]> git.proxmox.com Git - mirror_ovs.git/blob - ofproto/ofproto-dpif.c
ofproto-dpif: Remove ofproto_update_local_port_stats().
[mirror_ovs.git] / ofproto / ofproto-dpif.c
1 /*
2 * Copyright (c) 2009, 2010, 2011, 2012, 2013 Nicira, Inc.
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at:
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <config.h>
18
19 #include "ofproto/ofproto-provider.h"
20
21 #include <errno.h>
22
23 #include "bfd.h"
24 #include "bond.h"
25 #include "bundle.h"
26 #include "byte-order.h"
27 #include "connmgr.h"
28 #include "coverage.h"
29 #include "cfm.h"
30 #include "dpif.h"
31 #include "dynamic-string.h"
32 #include "fail-open.h"
33 #include "hmapx.h"
34 #include "lacp.h"
35 #include "learn.h"
36 #include "mac-learning.h"
37 #include "meta-flow.h"
38 #include "multipath.h"
39 #include "netdev-vport.h"
40 #include "netdev.h"
41 #include "netlink.h"
42 #include "nx-match.h"
43 #include "odp-util.h"
44 #include "ofp-util.h"
45 #include "ofpbuf.h"
46 #include "ofp-actions.h"
47 #include "ofp-parse.h"
48 #include "ofp-print.h"
49 #include "ofproto-dpif-governor.h"
50 #include "ofproto-dpif-ipfix.h"
51 #include "ofproto-dpif-sflow.h"
52 #include "poll-loop.h"
53 #include "simap.h"
54 #include "smap.h"
55 #include "timer.h"
56 #include "tunnel.h"
57 #include "unaligned.h"
58 #include "unixctl.h"
59 #include "vlan-bitmap.h"
60 #include "vlog.h"
61
62 VLOG_DEFINE_THIS_MODULE(ofproto_dpif);
63
64 COVERAGE_DEFINE(ofproto_dpif_expired);
65 COVERAGE_DEFINE(ofproto_dpif_xlate);
66 COVERAGE_DEFINE(facet_changed_rule);
67 COVERAGE_DEFINE(facet_revalidate);
68 COVERAGE_DEFINE(facet_unexpected);
69 COVERAGE_DEFINE(facet_suppress);
70
71 /* Maximum depth of flow table recursion (due to resubmit actions) in a
72 * flow translation. */
73 #define MAX_RESUBMIT_RECURSION 64
74
75 /* Number of implemented OpenFlow tables. */
76 enum { N_TABLES = 255 };
77 enum { TBL_INTERNAL = N_TABLES - 1 }; /* Used for internal hidden rules. */
78 BUILD_ASSERT_DECL(N_TABLES >= 2 && N_TABLES <= 255);
79
80 struct ofport_dpif;
81 struct ofproto_dpif;
82 struct flow_miss;
83 struct facet;
84
85 struct rule_dpif {
86 struct rule up;
87
88 /* These statistics:
89 *
90 * - Do include packets and bytes from facets that have been deleted or
91 * whose own statistics have been folded into the rule.
92 *
93 * - Do include packets and bytes sent "by hand" that were accounted to
94 * the rule without any facet being involved (this is a rare corner
95 * case in rule_execute()).
96 *
97 * - Do not include packet or bytes that can be obtained from any facet's
98 * packet_count or byte_count member or that can be obtained from the
99 * datapath by, e.g., dpif_flow_get() for any subfacet.
100 */
101 uint64_t packet_count; /* Number of packets received. */
102 uint64_t byte_count; /* Number of bytes received. */
103
104 tag_type tag; /* Caches rule_calculate_tag() result. */
105
106 struct list facets; /* List of "struct facet"s. */
107 };
108
109 static struct rule_dpif *rule_dpif_cast(const struct rule *rule)
110 {
111 return rule ? CONTAINER_OF(rule, struct rule_dpif, up) : NULL;
112 }
113
114 static struct rule_dpif *rule_dpif_lookup(struct ofproto_dpif *,
115 const struct flow *);
116 static struct rule_dpif *rule_dpif_lookup__(struct ofproto_dpif *,
117 const struct flow *,
118 uint8_t table);
119 static struct rule_dpif *rule_dpif_miss_rule(struct ofproto_dpif *ofproto,
120 const struct flow *flow);
121
122 static void rule_credit_stats(struct rule_dpif *,
123 const struct dpif_flow_stats *);
124 static void flow_push_stats(struct facet *, const struct dpif_flow_stats *);
125 static tag_type rule_calculate_tag(const struct flow *,
126 const struct minimask *, uint32_t basis);
127 static void rule_invalidate(const struct rule_dpif *);
128
129 #define MAX_MIRRORS 32
130 typedef uint32_t mirror_mask_t;
131 #define MIRROR_MASK_C(X) UINT32_C(X)
132 BUILD_ASSERT_DECL(sizeof(mirror_mask_t) * CHAR_BIT >= MAX_MIRRORS);
133 struct ofmirror {
134 struct ofproto_dpif *ofproto; /* Owning ofproto. */
135 size_t idx; /* In ofproto's "mirrors" array. */
136 void *aux; /* Key supplied by ofproto's client. */
137 char *name; /* Identifier for log messages. */
138
139 /* Selection criteria. */
140 struct hmapx srcs; /* Contains "struct ofbundle *"s. */
141 struct hmapx dsts; /* Contains "struct ofbundle *"s. */
142 unsigned long *vlans; /* Bitmap of chosen VLANs, NULL selects all. */
143
144 /* Output (exactly one of out == NULL and out_vlan == -1 is true). */
145 struct ofbundle *out; /* Output port or NULL. */
146 int out_vlan; /* Output VLAN or -1. */
147 mirror_mask_t dup_mirrors; /* Bitmap of mirrors with the same output. */
148
149 /* Counters. */
150 int64_t packet_count; /* Number of packets sent. */
151 int64_t byte_count; /* Number of bytes sent. */
152 };
153
154 static void mirror_destroy(struct ofmirror *);
155 static void update_mirror_stats(struct ofproto_dpif *ofproto,
156 mirror_mask_t mirrors,
157 uint64_t packets, uint64_t bytes);
158
159 struct ofbundle {
160 struct hmap_node hmap_node; /* In struct ofproto's "bundles" hmap. */
161 struct ofproto_dpif *ofproto; /* Owning ofproto. */
162 void *aux; /* Key supplied by ofproto's client. */
163 char *name; /* Identifier for log messages. */
164
165 /* Configuration. */
166 struct list ports; /* Contains "struct ofport"s. */
167 enum port_vlan_mode vlan_mode; /* VLAN mode */
168 int vlan; /* -1=trunk port, else a 12-bit VLAN ID. */
169 unsigned long *trunks; /* Bitmap of trunked VLANs, if 'vlan' == -1.
170 * NULL if all VLANs are trunked. */
171 struct lacp *lacp; /* LACP if LACP is enabled, otherwise NULL. */
172 struct bond *bond; /* Nonnull iff more than one port. */
173 bool use_priority_tags; /* Use 802.1p tag for frames in VLAN 0? */
174
175 /* Status. */
176 bool floodable; /* True if no port has OFPUTIL_PC_NO_FLOOD set. */
177
178 /* Port mirroring info. */
179 mirror_mask_t src_mirrors; /* Mirrors triggered when packet received. */
180 mirror_mask_t dst_mirrors; /* Mirrors triggered when packet sent. */
181 mirror_mask_t mirror_out; /* Mirrors that output to this bundle. */
182 };
183
184 static void bundle_remove(struct ofport *);
185 static void bundle_update(struct ofbundle *);
186 static void bundle_destroy(struct ofbundle *);
187 static void bundle_del_port(struct ofport_dpif *);
188 static void bundle_run(struct ofbundle *);
189 static void bundle_wait(struct ofbundle *);
190 static struct ofbundle *lookup_input_bundle(const struct ofproto_dpif *,
191 uint16_t in_port, bool warn,
192 struct ofport_dpif **in_ofportp);
193
194 /* A controller may use OFPP_NONE as the ingress port to indicate that
195 * it did not arrive on a "real" port. 'ofpp_none_bundle' exists for
196 * when an input bundle is needed for validation (e.g., mirroring or
197 * OFPP_NORMAL processing). It is not connected to an 'ofproto' or have
198 * any 'port' structs, so care must be taken when dealing with it. */
199 static struct ofbundle ofpp_none_bundle = {
200 .name = "OFPP_NONE",
201 .vlan_mode = PORT_VLAN_TRUNK
202 };
203
204 static void stp_run(struct ofproto_dpif *ofproto);
205 static void stp_wait(struct ofproto_dpif *ofproto);
206 static int set_stp_port(struct ofport *,
207 const struct ofproto_port_stp_settings *);
208
209 static bool ofbundle_includes_vlan(const struct ofbundle *, uint16_t vlan);
210
211 struct action_xlate_ctx {
212 /* action_xlate_ctx_init() initializes these members. */
213
214 /* The ofproto. */
215 struct ofproto_dpif *ofproto;
216
217 /* Flow to which the OpenFlow actions apply. xlate_actions() will modify
218 * this flow when actions change header fields. */
219 struct flow flow;
220
221 /* stack for the push and pop actions.
222 * Each stack element is of the type "union mf_subvalue". */
223 struct ofpbuf stack;
224 union mf_subvalue init_stack[1024 / sizeof(union mf_subvalue)];
225
226 /* The packet corresponding to 'flow', or a null pointer if we are
227 * revalidating without a packet to refer to. */
228 const struct ofpbuf *packet;
229
230 /* Should OFPP_NORMAL update the MAC learning table? Should "learn"
231 * actions update the flow table?
232 *
233 * We want to update these tables if we are actually processing a packet,
234 * or if we are accounting for packets that the datapath has processed, but
235 * not if we are just revalidating. */
236 bool may_learn;
237
238 /* The rule that we are currently translating, or NULL. */
239 struct rule_dpif *rule;
240
241 /* Union of the set of TCP flags seen so far in this flow. (Used only by
242 * NXAST_FIN_TIMEOUT. Set to zero to avoid updating updating rules'
243 * timeouts.) */
244 uint8_t tcp_flags;
245
246 /* If nonnull, flow translation calls this function just before executing a
247 * resubmit or OFPP_TABLE action. In addition, disables logging of traces
248 * when the recursion depth is exceeded.
249 *
250 * 'rule' is the rule being submitted into. It will be null if the
251 * resubmit or OFPP_TABLE action didn't find a matching rule.
252 *
253 * This is normally null so the client has to set it manually after
254 * calling action_xlate_ctx_init(). */
255 void (*resubmit_hook)(struct action_xlate_ctx *, struct rule_dpif *rule);
256
257 /* If nonnull, flow translation calls this function to report some
258 * significant decision, e.g. to explain why OFPP_NORMAL translation
259 * dropped a packet. */
260 void (*report_hook)(struct action_xlate_ctx *, const char *s);
261
262 /* If nonnull, flow translation credits the specified statistics to each
263 * rule reached through a resubmit or OFPP_TABLE action.
264 *
265 * This is normally null so the client has to set it manually after
266 * calling action_xlate_ctx_init(). */
267 const struct dpif_flow_stats *resubmit_stats;
268
269 /* xlate_actions() initializes and uses these members. The client might want
270 * to look at them after it returns. */
271
272 struct ofpbuf *odp_actions; /* Datapath actions. */
273 tag_type tags; /* Tags associated with actions. */
274 enum slow_path_reason slow; /* 0 if fast path may be used. */
275 bool has_learn; /* Actions include NXAST_LEARN? */
276 bool has_normal; /* Actions output to OFPP_NORMAL? */
277 bool has_fin_timeout; /* Actions include NXAST_FIN_TIMEOUT? */
278 uint16_t nf_output_iface; /* Output interface index for NetFlow. */
279 mirror_mask_t mirrors; /* Bitmap of associated mirrors. */
280
281 /* xlate_actions() initializes and uses these members, but the client has no
282 * reason to look at them. */
283
284 int recurse; /* Recursion level, via xlate_table_action. */
285 bool max_resubmit_trigger; /* Recursed too deeply during translation. */
286 struct flow base_flow; /* Flow at the last commit. */
287 uint32_t orig_skb_priority; /* Priority when packet arrived. */
288 uint8_t table_id; /* OpenFlow table ID where flow was found. */
289 uint32_t sflow_n_outputs; /* Number of output ports. */
290 uint32_t sflow_odp_port; /* Output port for composing sFlow action. */
291 uint16_t user_cookie_offset;/* Used for user_action_cookie fixup. */
292 bool exit; /* No further actions should be processed. */
293 };
294
295 /* Initial values of fields of the packet that may be changed during
296 * flow processing and needed later. */
297 struct initial_vals {
298 /* This is the value of vlan_tci in the packet as actually received from
299 * dpif. This is the same as the facet's flow.vlan_tci unless the packet
300 * was received via a VLAN splinter. In that case, this value is 0
301 * (because the packet as actually received from the dpif had no 802.1Q
302 * tag) but the facet's flow.vlan_tci is set to the VLAN that the splinter
303 * represents.
