]> git.proxmox.com Git - ovs.git/blob - ofproto/ofproto-dpif.c
ofproto: Always clone packets in PACKET_IN message.
[ovs.git] / ofproto / ofproto-dpif.c
1 /*
2 * Copyright (c) 2009, 2010, 2011, 2012 Nicira Networks.
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at:
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <config.h>
18
19 #include "ofproto/ofproto-provider.h"
20
21 #include <errno.h>
22
23 #include "autopath.h"
24 #include "bond.h"
25 #include "bundle.h"
26 #include "byte-order.h"
27 #include "connmgr.h"
28 #include "coverage.h"
29 #include "cfm.h"
30 #include "dpif.h"
31 #include "dynamic-string.h"
32 #include "fail-open.h"
33 #include "hmapx.h"
34 #include "lacp.h"
35 #include "learn.h"
36 #include "mac-learning.h"
37 #include "multipath.h"
38 #include "netdev.h"
39 #include "netlink.h"
40 #include "nx-match.h"
41 #include "odp-util.h"
42 #include "ofp-util.h"
43 #include "ofpbuf.h"
44 #include "ofp-print.h"
45 #include "ofproto-dpif-sflow.h"
46 #include "poll-loop.h"
47 #include "timer.h"
48 #include "unaligned.h"
49 #include "unixctl.h"
50 #include "vlan-bitmap.h"
51 #include "vlog.h"
52
53 VLOG_DEFINE_THIS_MODULE(ofproto_dpif);
54
55 COVERAGE_DEFINE(ofproto_dpif_ctlr_action);
56 COVERAGE_DEFINE(ofproto_dpif_expired);
57 COVERAGE_DEFINE(ofproto_dpif_no_packet_in);
58 COVERAGE_DEFINE(ofproto_dpif_xlate);
59 COVERAGE_DEFINE(facet_changed_rule);
60 COVERAGE_DEFINE(facet_invalidated);
61 COVERAGE_DEFINE(facet_revalidate);
62 COVERAGE_DEFINE(facet_unexpected);
63
64 /* Maximum depth of flow table recursion (due to resubmit actions) in a
65 * flow translation. */
66 #define MAX_RESUBMIT_RECURSION 32
67
68 /* Number of implemented OpenFlow tables. */
69 enum { N_TABLES = 255 };
70 BUILD_ASSERT_DECL(N_TABLES >= 1 && N_TABLES <= 255);
71
72 struct ofport_dpif;
73 struct ofproto_dpif;
74
75 struct rule_dpif {
76 struct rule up;
77
78 long long int used; /* Time last used; time created if not used. */
79
80 /* These statistics:
81 *
82 * - Do include packets and bytes from facets that have been deleted or
83 * whose own statistics have been folded into the rule.
84 *
85 * - Do include packets and bytes sent "by hand" that were accounted to
86 * the rule without any facet being involved (this is a rare corner
87 * case in rule_execute()).
88 *
89 * - Do not include packet or bytes that can be obtained from any facet's
90 * packet_count or byte_count member or that can be obtained from the
91 * datapath by, e.g., dpif_flow_get() for any subfacet.
92 */
93 uint64_t packet_count; /* Number of packets received. */
94 uint64_t byte_count; /* Number of bytes received. */
95
96 tag_type tag; /* Caches rule_calculate_tag() result. */
97
98 struct list facets; /* List of "struct facet"s. */
99 };
100
101 static struct rule_dpif *rule_dpif_cast(const struct rule *rule)
102 {
103 return rule ? CONTAINER_OF(rule, struct rule_dpif, up) : NULL;
104 }
105
106 static struct rule_dpif *rule_dpif_lookup(struct ofproto_dpif *,
107 const struct flow *, uint8_t table);
108
109 static void flow_push_stats(const struct rule_dpif *, const struct flow *,
110 uint64_t packets, uint64_t bytes,
111 long long int used);
112
113 static uint32_t rule_calculate_tag(const struct flow *,
114 const struct flow_wildcards *,
115 uint32_t basis);
116 static void rule_invalidate(const struct rule_dpif *);
117
118 #define MAX_MIRRORS 32
119 typedef uint32_t mirror_mask_t;
120 #define MIRROR_MASK_C(X) UINT32_C(X)
121 BUILD_ASSERT_DECL(sizeof(mirror_mask_t) * CHAR_BIT >= MAX_MIRRORS);
122 struct ofmirror {
123 struct ofproto_dpif *ofproto; /* Owning ofproto. */
124 size_t idx; /* In ofproto's "mirrors" array. */
125 void *aux; /* Key supplied by ofproto's client. */
126 char *name; /* Identifier for log messages. */
127
128 /* Selection criteria. */
129 struct hmapx srcs; /* Contains "struct ofbundle *"s. */
130 struct hmapx dsts; /* Contains "struct ofbundle *"s. */
131 unsigned long *vlans; /* Bitmap of chosen VLANs, NULL selects all. */
132
133 /* Output (exactly one of out == NULL and out_vlan == -1 is true). */
134 struct ofbundle *out; /* Output port or NULL. */
135 int out_vlan; /* Output VLAN or -1. */
136 mirror_mask_t dup_mirrors; /* Bitmap of mirrors with the same output. */
137
138 /* Counters. */
139 int64_t packet_count; /* Number of packets sent. */
140 int64_t byte_count; /* Number of bytes sent. */
141 };
142
143 static void mirror_destroy(struct ofmirror *);
144 static void update_mirror_stats(struct ofproto_dpif *ofproto,
145 mirror_mask_t mirrors,
146 uint64_t packets, uint64_t bytes);
147
148 struct ofbundle {
149 struct ofproto_dpif *ofproto; /* Owning ofproto. */
150 struct hmap_node hmap_node; /* In struct ofproto's "bundles" hmap. */
151 void *aux; /* Key supplied by ofproto's client. */
152 char *name; /* Identifier for log messages. */
153
154 /* Configuration. */
155 struct list ports; /* Contains "struct ofport"s. */
156 enum port_vlan_mode vlan_mode; /* VLAN mode */
157 int vlan; /* -1=trunk port, else a 12-bit VLAN ID. */
158 unsigned long *trunks; /* Bitmap of trunked VLANs, if 'vlan' == -1.
159 * NULL if all VLANs are trunked. */
160 struct lacp *lacp; /* LACP if LACP is enabled, otherwise NULL. */
161 struct bond *bond; /* Nonnull iff more than one port. */
162 bool use_priority_tags; /* Use 802.1p tag for frames in VLAN 0? */
163
164 /* Status. */
165 bool floodable; /* True if no port has OFPPC_NO_FLOOD set. */
166
167 /* Port mirroring info. */
168 mirror_mask_t src_mirrors; /* Mirrors triggered when packet received. */
169 mirror_mask_t dst_mirrors; /* Mirrors triggered when packet sent. */
170 mirror_mask_t mirror_out; /* Mirrors that output to this bundle. */
171 };
172
173 static void bundle_remove(struct ofport *);
174 static void bundle_update(struct ofbundle *);
175 static void bundle_destroy(struct ofbundle *);
176 static void bundle_del_port(struct ofport_dpif *);
177 static void bundle_run(struct ofbundle *);
178 static void bundle_wait(struct ofbundle *);
179 static struct ofbundle *lookup_input_bundle(struct ofproto_dpif *,
180 uint16_t in_port, bool warn);
181
182 /* A controller may use OFPP_NONE as the ingress port to indicate that
183 * it did not arrive on a "real" port. 'ofpp_none_bundle' exists for
184 * when an input bundle is needed for validation (e.g., mirroring or
185 * OFPP_NORMAL processing). It is not connected to an 'ofproto' or have
186 * any 'port' structs, so care must be taken when dealing with it. */
187 static struct ofbundle ofpp_none_bundle = {
188 .name = "OFPP_NONE",
189 .vlan_mode = PORT_VLAN_TRUNK
190 };
191
192 static void stp_run(struct ofproto_dpif *ofproto);
193 static void stp_wait(struct ofproto_dpif *ofproto);
194
195 static bool ofbundle_includes_vlan(const struct ofbundle *, uint16_t vlan);
196
197 struct action_xlate_ctx {
198 /* action_xlate_ctx_init() initializes these members. */
199
200 /* The ofproto. */
201 struct ofproto_dpif *ofproto;
202
203 /* Flow to which the OpenFlow actions apply. xlate_actions() will modify
204 * this flow when actions change header fields. */
205 struct flow flow;
206
207 /* The packet corresponding to 'flow', or a null pointer if we are
208 * revalidating without a packet to refer to. */
209 const struct ofpbuf *packet;
210
211 /* Should OFPP_NORMAL MAC learning and NXAST_LEARN actions execute? We
212 * want to execute them if we are actually processing a packet, or if we
213 * are accounting for packets that the datapath has processed, but not if
214 * we are just revalidating. */
215 bool may_learn;
216
217 /* If nonnull, called just before executing a resubmit action.
218 *
219 * This is normally null so the client has to set it manually after
220 * calling action_xlate_ctx_init(). */
221 void (*resubmit_hook)(struct action_xlate_ctx *, struct rule_dpif *);
222
223 /* xlate_actions() initializes and uses these members. The client might want
224 * to look at them after it returns. */
225
226 struct ofpbuf *odp_actions; /* Datapath actions. */
227 tag_type tags; /* Tags associated with actions. */
228 bool may_set_up_flow; /* True ordinarily; false if the actions must
229 * be reassessed for every packet. */
230 bool has_learn; /* Actions include NXAST_LEARN? */
231 bool has_normal; /* Actions output to OFPP_NORMAL? */
232 uint16_t nf_output_iface; /* Output interface index for NetFlow. */
233 mirror_mask_t mirrors; /* Bitmap of associated mirrors. */
234
235 /* xlate_actions() initializes and uses these members, but the client has no
236 * reason to look at them. */
237
238 int recurse; /* Recursion level, via xlate_table_action. */
239 struct flow base_flow; /* Flow at the last commit. */
240 uint32_t orig_skb_priority; /* Priority when packet arrived. */
241 uint8_t table_id; /* OpenFlow table ID where flow was found. */
242 uint32_t sflow_n_outputs; /* Number of output ports. */
243 uint16_t sflow_odp_port; /* Output port for composing sFlow action. */
244 uint16_t user_cookie_offset;/* Used for user_action_cookie fixup. */
245 bool exit; /* No further actions should be processed. */
246 };
247
248 static void action_xlate_ctx_init(struct action_xlate_ctx *,
249 struct ofproto_dpif *, const struct flow *,
250 ovs_be16 initial_tci, const struct ofpbuf *);
251 static struct ofpbuf *xlate_actions(struct action_xlate_ctx *,
252 const union ofp_action *in, size_t n_in);
253
254 /* An exact-match instantiation of an OpenFlow flow.
255 *
256 * A facet associates a "struct flow", which represents the Open vSwitch
257 * userspace idea of an exact-match flow, with one or more subfacets. Each
258 * subfacet tracks the datapath's idea of the exact-match flow equivalent to
259 * the facet. When the kernel module (or other dpif implementation) and Open
260 * vSwitch userspace agree on the definition of a flow key, there is exactly
261 * one subfacet per facet. If the dpif implementation supports more-specific
262 * flow matching than userspace, however, a facet can have more than one
263 * subfacet, each of which corresponds to some distinction in flow that
264 * userspace simply doesn't understand.
265 *
266 * Flow expiration works in terms of subfacets, so a facet must have at least
267 * one subfacet or it will never expire, leaking memory. */
268 struct facet {
269 /* Owners. */
270 struct hmap_node hmap_node; /* In owning ofproto's 'facets' hmap. */
271 struct list list_node; /* In owning rule's 'facets' list. */
272 struct rule_dpif *rule; /* Owning rule. */
273
274 /* Owned data. */
275 struct list subfacets;
276 long long int used; /* Time last used; time created if not used. */
277
278 /* Key. */
279 struct flow flow;
280
281 /* These statistics:
282 *
283 * - Do include packets and bytes sent "by hand", e.g. with
284 * dpif_execute().
285 *
286 * - Do include packets and bytes that were obtained from the datapath
287 * when a subfacet's statistics were reset (e.g. dpif_flow_put() with
288 * DPIF_FP_ZERO_STATS).
289 *
290 * - Do not include packets or bytes that can be obtained from the
291 * datapath for any existing subfacet.
292 */
293 uint64_t packet_count; /* Number of packets received. */
294 uint64_t byte_count; /* Number of bytes received. */
295
296 /* Resubmit statistics. */
297 uint64_t prev_packet_count; /* Number of packets from last stats push. */
298 uint64_t prev_byte_count; /* Number of bytes from last stats push. */
299 long long int prev_used; /* Used time from last stats push. */
300
301 /* Accounting. */
302 uint64_t accounted_bytes; /* Bytes processed by facet_account(). */
303 struct netflow_flow nf_flow; /* Per-flow NetFlow tracking data. */
304
305 /* Properties of datapath actions.
306 *
307 * Every subfacet has its own actions because actions can differ slightly
308 * between splintered and non-splintered subfacets due to the VLAN tag
309 * being initially different (present vs. absent). All of them have these
310 * properties in common so we just store one copy of them here. */
311 bool may_install; /* Reassess actions for every packet? */
312 bool has_learn; /* Actions include NXAST_LEARN? */
313 bool has_normal; /* Actions output to OFPP_NORMAL? */
314 tag_type tags; /* Tags that would require revalidation. */
315 mirror_mask_t mirrors; /* Bitmap of dependent mirrors. */
316 };
317
318 static struct facet *facet_create(struct rule_dpif *, const struct flow *);
319 static void facet_remove(struct ofproto_dpif *, struct facet *);
320 static void facet_free(struct facet *);
321
322 static struct facet *facet_find(struct ofproto_dpif *, const struct flow *);
323 static struct facet *facet_lookup_valid(struct ofproto_dpif *,
324 const struct flow *);
325 static bool facet_revalidate(struct ofproto_dpif *, struct facet *);
326
327 static bool execute_controller_action(struct ofproto_dpif *,
328 const struct flow *,
329 const struct nlattr *odp_actions,
330 size_t actions_len,
331 struct ofpbuf *packet);
332
333 static void facet_flush_stats(struct ofproto_dpif *, struct facet *);
334
335 static void facet_update_time(struct ofproto_dpif *, struct facet *,
336 long long int used);
337 static void facet_reset_counters(struct facet *);
338 static void facet_push_stats(struct facet *);
339 static void facet_account(struct ofproto_dpif *, struct facet *);
340
341 static bool facet_is_controller_flow(struct facet *);
342
343 /* A dpif flow and actions associated with a facet.
344 *
345 * See also the large comment on struct facet. */
346 struct subfacet {
347 /* Owners. */
348 struct hmap_node hmap_node; /* In struct ofproto_dpif 'subfacets' list. */
349 struct list list_node; /* In struct facet's 'facets' list. */
350 struct facet *facet; /* Owning facet. */
351
352 /* Key.
353 *
354 * To save memory in the common case, 'key' is NULL if 'key_fitness' is
355 * ODP_FIT_PERFECT, that is, odp_flow_key_from_flow() can accurately
356 * regenerate the ODP flow key from ->facet->flow. */
357 enum odp_key_fitness key_fitness;
358 struct nlattr *key;
359 int key_len;
360
361 long long int used; /* Time last used; time created if not used. */
362
363 uint64_t dp_packet_count; /* Last known packet count in the datapath. */
364 uint64_t dp_byte_count; /* Last known byte count in the datapath. */
365
366 /* Datapath actions.
367 *
368 * These should be essentially identical for every subfacet in a facet, but
369 * may differ in trivial ways due to VLAN splinters. */
370 size_t actions_len; /* Number of bytes in actions[]. */
371 struct nlattr *actions; /* Datapath actions. */
372
373 bool installed; /* Installed in datapath? */
374
375 /* This value is normally the same as ->facet->flow.vlan_tci. Only VLAN
376 * splinters can cause it to differ. This value should be removed when
377 * the VLAN splinters feature is no longer needed. */
378 ovs_be16 initial_tci; /* Initial VLAN TCI value. */
379 };
380
381 static struct subfacet *subfacet_create(struct ofproto_dpif *, struct facet *,
382 enum odp_key_fitness,
383 const struct nlattr *key,
384 size_t key_len, ovs_be16 initial_tci);
385 static struct subfacet *subfacet_find(struct ofproto_dpif *,
386 const struct nlattr *key, size_t key_len);
387 static void subfacet_destroy(struct ofproto_dpif *, struct subfacet *);
388 static void subfacet_destroy__(struct ofproto_dpif *, struct subfacet *);
389 static void subfacet_reset_dp_stats(struct subfacet *,
390 struct dpif_flow_stats *);
391 static void subfacet_update_time(struct ofproto_dpif *, struct subfacet *,
392 long long int used);
393 static void subfacet_update_stats(struct ofproto_dpif *, struct subfacet *,
394 const struct dpif_flow_stats *);
395 static void subfacet_make_actions(struct ofproto_dpif *, struct subfacet *,
396 const struct ofpbuf *packet);
397 static int subfacet_install(struct ofproto_dpif *, struct subfacet *,
398 const struct nlattr *actions, size_t actions_len,
399 struct dpif_flow_stats *);
400 static void subfacet_uninstall(struct ofproto_dpif *, struct subfacet *);
401
402 struct ofport_dpif {
403 struct ofport up;
404
405 uint32_t odp_port;
406 struct ofbundle *bundle; /* Bundle that contains this port, if any. */
407 struct list bundle_node; /* In struct ofbundle's "ports" list. */
408 struct cfm *cfm; /* Connectivity Fault Management, if any. */
409 tag_type tag; /* Tag associated with this port. */
410 uint32_t bond_stable_id; /* stable_id to use as bond slave, or 0. */
411 bool may_enable; /* May be enabled in bonds. */
412
413 /* Spanning tree. */
414 struct stp_port *stp_port; /* Spanning Tree Protocol, if any. */
415 enum stp_state stp_state; /* Always STP_DISABLED if STP not in use. */
416 long long int stp_state_entered;
417
418 struct hmap priorities; /* Map of attached 'priority_to_dscp's. */
419
420 /* Linux VLAN device support (e.g. "eth0.10" for VLAN 10.)
421 *
422 * This is deprecated. It is only for compatibility with broken device
423 * drivers in old versions of Linux that do not properly support VLANs when
424 * VLAN devices are not used. When broken device drivers are no longer in
425 * widespread use, we will delete these interfaces. */
426 uint16_t realdev_ofp_port;
427 int vlandev_vid;
428 };
429
430 /* Node in 'ofport_dpif''s 'priorities' map. Used to maintain a map from
431 * 'priority' (the datapath's term for QoS queue) to the dscp bits which all
432 * traffic egressing the 'ofport' with that priority should be marked with. */
433 struct priority_to_dscp {
434 struct hmap_node hmap_node; /* Node in 'ofport_dpif''s 'priorities' map. */
435 uint32_t priority; /* Priority of this queue (see struct flow). */
436
437 uint8_t dscp; /* DSCP bits to mark outgoing traffic with. */
438 };
439
440 /* Linux VLAN device support (e.g. "eth0.10" for VLAN 10.)
441 *
442 * This is deprecated. It is only for compatibility with broken device drivers
443 * in old versions of Linux that do not properly support VLANs when VLAN
444 * devices are not used. When broken device drivers are no longer in
445 * widespread use, we will delete these interfaces. */
446 struct vlan_splinter {
447 struct hmap_node realdev_vid_node;
448 struct hmap_node vlandev_node;
449 uint16_t realdev_ofp_port;
450 uint16_t vlandev_ofp_port;
451 int vid;
452 };
453
454 static uint32_t vsp_realdev_to_vlandev(const struct ofproto_dpif *,
455 uint32_t realdev, ovs_be16 vlan_tci);
456 static uint16_t vsp_vlandev_to_realdev(const struct ofproto_dpif *,
457 uint16_t vlandev, int *vid);
458 static void vsp_remove(struct ofport_dpif *);
459 static void vsp_add(struct ofport_dpif *, uint16_t realdev_ofp_port, int vid);
460
461 static struct ofport_dpif *
462 ofport_dpif_cast(const struct ofport *ofport)
463 {
464 assert(ofport->ofproto->ofproto_class == &ofproto_dpif_class);
465 return ofport ? CONTAINER_OF(ofport, struct ofport_dpif, up) : NULL;
466 }
467
468 static void port_run(struct ofport_dpif *);
469 static void port_wait(struct ofport_dpif *);
470 static int set_cfm(struct ofport *, const struct cfm_settings *);
471 static void ofport_clear_priorities(struct ofport_dpif *);
472
473 struct dpif_completion {
474 struct list list_node;
475 struct ofoperation *op;
476 };
477
478 /* Extra information about a classifier table.
479 * Currently used just for optimized flow revalidation. */
480 struct table_dpif {
481 /* If either of these is nonnull, then this table has a form that allows
482 * flows to be tagged to avoid revalidating most flows for the most common
483 * kinds of flow table changes. */
484 struct cls_table *catchall_table; /* Table that wildcards all fields. */
485 struct cls_table *other_table; /* Table with any other wildcard set. */
486 uint32_t basis; /* Keeps each table's tags separate. */
487 };
488
489 struct ofproto_dpif {
490 struct hmap_node all_ofproto_dpifs_node; /* In 'all_ofproto_dpifs'. */
491 struct ofproto up;
492 struct dpif *dpif;
493 int max_ports;
494
495 /* Statistics. */
496 uint64_t n_matches;
497
498 /* Bridging. */
499 struct netflow *netflow;
500 struct dpif_sflow *sflow;
501 struct hmap bundles; /* Contains "struct ofbundle"s. */
502 struct mac_learning *ml;
503 struct ofmirror *mirrors[MAX_MIRRORS];
504 bool has_bonded_bundles;
505
506 /* Expiration. */
507 struct timer next_expiration;
508
509 /* Facets. */
510 struct hmap facets;
511 struct hmap subfacets;
512
513 /* Revalidation. */
514 struct table_dpif tables[N_TABLES];
515 bool need_revalidate;
516 struct tag_set revalidate_set;
517
518 /* Support for debugging async flow mods. */
519 struct list completions;
520
521 bool has_bundle_action; /* True when the first bundle action appears. */
522 struct netdev_stats stats; /* To account packets generated and consumed in
523 * userspace. */
524
525 /* Spanning tree. */
526 struct stp *stp;
527 long long int stp_last_tick;
528
529 /* VLAN splinters. */
530 struct hmap realdev_vid_map; /* (realdev,vid) -> vlandev. */
531 struct hmap vlandev_map; /* vlandev -> (realdev,vid). */
532 };
533
534 /* Defer flow mod completion until "ovs-appctl ofproto/unclog"? (Useful only
535 * for debugging the asynchronous flow_mod implementation.) */
536 static bool clogged;
537
538 /* All existing ofproto_dpif instances, indexed by ->up.name. */
539 static struct hmap all_ofproto_dpifs = HMAP_INITIALIZER(&all_ofproto_dpifs);
540
541 static void ofproto_dpif_unixctl_init(void);
542
543 static struct ofproto_dpif *
544 ofproto_dpif_cast(const struct ofproto *ofproto)
545 {
546 assert(ofproto->ofproto_class == &ofproto_dpif_class);
547 return CONTAINER_OF(ofproto, struct ofproto_dpif, up);
548 }
549
550 static struct ofport_dpif *get_ofp_port(struct ofproto_dpif *,
551 uint16_t ofp_port);
552 static struct ofport_dpif *get_odp_port(struct ofproto_dpif *,
553 uint32_t odp_port);
554
555 /* Packet processing. */
556 static void update_learning_table(struct ofproto_dpif *,
557 const struct flow *, int vlan,
558 struct ofbundle *);
559 /* Upcalls. */
560 #define FLOW_MISS_MAX_BATCH 50
561 static int handle_upcalls(struct ofproto_dpif *, unsigned int max_batch);
562
563 /* Flow expiration. */
564 static int expire(struct ofproto_dpif *);
565
566 /* NetFlow. */
567 static void send_netflow_active_timeouts(struct ofproto_dpif *);
568
569 /* Utilities. */
570 static int send_packet(const struct ofport_dpif *, struct ofpbuf *packet);
571 static size_t
572 compose_sflow_action(const struct ofproto_dpif *, struct ofpbuf *odp_actions,
573 const struct flow *, uint32_t odp_port);
574 static void add_mirror_actions(struct action_xlate_ctx *ctx,
575 const struct flow *flow);
576 /* Global variables. */
577 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
578 \f
579 /* Factory functions. */
580
581 static void
582 enumerate_types(struct sset *types)
583 {
584 dp_enumerate_types(types);
585 }
586
587 static int
588 enumerate_names(const char *type, struct sset *names)
589 {
590 return dp_enumerate_names(type, names);
591 }
592
593 static int
594 del(const char *type, const char *name)
595 {
596 struct dpif *dpif;
597 int error;
598
599 error = dpif_open(name, type, &dpif);
600 if (!error) {
601 error = dpif_delete(dpif);
602 dpif_close(dpif);
603 }
604 return error;
605 }
606 \f
607 /* Basic life-cycle. */
608
609 static struct ofproto *
610 alloc(void)
611 {
612 struct ofproto_dpif *ofproto = xmalloc(sizeof *ofproto);
613 return &ofproto->up;
614 }
615
616 static void
617 dealloc(struct ofproto *ofproto_)
618 {
619 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
620 free(ofproto);
621 }
622
623 static int
624 construct(struct ofproto *ofproto_, int *n_tablesp)
625 {
626 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
627 const char *name = ofproto->up.name;
628 int error;
629 int i;
630
631 error = dpif_create_and_open(name, ofproto->up.type, &ofproto->dpif);
632 if (error) {
633 VLOG_ERR("failed to open datapath %s: %s", name, strerror(error));
634 return error;
635 }
636
637 ofproto->max_ports = dpif_get_max_ports(ofproto->dpif);
638 ofproto->n_matches = 0;
639
640 dpif_flow_flush(ofproto->dpif);
641 dpif_recv_purge(ofproto->dpif);
642
643 error = dpif_recv_set_mask(ofproto->dpif,
644 ((1u << DPIF_UC_MISS) |
645 (1u << DPIF_UC_ACTION)));
646 if (error) {
647 VLOG_ERR("failed to listen on datapath %s: %s", name, strerror(error));
648 dpif_close(ofproto->dpif);
649 return error;
650 }
651
652 ofproto->netflow = NULL;
653 ofproto->sflow = NULL;
654 ofproto->stp = NULL;
655 hmap_init(&ofproto->bundles);
656 ofproto->ml = mac_learning_create();
657 for (i = 0; i < MAX_MIRRORS; i++) {
658 ofproto->mirrors[i] = NULL;
659 }
660 ofproto->has_bonded_bundles = false;
661
662 timer_set_duration(&ofproto->next_expiration, 1000);
663
664 hmap_init(&ofproto->facets);
665 hmap_init(&ofproto->subfacets);
666
667 for (i = 0; i < N_TABLES; i++) {
668 struct table_dpif *table = &ofproto->tables[i];
669
670 table->catchall_table = NULL;
671 table->other_table = NULL;
672 table->basis = random_uint32();
673 }
674 ofproto->need_revalidate = false;
675 tag_set_init(&ofproto->revalidate_set);
676
677 list_init(&ofproto->completions);
678
679 ofproto_dpif_unixctl_init();
680
681 ofproto->has_bundle_action = false;
682
683 hmap_init(&ofproto->vlandev_map);
684 hmap_init(&ofproto->realdev_vid_map);
685
686 hmap_insert(&all_ofproto_dpifs, &ofproto->all_ofproto_dpifs_node,
687 hash_string(ofproto->up.name, 0));
688
689 *n_tablesp = N_TABLES;
690 memset(&ofproto->stats, 0, sizeof ofproto->stats);
691 return 0;
692 }
693
694 static void
695 complete_operations(struct ofproto_dpif *ofproto)
696 {
697 struct dpif_completion *c, *next;
698
699 LIST_FOR_EACH_SAFE (c, next, list_node, &ofproto->completions) {
700 ofoperation_complete(c->op, 0);
701 list_remove(&c->list_node);
702 free(c);
703 }
704 }
705
706 static void
707 destruct(struct ofproto *ofproto_)
708 {
709 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
710 struct rule_dpif *rule, *next_rule;
711 struct classifier *table;
712 int i;
713
714 hmap_remove(&all_ofproto_dpifs, &ofproto->all_ofproto_dpifs_node);
715 complete_operations(ofproto);
716
717 OFPROTO_FOR_EACH_TABLE (table, &ofproto->up) {
718 struct cls_cursor cursor;
719
720 cls_cursor_init(&cursor, table, NULL);
721 CLS_CURSOR_FOR_EACH_SAFE (rule, next_rule, up.cr, &cursor) {
722 ofproto_rule_destroy(&rule->up);
723 }
724 }
725
726 for (i = 0; i < MAX_MIRRORS; i++) {
727 mirror_destroy(ofproto->mirrors[i]);
728 }
729
730 netflow_destroy(ofproto->netflow);
731 dpif_sflow_destroy(ofproto->sflow);
732 hmap_destroy(&ofproto->bundles);
733 mac_learning_destroy(ofproto->ml);
734
735 hmap_destroy(&ofproto->facets);
736 hmap_destroy(&ofproto->subfacets);
737
738 hmap_destroy(&ofproto->vlandev_map);
739 hmap_destroy(&ofproto->realdev_vid_map);
740
741 dpif_close(ofproto->dpif);
742 }
743
744 static int
745 run_fast(struct ofproto *ofproto_)
746 {
747 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
748 unsigned int work;
749
750 /* Handle one or more batches of upcalls, until there's nothing left to do
751 * or until we do a fixed total amount of work.
