_data(&all_dpif_backers, type);
989 if (backer) {
990 backer->refcount++;
991 *backerp = backer;
992 return 0;
993 }
994
995 backer_name = xasprintf("ovs-%s", type);
996
997 /* Remove any existing datapaths, since we assume we're the only
998 * userspace controlling the datapath. */
999 sset_init(&names);
1000 dp_enumerate_names(type, &names);
1001 SSET_FOR_EACH(name, &names) {
1002 struct dpif *old_dpif;
1003
1004 /* Don't remove our backer if it exists. */
1005 if (!strcmp(name, backer_name)) {
1006 continue;
1007 }
1008
1009 if (dpif_open(name, type, &old_dpif)) {
1010 VLOG_WARN("couldn't open old datapath %s to remove it", name);
1011 } else {
1012 dpif_delete(old_dpif);
1013 dpif_close(old_dpif);
1014 }
1015 }
1016 sset_destroy(&names);
1017
1018 backer = xmalloc(sizeof *backer);
1019
1020 error = dpif_create_and_open(backer_name, type, &backer->dpif);
1021 free(backer_name);
1022 if (error) {
1023 VLOG_ERR("failed to open datapath of type %s: %s", type,
1024 strerror(error));
1025 return error;
1026 }
1027
1028 backer->type = xstrdup(type);
1029 backer->refcount = 1;
1030 hmap_init(&backer->odp_to_ofport_map);
1031 timer_set_duration(&backer->next_expiration, 1000);
1032 *backerp = backer;
1033
1034 dpif_flow_flush(backer->dpif);
1035
1036 /* Loop through the ports already on the datapath and remove any
1037 * that we don't need anymore. */
1038 list_init(&garbage_list);
1039 dpif_port_dump_start(&port_dump, backer->dpif);
1040 while (dpif_port_dump_next(&port_dump, &port)) {
1041 node = shash_find(&init_ofp_ports, port.name);
1042 if (!node && strcmp(port.name, dpif_base_name(backer->dpif))) {
1043 garbage = xmalloc(sizeof *garbage);
1044 garbage->odp_port = port.port_no;
1045 list_push_front(&garbage_list, &garbage->list_node);
1046 }
1047 }
1048 dpif_port_dump_done(&port_dump);
1049
1050 LIST_FOR_EACH_SAFE (garbage, next, list_node, &garbage_list) {
1051 dpif_port_del(backer->dpif, garbage->odp_port);
1052 list_remove(&garbage->list_node);
1053 free(garbage);
1054 }
1055
1056 shash_add(&all_dpif_backers, type, backer);
1057
1058 error = dpif_recv_set(backer->dpif, true);
1059 if (error) {
1060 VLOG_ERR("failed to listen on datapath of type %s: %s",
1061 type, strerror(error));
1062 close_dpif_backer(backer);
1063 return error;
1064 }
1065
1066 return error;
1067 }
1068
1069 static int
1070 construct(struct ofproto *ofproto_)
1071 {
1072 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1073 struct shash_node *node, *next;
1074 int max_ports;
1075 int error;
1076 int i;
1077
1078 error = open_dpif_backer(ofproto->up.type, &ofproto->backer);
1079 if (error) {
1080 return error;
1081 }
1082
1083 max_ports = dpif_get_max_ports(ofproto->backer->dpif);
1084 ofproto_init_max_ports(ofproto_, MIN(max_ports, OFPP_MAX));
1085
1086 ofproto->n_matches = 0;
1087
1088 ofproto->netflow = NULL;
1089 ofproto->sflow = NULL;
1090 ofproto->stp = NULL;
1091 hmap_init(&ofproto->bundles);
1092 ofproto->ml = mac_learning_create(MAC_ENTRY_DEFAULT_IDLE_TIME);
1093 for (i = 0; i < MAX_MIRRORS; i++) {
1094 ofproto->mirrors[i] = NULL;
1095 }
1096 ofproto->has_bonded_bundles = false;
1097
1098 hmap_init(&ofproto->facets);
1099 hmap_init(&ofproto->subfacets);
1100 ofproto->governor = NULL;
1101
1102 for (i = 0; i < N_TABLES; i++) {
1103 struct table_dpif *table = &ofproto->tables[i];
1104
1105 table->catchall_table = NULL;
1106 table->other_table = NULL;
1107 table->basis = random_uint32();
1108 }
1109 ofproto->need_revalidate = 0;
1110 tag_set_init(&ofproto->revalidate_set);
1111
1112 list_init(&ofproto->completions);
1113
1114 ofproto_dpif_unixctl_init();
1115
1116 ofproto->has_mirrors = false;
1117 ofproto->has_bundle_action = false;
1118
1119 hmap_init(&ofproto->vlandev_map);
1120 hmap_init(&ofproto->realdev_vid_map);
1121
1122 sset_init(&ofproto->ports);
1123 sset_init(&ofproto->port_poll_set);
1124 ofproto->port_poll_errno = 0;
1125
1126 SHASH_FOR_EACH_SAFE (node, next, &init_ofp_ports) {
1127 struct iface_hint *iface_hint = node->data;
1128
1129 if (!strcmp(iface_hint->br_name, ofproto->up.name)) {
1130 /* Check if the datapath already has this port. */
1131 if (dpif_port_exists(ofproto->backer->dpif, node->name)) {
1132 sset_add(&ofproto->ports, node->name);
1133 }
1134
1135 free(iface_hint->br_name);
1136 free(iface_hint->br_type);
1137 free(iface_hint);
1138 shash_delete(&init_ofp_ports, node);
1139 }
1140 }
1141
1142 hmap_insert(&all_ofproto_dpifs, &ofproto->all_ofproto_dpifs_node,
1143 hash_string(ofproto->up.name, 0));
1144 memset(&ofproto->stats, 0, sizeof ofproto->stats);
1145
1146 ofproto_init_tables(ofproto_, N_TABLES);
1147 error = add_internal_flows(ofproto);
1148 ofproto->up.tables[TBL_INTERNAL].flags = OFTABLE_HIDDEN | OFTABLE_READONLY;
1149
1150 return error;
1151 }
1152
1153 static int
1154 add_internal_flow(struct ofproto_dpif *ofproto, int id,
1155 const struct ofpbuf *ofpacts, struct rule_dpif **rulep)
1156 {
1157 struct ofputil_flow_mod fm;
1158 int error;
1159
1160 match_init_catchall(&fm.match);
1161 fm.priority = 0;
1162 match_set_reg(&fm.match, 0, id);
1163 fm.new_cookie = htonll(0);
1164 fm.cookie = htonll(0);
1165 fm.cookie_mask = htonll(0);
1166 fm.table_id = TBL_INTERNAL;
1167 fm.command = OFPFC_ADD;
1168 fm.idle_timeout = 0;
1169 fm.hard_timeout = 0;
1170 fm.buffer_id = 0;
1171 fm.out_port = 0;
1172 fm.flags = 0;
1173 fm.ofpacts = ofpacts->data;
1174 fm.ofpacts_len = ofpacts->size;
1175
1176 error = ofproto_flow_mod(&ofproto->up, &fm);
1177 if (error) {
1178 VLOG_ERR_RL(&rl, "failed to add internal flow %d (%s)",
1179 id, ofperr_to_string(error));
1180 return error;
1181 }
1182
1183 *rulep = rule_dpif_lookup__(ofproto, &fm.match.flow, TBL_INTERNAL);
1184 ovs_assert(*rulep != NULL);
1185
1186 return 0;
1187 }
1188
1189 static int
1190 add_internal_flows(struct ofproto_dpif *ofproto)
1191 {
1192 struct ofpact_controller *controller;
1193 uint64_t ofpacts_stub[128 / 8];
1194 struct ofpbuf ofpacts;
1195 int error;
1196 int id;
1197
1198 ofpbuf_use_stack(&ofpacts, ofpacts_stub, sizeof ofpacts_stub);
1199 id = 1;
1200
1201 controller = ofpact_put_CONTROLLER(&ofpacts);
1202 controller->max_len = UINT16_MAX;
1203 controller->controller_id = 0;
1204 controller->reason = OFPR_NO_MATCH;
1205 ofpact_pad(&ofpacts);
1206
1207 error = add_internal_flow(ofproto, id++, &ofpacts, &ofproto->miss_rule);
1208 if (error) {
1209 return error;
1210 }
1211
1212 ofpbuf_clear(&ofpacts);
1213 error = add_internal_flow(ofproto, id++, &ofpacts,
1214 &ofproto->no_packet_in_rule);
1215 return error;
1216 }
1217
1218 static void
1219 complete_operations(struct ofproto_dpif *ofproto)
1220 {
1221 struct dpif_completion *c, *next;
1222
1223 LIST_FOR_EACH_SAFE (c, next, list_node, &ofproto->completions) {
1224 ofoperation_complete(c->op, 0);
1225 list_remove(&c->list_node);
1226 free(c);
1227 }
1228 }
1229
1230 static void
1231 destruct(struct ofproto *ofproto_)
1232 {
1233 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1234 struct rule_dpif *rule, *next_rule;
1235 struct oftable *table;
1236 int i;
1237
1238 hmap_remove(&all_ofproto_dpifs, &ofproto->all_ofproto_dpifs_node);
1239 complete_operations(ofproto);
1240
1241 OFPROTO_FOR_EACH_TABLE (table, &ofproto->up) {
1242 struct cls_cursor cursor;
1243
1244 cls_cursor_init(&cursor, &table->cls, NULL);
1245 CLS_CURSOR_FOR_EACH_SAFE (rule, next_rule, up.cr, &cursor) {
1246 ofproto_rule_destroy(&rule->up);
1247 }
1248 }
1249
1250 for (i = 0; i < MAX_MIRRORS; i++) {
1251 mirror_destroy(ofproto->mirrors[i]);
1252 }
1253
1254 netflow_destroy(ofproto->netflow);
1255 dpif_sflow_destroy(ofproto->sflow);
1256 hmap_destroy(&ofproto->bundles);
1257 mac_learning_destroy(ofproto->ml);
1258
1259 hmap_destroy(&ofproto->facets);
1260 hmap_destroy(&ofproto->subfacets);
1261 governor_destroy(ofproto->governor);
1262
1263 hmap_destroy(&ofproto->vlandev_map);
1264 hmap_destroy(&ofproto->realdev_vid_map);
1265
1266 sset_destroy(&ofproto->ports);
1267 sset_destroy(&ofproto->port_poll_set);
1268
1269 close_dpif_backer(ofproto->backer);
1270 }
1271
1272 static int
1273 run_fast(struct ofproto *ofproto_)
1274 {
1275 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1276 struct ofport_dpif *ofport;
1277
1278 HMAP_FOR_EACH (ofport, up.hmap_node, &ofproto->up.ports) {
1279 port_run_fast(ofport);
1280 }
1281
1282 return 0;
1283 }
1284
1285 static int
1286 run(struct ofproto *ofproto_)
1287 {
1288 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1289 struct ofport_dpif *ofport;
1290 struct ofbundle *bundle;
1291 int error;
1292
1293 if (!clogged) {
1294 complete_operations(ofproto);
1295 }
1296
1297 error = run_fast(ofproto_);
1298 if (error) {
1299 return error;
1300 }
1301
1302 if (ofproto->netflow) {
1303 if (netflow_run(ofproto->netflow)) {
1304 send_netflow_active_timeouts(ofproto);
1305 }
1306 }
1307 if (ofproto->sflow) {
1308 dpif_sflow_run(ofproto->sflow);
1309 }
1310
1311 HMAP_FOR_EACH (ofport, up.hmap_node, &ofproto->up.ports) {
1312 port_run(ofport);
1313 }
1314 HMAP_FOR_EACH (bundle, hmap_node, &ofproto->bundles) {
1315 bundle_run(bundle);
1316 }
1317
1318 stp_run(ofproto);
1319 mac_learning_run(ofproto->ml, &ofproto->revalidate_set);
1320
1321 /* Now revalidate if there's anything to do. */
1322 if (ofproto->need_revalidate
1323 || !tag_set_is_empty(&ofproto->revalidate_set)) {
1324 struct tag_set revalidate_set = ofproto->revalidate_set;
1325 bool revalidate_all = ofproto->need_revalidate;
1326 struct facet *facet;
1327
1328 switch (ofproto->need_revalidate) {
1329 case REV_RECONFIGURE: COVERAGE_INC(rev_reconfigure); break;
1330 case REV_STP: COVERAGE_INC(rev_stp); break;
1331 case REV_PORT_TOGGLED: COVERAGE_INC(rev_port_toggled); break;
1332 case REV_FLOW_TABLE: COVERAGE_INC(rev_flow_table); break;
1333 case REV_INCONSISTENCY: COVERAGE_INC(rev_inconsistency); break;
1334 }
1335
1336 /* Clear the revalidation flags. */
1337 tag_set_init(&ofproto->revalidate_set);
1338 ofproto->need_revalidate = 0;
1339
1340 HMAP_FOR_EACH (facet, hmap_node, &ofproto->facets) {
1341 if (revalidate_all
1342 || tag_set_intersects(&revalidate_set, facet->tags)) {
1343 facet_revalidate(facet);
1344 }
1345 }
1346 }
1347
1348 /* Check the consistency of a random facet, to aid debugging. */
1349 if (!hmap_is_empty(&ofproto->facets) && !ofproto->need_revalidate) {
1350 struct facet *facet;
1351
1352 facet = CONTAINER_OF(hmap_random_node(&ofproto->facets),
1353 struct facet, hmap_node);
1354 if (!tag_set_intersects(&ofproto->revalidate_set, facet->tags)) {
1355 if (!facet_check_consistency(facet)) {
1356 ofproto->need_revalidate = REV_INCONSISTENCY;
1357 }
1358 }
1359 }
1360
1361 if (ofproto->governor) {
1362 size_t n_subfacets;
1363
1364 governor_run(ofproto->governor);
1365
1366 /* If the governor has shrunk to its minimum size and the number of
1367 * subfacets has dwindled, then drop the governor entirely.
1368 *
1369 * For hysteresis, the number of subfacets to drop the governor is
1370 * smaller than the number needed to trigger its creation. */
1371 n_subfacets = hmap_count(&ofproto->subfacets);
1372 if (n_subfacets * 4 < ofproto->up.flow_eviction_threshold
1373 && governor_is_idle(ofproto->governor)) {
1374 governor_destroy(ofproto->governor);
1375 ofproto->governor = NULL;
1376 }
1377 }
1378
1379 return 0;
1380 }
1381
1382 static void
1383 wait(struct ofproto *ofproto_)
1384 {
1385 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1386 struct ofport_dpif *ofport;
1387 struct ofbundle *bundle;
1388
1389 if (!clogged && !list_is_empty(&ofproto->completions)) {
1390 poll_immediate_wake();
1391 }
1392
1393 dpif_wait(ofproto->backer->dpif);
1394 dpif_recv_wait(ofproto->backer->dpif);
1395 if (ofproto->sflow) {
1396 dpif_sflow_wait(ofproto->sflow);
1397 }
1398 if (!tag_set_is_empty(&ofproto->revalidate_set)) {
1399 poll_immediate_wake();
1400 }
1401 HMAP_FOR_EACH (ofport, up.hmap_node, &ofproto->up.ports) {
1402 port_wait(ofport);
1403 }
1404 HMAP_FOR_EACH (bundle, hmap_node, &ofproto->bundles) {
1405 bundle_wait(bundle);
1406 }
1407 if (ofproto->netflow) {
1408 netflow_wait(ofproto->netflow);
1409 }
1410 mac_learning_wait(ofproto->ml);
1411 stp_wait(ofproto);
1412 if (ofproto->need_revalidate) {
1413 /* Shouldn't happen, but if it does just go around again. */
1414 VLOG_DBG_RL(&rl, "need revalidate in ofproto_wait_cb()");
1415 poll_immediate_wake();
1416 }
1417 if (ofproto->governor) {
1418 governor_wait(ofproto->governor);
1419 }
1420 }
1421
1422 static void
1423 get_memory_usage(const struct ofproto *ofproto_, struct simap *usage)
1424 {
1425 const struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1426
1427 simap_increase(usage, "facets", hmap_count(&ofproto->facets));
1428 simap_increase(usage, "subfacets", hmap_count(&ofproto->subfacets));
1429 }
1430
1431 static void
1432 flush(struct ofproto *ofproto_)
1433 {
1434 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1435 struct subfacet *subfacet, *next_subfacet;
1436 struct subfacet *batch[SUBFACET_DESTROY_MAX_BATCH];
1437 int n_batch;
1438
1439 n_batch = 0;
1440 HMAP_FOR_EACH_SAFE (subfacet, next_subfacet, hmap_node,
1441 &ofproto->subfacets) {
1442 if (subfacet->path != SF_NOT_INSTALLED) {
1443 batch[n_batch++] = subfacet;
1444 if (n_batch >= SUBFACET_DESTROY_MAX_BATCH) {
1445 subfacet_destroy_batch(ofproto, batch, n_batch);
1446 n_batch = 0;
1447 }
1448 } else {
1449 subfacet_destroy(subfacet);
1450 }
1451 }
1452
1453 if (n_batch > 0) {
1454 subfacet_destroy_batch(ofproto, batch, n_batch);
1455 }
1456 }
1457
1458 static void
1459 get_features(struct ofproto *ofproto_ OVS_UNUSED,
1460 bool *arp_match_ip, enum ofputil_action_bitmap *actions)
1461 {
1462 *arp_match_ip = true;
1463 *actions = (OFPUTIL_A_OUTPUT |
1464 OFPUTIL_A_SET_VLAN_VID |
1465 OFPUTIL_A_SET_VLAN_PCP |
1466 OFPUTIL_A_STRIP_VLAN |
1467 OFPUTIL_A_SET_DL_SRC |
1468 OFPUTIL_A_SET_DL_DST |
1469 OFPUTIL_A_SET_NW_SRC |
1470 OFPUTIL_A_SET_NW_DST |
1471 OFPUTIL_A_SET_NW_TOS |
1472 OFPUTIL_A_SET_TP_SRC |
1473 OFPUTIL_A_SET_TP_DST |
1474 OFPUTIL_A_ENQUEUE);
1475 }
1476
1477 static void
1478 get_tables(struct ofproto *ofproto_, struct ofp12_table_stats *ots)
1479 {
1480 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1481 struct dpif_dp_stats s;
1482
1483 strcpy(ots->name, "classifier");
1484
1485 dpif_get_dp_stats(ofproto->backer->dpif, &s);
1486
1487 ots->lookup_count = htonll(s.n_hit + s.n_missed);
1488 ots->matched_count = htonll(s.n_hit + ofproto->n_matches);
1489 }
1490
1491 static struct ofport *
1492 port_alloc(void)
1493 {
1494 struct ofport_dpif *port = xmalloc(sizeof *port);
1495 return &port->up;
1496 }
1497
1498 static void
1499 port_dealloc(struct ofport *port_)
1500 {
1501 struct ofport_dpif *port = ofport_dpif_cast(port_);
1502 free(port);
1503 }
1504
1505 static int
1506 port_construct(struct ofport *port_)
1507 {
1508 struct ofport_dpif *port = ofport_dpif_cast(port_);
1509 struct ofproto_dpif *ofproto = ofproto_dpif_cast(port->up.ofproto);
1510 struct dpif_port dpif_port;
1511 int error;
1512
1513 ofproto->need_revalidate = REV_RECONFIGURE;
1514 port->bundle = NULL;
1515 port->cfm = NULL;
1516 port->tag = tag_create_random();
1517 port->may_enable = true;
1518 port->stp_port = NULL;
1519 port->stp_state = STP_DISABLED;
1520 hmap_init(&port->priorities);
1521 port->realdev_ofp_port = 0;
1522 port->vlandev_vid = 0;
1523 port->carrier_seq = netdev_get_carrier_resets(port->up.netdev);
1524
1525 error = dpif_port_query_by_name(ofproto->backer->dpif,
1526 netdev_get_name(port->up.netdev),
1527 &dpif_port);
1528 if (error) {
1529 return error;
1530 }
1531
1532 port->odp_port = dpif_port.port_no;
1533
1534 /* Sanity-check that a mapping doesn't already exist. This
1535 * shouldn't happen. */
1536 if (odp_port_to_ofp_port(ofproto, port->odp_port) != OFPP_NONE) {
1537 VLOG_ERR("port %s already has an OpenFlow port number\n",
1538 dpif_port.name);
1539 return EBUSY;
1540 }
1541
1542 hmap_insert(&ofproto->backer->odp_to_ofport_map, &port->odp_port_node,
1543 hash_int(port->odp_port, 0));
1544
1545 if (ofproto->sflow) {
1546 dpif_sflow_add_port(ofproto->sflow, port_, port->odp_port);
1547 }
1548
1549 return 0;
1550 }
1551
1552 static void
1553 port_destruct(struct ofport *port_)
1554 {
1555 struct ofport_dpif *port = ofport_dpif_cast(port_);
1556 struct ofproto_dpif *ofproto = ofproto_dpif_cast(port->up.ofproto);
1557 const char *devname = netdev_get_name(port->up.netdev);
1558
1559 if (dpif_port_exists(ofproto->backer->dpif, devname)) {
1560 /* The underlying device is still there, so delete it. This
1561 * happens when the ofproto is being destroyed, since the caller
1562 * assumes that removal of attached ports will happen as part of
1563 * destruction. */
1564 dpif_port_del(ofproto->backer->dpif, port->odp_port);
1565 }
1566
1567 sset_find_and_delete(&ofproto->ports, devname);
1568 hmap_remove(&ofproto->backer->odp_to_ofport_map, &port->odp_port_node);
1569 ofproto->need_revalidate = REV_RECONFIGURE;
1570 bundle_remove(port_);
1571 set_cfm(port_, NULL);
1572 if (ofproto->sflow) {
1573 dpif_sflow_del_port(ofproto->sflow, port->odp_port);
1574 }
1575
1576 ofport_clear_priorities(port);
1577 hmap_destroy(&port->priorities);
1578 }
1579
1580 static void
1581 port_modified(struct ofport *port_)
1582 {
1583 struct ofport_dpif *port = ofport_dpif_cast(port_);
1584
1585 if (port->bundle && port->bundle->bond) {
1586 bond_slave_set_netdev(port->bundle->bond, port, port->up.netdev);
1587 }
1588 }
1589
1590 static void
1591 port_reconfigured(struct ofport *port_, enum ofputil_port_config old_config)
1592 {
1593 struct ofport_dpif *port = ofport_dpif_cast(port_);
1594 struct ofproto_dpif *ofproto = ofproto_dpif_cast(port->up.ofproto);
1595 enum ofputil_port_config changed = old_config ^ port->up.pp.config;
1596
1597 if (changed & (OFPUTIL_PC_NO_RECV | OFPUTIL_PC_NO_RECV_STP |
1598 OFPUTIL_PC_NO_FWD | OFPUTIL_PC_NO_FLOOD |
1599 OFPUTIL_PC_NO_PACKET_IN)) {
1600 ofproto->need_revalidate = REV_RECONFIGURE;
1601
1602 if (changed & OFPUTIL_PC_NO_FLOOD && port->bundle) {
1603 bundle_update(port->bundle);
1604 }
1605 }
1606 }
1607
1608 static int
1609 set_sflow(struct ofproto *ofproto_,
1610 const struct ofproto_sflow_options *sflow_options)
1611 {
1612 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1613 struct dpif_sflow *ds = ofproto->sflow;
1614
1615 if (sflow_options) {
1616 if (!ds) {
1617 struct ofport_dpif *ofport;
1618
1619 ds = ofproto->sflow = dpif_sflow_create();
1620 HMAP_FOR_EACH (ofport, up.hmap_node, &ofproto->up.ports) {
1621 dpif_sflow_add_port(ds, &ofport->up, ofport->odp_port);
1622 }
1623 ofproto->need_revalidate = REV_RECONFIGURE;
1624 }
1625 dpif_sflow_set_options(ds, sflow_options);
1626 } else {
1627 if (ds) {
1628 dpif_sflow_destroy(ds);
1629 ofproto->need_revalidate = REV_RECONFIGURE;
1630 ofproto->sflow = NULL;
1631 }
1632 }
1633 return 0;
1634 }
1635
1636 static int
1637 set_cfm(struct ofport *ofport_, const struct cfm_settings *s)
1638 {
1639 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
1640 int error;
1641
1642 if (!s) {
1643 error = 0;
1644 } else {
1645 if (!ofport->cfm) {
1646 struct ofproto_dpif *ofproto;
1647
1648 ofproto = ofproto_dpif_cast(ofport->up.ofproto);
1649 ofproto->need_revalidate = REV_RECONFIGURE;
1650 ofport->cfm = cfm_create(netdev_get_name(ofport->up.netdev));
1651 }
1652
1653 if (cfm_configure(ofport->cfm, s)) {
1654 return 0;
1655 }
1656
1657 error = EINVAL;
1658 }
1659 cfm_destroy(ofport->cfm);
1660 ofport->cfm = NULL;
1661 return error;
1662 }
1663
1664 static int
1665 get_cfm_fault(const struct ofport *ofport_)
1666 {
1667 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
1668
1669 return ofport->cfm ? cfm_get_fault(ofport->cfm) : -1;
1670 }
1671
1672 static int
1673 get_cfm_opup(const struct ofport *ofport_)
1674 {
1675 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
1676
1677 return ofport->cfm ? cfm_get_opup(ofport->cfm) : -1;
1678 }
1679
1680 static int
1681 get_cfm_remote_mpids(const struct ofport *ofport_, const uint64_t **rmps,
1682 size_t *n_rmps)
1683 {
1684 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
1685
1686 if (ofport->cfm) {
1687 cfm_get_remote_mpids(ofport->cfm, rmps, n_rmps);
1688 return 0;
1689 } else {
1690 return -1;
1691 }
1692 }
1693
1694 static int
1695 get_cfm_health(const struct ofport *ofport_)
1696 {
1697 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
1698
1699 return ofport->cfm ? cfm_get_health(ofport->cfm) : -1;
1700 }
1701 \f
1702 /* Spanning Tree. */
1703
1704 static void
1705 send_bpdu_cb(struct ofpbuf *pkt, int port_num, void *ofproto_)
1706 {
1707 struct ofproto_dpif *ofproto = ofproto_;
1708 struct stp_port *sp = stp_get_port(ofproto->stp, port_num);
1709 struct ofport_dpif *ofport;
1710
1711 ofport = stp_port_get_aux(sp);
1712 if (!ofport) {
1713 VLOG_WARN_RL(&rl, "%s: cannot send BPDU on unknown port %d",
1714 ofproto->up.name, port_num);
1715 } else {
1716 struct eth_header *eth = pkt->l2;
1717
1718 netdev_get_etheraddr(ofport->up.netdev, eth->eth_src);
1719 if (eth_addr_is_zero(eth->eth_src)) {
1720 VLOG_WARN_RL(&rl, "%s: cannot send BPDU on port %d "
1721 "with unknown MAC", ofproto->up.name, port_num);
1722 } else {
1723 send_packet(ofport, pkt);
1724 }
1725 }
1726 ofpbuf_delete(pkt);
1727 }
1728
1729 /* Configures STP on 'ofproto_' using the settings defined in 's'. */
1730 static int
1731 set_stp(struct ofproto *ofproto_, const struct ofproto_stp_settings *s)
1732 {
1733 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1734
1735 /* Only revalidate flows if the configuration changed. */
1736 if (!s != !ofproto->stp) {
1737 ofproto->need_revalidate = REV_RECONFIGURE;
1738 }
1739
1740 if (s) {
1741 if (!ofproto->stp) {
1742 ofproto->stp = stp_create(ofproto_->name, s->system_id,
1743 send_bpdu_cb, ofproto);
1744 ofproto->stp_last_tick = time_msec();
1745 }
1746
1747 stp_set_bridge_id(ofproto->stp, s->system_id);
1748 stp_set_bridge_priority(ofproto->stp, s->priority);
1749 stp_set_hello_time(ofproto->stp, s->hello_time);
1750 stp_set_max_age(ofproto->stp, s->max_age);
1751 stp_set_forward_delay(ofproto->stp, s->fwd_delay);
1752 } else {
1753 struct ofport *ofport;
1754
1755 HMAP_FOR_EACH (ofport, hmap_node, &ofproto->up.ports) {
1756 set_stp_port(ofport, NULL);
1757 }
1758
1759 stp_destroy(ofproto->stp);
1760 ofproto->stp = NULL;
1761 }
1762
1763 return 0;
1764 }
1765
1766 static int
1767 get_stp_status(struct ofproto *ofproto_, struct ofproto_stp_status *s)
1768 {
1769 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1770
1771 if (ofproto->stp) {
1772 s->enabled = true;
1773 s->bridge_id = stp_get_bridge_id(ofproto->stp);
1774 s->designated_root = stp_get_designated_root(ofproto->stp);
1775 s->root_path_cost = stp_get_root_path_cost(ofproto->stp);
1776 } else {
1777 s->enabled = false;
1778 }
1779
1780 return 0;
1781 }
1782
1783 static void
1784 update_stp_port_state(struct ofport_dpif *ofport)
1785 {
1786 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
1787 enum stp_state state;
1788
1789 /* Figure out new state. */
1790 state = ofport->stp_port ? stp_port_get_state(ofport->stp_port)
1791 : STP_DISABLED;
1792
1793 /* Update state. */
1794 if (ofport->stp_state != state) {
1795 enum ofputil_port_state of_state;
1796 bool fwd_change;
1797
1798 VLOG_DBG_RL(&rl, "port %s: STP state changed from %s to %s",
1799 netdev_get_name(ofport->up.netdev),
1800 stp_state_name(ofport->stp_state),
1801 stp_state_name(state));
1802 if (stp_learn_in_state(ofport->stp_state)
1803 != stp_learn_in_state(state)) {
1804 /* xxx Learning action flows should also be flushed. */
1805 mac_learning_flush(ofproto->ml, &ofproto->revalidate_set);
1806 }
1807 fwd_change = stp_forward_in_state(ofport->stp_state)
1808 != stp_forward_in_state(state);
1809
1810 ofproto->need_revalidate = REV_STP;
1811 ofport->stp_state = state;
1812 ofport->stp_state_entered = time_msec();
1813
1814 if (fwd_change && ofport->bundle) {
1815 bundle_update(ofport->bundle);
1816 }
1817
1818 /* Update the STP state bits in the OpenFlow port description. */
1819 of_state = ofport->up.pp.state & ~OFPUTIL_PS_STP_MASK;
1820 of_state |= (state == STP_LISTENING ? OFPUTIL_PS_STP_LISTEN
1821 : state == STP_LEARNING ? OFPUTIL_PS_STP_LEARN
1822 : state == STP_FORWARDING ? OFPUTIL_PS_STP_FORWARD
1823 : state == STP_BLOCKING ? OFPUTIL_PS_STP_BLOCK
1824 : 0);
1825 ofproto_port_set_state(&ofport->up, of_state);
1826 }
1827 }
1828
1829 /* Configures STP on 'ofport_' using the settings defined in 's'. The
1830 * caller is responsible for assigning STP port numbers and ensuring
1831 * there are no duplicates. */
1832 static int
1833 set_stp_port(struct ofport *ofport_,
1834 const struct ofproto_port_stp_settings *s)
1835 {
1836 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
1837 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
1838 struct stp_port *sp = ofport->stp_port;
1839
1840 if (!s || !s->enable) {
1841 if (sp) {
1842 ofport->stp_port = NULL;
1843 stp_port_disable(sp);
1844 update_stp_port_state(ofport);
1845 }
1846 return 0;
1847 } else if (sp && stp_port_no(sp) != s->port_num
1848 && ofport == stp_port_get_aux(sp)) {
1849 /* The port-id changed, so disable the old one if it's not
1850 * already in use by another port. */
1851 stp_port_disable(sp);
1852 }
1853
1854 sp = ofport->stp_port = stp_get_port(ofproto->stp, s->port_num);
1855 stp_port_enable(sp);
1856
1857 stp_port_set_aux(sp, ofport);
1858 stp_port_set_priority(sp, s->priority);
1859 stp_port_set_path_cost(sp, s->path_cost);
1860
1861 update_stp_port_state(ofport);
1862
1863 return 0;
1864 }
1865
1866 static int
1867 get_stp_port_status(struct ofport *ofport_,
1868 struct ofproto_port_stp_status *s)
1869 {
1870 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
1871 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
1872 struct stp_port *sp = ofport->stp_port;
1873
1874 if (!ofproto->stp || !sp) {
1875 s->enabled = false;
1876 return 0;
1877 }
1878
1879 s->enabled = true;
1880 s->port_id = stp_port_get_id(sp);
1881 s->state = stp_port_get_state(sp);
1882 s->sec_in_state = (time_msec() - ofport->stp_state_entered) / 1000;
1883 s->role = stp_port_get_role(sp);
1884 stp_port_get_counts(sp, &s->tx_count, &s->rx_count, &s->error_count);
1885
1886 return 0;
1887 }
1888
1889 static void
1890 stp_run(struct ofproto_dpif *ofproto)
1891 {
1892 if (ofproto->stp) {
1893 long long int now = time_msec();
1894 long long int elapsed = now - ofproto->stp_last_tick;
1895 struct stp_port *sp;
1896
1897 if (elapsed > 0) {
1898 stp_tick(ofproto->stp, MIN(INT_MAX, elapsed));
1899 ofproto->stp_last_tick = now;
1900 }
1901 while (stp_get_changed_port(ofproto->stp, &sp)) {
1902 struct ofport_dpif *ofport = stp_port_get_aux(sp);
1903
1904 if (ofport) {
1905 update_stp_port_state(ofport);
1906 }
1907 }
1908
1909 if (stp_check_and_reset_fdb_flush(ofproto->stp)) {
1910 mac_learning_flush(ofproto->ml, &ofproto->revalidate_set);
1911 }
1912 }
1913 }
1914
1915 static void
1916 stp_wait(struct ofproto_dpif *ofproto)
1917 {
1918 if (ofproto->stp) {
1919 poll_timer_wait(1000);
1920 }
1921 }
1922
1923 /* Returns true if STP should process 'flow'. */
1924 static bool
1925 stp_should_process_flow(const struct flow *flow)
1926 {
1927 return eth_addr_equals(flow->dl_dst, eth_addr_stp);
1928 }
1929
1930 static void
1931 stp_process_packet(const struct ofport_dpif *ofport,
1932 const struct ofpbuf *packet)
1933 {
1934 struct ofpbuf payload = *packet;
1935 struct eth_header *eth = payload.data;
1936 struct stp_port *sp = ofport->stp_port;
1937
1938 /* Sink packets on ports that have STP disabled when the bridge has
1939 * STP enabled. */
1940 if (!sp || stp_port_get_state(sp) == STP_DISABLED) {
1941 return;
1942 }
1943
1944 /* Trim off padding on payload. */
1945 if (payload.size > ntohs(eth->eth_type) + ETH_HEADER_LEN) {
1946 payload.size = ntohs(eth->eth_type) + ETH_HEADER_LEN;
1947 }
1948
1949 if (ofpbuf_try_pull(&payload, ETH_HEADER_LEN + LLC_HEADER_LEN)) {
1950 stp_received_bpdu(sp, payload.data, payload.size);
1951 }
1952 }
1953 \f
1954 static struct priority_to_dscp *
1955 get_priority(const struct ofport_dpif *ofport, uint32_t priority)
1956 {
1957 struct priority_to_dscp *pdscp;
1958 uint32_t hash;
1959
1960 hash = hash_int(priority, 0);
1961 HMAP_FOR_EACH_IN_BUCKET (pdscp, hmap_node, hash, &ofport->priorities) {
1962 if (pdscp->priority == priority) {
1963 return pdscp;
1964 }
1965 }
1966 return NULL;
1967 }
1968
1969 static void
1970 ofport_clear_priorities(struct ofport_dpif *ofport)
1971 {
1972 struct priority_to_dscp *pdscp, *next;
1973
1974 HMAP_FOR_EACH_SAFE (pdscp, next, hmap_node, &ofport->priorities) {
1975 hmap_remove(&ofport->priorities, &pdscp->hmap_node);
1976 free(pdscp);
1977 }
1978 }
1979
1980 static int
1981 set_queues(struct ofport *ofport_,
1982 const struct ofproto_port_queue *qdscp_list,
1983 size_t n_qdscp)
1984 {
1985 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
1986 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
1987 struct hmap new = HMAP_INITIALIZER(&new);
1988 size_t i;
1989
1990 for (i = 0; i < n_qdscp; i++) {
1991 struct priority_to_dscp *pdscp;
1992 uint32_t priority;
1993 uint8_t dscp;
1994
1995 dscp = (qdscp_list[i].dscp << 2) & IP_DSCP_MASK;
1996 if (dpif_queue_to_priority(ofproto->backer->dpif, qdscp_list[i].queue,
1997 &priority)) {
1998 continue;
1999 }
2000
2001 pdscp = get_priority(ofport, priority);
2002 if (pdscp) {
2003 hmap_remove(&ofport->priorities, &pdscp->hmap_node);
2004 } else {
2005 pdscp = xmalloc(sizeof *pdscp);
2006 pdscp->priority = priority;
2007 pdscp->dscp = dscp;
2008 ofproto->need_revalidate = REV_RECONFIGURE;
2009 }
2010
2011 if (pdscp->dscp != dscp) {
2012 pdscp->dscp = dscp;
2013 ofproto->need_revalidate = REV_RECONFIGURE;
2014 }
2015
2016 hmap_insert(&new, &pdscp->hmap_node, hash_int(pdscp->priority, 0));
2017 }
2018
2019 if (!hmap_is_empty(&ofport->priorities)) {
2020 ofport_clear_priorities(ofport);
2021 ofproto->need_revalidate = REV_RECONFIGURE;
2022 }
2023
2024 hmap_swap(&new, &ofport->priorities);
2025 hmap_destroy(&new);
2026
2027 return 0;
2028 }
2029 \f
2030 /* Bundles. */
2031
2032 /* Expires all MAC learning entries associated with 'bundle' and forces its
2033 * ofproto to revalidate every flow.
