]> git.proxmox.com Git - mirror_ovs.git/blob - ofproto/ofproto-dpif.c
d32f6d16374f13a298d30605b9504fa07dac30d5
[mirror_ovs.git] / ofproto / ofproto-dpif.c
1 /*
2 * Copyright (c) 2009, 2010, 2011, 2012 Nicira, Inc.
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at:
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <config.h>
18
19 #include "ofproto/ofproto-provider.h"
20
21 #include <errno.h>
22
23 #include "autopath.h"
24 #include "bond.h"
25 #include "bundle.h"
26 #include "byte-order.h"
27 #include "connmgr.h"
28 #include "coverage.h"
29 #include "cfm.h"
30 #include "dpif.h"
31 #include "dynamic-string.h"
32 #include "fail-open.h"
33 #include "hmapx.h"
34 #include "lacp.h"
35 #include "learn.h"
36 #include "mac-learning.h"
37 #include "meta-flow.h"
38 #include "multipath.h"
39 #include "netdev.h"
40 #include "netlink.h"
41 #include "nx-match.h"
42 #include "odp-util.h"
43 #include "ofp-util.h"
44 #include "ofpbuf.h"
45 #include "ofp-actions.h"
46 #include "ofp-parse.h"
47 #include "ofp-print.h"
48 #include "ofproto-dpif-governor.h"
49 #include "ofproto-dpif-sflow.h"
50 #include "poll-loop.h"
51 #include "simap.h"
52 #include "smap.h"
53 #include "timer.h"
54 #include "unaligned.h"
55 #include "unixctl.h"
56 #include "vlan-bitmap.h"
57 #include "vlog.h"
58
59 VLOG_DEFINE_THIS_MODULE(ofproto_dpif);
60
61 COVERAGE_DEFINE(ofproto_dpif_expired);
62 COVERAGE_DEFINE(ofproto_dpif_xlate);
63 COVERAGE_DEFINE(facet_changed_rule);
64 COVERAGE_DEFINE(facet_revalidate);
65 COVERAGE_DEFINE(facet_unexpected);
66 COVERAGE_DEFINE(facet_suppress);
67
68 /* Maximum depth of flow table recursion (due to resubmit actions) in a
69 * flow translation. */
70 #define MAX_RESUBMIT_RECURSION 64
71
72 /* Number of implemented OpenFlow tables. */
73 enum { N_TABLES = 255 };
74 enum { TBL_INTERNAL = N_TABLES - 1 }; /* Used for internal hidden rules. */
75 BUILD_ASSERT_DECL(N_TABLES >= 2 && N_TABLES <= 255);
76
77 struct ofport_dpif;
78 struct ofproto_dpif;
79 struct flow_miss;
80
81 struct rule_dpif {
82 struct rule up;
83
84 /* These statistics:
85 *
86 * - Do include packets and bytes from facets that have been deleted or
87 * whose own statistics have been folded into the rule.
88 *
89 * - Do include packets and bytes sent "by hand" that were accounted to
90 * the rule without any facet being involved (this is a rare corner
91 * case in rule_execute()).
92 *
93 * - Do not include packet or bytes that can be obtained from any facet's
94 * packet_count or byte_count member or that can be obtained from the
95 * datapath by, e.g., dpif_flow_get() for any subfacet.
96 */
97 uint64_t packet_count; /* Number of packets received. */
98 uint64_t byte_count; /* Number of bytes received. */
99
100 tag_type tag; /* Caches rule_calculate_tag() result. */
101
102 struct list facets; /* List of "struct facet"s. */
103 };
104
105 static struct rule_dpif *rule_dpif_cast(const struct rule *rule)
106 {
107 return rule ? CONTAINER_OF(rule, struct rule_dpif, up) : NULL;
108 }
109
110 static struct rule_dpif *rule_dpif_lookup(struct ofproto_dpif *,
111 const struct flow *);
112 static struct rule_dpif *rule_dpif_lookup__(struct ofproto_dpif *,
113 const struct flow *,
114 uint8_t table);
115 static struct rule_dpif *rule_dpif_miss_rule(struct ofproto_dpif *ofproto,
116 const struct flow *flow);
117
118 static void rule_credit_stats(struct rule_dpif *,
119 const struct dpif_flow_stats *);
120 static void flow_push_stats(struct rule_dpif *, const struct flow *,
121 const struct dpif_flow_stats *);
122 static tag_type rule_calculate_tag(const struct flow *,
123 const struct minimask *, uint32_t basis);
124 static void rule_invalidate(const struct rule_dpif *);
125
126 #define MAX_MIRRORS 32
127 typedef uint32_t mirror_mask_t;
128 #define MIRROR_MASK_C(X) UINT32_C(X)
129 BUILD_ASSERT_DECL(sizeof(mirror_mask_t) * CHAR_BIT >= MAX_MIRRORS);
130 struct ofmirror {
131 struct ofproto_dpif *ofproto; /* Owning ofproto. */
132 size_t idx; /* In ofproto's "mirrors" array. */
133 void *aux; /* Key supplied by ofproto's client. */
134 char *name; /* Identifier for log messages. */
135
136 /* Selection criteria. */
137 struct hmapx srcs; /* Contains "struct ofbundle *"s. */
138 struct hmapx dsts; /* Contains "struct ofbundle *"s. */
139 unsigned long *vlans; /* Bitmap of chosen VLANs, NULL selects all. */
140
141 /* Output (exactly one of out == NULL and out_vlan == -1 is true). */
142 struct ofbundle *out; /* Output port or NULL. */
143 int out_vlan; /* Output VLAN or -1. */
144 mirror_mask_t dup_mirrors; /* Bitmap of mirrors with the same output. */
145
146 /* Counters. */
147 int64_t packet_count; /* Number of packets sent. */
148 int64_t byte_count; /* Number of bytes sent. */
149 };
150
151 static void mirror_destroy(struct ofmirror *);
152 static void update_mirror_stats(struct ofproto_dpif *ofproto,
153 mirror_mask_t mirrors,
154 uint64_t packets, uint64_t bytes);
155
156 struct ofbundle {
157 struct hmap_node hmap_node; /* In struct ofproto's "bundles" hmap. */
158 struct ofproto_dpif *ofproto; /* Owning ofproto. */
159 void *aux; /* Key supplied by ofproto's client. */
160 char *name; /* Identifier for log messages. */
161
162 /* Configuration. */
163 struct list ports; /* Contains "struct ofport"s. */
164 enum port_vlan_mode vlan_mode; /* VLAN mode */
165 int vlan; /* -1=trunk port, else a 12-bit VLAN ID. */
166 unsigned long *trunks; /* Bitmap of trunked VLANs, if 'vlan' == -1.
167 * NULL if all VLANs are trunked. */
168 struct lacp *lacp; /* LACP if LACP is enabled, otherwise NULL. */
169 struct bond *bond; /* Nonnull iff more than one port. */
170 bool use_priority_tags; /* Use 802.1p tag for frames in VLAN 0? */
171
172 /* Status. */
173 bool floodable; /* True if no port has OFPUTIL_PC_NO_FLOOD set. */
174
175 /* Port mirroring info. */
176 mirror_mask_t src_mirrors; /* Mirrors triggered when packet received. */
177 mirror_mask_t dst_mirrors; /* Mirrors triggered when packet sent. */
178 mirror_mask_t mirror_out; /* Mirrors that output to this bundle. */
179 };
180
181 static void bundle_remove(struct ofport *);
182 static void bundle_update(struct ofbundle *);
183 static void bundle_destroy(struct ofbundle *);
184 static void bundle_del_port(struct ofport_dpif *);
185 static void bundle_run(struct ofbundle *);
186 static void bundle_wait(struct ofbundle *);
187 static struct ofbundle *lookup_input_bundle(const struct ofproto_dpif *,
188 uint16_t in_port, bool warn,
189 struct ofport_dpif **in_ofportp);
190
191 /* A controller may use OFPP_NONE as the ingress port to indicate that
192 * it did not arrive on a "real" port. 'ofpp_none_bundle' exists for
193 * when an input bundle is needed for validation (e.g., mirroring or
194 * OFPP_NORMAL processing). It is not connected to an 'ofproto' or have
195 * any 'port' structs, so care must be taken when dealing with it. */
196 static struct ofbundle ofpp_none_bundle = {
197 .name = "OFPP_NONE",
198 .vlan_mode = PORT_VLAN_TRUNK
199 };
200
201 static void stp_run(struct ofproto_dpif *ofproto);
202 static void stp_wait(struct ofproto_dpif *ofproto);
203 static int set_stp_port(struct ofport *,
204 const struct ofproto_port_stp_settings *);
205
206 static bool ofbundle_includes_vlan(const struct ofbundle *, uint16_t vlan);
207
208 struct action_xlate_ctx {
209 /* action_xlate_ctx_init() initializes these members. */
210
211 /* The ofproto. */
212 struct ofproto_dpif *ofproto;
213
214 /* Flow to which the OpenFlow actions apply. xlate_actions() will modify
215 * this flow when actions change header fields. */
216 struct flow flow;
217
218 /* The packet corresponding to 'flow', or a null pointer if we are
219 * revalidating without a packet to refer to. */
220 const struct ofpbuf *packet;
221
222 /* Should OFPP_NORMAL update the MAC learning table? Should "learn"
223 * actions update the flow table?
224 *
225 * We want to update these tables if we are actually processing a packet,
226 * or if we are accounting for packets that the datapath has processed, but
227 * not if we are just revalidating. */
228 bool may_learn;
229
230 /* The rule that we are currently translating, or NULL. */
231 struct rule_dpif *rule;
232
233 /* Union of the set of TCP flags seen so far in this flow. (Used only by
234 * NXAST_FIN_TIMEOUT. Set to zero to avoid updating updating rules'
235 * timeouts.) */
236 uint8_t tcp_flags;
237
238 /* If nonnull, flow translation calls this function just before executing a
239 * resubmit or OFPP_TABLE action. In addition, disables logging of traces
240 * when the recursion depth is exceeded.
241 *
242 * 'rule' is the rule being submitted into. It will be null if the
243 * resubmit or OFPP_TABLE action didn't find a matching rule.
244 *
245 * This is normally null so the client has to set it manually after
246 * calling action_xlate_ctx_init(). */
247 void (*resubmit_hook)(struct action_xlate_ctx *, struct rule_dpif *rule);
248
249 /* If nonnull, flow translation calls this function to report some
250 * significant decision, e.g. to explain why OFPP_NORMAL translation
251 * dropped a packet. */
252 void (*report_hook)(struct action_xlate_ctx *, const char *s);
253
254 /* If nonnull, flow translation credits the specified statistics to each
255 * rule reached through a resubmit or OFPP_TABLE action.
256 *
257 * This is normally null so the client has to set it manually after
258 * calling action_xlate_ctx_init(). */
259 const struct dpif_flow_stats *resubmit_stats;
260
261 /* xlate_actions() initializes and uses these members. The client might want
262 * to look at them after it returns. */
263
264 struct ofpbuf *odp_actions; /* Datapath actions. */
265 tag_type tags; /* Tags associated with actions. */
266 enum slow_path_reason slow; /* 0 if fast path may be used. */
267 bool has_learn; /* Actions include NXAST_LEARN? */
268 bool has_normal; /* Actions output to OFPP_NORMAL? */
269 bool has_fin_timeout; /* Actions include NXAST_FIN_TIMEOUT? */
270 uint16_t nf_output_iface; /* Output interface index for NetFlow. */
271 mirror_mask_t mirrors; /* Bitmap of associated mirrors. */
272
273 /* xlate_actions() initializes and uses these members, but the client has no
274 * reason to look at them. */
275
276 int recurse; /* Recursion level, via xlate_table_action. */
277 bool max_resubmit_trigger; /* Recursed too deeply during translation. */
278 struct flow base_flow; /* Flow at the last commit. */
279 uint32_t orig_skb_priority; /* Priority when packet arrived. */
280 uint8_t table_id; /* OpenFlow table ID where flow was found. */
281 uint32_t sflow_n_outputs; /* Number of output ports. */
282 uint32_t sflow_odp_port; /* Output port for composing sFlow action. */
283 uint16_t user_cookie_offset;/* Used for user_action_cookie fixup. */
284 bool exit; /* No further actions should be processed. */
285 struct flow orig_flow; /* Copy of original flow. */
286 };
287
288 static void action_xlate_ctx_init(struct action_xlate_ctx *,
289 struct ofproto_dpif *, const struct flow *,
290 ovs_be16 initial_tci, struct rule_dpif *,
291 uint8_t tcp_flags, const struct ofpbuf *);
292 static void xlate_actions(struct action_xlate_ctx *,
293 const struct ofpact *ofpacts, size_t ofpacts_len,
294 struct ofpbuf *odp_actions);
295 static void xlate_actions_for_side_effects(struct action_xlate_ctx *,
296 const struct ofpact *ofpacts,
297 size_t ofpacts_len);
298
299 static size_t put_userspace_action(const struct ofproto_dpif *,
300 struct ofpbuf *odp_actions,
301 const struct flow *,
302 const union user_action_cookie *);
303
304 static void compose_slow_path(const struct ofproto_dpif *, const struct flow *,
305 enum slow_path_reason,
306 uint64_t *stub, size_t stub_size,
307 const struct nlattr **actionsp,
308 size_t *actions_lenp);
309
310 static void xlate_report(struct action_xlate_ctx *ctx, const char *s);
311
312 /* A subfacet (see "struct subfacet" below) has three possible installation
313 * states:
314 *
315 * - SF_NOT_INSTALLED: Not installed in the datapath. This will only be the
316 * case just after the subfacet is created, just before the subfacet is
317 * destroyed, or if the datapath returns an error when we try to install a
318 * subfacet.
319 *
320 * - SF_FAST_PATH: The subfacet's actions are installed in the datapath.
321 *
322 * - SF_SLOW_PATH: An action that sends every packet for the subfacet through
323 * ofproto_dpif is installed in the datapath.
324 */
325 enum subfacet_path {
326 SF_NOT_INSTALLED, /* No datapath flow for this subfacet. */
327 SF_FAST_PATH, /* Full actions are installed. */
328 SF_SLOW_PATH, /* Send-to-userspace action is installed. */
329 };
330
331 static const char *subfacet_path_to_string(enum subfacet_path);
332
333 /* A dpif flow and actions associated with a facet.
334 *
335 * See also the large comment on struct facet. */
336 struct subfacet {
337 /* Owners. */
338 struct hmap_node hmap_node; /* In struct ofproto_dpif 'subfacets' list. */
339 struct list list_node; /* In struct facet's 'facets' list. */
340 struct facet *facet; /* Owning facet. */
341
342 /* Key.
343 *
344 * To save memory in the common case, 'key' is NULL if 'key_fitness' is
345 * ODP_FIT_PERFECT, that is, odp_flow_key_from_flow() can accurately
346 * regenerate the ODP flow key from ->facet->flow. */
347 enum odp_key_fitness key_fitness;
348 struct nlattr *key;
349 int key_len;
350
351 long long int used; /* Time last used; time created if not used. */
352
353 uint64_t dp_packet_count; /* Last known packet count in the datapath. */
354 uint64_t dp_byte_count; /* Last known byte count in the datapath. */
355
356 /* Datapath actions.
357 *
358 * These should be essentially identical for every subfacet in a facet, but
359 * may differ in trivial ways due to VLAN splinters. */
360 size_t actions_len; /* Number of bytes in actions[]. */
361 struct nlattr *actions; /* Datapath actions. */
362
363 enum slow_path_reason slow; /* 0 if fast path may be used. */
364 enum subfacet_path path; /* Installed in datapath? */
365
366 /* This value is normally the same as ->facet->flow.vlan_tci. Only VLAN
367 * splinters can cause it to differ. This value should be removed when
368 * the VLAN splinters feature is no longer needed. */
369 ovs_be16 initial_tci; /* Initial VLAN TCI value. */
370
371 /* Datapath port the packet arrived on. This is needed to remove
372 * flows for ports that are no longer part of the bridge. Since the
373 * flow definition only has the OpenFlow port number and the port is
374 * no longer part of the bridge, we can't determine the datapath port
375 * number needed to delete the flow from the datapath. */
376 uint32_t odp_in_port;
377 };
378
379 #define SUBFACET_DESTROY_MAX_BATCH 50
380
381 static struct subfacet *subfacet_create(struct facet *, struct flow_miss *miss,
382 long long int now);
383 static struct subfacet *subfacet_find(struct ofproto_dpif *,
384 const struct nlattr *key, size_t key_len,
385 uint32_t key_hash,
386 const struct flow *flow);
387 static void subfacet_destroy(struct subfacet *);
388 static void subfacet_destroy__(struct subfacet *);
389 static void subfacet_destroy_batch(struct ofproto_dpif *,
390 struct subfacet **, int n);
391 static void subfacet_get_key(struct subfacet *, struct odputil_keybuf *,
392 struct ofpbuf *key);
393 static void subfacet_reset_dp_stats(struct subfacet *,
394 struct dpif_flow_stats *);
395 static void subfacet_update_time(struct subfacet *, long long int used);
396 static void subfacet_update_stats(struct subfacet *,
397 const struct dpif_flow_stats *);
398 static void subfacet_make_actions(struct subfacet *,
399 const struct ofpbuf *packet,
400 struct ofpbuf *odp_actions);
401 static int subfacet_install(struct subfacet *,
402 const struct nlattr *actions, size_t actions_len,
403 struct dpif_flow_stats *, enum slow_path_reason);
404 static void subfacet_uninstall(struct subfacet *);
405
406 static enum subfacet_path subfacet_want_path(enum slow_path_reason);
407
408 /* An exact-match instantiation of an OpenFlow flow.
409 *
410 * A facet associates a "struct flow", which represents the Open vSwitch
411 * userspace idea of an exact-match flow, with one or more subfacets. Each
412 * subfacet tracks the datapath's idea of the exact-match flow equivalent to
413 * the facet. When the kernel module (or other dpif implementation) and Open
414 * vSwitch userspace agree on the definition of a flow key, there is exactly
415 * one subfacet per facet. If the dpif implementation supports more-specific
416 * flow matching than userspace, however, a facet can have more than one
417 * subfacet, each of which corresponds to some distinction in flow that
418 * userspace simply doesn't understand.
419 *
420 * Flow expiration works in terms of subfacets, so a facet must have at least
421 * one subfacet or it will never expire, leaking memory. */
422 struct facet {
423 /* Owners. */
424 struct hmap_node hmap_node; /* In owning ofproto's 'facets' hmap. */
425 struct list list_node; /* In owning rule's 'facets' list. */
426 struct rule_dpif *rule; /* Owning rule. */
427
428 /* Owned data. */
429 struct list subfacets;
430 long long int used; /* Time last used; time created if not used. */
431
432 /* Key. */
433 struct flow flow;
434
435 /* These statistics:
436 *
437 * - Do include packets and bytes sent "by hand", e.g. with
438 * dpif_execute().
439 *
440 * - Do include packets and bytes that were obtained from the datapath
441 * when a subfacet's statistics were reset (e.g. dpif_flow_put() with
442 * DPIF_FP_ZERO_STATS).
443 *
444 * - Do not include packets or bytes that can be obtained from the
445 * datapath for any existing subfacet.
446 */
447 uint64_t packet_count; /* Number of packets received. */
448 uint64_t byte_count; /* Number of bytes received. */
449
450 /* Resubmit statistics. */
451 uint64_t prev_packet_count; /* Number of packets from last stats push. */
452 uint64_t prev_byte_count; /* Number of bytes from last stats push. */
453 long long int prev_used; /* Used time from last stats push. */
454
455 /* Accounting. */
456 uint64_t accounted_bytes; /* Bytes processed by facet_account(). */
457 struct netflow_flow nf_flow; /* Per-flow NetFlow tracking data. */
458 uint8_t tcp_flags; /* TCP flags seen for this 'rule'. */
459
460 /* Properties of datapath actions.
461 *
462 * Every subfacet has its own actions because actions can differ slightly
463 * between splintered and non-splintered subfacets due to the VLAN tag
464 * being initially different (present vs. absent). All of them have these
465 * properties in common so we just store one copy of them here. */
466 bool has_learn; /* Actions include NXAST_LEARN? */
467 bool has_normal; /* Actions output to OFPP_NORMAL? */
468 bool has_fin_timeout; /* Actions include NXAST_FIN_TIMEOUT? */
469 tag_type tags; /* Tags that would require revalidation. */
470 mirror_mask_t mirrors; /* Bitmap of dependent mirrors. */
471
472 /* Storage for a single subfacet, to reduce malloc() time and space
473 * overhead. (A facet always has at least one subfacet and in the common
474 * case has exactly one subfacet.) */
475 struct subfacet one_subfacet;
476 };
477
478 static struct facet *facet_create(struct rule_dpif *,
479 const struct flow *, uint32_t hash);
480 static void facet_remove(struct facet *);
481 static void facet_free(struct facet *);
482
483 static struct facet *facet_find(struct ofproto_dpif *,
484 const struct flow *, uint32_t hash);
485 static struct facet *facet_lookup_valid(struct ofproto_dpif *,
486 const struct flow *, uint32_t hash);
487 static void facet_revalidate(struct facet *);
488 static bool facet_check_consistency(struct facet *);
489
490 static void facet_flush_stats(struct facet *);
491
492 static void facet_update_time(struct facet *, long long int used);
493 static void facet_reset_counters(struct facet *);
494 static void facet_push_stats(struct facet *);
495 static void facet_learn(struct facet *);
496 static void facet_account(struct facet *);
497
498 static bool facet_is_controller_flow(struct facet *);
499
500 struct ofport_dpif {
501 struct hmap_node odp_port_node; /* In dpif_backer's "odp_to_ofport_map". */
502 struct ofport up;
503
504 uint32_t odp_port;
505 struct ofbundle *bundle; /* Bundle that contains this port, if any. */
506 struct list bundle_node; /* In struct ofbundle's "ports" list. */
507 struct cfm *cfm; /* Connectivity Fault Management, if any. */
508 tag_type tag; /* Tag associated with this port. */
509 uint32_t bond_stable_id; /* stable_id to use as bond slave, or 0. */
510 bool may_enable; /* May be enabled in bonds. */
511 long long int carrier_seq; /* Carrier status changes. */
512
513 /* Spanning tree. */
514 struct stp_port *stp_port; /* Spanning Tree Protocol, if any. */
515 enum stp_state stp_state; /* Always STP_DISABLED if STP not in use. */
516 long long int stp_state_entered;
517
518 struct hmap priorities; /* Map of attached 'priority_to_dscp's. */
519
520 /* Linux VLAN device support (e.g. "eth0.10" for VLAN 10.)
521 *
522 * This is deprecated. It is only for compatibility with broken device
523 * drivers in old versions of Linux that do not properly support VLANs when
524 * VLAN devices are not used. When broken device drivers are no longer in
525 * widespread use, we will delete these interfaces. */
526 uint16_t realdev_ofp_port;
527 int vlandev_vid;
528 };
529
530 /* Node in 'ofport_dpif''s 'priorities' map. Used to maintain a map from
531 * 'priority' (the datapath's term for QoS queue) to the dscp bits which all
532 * traffic egressing the 'ofport' with that priority should be marked with. */
533 struct priority_to_dscp {
534 struct hmap_node hmap_node; /* Node in 'ofport_dpif''s 'priorities' map. */
535 uint32_t priority; /* Priority of this queue (see struct flow). */
536
537 uint8_t dscp; /* DSCP bits to mark outgoing traffic with. */
538 };
539
540 /* Linux VLAN device support (e.g. "eth0.10" for VLAN 10.)
541 *
542 * This is deprecated. It is only for compatibility with broken device drivers
543 * in old versions of Linux that do not properly support VLANs when VLAN
544 * devices are not used. When broken device drivers are no longer in
545 * widespread use, we will delete these interfaces. */
546 struct vlan_splinter {
547 struct hmap_node realdev_vid_node;
548 struct hmap_node vlandev_node;
549 uint16_t realdev_ofp_port;
550 uint16_t vlandev_ofp_port;
551 int vid;
552 };
553
554 static uint32_t vsp_realdev_to_vlandev(const struct ofproto_dpif *,
555 uint32_t realdev, ovs_be16 vlan_tci);
556 static bool vsp_adjust_flow(const struct ofproto_dpif *, struct flow *);
557 static void vsp_remove(struct ofport_dpif *);
558 static void vsp_add(struct ofport_dpif *, uint16_t realdev_ofp_port, int vid);
559
560 static uint32_t ofp_port_to_odp_port(const struct ofproto_dpif *,
561 uint16_t ofp_port);
562 static uint16_t odp_port_to_ofp_port(const struct ofproto_dpif *,
563 uint32_t odp_port);
564
565 static struct ofport_dpif *
566 ofport_dpif_cast(const struct ofport *ofport)
567 {
568 assert(ofport->ofproto->ofproto_class == &ofproto_dpif_class);
569 return ofport ? CONTAINER_OF(ofport, struct ofport_dpif, up) : NULL;
570 }
571
572 static void port_run(struct ofport_dpif *);
573 static void port_run_fast(struct ofport_dpif *);
574 static void port_wait(struct ofport_dpif *);
575 static int set_cfm(struct ofport *, const struct cfm_settings *);
576 static void ofport_clear_priorities(struct ofport_dpif *);
577
578 struct dpif_completion {
579 struct list list_node;
580 struct ofoperation *op;
581 };
582
583 /* Extra information about a classifier table.
584 * Currently used just for optimized flow revalidation. */
585 struct table_dpif {
586 /* If either of these is nonnull, then this table has a form that allows
587 * flows to be tagged to avoid revalidating most flows for the most common
588 * kinds of flow table changes. */
589 struct cls_table *catchall_table; /* Table that wildcards all fields. */
590 struct cls_table *other_table; /* Table with any other wildcard set. */
591 uint32_t basis; /* Keeps each table's tags separate. */
592 };
593
594 /* Reasons that we might need to revalidate every facet, and corresponding
595 * coverage counters.
596 *
597 * A value of 0 means that there is no need to revalidate.
598 *
599 * It would be nice to have some cleaner way to integrate with coverage
600 * counters, but with only a few reasons I guess this is good enough for
601 * now. */
602 enum revalidate_reason {
603 REV_RECONFIGURE = 1, /* Switch configuration changed. */
604 REV_STP, /* Spanning tree protocol port status change. */
605 REV_PORT_TOGGLED, /* Port enabled or disabled by CFM, LACP, ...*/
606 REV_FLOW_TABLE, /* Flow table changed. */
607 REV_INCONSISTENCY /* Facet self-check failed. */
608 };
609 COVERAGE_DEFINE(rev_reconfigure);
610 COVERAGE_DEFINE(rev_stp);
611 COVERAGE_DEFINE(rev_port_toggled);
612 COVERAGE_DEFINE(rev_flow_table);
613 COVERAGE_DEFINE(rev_inconsistency);
614
615 /* All datapaths of a given type share a single dpif backer instance. */
616 struct dpif_backer {
617 char *type;
618 int refcount;
619 struct dpif *dpif;
620 struct timer next_expiration;
621 struct hmap odp_to_ofport_map; /* ODP port to ofport mapping. */
622 };
623
624 /* All existing ofproto_backer instances, indexed by ofproto->up.type. */
625 static struct shash all_dpif_backers = SHASH_INITIALIZER(&all_dpif_backers);
626
627 static struct ofport_dpif *
628 odp_port_to_ofport(const struct dpif_backer *, uint32_t odp_port);
629
630 struct ofproto_dpif {
631 struct hmap_node all_ofproto_dpifs_node; /* In 'all_ofproto_dpifs'. */
632 struct ofproto up;
633 struct dpif_backer *backer;
634
635 /* Special OpenFlow rules. */
636 struct rule_dpif *miss_rule; /* Sends flow table misses to controller. */
637 struct rule_dpif *no_packet_in_rule; /* Drops flow table misses. */
638
639 /* Statistics. */
640 uint64_t n_matches;
641
642 /* Bridging. */
643 struct netflow *netflow;
644 struct dpif_sflow *sflow;
645 struct hmap bundles; /* Contains "struct ofbundle"s. */
646 struct mac_learning *ml;
647 struct ofmirror *mirrors[MAX_MIRRORS];
648 bool has_mirrors;
649 bool has_bonded_bundles;
650
651 /* Facets. */
652 struct hmap facets;
653 struct hmap subfacets;
654 struct governor *governor;
655
656 /* Revalidation. */
657 struct table_dpif tables[N_TABLES];
658 enum revalidate_reason need_revalidate;
659 struct tag_set revalidate_set;
660
661 /* Support for debugging async flow mods. */
662 struct list completions;
663
664 bool has_bundle_action; /* True when the first bundle action appears. */
665 struct netdev_stats stats; /* To account packets generated and consumed in
666 * userspace. */
667
668 /* Spanning tree. */
669 struct stp *stp;
670 long long int stp_last_tick;
671
672 /* VLAN splinters. */
673 struct hmap realdev_vid_map; /* (realdev,vid) -> vlandev. */
674 struct hmap vlandev_map; /* vlandev -> (realdev,vid). */
675
676 /* Ports. */
677 struct sset ports; /* Set of port names. */
678 struct sset port_poll_set; /* Queued names for port_poll() reply. */
679 int port_poll_errno; /* Last errno for port_poll() reply. */
680 };
681
682 /* Defer flow mod completion until "ovs-appctl ofproto/unclog"? (Useful only
683 * for debugging the asynchronous flow_mod implementation.) */
684 static bool clogged;
685
686 /* All existing ofproto_dpif instances, indexed by ->up.name. */
687 static struct hmap all_ofproto_dpifs = HMAP_INITIALIZER(&all_ofproto_dpifs);
688
689 static void ofproto_dpif_unixctl_init(void);
690
691 static struct ofproto_dpif *
692 ofproto_dpif_cast(const struct ofproto *ofproto)
693 {
694 assert(ofproto->ofproto_class == &ofproto_dpif_class);
695 return CONTAINER_OF(ofproto, struct ofproto_dpif, up);
696 }
697
698 static struct ofport_dpif *get_ofp_port(const struct ofproto_dpif *,
699 uint16_t ofp_port);
700 static struct ofport_dpif *get_odp_port(const struct ofproto_dpif *,
701 uint32_t odp_port);
702 static void ofproto_trace(struct ofproto_dpif *, const struct flow *,
703 const struct ofpbuf *, ovs_be16 initial_tci,
704 struct ds *);
705
706 /* Packet processing. */
707 static void update_learning_table(struct ofproto_dpif *,
708 const struct flow *, int vlan,
709 struct ofbundle *);
710 /* Upcalls. */
711 #define FLOW_MISS_MAX_BATCH 50
712 static int handle_upcalls(struct dpif_backer *, unsigned int max_batch);
713
714 /* Flow expiration. */
715 static int expire(struct dpif_backer *);
716
717 /* NetFlow. */
718 static void send_netflow_active_timeouts(struct ofproto_dpif *);
719
720 /* Utilities. */
721 static int send_packet(const struct ofport_dpif *, struct ofpbuf *packet);
722 static size_t compose_sflow_action(const struct ofproto_dpif *,
723 struct ofpbuf *odp_actions,
724 const struct flow *, uint32_t odp_port);
725 static void add_mirror_actions(struct action_xlate_ctx *ctx,
726 const struct flow *flow);
727 /* Global variables. */
728 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
729
730 /* Initial mappings of port to bridge mappings. */
731 static struct shash init_ofp_ports = SHASH_INITIALIZER(&init_ofp_ports);
732 \f
733 /* Factory functions. */
734
735 static void
736 init(const struct shash *iface_hints)
737 {
738 struct shash_node *node;
739
740 /* Make a local copy, since we don't own 'iface_hints' elements. */
741 SHASH_FOR_EACH(node, iface_hints) {
742 const struct iface_hint *orig_hint = node->data;
743 struct iface_hint *new_hint = xmalloc(sizeof *new_hint);
744
745 new_hint->br_name = xstrdup(orig_hint->br_name);
746 new_hint->br_type = xstrdup(orig_hint->br_type);
747 new_hint->ofp_port = orig_hint->ofp_port;
748
749 shash_add(&init_ofp_ports, node->name, new_hint);
750 }
751 }
752
753 static void
754 enumerate_types(struct sset *types)
755 {
756 dp_enumerate_types(types);
757 }
758
759 static int
760 enumerate_names(const char *type, struct sset *names)
761 {
762 struct ofproto_dpif *ofproto;
763
764 sset_clear(names);
765 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
766 if (strcmp(type, ofproto->up.type)) {
767 continue;
768 }
769 sset_add(names, ofproto->up.name);
770 }
771
772 return 0;
773 }
774
775 static int
776 del(const char *type, const char *name)
777 {
778 struct dpif *dpif;
779 int error;
780
781 error = dpif_open(name, type, &dpif);
782 if (!error) {
783 error = dpif_delete(dpif);
784 dpif_close(dpif);
785 }
786 return error;
787 }
788 \f
789 static const char *
790 port_open_type(const char *datapath_type, const char *port_type)
791 {
792 return dpif_port_open_type(datapath_type, port_type);
793 }
794
795 /* Type functions. */
796
797 static int
798 type_run(const char *type)
799 {
800 struct dpif_backer *backer;
801 char *devname;
802 int error;
803
804 backer = shash_find_data(&all_dpif_backers, type);
805 if (!backer) {
806 /* This is not necessarily a problem, since backers are only
807 * created on demand. */
808 return 0;
809 }
810
811 dpif_run(backer->dpif);
812
813 if (timer_expired(&backer->next_expiration)) {
814 int delay = expire(backer);
815 timer_set_duration(&backer->next_expiration, delay);
816 }
817
818 /* Check for port changes in the dpif. */
819 while ((error = dpif_port_poll(backer->dpif, &devname)) == 0) {
820 struct ofproto_dpif *ofproto = NULL;
821 struct dpif_port port;
822
823 /* Don't report on the datapath's device. */
824 if (!strcmp(devname, dpif_base_name(backer->dpif))) {
825 continue;
826 }
827
828 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node,
829 &all_ofproto_dpifs) {
830 if (sset_contains(&ofproto->ports, devname)) {
831 break;
832 }
833 }
834
835 if (dpif_port_query_by_name(backer->dpif, devname, &port)) {
836 /* The port was removed. If we know the datapath,
837 * report it through poll_set(). If we don't, it may be
838 * notifying us of a removal we initiated, so ignore it.
839 * If there's a pending ENOBUFS, let it stand, since
840 * everything will be reevaluated. */
841 if (ofproto && ofproto->port_poll_errno != ENOBUFS) {
842 sset_add(&ofproto->port_poll_set, devname);
843 ofproto->port_poll_errno = 0;
844 }
845 dpif_port_destroy(&port);
846 } else if (!ofproto) {
847 /* The port was added, but we don't know with which
848 * ofproto we should associate it. Delete it. */
849 dpif_port_del(backer->dpif, port.port_no);
850 }
851
852 free(devname);
853 }
854
855 if (error != EAGAIN) {
856 struct ofproto_dpif *ofproto;
857
858 /* There was some sort of error, so propagate it to all
859 * ofprotos that use this backer. */
860 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node,
861 &all_ofproto_dpifs) {
862 if (ofproto->backer == backer) {
863 sset_clear(&ofproto->port_poll_set);
864 ofproto->port_poll_errno = error;
865 }
866 }
867 }
868
869 return 0;
870 }
871
872 static int
873 type_run_fast(const char *type)
874 {
875 struct dpif_backer *backer;
876 unsigned int work;
877
878 backer = shash_find_data(&all_dpif_backers, type);
879 if (!backer) {
880 /* This is not necessarily a problem, since backers are only
881 * created on demand. */
882 return 0;
883 }
884
885 /* Handle one or more batches of upcalls, until there's nothing left to do
886 * or until we do a fixed total amount of work.