304 *
305 * This member should be removed when the VLAN splinters feature is no
306 * longer needed. */
307 ovs_be16 vlan_tci;
308 };
309
310 static void action_xlate_ctx_init(struct action_xlate_ctx *,
311 struct ofproto_dpif *, const struct flow *,
312 const struct initial_vals *initial_vals,
313 struct rule_dpif *,
314 uint8_t tcp_flags, const struct ofpbuf *);
315 static void xlate_actions(struct action_xlate_ctx *,
316 const struct ofpact *ofpacts, size_t ofpacts_len,
317 struct ofpbuf *odp_actions);
318 static void xlate_actions_for_side_effects(struct action_xlate_ctx *,
319 const struct ofpact *ofpacts,
320 size_t ofpacts_len);
321 static void xlate_table_action(struct action_xlate_ctx *, uint16_t in_port,
322 uint8_t table_id, bool may_packet_in);
323
324 static size_t put_userspace_action(const struct ofproto_dpif *,
325 struct ofpbuf *odp_actions,
326 const struct flow *,
327 const union user_action_cookie *,
328 const size_t);
329
330 static void compose_slow_path(const struct ofproto_dpif *, const struct flow *,
331 enum slow_path_reason,
332 uint64_t *stub, size_t stub_size,
333 const struct nlattr **actionsp,
334 size_t *actions_lenp);
335
336 static void xlate_report(struct action_xlate_ctx *ctx, const char *s);
337
338 /* A subfacet (see "struct subfacet" below) has three possible installation
339 * states:
340 *
341 * - SF_NOT_INSTALLED: Not installed in the datapath. This will only be the
342 * case just after the subfacet is created, just before the subfacet is
343 * destroyed, or if the datapath returns an error when we try to install a
344 * subfacet.
345 *
346 * - SF_FAST_PATH: The subfacet's actions are installed in the datapath.
347 *
348 * - SF_SLOW_PATH: An action that sends every packet for the subfacet through
349 * ofproto_dpif is installed in the datapath.
350 */
351 enum subfacet_path {
352 SF_NOT_INSTALLED, /* No datapath flow for this subfacet. */
353 SF_FAST_PATH, /* Full actions are installed. */
354 SF_SLOW_PATH, /* Send-to-userspace action is installed. */
355 };
356
357 static const char *subfacet_path_to_string(enum subfacet_path);
358
359 /* A dpif flow and actions associated with a facet.
360 *
361 * See also the large comment on struct facet. */
362 struct subfacet {
363 /* Owners. */
364 struct hmap_node hmap_node; /* In struct ofproto_dpif 'subfacets' list. */
365 struct list list_node; /* In struct facet's 'facets' list. */
366 struct facet *facet; /* Owning facet. */
367
368 enum odp_key_fitness key_fitness;
369 struct nlattr *key;
370 int key_len;
371
372 long long int used; /* Time last used; time created if not used. */
373 long long int created; /* Time created. */
374
375 uint64_t dp_packet_count; /* Last known packet count in the datapath. */
376 uint64_t dp_byte_count; /* Last known byte count in the datapath. */
377
378 /* Datapath actions.
379 *
380 * These should be essentially identical for every subfacet in a facet, but
381 * may differ in trivial ways due to VLAN splinters. */
382 size_t actions_len; /* Number of bytes in actions[]. */
383 struct nlattr *actions; /* Datapath actions. */
384
385 enum slow_path_reason slow; /* 0 if fast path may be used. */
386 enum subfacet_path path; /* Installed in datapath? */
387
388 /* Initial values of the packet that may be needed later. */
389 struct initial_vals initial_vals;
390
391 /* Datapath port the packet arrived on. This is needed to remove
392 * flows for ports that are no longer part of the bridge. Since the
393 * flow definition only has the OpenFlow port number and the port is
394 * no longer part of the bridge, we can't determine the datapath port
395 * number needed to delete the flow from the datapath. */
396 uint32_t odp_in_port;
397 };
398
399 #define SUBFACET_DESTROY_MAX_BATCH 50
400
401 static struct subfacet *subfacet_create(struct facet *, struct flow_miss *miss,
402 long long int now);
403 static struct subfacet *subfacet_find(struct ofproto_dpif *,
404 const struct nlattr *key, size_t key_len,
405 uint32_t key_hash);
406 static void subfacet_destroy(struct subfacet *);
407 static void subfacet_destroy__(struct subfacet *);
408 static void subfacet_destroy_batch(struct ofproto_dpif *,
409 struct subfacet **, int n);
410 static void subfacet_reset_dp_stats(struct subfacet *,
411 struct dpif_flow_stats *);
412 static void subfacet_update_time(struct subfacet *, long long int used);
413 static void subfacet_update_stats(struct subfacet *,
414 const struct dpif_flow_stats *);
415 static void subfacet_make_actions(struct subfacet *,
416 const struct ofpbuf *packet,
417 struct ofpbuf *odp_actions);
418 static int subfacet_install(struct subfacet *,
419 const struct nlattr *actions, size_t actions_len,
420 struct dpif_flow_stats *, enum slow_path_reason);
421 static void subfacet_uninstall(struct subfacet *);
422
423 static enum subfacet_path subfacet_want_path(enum slow_path_reason);
424
425 /* An exact-match instantiation of an OpenFlow flow.
426 *
427 * A facet associates a "struct flow", which represents the Open vSwitch
428 * userspace idea of an exact-match flow, with one or more subfacets. Each
429 * subfacet tracks the datapath's idea of the exact-match flow equivalent to
430 * the facet. When the kernel module (or other dpif implementation) and Open
431 * vSwitch userspace agree on the definition of a flow key, there is exactly
432 * one subfacet per facet. If the dpif implementation supports more-specific
433 * flow matching than userspace, however, a facet can have more than one
434 * subfacet, each of which corresponds to some distinction in flow that
435 * userspace simply doesn't understand.
436 *
437 * Flow expiration works in terms of subfacets, so a facet must have at least
438 * one subfacet or it will never expire, leaking memory. */
439 struct facet {
440 /* Owners. */
441 struct hmap_node hmap_node; /* In owning ofproto's 'facets' hmap. */
442 struct list list_node; /* In owning rule's 'facets' list. */
443 struct rule_dpif *rule; /* Owning rule. */
444
445 /* Owned data. */
446 struct list subfacets;
447 long long int used; /* Time last used; time created if not used. */
448
449 /* Key. */
450 struct flow flow;
451
452 /* These statistics:
453 *
454 * - Do include packets and bytes sent "by hand", e.g. with
455 * dpif_execute().
456 *
457 * - Do include packets and bytes that were obtained from the datapath
458 * when a subfacet's statistics were reset (e.g. dpif_flow_put() with
459 * DPIF_FP_ZERO_STATS).
460 *
461 * - Do not include packets or bytes that can be obtained from the
462 * datapath for any existing subfacet.
463 */
464 uint64_t packet_count; /* Number of packets received. */
465 uint64_t byte_count; /* Number of bytes received. */
466
467 /* Resubmit statistics. */
468 uint64_t prev_packet_count; /* Number of packets from last stats push. */
469 uint64_t prev_byte_count; /* Number of bytes from last stats push. */
470 long long int prev_used; /* Used time from last stats push. */
471
472 /* Accounting. */
473 uint64_t accounted_bytes; /* Bytes processed by facet_account(). */
474 struct netflow_flow nf_flow; /* Per-flow NetFlow tracking data. */
475 uint8_t tcp_flags; /* TCP flags seen for this 'rule'. */
476
477 /* Properties of datapath actions.
478 *
479 * Every subfacet has its own actions because actions can differ slightly
480 * between splintered and non-splintered subfacets due to the VLAN tag
481 * being initially different (present vs. absent). All of them have these
482 * properties in common so we just store one copy of them here. */
483 bool has_learn; /* Actions include NXAST_LEARN? */
484 bool has_normal; /* Actions output to OFPP_NORMAL? */
485 bool has_fin_timeout; /* Actions include NXAST_FIN_TIMEOUT? */
486 tag_type tags; /* Tags that would require revalidation. */
487 mirror_mask_t mirrors; /* Bitmap of dependent mirrors. */
488
489 /* Storage for a single subfacet, to reduce malloc() time and space
490 * overhead. (A facet always has at least one subfacet and in the common
491 * case has exactly one subfacet. However, 'one_subfacet' may not
492 * always be valid, since it could have been removed after newer
493 * subfacets were pushed onto the 'subfacets' list.) */
494 struct subfacet one_subfacet;
495
496 long long int learn_rl; /* Rate limiter for facet_learn(). */
497 };
498
499 static struct facet *facet_create(struct rule_dpif *,
500 const struct flow *, uint32_t hash);
501 static void facet_remove(struct facet *);
502 static void facet_free(struct facet *);
503
504 static struct facet *facet_find(struct ofproto_dpif *,
505 const struct flow *, uint32_t hash);
506 static struct facet *facet_lookup_valid(struct ofproto_dpif *,
507 const struct flow *, uint32_t hash);
508 static void facet_revalidate(struct facet *);
509 static bool facet_check_consistency(struct facet *);
510
511 static void facet_flush_stats(struct facet *);
512
513 static void facet_update_time(struct facet *, long long int used);
514 static void facet_reset_counters(struct facet *);
515 static void facet_push_stats(struct facet *);
516 static void facet_learn(struct facet *);
517 static void facet_account(struct facet *);
518 static void push_all_stats(void);
519
520 static struct subfacet *facet_get_subfacet(struct facet *);
521
522 static bool facet_is_controller_flow(struct facet *);
523
524 struct ofport_dpif {
525 struct hmap_node odp_port_node; /* In dpif_backer's "odp_to_ofport_map". */
526 struct ofport up;
527
528 uint32_t odp_port;
529 struct ofbundle *bundle; /* Bundle that contains this port, if any. */
530 struct list bundle_node; /* In struct ofbundle's "ports" list. */
531 struct cfm *cfm; /* Connectivity Fault Management, if any. */
532 struct bfd *bfd; /* BFD, if any. */
533 tag_type tag; /* Tag associated with this port. */
534 bool may_enable; /* May be enabled in bonds. */
535 long long int carrier_seq; /* Carrier status changes. */
536 struct tnl_port *tnl_port; /* Tunnel handle, or null. */
537
538 /* Spanning tree. */
539 struct stp_port *stp_port; /* Spanning Tree Protocol, if any. */
540 enum stp_state stp_state; /* Always STP_DISABLED if STP not in use. */
541 long long int stp_state_entered;
542
543 struct hmap priorities; /* Map of attached 'priority_to_dscp's. */
544
545 /* Linux VLAN device support (e.g. "eth0.10" for VLAN 10.)
546 *
547 * This is deprecated. It is only for compatibility with broken device
548 * drivers in old versions of Linux that do not properly support VLANs when
549 * VLAN devices are not used. When broken device drivers are no longer in
550 * widespread use, we will delete these interfaces. */
551 uint16_t realdev_ofp_port;
552 int vlandev_vid;
553 };
554
555 /* Node in 'ofport_dpif''s 'priorities' map. Used to maintain a map from
556 * 'priority' (the datapath's term for QoS queue) to the dscp bits which all
557 * traffic egressing the 'ofport' with that priority should be marked with. */
558 struct priority_to_dscp {
559 struct hmap_node hmap_node; /* Node in 'ofport_dpif''s 'priorities' map. */
560 uint32_t priority; /* Priority of this queue (see struct flow). */
561
562 uint8_t dscp; /* DSCP bits to mark outgoing traffic with. */
563 };
564
565 /* Linux VLAN device support (e.g. "eth0.10" for VLAN 10.)
566 *
567 * This is deprecated. It is only for compatibility with broken device drivers
568 * in old versions of Linux that do not properly support VLANs when VLAN
569 * devices are not used. When broken device drivers are no longer in
570 * widespread use, we will delete these interfaces. */
571 struct vlan_splinter {
572 struct hmap_node realdev_vid_node;
573 struct hmap_node vlandev_node;
574 uint16_t realdev_ofp_port;
575 uint16_t vlandev_ofp_port;
576 int vid;
577 };
578
579 static uint32_t vsp_realdev_to_vlandev(const struct ofproto_dpif *,
580 uint32_t realdev, ovs_be16 vlan_tci);
581 static bool vsp_adjust_flow(const struct ofproto_dpif *, struct flow *);
582 static void vsp_remove(struct ofport_dpif *);
583 static void vsp_add(struct ofport_dpif *, uint16_t realdev_ofp_port, int vid);
584
585 static uint32_t ofp_port_to_odp_port(const struct ofproto_dpif *,
586 uint16_t ofp_port);
587 static uint16_t odp_port_to_ofp_port(const struct ofproto_dpif *,
588 uint32_t odp_port);
589
590 static struct ofport_dpif *
591 ofport_dpif_cast(const struct ofport *ofport)
592 {
593 return ofport ? CONTAINER_OF(ofport, struct ofport_dpif, up) : NULL;
594 }
595
596 static void port_run(struct ofport_dpif *);
597 static void port_run_fast(struct ofport_dpif *);
598 static void port_wait(struct ofport_dpif *);
599 static int set_cfm(struct ofport *, const struct cfm_settings *);
600 static void ofport_clear_priorities(struct ofport_dpif *);
601 static void run_fast_rl(void);
602
603 struct dpif_completion {
604 struct list list_node;
605 struct ofoperation *op;
606 };
607
608 /* Extra information about a classifier table.
609 * Currently used just for optimized flow revalidation. */
610 struct table_dpif {
611 /* If either of these is nonnull, then this table has a form that allows
612 * flows to be tagged to avoid revalidating most flows for the most common
613 * kinds of flow table changes. */
614 struct cls_table *catchall_table; /* Table that wildcards all fields. */
615 struct cls_table *other_table; /* Table with any other wildcard set. */
616 uint32_t basis; /* Keeps each table's tags separate. */
617 };
618
619 /* Reasons that we might need to revalidate every facet, and corresponding
620 * coverage counters.
621 *
622 * A value of 0 means that there is no need to revalidate.