2034 *
2035 * Normally MAC learning entries are removed only from the ofproto associated
2036 * with 'bundle', but if 'all_ofprotos' is true, then the MAC learning entries
2037 * are removed from every ofproto. When patch ports and SLB bonds are in use
2038 * and a VM migration happens and the gratuitous ARPs are somehow lost, this
2039 * avoids a MAC_ENTRY_IDLE_TIME delay before the migrated VM can communicate
2040 * with the host from which it migrated. */
2041 static void
2042 bundle_flush_macs(struct ofbundle *bundle, bool all_ofprotos)
2043 {
2044 struct ofproto_dpif *ofproto = bundle->ofproto;
2045 struct mac_learning *ml = ofproto->ml;
2046 struct mac_entry *mac, *next_mac;
2047
2048 ofproto->need_revalidate = REV_RECONFIGURE;
2049 LIST_FOR_EACH_SAFE (mac, next_mac, lru_node, &ml->lrus) {
2050 if (mac->port.p == bundle) {
2051 if (all_ofprotos) {
2052 struct ofproto_dpif *o;
2053
2054 HMAP_FOR_EACH (o, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
2055 if (o != ofproto) {
2056 struct mac_entry *e;
2057
2058 e = mac_learning_lookup(o->ml, mac->mac, mac->vlan,
2059 NULL);
2060 if (e) {
2061 tag_set_add(&o->revalidate_set, e->tag);
2062 mac_learning_expire(o->ml, e);
2063 }
2064 }
2065 }
2066 }
2067
2068 mac_learning_expire(ml, mac);
2069 }
2070 }
2071 }
2072
2073 static struct ofbundle *
2074 bundle_lookup(const struct ofproto_dpif *ofproto, void *aux)
2075 {
2076 struct ofbundle *bundle;
2077
2078 HMAP_FOR_EACH_IN_BUCKET (bundle, hmap_node, hash_pointer(aux, 0),
2079 &ofproto->bundles) {
2080 if (bundle->aux == aux) {
2081 return bundle;
2082 }
2083 }
2084 return NULL;
2085 }
2086
2087 /* Looks up each of the 'n_auxes' pointers in 'auxes' as bundles and adds the
2088 * ones that are found to 'bundles'. */
2089 static void
2090 bundle_lookup_multiple(struct ofproto_dpif *ofproto,
2091 void **auxes, size_t n_auxes,
2092 struct hmapx *bundles)
2093 {
2094 size_t i;
2095
2096 hmapx_init(bundles);
2097 for (i = 0; i < n_auxes; i++) {
2098 struct ofbundle *bundle = bundle_lookup(ofproto, auxes[i]);
2099 if (bundle) {
2100 hmapx_add(bundles, bundle);
2101 }
2102 }
2103 }
2104
2105 static void
2106 bundle_update(struct ofbundle *bundle)
2107 {
2108 struct ofport_dpif *port;
2109
2110 bundle->floodable = true;
2111 LIST_FOR_EACH (port, bundle_node, &bundle->ports) {
2112 if (port->up.pp.config & OFPUTIL_PC_NO_FLOOD
2113 || !stp_forward_in_state(port->stp_state)) {
2114 bundle->floodable = false;
2115 break;
2116 }
2117 }
2118 }
2119
2120 static void
2121 bundle_del_port(struct ofport_dpif *port)
2122 {
2123 struct ofbundle *bundle = port->bundle;
2124
2125 bundle->ofproto->need_revalidate = REV_RECONFIGURE;
2126
2127 list_remove(&port->bundle_node);
2128 port->bundle = NULL;
2129
2130 if (bundle->lacp) {
2131 lacp_slave_unregister(bundle->lacp, port);
2132 }
2133 if (bundle->bond) {
2134 bond_slave_unregister(bundle->bond, port);
2135 }
2136
2137 bundle_update(bundle);
2138 }
2139
2140 static bool
2141 bundle_add_port(struct ofbundle *bundle, uint32_t ofp_port,
2142 struct lacp_slave_settings *lacp,
2143 uint32_t bond_stable_id)
2144 {
2145 struct ofport_dpif *port;
2146
2147 port = get_ofp_port(bundle->ofproto, ofp_port);
2148 if (!port) {
2149 return false;
2150 }
2151
2152 if (port->bundle != bundle) {
2153 bundle->ofproto->need_revalidate = REV_RECONFIGURE;
2154 if (port->bundle) {
2155 bundle_del_port(port);
2156 }
2157
2158 port->bundle = bundle;
2159 list_push_back(&bundle->ports, &port->bundle_node);
2160 if (port->up.pp.config & OFPUTIL_PC_NO_FLOOD
2161 || !stp_forward_in_state(port->stp_state)) {
2162 bundle->floodable = false;
2163 }
2164 }
2165 if (lacp) {
2166 port->bundle->ofproto->need_revalidate = REV_RECONFIGURE;
2167 lacp_slave_register(bundle->lacp, port, lacp);
2168 }
2169
2170 port->bond_stable_id = bond_stable_id;
2171
2172 return true;
2173 }
2174
2175 static void
2176 bundle_destroy(struct ofbundle *bundle)
2177 {
2178 struct ofproto_dpif *ofproto;
2179 struct ofport_dpif *port, *next_port;
2180 int i;
2181
2182 if (!bundle) {
2183 return;
2184 }
2185
2186 ofproto = bundle->ofproto;
2187 for (i = 0; i < MAX_MIRRORS; i++) {
2188 struct ofmirror *m = ofproto->mirrors[i];
2189 if (m) {
2190 if (m->out == bundle) {
2191 mirror_destroy(m);
2192 } else if (hmapx_find_and_delete(&m->srcs, bundle)
2193 || hmapx_find_and_delete(&m->dsts, bundle)) {
2194 ofproto->need_revalidate = REV_RECONFIGURE;
2195 }
2196 }
2197 }
2198
2199 LIST_FOR_EACH_SAFE (port, next_port, bundle_node, &bundle->ports) {
2200 bundle_del_port(port);
2201 }
2202
2203 bundle_flush_macs(bundle, true);
2204 hmap_remove(&ofproto->bundles, &bundle->hmap_node);
2205 free(bundle->name);
2206 free(bundle->trunks);
2207 lacp_destroy(bundle->lacp);
2208 bond_destroy(bundle->bond);
2209 free(bundle);
2210 }
2211
2212 static int
2213 bundle_set(struct ofproto *ofproto_, void *aux,
2214 const struct ofproto_bundle_settings *s)
2215 {
2216 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2217 bool need_flush = false;
2218 struct ofport_dpif *port;
2219 struct ofbundle *bundle;
2220 unsigned long *trunks;
2221 int vlan;
2222 size_t i;
2223 bool ok;
2224
2225 if (!s) {
2226 bundle_destroy(bundle_lookup(ofproto, aux));
2227 return 0;
2228 }
2229
2230 ovs_assert(s->n_slaves == 1 || s->bond != NULL);
2231 ovs_assert((s->lacp != NULL) == (s->lacp_slaves != NULL));
2232
2233 bundle = bundle_lookup(ofproto, aux);
2234 if (!bundle) {
2235 bundle = xmalloc(sizeof *bundle);
2236
2237 bundle->ofproto = ofproto;
2238 hmap_insert(&ofproto->bundles, &bundle->hmap_node,
2239 hash_pointer(aux, 0));
2240 bundle->aux = aux;
2241 bundle->name = NULL;
2242
2243 list_init(&bundle->ports);
2244 bundle->vlan_mode = PORT_VLAN_TRUNK;
2245 bundle->vlan = -1;
2246 bundle->trunks = NULL;
2247 bundle->use_priority_tags = s->use_priority_tags;
2248 bundle->lacp = NULL;
2249 bundle->bond = NULL;
2250
2251 bundle->floodable = true;
2252
2253 bundle->src_mirrors = 0;
2254 bundle->dst_mirrors = 0;
2255 bundle->mirror_out = 0;
2256 }
2257
2258 if (!bundle->name || strcmp(s->name, bundle->name)) {
2259 free(bundle->name);
2260 bundle->name = xstrdup(s->name);
2261 }
2262
2263 /* LACP. */
2264 if (s->lacp) {
2265 if (!bundle->lacp) {
2266 ofproto->need_revalidate = REV_RECONFIGURE;
2267 bundle->lacp = lacp_create();
2268 }
2269 lacp_configure(bundle->lacp, s->lacp);
2270 } else {
2271 lacp_destroy(bundle->lacp);
2272 bundle->lacp = NULL;
2273 }
2274
2275 /* Update set of ports. */
2276 ok = true;
2277 for (i = 0; i < s->n_slaves; i++) {
2278 if (!bundle_add_port(bundle, s->slaves[i],
2279 s->lacp ? &s->lacp_slaves[i] : NULL,
2280 s->bond_stable_ids ? s->bond_stable_ids[i] : 0)) {
2281 ok = false;
2282 }
2283 }
2284 if (!ok || list_size(&bundle->ports) != s->n_slaves) {
2285 struct ofport_dpif *next_port;
2286
2287 LIST_FOR_EACH_SAFE (port, next_port, bundle_node, &bundle->ports) {
2288 for (i = 0; i < s->n_slaves; i++) {
2289 if (s->slaves[i] == port->up.ofp_port) {
2290 goto found;
2291 }
2292 }
2293
2294 bundle_del_port(port);
2295 found: ;
2296 }
2297 }
2298 ovs_assert(list_size(&bundle->ports) <= s->n_slaves);
2299
2300 if (list_is_empty(&bundle->ports)) {
2301 bundle_destroy(bundle);
2302 return EINVAL;
2303 }
2304
2305 /* Set VLAN tagging mode */
2306 if (s->vlan_mode != bundle->vlan_mode
2307 || s->use_priority_tags != bundle->use_priority_tags) {
2308 bundle->vlan_mode = s->vlan_mode;
2309 bundle->use_priority_tags = s->use_priority_tags;
2310 need_flush = true;
2311 }
2312
2313 /* Set VLAN tag. */
2314 vlan = (s->vlan_mode == PORT_VLAN_TRUNK ? -1
2315 : s->vlan >= 0 && s->vlan <= 4095 ? s->vlan
2316 : 0);
2317 if (vlan != bundle->vlan) {
2318 bundle->vlan = vlan;
2319 need_flush = true;
2320 }
2321
2322 /* Get trunked VLANs. */
2323 switch (s->vlan_mode) {
2324 case PORT_VLAN_ACCESS:
2325 trunks = NULL;
2326 break;
2327
2328 case PORT_VLAN_TRUNK:
2329 trunks = CONST_CAST(unsigned long *, s->trunks);
2330 break;
2331
2332 case PORT_VLAN_NATIVE_UNTAGGED:
2333 case PORT_VLAN_NATIVE_TAGGED:
2334 if (vlan != 0 && (!s->trunks
2335 || !bitmap_is_set(s->trunks, vlan)
2336 || bitmap_is_set(s->trunks, 0))) {
2337 /* Force trunking the native VLAN and prohibit trunking VLAN 0. */
2338 if (s->trunks) {
2339 trunks = bitmap_clone(s->trunks, 4096);
2340 } else {
2341 trunks = bitmap_allocate1(4096);
2342 }
2343 bitmap_set1(trunks, vlan);
2344 bitmap_set0(trunks, 0);
2345 } else {
2346 trunks = CONST_CAST(unsigned long *, s->trunks);
2347 }
2348 break;
2349
2350 default:
2351 NOT_REACHED();
2352 }
2353 if (!vlan_bitmap_equal(trunks, bundle->trunks)) {
2354 free(bundle->trunks);
2355 if (trunks == s->trunks) {
2356 bundle->trunks = vlan_bitmap_clone(trunks);
2357 } else {
2358 bundle->trunks = trunks;
2359 trunks = NULL;
2360 }
2361 need_flush = true;
2362 }
2363 if (trunks != s->trunks) {
2364 free(trunks);
2365 }
2366
2367 /* Bonding. */
2368 if (!list_is_short(&bundle->ports)) {
2369 bundle->ofproto->has_bonded_bundles = true;
2370 if (bundle->bond) {
2371 if (bond_reconfigure(bundle->bond, s->bond)) {
2372 ofproto->need_revalidate = REV_RECONFIGURE;
2373 }
2374 } else {
2375 bundle->bond = bond_create(s->bond);
2376 ofproto->need_revalidate = REV_RECONFIGURE;
2377 }
2378
2379 LIST_FOR_EACH (port, bundle_node, &bundle->ports) {
2380 bond_slave_register(bundle->bond, port, port->bond_stable_id,
2381 port->up.netdev);
2382 }
2383 } else {
2384 bond_destroy(bundle->bond);
2385 bundle->bond = NULL;
2386 }
2387
2388 /* If we changed something that would affect MAC learning, un-learn
2389 * everything on this port and force flow revalidation. */
2390 if (need_flush) {
2391 bundle_flush_macs(bundle, false);
2392 }
2393
2394 return 0;
2395 }
2396
2397 static void
2398 bundle_remove(struct ofport *port_)
2399 {
2400 struct ofport_dpif *port = ofport_dpif_cast(port_);
2401 struct ofbundle *bundle = port->bundle;
2402
2403 if (bundle) {
2404 bundle_del_port(port);
2405 if (list_is_empty(&bundle->ports)) {
2406 bundle_destroy(bundle);
2407 } else if (list_is_short(&bundle->ports)) {
2408 bond_destroy(bundle->bond);
2409 bundle->bond = NULL;
2410 }
2411 }
2412 }
2413
2414 static void
2415 send_pdu_cb(void *port_, const void *pdu, size_t pdu_size)
2416 {
2417 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 10);
2418 struct ofport_dpif *port = port_;
2419 uint8_t ea[ETH_ADDR_LEN];
2420 int error;
2421
2422 error = netdev_get_etheraddr(port->up.netdev, ea);
2423 if (!error) {
2424 struct ofpbuf packet;
2425 void *packet_pdu;
2426
2427 ofpbuf_init(&packet, 0);
2428 packet_pdu = eth_compose(&packet, eth_addr_lacp, ea, ETH_TYPE_LACP,
2429 pdu_size);
2430 memcpy(packet_pdu, pdu, pdu_size);
2431
2432 send_packet(port, &packet);
2433 ofpbuf_uninit(&packet);
2434 } else {
2435 VLOG_ERR_RL(&rl, "port %s: cannot obtain Ethernet address of iface "
2436 "%s (%s)", port->bundle->name,
2437 netdev_get_name(port->up.netdev), strerror(error));
2438 }
2439 }
2440
2441 static void
2442 bundle_send_learning_packets(struct ofbundle *bundle)
2443 {
2444 struct ofproto_dpif *ofproto = bundle->ofproto;
2445 int error, n_packets, n_errors;
2446 struct mac_entry *e;
2447
2448 error = n_packets = n_errors = 0;
2449 LIST_FOR_EACH (e, lru_node, &ofproto->ml->lrus) {
2450 if (e->port.p != bundle) {
2451 struct ofpbuf *learning_packet;
2452 struct ofport_dpif *port;
2453 void *port_void;
2454 int ret;
2455
2456 /* The assignment to "port" is unnecessary but makes "grep"ing for
2457 * struct ofport_dpif more effective. */
2458 learning_packet = bond_compose_learning_packet(bundle->bond,
2459 e->mac, e->vlan,
2460 &port_void);
2461 port = port_void;
2462 ret = send_packet(port, learning_packet);
2463 ofpbuf_delete(learning_packet);
2464 if (ret) {
2465 error = ret;
2466 n_errors++;
2467 }
2468 n_packets++;
2469 }
2470 }
2471
2472 if (n_errors) {
2473 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
2474 VLOG_WARN_RL(&rl, "bond %s: %d errors sending %d gratuitous learning "
2475 "packets, last error was: %s",
2476 bundle->name, n_errors, n_packets, strerror(error));
2477 } else {
2478 VLOG_DBG("bond %s: sent %d gratuitous learning packets",
2479 bundle->name, n_packets);
2480 }
2481 }
2482
2483 static void
2484 bundle_run(struct ofbundle *bundle)
2485 {
2486 if (bundle->lacp) {
2487 lacp_run(bundle->lacp, send_pdu_cb);
2488 }
2489 if (bundle->bond) {
2490 struct ofport_dpif *port;
2491
2492 LIST_FOR_EACH (port, bundle_node, &bundle->ports) {
2493 bond_slave_set_may_enable(bundle->bond, port, port->may_enable);
2494 }
2495
2496 bond_run(bundle->bond, &bundle->ofproto->revalidate_set,
2497 lacp_status(bundle->lacp));
2498 if (bond_should_send_learning_packets(bundle->bond)) {
2499 bundle_send_learning_packets(bundle);
2500 }
2501 }
2502 }
2503
2504 static void
2505 bundle_wait(struct ofbundle *bundle)
2506 {
2507 if (bundle->lacp) {
2508 lacp_wait(bundle->lacp);
2509 }
2510 if (bundle->bond) {
2511 bond_wait(bundle->bond);
2512 }
2513 }
2514 \f
2515 /* Mirrors. */
2516
2517 static int
2518 mirror_scan(struct ofproto_dpif *ofproto)
2519 {
2520 int idx;
2521
2522 for (idx = 0; idx < MAX_MIRRORS; idx++) {
2523 if (!ofproto->mirrors[idx]) {
2524 return idx;
2525 }
2526 }
2527 return -1;
2528 }
2529
2530 static struct ofmirror *
2531 mirror_lookup(struct ofproto_dpif *ofproto, void *aux)
2532 {
2533 int i;
2534
2535 for (i = 0; i < MAX_MIRRORS; i++) {
2536 struct ofmirror *mirror = ofproto->mirrors[i];
2537 if (mirror && mirror->aux == aux) {
2538 return mirror;
2539 }
2540 }
2541
2542 return NULL;
2543 }
2544
2545 /* Update the 'dup_mirrors' member of each of the ofmirrors in 'ofproto'. */
2546 static void
2547 mirror_update_dups(struct ofproto_dpif *ofproto)
2548 {
2549 int i;
2550
2551 for (i = 0; i < MAX_MIRRORS; i++) {
2552 struct ofmirror *m = ofproto->mirrors[i];
2553
2554 if (m) {
2555 m->dup_mirrors = MIRROR_MASK_C(1) << i;
2556 }
2557 }
2558
2559 for (i = 0; i < MAX_MIRRORS; i++) {
2560 struct ofmirror *m1 = ofproto->mirrors[i];
2561 int j;
2562
2563 if (!m1) {
2564 continue;
2565 }
2566
2567 for (j = i + 1; j < MAX_MIRRORS; j++) {
2568 struct ofmirror *m2 = ofproto->mirrors[j];
2569
2570 if (m2 && m1->out == m2->out && m1->out_vlan == m2->out_vlan) {
2571 m1->dup_mirrors |= MIRROR_MASK_C(1) << j;
2572 m2->dup_mirrors |= m1->dup_mirrors;
2573 }
2574 }
2575 }
2576 }
2577
2578 static int
2579 mirror_set(struct ofproto *ofproto_, void *aux,
2580 const struct ofproto_mirror_settings *s)
2581 {
2582 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2583 mirror_mask_t mirror_bit;
2584 struct ofbundle *bundle;
2585 struct ofmirror *mirror;
2586 struct ofbundle *out;
2587 struct hmapx srcs; /* Contains "struct ofbundle *"s. */
2588 struct hmapx dsts; /* Contains "struct ofbundle *"s. */
2589 int out_vlan;
2590
2591 mirror = mirror_lookup(ofproto, aux);
2592 if (!s) {
2593 mirror_destroy(mirror);
2594 return 0;
2595 }
2596 if (!mirror) {
2597 int idx;
2598
2599 idx = mirror_scan(ofproto);
2600 if (idx < 0) {
2601 VLOG_WARN("bridge %s: maximum of %d port mirrors reached, "
2602 "cannot create %s",
2603 ofproto->up.name, MAX_MIRRORS, s->name);
2604 return EFBIG;
2605 }
2606
2607 mirror = ofproto->mirrors[idx] = xzalloc(sizeof *mirror);
2608 mirror->ofproto = ofproto;
2609 mirror->idx = idx;
2610 mirror->aux = aux;
2611 mirror->out_vlan = -1;
2612 mirror->name = NULL;
2613 }
2614
2615 if (!mirror->name || strcmp(s->name, mirror->name)) {
2616 free(mirror->name);
2617 mirror->name = xstrdup(s->name);
2618 }
2619
2620 /* Get the new configuration. */
2621 if (s->out_bundle) {
2622 out = bundle_lookup(ofproto, s->out_bundle);
2623 if (!out) {
2624 mirror_destroy(mirror);
2625 return EINVAL;
2626 }
2627 out_vlan = -1;
2628 } else {
2629 out = NULL;
2630 out_vlan = s->out_vlan;
2631 }
2632 bundle_lookup_multiple(ofproto, s->srcs, s->n_srcs, &srcs);
2633 bundle_lookup_multiple(ofproto, s->dsts, s->n_dsts, &dsts);
2634
2635 /* If the configuration has not changed, do nothing. */
2636 if (hmapx_equals(&srcs, &mirror->srcs)
2637 && hmapx_equals(&dsts, &mirror->dsts)
2638 && vlan_bitmap_equal(mirror->vlans, s->src_vlans)
2639 && mirror->out == out
2640 && mirror->out_vlan == out_vlan)
2641 {
2642 hmapx_destroy(&srcs);
2643 hmapx_destroy(&dsts);
2644 return 0;
2645 }
2646
2647 hmapx_swap(&srcs, &mirror->srcs);
2648 hmapx_destroy(&srcs);
2649
2650 hmapx_swap(&dsts, &mirror->dsts);
2651 hmapx_destroy(&dsts);
2652
2653 free(mirror->vlans);
2654 mirror->vlans = vlan_bitmap_clone(s->src_vlans);
2655
2656 mirror->out = out;
2657 mirror->out_vlan = out_vlan;
2658
2659 /* Update bundles. */
2660 mirror_bit = MIRROR_MASK_C(1) << mirror->idx;
2661 HMAP_FOR_EACH (bundle, hmap_node, &mirror->ofproto->bundles) {
2662 if (hmapx_contains(&mirror->srcs, bundle)) {
2663 bundle->src_mirrors |= mirror_bit;
2664 } else {
2665 bundle->src_mirrors &= ~mirror_bit;
2666 }
2667
2668 if (hmapx_contains(&mirror->dsts, bundle)) {
2669 bundle->dst_mirrors |= mirror_bit;
2670 } else {
2671 bundle->dst_mirrors &= ~mirror_bit;
2672 }
2673
2674 if (mirror->out == bundle) {
2675 bundle->mirror_out |= mirror_bit;
2676 } else {
2677 bundle->mirror_out &= ~mirror_bit;
2678 }
2679 }
2680
2681 ofproto->need_revalidate = REV_RECONFIGURE;
2682 ofproto->has_mirrors = true;
2683 mac_learning_flush(ofproto->ml, &ofproto->revalidate_set);
2684 mirror_update_dups(ofproto);
2685
2686 return 0;
2687 }
2688
2689 static void
2690 mirror_destroy(struct ofmirror *mirror)
2691 {
2692 struct ofproto_dpif *ofproto;
2693 mirror_mask_t mirror_bit;
2694 struct ofbundle *bundle;
2695 int i;
2696
2697 if (!mirror) {
2698 return;
2699 }
2700
2701 ofproto = mirror->ofproto;
2702 ofproto->need_revalidate = REV_RECONFIGURE;
2703 mac_learning_flush(ofproto->ml, &ofproto->revalidate_set);
2704
2705 mirror_bit = MIRROR_MASK_C(1) << mirror->idx;
2706 HMAP_FOR_EACH (bundle, hmap_node, &ofproto->bundles) {
2707 bundle->src_mirrors &= ~mirror_bit;
2708 bundle->dst_mirrors &= ~mirror_bit;
2709 bundle->mirror_out &= ~mirror_bit;
2710 }
2711
2712 hmapx_destroy(&mirror->srcs);
2713 hmapx_destroy(&mirror->dsts);
2714 free(mirror->vlans);
2715
2716 ofproto->mirrors[mirror->idx] = NULL;
2717 free(mirror->name);
2718 free(mirror);
2719
2720 mirror_update_dups(ofproto);
2721
2722 ofproto->has_mirrors = false;
2723 for (i = 0; i < MAX_MIRRORS; i++) {
2724 if (ofproto->mirrors[i]) {
2725 ofproto->has_mirrors = true;
2726 break;
2727 }
2728 }
2729 }
2730
2731 static int
2732 mirror_get_stats(struct ofproto *ofproto_, void *aux,
2733 uint64_t *packets, uint64_t *bytes)
2734 {
2735 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2736 struct ofmirror *mirror = mirror_lookup(ofproto, aux);
2737
2738 if (!mirror) {
2739 *packets = *bytes = UINT64_MAX;
2740 return 0;
2741 }
2742
2743 *packets = mirror->packet_count;
2744 *bytes = mirror->byte_count;
2745
2746 return 0;
2747 }
2748
2749 static int
2750 set_flood_vlans(struct ofproto *ofproto_, unsigned long *flood_vlans)
2751 {
2752 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2753 if (mac_learning_set_flood_vlans(ofproto->ml, flood_vlans)) {
2754 mac_learning_flush(ofproto->ml, &ofproto->revalidate_set);
2755 }
2756 return 0;
2757 }
2758
2759 static bool
2760 is_mirror_output_bundle(const struct ofproto *ofproto_, void *aux)
2761 {
2762 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2763 struct ofbundle *bundle = bundle_lookup(ofproto, aux);
2764 return bundle && bundle->mirror_out != 0;
2765 }
2766
2767 static void
2768 forward_bpdu_changed(struct ofproto *ofproto_)
2769 {
2770 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2771 ofproto->need_revalidate = REV_RECONFIGURE;
2772 }
2773
2774 static void
2775 set_mac_table_config(struct ofproto *ofproto_, unsigned int idle_time,
2776 size_t max_entries)
2777 {
2778 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2779 mac_learning_set_idle_time(ofproto->ml, idle_time);
2780 mac_learning_set_max_entries(ofproto->ml, max_entries);
2781 }
2782 \f
2783 /* Ports. */
2784
2785 static struct ofport_dpif *
2786 get_ofp_port(const struct ofproto_dpif *ofproto, uint16_t ofp_port)
2787 {
2788 struct ofport *ofport = ofproto_get_port(&ofproto->up, ofp_port);
2789 return ofport ? ofport_dpif_cast(ofport) : NULL;
2790 }
2791
2792 static struct ofport_dpif *
2793 get_odp_port(const struct ofproto_dpif *ofproto, uint32_t odp_port)
2794 {
2795 struct ofport_dpif *port = odp_port_to_ofport(ofproto->backer, odp_port);
2796 return port && &ofproto->up == port->up.ofproto ? port : NULL;
2797 }
2798
2799 static void
2800 ofproto_port_from_dpif_port(struct ofproto_dpif *ofproto,
2801 struct ofproto_port *ofproto_port,
2802 struct dpif_port *dpif_port)
2803 {
2804 ofproto_port->name = dpif_port->name;
2805 ofproto_port->type = dpif_port->type;
2806 ofproto_port->ofp_port = odp_port_to_ofp_port(ofproto, dpif_port->port_no);
2807 }
2808
2809 static void
2810 port_run_fast(struct ofport_dpif *ofport)
2811 {
2812 if (ofport->cfm && cfm_should_send_ccm(ofport->cfm)) {
2813 struct ofpbuf packet;
2814
2815 ofpbuf_init(&packet, 0);
2816 cfm_compose_ccm(ofport->cfm, &packet, ofport->up.pp.hw_addr);
2817 send_packet(ofport, &packet);
2818 ofpbuf_uninit(&packet);
2819 }
2820 }
2821
2822 static void
2823 port_run(struct ofport_dpif *ofport)
2824 {
2825 long long int carrier_seq = netdev_get_carrier_resets(ofport->up.netdev);
2826 bool carrier_changed = carrier_seq != ofport->carrier_seq;
2827 bool enable = netdev_get_carrier(ofport->up.netdev);
2828
2829 ofport->carrier_seq = carrier_seq;
2830
2831 port_run_fast(ofport);
2832 if (ofport->cfm) {
2833 int cfm_opup = cfm_get_opup(ofport->cfm);
2834
2835 cfm_run(ofport->cfm);
2836 enable = enable && !cfm_get_fault(ofport->cfm);
2837
2838 if (cfm_opup >= 0) {
2839 enable = enable && cfm_opup;
2840 }
2841 }
2842
2843 if (ofport->bundle) {
2844 enable = enable && lacp_slave_may_enable(ofport->bundle->lacp, ofport);
2845 if (carrier_changed) {
2846 lacp_slave_carrier_changed(ofport->bundle->lacp, ofport);
2847 }
2848 }
2849
2850 if (ofport->may_enable != enable) {
2851 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
2852
2853 if (ofproto->has_bundle_action) {
2854 ofproto->need_revalidate = REV_PORT_TOGGLED;
2855 }
2856 }
2857
2858 ofport->may_enable = enable;
2859 }
2860
2861 static void
2862 port_wait(struct ofport_dpif *ofport)
2863 {
2864 if (ofport->cfm) {
2865 cfm_wait(ofport->cfm);
2866 }
2867 }
2868
2869 static int
2870 port_query_by_name(const struct ofproto *ofproto_, const char *devname,
2871 struct ofproto_port *ofproto_port)
2872 {
2873 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2874 struct dpif_port dpif_port;
2875 int error;
2876
2877 if (!sset_contains(&ofproto->ports, devname)) {
2878 return ENODEV;
2879 }
2880 error = dpif_port_query_by_name(ofproto->backer->dpif,
2881 devname, &dpif_port);
2882 if (!error) {
2883 ofproto_port_from_dpif_port(ofproto, ofproto_port, &dpif_port);
2884 }
2885 return error;
2886 }
2887
2888 static int
2889 port_add(struct ofproto *ofproto_, struct netdev *netdev)
2890 {
2891 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2892 uint32_t odp_port = UINT32_MAX;
2893 int error;
2894
2895 error = dpif_port_add(ofproto->backer->dpif, netdev, &odp_port);
2896 if (!error) {
2897 sset_add(&ofproto->ports, netdev_get_name(netdev));
2898 }
2899 return error;
2900 }
2901
2902 static int
2903 port_del(struct ofproto *ofproto_, uint16_t ofp_port)
2904 {
2905 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2906 uint32_t odp_port = ofp_port_to_odp_port(ofproto, ofp_port);
2907 int error = 0;
2908
2909 if (odp_port != OFPP_NONE) {
2910 error = dpif_port_del(ofproto->backer->dpif, odp_port);
2911 }
2912 if (!error) {
2913 struct ofport_dpif *ofport = get_ofp_port(ofproto, ofp_port);
2914 if (ofport) {
2915 /* The caller is going to close ofport->up.netdev. If this is a
2916 * bonded port, then the bond is using that netdev, so remove it
2917 * from the bond. The client will need to reconfigure everything
2918 * after deleting ports, so then the slave will get re-added. */
2919 bundle_remove(&ofport->up);
2920 }
2921 }
2922 return error;
2923 }
2924
2925 static int
2926 port_get_stats(const struct ofport *ofport_, struct netdev_stats *stats)
2927 {
2928 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
2929 int error;
2930
2931 error = netdev_get_stats(ofport->up.netdev, stats);
2932
2933 if (!error && ofport_->ofp_port == OFPP_LOCAL) {
2934 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
2935
2936 /* ofproto->stats.tx_packets represents packets that we created
2937 * internally and sent to some port (e.g. packets sent with
2938 * send_packet()). Account for them as if they had come from
2939 * OFPP_LOCAL and got forwarded. */
2940
2941 if (stats->rx_packets != UINT64_MAX) {
2942 stats->rx_packets += ofproto->stats.tx_packets;
2943 }
2944
2945 if (stats->rx_bytes != UINT64_MAX) {
2946 stats->rx_bytes += ofproto->stats.tx_bytes;
2947 }
2948
2949 /* ofproto->stats.rx_packets represents packets that were received on
2950 * some port and we processed internally and dropped (e.g. STP).