752 *
753 * We do work in batches because it can be much cheaper to set up a number
754 * of flows and fire off their patches all at once. We do multiple batches
755 * because in some cases handling a packet can cause another packet to be
756 * queued almost immediately as part of the return flow. Both
757 * optimizations can make major improvements on some benchmarks and
758 * presumably for real traffic as well. */
759 work = 0;
760 while (work < FLOW_MISS_MAX_BATCH) {
761 int retval = handle_upcalls(ofproto, FLOW_MISS_MAX_BATCH - work);
762 if (retval <= 0) {
763 return -retval;
764 }
765 work += retval;
766 }
767 return 0;
768 }
769
770 static int
771 run(struct ofproto *ofproto_)
772 {
773 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
774 struct ofport_dpif *ofport;
775 struct ofbundle *bundle;
776 int error;
777
778 if (!clogged) {
779 complete_operations(ofproto);
780 }
781 dpif_run(ofproto->dpif);
782
783 error = run_fast(ofproto_);
784 if (error) {
785 return error;
786 }
787
788 if (timer_expired(&ofproto->next_expiration)) {
789 int delay = expire(ofproto);
790 timer_set_duration(&ofproto->next_expiration, delay);
791 }
792
793 if (ofproto->netflow) {
794 if (netflow_run(ofproto->netflow)) {
795 send_netflow_active_timeouts(ofproto);
796 }
797 }
798 if (ofproto->sflow) {
799 dpif_sflow_run(ofproto->sflow);
800 }
801
802 HMAP_FOR_EACH (ofport, up.hmap_node, &ofproto->up.ports) {
803 port_run(ofport);
804 }
805 HMAP_FOR_EACH (bundle, hmap_node, &ofproto->bundles) {
806 bundle_run(bundle);
807 }
808
809 stp_run(ofproto);
810 mac_learning_run(ofproto->ml, &ofproto->revalidate_set);
811
812 /* Now revalidate if there's anything to do. */
813 if (ofproto->need_revalidate
814 || !tag_set_is_empty(&ofproto->revalidate_set)) {
815 struct tag_set revalidate_set = ofproto->revalidate_set;
816 bool revalidate_all = ofproto->need_revalidate;
817 struct facet *facet, *next;
818
819 /* Clear the revalidation flags. */
820 tag_set_init(&ofproto->revalidate_set);
821 ofproto->need_revalidate = false;
822
823 HMAP_FOR_EACH_SAFE (facet, next, hmap_node, &ofproto->facets) {
824 if (revalidate_all
825 || tag_set_intersects(&revalidate_set, facet->tags)) {
826 facet_revalidate(ofproto, facet);
827 }
828 }
829 }
830
831 return 0;
832 }
833
834 static void
835 wait(struct ofproto *ofproto_)
836 {
837 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
838 struct ofport_dpif *ofport;
839 struct ofbundle *bundle;
840
841 if (!clogged && !list_is_empty(&ofproto->completions)) {
842 poll_immediate_wake();
843 }
844
845 dpif_wait(ofproto->dpif);
846 dpif_recv_wait(ofproto->dpif);
847 if (ofproto->sflow) {
848 dpif_sflow_wait(ofproto->sflow);
849 }
850 if (!tag_set_is_empty(&ofproto->revalidate_set)) {
851 poll_immediate_wake();
852 }
853 HMAP_FOR_EACH (ofport, up.hmap_node, &ofproto->up.ports) {
854 port_wait(ofport);
855 }
856 HMAP_FOR_EACH (bundle, hmap_node, &ofproto->bundles) {
857 bundle_wait(bundle);
858 }
859 if (ofproto->netflow) {
860 netflow_wait(ofproto->netflow);
861 }
862 mac_learning_wait(ofproto->ml);
863 stp_wait(ofproto);
864 if (ofproto->need_revalidate) {
865 /* Shouldn't happen, but if it does just go around again. */
866 VLOG_DBG_RL(&rl, "need revalidate in ofproto_wait_cb()");
867 poll_immediate_wake();
868 } else {
869 timer_wait(&ofproto->next_expiration);
870 }
871 }
872
873 static void
874 flush(struct ofproto *ofproto_)
875 {
876 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
877 struct facet *facet, *next_facet;
878
879 HMAP_FOR_EACH_SAFE (facet, next_facet, hmap_node, &ofproto->facets) {
880 /* Mark the facet as not installed so that facet_remove() doesn't
881 * bother trying to uninstall it. There is no point in uninstalling it
882 * individually since we are about to blow away all the facets with
883 * dpif_flow_flush(). */
884 struct subfacet *subfacet;
885
886 LIST_FOR_EACH (subfacet, list_node, &facet->subfacets) {
887 subfacet->installed = false;
888 subfacet->dp_packet_count = 0;
889 subfacet->dp_byte_count = 0;
890 }
891 facet_remove(ofproto, facet);
892 }
893 dpif_flow_flush(ofproto->dpif);
894 }
895
896 static void
897 get_features(struct ofproto *ofproto_ OVS_UNUSED,
898 bool *arp_match_ip, uint32_t *actions)
899 {
900 *arp_match_ip = true;
901 *actions = ((1u << OFPAT_OUTPUT) |
902 (1u << OFPAT_SET_VLAN_VID) |
903 (1u << OFPAT_SET_VLAN_PCP) |
904 (1u << OFPAT_STRIP_VLAN) |
905 (1u << OFPAT_SET_DL_SRC) |
906 (1u << OFPAT_SET_DL_DST) |
907 (1u << OFPAT_SET_NW_SRC) |
908 (1u << OFPAT_SET_NW_DST) |
909 (1u << OFPAT_SET_NW_TOS) |
910 (1u << OFPAT_SET_TP_SRC) |
911 (1u << OFPAT_SET_TP_DST) |
912 (1u << OFPAT_ENQUEUE));
913 }
914
915 static void
916 get_tables(struct ofproto *ofproto_, struct ofp_table_stats *ots)
917 {
918 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
919 struct dpif_dp_stats s;
920
921 strcpy(ots->name, "classifier");
922
923 dpif_get_dp_stats(ofproto->dpif, &s);
924 put_32aligned_be64(&ots->lookup_count, htonll(s.n_hit + s.n_missed));
925 put_32aligned_be64(&ots->matched_count,
926 htonll(s.n_hit + ofproto->n_matches));
927 }
928
929 static struct ofport *
930 port_alloc(void)
931 {
932 struct ofport_dpif *port = xmalloc(sizeof *port);
933 return &port->up;
934 }
935
936 static void
937 port_dealloc(struct ofport *port_)
938 {
939 struct ofport_dpif *port = ofport_dpif_cast(port_);
940 free(port);
941 }
942
943 static int
944 port_construct(struct ofport *port_)
945 {
946 struct ofport_dpif *port = ofport_dpif_cast(port_);
947 struct ofproto_dpif *ofproto = ofproto_dpif_cast(port->up.ofproto);
948
949 ofproto->need_revalidate = true;
950 port->odp_port = ofp_port_to_odp_port(port->up.ofp_port);
951 port->bundle = NULL;
952 port->cfm = NULL;
953 port->tag = tag_create_random();
954 port->may_enable = true;
955 port->stp_port = NULL;
956 port->stp_state = STP_DISABLED;
957 hmap_init(&port->priorities);
958 port->realdev_ofp_port = 0;
959 port->vlandev_vid = 0;
960
961 if (ofproto->sflow) {
962 dpif_sflow_add_port(ofproto->sflow, port_);
963 }
964
965 return 0;
966 }
967
968 static void
969 port_destruct(struct ofport *port_)
970 {
971 struct ofport_dpif *port = ofport_dpif_cast(port_);
972 struct ofproto_dpif *ofproto = ofproto_dpif_cast(port->up.ofproto);
973
974 ofproto->need_revalidate = true;
975 bundle_remove(port_);
976 set_cfm(port_, NULL);
977 if (ofproto->sflow) {
978 dpif_sflow_del_port(ofproto->sflow, port->odp_port);
979 }
980
981 ofport_clear_priorities(port);
982 hmap_destroy(&port->priorities);
983 }
984
985 static void
986 port_modified(struct ofport *port_)
987 {
988 struct ofport_dpif *port = ofport_dpif_cast(port_);
989
990 if (port->bundle && port->bundle->bond) {
991 bond_slave_set_netdev(port->bundle->bond, port, port->up.netdev);
992 }
993 }
994
995 static void
996 port_reconfigured(struct ofport *port_, ovs_be32 old_config)
997 {
998 struct ofport_dpif *port = ofport_dpif_cast(port_);
999 struct ofproto_dpif *ofproto = ofproto_dpif_cast(port->up.ofproto);
1000 ovs_be32 changed = old_config ^ port->up.opp.config;
1001
1002 if (changed & htonl(OFPPC_NO_RECV | OFPPC_NO_RECV_STP |
1003 OFPPC_NO_FWD | OFPPC_NO_FLOOD)) {
1004 ofproto->need_revalidate = true;
1005
1006 if (changed & htonl(OFPPC_NO_FLOOD) && port->bundle) {
1007 bundle_update(port->bundle);
1008 }
1009 }
1010 }
1011
1012 static int
1013 set_sflow(struct ofproto *ofproto_,
1014 const struct ofproto_sflow_options *sflow_options)
1015 {
1016 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1017 struct dpif_sflow *ds = ofproto->sflow;
1018
1019 if (sflow_options) {
1020 if (!ds) {
1021 struct ofport_dpif *ofport;
1022
1023 ds = ofproto->sflow = dpif_sflow_create(ofproto->dpif);
1024 HMAP_FOR_EACH (ofport, up.hmap_node, &ofproto->up.ports) {
1025 dpif_sflow_add_port(ds, &ofport->up);
1026 }
1027 ofproto->need_revalidate = true;
1028 }
1029 dpif_sflow_set_options(ds, sflow_options);
1030 } else {
1031 if (ds) {
1032 dpif_sflow_destroy(ds);
1033 ofproto->need_revalidate = true;
1034 ofproto->sflow = NULL;
1035 }
1036 }
1037 return 0;
1038 }
1039
1040 static int
1041 set_cfm(struct ofport *ofport_, const struct cfm_settings *s)
1042 {
1043 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
1044 int error;
1045
1046 if (!s) {
1047 error = 0;
1048 } else {
1049 if (!ofport->cfm) {
1050 struct ofproto_dpif *ofproto;
1051
1052 ofproto = ofproto_dpif_cast(ofport->up.ofproto);
1053 ofproto->need_revalidate = true;
1054 ofport->cfm = cfm_create(netdev_get_name(ofport->up.netdev));
1055 }
1056
1057 if (cfm_configure(ofport->cfm, s)) {
1058 return 0;
1059 }
1060
1061 error = EINVAL;
1062 }
1063 cfm_destroy(ofport->cfm);
1064 ofport->cfm = NULL;
1065 return error;
1066 }
1067
1068 static int
1069 get_cfm_fault(const struct ofport *ofport_)
1070 {
1071 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
1072
1073 return ofport->cfm ? cfm_get_fault(ofport->cfm) : -1;
1074 }
1075
1076 static int
1077 get_cfm_remote_mpids(const struct ofport *ofport_, const uint64_t **rmps,
1078 size_t *n_rmps)
1079 {
1080 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
1081
1082 if (ofport->cfm) {
1083 cfm_get_remote_mpids(ofport->cfm, rmps, n_rmps);
1084 return 0;
1085 } else {
1086 return -1;
1087 }
1088 }
1089 \f
1090 /* Spanning Tree. */
1091
1092 static void
1093 send_bpdu_cb(struct ofpbuf *pkt, int port_num, void *ofproto_)
1094 {
1095 struct ofproto_dpif *ofproto = ofproto_;
1096 struct stp_port *sp = stp_get_port(ofproto->stp, port_num);
1097 struct ofport_dpif *ofport;
1098
1099 ofport = stp_port_get_aux(sp);
1100 if (!ofport) {
1101 VLOG_WARN_RL(&rl, "%s: cannot send BPDU on unknown port %d",
1102 ofproto->up.name, port_num);
1103 } else {
1104 struct eth_header *eth = pkt->l2;
1105
1106 netdev_get_etheraddr(ofport->up.netdev, eth->eth_src);
1107 if (eth_addr_is_zero(eth->eth_src)) {
1108 VLOG_WARN_RL(&rl, "%s: cannot send BPDU on port %d "
1109 "with unknown MAC", ofproto->up.name, port_num);
1110 } else {
1111 send_packet(ofport, pkt);
1112 }
1113 }
1114 ofpbuf_delete(pkt);
1115 }
1116
1117 /* Configures STP on 'ofproto_' using the settings defined in 's'. */
1118 static int
1119 set_stp(struct ofproto *ofproto_, const struct ofproto_stp_settings *s)
1120 {
1121 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1122
1123 /* Only revalidate flows if the configuration changed. */
1124 if (!s != !ofproto->stp) {
1125 ofproto->need_revalidate = true;
1126 }
1127
1128 if (s) {
1129 if (!ofproto->stp) {
1130 ofproto->stp = stp_create(ofproto_->name, s->system_id,
1131 send_bpdu_cb, ofproto);
1132 ofproto->stp_last_tick = time_msec();
1133 }
1134
1135 stp_set_bridge_id(ofproto->stp, s->system_id);
1136 stp_set_bridge_priority(ofproto->stp, s->priority);
1137 stp_set_hello_time(ofproto->stp, s->hello_time);
1138 stp_set_max_age(ofproto->stp, s->max_age);
1139 stp_set_forward_delay(ofproto->stp, s->fwd_delay);
1140 } else {
1141 stp_destroy(ofproto->stp);
1142 ofproto->stp = NULL;
1143 }
1144
1145 return 0;
1146 }
1147
1148 static int
1149 get_stp_status(struct ofproto *ofproto_, struct ofproto_stp_status *s)
1150 {
1151 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1152
1153 if (ofproto->stp) {
1154 s->enabled = true;
1155 s->bridge_id = stp_get_bridge_id(ofproto->stp);
1156 s->designated_root = stp_get_designated_root(ofproto->stp);
1157 s->root_path_cost = stp_get_root_path_cost(ofproto->stp);
1158 } else {
1159 s->enabled = false;
1160 }
1161
1162 return 0;
1163 }
1164
1165 static void
1166 update_stp_port_state(struct ofport_dpif *ofport)
1167 {
1168 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
1169 enum stp_state state;
1170
1171 /* Figure out new state. */
1172 state = ofport->stp_port ? stp_port_get_state(ofport->stp_port)
1173 : STP_DISABLED;
1174
1175 /* Update state. */
1176 if (ofport->stp_state != state) {
1177 ovs_be32 of_state;
1178 bool fwd_change;
1179
1180 VLOG_DBG_RL(&rl, "port %s: STP state changed from %s to %s",
1181 netdev_get_name(ofport->up.netdev),
1182 stp_state_name(ofport->stp_state),
1183 stp_state_name(state));
1184 if (stp_learn_in_state(ofport->stp_state)
1185 != stp_learn_in_state(state)) {
1186 /* xxx Learning action flows should also be flushed. */
1187 mac_learning_flush(ofproto->ml);
1188 }
1189 fwd_change = stp_forward_in_state(ofport->stp_state)
1190 != stp_forward_in_state(state);
1191
1192 ofproto->need_revalidate = true;
1193 ofport->stp_state = state;
1194 ofport->stp_state_entered = time_msec();
1195
1196 if (fwd_change && ofport->bundle) {
1197 bundle_update(ofport->bundle);
1198 }
1199
1200 /* Update the STP state bits in the OpenFlow port description. */
1201 of_state = (ofport->up.opp.state & htonl(~OFPPS_STP_MASK))
1202 | htonl(state == STP_LISTENING ? OFPPS_STP_LISTEN
1203 : state == STP_LEARNING ? OFPPS_STP_LEARN
1204 : state == STP_FORWARDING ? OFPPS_STP_FORWARD
1205 : state == STP_BLOCKING ? OFPPS_STP_BLOCK
1206 : 0);
1207 ofproto_port_set_state(&ofport->up, of_state);
1208 }
1209 }
1210
1211 /* Configures STP on 'ofport_' using the settings defined in 's'. The
1212 * caller is responsible for assigning STP port numbers and ensuring
1213 * there are no duplicates. */
1214 static int
1215 set_stp_port(struct ofport *ofport_,
1216 const struct ofproto_port_stp_settings *s)
1217 {
1218 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
1219 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
1220 struct stp_port *sp = ofport->stp_port;
1221
1222 if (!s || !s->enable) {
1223 if (sp) {
1224 ofport->stp_port = NULL;
1225 stp_port_disable(sp);
1226 update_stp_port_state(ofport);
1227 }
1228 return 0;
1229 } else if (sp && stp_port_no(sp) != s->port_num
1230 && ofport == stp_port_get_aux(sp)) {
1231 /* The port-id changed, so disable the old one if it's not
1232 * already in use by another port. */
1233 stp_port_disable(sp);
1234 }
1235
1236 sp = ofport->stp_port = stp_get_port(ofproto->stp, s->port_num);
1237 stp_port_enable(sp);
1238
1239 stp_port_set_aux(sp, ofport);
1240 stp_port_set_priority(sp, s->priority);
1241 stp_port_set_path_cost(sp, s->path_cost);
1242
1243 update_stp_port_state(ofport);
1244
1245 return 0;
1246 }
1247
1248 static int
1249 get_stp_port_status(struct ofport *ofport_,
1250 struct ofproto_port_stp_status *s)
1251 {
1252 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
1253 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
1254 struct stp_port *sp = ofport->stp_port;
1255
1256 if (!ofproto->stp || !sp) {
1257 s->enabled = false;
1258 return 0;
1259 }
1260
1261 s->enabled = true;
1262 s->port_id = stp_port_get_id(sp);
1263 s->state = stp_port_get_state(sp);
1264 s->sec_in_state = (time_msec() - ofport->stp_state_entered) / 1000;
1265 s->role = stp_port_get_role(sp);
1266 stp_port_get_counts(sp, &s->tx_count, &s->rx_count, &s->error_count);
1267
1268 return 0;
1269 }
1270
1271 static void
1272 stp_run(struct ofproto_dpif *ofproto)
1273 {
1274 if (ofproto->stp) {
1275 long long int now = time_msec();
1276 long long int elapsed = now - ofproto->stp_last_tick;
1277 struct stp_port *sp;
1278
1279 if (elapsed > 0) {
1280 stp_tick(ofproto->stp, MIN(INT_MAX, elapsed));
1281 ofproto->stp_last_tick = now;
1282 }
1283 while (stp_get_changed_port(ofproto->stp, &sp)) {
1284 struct ofport_dpif *ofport = stp_port_get_aux(sp);
1285
1286 if (ofport) {
1287 update_stp_port_state(ofport);
1288 }
1289 }
1290 }
1291 }
1292
1293 static void
1294 stp_wait(struct ofproto_dpif *ofproto)
1295 {
1296 if (ofproto->stp) {
1297 poll_timer_wait(1000);
1298 }
1299 }
1300
1301 /* Returns true if STP should process 'flow'. */
1302 static bool
1303 stp_should_process_flow(const struct flow *flow)
1304 {
1305 return eth_addr_equals(flow->dl_dst, eth_addr_stp);
1306 }
1307
1308 static void
1309 stp_process_packet(const struct ofport_dpif *ofport,
1310 const struct ofpbuf *packet)
1311 {
1312 struct ofpbuf payload = *packet;
1313 struct eth_header *eth = payload.data;
1314 struct stp_port *sp = ofport->stp_port;
1315
1316 /* Sink packets on ports that have STP disabled when the bridge has
1317 * STP enabled. */
1318 if (!sp || stp_port_get_state(sp) == STP_DISABLED) {
1319 return;
1320 }
1321
1322 /* Trim off padding on payload. */
1323 if (payload.size > ntohs(eth->eth_type) + ETH_HEADER_LEN) {
1324 payload.size = ntohs(eth->eth_type) + ETH_HEADER_LEN;
1325 }
1326
1327 if (ofpbuf_try_pull(&payload, ETH_HEADER_LEN + LLC_HEADER_LEN)) {
1328 stp_received_bpdu(sp, payload.data, payload.size);
1329 }
1330 }
1331 \f
1332 static struct priority_to_dscp *
1333 get_priority(const struct ofport_dpif *ofport, uint32_t priority)
1334 {
1335 struct priority_to_dscp *pdscp;
1336 uint32_t hash;
1337
1338 hash = hash_int(priority, 0);
1339 HMAP_FOR_EACH_IN_BUCKET (pdscp, hmap_node, hash, &ofport->priorities) {
1340 if (pdscp->priority == priority) {
1341 return pdscp;
1342 }
1343 }
1344 return NULL;
1345 }
1346
1347 static void
1348 ofport_clear_priorities(struct ofport_dpif *ofport)
1349 {
1350 struct priority_to_dscp *pdscp, *next;
1351
1352 HMAP_FOR_EACH_SAFE (pdscp, next, hmap_node, &ofport->priorities) {
1353 hmap_remove(&ofport->priorities, &pdscp->hmap_node);
1354 free(pdscp);
1355 }
1356 }
1357
1358 static int
1359 set_queues(struct ofport *ofport_,
1360 const struct ofproto_port_queue *qdscp_list,
1361 size_t n_qdscp)
1362 {
1363 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
1364 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
1365 struct hmap new = HMAP_INITIALIZER(&new);
1366 size_t i;
1367
1368 for (i = 0; i < n_qdscp; i++) {
1369 struct priority_to_dscp *pdscp;
1370 uint32_t priority;
1371 uint8_t dscp;
1372
1373 dscp = (qdscp_list[i].dscp << 2) & IP_DSCP_MASK;
1374 if (dpif_queue_to_priority(ofproto->dpif, qdscp_list[i].queue,
1375 &priority)) {
1376 continue;
1377 }
1378
1379 pdscp = get_priority(ofport, priority);
1380 if (pdscp) {
1381 hmap_remove(&ofport->priorities, &pdscp->hmap_node);
1382 } else {
1383 pdscp = xmalloc(sizeof *pdscp);
1384 pdscp->priority = priority;
1385 pdscp->dscp = dscp;
1386 ofproto->need_revalidate = true;
1387 }
1388
1389 if (pdscp->dscp != dscp) {
1390 pdscp->dscp = dscp;
1391 ofproto->need_revalidate = true;
1392 }
1393
1394 hmap_insert(&new, &pdscp->hmap_node, hash_int(pdscp->priority, 0));
1395 }
1396
1397 if (!hmap_is_empty(&ofport->priorities)) {
1398 ofport_clear_priorities(ofport);
1399 ofproto->need_revalidate = true;
1400 }
1401
1402 hmap_swap(&new, &ofport->priorities);
1403 hmap_destroy(&new);
1404
1405 return 0;
1406 }
1407 \f
1408 /* Bundles. */
1409
1410 /* Expires all MAC learning entries associated with 'bundle' and forces its
1411 * ofproto to revalidate every flow.