887 *
888 * We do work in batches because it can be much cheaper to set up a number
889 * of flows and fire off their patches all at once. We do multiple batches
890 * because in some cases handling a packet can cause another packet to be
891 * queued almost immediately as part of the return flow. Both
892 * optimizations can make major improvements on some benchmarks and
893 * presumably for real traffic as well. */
894 work = 0;
895 while (work < FLOW_MISS_MAX_BATCH) {
896 int retval = handle_upcalls(backer, FLOW_MISS_MAX_BATCH - work);
897 if (retval <= 0) {
898 return -retval;
899 }
900 work += retval;
901 }
902
903 return 0;
904 }
905
906 static void
907 type_wait(const char *type)
908 {
909 struct dpif_backer *backer;
910
911 backer = shash_find_data(&all_dpif_backers, type);
912 if (!backer) {
913 /* This is not necessarily a problem, since backers are only
914 * created on demand. */
915 return;
916 }
917
918 timer_wait(&backer->next_expiration);
919 }
920 \f
921 /* Basic life-cycle. */
922
923 static int add_internal_flows(struct ofproto_dpif *);
924
925 static struct ofproto *
926 alloc(void)
927 {
928 struct ofproto_dpif *ofproto = xmalloc(sizeof *ofproto);
929 return &ofproto->up;
930 }
931
932 static void
933 dealloc(struct ofproto *ofproto_)
934 {
935 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
936 free(ofproto);
937 }
938
939 static void
940 close_dpif_backer(struct dpif_backer *backer)
941 {
942 struct shash_node *node;
943
944 assert(backer->refcount > 0);
945
946 if (--backer->refcount) {
947 return;
948 }
949
950 hmap_destroy(&backer->odp_to_ofport_map);
951 node = shash_find(&all_dpif_backers, backer->type);
952 free(backer->type);
953 shash_delete(&all_dpif_backers, node);
954 dpif_close(backer->dpif);
955
956 free(backer);
957 }
958
959 /* Datapath port slated for removal from datapath. */
960 struct odp_garbage {
961 struct list list_node;
962 uint32_t odp_port;
963 };
964
965 static int
966 open_dpif_backer(const char *type, struct dpif_backer **backerp)
967 {
968 struct dpif_backer *backer;
969 struct dpif_port_dump port_dump;
970 struct dpif_port port;
971 struct shash_node *node;
972 struct list garbage_list;
973 struct odp_garbage *garbage, *next;
974 struct sset names;
975 char *backer_name;
976 const char *name;
977 int error;
978
979 backer = shash_find_data(&all_dpif_backers, type);
980 if (backer) {
981 backer->refcount++;
982 *backerp = backer;
983 return 0;
984 }
985
986 backer_name = xasprintf("ovs-%s", type);
987
988 /* Remove any existing datapaths, since we assume we're the only
989 * userspace controlling the datapath. */
990 sset_init(&names);
991 dp_enumerate_names(type, &names);
992 SSET_FOR_EACH(name, &names) {
993 struct dpif *old_dpif;
994
995 /* Don't remove our backer if it exists. */
996 if (!strcmp(name, backer_name)) {
997 continue;
998 }
999
1000 if (dpif_open(name, type, &old_dpif)) {
1001 VLOG_WARN("couldn't open old datapath %s to remove it", name);
1002 } else {
1003 dpif_delete(old_dpif);
1004 dpif_close(old_dpif);
1005 }
1006 }
1007 sset_destroy(&names);
1008
1009 backer = xmalloc(sizeof *backer);
1010
1011 error = dpif_create_and_open(backer_name, type, &backer->dpif);
1012 free(backer_name);
1013 if (error) {
1014 VLOG_ERR("failed to open datapath of type %s: %s", type,
1015 strerror(error));
1016 return error;
1017 }
1018
1019 backer->type = xstrdup(type);
1020 backer->refcount = 1;
1021 hmap_init(&backer->odp_to_ofport_map);
1022 timer_set_duration(&backer->next_expiration, 1000);
1023 *backerp = backer;
1024
1025 dpif_flow_flush(backer->dpif);
1026
1027 /* Loop through the ports already on the datapath and remove any
1028 * that we don't need anymore. */
1029 list_init(&garbage_list);
1030 dpif_port_dump_start(&port_dump, backer->dpif);
1031 while (dpif_port_dump_next(&port_dump, &port)) {
1032 node = shash_find(&init_ofp_ports, port.name);
1033 if (!node && strcmp(port.name, dpif_base_name(backer->dpif))) {
1034 garbage = xmalloc(sizeof *garbage);
1035 garbage->odp_port = port.port_no;
1036 list_push_front(&garbage_list, &garbage->list_node);
1037 }
1038 }
1039 dpif_port_dump_done(&port_dump);
1040
1041 LIST_FOR_EACH_SAFE (garbage, next, list_node, &garbage_list) {
1042 dpif_port_del(backer->dpif, garbage->odp_port);
1043 list_remove(&garbage->list_node);
1044 free(garbage);
1045 }
1046
1047 shash_add(&all_dpif_backers, type, backer);
1048
1049 error = dpif_recv_set(backer->dpif, true);
1050 if (error) {
1051 VLOG_ERR("failed to listen on datapath of type %s: %s",
1052 type, strerror(error));
1053 close_dpif_backer(backer);
1054 return error;
1055 }
1056
1057 return error;
1058 }
1059
1060 static int
1061 construct(struct ofproto *ofproto_)
1062 {
1063 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1064 struct shash_node *node, *next;
1065 int max_ports;
1066 int error;
1067 int i;
1068
1069 error = open_dpif_backer(ofproto->up.type, &ofproto->backer);
1070 if (error) {
1071 return error;
1072 }
1073
1074 max_ports = dpif_get_max_ports(ofproto->backer->dpif);
1075 ofproto_init_max_ports(ofproto_, MIN(max_ports, OFPP_MAX));
1076
1077 ofproto->n_matches = 0;
1078
1079 ofproto->netflow = NULL;
1080 ofproto->sflow = NULL;
1081 ofproto->stp = NULL;
1082 hmap_init(&ofproto->bundles);
1083 ofproto->ml = mac_learning_create(MAC_ENTRY_DEFAULT_IDLE_TIME);
1084 for (i = 0; i < MAX_MIRRORS; i++) {
1085 ofproto->mirrors[i] = NULL;
1086 }
1087 ofproto->has_bonded_bundles = false;
1088
1089 hmap_init(&ofproto->facets);
1090 hmap_init(&ofproto->subfacets);
1091 ofproto->governor = NULL;
1092
1093 for (i = 0; i < N_TABLES; i++) {
1094 struct table_dpif *table = &ofproto->tables[i];
1095
1096 table->catchall_table = NULL;
1097 table->other_table = NULL;
1098 table->basis = random_uint32();
1099 }
1100 ofproto->need_revalidate = 0;
1101 tag_set_init(&ofproto->revalidate_set);
1102
1103 list_init(&ofproto->completions);
1104
1105 ofproto_dpif_unixctl_init();
1106
1107 ofproto->has_mirrors = false;
1108 ofproto->has_bundle_action = false;
1109
1110 hmap_init(&ofproto->vlandev_map);
1111 hmap_init(&ofproto->realdev_vid_map);
1112
1113 sset_init(&ofproto->ports);
1114 sset_init(&ofproto->port_poll_set);
1115 ofproto->port_poll_errno = 0;
1116
1117 SHASH_FOR_EACH_SAFE (node, next, &init_ofp_ports) {
1118 const struct iface_hint *iface_hint = node->data;
1119
1120 if (!strcmp(iface_hint->br_name, ofproto->up.name)) {
1121 /* Check if the datapath already has this port. */
1122 if (dpif_port_exists(ofproto->backer->dpif, node->name)) {
1123 sset_add(&ofproto->ports, node->name);
1124 }
1125
1126 free(iface_hint->br_name);
1127 free(iface_hint->br_type);
1128 shash_delete(&init_ofp_ports, node);
1129 }
1130 }
1131
1132 hmap_insert(&all_ofproto_dpifs, &ofproto->all_ofproto_dpifs_node,
1133 hash_string(ofproto->up.name, 0));
1134 memset(&ofproto->stats, 0, sizeof ofproto->stats);
1135
1136 ofproto_init_tables(ofproto_, N_TABLES);
1137 error = add_internal_flows(ofproto);
1138 ofproto->up.tables[TBL_INTERNAL].flags = OFTABLE_HIDDEN | OFTABLE_READONLY;
1139
1140 return error;
1141 }
1142
1143 static int
1144 add_internal_flow(struct ofproto_dpif *ofproto, int id,
1145 const struct ofpbuf *ofpacts, struct rule_dpif **rulep)
1146 {
1147 struct ofputil_flow_mod fm;
1148 int error;
1149
1150 match_init_catchall(&fm.match);
1151 fm.priority = 0;
1152 match_set_reg(&fm.match, 0, id);
1153 fm.new_cookie = htonll(0);
1154 fm.cookie = htonll(0);
1155 fm.cookie_mask = htonll(0);
1156 fm.table_id = TBL_INTERNAL;
1157 fm.command = OFPFC_ADD;
1158 fm.idle_timeout = 0;
1159 fm.hard_timeout = 0;
1160 fm.buffer_id = 0;
1161 fm.out_port = 0;
1162 fm.flags = 0;
1163 fm.ofpacts = ofpacts->data;
1164 fm.ofpacts_len = ofpacts->size;
1165
1166 error = ofproto_flow_mod(&ofproto->up, &fm);
1167 if (error) {
1168 VLOG_ERR_RL(&rl, "failed to add internal flow %d (%s)",
1169 id, ofperr_to_string(error));
1170 return error;
1171 }
1172
1173 *rulep = rule_dpif_lookup__(ofproto, &fm.match.flow, TBL_INTERNAL);
1174 assert(*rulep != NULL);
1175
1176 return 0;
1177 }
1178
1179 static int
1180 add_internal_flows(struct ofproto_dpif *ofproto)
1181 {
1182 struct ofpact_controller *controller;
1183 uint64_t ofpacts_stub[128 / 8];
1184 struct ofpbuf ofpacts;
1185 int error;
1186 int id;
1187
1188 ofpbuf_use_stack(&ofpacts, ofpacts_stub, sizeof ofpacts_stub);
1189 id = 1;
1190
1191 controller = ofpact_put_CONTROLLER(&ofpacts);
1192 controller->max_len = UINT16_MAX;
1193 controller->controller_id = 0;
1194 controller->reason = OFPR_NO_MATCH;
1195 ofpact_pad(&ofpacts);
1196
1197 error = add_internal_flow(ofproto, id++, &ofpacts, &ofproto->miss_rule);
1198 if (error) {
1199 return error;
1200 }
1201
1202 ofpbuf_clear(&ofpacts);
1203 error = add_internal_flow(ofproto, id++, &ofpacts,
1204 &ofproto->no_packet_in_rule);
1205 return error;
1206 }
1207
1208 static void
1209 complete_operations(struct ofproto_dpif *ofproto)
1210 {
1211 struct dpif_completion *c, *next;
1212
1213 LIST_FOR_EACH_SAFE (c, next, list_node, &ofproto->completions) {
1214 ofoperation_complete(c->op, 0);
1215 list_remove(&c->list_node);
1216 free(c);
1217 }
1218 }
1219
1220 static void
1221 destruct(struct ofproto *ofproto_)
1222 {
1223 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1224 struct rule_dpif *rule, *next_rule;
1225 struct oftable *table;
1226 int i;
1227
1228 hmap_remove(&all_ofproto_dpifs, &ofproto->all_ofproto_dpifs_node);
1229 complete_operations(ofproto);
1230
1231 OFPROTO_FOR_EACH_TABLE (table, &ofproto->up) {
1232 struct cls_cursor cursor;
1233
1234 cls_cursor_init(&cursor, &table->cls, NULL);
1235 CLS_CURSOR_FOR_EACH_SAFE (rule, next_rule, up.cr, &cursor) {
1236 ofproto_rule_destroy(&rule->up);
1237 }
1238 }
1239
1240 for (i = 0; i < MAX_MIRRORS; i++) {
1241 mirror_destroy(ofproto->mirrors[i]);
1242 }
1243
1244 netflow_destroy(ofproto->netflow);
1245 dpif_sflow_destroy(ofproto->sflow);
1246 hmap_destroy(&ofproto->bundles);
1247 mac_learning_destroy(ofproto->ml);
1248
1249 hmap_destroy(&ofproto->facets);
1250 hmap_destroy(&ofproto->subfacets);
1251 governor_destroy(ofproto->governor);
1252
1253 hmap_destroy(&ofproto->vlandev_map);
1254 hmap_destroy(&ofproto->realdev_vid_map);
1255
1256 sset_destroy(&ofproto->ports);
1257 sset_destroy(&ofproto->port_poll_set);
1258
1259 close_dpif_backer(ofproto->backer);
1260 }
1261
1262 static int
1263 run_fast(struct ofproto *ofproto_)
1264 {
1265 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1266 struct ofport_dpif *ofport;
1267
1268 HMAP_FOR_EACH (ofport, up.hmap_node, &ofproto->up.ports) {
1269 port_run_fast(ofport);
1270 }
1271
1272 return 0;
1273 }
1274
1275 static int
1276 run(struct ofproto *ofproto_)
1277 {
1278 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1279 struct ofport_dpif *ofport;
1280 struct ofbundle *bundle;
1281 int error;
1282
1283 if (!clogged) {
1284 complete_operations(ofproto);
1285 }
1286
1287 error = run_fast(ofproto_);
1288 if (error) {
1289 return error;
1290 }
1291
1292 if (ofproto->netflow) {
1293 if (netflow_run(ofproto->netflow)) {
1294 send_netflow_active_timeouts(ofproto);
1295 }
1296 }
1297 if (ofproto->sflow) {
1298 dpif_sflow_run(ofproto->sflow);
1299 }
1300
1301 HMAP_FOR_EACH (ofport, up.hmap_node, &ofproto->up.ports) {
1302 port_run(ofport);
1303 }
1304 HMAP_FOR_EACH (bundle, hmap_node, &ofproto->bundles) {
1305 bundle_run(bundle);
1306 }
1307
1308 stp_run(ofproto);
1309 mac_learning_run(ofproto->ml, &ofproto->revalidate_set);
1310
1311 /* Now revalidate if there's anything to do. */
1312 if (ofproto->need_revalidate
1313 || !tag_set_is_empty(&ofproto->revalidate_set)) {
1314 struct tag_set revalidate_set = ofproto->revalidate_set;
1315 bool revalidate_all = ofproto->need_revalidate;
1316 struct facet *facet;
1317
1318 switch (ofproto->need_revalidate) {
1319 case REV_RECONFIGURE: COVERAGE_INC(rev_reconfigure); break;
1320 case REV_STP: COVERAGE_INC(rev_stp); break;
1321 case REV_PORT_TOGGLED: COVERAGE_INC(rev_port_toggled); break;
1322 case REV_FLOW_TABLE: COVERAGE_INC(rev_flow_table); break;
1323 case REV_INCONSISTENCY: COVERAGE_INC(rev_inconsistency); break;
1324 }
1325
1326 /* Clear the revalidation flags. */
1327 tag_set_init(&ofproto->revalidate_set);
1328 ofproto->need_revalidate = 0;
1329
1330 HMAP_FOR_EACH (facet, hmap_node, &ofproto->facets) {
1331 if (revalidate_all
1332 || tag_set_intersects(&revalidate_set, facet->tags)) {
1333 facet_revalidate(facet);
1334 }
1335 }
1336 }
1337
1338 /* Check the consistency of a random facet, to aid debugging. */
1339 if (!hmap_is_empty(&ofproto->facets) && !ofproto->need_revalidate) {
1340 struct facet *facet;
1341
1342 facet = CONTAINER_OF(hmap_random_node(&ofproto->facets),
1343 struct facet, hmap_node);
1344 if (!tag_set_intersects(&ofproto->revalidate_set, facet->tags)) {
1345 if (!facet_check_consistency(facet)) {
1346 ofproto->need_revalidate = REV_INCONSISTENCY;
1347 }
1348 }
1349 }
1350
1351 if (ofproto->governor) {
1352 size_t n_subfacets;
1353
1354 governor_run(ofproto->governor);
1355
1356 /* If the governor has shrunk to its minimum size and the number of
1357 * subfacets has dwindled, then drop the governor entirely.
1358 *
1359 * For hysteresis, the number of subfacets to drop the governor is
1360 * smaller than the number needed to trigger its creation. */
1361 n_subfacets = hmap_count(&ofproto->subfacets);
1362 if (n_subfacets * 4 < ofproto->up.flow_eviction_threshold
1363 && governor_is_idle(ofproto->governor)) {
1364 governor_destroy(ofproto->governor);
1365 ofproto->governor = NULL;
1366 }
1367 }
1368
1369 return 0;
1370 }
1371
1372 static void
1373 wait(struct ofproto *ofproto_)
1374 {
1375 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1376 struct ofport_dpif *ofport;
1377 struct ofbundle *bundle;
1378
1379 if (!clogged && !list_is_empty(&ofproto->completions)) {
1380 poll_immediate_wake();
1381 }
1382
1383 dpif_wait(ofproto->backer->dpif);
1384 dpif_recv_wait(ofproto->backer->dpif);
1385 if (ofproto->sflow) {
1386 dpif_sflow_wait(ofproto->sflow);
1387 }
1388 if (!tag_set_is_empty(&ofproto->revalidate_set)) {
1389 poll_immediate_wake();
1390 }
1391 HMAP_FOR_EACH (ofport, up.hmap_node, &ofproto->up.ports) {
1392 port_wait(ofport);
1393 }
1394 HMAP_FOR_EACH (bundle, hmap_node, &ofproto->bundles) {
1395 bundle_wait(bundle);
1396 }
1397 if (ofproto->netflow) {
1398 netflow_wait(ofproto->netflow);
1399 }
1400 mac_learning_wait(ofproto->ml);
1401 stp_wait(ofproto);
1402 if (ofproto->need_revalidate) {
1403 /* Shouldn't happen, but if it does just go around again. */
1404 VLOG_DBG_RL(&rl, "need revalidate in ofproto_wait_cb()");
1405 poll_immediate_wake();
1406 }
1407 if (ofproto->governor) {
1408 governor_wait(ofproto->governor);
1409 }
1410 }
1411
1412 static void
1413 get_memory_usage(const struct ofproto *ofproto_, struct simap *usage)
1414 {
1415 const struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1416
1417 simap_increase(usage, "facets", hmap_count(&ofproto->facets));
1418 simap_increase(usage, "subfacets", hmap_count(&ofproto->subfacets));
1419 }
1420
1421 static void
1422 flush(struct ofproto *ofproto_)
1423 {
1424 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1425 struct subfacet *subfacet, *next_subfacet;
1426 struct subfacet *batch[SUBFACET_DESTROY_MAX_BATCH];
1427 int n_batch;
1428
1429 n_batch = 0;
1430 HMAP_FOR_EACH_SAFE (subfacet, next_subfacet, hmap_node,
1431 &ofproto->subfacets) {
1432 if (subfacet->path != SF_NOT_INSTALLED) {
1433 batch[n_batch++] = subfacet;
1434 if (n_batch >= SUBFACET_DESTROY_MAX_BATCH) {
1435 subfacet_destroy_batch(ofproto, batch, n_batch);
1436 n_batch = 0;
1437 }
1438 } else {
1439 subfacet_destroy(subfacet);
1440 }
1441 }
1442
1443 if (n_batch > 0) {
1444 subfacet_destroy_batch(ofproto, batch, n_batch);
1445 }
1446 }
1447
1448 static void
1449 get_features(struct ofproto *ofproto_ OVS_UNUSED,
1450 bool *arp_match_ip, enum ofputil_action_bitmap *actions)
1451 {
1452 *arp_match_ip = true;
1453 *actions = (OFPUTIL_A_OUTPUT |
1454 OFPUTIL_A_SET_VLAN_VID |
1455 OFPUTIL_A_SET_VLAN_PCP |
1456 OFPUTIL_A_STRIP_VLAN |
1457 OFPUTIL_A_SET_DL_SRC |
1458 OFPUTIL_A_SET_DL_DST |
1459 OFPUTIL_A_SET_NW_SRC |
1460 OFPUTIL_A_SET_NW_DST |
1461 OFPUTIL_A_SET_NW_TOS |
1462 OFPUTIL_A_SET_TP_SRC |
1463 OFPUTIL_A_SET_TP_DST |
1464 OFPUTIL_A_ENQUEUE);
1465 }
1466
1467 static void
1468 get_tables(struct ofproto *ofproto_, struct ofp12_table_stats *ots)
1469 {
1470 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1471 struct dpif_dp_stats s;
1472
1473 strcpy(ots->name, "classifier");
1474
1475 dpif_get_dp_stats(ofproto->backer->dpif, &s);
1476
1477 ots->lookup_count = htonll(s.n_hit + s.n_missed);
1478 ots->matched_count = htonll(s.n_hit + ofproto->n_matches);
1479 }
1480
1481 static struct ofport *
1482 port_alloc(void)
1483 {
1484 struct ofport_dpif *port = xmalloc(sizeof *port);
1485 return &port->up;
1486 }
1487
1488 static void
1489 port_dealloc(struct ofport *port_)
1490 {
1491 struct ofport_dpif *port = ofport_dpif_cast(port_);
1492 free(port);
1493 }
1494
1495 static int
1496 port_construct(struct ofport *port_)
1497 {
1498 struct ofport_dpif *port = ofport_dpif_cast(port_);
1499 struct ofproto_dpif *ofproto = ofproto_dpif_cast(port->up.ofproto);
1500 struct dpif_port dpif_port;
1501 int error;
1502
1503 ofproto->need_revalidate = REV_RECONFIGURE;
1504 port->bundle = NULL;
1505 port->cfm = NULL;
1506 port->tag = tag_create_random();
1507 port->may_enable = true;
1508 port->stp_port = NULL;
1509 port->stp_state = STP_DISABLED;
1510 hmap_init(&port->priorities);
1511 port->realdev_ofp_port = 0;
1512 port->vlandev_vid = 0;
1513 port->carrier_seq = netdev_get_carrier_resets(port->up.netdev);
1514
1515 error = dpif_port_query_by_name(ofproto->backer->dpif,
1516 netdev_get_name(port->up.netdev),
1517 &dpif_port);
1518 if (error) {
1519 return error;
1520 }
1521
1522 port->odp_port = dpif_port.port_no;
1523
1524 /* Sanity-check that a mapping doesn't already exist. This
1525 * shouldn't happen. */
1526 if (odp_port_to_ofp_port(ofproto, port->odp_port) != OFPP_NONE) {
1527 VLOG_ERR("port %s already has an OpenFlow port number\n",
1528 dpif_port.name);
1529 return EBUSY;
1530 }
1531
1532 hmap_insert(&ofproto->backer->odp_to_ofport_map, &port->odp_port_node,
1533 hash_int(port->odp_port, 0));
1534
1535 if (ofproto->sflow) {
1536 dpif_sflow_add_port(ofproto->sflow, port_, port->odp_port);
1537 }
1538
1539 return 0;
1540 }
1541
1542 static void
1543 port_destruct(struct ofport *port_)
1544 {
1545 struct ofport_dpif *port = ofport_dpif_cast(port_);
1546 struct ofproto_dpif *ofproto = ofproto_dpif_cast(port->up.ofproto);
1547 const char *devname = netdev_get_name(port->up.netdev);
1548
1549 if (dpif_port_exists(ofproto->backer->dpif, devname)) {
1550 /* The underlying device is still there, so delete it. This
1551 * happens when the ofproto is being destroyed, since the caller
1552 * assumes that removal of attached ports will happen as part of
1553 * destruction. */
1554 dpif_port_del(ofproto->backer->dpif, port->odp_port);
1555 }
1556
1557 sset_find_and_delete(&ofproto->ports, devname);
1558 hmap_remove(&ofproto->backer->odp_to_ofport_map, &port->odp_port_node);
1559 ofproto->need_revalidate = REV_RECONFIGURE;
1560 bundle_remove(port_);
1561 set_cfm(port_, NULL);
1562 if (ofproto->sflow) {
1563 dpif_sflow_del_port(ofproto->sflow, port->odp_port);
1564 }
1565
1566 ofport_clear_priorities(port);
1567 hmap_destroy(&port->priorities);
1568 }
1569
1570 static void
1571 port_modified(struct ofport *port_)
1572 {
1573 struct ofport_dpif *port = ofport_dpif_cast(port_);
1574
1575 if (port->bundle && port->bundle->bond) {
1576 bond_slave_set_netdev(port->bundle->bond, port, port->up.netdev);
1577 }
1578 }
1579
1580 static void
1581 port_reconfigured(struct ofport *port_, enum ofputil_port_config old_config)
1582 {
1583 struct ofport_dpif *port = ofport_dpif_cast(port_);
1584 struct ofproto_dpif *ofproto = ofproto_dpif_cast(port->up.ofproto);
1585 enum ofputil_port_config changed = old_config ^ port->up.pp.config;
1586
1587 if (changed & (OFPUTIL_PC_NO_RECV | OFPUTIL_PC_NO_RECV_STP |
1588 OFPUTIL_PC_NO_FWD | OFPUTIL_PC_NO_FLOOD |
1589 OFPUTIL_PC_NO_PACKET_IN)) {
1590 ofproto->need_revalidate = REV_RECONFIGURE;
1591
1592 if (changed & OFPUTIL_PC_NO_FLOOD && port->bundle) {
1593 bundle_update(port->bundle);
1594 }
1595 }
1596 }
1597
1598 static int
1599 set_sflow(struct ofproto *ofproto_,
1600 const struct ofproto_sflow_options *sflow_options)
1601 {
1602 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1603 struct dpif_sflow *ds = ofproto->sflow;
1604
1605 if (sflow_options) {
1606 if (!ds) {
1607 struct ofport_dpif *ofport;
1608
1609 ds = ofproto->sflow = dpif_sflow_create();
1610 HMAP_FOR_EACH (ofport, up.hmap_node, &ofproto->up.ports) {
1611 dpif_sflow_add_port(ds, &ofport->up, ofport->odp_port);
1612 }
1613 ofproto->need_revalidate = REV_RECONFIGURE;
1614 }
1615 dpif_sflow_set_options(ds, sflow_options);
1616 } else {
1617 if (ds) {
1618 dpif_sflow_destroy(ds);
1619 ofproto->need_revalidate = REV_RECONFIGURE;
1620 ofproto->sflow = NULL;
1621 }
1622 }
1623 return 0;
1624 }
1625
1626 static int
1627 set_cfm(struct ofport *ofport_, const struct cfm_settings *s)
1628 {
1629 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
1630 int error;
1631
1632 if (!s) {
1633 error = 0;
1634 } else {
1635 if (!ofport->cfm) {
1636 struct ofproto_dpif *ofproto;
1637
1638 ofproto = ofproto_dpif_cast(ofport->up.ofproto);
1639 ofproto->need_revalidate = REV_RECONFIGURE;
1640 ofport->cfm = cfm_create(netdev_get_name(ofport->up.netdev));
1641 }
1642
1643 if (cfm_configure(ofport->cfm, s)) {
1644 return 0;
1645 }
1646
1647 error = EINVAL;
1648 }
1649 cfm_destroy(ofport->cfm);
1650 ofport->cfm = NULL;
1651 return error;
1652 }
1653
1654 static int
1655 get_cfm_fault(const struct ofport *ofport_)
1656 {
1657 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
1658
1659 return ofport->cfm ? cfm_get_fault(ofport->cfm) : -1;
1660 }
1661
1662 static int
1663 get_cfm_opup(const struct ofport *ofport_)
1664 {
1665 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
1666
1667 return ofport->cfm ? cfm_get_opup(ofport->cfm) : -1;
1668 }
1669
1670 static int
1671 get_cfm_remote_mpids(const struct ofport *ofport_, const uint64_t **rmps,
1672 size_t *n_rmps)
1673 {
1674 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
1675
1676 if (ofport->cfm) {
1677 cfm_get_remote_mpids(ofport->cfm, rmps, n_rmps);
1678 return 0;
1679 } else {
1680 return -1;
1681 }
1682 }
1683
1684 static int
1685 get_cfm_health(const struct ofport *ofport_)
1686 {
1687 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
1688
1689 return ofport->cfm ? cfm_get_health(ofport->cfm) : -1;
1690 }
1691 \f
1692 /* Spanning Tree. */
1693
1694 static void
1695 send_bpdu_cb(struct ofpbuf *pkt, int port_num, void *ofproto_)
1696 {
1697 struct ofproto_dpif *ofproto = ofproto_;
1698 struct stp_port *sp = stp_get_port(ofproto->stp, port_num);
1699 struct ofport_dpif *ofport;
1700
1701 ofport = stp_port_get_aux(sp);
1702 if (!ofport) {
1703 VLOG_WARN_RL(&rl, "%s: cannot send BPDU on unknown port %d",
1704 ofproto->up.name, port_num);
1705 } else {
1706 struct eth_header *eth = pkt->l2;
1707
1708 netdev_get_etheraddr(ofport->up.netdev, eth->eth_src);
1709 if (eth_addr_is_zero(eth->eth_src)) {
1710 VLOG_WARN_RL(&rl, "%s: cannot send BPDU on port %d "
1711 "with unknown MAC", ofproto->up.name, port_num);
1712 } else {
1713 send_packet(ofport, pkt);
1714 }
1715 }
1716 ofpbuf_delete(pkt);
1717 }
1718
1719 /* Configures STP on 'ofproto_' using the settings defined in 's'. */
1720 static int
1721 set_stp(struct ofproto *ofproto_, const struct ofproto_stp_settings *s)
1722 {
1723 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1724
1725 /* Only revalidate flows if the configuration changed. */
1726 if (!s != !ofproto->stp) {
1727 ofproto->need_revalidate = REV_RECONFIGURE;
1728 }
1729
1730 if (s) {
1731 if (!ofproto->stp) {
1732 ofproto->stp = stp_create(ofproto_->name, s->system_id,
1733 send_bpdu_cb, ofproto);
1734 ofproto->stp_last_tick = time_msec();
1735 }
1736
1737 stp_set_bridge_id(ofproto->stp, s->system_id);
1738 stp_set_bridge_priority(ofproto->stp, s->priority);
1739 stp_set_hello_time(ofproto->stp, s->hello_time);
1740 stp_set_max_age(ofproto->stp, s->max_age);
1741 stp_set_forward_delay(ofproto->stp, s->fwd_delay);
1742 } else {
1743 struct ofport *ofport;
1744
1745 HMAP_FOR_EACH (ofport, hmap_node, &ofproto->up.ports) {
1746 set_stp_port(ofport, NULL);
1747 }
1748
1749 stp_destroy(ofproto->stp);
1750 ofproto->stp = NULL;
1751 }
1752
1753 return 0;
1754 }
1755
1756 static int
1757 get_stp_status(struct ofproto *ofproto_, struct ofproto_stp_status *s)
1758 {
1759 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1760
1761 if (ofproto->stp) {
1762 s->enabled = true;
1763 s->bridge_id = stp_get_bridge_id(ofproto->stp);
1764 s->designated_root = stp_get_designated_root(ofproto->stp);
1765 s->root_path_cost = stp_get_root_path_cost(ofproto->stp);
1766 } else {
1767 s->enabled = false;
1768 }
1769
1770 return 0;
1771 }
1772
1773 static void
1774 update_stp_port_state(struct ofport_dpif *ofport)
1775 {
1776 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
1777 enum stp_state state;
1778
1779 /* Figure out new state. */
1780 state = ofport->stp_port ? stp_port_get_state(ofport->stp_port)
1781 : STP_DISABLED;
1782
1783 /* Update state. */
1784 if (ofport->stp_state != state) {
1785 enum ofputil_port_state of_state;
1786 bool fwd_change;
1787
1788 VLOG_DBG_RL(&rl, "port %s: STP state changed from %s to %s",
1789 netdev_get_name(ofport->up.netdev),
1790 stp_state_name(ofport->stp_state),
1791 stp_state_name(state));
1792 if (stp_learn_in_state(ofport->stp_state)
1793 != stp_learn_in_state(state)) {
1794 /* xxx Learning action flows should also be flushed. */
1795 mac_learning_flush(ofproto->ml, &ofproto->revalidate_set);
1796 }
1797 fwd_change = stp_forward_in_state(ofport->stp_state)
1798 != stp_forward_in_state(state);
1799
1800 ofproto->need_revalidate = REV_STP;
1801 ofport->stp_state = state;
1802 ofport->stp_state_entered = time_msec();
1803
1804 if (fwd_change && ofport->bundle) {
1805 bundle_update(ofport->bundle);
1806 }
1807
1808 /* Update the STP state bits in the OpenFlow port description. */
1809 of_state = ofport->up.pp.state & ~OFPUTIL_PS_STP_MASK;
1810 of_state |= (state == STP_LISTENING ? OFPUTIL_PS_STP_LISTEN
1811 : state == STP_LEARNING ? OFPUTIL_PS_STP_LEARN
1812 : state == STP_FORWARDING ? OFPUTIL_PS_STP_FORWARD
1813 : state == STP_BLOCKING ? OFPUTIL_PS_STP_BLOCK
1814 : 0);
1815 ofproto_port_set_state(&ofport->up, of_state);
1816 }
1817 }
1818
1819 /* Configures STP on 'ofport_' using the settings defined in 's'. The
1820 * caller is responsible for assigning STP port numbers and ensuring
1821 * there are no duplicates. */
1822 static int
1823 set_stp_port(struct ofport *ofport_,
1824 const struct ofproto_port_stp_settings *s)
1825 {
1826 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
1827 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
1828 struct stp_port *sp = ofport->stp_port;
1829
1830 if (!s || !s->enable) {
1831 if (sp) {
1832 ofport->stp_port = NULL;
1833 stp_port_disable(sp);
1834 update_stp_port_state(ofport);
1835 }
1836 return 0;
1837 } else if (sp && stp_port_no(sp) != s->port_num
1838 && ofport == stp_port_get_aux(sp)) {
1839 /* The port-id changed, so disable the old one if it's not
1840 * already in use by another port. */
1841 stp_port_disable(sp);
1842 }
1843
1844 sp = ofport->stp_port = stp_get_port(ofproto->stp, s->port_num);
1845 stp_port_enable(sp);
1846
1847 stp_port_set_aux(sp, ofport);
1848 stp_port_set_priority(sp, s->priority);
1849 stp_port_set_path_cost(sp, s->path_cost);
1850
1851 update_stp_port_state(ofport);
1852
1853 return 0;
1854 }
1855
1856 static int
1857 get_stp_port_status(struct ofport *ofport_,
1858 struct ofproto_port_stp_status *s)
1859 {
1860 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
1861 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
1862 struct stp_port *sp = ofport->stp_port;
1863
1864 if (!ofproto->stp || !sp) {
1865 s->enabled = false;
1866 return 0;
1867 }
1868
1869 s->enabled = true;
1870 s->port_id = stp_port_get_id(sp);
1871 s->state = stp_port_get_state(sp);
1872 s->sec_in_state = (time_msec() - ofport->stp_state_entered) / 1000;
1873 s->role = stp_port_get_role(sp);
1874 stp_port_get_counts(sp, &s->tx_count, &s->rx_count, &s->error_count);
1875
1876 return 0;
1877 }
1878
1879 static void
1880 stp_run(struct ofproto_dpif *ofproto)
1881 {
1882 if (ofproto->stp) {
1883 long long int now = time_msec();
1884 long long int elapsed = now - ofproto->stp_last_tick;
1885 struct stp_port *sp;
1886
1887 if (elapsed > 0) {
1888 stp_tick(ofproto->stp, MIN(INT_MAX, elapsed));
1889 ofproto->stp_last_tick = now;
1890 }
1891 while (stp_get_changed_port(ofproto->stp, &sp)) {
1892 struct ofport_dpif *ofport = stp_port_get_aux(sp);
1893
1894 if (ofport) {
1895 update_stp_port_state(ofport);
1896 }
1897 }
1898
1899 if (stp_check_and_reset_fdb_flush(ofproto->stp)) {
1900 mac_learning_flush(ofproto->ml, &ofproto->revalidate_set);
1901 }
1902 }
1903 }
1904
1905 static void
1906 stp_wait(struct ofproto_dpif *ofproto)
1907 {
1908 if (ofproto->stp) {
1909 poll_timer_wait(1000);
1910 }
1911 }
1912
1913 /* Returns true if STP should process 'flow'. */
1914 static bool
1915 stp_should_process_flow(const struct flow *flow)
1916 {
1917 return eth_addr_equals(flow->dl_dst, eth_addr_stp);
1918 }
1919
1920 static void
1921 stp_process_packet(const struct ofport_dpif *ofport,
1922 const struct ofpbuf *packet)
1923 {
1924 struct ofpbuf payload = *packet;
1925 struct eth_header *eth = payload.data;
1926 struct stp_port *sp = ofport->stp_port;
1927
1928 /* Sink packets on ports that have STP disabled when the bridge has
1929 * STP enabled. */
1930 if (!sp || stp_port_get_state(sp) == STP_DISABLED) {
1931 return;
1932 }
1933
1934 /* Trim off padding on payload. */
1935 if (payload.size > ntohs(eth->eth_type) + ETH_HEADER_LEN) {
1936 payload.size = ntohs(eth->eth_type) + ETH_HEADER_LEN;
1937 }
1938
1939 if (ofpbuf_try_pull(&payload, ETH_HEADER_LEN + LLC_HEADER_LEN)) {
1940 stp_received_bpdu(sp, payload.data, payload.size);
1941 }
1942 }
1943 \f
1944 static struct priority_to_dscp *
1945 get_priority(const struct ofport_dpif *ofport, uint32_t priority)
1946 {
1947 struct priority_to_dscp *pdscp;
1948 uint32_t hash;
1949
1950 hash = hash_int(priority, 0);
1951 HMAP_FOR_EACH_IN_BUCKET (pdscp, hmap_node, hash, &ofport->priorities) {
1952 if (pdscp->priority == priority) {
1953 return pdscp;
1954 }
1955 }
1956 return NULL;
1957 }
1958
1959 static void
1960 ofport_clear_priorities(struct ofport_dpif *ofport)
1961 {
1962 struct priority_to_dscp *pdscp, *next;
1963
1964 HMAP_FOR_EACH_SAFE (pdscp, next, hmap_node, &ofport->priorities) {
1965 hmap_remove(&ofport->priorities, &pdscp->hmap_node);
1966 free(pdscp);
1967 }
1968 }
1969
1970 static int
1971 set_queues(struct ofport *ofport_,
1972 const struct ofproto_port_queue *qdscp_list,
1973 size_t n_qdscp)
1974 {
1975 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
1976 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
1977 struct hmap new = HMAP_INITIALIZER(&new);
1978 size_t i;
1979
1980 for (i = 0; i < n_qdscp; i++) {
1981 struct priority_to_dscp *pdscp;
1982 uint32_t priority;
1983 uint8_t dscp;
1984
1985 dscp = (qdscp_list[i].dscp << 2) & IP_DSCP_MASK;
1986 if (dpif_queue_to_priority(ofproto->backer->dpif, qdscp_list[i].queue,
1987 &priority)) {
1988 continue;
1989 }
1990
1991 pdscp = get_priority(ofport, priority);
1992 if (pdscp) {
1993 hmap_remove(&ofport->priorities, &pdscp->hmap_node);
1994 } else {
1995 pdscp = xmalloc(sizeof *pdscp);
1996 pdscp->priority = priority;
1997 pdscp->dscp = dscp;
1998 ofproto->need_revalidate = REV_RECONFIGURE;
1999 }
2000
2001 if (pdscp->dscp != dscp) {
2002 pdscp->dscp = dscp;
2003 ofproto->need_revalidate = REV_RECONFIGURE;
2004 }
2005
2006 hmap_insert(&new, &pdscp->hmap_node, hash_int(pdscp->priority, 0));
2007 }
2008
2009 if (!hmap_is_empty(&ofport->priorities)) {
2010 ofport_clear_priorities(ofport);
2011 ofproto->need_revalidate = REV_RECONFIGURE;
2012 }
2013
2014 hmap_swap(&new, &ofport->priorities);
2015 hmap_destroy(&new);
2016
2017 return 0;
2018 }
2019 \f
2020 /* Bundles. */
2021
2022 /* Expires all MAC learning entries associated with 'bundle' and forces its
2023 * ofproto to revalidate every flow.
