]> git.proxmox.com Git - ovs.git/blob - ofproto/ofproto-dpif.c
f37d8406d6147279985c81664e6fa79fb745f4d4
[ovs.git] / ofproto / ofproto-dpif.c
1 /*
2 * Copyright (c) 2009, 2010, 2011, 2012, 2013 Nicira, Inc.
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at:
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <config.h>
18
19 #include "ofproto/ofproto-provider.h"
20
21 #include <errno.h>
22
23 #include "bond.h"
24 #include "bundle.h"
25 #include "byte-order.h"
26 #include "connmgr.h"
27 #include "coverage.h"
28 #include "cfm.h"
29 #include "dpif.h"
30 #include "dynamic-string.h"
31 #include "fail-open.h"
32 #include "hmapx.h"
33 #include "lacp.h"
34 #include "learn.h"
35 #include "mac-learning.h"
36 #include "meta-flow.h"
37 #include "multipath.h"
38 #include "netdev-vport.h"
39 #include "netdev.h"
40 #include "netlink.h"
41 #include "nx-match.h"
42 #include "odp-util.h"
43 #include "ofp-util.h"
44 #include "ofpbuf.h"
45 #include "ofp-actions.h"
46 #include "ofp-parse.h"
47 #include "ofp-print.h"
48 #include "ofproto-dpif-governor.h"
49 #include "ofproto-dpif-sflow.h"
50 #include "poll-loop.h"
51 #include "simap.h"
52 #include "smap.h"
53 #include "timer.h"
54 #include "tunnel.h"
55 #include "unaligned.h"
56 #include "unixctl.h"
57 #include "vlan-bitmap.h"
58 #include "vlog.h"
59
60 VLOG_DEFINE_THIS_MODULE(ofproto_dpif);
61
62 COVERAGE_DEFINE(ofproto_dpif_expired);
63 COVERAGE_DEFINE(ofproto_dpif_xlate);
64 COVERAGE_DEFINE(facet_changed_rule);
65 COVERAGE_DEFINE(facet_revalidate);
66 COVERAGE_DEFINE(facet_unexpected);
67 COVERAGE_DEFINE(facet_suppress);
68
69 /* Maximum depth of flow table recursion (due to resubmit actions) in a
70 * flow translation. */
71 #define MAX_RESUBMIT_RECURSION 64
72
73 /* Number of implemented OpenFlow tables. */
74 enum { N_TABLES = 255 };
75 enum { TBL_INTERNAL = N_TABLES - 1 }; /* Used for internal hidden rules. */
76 BUILD_ASSERT_DECL(N_TABLES >= 2 && N_TABLES <= 255);
77
78 struct ofport_dpif;
79 struct ofproto_dpif;
80 struct flow_miss;
81
82 struct rule_dpif {
83 struct rule up;
84
85 /* These statistics:
86 *
87 * - Do include packets and bytes from facets that have been deleted or
88 * whose own statistics have been folded into the rule.
89 *
90 * - Do include packets and bytes sent "by hand" that were accounted to
91 * the rule without any facet being involved (this is a rare corner
92 * case in rule_execute()).
93 *
94 * - Do not include packet or bytes that can be obtained from any facet's
95 * packet_count or byte_count member or that can be obtained from the
96 * datapath by, e.g., dpif_flow_get() for any subfacet.
97 */
98 uint64_t packet_count; /* Number of packets received. */
99 uint64_t byte_count; /* Number of bytes received. */
100
101 tag_type tag; /* Caches rule_calculate_tag() result. */
102
103 struct list facets; /* List of "struct facet"s. */
104 };
105
106 static struct rule_dpif *rule_dpif_cast(const struct rule *rule)
107 {
108 return rule ? CONTAINER_OF(rule, struct rule_dpif, up) : NULL;
109 }
110
111 static struct rule_dpif *rule_dpif_lookup(struct ofproto_dpif *,
112 const struct flow *);
113 static struct rule_dpif *rule_dpif_lookup__(struct ofproto_dpif *,
114 const struct flow *,
115 uint8_t table);
116 static struct rule_dpif *rule_dpif_miss_rule(struct ofproto_dpif *ofproto,
117 const struct flow *flow);
118
119 static void rule_credit_stats(struct rule_dpif *,
120 const struct dpif_flow_stats *);
121 static void flow_push_stats(struct rule_dpif *, const struct flow *,
122 const struct dpif_flow_stats *);
123 static tag_type rule_calculate_tag(const struct flow *,
124 const struct minimask *, uint32_t basis);
125 static void rule_invalidate(const struct rule_dpif *);
126
127 #define MAX_MIRRORS 32
128 typedef uint32_t mirror_mask_t;
129 #define MIRROR_MASK_C(X) UINT32_C(X)
130 BUILD_ASSERT_DECL(sizeof(mirror_mask_t) * CHAR_BIT >= MAX_MIRRORS);
131 struct ofmirror {
132 struct ofproto_dpif *ofproto; /* Owning ofproto. */
133 size_t idx; /* In ofproto's "mirrors" array. */
134 void *aux; /* Key supplied by ofproto's client. */
135 char *name; /* Identifier for log messages. */
136
137 /* Selection criteria. */
138 struct hmapx srcs; /* Contains "struct ofbundle *"s. */
139 struct hmapx dsts; /* Contains "struct ofbundle *"s. */
140 unsigned long *vlans; /* Bitmap of chosen VLANs, NULL selects all. */
141
142 /* Output (exactly one of out == NULL and out_vlan == -1 is true). */
143 struct ofbundle *out; /* Output port or NULL. */
144 int out_vlan; /* Output VLAN or -1. */
145 mirror_mask_t dup_mirrors; /* Bitmap of mirrors with the same output. */
146
147 /* Counters. */
148 int64_t packet_count; /* Number of packets sent. */
149 int64_t byte_count; /* Number of bytes sent. */
150 };
151
152 static void mirror_destroy(struct ofmirror *);
153 static void update_mirror_stats(struct ofproto_dpif *ofproto,
154 mirror_mask_t mirrors,
155 uint64_t packets, uint64_t bytes);
156
157 struct ofbundle {
158 struct hmap_node hmap_node; /* In struct ofproto's "bundles" hmap. */
159 struct ofproto_dpif *ofproto; /* Owning ofproto. */
160 void *aux; /* Key supplied by ofproto's client. */
161 char *name; /* Identifier for log messages. */
162
163 /* Configuration. */
164 struct list ports; /* Contains "struct ofport"s. */
165 enum port_vlan_mode vlan_mode; /* VLAN mode */
166 int vlan; /* -1=trunk port, else a 12-bit VLAN ID. */
167 unsigned long *trunks; /* Bitmap of trunked VLANs, if 'vlan' == -1.
168 * NULL if all VLANs are trunked. */
169 struct lacp *lacp; /* LACP if LACP is enabled, otherwise NULL. */
170 struct bond *bond; /* Nonnull iff more than one port. */
171 bool use_priority_tags; /* Use 802.1p tag for frames in VLAN 0? */
172
173 /* Status. */
174 bool floodable; /* True if no port has OFPUTIL_PC_NO_FLOOD set. */
175
176 /* Port mirroring info. */
177 mirror_mask_t src_mirrors; /* Mirrors triggered when packet received. */
178 mirror_mask_t dst_mirrors; /* Mirrors triggered when packet sent. */
179 mirror_mask_t mirror_out; /* Mirrors that output to this bundle. */
180 };
181
182 static void bundle_remove(struct ofport *);
183 static void bundle_update(struct ofbundle *);
184 static void bundle_destroy(struct ofbundle *);
185 static void bundle_del_port(struct ofport_dpif *);
186 static void bundle_run(struct ofbundle *);
187 static void bundle_wait(struct ofbundle *);
188 static struct ofbundle *lookup_input_bundle(const struct ofproto_dpif *,
189 uint16_t in_port, bool warn,
190 struct ofport_dpif **in_ofportp);
191
192 /* A controller may use OFPP_NONE as the ingress port to indicate that
193 * it did not arrive on a "real" port. 'ofpp_none_bundle' exists for
194 * when an input bundle is needed for validation (e.g., mirroring or
195 * OFPP_NORMAL processing). It is not connected to an 'ofproto' or have
196 * any 'port' structs, so care must be taken when dealing with it. */
197 static struct ofbundle ofpp_none_bundle = {
198 .name = "OFPP_NONE",
199 .vlan_mode = PORT_VLAN_TRUNK
200 };
201
202 static void stp_run(struct ofproto_dpif *ofproto);
203 static void stp_wait(struct ofproto_dpif *ofproto);
204 static int set_stp_port(struct ofport *,
205 const struct ofproto_port_stp_settings *);
206
207 static bool ofbundle_includes_vlan(const struct ofbundle *, uint16_t vlan);
208
209 struct action_xlate_ctx {
210 /* action_xlate_ctx_init() initializes these members. */
211
212 /* The ofproto. */
213 struct ofproto_dpif *ofproto;
214
215 /* Flow to which the OpenFlow actions apply. xlate_actions() will modify
216 * this flow when actions change header fields. */
217 struct flow flow;
218
219 /* The packet corresponding to 'flow', or a null pointer if we are
220 * revalidating without a packet to refer to. */
221 const struct ofpbuf *packet;
222
223 /* Should OFPP_NORMAL update the MAC learning table? Should "learn"
224 * actions update the flow table?
225 *
226 * We want to update these tables if we are actually processing a packet,
227 * or if we are accounting for packets that the datapath has processed, but
228 * not if we are just revalidating. */
229 bool may_learn;
230
231 /* The rule that we are currently translating, or NULL. */
232 struct rule_dpif *rule;
233
234 /* Union of the set of TCP flags seen so far in this flow. (Used only by
235 * NXAST_FIN_TIMEOUT. Set to zero to avoid updating updating rules'
236 * timeouts.) */
237 uint8_t tcp_flags;
238
239 /* If nonnull, flow translation calls this function just before executing a
240 * resubmit or OFPP_TABLE action. In addition, disables logging of traces
241 * when the recursion depth is exceeded.
242 *
243 * 'rule' is the rule being submitted into. It will be null if the
244 * resubmit or OFPP_TABLE action didn't find a matching rule.
245 *
246 * This is normally null so the client has to set it manually after
247 * calling action_xlate_ctx_init(). */
248 void (*resubmit_hook)(struct action_xlate_ctx *, struct rule_dpif *rule);
249
250 /* If nonnull, flow translation calls this function to report some
251 * significant decision, e.g. to explain why OFPP_NORMAL translation
252 * dropped a packet. */
253 void (*report_hook)(struct action_xlate_ctx *, const char *s);
254
255 /* If nonnull, flow translation credits the specified statistics to each
256 * rule reached through a resubmit or OFPP_TABLE action.
257 *
258 * This is normally null so the client has to set it manually after
259 * calling action_xlate_ctx_init(). */
260 const struct dpif_flow_stats *resubmit_stats;
261
262 /* xlate_actions() initializes and uses these members. The client might want
263 * to look at them after it returns. */
264
265 struct ofpbuf *odp_actions; /* Datapath actions. */
266 tag_type tags; /* Tags associated with actions. */
267 enum slow_path_reason slow; /* 0 if fast path may be used. */
268 bool has_learn; /* Actions include NXAST_LEARN? */
269 bool has_normal; /* Actions output to OFPP_NORMAL? */
270 bool has_fin_timeout; /* Actions include NXAST_FIN_TIMEOUT? */
271 uint16_t nf_output_iface; /* Output interface index for NetFlow. */
272 mirror_mask_t mirrors; /* Bitmap of associated mirrors. */
273
274 /* xlate_actions() initializes and uses these members, but the client has no
275 * reason to look at them. */
276
277 int recurse; /* Recursion level, via xlate_table_action. */
278 bool max_resubmit_trigger; /* Recursed too deeply during translation. */
279 struct flow base_flow; /* Flow at the last commit. */
280 uint32_t orig_skb_priority; /* Priority when packet arrived. */
281 uint8_t table_id; /* OpenFlow table ID where flow was found. */
282 uint32_t sflow_n_outputs; /* Number of output ports. */
283 uint32_t sflow_odp_port; /* Output port for composing sFlow action. */
284 uint16_t user_cookie_offset;/* Used for user_action_cookie fixup. */
285 bool exit; /* No further actions should be processed. */
286 };
287
288 static void action_xlate_ctx_init(struct action_xlate_ctx *,
289 struct ofproto_dpif *, const struct flow *,
290 ovs_be16 initial_tci, struct rule_dpif *,
291 uint8_t tcp_flags, const struct ofpbuf *);
292 static void xlate_actions(struct action_xlate_ctx *,
293 const struct ofpact *ofpacts, size_t ofpacts_len,
294 struct ofpbuf *odp_actions);
295 static void xlate_actions_for_side_effects(struct action_xlate_ctx *,
296 const struct ofpact *ofpacts,
297 size_t ofpacts_len);
298 static void xlate_table_action(struct action_xlate_ctx *, uint16_t in_port,
299 uint8_t table_id, bool may_packet_in);
300
301 static size_t put_userspace_action(const struct ofproto_dpif *,
302 struct ofpbuf *odp_actions,
303 const struct flow *,
304 const union user_action_cookie *);
305
306 static void compose_slow_path(const struct ofproto_dpif *, const struct flow *,
307 enum slow_path_reason,
308 uint64_t *stub, size_t stub_size,
309 const struct nlattr **actionsp,
310 size_t *actions_lenp);
311
312 static void xlate_report(struct action_xlate_ctx *ctx, const char *s);
313
314 /* A subfacet (see "struct subfacet" below) has three possible installation
315 * states:
316 *
317 * - SF_NOT_INSTALLED: Not installed in the datapath. This will only be the
318 * case just after the subfacet is created, just before the subfacet is
319 * destroyed, or if the datapath returns an error when we try to install a
320 * subfacet.
321 *
322 * - SF_FAST_PATH: The subfacet's actions are installed in the datapath.
323 *
324 * - SF_SLOW_PATH: An action that sends every packet for the subfacet through
325 * ofproto_dpif is installed in the datapath.
326 */
327 enum subfacet_path {
328 SF_NOT_INSTALLED, /* No datapath flow for this subfacet. */
329 SF_FAST_PATH, /* Full actions are installed. */
330 SF_SLOW_PATH, /* Send-to-userspace action is installed. */
331 };
332
333 static const char *subfacet_path_to_string(enum subfacet_path);
334
335 /* A dpif flow and actions associated with a facet.
336 *
337 * See also the large comment on struct facet. */
338 struct subfacet {
339 /* Owners. */
340 struct hmap_node hmap_node; /* In struct ofproto_dpif 'subfacets' list. */
341 struct list list_node; /* In struct facet's 'facets' list. */
342 struct facet *facet; /* Owning facet. */
343
344 enum odp_key_fitness key_fitness;
345 struct nlattr *key;
346 int key_len;
347
348 long long int used; /* Time last used; time created if not used. */
349
350 uint64_t dp_packet_count; /* Last known packet count in the datapath. */
351 uint64_t dp_byte_count; /* Last known byte count in the datapath. */
352
353 /* Datapath actions.
354 *
355 * These should be essentially identical for every subfacet in a facet, but
356 * may differ in trivial ways due to VLAN splinters. */
357 size_t actions_len; /* Number of bytes in actions[]. */
358 struct nlattr *actions; /* Datapath actions. */
359
360 enum slow_path_reason slow; /* 0 if fast path may be used. */
361 enum subfacet_path path; /* Installed in datapath? */
362
363 /* This value is normally the same as ->facet->flow.vlan_tci. Only VLAN
364 * splinters can cause it to differ. This value should be removed when
365 * the VLAN splinters feature is no longer needed. */
366 ovs_be16 initial_tci; /* Initial VLAN TCI value. */
367
368 /* Datapath port the packet arrived on. This is needed to remove
369 * flows for ports that are no longer part of the bridge. Since the
370 * flow definition only has the OpenFlow port number and the port is
371 * no longer part of the bridge, we can't determine the datapath port
372 * number needed to delete the flow from the datapath. */
373 uint32_t odp_in_port;
374 };
375
376 #define SUBFACET_DESTROY_MAX_BATCH 50
377
378 static struct subfacet *subfacet_create(struct facet *, struct flow_miss *miss,
379 long long int now);
380 static struct subfacet *subfacet_find(struct ofproto_dpif *,
381 const struct nlattr *key, size_t key_len,
382 uint32_t key_hash);
383 static void subfacet_destroy(struct subfacet *);
384 static void subfacet_destroy__(struct subfacet *);
385 static void subfacet_destroy_batch(struct ofproto_dpif *,
386 struct subfacet **, int n);
387 static void subfacet_reset_dp_stats(struct subfacet *,
388 struct dpif_flow_stats *);
389 static void subfacet_update_time(struct subfacet *, long long int used);
390 static void subfacet_update_stats(struct subfacet *,
391 const struct dpif_flow_stats *);
392 static void subfacet_make_actions(struct subfacet *,
393 const struct ofpbuf *packet,
394 struct ofpbuf *odp_actions);
395 static int subfacet_install(struct subfacet *,
396 const struct nlattr *actions, size_t actions_len,
397 struct dpif_flow_stats *, enum slow_path_reason);
398 static void subfacet_uninstall(struct subfacet *);
399
400 static enum subfacet_path subfacet_want_path(enum slow_path_reason);
401
402 /* An exact-match instantiation of an OpenFlow flow.
403 *
404 * A facet associates a "struct flow", which represents the Open vSwitch
405 * userspace idea of an exact-match flow, with one or more subfacets. Each
406 * subfacet tracks the datapath's idea of the exact-match flow equivalent to
407 * the facet. When the kernel module (or other dpif implementation) and Open
408 * vSwitch userspace agree on the definition of a flow key, there is exactly
409 * one subfacet per facet. If the dpif implementation supports more-specific
410 * flow matching than userspace, however, a facet can have more than one
411 * subfacet, each of which corresponds to some distinction in flow that
412 * userspace simply doesn't understand.
413 *
414 * Flow expiration works in terms of subfacets, so a facet must have at least
415 * one subfacet or it will never expire, leaking memory. */
416 struct facet {
417 /* Owners. */
418 struct hmap_node hmap_node; /* In owning ofproto's 'facets' hmap. */
419 struct list list_node; /* In owning rule's 'facets' list. */
420 struct rule_dpif *rule; /* Owning rule. */
421
422 /* Owned data. */
423 struct list subfacets;
424 long long int used; /* Time last used; time created if not used. */
425
426 /* Key. */
427 struct flow flow;
428
429 /* These statistics:
430 *
431 * - Do include packets and bytes sent "by hand", e.g. with
432 * dpif_execute().
433 *
434 * - Do include packets and bytes that were obtained from the datapath
435 * when a subfacet's statistics were reset (e.g. dpif_flow_put() with
436 * DPIF_FP_ZERO_STATS).
437 *
438 * - Do not include packets or bytes that can be obtained from the
439 * datapath for any existing subfacet.
440 */
441 uint64_t packet_count; /* Number of packets received. */
442 uint64_t byte_count; /* Number of bytes received. */
443
444 /* Resubmit statistics. */
445 uint64_t prev_packet_count; /* Number of packets from last stats push. */
446 uint64_t prev_byte_count; /* Number of bytes from last stats push. */
447 long long int prev_used; /* Used time from last stats push. */
448
449 /* Accounting. */
450 uint64_t accounted_bytes; /* Bytes processed by facet_account(). */
451 struct netflow_flow nf_flow; /* Per-flow NetFlow tracking data. */
452 uint8_t tcp_flags; /* TCP flags seen for this 'rule'. */
453
454 /* Properties of datapath actions.
455 *
456 * Every subfacet has its own actions because actions can differ slightly
457 * between splintered and non-splintered subfacets due to the VLAN tag
458 * being initially different (present vs. absent). All of them have these
459 * properties in common so we just store one copy of them here. */
460 bool has_learn; /* Actions include NXAST_LEARN? */
461 bool has_normal; /* Actions output to OFPP_NORMAL? */
462 bool has_fin_timeout; /* Actions include NXAST_FIN_TIMEOUT? */
463 tag_type tags; /* Tags that would require revalidation. */
464 mirror_mask_t mirrors; /* Bitmap of dependent mirrors. */
465
466 /* Storage for a single subfacet, to reduce malloc() time and space
467 * overhead. (A facet always has at least one subfacet and in the common
468 * case has exactly one subfacet.) */
469 struct subfacet one_subfacet;
470 };
471
472 static struct facet *facet_create(struct rule_dpif *,
473 const struct flow *, uint32_t hash);
474 static void facet_remove(struct facet *);
475 static void facet_free(struct facet *);
476
477 static struct facet *facet_find(struct ofproto_dpif *,
478 const struct flow *, uint32_t hash);
479 static struct facet *facet_lookup_valid(struct ofproto_dpif *,
480 const struct flow *, uint32_t hash);
481 static void facet_revalidate(struct facet *);
482 static bool facet_check_consistency(struct facet *);
483
484 static void facet_flush_stats(struct facet *);
485
486 static void facet_update_time(struct facet *, long long int used);
487 static void facet_reset_counters(struct facet *);
488 static void facet_push_stats(struct facet *);
489 static void facet_learn(struct facet *);
490 static void facet_account(struct facet *);
491
492 static bool facet_is_controller_flow(struct facet *);
493
494 struct ofport_dpif {
495 struct hmap_node odp_port_node; /* In dpif_backer's "odp_to_ofport_map". */
496 struct ofport up;
497
498 uint32_t odp_port;
499 struct ofbundle *bundle; /* Bundle that contains this port, if any. */
500 struct list bundle_node; /* In struct ofbundle's "ports" list. */
501 struct cfm *cfm; /* Connectivity Fault Management, if any. */
502 tag_type tag; /* Tag associated with this port. */
503 bool may_enable; /* May be enabled in bonds. */
504 long long int carrier_seq; /* Carrier status changes. */
505 struct tnl_port *tnl_port; /* Tunnel handle, or null. */
506
507 /* Spanning tree. */
508 struct stp_port *stp_port; /* Spanning Tree Protocol, if any. */
509 enum stp_state stp_state; /* Always STP_DISABLED if STP not in use. */
510 long long int stp_state_entered;
511
512 struct hmap priorities; /* Map of attached 'priority_to_dscp's. */
513
514 /* Linux VLAN device support (e.g. "eth0.10" for VLAN 10.)
515 *
516 * This is deprecated. It is only for compatibility with broken device
517 * drivers in old versions of Linux that do not properly support VLANs when
518 * VLAN devices are not used. When broken device drivers are no longer in
519 * widespread use, we will delete these interfaces. */
520 uint16_t realdev_ofp_port;
521 int vlandev_vid;
522 };
523
524 /* Node in 'ofport_dpif''s 'priorities' map. Used to maintain a map from
525 * 'priority' (the datapath's term for QoS queue) to the dscp bits which all
526 * traffic egressing the 'ofport' with that priority should be marked with. */
527 struct priority_to_dscp {
528 struct hmap_node hmap_node; /* Node in 'ofport_dpif''s 'priorities' map. */
529 uint32_t priority; /* Priority of this queue (see struct flow). */
530
531 uint8_t dscp; /* DSCP bits to mark outgoing traffic with. */
532 };
533
534 /* Linux VLAN device support (e.g. "eth0.10" for VLAN 10.)
535 *
536 * This is deprecated. It is only for compatibility with broken device drivers
537 * in old versions of Linux that do not properly support VLANs when VLAN
538 * devices are not used. When broken device drivers are no longer in
539 * widespread use, we will delete these interfaces. */
540 struct vlan_splinter {
541 struct hmap_node realdev_vid_node;
542 struct hmap_node vlandev_node;
543 uint16_t realdev_ofp_port;
544 uint16_t vlandev_ofp_port;
545 int vid;
546 };
547
548 static uint32_t vsp_realdev_to_vlandev(const struct ofproto_dpif *,
549 uint32_t realdev, ovs_be16 vlan_tci);
550 static bool vsp_adjust_flow(const struct ofproto_dpif *, struct flow *);
551 static void vsp_remove(struct ofport_dpif *);
552 static void vsp_add(struct ofport_dpif *, uint16_t realdev_ofp_port, int vid);
553
554 static uint32_t ofp_port_to_odp_port(const struct ofproto_dpif *,
555 uint16_t ofp_port);
556 static uint16_t odp_port_to_ofp_port(const struct ofproto_dpif *,
557 uint32_t odp_port);
558
559 static struct ofport_dpif *
560 ofport_dpif_cast(const struct ofport *ofport)
561 {
562 ovs_assert(ofport->ofproto->ofproto_class == &ofproto_dpif_class);
563 return ofport ? CONTAINER_OF(ofport, struct ofport_dpif, up) : NULL;
564 }
565
566 static void port_run(struct ofport_dpif *);
567 static void port_run_fast(struct ofport_dpif *);
568 static void port_wait(struct ofport_dpif *);
569 static int set_cfm(struct ofport *, const struct cfm_settings *);
570 static void ofport_clear_priorities(struct ofport_dpif *);
571
572 struct dpif_completion {
573 struct list list_node;
574 struct ofoperation *op;
575 };
576
577 /* Extra information about a classifier table.
578 * Currently used just for optimized flow revalidation. */
579 struct table_dpif {
580 /* If either of these is nonnull, then this table has a form that allows
581 * flows to be tagged to avoid revalidating most flows for the most common
582 * kinds of flow table changes. */
583 struct cls_table *catchall_table; /* Table that wildcards all fields. */
584 struct cls_table *other_table; /* Table with any other wildcard set. */
585 uint32_t basis; /* Keeps each table's tags separate. */
586 };
587
588 /* Reasons that we might need to revalidate every facet, and corresponding
589 * coverage counters.
590 *
591 * A value of 0 means that there is no need to revalidate.
592 *
593 * It would be nice to have some cleaner way to integrate with coverage
594 * counters, but with only a few reasons I guess this is good enough for
595 * now. */
596 enum revalidate_reason {
597 REV_RECONFIGURE = 1, /* Switch configuration changed. */
598 REV_STP, /* Spanning tree protocol port status change. */
599 REV_PORT_TOGGLED, /* Port enabled or disabled by CFM, LACP, ...*/
600 REV_FLOW_TABLE, /* Flow table changed. */
601 REV_INCONSISTENCY /* Facet self-check failed. */
602 };
603 COVERAGE_DEFINE(rev_reconfigure);
604 COVERAGE_DEFINE(rev_stp);
605 COVERAGE_DEFINE(rev_port_toggled);
606 COVERAGE_DEFINE(rev_flow_table);
607 COVERAGE_DEFINE(rev_inconsistency);
608
609 /* Drop keys are odp flow keys which have drop flows installed in the kernel.
610 * These are datapath flows which have no associated ofproto, if they did we
611 * would use facets. */
612 struct drop_key {
613 struct hmap_node hmap_node;
614 struct nlattr *key;
615 size_t key_len;
616 };
617
618 /* All datapaths of a given type share a single dpif backer instance. */
619 struct dpif_backer {
620 char *type;
621 int refcount;
622 struct dpif *dpif;
623 struct timer next_expiration;
624 struct hmap odp_to_ofport_map; /* ODP port to ofport mapping. */
625
626 struct simap tnl_backers; /* Set of dpif ports backing tunnels. */
627
628 /* Facet revalidation flags applying to facets which use this backer. */
629 enum revalidate_reason need_revalidate; /* Revalidate every facet. */
630 struct tag_set revalidate_set; /* Revalidate only matching facets. */
631
632 struct hmap drop_keys; /* Set of dropped odp keys. */
633 };
634
635 /* All existing ofproto_backer instances, indexed by ofproto->up.type. */
636 static struct shash all_dpif_backers = SHASH_INITIALIZER(&all_dpif_backers);
637
638 static void drop_key_clear(struct dpif_backer *);
639 static struct ofport_dpif *
640 odp_port_to_ofport(const struct dpif_backer *, uint32_t odp_port);
641
642 struct ofproto_dpif {
643 struct hmap_node all_ofproto_dpifs_node; /* In 'all_ofproto_dpifs'. */
644 struct ofproto up;
645 struct dpif_backer *backer;
646
647 /* Special OpenFlow rules. */
648 struct rule_dpif *miss_rule; /* Sends flow table misses to controller. */
649 struct rule_dpif *no_packet_in_rule; /* Drops flow table misses. */
650
651 /* Statistics. */
652 uint64_t n_matches;
653
654 /* Bridging. */
655 struct netflow *netflow;
656 struct dpif_sflow *sflow;
657 struct hmap bundles; /* Contains "struct ofbundle"s. */
658 struct mac_learning *ml;
659 struct ofmirror *mirrors[MAX_MIRRORS];
660 bool has_mirrors;
661 bool has_bonded_bundles;
662
663 /* Facets. */
664 struct hmap facets;
665 struct hmap subfacets;
666 struct governor *governor;
667
668 /* Revalidation. */
669 struct table_dpif tables[N_TABLES];
670
671 /* Support for debugging async flow mods. */
672 struct list completions;
673
674 bool has_bundle_action; /* True when the first bundle action appears. */
675 struct netdev_stats stats; /* To account packets generated and consumed in
676 * userspace. */
677
678 /* Spanning tree. */
679 struct stp *stp;
680 long long int stp_last_tick;
681
682 /* VLAN splinters. */
683 struct hmap realdev_vid_map; /* (realdev,vid) -> vlandev. */
684 struct hmap vlandev_map; /* vlandev -> (realdev,vid). */
685
686 /* Ports. */
687 struct sset ports; /* Set of standard port names. */
688 struct sset ghost_ports; /* Ports with no datapath port. */
689 struct sset port_poll_set; /* Queued names for port_poll() reply. */
690 int port_poll_errno; /* Last errno for port_poll() reply. */
691 };
692
693 /* Defer flow mod completion until "ovs-appctl ofproto/unclog"? (Useful only
694 * for debugging the asynchronous flow_mod implementation.) */
695 static bool clogged;
696
697 /* All existing ofproto_dpif instances, indexed by ->up.name. */
698 static struct hmap all_ofproto_dpifs = HMAP_INITIALIZER(&all_ofproto_dpifs);
699
700 static void ofproto_dpif_unixctl_init(void);
701
702 static struct ofproto_dpif *
703 ofproto_dpif_cast(const struct ofproto *ofproto)
704 {
705 ovs_assert(ofproto->ofproto_class == &ofproto_dpif_class);
706 return CONTAINER_OF(ofproto, struct ofproto_dpif, up);
707 }
708
709 static struct ofport_dpif *get_ofp_port(const struct ofproto_dpif *,
710 uint16_t ofp_port);
711 static struct ofport_dpif *get_odp_port(const struct ofproto_dpif *,
712 uint32_t odp_port);
713 static void ofproto_trace(struct ofproto_dpif *, const struct flow *,
714 const struct ofpbuf *, ovs_be16 initial_tci,
715 struct ds *);
716
717 /* Packet processing. */
718 static void update_learning_table(struct ofproto_dpif *,
719 const struct flow *, int vlan,
720 struct ofbundle *);
721 /* Upcalls. */
722 #define FLOW_MISS_MAX_BATCH 50
723 static int handle_upcalls(struct dpif_backer *, unsigned int max_batch);
724
725 /* Flow expiration. */
726 static int expire(struct dpif_backer *);
727
728 /* NetFlow. */
729 static void send_netflow_active_timeouts(struct ofproto_dpif *);
730
731 /* Utilities. */
732 static int send_packet(const struct ofport_dpif *, struct ofpbuf *packet);
733 static size_t compose_sflow_action(const struct ofproto_dpif *,
734 struct ofpbuf *odp_actions,
735 const struct flow *, uint32_t odp_port);
736 static void add_mirror_actions(struct action_xlate_ctx *ctx,
737 const struct flow *flow);
738 /* Global variables. */
739 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
740
741 /* Initial mappings of port to bridge mappings. */
742 static struct shash init_ofp_ports = SHASH_INITIALIZER(&init_ofp_ports);
743 \f
744 /* Factory functions. */
745
746 static void
747 init(const struct shash *iface_hints)
748 {
749 struct shash_node *node;
750
751 /* Make a local copy, since we don't own 'iface_hints' elements. */
752 SHASH_FOR_EACH(node, iface_hints) {
753 const struct iface_hint *orig_hint = node->data;
754 struct iface_hint *new_hint = xmalloc(sizeof *new_hint);
755
756 new_hint->br_name = xstrdup(orig_hint->br_name);
757 new_hint->br_type = xstrdup(orig_hint->br_type);
758 new_hint->ofp_port = orig_hint->ofp_port;
759
760 shash_add(&init_ofp_ports, node->name, new_hint);
761 }
762 }
763
764 static void
765 enumerate_types(struct sset *types)
766 {
767 dp_enumerate_types(types);
768 }
769
770 static int
771 enumerate_names(const char *type, struct sset *names)
772 {
773 struct ofproto_dpif *ofproto;
774
775 sset_clear(names);
776 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
777 if (strcmp(type, ofproto->up.type)) {
778 continue;
779 }
780 sset_add(names, ofproto->up.name);
781 }
782
783 return 0;
784 }
785
786 static int
787 del(const char *type, const char *name)
788 {
789 struct dpif *dpif;
790 int error;
791
792 error = dpif_open(name, type, &dpif);
793 if (!error) {
794 error = dpif_delete(dpif);
795 dpif_close(dpif);
796 }
797 return error;
798 }
799 \f
800 static const char *
801 port_open_type(const char *datapath_type, const char *port_type)
802 {
803 return dpif_port_open_type(datapath_type, port_type);
804 }
805
806 /* Type functions. */
807
808 static struct ofproto_dpif *
809 lookup_ofproto_dpif_by_port_name(const char *name)
810 {
811 struct ofproto_dpif *ofproto;
812
813 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
814 if (sset_contains(&ofproto->ports, name)) {
815 return ofproto;
816 }
817 }
818
819 return NULL;
820 }
821
822 static int
823 type_run(const char *type)
824 {
825 struct dpif_backer *backer;
826 char *devname;
827 int error;
828
829 backer = shash_find_data(&all_dpif_backers, type);
830 if (!backer) {
831 /* This is not necessarily a problem, since backers are only
832 * created on demand. */
833 return 0;
834 }
835
836 dpif_run(backer->dpif);
837
838 if (backer->need_revalidate
839 || !tag_set_is_empty(&backer->revalidate_set)) {
840 struct tag_set revalidate_set = backer->revalidate_set;
841 bool need_revalidate = backer->need_revalidate;
842 struct ofproto_dpif *ofproto;
843 struct simap_node *node;
844 struct simap tmp_backers;
845
846 /* Handle tunnel garbage collection. */
847 simap_init(&tmp_backers);
848 simap_swap(&backer->tnl_backers, &tmp_backers);
849
850 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
851 struct ofport_dpif *iter;
852
853 if (backer != ofproto->backer) {
854 continue;
855 }
856
857 HMAP_FOR_EACH (iter, up.hmap_node, &ofproto->up.ports) {
858 const char *dp_port;
859
860 if (!iter->tnl_port) {
861 continue;
862 }
863
864 dp_port = netdev_vport_get_dpif_port(iter->up.netdev);
865 node = simap_find(&tmp_backers, dp_port);
866 if (node) {
867 simap_put(&backer->tnl_backers, dp_port, node->data);
868 simap_delete(&tmp_backers, node);
869 node = simap_find(&backer->tnl_backers, dp_port);
870 } else {
871 node = simap_find(&backer->tnl_backers, dp_port);
872 if (!node) {
873 uint32_t odp_port = UINT32_MAX;
874
875 if (!dpif_port_add(backer->dpif, iter->up.netdev,
876 &odp_port)) {
877 simap_put(&backer->tnl_backers, dp_port, odp_port);
878 node = simap_find(&backer->tnl_backers, dp_port);
879 }
880 }
881 }
882
883 iter->odp_port = node ? node->data : OVSP_NONE;
884 if (tnl_port_reconfigure(&iter->up, iter->odp_port,
885 &iter->tnl_port)) {
886 backer->need_revalidate = REV_RECONFIGURE;
887 }
888 }
889 }
890
891 SIMAP_FOR_EACH (node, &tmp_backers) {
892 dpif_port_del(backer->dpif, node->data);
893 }
894 simap_destroy(&tmp_backers);
895
896 switch (backer->need_revalidate) {
897 case REV_RECONFIGURE: COVERAGE_INC(rev_reconfigure); break;
898 case REV_STP: COVERAGE_INC(rev_stp); break;
899 case REV_PORT_TOGGLED: COVERAGE_INC(rev_port_toggled); break;
900 case REV_FLOW_TABLE: COVERAGE_INC(rev_flow_table); break;
901 case REV_INCONSISTENCY: COVERAGE_INC(rev_inconsistency); break;
902 }
903
904 if (backer->need_revalidate) {
905 /* Clear the drop_keys in case we should now be accepting some
906 * formerly dropped flows. */
907 drop_key_clear(backer);
908 }
909
910 /* Clear the revalidation flags. */
911 tag_set_init(&backer->revalidate_set);
912 backer->need_revalidate = 0;
913
914 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
915 struct facet *facet, *next;
916
917 if (ofproto->backer != backer) {
918 continue;
919 }
920
921 HMAP_FOR_EACH_SAFE (facet, next, hmap_node, &ofproto->facets) {
922 if (need_revalidate
923 || tag_set_intersects(&revalidate_set, facet->tags)) {
924 facet_revalidate(facet);
925 }
926 }
927 }
928 }
929
930 if (timer_expired(&backer->next_expiration)) {
931 int delay = expire(backer);
932 timer_set_duration(&backer->next_expiration, delay);
933 }
934
935 /* Check for port changes in the dpif. */
936 while ((error = dpif_port_poll(backer->dpif, &devname)) == 0) {
937 struct ofproto_dpif *ofproto;
938 struct dpif_port port;
939
940 /* Don't report on the datapath's device. */
941 if (!strcmp(devname, dpif_base_name(backer->dpif))) {
942 goto next;
943 }
944
945 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node,
946 &all_ofproto_dpifs) {
947 if (simap_contains(&ofproto->backer->tnl_backers, devname)) {
948 goto next;
949 }
950 }
951
952 ofproto = lookup_ofproto_dpif_by_port_name(devname);
953 if (dpif_port_query_by_name(backer->dpif, devname, &port)) {
954 /* The port was removed. If we know the datapath,
955 * report it through poll_set(). If we don't, it may be
956 * notifying us of a removal we initiated, so ignore it.
957 * If there's a pending ENOBUFS, let it stand, since
958 * everything will be reevaluated. */
959 if (ofproto && ofproto->port_poll_errno != ENOBUFS) {
960 sset_add(&ofproto->port_poll_set, devname);
961 ofproto->port_poll_errno = 0;
962 }
963 } else if (!ofproto) {
964 /* The port was added, but we don't know with which
965 * ofproto we should associate it. Delete it. */
966 dpif_port_del(backer->dpif, port.port_no);
967 }
968 dpif_port_destroy(&port);
969
970 next:
971 free(devname);
972 }
973
974 if (error != EAGAIN) {
975 struct ofproto_dpif *ofproto;
976
977 /* There was some sort of error, so propagate it to all
978 * ofprotos that use this backer. */
979 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node,
980 &all_ofproto_dpifs) {
981 if (ofproto->backer == backer) {
982 sset_clear(&ofproto->port_poll_set);
983 ofproto->port_poll_errno = error;
984 }
985 }
986 }
987
988 return 0;
989 }
990
991 static int
992 type_run_fast(const char *type)
993 {
994 struct dpif_backer *backer;
995 unsigned int work;
996
997 backer = shash_find_data(&all_dpif_backers, type);
998 if (!backer) {
999 /* This is not necessarily a problem, since backers are only
1000 * created on demand. */
1001 return 0;
1002 }
1003
1004 /* Handle one or more batches of upcalls, until there's nothing left to do
1005 * or until we do a fixed total amount of work.