1412 *
1413 * Normally MAC learning entries are removed only from the ofproto associated
1414 * with 'bundle', but if 'all_ofprotos' is true, then the MAC learning entries
1415 * are removed from every ofproto. When patch ports and SLB bonds are in use
1416 * and a VM migration happens and the gratuitous ARPs are somehow lost, this
1417 * avoids a MAC_ENTRY_IDLE_TIME delay before the migrated VM can communicate
1418 * with the host from which it migrated. */
1419 static void
1420 bundle_flush_macs(struct ofbundle *bundle, bool all_ofprotos)
1421 {
1422 struct ofproto_dpif *ofproto = bundle->ofproto;
1423 struct mac_learning *ml = ofproto->ml;
1424 struct mac_entry *mac, *next_mac;
1425
1426 ofproto->need_revalidate = true;
1427 LIST_FOR_EACH_SAFE (mac, next_mac, lru_node, &ml->lrus) {
1428 if (mac->port.p == bundle) {
1429 if (all_ofprotos) {
1430 struct ofproto_dpif *o;
1431
1432 HMAP_FOR_EACH (o, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
1433 if (o != ofproto) {
1434 struct mac_entry *e;
1435
1436 e = mac_learning_lookup(o->ml, mac->mac, mac->vlan,
1437 NULL);
1438 if (e) {
1439 tag_set_add(&o->revalidate_set, e->tag);
1440 mac_learning_expire(o->ml, e);
1441 }
1442 }
1443 }
1444 }
1445
1446 mac_learning_expire(ml, mac);
1447 }
1448 }
1449 }
1450
1451 static struct ofbundle *
1452 bundle_lookup(const struct ofproto_dpif *ofproto, void *aux)
1453 {
1454 struct ofbundle *bundle;
1455
1456 HMAP_FOR_EACH_IN_BUCKET (bundle, hmap_node, hash_pointer(aux, 0),
1457 &ofproto->bundles) {
1458 if (bundle->aux == aux) {
1459 return bundle;
1460 }
1461 }
1462 return NULL;
1463 }
1464
1465 /* Looks up each of the 'n_auxes' pointers in 'auxes' as bundles and adds the
1466 * ones that are found to 'bundles'. */
1467 static void
1468 bundle_lookup_multiple(struct ofproto_dpif *ofproto,
1469 void **auxes, size_t n_auxes,
1470 struct hmapx *bundles)
1471 {
1472 size_t i;
1473
1474 hmapx_init(bundles);
1475 for (i = 0; i < n_auxes; i++) {
1476 struct ofbundle *bundle = bundle_lookup(ofproto, auxes[i]);
1477 if (bundle) {
1478 hmapx_add(bundles, bundle);
1479 }
1480 }
1481 }
1482
1483 static void
1484 bundle_update(struct ofbundle *bundle)
1485 {
1486 struct ofport_dpif *port;
1487
1488 bundle->floodable = true;
1489 LIST_FOR_EACH (port, bundle_node, &bundle->ports) {
1490 if (port->up.opp.config & htonl(OFPPC_NO_FLOOD)) {
1491 bundle->floodable = false;
1492 break;
1493 }
1494 }
1495 }
1496
1497 static void
1498 bundle_del_port(struct ofport_dpif *port)
1499 {
1500 struct ofbundle *bundle = port->bundle;
1501
1502 bundle->ofproto->need_revalidate = true;
1503
1504 list_remove(&port->bundle_node);
1505 port->bundle = NULL;
1506
1507 if (bundle->lacp) {
1508 lacp_slave_unregister(bundle->lacp, port);
1509 }
1510 if (bundle->bond) {
1511 bond_slave_unregister(bundle->bond, port);
1512 }
1513
1514 bundle_update(bundle);
1515 }
1516
1517 static bool
1518 bundle_add_port(struct ofbundle *bundle, uint32_t ofp_port,
1519 struct lacp_slave_settings *lacp,
1520 uint32_t bond_stable_id)
1521 {
1522 struct ofport_dpif *port;
1523
1524 port = get_ofp_port(bundle->ofproto, ofp_port);
1525 if (!port) {
1526 return false;
1527 }
1528
1529 if (port->bundle != bundle) {
1530 bundle->ofproto->need_revalidate = true;
1531 if (port->bundle) {
1532 bundle_del_port(port);
1533 }
1534
1535 port->bundle = bundle;
1536 list_push_back(&bundle->ports, &port->bundle_node);
1537 if (port->up.opp.config & htonl(OFPPC_NO_FLOOD)) {
1538 bundle->floodable = false;
1539 }
1540 }
1541 if (lacp) {
1542 port->bundle->ofproto->need_revalidate = true;
1543 lacp_slave_register(bundle->lacp, port, lacp);
1544 }
1545
1546 port->bond_stable_id = bond_stable_id;
1547
1548 return true;
1549 }
1550
1551 static void
1552 bundle_destroy(struct ofbundle *bundle)
1553 {
1554 struct ofproto_dpif *ofproto;
1555 struct ofport_dpif *port, *next_port;
1556 int i;
1557
1558 if (!bundle) {
1559 return;
1560 }
1561
1562 ofproto = bundle->ofproto;
1563 for (i = 0; i < MAX_MIRRORS; i++) {
1564 struct ofmirror *m = ofproto->mirrors[i];
1565 if (m) {
1566 if (m->out == bundle) {
1567 mirror_destroy(m);
1568 } else if (hmapx_find_and_delete(&m->srcs, bundle)
1569 || hmapx_find_and_delete(&m->dsts, bundle)) {
1570 ofproto->need_revalidate = true;
1571 }
1572 }
1573 }
1574
1575 LIST_FOR_EACH_SAFE (port, next_port, bundle_node, &bundle->ports) {
1576 bundle_del_port(port);
1577 }
1578
1579 bundle_flush_macs(bundle, true);
1580 hmap_remove(&ofproto->bundles, &bundle->hmap_node);
1581 free(bundle->name);
1582 free(bundle->trunks);
1583 lacp_destroy(bundle->lacp);
1584 bond_destroy(bundle->bond);
1585 free(bundle);
1586 }
1587
1588 static int
1589 bundle_set(struct ofproto *ofproto_, void *aux,
1590 const struct ofproto_bundle_settings *s)
1591 {
1592 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1593 bool need_flush = false;
1594 struct ofport_dpif *port;
1595 struct ofbundle *bundle;
1596 unsigned long *trunks;
1597 int vlan;
1598 size_t i;
1599 bool ok;
1600
1601 if (!s) {
1602 bundle_destroy(bundle_lookup(ofproto, aux));
1603 return 0;
1604 }
1605
1606 assert(s->n_slaves == 1 || s->bond != NULL);
1607 assert((s->lacp != NULL) == (s->lacp_slaves != NULL));
1608
1609 bundle = bundle_lookup(ofproto, aux);
1610 if (!bundle) {
1611 bundle = xmalloc(sizeof *bundle);
1612
1613 bundle->ofproto = ofproto;
1614 hmap_insert(&ofproto->bundles, &bundle->hmap_node,
1615 hash_pointer(aux, 0));
1616 bundle->aux = aux;
1617 bundle->name = NULL;
1618
1619 list_init(&bundle->ports);
1620 bundle->vlan_mode = PORT_VLAN_TRUNK;
1621 bundle->vlan = -1;
1622 bundle->trunks = NULL;
1623 bundle->use_priority_tags = s->use_priority_tags;
1624 bundle->lacp = NULL;
1625 bundle->bond = NULL;
1626
1627 bundle->floodable = true;
1628
1629 bundle->src_mirrors = 0;
1630 bundle->dst_mirrors = 0;
1631 bundle->mirror_out = 0;
1632 }
1633
1634 if (!bundle->name || strcmp(s->name, bundle->name)) {
1635 free(bundle->name);
1636 bundle->name = xstrdup(s->name);
1637 }
1638
1639 /* LACP. */
1640 if (s->lacp) {
1641 if (!bundle->lacp) {
1642 ofproto->need_revalidate = true;
1643 bundle->lacp = lacp_create();
1644 }
1645 lacp_configure(bundle->lacp, s->lacp);
1646 } else {
1647 lacp_destroy(bundle->lacp);
1648 bundle->lacp = NULL;
1649 }
1650
1651 /* Update set of ports. */
1652 ok = true;
1653 for (i = 0; i < s->n_slaves; i++) {
1654 if (!bundle_add_port(bundle, s->slaves[i],
1655 s->lacp ? &s->lacp_slaves[i] : NULL,
1656 s->bond_stable_ids ? s->bond_stable_ids[i] : 0)) {
1657 ok = false;
1658 }
1659 }
1660 if (!ok || list_size(&bundle->ports) != s->n_slaves) {
1661 struct ofport_dpif *next_port;
1662
1663 LIST_FOR_EACH_SAFE (port, next_port, bundle_node, &bundle->ports) {
1664 for (i = 0; i < s->n_slaves; i++) {
1665 if (s->slaves[i] == port->up.ofp_port) {
1666 goto found;
1667 }
1668 }
1669
1670 bundle_del_port(port);
1671 found: ;
1672 }
1673 }
1674 assert(list_size(&bundle->ports) <= s->n_slaves);
1675
1676 if (list_is_empty(&bundle->ports)) {
1677 bundle_destroy(bundle);
1678 return EINVAL;
1679 }
1680
1681 /* Set VLAN tagging mode */
1682 if (s->vlan_mode != bundle->vlan_mode
1683 || s->use_priority_tags != bundle->use_priority_tags) {
1684 bundle->vlan_mode = s->vlan_mode;
1685 bundle->use_priority_tags = s->use_priority_tags;
1686 need_flush = true;
1687 }
1688
1689 /* Set VLAN tag. */
1690 vlan = (s->vlan_mode == PORT_VLAN_TRUNK ? -1
1691 : s->vlan >= 0 && s->vlan <= 4095 ? s->vlan
1692 : 0);
1693 if (vlan != bundle->vlan) {
1694 bundle->vlan = vlan;
1695 need_flush = true;
1696 }
1697
1698 /* Get trunked VLANs. */
1699 switch (s->vlan_mode) {
1700 case PORT_VLAN_ACCESS:
1701 trunks = NULL;
1702 break;
1703
1704 case PORT_VLAN_TRUNK:
1705 trunks = (unsigned long *) s->trunks;
1706 break;
1707
1708 case PORT_VLAN_NATIVE_UNTAGGED:
1709 case PORT_VLAN_NATIVE_TAGGED:
1710 if (vlan != 0 && (!s->trunks
1711 || !bitmap_is_set(s->trunks, vlan)
1712 || bitmap_is_set(s->trunks, 0))) {
1713 /* Force trunking the native VLAN and prohibit trunking VLAN 0. */
1714 if (s->trunks) {
1715 trunks = bitmap_clone(s->trunks, 4096);
1716 } else {
1717 trunks = bitmap_allocate1(4096);
1718 }
1719 bitmap_set1(trunks, vlan);
1720 bitmap_set0(trunks, 0);
1721 } else {
1722 trunks = (unsigned long *) s->trunks;
1723 }
1724 break;
1725
1726 default:
1727 NOT_REACHED();
1728 }
1729 if (!vlan_bitmap_equal(trunks, bundle->trunks)) {
1730 free(bundle->trunks);
1731 if (trunks == s->trunks) {
1732 bundle->trunks = vlan_bitmap_clone(trunks);
1733 } else {
1734 bundle->trunks = trunks;
1735 trunks = NULL;
1736 }
1737 need_flush = true;
1738 }
1739 if (trunks != s->trunks) {
1740 free(trunks);
1741 }
1742
1743 /* Bonding. */
1744 if (!list_is_short(&bundle->ports)) {
1745 bundle->ofproto->has_bonded_bundles = true;
1746 if (bundle->bond) {
1747 if (bond_reconfigure(bundle->bond, s->bond)) {
1748 ofproto->need_revalidate = true;
1749 }
1750 } else {
1751 bundle->bond = bond_create(s->bond);
1752 ofproto->need_revalidate = true;
1753 }
1754
1755 LIST_FOR_EACH (port, bundle_node, &bundle->ports) {
1756 bond_slave_register(bundle->bond, port, port->bond_stable_id,
1757 port->up.netdev);
1758 }
1759 } else {
1760 bond_destroy(bundle->bond);
1761 bundle->bond = NULL;
1762 }
1763
1764 /* If we changed something that would affect MAC learning, un-learn
1765 * everything on this port and force flow revalidation. */
1766 if (need_flush) {
1767 bundle_flush_macs(bundle, false);
1768 }
1769
1770 return 0;
1771 }
1772
1773 static void
1774 bundle_remove(struct ofport *port_)
1775 {
1776 struct ofport_dpif *port = ofport_dpif_cast(port_);
1777 struct ofbundle *bundle = port->bundle;
1778
1779 if (bundle) {
1780 bundle_del_port(port);
1781 if (list_is_empty(&bundle->ports)) {
1782 bundle_destroy(bundle);
1783 } else if (list_is_short(&bundle->ports)) {
1784 bond_destroy(bundle->bond);
1785 bundle->bond = NULL;
1786 }
1787 }
1788 }
1789
1790 static void
1791 send_pdu_cb(void *port_, const void *pdu, size_t pdu_size)
1792 {
1793 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 10);
1794 struct ofport_dpif *port = port_;
1795 uint8_t ea[ETH_ADDR_LEN];
1796 int error;
1797
1798 error = netdev_get_etheraddr(port->up.netdev, ea);
1799 if (!error) {
1800 struct ofpbuf packet;
1801 void *packet_pdu;
1802
1803 ofpbuf_init(&packet, 0);
1804 packet_pdu = eth_compose(&packet, eth_addr_lacp, ea, ETH_TYPE_LACP,
1805 pdu_size);
1806 memcpy(packet_pdu, pdu, pdu_size);
1807
1808 send_packet(port, &packet);
1809 ofpbuf_uninit(&packet);
1810 } else {
1811 VLOG_ERR_RL(&rl, "port %s: cannot obtain Ethernet address of iface "
1812 "%s (%s)", port->bundle->name,
1813 netdev_get_name(port->up.netdev), strerror(error));
1814 }
1815 }
1816
1817 static void
1818 bundle_send_learning_packets(struct ofbundle *bundle)
1819 {
1820 struct ofproto_dpif *ofproto = bundle->ofproto;
1821 int error, n_packets, n_errors;
1822 struct mac_entry *e;
1823
1824 error = n_packets = n_errors = 0;
1825 LIST_FOR_EACH (e, lru_node, &ofproto->ml->lrus) {
1826 if (e->port.p != bundle) {
1827 struct ofpbuf *learning_packet;
1828 struct ofport_dpif *port;
1829 void *port_void;
1830 int ret;
1831
1832 /* The assignment to "port" is unnecessary but makes "grep"ing for
1833 * struct ofport_dpif more effective. */
1834 learning_packet = bond_compose_learning_packet(bundle->bond,
1835 e->mac, e->vlan,
1836 &port_void);
1837 port = port_void;
1838 ret = send_packet(port, learning_packet);
1839 ofpbuf_delete(learning_packet);
1840 if (ret) {
1841 error = ret;
1842 n_errors++;
1843 }
1844 n_packets++;
1845 }
1846 }
1847
1848 if (n_errors) {
1849 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
1850 VLOG_WARN_RL(&rl, "bond %s: %d errors sending %d gratuitous learning "
1851 "packets, last error was: %s",
1852 bundle->name, n_errors, n_packets, strerror(error));
1853 } else {
1854 VLOG_DBG("bond %s: sent %d gratuitous learning packets",
1855 bundle->name, n_packets);
1856 }
1857 }
1858
1859 static void
1860 bundle_run(struct ofbundle *bundle)
1861 {
1862 if (bundle->lacp) {
1863 lacp_run(bundle->lacp, send_pdu_cb);
1864 }
1865 if (bundle->bond) {
1866 struct ofport_dpif *port;
1867
1868 LIST_FOR_EACH (port, bundle_node, &bundle->ports) {
1869 bond_slave_set_may_enable(bundle->bond, port, port->may_enable);
1870 }
1871
1872 bond_run(bundle->bond, &bundle->ofproto->revalidate_set,
1873 lacp_negotiated(bundle->lacp));
1874 if (bond_should_send_learning_packets(bundle->bond)) {
1875 bundle_send_learning_packets(bundle);
1876 }
1877 }
1878 }
1879
1880 static void
1881 bundle_wait(struct ofbundle *bundle)
1882 {
1883 if (bundle->lacp) {
1884 lacp_wait(bundle->lacp);
1885 }
1886 if (bundle->bond) {
1887 bond_wait(bundle->bond);
1888 }
1889 }
1890 \f
1891 /* Mirrors. */
1892
1893 static int
1894 mirror_scan(struct ofproto_dpif *ofproto)
1895 {
1896 int idx;
1897
1898 for (idx = 0; idx < MAX_MIRRORS; idx++) {
1899 if (!ofproto->mirrors[idx]) {
1900 return idx;
1901 }
1902 }
1903 return -1;
1904 }
1905
1906 static struct ofmirror *
1907 mirror_lookup(struct ofproto_dpif *ofproto, void *aux)
1908 {
1909 int i;
1910
1911 for (i = 0; i < MAX_MIRRORS; i++) {
1912 struct ofmirror *mirror = ofproto->mirrors[i];
1913 if (mirror && mirror->aux == aux) {
1914 return mirror;
1915 }
1916 }
1917
1918 return NULL;
1919 }
1920
1921 /* Update the 'dup_mirrors' member of each of the ofmirrors in 'ofproto'. */
1922 static void
1923 mirror_update_dups(struct ofproto_dpif *ofproto)
1924 {
1925 int i;
1926
1927 for (i = 0; i < MAX_MIRRORS; i++) {
1928 struct ofmirror *m = ofproto->mirrors[i];
1929
1930 if (m) {
1931 m->dup_mirrors = MIRROR_MASK_C(1) << i;
1932 }
1933 }
1934
1935 for (i = 0; i < MAX_MIRRORS; i++) {
1936 struct ofmirror *m1 = ofproto->mirrors[i];
1937 int j;
1938
1939 if (!m1) {
1940 continue;
1941 }
1942
1943 for (j = i + 1; j < MAX_MIRRORS; j++) {
1944 struct ofmirror *m2 = ofproto->mirrors[j];
1945
1946 if (m2 && m1->out == m2->out && m1->out_vlan == m2->out_vlan) {
1947 m1->dup_mirrors |= MIRROR_MASK_C(1) << j;
1948 m2->dup_mirrors |= m1->dup_mirrors;
1949 }
1950 }
1951 }
1952 }
1953
1954 static int
1955 mirror_set(struct ofproto *ofproto_, void *aux,
1956 const struct ofproto_mirror_settings *s)
1957 {
1958 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1959 mirror_mask_t mirror_bit;
1960 struct ofbundle *bundle;
1961 struct ofmirror *mirror;
1962 struct ofbundle *out;
1963 struct hmapx srcs; /* Contains "struct ofbundle *"s. */
1964 struct hmapx dsts; /* Contains "struct ofbundle *"s. */
1965 int out_vlan;
1966
1967 mirror = mirror_lookup(ofproto, aux);
1968 if (!s) {
1969 mirror_destroy(mirror);
1970 return 0;
1971 }
1972 if (!mirror) {
1973 int idx;
1974
1975 idx = mirror_scan(ofproto);
1976 if (idx < 0) {
1977 VLOG_WARN("bridge %s: maximum of %d port mirrors reached, "
1978 "cannot create %s",
1979 ofproto->up.name, MAX_MIRRORS, s->name);
1980 return EFBIG;
1981 }
1982
1983 mirror = ofproto->mirrors[idx] = xzalloc(sizeof *mirror);
1984 mirror->ofproto = ofproto;
1985 mirror->idx = idx;
1986 mirror->aux = aux;
1987 mirror->out_vlan = -1;
1988 mirror->name = NULL;
1989 }
1990
1991 if (!mirror->name || strcmp(s->name, mirror->name)) {
1992 free(mirror->name);
1993 mirror->name = xstrdup(s->name);
1994 }
1995
1996 /* Get the new configuration. */
1997 if (s->out_bundle) {
1998 out = bundle_lookup(ofproto, s->out_bundle);
1999 if (!out) {
2000 mirror_destroy(mirror);
2001 return EINVAL;
2002 }
2003 out_vlan = -1;
2004 } else {
2005 out = NULL;
2006 out_vlan = s->out_vlan;
2007 }
2008 bundle_lookup_multiple(ofproto, s->srcs, s->n_srcs, &srcs);
2009 bundle_lookup_multiple(ofproto, s->dsts, s->n_dsts, &dsts);
2010
2011 /* If the configuration has not changed, do nothing. */
2012 if (hmapx_equals(&srcs, &mirror->srcs)
2013 && hmapx_equals(&dsts, &mirror->dsts)
2014 && vlan_bitmap_equal(mirror->vlans, s->src_vlans)
2015 && mirror->out == out
2016 && mirror->out_vlan == out_vlan)
2017 {
2018 hmapx_destroy(&srcs);
2019 hmapx_destroy(&dsts);
2020 return 0;
2021 }
2022
2023 hmapx_swap(&srcs, &mirror->srcs);
2024 hmapx_destroy(&srcs);
2025
2026 hmapx_swap(&dsts, &mirror->dsts);
2027 hmapx_destroy(&dsts);
2028
2029 free(mirror->vlans);
2030 mirror->vlans = vlan_bitmap_clone(s->src_vlans);
2031
2032 mirror->out = out;
2033 mirror->out_vlan = out_vlan;
2034
2035 /* Update bundles. */
2036 mirror_bit = MIRROR_MASK_C(1) << mirror->idx;
2037 HMAP_FOR_EACH (bundle, hmap_node, &mirror->ofproto->bundles) {
2038 if (hmapx_contains(&mirror->srcs, bundle)) {
2039 bundle->src_mirrors |= mirror_bit;
2040 } else {
2041 bundle->src_mirrors &= ~mirror_bit;
2042 }
2043
2044 if (hmapx_contains(&mirror->dsts, bundle)) {
2045 bundle->dst_mirrors |= mirror_bit;
2046 } else {
2047 bundle->dst_mirrors &= ~mirror_bit;
2048 }
2049
2050 if (mirror->out == bundle) {
2051 bundle->mirror_out |= mirror_bit;
2052 } else {
2053 bundle->mirror_out &= ~mirror_bit;
2054 }
2055 }
2056
2057 ofproto->need_revalidate = true;
2058 mac_learning_flush(ofproto->ml);
2059 mirror_update_dups(ofproto);
2060
2061 return 0;
2062 }
2063
2064 static void
2065 mirror_destroy(struct ofmirror *mirror)
2066 {
2067 struct ofproto_dpif *ofproto;
2068 mirror_mask_t mirror_bit;
2069 struct ofbundle *bundle;
2070
2071 if (!mirror) {
2072 return;
2073 }
2074
2075 ofproto = mirror->ofproto;
2076 ofproto->need_revalidate = true;
2077 mac_learning_flush(ofproto->ml);
2078
2079 mirror_bit = MIRROR_MASK_C(1) << mirror->idx;
2080 HMAP_FOR_EACH (bundle, hmap_node, &ofproto->bundles) {
2081 bundle->src_mirrors &= ~mirror_bit;
2082 bundle->dst_mirrors &= ~mirror_bit;
2083 bundle->mirror_out &= ~mirror_bit;
2084 }
2085
2086 hmapx_destroy(&mirror->srcs);
2087 hmapx_destroy(&mirror->dsts);
2088 free(mirror->vlans);
2089
2090 ofproto->mirrors[mirror->idx] = NULL;
2091 free(mirror->name);
2092 free(mirror);
2093
2094 mirror_update_dups(ofproto);
2095 }
2096
2097 static int
2098 mirror_get_stats(struct ofproto *ofproto_, void *aux,
2099 uint64_t *packets, uint64_t *bytes)
2100 {
2101 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2102 struct ofmirror *mirror = mirror_lookup(ofproto, aux);
2103
2104 if (!mirror) {
2105 *packets = *bytes = UINT64_MAX;
2106 return 0;
2107 }
2108
2109 *packets = mirror->packet_count;
2110 *bytes = mirror->byte_count;
2111
2112 return 0;
2113 }
2114
2115 static int
2116 set_flood_vlans(struct ofproto *ofproto_, unsigned long *flood_vlans)
2117 {
2118 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2119 if (mac_learning_set_flood_vlans(ofproto->ml, flood_vlans)) {
2120 ofproto->need_revalidate = true;
2121 mac_learning_flush(ofproto->ml);
2122 }
2123 return 0;
2124 }
2125
2126 static bool
2127 is_mirror_output_bundle(const struct ofproto *ofproto_, void *aux)
2128 {
2129 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2130 struct ofbundle *bundle = bundle_lookup(ofproto, aux);
2131 return bundle && bundle->mirror_out != 0;
2132 }
2133
2134 static void
2135 forward_bpdu_changed(struct ofproto *ofproto_)
2136 {
2137 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2138 /* Revalidate cached flows whenever forward_bpdu option changes. */
2139 ofproto->need_revalidate = true;
2140 }
2141 \f
2142 /* Ports. */
2143
2144 static struct ofport_dpif *
2145 get_ofp_port(struct ofproto_dpif *ofproto, uint16_t ofp_port)
2146 {
2147 struct ofport *ofport = ofproto_get_port(&ofproto->up, ofp_port);
2148 return ofport ? ofport_dpif_cast(ofport) : NULL;
2149 }
2150
2151 static struct ofport_dpif *
2152 get_odp_port(struct ofproto_dpif *ofproto, uint32_t odp_port)
2153 {
2154 return get_ofp_port(ofproto, odp_port_to_ofp_port(odp_port));
2155 }
2156
2157 static void
2158 ofproto_port_from_dpif_port(struct ofproto_port *ofproto_port,
2159 struct dpif_port *dpif_port)
2160 {
2161 ofproto_port->name = dpif_port->name;
2162 ofproto_port->type = dpif_port->type;
2163 ofproto_port->ofp_port = odp_port_to_ofp_port(dpif_port->port_no);
2164 }
2165
2166 static void
2167 port_run(struct ofport_dpif *ofport)
2168 {
2169 bool enable = netdev_get_carrier(ofport->up.netdev);
2170
2171 if (ofport->cfm) {
2172 cfm_run(ofport->cfm);
2173
2174 if (cfm_should_send_ccm(ofport->cfm)) {
2175 struct ofpbuf packet;
2176
2177 ofpbuf_init(&packet, 0);
2178 cfm_compose_ccm(ofport->cfm, &packet, ofport->up.opp.hw_addr);
2179 send_packet(ofport, &packet);
2180 ofpbuf_uninit(&packet);
2181 }
2182
2183 enable = enable && !cfm_get_fault(ofport->cfm)
2184 && cfm_get_opup(ofport->cfm);
2185 }
2186
2187 if (ofport->bundle) {
2188 enable = enable && lacp_slave_may_enable(ofport->bundle->lacp, ofport);
2189 }
2190
2191 if (ofport->may_enable != enable) {
2192 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
2193
2194 if (ofproto->has_bundle_action) {
2195 ofproto->need_revalidate = true;
2196 }
2197 }
2198
2199 ofport->may_enable = enable;
2200 }
2201
2202 static void
2203 port_wait(struct ofport_dpif *ofport)
2204 {
2205 if (ofport->cfm) {
2206 cfm_wait(ofport->cfm);
2207 }
2208 }
2209
2210 static int
2211 port_query_by_name(const struct ofproto *ofproto_, const char *devname,
2212 struct ofproto_port *ofproto_port)
2213 {
2214 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2215 struct dpif_port dpif_port;
2216 int error;
2217
2218 error = dpif_port_query_by_name(ofproto->dpif, devname, &dpif_port);
2219 if (!error) {
2220 ofproto_port_from_dpif_port(ofproto_port, &dpif_port);
2221 }
2222 return error;
2223 }
2224
2225 static int
2226 port_add(struct ofproto *ofproto_, struct netdev *netdev, uint16_t *ofp_portp)
2227 {
2228 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2229 uint16_t odp_port;
2230 int error;
2231
2232 error = dpif_port_add(ofproto->dpif, netdev, &odp_port);
2233 if (!error) {
2234 *ofp_portp = odp_port_to_ofp_port(odp_port);
2235 }
2236 return error;
2237 }
2238
2239 static int
2240 port_del(struct ofproto *ofproto_, uint16_t ofp_port)
2241 {
2242 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2243 int error;
2244
2245 error = dpif_port_del(ofproto->dpif, ofp_port_to_odp_port(ofp_port));
2246 if (!error) {
2247 struct ofport_dpif *ofport = get_ofp_port(ofproto, ofp_port);
2248 if (ofport) {
2249 /* The caller is going to close ofport->up.netdev. If this is a
2250 * bonded port, then the bond is using that netdev, so remove it
2251 * from the bond. The client will need to reconfigure everything
2252 * after deleting ports, so then the slave will get re-added. */
2253 bundle_remove(&ofport->up);
2254 }
2255 }
2256 return error;
2257 }
2258
2259 static int
2260 port_get_stats(const struct ofport *ofport_, struct netdev_stats *stats)
2261 {
2262 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
2263 int error;
2264
2265 error = netdev_get_stats(ofport->up.netdev, stats);
2266
2267 if (!error && ofport->odp_port == OVSP_LOCAL) {
2268 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
2269
2270 /* ofproto->stats.tx_packets represents packets that we created
2271 * internally and sent to some port (e.g. packets sent with
2272 * send_packet()). Account for them as if they had come from
2273 * OFPP_LOCAL and got forwarded. */
2274
2275 if (stats->rx_packets != UINT64_MAX) {
2276 stats->rx_packets += ofproto->stats.tx_packets;
2277 }
2278
2279 if (stats->rx_bytes != UINT64_MAX) {
2280 stats->rx_bytes += ofproto->stats.tx_bytes;
2281 }
2282
2283 /* ofproto->stats.rx_packets represents packets that were received on
2284 * some port and we processed internally and dropped (e.g. STP).
2285 * Account fro them as if they had been forwarded to OFPP_LOCAL. */
2286
2287 if (stats->tx_packets != UINT64_MAX) {
2288 stats->tx_packets += ofproto->stats.rx_packets;
2289 }
2290
2291 if (stats->tx_bytes != UINT64_MAX) {
2292 stats->tx_bytes += ofproto->stats.rx_bytes;
2293 }
2294 }
2295
2296 return error;
2297 }
2298
2299 /* Account packets for LOCAL port. */
2300 static void
2301 ofproto_update_local_port_stats(const struct ofproto *ofproto_,
2302 size_t tx_size, size_t rx_size)
2303 {
2304 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2305
2306 if (rx_size) {
2307 ofproto->stats.rx_packets++;
2308 ofproto->stats.rx_bytes += rx_size;
2309 }
2310 if (tx_size) {
2311 ofproto->stats.tx_packets++;
2312 ofproto->stats.tx_bytes += tx_size;
2313 }
2314 }
2315
2316 struct port_dump_state {
2317 struct dpif_port_dump dump;
2318 bool done;
2319 };
2320
2321 static int
2322 port_dump_start(const struct ofproto *ofproto_, void **statep)
2323 {
2324 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2325 struct port_dump_state *state;
2326
2327 *statep = state = xmalloc(sizeof *state);
2328 dpif_port_dump_start(&state->dump, ofproto->dpif);
2329 state->done = false;
2330 return 0;
2331 }
2332
2333 static int
2334 port_dump_next(const struct ofproto *ofproto_ OVS_UNUSED, void *state_,
2335 struct ofproto_port *port)
2336 {
2337 struct port_dump_state *state = state_;
2338 struct dpif_port dpif_port;
2339
2340 if (dpif_port_dump_next(&state->dump, &dpif_port)) {
2341 ofproto_port_from_dpif_port(port, &dpif_port);
2342 return 0;
2343 } else {
2344 int error = dpif_port_dump_done(&state->dump);
2345 state->done = true;
2346 return error ? error : EOF;
2347 }
2348 }
2349
2350 static int
2351 port_dump_done(const struct ofproto *ofproto_ OVS_UNUSED, void *state_)
2352 {
2353 struct port_dump_state *state = state_;
2354
2355 if (!state->done) {
2356 dpif_port_dump_done(&state->dump);
2357 }
2358 free(state);
2359 return 0;
2360 }
2361
2362 static int
2363 port_poll(const struct ofproto *ofproto_, char **devnamep)
2364 {
2365 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2366 return dpif_port_poll(ofproto->dpif, devnamep);
2367 }
2368
2369 static void
2370 port_poll_wait(const struct ofproto *ofproto_)
2371 {
2372 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2373 dpif_port_poll_wait(ofproto->dpif);
2374 }
2375
2376 static int
2377 port_is_lacp_current(const struct ofport *ofport_)
2378 {
2379 const struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
2380 return (ofport->bundle && ofport->bundle->lacp
2381 ? lacp_slave_is_current(ofport->bundle->lacp, ofport)
2382 : -1);
2383 }
2384 \f
2385 /* Upcall handling. */
2386
2387 /* Flow miss batching.
2388 *
2389 * Some dpifs implement operations faster when you hand them off in a batch.
2390 * To allow batching, "struct flow_miss" queues the dpif-related work needed
2391 * for a given flow. Each "struct flow_miss" corresponds to sending one or
2392 * more packets, plus possibly installing the flow in the dpif.
2393 *
2394 * So far we only batch the operations that affect flow setup time the most.
2395 * It's possible to batch more than that, but the benefit might be minimal. */
2396 struct flow_miss {
2397 struct hmap_node hmap_node;
2398 struct flow flow;
2399 enum odp_key_fitness key_fitness;
2400 const struct nlattr *key;
2401 size_t key_len;
2402 ovs_be16 initial_tci;
2403 struct list packets;
2404 };
2405
2406 struct flow_miss_op {
2407 union dpif_op dpif_op;
2408 struct subfacet *subfacet;
2409 };
2410
2411 /* Sends an OFPT_PACKET_IN message for 'packet' of type OFPR_NO_MATCH to each
2412 * OpenFlow controller as necessary according to their individual
2413 * configurations. */
2414 static void
2415 send_packet_in_miss(struct ofproto_dpif *ofproto, struct ofpbuf *packet,
2416 const struct flow *flow)
2417 {
2418 struct ofputil_packet_in pin;
2419
2420 pin.packet = packet;
2421 pin.in_port = flow->in_port;
2422 pin.reason = OFPR_NO_MATCH;
2423 pin.buffer_id = 0; /* not yet known */
2424 pin.send_len = 0; /* not used for flow table misses */
2425 connmgr_send_packet_in(ofproto->up.connmgr, &pin, flow);
2426 }
2427
2428 /* Sends an OFPT_PACKET_IN message for 'packet' of type OFPR_ACTION to each
2429 * OpenFlow controller as necessary according to their individual
2430 * configurations.