2024 *
2025 * Normally MAC learning entries are removed only from the ofproto associated
2026 * with 'bundle', but if 'all_ofprotos' is true, then the MAC learning entries
2027 * are removed from every ofproto. When patch ports and SLB bonds are in use
2028 * and a VM migration happens and the gratuitous ARPs are somehow lost, this
2029 * avoids a MAC_ENTRY_IDLE_TIME delay before the migrated VM can communicate
2030 * with the host from which it migrated. */
2031 static void
2032 bundle_flush_macs(struct ofbundle *bundle, bool all_ofprotos)
2033 {
2034 struct ofproto_dpif *ofproto = bundle->ofproto;
2035 struct mac_learning *ml = ofproto->ml;
2036 struct mac_entry *mac, *next_mac;
2037
2038 ofproto->need_revalidate = REV_RECONFIGURE;
2039 LIST_FOR_EACH_SAFE (mac, next_mac, lru_node, &ml->lrus) {
2040 if (mac->port.p == bundle) {
2041 if (all_ofprotos) {
2042 struct ofproto_dpif *o;
2043
2044 HMAP_FOR_EACH (o, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
2045 if (o != ofproto) {
2046 struct mac_entry *e;
2047
2048 e = mac_learning_lookup(o->ml, mac->mac, mac->vlan,
2049 NULL);
2050 if (e) {
2051 tag_set_add(&o->revalidate_set, e->tag);
2052 mac_learning_expire(o->ml, e);
2053 }
2054 }
2055 }
2056 }
2057
2058 mac_learning_expire(ml, mac);
2059 }
2060 }
2061 }
2062
2063 static struct ofbundle *
2064 bundle_lookup(const struct ofproto_dpif *ofproto, void *aux)
2065 {
2066 struct ofbundle *bundle;
2067
2068 HMAP_FOR_EACH_IN_BUCKET (bundle, hmap_node, hash_pointer(aux, 0),
2069 &ofproto->bundles) {
2070 if (bundle->aux == aux) {
2071 return bundle;
2072 }
2073 }
2074 return NULL;
2075 }
2076
2077 /* Looks up each of the 'n_auxes' pointers in 'auxes' as bundles and adds the
2078 * ones that are found to 'bundles'. */
2079 static void
2080 bundle_lookup_multiple(struct ofproto_dpif *ofproto,
2081 void **auxes, size_t n_auxes,
2082 struct hmapx *bundles)
2083 {
2084 size_t i;
2085
2086 hmapx_init(bundles);
2087 for (i = 0; i < n_auxes; i++) {
2088 struct ofbundle *bundle = bundle_lookup(ofproto, auxes[i]);
2089 if (bundle) {
2090 hmapx_add(bundles, bundle);
2091 }
2092 }
2093 }
2094
2095 static void
2096 bundle_update(struct ofbundle *bundle)
2097 {
2098 struct ofport_dpif *port;
2099
2100 bundle->floodable = true;
2101 LIST_FOR_EACH (port, bundle_node, &bundle->ports) {
2102 if (port->up.pp.config & OFPUTIL_PC_NO_FLOOD
2103 || !stp_forward_in_state(port->stp_state)) {
2104 bundle->floodable = false;
2105 break;
2106 }
2107 }
2108 }
2109
2110 static void
2111 bundle_del_port(struct ofport_dpif *port)
2112 {
2113 struct ofbundle *bundle = port->bundle;
2114
2115 bundle->ofproto->need_revalidate = REV_RECONFIGURE;
2116
2117 list_remove(&port->bundle_node);
2118 port->bundle = NULL;
2119
2120 if (bundle->lacp) {
2121 lacp_slave_unregister(bundle->lacp, port);
2122 }
2123 if (bundle->bond) {
2124 bond_slave_unregister(bundle->bond, port);
2125 }
2126
2127 bundle_update(bundle);
2128 }
2129
2130 static bool
2131 bundle_add_port(struct ofbundle *bundle, uint32_t ofp_port,
2132 struct lacp_slave_settings *lacp,
2133 uint32_t bond_stable_id)
2134 {
2135 struct ofport_dpif *port;
2136
2137 port = get_ofp_port(bundle->ofproto, ofp_port);
2138 if (!port) {
2139 return false;
2140 }
2141
2142 if (port->bundle != bundle) {
2143 bundle->ofproto->need_revalidate = REV_RECONFIGURE;
2144 if (port->bundle) {
2145 bundle_del_port(port);
2146 }
2147
2148 port->bundle = bundle;
2149 list_push_back(&bundle->ports, &port->bundle_node);
2150 if (port->up.pp.config & OFPUTIL_PC_NO_FLOOD
2151 || !stp_forward_in_state(port->stp_state)) {
2152 bundle->floodable = false;
2153 }
2154 }
2155 if (lacp) {
2156 port->bundle->ofproto->need_revalidate = REV_RECONFIGURE;
2157 lacp_slave_register(bundle->lacp, port, lacp);
2158 }
2159
2160 port->bond_stable_id = bond_stable_id;
2161
2162 return true;
2163 }
2164
2165 static void
2166 bundle_destroy(struct ofbundle *bundle)
2167 {
2168 struct ofproto_dpif *ofproto;
2169 struct ofport_dpif *port, *next_port;
2170 int i;
2171
2172 if (!bundle) {
2173 return;
2174 }
2175
2176 ofproto = bundle->ofproto;
2177 for (i = 0; i < MAX_MIRRORS; i++) {
2178 struct ofmirror *m = ofproto->mirrors[i];
2179 if (m) {
2180 if (m->out == bundle) {
2181 mirror_destroy(m);
2182 } else if (hmapx_find_and_delete(&m->srcs, bundle)
2183 || hmapx_find_and_delete(&m->dsts, bundle)) {
2184 ofproto->need_revalidate = REV_RECONFIGURE;
2185 }
2186 }
2187 }
2188
2189 LIST_FOR_EACH_SAFE (port, next_port, bundle_node, &bundle->ports) {
2190 bundle_del_port(port);
2191 }
2192
2193 bundle_flush_macs(bundle, true);
2194 hmap_remove(&ofproto->bundles, &bundle->hmap_node);
2195 free(bundle->name);
2196 free(bundle->trunks);
2197 lacp_destroy(bundle->lacp);
2198 bond_destroy(bundle->bond);
2199 free(bundle);
2200 }
2201
2202 static int
2203 bundle_set(struct ofproto *ofproto_, void *aux,
2204 const struct ofproto_bundle_settings *s)
2205 {
2206 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2207 bool need_flush = false;
2208 struct ofport_dpif *port;
2209 struct ofbundle *bundle;
2210 unsigned long *trunks;
2211 int vlan;
2212 size_t i;
2213 bool ok;
2214
2215 if (!s) {
2216 bundle_destroy(bundle_lookup(ofproto, aux));
2217 return 0;
2218 }
2219
2220 assert(s->n_slaves == 1 || s->bond != NULL);
2221 assert((s->lacp != NULL) == (s->lacp_slaves != NULL));
2222
2223 bundle = bundle_lookup(ofproto, aux);
2224 if (!bundle) {
2225 bundle = xmalloc(sizeof *bundle);
2226
2227 bundle->ofproto = ofproto;
2228 hmap_insert(&ofproto->bundles, &bundle->hmap_node,
2229 hash_pointer(aux, 0));
2230 bundle->aux = aux;
2231 bundle->name = NULL;
2232
2233 list_init(&bundle->ports);
2234 bundle->vlan_mode = PORT_VLAN_TRUNK;
2235 bundle->vlan = -1;
2236 bundle->trunks = NULL;
2237 bundle->use_priority_tags = s->use_priority_tags;
2238 bundle->lacp = NULL;
2239 bundle->bond = NULL;
2240
2241 bundle->floodable = true;
2242
2243 bundle->src_mirrors = 0;
2244 bundle->dst_mirrors = 0;
2245 bundle->mirror_out = 0;
2246 }
2247
2248 if (!bundle->name || strcmp(s->name, bundle->name)) {
2249 free(bundle->name);
2250 bundle->name = xstrdup(s->name);
2251 }
2252
2253 /* LACP. */
2254 if (s->lacp) {
2255 if (!bundle->lacp) {
2256 ofproto->need_revalidate = REV_RECONFIGURE;
2257 bundle->lacp = lacp_create();
2258 }
2259 lacp_configure(bundle->lacp, s->lacp);
2260 } else {
2261 lacp_destroy(bundle->lacp);
2262 bundle->lacp = NULL;
2263 }
2264
2265 /* Update set of ports. */
2266 ok = true;
2267 for (i = 0; i < s->n_slaves; i++) {
2268 if (!bundle_add_port(bundle, s->slaves[i],
2269 s->lacp ? &s->lacp_slaves[i] : NULL,
2270 s->bond_stable_ids ? s->bond_stable_ids[i] : 0)) {
2271 ok = false;
2272 }
2273 }
2274 if (!ok || list_size(&bundle->ports) != s->n_slaves) {
2275 struct ofport_dpif *next_port;
2276
2277 LIST_FOR_EACH_SAFE (port, next_port, bundle_node, &bundle->ports) {
2278 for (i = 0; i < s->n_slaves; i++) {
2279 if (s->slaves[i] == port->up.ofp_port) {
2280 goto found;
2281 }
2282 }
2283
2284 bundle_del_port(port);
2285 found: ;
2286 }
2287 }
2288 assert(list_size(&bundle->ports) <= s->n_slaves);
2289
2290 if (list_is_empty(&bundle->ports)) {
2291 bundle_destroy(bundle);
2292 return EINVAL;
2293 }
2294
2295 /* Set VLAN tagging mode */
2296 if (s->vlan_mode != bundle->vlan_mode
2297 || s->use_priority_tags != bundle->use_priority_tags) {
2298 bundle->vlan_mode = s->vlan_mode;
2299 bundle->use_priority_tags = s->use_priority_tags;
2300 need_flush = true;
2301 }
2302
2303 /* Set VLAN tag. */
2304 vlan = (s->vlan_mode == PORT_VLAN_TRUNK ? -1
2305 : s->vlan >= 0 && s->vlan <= 4095 ? s->vlan
2306 : 0);
2307 if (vlan != bundle->vlan) {
2308 bundle->vlan = vlan;
2309 need_flush = true;
2310 }
2311
2312 /* Get trunked VLANs. */
2313 switch (s->vlan_mode) {
2314 case PORT_VLAN_ACCESS:
2315 trunks = NULL;
2316 break;
2317
2318 case PORT_VLAN_TRUNK:
2319 trunks = CONST_CAST(unsigned long *, s->trunks);
2320 break;
2321
2322 case PORT_VLAN_NATIVE_UNTAGGED:
2323 case PORT_VLAN_NATIVE_TAGGED:
2324 if (vlan != 0 && (!s->trunks
2325 || !bitmap_is_set(s->trunks, vlan)
2326 || bitmap_is_set(s->trunks, 0))) {
2327 /* Force trunking the native VLAN and prohibit trunking VLAN 0. */
2328 if (s->trunks) {
2329 trunks = bitmap_clone(s->trunks, 4096);
2330 } else {
2331 trunks = bitmap_allocate1(4096);
2332 }
2333 bitmap_set1(trunks, vlan);
2334 bitmap_set0(trunks, 0);
2335 } else {
2336 trunks = CONST_CAST(unsigned long *, s->trunks);
2337 }
2338 break;
2339
2340 default:
2341 NOT_REACHED();
2342 }
2343 if (!vlan_bitmap_equal(trunks, bundle->trunks)) {
2344 free(bundle->trunks);
2345 if (trunks == s->trunks) {
2346 bundle->trunks = vlan_bitmap_clone(trunks);
2347 } else {
2348 bundle->trunks = trunks;
2349 trunks = NULL;
2350 }
2351 need_flush = true;
2352 }
2353 if (trunks != s->trunks) {
2354 free(trunks);
2355 }
2356
2357 /* Bonding. */
2358 if (!list_is_short(&bundle->ports)) {
2359 bundle->ofproto->has_bonded_bundles = true;
2360 if (bundle->bond) {
2361 if (bond_reconfigure(bundle->bond, s->bond)) {
2362 ofproto->need_revalidate = REV_RECONFIGURE;
2363 }
2364 } else {
2365 bundle->bond = bond_create(s->bond);
2366 ofproto->need_revalidate = REV_RECONFIGURE;
2367 }
2368
2369 LIST_FOR_EACH (port, bundle_node, &bundle->ports) {
2370 bond_slave_register(bundle->bond, port, port->bond_stable_id,
2371 port->up.netdev);
2372 }
2373 } else {
2374 bond_destroy(bundle->bond);
2375 bundle->bond = NULL;
2376 }
2377
2378 /* If we changed something that would affect MAC learning, un-learn
2379 * everything on this port and force flow revalidation. */
2380 if (need_flush) {
2381 bundle_flush_macs(bundle, false);
2382 }
2383
2384 return 0;
2385 }
2386
2387 static void
2388 bundle_remove(struct ofport *port_)
2389 {
2390 struct ofport_dpif *port = ofport_dpif_cast(port_);
2391 struct ofbundle *bundle = port->bundle;
2392
2393 if (bundle) {
2394 bundle_del_port(port);
2395 if (list_is_empty(&bundle->ports)) {
2396 bundle_destroy(bundle);
2397 } else if (list_is_short(&bundle->ports)) {
2398 bond_destroy(bundle->bond);
2399 bundle->bond = NULL;
2400 }
2401 }
2402 }
2403
2404 static void
2405 send_pdu_cb(void *port_, const void *pdu, size_t pdu_size)
2406 {
2407 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 10);
2408 struct ofport_dpif *port = port_;
2409 uint8_t ea[ETH_ADDR_LEN];
2410 int error;
2411
2412 error = netdev_get_etheraddr(port->up.netdev, ea);
2413 if (!error) {
2414 struct ofpbuf packet;
2415 void *packet_pdu;
2416
2417 ofpbuf_init(&packet, 0);
2418 packet_pdu = eth_compose(&packet, eth_addr_lacp, ea, ETH_TYPE_LACP,
2419 pdu_size);
2420 memcpy(packet_pdu, pdu, pdu_size);
2421
2422 send_packet(port, &packet);
2423 ofpbuf_uninit(&packet);
2424 } else {
2425 VLOG_ERR_RL(&rl, "port %s: cannot obtain Ethernet address of iface "
2426 "%s (%s)", port->bundle->name,
2427 netdev_get_name(port->up.netdev), strerror(error));
2428 }
2429 }
2430
2431 static void
2432 bundle_send_learning_packets(struct ofbundle *bundle)
2433 {
2434 struct ofproto_dpif *ofproto = bundle->ofproto;
2435 int error, n_packets, n_errors;
2436 struct mac_entry *e;
2437
2438 error = n_packets = n_errors = 0;
2439 LIST_FOR_EACH (e, lru_node, &ofproto->ml->lrus) {
2440 if (e->port.p != bundle) {
2441 struct ofpbuf *learning_packet;
2442 struct ofport_dpif *port;
2443 void *port_void;
2444 int ret;
2445
2446 /* The assignment to "port" is unnecessary but makes "grep"ing for
2447 * struct ofport_dpif more effective. */
2448 learning_packet = bond_compose_learning_packet(bundle->bond,
2449 e->mac, e->vlan,
2450 &port_void);
2451 port = port_void;
2452 ret = send_packet(port, learning_packet);
2453 ofpbuf_delete(learning_packet);
2454 if (ret) {
2455 error = ret;
2456 n_errors++;
2457 }
2458 n_packets++;
2459 }
2460 }
2461
2462 if (n_errors) {
2463 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
2464 VLOG_WARN_RL(&rl, "bond %s: %d errors sending %d gratuitous learning "
2465 "packets, last error was: %s",
2466 bundle->name, n_errors, n_packets, strerror(error));
2467 } else {
2468 VLOG_DBG("bond %s: sent %d gratuitous learning packets",
2469 bundle->name, n_packets);
2470 }
2471 }
2472
2473 static void
2474 bundle_run(struct ofbundle *bundle)
2475 {
2476 if (bundle->lacp) {
2477 lacp_run(bundle->lacp, send_pdu_cb);
2478 }
2479 if (bundle->bond) {
2480 struct ofport_dpif *port;
2481
2482 LIST_FOR_EACH (port, bundle_node, &bundle->ports) {
2483 bond_slave_set_may_enable(bundle->bond, port, port->may_enable);
2484 }
2485
2486 bond_run(bundle->bond, &bundle->ofproto->revalidate_set,
2487 lacp_status(bundle->lacp));
2488 if (bond_should_send_learning_packets(bundle->bond)) {
2489 bundle_send_learning_packets(bundle);
2490 }
2491 }
2492 }
2493
2494 static void
2495 bundle_wait(struct ofbundle *bundle)
2496 {
2497 if (bundle->lacp) {
2498 lacp_wait(bundle->lacp);
2499 }
2500 if (bundle->bond) {
2501 bond_wait(bundle->bond);
2502 }
2503 }
2504 \f
2505 /* Mirrors. */
2506
2507 static int
2508 mirror_scan(struct ofproto_dpif *ofproto)
2509 {
2510 int idx;
2511
2512 for (idx = 0; idx < MAX_MIRRORS; idx++) {
2513 if (!ofproto->mirrors[idx]) {
2514 return idx;
2515 }
2516 }
2517 return -1;
2518 }
2519
2520 static struct ofmirror *
2521 mirror_lookup(struct ofproto_dpif *ofproto, void *aux)
2522 {
2523 int i;
2524
2525 for (i = 0; i < MAX_MIRRORS; i++) {
2526 struct ofmirror *mirror = ofproto->mirrors[i];
2527 if (mirror && mirror->aux == aux) {
2528 return mirror;
2529 }
2530 }
2531
2532 return NULL;
2533 }
2534
2535 /* Update the 'dup_mirrors' member of each of the ofmirrors in 'ofproto'. */
2536 static void
2537 mirror_update_dups(struct ofproto_dpif *ofproto)
2538 {
2539 int i;
2540
2541 for (i = 0; i < MAX_MIRRORS; i++) {
2542 struct ofmirror *m = ofproto->mirrors[i];
2543
2544 if (m) {
2545 m->dup_mirrors = MIRROR_MASK_C(1) << i;
2546 }
2547 }
2548
2549 for (i = 0; i < MAX_MIRRORS; i++) {
2550 struct ofmirror *m1 = ofproto->mirrors[i];
2551 int j;
2552
2553 if (!m1) {
2554 continue;
2555 }
2556
2557 for (j = i + 1; j < MAX_MIRRORS; j++) {
2558 struct ofmirror *m2 = ofproto->mirrors[j];
2559
2560 if (m2 && m1->out == m2->out && m1->out_vlan == m2->out_vlan) {
2561 m1->dup_mirrors |= MIRROR_MASK_C(1) << j;
2562 m2->dup_mirrors |= m1->dup_mirrors;
2563 }
2564 }
2565 }
2566 }
2567
2568 static int
2569 mirror_set(struct ofproto *ofproto_, void *aux,
2570 const struct ofproto_mirror_settings *s)
2571 {
2572 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2573 mirror_mask_t mirror_bit;
2574 struct ofbundle *bundle;
2575 struct ofmirror *mirror;
2576 struct ofbundle *out;
2577 struct hmapx srcs; /* Contains "struct ofbundle *"s. */
2578 struct hmapx dsts; /* Contains "struct ofbundle *"s. */
2579 int out_vlan;
2580
2581 mirror = mirror_lookup(ofproto, aux);
2582 if (!s) {
2583 mirror_destroy(mirror);
2584 return 0;
2585 }
2586 if (!mirror) {
2587 int idx;
2588
2589 idx = mirror_scan(ofproto);
2590 if (idx < 0) {
2591 VLOG_WARN("bridge %s: maximum of %d port mirrors reached, "
2592 "cannot create %s",
2593 ofproto->up.name, MAX_MIRRORS, s->name);
2594 return EFBIG;
2595 }
2596
2597 mirror = ofproto->mirrors[idx] = xzalloc(sizeof *mirror);
2598 mirror->ofproto = ofproto;
2599 mirror->idx = idx;
2600 mirror->aux = aux;
2601 mirror->out_vlan = -1;
2602 mirror->name = NULL;
2603 }
2604
2605 if (!mirror->name || strcmp(s->name, mirror->name)) {
2606 free(mirror->name);
2607 mirror->name = xstrdup(s->name);
2608 }
2609
2610 /* Get the new configuration. */
2611 if (s->out_bundle) {
2612 out = bundle_lookup(ofproto, s->out_bundle);
2613 if (!out) {
2614 mirror_destroy(mirror);
2615 return EINVAL;
2616 }
2617 out_vlan = -1;
2618 } else {
2619 out = NULL;
2620 out_vlan = s->out_vlan;
2621 }
2622 bundle_lookup_multiple(ofproto, s->srcs, s->n_srcs, &srcs);
2623 bundle_lookup_multiple(ofproto, s->dsts, s->n_dsts, &dsts);
2624
2625 /* If the configuration has not changed, do nothing. */
2626 if (hmapx_equals(&srcs, &mirror->srcs)
2627 && hmapx_equals(&dsts, &mirror->dsts)
2628 && vlan_bitmap_equal(mirror->vlans, s->src_vlans)
2629 && mirror->out == out
2630 && mirror->out_vlan == out_vlan)
2631 {
2632 hmapx_destroy(&srcs);
2633 hmapx_destroy(&dsts);
2634 return 0;
2635 }
2636
2637 hmapx_swap(&srcs, &mirror->srcs);
2638 hmapx_destroy(&srcs);
2639
2640 hmapx_swap(&dsts, &mirror->dsts);
2641 hmapx_destroy(&dsts);
2642
2643 free(mirror->vlans);
2644 mirror->vlans = vlan_bitmap_clone(s->src_vlans);
2645
2646 mirror->out = out;
2647 mirror->out_vlan = out_vlan;
2648
2649 /* Update bundles. */
2650 mirror_bit = MIRROR_MASK_C(1) << mirror->idx;
2651 HMAP_FOR_EACH (bundle, hmap_node, &mirror->ofproto->bundles) {
2652 if (hmapx_contains(&mirror->srcs, bundle)) {
2653 bundle->src_mirrors |= mirror_bit;
2654 } else {
2655 bundle->src_mirrors &= ~mirror_bit;
2656 }
2657
2658 if (hmapx_contains(&mirror->dsts, bundle)) {
2659 bundle->dst_mirrors |= mirror_bit;
2660 } else {
2661 bundle->dst_mirrors &= ~mirror_bit;
2662 }
2663
2664 if (mirror->out == bundle) {
2665 bundle->mirror_out |= mirror_bit;
2666 } else {
2667 bundle->mirror_out &= ~mirror_bit;
2668 }
2669 }
2670
2671 ofproto->need_revalidate = REV_RECONFIGURE;
2672 ofproto->has_mirrors = true;
2673 mac_learning_flush(ofproto->ml, &ofproto->revalidate_set);
2674 mirror_update_dups(ofproto);
2675
2676 return 0;
2677 }
2678
2679 static void
2680 mirror_destroy(struct ofmirror *mirror)
2681 {
2682 struct ofproto_dpif *ofproto;
2683 mirror_mask_t mirror_bit;
2684 struct ofbundle *bundle;
2685 int i;
2686
2687 if (!mirror) {
2688 return;
2689 }
2690
2691 ofproto = mirror->ofproto;
2692 ofproto->need_revalidate = REV_RECONFIGURE;
2693 mac_learning_flush(ofproto->ml, &ofproto->revalidate_set);
2694
2695 mirror_bit = MIRROR_MASK_C(1) << mirror->idx;
2696 HMAP_FOR_EACH (bundle, hmap_node, &ofproto->bundles) {
2697 bundle->src_mirrors &= ~mirror_bit;
2698 bundle->dst_mirrors &= ~mirror_bit;
2699 bundle->mirror_out &= ~mirror_bit;
2700 }
2701
2702 hmapx_destroy(&mirror->srcs);
2703 hmapx_destroy(&mirror->dsts);
2704 free(mirror->vlans);
2705
2706 ofproto->mirrors[mirror->idx] = NULL;
2707 free(mirror->name);
2708 free(mirror);
2709
2710 mirror_update_dups(ofproto);
2711
2712 ofproto->has_mirrors = false;
2713 for (i = 0; i < MAX_MIRRORS; i++) {
2714 if (ofproto->mirrors[i]) {
2715 ofproto->has_mirrors = true;
2716 break;
2717 }
2718 }
2719 }
2720
2721 static int
2722 mirror_get_stats(struct ofproto *ofproto_, void *aux,
2723 uint64_t *packets, uint64_t *bytes)
2724 {
2725 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2726 struct ofmirror *mirror = mirror_lookup(ofproto, aux);
2727
2728 if (!mirror) {
2729 *packets = *bytes = UINT64_MAX;
2730 return 0;
2731 }
2732
2733 *packets = mirror->packet_count;
2734 *bytes = mirror->byte_count;
2735
2736 return 0;
2737 }
2738
2739 static int
2740 set_flood_vlans(struct ofproto *ofproto_, unsigned long *flood_vlans)
2741 {
2742 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2743 if (mac_learning_set_flood_vlans(ofproto->ml, flood_vlans)) {
2744 mac_learning_flush(ofproto->ml, &ofproto->revalidate_set);
2745 }
2746 return 0;
2747 }
2748
2749 static bool
2750 is_mirror_output_bundle(const struct ofproto *ofproto_, void *aux)
2751 {
2752 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2753 struct ofbundle *bundle = bundle_lookup(ofproto, aux);
2754 return bundle && bundle->mirror_out != 0;
2755 }
2756
2757 static void
2758 forward_bpdu_changed(struct ofproto *ofproto_)
2759 {
2760 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2761 ofproto->need_revalidate = REV_RECONFIGURE;
2762 }
2763
2764 static void
2765 set_mac_idle_time(struct ofproto *ofproto_, unsigned int idle_time)
2766 {
2767 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2768 mac_learning_set_idle_time(ofproto->ml, idle_time);
2769 }
2770 \f
2771 /* Ports. */
2772
2773 static struct ofport_dpif *
2774 get_ofp_port(const struct ofproto_dpif *ofproto, uint16_t ofp_port)
2775 {
2776 struct ofport *ofport = ofproto_get_port(&ofproto->up, ofp_port);
2777 return ofport ? ofport_dpif_cast(ofport) : NULL;
2778 }
2779
2780 static struct ofport_dpif *
2781 get_odp_port(const struct ofproto_dpif *ofproto, uint32_t odp_port)
2782 {
2783 return get_ofp_port(ofproto, odp_port_to_ofp_port(ofproto, odp_port));
2784 }
2785
2786 static void
2787 ofproto_port_from_dpif_port(struct ofproto_dpif *ofproto,
2788 struct ofproto_port *ofproto_port,
2789 struct dpif_port *dpif_port)
2790 {
2791 ofproto_port->name = dpif_port->name;
2792 ofproto_port->type = dpif_port->type;
2793 ofproto_port->ofp_port = odp_port_to_ofp_port(ofproto, dpif_port->port_no);
2794 }
2795
2796 static void
2797 port_run_fast(struct ofport_dpif *ofport)
2798 {
2799 if (ofport->cfm && cfm_should_send_ccm(ofport->cfm)) {
2800 struct ofpbuf packet;
2801
2802 ofpbuf_init(&packet, 0);
2803 cfm_compose_ccm(ofport->cfm, &packet, ofport->up.pp.hw_addr);
2804 send_packet(ofport, &packet);
2805 ofpbuf_uninit(&packet);
2806 }
2807 }
2808
2809 static void
2810 port_run(struct ofport_dpif *ofport)
2811 {
2812 long long int carrier_seq = netdev_get_carrier_resets(ofport->up.netdev);
2813 bool carrier_changed = carrier_seq != ofport->carrier_seq;
2814 bool enable = netdev_get_carrier(ofport->up.netdev);
2815
2816 ofport->carrier_seq = carrier_seq;
2817
2818 port_run_fast(ofport);
2819 if (ofport->cfm) {
2820 int cfm_opup = cfm_get_opup(ofport->cfm);
2821
2822 cfm_run(ofport->cfm);
2823 enable = enable && !cfm_get_fault(ofport->cfm);
2824
2825 if (cfm_opup >= 0) {
2826 enable = enable && cfm_opup;
2827 }
2828 }
2829
2830 if (ofport->bundle) {
2831 enable = enable && lacp_slave_may_enable(ofport->bundle->lacp, ofport);
2832 if (carrier_changed) {
2833 lacp_slave_carrier_changed(ofport->bundle->lacp, ofport);
2834 }
2835 }
2836
2837 if (ofport->may_enable != enable) {
2838 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
2839
2840 if (ofproto->has_bundle_action) {
2841 ofproto->need_revalidate = REV_PORT_TOGGLED;
2842 }
2843 }
2844
2845 ofport->may_enable = enable;
2846 }
2847
2848 static void
2849 port_wait(struct ofport_dpif *ofport)
2850 {
2851 if (ofport->cfm) {
2852 cfm_wait(ofport->cfm);
2853 }
2854 }
2855
2856 static int
2857 port_query_by_name(const struct ofproto *ofproto_, const char *devname,
2858 struct ofproto_port *ofproto_port)
2859 {
2860 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2861 struct dpif_port dpif_port;
2862 int error;
2863
2864 if (!sset_contains(&ofproto->ports, devname)) {
2865 return ENODEV;
2866 }
2867 error = dpif_port_query_by_name(ofproto->backer->dpif,
2868 devname, &dpif_port);
2869 if (!error) {
2870 ofproto_port_from_dpif_port(ofproto, ofproto_port, &dpif_port);
2871 }
2872 return error;
2873 }
2874
2875 static int
2876 port_add(struct ofproto *ofproto_, struct netdev *netdev)
2877 {
2878 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2879 uint32_t odp_port = UINT32_MAX;
2880 int error;
2881
2882 error = dpif_port_add(ofproto->backer->dpif, netdev, &odp_port);
2883 if (!error) {
2884 sset_add(&ofproto->ports, netdev_get_name(netdev));
2885 }
2886 return error;
2887 }
2888
2889 static int
2890 port_del(struct ofproto *ofproto_, uint16_t ofp_port)
2891 {
2892 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2893 uint32_t odp_port = ofp_port_to_odp_port(ofproto, ofp_port);
2894 int error = 0;
2895
2896 if (odp_port != OFPP_NONE) {
2897 error = dpif_port_del(ofproto->backer->dpif, odp_port);
2898 }
2899 if (!error) {
2900 struct ofport_dpif *ofport = get_ofp_port(ofproto, ofp_port);
2901 if (ofport) {
2902 /* The caller is going to close ofport->up.netdev. If this is a
2903 * bonded port, then the bond is using that netdev, so remove it
2904 * from the bond. The client will need to reconfigure everything
2905 * after deleting ports, so then the slave will get re-added. */
2906 bundle_remove(&ofport->up);
2907 }
2908 }
2909 return error;
2910 }
2911
2912 static int
2913 port_get_stats(const struct ofport *ofport_, struct netdev_stats *stats)
2914 {
2915 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
2916 int error;
2917
2918 error = netdev_get_stats(ofport->up.netdev, stats);
2919
2920 if (!error && ofport->odp_port == OVSP_LOCAL) {
2921 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
2922
2923 /* ofproto->stats.tx_packets represents packets that we created
2924 * internally and sent to some port (e.g. packets sent with
2925 * send_packet()). Account for them as if they had come from
2926 * OFPP_LOCAL and got forwarded. */
2927
2928 if (stats->rx_packets != UINT64_MAX) {
2929 stats->rx_packets += ofproto->stats.tx_packets;
2930 }
2931
2932 if (stats->rx_bytes != UINT64_MAX) {
2933 stats->rx_bytes += ofproto->stats.tx_bytes;
2934 }
2935
2936 /* ofproto->stats.rx_packets represents packets that were received on
2937 * some port and we processed internally and dropped (e.g. STP).
2938 * Account for them as if they had been forwarded to OFPP_LOCAL. */
2939
2940 if (stats->tx_packets != UINT64_MAX) {
2941 stats->tx_packets += ofproto->stats.rx_packets;
2942 }
2943
2944 if (stats->tx_bytes != UINT64_MAX) {
2945 stats->tx_bytes += ofproto->stats.rx_bytes;
2946 }
2947 }
2948
2949 return error;
2950 }
2951
2952 /* Account packets for LOCAL port. */
2953 static void
2954 ofproto_update_local_port_stats(const struct ofproto *ofproto_,
2955 size_t tx_size, size_t rx_size)
2956 {
2957 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2958
2959 if (rx_size) {
2960 ofproto->stats.rx_packets++;
2961 ofproto->stats.rx_bytes += rx_size;
2962 }
2963 if (tx_size) {
2964 ofproto->stats.tx_packets++;
2965 ofproto->stats.tx_bytes += tx_size;
2966 }
2967 }
2968
2969 struct port_dump_state {
2970 uint32_t bucket;
2971 uint32_t offset;
2972 };
2973
2974 static int
2975 port_dump_start(const struct ofproto *ofproto_ OVS_UNUSED, void **statep)
2976 {
2977 struct port_dump_state *state;
2978
2979 *statep = state = xmalloc(sizeof *state);
2980 state->bucket = 0;
2981 state->offset = 0;
2982 return 0;
2983 }
2984
2985 static int
2986 port_dump_next(const struct ofproto *ofproto_ OVS_UNUSED, void *state_,
2987 struct ofproto_port *port)
2988 {
2989 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2990 struct port_dump_state *state = state_;
2991 struct sset_node *node;
2992
2993 while ((node = sset_at_position(&ofproto->ports, &state->bucket,
2994 &state->offset))) {
2995 int error;
2996
2997 error = port_query_by_name(ofproto_, node->name, port);
2998 if (error != ENODEV) {
2999 return error;
3000 }
3001 }
3002
3003 return EOF;
3004 }
3005
3006 static int
3007 port_dump_done(const struct ofproto *ofproto_ OVS_UNUSED, void *state_)
3008 {
3009 struct port_dump_state *state = state_;
3010
3011 free(state);
3012 return 0;
3013 }
3014
3015 static int
3016 port_poll(const struct ofproto *ofproto_, char **devnamep)
3017 {
3018 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
3019
3020 if (ofproto->port_poll_errno) {
3021 int error = ofproto->port_poll_errno;
3022 ofproto->port_poll_errno = 0;
3023 return error;
3024 }
3025
3026 if (sset_is_empty(&ofproto->port_poll_set)) {
3027 return EAGAIN;
3028 }
3029
3030 *devnamep = sset_pop(&ofproto->port_poll_set);
3031 return 0;
3032 }
3033
3034 static void
3035 port_poll_wait(const struct ofproto *ofproto_)
3036 {
3037 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
3038 dpif_port_poll_wait(ofproto->backer->dpif);
3039 }
3040
3041 static int
3042 port_is_lacp_current(const struct ofport *ofport_)
3043 {
3044 const struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
3045 return (ofport->bundle && ofport->bundle->lacp
3046 ? lacp_slave_is_current(ofport->bundle->lacp, ofport)
3047 : -1);
3048 }
3049 \f
3050 /* Upcall handling. */
3051
3052 /* Flow miss batching.
3053 *
3054 * Some dpifs implement operations faster when you hand them off in a batch.
3055 * To allow batching, "struct flow_miss" queues the dpif-related work needed
3056 * for a given flow. Each "struct flow_miss" corresponds to sending one or
3057 * more packets, plus possibly installing the flow in the dpif.
3058 *
3059 * So far we only batch the operations that affect flow setup time the most.