2951 * Account for them as if they had been forwarded to OFPP_LOCAL. */
2952
2953 if (stats->tx_packets != UINT64_MAX) {
2954 stats->tx_packets += ofproto->stats.rx_packets;
2955 }
2956
2957 if (stats->tx_bytes != UINT64_MAX) {
2958 stats->tx_bytes += ofproto->stats.rx_bytes;
2959 }
2960 }
2961
2962 return error;
2963 }
2964
2965 /* Account packets for LOCAL port. */
2966 static void
2967 ofproto_update_local_port_stats(const struct ofproto *ofproto_,
2968 size_t tx_size, size_t rx_size)
2969 {
2970 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2971
2972 if (rx_size) {
2973 ofproto->stats.rx_packets++;
2974 ofproto->stats.rx_bytes += rx_size;
2975 }
2976 if (tx_size) {
2977 ofproto->stats.tx_packets++;
2978 ofproto->stats.tx_bytes += tx_size;
2979 }
2980 }
2981
2982 struct port_dump_state {
2983 uint32_t bucket;
2984 uint32_t offset;
2985 };
2986
2987 static int
2988 port_dump_start(const struct ofproto *ofproto_ OVS_UNUSED, void **statep)
2989 {
2990 struct port_dump_state *state;
2991
2992 *statep = state = xmalloc(sizeof *state);
2993 state->bucket = 0;
2994 state->offset = 0;
2995 return 0;
2996 }
2997
2998 static int
2999 port_dump_next(const struct ofproto *ofproto_ OVS_UNUSED, void *state_,
3000 struct ofproto_port *port)
3001 {
3002 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
3003 struct port_dump_state *state = state_;
3004 struct sset_node *node;
3005
3006 while ((node = sset_at_position(&ofproto->ports, &state->bucket,
3007 &state->offset))) {
3008 int error;
3009
3010 error = port_query_by_name(ofproto_, node->name, port);
3011 if (error != ENODEV) {
3012 return error;
3013 }
3014 }
3015
3016 return EOF;
3017 }
3018
3019 static int
3020 port_dump_done(const struct ofproto *ofproto_ OVS_UNUSED, void *state_)
3021 {
3022 struct port_dump_state *state = state_;
3023
3024 free(state);
3025 return 0;
3026 }
3027
3028 static int
3029 port_poll(const struct ofproto *ofproto_, char **devnamep)
3030 {
3031 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
3032
3033 if (ofproto->port_poll_errno) {
3034 int error = ofproto->port_poll_errno;
3035 ofproto->port_poll_errno = 0;
3036 return error;
3037 }
3038
3039 if (sset_is_empty(&ofproto->port_poll_set)) {
3040 return EAGAIN;
3041 }
3042
3043 *devnamep = sset_pop(&ofproto->port_poll_set);
3044 return 0;
3045 }
3046
3047 static void
3048 port_poll_wait(const struct ofproto *ofproto_)
3049 {
3050 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
3051 dpif_port_poll_wait(ofproto->backer->dpif);
3052 }
3053
3054 static int
3055 port_is_lacp_current(const struct ofport *ofport_)
3056 {
3057 const struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
3058 return (ofport->bundle && ofport->bundle->lacp
3059 ? lacp_slave_is_current(ofport->bundle->lacp, ofport)
3060 : -1);
3061 }
3062 \f
3063 /* Upcall handling. */
3064
3065 /* Flow miss batching.
3066 *
3067 * Some dpifs implement operations faster when you hand them off in a batch.
3068 * To allow batching, "struct flow_miss" queues the dpif-related work needed
3069 * for a given flow. Each "struct flow_miss" corresponds to sending one or
3070 * more packets, plus possibly installing the flow in the dpif.
3071 *
3072 * So far we only batch the operations that affect flow setup time the most.
3073 * It's possible to batch more than that, but the benefit might be minimal. */
3074 struct flow_miss {
3075 struct hmap_node hmap_node;
3076 struct ofproto_dpif *ofproto;
3077 struct flow flow;
3078 enum odp_key_fitness key_fitness;
3079 const struct nlattr *key;
3080 size_t key_len;
3081 ovs_be16 initial_tci;
3082 struct list packets;
3083 enum dpif_upcall_type upcall_type;
3084 uint32_t odp_in_port;
3085 };
3086
3087 struct flow_miss_op {
3088 struct dpif_op dpif_op;
3089 struct subfacet *subfacet; /* Subfacet */
3090 void *garbage; /* Pointer to pass to free(), NULL if none. */
3091 uint64_t stub[1024 / 8]; /* Temporary buffer. */
3092 };
3093
3094 /* Sends an OFPT_PACKET_IN message for 'packet' of type OFPR_NO_MATCH to each
3095 * OpenFlow controller as necessary according to their individual
3096 * configurations. */
3097 static void
3098 send_packet_in_miss(struct ofproto_dpif *ofproto, const struct ofpbuf *packet,
3099 const struct flow *flow)
3100 {
3101 struct ofputil_packet_in pin;
3102
3103 pin.packet = packet->data;
3104 pin.packet_len = packet->size;
3105 pin.reason = OFPR_NO_MATCH;
3106 pin.controller_id = 0;
3107
3108 pin.table_id = 0;
3109 pin.cookie = 0;
3110
3111 pin.send_len = 0; /* not used for flow table misses */
3112
3113 flow_get_metadata(flow, &pin.fmd);
3114
3115 connmgr_send_packet_in(ofproto->up.connmgr, &pin);
3116 }
3117
3118 static enum slow_path_reason
3119 process_special(struct ofproto_dpif *ofproto, const struct flow *flow,
3120 const struct ofpbuf *packet)
3121 {
3122 struct ofport_dpif *ofport = get_ofp_port(ofproto, flow->in_port);
3123
3124 if (!ofport) {
3125 return 0;
3126 }
3127
3128 if (ofport->cfm && cfm_should_process_flow(ofport->cfm, flow)) {
3129 if (packet) {
3130 cfm_process_heartbeat(ofport->cfm, packet);
3131 }
3132 return SLOW_CFM;
3133 } else if (ofport->bundle && ofport->bundle->lacp
3134 && flow->dl_type == htons(ETH_TYPE_LACP)) {
3135 if (packet) {
3136 lacp_process_packet(ofport->bundle->lacp, ofport, packet);
3137 }
3138 return SLOW_LACP;
3139 } else if (ofproto->stp && stp_should_process_flow(flow)) {
3140 if (packet) {
3141 stp_process_packet(ofport, packet);
3142 }
3143 return SLOW_STP;
3144 }
3145 return 0;
3146 }
3147
3148 static struct flow_miss *
3149 flow_miss_find(struct hmap *todo, const struct flow *flow, uint32_t hash)
3150 {
3151 struct flow_miss *miss;
3152
3153 HMAP_FOR_EACH_WITH_HASH (miss, hmap_node, hash, todo) {
3154 if (flow_equal(&miss->flow, flow)) {
3155 return miss;
3156 }
3157 }
3158
3159 return NULL;
3160 }
3161
3162 /* Partially Initializes 'op' as an "execute" operation for 'miss' and
3163 * 'packet'. The caller must initialize op->actions and op->actions_len. If
3164 * 'miss' is associated with a subfacet the caller must also initialize the
3165 * returned op->subfacet, and if anything needs to be freed after processing
3166 * the op, the caller must initialize op->garbage also. */
3167 static void
3168 init_flow_miss_execute_op(struct flow_miss *miss, struct ofpbuf *packet,
3169 struct flow_miss_op *op)
3170 {
3171 if (miss->flow.vlan_tci != miss->initial_tci) {
3172 /* This packet was received on a VLAN splinter port. We
3173 * added a VLAN to the packet to make the packet resemble
3174 * the flow, but the actions were composed assuming that
3175 * the packet contained no VLAN. So, we must remove the
3176 * VLAN header from the packet before trying to execute the
3177 * actions. */
3178 eth_pop_vlan(packet);
3179 }
3180
3181 op->subfacet = NULL;
3182 op->garbage = NULL;
3183 op->dpif_op.type = DPIF_OP_EXECUTE;
3184 op->dpif_op.u.execute.key = miss->key;
3185 op->dpif_op.u.execute.key_len = miss->key_len;
3186 op->dpif_op.u.execute.packet = packet;
3187 }
3188
3189 /* Helper for handle_flow_miss_without_facet() and
3190 * handle_flow_miss_with_facet(). */
3191 static void
3192 handle_flow_miss_common(struct rule_dpif *rule,
3193 struct ofpbuf *packet, const struct flow *flow)
3194 {
3195 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
3196
3197 ofproto->n_matches++;
3198
3199 if (rule->up.cr.priority == FAIL_OPEN_PRIORITY) {
3200 /*
3201 * Extra-special case for fail-open mode.
3202 *
3203 * We are in fail-open mode and the packet matched the fail-open
3204 * rule, but we are connected to a controller too. We should send
3205 * the packet up to the controller in the hope that it will try to
3206 * set up a flow and thereby allow us to exit fail-open.
3207 *
3208 * See the top-level comment in fail-open.c for more information.
3209 */
3210 send_packet_in_miss(ofproto, packet, flow);
3211 }
3212 }
3213
3214 /* Figures out whether a flow that missed in 'ofproto', whose details are in
3215 * 'miss', is likely to be worth tracking in detail in userspace and (usually)
3216 * installing a datapath flow. The answer is usually "yes" (a return value of
3217 * true). However, for short flows the cost of bookkeeping is much higher than
3218 * the benefits, so when the datapath holds a large number of flows we impose
3219 * some heuristics to decide which flows are likely to be worth tracking. */
3220 static bool
3221 flow_miss_should_make_facet(struct ofproto_dpif *ofproto,
3222 struct flow_miss *miss, uint32_t hash)
3223 {
3224 if (!ofproto->governor) {
3225 size_t n_subfacets;
3226
3227 n_subfacets = hmap_count(&ofproto->subfacets);
3228 if (n_subfacets * 2 <= ofproto->up.flow_eviction_threshold) {
3229 return true;
3230 }
3231
3232 ofproto->governor = governor_create(ofproto->up.name);
3233 }
3234
3235 return governor_should_install_flow(ofproto->governor, hash,
3236 list_size(&miss->packets));
3237 }
3238
3239 /* Handles 'miss', which matches 'rule', without creating a facet or subfacet
3240 * or creating any datapath flow. May add an "execute" operation to 'ops' and
3241 * increment '*n_ops'. */
3242 static void
3243 handle_flow_miss_without_facet(struct flow_miss *miss,
3244 struct rule_dpif *rule,
3245 struct flow_miss_op *ops, size_t *n_ops)
3246 {
3247 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
3248 long long int now = time_msec();
3249 struct action_xlate_ctx ctx;
3250 struct ofpbuf *packet;
3251
3252 LIST_FOR_EACH (packet, list_node, &miss->packets) {
3253 struct flow_miss_op *op = &ops[*n_ops];
3254 struct dpif_flow_stats stats;
3255 struct ofpbuf odp_actions;
3256
3257 COVERAGE_INC(facet_suppress);
3258
3259 ofpbuf_use_stub(&odp_actions, op->stub, sizeof op->stub);
3260
3261 dpif_flow_stats_extract(&miss->flow, packet, now, &stats);
3262 rule_credit_stats(rule, &stats);
3263
3264 action_xlate_ctx_init(&ctx, ofproto, &miss->flow, miss->initial_tci,
3265 rule, 0, packet);
3266 ctx.resubmit_stats = &stats;
3267 xlate_actions(&ctx, rule->up.ofpacts, rule->up.ofpacts_len,
3268 &odp_actions);
3269
3270 if (odp_actions.size) {
3271 struct dpif_execute *execute = &op->dpif_op.u.execute;
3272
3273 init_flow_miss_execute_op(miss, packet, op);
3274 execute->actions = odp_actions.data;
3275 execute->actions_len = odp_actions.size;
3276 op->garbage = ofpbuf_get_uninit_pointer(&odp_actions);
3277
3278 (*n_ops)++;
3279 } else {
3280 ofpbuf_uninit(&odp_actions);
3281 }
3282 }
3283 }
3284
3285 /* Handles 'miss', which matches 'facet'. May add any required datapath
3286 * operations to 'ops', incrementing '*n_ops' for each new op.
3287 *
3288 * All of the packets in 'miss' are considered to have arrived at time 'now'.
3289 * This is really important only for new facets: if we just called time_msec()
3290 * here, then the new subfacet or its packets could look (occasionally) as
3291 * though it was used some time after the facet was used. That can make a
3292 * one-packet flow look like it has a nonzero duration, which looks odd in
3293 * e.g. NetFlow statistics. */
3294 static void
3295 handle_flow_miss_with_facet(struct flow_miss *miss, struct facet *facet,
3296 long long int now,
3297 struct flow_miss_op *ops, size_t *n_ops)
3298 {
3299 struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto);
3300 enum subfacet_path want_path;
3301 struct subfacet *subfacet;
3302 struct ofpbuf *packet;
3303
3304 subfacet = subfacet_create(facet, miss, now);
3305
3306 LIST_FOR_EACH (packet, list_node, &miss->packets) {
3307 struct flow_miss_op *op = &ops[*n_ops];
3308 struct dpif_flow_stats stats;
3309 struct ofpbuf odp_actions;
3310
3311 handle_flow_miss_common(facet->rule, packet, &miss->flow);
3312
3313 ofpbuf_use_stub(&odp_actions, op->stub, sizeof op->stub);
3314 if (!subfacet->actions || subfacet->slow) {
3315 subfacet_make_actions(subfacet, packet, &odp_actions);
3316 }
3317
3318 dpif_flow_stats_extract(&facet->flow, packet, now, &stats);
3319 subfacet_update_stats(subfacet, &stats);
3320
3321 if (subfacet->actions_len) {
3322 struct dpif_execute *execute = &op->dpif_op.u.execute;
3323
3324 init_flow_miss_execute_op(miss, packet, op);
3325 op->subfacet = subfacet;
3326 if (!subfacet->slow) {
3327 execute->actions = subfacet->actions;
3328 execute->actions_len = subfacet->actions_len;
3329 ofpbuf_uninit(&odp_actions);
3330 } else {
3331 execute->actions = odp_actions.data;
3332 execute->actions_len = odp_actions.size;
3333 op->garbage = ofpbuf_get_uninit_pointer(&odp_actions);
3334 }
3335
3336 (*n_ops)++;
3337 } else {
3338 ofpbuf_uninit(&odp_actions);
3339 }
3340 }
3341
3342 want_path = subfacet_want_path(subfacet->slow);
3343 if (miss->upcall_type == DPIF_UC_MISS || subfacet->path != want_path) {
3344 struct flow_miss_op *op = &ops[(*n_ops)++];
3345 struct dpif_flow_put *put = &op->dpif_op.u.flow_put;
3346
3347 op->subfacet = subfacet;
3348 op->garbage = NULL;
3349 op->dpif_op.type = DPIF_OP_FLOW_PUT;
3350 put->flags = DPIF_FP_CREATE | DPIF_FP_MODIFY;
3351 put->key = miss->key;
3352 put->key_len = miss->key_len;
3353 if (want_path == SF_FAST_PATH) {
3354 put->actions = subfacet->actions;
3355 put->actions_len = subfacet->actions_len;
3356 } else {
3357 compose_slow_path(ofproto, &facet->flow, subfacet->slow,
3358 op->stub, sizeof op->stub,
3359 &put->actions, &put->actions_len);
3360 }
3361 put->stats = NULL;
3362 }
3363 }
3364
3365 /* Handles flow miss 'miss'. May add any required datapath operations
3366 * to 'ops', incrementing '*n_ops' for each new op. */
3367 static void
3368 handle_flow_miss(struct flow_miss *miss, struct flow_miss_op *ops,
3369 size_t *n_ops)
3370 {
3371 struct ofproto_dpif *ofproto = miss->ofproto;
3372 struct facet *facet;
3373 long long int now;
3374 uint32_t hash;
3375
3376 /* The caller must ensure that miss->hmap_node.hash contains
3377 * flow_hash(miss->flow, 0). */
3378 hash = miss->hmap_node.hash;
3379
3380 facet = facet_lookup_valid(ofproto, &miss->flow, hash);
3381 if (!facet) {
3382 struct rule_dpif *rule = rule_dpif_lookup(ofproto, &miss->flow);
3383
3384 if (!flow_miss_should_make_facet(ofproto, miss, hash)) {
3385 handle_flow_miss_without_facet(miss, rule, ops, n_ops);
3386 return;
3387 }
3388
3389 facet = facet_create(rule, &miss->flow, hash);
3390 now = facet->used;
3391 } else {
3392 now = time_msec();
3393 }
3394 handle_flow_miss_with_facet(miss, facet, now, ops, n_ops);
3395 }
3396
3397 /* Given a datpath, packet, and flow metadata ('backer', 'packet', and 'key'
3398 * respectively), populates 'flow' with the result of odp_flow_key_to_flow().
3399 * Optionally, if nonnull, populates 'fitnessp' with the fitness of 'flow' as
3400 * returned by odp_flow_key_to_flow(). Also, optionally populates 'ofproto'
3401 * with the ofproto_dpif, and 'odp_in_port' with the datapath in_port, that
3402 * 'packet' ingressed.
3403 *
3404 * If 'ofproto' is nonnull, requires 'flow''s in_port to exist. Otherwise sets
3405 * 'flow''s in_port to OFPP_NONE.
3406 *
3407 * This function does post-processing on data returned from
3408 * odp_flow_key_to_flow() to help make VLAN splinters transparent to the rest
3409 * of the upcall processing logic. In particular, if the extracted in_port is
3410 * a VLAN splinter port, it replaces flow->in_port by the "real" port, sets
3411 * flow->vlan_tci correctly for the VLAN of the VLAN splinter port, and pushes
3412 * a VLAN header onto 'packet' (if it is nonnull).
3413 *
3414 * Optionally, if nonnull, sets '*initial_tci' to the VLAN TCI with which the
3415 * packet was really received, that is, the actual VLAN TCI extracted by
3416 * odp_flow_key_to_flow(). (This differs from the value returned in
3417 * flow->vlan_tci only for packets received on VLAN splinters.)
3418 *
3419 * Returns 0 if successful, ENODEV if the parsed flow has no associated ofport,
3420 * or some other positive errno if there are other problems. */
3421 static int
3422 ofproto_receive(const struct dpif_backer *backer, struct ofpbuf *packet,
3423 const struct nlattr *key, size_t key_len,
3424 struct flow *flow, enum odp_key_fitness *fitnessp,
3425 struct ofproto_dpif **ofproto, uint32_t *odp_in_port,
3426 ovs_be16 *initial_tci)
3427 {
3428 const struct ofport_dpif *port;
3429 enum odp_key_fitness fitness;
3430 int error;
3431
3432 fitness = odp_flow_key_to_flow(key, key_len, flow);
3433 if (fitness == ODP_FIT_ERROR) {
3434 error = EINVAL;
3435 goto exit;
3436 }
3437
3438 if (initial_tci) {
3439 *initial_tci = flow->vlan_tci;
3440 }
3441
3442 if (odp_in_port) {
3443 *odp_in_port = flow->in_port;
3444 }
3445
3446 port = odp_port_to_ofport(backer, flow->in_port);
3447 if (!port) {
3448 flow->in_port = OFPP_NONE;
3449 error = ofproto ? ENODEV : 0;
3450 goto exit;
3451 }
3452
3453 if (ofproto) {
3454 *ofproto = ofproto_dpif_cast(port->up.ofproto);
3455 }
3456
3457 flow->in_port = port->up.ofp_port;
3458 if (vsp_adjust_flow(ofproto_dpif_cast(port->up.ofproto), flow)) {
3459 if (packet) {
3460 /* Make the packet resemble the flow, so that it gets sent to an
3461 * OpenFlow controller properly, so that it looks correct for
3462 * sFlow, and so that flow_extract() will get the correct vlan_tci
3463 * if it is called on 'packet'.
3464 *
3465 * The allocated space inside 'packet' probably also contains
3466 * 'key', that is, both 'packet' and 'key' are probably part of a
3467 * struct dpif_upcall (see the large comment on that structure
3468 * definition), so pushing data on 'packet' is in general not a
3469 * good idea since it could overwrite 'key' or free it as a side
3470 * effect. However, it's OK in this special case because we know
3471 * that 'packet' is inside a Netlink attribute: pushing 4 bytes
3472 * will just overwrite the 4-byte "struct nlattr", which is fine
3473 * since we don't need that header anymore. */
3474 eth_push_vlan(packet, flow->vlan_tci);
3475 }
3476
3477 /* Let the caller know that we can't reproduce 'key' from 'flow'. */
3478 if (fitness == ODP_FIT_PERFECT) {
3479 fitness = ODP_FIT_TOO_MUCH;
3480 }
3481 }
3482 error = 0;
3483
3484 exit:
3485 if (fitnessp) {
3486 *fitnessp = fitness;
3487 }
3488 return error;
3489 }
3490
3491 static void
3492 handle_miss_upcalls(struct dpif_backer *backer, struct dpif_upcall *upcalls,
3493 size_t n_upcalls)
3494 {
3495 struct dpif_upcall *upcall;
3496 struct flow_miss *miss;
3497 struct flow_miss misses[FLOW_MISS_MAX_BATCH];
3498 struct flow_miss_op flow_miss_ops[FLOW_MISS_MAX_BATCH * 2];
3499 struct dpif_op *dpif_ops[FLOW_MISS_MAX_BATCH * 2];
3500 struct hmap todo;
3501 int n_misses;
3502 size_t n_ops;
3503 size_t i;
3504
3505 if (!n_upcalls) {
3506 return;
3507 }
3508
3509 /* Construct the to-do list.
3510 *
3511 * This just amounts to extracting the flow from each packet and sticking
3512 * the packets that have the same flow in the same "flow_miss" structure so
3513 * that we can process them together. */
3514 hmap_init(&todo);
3515 n_misses = 0;
3516 for (upcall = upcalls; upcall < &upcalls[n_upcalls]; upcall++) {
3517 struct flow_miss *miss = &misses[n_misses];
3518 struct flow_miss *existing_miss;
3519 struct ofproto_dpif *ofproto;
3520 uint32_t odp_in_port;
3521 struct flow flow;
3522 uint32_t hash;
3523 int error;
3524
3525 error = ofproto_receive(backer, upcall->packet, upcall->key,
3526 upcall->key_len, &flow, &miss->key_fitness,
3527 &ofproto, &odp_in_port, &miss->initial_tci);
3528 if (error == ENODEV) {
3529 /* Received packet on port for which we couldn't associate
3530 * an ofproto. This can happen if a port is removed while
3531 * traffic is being received. Print a rate-limited message
3532 * in case it happens frequently. */
3533 VLOG_INFO_RL(&rl, "received packet on unassociated port %"PRIu32,
3534 flow.in_port);
3535 }
3536 if (error) {
3537 continue;
3538 }
3539 flow_extract(upcall->packet, flow.skb_priority, flow.skb_mark,
3540 &flow.tunnel, flow.in_port, &miss->flow);
3541
3542 /* Add other packets to a to-do list. */
3543 hash = flow_hash(&miss->flow, 0);
3544 existing_miss = flow_miss_find(&todo, &miss->flow, hash);
3545 if (!existing_miss) {
3546 hmap_insert(&todo, &miss->hmap_node, hash);
3547 miss->ofproto = ofproto;
3548 miss->key = upcall->key;
3549 miss->key_len = upcall->key_len;
3550 miss->upcall_type = upcall->type;
3551 miss->odp_in_port = odp_in_port;
3552 list_init(&miss->packets);
3553
3554 n_misses++;
3555 } else {
3556 miss = existing_miss;
3557 }
3558 list_push_back(&miss->packets, &upcall->packet->list_node);
3559 }
3560
3561 /* Process each element in the to-do list, constructing the set of
3562 * operations to batch. */
3563 n_ops = 0;
3564 HMAP_FOR_EACH (miss, hmap_node, &todo) {
3565 handle_flow_miss(miss, flow_miss_ops, &n_ops);
3566 }
3567 ovs_assert(n_ops <= ARRAY_SIZE(flow_miss_ops));
3568
3569 /* Execute batch. */
3570 for (i = 0; i < n_ops; i++) {
3571 dpif_ops[i] = &flow_miss_ops[i].dpif_op;
3572 }
3573 dpif_operate(backer->dpif, dpif_ops, n_ops);
3574
3575 /* Free memory and update facets. */
3576 for (i = 0; i < n_ops; i++) {
3577 struct flow_miss_op *op = &flow_miss_ops[i];
3578
3579 switch (op->dpif_op.type) {
3580 case DPIF_OP_EXECUTE:
3581 break;
3582
3583 case DPIF_OP_FLOW_PUT:
3584 if (!op->dpif_op.error) {
3585 op->subfacet->path = subfacet_want_path(op->subfacet->slow);
3586 }
3587 break;
3588
3589 case DPIF_OP_FLOW_DEL:
3590 NOT_REACHED();
3591 }
3592
3593 free(op->garbage);
3594 }
3595 hmap_destroy(&todo);
3596 }
3597
3598 static enum { SFLOW_UPCALL, MISS_UPCALL, BAD_UPCALL }
3599 classify_upcall(const struct dpif_upcall *upcall)
3600 {
3601 union user_action_cookie cookie;
3602
3603 /* First look at the upcall type. */
3604 switch (upcall->type) {
3605 case DPIF_UC_ACTION:
3606 break;
3607
3608 case DPIF_UC_MISS:
3609 return MISS_UPCALL;
3610
3611 case DPIF_N_UC_TYPES:
3612 default:
3613 VLOG_WARN_RL(&rl, "upcall has unexpected type %"PRIu32, upcall->type);
3614 return BAD_UPCALL;
3615 }
3616
3617 /* "action" upcalls need a closer look. */
3618 memcpy(&cookie, &upcall->userdata, sizeof(cookie));
3619 switch (cookie.type) {
3620 case USER_ACTION_COOKIE_SFLOW:
3621 return SFLOW_UPCALL;
3622
3623 case USER_ACTION_COOKIE_SLOW_PATH:
3624 return MISS_UPCALL;
3625
3626 case USER_ACTION_COOKIE_UNSPEC:
3627 default:
3628 VLOG_WARN_RL(&rl, "invalid user cookie : 0x%"PRIx64, upcall->userdata);
3629 return BAD_UPCALL;
3630 }
3631 }
3632
3633 static void
3634 handle_sflow_upcall(struct dpif_backer *backer,
3635 const struct dpif_upcall *upcall)
3636 {
3637 struct ofproto_dpif *ofproto;
3638 union user_action_cookie cookie;
3639 struct flow flow;
3640 uint32_t odp_in_port;
3641
3642 if (ofproto_receive(backer, upcall->packet, upcall->key, upcall->key_len,
3643 &flow, NULL, &ofproto, &odp_in_port, NULL)
3644 || !ofproto->sflow) {
3645 return;
3646 }
3647
3648 memcpy(&cookie, &upcall->userdata, sizeof(cookie));
3649 dpif_sflow_received(ofproto->sflow, upcall->packet, &flow,
3650 odp_in_port, &cookie);
3651 }
3652
3653 static int
3654 handle_upcalls(struct dpif_backer *backer, unsigned int max_batch)
3655 {
3656 struct dpif_upcall misses[FLOW_MISS_MAX_BATCH];
3657 struct ofpbuf miss_bufs[FLOW_MISS_MAX_BATCH];
3658 uint64_t miss_buf_stubs[FLOW_MISS_MAX_BATCH][4096 / 8];
3659 int n_processed;
3660 int n_misses;
3661 int i;
3662
3663 ovs_assert(max_batch <= FLOW_MISS_MAX_BATCH);
3664
3665 n_misses = 0;
3666 for (n_processed = 0; n_processed < max_batch; n_processed++) {
3667 struct dpif_upcall *upcall = &misses[n_misses];
3668 struct ofpbuf *buf = &miss_bufs[n_misses];
3669 int error;
3670
3671 ofpbuf_use_stub(buf, miss_buf_stubs[n_misses],
3672 sizeof miss_buf_stubs[n_misses]);
3673 error = dpif_recv(backer->dpif, upcall, buf);
3674 if (error) {
3675 ofpbuf_uninit(buf);
3676 break;
3677 }
3678
3679 switch (classify_upcall(upcall)) {
3680 case MISS_UPCALL:
3681 /* Handle it later. */
3682 n_misses++;
3683 break;
3684
3685 case SFLOW_UPCALL:
3686 handle_sflow_upcall(backer, upcall);
3687 ofpbuf_uninit(buf);
3688 break;
3689
3690 case BAD_UPCALL:
3691 ofpbuf_uninit(buf);
3692 break;
3693 }
3694 }
3695
3696 /* Handle deferred MISS_UPCALL processing. */
3697 handle_miss_upcalls(backer, misses, n_misses);
3698 for (i = 0; i < n_misses; i++) {
3699 ofpbuf_uninit(&miss_bufs[i]);
3700 }
3701
3702 return n_processed;
3703 }
3704 \f
3705 /* Flow expiration. */
3706
3707 static int subfacet_max_idle(const struct ofproto_dpif *);
3708 static void update_stats(struct dpif_backer *);
3709 static void rule_expire(struct rule_dpif *);
3710 static void expire_subfacets(struct ofproto_dpif *, int dp_max_idle);
3711
3712 /* This function is called periodically by run(). Its job is to collect
3713 * updates for the flows that have been installed into the datapath, most
3714 * importantly when they last were used, and then use that information to
3715 * expire flows that have not been used recently.