2431 *
2432 * 'send_len' should be the number of bytes of 'packet' to send to the
2433 * controller, as specified in the action that caused the packet to be sent. */
2434 static void
2435 send_packet_in_action(struct ofproto_dpif *ofproto, struct ofpbuf *packet,
2436 uint64_t userdata, const struct flow *flow)
2437 {
2438 struct ofputil_packet_in pin;
2439 struct user_action_cookie cookie;
2440
2441 memcpy(&cookie, &userdata, sizeof(cookie));
2442
2443 pin.packet = packet;
2444 pin.in_port = flow->in_port;
2445 pin.reason = OFPR_ACTION;
2446 pin.buffer_id = 0; /* not yet known */
2447 pin.send_len = cookie.data;
2448 connmgr_send_packet_in(ofproto->up.connmgr, &pin, flow);
2449 }
2450
2451 static bool
2452 process_special(struct ofproto_dpif *ofproto, const struct flow *flow,
2453 const struct ofpbuf *packet)
2454 {
2455 struct ofport_dpif *ofport = get_ofp_port(ofproto, flow->in_port);
2456
2457 if (!ofport) {
2458 return false;
2459 }
2460
2461 if (ofport->cfm && cfm_should_process_flow(ofport->cfm, flow)) {
2462 if (packet) {
2463 cfm_process_heartbeat(ofport->cfm, packet);
2464 }
2465 return true;
2466 } else if (ofport->bundle && ofport->bundle->lacp
2467 && flow->dl_type == htons(ETH_TYPE_LACP)) {
2468 if (packet) {
2469 lacp_process_packet(ofport->bundle->lacp, ofport, packet);
2470 }
2471 return true;
2472 } else if (ofproto->stp && stp_should_process_flow(flow)) {
2473 if (packet) {
2474 stp_process_packet(ofport, packet);
2475 }
2476 return true;
2477 }
2478 return false;
2479 }
2480
2481 static struct flow_miss *
2482 flow_miss_create(struct hmap *todo, const struct flow *flow,
2483 enum odp_key_fitness key_fitness,
2484 const struct nlattr *key, size_t key_len,
2485 ovs_be16 initial_tci)
2486 {
2487 uint32_t hash = flow_hash(flow, 0);
2488 struct flow_miss *miss;
2489
2490 HMAP_FOR_EACH_WITH_HASH (miss, hmap_node, hash, todo) {
2491 if (flow_equal(&miss->flow, flow)) {
2492 return miss;
2493 }
2494 }
2495
2496 miss = xmalloc(sizeof *miss);
2497 hmap_insert(todo, &miss->hmap_node, hash);
2498 miss->flow = *flow;
2499 miss->key_fitness = key_fitness;
2500 miss->key = key;
2501 miss->key_len = key_len;
2502 miss->initial_tci = initial_tci;
2503 list_init(&miss->packets);
2504 return miss;
2505 }
2506
2507 static void
2508 handle_flow_miss(struct ofproto_dpif *ofproto, struct flow_miss *miss,
2509 struct flow_miss_op *ops, size_t *n_ops)
2510 {
2511 const struct flow *flow = &miss->flow;
2512 struct ofpbuf *packet, *next_packet;
2513 struct subfacet *subfacet;
2514 struct facet *facet;
2515
2516 facet = facet_lookup_valid(ofproto, flow);
2517 if (!facet) {
2518 struct rule_dpif *rule;
2519
2520 rule = rule_dpif_lookup(ofproto, flow, 0);
2521 if (!rule) {
2522 /* Don't send a packet-in if OFPPC_NO_PACKET_IN asserted. */
2523 struct ofport_dpif *port = get_ofp_port(ofproto, flow->in_port);
2524 if (port) {
2525 if (port->up.opp.config & htonl(OFPPC_NO_PACKET_IN)) {
2526 COVERAGE_INC(ofproto_dpif_no_packet_in);
2527 /* XXX install 'drop' flow entry */
2528 return;
2529 }
2530 } else {
2531 VLOG_WARN_RL(&rl, "packet-in on unknown port %"PRIu16,
2532 flow->in_port);
2533 }
2534
2535 LIST_FOR_EACH (packet, list_node, &miss->packets) {
2536 send_packet_in_miss(ofproto, packet, flow);
2537 }
2538
2539 return;
2540 }
2541
2542 facet = facet_create(rule, flow);
2543 }
2544
2545 subfacet = subfacet_create(ofproto, facet,
2546 miss->key_fitness, miss->key, miss->key_len,
2547 miss->initial_tci);
2548
2549 LIST_FOR_EACH_SAFE (packet, next_packet, list_node, &miss->packets) {
2550 struct dpif_flow_stats stats;
2551
2552 list_remove(&packet->list_node);
2553 ofproto->n_matches++;
2554
2555 if (facet->rule->up.cr.priority == FAIL_OPEN_PRIORITY) {
2556 /*
2557 * Extra-special case for fail-open mode.
2558 *
2559 * We are in fail-open mode and the packet matched the fail-open
2560 * rule, but we are connected to a controller too. We should send
2561 * the packet up to the controller in the hope that it will try to
2562 * set up a flow and thereby allow us to exit fail-open.
2563 *
2564 * See the top-level comment in fail-open.c for more information.
2565 */
2566 send_packet_in_miss(ofproto, packet, flow);
2567 }
2568
2569 if (!facet->may_install || !subfacet->actions) {
2570 subfacet_make_actions(ofproto, subfacet, packet);
2571 }
2572
2573 /* Credit statistics to subfacet for this packet. We must do this now
2574 * because execute_controller_action() below may destroy 'packet'. */
2575 dpif_flow_stats_extract(&facet->flow, packet, &stats);
2576 subfacet_update_stats(ofproto, subfacet, &stats);
2577
2578 if (!execute_controller_action(ofproto, &facet->flow,
2579 subfacet->actions,
2580 subfacet->actions_len, packet)
2581 && subfacet->actions_len > 0) {
2582 struct flow_miss_op *op = &ops[(*n_ops)++];
2583 struct dpif_execute *execute = &op->dpif_op.execute;
2584
2585 if (flow->vlan_tci != subfacet->initial_tci) {
2586 /* This packet was received on a VLAN splinter port. We added
2587 * a VLAN to the packet to make the packet resemble the flow,
2588 * but the actions were composed assuming that the packet
2589 * contained no VLAN. So, we must remove the VLAN header from
2590 * the packet before trying to execute the actions. */
2591 eth_pop_vlan(packet);
2592 }
2593
2594 op->subfacet = subfacet;
2595 execute->type = DPIF_OP_EXECUTE;
2596 execute->key = miss->key;
2597 execute->key_len = miss->key_len;
2598 execute->actions
2599 = (facet->may_install
2600 ? subfacet->actions
2601 : xmemdup(subfacet->actions, subfacet->actions_len));
2602 execute->actions_len = subfacet->actions_len;
2603 execute->packet = packet;
2604 }
2605 }
2606
2607 if (facet->may_install && subfacet->key_fitness != ODP_FIT_TOO_LITTLE) {
2608 struct flow_miss_op *op = &ops[(*n_ops)++];
2609 struct dpif_flow_put *put = &op->dpif_op.flow_put;
2610
2611 op->subfacet = subfacet;
2612 put->type = DPIF_OP_FLOW_PUT;
2613 put->flags = DPIF_FP_CREATE | DPIF_FP_MODIFY;
2614 put->key = miss->key;
2615 put->key_len = miss->key_len;
2616 put->actions = subfacet->actions;
2617 put->actions_len = subfacet->actions_len;
2618 put->stats = NULL;
2619 }
2620 }
2621
2622 /* Like odp_flow_key_to_flow(), this function converts the 'key_len' bytes of
2623 * OVS_KEY_ATTR_* attributes in 'key' to a flow structure in 'flow' and returns
2624 * an ODP_FIT_* value that indicates how well 'key' fits our expectations for
2625 * what a flow key should contain.
2626 *
2627 * This function also includes some logic to help make VLAN splinters
2628 * transparent to the rest of the upcall processing logic. In particular, if
2629 * the extracted in_port is a VLAN splinter port, it replaces flow->in_port by
2630 * the "real" port, sets flow->vlan_tci correctly for the VLAN of the VLAN
2631 * splinter port, and pushes a VLAN header onto 'packet' (if it is nonnull).
2632 *
2633 * Sets '*initial_tci' to the VLAN TCI with which the packet was really
2634 * received, that is, the actual VLAN TCI extracted by odp_flow_key_to_flow().
2635 * (This differs from the value returned in flow->vlan_tci only for packets
2636 * received on VLAN splinters.)
2637 */
2638 static enum odp_key_fitness
2639 ofproto_dpif_extract_flow_key(const struct ofproto_dpif *ofproto,
2640 const struct nlattr *key, size_t key_len,
2641 struct flow *flow, ovs_be16 *initial_tci,
2642 struct ofpbuf *packet)
2643 {
2644 enum odp_key_fitness fitness;
2645 uint16_t realdev;
2646 int vid;
2647
2648 fitness = odp_flow_key_to_flow(key, key_len, flow);
2649 if (fitness == ODP_FIT_ERROR) {
2650 return fitness;
2651 }
2652 *initial_tci = flow->vlan_tci;
2653
2654 realdev = vsp_vlandev_to_realdev(ofproto, flow->in_port, &vid);
2655 if (realdev) {
2656 /* Cause the flow to be processed as if it came in on the real device
2657 * with the VLAN device's VLAN ID. */
2658 flow->in_port = realdev;
2659 flow->vlan_tci = htons((vid & VLAN_VID_MASK) | VLAN_CFI);
2660 if (packet) {
2661 /* Make the packet resemble the flow, so that it gets sent to an
2662 * OpenFlow controller properly, so that it looks correct for
2663 * sFlow, and so that flow_extract() will get the correct vlan_tci
2664 * if it is called on 'packet'.
2665 *
2666 * The allocated space inside 'packet' probably also contains
2667 * 'key', that is, both 'packet' and 'key' are probably part of a
2668 * struct dpif_upcall (see the large comment on that structure
2669 * definition), so pushing data on 'packet' is in general not a
2670 * good idea since it could overwrite 'key' or free it as a side
2671 * effect. However, it's OK in this special case because we know
2672 * that 'packet' is inside a Netlink attribute: pushing 4 bytes
2673 * will just overwrite the 4-byte "struct nlattr", which is fine
2674 * since we don't need that header anymore. */
2675 eth_push_vlan(packet, flow->vlan_tci);
2676 }
2677
2678 /* Let the caller know that we can't reproduce 'key' from 'flow'. */
2679 if (fitness == ODP_FIT_PERFECT) {
2680 fitness = ODP_FIT_TOO_MUCH;
2681 }
2682 }
2683
2684 return fitness;
2685 }
2686
2687 static void
2688 handle_miss_upcalls(struct ofproto_dpif *ofproto, struct dpif_upcall *upcalls,
2689 size_t n_upcalls)
2690 {
2691 struct dpif_upcall *upcall;
2692 struct flow_miss *miss, *next_miss;
2693 struct flow_miss_op flow_miss_ops[FLOW_MISS_MAX_BATCH * 2];
2694 union dpif_op *dpif_ops[FLOW_MISS_MAX_BATCH * 2];
2695 struct hmap todo;
2696 size_t n_ops;
2697 size_t i;
2698
2699 if (!n_upcalls) {
2700 return;
2701 }
2702
2703 /* Construct the to-do list.
2704 *
2705 * This just amounts to extracting the flow from each packet and sticking
2706 * the packets that have the same flow in the same "flow_miss" structure so
2707 * that we can process them together. */
2708 hmap_init(&todo);
2709 for (upcall = upcalls; upcall < &upcalls[n_upcalls]; upcall++) {
2710 enum odp_key_fitness fitness;
2711 struct flow_miss *miss;
2712 ovs_be16 initial_tci;
2713 struct flow flow;
2714
2715 /* Obtain metadata and check userspace/kernel agreement on flow match,
2716 * then set 'flow''s header pointers. */
2717 fitness = ofproto_dpif_extract_flow_key(ofproto,
2718 upcall->key, upcall->key_len,
2719 &flow, &initial_tci,
2720 upcall->packet);
2721 if (fitness == ODP_FIT_ERROR) {
2722 ofpbuf_delete(upcall->packet);
2723 continue;
2724 }
2725 flow_extract(upcall->packet, flow.skb_priority, flow.tun_id,
2726 flow.in_port, &flow);
2727
2728 /* Handle 802.1ag, LACP, and STP specially. */
2729 if (process_special(ofproto, &flow, upcall->packet)) {
2730 ofproto_update_local_port_stats(&ofproto->up,
2731 0, upcall->packet->size);
2732 ofpbuf_delete(upcall->packet);
2733 ofproto->n_matches++;
2734 continue;
2735 }
2736
2737 /* Add other packets to a to-do list. */
2738 miss = flow_miss_create(&todo, &flow, fitness,
2739 upcall->key, upcall->key_len, initial_tci);
2740 list_push_back(&miss->packets, &upcall->packet->list_node);
2741 }
2742
2743 /* Process each element in the to-do list, constructing the set of
2744 * operations to batch. */
2745 n_ops = 0;
2746 HMAP_FOR_EACH_SAFE (miss, next_miss, hmap_node, &todo) {
2747 handle_flow_miss(ofproto, miss, flow_miss_ops, &n_ops);
2748 ofpbuf_list_delete(&miss->packets);
2749 hmap_remove(&todo, &miss->hmap_node);
2750 free(miss);
2751 }
2752 assert(n_ops <= ARRAY_SIZE(flow_miss_ops));
2753 hmap_destroy(&todo);
2754
2755 /* Execute batch. */
2756 for (i = 0; i < n_ops; i++) {
2757 dpif_ops[i] = &flow_miss_ops[i].dpif_op;
2758 }
2759 dpif_operate(ofproto->dpif, dpif_ops, n_ops);
2760
2761 /* Free memory and update facets. */
2762 for (i = 0; i < n_ops; i++) {
2763 struct flow_miss_op *op = &flow_miss_ops[i];
2764 struct dpif_execute *execute;
2765 struct dpif_flow_put *put;
2766
2767 switch (op->dpif_op.type) {
2768 case DPIF_OP_EXECUTE:
2769 execute = &op->dpif_op.execute;
2770 if (op->subfacet->actions != execute->actions) {
2771 free((struct nlattr *) execute->actions);
2772 }
2773 ofpbuf_delete((struct ofpbuf *) execute->packet);
2774 break;
2775
2776 case DPIF_OP_FLOW_PUT:
2777 put = &op->dpif_op.flow_put;
2778 if (!put->error) {
2779 op->subfacet->installed = true;
2780 }
2781 break;
2782 }
2783 }
2784 }
2785
2786 static void
2787 handle_userspace_upcall(struct ofproto_dpif *ofproto,
2788 struct dpif_upcall *upcall)
2789 {
2790 struct user_action_cookie cookie;
2791 enum odp_key_fitness fitness;
2792 ovs_be16 initial_tci;
2793 struct flow flow;
2794
2795 memcpy(&cookie, &upcall->userdata, sizeof(cookie));
2796
2797 fitness = ofproto_dpif_extract_flow_key(ofproto, upcall->key,
2798 upcall->key_len, &flow,
2799 &initial_tci, upcall->packet);
2800 if (fitness == ODP_FIT_ERROR) {
2801 ofpbuf_delete(upcall->packet);
2802 return;
2803 }
2804
2805 if (cookie.type == USER_ACTION_COOKIE_SFLOW) {
2806 if (ofproto->sflow) {
2807 dpif_sflow_received(ofproto->sflow, upcall->packet, &flow,
2808 &cookie);
2809 }
2810 } else if (cookie.type == USER_ACTION_COOKIE_CONTROLLER) {
2811 COVERAGE_INC(ofproto_dpif_ctlr_action);
2812 send_packet_in_action(ofproto, upcall->packet, upcall->userdata,
2813 &flow);
2814 } else {
2815 VLOG_WARN_RL(&rl, "invalid user cookie : 0x%"PRIx64, upcall->userdata);
2816 }
2817 ofpbuf_delete(upcall->packet);
2818 }
2819
2820 static int
2821 handle_upcalls(struct ofproto_dpif *ofproto, unsigned int max_batch)
2822 {
2823 struct dpif_upcall misses[FLOW_MISS_MAX_BATCH];
2824 int n_misses;
2825 int i;
2826
2827 assert (max_batch <= FLOW_MISS_MAX_BATCH);
2828
2829 n_misses = 0;
2830 for (i = 0; i < max_batch; i++) {
2831 struct dpif_upcall *upcall = &misses[n_misses];
2832 int error;
2833
2834 error = dpif_recv(ofproto->dpif, upcall);
2835 if (error) {
2836 break;
2837 }
2838
2839 switch (upcall->type) {
2840 case DPIF_UC_ACTION:
2841 handle_userspace_upcall(ofproto, upcall);
2842 break;
2843
2844 case DPIF_UC_MISS:
2845 /* Handle it later. */
2846 n_misses++;
2847 break;
2848
2849 case DPIF_N_UC_TYPES:
2850 default:
2851 VLOG_WARN_RL(&rl, "upcall has unexpected type %"PRIu32,
2852 upcall->type);
2853 break;
2854 }
2855 }
2856
2857 handle_miss_upcalls(ofproto, misses, n_misses);
2858
2859 return i;
2860 }
2861 \f
2862 /* Flow expiration. */
2863
2864 static int subfacet_max_idle(const struct ofproto_dpif *);
2865 static void update_stats(struct ofproto_dpif *);
2866 static void rule_expire(struct rule_dpif *);
2867 static void expire_subfacets(struct ofproto_dpif *, int dp_max_idle);
2868
2869 /* This function is called periodically by run(). Its job is to collect
2870 * updates for the flows that have been installed into the datapath, most
2871 * importantly when they last were used, and then use that information to
2872 * expire flows that have not been used recently.
2873 *
2874 * Returns the number of milliseconds after which it should be called again. */
2875 static int
2876 expire(struct ofproto_dpif *ofproto)
2877 {
2878 struct rule_dpif *rule, *next_rule;
2879 struct classifier *table;
2880 int dp_max_idle;
2881
2882 /* Update stats for each flow in the datapath. */
2883 update_stats(ofproto);
2884
2885 /* Expire subfacets that have been idle too long. */
2886 dp_max_idle = subfacet_max_idle(ofproto);
2887 expire_subfacets(ofproto, dp_max_idle);
2888
2889 /* Expire OpenFlow flows whose idle_timeout or hard_timeout has passed. */
2890 OFPROTO_FOR_EACH_TABLE (table, &ofproto->up) {
2891 struct cls_cursor cursor;
2892
2893 cls_cursor_init(&cursor, table, NULL);
2894 CLS_CURSOR_FOR_EACH_SAFE (rule, next_rule, up.cr, &cursor) {
2895 rule_expire(rule);
2896 }
2897 }
2898
2899 /* All outstanding data in existing flows has been accounted, so it's a
2900 * good time to do bond rebalancing. */
2901 if (ofproto->has_bonded_bundles) {
2902 struct ofbundle *bundle;
2903
2904 HMAP_FOR_EACH (bundle, hmap_node, &ofproto->bundles) {
2905 if (bundle->bond) {
2906 bond_rebalance(bundle->bond, &ofproto->revalidate_set);
2907 }
2908 }
2909 }
2910
2911 return MIN(dp_max_idle, 1000);
2912 }
2913
2914 /* Update 'packet_count', 'byte_count', and 'used' members of installed facets.
2915 *
2916 * This function also pushes statistics updates to rules which each facet
2917 * resubmits into. Generally these statistics will be accurate. However, if a
2918 * facet changes the rule it resubmits into at some time in between
2919 * update_stats() runs, it is possible that statistics accrued to the
2920 * old rule will be incorrectly attributed to the new rule. This could be
2921 * avoided by calling update_stats() whenever rules are created or
2922 * deleted. However, the performance impact of making so many calls to the
2923 * datapath do not justify the benefit of having perfectly accurate statistics.
2924 */
2925 static void
2926 update_stats(struct ofproto_dpif *p)
2927 {
2928 const struct dpif_flow_stats *stats;
2929 struct dpif_flow_dump dump;
2930 const struct nlattr *key;
2931 size_t key_len;
2932
2933 dpif_flow_dump_start(&dump, p->dpif);
2934 while (dpif_flow_dump_next(&dump, &key, &key_len, NULL, NULL, &stats)) {
2935 struct subfacet *subfacet;
2936
2937 subfacet = subfacet_find(p, key, key_len);
2938 if (subfacet && subfacet->installed) {
2939 struct facet *facet = subfacet->facet;
2940
2941 if (stats->n_packets >= subfacet->dp_packet_count) {
2942 uint64_t extra = stats->n_packets - subfacet->dp_packet_count;
2943 facet->packet_count += extra;
2944 } else {
2945 VLOG_WARN_RL(&rl, "unexpected packet count from the datapath");
2946 }
2947
2948 if (stats->n_bytes >= subfacet->dp_byte_count) {
2949 facet->byte_count += stats->n_bytes - subfacet->dp_byte_count;
2950 } else {
2951 VLOG_WARN_RL(&rl, "unexpected byte count from datapath");
2952 }
2953
2954 subfacet->dp_packet_count = stats->n_packets;
2955 subfacet->dp_byte_count = stats->n_bytes;
2956
2957 subfacet_update_time(p, subfacet, stats->used);
2958 facet_account(p, facet);
2959 facet_push_stats(facet);
2960 } else {
2961 if (!VLOG_DROP_WARN(&rl)) {
2962 struct ds s;
2963
2964 ds_init(&s);
2965 odp_flow_key_format(key, key_len, &s);
2966 VLOG_WARN("unexpected flow from datapath %s", ds_cstr(&s));
2967 ds_destroy(&s);
2968 }
2969
2970 COVERAGE_INC(facet_unexpected);
2971 /* There's a flow in the datapath that we know nothing about, or a
2972 * flow that shouldn't be installed but was anyway. Delete it. */
2973 dpif_flow_del(p->dpif, key, key_len, NULL);
2974 }
2975 }
2976 dpif_flow_dump_done(&dump);
2977 }
2978
2979 /* Calculates and returns the number of milliseconds of idle time after which
2980 * subfacets should expire from the datapath. When a subfacet expires, we fold
2981 * its statistics into its facet, and when a facet's last subfacet expires, we
2982 * fold its statistic into its rule. */
2983 static int
2984 subfacet_max_idle(const struct ofproto_dpif *ofproto)
2985 {
2986 /*
2987 * Idle time histogram.
2988 *
2989 * Most of the time a switch has a relatively small number of subfacets.
2990 * When this is the case we might as well keep statistics for all of them
2991 * in userspace and to cache them in the kernel datapath for performance as
2992 * well.
2993 *
2994 * As the number of subfacets increases, the memory required to maintain
2995 * statistics about them in userspace and in the kernel becomes
2996 * significant. However, with a large number of subfacets it is likely
2997 * that only a few of them are "heavy hitters" that consume a large amount
2998 * of bandwidth. At this point, only heavy hitters are worth caching in
2999 * the kernel and maintaining in userspaces; other subfacets we can
3000 * discard.
3001 *
3002 * The technique used to compute the idle time is to build a histogram with
3003 * N_BUCKETS buckets whose width is BUCKET_WIDTH msecs each. Each subfacet
3004 * that is installed in the kernel gets dropped in the appropriate bucket.
3005 * After the histogram has been built, we compute the cutoff so that only
3006 * the most-recently-used 1% of subfacets (but at least
3007 * ofproto->up.flow_eviction_threshold flows) are kept cached. At least
3008 * the most-recently-used bucket of subfacets is kept, so actually an
3009 * arbitrary number of subfacets can be kept in any given expiration run
3010 * (though the next run will delete most of those unless they receive
3011 * additional data).
3012 *
3013 * This requires a second pass through the subfacets, in addition to the
3014 * pass made by update_stats(), because the former function never looks at
3015 * uninstallable subfacets.
3016 */
3017 enum { BUCKET_WIDTH = ROUND_UP(100, TIME_UPDATE_INTERVAL) };
3018 enum { N_BUCKETS = 5000 / BUCKET_WIDTH };
3019 int buckets[N_BUCKETS] = { 0 };
3020 int total, subtotal, bucket;
3021 struct subfacet *subfacet;
3022 long long int now;
3023 int i;
3024
3025 total = hmap_count(&ofproto->subfacets);
3026 if (total <= ofproto->up.flow_eviction_threshold) {
3027 return N_BUCKETS * BUCKET_WIDTH;
3028 }
3029
3030 /* Build histogram. */
3031 now = time_msec();
3032 HMAP_FOR_EACH (subfacet, hmap_node, &ofproto->subfacets) {
3033 long long int idle = now - subfacet->used;
3034 int bucket = (idle <= 0 ? 0
3035 : idle >= BUCKET_WIDTH * N_BUCKETS ? N_BUCKETS - 1
3036 : (unsigned int) idle / BUCKET_WIDTH);
3037 buckets[bucket]++;
3038 }
3039
3040 /* Find the first bucket whose flows should be expired. */
3041 subtotal = bucket = 0;
3042 do {
3043 subtotal += buckets[bucket++];
3044 } while (bucket < N_BUCKETS &&
3045 subtotal < MAX(ofproto->up.flow_eviction_threshold, total / 100));
3046
3047 if (VLOG_IS_DBG_ENABLED()) {
3048 struct ds s;
3049
3050 ds_init(&s);
3051 ds_put_cstr(&s, "keep");
3052 for (i = 0; i < N_BUCKETS; i++) {
3053 if (i == bucket) {
3054 ds_put_cstr(&s, ", drop");
3055 }
3056 if (buckets[i]) {
3057 ds_put_format(&s, " %d:%d", i * BUCKET_WIDTH, buckets[i]);
3058 }
3059 }
3060 VLOG_INFO("%s: %s (msec:count)", ofproto->up.name, ds_cstr(&s));
3061 ds_destroy(&s);
3062 }
3063
3064 return bucket * BUCKET_WIDTH;
3065 }
3066
3067 static void
3068 expire_subfacets(struct ofproto_dpif *ofproto, int dp_max_idle)
3069 {
3070 long long int cutoff = time_msec() - dp_max_idle;
3071 struct subfacet *subfacet, *next_subfacet;
3072
3073 HMAP_FOR_EACH_SAFE (subfacet, next_subfacet, hmap_node,
3074 &ofproto->subfacets) {
3075 if (subfacet->used < cutoff) {
3076 subfacet_destroy(ofproto, subfacet);
3077 }
3078 }
3079 }
3080
3081 /* If 'rule' is an OpenFlow rule, that has expired according to OpenFlow rules,
3082 * then delete it entirely. */
3083 static void
3084 rule_expire(struct rule_dpif *rule)
3085 {
3086 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
3087 struct facet *facet, *next_facet;
3088 long long int now;
3089 uint8_t reason;
3090
3091 /* Has 'rule' expired? */
3092 now = time_msec();
3093 if (rule->up.hard_timeout
3094 && now > rule->up.modified + rule->up.hard_timeout * 1000) {
3095 reason = OFPRR_HARD_TIMEOUT;
3096 } else if (rule->up.idle_timeout && list_is_empty(&rule->facets)
3097 && now > rule->used + rule->up.idle_timeout * 1000) {
3098 reason = OFPRR_IDLE_TIMEOUT;
3099 } else {
3100 return;
3101 }
3102
3103 COVERAGE_INC(ofproto_dpif_expired);
3104
3105 /* Update stats. (This is a no-op if the rule expired due to an idle
3106 * timeout, because that only happens when the rule has no facets left.) */
3107 LIST_FOR_EACH_SAFE (facet, next_facet, list_node, &rule->facets) {
3108 facet_remove(ofproto, facet);
3109 }
3110
3111 /* Get rid of the rule. */
3112 ofproto_rule_expire(&rule->up, reason);
3113 }
3114 \f
3115 /* Facets. */
3116
3117 /* Creates and returns a new facet owned by 'rule', given a 'flow'.
3118 *
3119 * The caller must already have determined that no facet with an identical
3120 * 'flow' exists in 'ofproto' and that 'flow' is the best match for 'rule' in
3121 * the ofproto's classifier table.