1006 *
1007 * We do work in batches because it can be much cheaper to set up a number
1008 * of flows and fire off their patches all at once. We do multiple batches
1009 * because in some cases handling a packet can cause another packet to be
1010 * queued almost immediately as part of the return flow. Both
1011 * optimizations can make major improvements on some benchmarks and
1012 * presumably for real traffic as well. */
1013 work = 0;
1014 while (work < FLOW_MISS_MAX_BATCH) {
1015 int retval = handle_upcalls(backer, FLOW_MISS_MAX_BATCH - work);
1016 if (retval <= 0) {
1017 return -retval;
1018 }
1019 work += retval;
1020 }
1021
1022 return 0;
1023 }
1024
1025 static void
1026 type_wait(const char *type)
1027 {
1028 struct dpif_backer *backer;
1029
1030 backer = shash_find_data(&all_dpif_backers, type);
1031 if (!backer) {
1032 /* This is not necessarily a problem, since backers are only
1033 * created on demand. */
1034 return;
1035 }
1036
1037 timer_wait(&backer->next_expiration);
1038 }
1039 \f
1040 /* Basic life-cycle. */
1041
1042 static int add_internal_flows(struct ofproto_dpif *);
1043
1044 static struct ofproto *
1045 alloc(void)
1046 {
1047 struct ofproto_dpif *ofproto = xmalloc(sizeof *ofproto);
1048 return &ofproto->up;
1049 }
1050
1051 static void
1052 dealloc(struct ofproto *ofproto_)
1053 {
1054 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1055 free(ofproto);
1056 }
1057
1058 static void
1059 close_dpif_backer(struct dpif_backer *backer)
1060 {
1061 struct shash_node *node;
1062
1063 ovs_assert(backer->refcount > 0);
1064
1065 if (--backer->refcount) {
1066 return;
1067 }
1068
1069 drop_key_clear(backer);
1070 hmap_destroy(&backer->drop_keys);
1071
1072 simap_destroy(&backer->tnl_backers);
1073 hmap_destroy(&backer->odp_to_ofport_map);
1074 node = shash_find(&all_dpif_backers, backer->type);
1075 free(backer->type);
1076 shash_delete(&all_dpif_backers, node);
1077 dpif_close(backer->dpif);
1078
1079 free(backer);
1080 }
1081
1082 /* Datapath port slated for removal from datapath. */
1083 struct odp_garbage {
1084 struct list list_node;
1085 uint32_t odp_port;
1086 };
1087
1088 static int
1089 open_dpif_backer(const char *type, struct dpif_backer **backerp)
1090 {
1091 struct dpif_backer *backer;
1092 struct dpif_port_dump port_dump;
1093 struct dpif_port port;
1094 struct shash_node *node;
1095 struct list garbage_list;
1096 struct odp_garbage *garbage, *next;
1097 struct sset names;
1098 char *backer_name;
1099 const char *name;
1100 int error;
1101
1102 backer = shash_find_data(&all_dpif_backers, type);
1103 if (backer) {
1104 backer->refcount++;
1105 *backerp = backer;
1106 return 0;
1107 }
1108
1109 backer_name = xasprintf("ovs-%s", type);
1110
1111 /* Remove any existing datapaths, since we assume we're the only
1112 * userspace controlling the datapath. */
1113 sset_init(&names);
1114 dp_enumerate_names(type, &names);
1115 SSET_FOR_EACH(name, &names) {
1116 struct dpif *old_dpif;
1117
1118 /* Don't remove our backer if it exists. */
1119 if (!strcmp(name, backer_name)) {
1120 continue;
1121 }
1122
1123 if (dpif_open(name, type, &old_dpif)) {
1124 VLOG_WARN("couldn't open old datapath %s to remove it", name);
1125 } else {
1126 dpif_delete(old_dpif);
1127 dpif_close(old_dpif);
1128 }
1129 }
1130 sset_destroy(&names);
1131
1132 backer = xmalloc(sizeof *backer);
1133
1134 error = dpif_create_and_open(backer_name, type, &backer->dpif);
1135 free(backer_name);
1136 if (error) {
1137 VLOG_ERR("failed to open datapath of type %s: %s", type,
1138 strerror(error));
1139 free(backer);
1140 return error;
1141 }
1142
1143 backer->type = xstrdup(type);
1144 backer->refcount = 1;
1145 hmap_init(&backer->odp_to_ofport_map);
1146 hmap_init(&backer->drop_keys);
1147 timer_set_duration(&backer->next_expiration, 1000);
1148 backer->need_revalidate = 0;
1149 simap_init(&backer->tnl_backers);
1150 tag_set_init(&backer->revalidate_set);
1151 *backerp = backer;
1152
1153 dpif_flow_flush(backer->dpif);
1154
1155 /* Loop through the ports already on the datapath and remove any
1156 * that we don't need anymore. */
1157 list_init(&garbage_list);
1158 dpif_port_dump_start(&port_dump, backer->dpif);
1159 while (dpif_port_dump_next(&port_dump, &port)) {
1160 node = shash_find(&init_ofp_ports, port.name);
1161 if (!node && strcmp(port.name, dpif_base_name(backer->dpif))) {
1162 garbage = xmalloc(sizeof *garbage);
1163 garbage->odp_port = port.port_no;
1164 list_push_front(&garbage_list, &garbage->list_node);
1165 }
1166 }
1167 dpif_port_dump_done(&port_dump);
1168
1169 LIST_FOR_EACH_SAFE (garbage, next, list_node, &garbage_list) {
1170 dpif_port_del(backer->dpif, garbage->odp_port);
1171 list_remove(&garbage->list_node);
1172 free(garbage);
1173 }
1174
1175 shash_add(&all_dpif_backers, type, backer);
1176
1177 error = dpif_recv_set(backer->dpif, true);
1178 if (error) {
1179 VLOG_ERR("failed to listen on datapath of type %s: %s",
1180 type, strerror(error));
1181 close_dpif_backer(backer);
1182 return error;
1183 }
1184
1185 return error;
1186 }
1187
1188 static int
1189 construct(struct ofproto *ofproto_)
1190 {
1191 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1192 struct shash_node *node, *next;
1193 int max_ports;
1194 int error;
1195 int i;
1196
1197 error = open_dpif_backer(ofproto->up.type, &ofproto->backer);
1198 if (error) {
1199 return error;
1200 }
1201
1202 max_ports = dpif_get_max_ports(ofproto->backer->dpif);
1203 ofproto_init_max_ports(ofproto_, MIN(max_ports, OFPP_MAX));
1204
1205 ofproto->n_matches = 0;
1206
1207 ofproto->netflow = NULL;
1208 ofproto->sflow = NULL;
1209 ofproto->stp = NULL;
1210 hmap_init(&ofproto->bundles);
1211 ofproto->ml = mac_learning_create(MAC_ENTRY_DEFAULT_IDLE_TIME);
1212 for (i = 0; i < MAX_MIRRORS; i++) {
1213 ofproto->mirrors[i] = NULL;
1214 }
1215 ofproto->has_bonded_bundles = false;
1216
1217 hmap_init(&ofproto->facets);
1218 hmap_init(&ofproto->subfacets);
1219 ofproto->governor = NULL;
1220
1221 for (i = 0; i < N_TABLES; i++) {
1222 struct table_dpif *table = &ofproto->tables[i];
1223
1224 table->catchall_table = NULL;
1225 table->other_table = NULL;
1226 table->basis = random_uint32();
1227 }
1228
1229 list_init(&ofproto->completions);
1230
1231 ofproto_dpif_unixctl_init();
1232
1233 ofproto->has_mirrors = false;
1234 ofproto->has_bundle_action = false;
1235
1236 hmap_init(&ofproto->vlandev_map);
1237 hmap_init(&ofproto->realdev_vid_map);
1238
1239 sset_init(&ofproto->ports);
1240 sset_init(&ofproto->ghost_ports);
1241 sset_init(&ofproto->port_poll_set);
1242 ofproto->port_poll_errno = 0;
1243
1244 SHASH_FOR_EACH_SAFE (node, next, &init_ofp_ports) {
1245 struct iface_hint *iface_hint = node->data;
1246
1247 if (!strcmp(iface_hint->br_name, ofproto->up.name)) {
1248 /* Check if the datapath already has this port. */
1249 if (dpif_port_exists(ofproto->backer->dpif, node->name)) {
1250 sset_add(&ofproto->ports, node->name);
1251 }
1252
1253 free(iface_hint->br_name);
1254 free(iface_hint->br_type);
1255 free(iface_hint);
1256 shash_delete(&init_ofp_ports, node);
1257 }
1258 }
1259
1260 hmap_insert(&all_ofproto_dpifs, &ofproto->all_ofproto_dpifs_node,
1261 hash_string(ofproto->up.name, 0));
1262 memset(&ofproto->stats, 0, sizeof ofproto->stats);
1263
1264 ofproto_init_tables(ofproto_, N_TABLES);
1265 error = add_internal_flows(ofproto);
1266 ofproto->up.tables[TBL_INTERNAL].flags = OFTABLE_HIDDEN | OFTABLE_READONLY;
1267
1268 return error;
1269 }
1270
1271 static int
1272 add_internal_flow(struct ofproto_dpif *ofproto, int id,
1273 const struct ofpbuf *ofpacts, struct rule_dpif **rulep)
1274 {
1275 struct ofputil_flow_mod fm;
1276 int error;
1277
1278 match_init_catchall(&fm.match);
1279 fm.priority = 0;
1280 match_set_reg(&fm.match, 0, id);
1281 fm.new_cookie = htonll(0);
1282 fm.cookie = htonll(0);
1283 fm.cookie_mask = htonll(0);
1284 fm.table_id = TBL_INTERNAL;
1285 fm.command = OFPFC_ADD;
1286 fm.idle_timeout = 0;
1287 fm.hard_timeout = 0;
1288 fm.buffer_id = 0;
1289 fm.out_port = 0;
1290 fm.flags = 0;
1291 fm.ofpacts = ofpacts->data;
1292 fm.ofpacts_len = ofpacts->size;
1293
1294 error = ofproto_flow_mod(&ofproto->up, &fm);
1295 if (error) {
1296 VLOG_ERR_RL(&rl, "failed to add internal flow %d (%s)",
1297 id, ofperr_to_string(error));
1298 return error;
1299 }
1300
1301 *rulep = rule_dpif_lookup__(ofproto, &fm.match.flow, TBL_INTERNAL);
1302 ovs_assert(*rulep != NULL);
1303
1304 return 0;
1305 }
1306
1307 static int
1308 add_internal_flows(struct ofproto_dpif *ofproto)
1309 {
1310 struct ofpact_controller *controller;
1311 uint64_t ofpacts_stub[128 / 8];
1312 struct ofpbuf ofpacts;
1313 int error;
1314 int id;
1315
1316 ofpbuf_use_stack(&ofpacts, ofpacts_stub, sizeof ofpacts_stub);
1317 id = 1;
1318
1319 controller = ofpact_put_CONTROLLER(&ofpacts);
1320 controller->max_len = UINT16_MAX;
1321 controller->controller_id = 0;
1322 controller->reason = OFPR_NO_MATCH;
1323 ofpact_pad(&ofpacts);
1324
1325 error = add_internal_flow(ofproto, id++, &ofpacts, &ofproto->miss_rule);
1326 if (error) {
1327 return error;
1328 }
1329
1330 ofpbuf_clear(&ofpacts);
1331 error = add_internal_flow(ofproto, id++, &ofpacts,
1332 &ofproto->no_packet_in_rule);
1333 return error;
1334 }
1335
1336 static void
1337 complete_operations(struct ofproto_dpif *ofproto)
1338 {
1339 struct dpif_completion *c, *next;
1340
1341 LIST_FOR_EACH_SAFE (c, next, list_node, &ofproto->completions) {
1342 ofoperation_complete(c->op, 0);
1343 list_remove(&c->list_node);
1344 free(c);
1345 }
1346 }
1347
1348 static void
1349 destruct(struct ofproto *ofproto_)
1350 {
1351 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1352 struct rule_dpif *rule, *next_rule;
1353 struct oftable *table;
1354 int i;
1355
1356 hmap_remove(&all_ofproto_dpifs, &ofproto->all_ofproto_dpifs_node);
1357 complete_operations(ofproto);
1358
1359 OFPROTO_FOR_EACH_TABLE (table, &ofproto->up) {
1360 struct cls_cursor cursor;
1361
1362 cls_cursor_init(&cursor, &table->cls, NULL);
1363 CLS_CURSOR_FOR_EACH_SAFE (rule, next_rule, up.cr, &cursor) {
1364 ofproto_rule_destroy(&rule->up);
1365 }
1366 }
1367
1368 for (i = 0; i < MAX_MIRRORS; i++) {
1369 mirror_destroy(ofproto->mirrors[i]);
1370 }
1371
1372 netflow_destroy(ofproto->netflow);
1373 dpif_sflow_destroy(ofproto->sflow);
1374 hmap_destroy(&ofproto->bundles);
1375 mac_learning_destroy(ofproto->ml);
1376
1377 hmap_destroy(&ofproto->facets);
1378 hmap_destroy(&ofproto->subfacets);
1379 governor_destroy(ofproto->governor);
1380
1381 hmap_destroy(&ofproto->vlandev_map);
1382 hmap_destroy(&ofproto->realdev_vid_map);
1383
1384 sset_destroy(&ofproto->ports);
1385 sset_destroy(&ofproto->ghost_ports);
1386 sset_destroy(&ofproto->port_poll_set);
1387
1388 close_dpif_backer(ofproto->backer);
1389 }
1390
1391 static int
1392 run_fast(struct ofproto *ofproto_)
1393 {
1394 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1395 struct ofport_dpif *ofport;
1396
1397 HMAP_FOR_EACH (ofport, up.hmap_node, &ofproto->up.ports) {
1398 port_run_fast(ofport);
1399 }
1400
1401 return 0;
1402 }
1403
1404 static int
1405 run(struct ofproto *ofproto_)
1406 {
1407 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1408 struct ofport_dpif *ofport;
1409 struct ofbundle *bundle;
1410 int error;
1411
1412 if (!clogged) {
1413 complete_operations(ofproto);
1414 }
1415
1416 error = run_fast(ofproto_);
1417 if (error) {
1418 return error;
1419 }
1420
1421 if (ofproto->netflow) {
1422 if (netflow_run(ofproto->netflow)) {
1423 send_netflow_active_timeouts(ofproto);
1424 }
1425 }
1426 if (ofproto->sflow) {
1427 dpif_sflow_run(ofproto->sflow);
1428 }
1429
1430 HMAP_FOR_EACH (ofport, up.hmap_node, &ofproto->up.ports) {
1431 port_run(ofport);
1432 }
1433 HMAP_FOR_EACH (bundle, hmap_node, &ofproto->bundles) {
1434 bundle_run(bundle);
1435 }
1436
1437 stp_run(ofproto);
1438 mac_learning_run(ofproto->ml, &ofproto->backer->revalidate_set);
1439
1440 /* Check the consistency of a random facet, to aid debugging. */
1441 if (!hmap_is_empty(&ofproto->facets)
1442 && !ofproto->backer->need_revalidate) {
1443 struct facet *facet;
1444
1445 facet = CONTAINER_OF(hmap_random_node(&ofproto->facets),
1446 struct facet, hmap_node);
1447 if (!tag_set_intersects(&ofproto->backer->revalidate_set,
1448 facet->tags)) {
1449 if (!facet_check_consistency(facet)) {
1450 ofproto->backer->need_revalidate = REV_INCONSISTENCY;
1451 }
1452 }
1453 }
1454
1455 if (ofproto->governor) {
1456 size_t n_subfacets;
1457
1458 governor_run(ofproto->governor);
1459
1460 /* If the governor has shrunk to its minimum size and the number of
1461 * subfacets has dwindled, then drop the governor entirely.
1462 *
1463 * For hysteresis, the number of subfacets to drop the governor is
1464 * smaller than the number needed to trigger its creation. */
1465 n_subfacets = hmap_count(&ofproto->subfacets);
1466 if (n_subfacets * 4 < ofproto->up.flow_eviction_threshold
1467 && governor_is_idle(ofproto->governor)) {
1468 governor_destroy(ofproto->governor);
1469 ofproto->governor = NULL;
1470 }
1471 }
1472
1473 return 0;
1474 }
1475
1476 static void
1477 wait(struct ofproto *ofproto_)
1478 {
1479 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1480 struct ofport_dpif *ofport;
1481 struct ofbundle *bundle;
1482
1483 if (!clogged && !list_is_empty(&ofproto->completions)) {
1484 poll_immediate_wake();
1485 }
1486
1487 dpif_wait(ofproto->backer->dpif);
1488 dpif_recv_wait(ofproto->backer->dpif);
1489 if (ofproto->sflow) {
1490 dpif_sflow_wait(ofproto->sflow);
1491 }
1492 if (!tag_set_is_empty(&ofproto->backer->revalidate_set)) {
1493 poll_immediate_wake();
1494 }
1495 HMAP_FOR_EACH (ofport, up.hmap_node, &ofproto->up.ports) {
1496 port_wait(ofport);
1497 }
1498 HMAP_FOR_EACH (bundle, hmap_node, &ofproto->bundles) {
1499 bundle_wait(bundle);
1500 }
1501 if (ofproto->netflow) {
1502 netflow_wait(ofproto->netflow);
1503 }
1504 mac_learning_wait(ofproto->ml);
1505 stp_wait(ofproto);
1506 if (ofproto->backer->need_revalidate) {
1507 /* Shouldn't happen, but if it does just go around again. */
1508 VLOG_DBG_RL(&rl, "need revalidate in ofproto_wait_cb()");
1509 poll_immediate_wake();
1510 }
1511 if (ofproto->governor) {
1512 governor_wait(ofproto->governor);
1513 }
1514 }
1515
1516 static void
1517 get_memory_usage(const struct ofproto *ofproto_, struct simap *usage)
1518 {
1519 const struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1520
1521 simap_increase(usage, "facets", hmap_count(&ofproto->facets));
1522 simap_increase(usage, "subfacets", hmap_count(&ofproto->subfacets));
1523 }
1524
1525 static void
1526 flush(struct ofproto *ofproto_)
1527 {
1528 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1529 struct subfacet *subfacet, *next_subfacet;
1530 struct subfacet *batch[SUBFACET_DESTROY_MAX_BATCH];
1531 int n_batch;
1532
1533 n_batch = 0;
1534 HMAP_FOR_EACH_SAFE (subfacet, next_subfacet, hmap_node,
1535 &ofproto->subfacets) {
1536 if (subfacet->path != SF_NOT_INSTALLED) {
1537 batch[n_batch++] = subfacet;
1538 if (n_batch >= SUBFACET_DESTROY_MAX_BATCH) {
1539 subfacet_destroy_batch(ofproto, batch, n_batch);
1540 n_batch = 0;
1541 }
1542 } else {
1543 subfacet_destroy(subfacet);
1544 }
1545 }
1546
1547 if (n_batch > 0) {
1548 subfacet_destroy_batch(ofproto, batch, n_batch);
1549 }
1550 }
1551
1552 static void
1553 get_features(struct ofproto *ofproto_ OVS_UNUSED,
1554 bool *arp_match_ip, enum ofputil_action_bitmap *actions)
1555 {
1556 *arp_match_ip = true;
1557 *actions = (OFPUTIL_A_OUTPUT |
1558 OFPUTIL_A_SET_VLAN_VID |
1559 OFPUTIL_A_SET_VLAN_PCP |
1560 OFPUTIL_A_STRIP_VLAN |
1561 OFPUTIL_A_SET_DL_SRC |
1562 OFPUTIL_A_SET_DL_DST |
1563 OFPUTIL_A_SET_NW_SRC |
1564 OFPUTIL_A_SET_NW_DST |
1565 OFPUTIL_A_SET_NW_TOS |
1566 OFPUTIL_A_SET_TP_SRC |
1567 OFPUTIL_A_SET_TP_DST |
1568 OFPUTIL_A_ENQUEUE);
1569 }
1570
1571 static void
1572 get_tables(struct ofproto *ofproto_, struct ofp12_table_stats *ots)
1573 {
1574 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1575 struct dpif_dp_stats s;
1576
1577 strcpy(ots->name, "classifier");
1578
1579 dpif_get_dp_stats(ofproto->backer->dpif, &s);
1580
1581 ots->lookup_count = htonll(s.n_hit + s.n_missed);
1582 ots->matched_count = htonll(s.n_hit + ofproto->n_matches);
1583 }
1584
1585 static struct ofport *
1586 port_alloc(void)
1587 {
1588 struct ofport_dpif *port = xmalloc(sizeof *port);
1589 return &port->up;
1590 }
1591
1592 static void
1593 port_dealloc(struct ofport *port_)
1594 {
1595 struct ofport_dpif *port = ofport_dpif_cast(port_);
1596 free(port);
1597 }
1598
1599 static int
1600 port_construct(struct ofport *port_)
1601 {
1602 struct ofport_dpif *port = ofport_dpif_cast(port_);
1603 struct ofproto_dpif *ofproto = ofproto_dpif_cast(port->up.ofproto);
1604 const struct netdev *netdev = port->up.netdev;
1605 struct dpif_port dpif_port;
1606 int error;
1607
1608 ofproto->backer->need_revalidate = REV_RECONFIGURE;
1609 port->bundle = NULL;
1610 port->cfm = NULL;
1611 port->tag = tag_create_random();
1612 port->may_enable = true;
1613 port->stp_port = NULL;
1614 port->stp_state = STP_DISABLED;
1615 port->tnl_port = NULL;
1616 hmap_init(&port->priorities);
1617 port->realdev_ofp_port = 0;
1618 port->vlandev_vid = 0;
1619 port->carrier_seq = netdev_get_carrier_resets(netdev);
1620
1621 if (netdev_vport_is_patch(netdev)) {
1622 /* XXX By bailing out here, we don't do required sFlow work. */
1623 port->odp_port = OVSP_NONE;
1624 return 0;
1625 }
1626
1627 error = dpif_port_query_by_name(ofproto->backer->dpif,
1628 netdev_vport_get_dpif_port(netdev),
1629 &dpif_port);
1630 if (error) {
1631 return error;
1632 }
1633
1634 port->odp_port = dpif_port.port_no;
1635
1636 if (netdev_get_tunnel_config(netdev)) {
1637 port->tnl_port = tnl_port_add(&port->up, port->odp_port);
1638 } else {
1639 /* Sanity-check that a mapping doesn't already exist. This
1640 * shouldn't happen for non-tunnel ports. */
1641 if (odp_port_to_ofp_port(ofproto, port->odp_port) != OFPP_NONE) {
1642 VLOG_ERR("port %s already has an OpenFlow port number",
1643 dpif_port.name);
1644 dpif_port_destroy(&dpif_port);
1645 return EBUSY;
1646 }
1647
1648 hmap_insert(&ofproto->backer->odp_to_ofport_map, &port->odp_port_node,
1649 hash_int(port->odp_port, 0));
1650 }
1651 dpif_port_destroy(&dpif_port);
1652
1653 if (ofproto->sflow) {
1654 dpif_sflow_add_port(ofproto->sflow, port_, port->odp_port);
1655 }
1656
1657 return 0;
1658 }
1659
1660 static void
1661 port_destruct(struct ofport *port_)
1662 {
1663 struct ofport_dpif *port = ofport_dpif_cast(port_);
1664 struct ofproto_dpif *ofproto = ofproto_dpif_cast(port->up.ofproto);
1665 const char *dp_port_name = netdev_vport_get_dpif_port(port->up.netdev);
1666 const char *devname = netdev_get_name(port->up.netdev);
1667
1668 if (dpif_port_exists(ofproto->backer->dpif, dp_port_name)) {
1669 /* The underlying device is still there, so delete it. This
1670 * happens when the ofproto is being destroyed, since the caller
1671 * assumes that removal of attached ports will happen as part of
1672 * destruction. */
1673 if (!port->tnl_port) {
1674 dpif_port_del(ofproto->backer->dpif, port->odp_port);
1675 }
1676 ofproto->backer->need_revalidate = REV_RECONFIGURE;
1677 }
1678
1679 if (port->odp_port != OVSP_NONE && !port->tnl_port) {
1680 hmap_remove(&ofproto->backer->odp_to_ofport_map, &port->odp_port_node);
1681 }
1682
1683 tnl_port_del(port->tnl_port);
1684 sset_find_and_delete(&ofproto->ports, devname);
1685 sset_find_and_delete(&ofproto->ghost_ports, devname);
1686 ofproto->backer->need_revalidate = REV_RECONFIGURE;
1687 bundle_remove(port_);
1688 set_cfm(port_, NULL);
1689 if (ofproto->sflow) {
1690 dpif_sflow_del_port(ofproto->sflow, port->odp_port);
1691 }
1692
1693 ofport_clear_priorities(port);
1694 hmap_destroy(&port->priorities);
1695 }
1696
1697 static void
1698 port_modified(struct ofport *port_)
1699 {
1700 struct ofport_dpif *port = ofport_dpif_cast(port_);
1701
1702 if (port->bundle && port->bundle->bond) {
1703 bond_slave_set_netdev(port->bundle->bond, port, port->up.netdev);
1704 }
1705 }
1706
1707 static void
1708 port_reconfigured(struct ofport *port_, enum ofputil_port_config old_config)
1709 {
1710 struct ofport_dpif *port = ofport_dpif_cast(port_);
1711 struct ofproto_dpif *ofproto = ofproto_dpif_cast(port->up.ofproto);
1712 enum ofputil_port_config changed = old_config ^ port->up.pp.config;
1713
1714 if (changed & (OFPUTIL_PC_NO_RECV | OFPUTIL_PC_NO_RECV_STP |
1715 OFPUTIL_PC_NO_FWD | OFPUTIL_PC_NO_FLOOD |
1716 OFPUTIL_PC_NO_PACKET_IN)) {
1717 ofproto->backer->need_revalidate = REV_RECONFIGURE;
1718
1719 if (changed & OFPUTIL_PC_NO_FLOOD && port->bundle) {
1720 bundle_update(port->bundle);
1721 }
1722 }
1723 }
1724
1725 static int
1726 set_sflow(struct ofproto *ofproto_,
1727 const struct ofproto_sflow_options *sflow_options)
1728 {
1729 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1730 struct dpif_sflow *ds = ofproto->sflow;
1731
1732 if (sflow_options) {
1733 if (!ds) {
1734 struct ofport_dpif *ofport;
1735
1736 ds = ofproto->sflow = dpif_sflow_create();
1737 HMAP_FOR_EACH (ofport, up.hmap_node, &ofproto->up.ports) {
1738 dpif_sflow_add_port(ds, &ofport->up, ofport->odp_port);
1739 }
1740 ofproto->backer->need_revalidate = REV_RECONFIGURE;
1741 }
1742 dpif_sflow_set_options(ds, sflow_options);
1743 } else {
1744 if (ds) {
1745 dpif_sflow_destroy(ds);
1746 ofproto->backer->need_revalidate = REV_RECONFIGURE;
1747 ofproto->sflow = NULL;
1748 }
1749 }
1750 return 0;
1751 }
1752
1753 static int
1754 set_cfm(struct ofport *ofport_, const struct cfm_settings *s)
1755 {
1756 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
1757 int error;
1758
1759 if (!s) {
1760 error = 0;
1761 } else {
1762 if (!ofport->cfm) {
1763 struct ofproto_dpif *ofproto;
1764
1765 ofproto = ofproto_dpif_cast(ofport->up.ofproto);
1766 ofproto->backer->need_revalidate = REV_RECONFIGURE;
1767 ofport->cfm = cfm_create(netdev_get_name(ofport->up.netdev));
1768 }
1769
1770 if (cfm_configure(ofport->cfm, s)) {
1771 return 0;
1772 }
1773
1774 error = EINVAL;
1775 }
1776 cfm_destroy(ofport->cfm);
1777 ofport->cfm = NULL;
1778 return error;
1779 }
1780
1781 static bool
1782 get_cfm_status(const struct ofport *ofport_,
1783 struct ofproto_cfm_status *status)
1784 {
1785 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
1786
1787 if (ofport->cfm) {
1788 status->faults = cfm_get_fault(ofport->cfm);
1789 status->remote_opstate = cfm_get_opup(ofport->cfm);
1790 status->health = cfm_get_health(ofport->cfm);
1791 cfm_get_remote_mpids(ofport->cfm, &status->rmps, &status->n_rmps);
1792 return true;
1793 } else {
1794 return false;
1795 }
1796 }
1797 \f
1798 /* Spanning Tree. */
1799
1800 static void
1801 send_bpdu_cb(struct ofpbuf *pkt, int port_num, void *ofproto_)
1802 {
1803 struct ofproto_dpif *ofproto = ofproto_;
1804 struct stp_port *sp = stp_get_port(ofproto->stp, port_num);
1805 struct ofport_dpif *ofport;
1806
1807 ofport = stp_port_get_aux(sp);
1808 if (!ofport) {
1809 VLOG_WARN_RL(&rl, "%s: cannot send BPDU on unknown port %d",
1810 ofproto->up.name, port_num);
1811 } else {
1812 struct eth_header *eth = pkt->l2;
1813
1814 netdev_get_etheraddr(ofport->up.netdev, eth->eth_src);
1815 if (eth_addr_is_zero(eth->eth_src)) {
1816 VLOG_WARN_RL(&rl, "%s: cannot send BPDU on port %d "
1817 "with unknown MAC", ofproto->up.name, port_num);
1818 } else {
1819 send_packet(ofport, pkt);
1820 }
1821 }
1822 ofpbuf_delete(pkt);
1823 }
1824
1825 /* Configures STP on 'ofproto_' using the settings defined in 's'. */
1826 static int
1827 set_stp(struct ofproto *ofproto_, const struct ofproto_stp_settings *s)
1828 {
1829 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1830
1831 /* Only revalidate flows if the configuration changed. */
1832 if (!s != !ofproto->stp) {
1833 ofproto->backer->need_revalidate = REV_RECONFIGURE;
1834 }
1835
1836 if (s) {
1837 if (!ofproto->stp) {
1838 ofproto->stp = stp_create(ofproto_->name, s->system_id,
1839 send_bpdu_cb, ofproto);
1840 ofproto->stp_last_tick = time_msec();
1841 }
1842
1843 stp_set_bridge_id(ofproto->stp, s->system_id);
1844 stp_set_bridge_priority(ofproto->stp, s->priority);
1845 stp_set_hello_time(ofproto->stp, s->hello_time);
1846 stp_set_max_age(ofproto->stp, s->max_age);
1847 stp_set_forward_delay(ofproto->stp, s->fwd_delay);
1848 } else {
1849 struct ofport *ofport;
1850
1851 HMAP_FOR_EACH (ofport, hmap_node, &ofproto->up.ports) {
1852 set_stp_port(ofport, NULL);
1853 }
1854
1855 stp_destroy(ofproto->stp);
1856 ofproto->stp = NULL;
1857 }
1858
1859 return 0;
1860 }
1861
1862 static int
1863 get_stp_status(struct ofproto *ofproto_, struct ofproto_stp_status *s)
1864 {
1865 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1866
1867 if (ofproto->stp) {
1868 s->enabled = true;
1869 s->bridge_id = stp_get_bridge_id(ofproto->stp);
1870 s->designated_root = stp_get_designated_root(ofproto->stp);
1871 s->root_path_cost = stp_get_root_path_cost(ofproto->stp);
1872 } else {
1873 s->enabled = false;
1874 }
1875
1876 return 0;
1877 }
1878
1879 static void
1880 update_stp_port_state(struct ofport_dpif *ofport)
1881 {
1882 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
1883 enum stp_state state;
1884
1885 /* Figure out new state. */
1886 state = ofport->stp_port ? stp_port_get_state(ofport->stp_port)
1887 : STP_DISABLED;
1888
1889 /* Update state. */
1890 if (ofport->stp_state != state) {
1891 enum ofputil_port_state of_state;
1892 bool fwd_change;
1893
1894 VLOG_DBG_RL(&rl, "port %s: STP state changed from %s to %s",
1895 netdev_get_name(ofport->up.netdev),
1896 stp_state_name(ofport->stp_state),
1897 stp_state_name(state));
1898 if (stp_learn_in_state(ofport->stp_state)
1899 != stp_learn_in_state(state)) {
1900 /* xxx Learning action flows should also be flushed. */
1901 mac_learning_flush(ofproto->ml,
1902 &ofproto->backer->revalidate_set);
1903 }
1904 fwd_change = stp_forward_in_state(ofport->stp_state)
1905 != stp_forward_in_state(state);
1906
1907 ofproto->backer->need_revalidate = REV_STP;
1908 ofport->stp_state = state;
1909 ofport->stp_state_entered = time_msec();
1910
1911 if (fwd_change && ofport->bundle) {
1912 bundle_update(ofport->bundle);
1913 }
1914
1915 /* Update the STP state bits in the OpenFlow port description. */
1916 of_state = ofport->up.pp.state & ~OFPUTIL_PS_STP_MASK;
1917 of_state |= (state == STP_LISTENING ? OFPUTIL_PS_STP_LISTEN
1918 : state == STP_LEARNING ? OFPUTIL_PS_STP_LEARN
1919 : state == STP_FORWARDING ? OFPUTIL_PS_STP_FORWARD
1920 : state == STP_BLOCKING ? OFPUTIL_PS_STP_BLOCK
1921 : 0);
1922 ofproto_port_set_state(&ofport->up, of_state);
1923 }
1924 }
1925
1926 /* Configures STP on 'ofport_' using the settings defined in 's'. The
1927 * caller is responsible for assigning STP port numbers and ensuring
1928 * there are no duplicates. */
1929 static int
1930 set_stp_port(struct ofport *ofport_,
1931 const struct ofproto_port_stp_settings *s)
1932 {
1933 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
1934 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
1935 struct stp_port *sp = ofport->stp_port;
1936
1937 if (!s || !s->enable) {
1938 if (sp) {
1939 ofport->stp_port = NULL;
1940 stp_port_disable(sp);
1941 update_stp_port_state(ofport);
1942 }
1943 return 0;
1944 } else if (sp && stp_port_no(sp) != s->port_num
1945 && ofport == stp_port_get_aux(sp)) {
1946 /* The port-id changed, so disable the old one if it's not
1947 * already in use by another port. */
1948 stp_port_disable(sp);
1949 }
1950
1951 sp = ofport->stp_port = stp_get_port(ofproto->stp, s->port_num);
1952 stp_port_enable(sp);
1953
1954 stp_port_set_aux(sp, ofport);
1955 stp_port_set_priority(sp, s->priority);
1956 stp_port_set_path_cost(sp, s->path_cost);
1957
1958 update_stp_port_state(ofport);
1959
1960 return 0;
1961 }
1962
1963 static int
1964 get_stp_port_status(struct ofport *ofport_,
1965 struct ofproto_port_stp_status *s)
1966 {
1967 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
1968 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
1969 struct stp_port *sp = ofport->stp_port;
1970
1971 if (!ofproto->stp || !sp) {
1972 s->enabled = false;
1973 return 0;
1974 }
1975
1976 s->enabled = true;
1977 s->port_id = stp_port_get_id(sp);
1978 s->state = stp_port_get_state(sp);
1979 s->sec_in_state = (time_msec() - ofport->stp_state_entered) / 1000;
1980 s->role = stp_port_get_role(sp);
1981 stp_port_get_counts(sp, &s->tx_count, &s->rx_count, &s->error_count);
1982
1983 return 0;
1984 }
1985
1986 static void
1987 stp_run(struct ofproto_dpif *ofproto)
1988 {
1989 if (ofproto->stp) {
1990 long long int now = time_msec();
1991 long long int elapsed = now - ofproto->stp_last_tick;
1992 struct stp_port *sp;
1993
1994 if (elapsed > 0) {
1995 stp_tick(ofproto->stp, MIN(INT_MAX, elapsed));
1996 ofproto->stp_last_tick = now;
1997 }
1998 while (stp_get_changed_port(ofproto->stp, &sp)) {
1999 struct ofport_dpif *ofport = stp_port_get_aux(sp);
2000
2001 if (ofport) {
2002 update_stp_port_state(ofport);
2003 }
2004 }
2005
2006 if (stp_check_and_reset_fdb_flush(ofproto->stp)) {
2007 mac_learning_flush(ofproto->ml, &ofproto->backer->revalidate_set);
2008 }
2009 }
2010 }
2011
2012 static void
2013 stp_wait(struct ofproto_dpif *ofproto)
2014 {
2015 if (ofproto->stp) {
2016 poll_timer_wait(1000);
2017 }
2018 }
2019
2020 /* Returns true if STP should process 'flow'. */
2021 static bool
2022 stp_should_process_flow(const struct flow *flow)
2023 {
2024 return eth_addr_equals(flow->dl_dst, eth_addr_stp);
2025 }
2026
2027 static void
2028 stp_process_packet(const struct ofport_dpif *ofport,
2029 const struct ofpbuf *packet)
2030 {
2031 struct ofpbuf payload = *packet;
2032 struct eth_header *eth = payload.data;
2033 struct stp_port *sp = ofport->stp_port;
2034
2035 /* Sink packets on ports that have STP disabled when the bridge has
2036 * STP enabled. */
2037 if (!sp || stp_port_get_state(sp) == STP_DISABLED) {
2038 return;
2039 }
2040
2041 /* Trim off padding on payload. */
2042 if (payload.size > ntohs(eth->eth_type) + ETH_HEADER_LEN) {
2043 payload.size = ntohs(eth->eth_type) + ETH_HEADER_LEN;
2044 }
2045
2046 if (ofpbuf_try_pull(&payload, ETH_HEADER_LEN + LLC_HEADER_LEN)) {
2047 stp_received_bpdu(sp, payload.data, payload.size);
2048 }
2049 }
2050 \f
2051 static struct priority_to_dscp *
2052 get_priority(const struct ofport_dpif *ofport, uint32_t priority)
2053 {
2054 struct priority_to_dscp *pdscp;
2055 uint32_t hash;
2056
2057 hash = hash_int(priority, 0);
2058 HMAP_FOR_EACH_IN_BUCKET (pdscp, hmap_node, hash, &ofport->priorities) {
2059 if (pdscp->priority == priority) {
2060 return pdscp;
2061 }
2062 }
2063 return NULL;
2064 }
2065
2066 static void
2067 ofport_clear_priorities(struct ofport_dpif *ofport)
2068 {
2069 struct priority_to_dscp *pdscp, *next;
2070
2071 HMAP_FOR_EACH_SAFE (pdscp, next, hmap_node, &ofport->priorities) {
2072 hmap_remove(&ofport->priorities, &pdscp->hmap_node);
2073 free(pdscp);
2074 }
2075 }
2076
2077 static int
2078 set_queues(struct ofport *ofport_,
2079 const struct ofproto_port_queue *qdscp_list,
2080 size_t n_qdscp)
2081 {
2082 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
2083 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
2084 struct hmap new = HMAP_INITIALIZER(&new);
2085 size_t i;
2086
2087 for (i = 0; i < n_qdscp; i++) {
2088 struct priority_to_dscp *pdscp;
2089 uint32_t priority;
2090 uint8_t dscp;
2091
2092 dscp = (qdscp_list[i].dscp << 2) & IP_DSCP_MASK;
2093 if (dpif_queue_to_priority(ofproto->backer->dpif, qdscp_list[i].queue,
2094 &priority)) {
2095 continue;
2096 }
2097
2098 pdscp = get_priority(ofport, priority);
2099 if (pdscp) {
2100 hmap_remove(&ofport->priorities, &pdscp->hmap_node);
2101 } else {
2102 pdscp = xmalloc(sizeof *pdscp);
2103 pdscp->priority = priority;
2104 pdscp->dscp = dscp;
2105 ofproto->backer->need_revalidate = REV_RECONFIGURE;
2106 }
2107
2108 if (pdscp->dscp != dscp) {
2109 pdscp->dscp = dscp;
2110 ofproto->backer->need_revalidate = REV_RECONFIGURE;
2111 }
2112
2113 hmap_insert(&new, &pdscp->hmap_node, hash_int(pdscp->priority, 0));
2114 }
2115
2116 if (!hmap_is_empty(&ofport->priorities)) {
2117 ofport_clear_priorities(ofport);
2118 ofproto->backer->need_revalidate = REV_RECONFIGURE;
2119 }
2120
2121 hmap_swap(&new, &ofport->priorities);
2122 hmap_destroy(&new);
2123
2124 return 0;
2125 }
2126 \f
2127 /* Bundles. */
2128
2129 /* Expires all MAC learning entries associated with 'bundle' and forces its
2130 * ofproto to revalidate every flow.