3716 *
3717 * Returns the number of milliseconds after which it should be called again. */
3718 static int
3719 expire(struct dpif_backer *backer)
3720 {
3721 struct ofproto_dpif *ofproto;
3722 int max_idle = INT32_MAX;
3723
3724 /* Update stats for each flow in the backer. */
3725 update_stats(backer);
3726
3727 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
3728 struct rule_dpif *rule, *next_rule;
3729 struct oftable *table;
3730 int dp_max_idle;
3731
3732 if (ofproto->backer != backer) {
3733 continue;
3734 }
3735
3736 /* Expire subfacets that have been idle too long. */
3737 dp_max_idle = subfacet_max_idle(ofproto);
3738 expire_subfacets(ofproto, dp_max_idle);
3739
3740 max_idle = MIN(max_idle, dp_max_idle);
3741
3742 /* Expire OpenFlow flows whose idle_timeout or hard_timeout
3743 * has passed. */
3744 OFPROTO_FOR_EACH_TABLE (table, &ofproto->up) {
3745 struct cls_cursor cursor;
3746
3747 cls_cursor_init(&cursor, &table->cls, NULL);
3748 CLS_CURSOR_FOR_EACH_SAFE (rule, next_rule, up.cr, &cursor) {
3749 rule_expire(rule);
3750 }
3751 }
3752
3753 /* All outstanding data in existing flows has been accounted, so it's a
3754 * good time to do bond rebalancing. */
3755 if (ofproto->has_bonded_bundles) {
3756 struct ofbundle *bundle;
3757
3758 HMAP_FOR_EACH (bundle, hmap_node, &ofproto->bundles) {
3759 if (bundle->bond) {
3760 bond_rebalance(bundle->bond, &ofproto->revalidate_set);
3761 }
3762 }
3763 }
3764 }
3765
3766 return MIN(max_idle, 1000);
3767 }
3768
3769 /* Updates flow table statistics given that the datapath just reported 'stats'
3770 * as 'subfacet''s statistics. */
3771 static void
3772 update_subfacet_stats(struct subfacet *subfacet,
3773 const struct dpif_flow_stats *stats)
3774 {
3775 struct facet *facet = subfacet->facet;
3776
3777 if (stats->n_packets >= subfacet->dp_packet_count) {
3778 uint64_t extra = stats->n_packets - subfacet->dp_packet_count;
3779 facet->packet_count += extra;
3780 } else {
3781 VLOG_WARN_RL(&rl, "unexpected packet count from the datapath");
3782 }
3783
3784 if (stats->n_bytes >= subfacet->dp_byte_count) {
3785 facet->byte_count += stats->n_bytes - subfacet->dp_byte_count;
3786 } else {
3787 VLOG_WARN_RL(&rl, "unexpected byte count from datapath");
3788 }
3789
3790 subfacet->dp_packet_count = stats->n_packets;
3791 subfacet->dp_byte_count = stats->n_bytes;
3792
3793 facet->tcp_flags |= stats->tcp_flags;
3794
3795 subfacet_update_time(subfacet, stats->used);
3796 if (facet->accounted_bytes < facet->byte_count) {
3797 facet_learn(facet);
3798 facet_account(facet);
3799 facet->accounted_bytes = facet->byte_count;
3800 }
3801 facet_push_stats(facet);
3802 }
3803
3804 /* 'key' with length 'key_len' bytes is a flow in 'dpif' that we know nothing
3805 * about, or a flow that shouldn't be installed but was anyway. Delete it. */
3806 static void
3807 delete_unexpected_flow(struct ofproto_dpif *ofproto,
3808 const struct nlattr *key, size_t key_len)
3809 {
3810 if (!VLOG_DROP_WARN(&rl)) {
3811 struct ds s;
3812
3813 ds_init(&s);
3814 odp_flow_key_format(key, key_len, &s);
3815 VLOG_WARN("unexpected flow on %s: %s", ofproto->up.name, ds_cstr(&s));
3816 ds_destroy(&s);
3817 }
3818
3819 COVERAGE_INC(facet_unexpected);
3820 dpif_flow_del(ofproto->backer->dpif, key, key_len, NULL);
3821 }
3822
3823 /* Update 'packet_count', 'byte_count', and 'used' members of installed facets.
3824 *
3825 * This function also pushes statistics updates to rules which each facet
3826 * resubmits into. Generally these statistics will be accurate. However, if a
3827 * facet changes the rule it resubmits into at some time in between
3828 * update_stats() runs, it is possible that statistics accrued to the
3829 * old rule will be incorrectly attributed to the new rule. This could be
3830 * avoided by calling update_stats() whenever rules are created or
3831 * deleted. However, the performance impact of making so many calls to the
3832 * datapath do not justify the benefit of having perfectly accurate statistics.
3833 */
3834 static void
3835 update_stats(struct dpif_backer *backer)
3836 {
3837 const struct dpif_flow_stats *stats;
3838 struct dpif_flow_dump dump;
3839 const struct nlattr *key;
3840 size_t key_len;
3841
3842 dpif_flow_dump_start(&dump, backer->dpif);
3843 while (dpif_flow_dump_next(&dump, &key, &key_len, NULL, NULL, &stats)) {
3844 struct flow flow;
3845 struct subfacet *subfacet;
3846 enum odp_key_fitness fitness;
3847 struct ofproto_dpif *ofproto;
3848 struct ofport_dpif *port;
3849 uint32_t key_hash;
3850
3851 fitness = odp_flow_key_to_flow(key, key_len, &flow);
3852 if (fitness == ODP_FIT_ERROR) {
3853 continue;
3854 }
3855
3856 port = odp_port_to_ofport(backer, flow.in_port);
3857 if (!port) {
3858 /* This flow is for a port for which we couldn't associate an
3859 * ofproto. This can happen if a port is removed while
3860 * traffic is being received. Ignore this flow, since it
3861 * will get timed out. */
3862 continue;
3863 }
3864
3865 ofproto = ofproto_dpif_cast(port->up.ofproto);
3866 flow.in_port = port->up.ofp_port;
3867 key_hash = odp_flow_key_hash(key, key_len);
3868
3869 subfacet = subfacet_find(ofproto, key, key_len, key_hash, &flow);
3870 switch (subfacet ? subfacet->path : SF_NOT_INSTALLED) {
3871 case SF_FAST_PATH:
3872 update_subfacet_stats(subfacet, stats);
3873 break;
3874
3875 case SF_SLOW_PATH:
3876 /* Stats are updated per-packet. */
3877 break;
3878
3879 case SF_NOT_INSTALLED:
3880 default:
3881 delete_unexpected_flow(ofproto, key, key_len);
3882 break;
3883 }
3884 }
3885 dpif_flow_dump_done(&dump);
3886 }
3887
3888 /* Calculates and returns the number of milliseconds of idle time after which
3889 * subfacets should expire from the datapath. When a subfacet expires, we fold
3890 * its statistics into its facet, and when a facet's last subfacet expires, we
3891 * fold its statistic into its rule. */
3892 static int
3893 subfacet_max_idle(const struct ofproto_dpif *ofproto)
3894 {
3895 /*
3896 * Idle time histogram.
3897 *
3898 * Most of the time a switch has a relatively small number of subfacets.
3899 * When this is the case we might as well keep statistics for all of them
3900 * in userspace and to cache them in the kernel datapath for performance as
3901 * well.
3902 *
3903 * As the number of subfacets increases, the memory required to maintain
3904 * statistics about them in userspace and in the kernel becomes
3905 * significant. However, with a large number of subfacets it is likely
3906 * that only a few of them are "heavy hitters" that consume a large amount
3907 * of bandwidth. At this point, only heavy hitters are worth caching in
3908 * the kernel and maintaining in userspaces; other subfacets we can
3909 * discard.
3910 *
3911 * The technique used to compute the idle time is to build a histogram with
3912 * N_BUCKETS buckets whose width is BUCKET_WIDTH msecs each. Each subfacet
3913 * that is installed in the kernel gets dropped in the appropriate bucket.
3914 * After the histogram has been built, we compute the cutoff so that only
3915 * the most-recently-used 1% of subfacets (but at least
3916 * ofproto->up.flow_eviction_threshold flows) are kept cached. At least
3917 * the most-recently-used bucket of subfacets is kept, so actually an
3918 * arbitrary number of subfacets can be kept in any given expiration run
3919 * (though the next run will delete most of those unless they receive
3920 * additional data).
3921 *
3922 * This requires a second pass through the subfacets, in addition to the
3923 * pass made by update_stats(), because the former function never looks at
3924 * uninstallable subfacets.
3925 */
3926 enum { BUCKET_WIDTH = ROUND_UP(100, TIME_UPDATE_INTERVAL) };
3927 enum { N_BUCKETS = 5000 / BUCKET_WIDTH };
3928 int buckets[N_BUCKETS] = { 0 };
3929 int total, subtotal, bucket;
3930 struct subfacet *subfacet;
3931 long long int now;
3932 int i;
3933
3934 total = hmap_count(&ofproto->subfacets);
3935 if (total <= ofproto->up.flow_eviction_threshold) {
3936 return N_BUCKETS * BUCKET_WIDTH;
3937 }
3938
3939 /* Build histogram. */
3940 now = time_msec();
3941 HMAP_FOR_EACH (subfacet, hmap_node, &ofproto->subfacets) {
3942 long long int idle = now - subfacet->used;
3943 int bucket = (idle <= 0 ? 0
3944 : idle >= BUCKET_WIDTH * N_BUCKETS ? N_BUCKETS - 1
3945 : (unsigned int) idle / BUCKET_WIDTH);
3946 buckets[bucket]++;
3947 }
3948
3949 /* Find the first bucket whose flows should be expired. */
3950 subtotal = bucket = 0;
3951 do {
3952 subtotal += buckets[bucket++];
3953 } while (bucket < N_BUCKETS &&
3954 subtotal < MAX(ofproto->up.flow_eviction_threshold, total / 100));
3955
3956 if (VLOG_IS_DBG_ENABLED()) {
3957 struct ds s;
3958
3959 ds_init(&s);
3960 ds_put_cstr(&s, "keep");
3961 for (i = 0; i < N_BUCKETS; i++) {
3962 if (i == bucket) {
3963 ds_put_cstr(&s, ", drop");
3964 }
3965 if (buckets[i]) {
3966 ds_put_format(&s, " %d:%d", i * BUCKET_WIDTH, buckets[i]);
3967 }
3968 }
3969 VLOG_INFO("%s: %s (msec:count)", ofproto->up.name, ds_cstr(&s));
3970 ds_destroy(&s);
3971 }
3972
3973 return bucket * BUCKET_WIDTH;
3974 }
3975
3976 static void
3977 expire_subfacets(struct ofproto_dpif *ofproto, int dp_max_idle)
3978 {
3979 /* Cutoff time for most flows. */
3980 long long int normal_cutoff = time_msec() - dp_max_idle;
3981
3982 /* We really want to keep flows for special protocols around, so use a more
3983 * conservative cutoff. */
3984 long long int special_cutoff = time_msec() - 10000;
3985
3986 struct subfacet *subfacet, *next_subfacet;
3987 struct subfacet *batch[SUBFACET_DESTROY_MAX_BATCH];
3988 int n_batch;
3989
3990 n_batch = 0;
3991 HMAP_FOR_EACH_SAFE (subfacet, next_subfacet, hmap_node,
3992 &ofproto->subfacets) {
3993 long long int cutoff;
3994
3995 cutoff = (subfacet->slow & (SLOW_CFM | SLOW_LACP | SLOW_STP)
3996 ? special_cutoff
3997 : normal_cutoff);
3998 if (subfacet->used < cutoff) {
3999 if (subfacet->path != SF_NOT_INSTALLED) {
4000 batch[n_batch++] = subfacet;
4001 if (n_batch >= SUBFACET_DESTROY_MAX_BATCH) {
4002 subfacet_destroy_batch(ofproto, batch, n_batch);
4003 n_batch = 0;
4004 }
4005 } else {
4006 subfacet_destroy(subfacet);
4007 }
4008 }
4009 }
4010
4011 if (n_batch > 0) {
4012 subfacet_destroy_batch(ofproto, batch, n_batch);
4013 }
4014 }
4015
4016 /* If 'rule' is an OpenFlow rule, that has expired according to OpenFlow rules,
4017 * then delete it entirely. */
4018 static void
4019 rule_expire(struct rule_dpif *rule)
4020 {
4021 struct facet *facet, *next_facet;
4022 long long int now;
4023 uint8_t reason;
4024
4025 if (rule->up.pending) {
4026 /* We'll have to expire it later. */
4027 return;
4028 }
4029
4030 /* Has 'rule' expired? */
4031 now = time_msec();
4032 if (rule->up.hard_timeout
4033 && now > rule->up.modified + rule->up.hard_timeout * 1000) {
4034 reason = OFPRR_HARD_TIMEOUT;
4035 } else if (rule->up.idle_timeout
4036 && now > rule->up.used + rule->up.idle_timeout * 1000) {
4037 reason = OFPRR_IDLE_TIMEOUT;
4038 } else {
4039 return;
4040 }
4041
4042 COVERAGE_INC(ofproto_dpif_expired);
4043
4044 /* Update stats. (This is a no-op if the rule expired due to an idle
4045 * timeout, because that only happens when the rule has no facets left.) */
4046 LIST_FOR_EACH_SAFE (facet, next_facet, list_node, &rule->facets) {
4047 facet_remove(facet);
4048 }
4049
4050 /* Get rid of the rule. */
4051 ofproto_rule_expire(&rule->up, reason);
4052 }
4053 \f
4054 /* Facets. */
4055
4056 /* Creates and returns a new facet owned by 'rule', given a 'flow'.
4057 *
4058 * The caller must already have determined that no facet with an identical
4059 * 'flow' exists in 'ofproto' and that 'flow' is the best match for 'rule' in
4060 * the ofproto's classifier table.
4061 *
4062 * 'hash' must be the return value of flow_hash(flow, 0).
4063 *
4064 * The facet will initially have no subfacets. The caller should create (at
4065 * least) one subfacet with subfacet_create(). */
4066 static struct facet *
4067 facet_create(struct rule_dpif *rule, const struct flow *flow, uint32_t hash)
4068 {
4069 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
4070 struct facet *facet;
4071
4072 facet = xzalloc(sizeof *facet);
4073 facet->used = time_msec();
4074 hmap_insert(&ofproto->facets, &facet->hmap_node, hash);
4075 list_push_back(&rule->facets, &facet->list_node);
4076 facet->rule = rule;
4077 facet->flow = *flow;
4078 list_init(&facet->subfacets);
4079 netflow_flow_init(&facet->nf_flow);
4080 netflow_flow_update_time(ofproto->netflow, &facet->nf_flow, facet->used);
4081
4082 return facet;
4083 }
4084
4085 static void
4086 facet_free(struct facet *facet)
4087 {
4088 free(facet);
4089 }
4090
4091 /* Executes, within 'ofproto', the 'n_actions' actions in 'actions' on
4092 * 'packet', which arrived on 'in_port'.
4093 *
4094 * Takes ownership of 'packet'. */
4095 static bool
4096 execute_odp_actions(struct ofproto_dpif *ofproto, const struct flow *flow,
4097 const struct nlattr *odp_actions, size_t actions_len,
4098 struct ofpbuf *packet)
4099 {
4100 struct odputil_keybuf keybuf;
4101 struct ofpbuf key;
4102 int error;
4103
4104 ofpbuf_use_stack(&key, &keybuf, sizeof keybuf);
4105 odp_flow_key_from_flow(&key, flow,
4106 ofp_port_to_odp_port(ofproto, flow->in_port));
4107
4108 error = dpif_execute(ofproto->backer->dpif, key.data, key.size,
4109 odp_actions, actions_len, packet);
4110
4111 ofpbuf_delete(packet);
4112 return !error;
4113 }
4114
4115 /* Remove 'facet' from 'ofproto' and free up the associated memory:
4116 *
4117 * - If 'facet' was installed in the datapath, uninstalls it and updates its
4118 * rule's statistics, via subfacet_uninstall().
4119 *
4120 * - Removes 'facet' from its rule and from ofproto->facets.
4121 */
4122 static void
4123 facet_remove(struct facet *facet)
4124 {
4125 struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto);
4126 struct subfacet *subfacet, *next_subfacet;
4127
4128 ovs_assert(!list_is_empty(&facet->subfacets));
4129
4130 /* First uninstall all of the subfacets to get final statistics. */
4131 LIST_FOR_EACH (subfacet, list_node, &facet->subfacets) {
4132 subfacet_uninstall(subfacet);
4133 }
4134
4135 /* Flush the final stats to the rule.
4136 *
4137 * This might require us to have at least one subfacet around so that we
4138 * can use its actions for accounting in facet_account(), which is why we
4139 * have uninstalled but not yet destroyed the subfacets. */
4140 facet_flush_stats(facet);
4141
4142 /* Now we're really all done so destroy everything. */
4143 LIST_FOR_EACH_SAFE (subfacet, next_subfacet, list_node,
4144 &facet->subfacets) {
4145 subfacet_destroy__(subfacet);
4146 }
4147 hmap_remove(&ofproto->facets, &facet->hmap_node);
4148 list_remove(&facet->list_node);
4149 facet_free(facet);
4150 }
4151
4152 /* Feed information from 'facet' back into the learning table to keep it in
4153 * sync with what is actually flowing through the datapath. */
4154 static void
4155 facet_learn(struct facet *facet)
4156 {
4157 struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto);
4158 struct action_xlate_ctx ctx;
4159
4160 if (!facet->has_learn
4161 && !facet->has_normal
4162 && (!facet->has_fin_timeout
4163 || !(facet->tcp_flags & (TCP_FIN | TCP_RST)))) {
4164 return;
4165 }
4166
4167 action_xlate_ctx_init(&ctx, ofproto, &facet->flow,
4168 facet->flow.vlan_tci,
4169 facet->rule, facet->tcp_flags, NULL);
4170 ctx.may_learn = true;
4171 xlate_actions_for_side_effects(&ctx, facet->rule->up.ofpacts,
4172 facet->rule->up.ofpacts_len);
4173 }
4174
4175 static void
4176 facet_account(struct facet *facet)
4177 {
4178 struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto);
4179 struct subfacet *subfacet;
4180 const struct nlattr *a;
4181 unsigned int left;
4182 ovs_be16 vlan_tci;
4183 uint64_t n_bytes;
4184
4185 if (!facet->has_normal || !ofproto->has_bonded_bundles) {
4186 return;
4187 }
4188 n_bytes = facet->byte_count - facet->accounted_bytes;
4189
4190 /* This loop feeds byte counters to bond_account() for rebalancing to use
4191 * as a basis. We also need to track the actual VLAN on which the packet
4192 * is going to be sent to ensure that it matches the one passed to
4193 * bond_choose_output_slave(). (Otherwise, we will account to the wrong
4194 * hash bucket.)
4195 *
4196 * We use the actions from an arbitrary subfacet because they should all
4197 * be equally valid for our purpose. */
4198 subfacet = CONTAINER_OF(list_front(&facet->subfacets),
4199 struct subfacet, list_node);
4200 vlan_tci = facet->flow.vlan_tci;
4201 NL_ATTR_FOR_EACH_UNSAFE (a, left,
4202 subfacet->actions, subfacet->actions_len) {
4203 const struct ovs_action_push_vlan *vlan;
4204 struct ofport_dpif *port;
4205
4206 switch (nl_attr_type(a)) {
4207 case OVS_ACTION_ATTR_OUTPUT:
4208 port = get_odp_port(ofproto, nl_attr_get_u32(a));
4209 if (port && port->bundle && port->bundle->bond) {
4210 bond_account(port->bundle->bond, &facet->flow,
4211 vlan_tci_to_vid(vlan_tci), n_bytes);
4212 }
4213 break;
4214
4215 case OVS_ACTION_ATTR_POP_VLAN:
4216 vlan_tci = htons(0);
4217 break;
4218
4219 case OVS_ACTION_ATTR_PUSH_VLAN:
4220 vlan = nl_attr_get(a);
4221 vlan_tci = vlan->vlan_tci;
4222 break;
4223 }
4224 }
4225 }
4226
4227 /* Returns true if the only action for 'facet' is to send to the controller.
4228 * (We don't report NetFlow expiration messages for such facets because they
4229 * are just part of the control logic for the network, not real traffic). */
4230 static bool
4231 facet_is_controller_flow(struct facet *facet)
4232 {
4233 if (facet) {
4234 const struct rule *rule = &facet->rule->up;
4235 const struct ofpact *ofpacts = rule->ofpacts;
4236 size_t ofpacts_len = rule->ofpacts_len;
4237
4238 if (ofpacts_len > 0 &&
4239 ofpacts->type == OFPACT_CONTROLLER &&
4240 ofpact_next(ofpacts) >= ofpact_end(ofpacts, ofpacts_len)) {
4241 return true;
4242 }
4243 }
4244 return false;
4245 }
4246
4247 /* Folds all of 'facet''s statistics into its rule. Also updates the
4248 * accounting ofhook and emits a NetFlow expiration if appropriate. All of
4249 * 'facet''s statistics in the datapath should have been zeroed and folded into
4250 * its packet and byte counts before this function is called. */
4251 static void
4252 facet_flush_stats(struct facet *facet)
4253 {
4254 struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto);
4255 struct subfacet *subfacet;
4256
4257 LIST_FOR_EACH (subfacet, list_node, &facet->subfacets) {
4258 ovs_assert(!subfacet->dp_byte_count);
4259 ovs_assert(!subfacet->dp_packet_count);
4260 }
4261
4262 facet_push_stats(facet);
4263 if (facet->accounted_bytes < facet->byte_count) {
4264 facet_account(facet);
4265 facet->accounted_bytes = facet->byte_count;
4266 }
4267
4268 if (ofproto->netflow && !facet_is_controller_flow(facet)) {
4269 struct ofexpired expired;
4270 expired.flow = facet->flow;
4271 expired.packet_count = facet->packet_count;
4272 expired.byte_count = facet->byte_count;
4273 expired.used = facet->used;
4274 netflow_expire(ofproto->netflow, &facet->nf_flow, &expired);
4275 }
4276
4277 facet->rule->packet_count += facet->packet_count;
4278 facet->rule->byte_count += facet->byte_count;
4279
4280 /* Reset counters to prevent double counting if 'facet' ever gets
4281 * reinstalled. */
4282 facet_reset_counters(facet);
4283
4284 netflow_flow_clear(&facet->nf_flow);
4285 facet->tcp_flags = 0;
4286 }
4287
4288 /* Searches 'ofproto''s table of facets for one exactly equal to 'flow'.
4289 * Returns it if found, otherwise a null pointer.
4290 *
4291 * 'hash' must be the return value of flow_hash(flow, 0).
4292 *
4293 * The returned facet might need revalidation; use facet_lookup_valid()
4294 * instead if that is important. */
4295 static struct facet *
4296 facet_find(struct ofproto_dpif *ofproto,
4297 const struct flow *flow, uint32_t hash)
4298 {
4299 struct facet *facet;
4300
4301 HMAP_FOR_EACH_WITH_HASH (facet, hmap_node, hash, &ofproto->facets) {
4302 if (flow_equal(flow, &facet->flow)) {
4303 return facet;
4304 }
4305 }
4306
4307 return NULL;
4308 }
4309
4310 /* Searches 'ofproto''s table of facets for one exactly equal to 'flow'.
4311 * Returns it if found, otherwise a null pointer.
4312 *
4313 * 'hash' must be the return value of flow_hash(flow, 0).
4314 *
4315 * The returned facet is guaranteed to be valid. */
4316 static struct facet *
4317 facet_lookup_valid(struct ofproto_dpif *ofproto, const struct flow *flow,
4318 uint32_t hash)
4319 {
4320 struct facet *facet;
4321
4322 facet = facet_find(ofproto, flow, hash);
4323 if (facet
4324 && (ofproto->need_revalidate
4325 || tag_set_intersects(&ofproto->revalidate_set, facet->tags))) {
4326 facet_revalidate(facet);
4327 }
4328
4329 return facet;
4330 }
4331
4332 static const char *
4333 subfacet_path_to_string(enum subfacet_path path)
4334 {
4335 switch (path) {
4336 case SF_NOT_INSTALLED:
4337 return "not installed";
4338 case SF_FAST_PATH:
4339 return "in fast path";
4340 case SF_SLOW_PATH:
4341 return "in slow path";
4342 default:
4343 return "<error>";
4344 }
4345 }
4346
4347 /* Returns the path in which a subfacet should be installed if its 'slow'
4348 * member has the specified value. */
4349 static enum subfacet_path
4350 subfacet_want_path(enum slow_path_reason slow)
4351 {
4352 return slow ? SF_SLOW_PATH : SF_FAST_PATH;
4353 }
4354
4355 /* Returns true if 'subfacet' needs to have its datapath flow updated,
4356 * supposing that its actions have been recalculated as 'want_actions' and that
4357 * 'slow' is nonzero iff 'subfacet' should be in the slow path. */
4358 static bool
4359 subfacet_should_install(struct subfacet *subfacet, enum slow_path_reason slow,
4360 const struct ofpbuf *want_actions)
4361 {
4362 enum subfacet_path want_path = subfacet_want_path(slow);
4363 return (want_path != subfacet->path
4364 || (want_path == SF_FAST_PATH
4365 && (subfacet->actions_len != want_actions->size
4366 || memcmp(subfacet->actions, want_actions->data,
4367 subfacet->actions_len))));
4368 }
4369
4370 static bool
4371 facet_check_consistency(struct facet *facet)
4372 {
4373 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 15);
4374
4375 struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto);
4376
4377 uint64_t odp_actions_stub[1024 / 8];
4378 struct ofpbuf odp_actions;
4379
4380 struct rule_dpif *rule;
4381 struct subfacet *subfacet;
4382 bool may_log = false;
4383 bool ok;
4384
4385 /* Check the rule for consistency. */
4386 rule = rule_dpif_lookup(ofproto, &facet->flow);
4387 ok = rule == facet->rule;
4388 if (!ok) {
4389 may_log = !VLOG_DROP_WARN(&rl);
4390 if (may_log) {
4391 struct ds s;
4392
4393 ds_init(&s);
4394 flow_format(&s, &facet->flow);
4395 ds_put_format(&s, ": facet associated with wrong rule (was "
4396 "table=%"PRIu8",", facet->rule->up.table_id);
4397 cls_rule_format(&facet->rule->up.cr, &s);
4398 ds_put_format(&s, ") (should have been table=%"PRIu8",",
4399 rule->up.table_id);
4400 cls_rule_format(&rule->up.cr, &s);
4401 ds_put_char(&s, ')');
4402
4403 VLOG_WARN("%s", ds_cstr(&s));
4404 ds_destroy(&s);
4405 }
4406 }
4407
4408 /* Check the datapath actions for consistency. */
4409 ofpbuf_use_stub(&odp_actions, odp_actions_stub, sizeof odp_actions_stub);
4410 LIST_FOR_EACH (subfacet, list_node, &facet->subfacets) {
4411 enum subfacet_path want_path;
4412 struct odputil_keybuf keybuf;
4413 struct action_xlate_ctx ctx;
4414 struct ofpbuf key;
4415 struct ds s;
4416
4417 action_xlate_ctx_init(&ctx, ofproto, &facet->flow,
4418 subfacet->initial_tci, rule, 0, NULL);
4419 xlate_actions(&ctx, rule->up.ofpacts, rule->up.ofpacts_len,
4420 &odp_actions);
4421
4422 if (subfacet->path == SF_NOT_INSTALLED) {
4423 /* This only happens if the datapath reported an error when we
4424 * tried to install the flow. Don't flag another error here. */
4425 continue;
4426 }
4427
4428 want_path = subfacet_want_path(subfacet->slow);
4429 if (want_path == SF_SLOW_PATH && subfacet->path == SF_SLOW_PATH) {
4430 /* The actions for slow-path flows may legitimately vary from one
4431 * packet to the next. We're done. */
4432 continue;
4433 }
4434
4435 if (!subfacet_should_install(subfacet, subfacet->slow, &odp_actions)) {
4436 continue;
4437 }
4438
4439 /* Inconsistency! */
4440 if (ok) {
4441 may_log = !VLOG_DROP_WARN(&rl);
4442 ok = false;
4443 }
4444 if (!may_log) {
4445 /* Rate-limited, skip reporting. */
4446 continue;
4447 }
4448
4449 ds_init(&s);
4450 subfacet_get_key(subfacet, &keybuf, &key);
4451 odp_flow_key_format(key.data, key.size, &s);
4452
4453 ds_put_cstr(&s, ": inconsistency in subfacet");
4454 if (want_path != subfacet->path) {
4455 enum odp_key_fitness fitness = subfacet->key_fitness;
4456
4457 ds_put_format(&s, " (%s, fitness=%s)",
4458 subfacet_path_to_string(subfacet->path),
4459 odp_key_fitness_to_string(fitness));
4460 ds_put_format(&s, " (should have been %s)",
4461 subfacet_path_to_string(want_path));
4462 } else if (want_path == SF_FAST_PATH) {
4463 ds_put_cstr(&s, " (actions were: ");
4464 format_odp_actions(&s, subfacet->actions,
4465 subfacet->actions_len);
4466 ds_put_cstr(&s, ") (correct actions: ");
4467 format_odp_actions(&s, odp_actions.data, odp_actions.size);
4468 ds_put_char(&s, ')');
4469 } else {
4470 ds_put_cstr(&s, " (actions: ");
4471 format_odp_actions(&s, subfacet->actions,
4472 subfacet->actions_len);
4473 ds_put_char(&s, ')');
4474 }
4475 VLOG_WARN("%s", ds_cstr(&s));
4476 ds_destroy(&s);
4477 }
4478 ofpbuf_uninit(&odp_actions);
4479
4480 return ok;
4481 }
4482
4483 /* Re-searches the classifier for 'facet':
4484 *
4485 * - If the rule found is different from 'facet''s current rule, moves
4486 * 'facet' to the new rule and recompiles its actions.
4487 *
4488 * - If the rule found is the same as 'facet''s current rule, leaves 'facet'
4489 * where it is and recompiles its actions anyway. */
4490 static void
4491 facet_revalidate(struct facet *facet)
4492 {
4493 struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto);
4494 struct actions {
4495 struct nlattr *odp_actions;
4496 size_t actions_len;
4497 };
4498 struct actions *new_actions;
4499
4500 struct action_xlate_ctx ctx;
4501 uint64_t odp_actions_stub[1024 / 8];
4502 struct ofpbuf odp_actions;
4503
4504 struct rule_dpif *new_rule;
4505 struct subfacet *subfacet;
4506 int i;
4507
4508 COVERAGE_INC(facet_revalidate);
4509
4510 new_rule = rule_dpif_lookup(ofproto, &facet->flow);
4511
4512 /* Calculate new datapath actions.