3122 *
3123 * The facet will initially have no subfacets. The caller should create (at
3124 * least) one subfacet with subfacet_create(). */
3125 static struct facet *
3126 facet_create(struct rule_dpif *rule, const struct flow *flow)
3127 {
3128 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
3129 struct facet *facet;
3130
3131 facet = xzalloc(sizeof *facet);
3132 facet->used = time_msec();
3133 hmap_insert(&ofproto->facets, &facet->hmap_node, flow_hash(flow, 0));
3134 list_push_back(&rule->facets, &facet->list_node);
3135 facet->rule = rule;
3136 facet->flow = *flow;
3137 list_init(&facet->subfacets);
3138 netflow_flow_init(&facet->nf_flow);
3139 netflow_flow_update_time(ofproto->netflow, &facet->nf_flow, facet->used);
3140
3141 return facet;
3142 }
3143
3144 static void
3145 facet_free(struct facet *facet)
3146 {
3147 free(facet);
3148 }
3149
3150 /* If the 'actions_len' bytes of actions in 'odp_actions' are just a single
3151 * OVS_ACTION_ATTR_USERSPACE action, executes it internally and returns true.
3152 * Otherwise, returns false without doing anything. */
3153 static bool
3154 execute_controller_action(struct ofproto_dpif *ofproto,
3155 const struct flow *flow,
3156 const struct nlattr *odp_actions, size_t actions_len,
3157 struct ofpbuf *packet)
3158 {
3159 if (actions_len
3160 && odp_actions->nla_type == OVS_ACTION_ATTR_USERSPACE
3161 && NLA_ALIGN(odp_actions->nla_len) == actions_len) {
3162 /* As an optimization, avoid a round-trip from userspace to kernel to
3163 * userspace. This also avoids possibly filling up kernel packet
3164 * buffers along the way.
3165 *
3166 * This optimization will not accidentally catch sFlow
3167 * OVS_ACTION_ATTR_USERSPACE actions, since those are encapsulated
3168 * inside OVS_ACTION_ATTR_SAMPLE. */
3169 const struct nlattr *nla;
3170
3171 nla = nl_attr_find_nested(odp_actions, OVS_USERSPACE_ATTR_USERDATA);
3172 send_packet_in_action(ofproto, packet, nl_attr_get_u64(nla), flow);
3173 return true;
3174 } else {
3175 return false;
3176 }
3177 }
3178
3179 /* Executes, within 'ofproto', the 'n_actions' actions in 'actions' on
3180 * 'packet', which arrived on 'in_port'.
3181 *
3182 * Takes ownership of 'packet'. */
3183 static bool
3184 execute_odp_actions(struct ofproto_dpif *ofproto, const struct flow *flow,
3185 const struct nlattr *odp_actions, size_t actions_len,
3186 struct ofpbuf *packet)
3187 {
3188 struct odputil_keybuf keybuf;
3189 struct ofpbuf key;
3190 int error;
3191
3192 if (execute_controller_action(ofproto, flow, odp_actions, actions_len,
3193 packet)) {
3194 ofpbuf_delete(packet);
3195 return true;
3196 }
3197
3198 ofpbuf_use_stack(&key, &keybuf, sizeof keybuf);
3199 odp_flow_key_from_flow(&key, flow);
3200
3201 error = dpif_execute(ofproto->dpif, key.data, key.size,
3202 odp_actions, actions_len, packet);
3203
3204 ofpbuf_delete(packet);
3205 return !error;
3206 }
3207
3208 /* Remove 'facet' from 'ofproto' and free up the associated memory:
3209 *
3210 * - If 'facet' was installed in the datapath, uninstalls it and updates its
3211 * rule's statistics, via subfacet_uninstall().
3212 *
3213 * - Removes 'facet' from its rule and from ofproto->facets.
3214 */
3215 static void
3216 facet_remove(struct ofproto_dpif *ofproto, struct facet *facet)
3217 {
3218 struct subfacet *subfacet, *next_subfacet;
3219
3220 assert(!list_is_empty(&facet->subfacets));
3221
3222 /* First uninstall all of the subfacets to get final statistics. */
3223 LIST_FOR_EACH (subfacet, list_node, &facet->subfacets) {
3224 subfacet_uninstall(ofproto, subfacet);
3225 }
3226
3227 /* Flush the final stats to the rule.
3228 *
3229 * This might require us to have at least one subfacet around so that we
3230 * can use its actions for accounting in facet_account(), which is why we
3231 * have uninstalled but not yet destroyed the subfacets. */
3232 facet_flush_stats(ofproto, facet);
3233
3234 /* Now we're really all done so destroy everything. */
3235 LIST_FOR_EACH_SAFE (subfacet, next_subfacet, list_node,
3236 &facet->subfacets) {
3237 subfacet_destroy__(ofproto, subfacet);
3238 }
3239 hmap_remove(&ofproto->facets, &facet->hmap_node);
3240 list_remove(&facet->list_node);
3241 facet_free(facet);
3242 }
3243
3244 static void
3245 facet_account(struct ofproto_dpif *ofproto, struct facet *facet)
3246 {
3247 uint64_t n_bytes;
3248 struct subfacet *subfacet;
3249 const struct nlattr *a;
3250 unsigned int left;
3251 ovs_be16 vlan_tci;
3252
3253 if (facet->byte_count <= facet->accounted_bytes) {
3254 return;
3255 }
3256 n_bytes = facet->byte_count - facet->accounted_bytes;
3257 facet->accounted_bytes = facet->byte_count;
3258
3259 /* Feed information from the active flows back into the learning table to
3260 * ensure that table is always in sync with what is actually flowing
3261 * through the datapath. */
3262 if (facet->has_learn || facet->has_normal) {
3263 struct action_xlate_ctx ctx;
3264
3265 action_xlate_ctx_init(&ctx, ofproto, &facet->flow,
3266 facet->flow.vlan_tci, NULL);
3267 ctx.may_learn = true;
3268 ofpbuf_delete(xlate_actions(&ctx, facet->rule->up.actions,
3269 facet->rule->up.n_actions));
3270 }
3271
3272 if (!facet->has_normal || !ofproto->has_bonded_bundles) {
3273 return;
3274 }
3275
3276 /* This loop feeds byte counters to bond_account() for rebalancing to use
3277 * as a basis. We also need to track the actual VLAN on which the packet
3278 * is going to be sent to ensure that it matches the one passed to
3279 * bond_choose_output_slave(). (Otherwise, we will account to the wrong
3280 * hash bucket.)
3281 *
3282 * We use the actions from an arbitrary subfacet because they should all
3283 * be equally valid for our purpose. */
3284 subfacet = CONTAINER_OF(list_front(&facet->subfacets),
3285 struct subfacet, list_node);
3286 vlan_tci = facet->flow.vlan_tci;
3287 NL_ATTR_FOR_EACH_UNSAFE (a, left,
3288 subfacet->actions, subfacet->actions_len) {
3289 const struct ovs_action_push_vlan *vlan;
3290 struct ofport_dpif *port;
3291
3292 switch (nl_attr_type(a)) {
3293 case OVS_ACTION_ATTR_OUTPUT:
3294 port = get_odp_port(ofproto, nl_attr_get_u32(a));
3295 if (port && port->bundle && port->bundle->bond) {
3296 bond_account(port->bundle->bond, &facet->flow,
3297 vlan_tci_to_vid(vlan_tci), n_bytes);
3298 }
3299 break;
3300
3301 case OVS_ACTION_ATTR_POP_VLAN:
3302 vlan_tci = htons(0);
3303 break;
3304
3305 case OVS_ACTION_ATTR_PUSH_VLAN:
3306 vlan = nl_attr_get(a);
3307 vlan_tci = vlan->vlan_tci;
3308 break;
3309 }
3310 }
3311 }
3312
3313 /* Returns true if the only action for 'facet' is to send to the controller.
3314 * (We don't report NetFlow expiration messages for such facets because they
3315 * are just part of the control logic for the network, not real traffic). */
3316 static bool
3317 facet_is_controller_flow(struct facet *facet)
3318 {
3319 return (facet
3320 && facet->rule->up.n_actions == 1
3321 && action_outputs_to_port(&facet->rule->up.actions[0],
3322 htons(OFPP_CONTROLLER)));
3323 }
3324
3325 /* Folds all of 'facet''s statistics into its rule. Also updates the
3326 * accounting ofhook and emits a NetFlow expiration if appropriate. All of
3327 * 'facet''s statistics in the datapath should have been zeroed and folded into
3328 * its packet and byte counts before this function is called. */
3329 static void
3330 facet_flush_stats(struct ofproto_dpif *ofproto, struct facet *facet)
3331 {
3332 struct subfacet *subfacet;
3333
3334 LIST_FOR_EACH (subfacet, list_node, &facet->subfacets) {
3335 assert(!subfacet->dp_byte_count);
3336 assert(!subfacet->dp_packet_count);
3337 }
3338
3339 facet_push_stats(facet);
3340 facet_account(ofproto, facet);
3341
3342 if (ofproto->netflow && !facet_is_controller_flow(facet)) {
3343 struct ofexpired expired;
3344 expired.flow = facet->flow;
3345 expired.packet_count = facet->packet_count;
3346 expired.byte_count = facet->byte_count;
3347 expired.used = facet->used;
3348 netflow_expire(ofproto->netflow, &facet->nf_flow, &expired);
3349 }
3350
3351 facet->rule->packet_count += facet->packet_count;
3352 facet->rule->byte_count += facet->byte_count;
3353
3354 /* Reset counters to prevent double counting if 'facet' ever gets
3355 * reinstalled. */
3356 facet_reset_counters(facet);
3357
3358 netflow_flow_clear(&facet->nf_flow);
3359 }
3360
3361 /* Searches 'ofproto''s table of facets for one exactly equal to 'flow'.
3362 * Returns it if found, otherwise a null pointer.
3363 *
3364 * The returned facet might need revalidation; use facet_lookup_valid()
3365 * instead if that is important. */
3366 static struct facet *
3367 facet_find(struct ofproto_dpif *ofproto, const struct flow *flow)
3368 {
3369 struct facet *facet;
3370
3371 HMAP_FOR_EACH_WITH_HASH (facet, hmap_node, flow_hash(flow, 0),
3372 &ofproto->facets) {
3373 if (flow_equal(flow, &facet->flow)) {
3374 return facet;
3375 }
3376 }
3377
3378 return NULL;
3379 }
3380
3381 /* Searches 'ofproto''s table of facets for one exactly equal to 'flow'.
3382 * Returns it if found, otherwise a null pointer.
3383 *
3384 * The returned facet is guaranteed to be valid. */
3385 static struct facet *
3386 facet_lookup_valid(struct ofproto_dpif *ofproto, const struct flow *flow)
3387 {
3388 struct facet *facet = facet_find(ofproto, flow);
3389
3390 /* The facet we found might not be valid, since we could be in need of
3391 * revalidation. If it is not valid, don't return it. */
3392 if (facet
3393 && (ofproto->need_revalidate
3394 || tag_set_intersects(&ofproto->revalidate_set, facet->tags))
3395 && !facet_revalidate(ofproto, facet)) {
3396 COVERAGE_INC(facet_invalidated);
3397 return NULL;
3398 }
3399
3400 return facet;
3401 }
3402
3403 /* Re-searches 'ofproto''s classifier for a rule matching 'facet':
3404 *
3405 * - If the rule found is different from 'facet''s current rule, moves
3406 * 'facet' to the new rule and recompiles its actions.
3407 *
3408 * - If the rule found is the same as 'facet''s current rule, leaves 'facet'
3409 * where it is and recompiles its actions anyway.
3410 *
3411 * - If there is none, destroys 'facet'.
3412 *
3413 * Returns true if 'facet' still exists, false if it has been destroyed. */
3414 static bool
3415 facet_revalidate(struct ofproto_dpif *ofproto, struct facet *facet)
3416 {
3417 struct actions {
3418 struct nlattr *odp_actions;
3419 size_t actions_len;
3420 };
3421 struct actions *new_actions;
3422
3423 struct action_xlate_ctx ctx;
3424 struct rule_dpif *new_rule;
3425 struct subfacet *subfacet;
3426 bool actions_changed;
3427 int i;
3428
3429 COVERAGE_INC(facet_revalidate);
3430
3431 /* Determine the new rule. */
3432 new_rule = rule_dpif_lookup(ofproto, &facet->flow, 0);
3433 if (!new_rule) {
3434 /* No new rule, so delete the facet. */
3435 facet_remove(ofproto, facet);
3436 return false;
3437 }
3438
3439 /* Calculate new datapath actions.
3440 *
3441 * We do not modify any 'facet' state yet, because we might need to, e.g.,
3442 * emit a NetFlow expiration and, if so, we need to have the old state
3443 * around to properly compose it. */
3444
3445 /* If the datapath actions changed or the installability changed,
3446 * then we need to talk to the datapath. */
3447 i = 0;
3448 new_actions = NULL;
3449 memset(&ctx, 0, sizeof ctx);
3450 LIST_FOR_EACH (subfacet, list_node, &facet->subfacets) {
3451 struct ofpbuf *odp_actions;
3452 bool should_install;
3453
3454 action_xlate_ctx_init(&ctx, ofproto, &facet->flow,
3455 subfacet->initial_tci, NULL);
3456 odp_actions = xlate_actions(&ctx, new_rule->up.actions,
3457 new_rule->up.n_actions);
3458 actions_changed = (subfacet->actions_len != odp_actions->size
3459 || memcmp(subfacet->actions, odp_actions->data,
3460 subfacet->actions_len));
3461
3462 should_install = (ctx.may_set_up_flow
3463 && subfacet->key_fitness != ODP_FIT_TOO_LITTLE);
3464 if (actions_changed || should_install != subfacet->installed) {
3465 if (should_install) {
3466 struct dpif_flow_stats stats;
3467
3468 subfacet_install(ofproto, subfacet,
3469 odp_actions->data, odp_actions->size, &stats);
3470 subfacet_update_stats(ofproto, subfacet, &stats);
3471 } else {
3472 subfacet_uninstall(ofproto, subfacet);
3473 }
3474
3475 if (!new_actions) {
3476 new_actions = xcalloc(list_size(&facet->subfacets),
3477 sizeof *new_actions);
3478 }
3479 new_actions[i].odp_actions = xmemdup(odp_actions->data,
3480 odp_actions->size);
3481 new_actions[i].actions_len = odp_actions->size;
3482 }
3483
3484 ofpbuf_delete(odp_actions);
3485 i++;
3486 }
3487 if (new_actions) {
3488 facet_flush_stats(ofproto, facet);
3489 }
3490
3491 /* Update 'facet' now that we've taken care of all the old state. */
3492 facet->tags = ctx.tags;
3493 facet->nf_flow.output_iface = ctx.nf_output_iface;
3494 facet->may_install = ctx.may_set_up_flow;
3495 facet->has_learn = ctx.has_learn;
3496 facet->has_normal = ctx.has_normal;
3497 facet->mirrors = ctx.mirrors;
3498 if (new_actions) {
3499 i = 0;
3500 LIST_FOR_EACH (subfacet, list_node, &facet->subfacets) {
3501 if (new_actions[i].odp_actions) {
3502 free(subfacet->actions);
3503 subfacet->actions = new_actions[i].odp_actions;
3504 subfacet->actions_len = new_actions[i].actions_len;
3505 }
3506 i++;
3507 }
3508 free(new_actions);
3509 }
3510 if (facet->rule != new_rule) {
3511 COVERAGE_INC(facet_changed_rule);
3512 list_remove(&facet->list_node);
3513 list_push_back(&new_rule->facets, &facet->list_node);
3514 facet->rule = new_rule;
3515 facet->used = new_rule->up.created;
3516 facet->prev_used = facet->used;
3517 }
3518
3519 return true;
3520 }
3521
3522 /* Updates 'facet''s used time. Caller is responsible for calling
3523 * facet_push_stats() to update the flows which 'facet' resubmits into. */
3524 static void
3525 facet_update_time(struct ofproto_dpif *ofproto, struct facet *facet,
3526 long long int used)
3527 {
3528 if (used > facet->used) {
3529 facet->used = used;
3530 if (used > facet->rule->used) {
3531 facet->rule->used = used;
3532 }
3533 netflow_flow_update_time(ofproto->netflow, &facet->nf_flow, used);
3534 }
3535 }
3536
3537 static void
3538 facet_reset_counters(struct facet *facet)
3539 {
3540 facet->packet_count = 0;
3541 facet->byte_count = 0;
3542 facet->prev_packet_count = 0;
3543 facet->prev_byte_count = 0;
3544 facet->accounted_bytes = 0;
3545 }
3546
3547 static void
3548 facet_push_stats(struct facet *facet)
3549 {
3550 uint64_t new_packets, new_bytes;
3551
3552 assert(facet->packet_count >= facet->prev_packet_count);
3553 assert(facet->byte_count >= facet->prev_byte_count);
3554 assert(facet->used >= facet->prev_used);
3555
3556 new_packets = facet->packet_count - facet->prev_packet_count;
3557 new_bytes = facet->byte_count - facet->prev_byte_count;
3558
3559 if (new_packets || new_bytes || facet->used > facet->prev_used) {
3560 facet->prev_packet_count = facet->packet_count;
3561 facet->prev_byte_count = facet->byte_count;
3562 facet->prev_used = facet->used;
3563
3564 flow_push_stats(facet->rule, &facet->flow,
3565 new_packets, new_bytes, facet->used);
3566
3567 update_mirror_stats(ofproto_dpif_cast(facet->rule->up.ofproto),
3568 facet->mirrors, new_packets, new_bytes);
3569 }
3570 }
3571
3572 struct ofproto_push {
3573 struct action_xlate_ctx ctx;
3574 uint64_t packets;
3575 uint64_t bytes;
3576 long long int used;
3577 };
3578
3579 static void
3580 push_resubmit(struct action_xlate_ctx *ctx, struct rule_dpif *rule)
3581 {
3582 struct ofproto_push *push = CONTAINER_OF(ctx, struct ofproto_push, ctx);
3583
3584 if (rule) {
3585 rule->packet_count += push->packets;
3586 rule->byte_count += push->bytes;
3587 rule->used = MAX(push->used, rule->used);
3588 }
3589 }
3590
3591 /* Pushes flow statistics to the rules which 'flow' resubmits into given
3592 * 'rule''s actions and mirrors. */
3593 static void
3594 flow_push_stats(const struct rule_dpif *rule,
3595 const struct flow *flow, uint64_t packets, uint64_t bytes,
3596 long long int used)
3597 {
3598 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
3599 struct ofproto_push push;
3600
3601 push.packets = packets;
3602 push.bytes = bytes;
3603 push.used = used;
3604
3605 action_xlate_ctx_init(&push.ctx, ofproto, flow, flow->vlan_tci, NULL);
3606 push.ctx.resubmit_hook = push_resubmit;
3607 ofpbuf_delete(xlate_actions(&push.ctx,
3608 rule->up.actions, rule->up.n_actions));
3609 }
3610 \f
3611 /* Subfacets. */
3612
3613 static struct subfacet *
3614 subfacet_find__(struct ofproto_dpif *ofproto,
3615 const struct nlattr *key, size_t key_len, uint32_t key_hash,
3616 const struct flow *flow)
3617 {
3618 struct subfacet *subfacet;
3619
3620 HMAP_FOR_EACH_WITH_HASH (subfacet, hmap_node, key_hash,
3621 &ofproto->subfacets) {
3622 if (subfacet->key
3623 ? (subfacet->key_len == key_len
3624 && !memcmp(key, subfacet->key, key_len))
3625 : flow_equal(flow, &subfacet->facet->flow)) {
3626 return subfacet;
3627 }
3628 }
3629
3630 return NULL;
3631 }
3632
3633 /* Searches 'facet' (within 'ofproto') for a subfacet with the specified
3634 * 'key_fitness', 'key', and 'key_len'. Returns the existing subfacet if
3635 * there is one, otherwise creates and returns a new subfacet.
3636 *
3637 * If the returned subfacet is new, then subfacet->actions will be NULL, in
3638 * which case the caller must populate the actions with
3639 * subfacet_make_actions(). */
3640 static struct subfacet *
3641 subfacet_create(struct ofproto_dpif *ofproto, struct facet *facet,
3642 enum odp_key_fitness key_fitness,
3643 const struct nlattr *key, size_t key_len, ovs_be16 initial_tci)
3644 {
3645 uint32_t key_hash = odp_flow_key_hash(key, key_len);
3646 struct subfacet *subfacet;
3647
3648 subfacet = subfacet_find__(ofproto, key, key_len, key_hash, &facet->flow);
3649 if (subfacet) {
3650 if (subfacet->facet == facet) {
3651 return subfacet;
3652 }
3653
3654 /* This shouldn't happen. */
3655 VLOG_ERR_RL(&rl, "subfacet with wrong facet");
3656 subfacet_destroy(ofproto, subfacet);
3657 }
3658
3659 subfacet = xzalloc(sizeof *subfacet);
3660 hmap_insert(&ofproto->subfacets, &subfacet->hmap_node, key_hash);
3661 list_push_back(&facet->subfacets, &subfacet->list_node);
3662 subfacet->facet = facet;
3663 subfacet->used = time_msec();
3664 subfacet->key_fitness = key_fitness;
3665 if (key_fitness != ODP_FIT_PERFECT) {
3666 subfacet->key = xmemdup(key, key_len);
3667 subfacet->key_len = key_len;
3668 }
3669 subfacet->installed = false;
3670 subfacet->initial_tci = initial_tci;
3671
3672 return subfacet;
3673 }
3674
3675 /* Searches 'ofproto' for a subfacet with the given 'key', 'key_len', and
3676 * 'flow'. Returns the subfacet if one exists, otherwise NULL. */
3677 static struct subfacet *
3678 subfacet_find(struct ofproto_dpif *ofproto,
3679 const struct nlattr *key, size_t key_len)
3680 {
3681 uint32_t key_hash = odp_flow_key_hash(key, key_len);
3682 enum odp_key_fitness fitness;
3683 struct flow flow;
3684
3685 fitness = odp_flow_key_to_flow(key, key_len, &flow);
3686 if (fitness == ODP_FIT_ERROR) {
3687 return NULL;
3688 }
3689
3690 return subfacet_find__(ofproto, key, key_len, key_hash, &flow);
3691 }
3692
3693 /* Uninstalls 'subfacet' from the datapath, if it is installed, removes it from
3694 * its facet within 'ofproto', and frees it. */
3695 static void
3696 subfacet_destroy__(struct ofproto_dpif *ofproto, struct subfacet *subfacet)
3697 {
3698 subfacet_uninstall(ofproto, subfacet);
3699 hmap_remove(&ofproto->subfacets, &subfacet->hmap_node);
3700 list_remove(&subfacet->list_node);
3701 free(subfacet->key);
3702 free(subfacet->actions);
3703 free(subfacet);
3704 }
3705
3706 /* Destroys 'subfacet', as with subfacet_destroy__(), and then if this was the
3707 * last remaining subfacet in its facet destroys the facet too. */
3708 static void
3709 subfacet_destroy(struct ofproto_dpif *ofproto, struct subfacet *subfacet)
3710 {
3711 struct facet *facet = subfacet->facet;
3712
3713 if (list_is_singleton(&facet->subfacets)) {
3714 /* facet_remove() needs at least one subfacet (it will remove it). */
3715 facet_remove(ofproto, facet);
3716 } else {
3717 subfacet_destroy__(ofproto, subfacet);
3718 }
3719 }
3720
3721 /* Initializes 'key' with the sequence of OVS_KEY_ATTR_* Netlink attributes
3722 * that can be used to refer to 'subfacet'. The caller must provide 'keybuf'
3723 * for use as temporary storage. */
3724 static void
3725 subfacet_get_key(struct subfacet *subfacet, struct odputil_keybuf *keybuf,
3726 struct ofpbuf *key)
3727 {
3728 if (!subfacet->key) {
3729 ofpbuf_use_stack(key, keybuf, sizeof *keybuf);
3730 odp_flow_key_from_flow(key, &subfacet->facet->flow);
3731 } else {
3732 ofpbuf_use_const(key, subfacet->key, subfacet->key_len);
3733 }
3734 }
3735
3736 /* Composes the datapath actions for 'subfacet' based on its rule's actions. */
3737 static void
3738 subfacet_make_actions(struct ofproto_dpif *p, struct subfacet *subfacet,
3739 const struct ofpbuf *packet)
3740 {
3741 struct facet *facet = subfacet->facet;
3742 const struct rule_dpif *rule = facet->rule;
3743 struct ofpbuf *odp_actions;
3744 struct action_xlate_ctx ctx;
3745
3746 action_xlate_ctx_init(&ctx, p, &facet->flow, subfacet->initial_tci,
3747 packet);
3748 odp_actions = xlate_actions(&ctx, rule->up.actions, rule->up.n_actions);
3749 facet->tags = ctx.tags;
3750 facet->may_install = ctx.may_set_up_flow;
3751 facet->has_learn = ctx.has_learn;
3752 facet->has_normal = ctx.has_normal;
3753 facet->nf_flow.output_iface = ctx.nf_output_iface;
3754 facet->mirrors = ctx.mirrors;
3755
3756 if (subfacet->actions_len != odp_actions->size
3757 || memcmp(subfacet->actions, odp_actions->data, odp_actions->size)) {
3758 free(subfacet->actions);
3759 subfacet->actions_len = odp_actions->size;
3760 subfacet->actions = xmemdup(odp_actions->data, odp_actions->size);
3761 }
3762
3763 ofpbuf_delete(odp_actions);
3764 }
3765
3766 /* Updates 'subfacet''s datapath flow, setting its actions to 'actions_len'
3767 * bytes of actions in 'actions'. If 'stats' is non-null, statistics counters
3768 * in the datapath will be zeroed and 'stats' will be updated with traffic new
3769 * since 'subfacet' was last updated.
3770 *
3771 * Returns 0 if successful, otherwise a positive errno value. */
3772 static int
3773 subfacet_install(struct ofproto_dpif *ofproto, struct subfacet *subfacet,
3774 const struct nlattr *actions, size_t actions_len,
3775 struct dpif_flow_stats *stats)
3776 {
3777 struct odputil_keybuf keybuf;
3778 enum dpif_flow_put_flags flags;
3779 struct ofpbuf key;
3780 int ret;
3781
3782 flags = DPIF_FP_CREATE | DPIF_FP_MODIFY;
3783 if (stats) {
3784 flags |= DPIF_FP_ZERO_STATS;
3785 }
3786
3787 subfacet_get_key(subfacet, &keybuf, &key);
3788 ret = dpif_flow_put(ofproto->dpif, flags, key.data, key.size,
3789 actions, actions_len, stats);
3790
3791 if (stats) {
3792 subfacet_reset_dp_stats(subfacet, stats);
3793 }
3794
3795 return ret;
3796 }
3797
3798 /* If 'subfacet' is installed in the datapath, uninstalls it. */
3799 static void
3800 subfacet_uninstall(struct ofproto_dpif *p, struct subfacet *subfacet)
3801 {
3802 if (subfacet->installed) {
3803 struct odputil_keybuf keybuf;
3804 struct dpif_flow_stats stats;
3805 struct ofpbuf key;
3806 int error;
3807
3808 subfacet_get_key(subfacet, &keybuf, &key);
3809 error = dpif_flow_del(p->dpif, key.data, key.size, &stats);
3810 subfacet_reset_dp_stats(subfacet, &stats);
3811 if (!error) {
3812 subfacet_update_stats(p, subfacet, &stats);
3813 }
3814 subfacet->installed = false;
3815 } else {
3816 assert(subfacet->dp_packet_count == 0);
3817 assert(subfacet->dp_byte_count == 0);
3818 }
3819 }
3820
3821 /* Resets 'subfacet''s datapath statistics counters. This should be called
3822 * when 'subfacet''s statistics are cleared in the datapath. If 'stats' is
3823 * non-null, it should contain the statistics returned by dpif when 'subfacet'
3824 * was reset in the datapath. 'stats' will be modified to include only
3825 * statistics new since 'subfacet' was last updated. */
3826 static void
3827 subfacet_reset_dp_stats(struct subfacet *subfacet,
3828 struct dpif_flow_stats *stats)
3829 {
3830 if (stats
3831 && subfacet->dp_packet_count <= stats->n_packets
3832 && subfacet->dp_byte_count <= stats->n_bytes) {
3833 stats->n_packets -= subfacet->dp_packet_count;
3834 stats->n_bytes -= subfacet->dp_byte_count;
3835 }
3836
3837 subfacet->dp_packet_count = 0;
3838 subfacet->dp_byte_count = 0;
3839 }
3840
3841 /* Updates 'subfacet''s used time. The caller is responsible for calling
3842 * facet_push_stats() to update the flows which 'subfacet' resubmits into. */
3843 static void
3844 subfacet_update_time(struct ofproto_dpif *ofproto, struct subfacet *subfacet,
3845 long long int used)
3846 {
3847 if (used > subfacet->used) {
3848 subfacet->used = used;
3849 facet_update_time(ofproto, subfacet->facet, used);
3850 }
3851 }
3852
3853 /* Folds the statistics from 'stats' into the counters in 'subfacet'.