2131 *
2132 * Normally MAC learning entries are removed only from the ofproto associated
2133 * with 'bundle', but if 'all_ofprotos' is true, then the MAC learning entries
2134 * are removed from every ofproto. When patch ports and SLB bonds are in use
2135 * and a VM migration happens and the gratuitous ARPs are somehow lost, this
2136 * avoids a MAC_ENTRY_IDLE_TIME delay before the migrated VM can communicate
2137 * with the host from which it migrated. */
2138 static void
2139 bundle_flush_macs(struct ofbundle *bundle, bool all_ofprotos)
2140 {
2141 struct ofproto_dpif *ofproto = bundle->ofproto;
2142 struct mac_learning *ml = ofproto->ml;
2143 struct mac_entry *mac, *next_mac;
2144
2145 ofproto->backer->need_revalidate = REV_RECONFIGURE;
2146 LIST_FOR_EACH_SAFE (mac, next_mac, lru_node, &ml->lrus) {
2147 if (mac->port.p == bundle) {
2148 if (all_ofprotos) {
2149 struct ofproto_dpif *o;
2150
2151 HMAP_FOR_EACH (o, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
2152 if (o != ofproto) {
2153 struct mac_entry *e;
2154
2155 e = mac_learning_lookup(o->ml, mac->mac, mac->vlan,
2156 NULL);
2157 if (e) {
2158 mac_learning_expire(o->ml, e);
2159 }
2160 }
2161 }
2162 }
2163
2164 mac_learning_expire(ml, mac);
2165 }
2166 }
2167 }
2168
2169 static struct ofbundle *
2170 bundle_lookup(const struct ofproto_dpif *ofproto, void *aux)
2171 {
2172 struct ofbundle *bundle;
2173
2174 HMAP_FOR_EACH_IN_BUCKET (bundle, hmap_node, hash_pointer(aux, 0),
2175 &ofproto->bundles) {
2176 if (bundle->aux == aux) {
2177 return bundle;
2178 }
2179 }
2180 return NULL;
2181 }
2182
2183 /* Looks up each of the 'n_auxes' pointers in 'auxes' as bundles and adds the
2184 * ones that are found to 'bundles'. */
2185 static void
2186 bundle_lookup_multiple(struct ofproto_dpif *ofproto,
2187 void **auxes, size_t n_auxes,
2188 struct hmapx *bundles)
2189 {
2190 size_t i;
2191
2192 hmapx_init(bundles);
2193 for (i = 0; i < n_auxes; i++) {
2194 struct ofbundle *bundle = bundle_lookup(ofproto, auxes[i]);
2195 if (bundle) {
2196 hmapx_add(bundles, bundle);
2197 }
2198 }
2199 }
2200
2201 static void
2202 bundle_update(struct ofbundle *bundle)
2203 {
2204 struct ofport_dpif *port;
2205
2206 bundle->floodable = true;
2207 LIST_FOR_EACH (port, bundle_node, &bundle->ports) {
2208 if (port->up.pp.config & OFPUTIL_PC_NO_FLOOD
2209 || !stp_forward_in_state(port->stp_state)) {
2210 bundle->floodable = false;
2211 break;
2212 }
2213 }
2214 }
2215
2216 static void
2217 bundle_del_port(struct ofport_dpif *port)
2218 {
2219 struct ofbundle *bundle = port->bundle;
2220
2221 bundle->ofproto->backer->need_revalidate = REV_RECONFIGURE;
2222
2223 list_remove(&port->bundle_node);
2224 port->bundle = NULL;
2225
2226 if (bundle->lacp) {
2227 lacp_slave_unregister(bundle->lacp, port);
2228 }
2229 if (bundle->bond) {
2230 bond_slave_unregister(bundle->bond, port);
2231 }
2232
2233 bundle_update(bundle);
2234 }
2235
2236 static bool
2237 bundle_add_port(struct ofbundle *bundle, uint32_t ofp_port,
2238 struct lacp_slave_settings *lacp)
2239 {
2240 struct ofport_dpif *port;
2241
2242 port = get_ofp_port(bundle->ofproto, ofp_port);
2243 if (!port) {
2244 return false;
2245 }
2246
2247 if (port->bundle != bundle) {
2248 bundle->ofproto->backer->need_revalidate = REV_RECONFIGURE;
2249 if (port->bundle) {
2250 bundle_del_port(port);
2251 }
2252
2253 port->bundle = bundle;
2254 list_push_back(&bundle->ports, &port->bundle_node);
2255 if (port->up.pp.config & OFPUTIL_PC_NO_FLOOD
2256 || !stp_forward_in_state(port->stp_state)) {
2257 bundle->floodable = false;
2258 }
2259 }
2260 if (lacp) {
2261 bundle->ofproto->backer->need_revalidate = REV_RECONFIGURE;
2262 lacp_slave_register(bundle->lacp, port, lacp);
2263 }
2264
2265 return true;
2266 }
2267
2268 static void
2269 bundle_destroy(struct ofbundle *bundle)
2270 {
2271 struct ofproto_dpif *ofproto;
2272 struct ofport_dpif *port, *next_port;
2273 int i;
2274
2275 if (!bundle) {
2276 return;
2277 }
2278
2279 ofproto = bundle->ofproto;
2280 for (i = 0; i < MAX_MIRRORS; i++) {
2281 struct ofmirror *m = ofproto->mirrors[i];
2282 if (m) {
2283 if (m->out == bundle) {
2284 mirror_destroy(m);
2285 } else if (hmapx_find_and_delete(&m->srcs, bundle)
2286 || hmapx_find_and_delete(&m->dsts, bundle)) {
2287 ofproto->backer->need_revalidate = REV_RECONFIGURE;
2288 }
2289 }
2290 }
2291
2292 LIST_FOR_EACH_SAFE (port, next_port, bundle_node, &bundle->ports) {
2293 bundle_del_port(port);
2294 }
2295
2296 bundle_flush_macs(bundle, true);
2297 hmap_remove(&ofproto->bundles, &bundle->hmap_node);
2298 free(bundle->name);
2299 free(bundle->trunks);
2300 lacp_destroy(bundle->lacp);
2301 bond_destroy(bundle->bond);
2302 free(bundle);
2303 }
2304
2305 static int
2306 bundle_set(struct ofproto *ofproto_, void *aux,
2307 const struct ofproto_bundle_settings *s)
2308 {
2309 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2310 bool need_flush = false;
2311 struct ofport_dpif *port;
2312 struct ofbundle *bundle;
2313 unsigned long *trunks;
2314 int vlan;
2315 size_t i;
2316 bool ok;
2317
2318 if (!s) {
2319 bundle_destroy(bundle_lookup(ofproto, aux));
2320 return 0;
2321 }
2322
2323 ovs_assert(s->n_slaves == 1 || s->bond != NULL);
2324 ovs_assert((s->lacp != NULL) == (s->lacp_slaves != NULL));
2325
2326 bundle = bundle_lookup(ofproto, aux);
2327 if (!bundle) {
2328 bundle = xmalloc(sizeof *bundle);
2329
2330 bundle->ofproto = ofproto;
2331 hmap_insert(&ofproto->bundles, &bundle->hmap_node,
2332 hash_pointer(aux, 0));
2333 bundle->aux = aux;
2334 bundle->name = NULL;
2335
2336 list_init(&bundle->ports);
2337 bundle->vlan_mode = PORT_VLAN_TRUNK;
2338 bundle->vlan = -1;
2339 bundle->trunks = NULL;
2340 bundle->use_priority_tags = s->use_priority_tags;
2341 bundle->lacp = NULL;
2342 bundle->bond = NULL;
2343
2344 bundle->floodable = true;
2345
2346 bundle->src_mirrors = 0;
2347 bundle->dst_mirrors = 0;
2348 bundle->mirror_out = 0;
2349 }
2350
2351 if (!bundle->name || strcmp(s->name, bundle->name)) {
2352 free(bundle->name);
2353 bundle->name = xstrdup(s->name);
2354 }
2355
2356 /* LACP. */
2357 if (s->lacp) {
2358 if (!bundle->lacp) {
2359 ofproto->backer->need_revalidate = REV_RECONFIGURE;
2360 bundle->lacp = lacp_create();
2361 }
2362 lacp_configure(bundle->lacp, s->lacp);
2363 } else {
2364 lacp_destroy(bundle->lacp);
2365 bundle->lacp = NULL;
2366 }
2367
2368 /* Update set of ports. */
2369 ok = true;
2370 for (i = 0; i < s->n_slaves; i++) {
2371 if (!bundle_add_port(bundle, s->slaves[i],
2372 s->lacp ? &s->lacp_slaves[i] : NULL)) {
2373 ok = false;
2374 }
2375 }
2376 if (!ok || list_size(&bundle->ports) != s->n_slaves) {
2377 struct ofport_dpif *next_port;
2378
2379 LIST_FOR_EACH_SAFE (port, next_port, bundle_node, &bundle->ports) {
2380 for (i = 0; i < s->n_slaves; i++) {
2381 if (s->slaves[i] == port->up.ofp_port) {
2382 goto found;
2383 }
2384 }
2385
2386 bundle_del_port(port);
2387 found: ;
2388 }
2389 }
2390 ovs_assert(list_size(&bundle->ports) <= s->n_slaves);
2391
2392 if (list_is_empty(&bundle->ports)) {
2393 bundle_destroy(bundle);
2394 return EINVAL;
2395 }
2396
2397 /* Set VLAN tagging mode */
2398 if (s->vlan_mode != bundle->vlan_mode
2399 || s->use_priority_tags != bundle->use_priority_tags) {
2400 bundle->vlan_mode = s->vlan_mode;
2401 bundle->use_priority_tags = s->use_priority_tags;
2402 need_flush = true;
2403 }
2404
2405 /* Set VLAN tag. */
2406 vlan = (s->vlan_mode == PORT_VLAN_TRUNK ? -1
2407 : s->vlan >= 0 && s->vlan <= 4095 ? s->vlan
2408 : 0);
2409 if (vlan != bundle->vlan) {
2410 bundle->vlan = vlan;
2411 need_flush = true;
2412 }
2413
2414 /* Get trunked VLANs. */
2415 switch (s->vlan_mode) {
2416 case PORT_VLAN_ACCESS:
2417 trunks = NULL;
2418 break;
2419
2420 case PORT_VLAN_TRUNK:
2421 trunks = CONST_CAST(unsigned long *, s->trunks);
2422 break;
2423
2424 case PORT_VLAN_NATIVE_UNTAGGED:
2425 case PORT_VLAN_NATIVE_TAGGED:
2426 if (vlan != 0 && (!s->trunks
2427 || !bitmap_is_set(s->trunks, vlan)
2428 || bitmap_is_set(s->trunks, 0))) {
2429 /* Force trunking the native VLAN and prohibit trunking VLAN 0. */
2430 if (s->trunks) {
2431 trunks = bitmap_clone(s->trunks, 4096);
2432 } else {
2433 trunks = bitmap_allocate1(4096);
2434 }
2435 bitmap_set1(trunks, vlan);
2436 bitmap_set0(trunks, 0);
2437 } else {
2438 trunks = CONST_CAST(unsigned long *, s->trunks);
2439 }
2440 break;
2441
2442 default:
2443 NOT_REACHED();
2444 }
2445 if (!vlan_bitmap_equal(trunks, bundle->trunks)) {
2446 free(bundle->trunks);
2447 if (trunks == s->trunks) {
2448 bundle->trunks = vlan_bitmap_clone(trunks);
2449 } else {
2450 bundle->trunks = trunks;
2451 trunks = NULL;
2452 }
2453 need_flush = true;
2454 }
2455 if (trunks != s->trunks) {
2456 free(trunks);
2457 }
2458
2459 /* Bonding. */
2460 if (!list_is_short(&bundle->ports)) {
2461 bundle->ofproto->has_bonded_bundles = true;
2462 if (bundle->bond) {
2463 if (bond_reconfigure(bundle->bond, s->bond)) {
2464 ofproto->backer->need_revalidate = REV_RECONFIGURE;
2465 }
2466 } else {
2467 bundle->bond = bond_create(s->bond);
2468 ofproto->backer->need_revalidate = REV_RECONFIGURE;
2469 }
2470
2471 LIST_FOR_EACH (port, bundle_node, &bundle->ports) {
2472 bond_slave_register(bundle->bond, port, port->up.netdev);
2473 }
2474 } else {
2475 bond_destroy(bundle->bond);
2476 bundle->bond = NULL;
2477 }
2478
2479 /* If we changed something that would affect MAC learning, un-learn
2480 * everything on this port and force flow revalidation. */
2481 if (need_flush) {
2482 bundle_flush_macs(bundle, false);
2483 }
2484
2485 return 0;
2486 }
2487
2488 static void
2489 bundle_remove(struct ofport *port_)
2490 {
2491 struct ofport_dpif *port = ofport_dpif_cast(port_);
2492 struct ofbundle *bundle = port->bundle;
2493
2494 if (bundle) {
2495 bundle_del_port(port);
2496 if (list_is_empty(&bundle->ports)) {
2497 bundle_destroy(bundle);
2498 } else if (list_is_short(&bundle->ports)) {
2499 bond_destroy(bundle->bond);
2500 bundle->bond = NULL;
2501 }
2502 }
2503 }
2504
2505 static void
2506 send_pdu_cb(void *port_, const void *pdu, size_t pdu_size)
2507 {
2508 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 10);
2509 struct ofport_dpif *port = port_;
2510 uint8_t ea[ETH_ADDR_LEN];
2511 int error;
2512
2513 error = netdev_get_etheraddr(port->up.netdev, ea);
2514 if (!error) {
2515 struct ofpbuf packet;
2516 void *packet_pdu;
2517
2518 ofpbuf_init(&packet, 0);
2519 packet_pdu = eth_compose(&packet, eth_addr_lacp, ea, ETH_TYPE_LACP,
2520 pdu_size);
2521 memcpy(packet_pdu, pdu, pdu_size);
2522
2523 send_packet(port, &packet);
2524 ofpbuf_uninit(&packet);
2525 } else {
2526 VLOG_ERR_RL(&rl, "port %s: cannot obtain Ethernet address of iface "
2527 "%s (%s)", port->bundle->name,
2528 netdev_get_name(port->up.netdev), strerror(error));
2529 }
2530 }
2531
2532 static void
2533 bundle_send_learning_packets(struct ofbundle *bundle)
2534 {
2535 struct ofproto_dpif *ofproto = bundle->ofproto;
2536 int error, n_packets, n_errors;
2537 struct mac_entry *e;
2538
2539 error = n_packets = n_errors = 0;
2540 LIST_FOR_EACH (e, lru_node, &ofproto->ml->lrus) {
2541 if (e->port.p != bundle) {
2542 struct ofpbuf *learning_packet;
2543 struct ofport_dpif *port;
2544 void *port_void;
2545 int ret;
2546
2547 /* The assignment to "port" is unnecessary but makes "grep"ing for
2548 * struct ofport_dpif more effective. */
2549 learning_packet = bond_compose_learning_packet(bundle->bond,
2550 e->mac, e->vlan,
2551 &port_void);
2552 port = port_void;
2553 ret = send_packet(port, learning_packet);
2554 ofpbuf_delete(learning_packet);
2555 if (ret) {
2556 error = ret;
2557 n_errors++;
2558 }
2559 n_packets++;
2560 }
2561 }
2562
2563 if (n_errors) {
2564 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
2565 VLOG_WARN_RL(&rl, "bond %s: %d errors sending %d gratuitous learning "
2566 "packets, last error was: %s",
2567 bundle->name, n_errors, n_packets, strerror(error));
2568 } else {
2569 VLOG_DBG("bond %s: sent %d gratuitous learning packets",
2570 bundle->name, n_packets);
2571 }
2572 }
2573
2574 static void
2575 bundle_run(struct ofbundle *bundle)
2576 {
2577 if (bundle->lacp) {
2578 lacp_run(bundle->lacp, send_pdu_cb);
2579 }
2580 if (bundle->bond) {
2581 struct ofport_dpif *port;
2582
2583 LIST_FOR_EACH (port, bundle_node, &bundle->ports) {
2584 bond_slave_set_may_enable(bundle->bond, port, port->may_enable);
2585 }
2586
2587 bond_run(bundle->bond, &bundle->ofproto->backer->revalidate_set,
2588 lacp_status(bundle->lacp));
2589 if (bond_should_send_learning_packets(bundle->bond)) {
2590 bundle_send_learning_packets(bundle);
2591 }
2592 }
2593 }
2594
2595 static void
2596 bundle_wait(struct ofbundle *bundle)
2597 {
2598 if (bundle->lacp) {
2599 lacp_wait(bundle->lacp);
2600 }
2601 if (bundle->bond) {
2602 bond_wait(bundle->bond);
2603 }
2604 }
2605 \f
2606 /* Mirrors. */
2607
2608 static int
2609 mirror_scan(struct ofproto_dpif *ofproto)
2610 {
2611 int idx;
2612
2613 for (idx = 0; idx < MAX_MIRRORS; idx++) {
2614 if (!ofproto->mirrors[idx]) {
2615 return idx;
2616 }
2617 }
2618 return -1;
2619 }
2620
2621 static struct ofmirror *
2622 mirror_lookup(struct ofproto_dpif *ofproto, void *aux)
2623 {
2624 int i;
2625
2626 for (i = 0; i < MAX_MIRRORS; i++) {
2627 struct ofmirror *mirror = ofproto->mirrors[i];
2628 if (mirror && mirror->aux == aux) {
2629 return mirror;
2630 }
2631 }
2632
2633 return NULL;
2634 }
2635
2636 /* Update the 'dup_mirrors' member of each of the ofmirrors in 'ofproto'. */
2637 static void
2638 mirror_update_dups(struct ofproto_dpif *ofproto)
2639 {
2640 int i;
2641
2642 for (i = 0; i < MAX_MIRRORS; i++) {
2643 struct ofmirror *m = ofproto->mirrors[i];
2644
2645 if (m) {
2646 m->dup_mirrors = MIRROR_MASK_C(1) << i;
2647 }
2648 }
2649
2650 for (i = 0; i < MAX_MIRRORS; i++) {
2651 struct ofmirror *m1 = ofproto->mirrors[i];
2652 int j;
2653
2654 if (!m1) {
2655 continue;
2656 }
2657
2658 for (j = i + 1; j < MAX_MIRRORS; j++) {
2659 struct ofmirror *m2 = ofproto->mirrors[j];
2660
2661 if (m2 && m1->out == m2->out && m1->out_vlan == m2->out_vlan) {
2662 m1->dup_mirrors |= MIRROR_MASK_C(1) << j;
2663 m2->dup_mirrors |= m1->dup_mirrors;
2664 }
2665 }
2666 }
2667 }
2668
2669 static int
2670 mirror_set(struct ofproto *ofproto_, void *aux,
2671 const struct ofproto_mirror_settings *s)
2672 {
2673 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2674 mirror_mask_t mirror_bit;
2675 struct ofbundle *bundle;
2676 struct ofmirror *mirror;
2677 struct ofbundle *out;
2678 struct hmapx srcs; /* Contains "struct ofbundle *"s. */
2679 struct hmapx dsts; /* Contains "struct ofbundle *"s. */
2680 int out_vlan;
2681
2682 mirror = mirror_lookup(ofproto, aux);
2683 if (!s) {
2684 mirror_destroy(mirror);
2685 return 0;
2686 }
2687 if (!mirror) {
2688 int idx;
2689
2690 idx = mirror_scan(ofproto);
2691 if (idx < 0) {
2692 VLOG_WARN("bridge %s: maximum of %d port mirrors reached, "
2693 "cannot create %s",
2694 ofproto->up.name, MAX_MIRRORS, s->name);
2695 return EFBIG;
2696 }
2697
2698 mirror = ofproto->mirrors[idx] = xzalloc(sizeof *mirror);
2699 mirror->ofproto = ofproto;
2700 mirror->idx = idx;
2701 mirror->aux = aux;
2702 mirror->out_vlan = -1;
2703 mirror->name = NULL;
2704 }
2705
2706 if (!mirror->name || strcmp(s->name, mirror->name)) {
2707 free(mirror->name);
2708 mirror->name = xstrdup(s->name);
2709 }
2710
2711 /* Get the new configuration. */
2712 if (s->out_bundle) {
2713 out = bundle_lookup(ofproto, s->out_bundle);
2714 if (!out) {
2715 mirror_destroy(mirror);
2716 return EINVAL;
2717 }
2718 out_vlan = -1;
2719 } else {
2720 out = NULL;
2721 out_vlan = s->out_vlan;
2722 }
2723 bundle_lookup_multiple(ofproto, s->srcs, s->n_srcs, &srcs);
2724 bundle_lookup_multiple(ofproto, s->dsts, s->n_dsts, &dsts);
2725
2726 /* If the configuration has not changed, do nothing. */
2727 if (hmapx_equals(&srcs, &mirror->srcs)
2728 && hmapx_equals(&dsts, &mirror->dsts)
2729 && vlan_bitmap_equal(mirror->vlans, s->src_vlans)
2730 && mirror->out == out
2731 && mirror->out_vlan == out_vlan)
2732 {
2733 hmapx_destroy(&srcs);
2734 hmapx_destroy(&dsts);
2735 return 0;
2736 }
2737
2738 hmapx_swap(&srcs, &mirror->srcs);
2739 hmapx_destroy(&srcs);
2740
2741 hmapx_swap(&dsts, &mirror->dsts);
2742 hmapx_destroy(&dsts);
2743
2744 free(mirror->vlans);
2745 mirror->vlans = vlan_bitmap_clone(s->src_vlans);
2746
2747 mirror->out = out;
2748 mirror->out_vlan = out_vlan;
2749
2750 /* Update bundles. */
2751 mirror_bit = MIRROR_MASK_C(1) << mirror->idx;
2752 HMAP_FOR_EACH (bundle, hmap_node, &mirror->ofproto->bundles) {
2753 if (hmapx_contains(&mirror->srcs, bundle)) {
2754 bundle->src_mirrors |= mirror_bit;
2755 } else {
2756 bundle->src_mirrors &= ~mirror_bit;
2757 }
2758
2759 if (hmapx_contains(&mirror->dsts, bundle)) {
2760 bundle->dst_mirrors |= mirror_bit;
2761 } else {
2762 bundle->dst_mirrors &= ~mirror_bit;
2763 }
2764
2765 if (mirror->out == bundle) {
2766 bundle->mirror_out |= mirror_bit;
2767 } else {
2768 bundle->mirror_out &= ~mirror_bit;
2769 }
2770 }
2771
2772 ofproto->backer->need_revalidate = REV_RECONFIGURE;
2773 ofproto->has_mirrors = true;
2774 mac_learning_flush(ofproto->ml,
2775 &ofproto->backer->revalidate_set);
2776 mirror_update_dups(ofproto);
2777
2778 return 0;
2779 }
2780
2781 static void
2782 mirror_destroy(struct ofmirror *mirror)
2783 {
2784 struct ofproto_dpif *ofproto;
2785 mirror_mask_t mirror_bit;
2786 struct ofbundle *bundle;
2787 int i;
2788
2789 if (!mirror) {
2790 return;
2791 }
2792
2793 ofproto = mirror->ofproto;
2794 ofproto->backer->need_revalidate = REV_RECONFIGURE;
2795 mac_learning_flush(ofproto->ml, &ofproto->backer->revalidate_set);
2796
2797 mirror_bit = MIRROR_MASK_C(1) << mirror->idx;
2798 HMAP_FOR_EACH (bundle, hmap_node, &ofproto->bundles) {
2799 bundle->src_mirrors &= ~mirror_bit;
2800 bundle->dst_mirrors &= ~mirror_bit;
2801 bundle->mirror_out &= ~mirror_bit;
2802 }
2803
2804 hmapx_destroy(&mirror->srcs);
2805 hmapx_destroy(&mirror->dsts);
2806 free(mirror->vlans);
2807
2808 ofproto->mirrors[mirror->idx] = NULL;
2809 free(mirror->name);
2810 free(mirror);
2811
2812 mirror_update_dups(ofproto);
2813
2814 ofproto->has_mirrors = false;
2815 for (i = 0; i < MAX_MIRRORS; i++) {
2816 if (ofproto->mirrors[i]) {
2817 ofproto->has_mirrors = true;
2818 break;
2819 }
2820 }
2821 }
2822
2823 static int
2824 mirror_get_stats(struct ofproto *ofproto_, void *aux,
2825 uint64_t *packets, uint64_t *bytes)
2826 {
2827 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2828 struct ofmirror *mirror = mirror_lookup(ofproto, aux);
2829
2830 if (!mirror) {
2831 *packets = *bytes = UINT64_MAX;
2832 return 0;
2833 }
2834
2835 *packets = mirror->packet_count;
2836 *bytes = mirror->byte_count;
2837
2838 return 0;
2839 }
2840
2841 static int
2842 set_flood_vlans(struct ofproto *ofproto_, unsigned long *flood_vlans)
2843 {
2844 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2845 if (mac_learning_set_flood_vlans(ofproto->ml, flood_vlans)) {
2846 mac_learning_flush(ofproto->ml, &ofproto->backer->revalidate_set);
2847 }
2848 return 0;
2849 }
2850
2851 static bool
2852 is_mirror_output_bundle(const struct ofproto *ofproto_, void *aux)
2853 {
2854 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2855 struct ofbundle *bundle = bundle_lookup(ofproto, aux);
2856 return bundle && bundle->mirror_out != 0;
2857 }
2858
2859 static void
2860 forward_bpdu_changed(struct ofproto *ofproto_)
2861 {
2862 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2863 ofproto->backer->need_revalidate = REV_RECONFIGURE;
2864 }
2865
2866 static void
2867 set_mac_table_config(struct ofproto *ofproto_, unsigned int idle_time,
2868 size_t max_entries)
2869 {
2870 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2871 mac_learning_set_idle_time(ofproto->ml, idle_time);
2872 mac_learning_set_max_entries(ofproto->ml, max_entries);
2873 }
2874 \f
2875 /* Ports. */
2876
2877 static struct ofport_dpif *
2878 get_ofp_port(const struct ofproto_dpif *ofproto, uint16_t ofp_port)
2879 {
2880 struct ofport *ofport = ofproto_get_port(&ofproto->up, ofp_port);
2881 return ofport ? ofport_dpif_cast(ofport) : NULL;
2882 }
2883
2884 static struct ofport_dpif *
2885 get_odp_port(const struct ofproto_dpif *ofproto, uint32_t odp_port)
2886 {
2887 struct ofport_dpif *port = odp_port_to_ofport(ofproto->backer, odp_port);
2888 return port && &ofproto->up == port->up.ofproto ? port : NULL;
2889 }
2890
2891 static void
2892 ofproto_port_from_dpif_port(struct ofproto_dpif *ofproto,
2893 struct ofproto_port *ofproto_port,
2894 struct dpif_port *dpif_port)
2895 {
2896 ofproto_port->name = dpif_port->name;
2897 ofproto_port->type = dpif_port->type;
2898 ofproto_port->ofp_port = odp_port_to_ofp_port(ofproto, dpif_port->port_no);
2899 }
2900
2901 static struct ofport_dpif *
2902 ofport_get_peer(const struct ofport_dpif *ofport_dpif)
2903 {
2904 const struct ofproto_dpif *ofproto;
2905 const char *peer;
2906
2907 peer = netdev_vport_patch_peer(ofport_dpif->up.netdev);
2908 if (!peer) {
2909 return NULL;
2910 }
2911
2912 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
2913 struct ofport *ofport;
2914
2915 ofport = shash_find_data(&ofproto->up.port_by_name, peer);
2916 if (ofport && ofport->ofproto->ofproto_class == &ofproto_dpif_class) {
2917 return ofport_dpif_cast(ofport);
2918 }
2919 }
2920 return NULL;
2921 }
2922
2923 static void
2924 port_run_fast(struct ofport_dpif *ofport)
2925 {
2926 if (ofport->cfm && cfm_should_send_ccm(ofport->cfm)) {
2927 struct ofpbuf packet;
2928
2929 ofpbuf_init(&packet, 0);
2930 cfm_compose_ccm(ofport->cfm, &packet, ofport->up.pp.hw_addr);
2931 send_packet(ofport, &packet);
2932 ofpbuf_uninit(&packet);
2933 }
2934 }
2935
2936 static void
2937 port_run(struct ofport_dpif *ofport)
2938 {
2939 long long int carrier_seq = netdev_get_carrier_resets(ofport->up.netdev);
2940 bool carrier_changed = carrier_seq != ofport->carrier_seq;
2941 bool enable = netdev_get_carrier(ofport->up.netdev);
2942
2943 ofport->carrier_seq = carrier_seq;
2944
2945 port_run_fast(ofport);
2946
2947 if (ofport->tnl_port
2948 && tnl_port_reconfigure(&ofport->up, ofport->odp_port,
2949 &ofport->tnl_port)) {
2950 ofproto_dpif_cast(ofport->up.ofproto)->backer->need_revalidate = true;
2951 }
2952
2953 if (ofport->cfm) {
2954 int cfm_opup = cfm_get_opup(ofport->cfm);
2955
2956 cfm_run(ofport->cfm);
2957 enable = enable && !cfm_get_fault(ofport->cfm);
2958
2959 if (cfm_opup >= 0) {
2960 enable = enable && cfm_opup;
2961 }
2962 }
2963
2964 if (ofport->bundle) {
2965 enable = enable && lacp_slave_may_enable(ofport->bundle->lacp, ofport);
2966 if (carrier_changed) {
2967 lacp_slave_carrier_changed(ofport->bundle->lacp, ofport);
2968 }
2969 }
2970
2971 if (ofport->may_enable != enable) {
2972 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
2973
2974 if (ofproto->has_bundle_action) {
2975 ofproto->backer->need_revalidate = REV_PORT_TOGGLED;
2976 }
2977 }
2978
2979 ofport->may_enable = enable;
2980 }
2981
2982 static void
2983 port_wait(struct ofport_dpif *ofport)
2984 {
2985 if (ofport->cfm) {
2986 cfm_wait(ofport->cfm);
2987 }
2988 }
2989
2990 static int
2991 port_query_by_name(const struct ofproto *ofproto_, const char *devname,
2992 struct ofproto_port *ofproto_port)
2993 {
2994 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2995 struct dpif_port dpif_port;
2996 int error;
2997
2998 if (sset_contains(&ofproto->ghost_ports, devname)) {
2999 const char *type = netdev_get_type_from_name(devname);
3000
3001 /* We may be called before ofproto->up.port_by_name is populated with
3002 * the appropriate ofport. For this reason, we must get the name and
3003 * type from the netdev layer directly. */
3004 if (type) {
3005 const struct ofport *ofport;
3006
3007 ofport = shash_find_data(&ofproto->up.port_by_name, devname);
3008 ofproto_port->ofp_port = ofport ? ofport->ofp_port : OFPP_NONE;
3009 ofproto_port->name = xstrdup(devname);
3010 ofproto_port->type = xstrdup(type);
3011 return 0;
3012 }
3013 return ENODEV;
3014 }
3015
3016 if (!sset_contains(&ofproto->ports, devname)) {
3017 return ENODEV;
3018 }
3019 error = dpif_port_query_by_name(ofproto->backer->dpif,
3020 devname, &dpif_port);
3021 if (!error) {
3022 ofproto_port_from_dpif_port(ofproto, ofproto_port, &dpif_port);
3023 }
3024 return error;
3025 }
3026
3027 static int
3028 port_add(struct ofproto *ofproto_, struct netdev *netdev)
3029 {
3030 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
3031 const char *dp_port_name = netdev_vport_get_dpif_port(netdev);
3032 const char *devname = netdev_get_name(netdev);
3033
3034 if (netdev_vport_is_patch(netdev)) {
3035 sset_add(&ofproto->ghost_ports, netdev_get_name(netdev));
3036 return 0;
3037 }
3038
3039 if (!dpif_port_exists(ofproto->backer->dpif, dp_port_name)) {
3040 uint32_t port_no = UINT32_MAX;
3041 int error;
3042
3043 error = dpif_port_add(ofproto->backer->dpif, netdev, &port_no);
3044 if (error) {
3045 return error;
3046 }
3047 if (netdev_get_tunnel_config(netdev)) {
3048 simap_put(&ofproto->backer->tnl_backers, dp_port_name, port_no);
3049 }
3050 }
3051
3052 if (netdev_get_tunnel_config(netdev)) {
3053 sset_add(&ofproto->ghost_ports, devname);
3054 } else {
3055 sset_add(&ofproto->ports, devname);
3056 }
3057 return 0;
3058 }
3059
3060 static int
3061 port_del(struct ofproto *ofproto_, uint16_t ofp_port)
3062 {
3063 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
3064 struct ofport_dpif *ofport = get_ofp_port(ofproto, ofp_port);
3065 int error = 0;
3066
3067 if (!ofport) {
3068 return 0;
3069 }
3070
3071 sset_find_and_delete(&ofproto->ghost_ports,
3072 netdev_get_name(ofport->up.netdev));
3073 ofproto->backer->need_revalidate = REV_RECONFIGURE;
3074 if (!ofport->tnl_port) {
3075 error = dpif_port_del(ofproto->backer->dpif, ofport->odp_port);
3076 if (!error) {
3077 /* The caller is going to close ofport->up.netdev. If this is a
3078 * bonded port, then the bond is using that netdev, so remove it
3079 * from the bond. The client will need to reconfigure everything
3080 * after deleting ports, so then the slave will get re-added. */
3081 bundle_remove(&ofport->up);
3082 }
3083 }
3084 return error;
3085 }
3086
3087 static int
3088 port_get_stats(const struct ofport *ofport_, struct netdev_stats *stats)
3089 {
3090 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
3091 int error;
3092
3093 error = netdev_get_stats(ofport->up.netdev, stats);
3094
3095 if (!error && ofport_->ofp_port == OFPP_LOCAL) {
3096 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
3097
3098 /* ofproto->stats.tx_packets represents packets that we created
3099 * internally and sent to some port (e.g. packets sent with
3100 * send_packet()). Account for them as if they had come from
3101 * OFPP_LOCAL and got forwarded. */
3102
3103 if (stats->rx_packets != UINT64_MAX) {
3104 stats->rx_packets += ofproto->stats.tx_packets;
3105 }
3106
3107 if (stats->rx_bytes != UINT64_MAX) {
3108 stats->rx_bytes += ofproto->stats.tx_bytes;
3109 }
3110
3111 /* ofproto->stats.rx_packets represents packets that were received on
3112 * some port and we processed internally and dropped (e.g. STP).
3113 * Account for them as if they had been forwarded to OFPP_LOCAL. */
3114
3115 if (stats->tx_packets != UINT64_MAX) {
3116 stats->tx_packets += ofproto->stats.rx_packets;
3117 }
3118
3119 if (stats->tx_bytes != UINT64_MAX) {
3120 stats->tx_bytes += ofproto->stats.rx_bytes;
3121 }
3122 }
3123
3124 return error;
3125 }
3126
3127 /* Account packets for LOCAL port. */
3128 static void
3129 ofproto_update_local_port_stats(const struct ofproto *ofproto_,
3130 size_t tx_size, size_t rx_size)
3131 {
3132 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
3133
3134 if (rx_size) {
3135 ofproto->stats.rx_packets++;
3136 ofproto->stats.rx_bytes += rx_size;
3137 }
3138 if (tx_size) {
3139 ofproto->stats.tx_packets++;
3140 ofproto->stats.tx_bytes += tx_size;
3141 }
3142 }
3143
3144 struct port_dump_state {
3145 uint32_t bucket;
3146 uint32_t offset;
3147 bool ghost;
3148
3149 struct ofproto_port port;
3150 bool has_port;
3151 };
3152
3153 static int
3154 port_dump_start(const struct ofproto *ofproto_ OVS_UNUSED, void **statep)
3155 {
3156 *statep = xzalloc(sizeof(struct port_dump_state));
3157 return 0;
3158 }
3159
3160 static int
3161 port_dump_next(const struct ofproto *ofproto_, void *state_,
3162 struct ofproto_port *port)
3163 {
3164 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
3165 struct port_dump_state *state = state_;
3166 const struct sset *sset;
3167 struct sset_node *node;
3168
3169 if (state->has_port) {
3170 ofproto_port_destroy(&state->port);
3171 state->has_port = false;
3172 }
3173 sset = state->ghost ? &ofproto->ghost_ports : &ofproto->ports;
3174 while ((node = sset_at_position(sset, &state->bucket, &state->offset))) {
3175 int error;
3176
3177 error = port_query_by_name(ofproto_, node->name, &state->port);
3178 if (!error) {
3179 *port = state->port;
3180 state->has_port = true;
3181 return 0;
3182 } else if (error != ENODEV) {
3183 return error;
3184 }
3185 }
3186
3187 if (!state->ghost) {
3188 state->ghost = true;
3189 state->bucket = 0;
3190 state->offset = 0;
3191 return port_dump_next(ofproto_, state_, port);
3192 }
3193
3194 return EOF;
3195 }
3196
3197 static int
3198 port_dump_done(const struct ofproto *ofproto_ OVS_UNUSED, void *state_)
3199 {
3200 struct port_dump_state *state = state_;
3201
3202 if (state->has_port) {
3203 ofproto_port_destroy(&state->port);
3204 }
3205 free(state);
3206 return 0;
3207 }
3208
3209 static int
3210 port_poll(const struct ofproto *ofproto_, char **devnamep)
3211 {
3212 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
3213
3214 if (ofproto->port_poll_errno) {
3215 int error = ofproto->port_poll_errno;
3216 ofproto->port_poll_errno = 0;
3217 return error;
3218 }
3219
3220 if (sset_is_empty(&ofproto->port_poll_set)) {
3221 return EAGAIN;
3222 }
3223
3224 *devnamep = sset_pop(&ofproto->port_poll_set);
3225 return 0;
3226 }
3227
3228 static void
3229 port_poll_wait(const struct ofproto *ofproto_)
3230 {
3231 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
3232 dpif_port_poll_wait(ofproto->backer->dpif);
3233 }
3234
3235 static int
3236 port_is_lacp_current(const struct ofport *ofport_)
3237 {
3238 const struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
3239 return (ofport->bundle && ofport->bundle->lacp
3240 ? lacp_slave_is_current(ofport->bundle->lacp, ofport)
3241 : -1);
3242 }
3243 \f
3244 /* Upcall handling. */
3245
3246 /* Flow miss batching.
3247 *
3248 * Some dpifs implement operations faster when you hand them off in a batch.
3249 * To allow batching, "struct flow_miss" queues the dpif-related work needed
3250 * for a given flow. Each "struct flow_miss" corresponds to sending one or
3251 * more packets, plus possibly installing the flow in the dpif.
3252 *
3253 * So far we only batch the operations that affect flow setup time the most.