623 *
624 * It would be nice to have some cleaner way to integrate with coverage
625 * counters, but with only a few reasons I guess this is good enough for
626 * now. */
627 enum revalidate_reason {
628 REV_RECONFIGURE = 1, /* Switch configuration changed. */
629 REV_STP, /* Spanning tree protocol port status change. */
630 REV_PORT_TOGGLED, /* Port enabled or disabled by CFM, LACP, ...*/
631 REV_FLOW_TABLE, /* Flow table changed. */
632 REV_INCONSISTENCY /* Facet self-check failed. */
633 };
634 COVERAGE_DEFINE(rev_reconfigure);
635 COVERAGE_DEFINE(rev_stp);
636 COVERAGE_DEFINE(rev_port_toggled);
637 COVERAGE_DEFINE(rev_flow_table);
638 COVERAGE_DEFINE(rev_inconsistency);
639
640 /* Drop keys are odp flow keys which have drop flows installed in the kernel.
641 * These are datapath flows which have no associated ofproto, if they did we
642 * would use facets. */
643 struct drop_key {
644 struct hmap_node hmap_node;
645 struct nlattr *key;
646 size_t key_len;
647 };
648
649 /* All datapaths of a given type share a single dpif backer instance. */
650 struct dpif_backer {
651 char *type;
652 int refcount;
653 struct dpif *dpif;
654 struct timer next_expiration;
655 struct hmap odp_to_ofport_map; /* ODP port to ofport mapping. */
656
657 struct simap tnl_backers; /* Set of dpif ports backing tunnels. */
658
659 /* Facet revalidation flags applying to facets which use this backer. */
660 enum revalidate_reason need_revalidate; /* Revalidate every facet. */
661 struct tag_set revalidate_set; /* Revalidate only matching facets. */
662
663 struct hmap drop_keys; /* Set of dropped odp keys. */
664 };
665
666 /* All existing ofproto_backer instances, indexed by ofproto->up.type. */
667 static struct shash all_dpif_backers = SHASH_INITIALIZER(&all_dpif_backers);
668
669 static void drop_key_clear(struct dpif_backer *);
670 static struct ofport_dpif *
671 odp_port_to_ofport(const struct dpif_backer *, uint32_t odp_port);
672
673 static void dpif_stats_update_hit_count(struct ofproto_dpif *ofproto,
674 uint64_t delta);
675 struct avg_subfacet_rates {
676 double add_rate; /* Moving average of new flows created per minute. */
677 double del_rate; /* Moving average of flows deleted per minute. */
678 };
679 static void show_dp_rates(struct ds *ds, const char *heading,
680 const struct avg_subfacet_rates *rates);
681 static void exp_mavg(double *avg, int base, double new);
682
683 struct ofproto_dpif {
684 struct hmap_node all_ofproto_dpifs_node; /* In 'all_ofproto_dpifs'. */
685 struct ofproto up;
686 struct dpif_backer *backer;
687
688 /* Special OpenFlow rules. */
689 struct rule_dpif *miss_rule; /* Sends flow table misses to controller. */
690 struct rule_dpif *no_packet_in_rule; /* Drops flow table misses. */
691
692 /* Statistics. */
693 uint64_t n_matches;
694
695 /* Bridging. */
696 struct netflow *netflow;
697 struct dpif_sflow *sflow;
698 struct dpif_ipfix *ipfix;
699 struct hmap bundles; /* Contains "struct ofbundle"s. */
700 struct mac_learning *ml;
701 struct ofmirror *mirrors[MAX_MIRRORS];
702 bool has_mirrors;
703 bool has_bonded_bundles;
704
705 /* Facets. */
706 struct hmap facets;
707 struct hmap subfacets;
708 struct governor *governor;
709 long long int consistency_rl;
710
711 /* Revalidation. */
712 struct table_dpif tables[N_TABLES];
713
714 /* Support for debugging async flow mods. */
715 struct list completions;
716
717 bool has_bundle_action; /* True when the first bundle action appears. */
718 struct netdev_stats stats; /* To account packets generated and consumed in
719 * userspace. */
720
721 /* Spanning tree. */
722 struct stp *stp;
723 long long int stp_last_tick;
724
725 /* VLAN splinters. */
726 struct hmap realdev_vid_map; /* (realdev,vid) -> vlandev. */
727 struct hmap vlandev_map; /* vlandev -> (realdev,vid). */
728
729 /* Ports. */
730 struct sset ports; /* Set of standard port names. */
731 struct sset ghost_ports; /* Ports with no datapath port. */
732 struct sset port_poll_set; /* Queued names for port_poll() reply. */
733 int port_poll_errno; /* Last errno for port_poll() reply. */
734
735 /* Per ofproto's dpif stats. */
736 uint64_t n_hit;
737 uint64_t n_missed;
738
739 /* Subfacet statistics.
740 *
741 * These keep track of the total number of subfacets added and deleted and
742 * flow life span. They are useful for computing the flow rates stats
743 * exposed via "ovs-appctl dpif/show". The goal is to learn about
744 * traffic patterns in ways that we can use later to improve Open vSwitch
745 * performance in new situations. */
746 long long int created; /* Time when it is created. */
747 unsigned int max_n_subfacet; /* Maximum number of flows */
748
749 /* The average number of subfacets... */
750 struct avg_subfacet_rates hourly; /* ...over the last hour. */
751 struct avg_subfacet_rates daily; /* ...over the last day. */
752 long long int last_minute; /* Last time 'hourly' was updated. */
753
754 /* Number of subfacets added or deleted since 'last_minute'. */
755 unsigned int subfacet_add_count;
756 unsigned int subfacet_del_count;
757
758 /* Number of subfacets added or deleted from 'created' to 'last_minute.' */
759 unsigned long long int total_subfacet_add_count;
760 unsigned long long int total_subfacet_del_count;
761
762 /* Sum of the number of milliseconds that each subfacet existed,
763 * over the subfacets that have been added and then later deleted. */
764 unsigned long long int total_subfacet_life_span;
765
766 /* Incremented by the number of currently existing subfacets, each
767 * time we pull statistics from the kernel. */
768 unsigned long long int total_subfacet_count;
769
770 /* Number of times we pull statistics from the kernel. */
771 unsigned long long int n_update_stats;
772 };
773 static unsigned long long int avg_subfacet_life_span(
774 const struct ofproto_dpif *);
775 static double avg_subfacet_count(const struct ofproto_dpif *ofproto);
776 static void update_moving_averages(struct ofproto_dpif *ofproto);
777 static void dpif_stats_update_hit_count(struct ofproto_dpif *ofproto,
778 uint64_t delta);
779 static void update_max_subfacet_count(struct ofproto_dpif *ofproto);
780
781 /* Defer flow mod completion until "ovs-appctl ofproto/unclog"? (Useful only
782 * for debugging the asynchronous flow_mod implementation.) */
783 static bool clogged;
784
785 /* All existing ofproto_dpif instances, indexed by ->up.name. */
786 static struct hmap all_ofproto_dpifs = HMAP_INITIALIZER(&all_ofproto_dpifs);
787
788 static void ofproto_dpif_unixctl_init(void);
789
790 static struct ofproto_dpif *
791 ofproto_dpif_cast(const struct ofproto *ofproto)
792 {
793 ovs_assert(ofproto->ofproto_class == &ofproto_dpif_class);
794 return CONTAINER_OF(ofproto, struct ofproto_dpif, up);
795 }
796
797 static struct ofport_dpif *get_ofp_port(const struct ofproto_dpif *,
798 uint16_t ofp_port);
799 static struct ofport_dpif *get_odp_port(const struct ofproto_dpif *,
800 uint32_t odp_port);
801 static void ofproto_trace(struct ofproto_dpif *, const struct flow *,
802 const struct ofpbuf *,
803 const struct initial_vals *, struct ds *);
804
805 /* Packet processing. */
806 static void update_learning_table(struct ofproto_dpif *,
807 const struct flow *, int vlan,
808 struct ofbundle *);
809 /* Upcalls. */
810 #define FLOW_MISS_MAX_BATCH 50
811 static int handle_upcalls(struct dpif_backer *, unsigned int max_batch);
812
813 /* Flow expiration. */
814 static int expire(struct dpif_backer *);
815
816 /* NetFlow. */
817 static void send_netflow_active_timeouts(struct ofproto_dpif *);
818
819 /* Utilities. */
820 static int send_packet(const struct ofport_dpif *, struct ofpbuf *packet);
821 static size_t compose_sflow_action(const struct ofproto_dpif *,
822 struct ofpbuf *odp_actions,
823 const struct flow *, uint32_t odp_port);
824 static void compose_ipfix_action(const struct ofproto_dpif *,
825 struct ofpbuf *odp_actions,
826 const struct flow *);
827 static void add_mirror_actions(struct action_xlate_ctx *ctx,
828 const struct flow *flow);
829 /* Global variables. */
830 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
831
832 /* Initial mappings of port to bridge mappings. */
833 static struct shash init_ofp_ports = SHASH_INITIALIZER(&init_ofp_ports);
834 \f
835 /* Factory functions. */
836
837 static void
838 init(const struct shash *iface_hints)
839 {
840 struct shash_node *node;
841
842 /* Make a local copy, since we don't own 'iface_hints' elements. */
843 SHASH_FOR_EACH(node, iface_hints) {
844 const struct iface_hint *orig_hint = node->data;
845 struct iface_hint *new_hint = xmalloc(sizeof *new_hint);
846
847 new_hint->br_name = xstrdup(orig_hint->br_name);
848 new_hint->br_type = xstrdup(orig_hint->br_type);
849 new_hint->ofp_port = orig_hint->ofp_port;
850
851 shash_add(&init_ofp_ports, node->name, new_hint);
852 }
853 }
854
855 static void
856 enumerate_types(struct sset *types)
857 {
858 dp_enumerate_types(types);
859 }
860
861 static int
862 enumerate_names(const char *type, struct sset *names)
863 {
864 struct ofproto_dpif *ofproto;
865
866 sset_clear(names);
867 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
868 if (strcmp(type, ofproto->up.type)) {
869 continue;
870 }
871 sset_add(names, ofproto->up.name);
872 }
873
874 return 0;
875 }
876
877 static int
878 del(const char *type, const char *name)
879 {
880 struct dpif *dpif;
881 int error;
882
883 error = dpif_open(name, type, &dpif);
884 if (!error) {
885 error = dpif_delete(dpif);
886 dpif_close(dpif);
887 }
888 return error;
889 }
890 \f
891 static const char *
892 port_open_type(const char *datapath_type, const char *port_type)
893 {
894 return dpif_port_open_type(datapath_type, port_type);
895 }
896
897 /* Type functions. */
898
899 static struct ofproto_dpif *
900 lookup_ofproto_dpif_by_port_name(const char *name)
901 {
902 struct ofproto_dpif *ofproto;
903
904 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
905 if (sset_contains(&ofproto->ports, name)) {
906 return ofproto;
907 }
908 }
909
910 return NULL;
911 }
912
913 static int
914 type_run(const char *type)
915 {
916 static long long int push_timer = LLONG_MIN;
917 struct dpif_backer *backer;
918 char *devname;
919 int error;
920
921 backer = shash_find_data(&all_dpif_backers, type);
922 if (!backer) {
923 /* This is not necessarily a problem, since backers are only
924 * created on demand. */
925 return 0;
926 }
927
928 dpif_run(backer->dpif);
929
930 /* The most natural place to push facet statistics is when they're pulled
931 * from the datapath. However, when there are many flows in the datapath,
932 * this expensive operation can occur so frequently, that it reduces our
933 * ability to quickly set up flows. To reduce the cost, we push statistics
934 * here instead. */
935 if (time_msec() > push_timer) {
936 push_timer = time_msec() + 2000;
937 push_all_stats();
938 }
939
940 if (backer->need_revalidate
941 || !tag_set_is_empty(&backer->revalidate_set)) {
942 struct tag_set revalidate_set = backer->revalidate_set;
943 bool need_revalidate = backer->need_revalidate;
944 struct ofproto_dpif *ofproto;
945 struct simap_node *node;
946 struct simap tmp_backers;
947
948 /* Handle tunnel garbage collection. */
949 simap_init(&tmp_backers);
950 simap_swap(&backer->tnl_backers, &tmp_backers);
951
952 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
953 struct ofport_dpif *iter;
954
955 if (backer != ofproto->backer) {
956 continue;
957 }
958
959 HMAP_FOR_EACH (iter, up.hmap_node, &ofproto->up.ports) {
960 const char *dp_port;
961
962 if (!iter->tnl_port) {
963 continue;
964 }
965
966 dp_port = netdev_vport_get_dpif_port(iter->up.netdev);
967 node = simap_find(&tmp_backers, dp_port);
968 if (node) {
969 simap_put(&backer->tnl_backers, dp_port, node->data);
970 simap_delete(&tmp_backers, node);
971 node = simap_find(&backer->tnl_backers, dp_port);
972 } else {
973 node = simap_find(&backer->tnl_backers, dp_port);
974 if (!node) {
975 uint32_t odp_port = UINT32_MAX;
976
977 if (!dpif_port_add(backer->dpif, iter->up.netdev,
978 &odp_port)) {
979 simap_put(&backer->tnl_backers, dp_port, odp_port);
980 node = simap_find(&backer->tnl_backers, dp_port);
981 }
982 }
983 }
984
985 iter->odp_port = node ? node->data : OVSP_NONE;
986 if (tnl_port_reconfigure(&iter->up, iter->odp_port,
987 &iter->tnl_port)) {
988 backer->need_revalidate = REV_RECONFIGURE;
989 }
990 }
991 }
992
993 SIMAP_FOR_EACH (node, &tmp_backers) {
994 dpif_port_del(backer->dpif, node->data);
995 }
996 simap_destroy(&tmp_backers);
997
998 switch (backer->need_revalidate) {
999 case REV_RECONFIGURE: COVERAGE_INC(rev_reconfigure); break;
1000 case REV_STP: COVERAGE_INC(rev_stp); break;
1001 case REV_PORT_TOGGLED: COVERAGE_INC(rev_port_toggled); break;
1002 case REV_FLOW_TABLE: COVERAGE_INC(rev_flow_table); break;
1003 case REV_INCONSISTENCY: COVERAGE_INC(rev_inconsistency); break;
1004 }
1005
1006 if (backer->need_revalidate) {
1007 /* Clear the drop_keys in case we should now be accepting some
1008 * formerly dropped flows. */
1009 drop_key_clear(backer);
1010 }
1011
1012 /* Clear the revalidation flags. */
1013 tag_set_init(&backer->revalidate_set);
1014 backer->need_revalidate = 0;
1015
1016 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
1017 struct facet *facet, *next;
1018
1019 if (ofproto->backer != backer) {
1020 continue;
1021 }
1022
1023 HMAP_FOR_EACH_SAFE (facet, next, hmap_node, &ofproto->facets) {
1024 if (need_revalidate
1025 || tag_set_intersects(&revalidate_set, facet->tags)) {
1026 facet_revalidate(facet);
1027 run_fast_rl();
1028 }
1029 }
1030 }
1031 }
1032
1033 if (timer_expired(&backer->next_expiration)) {
1034 int delay = expire(backer);
1035 timer_set_duration(&backer->next_expiration, delay);
1036 }
1037
1038 /* Check for port changes in the dpif. */
1039 while ((error = dpif_port_poll(backer->dpif, &devname)) == 0) {
1040 struct ofproto_dpif *ofproto;
1041 struct dpif_port port;
1042
1043 /* Don't report on the datapath's device. */
1044 if (!strcmp(devname, dpif_base_name(backer->dpif))) {
1045 goto next;
1046 }
1047
1048 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node,
1049 &all_ofproto_dpifs) {
1050 if (simap_contains(&ofproto->backer->tnl_backers, devname)) {
1051 goto next;
1052 }
1053 }
1054
1055 ofproto = lookup_ofproto_dpif_by_port_name(devname);
1056 if (dpif_port_query_by_name(backer->dpif, devname, &port)) {
1057 /* The port was removed. If we know the datapath,
1058 * report it through poll_set(). If we don't, it may be
1059 * notifying us of a removal we initiated, so ignore it.