3060 * It's possible to batch more than that, but the benefit might be minimal. */
3061 struct flow_miss {
3062 struct hmap_node hmap_node;
3063 struct ofproto_dpif *ofproto;
3064 struct flow flow;
3065 enum odp_key_fitness key_fitness;
3066 const struct nlattr *key;
3067 size_t key_len;
3068 ovs_be16 initial_tci;
3069 struct list packets;
3070 enum dpif_upcall_type upcall_type;
3071 uint32_t odp_in_port;
3072 };
3073
3074 struct flow_miss_op {
3075 struct dpif_op dpif_op;
3076 struct subfacet *subfacet; /* Subfacet */
3077 void *garbage; /* Pointer to pass to free(), NULL if none. */
3078 uint64_t stub[1024 / 8]; /* Temporary buffer. */
3079 };
3080
3081 /* Sends an OFPT_PACKET_IN message for 'packet' of type OFPR_NO_MATCH to each
3082 * OpenFlow controller as necessary according to their individual
3083 * configurations. */
3084 static void
3085 send_packet_in_miss(struct ofproto_dpif *ofproto, const struct ofpbuf *packet,
3086 const struct flow *flow)
3087 {
3088 struct ofputil_packet_in pin;
3089
3090 pin.packet = packet->data;
3091 pin.packet_len = packet->size;
3092 pin.reason = OFPR_NO_MATCH;
3093 pin.controller_id = 0;
3094
3095 pin.table_id = 0;
3096 pin.cookie = 0;
3097
3098 pin.send_len = 0; /* not used for flow table misses */
3099
3100 flow_get_metadata(flow, &pin.fmd);
3101
3102 connmgr_send_packet_in(ofproto->up.connmgr, &pin);
3103 }
3104
3105 static enum slow_path_reason
3106 process_special(struct ofproto_dpif *ofproto, const struct flow *flow,
3107 const struct ofpbuf *packet)
3108 {
3109 struct ofport_dpif *ofport = get_ofp_port(ofproto, flow->in_port);
3110
3111 if (!ofport) {
3112 return 0;
3113 }
3114
3115 if (ofport->cfm && cfm_should_process_flow(ofport->cfm, flow)) {
3116 if (packet) {
3117 cfm_process_heartbeat(ofport->cfm, packet);
3118 }
3119 return SLOW_CFM;
3120 } else if (ofport->bundle && ofport->bundle->lacp
3121 && flow->dl_type == htons(ETH_TYPE_LACP)) {
3122 if (packet) {
3123 lacp_process_packet(ofport->bundle->lacp, ofport, packet);
3124 }
3125 return SLOW_LACP;
3126 } else if (ofproto->stp && stp_should_process_flow(flow)) {
3127 if (packet) {
3128 stp_process_packet(ofport, packet);
3129 }
3130 return SLOW_STP;
3131 }
3132 return 0;
3133 }
3134
3135 static struct flow_miss *
3136 flow_miss_find(struct hmap *todo, const struct flow *flow, uint32_t hash)
3137 {
3138 struct flow_miss *miss;
3139
3140 HMAP_FOR_EACH_WITH_HASH (miss, hmap_node, hash, todo) {
3141 if (flow_equal(&miss->flow, flow)) {
3142 return miss;
3143 }
3144 }
3145
3146 return NULL;
3147 }
3148
3149 /* Partially Initializes 'op' as an "execute" operation for 'miss' and
3150 * 'packet'. The caller must initialize op->actions and op->actions_len. If
3151 * 'miss' is associated with a subfacet the caller must also initialize the
3152 * returned op->subfacet, and if anything needs to be freed after processing
3153 * the op, the caller must initialize op->garbage also. */
3154 static void
3155 init_flow_miss_execute_op(struct flow_miss *miss, struct ofpbuf *packet,
3156 struct flow_miss_op *op)
3157 {
3158 if (miss->flow.vlan_tci != miss->initial_tci) {
3159 /* This packet was received on a VLAN splinter port. We
3160 * added a VLAN to the packet to make the packet resemble
3161 * the flow, but the actions were composed assuming that
3162 * the packet contained no VLAN. So, we must remove the
3163 * VLAN header from the packet before trying to execute the
3164 * actions. */
3165 eth_pop_vlan(packet);
3166 }
3167
3168 op->subfacet = NULL;
3169 op->garbage = NULL;
3170 op->dpif_op.type = DPIF_OP_EXECUTE;
3171 op->dpif_op.u.execute.key = miss->key;
3172 op->dpif_op.u.execute.key_len = miss->key_len;
3173 op->dpif_op.u.execute.packet = packet;
3174 }
3175
3176 /* Helper for handle_flow_miss_without_facet() and
3177 * handle_flow_miss_with_facet(). */
3178 static void
3179 handle_flow_miss_common(struct rule_dpif *rule,
3180 struct ofpbuf *packet, const struct flow *flow)
3181 {
3182 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
3183
3184 ofproto->n_matches++;
3185
3186 if (rule->up.cr.priority == FAIL_OPEN_PRIORITY) {
3187 /*
3188 * Extra-special case for fail-open mode.
3189 *
3190 * We are in fail-open mode and the packet matched the fail-open
3191 * rule, but we are connected to a controller too. We should send
3192 * the packet up to the controller in the hope that it will try to
3193 * set up a flow and thereby allow us to exit fail-open.
3194 *
3195 * See the top-level comment in fail-open.c for more information.
3196 */
3197 send_packet_in_miss(ofproto, packet, flow);
3198 }
3199 }
3200
3201 /* Figures out whether a flow that missed in 'ofproto', whose details are in
3202 * 'miss', is likely to be worth tracking in detail in userspace and (usually)
3203 * installing a datapath flow. The answer is usually "yes" (a return value of
3204 * true). However, for short flows the cost of bookkeeping is much higher than
3205 * the benefits, so when the datapath holds a large number of flows we impose
3206 * some heuristics to decide which flows are likely to be worth tracking. */
3207 static bool
3208 flow_miss_should_make_facet(struct ofproto_dpif *ofproto,
3209 struct flow_miss *miss, uint32_t hash)
3210 {
3211 if (!ofproto->governor) {
3212 size_t n_subfacets;
3213
3214 n_subfacets = hmap_count(&ofproto->subfacets);
3215 if (n_subfacets * 2 <= ofproto->up.flow_eviction_threshold) {
3216 return true;
3217 }
3218
3219 ofproto->governor = governor_create(ofproto->up.name);
3220 }
3221
3222 return governor_should_install_flow(ofproto->governor, hash,
3223 list_size(&miss->packets));
3224 }
3225
3226 /* Handles 'miss', which matches 'rule', without creating a facet or subfacet
3227 * or creating any datapath flow. May add an "execute" operation to 'ops' and
3228 * increment '*n_ops'. */
3229 static void
3230 handle_flow_miss_without_facet(struct flow_miss *miss,
3231 struct rule_dpif *rule,
3232 struct flow_miss_op *ops, size_t *n_ops)
3233 {
3234 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
3235 long long int now = time_msec();
3236 struct action_xlate_ctx ctx;
3237 struct ofpbuf *packet;
3238
3239 LIST_FOR_EACH (packet, list_node, &miss->packets) {
3240 struct flow_miss_op *op = &ops[*n_ops];
3241 struct dpif_flow_stats stats;
3242 struct ofpbuf odp_actions;
3243
3244 COVERAGE_INC(facet_suppress);
3245
3246 ofpbuf_use_stub(&odp_actions, op->stub, sizeof op->stub);
3247
3248 dpif_flow_stats_extract(&miss->flow, packet, now, &stats);
3249 rule_credit_stats(rule, &stats);
3250
3251 action_xlate_ctx_init(&ctx, ofproto, &miss->flow, miss->initial_tci,
3252 rule, 0, packet);
3253 ctx.resubmit_stats = &stats;
3254 xlate_actions(&ctx, rule->up.ofpacts, rule->up.ofpacts_len,
3255 &odp_actions);
3256
3257 if (odp_actions.size) {
3258 struct dpif_execute *execute = &op->dpif_op.u.execute;
3259
3260 init_flow_miss_execute_op(miss, packet, op);
3261 execute->actions = odp_actions.data;
3262 execute->actions_len = odp_actions.size;
3263 op->garbage = ofpbuf_get_uninit_pointer(&odp_actions);
3264
3265 (*n_ops)++;
3266 } else {
3267 ofpbuf_uninit(&odp_actions);
3268 }
3269 }
3270 }
3271
3272 /* Handles 'miss', which matches 'facet'. May add any required datapath
3273 * operations to 'ops', incrementing '*n_ops' for each new op.
3274 *
3275 * All of the packets in 'miss' are considered to have arrived at time 'now'.
3276 * This is really important only for new facets: if we just called time_msec()
3277 * here, then the new subfacet or its packets could look (occasionally) as
3278 * though it was used some time after the facet was used. That can make a
3279 * one-packet flow look like it has a nonzero duration, which looks odd in
3280 * e.g. NetFlow statistics. */
3281 static void
3282 handle_flow_miss_with_facet(struct flow_miss *miss, struct facet *facet,
3283 long long int now,
3284 struct flow_miss_op *ops, size_t *n_ops)
3285 {
3286 struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto);
3287 enum subfacet_path want_path;
3288 struct subfacet *subfacet;
3289 struct ofpbuf *packet;
3290
3291 subfacet = subfacet_create(facet, miss, now);
3292
3293 LIST_FOR_EACH (packet, list_node, &miss->packets) {
3294 struct flow_miss_op *op = &ops[*n_ops];
3295 struct dpif_flow_stats stats;
3296 struct ofpbuf odp_actions;
3297
3298 handle_flow_miss_common(facet->rule, packet, &miss->flow);
3299
3300 ofpbuf_use_stub(&odp_actions, op->stub, sizeof op->stub);
3301 if (!subfacet->actions || subfacet->slow) {
3302 subfacet_make_actions(subfacet, packet, &odp_actions);
3303 }
3304
3305 dpif_flow_stats_extract(&facet->flow, packet, now, &stats);
3306 subfacet_update_stats(subfacet, &stats);
3307
3308 if (subfacet->actions_len) {
3309 struct dpif_execute *execute = &op->dpif_op.u.execute;
3310
3311 init_flow_miss_execute_op(miss, packet, op);
3312 op->subfacet = subfacet;
3313 if (!subfacet->slow) {
3314 execute->actions = subfacet->actions;
3315 execute->actions_len = subfacet->actions_len;
3316 ofpbuf_uninit(&odp_actions);
3317 } else {
3318 execute->actions = odp_actions.data;
3319 execute->actions_len = odp_actions.size;
3320 op->garbage = ofpbuf_get_uninit_pointer(&odp_actions);
3321 }
3322
3323 (*n_ops)++;
3324 } else {
3325 ofpbuf_uninit(&odp_actions);
3326 }
3327 }
3328
3329 want_path = subfacet_want_path(subfacet->slow);
3330 if (miss->upcall_type == DPIF_UC_MISS || subfacet->path != want_path) {
3331 struct flow_miss_op *op = &ops[(*n_ops)++];
3332 struct dpif_flow_put *put = &op->dpif_op.u.flow_put;
3333
3334 op->subfacet = subfacet;
3335 op->garbage = NULL;
3336 op->dpif_op.type = DPIF_OP_FLOW_PUT;
3337 put->flags = DPIF_FP_CREATE | DPIF_FP_MODIFY;
3338 put->key = miss->key;
3339 put->key_len = miss->key_len;
3340 if (want_path == SF_FAST_PATH) {
3341 put->actions = subfacet->actions;
3342 put->actions_len = subfacet->actions_len;
3343 } else {
3344 compose_slow_path(ofproto, &facet->flow, subfacet->slow,
3345 op->stub, sizeof op->stub,
3346 &put->actions, &put->actions_len);
3347 }
3348 put->stats = NULL;
3349 }
3350 }
3351
3352 /* Handles flow miss 'miss'. May add any required datapath operations
3353 * to 'ops', incrementing '*n_ops' for each new op. */
3354 static void
3355 handle_flow_miss(struct flow_miss *miss, struct flow_miss_op *ops,
3356 size_t *n_ops)
3357 {
3358 struct ofproto_dpif *ofproto = miss->ofproto;
3359 struct facet *facet;
3360 long long int now;
3361 uint32_t hash;
3362
3363 /* The caller must ensure that miss->hmap_node.hash contains
3364 * flow_hash(miss->flow, 0). */
3365 hash = miss->hmap_node.hash;
3366
3367 facet = facet_lookup_valid(ofproto, &miss->flow, hash);
3368 if (!facet) {
3369 struct rule_dpif *rule = rule_dpif_lookup(ofproto, &miss->flow);
3370
3371 if (!flow_miss_should_make_facet(ofproto, miss, hash)) {
3372 handle_flow_miss_without_facet(miss, rule, ops, n_ops);
3373 return;
3374 }
3375
3376 facet = facet_create(rule, &miss->flow, hash);
3377 now = facet->used;
3378 } else {
3379 now = time_msec();
3380 }
3381 handle_flow_miss_with_facet(miss, facet, now, ops, n_ops);
3382 }
3383
3384 /* This function does post-processing on data returned from
3385 * odp_flow_key_to_flow() to help make VLAN splinters transparent to the
3386 * rest of the upcall processing logic. In particular, if the extracted
3387 * in_port is a VLAN splinter port, it replaces flow->in_port by the "real"
3388 * port, sets flow->vlan_tci correctly for the VLAN of the VLAN splinter
3389 * port, and pushes a VLAN header onto 'packet' (if it is nonnull). The
3390 * caller must have called odp_flow_key_to_flow() and supply 'fitness' and
3391 * 'flow' from its output. The 'flow' argument must have had the "in_port"
3392 * member converted to the OpenFlow number.
3393 *
3394 * Sets '*initial_tci' to the VLAN TCI with which the packet was really
3395 * received, that is, the actual VLAN TCI extracted by odp_flow_key_to_flow().
3396 * (This differs from the value returned in flow->vlan_tci only for packets
3397 * received on VLAN splinters.) */
3398 static enum odp_key_fitness
3399 ofproto_dpif_vsp_adjust(const struct ofproto_dpif *ofproto,
3400 enum odp_key_fitness fitness,
3401 struct flow *flow, ovs_be16 *initial_tci,
3402 struct ofpbuf *packet)
3403 {
3404 if (fitness == ODP_FIT_ERROR) {
3405 return fitness;
3406 }
3407 *initial_tci = flow->vlan_tci;
3408
3409 if (vsp_adjust_flow(ofproto, flow)) {
3410 if (packet) {
3411 /* Make the packet resemble the flow, so that it gets sent to an
3412 * OpenFlow controller properly, so that it looks correct for
3413 * sFlow, and so that flow_extract() will get the correct vlan_tci
3414 * if it is called on 'packet'.
3415 *
3416 * The allocated space inside 'packet' probably also contains
3417 * 'key', that is, both 'packet' and 'key' are probably part of a
3418 * struct dpif_upcall (see the large comment on that structure
3419 * definition), so pushing data on 'packet' is in general not a
3420 * good idea since it could overwrite 'key' or free it as a side
3421 * effect. However, it's OK in this special case because we know
3422 * that 'packet' is inside a Netlink attribute: pushing 4 bytes
3423 * will just overwrite the 4-byte "struct nlattr", which is fine
3424 * since we don't need that header anymore. */
3425 eth_push_vlan(packet, flow->vlan_tci);
3426 }
3427
3428 /* Let the caller know that we can't reproduce 'key' from 'flow'. */
3429 if (fitness == ODP_FIT_PERFECT) {
3430 fitness = ODP_FIT_TOO_MUCH;
3431 }
3432 }
3433
3434 return fitness;
3435 }
3436
3437 static void
3438 handle_miss_upcalls(struct dpif_backer *backer, struct dpif_upcall *upcalls,
3439 size_t n_upcalls)
3440 {
3441 struct dpif_upcall *upcall;
3442 struct flow_miss *miss;
3443 struct flow_miss misses[FLOW_MISS_MAX_BATCH];
3444 struct flow_miss_op flow_miss_ops[FLOW_MISS_MAX_BATCH * 2];
3445 struct dpif_op *dpif_ops[FLOW_MISS_MAX_BATCH * 2];
3446 struct hmap todo;
3447 int n_misses;
3448 size_t n_ops;
3449 size_t i;
3450
3451 if (!n_upcalls) {
3452 return;
3453 }
3454
3455 /* Construct the to-do list.
3456 *
3457 * This just amounts to extracting the flow from each packet and sticking
3458 * the packets that have the same flow in the same "flow_miss" structure so
3459 * that we can process them together. */
3460 hmap_init(&todo);
3461 n_misses = 0;
3462 for (upcall = upcalls; upcall < &upcalls[n_upcalls]; upcall++) {
3463 struct flow_miss *miss = &misses[n_misses];
3464 struct flow_miss *existing_miss;
3465 enum odp_key_fitness fitness;
3466 struct ofproto_dpif *ofproto;
3467 struct ofport_dpif *port;
3468 uint32_t odp_in_port;
3469 struct flow flow;
3470 uint32_t hash;
3471
3472 fitness = odp_flow_key_to_flow(upcall->key, upcall->key_len, &flow);
3473 port = odp_port_to_ofport(backer, flow.in_port);
3474 if (!port) {
3475 /* Received packet on port for which we couldn't associate
3476 * an ofproto. This can happen if a port is removed while
3477 * traffic is being received. Print a rate-limited message
3478 * in case it happens frequently. */
3479 VLOG_INFO_RL(&rl, "received packet on unassociated port %"PRIu32,
3480 flow.in_port);
3481 continue;
3482 }
3483 ofproto = ofproto_dpif_cast(port->up.ofproto);
3484 odp_in_port = flow.in_port;
3485 flow.in_port = port->up.ofp_port;
3486
3487 /* Obtain metadata and check userspace/kernel agreement on flow match,
3488 * then set 'flow''s header pointers. */
3489 miss->key_fitness = ofproto_dpif_vsp_adjust(ofproto, fitness,
3490 &flow, &miss->initial_tci, upcall->packet);
3491 if (miss->key_fitness == ODP_FIT_ERROR) {
3492 continue;
3493 }
3494 flow_extract(upcall->packet, flow.skb_priority, flow.skb_mark,
3495 &flow.tunnel, flow.in_port, &miss->flow);
3496
3497 /* Add other packets to a to-do list. */
3498 hash = flow_hash(&miss->flow, 0);
3499 existing_miss = flow_miss_find(&todo, &miss->flow, hash);
3500 if (!existing_miss) {
3501 hmap_insert(&todo, &miss->hmap_node, hash);
3502 miss->ofproto = ofproto;
3503 miss->key = upcall->key;
3504 miss->key_len = upcall->key_len;
3505 miss->upcall_type = upcall->type;
3506 miss->odp_in_port = odp_in_port;
3507 list_init(&miss->packets);
3508
3509 n_misses++;
3510 } else {
3511 miss = existing_miss;
3512 }
3513 list_push_back(&miss->packets, &upcall->packet->list_node);
3514 }
3515
3516 /* Process each element in the to-do list, constructing the set of
3517 * operations to batch. */
3518 n_ops = 0;
3519 HMAP_FOR_EACH (miss, hmap_node, &todo) {
3520 handle_flow_miss(miss, flow_miss_ops, &n_ops);
3521 }
3522 assert(n_ops <= ARRAY_SIZE(flow_miss_ops));
3523
3524 /* Execute batch. */
3525 for (i = 0; i < n_ops; i++) {
3526 dpif_ops[i] = &flow_miss_ops[i].dpif_op;
3527 }
3528 dpif_operate(backer->dpif, dpif_ops, n_ops);
3529
3530 /* Free memory and update facets. */
3531 for (i = 0; i < n_ops; i++) {
3532 struct flow_miss_op *op = &flow_miss_ops[i];
3533
3534 switch (op->dpif_op.type) {
3535 case DPIF_OP_EXECUTE:
3536 break;
3537
3538 case DPIF_OP_FLOW_PUT:
3539 if (!op->dpif_op.error) {
3540 op->subfacet->path = subfacet_want_path(op->subfacet->slow);
3541 }
3542 break;
3543
3544 case DPIF_OP_FLOW_DEL:
3545 NOT_REACHED();
3546 }
3547
3548 free(op->garbage);
3549 }
3550 hmap_destroy(&todo);
3551 }
3552
3553 static enum { SFLOW_UPCALL, MISS_UPCALL, BAD_UPCALL }
3554 classify_upcall(const struct dpif_upcall *upcall)
3555 {
3556 union user_action_cookie cookie;
3557
3558 /* First look at the upcall type. */
3559 switch (upcall->type) {
3560 case DPIF_UC_ACTION:
3561 break;
3562
3563 case DPIF_UC_MISS:
3564 return MISS_UPCALL;
3565
3566 case DPIF_N_UC_TYPES:
3567 default:
3568 VLOG_WARN_RL(&rl, "upcall has unexpected type %"PRIu32, upcall->type);
3569 return BAD_UPCALL;
3570 }
3571
3572 /* "action" upcalls need a closer look. */
3573 memcpy(&cookie, &upcall->userdata, sizeof(cookie));
3574 switch (cookie.type) {
3575 case USER_ACTION_COOKIE_SFLOW:
3576 return SFLOW_UPCALL;
3577
3578 case USER_ACTION_COOKIE_SLOW_PATH:
3579 return MISS_UPCALL;
3580
3581 case USER_ACTION_COOKIE_UNSPEC:
3582 default:
3583 VLOG_WARN_RL(&rl, "invalid user cookie : 0x%"PRIx64, upcall->userdata);
3584 return BAD_UPCALL;
3585 }
3586 }
3587
3588 static void
3589 handle_sflow_upcall(struct dpif_backer *backer,
3590 const struct dpif_upcall *upcall)
3591 {
3592 struct ofproto_dpif *ofproto;
3593 union user_action_cookie cookie;
3594 enum odp_key_fitness fitness;
3595 struct ofport_dpif *port;
3596 ovs_be16 initial_tci;
3597 struct flow flow;
3598 uint32_t odp_in_port;
3599
3600 fitness = odp_flow_key_to_flow(upcall->key, upcall->key_len, &flow);
3601
3602 port = odp_port_to_ofport(backer, flow.in_port);
3603 if (!port) {
3604 return;
3605 }
3606
3607 ofproto = ofproto_dpif_cast(port->up.ofproto);
3608 if (!ofproto->sflow) {
3609 return;
3610 }
3611
3612 odp_in_port = flow.in_port;
3613 flow.in_port = port->up.ofp_port;
3614 fitness = ofproto_dpif_vsp_adjust(ofproto, fitness, &flow,
3615 &initial_tci, upcall->packet);
3616 if (fitness == ODP_FIT_ERROR) {
3617 return;
3618 }
3619
3620 memcpy(&cookie, &upcall->userdata, sizeof(cookie));
3621 dpif_sflow_received(ofproto->sflow, upcall->packet, &flow,
3622 odp_in_port, &cookie);
3623 }
3624
3625 static int
3626 handle_upcalls(struct dpif_backer *backer, unsigned int max_batch)
3627 {
3628 struct dpif_upcall misses[FLOW_MISS_MAX_BATCH];
3629 struct ofpbuf miss_bufs[FLOW_MISS_MAX_BATCH];
3630 uint64_t miss_buf_stubs[FLOW_MISS_MAX_BATCH][4096 / 8];
3631 int n_processed;
3632 int n_misses;
3633 int i;
3634
3635 assert(max_batch <= FLOW_MISS_MAX_BATCH);
3636
3637 n_misses = 0;
3638 for (n_processed = 0; n_processed < max_batch; n_processed++) {
3639 struct dpif_upcall *upcall = &misses[n_misses];
3640 struct ofpbuf *buf = &miss_bufs[n_misses];
3641 int error;
3642
3643 ofpbuf_use_stub(buf, miss_buf_stubs[n_misses],
3644 sizeof miss_buf_stubs[n_misses]);
3645 error = dpif_recv(backer->dpif, upcall, buf);
3646 if (error) {
3647 ofpbuf_uninit(buf);
3648 break;
3649 }
3650
3651 switch (classify_upcall(upcall)) {
3652 case MISS_UPCALL:
3653 /* Handle it later. */
3654 n_misses++;
3655 break;
3656
3657 case SFLOW_UPCALL:
3658 handle_sflow_upcall(backer, upcall);
3659 ofpbuf_uninit(buf);
3660 break;
3661
3662 case BAD_UPCALL:
3663 ofpbuf_uninit(buf);
3664 break;
3665 }
3666 }
3667
3668 /* Handle deferred MISS_UPCALL processing. */
3669 handle_miss_upcalls(backer, misses, n_misses);
3670 for (i = 0; i < n_misses; i++) {
3671 ofpbuf_uninit(&miss_bufs[i]);
3672 }
3673
3674 return n_processed;
3675 }
3676 \f
3677 /* Flow expiration. */
3678
3679 static int subfacet_max_idle(const struct ofproto_dpif *);
3680 static void update_stats(struct dpif_backer *);
3681 static void rule_expire(struct rule_dpif *);
3682 static void expire_subfacets(struct ofproto_dpif *, int dp_max_idle);
3683
3684 /* This function is called periodically by run(). Its job is to collect
3685 * updates for the flows that have been installed into the datapath, most
3686 * importantly when they last were used, and then use that information to
3687 * expire flows that have not been used recently.
3688 *
3689 * Returns the number of milliseconds after which it should be called again. */
3690 static int
3691 expire(struct dpif_backer *backer)
3692 {
3693 struct ofproto_dpif *ofproto;
3694 int max_idle = INT32_MAX;
3695
3696 /* Update stats for each flow in the backer. */
3697 update_stats(backer);
3698
3699 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
3700 struct rule_dpif *rule, *next_rule;
3701 struct oftable *table;
3702 int dp_max_idle;
3703
3704 if (ofproto->backer != backer) {
3705 continue;
3706 }
3707
3708 /* Expire subfacets that have been idle too long. */
3709 dp_max_idle = subfacet_max_idle(ofproto);
3710 expire_subfacets(ofproto, dp_max_idle);
3711
3712 max_idle = MIN(max_idle, dp_max_idle);
3713
3714 /* Expire OpenFlow flows whose idle_timeout or hard_timeout
3715 * has passed. */
3716 OFPROTO_FOR_EACH_TABLE (table, &ofproto->up) {
3717 struct cls_cursor cursor;
3718
3719 cls_cursor_init(&cursor, &table->cls, NULL);
3720 CLS_CURSOR_FOR_EACH_SAFE (rule, next_rule, up.cr, &cursor) {
3721 rule_expire(rule);
3722 }
3723 }
3724
3725 /* All outstanding data in existing flows has been accounted, so it's a
3726 * good time to do bond rebalancing. */
3727 if (ofproto->has_bonded_bundles) {
3728 struct ofbundle *bundle;
3729
3730 HMAP_FOR_EACH (bundle, hmap_node, &ofproto->bundles) {
3731 if (bundle->bond) {
3732 bond_rebalance(bundle->bond, &ofproto->revalidate_set);
3733 }
3734 }
3735 }
3736 }
3737
3738 return MIN(max_idle, 1000);
3739 }
3740
3741 /* Updates flow table statistics given that the datapath just reported 'stats'
3742 * as 'subfacet''s statistics. */
3743 static void
3744 update_subfacet_stats(struct subfacet *subfacet,
3745 const struct dpif_flow_stats *stats)
3746 {
3747 struct facet *facet = subfacet->facet;
3748
3749 if (stats->n_packets >= subfacet->dp_packet_count) {
3750 uint64_t extra = stats->n_packets - subfacet->dp_packet_count;
3751 facet->packet_count += extra;
3752 } else {
3753 VLOG_WARN_RL(&rl, "unexpected packet count from the datapath");
3754 }
3755
3756 if (stats->n_bytes >= subfacet->dp_byte_count) {
3757 facet->byte_count += stats->n_bytes - subfacet->dp_byte_count;
3758 } else {
3759 VLOG_WARN_RL(&rl, "unexpected byte count from datapath");
3760 }
3761
3762 subfacet->dp_packet_count = stats->n_packets;
3763 subfacet->dp_byte_count = stats->n_bytes;
3764
3765 facet->tcp_flags |= stats->tcp_flags;
3766
3767 subfacet_update_time(subfacet, stats->used);
3768 if (facet->accounted_bytes < facet->byte_count) {
3769 facet_learn(facet);
3770 facet_account(facet);
3771 facet->accounted_bytes = facet->byte_count;
3772 }
3773 facet_push_stats(facet);
3774 }
3775
3776 /* 'key' with length 'key_len' bytes is a flow in 'dpif' that we know nothing
3777 * about, or a flow that shouldn't be installed but was anyway. Delete it. */
3778 static void
3779 delete_unexpected_flow(struct ofproto_dpif *ofproto,
3780 const struct nlattr *key, size_t key_len)
3781 {
3782 if (!VLOG_DROP_WARN(&rl)) {
3783 struct ds s;
3784
3785 ds_init(&s);
3786 odp_flow_key_format(key, key_len, &s);
3787 VLOG_WARN("unexpected flow on %s: %s", ofproto->up.name, ds_cstr(&s));
3788 ds_destroy(&s);
3789 }
3790
3791 COVERAGE_INC(facet_unexpected);
3792 dpif_flow_del(ofproto->backer->dpif, key, key_len, NULL);
3793 }
3794
3795 /* Update 'packet_count', 'byte_count', and 'used' members of installed facets.
3796 *
3797 * This function also pushes statistics updates to rules which each facet
3798 * resubmits into. Generally these statistics will be accurate. However, if a
3799 * facet changes the rule it resubmits into at some time in between
3800 * update_stats() runs, it is possible that statistics accrued to the
3801 * old rule will be incorrectly attributed to the new rule. This could be
3802 * avoided by calling update_stats() whenever rules are created or
3803 * deleted. However, the performance impact of making so many calls to the
3804 * datapath do not justify the benefit of having perfectly accurate statistics.
3805 */
3806 static void
3807 update_stats(struct dpif_backer *backer)
3808 {
3809 const struct dpif_flow_stats *stats;
3810 struct dpif_flow_dump dump;
3811 const struct nlattr *key;
3812 size_t key_len;
3813
3814 dpif_flow_dump_start(&dump, backer->dpif);
3815 while (dpif_flow_dump_next(&dump, &key, &key_len, NULL, NULL, &stats)) {
3816 struct flow flow;
3817 struct subfacet *subfacet;
3818 enum odp_key_fitness fitness;
3819 struct ofproto_dpif *ofproto;
3820 struct ofport_dpif *port;
3821 uint32_t key_hash;
3822
3823 fitness = odp_flow_key_to_flow(key, key_len, &flow);
3824 if (fitness == ODP_FIT_ERROR) {
3825 continue;
3826 }
3827
3828 port = odp_port_to_ofport(backer, flow.in_port);
3829 if (!port) {
3830 /* This flow is for a port for which we couldn't associate an
3831 * ofproto. This can happen if a port is removed while
3832 * traffic is being received. Ignore this flow, since it
3833 * will get timed out. */
3834 continue;
3835 }
3836
3837 ofproto = ofproto_dpif_cast(port->up.ofproto);
3838 flow.in_port = port->up.ofp_port;
3839 key_hash = odp_flow_key_hash(key, key_len);
3840
3841 subfacet = subfacet_find(ofproto, key, key_len, key_hash, &flow);
3842 switch (subfacet ? subfacet->path : SF_NOT_INSTALLED) {
3843 case SF_FAST_PATH:
3844 update_subfacet_stats(subfacet, stats);
3845 break;
3846
3847 case SF_SLOW_PATH:
3848 /* Stats are updated per-packet. */
3849 break;
3850
3851 case SF_NOT_INSTALLED:
3852 default:
3853 delete_unexpected_flow(ofproto, key, key_len);
3854 break;
3855 }
3856 }
3857 dpif_flow_dump_done(&dump);
3858 }
3859
3860 /* Calculates and returns the number of milliseconds of idle time after which
3861 * subfacets should expire from the datapath. When a subfacet expires, we fold
3862 * its statistics into its facet, and when a facet's last subfacet expires, we
3863 * fold its statistic into its rule. */
3864 static int
3865 subfacet_max_idle(const struct ofproto_dpif *ofproto)
3866 {
3867 /*
3868 * Idle time histogram.
3869 *
3870 * Most of the time a switch has a relatively small number of subfacets.
3871 * When this is the case we might as well keep statistics for all of them
3872 * in userspace and to cache them in the kernel datapath for performance as
3873 * well.
3874 *
3875 * As the number of subfacets increases, the memory required to maintain
3876 * statistics about them in userspace and in the kernel becomes
3877 * significant. However, with a large number of subfacets it is likely
3878 * that only a few of them are "heavy hitters" that consume a large amount
3879 * of bandwidth. At this point, only heavy hitters are worth caching in
3880 * the kernel and maintaining in userspaces; other subfacets we can
3881 * discard.
3882 *
3883 * The technique used to compute the idle time is to build a histogram with
3884 * N_BUCKETS buckets whose width is BUCKET_WIDTH msecs each. Each subfacet
3885 * that is installed in the kernel gets dropped in the appropriate bucket.
3886 * After the histogram has been built, we compute the cutoff so that only
3887 * the most-recently-used 1% of subfacets (but at least
3888 * ofproto->up.flow_eviction_threshold flows) are kept cached. At least
3889 * the most-recently-used bucket of subfacets is kept, so actually an
3890 * arbitrary number of subfacets can be kept in any given expiration run
3891 * (though the next run will delete most of those unless they receive
3892 * additional data).
3893 *
3894 * This requires a second pass through the subfacets, in addition to the
3895 * pass made by update_stats(), because the former function never looks at
3896 * uninstallable subfacets.
3897 */
3898 enum { BUCKET_WIDTH = ROUND_UP(100, TIME_UPDATE_INTERVAL) };
3899 enum { N_BUCKETS = 5000 / BUCKET_WIDTH };
3900 int buckets[N_BUCKETS] = { 0 };
3901 int total, subtotal, bucket;
3902 struct subfacet *subfacet;
3903 long long int now;
3904 int i;
3905
3906 total = hmap_count(&ofproto->subfacets);
3907 if (total <= ofproto->up.flow_eviction_threshold) {
3908 return N_BUCKETS * BUCKET_WIDTH;
3909 }
3910
3911 /* Build histogram. */
3912 now = time_msec();
3913 HMAP_FOR_EACH (subfacet, hmap_node, &ofproto->subfacets) {
3914 long long int idle = now - subfacet->used;
3915 int bucket = (idle <= 0 ? 0
3916 : idle >= BUCKET_WIDTH * N_BUCKETS ? N_BUCKETS - 1
3917 : (unsigned int) idle / BUCKET_WIDTH);
3918 buckets[bucket]++;
3919 }
3920
3921 /* Find the first bucket whose flows should be expired. */
3922 subtotal = bucket = 0;
3923 do {
3924 subtotal += buckets[bucket++];
3925 } while (bucket < N_BUCKETS &&
3926 subtotal < MAX(ofproto->up.flow_eviction_threshold, total / 100));
3927
3928 if (VLOG_IS_DBG_ENABLED()) {
3929 struct ds s;
3930
3931 ds_init(&s);
3932 ds_put_cstr(&s, "keep");
3933 for (i = 0; i < N_BUCKETS; i++) {
3934 if (i == bucket) {
3935 ds_put_cstr(&s, ", drop");
3936 }
3937 if (buckets[i]) {
3938 ds_put_format(&s, " %d:%d", i * BUCKET_WIDTH, buckets[i]);
3939 }
3940 }
3941 VLOG_INFO("%s: %s (msec:count)", ofproto->up.name, ds_cstr(&s));
3942 ds_destroy(&s);
3943 }
3944
3945 return bucket * BUCKET_WIDTH;
3946 }
3947
3948 static void
3949 expire_subfacets(struct ofproto_dpif *ofproto, int dp_max_idle)
3950 {
3951 /* Cutoff time for most flows. */
3952 long long int normal_cutoff = time_msec() - dp_max_idle;
3953
3954 /* We really want to keep flows for special protocols around, so use a more
3955 * conservative cutoff. */
3956 long long int special_cutoff = time_msec() - 10000;
3957
3958 struct subfacet *subfacet, *next_subfacet;
3959 struct subfacet *batch[SUBFACET_DESTROY_MAX_BATCH];
3960 int n_batch;
3961
3962 n_batch = 0;
3963 HMAP_FOR_EACH_SAFE (subfacet, next_subfacet, hmap_node,
3964 &ofproto->subfacets) {
3965 long long int cutoff;
3966
3967 cutoff = (subfacet->slow & (SLOW_CFM | SLOW_LACP | SLOW_STP)
3968 ? special_cutoff
3969 : normal_cutoff);
3970 if (subfacet->used < cutoff) {
3971 if (subfacet->path != SF_NOT_INSTALLED) {
3972 batch[n_batch++] = subfacet;
3973 if (n_batch >= SUBFACET_DESTROY_MAX_BATCH) {
3974 subfacet_destroy_batch(ofproto, batch, n_batch);
3975 n_batch = 0;
3976 }
3977 } else {
3978 subfacet_destroy(subfacet);
3979 }
3980 }
3981 }
3982
3983 if (n_batch > 0) {
3984 subfacet_destroy_batch(ofproto, batch, n_batch);
3985 }
3986 }
3987
3988 /* If 'rule' is an OpenFlow rule, that has expired according to OpenFlow rules,
3989 * then delete it entirely. */
3990 static void
3991 rule_expire(struct rule_dpif *rule)
3992 {
3993 struct facet *facet, *next_facet;
3994 long long int now;
3995 uint8_t reason;
3996
3997 if (rule->up.pending) {
3998 /* We'll have to expire it later. */
3999 return;
4000 }
4001
4002 /* Has 'rule' expired? */
4003 now = time_msec();
4004 if (rule->up.hard_timeout
4005 && now > rule->up.modified + rule->up.hard_timeout * 1000) {
4006 reason = OFPRR_HARD_TIMEOUT;
4007 } else if (rule->up.idle_timeout
4008 && now > rule->up.used + rule->up.idle_timeout * 1000) {
4009 reason = OFPRR_IDLE_TIMEOUT;
4010 } else {
4011 return;
4012 }
4013
4014 COVERAGE_INC(ofproto_dpif_expired);
4015
4016 /* Update stats. (This is a no-op if the rule expired due to an idle
4017 * timeout, because that only happens when the rule has no facets left.) */
4018 LIST_FOR_EACH_SAFE (facet, next_facet, list_node, &rule->facets) {
4019 facet_remove(facet);
4020 }
4021
4022 /* Get rid of the rule. */
4023 ofproto_rule_expire(&rule->up, reason);
4024 }
4025 \f
4026 /* Facets. */
4027
4028 /* Creates and returns a new facet owned by 'rule', given a 'flow'.
4029 *
4030 * The caller must already have determined that no facet with an identical
4031 * 'flow' exists in 'ofproto' and that 'flow' is the best match for 'rule' in
4032 * the ofproto's classifier table.
4033 *
4034 * 'hash' must be the return value of flow_hash(flow, 0).
4035 *
4036 * The facet will initially have no subfacets. The caller should create (at
4037 * least) one subfacet with subfacet_create(). */
4038 static struct facet *
4039 facet_create(struct rule_dpif *rule, const struct flow *flow, uint32_t hash)
4040 {
4041 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
4042 struct facet *facet;
4043
4044 facet = xzalloc(sizeof *facet);
4045 facet->used = time_msec();
4046 hmap_insert(&ofproto->facets, &facet->hmap_node, hash);
4047 list_push_back(&rule->facets, &facet->list_node);
4048 facet->rule = rule;
4049 facet->flow = *flow;
4050 list_init(&facet->subfacets);
4051 netflow_flow_init(&facet->nf_flow);
4052 netflow_flow_update_time(ofproto->netflow, &facet->nf_flow, facet->used);
4053
4054 return facet;
4055 }
4056
4057 static void
4058 facet_free(struct facet *facet)
4059 {
4060 free(facet);
4061 }
4062
4063 /* Executes, within 'ofproto', the 'n_actions' actions in 'actions' on
4064 * 'packet', which arrived on 'in_port'.