3254 * It's possible to batch more than that, but the benefit might be minimal. */
3255 struct flow_miss {
3256 struct hmap_node hmap_node;
3257 struct ofproto_dpif *ofproto;
3258 struct flow flow;
3259 enum odp_key_fitness key_fitness;
3260 const struct nlattr *key;
3261 size_t key_len;
3262 ovs_be16 initial_tci;
3263 struct list packets;
3264 enum dpif_upcall_type upcall_type;
3265 uint32_t odp_in_port;
3266 };
3267
3268 struct flow_miss_op {
3269 struct dpif_op dpif_op;
3270 void *garbage; /* Pointer to pass to free(), NULL if none. */
3271 uint64_t stub[1024 / 8]; /* Temporary buffer. */
3272 };
3273
3274 /* Sends an OFPT_PACKET_IN message for 'packet' of type OFPR_NO_MATCH to each
3275 * OpenFlow controller as necessary according to their individual
3276 * configurations. */
3277 static void
3278 send_packet_in_miss(struct ofproto_dpif *ofproto, const struct ofpbuf *packet,
3279 const struct flow *flow)
3280 {
3281 struct ofputil_packet_in pin;
3282
3283 pin.packet = packet->data;
3284 pin.packet_len = packet->size;
3285 pin.reason = OFPR_NO_MATCH;
3286 pin.controller_id = 0;
3287
3288 pin.table_id = 0;
3289 pin.cookie = 0;
3290
3291 pin.send_len = 0; /* not used for flow table misses */
3292
3293 flow_get_metadata(flow, &pin.fmd);
3294
3295 connmgr_send_packet_in(ofproto->up.connmgr, &pin);
3296 }
3297
3298 static enum slow_path_reason
3299 process_special(struct ofproto_dpif *ofproto, const struct flow *flow,
3300 const struct ofport_dpif *ofport, const struct ofpbuf *packet)
3301 {
3302 if (!ofport) {
3303 return 0;
3304 } else if (ofport->cfm && cfm_should_process_flow(ofport->cfm, flow)) {
3305 if (packet) {
3306 cfm_process_heartbeat(ofport->cfm, packet);
3307 }
3308 return SLOW_CFM;
3309 } else if (ofport->bundle && ofport->bundle->lacp
3310 && flow->dl_type == htons(ETH_TYPE_LACP)) {
3311 if (packet) {
3312 lacp_process_packet(ofport->bundle->lacp, ofport, packet);
3313 }
3314 return SLOW_LACP;
3315 } else if (ofproto->stp && stp_should_process_flow(flow)) {
3316 if (packet) {
3317 stp_process_packet(ofport, packet);
3318 }
3319 return SLOW_STP;
3320 } else {
3321 return 0;
3322 }
3323 }
3324
3325 static struct flow_miss *
3326 flow_miss_find(struct hmap *todo, const struct ofproto_dpif *ofproto,
3327 const struct flow *flow, uint32_t hash)
3328 {
3329 struct flow_miss *miss;
3330
3331 HMAP_FOR_EACH_WITH_HASH (miss, hmap_node, hash, todo) {
3332 if (miss->ofproto == ofproto && flow_equal(&miss->flow, flow)) {
3333 return miss;
3334 }
3335 }
3336
3337 return NULL;
3338 }
3339
3340 /* Partially Initializes 'op' as an "execute" operation for 'miss' and
3341 * 'packet'. The caller must initialize op->actions and op->actions_len. If
3342 * 'miss' is associated with a subfacet the caller must also initialize the
3343 * returned op->subfacet, and if anything needs to be freed after processing
3344 * the op, the caller must initialize op->garbage also. */
3345 static void
3346 init_flow_miss_execute_op(struct flow_miss *miss, struct ofpbuf *packet,
3347 struct flow_miss_op *op)
3348 {
3349 if (miss->flow.vlan_tci != miss->initial_tci) {
3350 /* This packet was received on a VLAN splinter port. We
3351 * added a VLAN to the packet to make the packet resemble
3352 * the flow, but the actions were composed assuming that
3353 * the packet contained no VLAN. So, we must remove the
3354 * VLAN header from the packet before trying to execute the
3355 * actions. */
3356 eth_pop_vlan(packet);
3357 }
3358
3359 op->garbage = NULL;
3360 op->dpif_op.type = DPIF_OP_EXECUTE;
3361 op->dpif_op.u.execute.key = miss->key;
3362 op->dpif_op.u.execute.key_len = miss->key_len;
3363 op->dpif_op.u.execute.packet = packet;
3364 }
3365
3366 /* Helper for handle_flow_miss_without_facet() and
3367 * handle_flow_miss_with_facet(). */
3368 static void
3369 handle_flow_miss_common(struct rule_dpif *rule,
3370 struct ofpbuf *packet, const struct flow *flow)
3371 {
3372 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
3373
3374 ofproto->n_matches++;
3375
3376 if (rule->up.cr.priority == FAIL_OPEN_PRIORITY) {
3377 /*
3378 * Extra-special case for fail-open mode.
3379 *
3380 * We are in fail-open mode and the packet matched the fail-open
3381 * rule, but we are connected to a controller too. We should send
3382 * the packet up to the controller in the hope that it will try to
3383 * set up a flow and thereby allow us to exit fail-open.
3384 *
3385 * See the top-level comment in fail-open.c for more information.
3386 */
3387 send_packet_in_miss(ofproto, packet, flow);
3388 }
3389 }
3390
3391 /* Figures out whether a flow that missed in 'ofproto', whose details are in
3392 * 'miss', is likely to be worth tracking in detail in userspace and (usually)
3393 * installing a datapath flow. The answer is usually "yes" (a return value of
3394 * true). However, for short flows the cost of bookkeeping is much higher than
3395 * the benefits, so when the datapath holds a large number of flows we impose
3396 * some heuristics to decide which flows are likely to be worth tracking. */
3397 static bool
3398 flow_miss_should_make_facet(struct ofproto_dpif *ofproto,
3399 struct flow_miss *miss, uint32_t hash)
3400 {
3401 if (!ofproto->governor) {
3402 size_t n_subfacets;
3403
3404 n_subfacets = hmap_count(&ofproto->subfacets);
3405 if (n_subfacets * 2 <= ofproto->up.flow_eviction_threshold) {
3406 return true;
3407 }
3408
3409 ofproto->governor = governor_create(ofproto->up.name);
3410 }
3411
3412 return governor_should_install_flow(ofproto->governor, hash,
3413 list_size(&miss->packets));
3414 }
3415
3416 /* Handles 'miss', which matches 'rule', without creating a facet or subfacet
3417 * or creating any datapath flow. May add an "execute" operation to 'ops' and
3418 * increment '*n_ops'. */
3419 static void
3420 handle_flow_miss_without_facet(struct flow_miss *miss,
3421 struct rule_dpif *rule,
3422 struct flow_miss_op *ops, size_t *n_ops)
3423 {
3424 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
3425 long long int now = time_msec();
3426 struct action_xlate_ctx ctx;
3427 struct ofpbuf *packet;
3428
3429 LIST_FOR_EACH (packet, list_node, &miss->packets) {
3430 struct flow_miss_op *op = &ops[*n_ops];
3431 struct dpif_flow_stats stats;
3432 struct ofpbuf odp_actions;
3433
3434 COVERAGE_INC(facet_suppress);
3435
3436 ofpbuf_use_stub(&odp_actions, op->stub, sizeof op->stub);
3437
3438 dpif_flow_stats_extract(&miss->flow, packet, now, &stats);
3439 rule_credit_stats(rule, &stats);
3440
3441 action_xlate_ctx_init(&ctx, ofproto, &miss->flow, miss->initial_tci,
3442 rule, 0, packet);
3443 ctx.resubmit_stats = &stats;
3444 xlate_actions(&ctx, rule->up.ofpacts, rule->up.ofpacts_len,
3445 &odp_actions);
3446
3447 if (odp_actions.size) {
3448 struct dpif_execute *execute = &op->dpif_op.u.execute;
3449
3450 init_flow_miss_execute_op(miss, packet, op);
3451 execute->actions = odp_actions.data;
3452 execute->actions_len = odp_actions.size;
3453 op->garbage = ofpbuf_get_uninit_pointer(&odp_actions);
3454
3455 (*n_ops)++;
3456 } else {
3457 ofpbuf_uninit(&odp_actions);
3458 }
3459 }
3460 }
3461
3462 /* Handles 'miss', which matches 'facet'. May add any required datapath
3463 * operations to 'ops', incrementing '*n_ops' for each new op.
3464 *
3465 * All of the packets in 'miss' are considered to have arrived at time 'now'.
3466 * This is really important only for new facets: if we just called time_msec()
3467 * here, then the new subfacet or its packets could look (occasionally) as
3468 * though it was used some time after the facet was used. That can make a
3469 * one-packet flow look like it has a nonzero duration, which looks odd in
3470 * e.g. NetFlow statistics. */
3471 static void
3472 handle_flow_miss_with_facet(struct flow_miss *miss, struct facet *facet,
3473 long long int now,
3474 struct flow_miss_op *ops, size_t *n_ops)
3475 {
3476 struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto);
3477 enum subfacet_path want_path;
3478 struct subfacet *subfacet;
3479 struct ofpbuf *packet;
3480
3481 subfacet = subfacet_create(facet, miss, now);
3482
3483 LIST_FOR_EACH (packet, list_node, &miss->packets) {
3484 struct flow_miss_op *op = &ops[*n_ops];
3485 struct dpif_flow_stats stats;
3486 struct ofpbuf odp_actions;
3487
3488 handle_flow_miss_common(facet->rule, packet, &miss->flow);
3489
3490 ofpbuf_use_stub(&odp_actions, op->stub, sizeof op->stub);
3491 if (!subfacet->actions || subfacet->slow) {
3492 subfacet_make_actions(subfacet, packet, &odp_actions);
3493 }
3494
3495 dpif_flow_stats_extract(&facet->flow, packet, now, &stats);
3496 subfacet_update_stats(subfacet, &stats);
3497
3498 if (subfacet->actions_len) {
3499 struct dpif_execute *execute = &op->dpif_op.u.execute;
3500
3501 init_flow_miss_execute_op(miss, packet, op);
3502 if (!subfacet->slow) {
3503 execute->actions = subfacet->actions;
3504 execute->actions_len = subfacet->actions_len;
3505 ofpbuf_uninit(&odp_actions);
3506 } else {
3507 execute->actions = odp_actions.data;
3508 execute->actions_len = odp_actions.size;
3509 op->garbage = ofpbuf_get_uninit_pointer(&odp_actions);
3510 }
3511
3512 (*n_ops)++;
3513 } else {
3514 ofpbuf_uninit(&odp_actions);
3515 }
3516 }
3517
3518 want_path = subfacet_want_path(subfacet->slow);
3519 if (miss->upcall_type == DPIF_UC_MISS || subfacet->path != want_path) {
3520 struct flow_miss_op *op = &ops[(*n_ops)++];
3521 struct dpif_flow_put *put = &op->dpif_op.u.flow_put;
3522
3523 subfacet->path = want_path;
3524
3525 op->garbage = NULL;
3526 op->dpif_op.type = DPIF_OP_FLOW_PUT;
3527 put->flags = DPIF_FP_CREATE | DPIF_FP_MODIFY;
3528 put->key = miss->key;
3529 put->key_len = miss->key_len;
3530 if (want_path == SF_FAST_PATH) {
3531 put->actions = subfacet->actions;
3532 put->actions_len = subfacet->actions_len;
3533 } else {
3534 compose_slow_path(ofproto, &facet->flow, subfacet->slow,
3535 op->stub, sizeof op->stub,
3536 &put->actions, &put->actions_len);
3537 }
3538 put->stats = NULL;
3539 }
3540 }
3541
3542 /* Handles flow miss 'miss'. May add any required datapath operations
3543 * to 'ops', incrementing '*n_ops' for each new op. */
3544 static void
3545 handle_flow_miss(struct flow_miss *miss, struct flow_miss_op *ops,
3546 size_t *n_ops)
3547 {
3548 struct ofproto_dpif *ofproto = miss->ofproto;
3549 struct facet *facet;
3550 long long int now;
3551 uint32_t hash;
3552
3553 /* The caller must ensure that miss->hmap_node.hash contains
3554 * flow_hash(miss->flow, 0). */
3555 hash = miss->hmap_node.hash;
3556
3557 facet = facet_lookup_valid(ofproto, &miss->flow, hash);
3558 if (!facet) {
3559 struct rule_dpif *rule = rule_dpif_lookup(ofproto, &miss->flow);
3560
3561 if (!flow_miss_should_make_facet(ofproto, miss, hash)) {
3562 handle_flow_miss_without_facet(miss, rule, ops, n_ops);
3563 return;
3564 }
3565
3566 facet = facet_create(rule, &miss->flow, hash);
3567 now = facet->used;
3568 } else {
3569 now = time_msec();
3570 }
3571 handle_flow_miss_with_facet(miss, facet, now, ops, n_ops);
3572 }
3573
3574 static struct drop_key *
3575 drop_key_lookup(const struct dpif_backer *backer, const struct nlattr *key,
3576 size_t key_len)
3577 {
3578 struct drop_key *drop_key;
3579
3580 HMAP_FOR_EACH_WITH_HASH (drop_key, hmap_node, hash_bytes(key, key_len, 0),
3581 &backer->drop_keys) {
3582 if (drop_key->key_len == key_len
3583 && !memcmp(drop_key->key, key, key_len)) {
3584 return drop_key;
3585 }
3586 }
3587 return NULL;
3588 }
3589
3590 static void
3591 drop_key_clear(struct dpif_backer *backer)
3592 {
3593 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 15);
3594 struct drop_key *drop_key, *next;
3595
3596 HMAP_FOR_EACH_SAFE (drop_key, next, hmap_node, &backer->drop_keys) {
3597 int error;
3598
3599 error = dpif_flow_del(backer->dpif, drop_key->key, drop_key->key_len,
3600 NULL);
3601 if (error && !VLOG_DROP_WARN(&rl)) {
3602 struct ds ds = DS_EMPTY_INITIALIZER;
3603 odp_flow_key_format(drop_key->key, drop_key->key_len, &ds);
3604 VLOG_WARN("Failed to delete drop key (%s) (%s)", strerror(error),
3605 ds_cstr(&ds));
3606 ds_destroy(&ds);
3607 }
3608
3609 hmap_remove(&backer->drop_keys, &drop_key->hmap_node);
3610 free(drop_key->key);
3611 free(drop_key);
3612 }
3613 }
3614
3615 /* Given a datpath, packet, and flow metadata ('backer', 'packet', and 'key'
3616 * respectively), populates 'flow' with the result of odp_flow_key_to_flow().
3617 * Optionally, if nonnull, populates 'fitnessp' with the fitness of 'flow' as
3618 * returned by odp_flow_key_to_flow(). Also, optionally populates 'ofproto'
3619 * with the ofproto_dpif, and 'odp_in_port' with the datapath in_port, that
3620 * 'packet' ingressed.
3621 *
3622 * If 'ofproto' is nonnull, requires 'flow''s in_port to exist. Otherwise sets
3623 * 'flow''s in_port to OFPP_NONE.
3624 *
3625 * This function does post-processing on data returned from
3626 * odp_flow_key_to_flow() to help make VLAN splinters transparent to the rest
3627 * of the upcall processing logic. In particular, if the extracted in_port is
3628 * a VLAN splinter port, it replaces flow->in_port by the "real" port, sets
3629 * flow->vlan_tci correctly for the VLAN of the VLAN splinter port, and pushes
3630 * a VLAN header onto 'packet' (if it is nonnull).
3631 *
3632 * Optionally, if nonnull, sets '*initial_tci' to the VLAN TCI with which the
3633 * packet was really received, that is, the actual VLAN TCI extracted by
3634 * odp_flow_key_to_flow(). (This differs from the value returned in
3635 * flow->vlan_tci only for packets received on VLAN splinters.)
3636 *
3637 * Similarly, this function also includes some logic to help with tunnels. It
3638 * may modify 'flow' as necessary to make the tunneling implementation
3639 * transparent to the upcall processing logic.
3640 *
3641 * Returns 0 if successful, ENODEV if the parsed flow has no associated ofport,
3642 * or some other positive errno if there are other problems. */
3643 static int
3644 ofproto_receive(const struct dpif_backer *backer, struct ofpbuf *packet,
3645 const struct nlattr *key, size_t key_len,
3646 struct flow *flow, enum odp_key_fitness *fitnessp,
3647 struct ofproto_dpif **ofproto, uint32_t *odp_in_port,
3648 ovs_be16 *initial_tci)
3649 {
3650 const struct ofport_dpif *port;
3651 enum odp_key_fitness fitness;
3652 int error = ENODEV;
3653
3654 fitness = odp_flow_key_to_flow(key, key_len, flow);
3655 if (fitness == ODP_FIT_ERROR) {
3656 error = EINVAL;
3657 goto exit;
3658 }
3659
3660 if (initial_tci) {
3661 *initial_tci = flow->vlan_tci;
3662 }
3663
3664 if (odp_in_port) {
3665 *odp_in_port = flow->in_port;
3666 }
3667
3668 if (tnl_port_should_receive(flow)) {
3669 const struct ofport *ofport = tnl_port_receive(flow);
3670 if (!ofport) {
3671 flow->in_port = OFPP_NONE;
3672 goto exit;
3673 }
3674 port = ofport_dpif_cast(ofport);
3675
3676 /* We can't reproduce 'key' from 'flow'. */
3677 fitness = fitness == ODP_FIT_PERFECT ? ODP_FIT_TOO_MUCH : fitness;
3678
3679 /* XXX: Since the tunnel module is not scoped per backer, it's
3680 * theoretically possible that we'll receive an ofport belonging to an
3681 * entirely different datapath. In practice, this can't happen because
3682 * no platforms has two separate datapaths which each support
3683 * tunneling. */
3684 ovs_assert(ofproto_dpif_cast(port->up.ofproto)->backer == backer);
3685 } else {
3686 port = odp_port_to_ofport(backer, flow->in_port);
3687 if (!port) {
3688 flow->in_port = OFPP_NONE;
3689 goto exit;
3690 }
3691
3692 flow->in_port = port->up.ofp_port;
3693 if (vsp_adjust_flow(ofproto_dpif_cast(port->up.ofproto), flow)) {
3694 if (packet) {
3695 /* Make the packet resemble the flow, so that it gets sent to
3696 * an OpenFlow controller properly, so that it looks correct
3697 * for sFlow, and so that flow_extract() will get the correct
3698 * vlan_tci if it is called on 'packet'.
3699 *
3700 * The allocated space inside 'packet' probably also contains
3701 * 'key', that is, both 'packet' and 'key' are probably part of
3702 * a struct dpif_upcall (see the large comment on that
3703 * structure definition), so pushing data on 'packet' is in
3704 * general not a good idea since it could overwrite 'key' or
3705 * free it as a side effect. However, it's OK in this special
3706 * case because we know that 'packet' is inside a Netlink
3707 * attribute: pushing 4 bytes will just overwrite the 4-byte
3708 * "struct nlattr", which is fine since we don't need that
3709 * header anymore. */
3710 eth_push_vlan(packet, flow->vlan_tci);
3711 }
3712 /* We can't reproduce 'key' from 'flow'. */
3713 fitness = fitness == ODP_FIT_PERFECT ? ODP_FIT_TOO_MUCH : fitness;
3714 }
3715 }
3716 error = 0;
3717
3718 if (ofproto) {
3719 *ofproto = ofproto_dpif_cast(port->up.ofproto);
3720 }
3721
3722 exit:
3723 if (fitnessp) {
3724 *fitnessp = fitness;
3725 }
3726 return error;
3727 }
3728
3729 static void
3730 handle_miss_upcalls(struct dpif_backer *backer, struct dpif_upcall *upcalls,
3731 size_t n_upcalls)
3732 {
3733 struct dpif_upcall *upcall;
3734 struct flow_miss *miss;
3735 struct flow_miss misses[FLOW_MISS_MAX_BATCH];
3736 struct flow_miss_op flow_miss_ops[FLOW_MISS_MAX_BATCH * 2];
3737 struct dpif_op *dpif_ops[FLOW_MISS_MAX_BATCH * 2];
3738 struct hmap todo;
3739 int n_misses;
3740 size_t n_ops;
3741 size_t i;
3742
3743 if (!n_upcalls) {
3744 return;
3745 }
3746
3747 /* Construct the to-do list.
3748 *
3749 * This just amounts to extracting the flow from each packet and sticking
3750 * the packets that have the same flow in the same "flow_miss" structure so
3751 * that we can process them together. */
3752 hmap_init(&todo);
3753 n_misses = 0;
3754 for (upcall = upcalls; upcall < &upcalls[n_upcalls]; upcall++) {
3755 struct flow_miss *miss = &misses[n_misses];
3756 struct flow_miss *existing_miss;
3757 struct ofproto_dpif *ofproto;
3758 uint32_t odp_in_port;
3759 struct flow flow;
3760 uint32_t hash;
3761 int error;
3762
3763 error = ofproto_receive(backer, upcall->packet, upcall->key,
3764 upcall->key_len, &flow, &miss->key_fitness,
3765 &ofproto, &odp_in_port, &miss->initial_tci);
3766 if (error == ENODEV) {
3767 struct drop_key *drop_key;
3768
3769 /* Received packet on port for which we couldn't associate
3770 * an ofproto. This can happen if a port is removed while
3771 * traffic is being received. Print a rate-limited message
3772 * in case it happens frequently. Install a drop flow so
3773 * that future packets of the flow are inexpensively dropped
3774 * in the kernel. */
3775 VLOG_INFO_RL(&rl, "received packet on unassociated port %"PRIu32,
3776 flow.in_port);
3777
3778 drop_key = drop_key_lookup(backer, upcall->key, upcall->key_len);
3779 if (!drop_key) {
3780 drop_key = xmalloc(sizeof *drop_key);
3781 drop_key->key = xmemdup(upcall->key, upcall->key_len);
3782 drop_key->key_len = upcall->key_len;
3783
3784 hmap_insert(&backer->drop_keys, &drop_key->hmap_node,
3785 hash_bytes(drop_key->key, drop_key->key_len, 0));
3786 dpif_flow_put(backer->dpif, DPIF_FP_CREATE | DPIF_FP_MODIFY,
3787 drop_key->key, drop_key->key_len, NULL, 0, NULL);
3788 }
3789 continue;
3790 }
3791 if (error) {
3792 continue;
3793 }
3794 flow_extract(upcall->packet, flow.skb_priority, flow.skb_mark,
3795 &flow.tunnel, flow.in_port, &miss->flow);
3796
3797 /* Add other packets to a to-do list. */
3798 hash = flow_hash(&miss->flow, 0);
3799 existing_miss = flow_miss_find(&todo, ofproto, &miss->flow, hash);
3800 if (!existing_miss) {
3801 hmap_insert(&todo, &miss->hmap_node, hash);
3802 miss->ofproto = ofproto;
3803 miss->key = upcall->key;
3804 miss->key_len = upcall->key_len;
3805 miss->upcall_type = upcall->type;
3806 miss->odp_in_port = odp_in_port;
3807 list_init(&miss->packets);
3808
3809 n_misses++;
3810 } else {
3811 miss = existing_miss;
3812 }
3813 list_push_back(&miss->packets, &upcall->packet->list_node);
3814 }
3815
3816 /* Process each element in the to-do list, constructing the set of
3817 * operations to batch. */
3818 n_ops = 0;
3819 HMAP_FOR_EACH (miss, hmap_node, &todo) {
3820 handle_flow_miss(miss, flow_miss_ops, &n_ops);
3821 }
3822 ovs_assert(n_ops <= ARRAY_SIZE(flow_miss_ops));
3823
3824 /* Execute batch. */
3825 for (i = 0; i < n_ops; i++) {
3826 dpif_ops[i] = &flow_miss_ops[i].dpif_op;
3827 }
3828 dpif_operate(backer->dpif, dpif_ops, n_ops);
3829
3830 /* Free memory. */
3831 for (i = 0; i < n_ops; i++) {
3832 free(flow_miss_ops[i].garbage);
3833 }
3834 hmap_destroy(&todo);
3835 }
3836
3837 static enum { SFLOW_UPCALL, MISS_UPCALL, BAD_UPCALL }
3838 classify_upcall(const struct dpif_upcall *upcall)
3839 {
3840 union user_action_cookie cookie;
3841
3842 /* First look at the upcall type. */
3843 switch (upcall->type) {
3844 case DPIF_UC_ACTION:
3845 break;
3846
3847 case DPIF_UC_MISS:
3848 return MISS_UPCALL;
3849
3850 case DPIF_N_UC_TYPES:
3851 default:
3852 VLOG_WARN_RL(&rl, "upcall has unexpected type %"PRIu32, upcall->type);
3853 return BAD_UPCALL;
3854 }
3855
3856 /* "action" upcalls need a closer look. */
3857 if (!upcall->userdata) {
3858 VLOG_WARN_RL(&rl, "action upcall missing cookie");
3859 return BAD_UPCALL;
3860 }
3861 if (nl_attr_get_size(upcall->userdata) != sizeof(cookie)) {
3862 VLOG_WARN_RL(&rl, "action upcall cookie has unexpected size %zu",
3863 nl_attr_get_size(upcall->userdata));
3864 return BAD_UPCALL;
3865 }
3866 memcpy(&cookie, nl_attr_get(upcall->userdata), sizeof(cookie));
3867 switch (cookie.type) {
3868 case USER_ACTION_COOKIE_SFLOW:
3869 return SFLOW_UPCALL;
3870
3871 case USER_ACTION_COOKIE_SLOW_PATH:
3872 return MISS_UPCALL;
3873
3874 case USER_ACTION_COOKIE_UNSPEC:
3875 default:
3876 VLOG_WARN_RL(&rl, "invalid user cookie : 0x%"PRIx64,
3877 nl_attr_get_u64(upcall->userdata));
3878 return BAD_UPCALL;
3879 }
3880 }
3881
3882 static void
3883 handle_sflow_upcall(struct dpif_backer *backer,
3884 const struct dpif_upcall *upcall)
3885 {
3886 struct ofproto_dpif *ofproto;
3887 union user_action_cookie cookie;
3888 struct flow flow;
3889 uint32_t odp_in_port;
3890
3891 if (ofproto_receive(backer, upcall->packet, upcall->key, upcall->key_len,
3892 &flow, NULL, &ofproto, &odp_in_port, NULL)
3893 || !ofproto->sflow) {
3894 return;
3895 }
3896
3897 memcpy(&cookie, nl_attr_get(upcall->userdata), sizeof(cookie));
3898 dpif_sflow_received(ofproto->sflow, upcall->packet, &flow,
3899 odp_in_port, &cookie);
3900 }
3901
3902 static int
3903 handle_upcalls(struct dpif_backer *backer, unsigned int max_batch)
3904 {
3905 struct dpif_upcall misses[FLOW_MISS_MAX_BATCH];
3906 struct ofpbuf miss_bufs[FLOW_MISS_MAX_BATCH];
3907 uint64_t miss_buf_stubs[FLOW_MISS_MAX_BATCH][4096 / 8];
3908 int n_processed;
3909 int n_misses;
3910 int i;
3911
3912 ovs_assert(max_batch <= FLOW_MISS_MAX_BATCH);
3913
3914 n_misses = 0;
3915 for (n_processed = 0; n_processed < max_batch; n_processed++) {
3916 struct dpif_upcall *upcall = &misses[n_misses];
3917 struct ofpbuf *buf = &miss_bufs[n_misses];
3918 int error;
3919
3920 ofpbuf_use_stub(buf, miss_buf_stubs[n_misses],
3921 sizeof miss_buf_stubs[n_misses]);
3922 error = dpif_recv(backer->dpif, upcall, buf);
3923 if (error) {
3924 ofpbuf_uninit(buf);
3925 break;
3926 }
3927
3928 switch (classify_upcall(upcall)) {
3929 case MISS_UPCALL:
3930 /* Handle it later. */
3931 n_misses++;
3932 break;
3933
3934 case SFLOW_UPCALL:
3935 handle_sflow_upcall(backer, upcall);
3936 ofpbuf_uninit(buf);
3937 break;
3938
3939 case BAD_UPCALL:
3940 ofpbuf_uninit(buf);
3941 break;
3942 }
3943 }
3944
3945 /* Handle deferred MISS_UPCALL processing. */
3946 handle_miss_upcalls(backer, misses, n_misses);
3947 for (i = 0; i < n_misses; i++) {
3948 ofpbuf_uninit(&miss_bufs[i]);
3949 }
3950
3951 return n_processed;
3952 }
3953 \f
3954 /* Flow expiration. */
3955
3956 static int subfacet_max_idle(const struct ofproto_dpif *);
3957 static void update_stats(struct dpif_backer *);
3958 static void rule_expire(struct rule_dpif *);
3959 static void expire_subfacets(struct ofproto_dpif *, int dp_max_idle);
3960
3961 /* This function is called periodically by run(). Its job is to collect
3962 * updates for the flows that have been installed into the datapath, most
3963 * importantly when they last were used, and then use that information to
3964 * expire flows that have not been used recently.
3965 *
3966 * Returns the number of milliseconds after which it should be called again. */
3967 static int
3968 expire(struct dpif_backer *backer)
3969 {
3970 struct ofproto_dpif *ofproto;
3971 int max_idle = INT32_MAX;
3972
3973 /* Periodically clear out the drop keys in an effort to keep them
3974 * relatively few. */
3975 drop_key_clear(backer);
3976
3977 /* Update stats for each flow in the backer. */
3978 update_stats(backer);
3979
3980 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
3981 struct rule *rule, *next_rule;
3982 int dp_max_idle;
3983
3984 if (ofproto->backer != backer) {
3985 continue;
3986 }
3987
3988 /* Expire subfacets that have been idle too long. */
3989 dp_max_idle = subfacet_max_idle(ofproto);
3990 expire_subfacets(ofproto, dp_max_idle);
3991
3992 max_idle = MIN(max_idle, dp_max_idle);
3993
3994 /* Expire OpenFlow flows whose idle_timeout or hard_timeout
3995 * has passed. */
3996 LIST_FOR_EACH_SAFE (rule, next_rule, expirable,
3997 &ofproto->up.expirable) {
3998 rule_expire(rule_dpif_cast(rule));
3999 }
4000
4001 /* All outstanding data in existing flows has been accounted, so it's a
4002 * good time to do bond rebalancing. */
4003 if (ofproto->has_bonded_bundles) {
4004 struct ofbundle *bundle;
4005
4006 HMAP_FOR_EACH (bundle, hmap_node, &ofproto->bundles) {
4007 if (bundle->bond) {
4008 bond_rebalance(bundle->bond, &backer->revalidate_set);
4009 }
4010 }
4011 }
4012 }
4013
4014 return MIN(max_idle, 1000);
4015 }
4016
4017 /* Updates flow table statistics given that the datapath just reported 'stats'
4018 * as 'subfacet''s statistics. */
4019 static void
4020 update_subfacet_stats(struct subfacet *subfacet,
4021 const struct dpif_flow_stats *stats)
4022 {
4023 struct facet *facet = subfacet->facet;
4024
4025 if (stats->n_packets >= subfacet->dp_packet_count) {
4026 uint64_t extra = stats->n_packets - subfacet->dp_packet_count;
4027 facet->packet_count += extra;
4028 } else {
4029 VLOG_WARN_RL(&rl, "unexpected packet count from the datapath");
4030 }
4031
4032 if (stats->n_bytes >= subfacet->dp_byte_count) {
4033 facet->byte_count += stats->n_bytes - subfacet->dp_byte_count;
4034 } else {
4035 VLOG_WARN_RL(&rl, "unexpected byte count from datapath");
4036 }
4037
4038 subfacet->dp_packet_count = stats->n_packets;
4039 subfacet->dp_byte_count = stats->n_bytes;
4040
4041 facet->tcp_flags |= stats->tcp_flags;
4042
4043 subfacet_update_time(subfacet, stats->used);
4044 if (facet->accounted_bytes < facet->byte_count) {
4045 facet_learn(facet);
4046 facet_account(facet);
4047 facet->accounted_bytes = facet->byte_count;
4048 }
4049 facet_push_stats(facet);
4050 }
4051
4052 /* 'key' with length 'key_len' bytes is a flow in 'dpif' that we know nothing
4053 * about, or a flow that shouldn't be installed but was anyway. Delete it. */
4054 static void
4055 delete_unexpected_flow(struct ofproto_dpif *ofproto,
4056 const struct nlattr *key, size_t key_len)
4057 {
4058 if (!VLOG_DROP_WARN(&rl)) {
4059 struct ds s;
4060
4061 ds_init(&s);
4062 odp_flow_key_format(key, key_len, &s);
4063 VLOG_WARN("unexpected flow on %s: %s", ofproto->up.name, ds_cstr(&s));
4064 ds_destroy(&s);
4065 }
4066
4067 COVERAGE_INC(facet_unexpected);
4068 dpif_flow_del(ofproto->backer->dpif, key, key_len, NULL);
4069 }
4070
4071 /* Update 'packet_count', 'byte_count', and 'used' members of installed facets.
4072 *
4073 * This function also pushes statistics updates to rules which each facet
4074 * resubmits into. Generally these statistics will be accurate. However, if a
4075 * facet changes the rule it resubmits into at some time in between
4076 * update_stats() runs, it is possible that statistics accrued to the
4077 * old rule will be incorrectly attributed to the new rule. This could be
4078 * avoided by calling update_stats() whenever rules are created or
4079 * deleted. However, the performance impact of making so many calls to the
4080 * datapath do not justify the benefit of having perfectly accurate statistics.
4081 */
4082 static void
4083 update_stats(struct dpif_backer *backer)
4084 {
4085 const struct dpif_flow_stats *stats;
4086 struct dpif_flow_dump dump;
4087 const struct nlattr *key;
4088 size_t key_len;
4089
4090 dpif_flow_dump_start(&dump, backer->dpif);
4091 while (dpif_flow_dump_next(&dump, &key, &key_len, NULL, NULL, &stats)) {
4092 struct flow flow;
4093 struct subfacet *subfacet;
4094 struct ofproto_dpif *ofproto;
4095 struct ofport_dpif *ofport;
4096 uint32_t key_hash;
4097
4098 if (ofproto_receive(backer, NULL, key, key_len, &flow, NULL, &ofproto,
4099 NULL, NULL)) {
4100 continue;
4101 }
4102
4103 ofport = get_ofp_port(ofproto, flow.in_port);
4104 if (ofport && ofport->tnl_port) {
4105 netdev_vport_inc_rx(ofport->up.netdev, stats);
4106 }
4107
4108 key_hash = odp_flow_key_hash(key, key_len);
4109 subfacet = subfacet_find(ofproto, key, key_len, key_hash);
4110 switch (subfacet ? subfacet->path : SF_NOT_INSTALLED) {
4111 case SF_FAST_PATH:
4112 update_subfacet_stats(subfacet, stats);
4113 break;
4114
4115 case SF_SLOW_PATH:
4116 /* Stats are updated per-packet. */
4117 break;
4118
4119 case SF_NOT_INSTALLED:
4120 default:
4121 delete_unexpected_flow(ofproto, key, key_len);
4122 break;
4123 }
4124 }
4125 dpif_flow_dump_done(&dump);
4126 }
4127
4128 /* Calculates and returns the number of milliseconds of idle time after which
4129 * subfacets should expire from the datapath. When a subfacet expires, we fold
4130 * its statistics into its facet, and when a facet's last subfacet expires, we
4131 * fold its statistic into its rule. */
4132 static int
4133 subfacet_max_idle(const struct ofproto_dpif *ofproto)
4134 {
4135 /*
4136 * Idle time histogram.
4137 *
4138 * Most of the time a switch has a relatively small number of subfacets.
4139 * When this is the case we might as well keep statistics for all of them
4140 * in userspace and to cache them in the kernel datapath for performance as
4141 * well.
4142 *
4143 * As the number of subfacets increases, the memory required to maintain
4144 * statistics about them in userspace and in the kernel becomes
4145 * significant. However, with a large number of subfacets it is likely
4146 * that only a few of them are "heavy hitters" that consume a large amount
4147 * of bandwidth. At this point, only heavy hitters are worth caching in
4148 * the kernel and maintaining in userspaces; other subfacets we can
4149 * discard.
4150 *
4151 * The technique used to compute the idle time is to build a histogram with
4152 * N_BUCKETS buckets whose width is BUCKET_WIDTH msecs each. Each subfacet
4153 * that is installed in the kernel gets dropped in the appropriate bucket.
4154 * After the histogram has been built, we compute the cutoff so that only
4155 * the most-recently-used 1% of subfacets (but at least
4156 * ofproto->up.flow_eviction_threshold flows) are kept cached. At least
4157 * the most-recently-used bucket of subfacets is kept, so actually an
4158 * arbitrary number of subfacets can be kept in any given expiration run
4159 * (though the next run will delete most of those unless they receive
4160 * additional data).
4161 *
4162 * This requires a second pass through the subfacets, in addition to the
4163 * pass made by update_stats(), because the former function never looks at
4164 * uninstallable subfacets.
4165 */
4166 enum { BUCKET_WIDTH = ROUND_UP(100, TIME_UPDATE_INTERVAL) };
4167 enum { N_BUCKETS = 5000 / BUCKET_WIDTH };
4168 int buckets[N_BUCKETS] = { 0 };
4169 int total, subtotal, bucket;
4170 struct subfacet *subfacet;
4171 long long int now;
4172 int i;
4173
4174 total = hmap_count(&ofproto->subfacets);
4175 if (total <= ofproto->up.flow_eviction_threshold) {
4176 return N_BUCKETS * BUCKET_WIDTH;
4177 }
4178
4179 /* Build histogram. */
4180 now = time_msec();
4181 HMAP_FOR_EACH (subfacet, hmap_node, &ofproto->subfacets) {
4182 long long int idle = now - subfacet->used;
4183 int bucket = (idle <= 0 ? 0
4184 : idle >= BUCKET_WIDTH * N_BUCKETS ? N_BUCKETS - 1
4185 : (unsigned int) idle / BUCKET_WIDTH);
4186 buckets[bucket]++;
4187 }
4188
4189 /* Find the first bucket whose flows should be expired. */
4190 subtotal = bucket = 0;
4191 do {
4192 subtotal += buckets[bucket++];
4193 } while (bucket < N_BUCKETS &&
4194 subtotal < MAX(ofproto->up.flow_eviction_threshold, total / 100));
4195
4196 if (VLOG_IS_DBG_ENABLED()) {
4197 struct ds s;
4198
4199 ds_init(&s);
4200 ds_put_cstr(&s, "keep");
4201 for (i = 0; i < N_BUCKETS; i++) {
4202 if (i == bucket) {
4203 ds_put_cstr(&s, ", drop");
4204 }
4205 if (buckets[i]) {
4206 ds_put_format(&s, " %d:%d", i * BUCKET_WIDTH, buckets[i]);
4207 }
4208 }
4209 VLOG_INFO("%s: %s (msec:count)", ofproto->up.name, ds_cstr(&s));
4210 ds_destroy(&s);
4211 }
4212
4213 return bucket * BUCKET_WIDTH;
4214 }
4215
4216 static void
4217 expire_subfacets(struct ofproto_dpif *ofproto, int dp_max_idle)
4218 {
4219 /* Cutoff time for most flows. */
4220 long long int normal_cutoff = time_msec() - dp_max_idle;
4221
4222 /* We really want to keep flows for special protocols around, so use a more
4223 * conservative cutoff. */
4224 long long int special_cutoff = time_msec() - 10000;
4225
4226 struct subfacet *subfacet, *next_subfacet;
4227 struct subfacet *batch[SUBFACET_DESTROY_MAX_BATCH];
4228 int n_batch;
4229
4230 n_batch = 0;
4231 HMAP_FOR_EACH_SAFE (subfacet, next_subfacet, hmap_node,
4232 &ofproto->subfacets) {
4233 long long int cutoff;
4234
4235 cutoff = (subfacet->slow & (SLOW_CFM | SLOW_LACP | SLOW_STP)
4236 ? special_cutoff
4237 : normal_cutoff);
4238 if (subfacet->used < cutoff) {
4239 if (subfacet->path != SF_NOT_INSTALLED) {
4240 batch[n_batch++] = subfacet;
4241 if (n_batch >= SUBFACET_DESTROY_MAX_BATCH) {
4242 subfacet_destroy_batch(ofproto, batch, n_batch);
4243 n_batch = 0;
4244 }
4245 } else {
4246 subfacet_destroy(subfacet);
4247 }
4248 }
4249 }
4250
4251 if (n_batch > 0) {
4252 subfacet_destroy_batch(ofproto, batch, n_batch);
4253 }
4254 }
4255
4256 /* If 'rule' is an OpenFlow rule, that has expired according to OpenFlow rules,
4257 * then delete it entirely. */
4258 static void
4259 rule_expire(struct rule_dpif *rule)
4260 {
4261 struct facet *facet, *next_facet;
4262 long long int now;
4263 uint8_t reason;
4264
4265 if (rule->up.pending) {
4266 /* We'll have to expire it later. */
4267 return;
4268 }
4269
4270 /* Has 'rule' expired? */
4271 now = time_msec();
4272 if (rule->up.hard_timeout
4273 && now > rule->up.modified + rule->up.hard_timeout * 1000) {
4274 reason = OFPRR_HARD_TIMEOUT;
4275 } else if (rule->up.idle_timeout
4276 && now > rule->up.used + rule->up.idle_timeout * 1000) {
4277 reason = OFPRR_IDLE_TIMEOUT;
4278 } else {
4279 return;
4280 }
4281
4282 COVERAGE_INC(ofproto_dpif_expired);
4283
4284 /* Update stats. (This is a no-op if the rule expired due to an idle
4285 * timeout, because that only happens when the rule has no facets left.) */
4286 LIST_FOR_EACH_SAFE (facet, next_facet, list_node, &rule->facets) {
4287 facet_remove(facet);
4288 }
4289
4290 /* Get rid of the rule. */
4291 ofproto_rule_expire(&rule->up, reason);
4292 }
4293 \f
4294 /* Facets. */
4295
4296 /* Creates and returns a new facet owned by 'rule', given a 'flow'.
4297 *
4298 * The caller must already have determined that no facet with an identical
4299 * 'flow' exists in 'ofproto' and that 'flow' is the best match for 'rule' in
4300 * the ofproto's classifier table.
4301 *
4302 * 'hash' must be the return value of flow_hash(flow, 0).