1060 * If there's a pending ENOBUFS, let it stand, since
1061 * everything will be reevaluated. */
1062 if (ofproto && ofproto->port_poll_errno != ENOBUFS) {
1063 sset_add(&ofproto->port_poll_set, devname);
1064 ofproto->port_poll_errno = 0;
1065 }
1066 } else if (!ofproto) {
1067 /* The port was added, but we don't know with which
1068 * ofproto we should associate it. Delete it. */
1069 dpif_port_del(backer->dpif, port.port_no);
1070 }
1071 dpif_port_destroy(&port);
1072
1073 next:
1074 free(devname);
1075 }
1076
1077 if (error != EAGAIN) {
1078 struct ofproto_dpif *ofproto;
1079
1080 /* There was some sort of error, so propagate it to all
1081 * ofprotos that use this backer. */
1082 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node,
1083 &all_ofproto_dpifs) {
1084 if (ofproto->backer == backer) {
1085 sset_clear(&ofproto->port_poll_set);
1086 ofproto->port_poll_errno = error;
1087 }
1088 }
1089 }
1090
1091 return 0;
1092 }
1093
1094 static int
1095 dpif_backer_run_fast(struct dpif_backer *backer, int max_batch)
1096 {
1097 unsigned int work;
1098
1099 /* Handle one or more batches of upcalls, until there's nothing left to do
1100 * or until we do a fixed total amount of work.
1101 *
1102 * We do work in batches because it can be much cheaper to set up a number
1103 * of flows and fire off their patches all at once. We do multiple batches
1104 * because in some cases handling a packet can cause another packet to be
1105 * queued almost immediately as part of the return flow. Both
1106 * optimizations can make major improvements on some benchmarks and
1107 * presumably for real traffic as well. */
1108 work = 0;
1109 while (work < max_batch) {
1110 int retval = handle_upcalls(backer, max_batch - work);
1111 if (retval <= 0) {
1112 return -retval;
1113 }
1114 work += retval;
1115 }
1116
1117 return 0;
1118 }
1119
1120 static int
1121 type_run_fast(const char *type)
1122 {
1123 struct dpif_backer *backer;
1124
1125 backer = shash_find_data(&all_dpif_backers, type);
1126 if (!backer) {
1127 /* This is not necessarily a problem, since backers are only
1128 * created on demand. */
1129 return 0;
1130 }
1131
1132 return dpif_backer_run_fast(backer, FLOW_MISS_MAX_BATCH);
1133 }
1134
1135 static void
1136 run_fast_rl(void)
1137 {
1138 static long long int port_rl = LLONG_MIN;
1139 static unsigned int backer_rl = 0;
1140
1141 if (time_msec() >= port_rl) {
1142 struct ofproto_dpif *ofproto;
1143 struct ofport_dpif *ofport;
1144
1145 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
1146
1147 HMAP_FOR_EACH (ofport, up.hmap_node, &ofproto->up.ports) {
1148 port_run_fast(ofport);
1149 }
1150 }
1151 port_rl = time_msec() + 200;
1152 }
1153
1154 /* XXX: We have to be careful not to do too much work in this function. If
1155 * we call dpif_backer_run_fast() too often, or with too large a batch,
1156 * performance improves signifcantly, but at a cost. It's possible for the
1157 * number of flows in the datapath to increase without bound, and for poll
1158 * loops to take 10s of seconds. The correct solution to this problem,
1159 * long term, is to separate flow miss handling into it's own thread so it
1160 * isn't affected by revalidations, and expirations. Until then, this is
1161 * the best we can do. */
1162 if (++backer_rl >= 10) {
1163 struct shash_node *node;
1164
1165 backer_rl = 0;
1166 SHASH_FOR_EACH (node, &all_dpif_backers) {
1167 dpif_backer_run_fast(node->data, 1);
1168 }
1169 }
1170 }
1171
1172 static void
1173 type_wait(const char *type)
1174 {
1175 struct dpif_backer *backer;
1176
1177 backer = shash_find_data(&all_dpif_backers, type);
1178 if (!backer) {
1179 /* This is not necessarily a problem, since backers are only
1180 * created on demand. */
1181 return;
1182 }
1183
1184 timer_wait(&backer->next_expiration);
1185 }
1186 \f
1187 /* Basic life-cycle. */
1188
1189 static int add_internal_flows(struct ofproto_dpif *);
1190
1191 static struct ofproto *
1192 alloc(void)
1193 {
1194 struct ofproto_dpif *ofproto = xmalloc(sizeof *ofproto);
1195 return &ofproto->up;
1196 }
1197
1198 static void
1199 dealloc(struct ofproto *ofproto_)
1200 {
1201 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1202 free(ofproto);
1203 }
1204
1205 static void
1206 close_dpif_backer(struct dpif_backer *backer)
1207 {
1208 struct shash_node *node;
1209
1210 ovs_assert(backer->refcount > 0);
1211
1212 if (--backer->refcount) {
1213 return;
1214 }
1215
1216 drop_key_clear(backer);
1217 hmap_destroy(&backer->drop_keys);
1218
1219 simap_destroy(&backer->tnl_backers);
1220 hmap_destroy(&backer->odp_to_ofport_map);
1221 node = shash_find(&all_dpif_backers, backer->type);
1222 free(backer->type);
1223 shash_delete(&all_dpif_backers, node);
1224 dpif_close(backer->dpif);
1225
1226 free(backer);
1227 }
1228
1229 /* Datapath port slated for removal from datapath. */
1230 struct odp_garbage {
1231 struct list list_node;
1232 uint32_t odp_port;
1233 };
1234
1235 static int
1236 open_dpif_backer(const char *type, struct dpif_backer **backerp)
1237 {
1238 struct dpif_backer *backer;
1239 struct dpif_port_dump port_dump;
1240 struct dpif_port port;
1241 struct shash_node *node;
1242 struct list garbage_list;
1243 struct odp_garbage *garbage, *next;
1244 struct sset names;
1245 char *backer_name;
1246 const char *name;
1247 int error;
1248
1249 backer = shash_find_data(&all_dpif_backers, type);
1250 if (backer) {
1251 backer->refcount++;
1252 *backerp = backer;
1253 return 0;
1254 }
1255
1256 backer_name = xasprintf("ovs-%s", type);
1257
1258 /* Remove any existing datapaths, since we assume we're the only
1259 * userspace controlling the datapath. */
1260 sset_init(&names);
1261 dp_enumerate_names(type, &names);
1262 SSET_FOR_EACH(name, &names) {
1263 struct dpif *old_dpif;
1264
1265 /* Don't remove our backer if it exists. */
1266 if (!strcmp(name, backer_name)) {
1267 continue;
1268 }
1269
1270 if (dpif_open(name, type, &old_dpif)) {
1271 VLOG_WARN("couldn't open old datapath %s to remove it", name);
1272 } else {
1273 dpif_delete(old_dpif);
1274 dpif_close(old_dpif);
1275 }
1276 }
1277 sset_destroy(&names);
1278
1279 backer = xmalloc(sizeof *backer);
1280
1281 error = dpif_create_and_open(backer_name, type, &backer->dpif);
1282 free(backer_name);
1283 if (error) {
1284 VLOG_ERR("failed to open datapath of type %s: %s", type,
1285 strerror(error));
1286 free(backer);
1287 return error;
1288 }
1289
1290 backer->type = xstrdup(type);
1291 backer->refcount = 1;
1292 hmap_init(&backer->odp_to_ofport_map);
1293 hmap_init(&backer->drop_keys);
1294 timer_set_duration(&backer->next_expiration, 1000);
1295 backer->need_revalidate = 0;
1296 simap_init(&backer->tnl_backers);
1297 tag_set_init(&backer->revalidate_set);
1298 *backerp = backer;
1299
1300 dpif_flow_flush(backer->dpif);
1301
1302 /* Loop through the ports already on the datapath and remove any
1303 * that we don't need anymore. */
1304 list_init(&garbage_list);
1305 dpif_port_dump_start(&port_dump, backer->dpif);
1306 while (dpif_port_dump_next(&port_dump, &port)) {
1307 node = shash_find(&init_ofp_ports, port.name);
1308 if (!node && strcmp(port.name, dpif_base_name(backer->dpif))) {
1309 garbage = xmalloc(sizeof *garbage);
1310 garbage->odp_port = port.port_no;
1311 list_push_front(&garbage_list, &garbage->list_node);
1312 }
1313 }
1314 dpif_port_dump_done(&port_dump);
1315
1316 LIST_FOR_EACH_SAFE (garbage, next, list_node, &garbage_list) {
1317 dpif_port_del(backer->dpif, garbage->odp_port);
1318 list_remove(&garbage->list_node);
1319 free(garbage);
1320 }
1321
1322 shash_add(&all_dpif_backers, type, backer);
1323
1324 error = dpif_recv_set(backer->dpif, true);
1325 if (error) {
1326 VLOG_ERR("failed to listen on datapath of type %s: %s",
1327 type, strerror(error));
1328 close_dpif_backer(backer);
1329 return error;
1330 }
1331
1332 return error;
1333 }
1334
1335 static int
1336 construct(struct ofproto *ofproto_)
1337 {
1338 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1339 struct shash_node *node, *next;
1340 int max_ports;
1341 int error;
1342 int i;
1343
1344 error = open_dpif_backer(ofproto->up.type, &ofproto->backer);
1345 if (error) {
1346 return error;
1347 }
1348
1349 max_ports = dpif_get_max_ports(ofproto->backer->dpif);
1350 ofproto_init_max_ports(ofproto_, MIN(max_ports, OFPP_MAX));
1351
1352 ofproto->n_matches = 0;
1353
1354 ofproto->netflow = NULL;
1355 ofproto->sflow = NULL;
1356 ofproto->ipfix = NULL;
1357 ofproto->stp = NULL;
1358 hmap_init(&ofproto->bundles);
1359 ofproto->ml = mac_learning_create(MAC_ENTRY_DEFAULT_IDLE_TIME);
1360 for (i = 0; i < MAX_MIRRORS; i++) {
1361 ofproto->mirrors[i] = NULL;
1362 }
1363 ofproto->has_bonded_bundles = false;
1364
1365 hmap_init(&ofproto->facets);
1366 hmap_init(&ofproto->subfacets);
1367 ofproto->governor = NULL;
1368 ofproto->consistency_rl = LLONG_MIN;
1369
1370 for (i = 0; i < N_TABLES; i++) {
1371 struct table_dpif *table = &ofproto->tables[i];
1372
1373 table->catchall_table = NULL;
1374 table->other_table = NULL;
1375 table->basis = random_uint32();
1376 }
1377
1378 list_init(&ofproto->completions);
1379
1380 ofproto_dpif_unixctl_init();
1381
1382 ofproto->has_mirrors = false;
1383 ofproto->has_bundle_action = false;
1384
1385 hmap_init(&ofproto->vlandev_map);
1386 hmap_init(&ofproto->realdev_vid_map);
1387
1388 sset_init(&ofproto->ports);
1389 sset_init(&ofproto->ghost_ports);
1390 sset_init(&ofproto->port_poll_set);
1391 ofproto->port_poll_errno = 0;
1392
1393 SHASH_FOR_EACH_SAFE (node, next, &init_ofp_ports) {
1394 struct iface_hint *iface_hint = node->data;
1395
1396 if (!strcmp(iface_hint->br_name, ofproto->up.name)) {
1397 /* Check if the datapath already has this port. */
1398 if (dpif_port_exists(ofproto->backer->dpif, node->name)) {
1399 sset_add(&ofproto->ports, node->name);
1400 }
1401
1402 free(iface_hint->br_name);
1403 free(iface_hint->br_type);
1404 free(iface_hint);
1405 shash_delete(&init_ofp_ports, node);
1406 }
1407 }
1408
1409 hmap_insert(&all_ofproto_dpifs, &ofproto->all_ofproto_dpifs_node,
1410 hash_string(ofproto->up.name, 0));
1411 memset(&ofproto->stats, 0, sizeof ofproto->stats);
1412
1413 ofproto_init_tables(ofproto_, N_TABLES);
1414 error = add_internal_flows(ofproto);
1415 ofproto->up.tables[TBL_INTERNAL].flags = OFTABLE_HIDDEN | OFTABLE_READONLY;
1416
1417 ofproto->n_hit = 0;
1418 ofproto->n_missed = 0;
1419
1420 ofproto->max_n_subfacet = 0;
1421 ofproto->created = time_msec();