4065 *
4066 * Takes ownership of 'packet'. */
4067 static bool
4068 execute_odp_actions(struct ofproto_dpif *ofproto, const struct flow *flow,
4069 const struct nlattr *odp_actions, size_t actions_len,
4070 struct ofpbuf *packet)
4071 {
4072 struct odputil_keybuf keybuf;
4073 struct ofpbuf key;
4074 int error;
4075
4076 ofpbuf_use_stack(&key, &keybuf, sizeof keybuf);
4077 odp_flow_key_from_flow(&key, flow,
4078 ofp_port_to_odp_port(ofproto, flow->in_port));
4079
4080 error = dpif_execute(ofproto->backer->dpif, key.data, key.size,
4081 odp_actions, actions_len, packet);
4082
4083 ofpbuf_delete(packet);
4084 return !error;
4085 }
4086
4087 /* Remove 'facet' from 'ofproto' and free up the associated memory:
4088 *
4089 * - If 'facet' was installed in the datapath, uninstalls it and updates its
4090 * rule's statistics, via subfacet_uninstall().
4091 *
4092 * - Removes 'facet' from its rule and from ofproto->facets.
4093 */
4094 static void
4095 facet_remove(struct facet *facet)
4096 {
4097 struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto);
4098 struct subfacet *subfacet, *next_subfacet;
4099
4100 assert(!list_is_empty(&facet->subfacets));
4101
4102 /* First uninstall all of the subfacets to get final statistics. */
4103 LIST_FOR_EACH (subfacet, list_node, &facet->subfacets) {
4104 subfacet_uninstall(subfacet);
4105 }
4106
4107 /* Flush the final stats to the rule.
4108 *
4109 * This might require us to have at least one subfacet around so that we
4110 * can use its actions for accounting in facet_account(), which is why we
4111 * have uninstalled but not yet destroyed the subfacets. */
4112 facet_flush_stats(facet);
4113
4114 /* Now we're really all done so destroy everything. */
4115 LIST_FOR_EACH_SAFE (subfacet, next_subfacet, list_node,
4116 &facet->subfacets) {
4117 subfacet_destroy__(subfacet);
4118 }
4119 hmap_remove(&ofproto->facets, &facet->hmap_node);
4120 list_remove(&facet->list_node);
4121 facet_free(facet);
4122 }
4123
4124 /* Feed information from 'facet' back into the learning table to keep it in
4125 * sync with what is actually flowing through the datapath. */
4126 static void
4127 facet_learn(struct facet *facet)
4128 {
4129 struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto);
4130 struct action_xlate_ctx ctx;
4131
4132 if (!facet->has_learn
4133 && !facet->has_normal
4134 && (!facet->has_fin_timeout
4135 || !(facet->tcp_flags & (TCP_FIN | TCP_RST)))) {
4136 return;
4137 }
4138
4139 action_xlate_ctx_init(&ctx, ofproto, &facet->flow,
4140 facet->flow.vlan_tci,
4141 facet->rule, facet->tcp_flags, NULL);
4142 ctx.may_learn = true;
4143 xlate_actions_for_side_effects(&ctx, facet->rule->up.ofpacts,
4144 facet->rule->up.ofpacts_len);
4145 }
4146
4147 static void
4148 facet_account(struct facet *facet)
4149 {
4150 struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto);
4151 struct subfacet *subfacet;
4152 const struct nlattr *a;
4153 unsigned int left;
4154 ovs_be16 vlan_tci;
4155 uint64_t n_bytes;
4156
4157 if (!facet->has_normal || !ofproto->has_bonded_bundles) {
4158 return;
4159 }
4160 n_bytes = facet->byte_count - facet->accounted_bytes;
4161
4162 /* This loop feeds byte counters to bond_account() for rebalancing to use
4163 * as a basis. We also need to track the actual VLAN on which the packet
4164 * is going to be sent to ensure that it matches the one passed to
4165 * bond_choose_output_slave(). (Otherwise, we will account to the wrong
4166 * hash bucket.)
4167 *
4168 * We use the actions from an arbitrary subfacet because they should all
4169 * be equally valid for our purpose. */
4170 subfacet = CONTAINER_OF(list_front(&facet->subfacets),
4171 struct subfacet, list_node);
4172 vlan_tci = facet->flow.vlan_tci;
4173 NL_ATTR_FOR_EACH_UNSAFE (a, left,
4174 subfacet->actions, subfacet->actions_len) {
4175 const struct ovs_action_push_vlan *vlan;
4176 struct ofport_dpif *port;
4177
4178 switch (nl_attr_type(a)) {
4179 case OVS_ACTION_ATTR_OUTPUT:
4180 port = get_odp_port(ofproto, nl_attr_get_u32(a));
4181 if (port && port->bundle && port->bundle->bond) {
4182 bond_account(port->bundle->bond, &facet->flow,
4183 vlan_tci_to_vid(vlan_tci), n_bytes);
4184 }
4185 break;
4186
4187 case OVS_ACTION_ATTR_POP_VLAN:
4188 vlan_tci = htons(0);
4189 break;
4190
4191 case OVS_ACTION_ATTR_PUSH_VLAN:
4192 vlan = nl_attr_get(a);
4193 vlan_tci = vlan->vlan_tci;
4194 break;
4195 }
4196 }
4197 }
4198
4199 /* Returns true if the only action for 'facet' is to send to the controller.
4200 * (We don't report NetFlow expiration messages for such facets because they
4201 * are just part of the control logic for the network, not real traffic). */
4202 static bool
4203 facet_is_controller_flow(struct facet *facet)
4204 {
4205 if (facet) {
4206 const struct rule *rule = &facet->rule->up;
4207 const struct ofpact *ofpacts = rule->ofpacts;
4208 size_t ofpacts_len = rule->ofpacts_len;
4209
4210 if (ofpacts_len > 0 &&
4211 ofpacts->type == OFPACT_CONTROLLER &&
4212 ofpact_next(ofpacts) >= ofpact_end(ofpacts, ofpacts_len)) {
4213 return true;
4214 }
4215 }
4216 return false;
4217 }
4218
4219 /* Folds all of 'facet''s statistics into its rule. Also updates the
4220 * accounting ofhook and emits a NetFlow expiration if appropriate. All of
4221 * 'facet''s statistics in the datapath should have been zeroed and folded into
4222 * its packet and byte counts before this function is called. */
4223 static void
4224 facet_flush_stats(struct facet *facet)
4225 {
4226 struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto);
4227 struct subfacet *subfacet;
4228
4229 LIST_FOR_EACH (subfacet, list_node, &facet->subfacets) {
4230 assert(!subfacet->dp_byte_count);
4231 assert(!subfacet->dp_packet_count);
4232 }
4233
4234 facet_push_stats(facet);
4235 if (facet->accounted_bytes < facet->byte_count) {
4236 facet_account(facet);
4237 facet->accounted_bytes = facet->byte_count;
4238 }
4239
4240 if (ofproto->netflow && !facet_is_controller_flow(facet)) {
4241 struct ofexpired expired;
4242 expired.flow = facet->flow;
4243 expired.packet_count = facet->packet_count;
4244 expired.byte_count = facet->byte_count;
4245 expired.used = facet->used;
4246 netflow_expire(ofproto->netflow, &facet->nf_flow, &expired);
4247 }
4248
4249 facet->rule->packet_count += facet->packet_count;
4250 facet->rule->byte_count += facet->byte_count;
4251
4252 /* Reset counters to prevent double counting if 'facet' ever gets
4253 * reinstalled. */
4254 facet_reset_counters(facet);
4255
4256 netflow_flow_clear(&facet->nf_flow);
4257 facet->tcp_flags = 0;
4258 }
4259
4260 /* Searches 'ofproto''s table of facets for one exactly equal to 'flow'.
4261 * Returns it if found, otherwise a null pointer.
4262 *
4263 * 'hash' must be the return value of flow_hash(flow, 0).
4264 *
4265 * The returned facet might need revalidation; use facet_lookup_valid()
4266 * instead if that is important. */
4267 static struct facet *
4268 facet_find(struct ofproto_dpif *ofproto,
4269 const struct flow *flow, uint32_t hash)
4270 {
4271 struct facet *facet;
4272
4273 HMAP_FOR_EACH_WITH_HASH (facet, hmap_node, hash, &ofproto->facets) {
4274 if (flow_equal(flow, &facet->flow)) {
4275 return facet;
4276 }
4277 }
4278
4279 return NULL;
4280 }
4281
4282 /* Searches 'ofproto''s table of facets for one exactly equal to 'flow'.
4283 * Returns it if found, otherwise a null pointer.
4284 *
4285 * 'hash' must be the return value of flow_hash(flow, 0).
4286 *
4287 * The returned facet is guaranteed to be valid. */
4288 static struct facet *
4289 facet_lookup_valid(struct ofproto_dpif *ofproto, const struct flow *flow,
4290 uint32_t hash)
4291 {
4292 struct facet *facet;
4293
4294 facet = facet_find(ofproto, flow, hash);
4295 if (facet
4296 && (ofproto->need_revalidate
4297 || tag_set_intersects(&ofproto->revalidate_set, facet->tags))) {
4298 facet_revalidate(facet);
4299 }
4300
4301 return facet;
4302 }
4303
4304 static const char *
4305 subfacet_path_to_string(enum subfacet_path path)
4306 {
4307 switch (path) {
4308 case SF_NOT_INSTALLED:
4309 return "not installed";
4310 case SF_FAST_PATH:
4311 return "in fast path";
4312 case SF_SLOW_PATH:
4313 return "in slow path";
4314 default:
4315 return "<error>";
4316 }
4317 }
4318
4319 /* Returns the path in which a subfacet should be installed if its 'slow'
4320 * member has the specified value. */
4321 static enum subfacet_path
4322 subfacet_want_path(enum slow_path_reason slow)
4323 {
4324 return slow ? SF_SLOW_PATH : SF_FAST_PATH;
4325 }
4326
4327 /* Returns true if 'subfacet' needs to have its datapath flow updated,
4328 * supposing that its actions have been recalculated as 'want_actions' and that
4329 * 'slow' is nonzero iff 'subfacet' should be in the slow path. */
4330 static bool
4331 subfacet_should_install(struct subfacet *subfacet, enum slow_path_reason slow,
4332 const struct ofpbuf *want_actions)
4333 {
4334 enum subfacet_path want_path = subfacet_want_path(slow);
4335 return (want_path != subfacet->path
4336 || (want_path == SF_FAST_PATH
4337 && (subfacet->actions_len != want_actions->size
4338 || memcmp(subfacet->actions, want_actions->data,
4339 subfacet->actions_len))));
4340 }
4341
4342 static bool
4343 facet_check_consistency(struct facet *facet)
4344 {
4345 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 15);
4346
4347 struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto);
4348
4349 uint64_t odp_actions_stub[1024 / 8];
4350 struct ofpbuf odp_actions;
4351
4352 struct rule_dpif *rule;
4353 struct subfacet *subfacet;
4354 bool may_log = false;
4355 bool ok;
4356
4357 /* Check the rule for consistency. */
4358 rule = rule_dpif_lookup(ofproto, &facet->flow);
4359 ok = rule == facet->rule;
4360 if (!ok) {
4361 may_log = !VLOG_DROP_WARN(&rl);
4362 if (may_log) {
4363 struct ds s;
4364
4365 ds_init(&s);
4366 flow_format(&s, &facet->flow);
4367 ds_put_format(&s, ": facet associated with wrong rule (was "
4368 "table=%"PRIu8",", facet->rule->up.table_id);
4369 cls_rule_format(&facet->rule->up.cr, &s);
4370 ds_put_format(&s, ") (should have been table=%"PRIu8",",
4371 rule->up.table_id);
4372 cls_rule_format(&rule->up.cr, &s);
4373 ds_put_char(&s, ')');
4374
4375 VLOG_WARN("%s", ds_cstr(&s));
4376 ds_destroy(&s);
4377 }
4378 }
4379
4380 /* Check the datapath actions for consistency. */
4381 ofpbuf_use_stub(&odp_actions, odp_actions_stub, sizeof odp_actions_stub);
4382 LIST_FOR_EACH (subfacet, list_node, &facet->subfacets) {
4383 enum subfacet_path want_path;
4384 struct odputil_keybuf keybuf;
4385 struct action_xlate_ctx ctx;
4386 struct ofpbuf key;
4387 struct ds s;
4388
4389 action_xlate_ctx_init(&ctx, ofproto, &facet->flow,
4390 subfacet->initial_tci, rule, 0, NULL);
4391 xlate_actions(&ctx, rule->up.ofpacts, rule->up.ofpacts_len,
4392 &odp_actions);
4393
4394 if (subfacet->path == SF_NOT_INSTALLED) {
4395 /* This only happens if the datapath reported an error when we
4396 * tried to install the flow. Don't flag another error here. */
4397 continue;
4398 }
4399
4400 want_path = subfacet_want_path(subfacet->slow);
4401 if (want_path == SF_SLOW_PATH && subfacet->path == SF_SLOW_PATH) {
4402 /* The actions for slow-path flows may legitimately vary from one
4403 * packet to the next. We're done. */
4404 continue;
4405 }
4406
4407 if (!subfacet_should_install(subfacet, subfacet->slow, &odp_actions)) {
4408 continue;
4409 }
4410
4411 /* Inconsistency! */
4412 if (ok) {
4413 may_log = !VLOG_DROP_WARN(&rl);
4414 ok = false;
4415 }
4416 if (!may_log) {
4417 /* Rate-limited, skip reporting. */
4418 continue;
4419 }
4420
4421 ds_init(&s);
4422 subfacet_get_key(subfacet, &keybuf, &key);
4423 odp_flow_key_format(key.data, key.size, &s);
4424
4425 ds_put_cstr(&s, ": inconsistency in subfacet");
4426 if (want_path != subfacet->path) {
4427 enum odp_key_fitness fitness = subfacet->key_fitness;
4428
4429 ds_put_format(&s, " (%s, fitness=%s)",
4430 subfacet_path_to_string(subfacet->path),
4431 odp_key_fitness_to_string(fitness));
4432 ds_put_format(&s, " (should have been %s)",
4433 subfacet_path_to_string(want_path));
4434 } else if (want_path == SF_FAST_PATH) {
4435 ds_put_cstr(&s, " (actions were: ");
4436 format_odp_actions(&s, subfacet->actions,
4437 subfacet->actions_len);
4438 ds_put_cstr(&s, ") (correct actions: ");
4439 format_odp_actions(&s, odp_actions.data, odp_actions.size);
4440 ds_put_char(&s, ')');
4441 } else {
4442 ds_put_cstr(&s, " (actions: ");
4443 format_odp_actions(&s, subfacet->actions,
4444 subfacet->actions_len);
4445 ds_put_char(&s, ')');
4446 }
4447 VLOG_WARN("%s", ds_cstr(&s));
4448 ds_destroy(&s);
4449 }
4450 ofpbuf_uninit(&odp_actions);
4451
4452 return ok;
4453 }
4454
4455 /* Re-searches the classifier for 'facet':
4456 *
4457 * - If the rule found is different from 'facet''s current rule, moves
4458 * 'facet' to the new rule and recompiles its actions.
4459 *
4460 * - If the rule found is the same as 'facet''s current rule, leaves 'facet'
4461 * where it is and recompiles its actions anyway. */
4462 static void
4463 facet_revalidate(struct facet *facet)
4464 {
4465 struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto);
4466 struct actions {
4467 struct nlattr *odp_actions;
4468 size_t actions_len;
4469 };
4470 struct actions *new_actions;
4471
4472 struct action_xlate_ctx ctx;
4473 uint64_t odp_actions_stub[1024 / 8];
4474 struct ofpbuf odp_actions;
4475
4476 struct rule_dpif *new_rule;
4477 struct subfacet *subfacet;
4478 int i;
4479
4480 COVERAGE_INC(facet_revalidate);
4481
4482 new_rule = rule_dpif_lookup(ofproto, &facet->flow);
4483
4484 /* Calculate new datapath actions.
4485 *
4486 * We do not modify any 'facet' state yet, because we might need to, e.g.,
4487 * emit a NetFlow expiration and, if so, we need to have the old state
4488 * around to properly compose it. */
4489
4490 /* If the datapath actions changed or the installability changed,
4491 * then we need to talk to the datapath. */
4492 i = 0;
4493 new_actions = NULL;
4494 memset(&ctx, 0, sizeof ctx);
4495 ofpbuf_use_stub(&odp_actions, odp_actions_stub, sizeof odp_actions_stub);
4496 LIST_FOR_EACH (subfacet, list_node, &facet->subfacets) {
4497 enum slow_path_reason slow;
4498
4499 action_xlate_ctx_init(&ctx, ofproto, &facet->flow,
4500 subfacet->initial_tci, new_rule, 0, NULL);
4501 xlate_actions(&ctx, new_rule->up.ofpacts, new_rule->up.ofpacts_len,
4502 &odp_actions);
4503
4504 slow = (subfacet->slow & SLOW_MATCH) | ctx.slow;
4505 if (subfacet_should_install(subfacet, slow, &odp_actions)) {
4506 struct dpif_flow_stats stats;
4507
4508 subfacet_install(subfacet,
4509 odp_actions.data, odp_actions.size, &stats, slow);
4510 subfacet_update_stats(subfacet, &stats);
4511
4512 if (!new_actions) {
4513 new_actions = xcalloc(list_size(&facet->subfacets),
4514 sizeof *new_actions);
4515 }
4516 new_actions[i].odp_actions = xmemdup(odp_actions.data,
4517 odp_actions.size);
4518 new_actions[i].actions_len = odp_actions.size;
4519 }
4520
4521 i++;
4522 }
4523 ofpbuf_uninit(&odp_actions);
4524
4525 if (new_actions) {
4526 facet_flush_stats(facet);
4527 }
4528
4529 /* Update 'facet' now that we've taken care of all the old state. */
4530 facet->tags = ctx.tags;
4531 facet->nf_flow.output_iface = ctx.nf_output_iface;
4532 facet->has_learn = ctx.has_learn;
4533 facet->has_normal = ctx.has_normal;
4534 facet->has_fin_timeout = ctx.has_fin_timeout;
4535 facet->mirrors = ctx.mirrors;
4536
4537 i = 0;
4538 LIST_FOR_EACH (subfacet, list_node, &facet->subfacets) {
4539 subfacet->slow = (subfacet->slow & SLOW_MATCH) | ctx.slow;
4540
4541 if (new_actions && new_actions[i].odp_actions) {
4542 free(subfacet->actions);
4543 subfacet->actions = new_actions[i].odp_actions;
4544 subfacet->actions_len = new_actions[i].actions_len;
4545 }
4546 i++;
4547 }
4548 free(new_actions);
4549
4550 if (facet->rule != new_rule) {
4551 COVERAGE_INC(facet_changed_rule);
4552 list_remove(&facet->list_node);
4553 list_push_back(&new_rule->facets, &facet->list_node);
4554 facet->rule = new_rule;
4555 facet->used = new_rule->up.created;
4556 facet->prev_used = facet->used;
4557 }
4558 }
4559
4560 /* Updates 'facet''s used time. Caller is responsible for calling
4561 * facet_push_stats() to update the flows which 'facet' resubmits into. */
4562 static void
4563 facet_update_time(struct facet *facet, long long int used)
4564 {
4565 struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto);
4566 if (used > facet->used) {
4567 facet->used = used;
4568 ofproto_rule_update_used(&facet->rule->up, used);
4569 netflow_flow_update_time(ofproto->netflow, &facet->nf_flow, used);
4570 }
4571 }
4572
4573 static void
4574 facet_reset_counters(struct facet *facet)
4575 {
4576 facet->packet_count = 0;
4577 facet->byte_count = 0;
4578 facet->prev_packet_count = 0;
4579 facet->prev_byte_count = 0;
4580 facet->accounted_bytes = 0;
4581 }
4582
4583 static void
4584 facet_push_stats(struct facet *facet)
4585 {
4586 struct dpif_flow_stats stats;
4587
4588 assert(facet->packet_count >= facet->prev_packet_count);
4589 assert(facet->byte_count >= facet->prev_byte_count);
4590 assert(facet->used >= facet->prev_used);
4591
4592 stats.n_packets = facet->packet_count - facet->prev_packet_count;
4593 stats.n_bytes = facet->byte_count - facet->prev_byte_count;
4594 stats.used = facet->used;
4595 stats.tcp_flags = 0;
4596
4597 if (stats.n_packets || stats.n_bytes || facet->used > facet->prev_used) {
4598 facet->prev_packet_count = facet->packet_count;
4599 facet->prev_byte_count = facet->byte_count;
4600 facet->prev_used = facet->used;
4601
4602 flow_push_stats(facet->rule, &facet->flow, &stats);
4603
4604 update_mirror_stats(ofproto_dpif_cast(facet->rule->up.ofproto),
4605 facet->mirrors, stats.n_packets, stats.n_bytes);
4606 }
4607 }
4608
4609 static void
4610 rule_credit_stats(struct rule_dpif *rule, const struct dpif_flow_stats *stats)
4611 {
4612 rule->packet_count += stats->n_packets;
4613 rule->byte_count += stats->n_bytes;
4614 ofproto_rule_update_used(&rule->up, stats->used);
4615 }
4616
4617 /* Pushes flow statistics to the rules which 'flow' resubmits into given
4618 * 'rule''s actions and mirrors. */
4619 static void
4620 flow_push_stats(struct rule_dpif *rule,
4621 const struct flow *flow, const struct dpif_flow_stats *stats)
4622 {
4623 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
4624 struct action_xlate_ctx ctx;
4625
4626 ofproto_rule_update_used(&rule->up, stats->used);
4627
4628 action_xlate_ctx_init(&ctx, ofproto, flow, flow->vlan_tci, rule,
4629 0, NULL);
4630 ctx.resubmit_stats = stats;
4631 xlate_actions_for_side_effects(&ctx, rule->up.ofpacts,
4632 rule->up.ofpacts_len);
4633 }
4634 \f
4635 /* Subfacets. */
4636
4637 static struct subfacet *
4638 subfacet_find(struct ofproto_dpif *ofproto,
4639 const struct nlattr *key, size_t key_len, uint32_t key_hash,
4640 const struct flow *flow)
4641 {
4642 struct subfacet *subfacet;
4643
4644 HMAP_FOR_EACH_WITH_HASH (subfacet, hmap_node, key_hash,
4645 &ofproto->subfacets) {
4646 if (subfacet->key
4647 ? (subfacet->key_len == key_len
4648 && !memcmp(key, subfacet->key, key_len))
4649 : flow_equal(flow, &subfacet->facet->flow)) {
4650 return subfacet;
4651 }
4652 }
4653
4654 return NULL;
4655 }
4656
4657 /* Searches 'facet' (within 'ofproto') for a subfacet with the specified
4658 * 'key_fitness', 'key', and 'key_len' members in 'miss'. Returns the
4659 * existing subfacet if there is one, otherwise creates and returns a
4660 * new subfacet.
4661 *
4662 * If the returned subfacet is new, then subfacet->actions will be NULL, in
4663 * which case the caller must populate the actions with
4664 * subfacet_make_actions(). */
4665 static struct subfacet *
4666 subfacet_create(struct facet *facet, struct flow_miss *miss,
4667 long long int now)
4668 {
4669 struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto);
4670 enum odp_key_fitness key_fitness = miss->key_fitness;
4671 const struct nlattr *key = miss->key;
4672 size_t key_len = miss->key_len;
4673 uint32_t key_hash;
4674 struct subfacet *subfacet;
4675
4676 key_hash = odp_flow_key_hash(key, key_len);
4677
4678 if (list_is_empty(&facet->subfacets)) {
4679 subfacet = &facet->one_subfacet;
4680 } else {
4681 subfacet = subfacet_find(ofproto, key, key_len, key_hash,
4682 &facet->flow);
4683 if (subfacet) {
4684 if (subfacet->facet == facet) {
4685 return subfacet;
4686 }
4687
4688 /* This shouldn't happen. */
4689 VLOG_ERR_RL(&rl, "subfacet with wrong facet");
4690 subfacet_destroy(subfacet);
4691 }
4692
4693 subfacet = xmalloc(sizeof *subfacet);
4694 }
4695
4696 hmap_insert(&ofproto->subfacets, &subfacet->hmap_node, key_hash);
4697 list_push_back(&facet->subfacets, &subfacet->list_node);
4698 subfacet->facet = facet;
4699 subfacet->key_fitness = key_fitness;
4700 if (key_fitness != ODP_FIT_PERFECT) {
4701 subfacet->key = xmemdup(key, key_len);
4702 subfacet->key_len = key_len;
4703 } else {
4704 subfacet->key = NULL;
4705 subfacet->key_len = 0;
4706 }
4707 subfacet->used = now;
4708 subfacet->dp_packet_count = 0;
4709 subfacet->dp_byte_count = 0;
4710 subfacet->actions_len = 0;
4711 subfacet->actions = NULL;
4712 subfacet->slow = (subfacet->key_fitness == ODP_FIT_TOO_LITTLE
4713 ? SLOW_MATCH
4714 : 0);
4715 subfacet->path = SF_NOT_INSTALLED;
4716 subfacet->initial_tci = miss->initial_tci;
4717 subfacet->odp_in_port = miss->odp_in_port;
4718
4719 return subfacet;
4720 }
4721
4722 /* Uninstalls 'subfacet' from the datapath, if it is installed, removes it from
4723 * its facet within 'ofproto', and frees it. */
4724 static void
4725 subfacet_destroy__(struct subfacet *subfacet)
4726 {
4727 struct facet *facet = subfacet->facet;
4728 struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto);
4729
4730 subfacet_uninstall(subfacet);
4731 hmap_remove(&ofproto->subfacets, &subfacet->hmap_node);
4732 list_remove(&subfacet->list_node);
4733 free(subfacet->key);
4734 free(subfacet->actions);
4735 if (subfacet != &facet->one_subfacet) {
4736 free(subfacet);
4737 }
4738 }
4739
4740 /* Destroys 'subfacet', as with subfacet_destroy__(), and then if this was the
4741 * last remaining subfacet in its facet destroys the facet too. */
4742 static void
4743 subfacet_destroy(struct subfacet *subfacet)
4744 {
4745 struct facet *facet = subfacet->facet;
4746
4747 if (list_is_singleton(&facet->subfacets)) {
4748 /* facet_remove() needs at least one subfacet (it will remove it). */
4749 facet_remove(facet);
4750 } else {
4751 subfacet_destroy__(subfacet);
4752 }
4753 }
4754
4755 static void
4756 subfacet_destroy_batch(struct ofproto_dpif *ofproto,
4757 struct subfacet **subfacets, int n)
4758 {
4759 struct odputil_keybuf keybufs[SUBFACET_DESTROY_MAX_BATCH];
4760 struct dpif_op ops[SUBFACET_DESTROY_MAX_BATCH];
4761 struct dpif_op *opsp[SUBFACET_DESTROY_MAX_BATCH];
4762 struct ofpbuf keys[SUBFACET_DESTROY_MAX_BATCH];
4763 struct dpif_flow_stats stats[SUBFACET_DESTROY_MAX_BATCH];
4764 int i;
4765
4766 for (i = 0; i < n; i++) {
4767 ops[i].type = DPIF_OP_FLOW_DEL;
4768 subfacet_get_key(subfacets[i], &keybufs[i], &keys[i]);
4769 ops[i].u.flow_del.key = keys[i].data;
4770 ops[i].u.flow_del.key_len = keys[i].size;
4771 ops[i].u.flow_del.stats = &stats[i];
4772 opsp[i] = &ops[i];
4773 }
4774
4775 dpif_operate(ofproto->backer->dpif, opsp, n);
4776 for (i = 0; i < n; i++) {
4777 subfacet_reset_dp_stats(subfacets[i], &stats[i]);
4778 subfacets[i]->path = SF_NOT_INSTALLED;
4779 subfacet_destroy(subfacets[i]);
4780 }
4781 }
4782
4783 /* Initializes 'key' with the sequence of OVS_KEY_ATTR_* Netlink attributes
4784 * that can be used to refer to 'subfacet'. The caller must provide 'keybuf'
4785 * for use as temporary storage. */
4786 static void
4787 subfacet_get_key(struct subfacet *subfacet, struct odputil_keybuf *keybuf,
4788 struct ofpbuf *key)
4789 {
4790
4791 if (!subfacet->key) {
4792 struct flow *flow = &subfacet->facet->flow;
4793
4794 ofpbuf_use_stack(key, keybuf, sizeof *keybuf);
4795 odp_flow_key_from_flow(key, flow, subfacet->odp_in_port);
4796 } else {
4797 ofpbuf_use_const(key, subfacet->key, subfacet->key_len);
4798 }
4799 }
4800
4801 /* Composes the datapath actions for 'subfacet' based on its rule's actions.
4802 * Translates the actions into 'odp_actions', which the caller must have
4803 * initialized and is responsible for uninitializing. */
4804 static void
4805 subfacet_make_actions(struct subfacet *subfacet, const struct ofpbuf *packet,
4806 struct ofpbuf *odp_actions)
4807 {
4808 struct facet *facet = subfacet->facet;
4809 struct rule_dpif *rule = facet->rule;
4810 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
4811
4812 struct action_xlate_ctx ctx;
4813
4814 action_xlate_ctx_init(&ctx, ofproto, &facet->flow, subfacet->initial_tci,
4815 rule, 0, packet);
4816 xlate_actions(&ctx, rule->up.ofpacts, rule->up.ofpacts_len, odp_actions);
4817 facet->tags = ctx.tags;
4818 facet->has_learn = ctx.has_learn;
4819 facet->has_normal = ctx.has_normal;
4820 facet->has_fin_timeout = ctx.has_fin_timeout;
4821 facet->nf_flow.output_iface = ctx.nf_output_iface;
4822 facet->mirrors = ctx.mirrors;
4823
4824 subfacet->slow = (subfacet->slow & SLOW_MATCH) | ctx.slow;
4825 if (subfacet->actions_len != odp_actions->size
4826 || memcmp(subfacet->actions, odp_actions->data, odp_actions->size)) {
4827 free(subfacet->actions);
4828 subfacet->actions_len = odp_actions->size;
4829 subfacet->actions = xmemdup(odp_actions->data, odp_actions->size);
4830 }
4831 }
4832
4833 /* Updates 'subfacet''s datapath flow, setting its actions to 'actions_len'
4834 * bytes of actions in 'actions'. If 'stats' is non-null, statistics counters
4835 * in the datapath will be zeroed and 'stats' will be updated with traffic new
4836 * since 'subfacet' was last updated.
4837 *
4838 * Returns 0 if successful, otherwise a positive errno value. */
4839 static int
4840 subfacet_install(struct subfacet *subfacet,
4841 const struct nlattr *actions, size_t actions_len,
4842 struct dpif_flow_stats *stats,
4843 enum slow_path_reason slow)
4844 {
4845 struct facet *facet = subfacet->facet;
4846 struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto);
4847 enum subfacet_path path = subfacet_want_path(slow);
4848 uint64_t slow_path_stub[128 / 8];
4849 struct odputil_keybuf keybuf;
4850 enum dpif_flow_put_flags flags;
4851 struct ofpbuf key;
4852 int ret;
4853
4854 flags = DPIF_FP_CREATE | DPIF_FP_MODIFY;
4855 if (stats) {
4856 flags |= DPIF_FP_ZERO_STATS;
4857 }
4858
4859 if (path == SF_SLOW_PATH) {
4860 compose_slow_path(ofproto, &facet->flow, slow,
4861 slow_path_stub, sizeof slow_path_stub,
4862 &actions, &actions_len);
4863 }
4864
4865 subfacet_get_key(subfacet, &keybuf, &key);
4866 ret = dpif_flow_put(ofproto->backer->dpif, flags, key.data, key.size,
4867 actions, actions_len, stats);
4868
4869 if (stats) {
4870 subfacet_reset_dp_stats(subfacet, stats);
4871 }
4872
4873 if (!ret) {
4874 subfacet->path = path;
4875 }
4876 return ret;
4877 }
4878
4879 static int
4880 subfacet_reinstall(struct subfacet *subfacet, struct dpif_flow_stats *stats)
4881 {
4882 return subfacet_install(subfacet, subfacet->actions, subfacet->actions_len,
4883 stats, subfacet->slow);
4884 }
4885
4886 /* If 'subfacet' is installed in the datapath, uninstalls it. */
4887 static void
4888 subfacet_uninstall(struct subfacet *subfacet)
4889 {
4890 if (subfacet->path != SF_NOT_INSTALLED) {
4891 struct rule_dpif *rule = subfacet->facet->rule;
4892 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
4893 struct odputil_keybuf keybuf;
4894 struct dpif_flow_stats stats;
4895 struct ofpbuf key;
4896 int error;
4897
4898 subfacet_get_key(subfacet, &keybuf, &key);
4899 error = dpif_flow_del(ofproto->backer->dpif,
4900 key.data, key.size, &stats);
4901 subfacet_reset_dp_stats(subfacet, &stats);
4902 if (!error) {
4903 subfacet_update_stats(subfacet, &stats);
4904 }
4905 subfacet->path = SF_NOT_INSTALLED;
4906 } else {
4907 assert(subfacet->dp_packet_count == 0);
4908 assert(subfacet->dp_byte_count == 0);
4909 }
4910 }
4911
4912 /* Resets 'subfacet''s datapath statistics counters. This should be called
4913 * when 'subfacet''s statistics are cleared in the datapath. If 'stats' is
4914 * non-null, it should contain the statistics returned by dpif when 'subfacet'
4915 * was reset in the datapath. 'stats' will be modified to include only
4916 * statistics new since 'subfacet' was last updated. */
4917 static void
4918 subfacet_reset_dp_stats(struct subfacet *subfacet,
4919 struct dpif_flow_stats *stats)
4920 {
4921 if (stats
4922 && subfacet->dp_packet_count <= stats->n_packets
4923 && subfacet->dp_byte_count <= stats->n_bytes) {
4924 stats->n_packets -= subfacet->dp_packet_count;
4925 stats->n_bytes -= subfacet->dp_byte_count;
4926 }
4927
4928 subfacet->dp_packet_count = 0;
4929 subfacet->dp_byte_count = 0;
4930 }
4931
4932 /* Updates 'subfacet''s used time. The caller is responsible for calling
4933 * facet_push_stats() to update the flows which 'subfacet' resubmits into. */
4934 static void
4935 subfacet_update_time(struct subfacet *subfacet, long long int used)
4936 {
4937 if (used > subfacet->used) {
4938 subfacet->used = used;
4939 facet_update_time(subfacet->facet, used);
4940 }
4941 }
4942
4943 /* Folds the statistics from 'stats' into the counters in 'subfacet'.