4513 *
4514 * We do not modify any 'facet' state yet, because we might need to, e.g.,
4515 * emit a NetFlow expiration and, if so, we need to have the old state
4516 * around to properly compose it. */
4517
4518 /* If the datapath actions changed or the installability changed,
4519 * then we need to talk to the datapath. */
4520 i = 0;
4521 new_actions = NULL;
4522 memset(&ctx, 0, sizeof ctx);
4523 ofpbuf_use_stub(&odp_actions, odp_actions_stub, sizeof odp_actions_stub);
4524 LIST_FOR_EACH (subfacet, list_node, &facet->subfacets) {
4525 enum slow_path_reason slow;
4526
4527 action_xlate_ctx_init(&ctx, ofproto, &facet->flow,
4528 subfacet->initial_tci, new_rule, 0, NULL);
4529 xlate_actions(&ctx, new_rule->up.ofpacts, new_rule->up.ofpacts_len,
4530 &odp_actions);
4531
4532 slow = (subfacet->slow & SLOW_MATCH) | ctx.slow;
4533 if (subfacet_should_install(subfacet, slow, &odp_actions)) {
4534 struct dpif_flow_stats stats;
4535
4536 subfacet_install(subfacet,
4537 odp_actions.data, odp_actions.size, &stats, slow);
4538 subfacet_update_stats(subfacet, &stats);
4539
4540 if (!new_actions) {
4541 new_actions = xcalloc(list_size(&facet->subfacets),
4542 sizeof *new_actions);
4543 }
4544 new_actions[i].odp_actions = xmemdup(odp_actions.data,
4545 odp_actions.size);
4546 new_actions[i].actions_len = odp_actions.size;
4547 }
4548
4549 i++;
4550 }
4551 ofpbuf_uninit(&odp_actions);
4552
4553 if (new_actions) {
4554 facet_flush_stats(facet);
4555 }
4556
4557 /* Update 'facet' now that we've taken care of all the old state. */
4558 facet->tags = ctx.tags;
4559 facet->nf_flow.output_iface = ctx.nf_output_iface;
4560 facet->has_learn = ctx.has_learn;
4561 facet->has_normal = ctx.has_normal;
4562 facet->has_fin_timeout = ctx.has_fin_timeout;
4563 facet->mirrors = ctx.mirrors;
4564
4565 i = 0;
4566 LIST_FOR_EACH (subfacet, list_node, &facet->subfacets) {
4567 subfacet->slow = (subfacet->slow & SLOW_MATCH) | ctx.slow;
4568
4569 if (new_actions && new_actions[i].odp_actions) {
4570 free(subfacet->actions);
4571 subfacet->actions = new_actions[i].odp_actions;
4572 subfacet->actions_len = new_actions[i].actions_len;
4573 }
4574 i++;
4575 }
4576 free(new_actions);
4577
4578 if (facet->rule != new_rule) {
4579 COVERAGE_INC(facet_changed_rule);
4580 list_remove(&facet->list_node);
4581 list_push_back(&new_rule->facets, &facet->list_node);
4582 facet->rule = new_rule;
4583 facet->used = new_rule->up.created;
4584 facet->prev_used = facet->used;
4585 }
4586 }
4587
4588 /* Updates 'facet''s used time. Caller is responsible for calling
4589 * facet_push_stats() to update the flows which 'facet' resubmits into. */
4590 static void
4591 facet_update_time(struct facet *facet, long long int used)
4592 {
4593 struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto);
4594 if (used > facet->used) {
4595 facet->used = used;
4596 ofproto_rule_update_used(&facet->rule->up, used);
4597 netflow_flow_update_time(ofproto->netflow, &facet->nf_flow, used);
4598 }
4599 }
4600
4601 static void
4602 facet_reset_counters(struct facet *facet)
4603 {
4604 facet->packet_count = 0;
4605 facet->byte_count = 0;
4606 facet->prev_packet_count = 0;
4607 facet->prev_byte_count = 0;
4608 facet->accounted_bytes = 0;
4609 }
4610
4611 static void
4612 facet_push_stats(struct facet *facet)
4613 {
4614 struct dpif_flow_stats stats;
4615
4616 ovs_assert(facet->packet_count >= facet->prev_packet_count);
4617 ovs_assert(facet->byte_count >= facet->prev_byte_count);
4618 ovs_assert(facet->used >= facet->prev_used);
4619
4620 stats.n_packets = facet->packet_count - facet->prev_packet_count;
4621 stats.n_bytes = facet->byte_count - facet->prev_byte_count;
4622 stats.used = facet->used;
4623 stats.tcp_flags = 0;
4624
4625 if (stats.n_packets || stats.n_bytes || facet->used > facet->prev_used) {
4626 facet->prev_packet_count = facet->packet_count;
4627 facet->prev_byte_count = facet->byte_count;
4628 facet->prev_used = facet->used;
4629
4630 flow_push_stats(facet->rule, &facet->flow, &stats);
4631
4632 update_mirror_stats(ofproto_dpif_cast(facet->rule->up.ofproto),
4633 facet->mirrors, stats.n_packets, stats.n_bytes);
4634 }
4635 }
4636
4637 static void
4638 rule_credit_stats(struct rule_dpif *rule, const struct dpif_flow_stats *stats)
4639 {
4640 rule->packet_count += stats->n_packets;
4641 rule->byte_count += stats->n_bytes;
4642 ofproto_rule_update_used(&rule->up, stats->used);
4643 }
4644
4645 /* Pushes flow statistics to the rules which 'flow' resubmits into given
4646 * 'rule''s actions and mirrors. */
4647 static void
4648 flow_push_stats(struct rule_dpif *rule,
4649 const struct flow *flow, const struct dpif_flow_stats *stats)
4650 {
4651 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
4652 struct action_xlate_ctx ctx;
4653
4654 ofproto_rule_update_used(&rule->up, stats->used);
4655
4656 action_xlate_ctx_init(&ctx, ofproto, flow, flow->vlan_tci, rule,
4657 0, NULL);
4658 ctx.resubmit_stats = stats;
4659 xlate_actions_for_side_effects(&ctx, rule->up.ofpacts,
4660 rule->up.ofpacts_len);
4661 }
4662 \f
4663 /* Subfacets. */
4664
4665 static struct subfacet *
4666 subfacet_find(struct ofproto_dpif *ofproto,
4667 const struct nlattr *key, size_t key_len, uint32_t key_hash,
4668 const struct flow *flow)
4669 {
4670 struct subfacet *subfacet;
4671
4672 HMAP_FOR_EACH_WITH_HASH (subfacet, hmap_node, key_hash,
4673 &ofproto->subfacets) {
4674 if (subfacet->key
4675 ? (subfacet->key_len == key_len
4676 && !memcmp(key, subfacet->key, key_len))
4677 : flow_equal(flow, &subfacet->facet->flow)) {
4678 return subfacet;
4679 }
4680 }
4681
4682 return NULL;
4683 }
4684
4685 /* Searches 'facet' (within 'ofproto') for a subfacet with the specified
4686 * 'key_fitness', 'key', and 'key_len' members in 'miss'. Returns the
4687 * existing subfacet if there is one, otherwise creates and returns a
4688 * new subfacet.
4689 *
4690 * If the returned subfacet is new, then subfacet->actions will be NULL, in
4691 * which case the caller must populate the actions with
4692 * subfacet_make_actions(). */
4693 static struct subfacet *
4694 subfacet_create(struct facet *facet, struct flow_miss *miss,
4695 long long int now)
4696 {
4697 struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto);
4698 enum odp_key_fitness key_fitness = miss->key_fitness;
4699 const struct nlattr *key = miss->key;
4700 size_t key_len = miss->key_len;
4701 uint32_t key_hash;
4702 struct subfacet *subfacet;
4703
4704 key_hash = odp_flow_key_hash(key, key_len);
4705
4706 if (list_is_empty(&facet->subfacets)) {
4707 subfacet = &facet->one_subfacet;
4708 } else {
4709 subfacet = subfacet_find(ofproto, key, key_len, key_hash,
4710 &facet->flow);
4711 if (subfacet) {
4712 if (subfacet->facet == facet) {
4713 return subfacet;
4714 }
4715
4716 /* This shouldn't happen. */
4717 VLOG_ERR_RL(&rl, "subfacet with wrong facet");
4718 subfacet_destroy(subfacet);
4719 }
4720
4721 subfacet = xmalloc(sizeof *subfacet);
4722 }
4723
4724 hmap_insert(&ofproto->subfacets, &subfacet->hmap_node, key_hash);
4725 list_push_back(&facet->subfacets, &subfacet->list_node);
4726 subfacet->facet = facet;
4727 subfacet->key_fitness = key_fitness;
4728 if (key_fitness != ODP_FIT_PERFECT) {
4729 subfacet->key = xmemdup(key, key_len);
4730 subfacet->key_len = key_len;
4731 } else {
4732 subfacet->key = NULL;
4733 subfacet->key_len = 0;
4734 }
4735 subfacet->used = now;
4736 subfacet->dp_packet_count = 0;
4737 subfacet->dp_byte_count = 0;
4738 subfacet->actions_len = 0;
4739 subfacet->actions = NULL;
4740 subfacet->slow = (subfacet->key_fitness == ODP_FIT_TOO_LITTLE
4741 ? SLOW_MATCH
4742 : 0);
4743 subfacet->path = SF_NOT_INSTALLED;
4744 subfacet->initial_tci = miss->initial_tci;
4745 subfacet->odp_in_port = miss->odp_in_port;
4746
4747 return subfacet;
4748 }
4749
4750 /* Uninstalls 'subfacet' from the datapath, if it is installed, removes it from
4751 * its facet within 'ofproto', and frees it. */
4752 static void
4753 subfacet_destroy__(struct subfacet *subfacet)
4754 {
4755 struct facet *facet = subfacet->facet;
4756 struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto);
4757
4758 subfacet_uninstall(subfacet);
4759 hmap_remove(&ofproto->subfacets, &subfacet->hmap_node);
4760 list_remove(&subfacet->list_node);
4761 free(subfacet->key);
4762 free(subfacet->actions);
4763 if (subfacet != &facet->one_subfacet) {
4764 free(subfacet);
4765 }
4766 }
4767
4768 /* Destroys 'subfacet', as with subfacet_destroy__(), and then if this was the
4769 * last remaining subfacet in its facet destroys the facet too. */
4770 static void
4771 subfacet_destroy(struct subfacet *subfacet)
4772 {
4773 struct facet *facet = subfacet->facet;
4774
4775 if (list_is_singleton(&facet->subfacets)) {
4776 /* facet_remove() needs at least one subfacet (it will remove it). */
4777 facet_remove(facet);
4778 } else {
4779 subfacet_destroy__(subfacet);
4780 }
4781 }
4782
4783 static void
4784 subfacet_destroy_batch(struct ofproto_dpif *ofproto,
4785 struct subfacet **subfacets, int n)
4786 {
4787 struct odputil_keybuf keybufs[SUBFACET_DESTROY_MAX_BATCH];
4788 struct dpif_op ops[SUBFACET_DESTROY_MAX_BATCH];
4789 struct dpif_op *opsp[SUBFACET_DESTROY_MAX_BATCH];
4790 struct ofpbuf keys[SUBFACET_DESTROY_MAX_BATCH];
4791 struct dpif_flow_stats stats[SUBFACET_DESTROY_MAX_BATCH];
4792 int i;
4793
4794 for (i = 0; i < n; i++) {
4795 ops[i].type = DPIF_OP_FLOW_DEL;
4796 subfacet_get_key(subfacets[i], &keybufs[i], &keys[i]);
4797 ops[i].u.flow_del.key = keys[i].data;
4798 ops[i].u.flow_del.key_len = keys[i].size;
4799 ops[i].u.flow_del.stats = &stats[i];
4800 opsp[i] = &ops[i];
4801 }
4802
4803 dpif_operate(ofproto->backer->dpif, opsp, n);
4804 for (i = 0; i < n; i++) {
4805 subfacet_reset_dp_stats(subfacets[i], &stats[i]);
4806 subfacets[i]->path = SF_NOT_INSTALLED;
4807 subfacet_destroy(subfacets[i]);
4808 }
4809 }
4810
4811 /* Initializes 'key' with the sequence of OVS_KEY_ATTR_* Netlink attributes
4812 * that can be used to refer to 'subfacet'. The caller must provide 'keybuf'
4813 * for use as temporary storage. */
4814 static void
4815 subfacet_get_key(struct subfacet *subfacet, struct odputil_keybuf *keybuf,
4816 struct ofpbuf *key)
4817 {
4818
4819 if (!subfacet->key) {
4820 struct flow *flow = &subfacet->facet->flow;
4821
4822 ofpbuf_use_stack(key, keybuf, sizeof *keybuf);
4823 odp_flow_key_from_flow(key, flow, subfacet->odp_in_port);
4824 } else {
4825 ofpbuf_use_const(key, subfacet->key, subfacet->key_len);
4826 }
4827 }
4828
4829 /* Composes the datapath actions for 'subfacet' based on its rule's actions.
4830 * Translates the actions into 'odp_actions', which the caller must have
4831 * initialized and is responsible for uninitializing. */
4832 static void
4833 subfacet_make_actions(struct subfacet *subfacet, const struct ofpbuf *packet,
4834 struct ofpbuf *odp_actions)
4835 {
4836 struct facet *facet = subfacet->facet;
4837 struct rule_dpif *rule = facet->rule;
4838 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
4839
4840 struct action_xlate_ctx ctx;
4841
4842 action_xlate_ctx_init(&ctx, ofproto, &facet->flow, subfacet->initial_tci,
4843 rule, 0, packet);
4844 xlate_actions(&ctx, rule->up.ofpacts, rule->up.ofpacts_len, odp_actions);
4845 facet->tags = ctx.tags;
4846 facet->has_learn = ctx.has_learn;
4847 facet->has_normal = ctx.has_normal;
4848 facet->has_fin_timeout = ctx.has_fin_timeout;
4849 facet->nf_flow.output_iface = ctx.nf_output_iface;
4850 facet->mirrors = ctx.mirrors;
4851
4852 subfacet->slow = (subfacet->slow & SLOW_MATCH) | ctx.slow;
4853 if (subfacet->actions_len != odp_actions->size
4854 || memcmp(subfacet->actions, odp_actions->data, odp_actions->size)) {
4855 free(subfacet->actions);
4856 subfacet->actions_len = odp_actions->size;
4857 subfacet->actions = xmemdup(odp_actions->data, odp_actions->size);
4858 }
4859 }
4860
4861 /* Updates 'subfacet''s datapath flow, setting its actions to 'actions_len'
4862 * bytes of actions in 'actions'. If 'stats' is non-null, statistics counters
4863 * in the datapath will be zeroed and 'stats' will be updated with traffic new
4864 * since 'subfacet' was last updated.
4865 *
4866 * Returns 0 if successful, otherwise a positive errno value. */
4867 static int
4868 subfacet_install(struct subfacet *subfacet,
4869 const struct nlattr *actions, size_t actions_len,
4870 struct dpif_flow_stats *stats,
4871 enum slow_path_reason slow)
4872 {
4873 struct facet *facet = subfacet->facet;
4874 struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto);
4875 enum subfacet_path path = subfacet_want_path(slow);
4876 uint64_t slow_path_stub[128 / 8];
4877 struct odputil_keybuf keybuf;
4878 enum dpif_flow_put_flags flags;
4879 struct ofpbuf key;
4880 int ret;
4881
4882 flags = DPIF_FP_CREATE | DPIF_FP_MODIFY;
4883 if (stats) {
4884 flags |= DPIF_FP_ZERO_STATS;
4885 }
4886
4887 if (path == SF_SLOW_PATH) {
4888 compose_slow_path(ofproto, &facet->flow, slow,
4889 slow_path_stub, sizeof slow_path_stub,
4890 &actions, &actions_len);
4891 }
4892
4893 subfacet_get_key(subfacet, &keybuf, &key);
4894 ret = dpif_flow_put(ofproto->backer->dpif, flags, key.data, key.size,
4895 actions, actions_len, stats);
4896
4897 if (stats) {
4898 subfacet_reset_dp_stats(subfacet, stats);
4899 }
4900
4901 if (!ret) {
4902 subfacet->path = path;
4903 }
4904 return ret;
4905 }
4906
4907 static int
4908 subfacet_reinstall(struct subfacet *subfacet, struct dpif_flow_stats *stats)
4909 {
4910 return subfacet_install(subfacet, subfacet->actions, subfacet->actions_len,
4911 stats, subfacet->slow);
4912 }
4913
4914 /* If 'subfacet' is installed in the datapath, uninstalls it. */
4915 static void
4916 subfacet_uninstall(struct subfacet *subfacet)
4917 {
4918 if (subfacet->path != SF_NOT_INSTALLED) {
4919 struct rule_dpif *rule = subfacet->facet->rule;
4920 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
4921 struct odputil_keybuf keybuf;
4922 struct dpif_flow_stats stats;
4923 struct ofpbuf key;
4924 int error;
4925
4926 subfacet_get_key(subfacet, &keybuf, &key);
4927 error = dpif_flow_del(ofproto->backer->dpif,
4928 key.data, key.size, &stats);
4929 subfacet_reset_dp_stats(subfacet, &stats);
4930 if (!error) {
4931 subfacet_update_stats(subfacet, &stats);
4932 }
4933 subfacet->path = SF_NOT_INSTALLED;
4934 } else {
4935 ovs_assert(subfacet->dp_packet_count == 0);
4936 ovs_assert(subfacet->dp_byte_count == 0);
4937 }
4938 }
4939
4940 /* Resets 'subfacet''s datapath statistics counters. This should be called
4941 * when 'subfacet''s statistics are cleared in the datapath. If 'stats' is
4942 * non-null, it should contain the statistics returned by dpif when 'subfacet'
4943 * was reset in the datapath. 'stats' will be modified to include only
4944 * statistics new since 'subfacet' was last updated. */
4945 static void
4946 subfacet_reset_dp_stats(struct subfacet *subfacet,
4947 struct dpif_flow_stats *stats)
4948 {
4949 if (stats
4950 && subfacet->dp_packet_count <= stats->n_packets
4951 && subfacet->dp_byte_count <= stats->n_bytes) {
4952 stats->n_packets -= subfacet->dp_packet_count;
4953 stats->n_bytes -= subfacet->dp_byte_count;
4954 }
4955
4956 subfacet->dp_packet_count = 0;
4957 subfacet->dp_byte_count = 0;
4958 }
4959
4960 /* Updates 'subfacet''s used time. The caller is responsible for calling
4961 * facet_push_stats() to update the flows which 'subfacet' resubmits into. */
4962 static void
4963 subfacet_update_time(struct subfacet *subfacet, long long int used)
4964 {
4965 if (used > subfacet->used) {
4966 subfacet->used = used;
4967 facet_update_time(subfacet->facet, used);
4968 }
4969 }
4970
4971 /* Folds the statistics from 'stats' into the counters in 'subfacet'.
4972 *
4973 * Because of the meaning of a subfacet's counters, it only makes sense to do
4974 * this if 'stats' are not tracked in the datapath, that is, if 'stats'
4975 * represents a packet that was sent by hand or if it represents statistics
4976 * that have been cleared out of the datapath. */
4977 static void
4978 subfacet_update_stats(struct subfacet *subfacet,
4979 const struct dpif_flow_stats *stats)
4980 {
4981 if (stats->n_packets || stats->used > subfacet->used) {
4982 struct facet *facet = subfacet->facet;
4983
4984 subfacet_update_time(subfacet, stats->used);
4985 facet->packet_count += stats->n_packets;
4986 facet->byte_count += stats->n_bytes;
4987 facet->tcp_flags |= stats->tcp_flags;
4988 facet_push_stats(facet);
4989 netflow_flow_update_flags(&facet->nf_flow, stats->tcp_flags);
4990 }
4991 }
4992 \f
4993 /* Rules. */
4994
4995 static struct rule_dpif *
4996 rule_dpif_lookup(struct ofproto_dpif *ofproto, const struct flow *flow)
4997 {
4998 struct rule_dpif *rule;
4999
5000 rule = rule_dpif_lookup__(ofproto, flow, 0);
5001 if (rule) {
5002 return rule;
5003 }
5004
5005 return rule_dpif_miss_rule(ofproto, flow);
5006 }
5007
5008 static struct rule_dpif *
5009 rule_dpif_lookup__(struct ofproto_dpif *ofproto, const struct flow *flow,
5010 uint8_t table_id)
5011 {
5012 struct cls_rule *cls_rule;
5013 struct classifier *cls;
5014
5015 if (table_id >= N_TABLES) {
5016 return NULL;
5017 }
5018
5019 cls = &ofproto->up.tables[table_id].cls;
5020 if (flow->nw_frag & FLOW_NW_FRAG_ANY
5021 && ofproto->up.frag_handling == OFPC_FRAG_NORMAL) {
5022 /* For OFPC_NORMAL frag_handling, we must pretend that transport ports
5023 * are unavailable. */
5024 struct flow ofpc_normal_flow = *flow;
5025 ofpc_normal_flow.tp_src = htons(0);
5026 ofpc_normal_flow.tp_dst = htons(0);
5027 cls_rule = classifier_lookup(cls, &ofpc_normal_flow);
5028 } else {
5029 cls_rule = classifier_lookup(cls, flow);
5030 }
5031 return rule_dpif_cast(rule_from_cls_rule(cls_rule));
5032 }
5033
5034 static struct rule_dpif *
5035 rule_dpif_miss_rule(struct ofproto_dpif *ofproto, const struct flow *flow)
5036 {
5037 struct ofport_dpif *port;
5038
5039 port = get_ofp_port(ofproto, flow->in_port);
5040 if (!port) {
5041 VLOG_WARN_RL(&rl, "packet-in on unknown port %"PRIu16, flow->in_port);
5042 return ofproto->miss_rule;
5043 }
5044
5045 if (port->up.pp.config & OFPUTIL_PC_NO_PACKET_IN) {
5046 return ofproto->no_packet_in_rule;
5047 }
5048 return ofproto->miss_rule;
5049 }
5050
5051 static void
5052 complete_operation(struct rule_dpif *rule)
5053 {
5054 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
5055
5056 rule_invalidate(rule);
5057 if (clogged) {
5058 struct dpif_completion *c = xmalloc(sizeof *c);
5059 c->op = rule->up.pending;
5060 list_push_back(&ofproto->completions, &c->list_node);
5061 } else {
5062 ofoperation_complete(rule->up.pending, 0);
5063 }
5064 }
5065
5066 static struct rule *
5067 rule_alloc(void)
5068 {
5069 struct rule_dpif *rule = xmalloc(sizeof *rule);
5070 return &rule->up;
5071 }
5072
5073 static void
5074 rule_dealloc(struct rule *rule_)
5075 {
5076 struct rule_dpif *rule = rule_dpif_cast(rule_);
5077 free(rule);
5078 }
5079
5080 static enum ofperr
5081 rule_construct(struct rule *rule_)
5082 {
5083 struct rule_dpif *rule = rule_dpif_cast(rule_);
5084 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
5085 struct rule_dpif *victim;
5086 uint8_t table_id;
5087
5088 rule->packet_count = 0;
5089 rule->byte_count = 0;
5090
5091 victim = rule_dpif_cast(ofoperation_get_victim(rule->up.pending));
5092 if (victim && !list_is_empty(&victim->facets)) {
5093 struct facet *facet;
5094
5095 rule->facets = victim->facets;
5096 list_moved(&rule->facets);
5097 LIST_FOR_EACH (facet, list_node, &rule->facets) {
5098 /* XXX: We're only clearing our local counters here. It's possible
5099 * that quite a few packets are unaccounted for in the datapath
5100 * statistics. These will be accounted to the new rule instead of
5101 * cleared as required. This could be fixed by clearing out the
5102 * datapath statistics for this facet, but currently it doesn't
5103 * seem worth it. */
5104 facet_reset_counters(facet);
5105 facet->rule = rule;
5106 }
5107 } else {
5108 /* Must avoid list_moved() in this case. */
5109 list_init(&rule->facets);
5110 }
5111
5112 table_id = rule->up.table_id;
5113 if (victim) {
5114 rule->tag = victim->tag;
5115 } else if (table_id == 0) {
5116 rule->tag = 0;
5117 } else {
5118 struct flow flow;
5119
5120 miniflow_expand(&rule->up.cr.match.flow, &flow);
5121 rule->tag = rule_calculate_tag(&flow, &rule->up.cr.match.mask,
5122 ofproto->tables[table_id].basis);
5123 }
5124
5125 complete_operation(rule);
5126 return 0;
5127 }
5128
5129 static void
5130 rule_destruct(struct rule *rule_)
5131 {
5132 struct rule_dpif *rule = rule_dpif_cast(rule_);
5133 struct facet *facet, *next_facet;
5134
5135 LIST_FOR_EACH_SAFE (facet, next_facet, list_node, &rule->facets) {
5136 facet_revalidate(facet);
5137 }
5138
5139 complete_operation(rule);
5140 }
5141
5142 static void
5143 rule_get_stats(struct rule *rule_, uint64_t *packets, uint64_t *bytes)
5144 {
5145 struct rule_dpif *rule = rule_dpif_cast(rule_);
5146 struct facet *facet;
5147
5148 /* Start from historical data for 'rule' itself that are no longer tracked
5149 * in facets. This counts, for example, facets that have expired. */
5150 *packets = rule->packet_count;
5151 *bytes = rule->byte_count;
5152
5153 /* Add any statistics that are tracked by facets. This includes
5154 * statistical data recently updated by ofproto_update_stats() as well as
5155 * stats for packets that were executed "by hand" via dpif_execute(). */
5156 LIST_FOR_EACH (facet, list_node, &rule->facets) {
5157 *packets += facet->packet_count;
5158 *bytes += facet->byte_count;
5159 }
5160 }
5161
5162 static enum ofperr
5163 rule_execute(struct rule *rule_, const struct flow *flow,
5164 struct ofpbuf *packet)
5165 {
5166 struct rule_dpif *rule = rule_dpif_cast(rule_);
5167 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
5168
5169 struct dpif_flow_stats stats;
5170
5171 struct action_xlate_ctx ctx;
5172 uint64_t odp_actions_stub[1024 / 8];
5173 struct ofpbuf odp_actions;
5174
5175 dpif_flow_stats_extract(flow, packet, time_msec(), &stats);
5176 rule_credit_stats(rule, &stats);
5177
5178 ofpbuf_use_stub(&odp_actions, odp_actions_stub, sizeof odp_actions_stub);
5179 action_xlate_ctx_init(&ctx, ofproto, flow, flow->vlan_tci,
5180 rule, stats.tcp_flags, packet);
5181 ctx.resubmit_stats = &stats;
5182 xlate_actions(&ctx, rule->up.ofpacts, rule->up.ofpacts_len, &odp_actions);
5183
5184 execute_odp_actions(ofproto, flow, odp_actions.data,
5185 odp_actions.size, packet);
5186
5187 ofpbuf_uninit(&odp_actions);
5188
5189 return 0;
5190 }
5191
5192 static void
5193 rule_modify_actions(struct rule *rule_)
5194 {
5195 struct rule_dpif *rule = rule_dpif_cast(rule_);
5196
5197 complete_operation(rule);
5198 }
5199 \f
5200 /* Sends 'packet' out 'ofport'.
5201 * May modify 'packet'.
5202 * Returns 0 if successful, otherwise a positive errno value. */
5203 static int
5204 send_packet(const struct ofport_dpif *ofport, struct ofpbuf *packet)
5205 {
5206 const struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
5207 struct ofpbuf key, odp_actions;
5208 struct odputil_keybuf keybuf;
5209 uint32_t odp_port;
5210 struct flow flow;
5211 int error;
5212
5213 flow_extract(packet, 0, 0, NULL, OFPP_LOCAL, &flow);
5214 odp_port = vsp_realdev_to_vlandev(ofproto, ofport->odp_port,
5215 flow.vlan_tci);
5216 if (odp_port != ofport->odp_port) {
5217 eth_pop_vlan(packet);
5218 flow.vlan_tci = htons(0);
5219 }
5220
5221 ofpbuf_use_stack(&key, &keybuf, sizeof keybuf);
5222 odp_flow_key_from_flow(&key, &flow,
5223 ofp_port_to_odp_port(ofproto, flow.in_port));
5224
5225 ofpbuf_init(&odp_actions, 32);
5226 compose_sflow_action(ofproto, &odp_actions, &flow, odp_port);
5227
5228 nl_msg_put_u32(&odp_actions, OVS_ACTION_ATTR_OUTPUT, odp_port);
5229 error = dpif_execute(ofproto->backer->dpif,
5230 key.data, key.size,
5231 odp_actions.data, odp_actions.size,
5232 packet);
5233 ofpbuf_uninit(&odp_actions);
5234
5235 if (error) {
5236 VLOG_WARN_RL(&rl, "%s: failed to send packet on port %"PRIu32" (%s)",
5237 ofproto->up.name, odp_port, strerror(error));
5238 }
5239 ofproto_update_local_port_stats(ofport->up.ofproto, packet->size, 0);
5240 return error;
5241 }
5242 \f
5243 /* OpenFlow to datapath action translation. */
5244
5245 static void do_xlate_actions(const struct ofpact *, size_t ofpacts_len,
5246 struct action_xlate_ctx *);
5247 static void xlate_normal(struct action_xlate_ctx *);
5248
5249 /* Composes an ODP action for a "slow path" action for 'flow' within 'ofproto'.
5250 * The action will state 'slow' as the reason that the action is in the slow
5251 * path. (This is purely informational: it allows a human viewing "ovs-dpctl
5252 * dump-flows" output to see why a flow is in the slow path.)
5253 *
5254 * The 'stub_size' bytes in 'stub' will be used to store the action.
5255 * 'stub_size' must be large enough for the action.
5256 *
5257 * The action and its size will be stored in '*actionsp' and '*actions_lenp',
5258 * respectively. */
5259 static void
5260 compose_slow_path(const struct ofproto_dpif *ofproto, const struct flow *flow,
5261 enum slow_path_reason slow,
5262 uint64_t *stub, size_t stub_size,
5263 const struct nlattr **actionsp, size_t *actions_lenp)
5264 {
5265 union user_action_cookie cookie;
5266 struct ofpbuf buf;
5267
5268 cookie.type = USER_ACTION_COOKIE_SLOW_PATH;
5269 cookie.slow_path.unused = 0;
5270 cookie.slow_path.reason = slow;
5271
5272 ofpbuf_use_stack(&buf, stub, stub_size);
5273 if (slow & (SLOW_CFM | SLOW_LACP | SLOW_STP)) {
5274 uint32_t pid = dpif_port_get_pid(ofproto->backer->dpif, UINT32_MAX);
5275 odp_put_userspace_action(pid, &cookie, &buf);
5276 } else {
5277 put_userspace_action(ofproto, &buf, flow, &cookie);
5278 }
5279 *actionsp = buf.data;
5280 *actions_lenp = buf.size;
5281 }
5282
5283 static size_t
5284 put_userspace_action(const struct ofproto_dpif *ofproto,
5285 struct ofpbuf *odp_actions,
5286 const struct flow *flow,
5287 const union user_action_cookie *cookie)
5288 {
5289 uint32_t pid;
5290
5291 pid = dpif_port_get_pid(ofproto->backer->dpif,
5292 ofp_port_to_odp_port(ofproto, flow->in_port));
5293
5294 return odp_put_userspace_action(pid, cookie, odp_actions);
5295 }
5296
5297 static void
5298 compose_sflow_cookie(const struct ofproto_dpif *ofproto,
5299 ovs_be16 vlan_tci, uint32_t odp_port,
5300 unsigned int n_outputs, union user_action_cookie *cookie)
5301 {
5302 int ifindex;
5303
5304 cookie->type = USER_ACTION_COOKIE_SFLOW;
5305 cookie->sflow.vlan_tci = vlan_tci;
5306
5307 /* See http://www.sflow.org/sflow_version_5.txt (search for "Input/output
5308 * port information") for the interpretation of cookie->output. */
5309 switch (n_outputs) {
5310 case 0:
5311 /* 0x40000000 | 256 means "packet dropped for unknown reason". */
5312 cookie->sflow.output = 0x40000000 | 256;
5313 break;
5314
5315 case 1:
5316 ifindex = dpif_sflow_odp_port_to_ifindex(ofproto->sflow, odp_port);
5317 if (ifindex) {
5318 cookie->sflow.output = ifindex;
5319 break;
5320 }
5321 /* Fall through. */
5322 default:
5323 /* 0x80000000 means "multiple output ports. */
5324 cookie->sflow.output = 0x80000000 | n_outputs;
5325 break;
5326 }
5327 }
5328
5329 /* Compose SAMPLE action for sFlow. */
5330 static size_t
5331 compose_sflow_action(const struct ofproto_dpif *ofproto,
5332 struct ofpbuf *odp_actions,
5333 const struct flow *flow,
5334 uint32_t odp_port)
5335 {
5336 uint32_t probability;
5337 union user_action_cookie cookie;
5338 size_t sample_offset, actions_offset;
5339 int cookie_offset;
5340
5341 if (!ofproto->sflow || flow->in_port == OFPP_NONE) {
5342 return 0;
5343 }
5344
5345 sample_offset = nl_msg_start_nested(odp_actions, OVS_ACTION_ATTR_SAMPLE);
5346
5347 /* Number of packets out of UINT_MAX to sample. */
5348 probability = dpif_sflow_get_probability(ofproto->sflow);
5349 nl_msg_put_u32(odp_actions, OVS_SAMPLE_ATTR_PROBABILITY, probability);
5350
5351 actions_offset = nl_msg_start_nested(odp_actions, OVS_SAMPLE_ATTR_ACTIONS);
5352 compose_sflow_cookie(ofproto, htons(0), odp_port,
5353 odp_port == OVSP_NONE ? 0 : 1, &cookie);
5354 cookie_offset = put_userspace_action(ofproto, odp_actions, flow, &cookie);
5355
5356 nl_msg_end_nested(odp_actions, actions_offset);
5357 nl_msg_end_nested(odp_actions, sample_offset);
5358 return cookie_offset;
5359 }
5360
5361 /* SAMPLE action must be first action in any given list of actions.
5362 * At this point we do not have all information required to build it. So try to
5363 * build sample action as complete as possible. */
5364 static void
5365 add_sflow_action(struct action_xlate_ctx *ctx)
5366 {
5367 ctx->user_cookie_offset = compose_sflow_action(ctx->ofproto,
5368 ctx->odp_actions,
5369 &ctx->flow, OVSP_NONE);
5370 ctx->sflow_odp_port = 0;
5371 ctx->sflow_n_outputs = 0;
5372 }
5373
5374 /* Fix SAMPLE action according to data collected while composing ODP actions.