1422 ofproto->last_minute = ofproto->created;
1423 memset(&ofproto->hourly, 0, sizeof ofproto->hourly);
1424 memset(&ofproto->daily, 0, sizeof ofproto->daily);
1425 ofproto->subfacet_add_count = 0;
1426 ofproto->subfacet_del_count = 0;
1427 ofproto->total_subfacet_add_count = 0;
1428 ofproto->total_subfacet_del_count = 0;
1429 ofproto->total_subfacet_life_span = 0;
1430 ofproto->total_subfacet_count = 0;
1431 ofproto->n_update_stats = 0;
1432
1433 return error;
1434 }
1435
1436 static int
1437 add_internal_flow(struct ofproto_dpif *ofproto, int id,
1438 const struct ofpbuf *ofpacts, struct rule_dpif **rulep)
1439 {
1440 struct ofputil_flow_mod fm;
1441 int error;
1442
1443 match_init_catchall(&fm.match);
1444 fm.priority = 0;
1445 match_set_reg(&fm.match, 0, id);
1446 fm.new_cookie = htonll(0);
1447 fm.cookie = htonll(0);
1448 fm.cookie_mask = htonll(0);
1449 fm.table_id = TBL_INTERNAL;
1450 fm.command = OFPFC_ADD;
1451 fm.idle_timeout = 0;
1452 fm.hard_timeout = 0;
1453 fm.buffer_id = 0;
1454 fm.out_port = 0;
1455 fm.flags = 0;
1456 fm.ofpacts = ofpacts->data;
1457 fm.ofpacts_len = ofpacts->size;
1458
1459 error = ofproto_flow_mod(&ofproto->up, &fm);
1460 if (error) {
1461 VLOG_ERR_RL(&rl, "failed to add internal flow %d (%s)",
1462 id, ofperr_to_string(error));
1463 return error;
1464 }
1465
1466 *rulep = rule_dpif_lookup__(ofproto, &fm.match.flow, TBL_INTERNAL);
1467 ovs_assert(*rulep != NULL);
1468
1469 return 0;
1470 }
1471
1472 static int
1473 add_internal_flows(struct ofproto_dpif *ofproto)
1474 {
1475 struct ofpact_controller *controller;
1476 uint64_t ofpacts_stub[128 / 8];
1477 struct ofpbuf ofpacts;
1478 int error;
1479 int id;
1480
1481 ofpbuf_use_stack(&ofpacts, ofpacts_stub, sizeof ofpacts_stub);
1482 id = 1;
1483
1484 controller = ofpact_put_CONTROLLER(&ofpacts);
1485 controller->max_len = UINT16_MAX;
1486 controller->controller_id = 0;
1487 controller->reason = OFPR_NO_MATCH;
1488 ofpact_pad(&ofpacts);
1489
1490 error = add_internal_flow(ofproto, id++, &ofpacts, &ofproto->miss_rule);
1491 if (error) {
1492 return error;
1493 }
1494
1495 ofpbuf_clear(&ofpacts);
1496 error = add_internal_flow(ofproto, id++, &ofpacts,
1497 &ofproto->no_packet_in_rule);
1498 return error;
1499 }
1500
1501 static void
1502 complete_operations(struct ofproto_dpif *ofproto)
1503 {
1504 struct dpif_completion *c, *next;
1505
1506 LIST_FOR_EACH_SAFE (c, next, list_node, &ofproto->completions) {
1507 ofoperation_complete(c->op, 0);
1508 list_remove(&c->list_node);
1509 free(c);
1510 }
1511 }
1512
1513 static void
1514 destruct(struct ofproto *ofproto_)
1515 {
1516 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1517 struct rule_dpif *rule, *next_rule;
1518 struct oftable *table;
1519 int i;
1520
1521 hmap_remove(&all_ofproto_dpifs, &ofproto->all_ofproto_dpifs_node);
1522 complete_operations(ofproto);
1523
1524 OFPROTO_FOR_EACH_TABLE (table, &ofproto->up) {
1525 struct cls_cursor cursor;
1526
1527 cls_cursor_init(&cursor, &table->cls, NULL);
1528 CLS_CURSOR_FOR_EACH_SAFE (rule, next_rule, up.cr, &cursor) {
1529 ofproto_rule_destroy(&rule->up);
1530 }
1531 }
1532
1533 for (i = 0; i < MAX_MIRRORS; i++) {
1534 mirror_destroy(ofproto->mirrors[i]);
1535 }
1536
1537 netflow_destroy(ofproto->netflow);
1538 dpif_sflow_destroy(ofproto->sflow);
1539 hmap_destroy(&ofproto->bundles);
1540 mac_learning_destroy(ofproto->ml);
1541
1542 hmap_destroy(&ofproto->facets);
1543 hmap_destroy(&ofproto->subfacets);
1544 governor_destroy(ofproto->governor);
1545
1546 hmap_destroy(&ofproto->vlandev_map);
1547 hmap_destroy(&ofproto->realdev_vid_map);
1548
1549 sset_destroy(&ofproto->ports);
1550 sset_destroy(&ofproto->ghost_ports);
1551 sset_destroy(&ofproto->port_poll_set);
1552
1553 close_dpif_backer(ofproto->backer);
1554 }
1555
1556 static int
1557 run_fast(struct ofproto *ofproto_)
1558 {
1559 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1560 struct ofport_dpif *ofport;
1561
1562 HMAP_FOR_EACH (ofport, up.hmap_node, &ofproto->up.ports) {
1563 port_run_fast(ofport);
1564 }
1565
1566 return 0;
1567 }
1568
1569 static int
1570 run(struct ofproto *ofproto_)
1571 {
1572 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1573 struct ofport_dpif *ofport;
1574 struct ofbundle *bundle;
1575 int error;
1576
1577 if (!clogged) {
1578 complete_operations(ofproto);
1579 }
1580
1581 error = run_fast(ofproto_);
1582 if (error) {
1583 return error;
1584 }
1585
1586 if (ofproto->netflow) {
1587 if (netflow_run(ofproto->netflow)) {
1588 send_netflow_active_timeouts(ofproto);
1589 }
1590 }
1591 if (ofproto->sflow) {
1592 dpif_sflow_run(ofproto->sflow);
1593 }
1594
1595 HMAP_FOR_EACH (ofport, up.hmap_node, &ofproto->up.ports) {
1596 port_run(ofport);
1597 }
1598 HMAP_FOR_EACH (bundle, hmap_node, &ofproto->bundles) {
1599 bundle_run(bundle);
1600 }
1601
1602 stp_run(ofproto);
1603 mac_learning_run(ofproto->ml, &ofproto->backer->revalidate_set);
1604
1605 /* Check the consistency of a random facet, to aid debugging. */
1606 if (time_msec() >= ofproto->consistency_rl
1607 && !hmap_is_empty(&ofproto->facets)
1608 && !ofproto->backer->need_revalidate) {
1609 struct facet *facet;
1610
1611 ofproto->consistency_rl = time_msec() + 250;
1612
1613 facet = CONTAINER_OF(hmap_random_node(&ofproto->facets),
1614 struct facet, hmap_node);
1615 if (!tag_set_intersects(&ofproto->backer->revalidate_set,
1616 facet->tags)) {
1617 if (!facet_check_consistency(facet)) {
1618 ofproto->backer->need_revalidate = REV_INCONSISTENCY;
1619 }
1620 }
1621 }
1622
1623 if (ofproto->governor) {
1624 size_t n_subfacets;
1625
1626 governor_run(ofproto->governor);
1627
1628 /* If the governor has shrunk to its minimum size and the number of
1629 * subfacets has dwindled, then drop the governor entirely.
1630 *
1631 * For hysteresis, the number of subfacets to drop the governor is
1632 * smaller than the number needed to trigger its creation. */
1633 n_subfacets = hmap_count(&ofproto->subfacets);
1634 if (n_subfacets * 4 < ofproto->up.flow_eviction_threshold
1635 && governor_is_idle(ofproto->governor)) {
1636 governor_destroy(ofproto->governor);
1637 ofproto->governor = NULL;
1638 }
1639 }
1640
1641 return 0;
1642 }
1643
1644 static void
1645 wait(struct ofproto *ofproto_)
1646 {
1647 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1648 struct ofport_dpif *ofport;
1649 struct ofbundle *bundle;
1650
1651 if (!clogged && !list_is_empty(&ofproto->completions)) {
1652 poll_immediate_wake();
1653 }
1654
1655 dpif_wait(ofproto->backer->dpif);
1656 dpif_recv_wait(ofproto->backer->dpif);
1657 if (ofproto->sflow) {
1658 dpif_sflow_wait(ofproto->sflow);
1659 }
1660 if (!tag_set_is_empty(&ofproto->backer->revalidate_set)) {
1661 poll_immediate_wake();
1662 }
1663 HMAP_FOR_EACH (ofport, up.hmap_node, &ofproto->up.ports) {
1664 port_wait(ofport);
1665 }
1666 HMAP_FOR_EACH (bundle, hmap_node, &ofproto->bundles) {
1667 bundle_wait(bundle);
1668 }
1669 if (ofproto->netflow) {
1670 netflow_wait(ofproto->netflow);
1671 }
1672 mac_learning_wait(ofproto->ml);
1673 stp_wait(ofproto);
1674 if (ofproto->backer->need_revalidate) {
1675 /* Shouldn't happen, but if it does just go around again. */
1676 VLOG_DBG_RL(&rl, "need revalidate in ofproto_wait_cb()");
1677 poll_immediate_wake();
1678 }
1679 if (ofproto->governor) {
1680 governor_wait(ofproto->governor);
1681 }
1682 }
1683
1684 static void
1685 get_memory_usage(const struct ofproto *ofproto_, struct simap *usage)
1686 {
1687 const struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1688
1689 simap_increase(usage, "facets", hmap_count(&ofproto->facets));
1690 simap_increase(usage, "subfacets", hmap_count(&ofproto->subfacets));
1691 }
1692
1693 static void
1694 flush(struct ofproto *ofproto_)
1695 {
1696 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1697 struct subfacet *subfacet, *next_subfacet;
1698 struct subfacet *batch[SUBFACET_DESTROY_MAX_BATCH];
1699 int n_batch;
1700
1701 n_batch = 0;
1702 HMAP_FOR_EACH_SAFE (subfacet, next_subfacet, hmap_node,
1703 &ofproto->subfacets) {
1704 if (subfacet->path != SF_NOT_INSTALLED) {
1705 batch[n_batch++] = subfacet;
1706 if (n_batch >= SUBFACET_DESTROY_MAX_BATCH) {
1707 subfacet_destroy_batch(ofproto, batch, n_batch);
1708 n_batch = 0;
1709 }
1710 } else {
1711 subfacet_destroy(subfacet);
1712 }
1713 }
1714
1715 if (n_batch > 0) {
1716 subfacet_destroy_batch(ofproto, batch, n_batch);
1717 }
1718 }
1719
1720 static void
1721 get_features(struct ofproto *ofproto_ OVS_UNUSED,
1722 bool *arp_match_ip, enum ofputil_action_bitmap *actions)
1723 {
1724 *arp_match_ip = true;
1725 *actions = (OFPUTIL_A_OUTPUT |
1726 OFPUTIL_A_SET_VLAN_VID |
1727 OFPUTIL_A_SET_VLAN_PCP |
1728 OFPUTIL_A_STRIP_VLAN |
1729 OFPUTIL_A_SET_DL_SRC |
1730 OFPUTIL_A_SET_DL_DST |
1731 OFPUTIL_A_SET_NW_SRC |
1732 OFPUTIL_A_SET_NW_DST |
1733 OFPUTIL_A_SET_NW_TOS |
1734 OFPUTIL_A_SET_TP_SRC |
1735 OFPUTIL_A_SET_TP_DST |
1736 OFPUTIL_A_ENQUEUE);
1737 }
1738
1739 static void
1740 get_tables(struct ofproto *ofproto_, struct ofp12_table_stats *ots)
1741 {
1742 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1743 struct dpif_dp_stats s;
1744
1745 strcpy(ots->name, "classifier");
1746
1747 dpif_get_dp_stats(ofproto->backer->dpif, &s);
1748
1749 ots->lookup_count = htonll(s.n_hit + s.n_missed);
1750 ots->matched_count = htonll(s.n_hit + ofproto->n_matches);
1751 }
1752
1753 static struct ofport *
1754 port_alloc(void)
1755 {
1756 struct ofport_dpif *port = xmalloc(sizeof *port);
1757 return &port->up;
1758 }
1759
1760 static void
1761 port_dealloc(struct ofport *port_)
1762 {
1763 struct ofport_dpif *port = ofport_dpif_cast(port_);
1764 free(port);
1765 }
1766
1767 static int
1768 port_construct(struct ofport *port_)
1769 {
1770 struct ofport_dpif *port = ofport_dpif_cast(port_);
1771 struct ofproto_dpif *ofproto = ofproto_dpif_cast(port->up.ofproto);
1772 const struct netdev *netdev = port->up.netdev;
1773 struct dpif_port dpif_port;
1774 int error;
1775
1776 ofproto->backer->need_revalidate = REV_RECONFIGURE;
1777 port->bundle = NULL;
1778 port->cfm = NULL;
1779 port->bfd = NULL;
1780 port->tag = tag_create_random();
1781 port->may_enable = true;
1782 port->stp_port = NULL;
1783 port->stp_state = STP_DISABLED;
1784 port->tnl_port = NULL;
1785 hmap_init(&port->priorities);
1786 port->realdev_ofp_port = 0;
1787 port->vlandev_vid = 0;
1788 port->carrier_seq = netdev_get_carrier_resets(netdev);
1789
1790 if (netdev_vport_is_patch(netdev)) {