4303 *
4304 * The facet will initially have no subfacets. The caller should create (at
4305 * least) one subfacet with subfacet_create(). */
4306 static struct facet *
4307 facet_create(struct rule_dpif *rule, const struct flow *flow, uint32_t hash)
4308 {
4309 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
4310 struct facet *facet;
4311
4312 facet = xzalloc(sizeof *facet);
4313 facet->used = time_msec();
4314 hmap_insert(&ofproto->facets, &facet->hmap_node, hash);
4315 list_push_back(&rule->facets, &facet->list_node);
4316 facet->rule = rule;
4317 facet->flow = *flow;
4318 list_init(&facet->subfacets);
4319 netflow_flow_init(&facet->nf_flow);
4320 netflow_flow_update_time(ofproto->netflow, &facet->nf_flow, facet->used);
4321
4322 return facet;
4323 }
4324
4325 static void
4326 facet_free(struct facet *facet)
4327 {
4328 free(facet);
4329 }
4330
4331 /* Executes, within 'ofproto', the 'n_actions' actions in 'actions' on
4332 * 'packet', which arrived on 'in_port'. */
4333 static bool
4334 execute_odp_actions(struct ofproto_dpif *ofproto, const struct flow *flow,
4335 const struct nlattr *odp_actions, size_t actions_len,
4336 struct ofpbuf *packet)
4337 {
4338 struct odputil_keybuf keybuf;
4339 struct ofpbuf key;
4340 int error;
4341
4342 ofpbuf_use_stack(&key, &keybuf, sizeof keybuf);
4343 odp_flow_key_from_flow(&key, flow,
4344 ofp_port_to_odp_port(ofproto, flow->in_port));
4345
4346 error = dpif_execute(ofproto->backer->dpif, key.data, key.size,
4347 odp_actions, actions_len, packet);
4348 return !error;
4349 }
4350
4351 /* Remove 'facet' from 'ofproto' and free up the associated memory:
4352 *
4353 * - If 'facet' was installed in the datapath, uninstalls it and updates its
4354 * rule's statistics, via subfacet_uninstall().
4355 *
4356 * - Removes 'facet' from its rule and from ofproto->facets.
4357 */
4358 static void
4359 facet_remove(struct facet *facet)
4360 {
4361 struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto);
4362 struct subfacet *subfacet, *next_subfacet;
4363
4364 ovs_assert(!list_is_empty(&facet->subfacets));
4365
4366 /* First uninstall all of the subfacets to get final statistics. */
4367 LIST_FOR_EACH (subfacet, list_node, &facet->subfacets) {
4368 subfacet_uninstall(subfacet);
4369 }
4370
4371 /* Flush the final stats to the rule.
4372 *
4373 * This might require us to have at least one subfacet around so that we
4374 * can use its actions for accounting in facet_account(), which is why we
4375 * have uninstalled but not yet destroyed the subfacets. */
4376 facet_flush_stats(facet);
4377
4378 /* Now we're really all done so destroy everything. */
4379 LIST_FOR_EACH_SAFE (subfacet, next_subfacet, list_node,
4380 &facet->subfacets) {
4381 subfacet_destroy__(subfacet);
4382 }
4383 hmap_remove(&ofproto->facets, &facet->hmap_node);
4384 list_remove(&facet->list_node);
4385 facet_free(facet);
4386 }
4387
4388 /* Feed information from 'facet' back into the learning table to keep it in
4389 * sync with what is actually flowing through the datapath. */
4390 static void
4391 facet_learn(struct facet *facet)
4392 {
4393 struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto);
4394 struct action_xlate_ctx ctx;
4395
4396 if (!facet->has_learn
4397 && !facet->has_normal
4398 && (!facet->has_fin_timeout
4399 || !(facet->tcp_flags & (TCP_FIN | TCP_RST)))) {
4400 return;
4401 }
4402
4403 action_xlate_ctx_init(&ctx, ofproto, &facet->flow,
4404 facet->flow.vlan_tci,
4405 facet->rule, facet->tcp_flags, NULL);
4406 ctx.may_learn = true;
4407 xlate_actions_for_side_effects(&ctx, facet->rule->up.ofpacts,
4408 facet->rule->up.ofpacts_len);
4409 }
4410
4411 static void
4412 facet_account(struct facet *facet)
4413 {
4414 struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto);
4415 struct subfacet *subfacet;
4416 const struct nlattr *a;
4417 unsigned int left;
4418 ovs_be16 vlan_tci;
4419 uint64_t n_bytes;
4420
4421 if (!facet->has_normal || !ofproto->has_bonded_bundles) {
4422 return;
4423 }
4424 n_bytes = facet->byte_count - facet->accounted_bytes;
4425
4426 /* This loop feeds byte counters to bond_account() for rebalancing to use
4427 * as a basis. We also need to track the actual VLAN on which the packet
4428 * is going to be sent to ensure that it matches the one passed to
4429 * bond_choose_output_slave(). (Otherwise, we will account to the wrong
4430 * hash bucket.)
4431 *
4432 * We use the actions from an arbitrary subfacet because they should all
4433 * be equally valid for our purpose. */
4434 subfacet = CONTAINER_OF(list_front(&facet->subfacets),
4435 struct subfacet, list_node);
4436 vlan_tci = facet->flow.vlan_tci;
4437 NL_ATTR_FOR_EACH_UNSAFE (a, left,
4438 subfacet->actions, subfacet->actions_len) {
4439 const struct ovs_action_push_vlan *vlan;
4440 struct ofport_dpif *port;
4441
4442 switch (nl_attr_type(a)) {
4443 case OVS_ACTION_ATTR_OUTPUT:
4444 port = get_odp_port(ofproto, nl_attr_get_u32(a));
4445 if (port && port->bundle && port->bundle->bond) {
4446 bond_account(port->bundle->bond, &facet->flow,
4447 vlan_tci_to_vid(vlan_tci), n_bytes);
4448 }
4449 break;
4450
4451 case OVS_ACTION_ATTR_POP_VLAN:
4452 vlan_tci = htons(0);
4453 break;
4454
4455 case OVS_ACTION_ATTR_PUSH_VLAN:
4456 vlan = nl_attr_get(a);
4457 vlan_tci = vlan->vlan_tci;
4458 break;
4459 }
4460 }
4461 }
4462
4463 /* Returns true if the only action for 'facet' is to send to the controller.
4464 * (We don't report NetFlow expiration messages for such facets because they
4465 * are just part of the control logic for the network, not real traffic). */
4466 static bool
4467 facet_is_controller_flow(struct facet *facet)
4468 {
4469 if (facet) {
4470 const struct rule *rule = &facet->rule->up;
4471 const struct ofpact *ofpacts = rule->ofpacts;
4472 size_t ofpacts_len = rule->ofpacts_len;
4473
4474 if (ofpacts_len > 0 &&
4475 ofpacts->type == OFPACT_CONTROLLER &&
4476 ofpact_next(ofpacts) >= ofpact_end(ofpacts, ofpacts_len)) {
4477 return true;
4478 }
4479 }
4480 return false;
4481 }
4482
4483 /* Folds all of 'facet''s statistics into its rule. Also updates the
4484 * accounting ofhook and emits a NetFlow expiration if appropriate. All of
4485 * 'facet''s statistics in the datapath should have been zeroed and folded into
4486 * its packet and byte counts before this function is called. */
4487 static void
4488 facet_flush_stats(struct facet *facet)
4489 {
4490 struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto);
4491 struct subfacet *subfacet;
4492
4493 LIST_FOR_EACH (subfacet, list_node, &facet->subfacets) {
4494 ovs_assert(!subfacet->dp_byte_count);
4495 ovs_assert(!subfacet->dp_packet_count);
4496 }
4497
4498 facet_push_stats(facet);
4499 if (facet->accounted_bytes < facet->byte_count) {
4500 facet_account(facet);
4501 facet->accounted_bytes = facet->byte_count;
4502 }
4503
4504 if (ofproto->netflow && !facet_is_controller_flow(facet)) {
4505 struct ofexpired expired;
4506 expired.flow = facet->flow;
4507 expired.packet_count = facet->packet_count;
4508 expired.byte_count = facet->byte_count;
4509 expired.used = facet->used;
4510 netflow_expire(ofproto->netflow, &facet->nf_flow, &expired);
4511 }
4512
4513 facet->rule->packet_count += facet->packet_count;
4514 facet->rule->byte_count += facet->byte_count;
4515
4516 /* Reset counters to prevent double counting if 'facet' ever gets
4517 * reinstalled. */
4518 facet_reset_counters(facet);
4519
4520 netflow_flow_clear(&facet->nf_flow);
4521 facet->tcp_flags = 0;
4522 }
4523
4524 /* Searches 'ofproto''s table of facets for one exactly equal to 'flow'.
4525 * Returns it if found, otherwise a null pointer.
4526 *
4527 * 'hash' must be the return value of flow_hash(flow, 0).
4528 *
4529 * The returned facet might need revalidation; use facet_lookup_valid()
4530 * instead if that is important. */
4531 static struct facet *
4532 facet_find(struct ofproto_dpif *ofproto,
4533 const struct flow *flow, uint32_t hash)
4534 {
4535 struct facet *facet;
4536
4537 HMAP_FOR_EACH_WITH_HASH (facet, hmap_node, hash, &ofproto->facets) {
4538 if (flow_equal(flow, &facet->flow)) {
4539 return facet;
4540 }
4541 }
4542
4543 return NULL;
4544 }
4545
4546 /* Searches 'ofproto''s table of facets for one exactly equal to 'flow'.
4547 * Returns it if found, otherwise a null pointer.
4548 *
4549 * 'hash' must be the return value of flow_hash(flow, 0).
4550 *
4551 * The returned facet is guaranteed to be valid. */
4552 static struct facet *
4553 facet_lookup_valid(struct ofproto_dpif *ofproto, const struct flow *flow,
4554 uint32_t hash)
4555 {
4556 struct facet *facet;
4557
4558 facet = facet_find(ofproto, flow, hash);
4559 if (facet
4560 && (ofproto->backer->need_revalidate
4561 || tag_set_intersects(&ofproto->backer->revalidate_set,
4562 facet->tags))) {
4563 facet_revalidate(facet);
4564
4565 /* facet_revalidate() may have destroyed 'facet'. */
4566 facet = facet_find(ofproto, flow, hash);
4567 }
4568
4569 return facet;
4570 }
4571
4572 static const char *
4573 subfacet_path_to_string(enum subfacet_path path)
4574 {
4575 switch (path) {
4576 case SF_NOT_INSTALLED:
4577 return "not installed";
4578 case SF_FAST_PATH:
4579 return "in fast path";
4580 case SF_SLOW_PATH:
4581 return "in slow path";
4582 default:
4583 return "<error>";
4584 }
4585 }
4586
4587 /* Returns the path in which a subfacet should be installed if its 'slow'
4588 * member has the specified value. */
4589 static enum subfacet_path
4590 subfacet_want_path(enum slow_path_reason slow)
4591 {
4592 return slow ? SF_SLOW_PATH : SF_FAST_PATH;
4593 }
4594
4595 /* Returns true if 'subfacet' needs to have its datapath flow updated,
4596 * supposing that its actions have been recalculated as 'want_actions' and that
4597 * 'slow' is nonzero iff 'subfacet' should be in the slow path. */
4598 static bool
4599 subfacet_should_install(struct subfacet *subfacet, enum slow_path_reason slow,
4600 const struct ofpbuf *want_actions)
4601 {
4602 enum subfacet_path want_path = subfacet_want_path(slow);
4603 return (want_path != subfacet->path
4604 || (want_path == SF_FAST_PATH
4605 && (subfacet->actions_len != want_actions->size
4606 || memcmp(subfacet->actions, want_actions->data,
4607 subfacet->actions_len))));
4608 }
4609
4610 static bool
4611 facet_check_consistency(struct facet *facet)
4612 {
4613 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 15);
4614
4615 struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto);
4616
4617 uint64_t odp_actions_stub[1024 / 8];
4618 struct ofpbuf odp_actions;
4619
4620 struct rule_dpif *rule;
4621 struct subfacet *subfacet;
4622 bool may_log = false;
4623 bool ok;
4624
4625 /* Check the rule for consistency. */
4626 rule = rule_dpif_lookup(ofproto, &facet->flow);
4627 ok = rule == facet->rule;
4628 if (!ok) {
4629 may_log = !VLOG_DROP_WARN(&rl);
4630 if (may_log) {
4631 struct ds s;
4632
4633 ds_init(&s);
4634 flow_format(&s, &facet->flow);
4635 ds_put_format(&s, ": facet associated with wrong rule (was "
4636 "table=%"PRIu8",", facet->rule->up.table_id);
4637 cls_rule_format(&facet->rule->up.cr, &s);
4638 ds_put_format(&s, ") (should have been table=%"PRIu8",",
4639 rule->up.table_id);
4640 cls_rule_format(&rule->up.cr, &s);
4641 ds_put_char(&s, ')');
4642
4643 VLOG_WARN("%s", ds_cstr(&s));
4644 ds_destroy(&s);
4645 }
4646 }
4647
4648 /* Check the datapath actions for consistency. */
4649 ofpbuf_use_stub(&odp_actions, odp_actions_stub, sizeof odp_actions_stub);
4650 LIST_FOR_EACH (subfacet, list_node, &facet->subfacets) {
4651 enum subfacet_path want_path;
4652 struct action_xlate_ctx ctx;
4653 struct ds s;
4654
4655 action_xlate_ctx_init(&ctx, ofproto, &facet->flow,
4656 subfacet->initial_tci, rule, 0, NULL);
4657 xlate_actions(&ctx, rule->up.ofpacts, rule->up.ofpacts_len,
4658 &odp_actions);
4659
4660 if (subfacet->path == SF_NOT_INSTALLED) {
4661 /* This only happens if the datapath reported an error when we
4662 * tried to install the flow. Don't flag another error here. */
4663 continue;
4664 }
4665
4666 want_path = subfacet_want_path(subfacet->slow);
4667 if (want_path == SF_SLOW_PATH && subfacet->path == SF_SLOW_PATH) {
4668 /* The actions for slow-path flows may legitimately vary from one
4669 * packet to the next. We're done. */
4670 continue;
4671 }
4672
4673 if (!subfacet_should_install(subfacet, subfacet->slow, &odp_actions)) {
4674 continue;
4675 }
4676
4677 /* Inconsistency! */
4678 if (ok) {
4679 may_log = !VLOG_DROP_WARN(&rl);
4680 ok = false;
4681 }
4682 if (!may_log) {
4683 /* Rate-limited, skip reporting. */
4684 continue;
4685 }
4686
4687 ds_init(&s);
4688 odp_flow_key_format(subfacet->key, subfacet->key_len, &s);
4689
4690 ds_put_cstr(&s, ": inconsistency in subfacet");
4691 if (want_path != subfacet->path) {
4692 enum odp_key_fitness fitness = subfacet->key_fitness;
4693
4694 ds_put_format(&s, " (%s, fitness=%s)",
4695 subfacet_path_to_string(subfacet->path),
4696 odp_key_fitness_to_string(fitness));
4697 ds_put_format(&s, " (should have been %s)",
4698 subfacet_path_to_string(want_path));
4699 } else if (want_path == SF_FAST_PATH) {
4700 ds_put_cstr(&s, " (actions were: ");
4701 format_odp_actions(&s, subfacet->actions,
4702 subfacet->actions_len);
4703 ds_put_cstr(&s, ") (correct actions: ");
4704 format_odp_actions(&s, odp_actions.data, odp_actions.size);
4705 ds_put_char(&s, ')');
4706 } else {
4707 ds_put_cstr(&s, " (actions: ");
4708 format_odp_actions(&s, subfacet->actions,
4709 subfacet->actions_len);
4710 ds_put_char(&s, ')');
4711 }
4712 VLOG_WARN("%s", ds_cstr(&s));
4713 ds_destroy(&s);
4714 }
4715 ofpbuf_uninit(&odp_actions);
4716
4717 return ok;
4718 }
4719
4720 /* Re-searches the classifier for 'facet':
4721 *
4722 * - If the rule found is different from 'facet''s current rule, moves
4723 * 'facet' to the new rule and recompiles its actions.
4724 *
4725 * - If the rule found is the same as 'facet''s current rule, leaves 'facet'
4726 * where it is and recompiles its actions anyway.
4727 *
4728 * - If any of 'facet''s subfacets correspond to a new flow according to
4729 * ofproto_receive(), 'facet' is removed. */
4730 static void
4731 facet_revalidate(struct facet *facet)
4732 {
4733 struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto);
4734 struct actions {
4735 struct nlattr *odp_actions;
4736 size_t actions_len;
4737 };
4738 struct actions *new_actions;
4739
4740 struct action_xlate_ctx ctx;
4741 uint64_t odp_actions_stub[1024 / 8];
4742 struct ofpbuf odp_actions;
4743
4744 struct rule_dpif *new_rule;
4745 struct subfacet *subfacet;
4746 int i;
4747
4748 COVERAGE_INC(facet_revalidate);
4749
4750 /* Check that child subfacets still correspond to this facet. Tunnel
4751 * configuration changes could cause a subfacet's OpenFlow in_port to
4752 * change. */
4753 LIST_FOR_EACH (subfacet, list_node, &facet->subfacets) {
4754 struct ofproto_dpif *recv_ofproto;
4755 struct flow recv_flow;
4756 int error;
4757
4758 error = ofproto_receive(ofproto->backer, NULL, subfacet->key,
4759 subfacet->key_len, &recv_flow, NULL,
4760 &recv_ofproto, NULL, NULL);
4761 if (error
4762 || recv_ofproto != ofproto
4763 || memcmp(&recv_flow, &facet->flow, sizeof recv_flow)) {
4764 facet_remove(facet);
4765 return;
4766 }
4767 }
4768
4769 new_rule = rule_dpif_lookup(ofproto, &facet->flow);
4770
4771 /* Calculate new datapath actions.
4772 *
4773 * We do not modify any 'facet' state yet, because we might need to, e.g.,
4774 * emit a NetFlow expiration and, if so, we need to have the old state
4775 * around to properly compose it. */
4776
4777 /* If the datapath actions changed or the installability changed,
4778 * then we need to talk to the datapath. */
4779 i = 0;
4780 new_actions = NULL;
4781 memset(&ctx, 0, sizeof ctx);
4782 ofpbuf_use_stub(&odp_actions, odp_actions_stub, sizeof odp_actions_stub);
4783 LIST_FOR_EACH (subfacet, list_node, &facet->subfacets) {
4784 enum slow_path_reason slow;
4785
4786 action_xlate_ctx_init(&ctx, ofproto, &facet->flow,
4787 subfacet->initial_tci, new_rule, 0, NULL);
4788 xlate_actions(&ctx, new_rule->up.ofpacts, new_rule->up.ofpacts_len,
4789 &odp_actions);
4790
4791 slow = (subfacet->slow & SLOW_MATCH) | ctx.slow;
4792 if (subfacet_should_install(subfacet, slow, &odp_actions)) {
4793 struct dpif_flow_stats stats;
4794
4795 subfacet_install(subfacet,
4796 odp_actions.data, odp_actions.size, &stats, slow);
4797 subfacet_update_stats(subfacet, &stats);
4798
4799 if (!new_actions) {
4800 new_actions = xcalloc(list_size(&facet->subfacets),
4801 sizeof *new_actions);
4802 }
4803 new_actions[i].odp_actions = xmemdup(odp_actions.data,
4804 odp_actions.size);
4805 new_actions[i].actions_len = odp_actions.size;
4806 }
4807
4808 i++;
4809 }
4810 ofpbuf_uninit(&odp_actions);
4811
4812 if (new_actions) {
4813 facet_flush_stats(facet);
4814 }
4815
4816 /* Update 'facet' now that we've taken care of all the old state. */
4817 facet->tags = ctx.tags;
4818 facet->nf_flow.output_iface = ctx.nf_output_iface;
4819 facet->has_learn = ctx.has_learn;
4820 facet->has_normal = ctx.has_normal;
4821 facet->has_fin_timeout = ctx.has_fin_timeout;
4822 facet->mirrors = ctx.mirrors;
4823
4824 i = 0;
4825 LIST_FOR_EACH (subfacet, list_node, &facet->subfacets) {
4826 subfacet->slow = (subfacet->slow & SLOW_MATCH) | ctx.slow;
4827
4828 if (new_actions && new_actions[i].odp_actions) {
4829 free(subfacet->actions);
4830 subfacet->actions = new_actions[i].odp_actions;
4831 subfacet->actions_len = new_actions[i].actions_len;
4832 }
4833 i++;
4834 }
4835 free(new_actions);
4836
4837 if (facet->rule != new_rule) {
4838 COVERAGE_INC(facet_changed_rule);
4839 list_remove(&facet->list_node);
4840 list_push_back(&new_rule->facets, &facet->list_node);
4841 facet->rule = new_rule;
4842 facet->used = new_rule->up.created;
4843 facet->prev_used = facet->used;
4844 }
4845 }
4846
4847 /* Updates 'facet''s used time. Caller is responsible for calling
4848 * facet_push_stats() to update the flows which 'facet' resubmits into. */
4849 static void
4850 facet_update_time(struct facet *facet, long long int used)
4851 {
4852 struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto);
4853 if (used > facet->used) {
4854 facet->used = used;
4855 ofproto_rule_update_used(&facet->rule->up, used);
4856 netflow_flow_update_time(ofproto->netflow, &facet->nf_flow, used);
4857 }
4858 }
4859
4860 static void
4861 facet_reset_counters(struct facet *facet)
4862 {
4863 facet->packet_count = 0;
4864 facet->byte_count = 0;
4865 facet->prev_packet_count = 0;
4866 facet->prev_byte_count = 0;
4867 facet->accounted_bytes = 0;
4868 }
4869
4870 static void
4871 facet_push_stats(struct facet *facet)
4872 {
4873 struct dpif_flow_stats stats;
4874
4875 ovs_assert(facet->packet_count >= facet->prev_packet_count);
4876 ovs_assert(facet->byte_count >= facet->prev_byte_count);
4877 ovs_assert(facet->used >= facet->prev_used);
4878
4879 stats.n_packets = facet->packet_count - facet->prev_packet_count;
4880 stats.n_bytes = facet->byte_count - facet->prev_byte_count;
4881 stats.used = facet->used;
4882 stats.tcp_flags = 0;
4883
4884 if (stats.n_packets || stats.n_bytes || facet->used > facet->prev_used) {
4885 facet->prev_packet_count = facet->packet_count;
4886 facet->prev_byte_count = facet->byte_count;
4887 facet->prev_used = facet->used;
4888
4889 flow_push_stats(facet->rule, &facet->flow, &stats);
4890
4891 update_mirror_stats(ofproto_dpif_cast(facet->rule->up.ofproto),
4892 facet->mirrors, stats.n_packets, stats.n_bytes);
4893 }
4894 }
4895
4896 static void
4897 rule_credit_stats(struct rule_dpif *rule, const struct dpif_flow_stats *stats)
4898 {
4899 rule->packet_count += stats->n_packets;
4900 rule->byte_count += stats->n_bytes;
4901 ofproto_rule_update_used(&rule->up, stats->used);
4902 }
4903
4904 /* Pushes flow statistics to the rules which 'flow' resubmits into given
4905 * 'rule''s actions and mirrors. */
4906 static void
4907 flow_push_stats(struct rule_dpif *rule,
4908 const struct flow *flow, const struct dpif_flow_stats *stats)
4909 {
4910 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
4911 struct action_xlate_ctx ctx;
4912
4913 ofproto_rule_update_used(&rule->up, stats->used);
4914
4915 action_xlate_ctx_init(&ctx, ofproto, flow, flow->vlan_tci, rule,
4916 0, NULL);
4917 ctx.resubmit_stats = stats;
4918 xlate_actions_for_side_effects(&ctx, rule->up.ofpacts,
4919 rule->up.ofpacts_len);
4920 }
4921 \f
4922 /* Subfacets. */
4923
4924 static struct subfacet *
4925 subfacet_find(struct ofproto_dpif *ofproto,
4926 const struct nlattr *key, size_t key_len, uint32_t key_hash)
4927 {
4928 struct subfacet *subfacet;
4929
4930 HMAP_FOR_EACH_WITH_HASH (subfacet, hmap_node, key_hash,
4931 &ofproto->subfacets) {
4932 if (subfacet->key_len == key_len
4933 && !memcmp(key, subfacet->key, key_len)) {
4934 return subfacet;
4935 }
4936 }
4937
4938 return NULL;
4939 }
4940
4941 /* Searches 'facet' (within 'ofproto') for a subfacet with the specified
4942 * 'key_fitness', 'key', and 'key_len' members in 'miss'. Returns the
4943 * existing subfacet if there is one, otherwise creates and returns a
4944 * new subfacet.
4945 *
4946 * If the returned subfacet is new, then subfacet->actions will be NULL, in
4947 * which case the caller must populate the actions with
4948 * subfacet_make_actions(). */
4949 static struct subfacet *
4950 subfacet_create(struct facet *facet, struct flow_miss *miss,
4951 long long int now)
4952 {
4953 struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto);
4954 enum odp_key_fitness key_fitness = miss->key_fitness;
4955 const struct nlattr *key = miss->key;
4956 size_t key_len = miss->key_len;
4957 uint32_t key_hash;
4958 struct subfacet *subfacet;
4959
4960 key_hash = odp_flow_key_hash(key, key_len);
4961
4962 if (list_is_empty(&facet->subfacets)) {
4963 subfacet = &facet->one_subfacet;
4964 } else {
4965 subfacet = subfacet_find(ofproto, key, key_len, key_hash);
4966 if (subfacet) {
4967 if (subfacet->facet == facet) {
4968 return subfacet;
4969 }
4970
4971 /* This shouldn't happen. */
4972 VLOG_ERR_RL(&rl, "subfacet with wrong facet");
4973 subfacet_destroy(subfacet);
4974 }
4975
4976 subfacet = xmalloc(sizeof *subfacet);
4977 }
4978
4979 hmap_insert(&ofproto->subfacets, &subfacet->hmap_node, key_hash);
4980 list_push_back(&facet->subfacets, &subfacet->list_node);
4981 subfacet->facet = facet;
4982 subfacet->key_fitness = key_fitness;
4983 subfacet->key = xmemdup(key, key_len);
4984 subfacet->key_len = key_len;
4985 subfacet->used = now;
4986 subfacet->dp_packet_count = 0;
4987 subfacet->dp_byte_count = 0;
4988 subfacet->actions_len = 0;
4989 subfacet->actions = NULL;
4990 subfacet->slow = (subfacet->key_fitness == ODP_FIT_TOO_LITTLE
4991 ? SLOW_MATCH
4992 : 0);
4993 subfacet->path = SF_NOT_INSTALLED;
4994 subfacet->initial_tci = miss->initial_tci;
4995 subfacet->odp_in_port = miss->odp_in_port;
4996
4997 return subfacet;
4998 }
4999
5000 /* Uninstalls 'subfacet' from the datapath, if it is installed, removes it from
5001 * its facet within 'ofproto', and frees it. */
5002 static void
5003 subfacet_destroy__(struct subfacet *subfacet)
5004 {
5005 struct facet *facet = subfacet->facet;
5006 struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto);
5007
5008 subfacet_uninstall(subfacet);
5009 hmap_remove(&ofproto->subfacets, &subfacet->hmap_node);
5010 list_remove(&subfacet->list_node);
5011 free(subfacet->key);
5012 free(subfacet->actions);
5013 if (subfacet != &facet->one_subfacet) {
5014 free(subfacet);
5015 }
5016 }
5017
5018 /* Destroys 'subfacet', as with subfacet_destroy__(), and then if this was the
5019 * last remaining subfacet in its facet destroys the facet too. */
5020 static void
5021 subfacet_destroy(struct subfacet *subfacet)
5022 {
5023 struct facet *facet = subfacet->facet;
5024
5025 if (list_is_singleton(&facet->subfacets)) {
5026 /* facet_remove() needs at least one subfacet (it will remove it). */
5027 facet_remove(facet);
5028 } else {
5029 subfacet_destroy__(subfacet);
5030 }
5031 }
5032
5033 static void
5034 subfacet_destroy_batch(struct ofproto_dpif *ofproto,
5035 struct subfacet **subfacets, int n)
5036 {
5037 struct dpif_op ops[SUBFACET_DESTROY_MAX_BATCH];
5038 struct dpif_op *opsp[SUBFACET_DESTROY_MAX_BATCH];
5039 struct dpif_flow_stats stats[SUBFACET_DESTROY_MAX_BATCH];
5040 int i;
5041
5042 for (i = 0; i < n; i++) {
5043 ops[i].type = DPIF_OP_FLOW_DEL;
5044 ops[i].u.flow_del.key = subfacets[i]->key;
5045 ops[i].u.flow_del.key_len = subfacets[i]->key_len;
5046 ops[i].u.flow_del.stats = &stats[i];
5047 opsp[i] = &ops[i];
5048 }
5049
5050 dpif_operate(ofproto->backer->dpif, opsp, n);
5051 for (i = 0; i < n; i++) {
5052 subfacet_reset_dp_stats(subfacets[i], &stats[i]);
5053 subfacets[i]->path = SF_NOT_INSTALLED;
5054 subfacet_destroy(subfacets[i]);
5055 }
5056 }
5057
5058 /* Composes the datapath actions for 'subfacet' based on its rule's actions.
5059 * Translates the actions into 'odp_actions', which the caller must have
5060 * initialized and is responsible for uninitializing. */
5061 static void
5062 subfacet_make_actions(struct subfacet *subfacet, const struct ofpbuf *packet,
5063 struct ofpbuf *odp_actions)
5064 {
5065 struct facet *facet = subfacet->facet;
5066 struct rule_dpif *rule = facet->rule;
5067 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
5068
5069 struct action_xlate_ctx ctx;
5070
5071 action_xlate_ctx_init(&ctx, ofproto, &facet->flow, subfacet->initial_tci,
5072 rule, 0, packet);
5073 xlate_actions(&ctx, rule->up.ofpacts, rule->up.ofpacts_len, odp_actions);
5074 facet->tags = ctx.tags;
5075 facet->has_learn = ctx.has_learn;
5076 facet->has_normal = ctx.has_normal;
5077 facet->has_fin_timeout = ctx.has_fin_timeout;
5078 facet->nf_flow.output_iface = ctx.nf_output_iface;
5079 facet->mirrors = ctx.mirrors;
5080
5081 subfacet->slow = (subfacet->slow & SLOW_MATCH) | ctx.slow;
5082 if (subfacet->actions_len != odp_actions->size
5083 || memcmp(subfacet->actions, odp_actions->data, odp_actions->size)) {
5084 free(subfacet->actions);
5085 subfacet->actions_len = odp_actions->size;
5086 subfacet->actions = xmemdup(odp_actions->data, odp_actions->size);
5087 }
5088 }
5089
5090 /* Updates 'subfacet''s datapath flow, setting its actions to 'actions_len'
5091 * bytes of actions in 'actions'. If 'stats' is non-null, statistics counters
5092 * in the datapath will be zeroed and 'stats' will be updated with traffic new
5093 * since 'subfacet' was last updated.
5094 *
5095 * Returns 0 if successful, otherwise a positive errno value. */
5096 static int
5097 subfacet_install(struct subfacet *subfacet,
5098 const struct nlattr *actions, size_t actions_len,
5099 struct dpif_flow_stats *stats,
5100 enum slow_path_reason slow)
5101 {
5102 struct facet *facet = subfacet->facet;
5103 struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto);
5104 enum subfacet_path path = subfacet_want_path(slow);
5105 uint64_t slow_path_stub[128 / 8];
5106 enum dpif_flow_put_flags flags;
5107 int ret;
5108
5109 flags = DPIF_FP_CREATE | DPIF_FP_MODIFY;
5110 if (stats) {
5111 flags |= DPIF_FP_ZERO_STATS;
5112 }
5113
5114 if (path == SF_SLOW_PATH) {
5115 compose_slow_path(ofproto, &facet->flow, slow,
5116 slow_path_stub, sizeof slow_path_stub,
5117 &actions, &actions_len);
5118 }
5119
5120 ret = dpif_flow_put(ofproto->backer->dpif, flags, subfacet->key,
5121 subfacet->key_len, actions, actions_len, stats);
5122
5123 if (stats) {
5124 subfacet_reset_dp_stats(subfacet, stats);
5125 }
5126
5127 if (!ret) {
5128 subfacet->path = path;
5129 }
5130 return ret;
5131 }
5132
5133 static int
5134 subfacet_reinstall(struct subfacet *subfacet, struct dpif_flow_stats *stats)
5135 {
5136 return subfacet_install(subfacet, subfacet->actions, subfacet->actions_len,
5137 stats, subfacet->slow);
5138 }
5139
5140 /* If 'subfacet' is installed in the datapath, uninstalls it. */
5141 static void
5142 subfacet_uninstall(struct subfacet *subfacet)
5143 {
5144 if (subfacet->path != SF_NOT_INSTALLED) {
5145 struct rule_dpif *rule = subfacet->facet->rule;
5146 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
5147 struct dpif_flow_stats stats;
5148 int error;
5149
5150 error = dpif_flow_del(ofproto->backer->dpif, subfacet->key,
5151 subfacet->key_len, &stats);
5152 subfacet_reset_dp_stats(subfacet, &stats);
5153 if (!error) {
5154 subfacet_update_stats(subfacet, &stats);
5155 }
5156 subfacet->path = SF_NOT_INSTALLED;
5157 } else {
5158 ovs_assert(subfacet->dp_packet_count == 0);
5159 ovs_assert(subfacet->dp_byte_count == 0);
5160 }
5161 }
5162
5163 /* Resets 'subfacet''s datapath statistics counters. This should be called
5164 * when 'subfacet''s statistics are cleared in the datapath. If 'stats' is
5165 * non-null, it should contain the statistics returned by dpif when 'subfacet'
5166 * was reset in the datapath. 'stats' will be modified to include only
5167 * statistics new since 'subfacet' was last updated. */
5168 static void
5169 subfacet_reset_dp_stats(struct subfacet *subfacet,
5170 struct dpif_flow_stats *stats)
5171 {
5172 if (stats
5173 && subfacet->dp_packet_count <= stats->n_packets
5174 && subfacet->dp_byte_count <= stats->n_bytes) {
5175 stats->n_packets -= subfacet->dp_packet_count;
5176 stats->n_bytes -= subfacet->dp_byte_count;
5177 }
5178
5179 subfacet->dp_packet_count = 0;
5180 subfacet->dp_byte_count = 0;
5181 }
5182
5183 /* Updates 'subfacet''s used time. The caller is responsible for calling
5184 * facet_push_stats() to update the flows which 'subfacet' resubmits into. */
5185 static void
5186 subfacet_update_time(struct subfacet *subfacet, long long int used)
5187 {
5188 if (used > subfacet->used) {
5189 subfacet->used = used;
5190 facet_update_time(subfacet->facet, used);
5191 }
5192 }
5193
5194 /* Folds the statistics from 'stats' into the counters in 'subfacet'.
5195 *
5196 * Because of the meaning of a subfacet's counters, it only makes sense to do
5197 * this if 'stats' are not tracked in the datapath, that is, if 'stats'
5198 * represents a packet that was sent by hand or if it represents statistics
5199 * that have been cleared out of the datapath. */
5200 static void
5201 subfacet_update_stats(struct subfacet *subfacet,
5202 const struct dpif_flow_stats *stats)
5203 {
5204 if (stats->n_packets || stats->used > subfacet->used) {
5205 struct facet *facet = subfacet->facet;
5206
5207 subfacet_update_time(subfacet, stats->used);
5208 facet->packet_count += stats->n_packets;
5209 facet->byte_count += stats->n_bytes;
5210 facet->tcp_flags |= stats->tcp_flags;
5211 facet_push_stats(facet);
5212 netflow_flow_update_flags(&facet->nf_flow, stats->tcp_flags);
5213 }
5214 }
5215 \f
5216 /* Rules. */
5217
5218 static struct rule_dpif *
5219 rule_dpif_lookup(struct ofproto_dpif *ofproto, const struct flow *flow)
5220 {
5221 struct rule_dpif *rule;
5222
5223 rule = rule_dpif_lookup__(ofproto, flow, 0);
5224 if (rule) {
5225 return rule;
5226 }
5227
5228 return rule_dpif_miss_rule(ofproto, flow);
5229 }
5230
5231 static struct rule_dpif *
5232 rule_dpif_lookup__(struct ofproto_dpif *ofproto, const struct flow *flow,
5233 uint8_t table_id)
5234 {
5235 struct cls_rule *cls_rule;
5236 struct classifier *cls;
5237
5238 if (table_id >= N_TABLES) {
5239 return NULL;
5240 }
5241
5242 cls = &ofproto->up.tables[table_id].cls;
5243 if (flow->nw_frag & FLOW_NW_FRAG_ANY
5244 && ofproto->up.frag_handling == OFPC_FRAG_NORMAL) {
5245 /* For OFPC_NORMAL frag_handling, we must pretend that transport ports
5246 * are unavailable. */
5247 struct flow ofpc_normal_flow = *flow;
5248 ofpc_normal_flow.tp_src = htons(0);
5249 ofpc_normal_flow.tp_dst = htons(0);
5250 cls_rule = classifier_lookup(cls, &ofpc_normal_flow);
5251 } else {
5252 cls_rule = classifier_lookup(cls, flow);
5253 }
5254 return rule_dpif_cast(rule_from_cls_rule(cls_rule));
5255 }
5256
5257 static struct rule_dpif *
5258 rule_dpif_miss_rule(struct ofproto_dpif *ofproto, const struct flow *flow)
5259 {
5260 struct ofport_dpif *port;
5261
5262 port = get_ofp_port(ofproto, flow->in_port);
5263 if (!port) {
5264 VLOG_WARN_RL(&rl, "packet-in on unknown port %"PRIu16, flow->in_port);
5265 return ofproto->miss_rule;
5266 }
5267
5268 if (port->up.pp.config & OFPUTIL_PC_NO_PACKET_IN) {
5269 return ofproto->no_packet_in_rule;
5270 }
5271 return ofproto->miss_rule;
5272 }
5273
5274 static void
5275 complete_operation(struct rule_dpif *rule)
5276 {
5277 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
5278
5279 rule_invalidate(rule);
5280 if (clogged) {
5281 struct dpif_completion *c = xmalloc(sizeof *c);
5282 c->op = rule->up.pending;
5283 list_push_back(&ofproto->completions, &c->list_node);
5284 } else {
5285 ofoperation_complete(rule->up.pending, 0);
5286 }
5287 }
5288
5289 static struct rule *
5290 rule_alloc(void)
5291 {
5292 struct rule_dpif *rule = xmalloc(sizeof *rule);
5293 return &rule->up;
5294 }
5295
5296 static void
5297 rule_dealloc(struct rule *rule_)
5298 {
5299 struct rule_dpif *rule = rule_dpif_cast(rule_);
5300 free(rule);
5301 }
5302
5303 static enum ofperr
5304 rule_construct(struct rule *rule_)
5305 {
5306 struct rule_dpif *rule = rule_dpif_cast(rule_);
5307 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
5308 struct rule_dpif *victim;
5309 uint8_t table_id;
5310
5311 rule->packet_count = 0;
5312 rule->byte_count = 0;
5313
5314 victim = rule_dpif_cast(ofoperation_get_victim(rule->up.pending));
5315 if (victim && !list_is_empty(&victim->facets)) {
5316 struct facet *facet;
5317
5318 rule->facets = victim->facets;
5319 list_moved(&rule->facets);
5320 LIST_FOR_EACH (facet, list_node, &rule->facets) {
5321 /* XXX: We're only clearing our local counters here. It's possible
5322 * that quite a few packets are unaccounted for in the datapath
5323 * statistics. These will be accounted to the new rule instead of
5324 * cleared as required. This could be fixed by clearing out the
5325 * datapath statistics for this facet, but currently it doesn't
5326 * seem worth it. */
5327 facet_reset_counters(facet);
5328 facet->rule = rule;
5329 }
5330 } else {
5331 /* Must avoid list_moved() in this case. */
5332 list_init(&rule->facets);
5333 }
5334
5335 table_id = rule->up.table_id;
5336 if (victim) {
5337 rule->tag = victim->tag;
5338 } else if (table_id == 0) {
5339 rule->tag = 0;
5340 } else {
5341 struct flow flow;
5342
5343 miniflow_expand(&rule->up.cr.match.flow, &flow);
5344 rule->tag = rule_calculate_tag(&flow, &rule->up.cr.match.mask,
5345 ofproto->tables[table_id].basis);
5346 }
5347
5348 complete_operation(rule);
5349 return 0;
5350 }
5351
5352 static void
5353 rule_destruct(struct rule *rule_)
5354 {
5355 struct rule_dpif *rule = rule_dpif_cast(rule_);
5356 struct facet *facet, *next_facet;
5357
5358 LIST_FOR_EACH_SAFE (facet, next_facet, list_node, &rule->facets) {
5359 facet_revalidate(facet);
5360 }
5361
5362 complete_operation(rule);
5363 }
5364
5365 static void
5366 rule_get_stats(struct rule *rule_, uint64_t *packets, uint64_t *bytes)
5367 {
5368 struct rule_dpif *rule = rule_dpif_cast(rule_);
5369 struct facet *facet;
5370
5371 /* Start from historical data for 'rule' itself that are no longer tracked
5372 * in facets. This counts, for example, facets that have expired. */
5373 *packets = rule->packet_count;
5374 *bytes = rule->byte_count;
5375
5376 /* Add any statistics that are tracked by facets. This includes
5377 * statistical data recently updated by ofproto_update_stats() as well as
5378 * stats for packets that were executed "by hand" via dpif_execute(). */
5379 LIST_FOR_EACH (facet, list_node, &rule->facets) {
5380 *packets += facet->packet_count;
5381 *bytes += facet->byte_count;
5382 }
5383 }
5384
5385 static void
5386 rule_dpif_execute(struct rule_dpif *rule, const struct flow *flow,
5387 struct ofpbuf *packet)
5388 {
5389 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
5390
5391 struct dpif_flow_stats stats;
5392
5393 struct action_xlate_ctx ctx;
5394 uint64_t odp_actions_stub[1024 / 8];
5395 struct ofpbuf odp_actions;
5396
5397 dpif_flow_stats_extract(flow, packet, time_msec(), &stats);
5398 rule_credit_stats(rule, &stats);
5399
5400 ofpbuf_use_stub(&odp_actions, odp_actions_stub, sizeof odp_actions_stub);
5401 action_xlate_ctx_init(&ctx, ofproto, flow, flow->vlan_tci,
5402 rule, stats.tcp_flags, packet);
5403 ctx.resubmit_stats = &stats;
5404 xlate_actions(&ctx, rule->up.ofpacts, rule->up.ofpacts_len, &odp_actions);
5405
5406 execute_odp_actions(ofproto, flow, odp_actions.data,
5407 odp_actions.size, packet);
5408
5409 ofpbuf_uninit(&odp_actions);
5410 }
5411
5412 static enum ofperr
5413 rule_execute(struct rule *rule, const struct flow *flow,
5414 struct ofpbuf *packet)
5415 {
5416 rule_dpif_execute(rule_dpif_cast(rule), flow, packet);
5417 ofpbuf_delete(packet);
5418 return 0;
5419 }
5420
5421 static void
5422 rule_modify_actions(struct rule *rule_)
5423 {
5424 struct rule_dpif *rule = rule_dpif_cast(rule_);
5425
5426 complete_operation(rule);
5427 }
5428 \f
5429 /* Sends 'packet' out 'ofport'.