3854 *
3855 * Because of the meaning of a subfacet's counters, it only makes sense to do
3856 * this if 'stats' are not tracked in the datapath, that is, if 'stats'
3857 * represents a packet that was sent by hand or if it represents statistics
3858 * that have been cleared out of the datapath. */
3859 static void
3860 subfacet_update_stats(struct ofproto_dpif *ofproto, struct subfacet *subfacet,
3861 const struct dpif_flow_stats *stats)
3862 {
3863 if (stats->n_packets || stats->used > subfacet->used) {
3864 struct facet *facet = subfacet->facet;
3865
3866 subfacet_update_time(ofproto, subfacet, stats->used);
3867 facet->packet_count += stats->n_packets;
3868 facet->byte_count += stats->n_bytes;
3869 facet_push_stats(facet);
3870 netflow_flow_update_flags(&facet->nf_flow, stats->tcp_flags);
3871 }
3872 }
3873 \f
3874 /* Rules. */
3875
3876 static struct rule_dpif *
3877 rule_dpif_lookup(struct ofproto_dpif *ofproto, const struct flow *flow,
3878 uint8_t table_id)
3879 {
3880 struct cls_rule *cls_rule;
3881 struct classifier *cls;
3882
3883 if (table_id >= N_TABLES) {
3884 return NULL;
3885 }
3886
3887 cls = &ofproto->up.tables[table_id];
3888 if (flow->nw_frag & FLOW_NW_FRAG_ANY
3889 && ofproto->up.frag_handling == OFPC_FRAG_NORMAL) {
3890 /* For OFPC_NORMAL frag_handling, we must pretend that transport ports
3891 * are unavailable. */
3892 struct flow ofpc_normal_flow = *flow;
3893 ofpc_normal_flow.tp_src = htons(0);
3894 ofpc_normal_flow.tp_dst = htons(0);
3895 cls_rule = classifier_lookup(cls, &ofpc_normal_flow);
3896 } else {
3897 cls_rule = classifier_lookup(cls, flow);
3898 }
3899 return rule_dpif_cast(rule_from_cls_rule(cls_rule));
3900 }
3901
3902 static void
3903 complete_operation(struct rule_dpif *rule)
3904 {
3905 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
3906
3907 rule_invalidate(rule);
3908 if (clogged) {
3909 struct dpif_completion *c = xmalloc(sizeof *c);
3910 c->op = rule->up.pending;
3911 list_push_back(&ofproto->completions, &c->list_node);
3912 } else {
3913 ofoperation_complete(rule->up.pending, 0);
3914 }
3915 }
3916
3917 static struct rule *
3918 rule_alloc(void)
3919 {
3920 struct rule_dpif *rule = xmalloc(sizeof *rule);
3921 return &rule->up;
3922 }
3923
3924 static void
3925 rule_dealloc(struct rule *rule_)
3926 {
3927 struct rule_dpif *rule = rule_dpif_cast(rule_);
3928 free(rule);
3929 }
3930
3931 static int
3932 rule_construct(struct rule *rule_)
3933 {
3934 struct rule_dpif *rule = rule_dpif_cast(rule_);
3935 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
3936 struct rule_dpif *victim;
3937 uint8_t table_id;
3938 int error;
3939
3940 error = validate_actions(rule->up.actions, rule->up.n_actions,
3941 &rule->up.cr.flow, ofproto->max_ports);
3942 if (error) {
3943 return error;
3944 }
3945
3946 rule->used = rule->up.created;
3947 rule->packet_count = 0;
3948 rule->byte_count = 0;
3949
3950 victim = rule_dpif_cast(ofoperation_get_victim(rule->up.pending));
3951 if (victim && !list_is_empty(&victim->facets)) {
3952 struct facet *facet;
3953
3954 rule->facets = victim->facets;
3955 list_moved(&rule->facets);
3956 LIST_FOR_EACH (facet, list_node, &rule->facets) {
3957 /* XXX: We're only clearing our local counters here. It's possible
3958 * that quite a few packets are unaccounted for in the datapath
3959 * statistics. These will be accounted to the new rule instead of
3960 * cleared as required. This could be fixed by clearing out the
3961 * datapath statistics for this facet, but currently it doesn't
3962 * seem worth it. */
3963 facet_reset_counters(facet);
3964 facet->rule = rule;
3965 }
3966 } else {
3967 /* Must avoid list_moved() in this case. */
3968 list_init(&rule->facets);
3969 }
3970
3971 table_id = rule->up.table_id;
3972 rule->tag = (victim ? victim->tag
3973 : table_id == 0 ? 0
3974 : rule_calculate_tag(&rule->up.cr.flow, &rule->up.cr.wc,
3975 ofproto->tables[table_id].basis));
3976
3977 complete_operation(rule);
3978 return 0;
3979 }
3980
3981 static void
3982 rule_destruct(struct rule *rule_)
3983 {
3984 struct rule_dpif *rule = rule_dpif_cast(rule_);
3985 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
3986 struct facet *facet, *next_facet;
3987
3988 LIST_FOR_EACH_SAFE (facet, next_facet, list_node, &rule->facets) {
3989 facet_revalidate(ofproto, facet);
3990 }
3991
3992 complete_operation(rule);
3993 }
3994
3995 static void
3996 rule_get_stats(struct rule *rule_, uint64_t *packets, uint64_t *bytes)
3997 {
3998 struct rule_dpif *rule = rule_dpif_cast(rule_);
3999 struct facet *facet;
4000
4001 /* Start from historical data for 'rule' itself that are no longer tracked
4002 * in facets. This counts, for example, facets that have expired. */
4003 *packets = rule->packet_count;
4004 *bytes = rule->byte_count;
4005
4006 /* Add any statistics that are tracked by facets. This includes
4007 * statistical data recently updated by ofproto_update_stats() as well as
4008 * stats for packets that were executed "by hand" via dpif_execute(). */
4009 LIST_FOR_EACH (facet, list_node, &rule->facets) {
4010 *packets += facet->packet_count;
4011 *bytes += facet->byte_count;
4012 }
4013 }
4014
4015 static int
4016 rule_execute(struct rule *rule_, const struct flow *flow,
4017 struct ofpbuf *packet)
4018 {
4019 struct rule_dpif *rule = rule_dpif_cast(rule_);
4020 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
4021 struct action_xlate_ctx ctx;
4022 struct ofpbuf *odp_actions;
4023 size_t size;
4024
4025 action_xlate_ctx_init(&ctx, ofproto, flow, flow->vlan_tci, packet);
4026 odp_actions = xlate_actions(&ctx, rule->up.actions, rule->up.n_actions);
4027 size = packet->size;
4028 if (execute_odp_actions(ofproto, flow, odp_actions->data,
4029 odp_actions->size, packet)) {
4030 rule->used = time_msec();
4031 rule->packet_count++;
4032 rule->byte_count += size;
4033 flow_push_stats(rule, flow, 1, size, rule->used);
4034 }
4035 ofpbuf_delete(odp_actions);
4036
4037 return 0;
4038 }
4039
4040 static void
4041 rule_modify_actions(struct rule *rule_)
4042 {
4043 struct rule_dpif *rule = rule_dpif_cast(rule_);
4044 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
4045 int error;
4046
4047 error = validate_actions(rule->up.actions, rule->up.n_actions,
4048 &rule->up.cr.flow, ofproto->max_ports);
4049 if (error) {
4050 ofoperation_complete(rule->up.pending, error);
4051 return;
4052 }
4053
4054 complete_operation(rule);
4055 }
4056 \f
4057 /* Sends 'packet' out 'ofport'.
4058 * May modify 'packet'.
4059 * Returns 0 if successful, otherwise a positive errno value. */
4060 static int
4061 send_packet(const struct ofport_dpif *ofport, struct ofpbuf *packet)
4062 {
4063 const struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
4064 struct ofpbuf key, odp_actions;
4065 struct odputil_keybuf keybuf;
4066 uint16_t odp_port;
4067 struct flow flow;
4068 int error;
4069
4070 flow_extract((struct ofpbuf *) packet, 0, 0, 0, &flow);
4071 odp_port = vsp_realdev_to_vlandev(ofproto, ofport->odp_port,
4072 flow.vlan_tci);
4073 if (odp_port != ofport->odp_port) {
4074 eth_pop_vlan(packet);
4075 flow.vlan_tci = htons(0);
4076 }
4077
4078 ofpbuf_use_stack(&key, &keybuf, sizeof keybuf);
4079 odp_flow_key_from_flow(&key, &flow);
4080
4081 ofpbuf_init(&odp_actions, 32);
4082 compose_sflow_action(ofproto, &odp_actions, &flow, odp_port);
4083
4084 nl_msg_put_u32(&odp_actions, OVS_ACTION_ATTR_OUTPUT, odp_port);
4085 error = dpif_execute(ofproto->dpif,
4086 key.data, key.size,
4087 odp_actions.data, odp_actions.size,
4088 packet);
4089 ofpbuf_uninit(&odp_actions);
4090
4091 if (error) {
4092 VLOG_WARN_RL(&rl, "%s: failed to send packet on port %"PRIu32" (%s)",
4093 ofproto->up.name, odp_port, strerror(error));
4094 }
4095 ofproto_update_local_port_stats(ofport->up.ofproto, packet->size, 0);
4096 return error;
4097 }
4098 \f
4099 /* OpenFlow to datapath action translation. */
4100
4101 static void do_xlate_actions(const union ofp_action *in, size_t n_in,
4102 struct action_xlate_ctx *ctx);
4103 static void xlate_normal(struct action_xlate_ctx *);
4104
4105 static size_t
4106 put_userspace_action(const struct ofproto_dpif *ofproto,
4107 struct ofpbuf *odp_actions,
4108 const struct flow *flow,
4109 const struct user_action_cookie *cookie)
4110 {
4111 uint32_t pid;
4112
4113 pid = dpif_port_get_pid(ofproto->dpif,
4114 ofp_port_to_odp_port(flow->in_port));
4115
4116 return odp_put_userspace_action(pid, cookie, odp_actions);
4117 }
4118
4119 /* Compose SAMPLE action for sFlow. */
4120 static size_t
4121 compose_sflow_action(const struct ofproto_dpif *ofproto,
4122 struct ofpbuf *odp_actions,
4123 const struct flow *flow,
4124 uint32_t odp_port)
4125 {
4126 uint32_t port_ifindex;
4127 uint32_t probability;
4128 struct user_action_cookie cookie;
4129 size_t sample_offset, actions_offset;
4130 int cookie_offset, n_output;
4131
4132 if (!ofproto->sflow || flow->in_port == OFPP_NONE) {
4133 return 0;
4134 }
4135
4136 if (odp_port == OVSP_NONE) {
4137 port_ifindex = 0;
4138 n_output = 0;
4139 } else {
4140 port_ifindex = dpif_sflow_odp_port_to_ifindex(ofproto->sflow, odp_port);
4141 n_output = 1;
4142 }
4143
4144 sample_offset = nl_msg_start_nested(odp_actions, OVS_ACTION_ATTR_SAMPLE);
4145
4146 /* Number of packets out of UINT_MAX to sample. */
4147 probability = dpif_sflow_get_probability(ofproto->sflow);
4148 nl_msg_put_u32(odp_actions, OVS_SAMPLE_ATTR_PROBABILITY, probability);
4149
4150 actions_offset = nl_msg_start_nested(odp_actions, OVS_SAMPLE_ATTR_ACTIONS);
4151
4152 cookie.type = USER_ACTION_COOKIE_SFLOW;
4153 cookie.data = port_ifindex;
4154 cookie.n_output = n_output;
4155 cookie.vlan_tci = 0;
4156 cookie_offset = put_userspace_action(ofproto, odp_actions, flow, &cookie);
4157
4158 nl_msg_end_nested(odp_actions, actions_offset);
4159 nl_msg_end_nested(odp_actions, sample_offset);
4160 return cookie_offset;
4161 }
4162
4163 /* SAMPLE action must be first action in any given list of actions.
4164 * At this point we do not have all information required to build it. So try to
4165 * build sample action as complete as possible. */
4166 static void
4167 add_sflow_action(struct action_xlate_ctx *ctx)
4168 {
4169 ctx->user_cookie_offset = compose_sflow_action(ctx->ofproto,
4170 ctx->odp_actions,
4171 &ctx->flow, OVSP_NONE);
4172 ctx->sflow_odp_port = 0;
4173 ctx->sflow_n_outputs = 0;
4174 }
4175
4176 /* Fix SAMPLE action according to data collected while composing ODP actions.
4177 * We need to fix SAMPLE actions OVS_SAMPLE_ATTR_ACTIONS attribute, i.e. nested
4178 * USERSPACE action's user-cookie which is required for sflow. */
4179 static void
4180 fix_sflow_action(struct action_xlate_ctx *ctx)
4181 {
4182 const struct flow *base = &ctx->base_flow;
4183 struct user_action_cookie *cookie;
4184
4185 if (!ctx->user_cookie_offset) {
4186 return;
4187 }
4188
4189 cookie = ofpbuf_at(ctx->odp_actions, ctx->user_cookie_offset,
4190 sizeof(*cookie));
4191 assert(cookie != NULL);
4192 assert(cookie->type == USER_ACTION_COOKIE_SFLOW);
4193
4194 if (ctx->sflow_n_outputs) {
4195 cookie->data = dpif_sflow_odp_port_to_ifindex(ctx->ofproto->sflow,
4196 ctx->sflow_odp_port);
4197 }
4198 if (ctx->sflow_n_outputs >= 255) {
4199 cookie->n_output = 255;
4200 } else {
4201 cookie->n_output = ctx->sflow_n_outputs;
4202 }
4203 cookie->vlan_tci = base->vlan_tci;
4204 }
4205
4206 static void
4207 compose_output_action__(struct action_xlate_ctx *ctx, uint16_t ofp_port,
4208 bool check_stp)
4209 {
4210 const struct ofport_dpif *ofport = get_ofp_port(ctx->ofproto, ofp_port);
4211 uint16_t odp_port = ofp_port_to_odp_port(ofp_port);
4212 ovs_be16 flow_vlan_tci = ctx->flow.vlan_tci;
4213 uint8_t flow_nw_tos = ctx->flow.nw_tos;
4214 uint16_t out_port;
4215
4216 if (ofport) {
4217 struct priority_to_dscp *pdscp;
4218
4219 if (ofport->up.opp.config & htonl(OFPPC_NO_FWD)
4220 || (check_stp && !stp_forward_in_state(ofport->stp_state))) {
4221 return;
4222 }
4223
4224 pdscp = get_priority(ofport, ctx->flow.skb_priority);
4225 if (pdscp) {
4226 ctx->flow.nw_tos &= ~IP_DSCP_MASK;
4227 ctx->flow.nw_tos |= pdscp->dscp;
4228 }
4229 } else {
4230 /* We may not have an ofport record for this port, but it doesn't hurt
4231 * to allow forwarding to it anyhow. Maybe such a port will appear
4232 * later and we're pre-populating the flow table. */
4233 }
4234
4235 out_port = vsp_realdev_to_vlandev(ctx->ofproto, odp_port,
4236 ctx->flow.vlan_tci);
4237 if (out_port != odp_port) {
4238 ctx->flow.vlan_tci = htons(0);
4239 }
4240 commit_odp_actions(&ctx->flow, &ctx->base_flow, ctx->odp_actions);
4241 nl_msg_put_u32(ctx->odp_actions, OVS_ACTION_ATTR_OUTPUT, out_port);
4242
4243 ctx->sflow_odp_port = odp_port;
4244 ctx->sflow_n_outputs++;
4245 ctx->nf_output_iface = ofp_port;
4246 ctx->flow.vlan_tci = flow_vlan_tci;
4247 ctx->flow.nw_tos = flow_nw_tos;
4248 }
4249
4250 static void
4251 compose_output_action(struct action_xlate_ctx *ctx, uint16_t ofp_port)
4252 {
4253 compose_output_action__(ctx, ofp_port, true);
4254 }
4255
4256 static void
4257 xlate_table_action(struct action_xlate_ctx *ctx,
4258 uint16_t in_port, uint8_t table_id)
4259 {
4260 if (ctx->recurse < MAX_RESUBMIT_RECURSION) {
4261 struct ofproto_dpif *ofproto = ctx->ofproto;
4262 struct rule_dpif *rule;
4263 uint16_t old_in_port;
4264 uint8_t old_table_id;
4265
4266 old_table_id = ctx->table_id;
4267 ctx->table_id = table_id;
4268
4269 /* Look up a flow with 'in_port' as the input port. */
4270 old_in_port = ctx->flow.in_port;
4271 ctx->flow.in_port = in_port;
4272 rule = rule_dpif_lookup(ofproto, &ctx->flow, table_id);
4273
4274 /* Tag the flow. */
4275 if (table_id > 0 && table_id < N_TABLES) {
4276 struct table_dpif *table = &ofproto->tables[table_id];
4277 if (table->other_table) {
4278 ctx->tags |= (rule
4279 ? rule->tag
4280 : rule_calculate_tag(&ctx->flow,
4281 &table->other_table->wc,
4282 table->basis));
4283 }
4284 }
4285
4286 /* Restore the original input port. Otherwise OFPP_NORMAL and
4287 * OFPP_IN_PORT will have surprising behavior. */
4288 ctx->flow.in_port = old_in_port;
4289
4290 if (ctx->resubmit_hook) {
4291 ctx->resubmit_hook(ctx, rule);
4292 }
4293
4294 if (rule) {
4295 ctx->recurse++;
4296 do_xlate_actions(rule->up.actions, rule->up.n_actions, ctx);
4297 ctx->recurse--;
4298 }
4299
4300 ctx->table_id = old_table_id;
4301 } else {
4302 static struct vlog_rate_limit recurse_rl = VLOG_RATE_LIMIT_INIT(1, 1);
4303
4304 VLOG_ERR_RL(&recurse_rl, "resubmit actions recursed over %d times",
4305 MAX_RESUBMIT_RECURSION);
4306 }
4307 }
4308
4309 static void
4310 xlate_resubmit_table(struct action_xlate_ctx *ctx,
4311 const struct nx_action_resubmit *nar)
4312 {
4313 uint16_t in_port;
4314 uint8_t table_id;
4315
4316 in_port = (nar->in_port == htons(OFPP_IN_PORT)
4317 ? ctx->flow.in_port
4318 : ntohs(nar->in_port));
4319 table_id = nar->table == 255 ? ctx->table_id : nar->table;
4320
4321 xlate_table_action(ctx, in_port, table_id);
4322 }
4323
4324 static void
4325 flood_packets(struct action_xlate_ctx *ctx, bool all)
4326 {
4327 struct ofport_dpif *ofport;
4328
4329 HMAP_FOR_EACH (ofport, up.hmap_node, &ctx->ofproto->up.ports) {
4330 uint16_t ofp_port = ofport->up.ofp_port;
4331
4332 if (ofp_port == ctx->flow.in_port) {
4333 continue;
4334 }
4335
4336 if (all) {
4337 compose_output_action__(ctx, ofp_port, false);
4338 } else if (!(ofport->up.opp.config & htonl(OFPPC_NO_FLOOD))) {
4339 compose_output_action(ctx, ofp_port);
4340 }
4341 }
4342
4343 ctx->nf_output_iface = NF_OUT_FLOOD;
4344 }
4345
4346 static void
4347 compose_controller_action(struct action_xlate_ctx *ctx, int len)
4348 {
4349 struct user_action_cookie cookie;
4350
4351 commit_odp_actions(&ctx->flow, &ctx->base_flow, ctx->odp_actions);
4352 cookie.type = USER_ACTION_COOKIE_CONTROLLER;
4353 cookie.data = len;
4354 cookie.n_output = 0;
4355 cookie.vlan_tci = 0;
4356 put_userspace_action(ctx->ofproto, ctx->odp_actions, &ctx->flow, &cookie);
4357 }
4358
4359 static void
4360 xlate_output_action__(struct action_xlate_ctx *ctx,
4361 uint16_t port, uint16_t max_len)
4362 {
4363 uint16_t prev_nf_output_iface = ctx->nf_output_iface;
4364
4365 ctx->nf_output_iface = NF_OUT_DROP;
4366
4367 switch (port) {
4368 case OFPP_IN_PORT:
4369 compose_output_action(ctx, ctx->flow.in_port);
4370 break;
4371 case OFPP_TABLE:
4372 xlate_table_action(ctx, ctx->flow.in_port, ctx->table_id);
4373 break;
4374 case OFPP_NORMAL:
4375 xlate_normal(ctx);
4376 break;
4377 case OFPP_FLOOD:
4378 flood_packets(ctx, false);
4379 break;
4380 case OFPP_ALL:
4381 flood_packets(ctx, true);
4382 break;
4383 case OFPP_CONTROLLER:
4384 compose_controller_action(ctx, max_len);
4385 break;
4386 case OFPP_LOCAL:
4387 compose_output_action(ctx, OFPP_LOCAL);
4388 break;
4389 case OFPP_NONE:
4390 break;
4391 default:
4392 if (port != ctx->flow.in_port) {
4393 compose_output_action(ctx, port);
4394 }
4395 break;
4396 }
4397
4398 if (prev_nf_output_iface == NF_OUT_FLOOD) {
4399 ctx->nf_output_iface = NF_OUT_FLOOD;
4400 } else if (ctx->nf_output_iface == NF_OUT_DROP) {
4401 ctx->nf_output_iface = prev_nf_output_iface;
4402 } else if (prev_nf_output_iface != NF_OUT_DROP &&
4403 ctx->nf_output_iface != NF_OUT_FLOOD) {
4404 ctx->nf_output_iface = NF_OUT_MULTI;
4405 }
4406 }
4407
4408 static void
4409 xlate_output_reg_action(struct action_xlate_ctx *ctx,
4410 const struct nx_action_output_reg *naor)
4411 {
4412 uint64_t ofp_port;
4413
4414 ofp_port = nxm_read_field_bits(naor->src, naor->ofs_nbits, &ctx->flow);
4415
4416 if (ofp_port <= UINT16_MAX) {
4417 xlate_output_action__(ctx, ofp_port, ntohs(naor->max_len));
4418 }
4419 }
4420
4421 static void
4422 xlate_output_action(struct action_xlate_ctx *ctx,
4423 const struct ofp_action_output *oao)
4424 {
4425 xlate_output_action__(ctx, ntohs(oao->port), ntohs(oao->max_len));
4426 }
4427
4428 static void
4429 xlate_enqueue_action(struct action_xlate_ctx *ctx,
4430 const struct ofp_action_enqueue *oae)
4431 {
4432 uint16_t ofp_port;
4433 uint32_t flow_priority, priority;
4434 int error;
4435
4436 error = dpif_queue_to_priority(ctx->ofproto->dpif, ntohl(oae->queue_id),
4437 &priority);
4438 if (error) {
4439 /* Fall back to ordinary output action. */
4440 xlate_output_action__(ctx, ntohs(oae->port), 0);
4441 return;
4442 }
4443
4444 /* Figure out datapath output port. */
4445 ofp_port = ntohs(oae->port);
4446 if (ofp_port == OFPP_IN_PORT) {
4447 ofp_port = ctx->flow.in_port;
4448 } else if (ofp_port == ctx->flow.in_port) {
4449 return;
4450 }
4451
4452 /* Add datapath actions. */
4453 flow_priority = ctx->flow.skb_priority;
4454 ctx->flow.skb_priority = priority;
4455 compose_output_action(ctx, ofp_port);
4456 ctx->flow.skb_priority = flow_priority;
4457
4458 /* Update NetFlow output port. */
4459 if (ctx->nf_output_iface == NF_OUT_DROP) {
4460 ctx->nf_output_iface = ofp_port;
4461 } else if (ctx->nf_output_iface != NF_OUT_FLOOD) {
4462 ctx->nf_output_iface = NF_OUT_MULTI;
4463 }
4464 }
4465
4466 static void
4467 xlate_set_queue_action(struct action_xlate_ctx *ctx,
4468 const struct nx_action_set_queue *nasq)
4469 {
4470 uint32_t priority;
4471 int error;
4472
4473 error = dpif_queue_to_priority(ctx->ofproto->dpif, ntohl(nasq->queue_id),
4474 &priority);
4475 if (error) {
4476 /* Couldn't translate queue to a priority, so ignore. A warning
4477 * has already been logged. */
4478 return;
4479 }
4480
4481 ctx->flow.skb_priority = priority;
4482 }
4483
4484 struct xlate_reg_state {
4485 ovs_be16 vlan_tci;
4486 ovs_be64 tun_id;
4487 };
4488
4489 static void
4490 xlate_autopath(struct action_xlate_ctx *ctx,
4491 const struct nx_action_autopath *naa)
4492 {
4493 uint16_t ofp_port = ntohl(naa->id);
4494 struct ofport_dpif *port = get_ofp_port(ctx->ofproto, ofp_port);
4495
4496 if (!port || !port->bundle) {
4497 ofp_port = OFPP_NONE;
4498 } else if (port->bundle->bond) {
4499 /* Autopath does not support VLAN hashing. */
4500 struct ofport_dpif *slave = bond_choose_output_slave(
4501 port->bundle->bond, &ctx->flow, 0, &ctx->tags);
4502 if (slave) {
4503 ofp_port = slave->up.ofp_port;
4504 }
4505 }
4506 autopath_execute(naa, &ctx->flow, ofp_port);
4507 }
4508
4509 static bool
4510 slave_enabled_cb(uint16_t ofp_port, void *ofproto_)
4511 {
4512 struct ofproto_dpif *ofproto = ofproto_;
4513 struct ofport_dpif *port;
4514
4515 switch (ofp_port) {
4516 case OFPP_IN_PORT:
4517 case OFPP_TABLE:
4518 case OFPP_NORMAL:
4519 case OFPP_FLOOD:
4520 case OFPP_ALL:
4521 case OFPP_NONE:
4522 return true;
4523 case OFPP_CONTROLLER: /* Not supported by the bundle action. */
4524 return false;
4525 default:
4526 port = get_ofp_port(ofproto, ofp_port);
4527 return port ? port->may_enable : false;
4528 }
4529 }
4530
4531 static void
4532 xlate_learn_action(struct action_xlate_ctx *ctx,
4533 const struct nx_action_learn *learn)
4534 {
4535 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(5, 1);
4536 struct ofputil_flow_mod fm;
4537 int error;
4538
4539 learn_execute(learn, &ctx->flow, &fm);
4540
4541 error = ofproto_flow_mod(&ctx->ofproto->up, &fm);
4542 if (error && !VLOG_DROP_WARN(&rl)) {
4543 char *msg = ofputil_error_to_string(error);
4544 VLOG_WARN("learning action failed to modify flow table (%s)", msg);
4545 free(msg);
4546 }
4547
4548 free(fm.actions);
4549 }
4550
4551 static bool
4552 may_receive(const struct ofport_dpif *port, struct action_xlate_ctx *ctx)
4553 {
4554 if (port->up.opp.config & (eth_addr_equals(ctx->flow.dl_dst, eth_addr_stp)
4555 ? htonl(OFPPC_NO_RECV_STP)
4556 : htonl(OFPPC_NO_RECV))) {
4557 return false;
4558 }
4559
4560 /* Only drop packets here if both forwarding and learning are
4561 * disabled. If just learning is enabled, we need to have
4562 * OFPP_NORMAL and the learning action have a look at the packet
4563 * before we can drop it. */
4564 if (!stp_forward_in_state(port->stp_state)
4565 && !stp_learn_in_state(port->stp_state)) {
4566 return false;
4567 }
4568
4569 return true;
4570 }
4571
4572 static void
4573 do_xlate_actions(const union ofp_action *in, size_t n_in,
4574 struct action_xlate_ctx *ctx)
4575 {
4576 const struct ofport_dpif *port;
4577 const union ofp_action *ia;
4578 size_t left;
4579
4580 port = get_ofp_port(ctx->ofproto, ctx->flow.in_port);
4581 if (port && !may_receive(port, ctx)) {
4582 /* Drop this flow. */
4583 return;
4584 }
4585
4586 OFPUTIL_ACTION_FOR_EACH_UNSAFE (ia, left, in, n_in) {
4587 const struct ofp_action_dl_addr *oada;
4588 const struct nx_action_resubmit *nar;
4589 const struct nx_action_set_tunnel *nast;
4590 const struct nx_action_set_queue *nasq;
4591 const struct nx_action_multipath *nam;
4592 const struct nx_action_autopath *naa;
4593 const struct nx_action_bundle *nab;
4594 const struct nx_action_output_reg *naor;
4595 enum ofputil_action_code code;
4596 ovs_be64 tun_id;
4597
4598 if (ctx->exit) {
4599 break;
4600 }
4601
4602 code = ofputil_decode_action_unsafe(ia);
4603 switch (code) {
4604 case OFPUTIL_OFPAT_OUTPUT:
4605 xlate_output_action(ctx, &ia->output);
4606 break;
4607
4608 case OFPUTIL_OFPAT_SET_VLAN_VID:
4609 ctx->flow.vlan_tci &= ~htons(VLAN_VID_MASK);
4610 ctx->flow.vlan_tci |= ia->vlan_vid.vlan_vid | htons(VLAN_CFI);
4611 break;
4612
4613 case OFPUTIL_OFPAT_SET_VLAN_PCP:
4614 ctx->flow.vlan_tci &= ~htons(VLAN_PCP_MASK);
4615 ctx->flow.vlan_tci |= htons(