1791 /* By bailing out here, we don't submit the port to the sFlow module
1792 * to be considered for counter polling export. This is correct
1793 * because the patch port represents an interface that sFlow considers
1794 * to be "internal" to the switch as a whole, and therefore not an
1795 * candidate for counter polling. */
1796 port->odp_port = OVSP_NONE;
1797 return 0;
1798 }
1799
1800 error = dpif_port_query_by_name(ofproto->backer->dpif,
1801 netdev_vport_get_dpif_port(netdev),
1802 &dpif_port);
1803 if (error) {
1804 return error;
1805 }
1806
1807 port->odp_port = dpif_port.port_no;
1808
1809 if (netdev_get_tunnel_config(netdev)) {
1810 port->tnl_port = tnl_port_add(&port->up, port->odp_port);
1811 } else {
1812 /* Sanity-check that a mapping doesn't already exist. This
1813 * shouldn't happen for non-tunnel ports. */
1814 if (odp_port_to_ofp_port(ofproto, port->odp_port) != OFPP_NONE) {
1815 VLOG_ERR("port %s already has an OpenFlow port number",
1816 dpif_port.name);
1817 dpif_port_destroy(&dpif_port);
1818 return EBUSY;
1819 }
1820
1821 hmap_insert(&ofproto->backer->odp_to_ofport_map, &port->odp_port_node,
1822 hash_int(port->odp_port, 0));
1823 }
1824 dpif_port_destroy(&dpif_port);
1825
1826 if (ofproto->sflow) {
1827 dpif_sflow_add_port(ofproto->sflow, port_, port->odp_port);
1828 }
1829
1830 return 0;
1831 }
1832
1833 static void
1834 port_destruct(struct ofport *port_)
1835 {
1836 struct ofport_dpif *port = ofport_dpif_cast(port_);
1837 struct ofproto_dpif *ofproto = ofproto_dpif_cast(port->up.ofproto);
1838 const char *dp_port_name = netdev_vport_get_dpif_port(port->up.netdev);
1839 const char *devname = netdev_get_name(port->up.netdev);
1840
1841 if (dpif_port_exists(ofproto->backer->dpif, dp_port_name)) {
1842 /* The underlying device is still there, so delete it. This
1843 * happens when the ofproto is being destroyed, since the caller
1844 * assumes that removal of attached ports will happen as part of
1845 * destruction. */
1846 if (!port->tnl_port) {
1847 dpif_port_del(ofproto->backer->dpif, port->odp_port);
1848 }
1849 ofproto->backer->need_revalidate = REV_RECONFIGURE;
1850 }
1851
1852 if (port->odp_port != OVSP_NONE && !port->tnl_port) {
1853 hmap_remove(&ofproto->backer->odp_to_ofport_map, &port->odp_port_node);
1854 }
1855
1856 tnl_port_del(port->tnl_port);
1857 sset_find_and_delete(&ofproto->ports, devname);
1858 sset_find_and_delete(&ofproto->ghost_ports, devname);
1859 ofproto->backer->need_revalidate = REV_RECONFIGURE;
1860 bundle_remove(port_);
1861 set_cfm(port_, NULL);
1862 if (ofproto->sflow) {
1863 dpif_sflow_del_port(ofproto->sflow, port->odp_port);
1864 }
1865
1866 ofport_clear_priorities(port);
1867 hmap_destroy(&port->priorities);
1868 }
1869
1870 static void
1871 port_modified(struct ofport *port_)
1872 {
1873 struct ofport_dpif *port = ofport_dpif_cast(port_);
1874
1875 if (port->bundle && port->bundle->bond) {
1876 bond_slave_set_netdev(port->bundle->bond, port, port->up.netdev);
1877 }
1878 }
1879
1880 static void
1881 port_reconfigured(struct ofport *port_, enum ofputil_port_config old_config)
1882 {
1883 struct ofport_dpif *port = ofport_dpif_cast(port_);
1884 struct ofproto_dpif *ofproto = ofproto_dpif_cast(port->up.ofproto);
1885 enum ofputil_port_config changed = old_config ^ port->up.pp.config;
1886
1887 if (changed & (OFPUTIL_PC_NO_RECV | OFPUTIL_PC_NO_RECV_STP |
1888 OFPUTIL_PC_NO_FWD | OFPUTIL_PC_NO_FLOOD |
1889 OFPUTIL_PC_NO_PACKET_IN)) {
1890 ofproto->backer->need_revalidate = REV_RECONFIGURE;
1891
1892 if (changed & OFPUTIL_PC_NO_FLOOD && port->bundle) {
1893 bundle_update(port->bundle);
1894 }
1895 }
1896 }
1897
1898 static int
1899 set_sflow(struct ofproto *ofproto_,
1900 const struct ofproto_sflow_options *sflow_options)
1901 {
1902 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1903 struct dpif_sflow *ds = ofproto->sflow;
1904
1905 if (sflow_options) {
1906 if (!ds) {
1907 struct ofport_dpif *ofport;
1908
1909 ds = ofproto->sflow = dpif_sflow_create();
1910 HMAP_FOR_EACH (ofport, up.hmap_node, &ofproto->up.ports) {
1911 dpif_sflow_add_port(ds, &ofport->up, ofport->odp_port);
1912 }
1913 ofproto->backer->need_revalidate = REV_RECONFIGURE;
1914 }
1915 dpif_sflow_set_options(ds, sflow_options);
1916 } else {
1917 if (ds) {
1918 dpif_sflow_destroy(ds);
1919 ofproto->backer->need_revalidate = REV_RECONFIGURE;
1920 ofproto->sflow = NULL;
1921 }
1922 }
1923 return 0;
1924 }
1925
1926 static int
1927 set_ipfix(
1928 struct ofproto *ofproto_,
1929 const struct ofproto_ipfix_bridge_exporter_options *bridge_exporter_options,
1930 const struct ofproto_ipfix_flow_exporter_options *flow_exporters_options,
1931 size_t n_flow_exporters_options)
1932 {
1933 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1934 struct dpif_ipfix *di = ofproto->ipfix;
1935
1936 if (bridge_exporter_options || flow_exporters_options) {
1937 if (!di) {
1938 di = ofproto->ipfix = dpif_ipfix_create();
1939 }
1940 dpif_ipfix_set_options(
1941 di, bridge_exporter_options, flow_exporters_options,
1942 n_flow_exporters_options);
1943 } else {
1944 if (di) {
1945 dpif_ipfix_destroy(di);
1946 ofproto->ipfix = NULL;
1947 }
1948 }
1949 return 0;
1950 }
1951
1952 static int
1953 set_cfm(struct ofport *ofport_, const struct cfm_settings *s)
1954 {
1955 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
1956 int error;
1957
1958 if (!s) {
1959 error = 0;
1960 } else {
1961 if (!ofport->cfm) {
1962 struct ofproto_dpif *ofproto;
1963
1964 ofproto = ofproto_dpif_cast(ofport->up.ofproto);
1965 ofproto->backer->need_revalidate = REV_RECONFIGURE;
1966 ofport->cfm = cfm_create(netdev_get_name(ofport->up.netdev));
1967 }
1968
1969 if (cfm_configure(ofport->cfm, s)) {
1970 return 0;
1971 }
1972
1973 error = EINVAL;
1974 }
1975 cfm_destroy(ofport->cfm);
1976 ofport->cfm = NULL;
1977 return error;
1978 }
1979
1980 static bool
1981 get_cfm_status(const struct ofport *ofport_,
1982 struct ofproto_cfm_status *status)
1983 {
1984 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
1985
1986 if (ofport->cfm) {
1987 status->faults = cfm_get_fault(ofport->cfm);
1988 status->remote_opstate = cfm_get_opup(ofport->cfm);
1989 status->health = cfm_get_health(ofport->cfm);
1990 cfm_get_remote_mpids(ofport->cfm, &status->rmps, &status->n_rmps);
1991 return true;
1992 } else {
1993 return false;
1994 }
1995 }
1996
1997 static int
1998 set_bfd(struct ofport *ofport_, const struct smap *cfg)
1999 {
2000 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport_->ofproto);
2001 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
2002 struct bfd *old;
2003
2004 old = ofport->bfd;
2005 ofport->bfd = bfd_configure(old, netdev_get_name(ofport->up.netdev), cfg);
2006 if (ofport->bfd != old) {
2007 ofproto->backer->need_revalidate = REV_RECONFIGURE;
2008 }
2009
2010 return 0;
2011 }
2012
2013 static int
2014 get_bfd_status(struct ofport *ofport_, struct smap *smap)
2015 {
2016 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
2017
2018 if (ofport->bfd) {
2019 bfd_get_status(ofport->bfd, smap);
2020 return 0;
2021 } else {
2022 return ENOENT;
2023 }
2024 }
2025 \f
2026 /* Spanning Tree. */
2027
2028 static void
2029 send_bpdu_cb(struct ofpbuf *pkt, int port_num, void *ofproto_)
2030 {
2031 struct ofproto_dpif *ofproto = ofproto_;
2032 struct stp_port *sp = stp_get_port(ofproto->stp, port_num);
2033 struct ofport_dpif *ofport;
2034
2035 ofport = stp_port_get_aux(sp);
2036 if (!ofport) {
2037 VLOG_WARN_RL(&rl, "%s: cannot send BPDU on unknown port %d",
2038 ofproto->up.name, port_num);
2039 } else {
2040 struct eth_header *eth = pkt->l2;
2041
2042 netdev_get_etheraddr(ofport->up.netdev, eth->eth_src);
2043 if (eth_addr_is_zero(eth->eth_src)) {
2044 VLOG_WARN_RL(&rl, "%s: cannot send BPDU on port %d "
2045 "with unknown MAC", ofproto->up.name, port_num);
2046 } else {
2047 send_packet(ofport, pkt);
2048 }
2049 }
2050 ofpbuf_delete(pkt);
2051 }
2052
2053 /* Configures STP on 'ofproto_' using the settings defined in 's'. */
2054 static int
2055 set_stp(struct ofproto *ofproto_, const struct ofproto_stp_settings *s)
2056 {
2057 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2058
2059 /* Only revalidate flows if the configuration changed. */
2060 if (!s != !ofproto->stp) {
2061 ofproto->backer->need_revalidate = REV_RECONFIGURE;
2062 }
2063
2064 if (s) {
2065 if (!ofproto->stp) {
2066 ofproto->stp = stp_create(ofproto_->name, s->system_id,
2067 send_bpdu_cb, ofproto);
2068 ofproto->stp_last_tick = time_msec();
2069 }
2070
2071 stp_set_bridge_id(ofproto->stp, s->system_id);
2072 stp_set_bridge_priority(ofproto->stp, s->priority);
2073 stp_set_hello_time(ofproto->stp, s->hello_time);
2074 stp_set_max_age(ofproto->stp, s->max_age);
2075 stp_set_forward_delay(ofproto->stp, s->fwd_delay);
2076 } else {
2077 struct ofport *ofport;
2078
2079 HMAP_FOR_EACH (ofport, hmap_node, &ofproto->up.ports) {
2080 set_stp_port(ofport, NULL);
2081 }
2082
2083 stp_destroy(ofproto->stp);
2084 ofproto->stp = NULL;
2085 }
2086
2087 return 0;
2088 }
2089
2090 static int
2091 get_stp_status(struct ofproto *ofproto_, struct ofproto_stp_status *s)
2092 {
2093 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2094
2095 if (ofproto->stp) {
2096 s->enabled = true;
2097 s->bridge_id = stp_get_bridge_id(ofproto->stp);
2098 s->designated_root = stp_get_designated_root(ofproto->stp);
2099 s->root_path_cost = stp_get_root_path_cost(ofproto->stp);
2100 } else {
2101 s->enabled = false;
2102 }
2103
2104 return 0;
2105 }
2106
2107 static void
2108 update_stp_port_state(struct ofport_dpif *ofport)
2109 {
2110 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
2111 enum stp_state state;
2112
2113 /* Figure out new state. */
2114 state = ofport->stp_port ? stp_port_get_state(ofport->stp_port)
2115 : STP_DISABLED;
2116
2117 /* Update state. */
2118 if (ofport->stp_state != state) {
2119 enum ofputil_port_state of_state;
2120 bool fwd_change;
2121
2122 VLOG_DBG_RL(&rl, "port %s: STP state changed from %s to %s",
2123 netdev_get_name(ofport->up.netdev),
2124 stp_state_name(ofport->stp_state),
2125 stp_state_name(state));
2126 if (stp_learn_in_state(ofport->stp_state)
2127 != stp_learn_in_state(state)) {
2128 /* xxx Learning action flows should also be flushed. */
2129 mac_learning_flush(ofproto->ml,
2130 &ofproto->backer->revalidate_set);
2131 }
2132 fwd_change = stp_forward_in_state(ofport->stp_state)
2133 != stp_forward_in_state(state);
2134
2135 ofproto->backer->need_revalidate = REV_STP;
2136 ofport->stp_state = state;