4944 *
4945 * Because of the meaning of a subfacet's counters, it only makes sense to do
4946 * this if 'stats' are not tracked in the datapath, that is, if 'stats'
4947 * represents a packet that was sent by hand or if it represents statistics
4948 * that have been cleared out of the datapath. */
4949 static void
4950 subfacet_update_stats(struct subfacet *subfacet,
4951 const struct dpif_flow_stats *stats)
4952 {
4953 if (stats->n_packets || stats->used > subfacet->used) {
4954 struct facet *facet = subfacet->facet;
4955
4956 subfacet_update_time(subfacet, stats->used);
4957 facet->packet_count += stats->n_packets;
4958 facet->byte_count += stats->n_bytes;
4959 facet->tcp_flags |= stats->tcp_flags;
4960 facet_push_stats(facet);
4961 netflow_flow_update_flags(&facet->nf_flow, stats->tcp_flags);
4962 }
4963 }
4964 \f
4965 /* Rules. */
4966
4967 static struct rule_dpif *
4968 rule_dpif_lookup(struct ofproto_dpif *ofproto, const struct flow *flow)
4969 {
4970 struct rule_dpif *rule;
4971
4972 rule = rule_dpif_lookup__(ofproto, flow, 0);
4973 if (rule) {
4974 return rule;
4975 }
4976
4977 return rule_dpif_miss_rule(ofproto, flow);
4978 }
4979
4980 static struct rule_dpif *
4981 rule_dpif_lookup__(struct ofproto_dpif *ofproto, const struct flow *flow,
4982 uint8_t table_id)
4983 {
4984 struct cls_rule *cls_rule;
4985 struct classifier *cls;
4986
4987 if (table_id >= N_TABLES) {
4988 return NULL;
4989 }
4990
4991 cls = &ofproto->up.tables[table_id].cls;
4992 if (flow->nw_frag & FLOW_NW_FRAG_ANY
4993 && ofproto->up.frag_handling == OFPC_FRAG_NORMAL) {
4994 /* For OFPC_NORMAL frag_handling, we must pretend that transport ports
4995 * are unavailable. */
4996 struct flow ofpc_normal_flow = *flow;
4997 ofpc_normal_flow.tp_src = htons(0);
4998 ofpc_normal_flow.tp_dst = htons(0);
4999 cls_rule = classifier_lookup(cls, &ofpc_normal_flow);
5000 } else {
5001 cls_rule = classifier_lookup(cls, flow);
5002 }
5003 return rule_dpif_cast(rule_from_cls_rule(cls_rule));
5004 }
5005
5006 static struct rule_dpif *
5007 rule_dpif_miss_rule(struct ofproto_dpif *ofproto, const struct flow *flow)
5008 {
5009 struct ofport_dpif *port;
5010
5011 port = get_ofp_port(ofproto, flow->in_port);
5012 if (!port) {
5013 VLOG_WARN_RL(&rl, "packet-in on unknown port %"PRIu16, flow->in_port);
5014 return ofproto->miss_rule;
5015 }
5016
5017 if (port->up.pp.config & OFPUTIL_PC_NO_PACKET_IN) {
5018 return ofproto->no_packet_in_rule;
5019 }
5020 return ofproto->miss_rule;
5021 }
5022
5023 static void
5024 complete_operation(struct rule_dpif *rule)
5025 {
5026 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
5027
5028 rule_invalidate(rule);
5029 if (clogged) {
5030 struct dpif_completion *c = xmalloc(sizeof *c);
5031 c->op = rule->up.pending;
5032 list_push_back(&ofproto->completions, &c->list_node);
5033 } else {
5034 ofoperation_complete(rule->up.pending, 0);
5035 }
5036 }
5037
5038 static struct rule *
5039 rule_alloc(void)
5040 {
5041 struct rule_dpif *rule = xmalloc(sizeof *rule);
5042 return &rule->up;
5043 }
5044
5045 static void
5046 rule_dealloc(struct rule *rule_)
5047 {
5048 struct rule_dpif *rule = rule_dpif_cast(rule_);
5049 free(rule);
5050 }
5051
5052 static enum ofperr
5053 rule_construct(struct rule *rule_)
5054 {
5055 struct rule_dpif *rule = rule_dpif_cast(rule_);
5056 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
5057 struct rule_dpif *victim;
5058 uint8_t table_id;
5059
5060 rule->packet_count = 0;
5061 rule->byte_count = 0;
5062
5063 victim = rule_dpif_cast(ofoperation_get_victim(rule->up.pending));
5064 if (victim && !list_is_empty(&victim->facets)) {
5065 struct facet *facet;
5066
5067 rule->facets = victim->facets;
5068 list_moved(&rule->facets);
5069 LIST_FOR_EACH (facet, list_node, &rule->facets) {
5070 /* XXX: We're only clearing our local counters here. It's possible
5071 * that quite a few packets are unaccounted for in the datapath
5072 * statistics. These will be accounted to the new rule instead of
5073 * cleared as required. This could be fixed by clearing out the
5074 * datapath statistics for this facet, but currently it doesn't
5075 * seem worth it. */
5076 facet_reset_counters(facet);
5077 facet->rule = rule;
5078 }
5079 } else {
5080 /* Must avoid list_moved() in this case. */
5081 list_init(&rule->facets);
5082 }
5083
5084 table_id = rule->up.table_id;
5085 if (victim) {
5086 rule->tag = victim->tag;
5087 } else if (table_id == 0) {
5088 rule->tag = 0;
5089 } else {
5090 struct flow flow;
5091
5092 miniflow_expand(&rule->up.cr.match.flow, &flow);
5093 rule->tag = rule_calculate_tag(&flow, &rule->up.cr.match.mask,
5094 ofproto->tables[table_id].basis);
5095 }
5096
5097 complete_operation(rule);
5098 return 0;
5099 }
5100
5101 static void
5102 rule_destruct(struct rule *rule_)
5103 {
5104 struct rule_dpif *rule = rule_dpif_cast(rule_);
5105 struct facet *facet, *next_facet;
5106
5107 LIST_FOR_EACH_SAFE (facet, next_facet, list_node, &rule->facets) {
5108 facet_revalidate(facet);
5109 }
5110
5111 complete_operation(rule);
5112 }
5113
5114 static void
5115 rule_get_stats(struct rule *rule_, uint64_t *packets, uint64_t *bytes)
5116 {
5117 struct rule_dpif *rule = rule_dpif_cast(rule_);
5118 struct facet *facet;
5119
5120 /* Start from historical data for 'rule' itself that are no longer tracked
5121 * in facets. This counts, for example, facets that have expired. */
5122 *packets = rule->packet_count;
5123 *bytes = rule->byte_count;
5124
5125 /* Add any statistics that are tracked by facets. This includes
5126 * statistical data recently updated by ofproto_update_stats() as well as
5127 * stats for packets that were executed "by hand" via dpif_execute(). */
5128 LIST_FOR_EACH (facet, list_node, &rule->facets) {
5129 *packets += facet->packet_count;
5130 *bytes += facet->byte_count;
5131 }
5132 }
5133
5134 static enum ofperr
5135 rule_execute(struct rule *rule_, const struct flow *flow,
5136 struct ofpbuf *packet)
5137 {
5138 struct rule_dpif *rule = rule_dpif_cast(rule_);
5139 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
5140
5141 struct dpif_flow_stats stats;
5142
5143 struct action_xlate_ctx ctx;
5144 uint64_t odp_actions_stub[1024 / 8];
5145 struct ofpbuf odp_actions;
5146
5147 dpif_flow_stats_extract(flow, packet, time_msec(), &stats);
5148 rule_credit_stats(rule, &stats);
5149
5150 ofpbuf_use_stub(&odp_actions, odp_actions_stub, sizeof odp_actions_stub);
5151 action_xlate_ctx_init(&ctx, ofproto, flow, flow->vlan_tci,
5152 rule, stats.tcp_flags, packet);
5153 ctx.resubmit_stats = &stats;
5154 xlate_actions(&ctx, rule->up.ofpacts, rule->up.ofpacts_len, &odp_actions);
5155
5156 execute_odp_actions(ofproto, flow, odp_actions.data,
5157 odp_actions.size, packet);
5158
5159 ofpbuf_uninit(&odp_actions);
5160
5161 return 0;
5162 }
5163
5164 static void
5165 rule_modify_actions(struct rule *rule_)
5166 {
5167 struct rule_dpif *rule = rule_dpif_cast(rule_);
5168
5169 complete_operation(rule);
5170 }
5171 \f
5172 /* Sends 'packet' out 'ofport'.
5173 * May modify 'packet'.
5174 * Returns 0 if successful, otherwise a positive errno value. */
5175 static int
5176 send_packet(const struct ofport_dpif *ofport, struct ofpbuf *packet)
5177 {
5178 const struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
5179 struct ofpbuf key, odp_actions;
5180 struct odputil_keybuf keybuf;
5181 uint32_t odp_port;
5182 struct flow flow;
5183 int error;
5184
5185 flow_extract(packet, 0, 0, NULL, OFPP_LOCAL, &flow);
5186 odp_port = vsp_realdev_to_vlandev(ofproto, ofport->odp_port,
5187 flow.vlan_tci);
5188 if (odp_port != ofport->odp_port) {
5189 eth_pop_vlan(packet);
5190 flow.vlan_tci = htons(0);
5191 }
5192
5193 ofpbuf_use_stack(&key, &keybuf, sizeof keybuf);
5194 odp_flow_key_from_flow(&key, &flow,
5195 ofp_port_to_odp_port(ofproto, flow.in_port));
5196
5197 ofpbuf_init(&odp_actions, 32);
5198 compose_sflow_action(ofproto, &odp_actions, &flow, odp_port);
5199
5200 nl_msg_put_u32(&odp_actions, OVS_ACTION_ATTR_OUTPUT, odp_port);
5201 error = dpif_execute(ofproto->backer->dpif,
5202 key.data, key.size,
5203 odp_actions.data, odp_actions.size,
5204 packet);
5205 ofpbuf_uninit(&odp_actions);
5206
5207 if (error) {
5208 VLOG_WARN_RL(&rl, "%s: failed to send packet on port %"PRIu32" (%s)",
5209 ofproto->up.name, odp_port, strerror(error));
5210 }
5211 ofproto_update_local_port_stats(ofport->up.ofproto, packet->size, 0);
5212 return error;
5213 }
5214 \f
5215 /* OpenFlow to datapath action translation. */
5216
5217 static void do_xlate_actions(const struct ofpact *, size_t ofpacts_len,
5218 struct action_xlate_ctx *);
5219 static void xlate_normal(struct action_xlate_ctx *);
5220
5221 /* Composes an ODP action for a "slow path" action for 'flow' within 'ofproto'.
5222 * The action will state 'slow' as the reason that the action is in the slow
5223 * path. (This is purely informational: it allows a human viewing "ovs-dpctl
5224 * dump-flows" output to see why a flow is in the slow path.)
5225 *
5226 * The 'stub_size' bytes in 'stub' will be used to store the action.
5227 * 'stub_size' must be large enough for the action.
5228 *
5229 * The action and its size will be stored in '*actionsp' and '*actions_lenp',
5230 * respectively. */
5231 static void
5232 compose_slow_path(const struct ofproto_dpif *ofproto, const struct flow *flow,
5233 enum slow_path_reason slow,
5234 uint64_t *stub, size_t stub_size,
5235 const struct nlattr **actionsp, size_t *actions_lenp)
5236 {
5237 union user_action_cookie cookie;
5238 struct ofpbuf buf;
5239
5240 cookie.type = USER_ACTION_COOKIE_SLOW_PATH;
5241 cookie.slow_path.unused = 0;
5242 cookie.slow_path.reason = slow;
5243
5244 ofpbuf_use_stack(&buf, stub, stub_size);
5245 if (slow & (SLOW_CFM | SLOW_LACP | SLOW_STP)) {
5246 uint32_t pid = dpif_port_get_pid(ofproto->backer->dpif, UINT16_MAX);
5247 odp_put_userspace_action(pid, &cookie, &buf);
5248 } else {
5249 put_userspace_action(ofproto, &buf, flow, &cookie);
5250 }
5251 *actionsp = buf.data;
5252 *actions_lenp = buf.size;
5253 }
5254
5255 static size_t
5256 put_userspace_action(const struct ofproto_dpif *ofproto,
5257 struct ofpbuf *odp_actions,
5258 const struct flow *flow,
5259 const union user_action_cookie *cookie)
5260 {
5261 uint32_t pid;
5262
5263 pid = dpif_port_get_pid(ofproto->backer->dpif,
5264 ofp_port_to_odp_port(ofproto, flow->in_port));
5265
5266 return odp_put_userspace_action(pid, cookie, odp_actions);
5267 }
5268
5269 static void
5270 compose_sflow_cookie(const struct ofproto_dpif *ofproto,
5271 ovs_be16 vlan_tci, uint32_t odp_port,
5272 unsigned int n_outputs, union user_action_cookie *cookie)
5273 {
5274 int ifindex;
5275
5276 cookie->type = USER_ACTION_COOKIE_SFLOW;
5277 cookie->sflow.vlan_tci = vlan_tci;
5278
5279 /* See http://www.sflow.org/sflow_version_5.txt (search for "Input/output
5280 * port information") for the interpretation of cookie->output. */
5281 switch (n_outputs) {
5282 case 0:
5283 /* 0x40000000 | 256 means "packet dropped for unknown reason". */
5284 cookie->sflow.output = 0x40000000 | 256;
5285 break;
5286
5287 case 1:
5288 ifindex = dpif_sflow_odp_port_to_ifindex(ofproto->sflow, odp_port);
5289 if (ifindex) {
5290 cookie->sflow.output = ifindex;
5291 break;
5292 }
5293 /* Fall through. */
5294 default:
5295 /* 0x80000000 means "multiple output ports. */
5296 cookie->sflow.output = 0x80000000 | n_outputs;
5297 break;
5298 }
5299 }
5300
5301 /* Compose SAMPLE action for sFlow. */
5302 static size_t
5303 compose_sflow_action(const struct ofproto_dpif *ofproto,
5304 struct ofpbuf *odp_actions,
5305 const struct flow *flow,
5306 uint32_t odp_port)
5307 {
5308 uint32_t probability;
5309 union user_action_cookie cookie;
5310 size_t sample_offset, actions_offset;
5311 int cookie_offset;
5312
5313 if (!ofproto->sflow || flow->in_port == OFPP_NONE) {
5314 return 0;
5315 }
5316
5317 sample_offset = nl_msg_start_nested(odp_actions, OVS_ACTION_ATTR_SAMPLE);
5318
5319 /* Number of packets out of UINT_MAX to sample. */
5320 probability = dpif_sflow_get_probability(ofproto->sflow);
5321 nl_msg_put_u32(odp_actions, OVS_SAMPLE_ATTR_PROBABILITY, probability);
5322
5323 actions_offset = nl_msg_start_nested(odp_actions, OVS_SAMPLE_ATTR_ACTIONS);
5324 compose_sflow_cookie(ofproto, htons(0), odp_port,
5325 odp_port == OVSP_NONE ? 0 : 1, &cookie);
5326 cookie_offset = put_userspace_action(ofproto, odp_actions, flow, &cookie);
5327
5328 nl_msg_end_nested(odp_actions, actions_offset);
5329 nl_msg_end_nested(odp_actions, sample_offset);
5330 return cookie_offset;
5331 }
5332
5333 /* SAMPLE action must be first action in any given list of actions.
5334 * At this point we do not have all information required to build it. So try to
5335 * build sample action as complete as possible. */
5336 static void
5337 add_sflow_action(struct action_xlate_ctx *ctx)
5338 {
5339 ctx->user_cookie_offset = compose_sflow_action(ctx->ofproto,
5340 ctx->odp_actions,
5341 &ctx->flow, OVSP_NONE);
5342 ctx->sflow_odp_port = 0;
5343 ctx->sflow_n_outputs = 0;
5344 }
5345
5346 /* Fix SAMPLE action according to data collected while composing ODP actions.
5347 * We need to fix SAMPLE actions OVS_SAMPLE_ATTR_ACTIONS attribute, i.e. nested
5348 * USERSPACE action's user-cookie which is required for sflow. */
5349 static void
5350 fix_sflow_action(struct action_xlate_ctx *ctx)
5351 {
5352 const struct flow *base = &ctx->base_flow;
5353 union user_action_cookie *cookie;
5354
5355 if (!ctx->user_cookie_offset) {
5356 return;
5357 }
5358
5359 cookie = ofpbuf_at(ctx->odp_actions, ctx->user_cookie_offset,
5360 sizeof(*cookie));
5361 assert(cookie->type == USER_ACTION_COOKIE_SFLOW);
5362
5363 compose_sflow_cookie(ctx->ofproto, base->vlan_tci,
5364 ctx->sflow_odp_port, ctx->sflow_n_outputs, cookie);
5365 }
5366
5367 static void
5368 compose_output_action__(struct action_xlate_ctx *ctx, uint16_t ofp_port,
5369 bool check_stp)
5370 {
5371 const struct ofport_dpif *ofport = get_ofp_port(ctx->ofproto, ofp_port);
5372 uint32_t odp_port = ofp_port_to_odp_port(ctx->ofproto, ofp_port);
5373 ovs_be16 flow_vlan_tci = ctx->flow.vlan_tci;
5374 uint8_t flow_nw_tos = ctx->flow.nw_tos;
5375 uint16_t out_port;
5376
5377 if (ofport) {
5378 struct priority_to_dscp *pdscp;
5379
5380 if (ofport->up.pp.config & OFPUTIL_PC_NO_FWD) {
5381 xlate_report(ctx, "OFPPC_NO_FWD set, skipping output");
5382 return;
5383 } else if (check_stp && !stp_forward_in_state(ofport->stp_state)) {
5384 xlate_report(ctx, "STP not in forwarding state, skipping output");
5385 return;
5386 }
5387
5388 pdscp = get_priority(ofport, ctx->flow.skb_priority);
5389 if (pdscp) {
5390 ctx->flow.nw_tos &= ~IP_DSCP_MASK;
5391 ctx->flow.nw_tos |= pdscp->dscp;
5392 }
5393 } else {
5394 /* We may not have an ofport record for this port, but it doesn't hurt
5395 * to allow forwarding to it anyhow. Maybe such a port will appear
5396 * later and we're pre-populating the flow table. */
5397 }
5398
5399 out_port = vsp_realdev_to_vlandev(ctx->ofproto, odp_port,
5400 ctx->flow.vlan_tci);
5401 if (out_port != odp_port) {
5402 ctx->flow.vlan_tci = htons(0);
5403 }
5404 commit_odp_actions(&ctx->flow, &ctx->base_flow, ctx->odp_actions);
5405 nl_msg_put_u32(ctx->odp_actions, OVS_ACTION_ATTR_OUTPUT, out_port);
5406
5407 ctx->sflow_odp_port = odp_port;
5408 ctx->sflow_n_outputs++;
5409 ctx->nf_output_iface = ofp_port;
5410 ctx->flow.vlan_tci = flow_vlan_tci;
5411 ctx->flow.nw_tos = flow_nw_tos;
5412 }
5413
5414 static void
5415 compose_output_action(struct action_xlate_ctx *ctx, uint16_t ofp_port)
5416 {
5417 compose_output_action__(ctx, ofp_port, true);
5418 }
5419
5420 static void
5421 xlate_table_action(struct action_xlate_ctx *ctx,
5422 uint16_t in_port, uint8_t table_id, bool may_packet_in)
5423 {
5424 if (ctx->recurse < MAX_RESUBMIT_RECURSION) {
5425 struct ofproto_dpif *ofproto = ctx->ofproto;
5426 struct rule_dpif *rule;
5427 uint16_t old_in_port;
5428 uint8_t old_table_id;
5429
5430 old_table_id = ctx->table_id;
5431 ctx->table_id = table_id;
5432
5433 /* Look up a flow with 'in_port' as the input port. */
5434 old_in_port = ctx->flow.in_port;
5435 ctx->flow.in_port = in_port;
5436 rule = rule_dpif_lookup__(ofproto, &ctx->flow, table_id);
5437
5438 /* Tag the flow. */
5439 if (table_id > 0 && table_id < N_TABLES) {
5440 struct table_dpif *table = &ofproto->tables[table_id];
5441 if (table->other_table) {
5442 ctx->tags |= (rule && rule->tag
5443 ? rule->tag
5444 : rule_calculate_tag(&ctx->flow,
5445 &table->other_table->mask,
5446 table->basis));
5447 }
5448 }
5449
5450 /* Restore the original input port. Otherwise OFPP_NORMAL and
5451 * OFPP_IN_PORT will have surprising behavior. */
5452 ctx->flow.in_port = old_in_port;
5453
5454 if (ctx->resubmit_hook) {
5455 ctx->resubmit_hook(ctx, rule);
5456 }
5457
5458 if (rule == NULL && may_packet_in) {
5459 /* TODO:XXX
5460 * check if table configuration flags
5461 * OFPTC_TABLE_MISS_CONTROLLER, default.
5462 * OFPTC_TABLE_MISS_CONTINUE,
5463 * OFPTC_TABLE_MISS_DROP
5464 * When OF1.0, OFPTC_TABLE_MISS_CONTINUE is used. What to do?
5465 */
5466 rule = rule_dpif_miss_rule(ofproto, &ctx->flow);
5467 }
5468
5469 if (rule) {
5470 struct rule_dpif *old_rule = ctx->rule;
5471
5472 if (ctx->resubmit_stats) {
5473 rule_credit_stats(rule, ctx->resubmit_stats);
5474 }
5475
5476 ctx->recurse++;
5477 ctx->rule = rule;
5478 do_xlate_actions(rule->up.ofpacts, rule->up.ofpacts_len, ctx);
5479 ctx->rule = old_rule;
5480 ctx->recurse--;
5481 }
5482
5483 ctx->table_id = old_table_id;
5484 } else {
5485 static struct vlog_rate_limit recurse_rl = VLOG_RATE_LIMIT_INIT(1, 1);
5486
5487 VLOG_ERR_RL(&recurse_rl, "resubmit actions recursed over %d times",
5488 MAX_RESUBMIT_RECURSION);
5489 ctx->max_resubmit_trigger = true;
5490 }
5491 }
5492
5493 static void
5494 xlate_ofpact_resubmit(struct action_xlate_ctx *ctx,
5495 const struct ofpact_resubmit *resubmit)
5496 {
5497 uint16_t in_port;
5498 uint8_t table_id;
5499
5500 in_port = resubmit->in_port;
5501 if (in_port == OFPP_IN_PORT) {
5502 in_port = ctx->flow.in_port;
5503 }
5504
5505 table_id = resubmit->table_id;
5506 if (table_id == 255) {
5507 table_id = ctx->table_id;
5508 }
5509
5510 xlate_table_action(ctx, in_port, table_id, false);
5511 }
5512
5513 static void
5514 flood_packets(struct action_xlate_ctx *ctx, bool all)
5515 {
5516 struct ofport_dpif *ofport;
5517
5518 HMAP_FOR_EACH (ofport, up.hmap_node, &ctx->ofproto->up.ports) {
5519 uint16_t ofp_port = ofport->up.ofp_port;
5520
5521 if (ofp_port == ctx->flow.in_port) {
5522 continue;
5523 }
5524
5525 if (all) {
5526 compose_output_action__(ctx, ofp_port, false);
5527 } else if (!(ofport->up.pp.config & OFPUTIL_PC_NO_FLOOD)) {
5528 compose_output_action(ctx, ofp_port);
5529 }
5530 }
5531
5532 ctx->nf_output_iface = NF_OUT_FLOOD;
5533 }
5534
5535 static void
5536 execute_controller_action(struct action_xlate_ctx *ctx, int len,
5537 enum ofp_packet_in_reason reason,
5538 uint16_t controller_id)
5539 {
5540 struct ofputil_packet_in pin;
5541 struct ofpbuf *packet;
5542
5543 ctx->slow |= SLOW_CONTROLLER;
5544 if (!ctx->packet) {
5545 return;
5546 }
5547
5548 packet = ofpbuf_clone(ctx->packet);
5549
5550 if (packet->l2 && packet->l3) {
5551 struct eth_header *eh;
5552
5553 eth_pop_vlan(packet);
5554 eh = packet->l2;
5555
5556 /* If the Ethernet type is less than ETH_TYPE_MIN, it's likely an 802.2
5557 * LLC frame. Calculating the Ethernet type of these frames is more
5558 * trouble than seems appropriate for a simple assertion. */
5559 assert(ntohs(eh->eth_type) < ETH_TYPE_MIN
5560 || eh->eth_type == ctx->flow.dl_type);
5561
5562 memcpy(eh->eth_src, ctx->flow.dl_src, sizeof eh->eth_src);
5563 memcpy(eh->eth_dst, ctx->flow.dl_dst, sizeof eh->eth_dst);
5564
5565 if (ctx->flow.vlan_tci & htons(VLAN_CFI)) {
5566 eth_push_vlan(packet, ctx->flow.vlan_tci);
5567 }
5568
5569 if (packet->l4) {
5570 if (ctx->flow.dl_type == htons(ETH_TYPE_IP)) {
5571 packet_set_ipv4(packet, ctx->flow.nw_src, ctx->flow.nw_dst,
5572 ctx->flow.nw_tos, ctx->flow.nw_ttl);
5573 }
5574
5575 if (packet->l7) {
5576 if (ctx->flow.nw_proto == IPPROTO_TCP) {
5577 packet_set_tcp_port(packet, ctx->flow.tp_src,
5578 ctx->flow.tp_dst);
5579 } else if (ctx->flow.nw_proto == IPPROTO_UDP) {
5580 packet_set_udp_port(packet, ctx->flow.tp_src,
5581 ctx->flow.tp_dst);
5582 }
5583 }
5584 }
5585 }
5586
5587 pin.packet = packet->data;
5588 pin.packet_len = packet->size;
5589 pin.reason = reason;
5590 pin.controller_id = controller_id;
5591 pin.table_id = ctx->table_id;
5592 pin.cookie = ctx->rule ? ctx->rule->up.flow_cookie : 0;
5593
5594 pin.send_len = len;
5595 flow_get_metadata(&ctx->flow, &pin.fmd);
5596
5597 connmgr_send_packet_in(ctx->ofproto->up.connmgr, &pin);
5598 ofpbuf_delete(packet);
5599 }
5600
5601 static bool
5602 compose_dec_ttl(struct action_xlate_ctx *ctx, struct ofpact_cnt_ids *ids)
5603 {
5604 if (ctx->flow.dl_type != htons(ETH_TYPE_IP) &&
5605 ctx->flow.dl_type != htons(ETH_TYPE_IPV6)) {
5606 return false;
5607 }
5608
5609 if (ctx->flow.nw_ttl > 1) {
5610 ctx->flow.nw_ttl--;
5611 return false;
5612 } else {
5613 size_t i;
5614
5615 for (i = 0; i < ids->n_controllers; i++) {
5616 execute_controller_action(ctx, UINT16_MAX, OFPR_INVALID_TTL,
5617 ids->cnt_ids[i]);
5618 }
5619
5620 /* Stop processing for current table. */
5621 return true;
5622 }
5623 }
5624
5625 static void
5626 xlate_output_action(struct action_xlate_ctx *ctx,
5627 uint16_t port, uint16_t max_len, bool may_packet_in)
5628 {
5629 uint16_t prev_nf_output_iface = ctx->nf_output_iface;
5630
5631 ctx->nf_output_iface = NF_OUT_DROP;
5632
5633 switch (port) {
5634 case OFPP_IN_PORT:
5635 compose_output_action(ctx, ctx->flow.in_port);
5636 break;
5637 case OFPP_TABLE:
5638 xlate_table_action(ctx, ctx->flow.in_port, 0, may_packet_in);
5639 break;
5640 case OFPP_NORMAL:
5641 xlate_normal(ctx);
5642 break;
5643 case OFPP_FLOOD:
5644 flood_packets(ctx, false);
5645 break;
5646 case OFPP_ALL:
5647 flood_packets(ctx, true);
5648 break;
5649 case OFPP_CONTROLLER:
5650 execute_controller_action(ctx, max_len, OFPR_ACTION, 0);
5651 break;
5652 case OFPP_NONE:
5653 break;
5654 case OFPP_LOCAL:
5655 default:
5656 if (port != ctx->flow.in_port) {
5657 compose_output_action(ctx, port);
5658 } else {
5659 xlate_report(ctx, "skipping output to input port");
5660 }
5661 break;
5662 }
5663
5664 if (prev_nf_output_iface == NF_OUT_FLOOD) {
5665 ctx->nf_output_iface = NF_OUT_FLOOD;
5666 } else if (ctx->nf_output_iface == NF_OUT_DROP) {
5667 ctx->nf_output_iface = prev_nf_output_iface;
5668 } else if (prev_nf_output_iface != NF_OUT_DROP &&
5669 ctx->nf_output_iface != NF_OUT_FLOOD) {
5670 ctx->nf_output_iface = NF_OUT_MULTI;
5671 }
5672 }
5673
5674 static void
5675 xlate_output_reg_action(struct action_xlate_ctx *ctx,
5676 const struct ofpact_output_reg *or)
5677 {
5678 uint64_t port = mf_get_subfield(&or->src, &ctx->flow);
5679 if (port <= UINT16_MAX) {
5680 xlate_output_action(ctx, port, or->max_len, false);
5681 }
5682 }
5683
5684 static void
5685 xlate_enqueue_action(struct action_xlate_ctx *ctx,
5686 const struct ofpact_enqueue *enqueue)
5687 {
5688 uint16_t ofp_port = enqueue->port;
5689 uint32_t queue_id = enqueue->queue;
5690 uint32_t flow_priority, priority;
5691 int error;
5692
5693 /* Translate queue to priority. */
5694 error = dpif_queue_to_priority(ctx->ofproto->backer->dpif,
5695 queue_id, &priority);
5696 if (error) {
5697 /* Fall back to ordinary output action. */
5698 xlate_output_action(ctx, enqueue->port, 0, false);
5699 return;
5700 }
5701
5702 /* Check output port. */
5703 if (ofp_port == OFPP_IN_PORT) {
5704 ofp_port = ctx->flow.in_port;
5705 } else if (ofp_port == ctx->flow.in_port) {
5706 return;
5707 }
5708
5709 /* Add datapath actions. */
5710 flow_priority = ctx->flow.skb_priority;
5711 ctx->flow.skb_priority = priority;
5712 compose_output_action(ctx, ofp_port);
5713 ctx->flow.skb_priority = flow_priority;
5714
5715 /* Update NetFlow output port. */
5716 if (ctx->nf_output_iface == NF_OUT_DROP) {
5717 ctx->nf_output_iface = ofp_port;
5718 } else if (ctx->nf_output_iface != NF_OUT_FLOOD) {
5719 ctx->nf_output_iface = NF_OUT_MULTI;
5720 }
5721 }
5722
5723 static void
5724 xlate_set_queue_action(struct action_xlate_ctx *ctx, uint32_t queue_id)
5725 {
5726 uint32_t skb_priority;
5727
5728 if (!dpif_queue_to_priority(ctx->ofproto->backer->dpif,
5729 queue_id, &skb_priority)) {
5730 ctx->flow.skb_priority = skb_priority;
5731 } else {
5732 /* Couldn't translate queue to a priority. Nothing to do. A warning
5733 * has already been logged. */
5734 }
5735 }
5736
5737 struct xlate_reg_state {
5738 ovs_be16 vlan_tci;
5739 ovs_be64 tun_id;
5740 };
5741
5742 static void
5743 xlate_autopath(struct action_xlate_ctx *ctx,
5744 const struct ofpact_autopath *ap)
5745 {
5746 uint16_t ofp_port = ap->port;
5747 struct ofport_dpif *port = get_ofp_port(ctx->ofproto, ofp_port);
5748
5749 if (!port || !port->bundle) {
5750 ofp_port = OFPP_NONE;
5751 } else if (port->bundle->bond) {
5752 /* Autopath does not support VLAN hashing. */
5753 struct ofport_dpif *slave = bond_choose_output_slave(
5754 port->bundle->bond, &ctx->flow, 0, &ctx->tags);
5755 if (slave) {
5756 ofp_port = slave->up.ofp_port;
5757 }
5758 }
5759 nxm_reg_load(&ap->dst, ofp_port, &ctx->flow);
5760 }
5761
5762 static bool
5763 slave_enabled_cb(uint16_t ofp_port, void *ofproto_)
5764 {
5765 struct ofproto_dpif *ofproto = ofproto_;
5766 struct ofport_dpif *port;
5767
5768 switch (ofp_port) {
5769 case OFPP_IN_PORT:
5770 case OFPP_TABLE:
5771 case OFPP_NORMAL:
5772 case OFPP_FLOOD:
5773 case OFPP_ALL:
5774 case OFPP_NONE:
5775 return true;
5776 case OFPP_CONTROLLER: /* Not supported by the bundle action. */
5777 return false;
5778 default:
5779 port = get_ofp_port(ofproto, ofp_port);
5780 return port ? port->may_enable : false;
5781 }
5782 }
5783
5784 static void
5785 xlate_bundle_action(struct action_xlate_ctx *ctx,
5786 const struct ofpact_bundle *bundle)
5787 {
5788 uint16_t port;
5789
5790 port = bundle_execute(bundle, &ctx->flow, slave_enabled_cb, ctx->ofproto);
5791 if (bundle->dst.field) {
5792 nxm_reg_load(&bundle->dst, port, &ctx->flow);
5793 } else {
5794 xlate_output_action(ctx, port, 0, false);
5795 }
5796 }
5797
5798 static void
5799 xlate_learn_action(struct action_xlate_ctx *ctx,
5800 const struct ofpact_learn *learn)
5801 {
5802 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(5, 1);
5803 struct ofputil_flow_mod fm;
5804 uint64_t ofpacts_stub[1024 / 8];
5805 struct ofpbuf ofpacts;
5806 int error;
5807
5808 ofpbuf_use_stack(&ofpacts, ofpacts_stub, sizeof ofpacts_stub);
5809 learn_execute(learn, &ctx->flow, &fm, &ofpacts);
5810
5811 error = ofproto_flow_mod(&ctx->ofproto->up, &fm);
5812 if (error && !VLOG_DROP_WARN(&rl)) {
5813 VLOG_WARN("learning action failed to modify flow table (%s)",
5814 ofperr_get_name(error));
5815 }
5816
5817 ofpbuf_uninit(&ofpacts);
5818 }
5819
5820 /* Reduces '*timeout' to no more than 'max'. A value of zero in either case
5821 * means "infinite". */
5822 static void
5823 reduce_timeout(uint16_t max, uint16_t *timeout)
5824 {
5825 if (max && (!*timeout || *timeout > max)) {
5826 *timeout = max;
5827 }
5828 }
5829
5830 static void
5831 xlate_fin_timeout(struct action_xlate_ctx *ctx,
5832 const struct ofpact_fin_timeout *oft)
5833 {
5834 if (ctx->tcp_flags & (TCP_FIN | TCP_RST) && ctx->rule) {
5835 struct rule_dpif *rule = ctx->rule;
5836
5837 reduce_timeout(oft->fin_idle_timeout, &rule->up.idle_timeout);
5838 reduce_timeout(oft->fin_hard_timeout, &rule->up.hard_timeout);
5839 }
5840 }
5841
5842 static bool
5843 may_receive(const struct ofport_dpif *port, struct action_xlate_ctx *ctx)
5844 {
5845 if (port->up.pp.config & (eth_addr_equals(ctx->flow.dl_dst, eth_addr_stp)
5846 ? OFPUTIL_PC_NO_RECV_STP
5847 : OFPUTIL_PC_NO_RECV)) {
5848 return false;
5849 }
5850
5851 /* Only drop packets here if both forwarding and learning are
5852 * disabled. If just learning is enabled, we need to have
5853 * OFPP_NORMAL and the learning action have a look at the packet
5854 * before we can drop it. */
5855 if (!stp_forward_in_state(port->stp_state)
5856 && !stp_learn_in_state(port->stp_state)) {
5857 return false;
5858 }
5859
5860 return true;
5861 }
5862
5863 static void
5864 do_xlate_actions(const struct ofpact *ofpacts, size_t ofpacts_len,
5865 struct action_xlate_ctx *ctx)
5866 {
5867 const struct ofport_dpif *port;
5868 bool was_evictable = true;
5869 const struct ofpact *a;
5870
5871 port = get_ofp_port(ctx->ofproto, ctx->flow.in_port);
5872 if (port && !may_receive(port, ctx)) {
5873 /* Drop this flow. */
5874 return;
5875 }
5876
5877 if (ctx->rule) {
5878 /* Don't let the rule we're working on get evicted underneath us. */
5879 was_evictable = ctx->rule->up.evictable;
5880 ctx->rule->up.evictable = false;
5881 }
5882 OFPACT_FOR_EACH (a, ofpacts, ofpacts_len) {
5883 struct ofpact_controller *controller;
5884 const struct ofpact_metadata *metadata;
5885
5886 if (ctx->exit) {
5887 break;
5888 }
5889
5890 switch (a->type) {
5891 case OFPACT_OUTPUT:
5892 xlate_output_action(ctx, ofpact_get_OUTPUT(a)->port,
5893 ofpact_get_OUTPUT(a)->max_len, true);
5894 break;
5895
5896 case OFPACT_CONTROLLER:
5897 controller = ofpact_get_CONTROLLER(a);
5898 execute_controller_action(ctx, controller->max_len,
5899 controller->reason,
5900 controller->controller_id);
5901 break;
5902
5903 case OFPACT_ENQUEUE:
5904 xlate_enqueue_action(ctx, ofpact_get_ENQUEUE(a));
5905 break;
5906
5907 case OFPACT_SET_VLAN_VID:
5908 ctx->flow.vlan_tci &= ~htons(VLAN_VID_MASK);
5909 ctx->flow.vlan_tci |= (htons(ofpact_get_SET_VLAN_VID(a)->vlan_vid)
5910 | htons(VLAN_CFI));
5911 break;
5912
5913 case OFPACT_SET_VLAN_PCP:
5914 ctx->flow.vlan_tci &= ~htons(VLAN_PCP_MASK);
5915 ctx->flow.vlan_tci |= htons((ofpact_get_SET_VLAN_PCP(a)->vlan_pcp
5916 << VLAN_PCP_SHIFT)
5917 | VLAN_CFI);
5918 break;
5919
5920 case OFPACT_STRIP_VLAN:
5921 ctx->flow.vlan_tci = htons(0);
5922 break;
5923
5924 case OFPACT_PUSH_VLAN:
5925 /* TODO:XXX 802.1AD(QinQ) */
5926 ctx->flow.vlan_tci = htons(VLAN_CFI);
5927 break;
5928
5929 case OFPACT_SET_ETH_SRC:
5930 memcpy(ctx->flow.dl_src, ofpact_get_SET_ETH_SRC(a)->mac,
5931 ETH_ADDR_LEN);
5932 break;
5933
5934 case OFPACT_SET_ETH_DST:
5935 memcpy(ctx->flow.dl_dst, ofpact_get_SET_ETH_DST(a)->mac,
5936 ETH_ADDR_LEN);
5937 break;
5938
5939 case OFPACT_SET_IPV4_SRC:
5940 ctx->flow.nw_src = ofpact_get_SET_IPV4_SRC(a)->ipv4;
5941 break;
5942
5943 case OFPACT_SET_IPV4_DST:
5944 ctx->flow.nw_dst = ofpact_get_SET_IPV4_DST(a)->ipv4;
5945 break;
5946
5947 case OFPACT_SET_IPV4_DSCP:
5948 /* OpenFlow 1.0 only supports IPv4. */
5949 if (ctx->flow.dl_type == htons(ETH_TYPE_IP)) {
5950 ctx->flow.nw_tos &= ~IP_DSCP_MASK;
5951 ctx->flow.nw_tos |= ofpact_get_SET_IPV4_DSCP(a)->dscp;
5952 }
5953 break;
5954
5955 case OFPACT_SET_L4_SRC_PORT:
5956 ctx->flow.tp_src = htons(ofpact_get_SET_L4_SRC_PORT(a)->port);
5957 break;
5958
5959 case OFPACT_SET_L4_DST_PORT:
5960 ctx->flow.tp_dst = htons(ofpact_get_SET_L4_DST_PORT(a)->port);
5961 break;
5962
5963 case OFPACT_RESUBMIT:
5964 xlate_ofpact_resubmit(ctx, ofpact_get_RESUBMIT(a));
5965 break;
5966
5967 case OFPACT_SET_TUNNEL:
5968 ctx->flow.tunnel.tun_id = htonll(ofpact_get_SET_TUNNEL(a)->tun_id);
5969 break;
5970
5971 case OFPACT_SET_QUEUE:
5972 xlate_set_queue_action(ctx, ofpact_get_SET_QUEUE(a)->queue_id);
5973 break;
5974
5975 case OFPACT_POP_QUEUE:
5976 ctx->flow.skb_priority = ctx->orig_skb_priority;
5977 break;
5978
5979 case OFPACT_REG_MOVE:
5980 nxm_execute_reg_move(ofpact_get_REG_MOVE(a), &ctx->flow);
5981 break;
5982
5983 case OFPACT_REG_LOAD:
5984 nxm_execute_reg_load(ofpact_get_REG_LOAD(a), &ctx->flow);
5985 break;
5986
5987 case OFPACT_DEC_TTL:
5988 if (compose_dec_ttl(ctx, ofpact_get_DEC_TTL(a))) {
5989 goto out;
5990 }
5991 break;
5992
5993 case OFPACT_NOTE:
5994 /* Nothing to do. */
5995 break;
5996
5997 case OFPACT_MULTIPATH:
5998 multipath_execute(ofpact_get_MULTIPATH(a), &ctx->flow);
5999 break;
6000
6001 case OFPACT_AUTOPATH:
6002 xlate_autopath(ctx, ofpact_get_AUTOPATH(a));
6003 break;
6004
6005 case OFPACT_BUNDLE:
6006 ctx->ofproto->has_bundle_action = true;
6007 xlate_bundle_action(ctx, ofpact_get_BUNDLE(a));
6008 break;
6009
6010 case OFPACT_OUTPUT_REG:
6011 xlate_output_reg_action(ctx, ofpact_get_OUTPUT_REG(a));
6012 break;
6013
6014 case OFPACT_LEARN:
6015 ctx->has_learn = true;
6016 if (ctx->may_learn) {
6017 xlate_learn_action(ctx, ofpact_get_LEARN(a));
6018 }
6019 break;
6020
6021 case OFPACT_EXIT:
6022 ctx->exit = true;
6023 break;
6024
6025 case OFPACT_FIN_TIMEOUT:
6026 ctx->has_fin_timeout = true;
6027 xlate_fin_timeout(ctx, ofpact_get_FIN_TIMEOUT(a));
6028 break;
6029
6030 case OFPACT_CLEAR_ACTIONS:
6031 /* TODO:XXX
6032 * Nothing to do because writa-actions is not supported for now.