4616 (ia->vlan_pcp.vlan_pcp << VLAN_PCP_SHIFT) | VLAN_CFI);
4617 break;
4618
4619 case OFPUTIL_OFPAT_STRIP_VLAN:
4620 ctx->flow.vlan_tci = htons(0);
4621 break;
4622
4623 case OFPUTIL_OFPAT_SET_DL_SRC:
4624 oada = ((struct ofp_action_dl_addr *) ia);
4625 memcpy(ctx->flow.dl_src, oada->dl_addr, ETH_ADDR_LEN);
4626 break;
4627
4628 case OFPUTIL_OFPAT_SET_DL_DST:
4629 oada = ((struct ofp_action_dl_addr *) ia);
4630 memcpy(ctx->flow.dl_dst, oada->dl_addr, ETH_ADDR_LEN);
4631 break;
4632
4633 case OFPUTIL_OFPAT_SET_NW_SRC:
4634 ctx->flow.nw_src = ia->nw_addr.nw_addr;
4635 break;
4636
4637 case OFPUTIL_OFPAT_SET_NW_DST:
4638 ctx->flow.nw_dst = ia->nw_addr.nw_addr;
4639 break;
4640
4641 case OFPUTIL_OFPAT_SET_NW_TOS:
4642 ctx->flow.nw_tos &= ~IP_DSCP_MASK;
4643 ctx->flow.nw_tos |= ia->nw_tos.nw_tos & IP_DSCP_MASK;
4644 break;
4645
4646 case OFPUTIL_OFPAT_SET_TP_SRC:
4647 ctx->flow.tp_src = ia->tp_port.tp_port;
4648 break;
4649
4650 case OFPUTIL_OFPAT_SET_TP_DST:
4651 ctx->flow.tp_dst = ia->tp_port.tp_port;
4652 break;
4653
4654 case OFPUTIL_OFPAT_ENQUEUE:
4655 xlate_enqueue_action(ctx, (const struct ofp_action_enqueue *) ia);
4656 break;
4657
4658 case OFPUTIL_NXAST_RESUBMIT:
4659 nar = (const struct nx_action_resubmit *) ia;
4660 xlate_table_action(ctx, ntohs(nar->in_port), ctx->table_id);
4661 break;
4662
4663 case OFPUTIL_NXAST_RESUBMIT_TABLE:
4664 xlate_resubmit_table(ctx, (const struct nx_action_resubmit *) ia);
4665 break;
4666
4667 case OFPUTIL_NXAST_SET_TUNNEL:
4668 nast = (const struct nx_action_set_tunnel *) ia;
4669 tun_id = htonll(ntohl(nast->tun_id));
4670 ctx->flow.tun_id = tun_id;
4671 break;
4672
4673 case OFPUTIL_NXAST_SET_QUEUE:
4674 nasq = (const struct nx_action_set_queue *) ia;
4675 xlate_set_queue_action(ctx, nasq);
4676 break;
4677
4678 case OFPUTIL_NXAST_POP_QUEUE:
4679 ctx->flow.skb_priority = ctx->orig_skb_priority;
4680 break;
4681
4682 case OFPUTIL_NXAST_REG_MOVE:
4683 nxm_execute_reg_move((const struct nx_action_reg_move *) ia,
4684 &ctx->flow);
4685 break;
4686
4687 case OFPUTIL_NXAST_REG_LOAD:
4688 nxm_execute_reg_load((const struct nx_action_reg_load *) ia,
4689 &ctx->flow);
4690 break;
4691
4692 case OFPUTIL_NXAST_NOTE:
4693 /* Nothing to do. */
4694 break;
4695
4696 case OFPUTIL_NXAST_SET_TUNNEL64:
4697 tun_id = ((const struct nx_action_set_tunnel64 *) ia)->tun_id;
4698 ctx->flow.tun_id = tun_id;
4699 break;
4700
4701 case OFPUTIL_NXAST_MULTIPATH:
4702 nam = (const struct nx_action_multipath *) ia;
4703 multipath_execute(nam, &ctx->flow);
4704 break;
4705
4706 case OFPUTIL_NXAST_AUTOPATH:
4707 naa = (const struct nx_action_autopath *) ia;
4708 xlate_autopath(ctx, naa);
4709 break;
4710
4711 case OFPUTIL_NXAST_BUNDLE:
4712 ctx->ofproto->has_bundle_action = true;
4713 nab = (const struct nx_action_bundle *) ia;
4714 xlate_output_action__(ctx, bundle_execute(nab, &ctx->flow,
4715 slave_enabled_cb,
4716 ctx->ofproto), 0);
4717 break;
4718
4719 case OFPUTIL_NXAST_BUNDLE_LOAD:
4720 ctx->ofproto->has_bundle_action = true;
4721 nab = (const struct nx_action_bundle *) ia;
4722 bundle_execute_load(nab, &ctx->flow, slave_enabled_cb,
4723 ctx->ofproto);
4724 break;
4725
4726 case OFPUTIL_NXAST_OUTPUT_REG:
4727 naor = (const struct nx_action_output_reg *) ia;
4728 xlate_output_reg_action(ctx, naor);
4729 break;
4730
4731 case OFPUTIL_NXAST_LEARN:
4732 ctx->has_learn = true;
4733 if (ctx->may_learn) {
4734 xlate_learn_action(ctx, (const struct nx_action_learn *) ia);
4735 }
4736 break;
4737
4738 case OFPUTIL_NXAST_EXIT:
4739 ctx->exit = true;
4740 break;
4741 }
4742 }
4743
4744 /* We've let OFPP_NORMAL and the learning action look at the packet,
4745 * so drop it now if forwarding is disabled. */
4746 if (port && !stp_forward_in_state(port->stp_state)) {
4747 ofpbuf_clear(ctx->odp_actions);
4748 add_sflow_action(ctx);
4749 }
4750 }
4751
4752 static void
4753 action_xlate_ctx_init(struct action_xlate_ctx *ctx,
4754 struct ofproto_dpif *ofproto, const struct flow *flow,
4755 ovs_be16 initial_tci, const struct ofpbuf *packet)
4756 {
4757 ctx->ofproto = ofproto;
4758 ctx->flow = *flow;
4759 ctx->base_flow = ctx->flow;
4760 ctx->base_flow.tun_id = 0;
4761 ctx->base_flow.vlan_tci = initial_tci;
4762 ctx->packet = packet;
4763 ctx->may_learn = packet != NULL;
4764 ctx->resubmit_hook = NULL;
4765 }
4766
4767 static struct ofpbuf *
4768 xlate_actions(struct action_xlate_ctx *ctx,
4769 const union ofp_action *in, size_t n_in)
4770 {
4771 struct flow orig_flow = ctx->flow;
4772
4773 COVERAGE_INC(ofproto_dpif_xlate);
4774
4775 ctx->odp_actions = ofpbuf_new(512);
4776 ofpbuf_reserve(ctx->odp_actions, NL_A_U32_SIZE);
4777 ctx->tags = 0;
4778 ctx->may_set_up_flow = true;
4779 ctx->has_learn = false;
4780 ctx->has_normal = false;
4781 ctx->nf_output_iface = NF_OUT_DROP;
4782 ctx->mirrors = 0;
4783 ctx->recurse = 0;
4784 ctx->orig_skb_priority = ctx->flow.skb_priority;
4785 ctx->table_id = 0;
4786 ctx->exit = false;
4787
4788 if (ctx->flow.nw_frag & FLOW_NW_FRAG_ANY) {
4789 switch (ctx->ofproto->up.frag_handling) {
4790 case OFPC_FRAG_NORMAL:
4791 /* We must pretend that transport ports are unavailable. */
4792 ctx->flow.tp_src = ctx->base_flow.tp_src = htons(0);
4793 ctx->flow.tp_dst = ctx->base_flow.tp_dst = htons(0);
4794 break;
4795
4796 case OFPC_FRAG_DROP:
4797 return ctx->odp_actions;
4798
4799 case OFPC_FRAG_REASM:
4800 NOT_REACHED();
4801
4802 case OFPC_FRAG_NX_MATCH:
4803 /* Nothing to do. */
4804 break;
4805 }
4806 }
4807
4808 if (process_special(ctx->ofproto, &ctx->flow, ctx->packet)) {
4809 ctx->may_set_up_flow = false;
4810 return ctx->odp_actions;
4811 } else {
4812 add_sflow_action(ctx);
4813 do_xlate_actions(in, n_in, ctx);
4814
4815 if (!connmgr_may_set_up_flow(ctx->ofproto->up.connmgr, &ctx->flow,
4816 ctx->odp_actions->data,
4817 ctx->odp_actions->size)) {
4818 ctx->may_set_up_flow = false;
4819 if (ctx->packet
4820 && connmgr_msg_in_hook(ctx->ofproto->up.connmgr, &ctx->flow,
4821 ctx->packet)) {
4822 compose_output_action(ctx, OFPP_LOCAL);
4823 }
4824 }
4825 add_mirror_actions(ctx, &orig_flow);
4826 fix_sflow_action(ctx);
4827 }
4828
4829 return ctx->odp_actions;
4830 }
4831 \f
4832 /* OFPP_NORMAL implementation. */
4833
4834 static struct ofport_dpif *ofbundle_get_a_port(const struct ofbundle *);
4835
4836 /* Given 'vid', the VID obtained from the 802.1Q header that was received as
4837 * part of a packet (specify 0 if there was no 802.1Q header), and 'in_bundle',
4838 * the bundle on which the packet was received, returns the VLAN to which the
4839 * packet belongs.
4840 *
4841 * Both 'vid' and the return value are in the range 0...4095. */
4842 static uint16_t
4843 input_vid_to_vlan(const struct ofbundle *in_bundle, uint16_t vid)
4844 {
4845 switch (in_bundle->vlan_mode) {
4846 case PORT_VLAN_ACCESS:
4847 return in_bundle->vlan;
4848 break;
4849
4850 case PORT_VLAN_TRUNK:
4851 return vid;
4852
4853 case PORT_VLAN_NATIVE_UNTAGGED:
4854 case PORT_VLAN_NATIVE_TAGGED:
4855 return vid ? vid : in_bundle->vlan;
4856
4857 default:
4858 NOT_REACHED();
4859 }
4860 }
4861
4862 /* Checks whether a packet with the given 'vid' may ingress on 'in_bundle'.
4863 * If so, returns true. Otherwise, returns false and, if 'warn' is true, logs
4864 * a warning.
4865 *
4866 * 'vid' should be the VID obtained from the 802.1Q header that was received as
4867 * part of a packet (specify 0 if there was no 802.1Q header), in the range
4868 * 0...4095. */
4869 static bool
4870 input_vid_is_valid(uint16_t vid, struct ofbundle *in_bundle, bool warn)
4871 {
4872 /* Allow any VID on the OFPP_NONE port. */
4873 if (in_bundle == &ofpp_none_bundle) {
4874 return true;
4875 }
4876
4877 switch (in_bundle->vlan_mode) {
4878 case PORT_VLAN_ACCESS:
4879 if (vid) {
4880 if (warn) {
4881 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
4882 VLOG_WARN_RL(&rl, "bridge %s: dropping VLAN %"PRIu16" tagged "
4883 "packet received on port %s configured as VLAN "
4884 "%"PRIu16" access port",
4885 in_bundle->ofproto->up.name, vid,
4886 in_bundle->name, in_bundle->vlan);
4887 }
4888 return false;
4889 }
4890 return true;
4891
4892 case PORT_VLAN_NATIVE_UNTAGGED:
4893 case PORT_VLAN_NATIVE_TAGGED:
4894 if (!vid) {
4895 /* Port must always carry its native VLAN. */
4896 return true;
4897 }
4898 /* Fall through. */
4899 case PORT_VLAN_TRUNK:
4900 if (!ofbundle_includes_vlan(in_bundle, vid)) {
4901 if (warn) {
4902 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
4903 VLOG_WARN_RL(&rl, "bridge %s: dropping VLAN %"PRIu16" packet "
4904 "received on port %s not configured for trunking "
4905 "VLAN %"PRIu16,
4906 in_bundle->ofproto->up.name, vid,
4907 in_bundle->name, vid);
4908 }
4909 return false;
4910 }
4911 return true;
4912
4913 default:
4914 NOT_REACHED();
4915 }
4916
4917 }
4918
4919 /* Given 'vlan', the VLAN that a packet belongs to, and
4920 * 'out_bundle', a bundle on which the packet is to be output, returns the VID
4921 * that should be included in the 802.1Q header. (If the return value is 0,
4922 * then the 802.1Q header should only be included in the packet if there is a
4923 * nonzero PCP.)
4924 *
4925 * Both 'vlan' and the return value are in the range 0...4095. */
4926 static uint16_t
4927 output_vlan_to_vid(const struct ofbundle *out_bundle, uint16_t vlan)
4928 {
4929 switch (out_bundle->vlan_mode) {
4930 case PORT_VLAN_ACCESS:
4931 return 0;
4932
4933 case PORT_VLAN_TRUNK:
4934 case PORT_VLAN_NATIVE_TAGGED:
4935 return vlan;
4936
4937 case PORT_VLAN_NATIVE_UNTAGGED:
4938 return vlan == out_bundle->vlan ? 0 : vlan;
4939
4940 default:
4941 NOT_REACHED();
4942 }
4943 }
4944
4945 static void
4946 output_normal(struct action_xlate_ctx *ctx, const struct ofbundle *out_bundle,
4947 uint16_t vlan)
4948 {
4949 struct ofport_dpif *port;
4950 uint16_t vid;
4951 ovs_be16 tci, old_tci;
4952
4953 vid = output_vlan_to_vid(out_bundle, vlan);
4954 if (!out_bundle->bond) {
4955 port = ofbundle_get_a_port(out_bundle);
4956 } else {
4957 port = bond_choose_output_slave(out_bundle->bond, &ctx->flow,
4958 vid, &ctx->tags);
4959 if (!port) {
4960 /* No slaves enabled, so drop packet. */
4961 return;
4962 }
4963 }
4964
4965 old_tci = ctx->flow.vlan_tci;
4966 tci = htons(vid);
4967 if (tci || out_bundle->use_priority_tags) {
4968 tci |= ctx->flow.vlan_tci & htons(VLAN_PCP_MASK);
4969 if (tci) {
4970 tci |= htons(VLAN_CFI);
4971 }
4972 }
4973 ctx->flow.vlan_tci = tci;
4974
4975 compose_output_action(ctx, port->up.ofp_port);
4976 ctx->flow.vlan_tci = old_tci;
4977 }
4978
4979 static int
4980 mirror_mask_ffs(mirror_mask_t mask)
4981 {
4982 BUILD_ASSERT_DECL(sizeof(unsigned int) >= sizeof(mask));
4983 return ffs(mask);
4984 }
4985
4986 static bool
4987 ofbundle_trunks_vlan(const struct ofbundle *bundle, uint16_t vlan)
4988 {
4989 return (bundle->vlan_mode != PORT_VLAN_ACCESS
4990 && (!bundle->trunks || bitmap_is_set(bundle->trunks, vlan)));
4991 }
4992
4993 static bool
4994 ofbundle_includes_vlan(const struct ofbundle *bundle, uint16_t vlan)
4995 {
4996 return vlan == bundle->vlan || ofbundle_trunks_vlan(bundle, vlan);
4997 }
4998
4999 /* Returns an arbitrary interface within 'bundle'. */
5000 static struct ofport_dpif *
5001 ofbundle_get_a_port(const struct ofbundle *bundle)
5002 {
5003 return CONTAINER_OF(list_front(&bundle->ports),
5004 struct ofport_dpif, bundle_node);
5005 }
5006
5007 static bool
5008 vlan_is_mirrored(const struct ofmirror *m, int vlan)
5009 {
5010 return !m->vlans || bitmap_is_set(m->vlans, vlan);
5011 }
5012
5013 /* Returns true if a packet with Ethernet destination MAC 'dst' may be mirrored
5014 * to a VLAN. In general most packets may be mirrored but we want to drop
5015 * protocols that may confuse switches. */
5016 static bool
5017 eth_dst_may_rspan(const uint8_t dst[ETH_ADDR_LEN])
5018 {
5019 /* If you change this function's behavior, please update corresponding
5020 * documentation in vswitch.xml at the same time. */
5021 if (dst[0] != 0x01) {
5022 /* All the currently banned MACs happen to start with 01 currently, so
5023 * this is a quick way to eliminate most of the good ones. */
5024 } else {
5025 if (eth_addr_is_reserved(dst)) {
5026 /* Drop STP, IEEE pause frames, and other reserved protocols
5027 * (01-80-c2-00-00-0x). */
5028 return false;
5029 }
5030
5031 if (dst[0] == 0x01 && dst[1] == 0x00 && dst[2] == 0x0c) {
5032 /* Cisco OUI. */
5033 if ((dst[3] & 0xfe) == 0xcc &&
5034 (dst[4] & 0xfe) == 0xcc &&
5035 (dst[5] & 0xfe) == 0xcc) {
5036 /* Drop the following protocols plus others following the same
5037 pattern:
5038
5039 CDP, VTP, DTP, PAgP (01-00-0c-cc-cc-cc)
5040 Spanning Tree PVSTP+ (01-00-0c-cc-cc-cd)
5041 STP Uplink Fast (01-00-0c-cd-cd-cd) */
5042 return false;
5043 }
5044
5045 if (!(dst[3] | dst[4] | dst[5])) {
5046 /* Drop Inter Switch Link packets (01-00-0c-00-00-00). */
5047 return false;
5048 }
5049 }
5050 }
5051 return true;
5052 }
5053
5054 static void
5055 add_mirror_actions(struct action_xlate_ctx *ctx, const struct flow *orig_flow)
5056 {
5057 struct ofproto_dpif *ofproto = ctx->ofproto;
5058 mirror_mask_t mirrors;
5059 struct ofbundle *in_bundle;
5060 uint16_t vlan;
5061 uint16_t vid;
5062 const struct nlattr *a;
5063 size_t left;
5064
5065 in_bundle = lookup_input_bundle(ctx->ofproto, orig_flow->in_port,
5066 ctx->packet != NULL);
5067 if (!in_bundle) {
5068 return;
5069 }
5070 mirrors = in_bundle->src_mirrors;
5071
5072 /* Drop frames on bundles reserved for mirroring. */
5073 if (in_bundle->mirror_out) {
5074 if (ctx->packet != NULL) {
5075 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
5076 VLOG_WARN_RL(&rl, "bridge %s: dropping packet received on port "
5077 "%s, which is reserved exclusively for mirroring",
5078 ctx->ofproto->up.name, in_bundle->name);
5079 }
5080 return;
5081 }
5082
5083 /* Check VLAN. */
5084 vid = vlan_tci_to_vid(orig_flow->vlan_tci);
5085 if (!input_vid_is_valid(vid, in_bundle, ctx->packet != NULL)) {
5086 return;
5087 }
5088 vlan = input_vid_to_vlan(in_bundle, vid);
5089
5090 /* Look at the output ports to check for destination selections. */
5091
5092 NL_ATTR_FOR_EACH (a, left, ctx->odp_actions->data,
5093 ctx->odp_actions->size) {
5094 enum ovs_action_attr type = nl_attr_type(a);
5095 struct ofport_dpif *ofport;
5096
5097 if (type != OVS_ACTION_ATTR_OUTPUT) {
5098 continue;
5099 }
5100
5101 ofport = get_odp_port(ofproto, nl_attr_get_u32(a));
5102 if (ofport && ofport->bundle) {
5103 mirrors |= ofport->bundle->dst_mirrors;
5104 }
5105 }
5106
5107 if (!mirrors) {
5108 return;
5109 }
5110
5111 /* Restore the original packet before adding the mirror actions. */
5112 ctx->flow = *orig_flow;
5113
5114 while (mirrors) {
5115 struct ofmirror *m;
5116
5117 m = ofproto->mirrors[mirror_mask_ffs(mirrors) - 1];
5118
5119 if (!vlan_is_mirrored(m, vlan)) {
5120 mirrors &= mirrors - 1;
5121 continue;
5122 }
5123
5124 mirrors &= ~m->dup_mirrors;
5125 ctx->mirrors |= m->dup_mirrors;
5126 if (m->out) {
5127 output_normal(ctx, m->out, vlan);
5128 } else if (eth_dst_may_rspan(orig_flow->dl_dst)
5129 && vlan != m->out_vlan) {
5130 struct ofbundle *bundle;
5131
5132 HMAP_FOR_EACH (bundle, hmap_node, &ofproto->bundles) {
5133 if (ofbundle_includes_vlan(bundle, m->out_vlan)
5134 && !bundle->mirror_out) {
5135 output_normal(ctx, bundle, m->out_vlan);
5136 }
5137 }
5138 }
5139 }
5140 }
5141
5142 static void
5143 update_mirror_stats(struct ofproto_dpif *ofproto, mirror_mask_t mirrors,
5144 uint64_t packets, uint64_t bytes)
5145 {
5146 if (!mirrors) {
5147 return;
5148 }
5149
5150 for (; mirrors; mirrors &= mirrors - 1) {
5151 struct ofmirror *m;
5152
5153 m = ofproto->mirrors[mirror_mask_ffs(mirrors) - 1];
5154
5155 if (!m) {
5156 /* In normal circumstances 'm' will not be NULL. However,
5157 * if mirrors are reconfigured, we can temporarily get out
5158 * of sync in facet_revalidate(). We could "correct" the
5159 * mirror list before reaching here, but doing that would
5160 * not properly account the traffic stats we've currently
5161 * accumulated for previous mirror configuration. */
5162 continue;
5163 }
5164
5165 m->packet_count += packets;
5166 m->byte_count += bytes;
5167 }
5168 }
5169
5170 /* A VM broadcasts a gratuitous ARP to indicate that it has resumed after
5171 * migration. Older Citrix-patched Linux DomU used gratuitous ARP replies to
5172 * indicate this; newer upstream kernels use gratuitous ARP requests. */
5173 static bool
5174 is_gratuitous_arp(const struct flow *flow)
5175 {
5176 return (flow->dl_type == htons(ETH_TYPE_ARP)
5177 && eth_addr_is_broadcast(flow->dl_dst)
5178 && (flow->nw_proto == ARP_OP_REPLY
5179 || (flow->nw_proto == ARP_OP_REQUEST
5180 && flow->nw_src == flow->nw_dst)));
5181 }
5182
5183 static void
5184 update_learning_table(struct ofproto_dpif *ofproto,
5185 const struct flow *flow, int vlan,
5186 struct ofbundle *in_bundle)
5187 {
5188 struct mac_entry *mac;
5189
5190 /* Don't learn the OFPP_NONE port. */
5191 if (in_bundle == &ofpp_none_bundle) {
5192 return;
5193 }
5194
5195 if (!mac_learning_may_learn(ofproto->ml, flow->dl_src, vlan)) {
5196 return;
5197 }
5198
5199 mac = mac_learning_insert(ofproto->ml, flow->dl_src, vlan);
5200 if (is_gratuitous_arp(flow)) {
5201 /* We don't want to learn from gratuitous ARP packets that are
5202 * reflected back over bond slaves so we lock the learning table. */
5203 if (!in_bundle->bond) {
5204 mac_entry_set_grat_arp_lock(mac);
5205 } else if (mac_entry_is_grat_arp_locked(mac)) {
5206 return;
5207 }
5208 }
5209
5210 if (mac_entry_is_new(mac) || mac->port.p != in_bundle) {
5211 /* The log messages here could actually be useful in debugging,
5212 * so keep the rate limit relatively high. */
5213 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(30, 300);
5214 VLOG_DBG_RL(&rl, "bridge %s: learned that "ETH_ADDR_FMT" is "
5215 "on port %s in VLAN %d",
5216 ofproto->up.name, ETH_ADDR_ARGS(flow->dl_src),
5217 in_bundle->name, vlan);
5218
5219 mac->port.p = in_bundle;
5220 tag_set_add(&ofproto->revalidate_set,
5221 mac_learning_changed(ofproto->ml, mac));
5222 }
5223 }
5224
5225 static struct ofbundle *
5226 lookup_input_bundle(struct ofproto_dpif *ofproto, uint16_t in_port, bool warn)
5227 {
5228 struct ofport_dpif *ofport;
5229
5230 /* Special-case OFPP_NONE, which a controller may use as the ingress
5231 * port for traffic that it is sourcing. */
5232 if (in_port == OFPP_NONE) {
5233 return &ofpp_none_bundle;
5234 }
5235
5236 /* Find the port and bundle for the received packet. */
5237 ofport = get_ofp_port(ofproto, in_port);
5238 if (ofport && ofport->bundle) {
5239 return ofport->bundle;
5240 }
5241
5242 /* Odd. A few possible reasons here:
5243 *
5244 * - We deleted a port but there are still a few packets queued up
5245 * from it.
5246 *
5247 * - Someone externally added a port (e.g. "ovs-dpctl add-if") that
5248 * we don't know about.
5249 *
5250 * - The ofproto client didn't configure the port as part of a bundle.
5251 */
5252 if (warn) {
5253 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
5254
5255 VLOG_WARN_RL(&rl, "bridge %s: received packet on unknown "
5256 "port %"PRIu16, ofproto->up.name, in_port);
5257 }
5258 return NULL;
5259 }
5260
5261 /* Determines whether packets in 'flow' within 'ofproto' should be forwarded or
5262 * dropped. Returns true if they may be forwarded, false if they should be
5263 * dropped.
5264 *
5265 * 'in_port' must be the ofport_dpif that corresponds to flow->in_port.
5266 * 'in_port' must be part of a bundle (e.g. in_port->bundle must be nonnull).
5267 *
5268 * 'vlan' must be the VLAN that corresponds to flow->vlan_tci on 'in_port', as
5269 * returned by input_vid_to_vlan(). It must be a valid VLAN for 'in_port', as
5270 * checked by input_vid_is_valid().
5271 *
5272 * May also add tags to '*tags', although the current implementation only does
5273 * so in one special case.
5274 */
5275 static bool
5276 is_admissible(struct ofproto_dpif *ofproto, const struct flow *flow,
5277 struct ofport_dpif *in_port, uint16_t vlan, tag_type *tags)
5278 {
5279 struct ofbundle *in_bundle = in_port->bundle;
5280
5281 /* Drop frames for reserved multicast addresses
5282 * only if forward_bpdu option is absent. */
5283 if (eth_addr_is_reserved(flow->dl_dst) && !ofproto->up.forward_bpdu) {
5284 return false;
5285 }
5286
5287 if (in_bundle->bond) {
5288 struct mac_entry *mac;
5289
5290 switch (bond_check_admissibility(in_bundle->bond, in_port,
5291 flow->dl_dst, tags)) {
5292 case BV_ACCEPT:
5293 break;
5294
5295 case BV_DROP:
5296 return false;
5297
5298 case BV_DROP_IF_MOVED:
5299 mac = mac_learning_lookup(ofproto->ml, flow->dl_src, vlan, NULL);
5300 if (mac && mac->port.p != in_bundle &&
5301 (!is_gratuitous_arp(flow)
5302 || mac_entry_is_grat_arp_locked(mac))) {
5303 return false;
5304 }
5305 break;
5306 }
5307 }
5308
5309 return true;
5310 }
5311
5312 static void
5313 xlate_normal(struct action_xlate_ctx *ctx)
5314 {
5315 struct ofport_dpif *in_port;
5316 struct ofbundle *in_bundle;
5317 struct mac_entry *mac;
5318 uint16_t vlan;
5319 uint16_t vid;
5320
5321 ctx->has_normal = true;
5322
5323 in_bundle = lookup_input_bundle(ctx->ofproto, ctx->flow.in_port,
5324 ctx->packet != NULL);
5325 if (!in_bundle) {
5326 return;
5327 }
5328
5329 /* We know 'in_port' exists unless it is "ofpp_none_bundle",
5330 * since lookup_input_bundle() succeeded. */
5331 in_port = get_ofp_port(ctx->ofproto, ctx->flow.in_port);
5332
5333 /* Drop malformed frames. */
5334 if (ctx->flow.dl_type == htons(ETH_TYPE_VLAN) &&
5335 !(ctx->flow.vlan_tci & htons(VLAN_CFI))) {
5336 if (ctx->packet != NULL) {
5337 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
5338 VLOG_WARN_RL(&rl, "bridge %s: dropping packet with partial "
5339 "VLAN tag received on port %s",
5340 ctx->ofproto->up.name, in_bundle->name);
5341 }
5342 return;
5343 }
5344
5345 /* Drop frames on bundles reserved for mirroring. */
5346 if (in_bundle->mirror_out) {
5347 if (ctx->packet != NULL) {
5348 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
5349 VLOG_WARN_RL(&rl, "bridge %s: dropping packet received on port "
5350 "%s, which is reserved exclusively for mirroring",
5351 ctx->ofproto->up.name, in_bundle->name);
5352 }
5353 return;
5354 }
5355
5356 /* Check VLAN. */
5357 vid = vlan_tci_to_vid(ctx->flow.vlan_tci);
5358 if (!input_vid_is_valid(vid, in_bundle, ctx->packet != NULL)) {
5359 return;
5360 }
5361 vlan = input_vid_to_vlan(in_bundle, vid);
5362
5363 /* Check other admissibility requirements. */
5364 if (in_port &&
5365 !is_admissible(ctx->ofproto, &ctx->flow, in_port, vlan, &ctx->tags)) {
5366 return;
5367 }
5368
5369 /* Learn source MAC. */
5370 if (ctx->may_learn) {
5371 update_learning_table(ctx->ofproto, &ctx->flow, vlan, in_bundle);
5372 }
5373
5374 /* Determine output bundle. */
5375 mac = mac_learning_lookup(ctx->ofproto->ml, ctx->flow.dl_dst, vlan,
5376 &ctx->tags);
5377 if (mac) {
5378 if (mac->port.p != in_bundle) {
5379 output_normal(ctx, mac->port.p, vlan);
5380 }
5381 } else {
5382 struct ofbundle *bundle;
5383
5384 HMAP_FOR_EACH (bundle, hmap_node, &ctx->ofproto->bundles) {
5385 if (bundle != in_bundle
5386 && ofbundle_includes_vlan(bundle, vlan)
5387 && bundle->floodable
5388 && !bundle->mirror_out) {
5389 output_normal(ctx, bundle, vlan);
5390 }
5391 }
5392 ctx->nf_output_iface = NF_OUT_FLOOD;
5393 }
5394 }
5395 \f
5396 /* Optimized flow revalidation.