5430 * May modify 'packet'.
5431 * Returns 0 if successful, otherwise a positive errno value. */
5432 static int
5433 send_packet(const struct ofport_dpif *ofport, struct ofpbuf *packet)
5434 {
5435 const struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
5436 uint64_t odp_actions_stub[1024 / 8];
5437 struct ofpbuf key, odp_actions;
5438 struct odputil_keybuf keybuf;
5439 uint32_t odp_port;
5440 struct flow flow;
5441 int error;
5442
5443 flow_extract(packet, 0, 0, NULL, OFPP_LOCAL, &flow);
5444 if (netdev_vport_is_patch(ofport->up.netdev)) {
5445 struct ofproto_dpif *peer_ofproto;
5446 struct dpif_flow_stats stats;
5447 struct ofport_dpif *peer;
5448 struct rule_dpif *rule;
5449
5450 peer = ofport_get_peer(ofport);
5451 if (!peer) {
5452 return ENODEV;
5453 }
5454
5455 dpif_flow_stats_extract(&flow, packet, time_msec(), &stats);
5456 netdev_vport_inc_tx(ofport->up.netdev, &stats);
5457 netdev_vport_inc_rx(peer->up.netdev, &stats);
5458
5459 flow.in_port = peer->up.ofp_port;
5460 peer_ofproto = ofproto_dpif_cast(peer->up.ofproto);
5461 rule = rule_dpif_lookup(peer_ofproto, &flow);
5462 rule_dpif_execute(rule, &flow, packet);
5463
5464 return 0;
5465 }
5466
5467 ofpbuf_use_stub(&odp_actions, odp_actions_stub, sizeof odp_actions_stub);
5468
5469 if (ofport->tnl_port) {
5470 struct dpif_flow_stats stats;
5471
5472 odp_port = tnl_port_send(ofport->tnl_port, &flow);
5473 if (odp_port == OVSP_NONE) {
5474 return ENODEV;
5475 }
5476
5477 dpif_flow_stats_extract(&flow, packet, time_msec(), &stats);
5478 netdev_vport_inc_tx(ofport->up.netdev, &stats);
5479 odp_put_tunnel_action(&flow.tunnel, &odp_actions);
5480 odp_put_skb_mark_action(flow.skb_mark, &odp_actions);
5481 } else {
5482 odp_port = vsp_realdev_to_vlandev(ofproto, ofport->odp_port,
5483 flow.vlan_tci);
5484 if (odp_port != ofport->odp_port) {
5485 eth_pop_vlan(packet);
5486 flow.vlan_tci = htons(0);
5487 }
5488 }
5489
5490 ofpbuf_use_stack(&key, &keybuf, sizeof keybuf);
5491 odp_flow_key_from_flow(&key, &flow,
5492 ofp_port_to_odp_port(ofproto, flow.in_port));
5493
5494 compose_sflow_action(ofproto, &odp_actions, &flow, odp_port);
5495
5496 nl_msg_put_u32(&odp_actions, OVS_ACTION_ATTR_OUTPUT, odp_port);
5497 error = dpif_execute(ofproto->backer->dpif,
5498 key.data, key.size,
5499 odp_actions.data, odp_actions.size,
5500 packet);
5501 ofpbuf_uninit(&odp_actions);
5502
5503 if (error) {
5504 VLOG_WARN_RL(&rl, "%s: failed to send packet on port %"PRIu32" (%s)",
5505 ofproto->up.name, odp_port, strerror(error));
5506 }
5507 ofproto_update_local_port_stats(ofport->up.ofproto, packet->size, 0);
5508 return error;
5509 }
5510 \f
5511 /* OpenFlow to datapath action translation. */
5512
5513 static bool may_receive(const struct ofport_dpif *, struct action_xlate_ctx *);
5514 static void do_xlate_actions(const struct ofpact *, size_t ofpacts_len,
5515 struct action_xlate_ctx *);
5516 static void xlate_normal(struct action_xlate_ctx *);
5517
5518 /* Composes an ODP action for a "slow path" action for 'flow' within 'ofproto'.
5519 * The action will state 'slow' as the reason that the action is in the slow
5520 * path. (This is purely informational: it allows a human viewing "ovs-dpctl
5521 * dump-flows" output to see why a flow is in the slow path.)
5522 *
5523 * The 'stub_size' bytes in 'stub' will be used to store the action.
5524 * 'stub_size' must be large enough for the action.
5525 *
5526 * The action and its size will be stored in '*actionsp' and '*actions_lenp',
5527 * respectively. */
5528 static void
5529 compose_slow_path(const struct ofproto_dpif *ofproto, const struct flow *flow,
5530 enum slow_path_reason slow,
5531 uint64_t *stub, size_t stub_size,
5532 const struct nlattr **actionsp, size_t *actions_lenp)
5533 {
5534 union user_action_cookie cookie;
5535 struct ofpbuf buf;
5536
5537 cookie.type = USER_ACTION_COOKIE_SLOW_PATH;
5538 cookie.slow_path.unused = 0;
5539 cookie.slow_path.reason = slow;
5540
5541 ofpbuf_use_stack(&buf, stub, stub_size);
5542 if (slow & (SLOW_CFM | SLOW_LACP | SLOW_STP)) {
5543 uint32_t pid = dpif_port_get_pid(ofproto->backer->dpif, UINT32_MAX);
5544 odp_put_userspace_action(pid, &cookie, sizeof cookie, &buf);
5545 } else {
5546 put_userspace_action(ofproto, &buf, flow, &cookie);
5547 }
5548 *actionsp = buf.data;
5549 *actions_lenp = buf.size;
5550 }
5551
5552 static size_t
5553 put_userspace_action(const struct ofproto_dpif *ofproto,
5554 struct ofpbuf *odp_actions,
5555 const struct flow *flow,
5556 const union user_action_cookie *cookie)
5557 {
5558 uint32_t pid;
5559
5560 pid = dpif_port_get_pid(ofproto->backer->dpif,
5561 ofp_port_to_odp_port(ofproto, flow->in_port));
5562
5563 return odp_put_userspace_action(pid, cookie, sizeof *cookie, odp_actions);
5564 }
5565
5566 static void
5567 compose_sflow_cookie(const struct ofproto_dpif *ofproto,
5568 ovs_be16 vlan_tci, uint32_t odp_port,
5569 unsigned int n_outputs, union user_action_cookie *cookie)
5570 {
5571 int ifindex;
5572
5573 cookie->type = USER_ACTION_COOKIE_SFLOW;
5574 cookie->sflow.vlan_tci = vlan_tci;
5575
5576 /* See http://www.sflow.org/sflow_version_5.txt (search for "Input/output
5577 * port information") for the interpretation of cookie->output. */
5578 switch (n_outputs) {
5579 case 0:
5580 /* 0x40000000 | 256 means "packet dropped for unknown reason". */
5581 cookie->sflow.output = 0x40000000 | 256;
5582 break;
5583
5584 case 1:
5585 ifindex = dpif_sflow_odp_port_to_ifindex(ofproto->sflow, odp_port);
5586 if (ifindex) {
5587 cookie->sflow.output = ifindex;
5588 break;
5589 }
5590 /* Fall through. */
5591 default:
5592 /* 0x80000000 means "multiple output ports. */
5593 cookie->sflow.output = 0x80000000 | n_outputs;
5594 break;
5595 }
5596 }
5597
5598 /* Compose SAMPLE action for sFlow. */
5599 static size_t
5600 compose_sflow_action(const struct ofproto_dpif *ofproto,
5601 struct ofpbuf *odp_actions,
5602 const struct flow *flow,
5603 uint32_t odp_port)
5604 {
5605 uint32_t probability;
5606 union user_action_cookie cookie;
5607 size_t sample_offset, actions_offset;
5608 int cookie_offset;
5609
5610 if (!ofproto->sflow || flow->in_port == OFPP_NONE) {
5611 return 0;
5612 }
5613
5614 sample_offset = nl_msg_start_nested(odp_actions, OVS_ACTION_ATTR_SAMPLE);
5615
5616 /* Number of packets out of UINT_MAX to sample. */
5617 probability = dpif_sflow_get_probability(ofproto->sflow);
5618 nl_msg_put_u32(odp_actions, OVS_SAMPLE_ATTR_PROBABILITY, probability);
5619
5620 actions_offset = nl_msg_start_nested(odp_actions, OVS_SAMPLE_ATTR_ACTIONS);
5621 compose_sflow_cookie(ofproto, htons(0), odp_port,
5622 odp_port == OVSP_NONE ? 0 : 1, &cookie);
5623 cookie_offset = put_userspace_action(ofproto, odp_actions, flow, &cookie);
5624
5625 nl_msg_end_nested(odp_actions, actions_offset);
5626 nl_msg_end_nested(odp_actions, sample_offset);
5627 return cookie_offset;
5628 }
5629
5630 /* SAMPLE action must be first action in any given list of actions.
5631 * At this point we do not have all information required to build it. So try to
5632 * build sample action as complete as possible. */
5633 static void
5634 add_sflow_action(struct action_xlate_ctx *ctx)
5635 {
5636 ctx->user_cookie_offset = compose_sflow_action(ctx->ofproto,
5637 ctx->odp_actions,
5638 &ctx->flow, OVSP_NONE);
5639 ctx->sflow_odp_port = 0;
5640 ctx->sflow_n_outputs = 0;
5641 }
5642
5643 /* Fix SAMPLE action according to data collected while composing ODP actions.
5644 * We need to fix SAMPLE actions OVS_SAMPLE_ATTR_ACTIONS attribute, i.e. nested
5645 * USERSPACE action's user-cookie which is required for sflow. */
5646 static void
5647 fix_sflow_action(struct action_xlate_ctx *ctx)
5648 {
5649 const struct flow *base = &ctx->base_flow;
5650 union user_action_cookie *cookie;
5651
5652 if (!ctx->user_cookie_offset) {
5653 return;
5654 }
5655
5656 cookie = ofpbuf_at(ctx->odp_actions, ctx->user_cookie_offset,
5657 sizeof(*cookie));
5658 ovs_assert(cookie->type == USER_ACTION_COOKIE_SFLOW);
5659
5660 compose_sflow_cookie(ctx->ofproto, base->vlan_tci,
5661 ctx->sflow_odp_port, ctx->sflow_n_outputs, cookie);
5662 }
5663
5664 static void
5665 compose_output_action__(struct action_xlate_ctx *ctx, uint16_t ofp_port,
5666 bool check_stp)
5667 {
5668 const struct ofport_dpif *ofport = get_ofp_port(ctx->ofproto, ofp_port);
5669 ovs_be16 flow_vlan_tci = ctx->flow.vlan_tci;
5670 ovs_be64 flow_tun_id = ctx->flow.tunnel.tun_id;
5671 uint8_t flow_nw_tos = ctx->flow.nw_tos;
5672 struct priority_to_dscp *pdscp;
5673 uint32_t out_port, odp_port;
5674
5675 /* If 'struct flow' gets additional metadata, we'll need to zero it out
5676 * before traversing a patch port. */
5677 BUILD_ASSERT_DECL(FLOW_WC_SEQ == 19);
5678
5679 if (!ofport) {
5680 xlate_report(ctx, "Nonexistent output port");
5681 return;
5682 } else if (ofport->up.pp.config & OFPUTIL_PC_NO_FWD) {
5683 xlate_report(ctx, "OFPPC_NO_FWD set, skipping output");
5684 return;
5685 } else if (check_stp && !stp_forward_in_state(ofport->stp_state)) {
5686 xlate_report(ctx, "STP not in forwarding state, skipping output");
5687 return;
5688 }
5689
5690 if (netdev_vport_is_patch(ofport->up.netdev)) {
5691 struct ofport_dpif *peer = ofport_get_peer(ofport);
5692 struct flow old_flow = ctx->flow;
5693 const struct ofproto_dpif *peer_ofproto;
5694 enum slow_path_reason special;
5695 struct ofport_dpif *in_port;
5696
5697 if (!peer) {
5698 xlate_report(ctx, "Nonexistent patch port peer");
5699 return;
5700 }
5701
5702 peer_ofproto = ofproto_dpif_cast(peer->up.ofproto);
5703 if (peer_ofproto->backer != ctx->ofproto->backer) {
5704 xlate_report(ctx, "Patch port peer on a different datapath");
5705 return;
5706 }
5707
5708 ctx->ofproto = ofproto_dpif_cast(peer->up.ofproto);
5709 ctx->flow.in_port = peer->up.ofp_port;
5710 ctx->flow.metadata = htonll(0);
5711 memset(&ctx->flow.tunnel, 0, sizeof ctx->flow.tunnel);
5712 memset(ctx->flow.regs, 0, sizeof ctx->flow.regs);
5713
5714 in_port = get_ofp_port(ctx->ofproto, ctx->flow.in_port);
5715 special = process_special(ctx->ofproto, &ctx->flow, in_port,
5716 ctx->packet);
5717 if (special) {
5718 ctx->slow |= special;
5719 } else if (!in_port || may_receive(in_port, ctx)) {
5720 if (!in_port || stp_forward_in_state(in_port->stp_state)) {
5721 xlate_table_action(ctx, ctx->flow.in_port, 0, true);
5722 } else {
5723 /* Forwarding is disabled by STP. Let OFPP_NORMAL and the
5724 * learning action look at the packet, then drop it. */
5725 struct flow old_base_flow = ctx->base_flow;
5726 size_t old_size = ctx->odp_actions->size;
5727 xlate_table_action(ctx, ctx->flow.in_port, 0, true);
5728 ctx->base_flow = old_base_flow;
5729 ctx->odp_actions->size = old_size;
5730 }
5731 }
5732
5733 ctx->flow = old_flow;
5734 ctx->ofproto = ofproto_dpif_cast(ofport->up.ofproto);
5735
5736 if (ctx->resubmit_stats) {
5737 netdev_vport_inc_tx(ofport->up.netdev, ctx->resubmit_stats);
5738 netdev_vport_inc_rx(peer->up.netdev, ctx->resubmit_stats);
5739 }
5740
5741 return;
5742 }
5743
5744 pdscp = get_priority(ofport, ctx->flow.skb_priority);
5745 if (pdscp) {
5746 ctx->flow.nw_tos &= ~IP_DSCP_MASK;
5747 ctx->flow.nw_tos |= pdscp->dscp;
5748 }
5749
5750 odp_port = ofp_port_to_odp_port(ctx->ofproto, ofp_port);
5751 if (ofport->tnl_port) {
5752 odp_port = tnl_port_send(ofport->tnl_port, &ctx->flow);
5753 if (odp_port == OVSP_NONE) {
5754 xlate_report(ctx, "Tunneling decided against output");
5755 return;
5756 }
5757
5758 if (ctx->resubmit_stats) {
5759 netdev_vport_inc_tx(ofport->up.netdev, ctx->resubmit_stats);
5760 }
5761 out_port = odp_port;
5762 commit_odp_tunnel_action(&ctx->flow, &ctx->base_flow,
5763 ctx->odp_actions);
5764 } else {
5765 out_port = vsp_realdev_to_vlandev(ctx->ofproto, odp_port,
5766 ctx->flow.vlan_tci);
5767 if (out_port != odp_port) {
5768 ctx->flow.vlan_tci = htons(0);
5769 }
5770 }
5771 commit_odp_actions(&ctx->flow, &ctx->base_flow, ctx->odp_actions);
5772 nl_msg_put_u32(ctx->odp_actions, OVS_ACTION_ATTR_OUTPUT, out_port);
5773
5774 ctx->sflow_odp_port = odp_port;
5775 ctx->sflow_n_outputs++;
5776 ctx->nf_output_iface = ofp_port;
5777 ctx->flow.tunnel.tun_id = flow_tun_id;
5778 ctx->flow.vlan_tci = flow_vlan_tci;
5779 ctx->flow.nw_tos = flow_nw_tos;
5780 }
5781
5782 static void
5783 compose_output_action(struct action_xlate_ctx *ctx, uint16_t ofp_port)
5784 {
5785 compose_output_action__(ctx, ofp_port, true);
5786 }
5787
5788 static void
5789 xlate_table_action(struct action_xlate_ctx *ctx,
5790 uint16_t in_port, uint8_t table_id, bool may_packet_in)
5791 {
5792 if (ctx->recurse < MAX_RESUBMIT_RECURSION) {
5793 struct ofproto_dpif *ofproto = ctx->ofproto;
5794 struct rule_dpif *rule;
5795 uint16_t old_in_port;
5796 uint8_t old_table_id;
5797
5798 old_table_id = ctx->table_id;
5799 ctx->table_id = table_id;
5800
5801 /* Look up a flow with 'in_port' as the input port. */
5802 old_in_port = ctx->flow.in_port;
5803 ctx->flow.in_port = in_port;
5804 rule = rule_dpif_lookup__(ofproto, &ctx->flow, table_id);
5805
5806 /* Tag the flow. */
5807 if (table_id > 0 && table_id < N_TABLES) {
5808 struct table_dpif *table = &ofproto->tables[table_id];
5809 if (table->other_table) {
5810 ctx->tags |= (rule && rule->tag
5811 ? rule->tag
5812 : rule_calculate_tag(&ctx->flow,
5813 &table->other_table->mask,
5814 table->basis));
5815 }
5816 }
5817
5818 /* Restore the original input port. Otherwise OFPP_NORMAL and
5819 * OFPP_IN_PORT will have surprising behavior. */
5820 ctx->flow.in_port = old_in_port;
5821
5822 if (ctx->resubmit_hook) {
5823 ctx->resubmit_hook(ctx, rule);
5824 }
5825
5826 if (rule == NULL && may_packet_in) {
5827 /* XXX
5828 * check if table configuration flags
5829 * OFPTC_TABLE_MISS_CONTROLLER, default.
5830 * OFPTC_TABLE_MISS_CONTINUE,
5831 * OFPTC_TABLE_MISS_DROP
5832 * When OF1.0, OFPTC_TABLE_MISS_CONTINUE is used. What to do?
5833 */
5834 rule = rule_dpif_miss_rule(ofproto, &ctx->flow);
5835 }
5836
5837 if (rule) {
5838 struct rule_dpif *old_rule = ctx->rule;
5839
5840 if (ctx->resubmit_stats) {
5841 rule_credit_stats(rule, ctx->resubmit_stats);
5842 }
5843
5844 ctx->recurse++;
5845 ctx->rule = rule;
5846 do_xlate_actions(rule->up.ofpacts, rule->up.ofpacts_len, ctx);
5847 ctx->rule = old_rule;
5848 ctx->recurse--;
5849 }
5850
5851 ctx->table_id = old_table_id;
5852 } else {
5853 static struct vlog_rate_limit recurse_rl = VLOG_RATE_LIMIT_INIT(1, 1);
5854
5855 VLOG_ERR_RL(&recurse_rl, "resubmit actions recursed over %d times",
5856 MAX_RESUBMIT_RECURSION);
5857 ctx->max_resubmit_trigger = true;
5858 }
5859 }
5860
5861 static void
5862 xlate_ofpact_resubmit(struct action_xlate_ctx *ctx,
5863 const struct ofpact_resubmit *resubmit)
5864 {
5865 uint16_t in_port;
5866 uint8_t table_id;
5867
5868 in_port = resubmit->in_port;
5869 if (in_port == OFPP_IN_PORT) {
5870 in_port = ctx->flow.in_port;
5871 }
5872
5873 table_id = resubmit->table_id;
5874 if (table_id == 255) {
5875 table_id = ctx->table_id;
5876 }
5877
5878 xlate_table_action(ctx, in_port, table_id, false);
5879 }
5880
5881 static void
5882 flood_packets(struct action_xlate_ctx *ctx, bool all)
5883 {
5884 struct ofport_dpif *ofport;
5885
5886 HMAP_FOR_EACH (ofport, up.hmap_node, &ctx->ofproto->up.ports) {
5887 uint16_t ofp_port = ofport->up.ofp_port;
5888
5889 if (ofp_port == ctx->flow.in_port) {
5890 continue;
5891 }
5892
5893 if (all) {
5894 compose_output_action__(ctx, ofp_port, false);
5895 } else if (!(ofport->up.pp.config & OFPUTIL_PC_NO_FLOOD)) {
5896 compose_output_action(ctx, ofp_port);
5897 }
5898 }
5899
5900 ctx->nf_output_iface = NF_OUT_FLOOD;
5901 }
5902
5903 static void
5904 execute_controller_action(struct action_xlate_ctx *ctx, int len,
5905 enum ofp_packet_in_reason reason,
5906 uint16_t controller_id)
5907 {
5908 struct ofputil_packet_in pin;
5909 struct ofpbuf *packet;
5910
5911 ctx->slow |= SLOW_CONTROLLER;
5912 if (!ctx->packet) {
5913 return;
5914 }
5915
5916 packet = ofpbuf_clone(ctx->packet);
5917
5918 if (packet->l2 && packet->l3) {
5919 struct eth_header *eh;
5920 uint16_t mpls_depth;
5921
5922 eth_pop_vlan(packet);
5923 eh = packet->l2;
5924
5925 memcpy(eh->eth_src, ctx->flow.dl_src, sizeof eh->eth_src);
5926 memcpy(eh->eth_dst, ctx->flow.dl_dst, sizeof eh->eth_dst);
5927
5928 if (ctx->flow.vlan_tci & htons(VLAN_CFI)) {
5929 eth_push_vlan(packet, ctx->flow.vlan_tci);
5930 }
5931
5932 mpls_depth = eth_mpls_depth(packet);
5933
5934 if (mpls_depth < ctx->flow.mpls_depth) {
5935 push_mpls(packet, ctx->flow.dl_type, ctx->flow.mpls_lse);
5936 } else if (mpls_depth > ctx->flow.mpls_depth) {
5937 pop_mpls(packet, ctx->flow.dl_type);
5938 } else if (mpls_depth) {
5939 set_mpls_lse(packet, ctx->flow.mpls_lse);
5940 }
5941
5942 if (packet->l4) {
5943 if (ctx->flow.dl_type == htons(ETH_TYPE_IP)) {
5944 packet_set_ipv4(packet, ctx->flow.nw_src, ctx->flow.nw_dst,
5945 ctx->flow.nw_tos, ctx->flow.nw_ttl);
5946 }
5947
5948 if (packet->l7) {
5949 if (ctx->flow.nw_proto == IPPROTO_TCP) {
5950 packet_set_tcp_port(packet, ctx->flow.tp_src,
5951 ctx->flow.tp_dst);
5952 } else if (ctx->flow.nw_proto == IPPROTO_UDP) {
5953 packet_set_udp_port(packet, ctx->flow.tp_src,
5954 ctx->flow.tp_dst);
5955 }
5956 }
5957 }
5958 }
5959
5960 pin.packet = packet->data;
5961 pin.packet_len = packet->size;
5962 pin.reason = reason;
5963 pin.controller_id = controller_id;
5964 pin.table_id = ctx->table_id;
5965 pin.cookie = ctx->rule ? ctx->rule->up.flow_cookie : 0;
5966
5967 pin.send_len = len;
5968 flow_get_metadata(&ctx->flow, &pin.fmd);
5969
5970 connmgr_send_packet_in(ctx->ofproto->up.connmgr, &pin);
5971 ofpbuf_delete(packet);
5972 }
5973
5974 static void
5975 execute_mpls_push_action(struct action_xlate_ctx *ctx, ovs_be16 eth_type)
5976 {
5977 ovs_assert(eth_type_mpls(eth_type));
5978
5979 if (ctx->base_flow.mpls_depth) {
5980 ctx->flow.mpls_lse &= ~htonl(MPLS_BOS_MASK);
5981 ctx->flow.mpls_depth++;
5982 } else {
5983 ovs_be32 label;
5984 uint8_t tc, ttl;
5985
5986 if (ctx->flow.dl_type == htons(ETH_TYPE_IPV6)) {
5987 label = htonl(0x2); /* IPV6 Explicit Null. */
5988 } else {
5989 label = htonl(0x0); /* IPV4 Explicit Null. */
5990 }
5991 tc = (ctx->flow.nw_tos & IP_DSCP_MASK) >> 2;
5992 ttl = ctx->flow.nw_ttl ? ctx->flow.nw_ttl : 0x40;
5993 ctx->flow.mpls_lse = set_mpls_lse_values(ttl, tc, 1, label);
5994 ctx->flow.encap_dl_type = ctx->flow.dl_type;
5995 ctx->flow.mpls_depth = 1;
5996 }
5997 ctx->flow.dl_type = eth_type;
5998 }
5999
6000 static void
6001 execute_mpls_pop_action(struct action_xlate_ctx *ctx, ovs_be16 eth_type)
6002 {
6003 ovs_assert(eth_type_mpls(ctx->flow.dl_type));
6004 ovs_assert(!eth_type_mpls(eth_type));
6005
6006 if (ctx->flow.mpls_depth) {
6007 ctx->flow.mpls_depth--;
6008 ctx->flow.mpls_lse = htonl(0);
6009 if (!ctx->flow.mpls_depth) {
6010 ctx->flow.dl_type = eth_type;
6011 ctx->flow.encap_dl_type = htons(0);
6012 }
6013 }
6014 }
6015
6016 static bool
6017 compose_dec_ttl(struct action_xlate_ctx *ctx, struct ofpact_cnt_ids *ids)
6018 {
6019 if (ctx->flow.dl_type != htons(ETH_TYPE_IP) &&
6020 ctx->flow.dl_type != htons(ETH_TYPE_IPV6)) {
6021 return false;
6022 }
6023
6024 if (ctx->flow.nw_ttl > 1) {
6025 ctx->flow.nw_ttl--;
6026 return false;
6027 } else {
6028 size_t i;
6029
6030 for (i = 0; i < ids->n_controllers; i++) {
6031 execute_controller_action(ctx, UINT16_MAX, OFPR_INVALID_TTL,
6032 ids->cnt_ids[i]);
6033 }
6034
6035 /* Stop processing for current table. */
6036 return true;
6037 }
6038 }
6039
6040 static bool
6041 execute_set_mpls_ttl_action(struct action_xlate_ctx *ctx, uint8_t ttl)
6042 {
6043 if (!eth_type_mpls(ctx->flow.dl_type)) {
6044 return true;
6045 }
6046
6047 set_mpls_lse_ttl(&ctx->flow.mpls_lse, ttl);
6048 return false;
6049 }
6050
6051 static bool
6052 execute_dec_mpls_ttl_action(struct action_xlate_ctx *ctx)
6053 {
6054 uint8_t ttl = mpls_lse_to_ttl(ctx->flow.mpls_lse);
6055
6056 if (!eth_type_mpls(ctx->flow.dl_type)) {
6057 return false;
6058 }
6059
6060 if (ttl > 0) {
6061 ttl--;
6062 set_mpls_lse_ttl(&ctx->flow.mpls_lse, ttl);
6063 return false;
6064 } else {
6065 execute_controller_action(ctx, UINT16_MAX, OFPR_INVALID_TTL, 0);
6066
6067 /* Stop processing for current table. */
6068 return true;
6069 }
6070 }
6071
6072 static void
6073 xlate_output_action(struct action_xlate_ctx *ctx,
6074 uint16_t port, uint16_t max_len, bool may_packet_in)
6075 {
6076 uint16_t prev_nf_output_iface = ctx->nf_output_iface;
6077
6078 ctx->nf_output_iface = NF_OUT_DROP;
6079
6080 switch (port) {
6081 case OFPP_IN_PORT:
6082 compose_output_action(ctx, ctx->flow.in_port);
6083 break;
6084 case OFPP_TABLE:
6085 xlate_table_action(ctx, ctx->flow.in_port, 0, may_packet_in);
6086 break;
6087 case OFPP_NORMAL:
6088 xlate_normal(ctx);
6089 break;
6090 case OFPP_FLOOD:
6091 flood_packets(ctx, false);
6092 break;
6093 case OFPP_ALL:
6094 flood_packets(ctx, true);
6095 break;
6096 case OFPP_CONTROLLER:
6097 execute_controller_action(ctx, max_len, OFPR_ACTION, 0);
6098 break;
6099 case OFPP_NONE:
6100 break;
6101 case OFPP_LOCAL:
6102 default:
6103 if (port != ctx->flow.in_port) {
6104 compose_output_action(ctx, port);
6105 } else {
6106 xlate_report(ctx, "skipping output to input port");
6107 }
6108 break;
6109 }
6110
6111 if (prev_nf_output_iface == NF_OUT_FLOOD) {
6112 ctx->nf_output_iface = NF_OUT_FLOOD;
6113 } else if (ctx->nf_output_iface == NF_OUT_DROP) {
6114 ctx->nf_output_iface = prev_nf_output_iface;
6115 } else if (prev_nf_output_iface != NF_OUT_DROP &&
6116 ctx->nf_output_iface != NF_OUT_FLOOD) {
6117 ctx->nf_output_iface = NF_OUT_MULTI;
6118 }
6119 }
6120
6121 static void
6122 xlate_output_reg_action(struct action_xlate_ctx *ctx,
6123 const struct ofpact_output_reg *or)
6124 {
6125 uint64_t port = mf_get_subfield(&or->src, &ctx->flow);
6126 if (port <= UINT16_MAX) {
6127 xlate_output_action(ctx, port, or->max_len, false);
6128 }
6129 }
6130
6131 static void
6132 xlate_enqueue_action(struct action_xlate_ctx *ctx,
6133 const struct ofpact_enqueue *enqueue)
6134 {
6135 uint16_t ofp_port = enqueue->port;
6136 uint32_t queue_id = enqueue->queue;
6137 uint32_t flow_priority, priority;
6138 int error;
6139
6140 /* Translate queue to priority. */
6141 error = dpif_queue_to_priority(ctx->ofproto->backer->dpif,
6142 queue_id, &priority);
6143 if (error) {
6144 /* Fall back to ordinary output action. */
6145 xlate_output_action(ctx, enqueue->port, 0, false);
6146 return;
6147 }
6148
6149 /* Check output port. */
6150 if (ofp_port == OFPP_IN_PORT) {
6151 ofp_port = ctx->flow.in_port;
6152 } else if (ofp_port == ctx->flow.in_port) {
6153 return;
6154 }
6155
6156 /* Add datapath actions. */
6157 flow_priority = ctx->flow.skb_priority;
6158 ctx->flow.skb_priority = priority;
6159 compose_output_action(ctx, ofp_port);
6160 ctx->flow.skb_priority = flow_priority;
6161
6162 /* Update NetFlow output port. */
6163 if (ctx->nf_output_iface == NF_OUT_DROP) {
6164 ctx->nf_output_iface = ofp_port;
6165 } else if (ctx->nf_output_iface != NF_OUT_FLOOD) {
6166 ctx->nf_output_iface = NF_OUT_MULTI;
6167 }
6168 }
6169
6170 static void
6171 xlate_set_queue_action(struct action_xlate_ctx *ctx, uint32_t queue_id)
6172 {
6173 uint32_t skb_priority;
6174
6175 if (!dpif_queue_to_priority(ctx->ofproto->backer->dpif,
6176 queue_id, &skb_priority)) {
6177 ctx->flow.skb_priority = skb_priority;
6178 } else {
6179 /* Couldn't translate queue to a priority. Nothing to do. A warning
6180 * has already been logged. */
6181 }
6182 }
6183
6184 struct xlate_reg_state {
6185 ovs_be16 vlan_tci;
6186 ovs_be64 tun_id;
6187 };
6188
6189 static bool
6190 slave_enabled_cb(uint16_t ofp_port, void *ofproto_)
6191 {
6192 struct ofproto_dpif *ofproto = ofproto_;
6193 struct ofport_dpif *port;
6194
6195 switch (ofp_port) {
6196 case OFPP_IN_PORT:
6197 case OFPP_TABLE:
6198 case OFPP_NORMAL:
6199 case OFPP_FLOOD:
6200 case OFPP_ALL:
6201 case OFPP_NONE:
6202 return true;
6203 case OFPP_CONTROLLER: /* Not supported by the bundle action. */
6204 return false;
6205 default:
6206 port = get_ofp_port(ofproto, ofp_port);
6207 return port ? port->may_enable : false;
6208 }
6209 }
6210
6211 static void
6212 xlate_bundle_action(struct action_xlate_ctx *ctx,
6213 const struct ofpact_bundle *bundle)
6214 {
6215 uint16_t port;
6216
6217 port = bundle_execute(bundle, &ctx->flow, slave_enabled_cb, ctx->ofproto);
6218 if (bundle->dst.field) {
6219 nxm_reg_load(&bundle->dst, port, &ctx->flow);
6220 } else {
6221 xlate_output_action(ctx, port, 0, false);
6222 }
6223 }
6224
6225 static void
6226 xlate_learn_action(struct action_xlate_ctx *ctx,
6227 const struct ofpact_learn *learn)
6228 {
6229 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(5, 1);
6230 struct ofputil_flow_mod fm;
6231 uint64_t ofpacts_stub[1024 / 8];
6232 struct ofpbuf ofpacts;
6233 int error;
6234
6235 ofpbuf_use_stack(&ofpacts, ofpacts_stub, sizeof ofpacts_stub);
6236 learn_execute(learn, &ctx->flow, &fm, &ofpacts);
6237
6238 error = ofproto_flow_mod(&ctx->ofproto->up, &fm);
6239 if (error && !VLOG_DROP_WARN(&rl)) {
6240 VLOG_WARN("learning action failed to modify flow table (%s)",
6241 ofperr_get_name(error));
6242 }
6243
6244 ofpbuf_uninit(&ofpacts);
6245 }
6246
6247 /* Reduces '*timeout' to no more than 'max'. A value of zero in either case
6248 * means "infinite". */
6249 static void
6250 reduce_timeout(uint16_t max, uint16_t *timeout)
6251 {
6252 if (max && (!*timeout || *timeout > max)) {
6253 *timeout = max;
6254 }
6255 }
6256
6257 static void
6258 xlate_fin_timeout(struct action_xlate_ctx *ctx,
6259 const struct ofpact_fin_timeout *oft)
6260 {
6261 if (ctx->tcp_flags & (TCP_FIN | TCP_RST) && ctx->rule) {
6262 struct rule_dpif *rule = ctx->rule;
6263
6264 reduce_timeout(oft->fin_idle_timeout, &rule->up.idle_timeout);
6265 reduce_timeout(oft->fin_hard_timeout, &rule->up.hard_timeout);
6266 }
6267 }
6268
6269 static bool
6270 may_receive(const struct ofport_dpif *port, struct action_xlate_ctx *ctx)
6271 {
6272 if (port->up.pp.config & (eth_addr_equals(ctx->flow.dl_dst, eth_addr_stp)
6273 ? OFPUTIL_PC_NO_RECV_STP
6274 : OFPUTIL_PC_NO_RECV)) {
6275 return false;
6276 }
6277
6278 /* Only drop packets here if both forwarding and learning are
6279 * disabled. If just learning is enabled, we need to have
6280 * OFPP_NORMAL and the learning action have a look at the packet
6281 * before we can drop it. */
6282 if (!stp_forward_in_state(port->stp_state)
6283 && !stp_learn_in_state(port->stp_state)) {
6284 return false;
6285 }
6286
6287 return true;
6288 }
6289
6290 static void
6291 do_xlate_actions(const struct ofpact *ofpacts, size_t ofpacts_len,
6292 struct action_xlate_ctx *ctx)
6293 {
6294 bool was_evictable = true;
6295 const struct ofpact *a;
6296
6297 if (ctx->rule) {
6298 /* Don't let the rule we're working on get evicted underneath us. */
6299 was_evictable = ctx->rule->up.evictable;
6300 ctx->rule->up.evictable = false;
6301 }
6302 OFPACT_FOR_EACH (a, ofpacts, ofpacts_len) {
6303 struct ofpact_controller *controller;
6304 const struct ofpact_metadata *metadata;
6305
6306 if (ctx->exit) {
6307 break;
6308 }
6309
6310 switch (a->type) {
6311 case OFPACT_OUTPUT:
6312 xlate_output_action(ctx, ofpact_get_OUTPUT(a)->port,
6313 ofpact_get_OUTPUT(a)->max_len, true);
6314 break;
6315
6316 case OFPACT_CONTROLLER:
6317 controller = ofpact_get_CONTROLLER(a);
6318 execute_controller_action(ctx, controller->max_len,
6319 controller->reason,
6320 controller->controller_id);
6321 break;
6322
6323 case OFPACT_ENQUEUE:
6324 xlate_enqueue_action(ctx, ofpact_get_ENQUEUE(a));
6325 break;
6326
6327 case OFPACT_SET_VLAN_VID:
6328 ctx->flow.vlan_tci &= ~htons(VLAN_VID_MASK);
6329 ctx->flow.vlan_tci |= (htons(ofpact_get_SET_VLAN_VID(a)->vlan_vid)
6330 | htons(VLAN_CFI));
6331 break;
6332
6333 case OFPACT_SET_VLAN_PCP:
6334 ctx->flow.vlan_tci &= ~htons(VLAN_PCP_MASK);
6335 ctx->flow.vlan_tci |= htons((ofpact_get_SET_VLAN_PCP(a)->vlan_pcp
6336 << VLAN_PCP_SHIFT)
6337 | VLAN_CFI);
6338 break;
6339
6340 case OFPACT_STRIP_VLAN:
6341 ctx->flow.vlan_tci = htons(0);
6342 break;
6343
6344 case OFPACT_PUSH_VLAN:
6345 /* XXX 802.1AD(QinQ) */
6346 ctx->flow.vlan_tci = htons(VLAN_CFI);
6347 break;
6348
6349 case OFPACT_SET_ETH_SRC:
6350 memcpy(ctx->flow.dl_src, ofpact_get_SET_ETH_SRC(a)->mac,
6351 ETH_ADDR_LEN);
6352 break;
6353
6354 case OFPACT_SET_ETH_DST:
6355 memcpy(ctx->flow.dl_dst, ofpact_get_SET_ETH_DST(a)->mac,
6356 ETH_ADDR_LEN);
6357 break;
6358
6359 case OFPACT_SET_IPV4_SRC:
6360 ctx->flow.nw_src = ofpact_get_SET_IPV4_SRC(a)->ipv4;
6361 break;
6362
6363 case OFPACT_SET_IPV4_DST:
6364 ctx->flow.nw_dst = ofpact_get_SET_IPV4_DST(a)->ipv4;
6365 break;
6366
6367 case OFPACT_SET_IPV4_DSCP:
6368 /* OpenFlow 1.0 only supports IPv4. */
6369 if (ctx->flow.dl_type == htons(ETH_TYPE_IP)) {
6370 ctx->flow.nw_tos &= ~IP_DSCP_MASK;
6371 ctx->flow.nw_tos |= ofpact_get_SET_IPV4_DSCP(a)->dscp;
6372 }
6373 break;
6374
6375 case OFPACT_SET_L4_SRC_PORT:
6376 ctx->flow.tp_src = htons(ofpact_get_SET_L4_SRC_PORT(a)->port);
6377 break;
6378
6379 case OFPACT_SET_L4_DST_PORT:
6380 ctx->flow.tp_dst = htons(ofpact_get_SET_L4_DST_PORT(a)->port);
6381 break;
6382
6383 case OFPACT_RESUBMIT:
6384 xlate_ofpact_resubmit(ctx, ofpact_get_RESUBMIT(a));
6385 break;
6386
6387 case OFPACT_SET_TUNNEL:
6388 ctx->flow.tunnel.tun_id = htonll(ofpact_get_SET_TUNNEL(a)->tun_id);
6389 break;
6390
6391 case OFPACT_SET_QUEUE:
6392 xlate_set_queue_action(ctx, ofpact_get_SET_QUEUE(a)->queue_id);
6393 break;
6394
6395 case OFPACT_POP_QUEUE:
6396 ctx->flow.skb_priority = ctx->orig_skb_priority;
6397 break;
6398
6399 case OFPACT_REG_MOVE:
6400 nxm_execute_reg_move(ofpact_get_REG_MOVE(a), &ctx->flow);
6401 break;
6402
6403 case OFPACT_REG_LOAD:
6404 nxm_execute_reg_load(ofpact_get_REG_LOAD(a), &ctx->flow);
6405 break;
6406
6407 case OFPACT_PUSH_MPLS:
6408 execute_mpls_push_action(ctx, ofpact_get_PUSH_MPLS(a)->ethertype);
6409 break;
6410
6411 case OFPACT_POP_MPLS:
6412 execute_mpls_pop_action(ctx, ofpact_get_POP_MPLS(a)->ethertype);
6413 break;
6414
6415 case OFPACT_SET_MPLS_TTL:
6416 if (execute_set_mpls_ttl_action(ctx, ofpact_get_SET_MPLS_TTL(a)->ttl)) {
6417 goto out;
6418 }
6419 break;
6420
6421 case OFPACT_DEC_MPLS_TTL:
6422 if (execute_dec_mpls_ttl_action(ctx)) {
6423 goto out;
6424 }
6425 break;
6426
6427 case OFPACT_DEC_TTL:
6428 if (compose_dec_ttl(ctx, ofpact_get_DEC_TTL(a))) {
6429 goto out;
6430 }
6431 break;
6432
6433 case OFPACT_NOTE:
6434 /* Nothing to do. */
6435 break;
6436
6437 case OFPACT_MULTIPATH:
6438 multipath_execute(ofpact_get_MULTIPATH(a), &ctx->flow);
6439 break;
6440
6441 case OFPACT_BUNDLE:
6442 ctx->ofproto->has_bundle_action = true;
6443 xlate_bundle_action(ctx, ofpact_get_BUNDLE(a));
6444 break;
6445
6446 case OFPACT_OUTPUT_REG:
6447 xlate_output_reg_action(ctx, ofpact_get_OUTPUT_REG(a));
6448 break;
6449
6450 case OFPACT_LEARN:
6451 ctx->has_learn = true;
6452 if (ctx->may_learn) {
6453 xlate_learn_action(ctx, ofpact_get_LEARN(a));
6454 }
6455 break;
6456
6457 case OFPACT_EXIT:
6458 ctx->exit = true;
6459 break;
6460
6461 case OFPACT_FIN_TIMEOUT:
6462 ctx->has_fin_timeout = true;
6463 xlate_fin_timeout(ctx, ofpact_get_FIN_TIMEOUT(a));
6464 break;
6465
6466 case OFPACT_CLEAR_ACTIONS:
6467 /* XXX
6468 * Nothing to do because writa-actions is not supported for now.