5375 * We need to fix SAMPLE actions OVS_SAMPLE_ATTR_ACTIONS attribute, i.e. nested
5376 * USERSPACE action's user-cookie which is required for sflow. */
5377 static void
5378 fix_sflow_action(struct action_xlate_ctx *ctx)
5379 {
5380 const struct flow *base = &ctx->base_flow;
5381 union user_action_cookie *cookie;
5382
5383 if (!ctx->user_cookie_offset) {
5384 return;
5385 }
5386
5387 cookie = ofpbuf_at(ctx->odp_actions, ctx->user_cookie_offset,
5388 sizeof(*cookie));
5389 ovs_assert(cookie->type == USER_ACTION_COOKIE_SFLOW);
5390
5391 compose_sflow_cookie(ctx->ofproto, base->vlan_tci,
5392 ctx->sflow_odp_port, ctx->sflow_n_outputs, cookie);
5393 }
5394
5395 static void
5396 compose_output_action__(struct action_xlate_ctx *ctx, uint16_t ofp_port,
5397 bool check_stp)
5398 {
5399 const struct ofport_dpif *ofport = get_ofp_port(ctx->ofproto, ofp_port);
5400 uint32_t odp_port = ofp_port_to_odp_port(ctx->ofproto, ofp_port);
5401 ovs_be16 flow_vlan_tci = ctx->flow.vlan_tci;
5402 uint8_t flow_nw_tos = ctx->flow.nw_tos;
5403 struct priority_to_dscp *pdscp;
5404 uint32_t out_port;
5405
5406 if (!ofport) {
5407 xlate_report(ctx, "Nonexistent output port");
5408 return;
5409 } else if (ofport->up.pp.config & OFPUTIL_PC_NO_FWD) {
5410 xlate_report(ctx, "OFPPC_NO_FWD set, skipping output");
5411 return;
5412 } else if (check_stp && !stp_forward_in_state(ofport->stp_state)) {
5413 xlate_report(ctx, "STP not in forwarding state, skipping output");
5414 return;
5415 }
5416
5417 pdscp = get_priority(ofport, ctx->flow.skb_priority);
5418 if (pdscp) {
5419 ctx->flow.nw_tos &= ~IP_DSCP_MASK;
5420 ctx->flow.nw_tos |= pdscp->dscp;
5421 }
5422
5423 out_port = vsp_realdev_to_vlandev(ctx->ofproto, odp_port,
5424 ctx->flow.vlan_tci);
5425 if (out_port != odp_port) {
5426 ctx->flow.vlan_tci = htons(0);
5427 }
5428 commit_odp_actions(&ctx->flow, &ctx->base_flow, ctx->odp_actions);
5429 nl_msg_put_u32(ctx->odp_actions, OVS_ACTION_ATTR_OUTPUT, out_port);
5430
5431 ctx->sflow_odp_port = odp_port;
5432 ctx->sflow_n_outputs++;
5433 ctx->nf_output_iface = ofp_port;
5434 ctx->flow.vlan_tci = flow_vlan_tci;
5435 ctx->flow.nw_tos = flow_nw_tos;
5436 }
5437
5438 static void
5439 compose_output_action(struct action_xlate_ctx *ctx, uint16_t ofp_port)
5440 {
5441 compose_output_action__(ctx, ofp_port, true);
5442 }
5443
5444 static void
5445 xlate_table_action(struct action_xlate_ctx *ctx,
5446 uint16_t in_port, uint8_t table_id, bool may_packet_in)
5447 {
5448 if (ctx->recurse < MAX_RESUBMIT_RECURSION) {
5449 struct ofproto_dpif *ofproto = ctx->ofproto;
5450 struct rule_dpif *rule;
5451 uint16_t old_in_port;
5452 uint8_t old_table_id;
5453
5454 old_table_id = ctx->table_id;
5455 ctx->table_id = table_id;
5456
5457 /* Look up a flow with 'in_port' as the input port. */
5458 old_in_port = ctx->flow.in_port;
5459 ctx->flow.in_port = in_port;
5460 rule = rule_dpif_lookup__(ofproto, &ctx->flow, table_id);
5461
5462 /* Tag the flow. */
5463 if (table_id > 0 && table_id < N_TABLES) {
5464 struct table_dpif *table = &ofproto->tables[table_id];
5465 if (table->other_table) {
5466 ctx->tags |= (rule && rule->tag
5467 ? rule->tag
5468 : rule_calculate_tag(&ctx->flow,
5469 &table->other_table->mask,
5470 table->basis));
5471 }
5472 }
5473
5474 /* Restore the original input port. Otherwise OFPP_NORMAL and
5475 * OFPP_IN_PORT will have surprising behavior. */
5476 ctx->flow.in_port = old_in_port;
5477
5478 if (ctx->resubmit_hook) {
5479 ctx->resubmit_hook(ctx, rule);
5480 }
5481
5482 if (rule == NULL && may_packet_in) {
5483 /* XXX
5484 * check if table configuration flags
5485 * OFPTC_TABLE_MISS_CONTROLLER, default.
5486 * OFPTC_TABLE_MISS_CONTINUE,
5487 * OFPTC_TABLE_MISS_DROP
5488 * When OF1.0, OFPTC_TABLE_MISS_CONTINUE is used. What to do?
5489 */
5490 rule = rule_dpif_miss_rule(ofproto, &ctx->flow);
5491 }
5492
5493 if (rule) {
5494 struct rule_dpif *old_rule = ctx->rule;
5495
5496 if (ctx->resubmit_stats) {
5497 rule_credit_stats(rule, ctx->resubmit_stats);
5498 }
5499
5500 ctx->recurse++;
5501 ctx->rule = rule;
5502 do_xlate_actions(rule->up.ofpacts, rule->up.ofpacts_len, ctx);
5503 ctx->rule = old_rule;
5504 ctx->recurse--;
5505 }
5506
5507 ctx->table_id = old_table_id;
5508 } else {
5509 static struct vlog_rate_limit recurse_rl = VLOG_RATE_LIMIT_INIT(1, 1);
5510
5511 VLOG_ERR_RL(&recurse_rl, "resubmit actions recursed over %d times",
5512 MAX_RESUBMIT_RECURSION);
5513 ctx->max_resubmit_trigger = true;
5514 }
5515 }
5516
5517 static void
5518 xlate_ofpact_resubmit(struct action_xlate_ctx *ctx,
5519 const struct ofpact_resubmit *resubmit)
5520 {
5521 uint16_t in_port;
5522 uint8_t table_id;
5523
5524 in_port = resubmit->in_port;
5525 if (in_port == OFPP_IN_PORT) {
5526 in_port = ctx->flow.in_port;
5527 }
5528
5529 table_id = resubmit->table_id;
5530 if (table_id == 255) {
5531 table_id = ctx->table_id;
5532 }
5533
5534 xlate_table_action(ctx, in_port, table_id, false);
5535 }
5536
5537 static void
5538 flood_packets(struct action_xlate_ctx *ctx, bool all)
5539 {
5540 struct ofport_dpif *ofport;
5541
5542 HMAP_FOR_EACH (ofport, up.hmap_node, &ctx->ofproto->up.ports) {
5543 uint16_t ofp_port = ofport->up.ofp_port;
5544
5545 if (ofp_port == ctx->flow.in_port) {
5546 continue;
5547 }
5548
5549 if (all) {
5550 compose_output_action__(ctx, ofp_port, false);
5551 } else if (!(ofport->up.pp.config & OFPUTIL_PC_NO_FLOOD)) {
5552 compose_output_action(ctx, ofp_port);
5553 }
5554 }
5555
5556 ctx->nf_output_iface = NF_OUT_FLOOD;
5557 }
5558
5559 static void
5560 execute_controller_action(struct action_xlate_ctx *ctx, int len,
5561 enum ofp_packet_in_reason reason,
5562 uint16_t controller_id)
5563 {
5564 struct ofputil_packet_in pin;
5565 struct ofpbuf *packet;
5566
5567 ctx->slow |= SLOW_CONTROLLER;
5568 if (!ctx->packet) {
5569 return;
5570 }
5571
5572 packet = ofpbuf_clone(ctx->packet);
5573
5574 if (packet->l2 && packet->l3) {
5575 struct eth_header *eh;
5576
5577 eth_pop_vlan(packet);
5578 eh = packet->l2;
5579
5580 /* If the Ethernet type is less than ETH_TYPE_MIN, it's likely an 802.2
5581 * LLC frame. Calculating the Ethernet type of these frames is more
5582 * trouble than seems appropriate for a simple assertion. */
5583 ovs_assert(ntohs(eh->eth_type) < ETH_TYPE_MIN
5584 || eh->eth_type == ctx->flow.dl_type);
5585
5586 memcpy(eh->eth_src, ctx->flow.dl_src, sizeof eh->eth_src);
5587 memcpy(eh->eth_dst, ctx->flow.dl_dst, sizeof eh->eth_dst);
5588
5589 if (ctx->flow.vlan_tci & htons(VLAN_CFI)) {
5590 eth_push_vlan(packet, ctx->flow.vlan_tci);
5591 }
5592
5593 if (packet->l4) {
5594 if (ctx->flow.dl_type == htons(ETH_TYPE_IP)) {
5595 packet_set_ipv4(packet, ctx->flow.nw_src, ctx->flow.nw_dst,
5596 ctx->flow.nw_tos, ctx->flow.nw_ttl);
5597 }
5598
5599 if (packet->l7) {
5600 if (ctx->flow.nw_proto == IPPROTO_TCP) {
5601 packet_set_tcp_port(packet, ctx->flow.tp_src,
5602 ctx->flow.tp_dst);
5603 } else if (ctx->flow.nw_proto == IPPROTO_UDP) {
5604 packet_set_udp_port(packet, ctx->flow.tp_src,
5605 ctx->flow.tp_dst);
5606 }
5607 }
5608 }
5609 }
5610
5611 pin.packet = packet->data;
5612 pin.packet_len = packet->size;
5613 pin.reason = reason;
5614 pin.controller_id = controller_id;
5615 pin.table_id = ctx->table_id;
5616 pin.cookie = ctx->rule ? ctx->rule->up.flow_cookie : 0;
5617
5618 pin.send_len = len;
5619 flow_get_metadata(&ctx->flow, &pin.fmd);
5620
5621 connmgr_send_packet_in(ctx->ofproto->up.connmgr, &pin);
5622 ofpbuf_delete(packet);
5623 }
5624
5625 static bool
5626 compose_dec_ttl(struct action_xlate_ctx *ctx, struct ofpact_cnt_ids *ids)
5627 {
5628 if (ctx->flow.dl_type != htons(ETH_TYPE_IP) &&
5629 ctx->flow.dl_type != htons(ETH_TYPE_IPV6)) {
5630 return false;
5631 }
5632
5633 if (ctx->flow.nw_ttl > 1) {
5634 ctx->flow.nw_ttl--;
5635 return false;
5636 } else {
5637 size_t i;
5638
5639 for (i = 0; i < ids->n_controllers; i++) {
5640 execute_controller_action(ctx, UINT16_MAX, OFPR_INVALID_TTL,
5641 ids->cnt_ids[i]);
5642 }
5643
5644 /* Stop processing for current table. */
5645 return true;
5646 }
5647 }
5648
5649 static void
5650 xlate_output_action(struct action_xlate_ctx *ctx,
5651 uint16_t port, uint16_t max_len, bool may_packet_in)
5652 {
5653 uint16_t prev_nf_output_iface = ctx->nf_output_iface;
5654
5655 ctx->nf_output_iface = NF_OUT_DROP;
5656
5657 switch (port) {
5658 case OFPP_IN_PORT:
5659 compose_output_action(ctx, ctx->flow.in_port);
5660 break;
5661 case OFPP_TABLE:
5662 xlate_table_action(ctx, ctx->flow.in_port, 0, may_packet_in);
5663 break;
5664 case OFPP_NORMAL:
5665 xlate_normal(ctx);
5666 break;
5667 case OFPP_FLOOD:
5668 flood_packets(ctx, false);
5669 break;
5670 case OFPP_ALL:
5671 flood_packets(ctx, true);
5672 break;
5673 case OFPP_CONTROLLER:
5674 execute_controller_action(ctx, max_len, OFPR_ACTION, 0);
5675 break;
5676 case OFPP_NONE:
5677 break;
5678 case OFPP_LOCAL:
5679 default:
5680 if (port != ctx->flow.in_port) {
5681 compose_output_action(ctx, port);
5682 } else {
5683 xlate_report(ctx, "skipping output to input port");
5684 }
5685 break;
5686 }
5687
5688 if (prev_nf_output_iface == NF_OUT_FLOOD) {
5689 ctx->nf_output_iface = NF_OUT_FLOOD;
5690 } else if (ctx->nf_output_iface == NF_OUT_DROP) {
5691 ctx->nf_output_iface = prev_nf_output_iface;
5692 } else if (prev_nf_output_iface != NF_OUT_DROP &&
5693 ctx->nf_output_iface != NF_OUT_FLOOD) {
5694 ctx->nf_output_iface = NF_OUT_MULTI;
5695 }
5696 }
5697
5698 static void
5699 xlate_output_reg_action(struct action_xlate_ctx *ctx,
5700 const struct ofpact_output_reg *or)
5701 {
5702 uint64_t port = mf_get_subfield(&or->src, &ctx->flow);
5703 if (port <= UINT16_MAX) {
5704 xlate_output_action(ctx, port, or->max_len, false);
5705 }
5706 }
5707
5708 static void
5709 xlate_enqueue_action(struct action_xlate_ctx *ctx,
5710 const struct ofpact_enqueue *enqueue)
5711 {
5712 uint16_t ofp_port = enqueue->port;
5713 uint32_t queue_id = enqueue->queue;
5714 uint32_t flow_priority, priority;
5715 int error;
5716
5717 /* Translate queue to priority. */
5718 error = dpif_queue_to_priority(ctx->ofproto->backer->dpif,
5719 queue_id, &priority);
5720 if (error) {
5721 /* Fall back to ordinary output action. */
5722 xlate_output_action(ctx, enqueue->port, 0, false);
5723 return;
5724 }
5725
5726 /* Check output port. */
5727 if (ofp_port == OFPP_IN_PORT) {
5728 ofp_port = ctx->flow.in_port;
5729 } else if (ofp_port == ctx->flow.in_port) {
5730 return;
5731 }
5732
5733 /* Add datapath actions. */
5734 flow_priority = ctx->flow.skb_priority;
5735 ctx->flow.skb_priority = priority;
5736 compose_output_action(ctx, ofp_port);
5737 ctx->flow.skb_priority = flow_priority;
5738
5739 /* Update NetFlow output port. */
5740 if (ctx->nf_output_iface == NF_OUT_DROP) {
5741 ctx->nf_output_iface = ofp_port;
5742 } else if (ctx->nf_output_iface != NF_OUT_FLOOD) {
5743 ctx->nf_output_iface = NF_OUT_MULTI;
5744 }
5745 }
5746
5747 static void
5748 xlate_set_queue_action(struct action_xlate_ctx *ctx, uint32_t queue_id)
5749 {
5750 uint32_t skb_priority;
5751
5752 if (!dpif_queue_to_priority(ctx->ofproto->backer->dpif,
5753 queue_id, &skb_priority)) {
5754 ctx->flow.skb_priority = skb_priority;
5755 } else {
5756 /* Couldn't translate queue to a priority. Nothing to do. A warning
5757 * has already been logged. */
5758 }
5759 }
5760
5761 struct xlate_reg_state {
5762 ovs_be16 vlan_tci;
5763 ovs_be64 tun_id;
5764 };
5765
5766 static void
5767 xlate_autopath(struct action_xlate_ctx *ctx,
5768 const struct ofpact_autopath *ap)
5769 {
5770 uint16_t ofp_port = ap->port;
5771 struct ofport_dpif *port = get_ofp_port(ctx->ofproto, ofp_port);
5772
5773 if (!port || !port->bundle) {
5774 ofp_port = OFPP_NONE;
5775 } else if (port->bundle->bond) {
5776 /* Autopath does not support VLAN hashing. */
5777 struct ofport_dpif *slave = bond_choose_output_slave(
5778 port->bundle->bond, &ctx->flow, 0, &ctx->tags);
5779 if (slave) {
5780 ofp_port = slave->up.ofp_port;
5781 }
5782 }
5783 nxm_reg_load(&ap->dst, ofp_port, &ctx->flow);
5784 }
5785
5786 static bool
5787 slave_enabled_cb(uint16_t ofp_port, void *ofproto_)
5788 {
5789 struct ofproto_dpif *ofproto = ofproto_;
5790 struct ofport_dpif *port;
5791
5792 switch (ofp_port) {
5793 case OFPP_IN_PORT:
5794 case OFPP_TABLE:
5795 case OFPP_NORMAL:
5796 case OFPP_FLOOD:
5797 case OFPP_ALL:
5798 case OFPP_NONE:
5799 return true;
5800 case OFPP_CONTROLLER: /* Not supported by the bundle action. */
5801 return false;
5802 default:
5803 port = get_ofp_port(ofproto, ofp_port);
5804 return port ? port->may_enable : false;
5805 }
5806 }
5807
5808 static void
5809 xlate_bundle_action(struct action_xlate_ctx *ctx,
5810 const struct ofpact_bundle *bundle)
5811 {
5812 uint16_t port;
5813
5814 port = bundle_execute(bundle, &ctx->flow, slave_enabled_cb, ctx->ofproto);
5815 if (bundle->dst.field) {
5816 nxm_reg_load(&bundle->dst, port, &ctx->flow);
5817 } else {
5818 xlate_output_action(ctx, port, 0, false);
5819 }
5820 }
5821
5822 static void
5823 xlate_learn_action(struct action_xlate_ctx *ctx,
5824 const struct ofpact_learn *learn)
5825 {
5826 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(5, 1);
5827 struct ofputil_flow_mod fm;
5828 uint64_t ofpacts_stub[1024 / 8];
5829 struct ofpbuf ofpacts;
5830 int error;
5831
5832 ofpbuf_use_stack(&ofpacts, ofpacts_stub, sizeof ofpacts_stub);
5833 learn_execute(learn, &ctx->flow, &fm, &ofpacts);
5834
5835 error = ofproto_flow_mod(&ctx->ofproto->up, &fm);
5836 if (error && !VLOG_DROP_WARN(&rl)) {
5837 VLOG_WARN("learning action failed to modify flow table (%s)",
5838 ofperr_get_name(error));
5839 }
5840
5841 ofpbuf_uninit(&ofpacts);
5842 }
5843
5844 /* Reduces '*timeout' to no more than 'max'. A value of zero in either case
5845 * means "infinite". */
5846 static void
5847 reduce_timeout(uint16_t max, uint16_t *timeout)
5848 {
5849 if (max && (!*timeout || *timeout > max)) {
5850 *timeout = max;
5851 }
5852 }
5853
5854 static void
5855 xlate_fin_timeout(struct action_xlate_ctx *ctx,
5856 const struct ofpact_fin_timeout *oft)
5857 {
5858 if (ctx->tcp_flags & (TCP_FIN | TCP_RST) && ctx->rule) {
5859 struct rule_dpif *rule = ctx->rule;
5860
5861 reduce_timeout(oft->fin_idle_timeout, &rule->up.idle_timeout);
5862 reduce_timeout(oft->fin_hard_timeout, &rule->up.hard_timeout);
5863 }
5864 }
5865
5866 static bool
5867 may_receive(const struct ofport_dpif *port, struct action_xlate_ctx *ctx)
5868 {
5869 if (port->up.pp.config & (eth_addr_equals(ctx->flow.dl_dst, eth_addr_stp)
5870 ? OFPUTIL_PC_NO_RECV_STP
5871 : OFPUTIL_PC_NO_RECV)) {
5872 return false;
5873 }
5874
5875 /* Only drop packets here if both forwarding and learning are
5876 * disabled. If just learning is enabled, we need to have
5877 * OFPP_NORMAL and the learning action have a look at the packet
5878 * before we can drop it. */
5879 if (!stp_forward_in_state(port->stp_state)
5880 && !stp_learn_in_state(port->stp_state)) {
5881 return false;
5882 }
5883
5884 return true;
5885 }
5886
5887 static void
5888 do_xlate_actions(const struct ofpact *ofpacts, size_t ofpacts_len,
5889 struct action_xlate_ctx *ctx)
5890 {
5891 const struct ofport_dpif *port;
5892 bool was_evictable = true;
5893 const struct ofpact *a;
5894
5895 port = get_ofp_port(ctx->ofproto, ctx->flow.in_port);
5896 if (port && !may_receive(port, ctx)) {
5897 /* Drop this flow. */
5898 return;
5899 }
5900
5901 if (ctx->rule) {
5902 /* Don't let the rule we're working on get evicted underneath us. */
5903 was_evictable = ctx->rule->up.evictable;
5904 ctx->rule->up.evictable = false;
5905 }
5906 OFPACT_FOR_EACH (a, ofpacts, ofpacts_len) {
5907 struct ofpact_controller *controller;
5908 const struct ofpact_metadata *metadata;
5909
5910 if (ctx->exit) {
5911 break;
5912 }
5913
5914 switch (a->type) {
5915 case OFPACT_OUTPUT:
5916 xlate_output_action(ctx, ofpact_get_OUTPUT(a)->port,
5917 ofpact_get_OUTPUT(a)->max_len, true);
5918 break;
5919
5920 case OFPACT_CONTROLLER:
5921 controller = ofpact_get_CONTROLLER(a);
5922 execute_controller_action(ctx, controller->max_len,
5923 controller->reason,
5924 controller->controller_id);
5925 break;
5926
5927 case OFPACT_ENQUEUE:
5928 xlate_enqueue_action(ctx, ofpact_get_ENQUEUE(a));
5929 break;
5930
5931 case OFPACT_SET_VLAN_VID:
5932 ctx->flow.vlan_tci &= ~htons(VLAN_VID_MASK);
5933 ctx->flow.vlan_tci |= (htons(ofpact_get_SET_VLAN_VID(a)->vlan_vid)
5934 | htons(VLAN_CFI));
5935 break;
5936
5937 case OFPACT_SET_VLAN_PCP:
5938 ctx->flow.vlan_tci &= ~htons(VLAN_PCP_MASK);
5939 ctx->flow.vlan_tci |= htons((ofpact_get_SET_VLAN_PCP(a)->vlan_pcp
5940 << VLAN_PCP_SHIFT)
5941 | VLAN_CFI);
5942 break;
5943
5944 case OFPACT_STRIP_VLAN:
5945 ctx->flow.vlan_tci = htons(0);
5946 break;
5947
5948 case OFPACT_PUSH_VLAN:
5949 /* XXX 802.1AD(QinQ) */
5950 ctx->flow.vlan_tci = htons(VLAN_CFI);
5951 break;
5952
5953 case OFPACT_SET_ETH_SRC:
5954 memcpy(ctx->flow.dl_src, ofpact_get_SET_ETH_SRC(a)->mac,
5955 ETH_ADDR_LEN);
5956 break;
5957
5958 case OFPACT_SET_ETH_DST:
5959 memcpy(ctx->flow.dl_dst, ofpact_get_SET_ETH_DST(a)->mac,
5960 ETH_ADDR_LEN);
5961 break;
5962
5963 case OFPACT_SET_IPV4_SRC:
5964 ctx->flow.nw_src = ofpact_get_SET_IPV4_SRC(a)->ipv4;
5965 break;
5966
5967 case OFPACT_SET_IPV4_DST:
5968 ctx->flow.nw_dst = ofpact_get_SET_IPV4_DST(a)->ipv4;
5969 break;
5970
5971 case OFPACT_SET_IPV4_DSCP:
5972 /* OpenFlow 1.0 only supports IPv4. */
5973 if (ctx->flow.dl_type == htons(ETH_TYPE_IP)) {
5974 ctx->flow.nw_tos &= ~IP_DSCP_MASK;
5975 ctx->flow.nw_tos |= ofpact_get_SET_IPV4_DSCP(a)->dscp;
5976 }
5977 break;
5978
5979 case OFPACT_SET_L4_SRC_PORT:
5980 ctx->flow.tp_src = htons(ofpact_get_SET_L4_SRC_PORT(a)->port);
5981 break;
5982
5983 case OFPACT_SET_L4_DST_PORT:
5984 ctx->flow.tp_dst = htons(ofpact_get_SET_L4_DST_PORT(a)->port);
5985 break;
5986
5987 case OFPACT_RESUBMIT:
5988 xlate_ofpact_resubmit(ctx, ofpact_get_RESUBMIT(a));
5989 break;
5990
5991 case OFPACT_SET_TUNNEL:
5992 ctx->flow.tunnel.tun_id = htonll(ofpact_get_SET_TUNNEL(a)->tun_id);
5993 break;
5994
5995 case OFPACT_SET_QUEUE:
5996 xlate_set_queue_action(ctx, ofpact_get_SET_QUEUE(a)->queue_id);
5997 break;
5998
5999 case OFPACT_POP_QUEUE:
6000 ctx->flow.skb_priority = ctx->orig_skb_priority;
6001 break;
6002
6003 case OFPACT_REG_MOVE:
6004 nxm_execute_reg_move(ofpact_get_REG_MOVE(a), &ctx->flow);
6005 break;
6006
6007 case OFPACT_REG_LOAD:
6008 nxm_execute_reg_load(ofpact_get_REG_LOAD(a), &ctx->flow);
6009 break;
6010
6011 case OFPACT_DEC_TTL:
6012 if (compose_dec_ttl(ctx, ofpact_get_DEC_TTL(a))) {
6013 goto out;
6014 }
6015 break;
6016
6017 case OFPACT_NOTE:
6018 /* Nothing to do. */
6019 break;
6020
6021 case OFPACT_MULTIPATH:
6022 multipath_execute(ofpact_get_MULTIPATH(a), &ctx->flow);
6023 break;
6024
6025 case OFPACT_AUTOPATH:
6026 xlate_autopath(ctx, ofpact_get_AUTOPATH(a));
6027 break;
6028
6029 case OFPACT_BUNDLE:
6030 ctx->ofproto->has_bundle_action = true;
6031 xlate_bundle_action(ctx, ofpact_get_BUNDLE(a));
6032 break;
6033
6034 case OFPACT_OUTPUT_REG:
6035 xlate_output_reg_action(ctx, ofpact_get_OUTPUT_REG(a));
6036 break;
6037
6038 case OFPACT_LEARN:
6039 ctx->has_learn = true;
6040 if (ctx->may_learn) {
6041 xlate_learn_action(ctx, ofpact_get_LEARN(a));
6042 }
6043 break;
6044
6045 case OFPACT_EXIT:
6046 ctx->exit = true;
6047 break;
6048
6049 case OFPACT_FIN_TIMEOUT:
6050 ctx->has_fin_timeout = true;
6051 xlate_fin_timeout(ctx, ofpact_get_FIN_TIMEOUT(a));
6052 break;
6053
6054 case OFPACT_CLEAR_ACTIONS:
6055 /* XXX
6056 * Nothing to do because writa-actions is not supported for now.
6057 * When writa-actions is supported, clear-actions also must
6058 * be supported at the same time.
6059 */
6060 break;
6061
6062 case OFPACT_WRITE_METADATA:
6063 metadata = ofpact_get_WRITE_METADATA(a);
6064 ctx->flow.metadata &= ~metadata->mask;
6065 ctx->flow.metadata |= metadata->metadata & metadata->mask;
6066 break;
6067
6068 case OFPACT_GOTO_TABLE: {
6069 /* XXX remove recursion */
6070 /* It is assumed that goto-table is last action */
6071 struct ofpact_goto_table *ogt = ofpact_get_GOTO_TABLE(a);
6072 ovs_assert(ctx->table_id < ogt->table_id);
6073 xlate_table_action(ctx, ctx->flow.in_port, ogt->table_id, true);
6074 break;
6075 }
6076 }
6077 }
6078
6079 out:
6080 /* We've let OFPP_NORMAL and the learning action look at the packet,
6081 * so drop it now if forwarding is disabled. */
6082 if (port && !stp_forward_in_state(port->stp_state)) {
6083 ofpbuf_clear(ctx->odp_actions);
6084 add_sflow_action(ctx);
6085 }
6086 if (ctx->rule) {
6087 ctx->rule->up.evictable = was_evictable;
6088 }
6089 }
6090
6091 static void
6092 action_xlate_ctx_init(struct action_xlate_ctx *ctx,
6093 struct ofproto_dpif *ofproto, const struct flow *flow,
6094 ovs_be16 initial_tci, struct rule_dpif *rule,
6095 uint8_t tcp_flags, const struct ofpbuf *packet)
6096 {
6097 ovs_be64 initial_tun_id = flow->tunnel.tun_id;
6098
6099 /* Flow initialization rules:
6100 * - 'base_flow' must match the kernel's view of the packet at the
6101 * time that action processing starts. 'flow' represents any
6102 * transformations we wish to make through actions.
6103 * - By default 'base_flow' and 'flow' are the same since the input
6104 * packet matches the output before any actions are applied.
6105 * - When using VLAN splinters, 'base_flow''s VLAN is set to the value
6106 * of the received packet as seen by the kernel. If we later output
6107 * to another device without any modifications this will cause us to
6108 * insert a new tag since the original one was stripped off by the
6109 * VLAN device.
6110 * - Tunnel 'flow' is largely cleared when transitioning between
6111 * the input and output stages since it does not make sense to output
6112 * a packet with the exact headers that it was received with (i.e.
6113 * the destination IP is us). The one exception is the tun_id, which
6114 * is preserved to allow use in later resubmit lookups and loads into
6115 * registers.
6116 * - Tunnel 'base_flow' is completely cleared since that is what the
6117 * kernel does. If we wish to maintain the original values an action
6118 * needs to be generated. */
6119
6120 ctx->ofproto = ofproto;
6121 ctx->flow = *flow;
6122 memset(&ctx->flow.tunnel, 0, sizeof ctx->flow.tunnel);
6123 ctx->base_flow = ctx->flow;
6124 ctx->base_flow.vlan_tci = initial_tci;
6125 ctx->flow.tunnel.tun_id = initial_tun_id;
6126 ctx->rule = rule;
6127 ctx->packet = packet;
6128 ctx->may_learn = packet != NULL;
6129 ctx->tcp_flags = tcp_flags;
6130 ctx->resubmit_hook = NULL;
6131 ctx->report_hook = NULL;
6132 ctx->resubmit_stats = NULL;
6133 }
6134
6135 /* Translates the 'ofpacts_len' bytes of "struct ofpacts" starting at 'ofpacts'
6136 * into datapath actions in 'odp_actions', using 'ctx'. */
6137 static void
6138 xlate_actions(struct action_xlate_ctx *ctx,
6139 const struct ofpact *ofpacts, size_t ofpacts_len,
6140 struct ofpbuf *odp_actions)
6141 {
6142 /* Normally false. Set to true if we ever hit MAX_RESUBMIT_RECURSION, so
6143 * that in the future we always keep a copy of the original flow for
6144 * tracing purposes. */
6145 static bool hit_resubmit_limit;
6146
6147 enum slow_path_reason special;
6148
6149 COVERAGE_INC(ofproto_dpif_xlate);
6150
6151 ofpbuf_clear(odp_actions);
6152 ofpbuf_reserve(odp_actions, NL_A_U32_SIZE);
6153
6154 ctx->odp_actions = odp_actions;
6155 ctx->tags = 0;
6156 ctx->slow = 0;
6157 ctx->has_learn = false;
6158 ctx->has_normal = false;
6159 ctx->has_fin_timeout = false;
6160 ctx->nf_output_iface = NF_OUT_DROP;
6161 ctx->mirrors = 0;
6162 ctx->recurse = 0;
6163 ctx->max_resubmit_trigger = false;
6164 ctx->orig_skb_priority = ctx->flow.skb_priority;
6165 ctx->table_id = 0;
6166 ctx->exit = false;
6167
6168 if (ctx->ofproto->has_mirrors || hit_resubmit_limit) {
6169 /* Do this conditionally because the copy is expensive enough that it
6170 * shows up in profiles.
6171 *
6172 * We keep orig_flow in 'ctx' only because I couldn't make GCC 4.4
6173 * believe that I wasn't using it without initializing it if I kept it
6174 * in a local variable. */
6175 ctx->orig_flow = ctx->flow;
6176 }
6177
6178 if (ctx->flow.nw_frag & FLOW_NW_FRAG_ANY) {
6179 switch (ctx->ofproto->up.frag_handling) {
6180 case OFPC_FRAG_NORMAL:
6181 /* We must pretend that transport ports are unavailable. */
6182 ctx->flow.tp_src = ctx->base_flow.tp_src = htons(0);
6183 ctx->flow.tp_dst = ctx->base_flow.tp_dst = htons(0);
6184 break;
6185
6186 case OFPC_FRAG_DROP:
6187 return;
6188
6189 case OFPC_FRAG_REASM:
6190 NOT_REACHED();
6191
6192 case OFPC_FRAG_NX_MATCH:
6193 /* Nothing to do. */
6194 break;
6195
6196 case OFPC_INVALID_TTL_TO_CONTROLLER:
6197 NOT_REACHED();
6198 }
6199 }
6200
6201 special = process_special(ctx->ofproto, &ctx->flow, ctx->packet);
6202 if (special) {
6203 ctx->slow |= special;
6204 } else {
6205 static struct vlog_rate_limit trace_rl = VLOG_RATE_LIMIT_INIT(1, 1);
6206 ovs_be16 initial_tci = ctx->base_flow.vlan_tci;
6207 uint32_t local_odp_port;
6208
6209 add_sflow_action(ctx);
6210 do_xlate_actions(ofpacts, ofpacts_len, ctx);
6211
6212 if (ctx->max_resubmit_trigger && !ctx->resubmit_hook) {
6213 if (!hit_resubmit_limit) {
6214 /* We didn't record the original flow. Make sure we do from
6215 * now on. */
6216 hit_resubmit_limit = true;
6217 } else if (!VLOG_DROP_ERR(&trace_rl)) {
6218 struct ds ds = DS_EMPTY_INITIALIZER;
6219
6220 ofproto_trace(ctx->ofproto, &ctx->orig_flow, ctx->packet,
6221 initial_tci, &ds);
6222 VLOG_ERR("Trace triggered by excessive resubmit "
6223 "recursion:\n%s", ds_cstr(&ds));
6224 ds_destroy(&ds);
6225 }
6226 }
6227
6228 local_odp_port = ofp_port_to_odp_port(ctx->ofproto, OFPP_LOCAL);
6229 if (!connmgr_may_set_up_flow(ctx->ofproto->up.connmgr, &ctx->flow,
6230 local_odp_port,
6231 ctx->odp_actions->data,
6232 ctx->odp_actions->size)) {
6233 ctx->slow |= SLOW_IN_BAND;
6234 if (ctx->packet
6235 && connmgr_msg_in_hook(ctx->ofproto->up.connmgr, &ctx->flow,
6236 ctx->packet)) {
6237 compose_output_action(ctx, OFPP_LOCAL);
6238 }
6239 }
6240 if (ctx->ofproto->has_mirrors) {
6241 add_mirror_actions(ctx, &ctx->orig_flow);
6242 }
6243 fix_sflow_action(ctx);
6244 }
6245 }
6246
6247 /* Translates the 'ofpacts_len' bytes of "struct ofpact"s starting at 'ofpacts'
6248 * into datapath actions, using 'ctx', and discards the datapath actions. */
6249 static void
6250 xlate_actions_for_side_effects(struct action_xlate_ctx *ctx,
6251 const struct ofpact *ofpacts,
6252 size_t ofpacts_len)
6253 {
6254 uint64_t odp_actions_stub[1024 / 8];
6255 struct ofpbuf odp_actions;
6256
6257 ofpbuf_use_stub(&odp_actions, odp_actions_stub, sizeof odp_actions_stub);
6258 xlate_actions(ctx, ofpacts, ofpacts_len, &odp_actions);
6259 ofpbuf_uninit(&odp_actions);
6260 }
6261
6262 static void
6263 xlate_report(struct action_xlate_ctx *ctx, const char *s)
6264 {
6265 if (ctx->report_hook) {
6266 ctx->report_hook(ctx, s);
6267 }
6268 }
6269 \f
6270 /* OFPP_NORMAL implementation. */
6271
6272 static struct ofport_dpif *ofbundle_get_a_port(const struct ofbundle *);
6273
6274 /* Given 'vid', the VID obtained from the 802.1Q header that was received as
6275 * part of a packet (specify 0 if there was no 802.1Q header), and 'in_bundle',
6276 * the bundle on which the packet was received, returns the VLAN to which the
6277 * packet belongs.