5397 *
5398 * It's a difficult problem, in general, to tell which facets need to have
5399 * their actions recalculated whenever the OpenFlow flow table changes. We
5400 * don't try to solve that general problem: for most kinds of OpenFlow flow
5401 * table changes, we recalculate the actions for every facet. This is
5402 * relatively expensive, but it's good enough if the OpenFlow flow table
5403 * doesn't change very often.
5404 *
5405 * However, we can expect one particular kind of OpenFlow flow table change to
5406 * happen frequently: changes caused by MAC learning. To avoid wasting a lot
5407 * of CPU on revalidating every facet whenever MAC learning modifies the flow
5408 * table, we add a special case that applies to flow tables in which every rule
5409 * has the same form (that is, the same wildcards), except that the table is
5410 * also allowed to have a single "catch-all" flow that matches all packets. We
5411 * optimize this case by tagging all of the facets that resubmit into the table
5412 * and invalidating the same tag whenever a flow changes in that table. The
5413 * end result is that we revalidate just the facets that need it (and sometimes
5414 * a few more, but not all of the facets or even all of the facets that
5415 * resubmit to the table modified by MAC learning). */
5416
5417 /* Calculates the tag to use for 'flow' and wildcards 'wc' when it is inserted
5418 * into an OpenFlow table with the given 'basis'. */
5419 static uint32_t
5420 rule_calculate_tag(const struct flow *flow, const struct flow_wildcards *wc,
5421 uint32_t secret)
5422 {
5423 if (flow_wildcards_is_catchall(wc)) {
5424 return 0;
5425 } else {
5426 struct flow tag_flow = *flow;
5427 flow_zero_wildcards(&tag_flow, wc);
5428 return tag_create_deterministic(flow_hash(&tag_flow, secret));
5429 }
5430 }
5431
5432 /* Following a change to OpenFlow table 'table_id' in 'ofproto', update the
5433 * taggability of that table.
5434 *
5435 * This function must be called after *each* change to a flow table. If you
5436 * skip calling it on some changes then the pointer comparisons at the end can
5437 * be invalid if you get unlucky. For example, if a flow removal causes a
5438 * cls_table to be destroyed and then a flow insertion causes a cls_table with
5439 * different wildcards to be created with the same address, then this function
5440 * will incorrectly skip revalidation. */
5441 static void
5442 table_update_taggable(struct ofproto_dpif *ofproto, uint8_t table_id)
5443 {
5444 struct table_dpif *table = &ofproto->tables[table_id];
5445 const struct classifier *cls = &ofproto->up.tables[table_id];
5446 struct cls_table *catchall, *other;
5447 struct cls_table *t;
5448
5449 catchall = other = NULL;
5450
5451 switch (hmap_count(&cls->tables)) {
5452 case 0:
5453 /* We could tag this OpenFlow table but it would make the logic a
5454 * little harder and it's a corner case that doesn't seem worth it
5455 * yet. */
5456 break;
5457
5458 case 1:
5459 case 2:
5460 HMAP_FOR_EACH (t, hmap_node, &cls->tables) {
5461 if (cls_table_is_catchall(t)) {
5462 catchall = t;
5463 } else if (!other) {
5464 other = t;
5465 } else {
5466 /* Indicate that we can't tag this by setting both tables to
5467 * NULL. (We know that 'catchall' is already NULL.) */
5468 other = NULL;
5469 }
5470 }
5471 break;
5472
5473 default:
5474 /* Can't tag this table. */
5475 break;
5476 }
5477
5478 if (table->catchall_table != catchall || table->other_table != other) {
5479 table->catchall_table = catchall;
5480 table->other_table = other;
5481 ofproto->need_revalidate = true;
5482 }
5483 }
5484
5485 /* Given 'rule' that has changed in some way (either it is a rule being
5486 * inserted, a rule being deleted, or a rule whose actions are being
5487 * modified), marks facets for revalidation to ensure that packets will be
5488 * forwarded correctly according to the new state of the flow table.
5489 *
5490 * This function must be called after *each* change to a flow table. See
5491 * the comment on table_update_taggable() for more information. */
5492 static void
5493 rule_invalidate(const struct rule_dpif *rule)
5494 {
5495 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
5496
5497 table_update_taggable(ofproto, rule->up.table_id);
5498
5499 if (!ofproto->need_revalidate) {
5500 struct table_dpif *table = &ofproto->tables[rule->up.table_id];
5501
5502 if (table->other_table && rule->tag) {
5503 tag_set_add(&ofproto->revalidate_set, rule->tag);
5504 } else {
5505 ofproto->need_revalidate = true;
5506 }
5507 }
5508 }
5509 \f
5510 static bool
5511 set_frag_handling(struct ofproto *ofproto_,
5512 enum ofp_config_flags frag_handling)
5513 {
5514 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
5515
5516 if (frag_handling != OFPC_FRAG_REASM) {
5517 ofproto->need_revalidate = true;
5518 return true;
5519 } else {
5520 return false;
5521 }
5522 }
5523
5524 static int
5525 packet_out(struct ofproto *ofproto_, struct ofpbuf *packet,
5526 const struct flow *flow,
5527 const union ofp_action *ofp_actions, size_t n_ofp_actions)
5528 {
5529 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
5530 int error;
5531
5532 if (flow->in_port >= ofproto->max_ports && flow->in_port < OFPP_MAX) {
5533 return ofp_mkerr_nicira(OFPET_BAD_REQUEST, NXBRC_BAD_IN_PORT);
5534 }
5535
5536 error = validate_actions(ofp_actions, n_ofp_actions, flow,
5537 ofproto->max_ports);
5538 if (!error) {
5539 struct odputil_keybuf keybuf;
5540 struct action_xlate_ctx ctx;
5541 struct ofpbuf *odp_actions;
5542 struct ofpbuf key;
5543
5544 ofpbuf_use_stack(&key, &keybuf, sizeof keybuf);
5545 odp_flow_key_from_flow(&key, flow);
5546
5547 action_xlate_ctx_init(&ctx, ofproto, flow, flow->vlan_tci, packet);
5548 odp_actions = xlate_actions(&ctx, ofp_actions, n_ofp_actions);
5549 dpif_execute(ofproto->dpif, key.data, key.size,
5550 odp_actions->data, odp_actions->size, packet);
5551 ofpbuf_delete(odp_actions);
5552 }
5553 return error;
5554 }
5555 \f
5556 /* NetFlow. */
5557
5558 static int
5559 set_netflow(struct ofproto *ofproto_,
5560 const struct netflow_options *netflow_options)
5561 {
5562 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
5563
5564 if (netflow_options) {
5565 if (!ofproto->netflow) {
5566 ofproto->netflow = netflow_create();
5567 }
5568 return netflow_set_options(ofproto->netflow, netflow_options);
5569 } else {
5570 netflow_destroy(ofproto->netflow);
5571 ofproto->netflow = NULL;
5572 return 0;
5573 }
5574 }
5575
5576 static void
5577 get_netflow_ids(const struct ofproto *ofproto_,
5578 uint8_t *engine_type, uint8_t *engine_id)
5579 {
5580 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
5581
5582 dpif_get_netflow_ids(ofproto->dpif, engine_type, engine_id);
5583 }
5584
5585 static void
5586 send_active_timeout(struct ofproto_dpif *ofproto, struct facet *facet)
5587 {
5588 if (!facet_is_controller_flow(facet) &&
5589 netflow_active_timeout_expired(ofproto->netflow, &facet->nf_flow)) {
5590 struct subfacet *subfacet;
5591 struct ofexpired expired;
5592
5593 LIST_FOR_EACH (subfacet, list_node, &facet->subfacets) {
5594 if (subfacet->installed) {
5595 struct dpif_flow_stats stats;
5596
5597 subfacet_install(ofproto, subfacet, subfacet->actions,
5598 subfacet->actions_len, &stats);
5599 subfacet_update_stats(ofproto, subfacet, &stats);
5600 }
5601 }
5602
5603 expired.flow = facet->flow;
5604 expired.packet_count = facet->packet_count;
5605 expired.byte_count = facet->byte_count;
5606 expired.used = facet->used;
5607 netflow_expire(ofproto->netflow, &facet->nf_flow, &expired);
5608 }
5609 }
5610
5611 static void
5612 send_netflow_active_timeouts(struct ofproto_dpif *ofproto)
5613 {
5614 struct facet *facet;
5615
5616 HMAP_FOR_EACH (facet, hmap_node, &ofproto->facets) {
5617 send_active_timeout(ofproto, facet);
5618 }
5619 }
5620 \f
5621 static struct ofproto_dpif *
5622 ofproto_dpif_lookup(const char *name)
5623 {
5624 struct ofproto_dpif *ofproto;
5625
5626 HMAP_FOR_EACH_WITH_HASH (ofproto, all_ofproto_dpifs_node,
5627 hash_string(name, 0), &all_ofproto_dpifs) {
5628 if (!strcmp(ofproto->up.name, name)) {
5629 return ofproto;
5630 }
5631 }
5632 return NULL;
5633 }
5634
5635 static void
5636 ofproto_unixctl_fdb_flush(struct unixctl_conn *conn, int argc OVS_UNUSED,
5637 const char *argv[], void *aux OVS_UNUSED)
5638 {
5639 const struct ofproto_dpif *ofproto;
5640
5641 ofproto = ofproto_dpif_lookup(argv[1]);
5642 if (!ofproto) {
5643 unixctl_command_reply(conn, 501, "no such bridge");
5644 return;
5645 }
5646 mac_learning_flush(ofproto->ml);
5647
5648 unixctl_command_reply(conn, 200, "table successfully flushed");
5649 }
5650
5651 static void
5652 ofproto_unixctl_fdb_show(struct unixctl_conn *conn, int argc OVS_UNUSED,
5653 const char *argv[], void *aux OVS_UNUSED)
5654 {
5655 struct ds ds = DS_EMPTY_INITIALIZER;
5656 const struct ofproto_dpif *ofproto;
5657 const struct mac_entry *e;
5658
5659 ofproto = ofproto_dpif_lookup(argv[1]);
5660 if (!ofproto) {
5661 unixctl_command_reply(conn, 501, "no such bridge");
5662 return;
5663 }
5664
5665 ds_put_cstr(&ds, " port VLAN MAC Age\n");
5666 LIST_FOR_EACH (e, lru_node, &ofproto->ml->lrus) {
5667 struct ofbundle *bundle = e->port.p;
5668 ds_put_format(&ds, "%5d %4d "ETH_ADDR_FMT" %3d\n",
5669 ofbundle_get_a_port(bundle)->odp_port,
5670 e->vlan, ETH_ADDR_ARGS(e->mac), mac_entry_age(e));
5671 }
5672 unixctl_command_reply(conn, 200, ds_cstr(&ds));
5673 ds_destroy(&ds);
5674 }
5675
5676 struct ofproto_trace {
5677 struct action_xlate_ctx ctx;
5678 struct flow flow;
5679 struct ds *result;
5680 };
5681
5682 static void
5683 trace_format_rule(struct ds *result, uint8_t table_id, int level,
5684 const struct rule_dpif *rule)
5685 {
5686 ds_put_char_multiple(result, '\t', level);
5687 if (!rule) {
5688 ds_put_cstr(result, "No match\n");
5689 return;
5690 }
5691
5692 ds_put_format(result, "Rule: table=%"PRIu8" cookie=%#"PRIx64" ",
5693 table_id, ntohll(rule->up.flow_cookie));
5694 cls_rule_format(&rule->up.cr, result);
5695 ds_put_char(result, '\n');
5696
5697 ds_put_char_multiple(result, '\t', level);
5698 ds_put_cstr(result, "OpenFlow ");
5699 ofp_print_actions(result, rule->up.actions, rule->up.n_actions);
5700 ds_put_char(result, '\n');
5701 }
5702
5703 static void
5704 trace_format_flow(struct ds *result, int level, const char *title,
5705 struct ofproto_trace *trace)
5706 {
5707 ds_put_char_multiple(result, '\t', level);
5708 ds_put_format(result, "%s: ", title);
5709 if (flow_equal(&trace->ctx.flow, &trace->flow)) {
5710 ds_put_cstr(result, "unchanged");
5711 } else {
5712 flow_format(result, &trace->ctx.flow);
5713 trace->flow = trace->ctx.flow;
5714 }
5715 ds_put_char(result, '\n');
5716 }
5717
5718 static void
5719 trace_format_regs(struct ds *result, int level, const char *title,
5720 struct ofproto_trace *trace)
5721 {
5722 size_t i;
5723
5724 ds_put_char_multiple(result, '\t', level);
5725 ds_put_format(result, "%s:", title);
5726 for (i = 0; i < FLOW_N_REGS; i++) {
5727 ds_put_format(result, " reg%zu=0x%"PRIx32, i, trace->flow.regs[i]);
5728 }
5729 ds_put_char(result, '\n');
5730 }
5731
5732 static void
5733 trace_resubmit(struct action_xlate_ctx *ctx, struct rule_dpif *rule)
5734 {
5735 struct ofproto_trace *trace = CONTAINER_OF(ctx, struct ofproto_trace, ctx);
5736 struct ds *result = trace->result;
5737
5738 ds_put_char(result, '\n');
5739 trace_format_flow(result, ctx->recurse + 1, "Resubmitted flow", trace);
5740 trace_format_regs(result, ctx->recurse + 1, "Resubmitted regs", trace);
5741 trace_format_rule(result, ctx->table_id, ctx->recurse + 1, rule);
5742 }
5743
5744 static void
5745 ofproto_unixctl_trace(struct unixctl_conn *conn, int argc, const char *argv[],
5746 void *aux OVS_UNUSED)
5747 {
5748 const char *dpname = argv[1];
5749 struct ofproto_dpif *ofproto;
5750 struct ofpbuf odp_key;
5751 struct ofpbuf *packet;
5752 struct rule_dpif *rule;
5753 ovs_be16 initial_tci;
5754 struct ds result;
5755 struct flow flow;
5756 char *s;
5757
5758 packet = NULL;
5759 ofpbuf_init(&odp_key, 0);
5760 ds_init(&result);
5761
5762 ofproto = ofproto_dpif_lookup(dpname);
5763 if (!ofproto) {
5764 unixctl_command_reply(conn, 501, "Unknown ofproto (use ofproto/list "
5765 "for help)");
5766 goto exit;
5767 }
5768 if (argc == 3 || (argc == 4 && !strcmp(argv[3], "-generate"))) {
5769 /* ofproto/trace dpname flow [-generate] */
5770 const char *flow_s = argv[2];
5771 const char *generate_s = argv[3];
5772 int error;
5773
5774 /* Convert string to datapath key. */
5775 ofpbuf_init(&odp_key, 0);
5776 error = odp_flow_key_from_string(flow_s, NULL, &odp_key);
5777 if (error) {
5778 unixctl_command_reply(conn, 501, "Bad flow syntax");
5779 goto exit;
5780 }
5781
5782 /* Convert odp_key to flow. */
5783 error = ofproto_dpif_extract_flow_key(ofproto, odp_key.data,
5784 odp_key.size, &flow,
5785 &initial_tci, NULL);
5786 if (error == ODP_FIT_ERROR) {
5787 unixctl_command_reply(conn, 501, "Invalid flow");
5788 goto exit;
5789 }
5790
5791 /* Generate a packet, if requested. */
5792 if (generate_s) {
5793 packet = ofpbuf_new(0);
5794 flow_compose(packet, &flow);
5795 }
5796 } else if (argc == 6) {
5797 /* ofproto/trace dpname priority tun_id in_port packet */
5798 const char *priority_s = argv[2];
5799 const char *tun_id_s = argv[3];
5800 const char *in_port_s = argv[4];
5801 const char *packet_s = argv[5];
5802 uint16_t in_port = ofp_port_to_odp_port(atoi(in_port_s));
5803 ovs_be64 tun_id = htonll(strtoull(tun_id_s, NULL, 0));
5804 uint32_t priority = atoi(priority_s);
5805 const char *msg;
5806
5807 msg = eth_from_hex(packet_s, &packet);
5808 if (msg) {
5809 unixctl_command_reply(conn, 501, msg);
5810 goto exit;
5811 }
5812
5813 ds_put_cstr(&result, "Packet: ");
5814 s = ofp_packet_to_string(packet->data, packet->size);
5815 ds_put_cstr(&result, s);
5816 free(s);
5817
5818 flow_extract(packet, priority, tun_id, in_port, &flow);
5819 initial_tci = flow.vlan_tci;
5820 } else {
5821 unixctl_command_reply(conn, 501, "Bad command syntax");
5822 goto exit;
5823 }
5824
5825 ds_put_cstr(&result, "Flow: ");
5826 flow_format(&result, &flow);
5827 ds_put_char(&result, '\n');
5828
5829 rule = rule_dpif_lookup(ofproto, &flow, 0);
5830 trace_format_rule(&result, 0, 0, rule);
5831 if (rule) {
5832 struct ofproto_trace trace;
5833 struct ofpbuf *odp_actions;
5834
5835 trace.result = &result;
5836 trace.flow = flow;
5837 action_xlate_ctx_init(&trace.ctx, ofproto, &flow, initial_tci, packet);
5838 trace.ctx.resubmit_hook = trace_resubmit;
5839 odp_actions = xlate_actions(&trace.ctx,
5840 rule->up.actions, rule->up.n_actions);
5841
5842 ds_put_char(&result, '\n');
5843 trace_format_flow(&result, 0, "Final flow", &trace);
5844 ds_put_cstr(&result, "Datapath actions: ");
5845 format_odp_actions(&result, odp_actions->data, odp_actions->size);
5846 ofpbuf_delete(odp_actions);
5847
5848 if (!trace.ctx.may_set_up_flow) {
5849 if (packet) {
5850 ds_put_cstr(&result, "\nThis flow is not cachable.");
5851 } else {
5852 ds_put_cstr(&result, "\nThe datapath actions are incomplete--"
5853 "for complete actions, please supply a packet.");
5854 }
5855 }
5856 }
5857
5858 unixctl_command_reply(conn, 200, ds_cstr(&result));
5859
5860 exit:
5861 ds_destroy(&result);
5862 ofpbuf_delete(packet);
5863 ofpbuf_uninit(&odp_key);
5864 }
5865
5866 static void
5867 ofproto_dpif_clog(struct unixctl_conn *conn OVS_UNUSED, int argc OVS_UNUSED,
5868 const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED)
5869 {
5870 clogged = true;
5871 unixctl_command_reply(conn, 200, NULL);
5872 }
5873
5874 static void
5875 ofproto_dpif_unclog(struct unixctl_conn *conn OVS_UNUSED, int argc OVS_UNUSED,
5876 const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED)
5877 {
5878 clogged = false;
5879 unixctl_command_reply(conn, 200, NULL);
5880 }
5881
5882 static void
5883 ofproto_dpif_unixctl_init(void)
5884 {
5885 static bool registered;
5886 if (registered) {
5887 return;
5888 }
5889 registered = true;
5890
5891 unixctl_command_register(
5892 "ofproto/trace",
5893 "bridge {tun_id in_port packet | odp_flow [-generate]}",
5894 2, 4, ofproto_unixctl_trace, NULL);
5895 unixctl_command_register("fdb/flush", "bridge", 1, 1,
5896 ofproto_unixctl_fdb_flush, NULL);
5897 unixctl_command_register("fdb/show", "bridge", 1, 1,
5898 ofproto_unixctl_fdb_show, NULL);
5899 unixctl_command_register("ofproto/clog", "", 0, 0,
5900 ofproto_dpif_clog, NULL);
5901 unixctl_command_register("ofproto/unclog", "", 0, 0,
5902 ofproto_dpif_unclog, NULL);
5903 }
5904 \f
5905 /* Linux VLAN device support (e.g. "eth0.10" for VLAN 10.)
5906 *
5907 * This is deprecated. It is only for compatibility with broken device drivers
5908 * in old versions of Linux that do not properly support VLANs when VLAN
5909 * devices are not used. When broken device drivers are no longer in
5910 * widespread use, we will delete these interfaces. */
5911
5912 static int
5913 set_realdev(struct ofport *ofport_, uint16_t realdev_ofp_port, int vid)
5914 {
5915 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport_->ofproto);
5916 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
5917
5918 if (realdev_ofp_port == ofport->realdev_ofp_port
5919 && vid == ofport->vlandev_vid) {
5920 return 0;
5921 }
5922
5923 ofproto->need_revalidate = true;
5924
5925 if (ofport->realdev_ofp_port) {
5926 vsp_remove(ofport);
5927 }
5928 if (realdev_ofp_port && ofport->bundle) {
5929 /* vlandevs are enslaved to their realdevs, so they are not allowed to
5930 * themselves be part of a bundle. */
5931 bundle_set(ofport->up.ofproto, ofport->bundle, NULL);
5932 }
5933
5934 ofport->realdev_ofp_port = realdev_ofp_port;
5935 ofport->vlandev_vid = vid;
5936
5937 if (realdev_ofp_port) {
5938 vsp_add(ofport, realdev_ofp_port, vid);
5939 }
5940
5941 return 0;
5942 }
5943
5944 static uint32_t
5945 hash_realdev_vid(uint16_t realdev_ofp_port, int vid)
5946 {
5947 return hash_2words(realdev_ofp_port, vid);
5948 }
5949
5950 static uint32_t
5951 vsp_realdev_to_vlandev(const struct ofproto_dpif *ofproto,
5952 uint32_t realdev_odp_port, ovs_be16 vlan_tci)
5953 {
5954 if (!hmap_is_empty(&ofproto->realdev_vid_map)) {
5955 uint16_t realdev_ofp_port = odp_port_to_ofp_port(realdev_odp_port);
5956 int vid = vlan_tci_to_vid(vlan_tci);
5957 const struct vlan_splinter *vsp;
5958
5959 HMAP_FOR_EACH_WITH_HASH (vsp, realdev_vid_node,
5960 hash_realdev_vid(realdev_ofp_port, vid),
5961 &ofproto->realdev_vid_map) {
5962 if (vsp->realdev_ofp_port == realdev_ofp_port
5963 && vsp->vid == vid) {
5964 return ofp_port_to_odp_port(vsp->vlandev_ofp_port);
5965 }
5966 }
5967 }
5968 return realdev_odp_port;
5969 }
5970
5971 static struct vlan_splinter *
5972 vlandev_find(const struct ofproto_dpif *ofproto, uint16_t vlandev_ofp_port)
5973 {
5974 struct vlan_splinter *vsp;
5975
5976 HMAP_FOR_EACH_WITH_HASH (vsp, vlandev_node, hash_int(vlandev_ofp_port, 0),
5977 &ofproto->vlandev_map) {
5978 if (vsp->vlandev_ofp_port == vlandev_ofp_port) {
5979 return vsp;
5980 }
5981 }
5982
5983 return NULL;
5984 }
5985
5986 static uint16_t
5987 vsp_vlandev_to_realdev(const struct ofproto_dpif *ofproto,
5988 uint16_t vlandev_ofp_port, int *vid)
5989 {
5990 if (!hmap_is_empty(&ofproto->vlandev_map)) {
5991 const struct vlan_splinter *vsp;
5992
5993 vsp = vlandev_find(ofproto, vlandev_ofp_port);
5994 if (vsp) {
5995 if (vid) {
5996 *vid = vsp->vid;
5997 }
5998 return vsp->realdev_ofp_port;
5999 }
6000 }
6001 return 0;
6002 }
6003
6004 static void
6005 vsp_remove(struct ofport_dpif *port)
6006 {
6007 struct ofproto_dpif *ofproto = ofproto_dpif_cast(port->up.ofproto);
6008 struct vlan_splinter *vsp;
6009
6010 vsp = vlandev_find(ofproto, port->up.ofp_port);
6011 if (vsp) {
6012 hmap_remove(&ofproto->vlandev_map, &vsp->vlandev_node);
6013 hmap_remove(&ofproto->realdev_vid_map, &vsp->realdev_vid_node);
6014 free(vsp);
6015
6016 port->realdev_ofp_port = 0;
6017 } else {
6018 VLOG_ERR("missing vlan device record");
6019 }
6020 }
6021
6022 static void
6023 vsp_add(struct ofport_dpif *port, uint16_t realdev_ofp_port, int vid)
6024 {
6025 struct ofproto_dpif *ofproto = ofproto_dpif_cast(port->up.ofproto);
6026
6027 if (!vsp_vlandev_to_realdev(ofproto, port->up.ofp_port, NULL)
6028 && (vsp_realdev_to_vlandev(ofproto, realdev_ofp_port, htons(vid))
6029 == realdev_ofp_port)) {
6030 struct vlan_splinter *vsp;
6031
6032 vsp = xmalloc(sizeof *vsp);
6033 hmap_insert(&ofproto->vlandev_map, &vsp->vlandev_node,
6034 hash_int(port->up.ofp_port, 0));
6035 hmap_insert(&ofproto->realdev_vid_map, &vsp->realdev_vid_node,
6036 hash_realdev_vid(realdev_ofp_port, vid));
6037 vsp->realdev_ofp_port = realdev_ofp_port;
6038 vsp->vlandev_ofp_port = port->up.ofp_port;
6039 vsp->vid = vid;
6040
6041 port->realdev_ofp_port = realdev_ofp_port;
6042 } else {
6043 VLOG_ERR("duplicate vlan device record");
6044 }
6045 }
6046 \f
6047 const struct ofproto_class ofproto_dpif_class = {
6048 enumerate_types,
6049 enumerate_names,
6050 del,
6051 alloc,
6052 construct,
6053 destruct,
6054 dealloc,
6055 run,
6056 run_fast,
6057 wait,
6058 flush,
6059 get_features,
6060 get_tables,
6061 port_alloc,
6062 port_construct,
6063 port_destruct,
6064 port_dealloc,
6065 port_modified,
6066 port_reconfigured,
6067 port_query_by_name,
6068 port_add,
6069 port_del,
6070 port_get_stats,
6071 port_dump_start,
6072 port_dump_next,
6073 port_dump_done,
6074 port_poll,
6075 port_poll_wait,
6076 port_is_lacp_current,
6077 NULL, /* rule_choose_table */
6078 rule_alloc,
6079 rule_construct,
6080 rule_destruct,
6081 rule_dealloc,
6082 rule_get_stats,
6083 rule_execute,
6084 rule_modify_actions,
6085 set_frag_handling,
6086 packet_out,
6087 set_netflow,
6088 get_netflow_ids,
6089 set_sflow,
6090 set_cfm,
6091 get_cfm_fault,
6092 get_cfm_remote_mpids,
6093 set_stp,
6094 get_stp_status,
6095 set_stp_port,
6096 get_stp_port_status,
6097 set_queues,
6098 bundle_set,
6099 bundle_remove,
6100 mirror_set,
6101 mirror_get_stats,
6102 set_flood_vlans,
6103 is_mirror_output_bundle,
6104 forward_bpdu_changed,
6105 set_realdev,
6106 };