6033 * When writa-actions is supported, clear-actions also must
6034 * be supported at the same time.
6035 */
6036 break;
6037
6038 case OFPACT_WRITE_METADATA:
6039 metadata = ofpact_get_WRITE_METADATA(a);
6040 ctx->flow.metadata &= ~metadata->mask;
6041 ctx->flow.metadata |= metadata->metadata & metadata->mask;
6042 break;
6043
6044 case OFPACT_GOTO_TABLE: {
6045 /* TODO:XXX remove recursion */
6046 /* It is assumed that goto-table is last action */
6047 struct ofpact_goto_table *ogt = ofpact_get_GOTO_TABLE(a);
6048 assert(ctx->table_id < ogt->table_id);
6049 xlate_table_action(ctx, ctx->flow.in_port, ogt->table_id, true);
6050 break;
6051 }
6052 }
6053 }
6054
6055 out:
6056 /* We've let OFPP_NORMAL and the learning action look at the packet,
6057 * so drop it now if forwarding is disabled. */
6058 if (port && !stp_forward_in_state(port->stp_state)) {
6059 ofpbuf_clear(ctx->odp_actions);
6060 add_sflow_action(ctx);
6061 }
6062 if (ctx->rule) {
6063 ctx->rule->up.evictable = was_evictable;
6064 }
6065 }
6066
6067 static void
6068 action_xlate_ctx_init(struct action_xlate_ctx *ctx,
6069 struct ofproto_dpif *ofproto, const struct flow *flow,
6070 ovs_be16 initial_tci, struct rule_dpif *rule,
6071 uint8_t tcp_flags, const struct ofpbuf *packet)
6072 {
6073 ctx->ofproto = ofproto;
6074 ctx->flow = *flow;
6075 ctx->base_flow = ctx->flow;
6076 memset(&ctx->base_flow.tunnel, 0, sizeof ctx->base_flow.tunnel);
6077 ctx->base_flow.vlan_tci = initial_tci;
6078 ctx->rule = rule;
6079 ctx->packet = packet;
6080 ctx->may_learn = packet != NULL;
6081 ctx->tcp_flags = tcp_flags;
6082 ctx->resubmit_hook = NULL;
6083 ctx->report_hook = NULL;
6084 ctx->resubmit_stats = NULL;
6085 }
6086
6087 /* Translates the 'ofpacts_len' bytes of "struct ofpacts" starting at 'ofpacts'
6088 * into datapath actions in 'odp_actions', using 'ctx'. */
6089 static void
6090 xlate_actions(struct action_xlate_ctx *ctx,
6091 const struct ofpact *ofpacts, size_t ofpacts_len,
6092 struct ofpbuf *odp_actions)
6093 {
6094 /* Normally false. Set to true if we ever hit MAX_RESUBMIT_RECURSION, so
6095 * that in the future we always keep a copy of the original flow for
6096 * tracing purposes. */
6097 static bool hit_resubmit_limit;
6098
6099 enum slow_path_reason special;
6100
6101 COVERAGE_INC(ofproto_dpif_xlate);
6102
6103 ofpbuf_clear(odp_actions);
6104 ofpbuf_reserve(odp_actions, NL_A_U32_SIZE);
6105
6106 ctx->odp_actions = odp_actions;
6107 ctx->tags = 0;
6108 ctx->slow = 0;
6109 ctx->has_learn = false;
6110 ctx->has_normal = false;
6111 ctx->has_fin_timeout = false;
6112 ctx->nf_output_iface = NF_OUT_DROP;
6113 ctx->mirrors = 0;
6114 ctx->recurse = 0;
6115 ctx->max_resubmit_trigger = false;
6116 ctx->orig_skb_priority = ctx->flow.skb_priority;
6117 ctx->table_id = 0;
6118 ctx->exit = false;
6119
6120 if (ctx->ofproto->has_mirrors || hit_resubmit_limit) {
6121 /* Do this conditionally because the copy is expensive enough that it
6122 * shows up in profiles.
6123 *
6124 * We keep orig_flow in 'ctx' only because I couldn't make GCC 4.4
6125 * believe that I wasn't using it without initializing it if I kept it
6126 * in a local variable. */
6127 ctx->orig_flow = ctx->flow;
6128 }
6129
6130 if (ctx->flow.nw_frag & FLOW_NW_FRAG_ANY) {
6131 switch (ctx->ofproto->up.frag_handling) {
6132 case OFPC_FRAG_NORMAL:
6133 /* We must pretend that transport ports are unavailable. */
6134 ctx->flow.tp_src = ctx->base_flow.tp_src = htons(0);
6135 ctx->flow.tp_dst = ctx->base_flow.tp_dst = htons(0);
6136 break;
6137
6138 case OFPC_FRAG_DROP:
6139 return;
6140
6141 case OFPC_FRAG_REASM:
6142 NOT_REACHED();
6143
6144 case OFPC_FRAG_NX_MATCH:
6145 /* Nothing to do. */
6146 break;
6147
6148 case OFPC_INVALID_TTL_TO_CONTROLLER:
6149 NOT_REACHED();
6150 }
6151 }
6152
6153 special = process_special(ctx->ofproto, &ctx->flow, ctx->packet);
6154 if (special) {
6155 ctx->slow |= special;
6156 } else {
6157 static struct vlog_rate_limit trace_rl = VLOG_RATE_LIMIT_INIT(1, 1);
6158 ovs_be16 initial_tci = ctx->base_flow.vlan_tci;
6159
6160 add_sflow_action(ctx);
6161 do_xlate_actions(ofpacts, ofpacts_len, ctx);
6162
6163 if (ctx->max_resubmit_trigger && !ctx->resubmit_hook) {
6164 if (!hit_resubmit_limit) {
6165 /* We didn't record the original flow. Make sure we do from
6166 * now on. */
6167 hit_resubmit_limit = true;
6168 } else if (!VLOG_DROP_ERR(&trace_rl)) {
6169 struct ds ds = DS_EMPTY_INITIALIZER;
6170
6171 ofproto_trace(ctx->ofproto, &ctx->orig_flow, ctx->packet,
6172 initial_tci, &ds);
6173 VLOG_ERR("Trace triggered by excessive resubmit "
6174 "recursion:\n%s", ds_cstr(&ds));
6175 ds_destroy(&ds);
6176 }
6177 }
6178
6179 if (!connmgr_may_set_up_flow(ctx->ofproto->up.connmgr, &ctx->flow,
6180 ctx->odp_actions->data,
6181 ctx->odp_actions->size)) {
6182 ctx->slow |= SLOW_IN_BAND;
6183 if (ctx->packet
6184 && connmgr_msg_in_hook(ctx->ofproto->up.connmgr, &ctx->flow,
6185 ctx->packet)) {
6186 compose_output_action(ctx, OFPP_LOCAL);
6187 }
6188 }
6189 if (ctx->ofproto->has_mirrors) {
6190 add_mirror_actions(ctx, &ctx->orig_flow);
6191 }
6192 fix_sflow_action(ctx);
6193 }
6194 }
6195
6196 /* Translates the 'ofpacts_len' bytes of "struct ofpact"s starting at 'ofpacts'
6197 * into datapath actions, using 'ctx', and discards the datapath actions. */
6198 static void
6199 xlate_actions_for_side_effects(struct action_xlate_ctx *ctx,
6200 const struct ofpact *ofpacts,
6201 size_t ofpacts_len)
6202 {
6203 uint64_t odp_actions_stub[1024 / 8];
6204 struct ofpbuf odp_actions;
6205
6206 ofpbuf_use_stub(&odp_actions, odp_actions_stub, sizeof odp_actions_stub);
6207 xlate_actions(ctx, ofpacts, ofpacts_len, &odp_actions);
6208 ofpbuf_uninit(&odp_actions);
6209 }
6210
6211 static void
6212 xlate_report(struct action_xlate_ctx *ctx, const char *s)
6213 {
6214 if (ctx->report_hook) {
6215 ctx->report_hook(ctx, s);
6216 }
6217 }
6218 \f
6219 /* OFPP_NORMAL implementation. */
6220
6221 static struct ofport_dpif *ofbundle_get_a_port(const struct ofbundle *);
6222
6223 /* Given 'vid', the VID obtained from the 802.1Q header that was received as
6224 * part of a packet (specify 0 if there was no 802.1Q header), and 'in_bundle',
6225 * the bundle on which the packet was received, returns the VLAN to which the
6226 * packet belongs.
6227 *
6228 * Both 'vid' and the return value are in the range 0...4095. */
6229 static uint16_t
6230 input_vid_to_vlan(const struct ofbundle *in_bundle, uint16_t vid)
6231 {
6232 switch (in_bundle->vlan_mode) {
6233 case PORT_VLAN_ACCESS:
6234 return in_bundle->vlan;
6235 break;
6236
6237 case PORT_VLAN_TRUNK:
6238 return vid;
6239
6240 case PORT_VLAN_NATIVE_UNTAGGED:
6241 case PORT_VLAN_NATIVE_TAGGED:
6242 return vid ? vid : in_bundle->vlan;
6243
6244 default:
6245 NOT_REACHED();
6246 }
6247 }
6248
6249 /* Checks whether a packet with the given 'vid' may ingress on 'in_bundle'.
6250 * If so, returns true. Otherwise, returns false and, if 'warn' is true, logs
6251 * a warning.
6252 *
6253 * 'vid' should be the VID obtained from the 802.1Q header that was received as
6254 * part of a packet (specify 0 if there was no 802.1Q header), in the range
6255 * 0...4095. */
6256 static bool
6257 input_vid_is_valid(uint16_t vid, struct ofbundle *in_bundle, bool warn)
6258 {
6259 /* Allow any VID on the OFPP_NONE port. */
6260 if (in_bundle == &ofpp_none_bundle) {
6261 return true;
6262 }
6263
6264 switch (in_bundle->vlan_mode) {
6265 case PORT_VLAN_ACCESS:
6266 if (vid) {
6267 if (warn) {
6268 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
6269 VLOG_WARN_RL(&rl, "bridge %s: dropping VLAN %"PRIu16" tagged "
6270 "packet received on port %s configured as VLAN "
6271 "%"PRIu16" access port",
6272 in_bundle->ofproto->up.name, vid,
6273 in_bundle->name, in_bundle->vlan);
6274 }
6275 return false;
6276 }
6277 return true;
6278
6279 case PORT_VLAN_NATIVE_UNTAGGED:
6280 case PORT_VLAN_NATIVE_TAGGED:
6281 if (!vid) {
6282 /* Port must always carry its native VLAN. */
6283 return true;
6284 }
6285 /* Fall through. */
6286 case PORT_VLAN_TRUNK:
6287 if (!ofbundle_includes_vlan(in_bundle, vid)) {
6288 if (warn) {
6289 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
6290 VLOG_WARN_RL(&rl, "bridge %s: dropping VLAN %"PRIu16" packet "
6291 "received on port %s not configured for trunking "
6292 "VLAN %"PRIu16,
6293 in_bundle->ofproto->up.name, vid,
6294 in_bundle->name, vid);
6295 }
6296 return false;
6297 }
6298 return true;
6299
6300 default:
6301 NOT_REACHED();
6302 }
6303
6304 }
6305
6306 /* Given 'vlan', the VLAN that a packet belongs to, and
6307 * 'out_bundle', a bundle on which the packet is to be output, returns the VID
6308 * that should be included in the 802.1Q header. (If the return value is 0,
6309 * then the 802.1Q header should only be included in the packet if there is a
6310 * nonzero PCP.)
6311 *
6312 * Both 'vlan' and the return value are in the range 0...4095. */
6313 static uint16_t
6314 output_vlan_to_vid(const struct ofbundle *out_bundle, uint16_t vlan)
6315 {
6316 switch (out_bundle->vlan_mode) {
6317 case PORT_VLAN_ACCESS:
6318 return 0;
6319
6320 case PORT_VLAN_TRUNK:
6321 case PORT_VLAN_NATIVE_TAGGED:
6322 return vlan;
6323
6324 case PORT_VLAN_NATIVE_UNTAGGED:
6325 return vlan == out_bundle->vlan ? 0 : vlan;
6326
6327 default:
6328 NOT_REACHED();
6329 }
6330 }
6331
6332 static void
6333 output_normal(struct action_xlate_ctx *ctx, const struct ofbundle *out_bundle,
6334 uint16_t vlan)
6335 {
6336 struct ofport_dpif *port;
6337 uint16_t vid;
6338 ovs_be16 tci, old_tci;
6339
6340 vid = output_vlan_to_vid(out_bundle, vlan);
6341 if (!out_bundle->bond) {
6342 port = ofbundle_get_a_port(out_bundle);
6343 } else {
6344 port = bond_choose_output_slave(out_bundle->bond, &ctx->flow,
6345 vid, &ctx->tags);
6346 if (!port) {
6347 /* No slaves enabled, so drop packet. */
6348 return;
6349 }
6350 }
6351
6352 old_tci = ctx->flow.vlan_tci;
6353 tci = htons(vid);
6354 if (tci || out_bundle->use_priority_tags) {
6355 tci |= ctx->flow.vlan_tci & htons(VLAN_PCP_MASK);
6356 if (tci) {
6357 tci |= htons(VLAN_CFI);
6358 }
6359 }
6360 ctx->flow.vlan_tci = tci;
6361
6362 compose_output_action(ctx, port->up.ofp_port);
6363 ctx->flow.vlan_tci = old_tci;
6364 }
6365
6366 static int
6367 mirror_mask_ffs(mirror_mask_t mask)
6368 {
6369 BUILD_ASSERT_DECL(sizeof(unsigned int) >= sizeof(mask));
6370 return ffs(mask);
6371 }
6372
6373 static bool
6374 ofbundle_trunks_vlan(const struct ofbundle *bundle, uint16_t vlan)
6375 {
6376 return (bundle->vlan_mode != PORT_VLAN_ACCESS
6377 && (!bundle->trunks || bitmap_is_set(bundle->trunks, vlan)));
6378 }
6379
6380 static bool
6381 ofbundle_includes_vlan(const struct ofbundle *bundle, uint16_t vlan)
6382 {
6383 return vlan == bundle->vlan || ofbundle_trunks_vlan(bundle, vlan);
6384 }
6385
6386 /* Returns an arbitrary interface within 'bundle'. */
6387 static struct ofport_dpif *
6388 ofbundle_get_a_port(const struct ofbundle *bundle)
6389 {
6390 return CONTAINER_OF(list_front(&bundle->ports),
6391 struct ofport_dpif, bundle_node);
6392 }
6393
6394 static bool
6395 vlan_is_mirrored(const struct ofmirror *m, int vlan)
6396 {
6397 return !m->vlans || bitmap_is_set(m->vlans, vlan);
6398 }
6399
6400 static void
6401 add_mirror_actions(struct action_xlate_ctx *ctx, const struct flow *orig_flow)
6402 {
6403 struct ofproto_dpif *ofproto = ctx->ofproto;
6404 mirror_mask_t mirrors;
6405 struct ofbundle *in_bundle;
6406 uint16_t vlan;
6407 uint16_t vid;
6408 const struct nlattr *a;
6409 size_t left;
6410
6411 in_bundle = lookup_input_bundle(ctx->ofproto, orig_flow->in_port,
6412 ctx->packet != NULL, NULL);
6413 if (!in_bundle) {
6414 return;
6415 }
6416 mirrors = in_bundle->src_mirrors;
6417
6418 /* Drop frames on bundles reserved for mirroring. */
6419 if (in_bundle->mirror_out) {
6420 if (ctx->packet != NULL) {
6421 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
6422 VLOG_WARN_RL(&rl, "bridge %s: dropping packet received on port "
6423 "%s, which is reserved exclusively for mirroring",
6424 ctx->ofproto->up.name, in_bundle->name);
6425 }
6426 return;
6427 }
6428
6429 /* Check VLAN. */
6430 vid = vlan_tci_to_vid(orig_flow->vlan_tci);
6431 if (!input_vid_is_valid(vid, in_bundle, ctx->packet != NULL)) {
6432 return;
6433 }
6434 vlan = input_vid_to_vlan(in_bundle, vid);
6435
6436 /* Look at the output ports to check for destination selections. */
6437
6438 NL_ATTR_FOR_EACH (a, left, ctx->odp_actions->data,
6439 ctx->odp_actions->size) {
6440 enum ovs_action_attr type = nl_attr_type(a);
6441 struct ofport_dpif *ofport;
6442
6443 if (type != OVS_ACTION_ATTR_OUTPUT) {
6444 continue;
6445 }
6446
6447 ofport = get_odp_port(ofproto, nl_attr_get_u32(a));
6448 if (ofport && ofport->bundle) {
6449 mirrors |= ofport->bundle->dst_mirrors;
6450 }
6451 }
6452
6453 if (!mirrors) {
6454 return;
6455 }
6456
6457 /* Restore the original packet before adding the mirror actions. */
6458 ctx->flow = *orig_flow;
6459
6460 while (mirrors) {
6461 struct ofmirror *m;
6462
6463 m = ofproto->mirrors[mirror_mask_ffs(mirrors) - 1];
6464
6465 if (!vlan_is_mirrored(m, vlan)) {
6466 mirrors = zero_rightmost_1bit(mirrors);
6467 continue;
6468 }
6469
6470 mirrors &= ~m->dup_mirrors;
6471 ctx->mirrors |= m->dup_mirrors;
6472 if (m->out) {
6473 output_normal(ctx, m->out, vlan);
6474 } else if (vlan != m->out_vlan
6475 && !eth_addr_is_reserved(orig_flow->dl_dst)) {
6476 struct ofbundle *bundle;
6477
6478 HMAP_FOR_EACH (bundle, hmap_node, &ofproto->bundles) {
6479 if (ofbundle_includes_vlan(bundle, m->out_vlan)
6480 && !bundle->mirror_out) {
6481 output_normal(ctx, bundle, m->out_vlan);
6482 }
6483 }
6484 }
6485 }
6486 }
6487
6488 static void
6489 update_mirror_stats(struct ofproto_dpif *ofproto, mirror_mask_t mirrors,
6490 uint64_t packets, uint64_t bytes)
6491 {
6492 if (!mirrors) {
6493 return;
6494 }
6495
6496 for (; mirrors; mirrors = zero_rightmost_1bit(mirrors)) {
6497 struct ofmirror *m;
6498
6499 m = ofproto->mirrors[mirror_mask_ffs(mirrors) - 1];
6500
6501 if (!m) {
6502 /* In normal circumstances 'm' will not be NULL. However,
6503 * if mirrors are reconfigured, we can temporarily get out
6504 * of sync in facet_revalidate(). We could "correct" the
6505 * mirror list before reaching here, but doing that would
6506 * not properly account the traffic stats we've currently
6507 * accumulated for previous mirror configuration. */
6508 continue;
6509 }
6510
6511 m->packet_count += packets;
6512 m->byte_count += bytes;
6513 }
6514 }
6515
6516 /* A VM broadcasts a gratuitous ARP to indicate that it has resumed after
6517 * migration. Older Citrix-patched Linux DomU used gratuitous ARP replies to
6518 * indicate this; newer upstream kernels use gratuitous ARP requests. */
6519 static bool
6520 is_gratuitous_arp(const struct flow *flow)
6521 {
6522 return (flow->dl_type == htons(ETH_TYPE_ARP)
6523 && eth_addr_is_broadcast(flow->dl_dst)
6524 && (flow->nw_proto == ARP_OP_REPLY
6525 || (flow->nw_proto == ARP_OP_REQUEST
6526 && flow->nw_src == flow->nw_dst)));
6527 }
6528
6529 static void
6530 update_learning_table(struct ofproto_dpif *ofproto,
6531 const struct flow *flow, int vlan,
6532 struct ofbundle *in_bundle)
6533 {
6534 struct mac_entry *mac;
6535
6536 /* Don't learn the OFPP_NONE port. */
6537 if (in_bundle == &ofpp_none_bundle) {
6538 return;
6539 }
6540
6541 if (!mac_learning_may_learn(ofproto->ml, flow->dl_src, vlan)) {
6542 return;
6543 }
6544
6545 mac = mac_learning_insert(ofproto->ml, flow->dl_src, vlan);
6546 if (is_gratuitous_arp(flow)) {
6547 /* We don't want to learn from gratuitous ARP packets that are
6548 * reflected back over bond slaves so we lock the learning table. */
6549 if (!in_bundle->bond) {
6550 mac_entry_set_grat_arp_lock(mac);
6551 } else if (mac_entry_is_grat_arp_locked(mac)) {
6552 return;
6553 }
6554 }
6555
6556 if (mac_entry_is_new(mac) || mac->port.p != in_bundle) {
6557 /* The log messages here could actually be useful in debugging,
6558 * so keep the rate limit relatively high. */
6559 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(30, 300);
6560 VLOG_DBG_RL(&rl, "bridge %s: learned that "ETH_ADDR_FMT" is "
6561 "on port %s in VLAN %d",
6562 ofproto->up.name, ETH_ADDR_ARGS(flow->dl_src),
6563 in_bundle->name, vlan);
6564
6565 mac->port.p = in_bundle;
6566 tag_set_add(&ofproto->revalidate_set,
6567 mac_learning_changed(ofproto->ml, mac));
6568 }
6569 }
6570
6571 static struct ofbundle *
6572 lookup_input_bundle(const struct ofproto_dpif *ofproto, uint16_t in_port,
6573 bool warn, struct ofport_dpif **in_ofportp)
6574 {
6575 struct ofport_dpif *ofport;
6576
6577 /* Find the port and bundle for the received packet. */
6578 ofport = get_ofp_port(ofproto, in_port);
6579 if (in_ofportp) {
6580 *in_ofportp = ofport;
6581 }
6582 if (ofport && ofport->bundle) {
6583 return ofport->bundle;
6584 }
6585
6586 /* Special-case OFPP_NONE, which a controller may use as the ingress
6587 * port for traffic that it is sourcing. */
6588 if (in_port == OFPP_NONE) {
6589 return &ofpp_none_bundle;
6590 }
6591
6592 /* Odd. A few possible reasons here:
6593 *
6594 * - We deleted a port but there are still a few packets queued up
6595 * from it.
6596 *
6597 * - Someone externally added a port (e.g. "ovs-dpctl add-if") that
6598 * we don't know about.
6599 *
6600 * - The ofproto client didn't configure the port as part of a bundle.
6601 * This is particularly likely to happen if a packet was received on the
6602 * port after it was created, but before the client had a chance to
6603 * configure its bundle.
6604 */
6605 if (warn) {
6606 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
6607
6608 VLOG_WARN_RL(&rl, "bridge %s: received packet on unknown "
6609 "port %"PRIu16, ofproto->up.name, in_port);
6610 }
6611 return NULL;
6612 }
6613
6614 /* Determines whether packets in 'flow' within 'ofproto' should be forwarded or
6615 * dropped. Returns true if they may be forwarded, false if they should be
6616 * dropped.
6617 *
6618 * 'in_port' must be the ofport_dpif that corresponds to flow->in_port.
6619 * 'in_port' must be part of a bundle (e.g. in_port->bundle must be nonnull).
6620 *
6621 * 'vlan' must be the VLAN that corresponds to flow->vlan_tci on 'in_port', as
6622 * returned by input_vid_to_vlan(). It must be a valid VLAN for 'in_port', as
6623 * checked by input_vid_is_valid().
6624 *
6625 * May also add tags to '*tags', although the current implementation only does
6626 * so in one special case.
6627 */
6628 static bool
6629 is_admissible(struct action_xlate_ctx *ctx, struct ofport_dpif *in_port,
6630 uint16_t vlan)
6631 {
6632 struct ofproto_dpif *ofproto = ctx->ofproto;
6633 struct flow *flow = &ctx->flow;
6634 struct ofbundle *in_bundle = in_port->bundle;
6635
6636 /* Drop frames for reserved multicast addresses
6637 * only if forward_bpdu option is absent. */
6638 if (!ofproto->up.forward_bpdu && eth_addr_is_reserved(flow->dl_dst)) {
6639 xlate_report(ctx, "packet has reserved destination MAC, dropping");
6640 return false;
6641 }
6642
6643 if (in_bundle->bond) {
6644 struct mac_entry *mac;
6645
6646 switch (bond_check_admissibility(in_bundle->bond, in_port,
6647 flow->dl_dst, &ctx->tags)) {
6648 case BV_ACCEPT:
6649 break;
6650
6651 case BV_DROP:
6652 xlate_report(ctx, "bonding refused admissibility, dropping");
6653 return false;
6654
6655 case BV_DROP_IF_MOVED:
6656 mac = mac_learning_lookup(ofproto->ml, flow->dl_src, vlan, NULL);
6657 if (mac && mac->port.p != in_bundle &&
6658 (!is_gratuitous_arp(flow)
6659 || mac_entry_is_grat_arp_locked(mac))) {
6660 xlate_report(ctx, "SLB bond thinks this packet looped back, "
6661 "dropping");
6662 return false;
6663 }
6664 break;
6665 }
6666 }
6667
6668 return true;
6669 }
6670
6671 static void
6672 xlate_normal(struct action_xlate_ctx *ctx)
6673 {
6674 struct ofport_dpif *in_port;
6675 struct ofbundle *in_bundle;
6676 struct mac_entry *mac;
6677 uint16_t vlan;
6678 uint16_t vid;
6679
6680 ctx->has_normal = true;
6681
6682 in_bundle = lookup_input_bundle(ctx->ofproto, ctx->flow.in_port,
6683 ctx->packet != NULL, &in_port);
6684 if (!in_bundle) {
6685 xlate_report(ctx, "no input bundle, dropping");
6686 return;
6687 }
6688
6689 /* Drop malformed frames. */
6690 if (ctx->flow.dl_type == htons(ETH_TYPE_VLAN) &&
6691 !(ctx->flow.vlan_tci & htons(VLAN_CFI))) {
6692 if (ctx->packet != NULL) {
6693 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
6694 VLOG_WARN_RL(&rl, "bridge %s: dropping packet with partial "
6695 "VLAN tag received on port %s",
6696 ctx->ofproto->up.name, in_bundle->name);
6697 }
6698 xlate_report(ctx, "partial VLAN tag, dropping");
6699 return;
6700 }
6701
6702 /* Drop frames on bundles reserved for mirroring. */
6703 if (in_bundle->mirror_out) {
6704 if (ctx->packet != NULL) {
6705 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
6706 VLOG_WARN_RL(&rl, "bridge %s: dropping packet received on port "
6707 "%s, which is reserved exclusively for mirroring",
6708 ctx->ofproto->up.name, in_bundle->name);
6709 }
6710 xlate_report(ctx, "input port is mirror output port, dropping");
6711 return;
6712 }
6713
6714 /* Check VLAN. */
6715 vid = vlan_tci_to_vid(ctx->flow.vlan_tci);
6716 if (!input_vid_is_valid(vid, in_bundle, ctx->packet != NULL)) {
6717 xlate_report(ctx, "disallowed VLAN VID for this input port, dropping");
6718 return;
6719 }
6720 vlan = input_vid_to_vlan(in_bundle, vid);
6721
6722 /* Check other admissibility requirements. */
6723 if (in_port && !is_admissible(ctx, in_port, vlan)) {
6724 return;
6725 }
6726
6727 /* Learn source MAC. */
6728 if (ctx->may_learn) {
6729 update_learning_table(ctx->ofproto, &ctx->flow, vlan, in_bundle);
6730 }
6731
6732 /* Determine output bundle. */
6733 mac = mac_learning_lookup(ctx->ofproto->ml, ctx->flow.dl_dst, vlan,
6734 &ctx->tags);
6735 if (mac) {
6736 if (mac->port.p != in_bundle) {
6737 xlate_report(ctx, "forwarding to learned port");
6738 output_normal(ctx, mac->port.p, vlan);
6739 } else {
6740 xlate_report(ctx, "learned port is input port, dropping");
6741 }
6742 } else {
6743 struct ofbundle *bundle;
6744
6745 xlate_report(ctx, "no learned MAC for destination, flooding");
6746 HMAP_FOR_EACH (bundle, hmap_node, &ctx->ofproto->bundles) {
6747 if (bundle != in_bundle
6748 && ofbundle_includes_vlan(bundle, vlan)
6749 && bundle->floodable
6750 && !bundle->mirror_out) {
6751 output_normal(ctx, bundle, vlan);
6752 }
6753 }
6754 ctx->nf_output_iface = NF_OUT_FLOOD;
6755 }
6756 }
6757 \f
6758 /* Optimized flow revalidation.
6759 *
6760 * It's a difficult problem, in general, to tell which facets need to have
6761 * their actions recalculated whenever the OpenFlow flow table changes. We
6762 * don't try to solve that general problem: for most kinds of OpenFlow flow
6763 * table changes, we recalculate the actions for every facet. This is
6764 * relatively expensive, but it's good enough if the OpenFlow flow table
6765 * doesn't change very often.
6766 *
6767 * However, we can expect one particular kind of OpenFlow flow table change to
6768 * happen frequently: changes caused by MAC learning. To avoid wasting a lot
6769 * of CPU on revalidating every facet whenever MAC learning modifies the flow
6770 * table, we add a special case that applies to flow tables in which every rule
6771 * has the same form (that is, the same wildcards), except that the table is
6772 * also allowed to have a single "catch-all" flow that matches all packets. We
6773 * optimize this case by tagging all of the facets that resubmit into the table
6774 * and invalidating the same tag whenever a flow changes in that table. The
6775 * end result is that we revalidate just the facets that need it (and sometimes
6776 * a few more, but not all of the facets or even all of the facets that
6777 * resubmit to the table modified by MAC learning). */
6778
6779 /* Calculates the tag to use for 'flow' and mask 'mask' when it is inserted
6780 * into an OpenFlow table with the given 'basis'. */
6781 static tag_type
6782 rule_calculate_tag(const struct flow *flow, const struct minimask *mask,
6783 uint32_t secret)
6784 {
6785 if (minimask_is_catchall(mask)) {
6786 return 0;
6787 } else {
6788 uint32_t hash = flow_hash_in_minimask(flow, mask, secret);
6789 return tag_create_deterministic(hash);
6790 }
6791 }
6792
6793 /* Following a change to OpenFlow table 'table_id' in 'ofproto', update the
6794 * taggability of that table.
6795 *
6796 * This function must be called after *each* change to a flow table. If you
6797 * skip calling it on some changes then the pointer comparisons at the end can
6798 * be invalid if you get unlucky. For example, if a flow removal causes a
6799 * cls_table to be destroyed and then a flow insertion causes a cls_table with
6800 * different wildcards to be created with the same address, then this function
6801 * will incorrectly skip revalidation. */
6802 static void
6803 table_update_taggable(struct ofproto_dpif *ofproto, uint8_t table_id)
6804 {
6805 struct table_dpif *table = &ofproto->tables[table_id];
6806 const struct oftable *oftable = &ofproto->up.tables[table_id];
6807 struct cls_table *catchall, *other;
6808 struct cls_table *t;
6809
6810 catchall = other = NULL;
6811
6812 switch (hmap_count(&oftable->cls.tables)) {
6813 case 0:
6814 /* We could tag this OpenFlow table but it would make the logic a
6815 * little harder and it's a corner case that doesn't seem worth it
6816 * yet. */
6817 break;
6818
6819 case 1:
6820 case 2:
6821 HMAP_FOR_EACH (t, hmap_node, &oftable->cls.tables) {
6822 if (cls_table_is_catchall(t)) {
6823 catchall = t;
6824 } else if (!other) {
6825 other = t;
6826 } else {
6827 /* Indicate that we can't tag this by setting both tables to
6828 * NULL. (We know that 'catchall' is already NULL.) */
6829 other = NULL;
6830 }
6831 }
6832 break;
6833
6834 default:
6835 /* Can't tag this table. */
6836 break;
6837 }
6838
6839 if (table->catchall_table != catchall || table->other_table != other) {
6840 table->catchall_table = catchall;
6841 table->other_table = other;
6842 ofproto->need_revalidate = REV_FLOW_TABLE;
6843 }
6844 }
6845
6846 /* Given 'rule' that has changed in some way (either it is a rule being
6847 * inserted, a rule being deleted, or a rule whose actions are being
6848 * modified), marks facets for revalidation to ensure that packets will be
6849 * forwarded correctly according to the new state of the flow table.