6469 * When writa-actions is supported, clear-actions also must
6470 * be supported at the same time.
6471 */
6472 break;
6473
6474 case OFPACT_WRITE_METADATA:
6475 metadata = ofpact_get_WRITE_METADATA(a);
6476 ctx->flow.metadata &= ~metadata->mask;
6477 ctx->flow.metadata |= metadata->metadata & metadata->mask;
6478 break;
6479
6480 case OFPACT_GOTO_TABLE: {
6481 /* XXX remove recursion */
6482 /* It is assumed that goto-table is last action */
6483 struct ofpact_goto_table *ogt = ofpact_get_GOTO_TABLE(a);
6484 ovs_assert(ctx->table_id < ogt->table_id);
6485 xlate_table_action(ctx, ctx->flow.in_port, ogt->table_id, true);
6486 break;
6487 }
6488 }
6489 }
6490
6491 out:
6492 if (ctx->rule) {
6493 ctx->rule->up.evictable = was_evictable;
6494 }
6495 }
6496
6497 static void
6498 action_xlate_ctx_init(struct action_xlate_ctx *ctx,
6499 struct ofproto_dpif *ofproto, const struct flow *flow,
6500 ovs_be16 initial_tci, struct rule_dpif *rule,
6501 uint8_t tcp_flags, const struct ofpbuf *packet)
6502 {
6503 ovs_be64 initial_tun_id = flow->tunnel.tun_id;
6504
6505 /* Flow initialization rules:
6506 * - 'base_flow' must match the kernel's view of the packet at the
6507 * time that action processing starts. 'flow' represents any
6508 * transformations we wish to make through actions.
6509 * - By default 'base_flow' and 'flow' are the same since the input
6510 * packet matches the output before any actions are applied.
6511 * - When using VLAN splinters, 'base_flow''s VLAN is set to the value
6512 * of the received packet as seen by the kernel. If we later output
6513 * to another device without any modifications this will cause us to
6514 * insert a new tag since the original one was stripped off by the
6515 * VLAN device.
6516 * - Tunnel 'flow' is largely cleared when transitioning between
6517 * the input and output stages since it does not make sense to output
6518 * a packet with the exact headers that it was received with (i.e.
6519 * the destination IP is us). The one exception is the tun_id, which
6520 * is preserved to allow use in later resubmit lookups and loads into
6521 * registers.
6522 * - Tunnel 'base_flow' is completely cleared since that is what the
6523 * kernel does. If we wish to maintain the original values an action
6524 * needs to be generated. */
6525
6526 ctx->ofproto = ofproto;
6527 ctx->flow = *flow;
6528 memset(&ctx->flow.tunnel, 0, sizeof ctx->flow.tunnel);
6529 ctx->base_flow = ctx->flow;
6530 ctx->base_flow.vlan_tci = initial_tci;
6531 ctx->flow.tunnel.tun_id = initial_tun_id;
6532 ctx->rule = rule;
6533 ctx->packet = packet;
6534 ctx->may_learn = packet != NULL;
6535 ctx->tcp_flags = tcp_flags;
6536 ctx->resubmit_hook = NULL;
6537 ctx->report_hook = NULL;
6538 ctx->resubmit_stats = NULL;
6539 }
6540
6541 /* Translates the 'ofpacts_len' bytes of "struct ofpacts" starting at 'ofpacts'
6542 * into datapath actions in 'odp_actions', using 'ctx'. */
6543 static void
6544 xlate_actions(struct action_xlate_ctx *ctx,
6545 const struct ofpact *ofpacts, size_t ofpacts_len,
6546 struct ofpbuf *odp_actions)
6547 {
6548 /* Normally false. Set to true if we ever hit MAX_RESUBMIT_RECURSION, so
6549 * that in the future we always keep a copy of the original flow for
6550 * tracing purposes. */
6551 static bool hit_resubmit_limit;
6552
6553 enum slow_path_reason special;
6554 struct ofport_dpif *in_port;
6555 struct flow orig_flow;
6556
6557 COVERAGE_INC(ofproto_dpif_xlate);
6558
6559 ofpbuf_clear(odp_actions);
6560 ofpbuf_reserve(odp_actions, NL_A_U32_SIZE);
6561
6562 ctx->odp_actions = odp_actions;
6563 ctx->tags = 0;
6564 ctx->slow = 0;
6565 ctx->has_learn = false;
6566 ctx->has_normal = false;
6567 ctx->has_fin_timeout = false;
6568 ctx->nf_output_iface = NF_OUT_DROP;
6569 ctx->mirrors = 0;
6570 ctx->recurse = 0;
6571 ctx->max_resubmit_trigger = false;
6572 ctx->orig_skb_priority = ctx->flow.skb_priority;
6573 ctx->table_id = 0;
6574 ctx->exit = false;
6575
6576 if (ctx->ofproto->has_mirrors || hit_resubmit_limit) {
6577 /* Do this conditionally because the copy is expensive enough that it
6578 * shows up in profiles. */
6579 orig_flow = ctx->flow;
6580 }
6581
6582 if (ctx->flow.nw_frag & FLOW_NW_FRAG_ANY) {
6583 switch (ctx->ofproto->up.frag_handling) {
6584 case OFPC_FRAG_NORMAL:
6585 /* We must pretend that transport ports are unavailable. */
6586 ctx->flow.tp_src = ctx->base_flow.tp_src = htons(0);
6587 ctx->flow.tp_dst = ctx->base_flow.tp_dst = htons(0);
6588 break;
6589
6590 case OFPC_FRAG_DROP:
6591 return;
6592
6593 case OFPC_FRAG_REASM:
6594 NOT_REACHED();
6595
6596 case OFPC_FRAG_NX_MATCH:
6597 /* Nothing to do. */
6598 break;
6599
6600 case OFPC_INVALID_TTL_TO_CONTROLLER:
6601 NOT_REACHED();
6602 }
6603 }
6604
6605 in_port = get_ofp_port(ctx->ofproto, ctx->flow.in_port);
6606 special = process_special(ctx->ofproto, &ctx->flow, in_port, ctx->packet);
6607 if (special) {
6608 ctx->slow |= special;
6609 } else {
6610 static struct vlog_rate_limit trace_rl = VLOG_RATE_LIMIT_INIT(1, 1);
6611 ovs_be16 initial_tci = ctx->base_flow.vlan_tci;
6612 uint32_t local_odp_port;
6613
6614 add_sflow_action(ctx);
6615
6616 if (!in_port || may_receive(in_port, ctx)) {
6617 do_xlate_actions(ofpacts, ofpacts_len, ctx);
6618
6619 /* We've let OFPP_NORMAL and the learning action look at the
6620 * packet, so drop it now if forwarding is disabled. */
6621 if (in_port && !stp_forward_in_state(in_port->stp_state)) {
6622 ofpbuf_clear(ctx->odp_actions);
6623 add_sflow_action(ctx);
6624 }
6625 }
6626
6627 if (ctx->max_resubmit_trigger && !ctx->resubmit_hook) {
6628 if (!hit_resubmit_limit) {
6629 /* We didn't record the original flow. Make sure we do from
6630 * now on. */
6631 hit_resubmit_limit = true;
6632 } else if (!VLOG_DROP_ERR(&trace_rl)) {
6633 struct ds ds = DS_EMPTY_INITIALIZER;
6634
6635 ofproto_trace(ctx->ofproto, &orig_flow, ctx->packet,
6636 initial_tci, &ds);
6637 VLOG_ERR("Trace triggered by excessive resubmit "
6638 "recursion:\n%s", ds_cstr(&ds));
6639 ds_destroy(&ds);
6640 }
6641 }
6642
6643 local_odp_port = ofp_port_to_odp_port(ctx->ofproto, OFPP_LOCAL);
6644 if (!connmgr_may_set_up_flow(ctx->ofproto->up.connmgr, &ctx->flow,
6645 local_odp_port,
6646 ctx->odp_actions->data,
6647 ctx->odp_actions->size)) {
6648 ctx->slow |= SLOW_IN_BAND;
6649 if (ctx->packet
6650 && connmgr_msg_in_hook(ctx->ofproto->up.connmgr, &ctx->flow,
6651 ctx->packet)) {
6652 compose_output_action(ctx, OFPP_LOCAL);
6653 }
6654 }
6655 if (ctx->ofproto->has_mirrors) {
6656 add_mirror_actions(ctx, &orig_flow);
6657 }
6658 fix_sflow_action(ctx);
6659 }
6660 }
6661
6662 /* Translates the 'ofpacts_len' bytes of "struct ofpact"s starting at 'ofpacts'
6663 * into datapath actions, using 'ctx', and discards the datapath actions. */
6664 static void
6665 xlate_actions_for_side_effects(struct action_xlate_ctx *ctx,
6666 const struct ofpact *ofpacts,
6667 size_t ofpacts_len)
6668 {
6669 uint64_t odp_actions_stub[1024 / 8];
6670 struct ofpbuf odp_actions;
6671
6672 ofpbuf_use_stub(&odp_actions, odp_actions_stub, sizeof odp_actions_stub);
6673 xlate_actions(ctx, ofpacts, ofpacts_len, &odp_actions);
6674 ofpbuf_uninit(&odp_actions);
6675 }
6676
6677 static void
6678 xlate_report(struct action_xlate_ctx *ctx, const char *s)
6679 {
6680 if (ctx->report_hook) {
6681 ctx->report_hook(ctx, s);
6682 }
6683 }
6684 \f
6685 /* OFPP_NORMAL implementation. */
6686
6687 static struct ofport_dpif *ofbundle_get_a_port(const struct ofbundle *);
6688
6689 /* Given 'vid', the VID obtained from the 802.1Q header that was received as
6690 * part of a packet (specify 0 if there was no 802.1Q header), and 'in_bundle',
6691 * the bundle on which the packet was received, returns the VLAN to which the
6692 * packet belongs.
6693 *
6694 * Both 'vid' and the return value are in the range 0...4095. */
6695 static uint16_t
6696 input_vid_to_vlan(const struct ofbundle *in_bundle, uint16_t vid)
6697 {
6698 switch (in_bundle->vlan_mode) {
6699 case PORT_VLAN_ACCESS:
6700 return in_bundle->vlan;
6701 break;
6702
6703 case PORT_VLAN_TRUNK:
6704 return vid;
6705
6706 case PORT_VLAN_NATIVE_UNTAGGED:
6707 case PORT_VLAN_NATIVE_TAGGED:
6708 return vid ? vid : in_bundle->vlan;
6709
6710 default:
6711 NOT_REACHED();
6712 }
6713 }
6714
6715 /* Checks whether a packet with the given 'vid' may ingress on 'in_bundle'.
6716 * If so, returns true. Otherwise, returns false and, if 'warn' is true, logs
6717 * a warning.
6718 *
6719 * 'vid' should be the VID obtained from the 802.1Q header that was received as
6720 * part of a packet (specify 0 if there was no 802.1Q header), in the range
6721 * 0...4095. */
6722 static bool
6723 input_vid_is_valid(uint16_t vid, struct ofbundle *in_bundle, bool warn)
6724 {
6725 /* Allow any VID on the OFPP_NONE port. */
6726 if (in_bundle == &ofpp_none_bundle) {
6727 return true;
6728 }
6729
6730 switch (in_bundle->vlan_mode) {
6731 case PORT_VLAN_ACCESS:
6732 if (vid) {
6733 if (warn) {
6734 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
6735 VLOG_WARN_RL(&rl, "bridge %s: dropping VLAN %"PRIu16" tagged "
6736 "packet received on port %s configured as VLAN "
6737 "%"PRIu16" access port",
6738 in_bundle->ofproto->up.name, vid,
6739 in_bundle->name, in_bundle->vlan);
6740 }
6741 return false;
6742 }
6743 return true;
6744
6745 case PORT_VLAN_NATIVE_UNTAGGED:
6746 case PORT_VLAN_NATIVE_TAGGED:
6747 if (!vid) {
6748 /* Port must always carry its native VLAN. */
6749 return true;
6750 }
6751 /* Fall through. */
6752 case PORT_VLAN_TRUNK:
6753 if (!ofbundle_includes_vlan(in_bundle, vid)) {
6754 if (warn) {
6755 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
6756 VLOG_WARN_RL(&rl, "bridge %s: dropping VLAN %"PRIu16" packet "
6757 "received on port %s not configured for trunking "
6758 "VLAN %"PRIu16,
6759 in_bundle->ofproto->up.name, vid,
6760 in_bundle->name, vid);
6761 }
6762 return false;
6763 }
6764 return true;
6765
6766 default:
6767 NOT_REACHED();
6768 }
6769
6770 }
6771
6772 /* Given 'vlan', the VLAN that a packet belongs to, and
6773 * 'out_bundle', a bundle on which the packet is to be output, returns the VID
6774 * that should be included in the 802.1Q header. (If the return value is 0,
6775 * then the 802.1Q header should only be included in the packet if there is a
6776 * nonzero PCP.)
6777 *
6778 * Both 'vlan' and the return value are in the range 0...4095. */
6779 static uint16_t
6780 output_vlan_to_vid(const struct ofbundle *out_bundle, uint16_t vlan)
6781 {
6782 switch (out_bundle->vlan_mode) {
6783 case PORT_VLAN_ACCESS:
6784 return 0;
6785
6786 case PORT_VLAN_TRUNK:
6787 case PORT_VLAN_NATIVE_TAGGED:
6788 return vlan;
6789
6790 case PORT_VLAN_NATIVE_UNTAGGED:
6791 return vlan == out_bundle->vlan ? 0 : vlan;
6792
6793 default:
6794 NOT_REACHED();
6795 }
6796 }
6797
6798 static void
6799 output_normal(struct action_xlate_ctx *ctx, const struct ofbundle *out_bundle,
6800 uint16_t vlan)
6801 {
6802 struct ofport_dpif *port;
6803 uint16_t vid;
6804 ovs_be16 tci, old_tci;
6805
6806 vid = output_vlan_to_vid(out_bundle, vlan);
6807 if (!out_bundle->bond) {
6808 port = ofbundle_get_a_port(out_bundle);
6809 } else {
6810 port = bond_choose_output_slave(out_bundle->bond, &ctx->flow,
6811 vid, &ctx->tags);
6812 if (!port) {
6813 /* No slaves enabled, so drop packet. */
6814 return;
6815 }
6816 }
6817
6818 old_tci = ctx->flow.vlan_tci;
6819 tci = htons(vid);
6820 if (tci || out_bundle->use_priority_tags) {
6821 tci |= ctx->flow.vlan_tci & htons(VLAN_PCP_MASK);
6822 if (tci) {
6823 tci |= htons(VLAN_CFI);
6824 }
6825 }
6826 ctx->flow.vlan_tci = tci;
6827
6828 compose_output_action(ctx, port->up.ofp_port);
6829 ctx->flow.vlan_tci = old_tci;
6830 }
6831
6832 static int
6833 mirror_mask_ffs(mirror_mask_t mask)
6834 {
6835 BUILD_ASSERT_DECL(sizeof(unsigned int) >= sizeof(mask));
6836 return ffs(mask);
6837 }
6838
6839 static bool
6840 ofbundle_trunks_vlan(const struct ofbundle *bundle, uint16_t vlan)
6841 {
6842 return (bundle->vlan_mode != PORT_VLAN_ACCESS
6843 && (!bundle->trunks || bitmap_is_set(bundle->trunks, vlan)));
6844 }
6845
6846 static bool
6847 ofbundle_includes_vlan(const struct ofbundle *bundle, uint16_t vlan)
6848 {
6849 return vlan == bundle->vlan || ofbundle_trunks_vlan(bundle, vlan);
6850 }
6851
6852 /* Returns an arbitrary interface within 'bundle'. */
6853 static struct ofport_dpif *
6854 ofbundle_get_a_port(const struct ofbundle *bundle)
6855 {
6856 return CONTAINER_OF(list_front(&bundle->ports),
6857 struct ofport_dpif, bundle_node);
6858 }
6859
6860 static bool
6861 vlan_is_mirrored(const struct ofmirror *m, int vlan)
6862 {
6863 return !m->vlans || bitmap_is_set(m->vlans, vlan);
6864 }
6865
6866 static void
6867 add_mirror_actions(struct action_xlate_ctx *ctx, const struct flow *orig_flow)
6868 {
6869 struct ofproto_dpif *ofproto = ctx->ofproto;
6870 mirror_mask_t mirrors;
6871 struct ofbundle *in_bundle;
6872 uint16_t vlan;
6873 uint16_t vid;
6874 const struct nlattr *a;
6875 size_t left;
6876
6877 in_bundle = lookup_input_bundle(ctx->ofproto, orig_flow->in_port,
6878 ctx->packet != NULL, NULL);
6879 if (!in_bundle) {
6880 return;
6881 }
6882 mirrors = in_bundle->src_mirrors;
6883
6884 /* Drop frames on bundles reserved for mirroring. */
6885 if (in_bundle->mirror_out) {
6886 if (ctx->packet != NULL) {
6887 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
6888 VLOG_WARN_RL(&rl, "bridge %s: dropping packet received on port "
6889 "%s, which is reserved exclusively for mirroring",
6890 ctx->ofproto->up.name, in_bundle->name);
6891 }
6892 return;
6893 }
6894
6895 /* Check VLAN. */
6896 vid = vlan_tci_to_vid(orig_flow->vlan_tci);
6897 if (!input_vid_is_valid(vid, in_bundle, ctx->packet != NULL)) {
6898 return;
6899 }
6900 vlan = input_vid_to_vlan(in_bundle, vid);
6901
6902 /* Look at the output ports to check for destination selections. */
6903
6904 NL_ATTR_FOR_EACH (a, left, ctx->odp_actions->data,
6905 ctx->odp_actions->size) {
6906 enum ovs_action_attr type = nl_attr_type(a);
6907 struct ofport_dpif *ofport;
6908
6909 if (type != OVS_ACTION_ATTR_OUTPUT) {
6910 continue;
6911 }
6912
6913 ofport = get_odp_port(ofproto, nl_attr_get_u32(a));
6914 if (ofport && ofport->bundle) {
6915 mirrors |= ofport->bundle->dst_mirrors;
6916 }
6917 }
6918
6919 if (!mirrors) {
6920 return;
6921 }
6922
6923 /* Restore the original packet before adding the mirror actions. */
6924 ctx->flow = *orig_flow;
6925
6926 while (mirrors) {
6927 struct ofmirror *m;
6928
6929 m = ofproto->mirrors[mirror_mask_ffs(mirrors) - 1];
6930
6931 if (!vlan_is_mirrored(m, vlan)) {
6932 mirrors = zero_rightmost_1bit(mirrors);
6933 continue;
6934 }
6935
6936 mirrors &= ~m->dup_mirrors;
6937 ctx->mirrors |= m->dup_mirrors;
6938 if (m->out) {
6939 output_normal(ctx, m->out, vlan);
6940 } else if (vlan != m->out_vlan
6941 && !eth_addr_is_reserved(orig_flow->dl_dst)) {
6942 struct ofbundle *bundle;
6943
6944 HMAP_FOR_EACH (bundle, hmap_node, &ofproto->bundles) {
6945 if (ofbundle_includes_vlan(bundle, m->out_vlan)
6946 && !bundle->mirror_out) {
6947 output_normal(ctx, bundle, m->out_vlan);
6948 }
6949 }
6950 }
6951 }
6952 }
6953
6954 static void
6955 update_mirror_stats(struct ofproto_dpif *ofproto, mirror_mask_t mirrors,
6956 uint64_t packets, uint64_t bytes)
6957 {
6958 if (!mirrors) {
6959 return;
6960 }
6961
6962 for (; mirrors; mirrors = zero_rightmost_1bit(mirrors)) {
6963 struct ofmirror *m;
6964
6965 m = ofproto->mirrors[mirror_mask_ffs(mirrors) - 1];
6966
6967 if (!m) {
6968 /* In normal circumstances 'm' will not be NULL. However,
6969 * if mirrors are reconfigured, we can temporarily get out
6970 * of sync in facet_revalidate(). We could "correct" the
6971 * mirror list before reaching here, but doing that would
6972 * not properly account the traffic stats we've currently
6973 * accumulated for previous mirror configuration. */
6974 continue;
6975 }
6976
6977 m->packet_count += packets;
6978 m->byte_count += bytes;
6979 }
6980 }
6981
6982 /* A VM broadcasts a gratuitous ARP to indicate that it has resumed after
6983 * migration. Older Citrix-patched Linux DomU used gratuitous ARP replies to
6984 * indicate this; newer upstream kernels use gratuitous ARP requests. */
6985 static bool
6986 is_gratuitous_arp(const struct flow *flow)
6987 {
6988 return (flow->dl_type == htons(ETH_TYPE_ARP)
6989 && eth_addr_is_broadcast(flow->dl_dst)
6990 && (flow->nw_proto == ARP_OP_REPLY
6991 || (flow->nw_proto == ARP_OP_REQUEST
6992 && flow->nw_src == flow->nw_dst)));
6993 }
6994
6995 static void
6996 update_learning_table(struct ofproto_dpif *ofproto,
6997 const struct flow *flow, int vlan,
6998 struct ofbundle *in_bundle)
6999 {
7000 struct mac_entry *mac;
7001
7002 /* Don't learn the OFPP_NONE port. */
7003 if (in_bundle == &ofpp_none_bundle) {
7004 return;
7005 }
7006
7007 if (!mac_learning_may_learn(ofproto->ml, flow->dl_src, vlan)) {
7008 return;
7009 }
7010
7011 mac = mac_learning_insert(ofproto->ml, flow->dl_src, vlan);
7012 if (is_gratuitous_arp(flow)) {
7013 /* We don't want to learn from gratuitous ARP packets that are
7014 * reflected back over bond slaves so we lock the learning table. */
7015 if (!in_bundle->bond) {
7016 mac_entry_set_grat_arp_lock(mac);
7017 } else if (mac_entry_is_grat_arp_locked(mac)) {
7018 return;
7019 }
7020 }
7021
7022 if (mac_entry_is_new(mac) || mac->port.p != in_bundle) {
7023 /* The log messages here could actually be useful in debugging,
7024 * so keep the rate limit relatively high. */
7025 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(30, 300);
7026 VLOG_DBG_RL(&rl, "bridge %s: learned that "ETH_ADDR_FMT" is "
7027 "on port %s in VLAN %d",
7028 ofproto->up.name, ETH_ADDR_ARGS(flow->dl_src),
7029 in_bundle->name, vlan);
7030
7031 mac->port.p = in_bundle;
7032 tag_set_add(&ofproto->backer->revalidate_set,
7033 mac_learning_changed(ofproto->ml, mac));
7034 }
7035 }
7036
7037 static struct ofbundle *
7038 lookup_input_bundle(const struct ofproto_dpif *ofproto, uint16_t in_port,
7039 bool warn, struct ofport_dpif **in_ofportp)
7040 {
7041 struct ofport_dpif *ofport;
7042
7043 /* Find the port and bundle for the received packet. */
7044 ofport = get_ofp_port(ofproto, in_port);
7045 if (in_ofportp) {
7046 *in_ofportp = ofport;
7047 }
7048 if (ofport && ofport->bundle) {
7049 return ofport->bundle;
7050 }
7051
7052 /* Special-case OFPP_NONE, which a controller may use as the ingress
7053 * port for traffic that it is sourcing. */
7054 if (in_port == OFPP_NONE) {
7055 return &ofpp_none_bundle;
7056 }
7057
7058 /* Odd. A few possible reasons here:
7059 *
7060 * - We deleted a port but there are still a few packets queued up
7061 * from it.
7062 *
7063 * - Someone externally added a port (e.g. "ovs-dpctl add-if") that
7064 * we don't know about.
7065 *
7066 * - The ofproto client didn't configure the port as part of a bundle.
7067 * This is particularly likely to happen if a packet was received on the
7068 * port after it was created, but before the client had a chance to
7069 * configure its bundle.
7070 */
7071 if (warn) {
7072 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
7073
7074 VLOG_WARN_RL(&rl, "bridge %s: received packet on unknown "
7075 "port %"PRIu16, ofproto->up.name, in_port);
7076 }
7077 return NULL;
7078 }
7079
7080 /* Determines whether packets in 'flow' within 'ofproto' should be forwarded or
7081 * dropped. Returns true if they may be forwarded, false if they should be
7082 * dropped.
7083 *
7084 * 'in_port' must be the ofport_dpif that corresponds to flow->in_port.
7085 * 'in_port' must be part of a bundle (e.g. in_port->bundle must be nonnull).
7086 *
7087 * 'vlan' must be the VLAN that corresponds to flow->vlan_tci on 'in_port', as
7088 * returned by input_vid_to_vlan(). It must be a valid VLAN for 'in_port', as
7089 * checked by input_vid_is_valid().
7090 *
7091 * May also add tags to '*tags', although the current implementation only does
7092 * so in one special case.
7093 */
7094 static bool
7095 is_admissible(struct action_xlate_ctx *ctx, struct ofport_dpif *in_port,
7096 uint16_t vlan)
7097 {
7098 struct ofproto_dpif *ofproto = ctx->ofproto;
7099 struct flow *flow = &ctx->flow;
7100 struct ofbundle *in_bundle = in_port->bundle;
7101
7102 /* Drop frames for reserved multicast addresses
7103 * only if forward_bpdu option is absent. */
7104 if (!ofproto->up.forward_bpdu && eth_addr_is_reserved(flow->dl_dst)) {
7105 xlate_report(ctx, "packet has reserved destination MAC, dropping");
7106 return false;
7107 }
7108
7109 if (in_bundle->bond) {
7110 struct mac_entry *mac;
7111
7112 switch (bond_check_admissibility(in_bundle->bond, in_port,
7113 flow->dl_dst, &ctx->tags)) {
7114 case BV_ACCEPT:
7115 break;
7116
7117 case BV_DROP:
7118 xlate_report(ctx, "bonding refused admissibility, dropping");
7119 return false;
7120
7121 case BV_DROP_IF_MOVED:
7122 mac = mac_learning_lookup(ofproto->ml, flow->dl_src, vlan, NULL);
7123 if (mac && mac->port.p != in_bundle &&
7124 (!is_gratuitous_arp(flow)
7125 || mac_entry_is_grat_arp_locked(mac))) {
7126 xlate_report(ctx, "SLB bond thinks this packet looped back, "
7127 "dropping");
7128 return false;
7129 }
7130 break;
7131 }
7132 }
7133
7134 return true;
7135 }
7136
7137 static void
7138 xlate_normal(struct action_xlate_ctx *ctx)
7139 {
7140 struct ofport_dpif *in_port;
7141 struct ofbundle *in_bundle;
7142 struct mac_entry *mac;
7143 uint16_t vlan;
7144 uint16_t vid;
7145
7146 ctx->has_normal = true;
7147
7148 in_bundle = lookup_input_bundle(ctx->ofproto, ctx->flow.in_port,
7149 ctx->packet != NULL, &in_port);
7150 if (!in_bundle) {
7151 xlate_report(ctx, "no input bundle, dropping");
7152 return;
7153 }
7154
7155 /* Drop malformed frames. */
7156 if (ctx->flow.dl_type == htons(ETH_TYPE_VLAN) &&
7157 !(ctx->flow.vlan_tci & htons(VLAN_CFI))) {
7158 if (ctx->packet != NULL) {
7159 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
7160 VLOG_WARN_RL(&rl, "bridge %s: dropping packet with partial "
7161 "VLAN tag received on port %s",
7162 ctx->ofproto->up.name, in_bundle->name);
7163 }
7164 xlate_report(ctx, "partial VLAN tag, dropping");
7165 return;
7166 }
7167
7168 /* Drop frames on bundles reserved for mirroring. */
7169 if (in_bundle->mirror_out) {
7170 if (ctx->packet != NULL) {
7171 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
7172 VLOG_WARN_RL(&rl, "bridge %s: dropping packet received on port "
7173 "%s, which is reserved exclusively for mirroring",
7174 ctx->ofproto->up.name, in_bundle->name);
7175 }
7176 xlate_report(ctx, "input port is mirror output port, dropping");
7177 return;
7178 }
7179
7180 /* Check VLAN. */
7181 vid = vlan_tci_to_vid(ctx->flow.vlan_tci);
7182 if (!input_vid_is_valid(vid, in_bundle, ctx->packet != NULL)) {
7183 xlate_report(ctx, "disallowed VLAN VID for this input port, dropping");
7184 return;
7185 }
7186 vlan = input_vid_to_vlan(in_bundle, vid);
7187
7188 /* Check other admissibility requirements. */
7189 if (in_port && !is_admissible(ctx, in_port, vlan)) {
7190 return;
7191 }
7192
7193 /* Learn source MAC. */
7194 if (ctx->may_learn) {
7195 update_learning_table(ctx->ofproto, &ctx->flow, vlan, in_bundle);
7196 }
7197
7198 /* Determine output bundle. */
7199 mac = mac_learning_lookup(ctx->ofproto->ml, ctx->flow.dl_dst, vlan,
7200 &ctx->tags);
7201 if (mac) {
7202 if (mac->port.p != in_bundle) {
7203 xlate_report(ctx, "forwarding to learned port");
7204 output_normal(ctx, mac->port.p, vlan);
7205 } else {
7206 xlate_report(ctx, "learned port is input port, dropping");
7207 }
7208 } else {
7209 struct ofbundle *bundle;
7210
7211 xlate_report(ctx, "no learned MAC for destination, flooding");
7212 HMAP_FOR_EACH (bundle, hmap_node, &ctx->ofproto->bundles) {
7213 if (bundle != in_bundle
7214 && ofbundle_includes_vlan(bundle, vlan)
7215 && bundle->floodable
7216 && !bundle->mirror_out) {
7217 output_normal(ctx, bundle, vlan);
7218 }
7219 }
7220 ctx->nf_output_iface = NF_OUT_FLOOD;
7221 }
7222 }
7223 \f
7224 /* Optimized flow revalidation.
7225 *
7226 * It's a difficult problem, in general, to tell which facets need to have
7227 * their actions recalculated whenever the OpenFlow flow table changes. We
7228 * don't try to solve that general problem: for most kinds of OpenFlow flow
7229 * table changes, we recalculate the actions for every facet. This is
7230 * relatively expensive, but it's good enough if the OpenFlow flow table
7231 * doesn't change very often.
7232 *
7233 * However, we can expect one particular kind of OpenFlow flow table change to
7234 * happen frequently: changes caused by MAC learning. To avoid wasting a lot
7235 * of CPU on revalidating every facet whenever MAC learning modifies the flow
7236 * table, we add a special case that applies to flow tables in which every rule
7237 * has the same form (that is, the same wildcards), except that the table is
7238 * also allowed to have a single "catch-all" flow that matches all packets. We
7239 * optimize this case by tagging all of the facets that resubmit into the table
7240 * and invalidating the same tag whenever a flow changes in that table. The
7241 * end result is that we revalidate just the facets that need it (and sometimes
7242 * a few more, but not all of the facets or even all of the facets that
7243 * resubmit to the table modified by MAC learning). */
7244
7245 /* Calculates the tag to use for 'flow' and mask 'mask' when it is inserted
7246 * into an OpenFlow table with the given 'basis'. */
7247 static tag_type
7248 rule_calculate_tag(const struct flow *flow, const struct minimask *mask,
7249 uint32_t secret)
7250 {
7251 if (minimask_is_catchall(mask)) {
7252 return 0;
7253 } else {
7254 uint32_t hash = flow_hash_in_minimask(flow, mask, secret);
7255 return tag_create_deterministic(hash);
7256 }
7257 }
7258
7259 /* Following a change to OpenFlow table 'table_id' in 'ofproto', update the
7260 * taggability of that table.
7261 *
7262 * This function must be called after *each* change to a flow table. If you
7263 * skip calling it on some changes then the pointer comparisons at the end can
7264 * be invalid if you get unlucky. For example, if a flow removal causes a
7265 * cls_table to be destroyed and then a flow insertion causes a cls_table with
7266 * different wildcards to be created with the same address, then this function
7267 * will incorrectly skip revalidation. */
7268 static void
7269 table_update_taggable(struct ofproto_dpif *ofproto, uint8_t table_id)
7270 {
7271 struct table_dpif *table = &ofproto->tables[table_id];
7272 const struct oftable *oftable = &ofproto->up.tables[table_id];
7273 struct cls_table *catchall, *other;
7274 struct cls_table *t;
7275
7276 catchall = other = NULL;
7277
7278 switch (hmap_count(&oftable->cls.tables)) {
7279 case 0:
7280 /* We could tag this OpenFlow table but it would make the logic a
7281 * little harder and it's a corner case that doesn't seem worth it
7282 * yet. */
7283 break;
7284
7285 case 1:
7286 case 2:
7287 HMAP_FOR_EACH (t, hmap_node, &oftable->cls.tables) {
7288 if (cls_table_is_catchall(t)) {
7289 catchall = t;
7290 } else if (!other) {
7291 other = t;
7292 } else {
7293 /* Indicate that we can't tag this by setting both tables to
7294 * NULL. (We know that 'catchall' is already NULL.) */
7295 other = NULL;
7296 }
7297 }
7298 break;
7299
7300 default:
7301 /* Can't tag this table. */
7302 break;
7303 }
7304
7305 if (table->catchall_table != catchall || table->other_table != other) {
7306 table->catchall_table = catchall;
7307 table->other_table = other;
7308 ofproto->backer->need_revalidate = REV_FLOW_TABLE;
7309 }
7310 }
7311
7312 /* Given 'rule' that has changed in some way (either it is a rule being
7313 * inserted, a rule being deleted, or a rule whose actions are being
7314 * modified), marks facets for revalidation to ensure that packets will be
7315 * forwarded correctly according to the new state of the flow table.