6278 *
6279 * Both 'vid' and the return value are in the range 0...4095. */
6280 static uint16_t
6281 input_vid_to_vlan(const struct ofbundle *in_bundle, uint16_t vid)
6282 {
6283 switch (in_bundle->vlan_mode) {
6284 case PORT_VLAN_ACCESS:
6285 return in_bundle->vlan;
6286 break;
6287
6288 case PORT_VLAN_TRUNK:
6289 return vid;
6290
6291 case PORT_VLAN_NATIVE_UNTAGGED:
6292 case PORT_VLAN_NATIVE_TAGGED:
6293 return vid ? vid : in_bundle->vlan;
6294
6295 default:
6296 NOT_REACHED();
6297 }
6298 }
6299
6300 /* Checks whether a packet with the given 'vid' may ingress on 'in_bundle'.
6301 * If so, returns true. Otherwise, returns false and, if 'warn' is true, logs
6302 * a warning.
6303 *
6304 * 'vid' should be the VID obtained from the 802.1Q header that was received as
6305 * part of a packet (specify 0 if there was no 802.1Q header), in the range
6306 * 0...4095. */
6307 static bool
6308 input_vid_is_valid(uint16_t vid, struct ofbundle *in_bundle, bool warn)
6309 {
6310 /* Allow any VID on the OFPP_NONE port. */
6311 if (in_bundle == &ofpp_none_bundle) {
6312 return true;
6313 }
6314
6315 switch (in_bundle->vlan_mode) {
6316 case PORT_VLAN_ACCESS:
6317 if (vid) {
6318 if (warn) {
6319 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
6320 VLOG_WARN_RL(&rl, "bridge %s: dropping VLAN %"PRIu16" tagged "
6321 "packet received on port %s configured as VLAN "
6322 "%"PRIu16" access port",
6323 in_bundle->ofproto->up.name, vid,
6324 in_bundle->name, in_bundle->vlan);
6325 }
6326 return false;
6327 }
6328 return true;
6329
6330 case PORT_VLAN_NATIVE_UNTAGGED:
6331 case PORT_VLAN_NATIVE_TAGGED:
6332 if (!vid) {
6333 /* Port must always carry its native VLAN. */
6334 return true;
6335 }
6336 /* Fall through. */
6337 case PORT_VLAN_TRUNK:
6338 if (!ofbundle_includes_vlan(in_bundle, vid)) {
6339 if (warn) {
6340 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
6341 VLOG_WARN_RL(&rl, "bridge %s: dropping VLAN %"PRIu16" packet "
6342 "received on port %s not configured for trunking "
6343 "VLAN %"PRIu16,
6344 in_bundle->ofproto->up.name, vid,
6345 in_bundle->name, vid);
6346 }
6347 return false;
6348 }
6349 return true;
6350
6351 default:
6352 NOT_REACHED();
6353 }
6354
6355 }
6356
6357 /* Given 'vlan', the VLAN that a packet belongs to, and
6358 * 'out_bundle', a bundle on which the packet is to be output, returns the VID
6359 * that should be included in the 802.1Q header. (If the return value is 0,
6360 * then the 802.1Q header should only be included in the packet if there is a
6361 * nonzero PCP.)
6362 *
6363 * Both 'vlan' and the return value are in the range 0...4095. */
6364 static uint16_t
6365 output_vlan_to_vid(const struct ofbundle *out_bundle, uint16_t vlan)
6366 {
6367 switch (out_bundle->vlan_mode) {
6368 case PORT_VLAN_ACCESS:
6369 return 0;
6370
6371 case PORT_VLAN_TRUNK:
6372 case PORT_VLAN_NATIVE_TAGGED:
6373 return vlan;
6374
6375 case PORT_VLAN_NATIVE_UNTAGGED:
6376 return vlan == out_bundle->vlan ? 0 : vlan;
6377
6378 default:
6379 NOT_REACHED();
6380 }
6381 }
6382
6383 static void
6384 output_normal(struct action_xlate_ctx *ctx, const struct ofbundle *out_bundle,
6385 uint16_t vlan)
6386 {
6387 struct ofport_dpif *port;
6388 uint16_t vid;
6389 ovs_be16 tci, old_tci;
6390
6391 vid = output_vlan_to_vid(out_bundle, vlan);
6392 if (!out_bundle->bond) {
6393 port = ofbundle_get_a_port(out_bundle);
6394 } else {
6395 port = bond_choose_output_slave(out_bundle->bond, &ctx->flow,
6396 vid, &ctx->tags);
6397 if (!port) {
6398 /* No slaves enabled, so drop packet. */
6399 return;
6400 }
6401 }
6402
6403 old_tci = ctx->flow.vlan_tci;
6404 tci = htons(vid);
6405 if (tci || out_bundle->use_priority_tags) {
6406 tci |= ctx->flow.vlan_tci & htons(VLAN_PCP_MASK);
6407 if (tci) {
6408 tci |= htons(VLAN_CFI);
6409 }
6410 }
6411 ctx->flow.vlan_tci = tci;
6412
6413 compose_output_action(ctx, port->up.ofp_port);
6414 ctx->flow.vlan_tci = old_tci;
6415 }
6416
6417 static int
6418 mirror_mask_ffs(mirror_mask_t mask)
6419 {
6420 BUILD_ASSERT_DECL(sizeof(unsigned int) >= sizeof(mask));
6421 return ffs(mask);
6422 }
6423
6424 static bool
6425 ofbundle_trunks_vlan(const struct ofbundle *bundle, uint16_t vlan)
6426 {
6427 return (bundle->vlan_mode != PORT_VLAN_ACCESS
6428 && (!bundle->trunks || bitmap_is_set(bundle->trunks, vlan)));
6429 }
6430
6431 static bool
6432 ofbundle_includes_vlan(const struct ofbundle *bundle, uint16_t vlan)
6433 {
6434 return vlan == bundle->vlan || ofbundle_trunks_vlan(bundle, vlan);
6435 }
6436
6437 /* Returns an arbitrary interface within 'bundle'. */
6438 static struct ofport_dpif *
6439 ofbundle_get_a_port(const struct ofbundle *bundle)
6440 {
6441 return CONTAINER_OF(list_front(&bundle->ports),
6442 struct ofport_dpif, bundle_node);
6443 }
6444
6445 static bool
6446 vlan_is_mirrored(const struct ofmirror *m, int vlan)
6447 {
6448 return !m->vlans || bitmap_is_set(m->vlans, vlan);
6449 }
6450
6451 static void
6452 add_mirror_actions(struct action_xlate_ctx *ctx, const struct flow *orig_flow)
6453 {
6454 struct ofproto_dpif *ofproto = ctx->ofproto;
6455 mirror_mask_t mirrors;
6456 struct ofbundle *in_bundle;
6457 uint16_t vlan;
6458 uint16_t vid;
6459 const struct nlattr *a;
6460 size_t left;
6461
6462 in_bundle = lookup_input_bundle(ctx->ofproto, orig_flow->in_port,
6463 ctx->packet != NULL, NULL);
6464 if (!in_bundle) {
6465 return;
6466 }
6467 mirrors = in_bundle->src_mirrors;
6468
6469 /* Drop frames on bundles reserved for mirroring. */
6470 if (in_bundle->mirror_out) {
6471 if (ctx->packet != NULL) {
6472 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
6473 VLOG_WARN_RL(&rl, "bridge %s: dropping packet received on port "
6474 "%s, which is reserved exclusively for mirroring",
6475 ctx->ofproto->up.name, in_bundle->name);
6476 }
6477 return;
6478 }
6479
6480 /* Check VLAN. */
6481 vid = vlan_tci_to_vid(orig_flow->vlan_tci);
6482 if (!input_vid_is_valid(vid, in_bundle, ctx->packet != NULL)) {
6483 return;
6484 }
6485 vlan = input_vid_to_vlan(in_bundle, vid);
6486
6487 /* Look at the output ports to check for destination selections. */
6488
6489 NL_ATTR_FOR_EACH (a, left, ctx->odp_actions->data,
6490 ctx->odp_actions->size) {
6491 enum ovs_action_attr type = nl_attr_type(a);
6492 struct ofport_dpif *ofport;
6493
6494 if (type != OVS_ACTION_ATTR_OUTPUT) {
6495 continue;
6496 }
6497
6498 ofport = get_odp_port(ofproto, nl_attr_get_u32(a));
6499 if (ofport && ofport->bundle) {
6500 mirrors |= ofport->bundle->dst_mirrors;
6501 }
6502 }
6503
6504 if (!mirrors) {
6505 return;
6506 }
6507
6508 /* Restore the original packet before adding the mirror actions. */
6509 ctx->flow = *orig_flow;
6510
6511 while (mirrors) {
6512 struct ofmirror *m;
6513
6514 m = ofproto->mirrors[mirror_mask_ffs(mirrors) - 1];
6515
6516 if (!vlan_is_mirrored(m, vlan)) {
6517 mirrors = zero_rightmost_1bit(mirrors);
6518 continue;
6519 }
6520
6521 mirrors &= ~m->dup_mirrors;
6522 ctx->mirrors |= m->dup_mirrors;
6523 if (m->out) {
6524 output_normal(ctx, m->out, vlan);
6525 } else if (vlan != m->out_vlan
6526 && !eth_addr_is_reserved(orig_flow->dl_dst)) {
6527 struct ofbundle *bundle;
6528
6529 HMAP_FOR_EACH (bundle, hmap_node, &ofproto->bundles) {
6530 if (ofbundle_includes_vlan(bundle, m->out_vlan)
6531 && !bundle->mirror_out) {
6532 output_normal(ctx, bundle, m->out_vlan);
6533 }
6534 }
6535 }
6536 }
6537 }
6538
6539 static void
6540 update_mirror_stats(struct ofproto_dpif *ofproto, mirror_mask_t mirrors,
6541 uint64_t packets, uint64_t bytes)
6542 {
6543 if (!mirrors) {
6544 return;
6545 }
6546
6547 for (; mirrors; mirrors = zero_rightmost_1bit(mirrors)) {
6548 struct ofmirror *m;
6549
6550 m = ofproto->mirrors[mirror_mask_ffs(mirrors) - 1];
6551
6552 if (!m) {
6553 /* In normal circumstances 'm' will not be NULL. However,
6554 * if mirrors are reconfigured, we can temporarily get out
6555 * of sync in facet_revalidate(). We could "correct" the
6556 * mirror list before reaching here, but doing that would
6557 * not properly account the traffic stats we've currently
6558 * accumulated for previous mirror configuration. */
6559 continue;
6560 }
6561
6562 m->packet_count += packets;
6563 m->byte_count += bytes;
6564 }
6565 }
6566
6567 /* A VM broadcasts a gratuitous ARP to indicate that it has resumed after
6568 * migration. Older Citrix-patched Linux DomU used gratuitous ARP replies to
6569 * indicate this; newer upstream kernels use gratuitous ARP requests. */
6570 static bool
6571 is_gratuitous_arp(const struct flow *flow)
6572 {
6573 return (flow->dl_type == htons(ETH_TYPE_ARP)
6574 && eth_addr_is_broadcast(flow->dl_dst)
6575 && (flow->nw_proto == ARP_OP_REPLY
6576 || (flow->nw_proto == ARP_OP_REQUEST
6577 && flow->nw_src == flow->nw_dst)));
6578 }
6579
6580 static void
6581 update_learning_table(struct ofproto_dpif *ofproto,
6582 const struct flow *flow, int vlan,
6583 struct ofbundle *in_bundle)
6584 {
6585 struct mac_entry *mac;
6586
6587 /* Don't learn the OFPP_NONE port. */
6588 if (in_bundle == &ofpp_none_bundle) {
6589 return;
6590 }
6591
6592 if (!mac_learning_may_learn(ofproto->ml, flow->dl_src, vlan)) {
6593 return;
6594 }
6595
6596 mac = mac_learning_insert(ofproto->ml, flow->dl_src, vlan);
6597 if (is_gratuitous_arp(flow)) {
6598 /* We don't want to learn from gratuitous ARP packets that are
6599 * reflected back over bond slaves so we lock the learning table. */
6600 if (!in_bundle->bond) {
6601 mac_entry_set_grat_arp_lock(mac);
6602 } else if (mac_entry_is_grat_arp_locked(mac)) {
6603 return;
6604 }
6605 }
6606
6607 if (mac_entry_is_new(mac) || mac->port.p != in_bundle) {
6608 /* The log messages here could actually be useful in debugging,
6609 * so keep the rate limit relatively high. */
6610 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(30, 300);
6611 VLOG_DBG_RL(&rl, "bridge %s: learned that "ETH_ADDR_FMT" is "
6612 "on port %s in VLAN %d",
6613 ofproto->up.name, ETH_ADDR_ARGS(flow->dl_src),
6614 in_bundle->name, vlan);
6615
6616 mac->port.p = in_bundle;
6617 tag_set_add(&ofproto->revalidate_set,
6618 mac_learning_changed(ofproto->ml, mac));
6619 }
6620 }
6621
6622 static struct ofbundle *
6623 lookup_input_bundle(const struct ofproto_dpif *ofproto, uint16_t in_port,
6624 bool warn, struct ofport_dpif **in_ofportp)
6625 {
6626 struct ofport_dpif *ofport;
6627
6628 /* Find the port and bundle for the received packet. */
6629 ofport = get_ofp_port(ofproto, in_port);
6630 if (in_ofportp) {
6631 *in_ofportp = ofport;
6632 }
6633 if (ofport && ofport->bundle) {
6634 return ofport->bundle;
6635 }
6636
6637 /* Special-case OFPP_NONE, which a controller may use as the ingress
6638 * port for traffic that it is sourcing. */
6639 if (in_port == OFPP_NONE) {
6640 return &ofpp_none_bundle;
6641 }
6642
6643 /* Odd. A few possible reasons here:
6644 *
6645 * - We deleted a port but there are still a few packets queued up
6646 * from it.
6647 *
6648 * - Someone externally added a port (e.g. "ovs-dpctl add-if") that
6649 * we don't know about.
6650 *
6651 * - The ofproto client didn't configure the port as part of a bundle.
6652 * This is particularly likely to happen if a packet was received on the
6653 * port after it was created, but before the client had a chance to
6654 * configure its bundle.
6655 */
6656 if (warn) {
6657 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
6658
6659 VLOG_WARN_RL(&rl, "bridge %s: received packet on unknown "
6660 "port %"PRIu16, ofproto->up.name, in_port);
6661 }
6662 return NULL;
6663 }
6664
6665 /* Determines whether packets in 'flow' within 'ofproto' should be forwarded or
6666 * dropped. Returns true if they may be forwarded, false if they should be
6667 * dropped.
6668 *
6669 * 'in_port' must be the ofport_dpif that corresponds to flow->in_port.
6670 * 'in_port' must be part of a bundle (e.g. in_port->bundle must be nonnull).
6671 *
6672 * 'vlan' must be the VLAN that corresponds to flow->vlan_tci on 'in_port', as
6673 * returned by input_vid_to_vlan(). It must be a valid VLAN for 'in_port', as
6674 * checked by input_vid_is_valid().
6675 *
6676 * May also add tags to '*tags', although the current implementation only does
6677 * so in one special case.
6678 */
6679 static bool
6680 is_admissible(struct action_xlate_ctx *ctx, struct ofport_dpif *in_port,
6681 uint16_t vlan)
6682 {
6683 struct ofproto_dpif *ofproto = ctx->ofproto;
6684 struct flow *flow = &ctx->flow;
6685 struct ofbundle *in_bundle = in_port->bundle;
6686
6687 /* Drop frames for reserved multicast addresses
6688 * only if forward_bpdu option is absent. */
6689 if (!ofproto->up.forward_bpdu && eth_addr_is_reserved(flow->dl_dst)) {
6690 xlate_report(ctx, "packet has reserved destination MAC, dropping");
6691 return false;
6692 }
6693
6694 if (in_bundle->bond) {
6695 struct mac_entry *mac;
6696
6697 switch (bond_check_admissibility(in_bundle->bond, in_port,
6698 flow->dl_dst, &ctx->tags)) {
6699 case BV_ACCEPT:
6700 break;
6701
6702 case BV_DROP:
6703 xlate_report(ctx, "bonding refused admissibility, dropping");
6704 return false;
6705
6706 case BV_DROP_IF_MOVED:
6707 mac = mac_learning_lookup(ofproto->ml, flow->dl_src, vlan, NULL);
6708 if (mac && mac->port.p != in_bundle &&
6709 (!is_gratuitous_arp(flow)
6710 || mac_entry_is_grat_arp_locked(mac))) {
6711 xlate_report(ctx, "SLB bond thinks this packet looped back, "
6712 "dropping");
6713 return false;
6714 }
6715 break;
6716 }
6717 }
6718
6719 return true;
6720 }
6721
6722 static void
6723 xlate_normal(struct action_xlate_ctx *ctx)
6724 {
6725 struct ofport_dpif *in_port;
6726 struct ofbundle *in_bundle;
6727 struct mac_entry *mac;
6728 uint16_t vlan;
6729 uint16_t vid;
6730
6731 ctx->has_normal = true;
6732
6733 in_bundle = lookup_input_bundle(ctx->ofproto, ctx->flow.in_port,
6734 ctx->packet != NULL, &in_port);
6735 if (!in_bundle) {
6736 xlate_report(ctx, "no input bundle, dropping");
6737 return;
6738 }
6739
6740 /* Drop malformed frames. */
6741 if (ctx->flow.dl_type == htons(ETH_TYPE_VLAN) &&
6742 !(ctx->flow.vlan_tci & htons(VLAN_CFI))) {
6743 if (ctx->packet != NULL) {
6744 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
6745 VLOG_WARN_RL(&rl, "bridge %s: dropping packet with partial "
6746 "VLAN tag received on port %s",
6747 ctx->ofproto->up.name, in_bundle->name);
6748 }
6749 xlate_report(ctx, "partial VLAN tag, dropping");
6750 return;
6751 }
6752
6753 /* Drop frames on bundles reserved for mirroring. */
6754 if (in_bundle->mirror_out) {
6755 if (ctx->packet != NULL) {
6756 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
6757 VLOG_WARN_RL(&rl, "bridge %s: dropping packet received on port "
6758 "%s, which is reserved exclusively for mirroring",
6759 ctx->ofproto->up.name, in_bundle->name);
6760 }
6761 xlate_report(ctx, "input port is mirror output port, dropping");
6762 return;
6763 }
6764
6765 /* Check VLAN. */
6766 vid = vlan_tci_to_vid(ctx->flow.vlan_tci);
6767 if (!input_vid_is_valid(vid, in_bundle, ctx->packet != NULL)) {
6768 xlate_report(ctx, "disallowed VLAN VID for this input port, dropping");
6769 return;
6770 }
6771 vlan = input_vid_to_vlan(in_bundle, vid);
6772
6773 /* Check other admissibility requirements. */
6774 if (in_port && !is_admissible(ctx, in_port, vlan)) {
6775 return;
6776 }
6777
6778 /* Learn source MAC. */
6779 if (ctx->may_learn) {
6780 update_learning_table(ctx->ofproto, &ctx->flow, vlan, in_bundle);
6781 }
6782
6783 /* Determine output bundle. */
6784 mac = mac_learning_lookup(ctx->ofproto->ml, ctx->flow.dl_dst, vlan,
6785 &ctx->tags);
6786 if (mac) {
6787 if (mac->port.p != in_bundle) {
6788 xlate_report(ctx, "forwarding to learned port");
6789 output_normal(ctx, mac->port.p, vlan);
6790 } else {
6791 xlate_report(ctx, "learned port is input port, dropping");
6792 }
6793 } else {
6794 struct ofbundle *bundle;
6795
6796 xlate_report(ctx, "no learned MAC for destination, flooding");
6797 HMAP_FOR_EACH (bundle, hmap_node, &ctx->ofproto->bundles) {
6798 if (bundle != in_bundle
6799 && ofbundle_includes_vlan(bundle, vlan)
6800 && bundle->floodable
6801 && !bundle->mirror_out) {
6802 output_normal(ctx, bundle, vlan);
6803 }
6804 }
6805 ctx->nf_output_iface = NF_OUT_FLOOD;
6806 }
6807 }
6808 \f
6809 /* Optimized flow revalidation.
6810 *
6811 * It's a difficult problem, in general, to tell which facets need to have
6812 * their actions recalculated whenever the OpenFlow flow table changes. We
6813 * don't try to solve that general problem: for most kinds of OpenFlow flow
6814 * table changes, we recalculate the actions for every facet. This is
6815 * relatively expensive, but it's good enough if the OpenFlow flow table
6816 * doesn't change very often.
6817 *
6818 * However, we can expect one particular kind of OpenFlow flow table change to
6819 * happen frequently: changes caused by MAC learning. To avoid wasting a lot
6820 * of CPU on revalidating every facet whenever MAC learning modifies the flow
6821 * table, we add a special case that applies to flow tables in which every rule
6822 * has the same form (that is, the same wildcards), except that the table is
6823 * also allowed to have a single "catch-all" flow that matches all packets. We
6824 * optimize this case by tagging all of the facets that resubmit into the table
6825 * and invalidating the same tag whenever a flow changes in that table. The
6826 * end result is that we revalidate just the facets that need it (and sometimes
6827 * a few more, but not all of the facets or even all of the facets that
6828 * resubmit to the table modified by MAC learning). */
6829
6830 /* Calculates the tag to use for 'flow' and mask 'mask' when it is inserted
6831 * into an OpenFlow table with the given 'basis'. */
6832 static tag_type
6833 rule_calculate_tag(const struct flow *flow, const struct minimask *mask,
6834 uint32_t secret)
6835 {
6836 if (minimask_is_catchall(mask)) {
6837 return 0;
6838 } else {
6839 uint32_t hash = flow_hash_in_minimask(flow, mask, secret);
6840 return tag_create_deterministic(hash);
6841 }
6842 }
6843
6844 /* Following a change to OpenFlow table 'table_id' in 'ofproto', update the
6845 * taggability of that table.
6846 *
6847 * This function must be called after *each* change to a flow table. If you
6848 * skip calling it on some changes then the pointer comparisons at the end can
6849 * be invalid if you get unlucky. For example, if a flow removal causes a
6850 * cls_table to be destroyed and then a flow insertion causes a cls_table with
6851 * different wildcards to be created with the same address, then this function
6852 * will incorrectly skip revalidation. */
6853 static void
6854 table_update_taggable(struct ofproto_dpif *ofproto, uint8_t table_id)
6855 {
6856 struct table_dpif *table = &ofproto->tables[table_id];
6857 const struct oftable *oftable = &ofproto->up.tables[table_id];
6858 struct cls_table *catchall, *other;
6859 struct cls_table *t;
6860
6861 catchall = other = NULL;
6862
6863 switch (hmap_count(&oftable->cls.tables)) {
6864 case 0:
6865 /* We could tag this OpenFlow table but it would make the logic a
6866 * little harder and it's a corner case that doesn't seem worth it
6867 * yet. */
6868 break;
6869
6870 case 1:
6871 case 2:
6872 HMAP_FOR_EACH (t, hmap_node, &oftable->cls.tables) {
6873 if (cls_table_is_catchall(t)) {
6874 catchall = t;
6875 } else if (!other) {
6876 other = t;
6877 } else {
6878 /* Indicate that we can't tag this by setting both tables to
6879 * NULL. (We know that 'catchall' is already NULL.) */
6880 other = NULL;
6881 }
6882 }
6883 break;
6884
6885 default:
6886 /* Can't tag this table. */
6887 break;
6888 }
6889
6890 if (table->catchall_table != catchall || table->other_table != other) {
6891 table->catchall_table = catchall;
6892 table->other_table = other;
6893 ofproto->need_revalidate = REV_FLOW_TABLE;
6894 }
6895 }
6896
6897 /* Given 'rule' that has changed in some way (either it is a rule being
6898 * inserted, a rule being deleted, or a rule whose actions are being
6899 * modified), marks facets for revalidation to ensure that packets will be
6900 * forwarded correctly according to the new state of the flow table.
6901 *
6902 * This function must be called after *each* change to a flow table. See
6903 * the comment on table_update_taggable() for more information. */
6904 static void
6905 rule_invalidate(const struct rule_dpif *rule)
6906 {
6907 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
6908
6909 table_update_taggable(ofproto, rule->up.table_id);
6910
6911 if (!ofproto->need_revalidate) {
6912 struct table_dpif *table = &ofproto->tables[rule->up.table_id];
6913
6914 if (table->other_table && rule->tag) {
6915 tag_set_add(&ofproto->revalidate_set, rule->tag);
6916 } else {
6917 ofproto->need_revalidate = REV_FLOW_TABLE;
6918 }
6919 }
6920 }
6921 \f
6922 static bool
6923 set_frag_handling(struct ofproto *ofproto_,
6924 enum ofp_config_flags frag_handling)
6925 {
6926 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
6927
6928 if (frag_handling != OFPC_FRAG_REASM) {
6929 ofproto->need_revalidate = REV_RECONFIGURE;
6930 return true;
6931 } else {
6932 return false;
6933 }
6934 }
6935
6936 static enum ofperr
6937 packet_out(struct ofproto *ofproto_, struct ofpbuf *packet,
6938 const struct flow *flow,
6939 const struct ofpact *ofpacts, size_t ofpacts_len)
6940 {
6941 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
6942 struct odputil_keybuf keybuf;
6943 struct dpif_flow_stats stats;
6944
6945 struct ofpbuf key;
6946
6947 struct action_xlate_ctx ctx;
6948 uint64_t odp_actions_stub[1024 / 8];
6949 struct ofpbuf odp_actions;
6950
6951 ofpbuf_use_stack(&key, &keybuf, sizeof keybuf);
6952 odp_flow_key_from_flow(&key, flow,
6953 ofp_port_to_odp_port(ofproto, flow->in_port));
6954
6955 dpif_flow_stats_extract(flow, packet, time_msec(), &stats);
6956
6957 action_xlate_ctx_init(&ctx, ofproto, flow, flow->vlan_tci, NULL,
6958 packet_get_tcp_flags(packet, flow), packet);
6959 ctx.resubmit_stats = &stats;
6960
6961 ofpbuf_use_stub(&odp_actions,
6962 odp_actions_stub, sizeof odp_actions_stub);
6963 xlate_actions(&ctx, ofpacts, ofpacts_len, &odp_actions);
6964 dpif_execute(ofproto->backer->dpif, key.data, key.size,
6965 odp_actions.data, odp_actions.size, packet);
6966 ofpbuf_uninit(&odp_actions);
6967
6968 return 0;
6969 }
6970 \f
6971 /* NetFlow. */
6972
6973 static int
6974 set_netflow(struct ofproto *ofproto_,
6975 const struct netflow_options *netflow_options)
6976 {
6977 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
6978
6979 if (netflow_options) {
6980 if (!ofproto->netflow) {
6981 ofproto->netflow = netflow_create();
6982 }
6983 return netflow_set_options(ofproto->netflow, netflow_options);
6984 } else {
6985 netflow_destroy(ofproto->netflow);
6986 ofproto->netflow = NULL;
6987 return 0;
6988 }
6989 }
6990
6991 static void
6992 get_netflow_ids(const struct ofproto *ofproto_,
6993 uint8_t *engine_type, uint8_t *engine_id)
6994 {
6995 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
6996
6997 dpif_get_netflow_ids(ofproto->backer->dpif, engine_type, engine_id);
6998 }
6999
7000 static void
7001 send_active_timeout(struct ofproto_dpif *ofproto, struct facet *facet)
7002 {
7003 if (!facet_is_controller_flow(facet) &&
7004 netflow_active_timeout_expired(ofproto->netflow, &facet->nf_flow)) {
7005 struct subfacet *subfacet;
7006 struct ofexpired expired;
7007
7008 LIST_FOR_EACH (subfacet, list_node, &facet->subfacets) {
7009 if (subfacet->path == SF_FAST_PATH) {
7010 struct dpif_flow_stats stats;
7011
7012 subfacet_reinstall(subfacet, &stats);
7013 subfacet_update_stats(subfacet, &stats);
7014 }
7015 }
7016
7017 expired.flow = facet->flow;
7018 expired.packet_count = facet->packet_count;
7019 expired.byte_count = facet->byte_count;
7020 expired.used = facet->used;
7021 netflow_expire(ofproto->netflow, &facet->nf_flow, &expired);
7022 }
7023 }
7024
7025 static void
7026 send_netflow_active_timeouts(struct ofproto_dpif *ofproto)
7027 {
7028 struct facet *facet;
7029
7030 HMAP_FOR_EACH (facet, hmap_node, &ofproto->facets) {
7031 send_active_timeout(ofproto, facet);
7032 }
7033 }
7034 \f
7035 static struct ofproto_dpif *
7036 ofproto_dpif_lookup(const char *name)
7037 {
7038 struct ofproto_dpif *ofproto;
7039
7040 HMAP_FOR_EACH_WITH_HASH (ofproto, all_ofproto_dpifs_node,
7041 hash_string(name, 0), &all_ofproto_dpifs) {
7042 if (!strcmp(ofproto->up.name, name)) {
7043 return ofproto;
7044 }
7045 }
7046 return NULL;
7047 }
7048
7049 static void
7050 ofproto_unixctl_fdb_flush(struct unixctl_conn *conn, int argc,
7051 const char *argv[], void *aux OVS_UNUSED)
7052 {
7053 struct ofproto_dpif *ofproto;
7054
7055 if (argc > 1) {
7056 ofproto = ofproto_dpif_lookup(argv[1]);
7057 if (!ofproto) {
7058 unixctl_command_reply_error(conn, "no such bridge");
7059 return;
7060 }
7061 mac_learning_flush(ofproto->ml, &ofproto->revalidate_set);
7062 } else {
7063 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
7064 mac_learning_flush(ofproto->ml, &ofproto->revalidate_set);
7065 }
7066 }
7067
7068 unixctl_command_reply(conn, "table successfully flushed");
7069 }
7070
7071 static void
7072 ofproto_unixctl_fdb_show(struct unixctl_conn *conn, int argc OVS_UNUSED,
7073 const char *argv[], void *aux OVS_UNUSED)
7074 {
7075 struct ds ds = DS_EMPTY_INITIALIZER;
7076 const struct ofproto_dpif *ofproto;
7077 const struct mac_entry *e;
7078
7079 ofproto = ofproto_dpif_lookup(argv[1]);
7080 if (!ofproto) {
7081 unixctl_command_reply_error(conn, "no such bridge");
7082 return;
7083 }
7084
7085 ds_put_cstr(&ds, " port VLAN MAC Age\n");
7086 LIST_FOR_EACH (e, lru_node, &ofproto->ml->lrus) {
7087 struct ofbundle *bundle = e->port.p;
7088 ds_put_format(&ds, "%5d %4d "ETH_ADDR_FMT" %3d\n",
7089 ofbundle_get_a_port(bundle)->odp_port,
7090 e->vlan, ETH_ADDR_ARGS(e->mac),
7091 mac_entry_age(ofproto->ml, e));
7092 }
7093 unixctl_command_reply(conn, ds_cstr(&ds));
7094 ds_destroy(&ds);
7095 }
7096
7097 struct trace_ctx {
7098 struct action_xlate_ctx ctx;
7099 struct flow flow;
7100 struct ds *result;
7101 };
7102
7103 static void
7104 trace_format_rule(struct ds *result, uint8_t table_id, int level,
7105 const struct rule_dpif *rule)
7106 {
7107 ds_put_char_multiple(result, '\t', level);
7108 if (!rule) {
7109 ds_put_cstr(result, "No match\n");
7110 return;
7111 }
7112
7113 ds_put_format(result, "Rule: table=%"PRIu8" cookie=%#"PRIx64" ",
7114 table_id, ntohll(rule->up.flow_cookie));
7115 cls_rule_format(&rule->up.cr, result);
7116 ds_put_char(result, '\n');
7117
7118 ds_put_char_multiple(result, '\t', level);
7119 ds_put_cstr(result, "OpenFlow ");
7120 ofpacts_format(rule->up.ofpacts, rule->up.ofpacts_len, result);
7121 ds_put_char(result, '\n');
7122 }
7123
7124 static void
7125 trace_format_flow(struct ds *result, int level, const char *title,
7126 struct trace_ctx *trace)
7127 {
7128 ds_put_char_multiple(result, '\t', level);
7129 ds_put_format(result, "%s: ", title);
7130 if (flow_equal(&trace->ctx.flow, &trace->flow)) {
7131 ds_put_cstr(result, "unchanged");
7132 } else {
7133 flow_format(result, &trace->ctx.flow);
7134 trace->flow = trace->ctx.flow;
7135 }
7136 ds_put_char(result, '\n');
7137 }
7138
7139 static void
7140 trace_format_regs(struct ds *result, int level, const char *title,
7141 struct trace_ctx *trace)
7142 {
7143 size_t i;
7144
7145 ds_put_char_multiple(result, '\t', level);
7146 ds_put_format(result, "%s:", title);
7147 for (i = 0; i < FLOW_N_REGS; i++) {
7148 ds_put_format(result, " reg%zu=0x%"PRIx32, i, trace->flow.regs[i]);
7149 }
7150 ds_put_char(result, '\n');
7151 }
7152
7153 static void
7154 trace_format_odp(struct ds *result, int level, const char *title,
7155 struct trace_ctx *trace)
7156 {
7157 struct ofpbuf *odp_actions = trace->ctx.odp_actions;
7158
7159 ds_put_char_multiple(result, '\t', level);
7160 ds_put_format(result, "%s: ", title);
7161 format_odp_actions(result, odp_actions->data, odp_actions->size);
7162 ds_put_char(result, '\n');
7163 }
7164
7165 static void
7166 trace_resubmit(struct action_xlate_ctx *ctx, struct rule_dpif *rule)
7167 {
7168 struct trace_ctx *trace = CONTAINER_OF(ctx, struct trace_ctx, ctx);
7169 struct ds *result = trace->result;
7170
7171 ds_put_char(result, '\n');
7172 trace_format_flow(result, ctx->recurse + 1, "Resubmitted flow", trace);
7173 trace_format_regs(result, ctx->recurse + 1, "Resubmitted regs", trace);
7174 trace_format_odp(result, ctx->recurse + 1, "Resubmitted odp", trace);
7175 trace_format_rule(result, ctx->table_id, ctx->recurse + 1, rule);
7176 }
7177
7178 static void
7179 trace_report(struct action_xlate_ctx *ctx, const char *s)
7180 {
7181 struct trace_ctx *trace = CONTAINER_OF(ctx, struct trace_ctx, ctx);
7182 struct ds *result = trace->result;
7183
7184 ds_put_char_multiple(result, '\t', ctx->recurse);
7185 ds_put_cstr(result, s);
7186 ds_put_char(result, '\n');
7187 }
7188
7189 static void
7190 ofproto_unixctl_trace(struct unixctl_conn *conn, int argc, const char *argv[],
7191 void *aux OVS_UNUSED)
7192 {
7193 const char *dpname = argv[1];
7194 struct ofproto_dpif *ofproto;
7195 struct ofpbuf odp_key;
7196 struct ofpbuf *packet;
7197 ovs_be16 initial_tci;
7198 struct ds result;
7199 struct flow flow;
7200 char *s;
7201
7202 packet = NULL;
7203 ofpbuf_init(&odp_key, 0);
7204 ds_init(&result);
7205
7206 ofproto = ofproto_dpif_lookup(dpname);
7207 if (!ofproto) {
7208 unixctl_command_reply_error(conn, "Unknown ofproto (use ofproto/list "
7209 "for help)");
7210 goto exit;
7211 }
7212 if (argc == 3 || (argc == 4 && !strcmp(argv[3], "-generate"))) {
7213 /* ofproto/trace dpname flow [-generate] */
7214 const char *flow_s = argv[2];
7215 const char *generate_s = argv[3];
7216
7217 /* Allow 'flow_s' to be either a datapath flow or an OpenFlow-like
7218 * flow. We guess which type it is based on whether 'flow_s' contains
7219 * an '(', since a datapath flow always contains '(') but an
7220 * OpenFlow-like flow should not (in fact it's allowed but I believe
7221 * that's not documented anywhere).