6850 *
6851 * This function must be called after *each* change to a flow table. See
6852 * the comment on table_update_taggable() for more information. */
6853 static void
6854 rule_invalidate(const struct rule_dpif *rule)
6855 {
6856 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
6857
6858 table_update_taggable(ofproto, rule->up.table_id);
6859
6860 if (!ofproto->need_revalidate) {
6861 struct table_dpif *table = &ofproto->tables[rule->up.table_id];
6862
6863 if (table->other_table && rule->tag) {
6864 tag_set_add(&ofproto->revalidate_set, rule->tag);
6865 } else {
6866 ofproto->need_revalidate = REV_FLOW_TABLE;
6867 }
6868 }
6869 }
6870 \f
6871 static bool
6872 set_frag_handling(struct ofproto *ofproto_,
6873 enum ofp_config_flags frag_handling)
6874 {
6875 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
6876
6877 if (frag_handling != OFPC_FRAG_REASM) {
6878 ofproto->need_revalidate = REV_RECONFIGURE;
6879 return true;
6880 } else {
6881 return false;
6882 }
6883 }
6884
6885 static enum ofperr
6886 packet_out(struct ofproto *ofproto_, struct ofpbuf *packet,
6887 const struct flow *flow,
6888 const struct ofpact *ofpacts, size_t ofpacts_len)
6889 {
6890 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
6891 struct odputil_keybuf keybuf;
6892 struct dpif_flow_stats stats;
6893
6894 struct ofpbuf key;
6895
6896 struct action_xlate_ctx ctx;
6897 uint64_t odp_actions_stub[1024 / 8];
6898 struct ofpbuf odp_actions;
6899
6900 ofpbuf_use_stack(&key, &keybuf, sizeof keybuf);
6901 odp_flow_key_from_flow(&key, flow,
6902 ofp_port_to_odp_port(ofproto, flow->in_port));
6903
6904 dpif_flow_stats_extract(flow, packet, time_msec(), &stats);
6905
6906 action_xlate_ctx_init(&ctx, ofproto, flow, flow->vlan_tci, NULL,
6907 packet_get_tcp_flags(packet, flow), packet);
6908 ctx.resubmit_stats = &stats;
6909
6910 ofpbuf_use_stub(&odp_actions,
6911 odp_actions_stub, sizeof odp_actions_stub);
6912 xlate_actions(&ctx, ofpacts, ofpacts_len, &odp_actions);
6913 dpif_execute(ofproto->backer->dpif, key.data, key.size,
6914 odp_actions.data, odp_actions.size, packet);
6915 ofpbuf_uninit(&odp_actions);
6916
6917 return 0;
6918 }
6919 \f
6920 /* NetFlow. */
6921
6922 static int
6923 set_netflow(struct ofproto *ofproto_,
6924 const struct netflow_options *netflow_options)
6925 {
6926 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
6927
6928 if (netflow_options) {
6929 if (!ofproto->netflow) {
6930 ofproto->netflow = netflow_create();
6931 }
6932 return netflow_set_options(ofproto->netflow, netflow_options);
6933 } else {
6934 netflow_destroy(ofproto->netflow);
6935 ofproto->netflow = NULL;
6936 return 0;
6937 }
6938 }
6939
6940 static void
6941 get_netflow_ids(const struct ofproto *ofproto_,
6942 uint8_t *engine_type, uint8_t *engine_id)
6943 {
6944 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
6945
6946 dpif_get_netflow_ids(ofproto->backer->dpif, engine_type, engine_id);
6947 }
6948
6949 static void
6950 send_active_timeout(struct ofproto_dpif *ofproto, struct facet *facet)
6951 {
6952 if (!facet_is_controller_flow(facet) &&
6953 netflow_active_timeout_expired(ofproto->netflow, &facet->nf_flow)) {
6954 struct subfacet *subfacet;
6955 struct ofexpired expired;
6956
6957 LIST_FOR_EACH (subfacet, list_node, &facet->subfacets) {
6958 if (subfacet->path == SF_FAST_PATH) {
6959 struct dpif_flow_stats stats;
6960
6961 subfacet_reinstall(subfacet, &stats);
6962 subfacet_update_stats(subfacet, &stats);
6963 }
6964 }
6965
6966 expired.flow = facet->flow;
6967 expired.packet_count = facet->packet_count;
6968 expired.byte_count = facet->byte_count;
6969 expired.used = facet->used;
6970 netflow_expire(ofproto->netflow, &facet->nf_flow, &expired);
6971 }
6972 }
6973
6974 static void
6975 send_netflow_active_timeouts(struct ofproto_dpif *ofproto)
6976 {
6977 struct facet *facet;
6978
6979 HMAP_FOR_EACH (facet, hmap_node, &ofproto->facets) {
6980 send_active_timeout(ofproto, facet);
6981 }
6982 }
6983 \f
6984 static struct ofproto_dpif *
6985 ofproto_dpif_lookup(const char *name)
6986 {
6987 struct ofproto_dpif *ofproto;
6988
6989 HMAP_FOR_EACH_WITH_HASH (ofproto, all_ofproto_dpifs_node,
6990 hash_string(name, 0), &all_ofproto_dpifs) {
6991 if (!strcmp(ofproto->up.name, name)) {
6992 return ofproto;
6993 }
6994 }
6995 return NULL;
6996 }
6997
6998 static void
6999 ofproto_unixctl_fdb_flush(struct unixctl_conn *conn, int argc,
7000 const char *argv[], void *aux OVS_UNUSED)
7001 {
7002 struct ofproto_dpif *ofproto;
7003
7004 if (argc > 1) {
7005 ofproto = ofproto_dpif_lookup(argv[1]);
7006 if (!ofproto) {
7007 unixctl_command_reply_error(conn, "no such bridge");
7008 return;
7009 }
7010 mac_learning_flush(ofproto->ml, &ofproto->revalidate_set);
7011 } else {
7012 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
7013 mac_learning_flush(ofproto->ml, &ofproto->revalidate_set);
7014 }
7015 }
7016
7017 unixctl_command_reply(conn, "table successfully flushed");
7018 }
7019
7020 static void
7021 ofproto_unixctl_fdb_show(struct unixctl_conn *conn, int argc OVS_UNUSED,
7022 const char *argv[], void *aux OVS_UNUSED)
7023 {
7024 struct ds ds = DS_EMPTY_INITIALIZER;
7025 const struct ofproto_dpif *ofproto;
7026 const struct mac_entry *e;
7027
7028 ofproto = ofproto_dpif_lookup(argv[1]);
7029 if (!ofproto) {
7030 unixctl_command_reply_error(conn, "no such bridge");
7031 return;
7032 }
7033
7034 ds_put_cstr(&ds, " port VLAN MAC Age\n");
7035 LIST_FOR_EACH (e, lru_node, &ofproto->ml->lrus) {
7036 struct ofbundle *bundle = e->port.p;
7037 ds_put_format(&ds, "%5d %4d "ETH_ADDR_FMT" %3d\n",
7038 ofbundle_get_a_port(bundle)->odp_port,
7039 e->vlan, ETH_ADDR_ARGS(e->mac),
7040 mac_entry_age(ofproto->ml, e));
7041 }
7042 unixctl_command_reply(conn, ds_cstr(&ds));
7043 ds_destroy(&ds);
7044 }
7045
7046 struct trace_ctx {
7047 struct action_xlate_ctx ctx;
7048 struct flow flow;
7049 struct ds *result;
7050 };
7051
7052 static void
7053 trace_format_rule(struct ds *result, uint8_t table_id, int level,
7054 const struct rule_dpif *rule)
7055 {
7056 ds_put_char_multiple(result, '\t', level);
7057 if (!rule) {
7058 ds_put_cstr(result, "No match\n");
7059 return;
7060 }
7061
7062 ds_put_format(result, "Rule: table=%"PRIu8" cookie=%#"PRIx64" ",
7063 table_id, ntohll(rule->up.flow_cookie));
7064 cls_rule_format(&rule->up.cr, result);
7065 ds_put_char(result, '\n');
7066
7067 ds_put_char_multiple(result, '\t', level);
7068 ds_put_cstr(result, "OpenFlow ");
7069 ofpacts_format(rule->up.ofpacts, rule->up.ofpacts_len, result);
7070 ds_put_char(result, '\n');
7071 }
7072
7073 static void
7074 trace_format_flow(struct ds *result, int level, const char *title,
7075 struct trace_ctx *trace)
7076 {
7077 ds_put_char_multiple(result, '\t', level);
7078 ds_put_format(result, "%s: ", title);
7079 if (flow_equal(&trace->ctx.flow, &trace->flow)) {
7080 ds_put_cstr(result, "unchanged");
7081 } else {
7082 flow_format(result, &trace->ctx.flow);
7083 trace->flow = trace->ctx.flow;
7084 }
7085 ds_put_char(result, '\n');
7086 }
7087
7088 static void
7089 trace_format_regs(struct ds *result, int level, const char *title,
7090 struct trace_ctx *trace)
7091 {
7092 size_t i;
7093
7094 ds_put_char_multiple(result, '\t', level);
7095 ds_put_format(result, "%s:", title);
7096 for (i = 0; i < FLOW_N_REGS; i++) {
7097 ds_put_format(result, " reg%zu=0x%"PRIx32, i, trace->flow.regs[i]);
7098 }
7099 ds_put_char(result, '\n');
7100 }
7101
7102 static void
7103 trace_format_odp(struct ds *result, int level, const char *title,
7104 struct trace_ctx *trace)
7105 {
7106 struct ofpbuf *odp_actions = trace->ctx.odp_actions;
7107
7108 ds_put_char_multiple(result, '\t', level);
7109 ds_put_format(result, "%s: ", title);
7110 format_odp_actions(result, odp_actions->data, odp_actions->size);
7111 ds_put_char(result, '\n');
7112 }
7113
7114 static void
7115 trace_resubmit(struct action_xlate_ctx *ctx, struct rule_dpif *rule)
7116 {
7117 struct trace_ctx *trace = CONTAINER_OF(ctx, struct trace_ctx, ctx);
7118 struct ds *result = trace->result;
7119
7120 ds_put_char(result, '\n');
7121 trace_format_flow(result, ctx->recurse + 1, "Resubmitted flow", trace);
7122 trace_format_regs(result, ctx->recurse + 1, "Resubmitted regs", trace);
7123 trace_format_odp(result, ctx->recurse + 1, "Resubmitted odp", trace);
7124 trace_format_rule(result, ctx->table_id, ctx->recurse + 1, rule);
7125 }
7126
7127 static void
7128 trace_report(struct action_xlate_ctx *ctx, const char *s)
7129 {
7130 struct trace_ctx *trace = CONTAINER_OF(ctx, struct trace_ctx, ctx);
7131 struct ds *result = trace->result;
7132
7133 ds_put_char_multiple(result, '\t', ctx->recurse);
7134 ds_put_cstr(result, s);
7135 ds_put_char(result, '\n');
7136 }
7137
7138 static void
7139 ofproto_unixctl_trace(struct unixctl_conn *conn, int argc, const char *argv[],
7140 void *aux OVS_UNUSED)
7141 {
7142 const char *dpname = argv[1];
7143 struct ofproto_dpif *ofproto;
7144 struct ofpbuf odp_key;
7145 struct ofpbuf *packet;
7146 ovs_be16 initial_tci;
7147 struct ds result;
7148 struct flow flow;
7149 char *s;
7150
7151 packet = NULL;
7152 ofpbuf_init(&odp_key, 0);
7153 ds_init(&result);
7154
7155 ofproto = ofproto_dpif_lookup(dpname);
7156 if (!ofproto) {
7157 unixctl_command_reply_error(conn, "Unknown ofproto (use ofproto/list "
7158 "for help)");
7159 goto exit;
7160 }
7161 if (argc == 3 || (argc == 4 && !strcmp(argv[3], "-generate"))) {
7162 /* ofproto/trace dpname flow [-generate] */
7163 const char *flow_s = argv[2];
7164 const char *generate_s = argv[3];
7165
7166 /* Allow 'flow_s' to be either a datapath flow or an OpenFlow-like
7167 * flow. We guess which type it is based on whether 'flow_s' contains
7168 * an '(', since a datapath flow always contains '(') but an
7169 * OpenFlow-like flow should not (in fact it's allowed but I believe
7170 * that's not documented anywhere).
7171 *
7172 * An alternative would be to try to parse 'flow_s' both ways, but then
7173 * it would be tricky giving a sensible error message. After all, do
7174 * you just say "syntax error" or do you present both error messages?
7175 * Both choices seem lousy. */
7176 if (strchr(flow_s, '(')) {
7177 enum odp_key_fitness fitness;
7178 int error;
7179
7180 /* Convert string to datapath key. */
7181 ofpbuf_init(&odp_key, 0);
7182 error = odp_flow_key_from_string(flow_s, NULL, &odp_key);
7183 if (error) {
7184 unixctl_command_reply_error(conn, "Bad flow syntax");
7185 goto exit;
7186 }
7187
7188 fitness = odp_flow_key_to_flow(odp_key.data, odp_key.size, &flow);
7189 flow.in_port = odp_port_to_ofp_port(ofproto, flow.in_port);
7190
7191 /* Convert odp_key to flow. */
7192 error = ofproto_dpif_vsp_adjust(ofproto, fitness, &flow,
7193 &initial_tci, NULL);
7194 if (error == ODP_FIT_ERROR) {
7195 unixctl_command_reply_error(conn, "Invalid flow");
7196 goto exit;
7197 }
7198 } else {
7199 char *error_s;
7200
7201 error_s = parse_ofp_exact_flow(&flow, argv[2]);
7202 if (error_s) {
7203 unixctl_command_reply_error(conn, error_s);
7204 free(error_s);
7205 goto exit;
7206 }
7207
7208 initial_tci = flow.vlan_tci;
7209 vsp_adjust_flow(ofproto, &flow);
7210 }
7211
7212 /* Generate a packet, if requested. */
7213 if (generate_s) {
7214 packet = ofpbuf_new(0);
7215 flow_compose(packet, &flow);
7216 }
7217 } else if (argc == 7) {
7218 /* ofproto/trace dpname priority tun_id in_port mark packet */
7219 const char *priority_s = argv[2];
7220 const char *tun_id_s = argv[3];
7221 const char *in_port_s = argv[4];
7222 const char *mark_s = argv[5];
7223 const char *packet_s = argv[6];
7224 uint32_t in_port = atoi(in_port_s);
7225 ovs_be64 tun_id = htonll(strtoull(tun_id_s, NULL, 0));
7226 uint32_t priority = atoi(priority_s);
7227 uint32_t mark = atoi(mark_s);
7228 const char *msg;
7229
7230 msg = eth_from_hex(packet_s, &packet);
7231 if (msg) {
7232 unixctl_command_reply_error(conn, msg);
7233 goto exit;
7234 }
7235
7236 ds_put_cstr(&result, "Packet: ");
7237 s = ofp_packet_to_string(packet->data, packet->size);
7238 ds_put_cstr(&result, s);
7239 free(s);
7240
7241 flow_extract(packet, priority, mark, NULL, in_port, &flow);
7242 flow.tunnel.tun_id = tun_id;
7243 initial_tci = flow.vlan_tci;
7244 } else {
7245 unixctl_command_reply_error(conn, "Bad command syntax");
7246 goto exit;
7247 }
7248
7249 ofproto_trace(ofproto, &flow, packet, initial_tci, &result);
7250 unixctl_command_reply(conn, ds_cstr(&result));
7251
7252 exit:
7253 ds_destroy(&result);
7254 ofpbuf_delete(packet);
7255 ofpbuf_uninit(&odp_key);
7256 }
7257
7258 static void
7259 ofproto_trace(struct ofproto_dpif *ofproto, const struct flow *flow,
7260 const struct ofpbuf *packet, ovs_be16 initial_tci,
7261 struct ds *ds)
7262 {
7263 struct rule_dpif *rule;
7264
7265 ds_put_cstr(ds, "Flow: ");
7266 flow_format(ds, flow);
7267 ds_put_char(ds, '\n');
7268
7269 rule = rule_dpif_lookup(ofproto, flow);
7270
7271 trace_format_rule(ds, 0, 0, rule);
7272 if (rule == ofproto->miss_rule) {
7273 ds_put_cstr(ds, "\nNo match, flow generates \"packet in\"s.\n");
7274 } else if (rule == ofproto->no_packet_in_rule) {
7275 ds_put_cstr(ds, "\nNo match, packets dropped because "
7276 "OFPPC_NO_PACKET_IN is set on in_port.\n");
7277 }
7278
7279 if (rule) {
7280 uint64_t odp_actions_stub[1024 / 8];
7281 struct ofpbuf odp_actions;
7282
7283 struct trace_ctx trace;
7284 uint8_t tcp_flags;
7285
7286 tcp_flags = packet ? packet_get_tcp_flags(packet, flow) : 0;
7287 trace.result = ds;
7288 trace.flow = *flow;
7289 ofpbuf_use_stub(&odp_actions,
7290 odp_actions_stub, sizeof odp_actions_stub);
7291 action_xlate_ctx_init(&trace.ctx, ofproto, flow, initial_tci,
7292 rule, tcp_flags, packet);
7293 trace.ctx.resubmit_hook = trace_resubmit;
7294 trace.ctx.report_hook = trace_report;
7295 xlate_actions(&trace.ctx, rule->up.ofpacts, rule->up.ofpacts_len,
7296 &odp_actions);
7297
7298 ds_put_char(ds, '\n');
7299 trace_format_flow(ds, 0, "Final flow", &trace);
7300 ds_put_cstr(ds, "Datapath actions: ");
7301 format_odp_actions(ds, odp_actions.data, odp_actions.size);
7302 ofpbuf_uninit(&odp_actions);
7303
7304 if (trace.ctx.slow) {
7305 enum slow_path_reason slow;
7306
7307 ds_put_cstr(ds, "\nThis flow is handled by the userspace "
7308 "slow path because it:");
7309 for (slow = trace.ctx.slow; slow; ) {
7310 enum slow_path_reason bit = rightmost_1bit(slow);
7311
7312 switch (bit) {
7313 case SLOW_CFM:
7314 ds_put_cstr(ds, "\n\t- Consists of CFM packets.");
7315 break;
7316 case SLOW_LACP:
7317 ds_put_cstr(ds, "\n\t- Consists of LACP packets.");
7318 break;
7319 case SLOW_STP:
7320 ds_put_cstr(ds, "\n\t- Consists of STP packets.");
7321 break;
7322 case SLOW_IN_BAND:
7323 ds_put_cstr(ds, "\n\t- Needs in-band special case "
7324 "processing.");
7325 if (!packet) {
7326 ds_put_cstr(ds, "\n\t (The datapath actions are "
7327 "incomplete--for complete actions, "
7328 "please supply a packet.)");
7329 }
7330 break;
7331 case SLOW_CONTROLLER:
7332 ds_put_cstr(ds, "\n\t- Sends \"packet-in\" messages "
7333 "to the OpenFlow controller.");
7334 break;
7335 case SLOW_MATCH:
7336 ds_put_cstr(ds, "\n\t- Needs more specific matching "
7337 "than the datapath supports.");
7338 break;
7339 }
7340
7341 slow &= ~bit;
7342 }
7343
7344 if (slow & ~SLOW_MATCH) {
7345 ds_put_cstr(ds, "\nThe datapath actions above do not reflect "
7346 "the special slow-path processing.");
7347 }
7348 }
7349 }
7350 }
7351
7352 static void
7353 ofproto_dpif_clog(struct unixctl_conn *conn OVS_UNUSED, int argc OVS_UNUSED,
7354 const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED)
7355 {
7356 clogged = true;
7357 unixctl_command_reply(conn, NULL);
7358 }
7359
7360 static void
7361 ofproto_dpif_unclog(struct unixctl_conn *conn OVS_UNUSED, int argc OVS_UNUSED,
7362 const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED)
7363 {
7364 clogged = false;
7365 unixctl_command_reply(conn, NULL);
7366 }
7367
7368 /* Runs a self-check of flow translations in 'ofproto'. Appends a message to
7369 * 'reply' describing the results. */
7370 static void
7371 ofproto_dpif_self_check__(struct ofproto_dpif *ofproto, struct ds *reply)
7372 {
7373 struct facet *facet;
7374 int errors;
7375
7376 errors = 0;
7377 HMAP_FOR_EACH (facet, hmap_node, &ofproto->facets) {
7378 if (!facet_check_consistency(facet)) {
7379 errors++;
7380 }
7381 }
7382 if (errors) {
7383 ofproto->need_revalidate = REV_INCONSISTENCY;
7384 }
7385
7386 if (errors) {
7387 ds_put_format(reply, "%s: self-check failed (%d errors)\n",
7388 ofproto->up.name, errors);
7389 } else {
7390 ds_put_format(reply, "%s: self-check passed\n", ofproto->up.name);
7391 }
7392 }
7393
7394 static void
7395 ofproto_dpif_self_check(struct unixctl_conn *conn,
7396 int argc, const char *argv[], void *aux OVS_UNUSED)
7397 {
7398 struct ds reply = DS_EMPTY_INITIALIZER;
7399 struct ofproto_dpif *ofproto;
7400
7401 if (argc > 1) {
7402 ofproto = ofproto_dpif_lookup(argv[1]);
7403 if (!ofproto) {
7404 unixctl_command_reply_error(conn, "Unknown ofproto (use "
7405 "ofproto/list for help)");
7406 return;
7407 }
7408 ofproto_dpif_self_check__(ofproto, &reply);
7409 } else {
7410 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
7411 ofproto_dpif_self_check__(ofproto, &reply);
7412 }
7413 }
7414
7415 unixctl_command_reply(conn, ds_cstr(&reply));
7416 ds_destroy(&reply);
7417 }
7418
7419 /* Store the current ofprotos in 'ofproto_shash'. Returns a sorted list
7420 * of the 'ofproto_shash' nodes. It is the responsibility of the caller
7421 * to destroy 'ofproto_shash' and free the returned value. */
7422 static const struct shash_node **
7423 get_ofprotos(struct shash *ofproto_shash)
7424 {
7425 const struct ofproto_dpif *ofproto;
7426
7427 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
7428 char *name = xasprintf("%s@%s", ofproto->up.type, ofproto->up.name);
7429 shash_add_nocopy(ofproto_shash, name, ofproto);
7430 }
7431
7432 return shash_sort(ofproto_shash);
7433 }
7434
7435 static void
7436 ofproto_unixctl_dpif_dump_dps(struct unixctl_conn *conn, int argc OVS_UNUSED,
7437 const char *argv[] OVS_UNUSED,
7438 void *aux OVS_UNUSED)
7439 {
7440 struct ds ds = DS_EMPTY_INITIALIZER;
7441 struct shash ofproto_shash;
7442 const struct shash_node **sorted_ofprotos;
7443 int i;
7444
7445 shash_init(&ofproto_shash);
7446 sorted_ofprotos = get_ofprotos(&ofproto_shash);
7447 for (i = 0; i < shash_count(&ofproto_shash); i++) {
7448 const struct shash_node *node = sorted_ofprotos[i];
7449 ds_put_format(&ds, "%s\n", node->name);
7450 }
7451
7452 shash_destroy(&ofproto_shash);
7453 free(sorted_ofprotos);
7454
7455 unixctl_command_reply(conn, ds_cstr(&ds));
7456 ds_destroy(&ds);
7457 }
7458
7459 static void
7460 show_dp_format(const struct ofproto_dpif *ofproto, struct ds *ds)
7461 {
7462 struct dpif_dp_stats s;
7463 const struct shash_node **ports;
7464 int i;
7465
7466 dpif_get_dp_stats(ofproto->backer->dpif, &s);
7467
7468 ds_put_format(ds, "%s (%s):\n", ofproto->up.name,
7469 dpif_name(ofproto->backer->dpif));
7470 /* xxx It would be better to show bridge-specific stats instead
7471 * xxx of dp ones. */
7472 ds_put_format(ds,
7473 "\tlookups: hit:%"PRIu64" missed:%"PRIu64" lost:%"PRIu64"\n",
7474 s.n_hit, s.n_missed, s.n_lost);
7475 ds_put_format(ds, "\tflows: %zu\n",
7476 hmap_count(&ofproto->subfacets));
7477
7478 ports = shash_sort(&ofproto->up.port_by_name);
7479 for (i = 0; i < shash_count(&ofproto->up.port_by_name); i++) {
7480 const struct shash_node *node = ports[i];
7481 struct ofport *ofport = node->data;
7482 const char *name = netdev_get_name(ofport->netdev);
7483 const char *type = netdev_get_type(ofport->netdev);
7484
7485 ds_put_format(ds, "\t%s %u/%u:", name, ofport->ofp_port,
7486 ofp_port_to_odp_port(ofproto, ofport->ofp_port));
7487 if (strcmp(type, "system")) {
7488 struct netdev *netdev;
7489 int error;
7490
7491 ds_put_format(ds, " (%s", type);
7492
7493 error = netdev_open(name, type, &netdev);
7494 if (!error) {
7495 struct smap config;
7496
7497 smap_init(&config);
7498 error = netdev_get_config(netdev, &config);
7499 if (!error) {
7500 const struct smap_node **nodes;
7501 size_t i;
7502
7503 nodes = smap_sort(&config);
7504 for (i = 0; i < smap_count(&config); i++) {
7505 const struct smap_node *node = nodes[i];
7506 ds_put_format(ds, "%c %s=%s", i ? ',' : ':',
7507 node->key, node->value);
7508 }
7509 free(nodes);
7510 }
7511 smap_destroy(&config);
7512
7513 netdev_close(netdev);
7514 }
7515 ds_put_char(ds, ')');
7516 }
7517 ds_put_char(ds, '\n');
7518 }
7519 free(ports);
7520 }
7521
7522 static void
7523 ofproto_unixctl_dpif_show(struct unixctl_conn *conn, int argc,
7524 const char *argv[], void *aux OVS_UNUSED)
7525 {
7526 struct ds ds = DS_EMPTY_INITIALIZER;
7527 const struct ofproto_dpif *ofproto;
7528
7529 if (argc > 1) {
7530 int i;
7531 for (i = 1; i < argc; i++) {
7532 ofproto = ofproto_dpif_lookup(argv[i]);
7533 if (!ofproto) {
7534 ds_put_format(&ds, "Unknown bridge %s (use dpif/dump-dps "
7535 "for help)", argv[i]);
7536 unixctl_command_reply_error(conn, ds_cstr(&ds));
7537 return;
7538 }
7539 show_dp_format(ofproto, &ds);
7540 }
7541 } else {
7542 struct shash ofproto_shash;
7543 const struct shash_node **sorted_ofprotos;
7544 int i;
7545
7546 shash_init(&ofproto_shash);
7547 sorted_ofprotos = get_ofprotos(&ofproto_shash);
7548 for (i = 0; i < shash_count(&ofproto_shash); i++) {
7549 const struct shash_node *node = sorted_ofprotos[i];
7550 show_dp_format(node->data, &ds);
7551 }
7552
7553 shash_destroy(&ofproto_shash);
7554 free(sorted_ofprotos);
7555 }
7556
7557 unixctl_command_reply(conn, ds_cstr(&ds));
7558 ds_destroy(&ds);
7559 }
7560
7561 static void
7562 ofproto_unixctl_dpif_dump_flows(struct unixctl_conn *conn,
7563 int argc OVS_UNUSED, const char *argv[],
7564 void *aux OVS_UNUSED)
7565 {
7566 struct ds ds = DS_EMPTY_INITIALIZER;
7567 const struct ofproto_dpif *ofproto;
7568 struct subfacet *subfacet;
7569
7570 ofproto = ofproto_dpif_lookup(argv[1]);
7571 if (!ofproto) {
7572 unixctl_command_reply_error(conn, "no such bridge");
7573 return;
7574 }
7575
7576 HMAP_FOR_EACH (subfacet, hmap_node, &ofproto->subfacets) {
7577 struct odputil_keybuf keybuf;
7578 struct ofpbuf key;
7579
7580 subfacet_get_key(subfacet, &keybuf, &key);
7581 odp_flow_key_format(key.data, key.size, &ds);
7582
7583 ds_put_format(&ds, ", packets:%"PRIu64", bytes:%"PRIu64", used:",
7584 subfacet->dp_packet_count, subfacet->dp_byte_count);
7585 if (subfacet->used) {
7586 ds_put_format(&ds, "%.3fs",
7587 (time_msec() - subfacet->used) / 1000.0);
7588 } else {
7589 ds_put_format(&ds, "never");
7590 }
7591 if (subfacet->facet->tcp_flags) {
7592 ds_put_cstr(&ds, ", flags:");
7593 packet_format_tcp_flags(&ds, subfacet->facet->tcp_flags);
7594 }
7595
7596 ds_put_cstr(&ds, ", actions:");
7597 format_odp_actions(&ds, subfacet->actions, subfacet->actions_len);
7598 ds_put_char(&ds, '\n');
7599 }
7600
7601 unixctl_command_reply(conn, ds_cstr(&ds));
7602 ds_destroy(&ds);
7603 }
7604
7605 static void
7606 ofproto_unixctl_dpif_del_flows(struct unixctl_conn *conn,
7607 int argc OVS_UNUSED, const char *argv[],
7608 void *aux OVS_UNUSED)
7609 {
7610 struct ds ds = DS_EMPTY_INITIALIZER;
7611 struct ofproto_dpif *ofproto;
7612
7613 ofproto = ofproto_dpif_lookup(argv[1]);
7614 if (!ofproto) {
7615 unixctl_command_reply_error(conn, "no such bridge");
7616 return;
7617 }
7618
7619 flush(&ofproto->up);
7620
7621 unixctl_command_reply(conn, ds_cstr(&ds));
7622 ds_destroy(&ds);
7623 }
7624
7625 static void
7626 ofproto_dpif_unixctl_init(void)
7627 {
7628 static bool registered;
7629 if (registered) {
7630 return;
7631 }
7632 registered = true;
7633
7634 unixctl_command_register(
7635 "ofproto/trace",
7636 "bridge {priority tun_id in_port mark packet | odp_flow [-generate]}",
7637 2, 6, ofproto_unixctl_trace, NULL);
7638 unixctl_command_register("fdb/flush", "[bridge]", 0, 1,
7639 ofproto_unixctl_fdb_flush, NULL);
7640 unixctl_command_register("fdb/show", "bridge", 1, 1,
7641 ofproto_unixctl_fdb_show, NULL);
7642 unixctl_command_register("ofproto/clog", "", 0, 0,
7643 ofproto_dpif_clog, NULL);
7644 unixctl_command_register("ofproto/unclog", "", 0, 0,
7645 ofproto_dpif_unclog, NULL);
7646 unixctl_command_register("ofproto/self-check", "[bridge]", 0, 1,
7647 ofproto_dpif_self_check, NULL);
7648 unixctl_command_register("dpif/dump-dps", "", 0, 0,
7649 ofproto_unixctl_dpif_dump_dps, NULL);
7650 unixctl_command_register("dpif/show", "[bridge]", 0, INT_MAX,
7651 ofproto_unixctl_dpif_show, NULL);
7652 unixctl_command_register("dpif/dump-flows", "bridge", 1, 1,
7653 ofproto_unixctl_dpif_dump_flows, NULL);
7654 unixctl_command_register("dpif/del-flows", "bridge", 1, 1,
7655 ofproto_unixctl_dpif_del_flows, NULL);
7656 }
7657 \f
7658 /* Linux VLAN device support (e.g. "eth0.10" for VLAN 10.)
7659 *
7660 * This is deprecated. It is only for compatibility with broken device drivers
7661 * in old versions of Linux that do not properly support VLANs when VLAN
7662 * devices are not used. When broken device drivers are no longer in
7663 * widespread use, we will delete these interfaces. */
7664
7665 static int
7666 set_realdev(struct ofport *ofport_, uint16_t realdev_ofp_port, int vid)
7667 {
7668 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport_->ofproto);
7669 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
7670
7671 if (realdev_ofp_port == ofport->realdev_ofp_port
7672 && vid == ofport->vlandev_vid) {
7673 return 0;
7674 }
7675
7676 ofproto->need_revalidate = REV_RECONFIGURE;
7677
7678 if (ofport->realdev_ofp_port) {
7679 vsp_remove(ofport);
7680 }
7681 if (realdev_ofp_port && ofport->bundle) {
7682 /* vlandevs are enslaved to their realdevs, so they are not allowed to
7683 * themselves be part of a bundle. */
7684 bundle_set(ofport->up.ofproto, ofport->bundle, NULL);
7685 }
7686
7687 ofport->realdev_ofp_port = realdev_ofp_port;
7688 ofport->vlandev_vid = vid;
7689
7690 if (realdev_ofp_port) {
7691 vsp_add(ofport, realdev_ofp_port, vid);
7692 }
7693
7694 return 0;
7695 }
7696
7697 static uint32_t
7698 hash_realdev_vid(uint16_t realdev_ofp_port, int vid)
7699 {
7700 return hash_2words(realdev_ofp_port, vid);
7701 }
7702
7703 /* Returns the ODP port number of the Linux VLAN device that corresponds to
7704 * 'vlan_tci' on the network device with port number 'realdev_odp_port' in
7705 * 'ofproto'. For example, given 'realdev_odp_port' of eth0 and 'vlan_tci' 9,
7706 * it would return the port number of eth0.9.
7707 *
7708 * Unless VLAN splinters are enabled for port 'realdev_odp_port', this
7709 * function just returns its 'realdev_odp_port' argument. */
7710 static uint32_t
7711 vsp_realdev_to_vlandev(const struct ofproto_dpif *ofproto,
7712 uint32_t realdev_odp_port, ovs_be16 vlan_tci)
7713 {
7714 if (!hmap_is_empty(&ofproto->realdev_vid_map)) {
7715 uint16_t realdev_ofp_port;
7716 int vid = vlan_tci_to_vid(vlan_tci);
7717 const struct vlan_splinter *vsp;
7718
7719 realdev_ofp_port = odp_port_to_ofp_port(ofproto, realdev_odp_port);
7720 HMAP_FOR_EACH_WITH_HASH (vsp, realdev_vid_node,
7721 hash_realdev_vid(realdev_ofp_port, vid),
7722 &ofproto->realdev_vid_map) {
7723 if (vsp->realdev_ofp_port == realdev_ofp_port
7724 && vsp->vid == vid) {
7725 return ofp_port_to_odp_port(ofproto, vsp->vlandev_ofp_port);
7726 }
7727 }
7728 }
7729 return realdev_odp_port;
7730 }
7731
7732 static struct vlan_splinter *
7733 vlandev_find(const struct ofproto_dpif *ofproto, uint16_t vlandev_ofp_port)
7734 {
7735 struct vlan_splinter *vsp;
7736
7737 HMAP_FOR_EACH_WITH_HASH (vsp, vlandev_node, hash_int(vlandev_ofp_port, 0),
7738 &ofproto->vlandev_map) {
7739 if (vsp->vlandev_ofp_port == vlandev_ofp_port) {
7740 return vsp;
7741 }
7742 }
7743
7744 return NULL;
7745 }
7746
7747 /* Returns the OpenFlow port number of the "real" device underlying the Linux
7748 * VLAN device with OpenFlow port number 'vlandev_ofp_port' and stores the
7749 * VLAN VID of the Linux VLAN device in '*vid'. For example, given
7750 * 'vlandev_ofp_port' of eth0.9, it would return the OpenFlow port number of
7751 * eth0 and store 9 in '*vid'.
7752 *
7753 * Returns 0 and does not modify '*vid' if 'vlandev_ofp_port' is not a Linux
7754 * VLAN device. Unless VLAN splinters are enabled, this is what this function
7755 * always does.*/
7756 static uint16_t
7757 vsp_vlandev_to_realdev(const struct ofproto_dpif *ofproto,
7758 uint16_t vlandev_ofp_port, int *vid)
7759 {
7760 if (!hmap_is_empty(&ofproto->vlandev_map)) {
7761 const struct vlan_splinter *vsp;
7762
7763 vsp = vlandev_find(ofproto, vlandev_ofp_port);
7764 if (vsp) {
7765 if (vid) {
7766 *vid = vsp->vid;
7767 }
7768 return vsp->realdev_ofp_port;
7769 }
7770 }
7771 return 0;
7772 }
7773
7774 /* Given 'flow', a flow representing a packet received on 'ofproto', checks
7775 * whether 'flow->in_port' represents a Linux VLAN device. If so, changes
7776 * 'flow->in_port' to the "real" device backing the VLAN device, sets
7777 * 'flow->vlan_tci' to the VLAN VID, and returns true. Otherwise (which is
7778 * always the case unless VLAN splinters are enabled), returns false without
7779 * making any changes. */
7780 static bool
7781 vsp_adjust_flow(const struct ofproto_dpif *ofproto, struct flow *flow)
7782 {
7783 uint16_t realdev;
7784 int vid;
7785
7786 realdev = vsp_vlandev_to_realdev(ofproto, flow->in_port, &vid);
7787 if (!realdev) {
7788 return false;
7789 }
7790
7791 /* Cause the flow to be processed as if it came in on the real device with
7792 * the VLAN device's VLAN ID. */
7793 flow->in_port = realdev;
7794 flow->vlan_tci = htons((vid & VLAN_VID_MASK) | VLAN_CFI);
7795 return true;
7796 }
7797
7798 static void
7799 vsp_remove(struct ofport_dpif *port)
7800 {
7801 struct ofproto_dpif *ofproto = ofproto_dpif_cast(port->up.ofproto);
7802 struct vlan_splinter *vsp;
7803
7804 vsp = vlandev_find(ofproto, port->up.ofp_port);
7805 if (vsp) {
7806 hmap_remove(&ofproto->vlandev_map, &vsp->vlandev_node);
7807 hmap_remove(&ofproto->realdev_vid_map, &vsp->realdev_vid_node);
7808 free(vsp);
7809
7810 port->realdev_ofp_port = 0;
7811 } else {
7812 VLOG_ERR("missing vlan device record");
7813 }
7814 }
7815
7816 static void
7817 vsp_add(struct ofport_dpif *port, uint16_t realdev_ofp_port, int vid)
7818 {
7819 struct ofproto_dpif *ofproto = ofproto_dpif_cast(port->up.ofproto);
7820
7821 if (!vsp_vlandev_to_realdev(ofproto, port->up.ofp_port, NULL)
7822 && (vsp_realdev_to_vlandev(ofproto, realdev_ofp_port, htons(vid))
7823 == realdev_ofp_port)) {
7824 struct vlan_splinter *vsp;
7825
7826 vsp = xmalloc(sizeof *vsp);
7827 hmap_insert(&ofproto->vlandev_map, &vsp->vlandev_node,
7828 hash_int(port->up.ofp_port, 0));
7829 hmap_insert(&ofproto->realdev_vid_map, &vsp->realdev_vid_node,
7830 hash_realdev_vid(realdev_ofp_port, vid));
7831 vsp->realdev_ofp_port = realdev_ofp_port;
7832 vsp->vlandev_ofp_port = port->up.ofp_port;
7833 vsp->vid = vid;
7834
7835 port->realdev_ofp_port = realdev_ofp_port;
7836 } else {
7837 VLOG_ERR("duplicate vlan device record");
7838 }
7839 }
7840
7841 static uint32_t
7842 ofp_port_to_odp_port(const struct ofproto_dpif *ofproto, uint16_t ofp_port)
7843 {
7844 const struct ofport_dpif *ofport = get_ofp_port(ofproto, ofp_port);
7845 return ofport ? ofport->odp_port : OVSP_NONE;
7846 }
7847
7848 static struct ofport_dpif *
7849 odp_port_to_ofport(const struct dpif_backer *backer, uint32_t odp_port)
7850 {
7851 struct ofport_dpif *port;
7852
7853 HMAP_FOR_EACH_IN_BUCKET (port, odp_port_node,
7854 hash_int(odp_port, 0),
7855 &backer->odp_to_ofport_map) {
7856 if (port->odp_port == odp_port) {
7857 return port;
7858 }
7859 }
7860
7861 return NULL;
7862 }
7863
7864 static uint16_t
7865 odp_port_to_ofp_port(const struct ofproto_dpif *ofproto, uint32_t odp_port)
7866 {
7867 struct ofport_dpif *port;
7868
7869 port = odp_port_to_ofport(ofproto->backer, odp_port);
7870 if (port && ofproto == ofproto_dpif_cast(port->up.ofproto)) {
7871 return port->up.ofp_port;
7872 } else {
7873 return OFPP_NONE;
7874 }
7875 }
7876
7877 const struct ofproto_class ofproto_dpif_class = {
7878 init,
7879 enumerate_types,
7880 enumerate_names,
7881 del,
7882 port_open_type,
7883 type_run,
7884 type_run_fast,
7885 type_wait,
7886 alloc,
7887 construct,
7888 destruct,
7889 dealloc,
7890 run,
7891 run_fast,
7892 wait,
7893 get_memory_usage,
7894 flush,
7895 get_features,
7896 get_tables,
7897 port_alloc,
7898 port_construct,
7899 port_destruct,
7900 port_dealloc,
7901 port_modified,
7902 port_reconfigured,
7903 port_query_by_name,
7904 port_add,
7905 port_del,
7906 port_get_stats,
7907 port_dump_start,
7908 port_dump_next,
7909 port_dump_done,
7910 port_poll,
7911 port_poll_wait,
7912 port_is_lacp_current,
7913 NULL, /* rule_choose_table */
7914 rule_alloc,
7915 rule_construct,
7916 rule_destruct,
7917 rule_dealloc,
7918 rule_get_stats,
7919 rule_execute,
7920 rule_modify_actions,
7921 set_frag_handling,
7922 packet_out,
7923 set_netflow,
7924 get_netflow_ids,
7925 set_sflow,
7926 set_cfm,
7927 get_cfm_fault,
7928 get_cfm_opup,
7929 get_cfm_remote_mpids,
7930 get_cfm_health,
7931 set_stp,
7932 get_stp_status,
7933 set_stp_port,
7934 get_stp_port_status,
7935 set_queues,
7936 bundle_set,
7937 bundle_remove,
7938 mirror_set,
7939 mirror_get_stats,
7940 set_flood_vlans,
7941 is_mirror_output_bundle,
7942 forward_bpdu_changed,
7943 set_mac_idle_time,
7944 set_realdev,
7945 };