7316 *
7317 * This function must be called after *each* change to a flow table. See
7318 * the comment on table_update_taggable() for more information. */
7319 static void
7320 rule_invalidate(const struct rule_dpif *rule)
7321 {
7322 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
7323
7324 table_update_taggable(ofproto, rule->up.table_id);
7325
7326 if (!ofproto->backer->need_revalidate) {
7327 struct table_dpif *table = &ofproto->tables[rule->up.table_id];
7328
7329 if (table->other_table && rule->tag) {
7330 tag_set_add(&ofproto->backer->revalidate_set, rule->tag);
7331 } else {
7332 ofproto->backer->need_revalidate = REV_FLOW_TABLE;
7333 }
7334 }
7335 }
7336 \f
7337 static bool
7338 set_frag_handling(struct ofproto *ofproto_,
7339 enum ofp_config_flags frag_handling)
7340 {
7341 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
7342 if (frag_handling != OFPC_FRAG_REASM) {
7343 ofproto->backer->need_revalidate = REV_RECONFIGURE;
7344 return true;
7345 } else {
7346 return false;
7347 }
7348 }
7349
7350 static enum ofperr
7351 packet_out(struct ofproto *ofproto_, struct ofpbuf *packet,
7352 const struct flow *flow,
7353 const struct ofpact *ofpacts, size_t ofpacts_len)
7354 {
7355 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
7356 struct odputil_keybuf keybuf;
7357 struct dpif_flow_stats stats;
7358
7359 struct ofpbuf key;
7360
7361 struct action_xlate_ctx ctx;
7362 uint64_t odp_actions_stub[1024 / 8];
7363 struct ofpbuf odp_actions;
7364
7365 ofpbuf_use_stack(&key, &keybuf, sizeof keybuf);
7366 odp_flow_key_from_flow(&key, flow,
7367 ofp_port_to_odp_port(ofproto, flow->in_port));
7368
7369 dpif_flow_stats_extract(flow, packet, time_msec(), &stats);
7370
7371 action_xlate_ctx_init(&ctx, ofproto, flow, flow->vlan_tci, NULL,
7372 packet_get_tcp_flags(packet, flow), packet);
7373 ctx.resubmit_stats = &stats;
7374
7375 ofpbuf_use_stub(&odp_actions,
7376 odp_actions_stub, sizeof odp_actions_stub);
7377 xlate_actions(&ctx, ofpacts, ofpacts_len, &odp_actions);
7378 dpif_execute(ofproto->backer->dpif, key.data, key.size,
7379 odp_actions.data, odp_actions.size, packet);
7380 ofpbuf_uninit(&odp_actions);
7381
7382 return 0;
7383 }
7384 \f
7385 /* NetFlow. */
7386
7387 static int
7388 set_netflow(struct ofproto *ofproto_,
7389 const struct netflow_options *netflow_options)
7390 {
7391 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
7392
7393 if (netflow_options) {
7394 if (!ofproto->netflow) {
7395 ofproto->netflow = netflow_create();
7396 }
7397 return netflow_set_options(ofproto->netflow, netflow_options);
7398 } else {
7399 netflow_destroy(ofproto->netflow);
7400 ofproto->netflow = NULL;
7401 return 0;
7402 }
7403 }
7404
7405 static void
7406 get_netflow_ids(const struct ofproto *ofproto_,
7407 uint8_t *engine_type, uint8_t *engine_id)
7408 {
7409 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
7410
7411 dpif_get_netflow_ids(ofproto->backer->dpif, engine_type, engine_id);
7412 }
7413
7414 static void
7415 send_active_timeout(struct ofproto_dpif *ofproto, struct facet *facet)
7416 {
7417 if (!facet_is_controller_flow(facet) &&
7418 netflow_active_timeout_expired(ofproto->netflow, &facet->nf_flow)) {
7419 struct subfacet *subfacet;
7420 struct ofexpired expired;
7421
7422 LIST_FOR_EACH (subfacet, list_node, &facet->subfacets) {
7423 if (subfacet->path == SF_FAST_PATH) {
7424 struct dpif_flow_stats stats;
7425
7426 subfacet_reinstall(subfacet, &stats);
7427 subfacet_update_stats(subfacet, &stats);
7428 }
7429 }
7430
7431 expired.flow = facet->flow;
7432 expired.packet_count = facet->packet_count;
7433 expired.byte_count = facet->byte_count;
7434 expired.used = facet->used;
7435 netflow_expire(ofproto->netflow, &facet->nf_flow, &expired);
7436 }
7437 }
7438
7439 static void
7440 send_netflow_active_timeouts(struct ofproto_dpif *ofproto)
7441 {
7442 struct facet *facet;
7443
7444 HMAP_FOR_EACH (facet, hmap_node, &ofproto->facets) {
7445 send_active_timeout(ofproto, facet);
7446 }
7447 }
7448 \f
7449 static struct ofproto_dpif *
7450 ofproto_dpif_lookup(const char *name)
7451 {
7452 struct ofproto_dpif *ofproto;
7453
7454 HMAP_FOR_EACH_WITH_HASH (ofproto, all_ofproto_dpifs_node,
7455 hash_string(name, 0), &all_ofproto_dpifs) {
7456 if (!strcmp(ofproto->up.name, name)) {
7457 return ofproto;
7458 }
7459 }
7460 return NULL;
7461 }
7462
7463 static void
7464 ofproto_unixctl_fdb_flush(struct unixctl_conn *conn, int argc,
7465 const char *argv[], void *aux OVS_UNUSED)
7466 {
7467 struct ofproto_dpif *ofproto;
7468
7469 if (argc > 1) {
7470 ofproto = ofproto_dpif_lookup(argv[1]);
7471 if (!ofproto) {
7472 unixctl_command_reply_error(conn, "no such bridge");
7473 return;
7474 }
7475 mac_learning_flush(ofproto->ml, &ofproto->backer->revalidate_set);
7476 } else {
7477 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
7478 mac_learning_flush(ofproto->ml, &ofproto->backer->revalidate_set);
7479 }
7480 }
7481
7482 unixctl_command_reply(conn, "table successfully flushed");
7483 }
7484
7485 static void
7486 ofproto_unixctl_fdb_show(struct unixctl_conn *conn, int argc OVS_UNUSED,
7487 const char *argv[], void *aux OVS_UNUSED)
7488 {
7489 struct ds ds = DS_EMPTY_INITIALIZER;
7490 const struct ofproto_dpif *ofproto;
7491 const struct mac_entry *e;
7492
7493 ofproto = ofproto_dpif_lookup(argv[1]);
7494 if (!ofproto) {
7495 unixctl_command_reply_error(conn, "no such bridge");
7496 return;
7497 }
7498
7499 ds_put_cstr(&ds, " port VLAN MAC Age\n");
7500 LIST_FOR_EACH (e, lru_node, &ofproto->ml->lrus) {
7501 struct ofbundle *bundle = e->port.p;
7502 ds_put_format(&ds, "%5d %4d "ETH_ADDR_FMT" %3d\n",
7503 ofbundle_get_a_port(bundle)->odp_port,
7504 e->vlan, ETH_ADDR_ARGS(e->mac),
7505 mac_entry_age(ofproto->ml, e));
7506 }
7507 unixctl_command_reply(conn, ds_cstr(&ds));
7508 ds_destroy(&ds);
7509 }
7510
7511 struct trace_ctx {
7512 struct action_xlate_ctx ctx;
7513 struct flow flow;
7514 struct ds *result;
7515 };
7516
7517 static void
7518 trace_format_rule(struct ds *result, uint8_t table_id, int level,
7519 const struct rule_dpif *rule)
7520 {
7521 ds_put_char_multiple(result, '\t', level);
7522 if (!rule) {
7523 ds_put_cstr(result, "No match\n");
7524 return;
7525 }
7526
7527 ds_put_format(result, "Rule: table=%"PRIu8" cookie=%#"PRIx64" ",
7528 table_id, ntohll(rule->up.flow_cookie));
7529 cls_rule_format(&rule->up.cr, result);
7530 ds_put_char(result, '\n');
7531
7532 ds_put_char_multiple(result, '\t', level);
7533 ds_put_cstr(result, "OpenFlow ");
7534 ofpacts_format(rule->up.ofpacts, rule->up.ofpacts_len, result);
7535 ds_put_char(result, '\n');
7536 }
7537
7538 static void
7539 trace_format_flow(struct ds *result, int level, const char *title,
7540 struct trace_ctx *trace)
7541 {
7542 ds_put_char_multiple(result, '\t', level);
7543 ds_put_format(result, "%s: ", title);
7544 if (flow_equal(&trace->ctx.flow, &trace->flow)) {
7545 ds_put_cstr(result, "unchanged");
7546 } else {
7547 flow_format(result, &trace->ctx.flow);
7548 trace->flow = trace->ctx.flow;
7549 }
7550 ds_put_char(result, '\n');
7551 }
7552
7553 static void
7554 trace_format_regs(struct ds *result, int level, const char *title,
7555 struct trace_ctx *trace)
7556 {
7557 size_t i;
7558
7559 ds_put_char_multiple(result, '\t', level);
7560 ds_put_format(result, "%s:", title);
7561 for (i = 0; i < FLOW_N_REGS; i++) {
7562 ds_put_format(result, " reg%zu=0x%"PRIx32, i, trace->flow.regs[i]);
7563 }
7564 ds_put_char(result, '\n');
7565 }
7566
7567 static void
7568 trace_format_odp(struct ds *result, int level, const char *title,
7569 struct trace_ctx *trace)
7570 {
7571 struct ofpbuf *odp_actions = trace->ctx.odp_actions;
7572
7573 ds_put_char_multiple(result, '\t', level);
7574 ds_put_format(result, "%s: ", title);
7575 format_odp_actions(result, odp_actions->data, odp_actions->size);
7576 ds_put_char(result, '\n');
7577 }
7578
7579 static void
7580 trace_resubmit(struct action_xlate_ctx *ctx, struct rule_dpif *rule)
7581 {
7582 struct trace_ctx *trace = CONTAINER_OF(ctx, struct trace_ctx, ctx);
7583 struct ds *result = trace->result;
7584
7585 ds_put_char(result, '\n');
7586 trace_format_flow(result, ctx->recurse + 1, "Resubmitted flow", trace);
7587 trace_format_regs(result, ctx->recurse + 1, "Resubmitted regs", trace);
7588 trace_format_odp(result, ctx->recurse + 1, "Resubmitted odp", trace);
7589 trace_format_rule(result, ctx->table_id, ctx->recurse + 1, rule);
7590 }
7591
7592 static void
7593 trace_report(struct action_xlate_ctx *ctx, const char *s)
7594 {
7595 struct trace_ctx *trace = CONTAINER_OF(ctx, struct trace_ctx, ctx);
7596 struct ds *result = trace->result;
7597
7598 ds_put_char_multiple(result, '\t', ctx->recurse);
7599 ds_put_cstr(result, s);
7600 ds_put_char(result, '\n');
7601 }
7602
7603 static void
7604 ofproto_unixctl_trace(struct unixctl_conn *conn, int argc, const char *argv[],
7605 void *aux OVS_UNUSED)
7606 {
7607 const char *dpname = argv[1];
7608 struct ofproto_dpif *ofproto;
7609 struct ofpbuf odp_key;
7610 struct ofpbuf *packet;
7611 ovs_be16 initial_tci;
7612 struct ds result;
7613 struct flow flow;
7614 char *s;
7615
7616 packet = NULL;
7617 ofpbuf_init(&odp_key, 0);
7618 ds_init(&result);
7619
7620 ofproto = ofproto_dpif_lookup(dpname);
7621 if (!ofproto) {
7622 unixctl_command_reply_error(conn, "Unknown ofproto (use ofproto/list "
7623 "for help)");
7624 goto exit;
7625 }
7626 if (argc == 3 || (argc == 4 && !strcmp(argv[3], "-generate"))) {
7627 /* ofproto/trace dpname flow [-generate] */
7628 const char *flow_s = argv[2];
7629 const char *generate_s = argv[3];
7630
7631 /* Allow 'flow_s' to be either a datapath flow or an OpenFlow-like
7632 * flow. We guess which type it is based on whether 'flow_s' contains
7633 * an '(', since a datapath flow always contains '(') but an
7634 * OpenFlow-like flow should not (in fact it's allowed but I believe
7635 * that's not documented anywhere).
7636 *
7637 * An alternative would be to try to parse 'flow_s' both ways, but then
7638 * it would be tricky giving a sensible error message. After all, do
7639 * you just say "syntax error" or do you present both error messages?
7640 * Both choices seem lousy. */
7641 if (strchr(flow_s, '(')) {
7642 int error;
7643
7644 /* Convert string to datapath key. */
7645 ofpbuf_init(&odp_key, 0);
7646 error = odp_flow_key_from_string(flow_s, NULL, &odp_key);
7647 if (error) {
7648 unixctl_command_reply_error(conn, "Bad flow syntax");
7649 goto exit;
7650 }
7651
7652 /* XXX: Since we allow the user to specify an ofproto, it's
7653 * possible they will specify a different ofproto than the one the
7654 * port actually belongs too. Ideally we should simply remove the
7655 * ability to specify the ofproto. */
7656 if (ofproto_receive(ofproto->backer, NULL, odp_key.data,
7657 odp_key.size, &flow, NULL, NULL, NULL,
7658 &initial_tci)) {
7659 unixctl_command_reply_error(conn, "Invalid flow");
7660 goto exit;
7661 }
7662 } else {
7663 char *error_s;
7664
7665 error_s = parse_ofp_exact_flow(&flow, argv[2]);
7666 if (error_s) {
7667 unixctl_command_reply_error(conn, error_s);
7668 free(error_s);
7669 goto exit;
7670 }
7671
7672 initial_tci = flow.vlan_tci;
7673 }
7674
7675 /* Generate a packet, if requested. */
7676 if (generate_s) {
7677 packet = ofpbuf_new(0);
7678 flow_compose(packet, &flow);
7679 }
7680 } else if (argc == 7) {
7681 /* ofproto/trace dpname priority tun_id in_port mark packet */
7682 const char *priority_s = argv[2];
7683 const char *tun_id_s = argv[3];
7684 const char *in_port_s = argv[4];
7685 const char *mark_s = argv[5];
7686 const char *packet_s = argv[6];
7687 uint32_t in_port = atoi(in_port_s);
7688 ovs_be64 tun_id = htonll(strtoull(tun_id_s, NULL, 0));
7689 uint32_t priority = atoi(priority_s);
7690 uint32_t mark = atoi(mark_s);
7691 const char *msg;
7692
7693 msg = eth_from_hex(packet_s, &packet);
7694 if (msg) {
7695 unixctl_command_reply_error(conn, msg);
7696 goto exit;
7697 }
7698
7699 ds_put_cstr(&result, "Packet: ");
7700 s = ofp_packet_to_string(packet->data, packet->size);
7701 ds_put_cstr(&result, s);
7702 free(s);
7703
7704 flow_extract(packet, priority, mark, NULL, in_port, &flow);
7705 flow.tunnel.tun_id = tun_id;
7706 initial_tci = flow.vlan_tci;
7707 } else {
7708 unixctl_command_reply_error(conn, "Bad command syntax");
7709 goto exit;
7710 }
7711
7712 ofproto_trace(ofproto, &flow, packet, initial_tci, &result);
7713 unixctl_command_reply(conn, ds_cstr(&result));
7714
7715 exit:
7716 ds_destroy(&result);
7717 ofpbuf_delete(packet);
7718 ofpbuf_uninit(&odp_key);
7719 }
7720
7721 static void
7722 ofproto_trace(struct ofproto_dpif *ofproto, const struct flow *flow,
7723 const struct ofpbuf *packet, ovs_be16 initial_tci,
7724 struct ds *ds)
7725 {
7726 struct rule_dpif *rule;
7727
7728 ds_put_cstr(ds, "Flow: ");
7729 flow_format(ds, flow);
7730 ds_put_char(ds, '\n');
7731
7732 rule = rule_dpif_lookup(ofproto, flow);
7733
7734 trace_format_rule(ds, 0, 0, rule);
7735 if (rule == ofproto->miss_rule) {
7736 ds_put_cstr(ds, "\nNo match, flow generates \"packet in\"s.\n");
7737 } else if (rule == ofproto->no_packet_in_rule) {
7738 ds_put_cstr(ds, "\nNo match, packets dropped because "
7739 "OFPPC_NO_PACKET_IN is set on in_port.\n");
7740 }
7741
7742 if (rule) {
7743 uint64_t odp_actions_stub[1024 / 8];
7744 struct ofpbuf odp_actions;
7745
7746 struct trace_ctx trace;
7747 uint8_t tcp_flags;
7748
7749 tcp_flags = packet ? packet_get_tcp_flags(packet, flow) : 0;
7750 trace.result = ds;
7751 trace.flow = *flow;
7752 ofpbuf_use_stub(&odp_actions,
7753 odp_actions_stub, sizeof odp_actions_stub);
7754 action_xlate_ctx_init(&trace.ctx, ofproto, flow, initial_tci,
7755 rule, tcp_flags, packet);
7756 trace.ctx.resubmit_hook = trace_resubmit;
7757 trace.ctx.report_hook = trace_report;
7758 xlate_actions(&trace.ctx, rule->up.ofpacts, rule->up.ofpacts_len,
7759 &odp_actions);
7760
7761 ds_put_char(ds, '\n');
7762 trace_format_flow(ds, 0, "Final flow", &trace);
7763 ds_put_cstr(ds, "Datapath actions: ");
7764 format_odp_actions(ds, odp_actions.data, odp_actions.size);
7765 ofpbuf_uninit(&odp_actions);
7766
7767 if (trace.ctx.slow) {
7768 enum slow_path_reason slow;
7769
7770 ds_put_cstr(ds, "\nThis flow is handled by the userspace "
7771 "slow path because it:");
7772 for (slow = trace.ctx.slow; slow; ) {
7773 enum slow_path_reason bit = rightmost_1bit(slow);
7774
7775 switch (bit) {
7776 case SLOW_CFM:
7777 ds_put_cstr(ds, "\n\t- Consists of CFM packets.");
7778 break;
7779 case SLOW_LACP:
7780 ds_put_cstr(ds, "\n\t- Consists of LACP packets.");
7781 break;
7782 case SLOW_STP:
7783 ds_put_cstr(ds, "\n\t- Consists of STP packets.");
7784 break;
7785 case SLOW_IN_BAND:
7786 ds_put_cstr(ds, "\n\t- Needs in-band special case "
7787 "processing.");
7788 if (!packet) {
7789 ds_put_cstr(ds, "\n\t (The datapath actions are "
7790 "incomplete--for complete actions, "
7791 "please supply a packet.)");
7792 }
7793 break;
7794 case SLOW_CONTROLLER:
7795 ds_put_cstr(ds, "\n\t- Sends \"packet-in\" messages "
7796 "to the OpenFlow controller.");
7797 break;
7798 case SLOW_MATCH:
7799 ds_put_cstr(ds, "\n\t- Needs more specific matching "
7800 "than the datapath supports.");
7801 break;
7802 }
7803
7804 slow &= ~bit;
7805 }
7806
7807 if (slow & ~SLOW_MATCH) {
7808 ds_put_cstr(ds, "\nThe datapath actions above do not reflect "
7809 "the special slow-path processing.");
7810 }
7811 }
7812 }
7813 }
7814
7815 static void
7816 ofproto_dpif_clog(struct unixctl_conn *conn OVS_UNUSED, int argc OVS_UNUSED,
7817 const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED)
7818 {
7819 clogged = true;
7820 unixctl_command_reply(conn, NULL);
7821 }
7822
7823 static void
7824 ofproto_dpif_unclog(struct unixctl_conn *conn OVS_UNUSED, int argc OVS_UNUSED,
7825 const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED)
7826 {
7827 clogged = false;
7828 unixctl_command_reply(conn, NULL);
7829 }
7830
7831 /* Runs a self-check of flow translations in 'ofproto'. Appends a message to
7832 * 'reply' describing the results. */
7833 static void
7834 ofproto_dpif_self_check__(struct ofproto_dpif *ofproto, struct ds *reply)
7835 {
7836 struct facet *facet;
7837 int errors;
7838
7839 errors = 0;
7840 HMAP_FOR_EACH (facet, hmap_node, &ofproto->facets) {
7841 if (!facet_check_consistency(facet)) {
7842 errors++;
7843 }
7844 }
7845 if (errors) {
7846 ofproto->backer->need_revalidate = REV_INCONSISTENCY;
7847 }
7848
7849 if (errors) {
7850 ds_put_format(reply, "%s: self-check failed (%d errors)\n",
7851 ofproto->up.name, errors);
7852 } else {
7853 ds_put_format(reply, "%s: self-check passed\n", ofproto->up.name);
7854 }
7855 }
7856
7857 static void
7858 ofproto_dpif_self_check(struct unixctl_conn *conn,
7859 int argc, const char *argv[], void *aux OVS_UNUSED)
7860 {
7861 struct ds reply = DS_EMPTY_INITIALIZER;
7862 struct ofproto_dpif *ofproto;
7863
7864 if (argc > 1) {
7865 ofproto = ofproto_dpif_lookup(argv[1]);
7866 if (!ofproto) {
7867 unixctl_command_reply_error(conn, "Unknown ofproto (use "
7868 "ofproto/list for help)");
7869 return;
7870 }
7871 ofproto_dpif_self_check__(ofproto, &reply);
7872 } else {
7873 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
7874 ofproto_dpif_self_check__(ofproto, &reply);
7875 }
7876 }
7877
7878 unixctl_command_reply(conn, ds_cstr(&reply));
7879 ds_destroy(&reply);
7880 }
7881
7882 /* Store the current ofprotos in 'ofproto_shash'. Returns a sorted list
7883 * of the 'ofproto_shash' nodes. It is the responsibility of the caller
7884 * to destroy 'ofproto_shash' and free the returned value. */
7885 static const struct shash_node **
7886 get_ofprotos(struct shash *ofproto_shash)
7887 {
7888 const struct ofproto_dpif *ofproto;
7889
7890 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
7891 char *name = xasprintf("%s@%s", ofproto->up.type, ofproto->up.name);
7892 shash_add_nocopy(ofproto_shash, name, ofproto);
7893 }
7894
7895 return shash_sort(ofproto_shash);
7896 }
7897
7898 static void
7899 ofproto_unixctl_dpif_dump_dps(struct unixctl_conn *conn, int argc OVS_UNUSED,
7900 const char *argv[] OVS_UNUSED,
7901 void *aux OVS_UNUSED)
7902 {
7903 struct ds ds = DS_EMPTY_INITIALIZER;
7904 struct shash ofproto_shash;
7905 const struct shash_node **sorted_ofprotos;
7906 int i;
7907
7908 shash_init(&ofproto_shash);
7909 sorted_ofprotos = get_ofprotos(&ofproto_shash);
7910 for (i = 0; i < shash_count(&ofproto_shash); i++) {
7911 const struct shash_node *node = sorted_ofprotos[i];
7912 ds_put_format(&ds, "%s\n", node->name);
7913 }
7914
7915 shash_destroy(&ofproto_shash);
7916 free(sorted_ofprotos);
7917
7918 unixctl_command_reply(conn, ds_cstr(&ds));
7919 ds_destroy(&ds);
7920 }
7921
7922 static void
7923 show_dp_format(const struct ofproto_dpif *ofproto, struct ds *ds)
7924 {
7925 struct dpif_dp_stats s;
7926 const struct shash_node **ports;
7927 int i;
7928
7929 dpif_get_dp_stats(ofproto->backer->dpif, &s);
7930
7931 ds_put_format(ds, "%s (%s):\n", ofproto->up.name,
7932 dpif_name(ofproto->backer->dpif));
7933 /* xxx It would be better to show bridge-specific stats instead
7934 * xxx of dp ones. */
7935 ds_put_format(ds,
7936 "\tlookups: hit:%"PRIu64" missed:%"PRIu64" lost:%"PRIu64"\n",
7937 s.n_hit, s.n_missed, s.n_lost);
7938 ds_put_format(ds, "\tflows: %zu\n",
7939 hmap_count(&ofproto->subfacets));
7940
7941 ports = shash_sort(&ofproto->up.port_by_name);
7942 for (i = 0; i < shash_count(&ofproto->up.port_by_name); i++) {
7943 const struct shash_node *node = ports[i];
7944 struct ofport *ofport = node->data;
7945 const char *name = netdev_get_name(ofport->netdev);
7946 const char *type = netdev_get_type(ofport->netdev);
7947 uint32_t odp_port;
7948
7949 ds_put_format(ds, "\t%s %u/", name, ofport->ofp_port);
7950
7951 odp_port = ofp_port_to_odp_port(ofproto, ofport->ofp_port);
7952 if (odp_port != OVSP_NONE) {
7953 ds_put_format(ds, "%"PRIu32":", odp_port);
7954 } else {
7955 ds_put_cstr(ds, "none:");
7956 }
7957
7958 if (strcmp(type, "system")) {
7959 struct netdev *netdev;
7960 int error;
7961
7962 ds_put_format(ds, " (%s", type);
7963
7964 error = netdev_open(name, type, &netdev);
7965 if (!error) {
7966 struct smap config;
7967
7968 smap_init(&config);
7969 error = netdev_get_config(netdev, &config);
7970 if (!error) {
7971 const struct smap_node **nodes;
7972 size_t i;
7973
7974 nodes = smap_sort(&config);
7975 for (i = 0; i < smap_count(&config); i++) {
7976 const struct smap_node *node = nodes[i];
7977 ds_put_format(ds, "%c %s=%s", i ? ',' : ':',
7978 node->key, node->value);
7979 }
7980 free(nodes);
7981 }
7982 smap_destroy(&config);
7983
7984 netdev_close(netdev);
7985 }
7986 ds_put_char(ds, ')');
7987 }
7988 ds_put_char(ds, '\n');
7989 }
7990 free(ports);
7991 }
7992
7993 static void
7994 ofproto_unixctl_dpif_show(struct unixctl_conn *conn, int argc,
7995 const char *argv[], void *aux OVS_UNUSED)
7996 {
7997 struct ds ds = DS_EMPTY_INITIALIZER;
7998 const struct ofproto_dpif *ofproto;
7999
8000 if (argc > 1) {
8001 int i;
8002 for (i = 1; i < argc; i++) {
8003 ofproto = ofproto_dpif_lookup(argv[i]);
8004 if (!ofproto) {
8005 ds_put_format(&ds, "Unknown bridge %s (use dpif/dump-dps "
8006 "for help)", argv[i]);
8007 unixctl_command_reply_error(conn, ds_cstr(&ds));
8008 return;
8009 }
8010 show_dp_format(ofproto, &ds);
8011 }
8012 } else {
8013 struct shash ofproto_shash;
8014 const struct shash_node **sorted_ofprotos;
8015 int i;
8016
8017 shash_init(&ofproto_shash);
8018 sorted_ofprotos = get_ofprotos(&ofproto_shash);
8019 for (i = 0; i < shash_count(&ofproto_shash); i++) {
8020 const struct shash_node *node = sorted_ofprotos[i];
8021 show_dp_format(node->data, &ds);
8022 }
8023
8024 shash_destroy(&ofproto_shash);
8025 free(sorted_ofprotos);
8026 }
8027
8028 unixctl_command_reply(conn, ds_cstr(&ds));
8029 ds_destroy(&ds);
8030 }
8031
8032 static void
8033 ofproto_unixctl_dpif_dump_flows(struct unixctl_conn *conn,
8034 int argc OVS_UNUSED, const char *argv[],
8035 void *aux OVS_UNUSED)
8036 {
8037 struct ds ds = DS_EMPTY_INITIALIZER;
8038 const struct ofproto_dpif *ofproto;
8039 struct subfacet *subfacet;
8040
8041 ofproto = ofproto_dpif_lookup(argv[1]);
8042 if (!ofproto) {
8043 unixctl_command_reply_error(conn, "no such bridge");
8044 return;
8045 }
8046
8047 update_stats(ofproto->backer);
8048
8049 HMAP_FOR_EACH (subfacet, hmap_node, &ofproto->subfacets) {
8050 odp_flow_key_format(subfacet->key, subfacet->key_len, &ds);
8051
8052 ds_put_format(&ds, ", packets:%"PRIu64", bytes:%"PRIu64", used:",
8053 subfacet->dp_packet_count, subfacet->dp_byte_count);
8054 if (subfacet->used) {
8055 ds_put_format(&ds, "%.3fs",
8056 (time_msec() - subfacet->used) / 1000.0);
8057 } else {
8058 ds_put_format(&ds, "never");
8059 }
8060 if (subfacet->facet->tcp_flags) {
8061 ds_put_cstr(&ds, ", flags:");
8062 packet_format_tcp_flags(&ds, subfacet->facet->tcp_flags);
8063 }
8064
8065 ds_put_cstr(&ds, ", actions:");
8066 format_odp_actions(&ds, subfacet->actions, subfacet->actions_len);
8067 ds_put_char(&ds, '\n');
8068 }
8069
8070 unixctl_command_reply(conn, ds_cstr(&ds));
8071 ds_destroy(&ds);
8072 }
8073
8074 static void
8075 ofproto_unixctl_dpif_del_flows(struct unixctl_conn *conn,
8076 int argc OVS_UNUSED, const char *argv[],
8077 void *aux OVS_UNUSED)
8078 {
8079 struct ds ds = DS_EMPTY_INITIALIZER;
8080 struct ofproto_dpif *ofproto;
8081
8082 ofproto = ofproto_dpif_lookup(argv[1]);
8083 if (!ofproto) {
8084 unixctl_command_reply_error(conn, "no such bridge");
8085 return;
8086 }
8087
8088 flush(&ofproto->up);
8089
8090 unixctl_command_reply(conn, ds_cstr(&ds));
8091 ds_destroy(&ds);
8092 }
8093
8094 static void
8095 ofproto_dpif_unixctl_init(void)
8096 {
8097 static bool registered;
8098 if (registered) {
8099 return;
8100 }
8101 registered = true;
8102
8103 unixctl_command_register(
8104 "ofproto/trace",
8105 "bridge {priority tun_id in_port mark packet | odp_flow [-generate]}",
8106 2, 6, ofproto_unixctl_trace, NULL);
8107 unixctl_command_register("fdb/flush", "[bridge]", 0, 1,
8108 ofproto_unixctl_fdb_flush, NULL);
8109 unixctl_command_register("fdb/show", "bridge", 1, 1,
8110 ofproto_unixctl_fdb_show, NULL);
8111 unixctl_command_register("ofproto/clog", "", 0, 0,
8112 ofproto_dpif_clog, NULL);
8113 unixctl_command_register("ofproto/unclog", "", 0, 0,
8114 ofproto_dpif_unclog, NULL);
8115 unixctl_command_register("ofproto/self-check", "[bridge]", 0, 1,
8116 ofproto_dpif_self_check, NULL);
8117 unixctl_command_register("dpif/dump-dps", "", 0, 0,
8118 ofproto_unixctl_dpif_dump_dps, NULL);
8119 unixctl_command_register("dpif/show", "[bridge]", 0, INT_MAX,
8120 ofproto_unixctl_dpif_show, NULL);
8121 unixctl_command_register("dpif/dump-flows", "bridge", 1, 1,
8122 ofproto_unixctl_dpif_dump_flows, NULL);
8123 unixctl_command_register("dpif/del-flows", "bridge", 1, 1,
8124 ofproto_unixctl_dpif_del_flows, NULL);
8125 }
8126 \f
8127 /* Linux VLAN device support (e.g. "eth0.10" for VLAN 10.)
8128 *
8129 * This is deprecated. It is only for compatibility with broken device drivers
8130 * in old versions of Linux that do not properly support VLANs when VLAN
8131 * devices are not used. When broken device drivers are no longer in
8132 * widespread use, we will delete these interfaces. */
8133
8134 static int
8135 set_realdev(struct ofport *ofport_, uint16_t realdev_ofp_port, int vid)
8136 {
8137 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport_->ofproto);
8138 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
8139
8140 if (realdev_ofp_port == ofport->realdev_ofp_port
8141 && vid == ofport->vlandev_vid) {
8142 return 0;
8143 }
8144
8145 ofproto->backer->need_revalidate = REV_RECONFIGURE;
8146
8147 if (ofport->realdev_ofp_port) {
8148 vsp_remove(ofport);
8149 }
8150 if (realdev_ofp_port && ofport->bundle) {
8151 /* vlandevs are enslaved to their realdevs, so they are not allowed to
8152 * themselves be part of a bundle. */
8153 bundle_set(ofport->up.ofproto, ofport->bundle, NULL);
8154 }
8155
8156 ofport->realdev_ofp_port = realdev_ofp_port;
8157 ofport->vlandev_vid = vid;
8158
8159 if (realdev_ofp_port) {
8160 vsp_add(ofport, realdev_ofp_port, vid);
8161 }
8162
8163 return 0;
8164 }
8165
8166 static uint32_t
8167 hash_realdev_vid(uint16_t realdev_ofp_port, int vid)
8168 {
8169 return hash_2words(realdev_ofp_port, vid);
8170 }
8171
8172 /* Returns the ODP port number of the Linux VLAN device that corresponds to
8173 * 'vlan_tci' on the network device with port number 'realdev_odp_port' in
8174 * 'ofproto'. For example, given 'realdev_odp_port' of eth0 and 'vlan_tci' 9,
8175 * it would return the port number of eth0.9.
8176 *
8177 * Unless VLAN splinters are enabled for port 'realdev_odp_port', this
8178 * function just returns its 'realdev_odp_port' argument. */
8179 static uint32_t
8180 vsp_realdev_to_vlandev(const struct ofproto_dpif *ofproto,
8181 uint32_t realdev_odp_port, ovs_be16 vlan_tci)
8182 {
8183 if (!hmap_is_empty(&ofproto->realdev_vid_map)) {
8184 uint16_t realdev_ofp_port;
8185 int vid = vlan_tci_to_vid(vlan_tci);
8186 const struct vlan_splinter *vsp;
8187
8188 realdev_ofp_port = odp_port_to_ofp_port(ofproto, realdev_odp_port);
8189 HMAP_FOR_EACH_WITH_HASH (vsp, realdev_vid_node,
8190 hash_realdev_vid(realdev_ofp_port, vid),
8191 &ofproto->realdev_vid_map) {
8192 if (vsp->realdev_ofp_port == realdev_ofp_port
8193 && vsp->vid == vid) {
8194 return ofp_port_to_odp_port(ofproto, vsp->vlandev_ofp_port);
8195 }
8196 }
8197 }
8198 return realdev_odp_port;
8199 }
8200
8201 static struct vlan_splinter *
8202 vlandev_find(const struct ofproto_dpif *ofproto, uint16_t vlandev_ofp_port)
8203 {
8204 struct vlan_splinter *vsp;
8205
8206 HMAP_FOR_EACH_WITH_HASH (vsp, vlandev_node, hash_int(vlandev_ofp_port, 0),
8207 &ofproto->vlandev_map) {
8208 if (vsp->vlandev_ofp_port == vlandev_ofp_port) {
8209 return vsp;
8210 }
8211 }
8212
8213 return NULL;
8214 }
8215
8216 /* Returns the OpenFlow port number of the "real" device underlying the Linux
8217 * VLAN device with OpenFlow port number 'vlandev_ofp_port' and stores the
8218 * VLAN VID of the Linux VLAN device in '*vid'. For example, given
8219 * 'vlandev_ofp_port' of eth0.9, it would return the OpenFlow port number of
8220 * eth0 and store 9 in '*vid'.
8221 *
8222 * Returns 0 and does not modify '*vid' if 'vlandev_ofp_port' is not a Linux
8223 * VLAN device. Unless VLAN splinters are enabled, this is what this function
8224 * always does.*/
8225 static uint16_t
8226 vsp_vlandev_to_realdev(const struct ofproto_dpif *ofproto,
8227 uint16_t vlandev_ofp_port, int *vid)
8228 {
8229 if (!hmap_is_empty(&ofproto->vlandev_map)) {
8230 const struct vlan_splinter *vsp;
8231
8232 vsp = vlandev_find(ofproto, vlandev_ofp_port);
8233 if (vsp) {
8234 if (vid) {
8235 *vid = vsp->vid;
8236 }
8237 return vsp->realdev_ofp_port;
8238 }
8239 }
8240 return 0;
8241 }
8242
8243 /* Given 'flow', a flow representing a packet received on 'ofproto', checks
8244 * whether 'flow->in_port' represents a Linux VLAN device. If so, changes
8245 * 'flow->in_port' to the "real" device backing the VLAN device, sets
8246 * 'flow->vlan_tci' to the VLAN VID, and returns true. Otherwise (which is
8247 * always the case unless VLAN splinters are enabled), returns false without
8248 * making any changes. */
8249 static bool
8250 vsp_adjust_flow(const struct ofproto_dpif *ofproto, struct flow *flow)
8251 {
8252 uint16_t realdev;
8253 int vid;
8254
8255 realdev = vsp_vlandev_to_realdev(ofproto, flow->in_port, &vid);
8256 if (!realdev) {
8257 return false;
8258 }
8259
8260 /* Cause the flow to be processed as if it came in on the real device with
8261 * the VLAN device's VLAN ID. */
8262 flow->in_port = realdev;
8263 flow->vlan_tci = htons((vid & VLAN_VID_MASK) | VLAN_CFI);
8264 return true;
8265 }
8266
8267 static void
8268 vsp_remove(struct ofport_dpif *port)
8269 {
8270 struct ofproto_dpif *ofproto = ofproto_dpif_cast(port->up.ofproto);
8271 struct vlan_splinter *vsp;
8272
8273 vsp = vlandev_find(ofproto, port->up.ofp_port);
8274 if (vsp) {
8275 hmap_remove(&ofproto->vlandev_map, &vsp->vlandev_node);
8276 hmap_remove(&ofproto->realdev_vid_map, &vsp->realdev_vid_node);
8277 free(vsp);
8278
8279 port->realdev_ofp_port = 0;
8280 } else {
8281 VLOG_ERR("missing vlan device record");
8282 }
8283 }
8284
8285 static void
8286 vsp_add(struct ofport_dpif *port, uint16_t realdev_ofp_port, int vid)
8287 {
8288 struct ofproto_dpif *ofproto = ofproto_dpif_cast(port->up.ofproto);
8289
8290 if (!vsp_vlandev_to_realdev(ofproto, port->up.ofp_port, NULL)
8291 && (vsp_realdev_to_vlandev(ofproto, realdev_ofp_port, htons(vid))
8292 == realdev_ofp_port)) {
8293 struct vlan_splinter *vsp;
8294
8295 vsp = xmalloc(sizeof *vsp);
8296 hmap_insert(&ofproto->vlandev_map, &vsp->vlandev_node,
8297 hash_int(port->up.ofp_port, 0));
8298 hmap_insert(&ofproto->realdev_vid_map, &vsp->realdev_vid_node,
8299 hash_realdev_vid(realdev_ofp_port, vid));
8300 vsp->realdev_ofp_port = realdev_ofp_port;
8301 vsp->vlandev_ofp_port = port->up.ofp_port;
8302 vsp->vid = vid;
8303
8304 port->realdev_ofp_port = realdev_ofp_port;
8305 } else {
8306 VLOG_ERR("duplicate vlan device record");
8307 }
8308 }
8309
8310 static uint32_t
8311 ofp_port_to_odp_port(const struct ofproto_dpif *ofproto, uint16_t ofp_port)
8312 {
8313 const struct ofport_dpif *ofport = get_ofp_port(ofproto, ofp_port);
8314 return ofport ? ofport->odp_port : OVSP_NONE;
8315 }
8316
8317 static struct ofport_dpif *
8318 odp_port_to_ofport(const struct dpif_backer *backer, uint32_t odp_port)
8319 {
8320 struct ofport_dpif *port;
8321
8322 HMAP_FOR_EACH_IN_BUCKET (port, odp_port_node,
8323 hash_int(odp_port, 0),
8324 &backer->odp_to_ofport_map) {
8325 if (port->odp_port == odp_port) {
8326 return port;
8327 }
8328 }
8329
8330 return NULL;
8331 }
8332
8333 static uint16_t
8334 odp_port_to_ofp_port(const struct ofproto_dpif *ofproto, uint32_t odp_port)
8335 {
8336 struct ofport_dpif *port;
8337
8338 port = odp_port_to_ofport(ofproto->backer, odp_port);
8339 if (port && &ofproto->up == port->up.ofproto) {
8340 return port->up.ofp_port;
8341 } else {
8342 return OFPP_NONE;
8343 }
8344 }
8345
8346 const struct ofproto_class ofproto_dpif_class = {
8347 init,
8348 enumerate_types,
8349 enumerate_names,
8350 del,
8351 port_open_type,
8352 type_run,
8353 type_run_fast,
8354 type_wait,
8355 alloc,
8356 construct,
8357 destruct,
8358 dealloc,
8359 run,
8360 run_fast,
8361 wait,
8362 get_memory_usage,
8363 flush,
8364 get_features,
8365 get_tables,
8366 port_alloc,
8367 port_construct,
8368 port_destruct,
8369 port_dealloc,
8370 port_modified,
8371 port_reconfigured,
8372 port_query_by_name,
8373 port_add,
8374 port_del,
8375 port_get_stats,
8376 port_dump_start,
8377 port_dump_next,
8378 port_dump_done,
8379 port_poll,
8380 port_poll_wait,
8381 port_is_lacp_current,
8382 NULL, /* rule_choose_table */
8383 rule_alloc,
8384 rule_construct,
8385 rule_destruct,
8386 rule_dealloc,
8387 rule_get_stats,
8388 rule_execute,
8389 rule_modify_actions,
8390 set_frag_handling,
8391 packet_out,
8392 set_netflow,
8393 get_netflow_ids,
8394 set_sflow,
8395 set_cfm,
8396 get_cfm_status,
8397 set_stp,
8398 get_stp_status,
8399 set_stp_port,
8400 get_stp_port_status,
8401 set_queues,
8402 bundle_set,
8403 bundle_remove,
8404 mirror_set,
8405 mirror_get_stats,
8406 set_flood_vlans,
8407 is_mirror_output_bundle,
8408 forward_bpdu_changed,
8409 set_mac_table_config,
8410 set_realdev,
8411 };