2137 ofport->stp_state_entered = time_msec();
2138
2139 if (fwd_change && ofport->bundle) {
2140 bundle_update(ofport->bundle);
2141 }
2142
2143 /* Update the STP state bits in the OpenFlow port description. */
2144 of_state = ofport->up.pp.state & ~OFPUTIL_PS_STP_MASK;
2145 of_state |= (state == STP_LISTENING ? OFPUTIL_PS_STP_LISTEN
2146 : state == STP_LEARNING ? OFPUTIL_PS_STP_LEARN
2147 : state == STP_FORWARDING ? OFPUTIL_PS_STP_FORWARD
2148 : state == STP_BLOCKING ? OFPUTIL_PS_STP_BLOCK
2149 : 0);
2150 ofproto_port_set_state(&ofport->up, of_state);
2151 }
2152 }
2153
2154 /* Configures STP on 'ofport_' using the settings defined in 's'. The
2155 * caller is responsible for assigning STP port numbers and ensuring
2156 * there are no duplicates. */
2157 static int
2158 set_stp_port(struct ofport *ofport_,
2159 const struct ofproto_port_stp_settings *s)
2160 {
2161 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
2162 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
2163 struct stp_port *sp = ofport->stp_port;
2164
2165 if (!s || !s->enable) {
2166 if (sp) {
2167 ofport->stp_port = NULL;
2168 stp_port_disable(sp);
2169 update_stp_port_state(ofport);
2170 }
2171 return 0;
2172 } else if (sp && stp_port_no(sp) != s->port_num
2173 && ofport == stp_port_get_aux(sp)) {
2174 /* The port-id changed, so disable the old one if it's not
2175 * already in use by another port. */
2176 stp_port_disable(sp);
2177 }
2178
2179 sp = ofport->stp_port = stp_get_port(ofproto->stp, s->port_num);
2180 stp_port_enable(sp);
2181
2182 stp_port_set_aux(sp, ofport);
2183 stp_port_set_priority(sp, s->priority);
2184 stp_port_set_path_cost(sp, s->path_cost);
2185
2186 update_stp_port_state(ofport);
2187
2188 return 0;
2189 }
2190
2191 static int
2192 get_stp_port_status(struct ofport *ofport_,
2193 struct ofproto_port_stp_status *s)
2194 {
2195 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
2196 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
2197 struct stp_port *sp = ofport->stp_port;
2198
2199 if (!ofproto->stp || !sp) {
2200 s->enabled = false;
2201 return 0;
2202 }
2203
2204 s->enabled = true;
2205 s->port_id = stp_port_get_id(sp);
2206 s->state = stp_port_get_state(sp);
2207 s->sec_in_state = (time_msec() - ofport->stp_state_entered) / 1000;
2208 s->role = stp_port_get_role(sp);
2209 stp_port_get_counts(sp, &s->tx_count, &s->rx_count, &s->error_count);
2210
2211 return 0;
2212 }
2213
2214 static void
2215 stp_run(struct ofproto_dpif *ofproto)
2216 {
2217 if (ofproto->stp) {
2218 long long int now = time_msec();
2219 long long int elapsed = now - ofproto->stp_last_tick;
2220 struct stp_port *sp;
2221
2222 if (elapsed > 0) {
2223 stp_tick(ofproto->stp, MIN(INT_MAX, elapsed));
2224 ofproto->stp_last_tick = now;
2225 }
2226 while (stp_get_changed_port(ofproto->stp, &sp)) {
2227 struct ofport_dpif *ofport = stp_port_get_aux(sp);
2228
2229 if (ofport) {
2230 update_stp_port_state(ofport);
2231 }
2232 }
2233
2234 if (stp_check_and_reset_fdb_flush(ofproto->stp)) {
2235 mac_learning_flush(ofproto->ml, &ofproto->backer->revalidate_set);
2236 }
2237 }
2238 }
2239
2240 static void
2241 stp_wait(struct ofproto_dpif *ofproto)
2242 {
2243 if (ofproto->stp) {
2244 poll_timer_wait(1000);
2245 }
2246 }
2247
2248 /* Returns true if STP should process 'flow'. */
2249 static bool
2250 stp_should_process_flow(const struct flow *flow)
2251 {
2252 return eth_addr_equals(flow->dl_dst, eth_addr_stp);
2253 }
2254
2255 static void
2256 stp_process_packet(const struct ofport_dpif *ofport,
2257 const struct ofpbuf *packet)
2258 {
2259 struct ofpbuf payload = *packet;
2260 struct eth_header *eth = payload.data;
2261 struct stp_port *sp = ofport->stp_port;
2262
2263 /* Sink packets on ports that have STP disabled when the bridge has
2264 * STP enabled. */
2265 if (!sp || stp_port_get_state(sp) == STP_DISABLED) {
2266 return;
2267 }
2268
2269 /* Trim off padding on payload. */
2270 if (payload.size > ntohs(eth->eth_type) + ETH_HEADER_LEN) {
2271 payload.size = ntohs(eth->eth_type) + ETH_HEADER_LEN;
2272 }
2273
2274 if (ofpbuf_try_pull(&payload, ETH_HEADER_LEN + LLC_HEADER_LEN)) {
2275 stp_received_bpdu(sp, payload.data, payload.size);
2276 }
2277 }
2278 \f
2279 static struct priority_to_dscp *
2280 get_priority(const struct ofport_dpif *ofport, uint32_t priority)
2281 {
2282 struct priority_to_dscp *pdscp;
2283 uint32_t hash;
2284
2285 hash = hash_int(priority, 0);
2286 HMAP_FOR_EACH_IN_BUCKET (pdscp, hmap_node, hash, &ofport->priorities) {
2287 if (pdscp->priority == priority) {
2288 return pdscp;
2289 }
2290 }
2291 return NULL;
2292 }
2293
2294 static void
2295 ofport_clear_priorities(struct ofport_dpif *ofport)
2296 {
2297 struct priority_to_dscp *pdscp, *next;
2298
2299 HMAP_FOR_EACH_SAFE (pdscp, next, hmap_node, &ofport->priorities) {
2300 hmap_remove(&ofport->priorities, &pdscp->hmap_node);
2301 free(pdscp);
2302 }
2303 }
2304
2305 static int
2306 set_queues(struct ofport *ofport_,
2307 const struct ofproto_port_queue *qdscp_list,
2308 size_t n_qdscp)
2309 {
2310 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
2311 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
2312 struct hmap new = HMAP_INITIALIZER(&new);
2313 size_t i;
2314
2315 for (i = 0; i < n_qdscp; i++) {
2316 struct priority_to_dscp *pdscp;
2317 uint32_t priority;
2318 uint8_t dscp;
2319
2320 dscp = (qdscp_list[i].dscp << 2) & IP_DSCP_MASK;
2321 if (dpif_queue_to_priority(ofproto->backer->dpif, qdscp_list[i].queue,
2322 &priority)) {
2323 continue;
2324 }
2325
2326 pdscp = get_priority(ofport, priority);
2327 if (pdscp) {
2328 hmap_remove(&ofport->priorities, &pdscp->hmap_node);
2329 } else {
2330 pdscp = xmalloc(sizeof *pdscp);
2331 pdscp->priority = priority;
2332 pdscp->dscp = dscp;
2333 ofproto->backer->need_revalidate = REV_RECONFIGURE;
2334 }
2335
2336 if (pdscp->dscp != dscp) {
2337 pdscp->dscp = dscp;
2338 ofproto->backer->need_revalidate = REV_RECONFIGURE;
2339 }
2340
2341 hmap_insert(&new, &pdscp->hmap_node, hash_int(pdscp->priority, 0));
2342 }
2343
2344 if (!hmap_is_empty(&ofport->priorities)) {
2345 ofport_clear_priorities(ofport);
2346 ofproto->backer->need_revalidate = REV_RECONFIGURE;
2347 }
2348
2349 hmap_swap(&new, &ofport->priorities);
2350 hmap_destroy(&new);
2351
2352 return 0;
2353 }
2354 \f
2355 /* Bundles. */
2356
2357 /* Expires all MAC learning entries associated with 'bundle' and forces its
2358 * ofproto to revalidate every flow.
2359 *
2360 * Normally MAC learning entries are removed only from the ofproto associated
2361 * with 'bundle', but if 'all_ofprotos' is true, then the MAC learning entries
2362 * are removed from every ofproto. When patch ports and SLB bonds are in use
2363 * and a VM migration happens and the gratuitous ARPs are somehow lost, this
2364 * avoids a MAC_ENTRY_IDLE_TIME delay before the migrated VM can communicate
2365 * with the host from which it migrated. */
2366 static void
2367 bundle_flush_macs(struct ofbundle *bundle, bool all_ofprotos)
2368 {
2369 struct ofproto_dpif *ofproto = bundle->ofproto;
2370 struct mac_learning *ml = ofproto->ml;
2371 struct mac_entry *mac, *next_mac;
2372
2373 ofproto->backer->need_revalidate = REV_RECONFIGURE;
2374 LIST_FOR_EACH_SAFE (mac, next_mac, lru_node, &ml->lrus) {
2375 if (mac->port.p == bundle) {
2376 if (all_ofprotos) {
2377 struct ofproto_dpif *o;
2378
2379 HMAP_FOR_EACH (o, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
2380 if (o != ofproto) {
2381 struct mac_entry *e;
2382
2383 e = mac_learning_lookup(o->ml, mac->mac, mac->vlan,
2384 NULL);
2385 if (e) {
2386 mac_learning_expire(o->ml, e);
2387 }
2388 }
2389 }
2390 }
2391
2392 mac_learning_expire(ml, mac);
2393 }
2394 }
2395 }
2396
2397 static struct ofbundle *
2398 bundle_lookup(const struct ofproto_dpif *ofproto, void *aux)
2399 {
2400 struct ofbundle *bundle;
2401
2402 HMAP_FOR_EACH_IN_BUCKET (bundle, hmap_node, hash_pointer(aux, 0),
2403 &ofproto->bundles) {
2404 if (bundle->aux == aux) {
2405 return bundle;
2406 }
2407 }
2408 return NULL;
2409 }
2410
2411 /* Looks up each of the 'n_auxes' pointers in 'auxes' as bundles and adds the
2412 * ones that are found to 'bundles'. */
2413 static void
2414 bundle_lookup_multiple(struct ofproto_dpif *ofproto,
2415 void **auxes, size_t n_auxes,
2416 struct hmapx *bundles)
2417 {
2418 size_t i;
2419
2420 hmapx_init(bundles);
2421 for (i = 0; i < n_auxes; i++) {
2422 struct ofbundle *bundle = bundle_lookup(ofproto, auxes[i]);
2423 if (bundle) {
2424 hmapx_add(bundles, bundle);
2425 }
2426 }
2427 }
2428
2429 static void
2430 bundle_update(struct ofbundle *bundle)
2431 {
2432 struct ofport_dpif *port;
2433
2434 bundle->floodable = true;
2435 LIST_FOR_EACH (port, bundle_node, &bundle->ports) {
2436 if (port->up.pp.config & OFPUTIL_PC_NO_FLOOD
2437 || !stp_forward_in_state(port->stp_state)) {
2438 bundle->floodable = false;
2439 break;
2440 }
2441 }
2442 }
2443
2444 static void
2445 bundle_del_port(struct ofport_dpif *port)
2446 {
2447 struct ofbundle *bundle = port->bundle;
2448
2449 bundle->ofproto->backer->need_revalidate = REV_RECONFIGURE;
2450
2451 list_remove(&port->bundle_node);
2452 port->bundle = NULL;
2453
2454 if (bundle->lacp) {
2455 lacp_slave_unregister(bundle->lacp, port);
2456 }
2457 if (bundle->bond) {
2458 bond_slave_unregister(bundle->bond, port);
2459 }
2460
2461 bundle_update(bundle);
2462 }
2463
2464 static bool
2465 bundle_add_port(struct ofbundle *bundle, uint32_t ofp_port,
2466 struct lacp_slave_settings *lacp)
2467 {
2468 struct ofport_dpif *port;
2469
2470 port = get_ofp_port(bundle->ofproto, ofp_port);
2471 if (!port) {
2472 return false;
2473 }
2474
2475 if (port->bundle != bundle) {
2476 bundle->ofproto->backer->need_revalidate = REV_RECONFIGURE;
2477 if (port->bundle) {
2478 bundle_del_port(port);
2479 }
2480
2481 port->bundle = bundle;
2482 list_push_back(&bundle->ports, &port->bundle_node);
2483 if (port->up.pp.config & OFPUTIL_PC_NO_FLOOD
2484 || !stp_forward_in_state(port->stp_state)) {
2485 bundle->floodable = false;
2486 }
2487 }
2488 if (lacp) {
2489 bundle->ofproto->backer->need_revalidate = REV_RECONFIGURE;
2490 lacp_slave_register(bundle->lacp, port, lacp);
2491 }
2492
2493 return true;
2494 }
2495
2496 static void
2497 bundle_destroy(struct ofbundle *bundle)
2498 {
2499 struct ofproto_dpif *ofproto;
2500 struct ofport_dpif *port, *next_port;
2501 int i;
2502
2503 if (!bundle) {
2504 return;
2505 }
2506
2507 ofproto = bundle->ofproto;