7222 *
7223 * An alternative would be to try to parse 'flow_s' both ways, but then
7224 * it would be tricky giving a sensible error message. After all, do
7225 * you just say "syntax error" or do you present both error messages?
7226 * Both choices seem lousy. */
7227 if (strchr(flow_s, '(')) {
7228 int error;
7229
7230 /* Convert string to datapath key. */
7231 ofpbuf_init(&odp_key, 0);
7232 error = odp_flow_key_from_string(flow_s, NULL, &odp_key);
7233 if (error) {
7234 unixctl_command_reply_error(conn, "Bad flow syntax");
7235 goto exit;
7236 }
7237
7238 /* XXX: Since we allow the user to specify an ofproto, it's
7239 * possible they will specify a different ofproto than the one the
7240 * port actually belongs too. Ideally we should simply remove the
7241 * ability to specify the ofproto. */
7242 if (ofproto_receive(ofproto->backer, NULL, odp_key.data,
7243 odp_key.size, &flow, NULL, NULL, NULL,
7244 &initial_tci)) {
7245 unixctl_command_reply_error(conn, "Invalid flow");
7246 goto exit;
7247 }
7248 } else {
7249 char *error_s;
7250
7251 error_s = parse_ofp_exact_flow(&flow, argv[2]);
7252 if (error_s) {
7253 unixctl_command_reply_error(conn, error_s);
7254 free(error_s);
7255 goto exit;
7256 }
7257
7258 initial_tci = flow.vlan_tci;
7259 }
7260
7261 /* Generate a packet, if requested. */
7262 if (generate_s) {
7263 packet = ofpbuf_new(0);
7264 flow_compose(packet, &flow);
7265 }
7266 } else if (argc == 7) {
7267 /* ofproto/trace dpname priority tun_id in_port mark packet */
7268 const char *priority_s = argv[2];
7269 const char *tun_id_s = argv[3];
7270 const char *in_port_s = argv[4];
7271 const char *mark_s = argv[5];
7272 const char *packet_s = argv[6];
7273 uint32_t in_port = atoi(in_port_s);
7274 ovs_be64 tun_id = htonll(strtoull(tun_id_s, NULL, 0));
7275 uint32_t priority = atoi(priority_s);
7276 uint32_t mark = atoi(mark_s);
7277 const char *msg;
7278
7279 msg = eth_from_hex(packet_s, &packet);
7280 if (msg) {
7281 unixctl_command_reply_error(conn, msg);
7282 goto exit;
7283 }
7284
7285 ds_put_cstr(&result, "Packet: ");
7286 s = ofp_packet_to_string(packet->data, packet->size);
7287 ds_put_cstr(&result, s);
7288 free(s);
7289
7290 flow_extract(packet, priority, mark, NULL, in_port, &flow);
7291 flow.tunnel.tun_id = tun_id;
7292 initial_tci = flow.vlan_tci;
7293 } else {
7294 unixctl_command_reply_error(conn, "Bad command syntax");
7295 goto exit;
7296 }
7297
7298 ofproto_trace(ofproto, &flow, packet, initial_tci, &result);
7299 unixctl_command_reply(conn, ds_cstr(&result));
7300
7301 exit:
7302 ds_destroy(&result);
7303 ofpbuf_delete(packet);
7304 ofpbuf_uninit(&odp_key);
7305 }
7306
7307 static void
7308 ofproto_trace(struct ofproto_dpif *ofproto, const struct flow *flow,
7309 const struct ofpbuf *packet, ovs_be16 initial_tci,
7310 struct ds *ds)
7311 {
7312 struct rule_dpif *rule;
7313
7314 ds_put_cstr(ds, "Flow: ");
7315 flow_format(ds, flow);
7316 ds_put_char(ds, '\n');
7317
7318 rule = rule_dpif_lookup(ofproto, flow);
7319
7320 trace_format_rule(ds, 0, 0, rule);
7321 if (rule == ofproto->miss_rule) {
7322 ds_put_cstr(ds, "\nNo match, flow generates \"packet in\"s.\n");
7323 } else if (rule == ofproto->no_packet_in_rule) {
7324 ds_put_cstr(ds, "\nNo match, packets dropped because "
7325 "OFPPC_NO_PACKET_IN is set on in_port.\n");
7326 }
7327
7328 if (rule) {
7329 uint64_t odp_actions_stub[1024 / 8];
7330 struct ofpbuf odp_actions;
7331
7332 struct trace_ctx trace;
7333 uint8_t tcp_flags;
7334
7335 tcp_flags = packet ? packet_get_tcp_flags(packet, flow) : 0;
7336 trace.result = ds;
7337 trace.flow = *flow;
7338 ofpbuf_use_stub(&odp_actions,
7339 odp_actions_stub, sizeof odp_actions_stub);
7340 action_xlate_ctx_init(&trace.ctx, ofproto, flow, initial_tci,
7341 rule, tcp_flags, packet);
7342 trace.ctx.resubmit_hook = trace_resubmit;
7343 trace.ctx.report_hook = trace_report;
7344 xlate_actions(&trace.ctx, rule->up.ofpacts, rule->up.ofpacts_len,
7345 &odp_actions);
7346
7347 ds_put_char(ds, '\n');
7348 trace_format_flow(ds, 0, "Final flow", &trace);
7349 ds_put_cstr(ds, "Datapath actions: ");
7350 format_odp_actions(ds, odp_actions.data, odp_actions.size);
7351 ofpbuf_uninit(&odp_actions);
7352
7353 if (trace.ctx.slow) {
7354 enum slow_path_reason slow;
7355
7356 ds_put_cstr(ds, "\nThis flow is handled by the userspace "
7357 "slow path because it:");
7358 for (slow = trace.ctx.slow; slow; ) {
7359 enum slow_path_reason bit = rightmost_1bit(slow);
7360
7361 switch (bit) {
7362 case SLOW_CFM:
7363 ds_put_cstr(ds, "\n\t- Consists of CFM packets.");
7364 break;
7365 case SLOW_LACP:
7366 ds_put_cstr(ds, "\n\t- Consists of LACP packets.");
7367 break;
7368 case SLOW_STP:
7369 ds_put_cstr(ds, "\n\t- Consists of STP packets.");
7370 break;
7371 case SLOW_IN_BAND:
7372 ds_put_cstr(ds, "\n\t- Needs in-band special case "
7373 "processing.");
7374 if (!packet) {
7375 ds_put_cstr(ds, "\n\t (The datapath actions are "
7376 "incomplete--for complete actions, "
7377 "please supply a packet.)");
7378 }
7379 break;
7380 case SLOW_CONTROLLER:
7381 ds_put_cstr(ds, "\n\t- Sends \"packet-in\" messages "
7382 "to the OpenFlow controller.");
7383 break;
7384 case SLOW_MATCH:
7385 ds_put_cstr(ds, "\n\t- Needs more specific matching "
7386 "than the datapath supports.");
7387 break;
7388 }
7389
7390 slow &= ~bit;
7391 }
7392
7393 if (slow & ~SLOW_MATCH) {
7394 ds_put_cstr(ds, "\nThe datapath actions above do not reflect "
7395 "the special slow-path processing.");
7396 }
7397 }
7398 }
7399 }
7400
7401 static void
7402 ofproto_dpif_clog(struct unixctl_conn *conn OVS_UNUSED, int argc OVS_UNUSED,
7403 const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED)
7404 {
7405 clogged = true;
7406 unixctl_command_reply(conn, NULL);
7407 }
7408
7409 static void
7410 ofproto_dpif_unclog(struct unixctl_conn *conn OVS_UNUSED, int argc OVS_UNUSED,
7411 const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED)
7412 {
7413 clogged = false;
7414 unixctl_command_reply(conn, NULL);
7415 }
7416
7417 /* Runs a self-check of flow translations in 'ofproto'. Appends a message to
7418 * 'reply' describing the results. */
7419 static void
7420 ofproto_dpif_self_check__(struct ofproto_dpif *ofproto, struct ds *reply)
7421 {
7422 struct facet *facet;
7423 int errors;
7424
7425 errors = 0;
7426 HMAP_FOR_EACH (facet, hmap_node, &ofproto->facets) {
7427 if (!facet_check_consistency(facet)) {
7428 errors++;
7429 }
7430 }
7431 if (errors) {
7432 ofproto->need_revalidate = REV_INCONSISTENCY;
7433 }
7434
7435 if (errors) {
7436 ds_put_format(reply, "%s: self-check failed (%d errors)\n",
7437 ofproto->up.name, errors);
7438 } else {
7439 ds_put_format(reply, "%s: self-check passed\n", ofproto->up.name);
7440 }
7441 }
7442
7443 static void
7444 ofproto_dpif_self_check(struct unixctl_conn *conn,
7445 int argc, const char *argv[], void *aux OVS_UNUSED)
7446 {
7447 struct ds reply = DS_EMPTY_INITIALIZER;
7448 struct ofproto_dpif *ofproto;
7449
7450 if (argc > 1) {
7451 ofproto = ofproto_dpif_lookup(argv[1]);
7452 if (!ofproto) {
7453 unixctl_command_reply_error(conn, "Unknown ofproto (use "
7454 "ofproto/list for help)");
7455 return;
7456 }
7457 ofproto_dpif_self_check__(ofproto, &reply);
7458 } else {
7459 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
7460 ofproto_dpif_self_check__(ofproto, &reply);
7461 }
7462 }
7463
7464 unixctl_command_reply(conn, ds_cstr(&reply));
7465 ds_destroy(&reply);
7466 }
7467
7468 /* Store the current ofprotos in 'ofproto_shash'. Returns a sorted list
7469 * of the 'ofproto_shash' nodes. It is the responsibility of the caller
7470 * to destroy 'ofproto_shash' and free the returned value. */
7471 static const struct shash_node **
7472 get_ofprotos(struct shash *ofproto_shash)
7473 {
7474 const struct ofproto_dpif *ofproto;
7475
7476 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
7477 char *name = xasprintf("%s@%s", ofproto->up.type, ofproto->up.name);
7478 shash_add_nocopy(ofproto_shash, name, ofproto);
7479 }
7480
7481 return shash_sort(ofproto_shash);
7482 }
7483
7484 static void
7485 ofproto_unixctl_dpif_dump_dps(struct unixctl_conn *conn, int argc OVS_UNUSED,
7486 const char *argv[] OVS_UNUSED,
7487 void *aux OVS_UNUSED)
7488 {
7489 struct ds ds = DS_EMPTY_INITIALIZER;
7490 struct shash ofproto_shash;
7491 const struct shash_node **sorted_ofprotos;
7492 int i;
7493
7494 shash_init(&ofproto_shash);
7495 sorted_ofprotos = get_ofprotos(&ofproto_shash);
7496 for (i = 0; i < shash_count(&ofproto_shash); i++) {
7497 const struct shash_node *node = sorted_ofprotos[i];
7498 ds_put_format(&ds, "%s\n", node->name);
7499 }
7500
7501 shash_destroy(&ofproto_shash);
7502 free(sorted_ofprotos);
7503
7504 unixctl_command_reply(conn, ds_cstr(&ds));
7505 ds_destroy(&ds);
7506 }
7507
7508 static void
7509 show_dp_format(const struct ofproto_dpif *ofproto, struct ds *ds)
7510 {
7511 struct dpif_dp_stats s;
7512 const struct shash_node **ports;
7513 int i;
7514
7515 dpif_get_dp_stats(ofproto->backer->dpif, &s);
7516
7517 ds_put_format(ds, "%s (%s):\n", ofproto->up.name,
7518 dpif_name(ofproto->backer->dpif));
7519 /* xxx It would be better to show bridge-specific stats instead
7520 * xxx of dp ones. */
7521 ds_put_format(ds,
7522 "\tlookups: hit:%"PRIu64" missed:%"PRIu64" lost:%"PRIu64"\n",
7523 s.n_hit, s.n_missed, s.n_lost);
7524 ds_put_format(ds, "\tflows: %zu\n",
7525 hmap_count(&ofproto->subfacets));
7526
7527 ports = shash_sort(&ofproto->up.port_by_name);
7528 for (i = 0; i < shash_count(&ofproto->up.port_by_name); i++) {
7529 const struct shash_node *node = ports[i];
7530 struct ofport *ofport = node->data;
7531 const char *name = netdev_get_name(ofport->netdev);
7532 const char *type = netdev_get_type(ofport->netdev);
7533
7534 ds_put_format(ds, "\t%s %u/%u:", name, ofport->ofp_port,
7535 ofp_port_to_odp_port(ofproto, ofport->ofp_port));
7536 if (strcmp(type, "system")) {
7537 struct netdev *netdev;
7538 int error;
7539
7540 ds_put_format(ds, " (%s", type);
7541
7542 error = netdev_open(name, type, &netdev);
7543 if (!error) {
7544 struct smap config;
7545
7546 smap_init(&config);
7547 error = netdev_get_config(netdev, &config);
7548 if (!error) {
7549 const struct smap_node **nodes;
7550 size_t i;
7551
7552 nodes = smap_sort(&config);
7553 for (i = 0; i < smap_count(&config); i++) {
7554 const struct smap_node *node = nodes[i];
7555 ds_put_format(ds, "%c %s=%s", i ? ',' : ':',
7556 node->key, node->value);
7557 }
7558 free(nodes);
7559 }
7560 smap_destroy(&config);
7561
7562 netdev_close(netdev);
7563 }
7564 ds_put_char(ds, ')');
7565 }
7566 ds_put_char(ds, '\n');
7567 }
7568 free(ports);
7569 }
7570
7571 static void
7572 ofproto_unixctl_dpif_show(struct unixctl_conn *conn, int argc,
7573 const char *argv[], void *aux OVS_UNUSED)
7574 {
7575 struct ds ds = DS_EMPTY_INITIALIZER;
7576 const struct ofproto_dpif *ofproto;
7577
7578 if (argc > 1) {
7579 int i;
7580 for (i = 1; i < argc; i++) {
7581 ofproto = ofproto_dpif_lookup(argv[i]);
7582 if (!ofproto) {
7583 ds_put_format(&ds, "Unknown bridge %s (use dpif/dump-dps "
7584 "for help)", argv[i]);
7585 unixctl_command_reply_error(conn, ds_cstr(&ds));
7586 return;
7587 }
7588 show_dp_format(ofproto, &ds);
7589 }
7590 } else {
7591 struct shash ofproto_shash;
7592 const struct shash_node **sorted_ofprotos;
7593 int i;
7594
7595 shash_init(&ofproto_shash);
7596 sorted_ofprotos = get_ofprotos(&ofproto_shash);
7597 for (i = 0; i < shash_count(&ofproto_shash); i++) {
7598 const struct shash_node *node = sorted_ofprotos[i];
7599 show_dp_format(node->data, &ds);
7600 }
7601
7602 shash_destroy(&ofproto_shash);
7603 free(sorted_ofprotos);
7604 }
7605
7606 unixctl_command_reply(conn, ds_cstr(&ds));
7607 ds_destroy(&ds);
7608 }
7609
7610 static void
7611 ofproto_unixctl_dpif_dump_flows(struct unixctl_conn *conn,
7612 int argc OVS_UNUSED, const char *argv[],
7613 void *aux OVS_UNUSED)
7614 {
7615 struct ds ds = DS_EMPTY_INITIALIZER;
7616 const struct ofproto_dpif *ofproto;
7617 struct subfacet *subfacet;
7618
7619 ofproto = ofproto_dpif_lookup(argv[1]);
7620 if (!ofproto) {
7621 unixctl_command_reply_error(conn, "no such bridge");
7622 return;
7623 }
7624
7625 HMAP_FOR_EACH (subfacet, hmap_node, &ofproto->subfacets) {
7626 struct odputil_keybuf keybuf;
7627 struct ofpbuf key;
7628
7629 subfacet_get_key(subfacet, &keybuf, &key);
7630 odp_flow_key_format(key.data, key.size, &ds);
7631
7632 ds_put_format(&ds, ", packets:%"PRIu64", bytes:%"PRIu64", used:",
7633 subfacet->dp_packet_count, subfacet->dp_byte_count);
7634 if (subfacet->used) {
7635 ds_put_format(&ds, "%.3fs",
7636 (time_msec() - subfacet->used) / 1000.0);
7637 } else {
7638 ds_put_format(&ds, "never");
7639 }
7640 if (subfacet->facet->tcp_flags) {
7641 ds_put_cstr(&ds, ", flags:");
7642 packet_format_tcp_flags(&ds, subfacet->facet->tcp_flags);
7643 }
7644
7645 ds_put_cstr(&ds, ", actions:");
7646 format_odp_actions(&ds, subfacet->actions, subfacet->actions_len);
7647 ds_put_char(&ds, '\n');
7648 }
7649
7650 unixctl_command_reply(conn, ds_cstr(&ds));
7651 ds_destroy(&ds);
7652 }
7653
7654 static void
7655 ofproto_unixctl_dpif_del_flows(struct unixctl_conn *conn,
7656 int argc OVS_UNUSED, const char *argv[],
7657 void *aux OVS_UNUSED)
7658 {
7659 struct ds ds = DS_EMPTY_INITIALIZER;
7660 struct ofproto_dpif *ofproto;
7661
7662 ofproto = ofproto_dpif_lookup(argv[1]);
7663 if (!ofproto) {
7664 unixctl_command_reply_error(conn, "no such bridge");
7665 return;
7666 }
7667
7668 flush(&ofproto->up);
7669
7670 unixctl_command_reply(conn, ds_cstr(&ds));
7671 ds_destroy(&ds);
7672 }
7673
7674 static void
7675 ofproto_dpif_unixctl_init(void)
7676 {
7677 static bool registered;
7678 if (registered) {
7679 return;
7680 }
7681 registered = true;
7682
7683 unixctl_command_register(
7684 "ofproto/trace",
7685 "bridge {priority tun_id in_port mark packet | odp_flow [-generate]}",
7686 2, 6, ofproto_unixctl_trace, NULL);
7687 unixctl_command_register("fdb/flush", "[bridge]", 0, 1,
7688 ofproto_unixctl_fdb_flush, NULL);
7689 unixctl_command_register("fdb/show", "bridge", 1, 1,
7690 ofproto_unixctl_fdb_show, NULL);
7691 unixctl_command_register("ofproto/clog", "", 0, 0,
7692 ofproto_dpif_clog, NULL);
7693 unixctl_command_register("ofproto/unclog", "", 0, 0,
7694 ofproto_dpif_unclog, NULL);
7695 unixctl_command_register("ofproto/self-check", "[bridge]", 0, 1,
7696 ofproto_dpif_self_check, NULL);
7697 unixctl_command_register("dpif/dump-dps", "", 0, 0,
7698 ofproto_unixctl_dpif_dump_dps, NULL);
7699 unixctl_command_register("dpif/show", "[bridge]", 0, INT_MAX,
7700 ofproto_unixctl_dpif_show, NULL);
7701 unixctl_command_register("dpif/dump-flows", "bridge", 1, 1,
7702 ofproto_unixctl_dpif_dump_flows, NULL);
7703 unixctl_command_register("dpif/del-flows", "bridge", 1, 1,
7704 ofproto_unixctl_dpif_del_flows, NULL);
7705 }
7706 \f
7707 /* Linux VLAN device support (e.g. "eth0.10" for VLAN 10.)
7708 *
7709 * This is deprecated. It is only for compatibility with broken device drivers
7710 * in old versions of Linux that do not properly support VLANs when VLAN
7711 * devices are not used. When broken device drivers are no longer in
7712 * widespread use, we will delete these interfaces. */
7713
7714 static int
7715 set_realdev(struct ofport *ofport_, uint16_t realdev_ofp_port, int vid)
7716 {
7717 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport_->ofproto);
7718 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
7719
7720 if (realdev_ofp_port == ofport->realdev_ofp_port
7721 && vid == ofport->vlandev_vid) {
7722 return 0;
7723 }
7724
7725 ofproto->need_revalidate = REV_RECONFIGURE;
7726
7727 if (ofport->realdev_ofp_port) {
7728 vsp_remove(ofport);
7729 }
7730 if (realdev_ofp_port && ofport->bundle) {
7731 /* vlandevs are enslaved to their realdevs, so they are not allowed to
7732 * themselves be part of a bundle. */
7733 bundle_set(ofport->up.ofproto, ofport->bundle, NULL);
7734 }
7735
7736 ofport->realdev_ofp_port = realdev_ofp_port;
7737 ofport->vlandev_vid = vid;
7738
7739 if (realdev_ofp_port) {
7740 vsp_add(ofport, realdev_ofp_port, vid);
7741 }
7742
7743 return 0;
7744 }
7745
7746 static uint32_t
7747 hash_realdev_vid(uint16_t realdev_ofp_port, int vid)
7748 {
7749 return hash_2words(realdev_ofp_port, vid);
7750 }
7751
7752 /* Returns the ODP port number of the Linux VLAN device that corresponds to
7753 * 'vlan_tci' on the network device with port number 'realdev_odp_port' in
7754 * 'ofproto'. For example, given 'realdev_odp_port' of eth0 and 'vlan_tci' 9,
7755 * it would return the port number of eth0.9.
7756 *
7757 * Unless VLAN splinters are enabled for port 'realdev_odp_port', this
7758 * function just returns its 'realdev_odp_port' argument. */
7759 static uint32_t
7760 vsp_realdev_to_vlandev(const struct ofproto_dpif *ofproto,
7761 uint32_t realdev_odp_port, ovs_be16 vlan_tci)
7762 {
7763 if (!hmap_is_empty(&ofproto->realdev_vid_map)) {
7764 uint16_t realdev_ofp_port;
7765 int vid = vlan_tci_to_vid(vlan_tci);
7766 const struct vlan_splinter *vsp;
7767
7768 realdev_ofp_port = odp_port_to_ofp_port(ofproto, realdev_odp_port);
7769 HMAP_FOR_EACH_WITH_HASH (vsp, realdev_vid_node,
7770 hash_realdev_vid(realdev_ofp_port, vid),
7771 &ofproto->realdev_vid_map) {
7772 if (vsp->realdev_ofp_port == realdev_ofp_port
7773 && vsp->vid == vid) {
7774 return ofp_port_to_odp_port(ofproto, vsp->vlandev_ofp_port);
7775 }
7776 }
7777 }
7778 return realdev_odp_port;
7779 }
7780
7781 static struct vlan_splinter *
7782 vlandev_find(const struct ofproto_dpif *ofproto, uint16_t vlandev_ofp_port)
7783 {
7784 struct vlan_splinter *vsp;
7785
7786 HMAP_FOR_EACH_WITH_HASH (vsp, vlandev_node, hash_int(vlandev_ofp_port, 0),
7787 &ofproto->vlandev_map) {
7788 if (vsp->vlandev_ofp_port == vlandev_ofp_port) {
7789 return vsp;
7790 }
7791 }
7792
7793 return NULL;
7794 }
7795
7796 /* Returns the OpenFlow port number of the "real" device underlying the Linux
7797 * VLAN device with OpenFlow port number 'vlandev_ofp_port' and stores the
7798 * VLAN VID of the Linux VLAN device in '*vid'. For example, given
7799 * 'vlandev_ofp_port' of eth0.9, it would return the OpenFlow port number of
7800 * eth0 and store 9 in '*vid'.
7801 *
7802 * Returns 0 and does not modify '*vid' if 'vlandev_ofp_port' is not a Linux
7803 * VLAN device. Unless VLAN splinters are enabled, this is what this function
7804 * always does.*/
7805 static uint16_t
7806 vsp_vlandev_to_realdev(const struct ofproto_dpif *ofproto,
7807 uint16_t vlandev_ofp_port, int *vid)
7808 {
7809 if (!hmap_is_empty(&ofproto->vlandev_map)) {
7810 const struct vlan_splinter *vsp;
7811
7812 vsp = vlandev_find(ofproto, vlandev_ofp_port);
7813 if (vsp) {
7814 if (vid) {
7815 *vid = vsp->vid;
7816 }
7817 return vsp->realdev_ofp_port;
7818 }
7819 }
7820 return 0;
7821 }
7822
7823 /* Given 'flow', a flow representing a packet received on 'ofproto', checks
7824 * whether 'flow->in_port' represents a Linux VLAN device. If so, changes
7825 * 'flow->in_port' to the "real" device backing the VLAN device, sets
7826 * 'flow->vlan_tci' to the VLAN VID, and returns true. Otherwise (which is
7827 * always the case unless VLAN splinters are enabled), returns false without
7828 * making any changes. */
7829 static bool
7830 vsp_adjust_flow(const struct ofproto_dpif *ofproto, struct flow *flow)
7831 {
7832 uint16_t realdev;
7833 int vid;
7834
7835 realdev = vsp_vlandev_to_realdev(ofproto, flow->in_port, &vid);
7836 if (!realdev) {
7837 return false;
7838 }
7839
7840 /* Cause the flow to be processed as if it came in on the real device with
7841 * the VLAN device's VLAN ID. */
7842 flow->in_port = realdev;
7843 flow->vlan_tci = htons((vid & VLAN_VID_MASK) | VLAN_CFI);
7844 return true;
7845 }
7846
7847 static void
7848 vsp_remove(struct ofport_dpif *port)
7849 {
7850 struct ofproto_dpif *ofproto = ofproto_dpif_cast(port->up.ofproto);
7851 struct vlan_splinter *vsp;
7852
7853 vsp = vlandev_find(ofproto, port->up.ofp_port);
7854 if (vsp) {
7855 hmap_remove(&ofproto->vlandev_map, &vsp->vlandev_node);
7856 hmap_remove(&ofproto->realdev_vid_map, &vsp->realdev_vid_node);
7857 free(vsp);
7858
7859 port->realdev_ofp_port = 0;
7860 } else {
7861 VLOG_ERR("missing vlan device record");
7862 }
7863 }
7864
7865 static void
7866 vsp_add(struct ofport_dpif *port, uint16_t realdev_ofp_port, int vid)
7867 {
7868 struct ofproto_dpif *ofproto = ofproto_dpif_cast(port->up.ofproto);
7869
7870 if (!vsp_vlandev_to_realdev(ofproto, port->up.ofp_port, NULL)
7871 && (vsp_realdev_to_vlandev(ofproto, realdev_ofp_port, htons(vid))
7872 == realdev_ofp_port)) {
7873 struct vlan_splinter *vsp;
7874
7875 vsp = xmalloc(sizeof *vsp);
7876 hmap_insert(&ofproto->vlandev_map, &vsp->vlandev_node,
7877 hash_int(port->up.ofp_port, 0));
7878 hmap_insert(&ofproto->realdev_vid_map, &vsp->realdev_vid_node,
7879 hash_realdev_vid(realdev_ofp_port, vid));
7880 vsp->realdev_ofp_port = realdev_ofp_port;
7881 vsp->vlandev_ofp_port = port->up.ofp_port;
7882 vsp->vid = vid;
7883
7884 port->realdev_ofp_port = realdev_ofp_port;
7885 } else {
7886 VLOG_ERR("duplicate vlan device record");
7887 }
7888 }
7889
7890 static uint32_t
7891 ofp_port_to_odp_port(const struct ofproto_dpif *ofproto, uint16_t ofp_port)
7892 {
7893 const struct ofport_dpif *ofport = get_ofp_port(ofproto, ofp_port);
7894 return ofport ? ofport->odp_port : OVSP_NONE;
7895 }
7896
7897 static struct ofport_dpif *
7898 odp_port_to_ofport(const struct dpif_backer *backer, uint32_t odp_port)
7899 {
7900 struct ofport_dpif *port;
7901
7902 HMAP_FOR_EACH_IN_BUCKET (port, odp_port_node,
7903 hash_int(odp_port, 0),
7904 &backer->odp_to_ofport_map) {
7905 if (port->odp_port == odp_port) {
7906 return port;
7907 }
7908 }
7909
7910 return NULL;
7911 }
7912
7913 static uint16_t
7914 odp_port_to_ofp_port(const struct ofproto_dpif *ofproto, uint32_t odp_port)
7915 {
7916 struct ofport_dpif *port;
7917
7918 port = odp_port_to_ofport(ofproto->backer, odp_port);
7919 if (port && &ofproto->up == port->up.ofproto) {
7920 return port->up.ofp_port;
7921 } else {
7922 return OFPP_NONE;
7923 }
7924 }
7925
7926 const struct ofproto_class ofproto_dpif_class = {
7927 init,
7928 enumerate_types,
7929 enumerate_names,
7930 del,
7931 port_open_type,
7932 type_run,
7933 type_run_fast,
7934 type_wait,
7935 alloc,
7936 construct,
7937 destruct,
7938 dealloc,
7939 run,
7940 run_fast,
7941 wait,
7942 get_memory_usage,
7943 flush,
7944 get_features,
7945 get_tables,
7946 port_alloc,
7947 port_construct,
7948 port_destruct,
7949 port_dealloc,
7950 port_modified,
7951 port_reconfigured,
7952 port_query_by_name,
7953 port_add,
7954 port_del,
7955 port_get_stats,
7956 port_dump_start,
7957 port_dump_next,
7958 port_dump_done,
7959 port_poll,
7960 port_poll_wait,
7961 port_is_lacp_current,
7962 NULL, /* rule_choose_table */
7963 rule_alloc,
7964 rule_construct,
7965 rule_destruct,
7966 rule_dealloc,
7967 rule_get_stats,
7968 rule_execute,
7969 rule_modify_actions,
7970 set_frag_handling,
7971 packet_out,
7972 set_netflow,
7973 get_netflow_ids,
7974 set_sflow,
7975 set_cfm,
7976 get_cfm_fault,
7977 get_cfm_opup,
7978 get_cfm_remote_mpids,
7979 get_cfm_health,
7980 set_stp,
7981 get_stp_status,
7982 set_stp_port,
7983 get_stp_port_status,
7984 set_queues,
7985 bundle_set,
7986 bundle_remove,
7987 mirror_set,
7988 mirror_get_stats,
7989 set_flood_vlans,
7990 is_mirror_output_bundle,
7991 forward_bpdu_changed,
7992 set_mac_table_config,
7993 set_realdev,
7994 };