2508 for (i = 0; i < MAX_MIRRORS; i++) {
2509 struct ofmirror *m = ofproto->mirrors[i];
2510 if (m) {
2511 if (m->out == bundle) {
2512 mirror_destroy(m);
2513 } else if (hmapx_find_and_delete(&m->srcs, bundle)
2514 || hmapx_find_and_delete(&m->dsts, bundle)) {
2515 ofproto->backer->need_revalidate = REV_RECONFIGURE;
2516 }
2517 }
2518 }
2519
2520 LIST_FOR_EACH_SAFE (port, next_port, bundle_node, &bundle->ports) {
2521 bundle_del_port(port);
2522 }
2523
2524 bundle_flush_macs(bundle, true);
2525 hmap_remove(&ofproto->bundles, &bundle->hmap_node);
2526 free(bundle->name);
2527 free(bundle->trunks);
2528 lacp_destroy(bundle->lacp);
2529 bond_destroy(bundle->bond);
2530 free(bundle);
2531 }
2532
2533 static int
2534 bundle_set(struct ofproto *ofproto_, void *aux,
2535 const struct ofproto_bundle_settings *s)
2536 {
2537 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2538 bool need_flush = false;
2539 struct ofport_dpif *port;
2540 struct ofbundle *bundle;
2541 unsigned long *trunks;
2542 int vlan;
2543 size_t i;
2544 bool ok;
2545
2546 if (!s) {
2547 bundle_destroy(bundle_lookup(ofproto, aux));
2548 return 0;
2549 }
2550
2551 ovs_assert(s->n_slaves == 1 || s->bond != NULL);
2552 ovs_assert((s->lacp != NULL) == (s->lacp_slaves != NULL));
2553
2554 bundle = bundle_lookup(ofproto, aux);
2555 if (!bundle) {
2556 bundle = xmalloc(sizeof *bundle);
2557
2558 bundle->ofproto = ofproto;
2559 hmap_insert(&ofproto->bundles, &bundle->hmap_node,
2560 hash_pointer(aux, 0));
2561 bundle->aux = aux;
2562 bundle->name = NULL;
2563
2564 list_init(&bundle->ports);
2565 bundle->vlan_mode = PORT_VLAN_TRUNK;
2566 bundle->vlan = -1;
2567 bundle->trunks = NULL;
2568 bundle->use_priority_tags = s->use_priority_tags;
2569 bundle->lacp = NULL;
2570 bundle->bond = NULL;
2571
2572 bundle->floodable = true;
2573
2574 bundle->src_mirrors = 0;
2575 bundle->dst_mirrors = 0;
2576 bundle->mirror_out = 0;
2577 }
2578
2579 if (!bundle->name || strcmp(s->name, bundle->name)) {
2580 free(bundle->name);
2581 bundle->name = xstrdup(s->name);
2582 }
2583
2584 /* LACP. */
2585 if (s->lacp) {
2586 if (!bundle->lacp) {
2587 ofproto->backer->need_revalidate = REV_RECONFIGURE;
2588 bundle->lacp = lacp_create();
2589 }
2590 lacp_configure(bundle->lacp, s->lacp);
2591 } else {
2592 lacp_destroy(bundle->lacp);
2593 bundle->lacp = NULL;
2594 }
2595
2596 /* Update set of ports. */
2597 ok = true;
2598 for (i = 0; i < s->n_slaves; i++) {
2599 if (!bundle_add_port(bundle, s->slaves[i],
2600 s->lacp ? &s->lacp_slaves[i] : NULL)) {
2601 ok = false;
2602 }
2603 }
2604 if (!ok || list_size(&bundle->ports) != s->n_slaves) {
2605 struct ofport_dpif *next_port;
2606
2607 LIST_FOR_EACH_SAFE (port, next_port, bundle_node, &bundle->ports) {
2608 for (i = 0; i < s->n_slaves; i++) {
2609 if (s->slaves[i] == port->up.ofp_port) {
2610 goto found;
2611 }
2612 }
2613
2614 bundle_del_port(port);
2615 found: ;
2616 }
2617 }
2618 ovs_assert(list_size(&bundle->ports) <= s->n_slaves);
2619
2620 if (list_is_empty(&bundle->ports)) {
2621 bundle_destroy(bundle);
2622 return EINVAL;
2623 }
2624
2625 /* Set VLAN tagging mode */
2626 if (s->vlan_mode != bundle->vlan_mode
2627 || s->use_priority_tags != bundle->use_priority_tags) {
2628 bundle->vlan_mode = s->vlan_mode;
2629 bundle->use_priority_tags = s->use_priority_tags;
2630 need_flush = true;
2631 }
2632
2633 /* Set VLAN tag. */
2634 vlan = (s->vlan_mode == PORT_VLAN_TRUNK ? -1
2635 : s->vlan >= 0 && s->vlan <= 4095 ? s->vlan
2636 : 0);
2637 if (vlan != bundle->vlan) {
2638 bundle->vlan = vlan;
2639 need_flush = true;
2640 }
2641
2642 /* Get trunked VLANs. */
2643 switch (s->vlan_mode) {
2644 case PORT_VLAN_ACCESS:
2645 trunks = NULL;
2646 break;
2647
2648 case PORT_VLAN_TRUNK:
2649 trunks = CONST_CAST(unsigned long *, s->trunks);
2650 break;
2651
2652 case PORT_VLAN_NATIVE_UNTAGGED:
2653 case PORT_VLAN_NATIVE_TAGGED:
2654 if (vlan != 0 && (!s->trunks
2655 || !bitmap_is_set(s->trunks, vlan)
2656 || bitmap_is_set(s->trunks, 0))) {
2657 /* Force trunking the native VLAN and prohibit trunking VLAN 0. */
2658 if (s->trunks) {
2659 trunks = bitmap_clone(s->trunks, 4096);
2660 } else {
2661 trunks = bitmap_allocate1(4096);
2662 }
2663 bitmap_set1(trunks, vlan);
2664 bitmap_set0(trunks, 0);
2665 } else {
2666 trunks = CONST_CAST(unsigned long *, s->trunks);
2667 }
2668 break;
2669
2670 default:
2671 NOT_REACHED();
2672 }
2673 if (!vlan_bitmap_equal(trunks, bundle->trunks)) {
2674 free(bundle->trunks);
2675 if (trunks == s->trunks) {
2676 bundle->trunks = vlan_bitmap_clone(trunks);
2677 } else {
2678 bundle->trunks = trunks;
2679 trunks = NULL;
2680 }
2681 need_flush = true;
2682 }
2683 if (trunks != s->trunks) {
2684 free(trunks);
2685 }
2686
2687 /* Bonding. */
2688 if (!list_is_short(&bundle->ports)) {
2689 bundle->ofproto->has_bonded_bundles = true;
2690 if (bundle->bond) {
2691 if (bond_reconfigure(bundle->bond, s->bond)) {
2692 ofproto->backer->need_revalidate = REV_RECONFIGURE;
2693 }
2694 } else {
2695 bundle->bond = bond_create(s->bond);
2696 ofproto->backer->need_revalidate = REV_RECONFIGURE;
2697 }
2698
2699 LIST_FOR_EACH (port, bundle_node, &bundle->ports) {
2700 bond_slave_register(bundle->bond, port, port->up.netdev);
2701 }
2702 } else {
2703 bond_destroy(bundle->bond);
2704 bundle->bond = NULL;
2705 }
2706
2707 /* If we changed something that would affect MAC learning, un-learn
2708 * everything on this port and force flow revalidation. */
2709 if (need_flush) {
2710 bundle_flush_macs(bundle, false);
2711 }
2712
2713 return 0;
2714 }
2715
2716 static void
2717 bundle_remove(struct ofport *port_)
2718 {
2719 struct ofport_dpif *port = ofport_dpif_cast(port_);
2720 struct ofbundle *bundle = port->bundle;
2721
2722 if (bundle) {
2723 bundle_del_port(port);
2724 if (list_is_empty(&bundle->ports)) {
2725 bundle_destroy(bundle);
2726 } else if (list_is_short(&bundle->ports)) {
2727 bond_destroy(bundle->bond);
2728 bundle->bond = NULL;
2729 }
2730 }
2731 }
2732
2733 static void
2734 send_pdu_cb(void *port_, const void *pdu, size_t pdu_size)
2735 {
2736 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 10);
2737 struct ofport_dpif *port = port_;
2738 uint8_t ea[ETH_ADDR_LEN];
2739 int error;
2740
2741 error = netdev_get_etheraddr(port->up.netdev, ea);
2742 if (!error) {
2743 struct ofpbuf packet;
2744 void *packet_pdu;
2745
2746 ofpbuf_init(&packet, 0);
2747 packet_pdu = eth_compose(&packet, eth_addr_lacp, ea, ETH_TYPE_LACP,
2748 pdu_size);
2749 memcpy(packet_pdu, pdu, pdu_size);
2750
2751 send_packet(port, &packet);
2752 ofpbuf_uninit(&packet);
2753 } else {
2754 VLOG_ERR_RL(&rl, "port %s: cannot obtain Ethernet address of iface "
2755 "%s (%s)", port->bundle->name,
2756 netdev_get_name(port->up.netdev), strerror(error));
2757 }
2758 }
2759
2760 static void
2761 bundle_send_learning_packets(struct ofbundle *bundle)
2762 {
2763 struct ofproto_dpif *ofproto = bundle->ofproto;
2764 int error, n_packets, n_errors;
2765 struct mac_entry *e;
2766
2767 error = n_packets = n_errors = 0;
2768 LIST_FOR_EACH (e, lru_node, &ofproto->ml->lrus) {
2769 if (e->port.p != bundle) {
2770 struct ofpbuf *learning_packet;
2771 struct ofport_dpif *port;
2772 void *port_void;
2773 int ret;
2774
2775 /* The assignment to "port" is unnecessary but makes "grep"ing for
2776 * struct ofport_dpif more effective. */
2777 learning_packet = bond_compose_learning_packet(bundle->bond,
2778 e->mac, e->vlan,
2779 &port_void);
2780 port = port_void;
2781 ret = send_packet(port, learning_packet);
2782 ofpbuf_delete(learning_packet);
2783 if (ret) {
2784 error = ret;
2785 n_errors++;
2786 }
2787 n_packets++;
2788 }
2789 }
2790
2791 if (n_errors) {
2792 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
2793 VLOG_WARN_RL(&rl, "bond %s: %d errors sending %d gratuitous learning "
2794 "packets, last error was: %s",
2795 bundle->name, n_errors, n_packets, strerror(error));
2796 } else {
2797 VLOG_DBG("bond %s: sent %d gratuitous learning packets",
2798 bundle->name, n_packets);
2799 }
2800 }
2801
2802 static void
2803 bundle_run(struct ofbundle *bundle)
2804 {
2805 if (bundle->lacp) {
2806 lacp_run(bundle->lacp, send_pdu_cb);
2807 }
2808 if (bundle->bond) {
2809 struct ofport_dpif *port;
2810
2811 LIST_FOR_EACH (port, bundle_node, &bundle->ports) {
2812 bond_slave_set_may_enable(bundle->bond, port, port->may_enable);
2813 }
2814
2815 bond_run(bundle->bond, &bundle->ofproto->backer->revalidate_set,
2816 lacp_status(bundle->lacp));
2817 if (bond_should_send_learning_packets(bundle->bond)) {
2818 bundle_send_learning_packets(bundle);
2819 }
2820 }
2821 }
2822
2823 static void
2824 bundle_wait(struct ofbundle *bundle)
2825 {
2826 if (bundle->lacp) {
2827 lacp_wait(bundle->lacp);
2828 }
2829 if (bundle->bond) {
2830 bond_wait(bundle->bond);
2831 }
2832 }
2833 \f
2834 /* Mirrors. */
2835
2836 static int
2837 mirror_scan(struct ofproto_dpif *ofproto)
2838 {
2839 int idx;
2840
2841 for (idx = 0; idx < MAX_MIRRORS; idx++) {
2842 if (!ofproto->mirrors[idx]) {
2843 return idx;
2844 }
2845 }
2846 return -1;
2847 }
2848
2849 static struct ofmirror *
2850 mirror_lookup(struct ofproto_dpif *ofproto, void *aux)
2851 {
2852 int i;
2853
2854 for (i = 0; i < MAX_MIRRORS; i++) {
2855 struct ofmirror *mirror = ofproto->mirrors[i];
2856 if (mirror && mirror->aux == aux) {
2857 return mirror;
2858 }
2859 }
2860
2861 return NULL;
2862 }
2863
2864 /* Update the 'dup_mirrors' member of each of the ofmirrors in 'ofproto'. */
2865 static void
2866 mirror_update_dups(struct ofproto_dpif *ofproto)
2867 {
2868 int i;
2869
2870 for (i = 0; i < MAX_MIRRORS; i++) {
2871 struct ofmirror *m = ofproto->mirrors[i];
2872
2873 if (m) {
2874 m->dup_mirrors = MIRROR_MASK_C(1) << i;
2875 }
2876 }
2877
2878 for (i = 0; i < MAX_MIRRORS; i++) {
2879 struct ofmirror *m1 = ofproto->mirrors[i];
2880 int j;
2881
2882 if (!m1) {
2883 continue;
2884 }
2885
2886 for (j = i + 1; j < MAX_MIRRORS; j++) {
2887 struct ofmirror *m2 = ofproto->mirrors[j];
2888
2889 if (m2 && m1->out == m2->out && m1->out_vlan == m2->out_vlan) {
2890 m1->dup_mirrors |= MIRROR_MASK_C(1) << j;
2891 m2->dup_mirrors |= m1->dup_mirrors;
2892 }
2893 }
2894 }
2895 }
2896
2897 static int
2898 mirror_set(struct ofproto *ofproto_, void *aux,
2899 const struct ofproto_mirror_settings *s)
2900 {
2901 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2902 mirror_mask_t mirror_bit;
2903 struct ofbundle *bundle;
2904 struct ofmirror *mirror;
2905 struct ofbundle *out;
2906 struct hmapx srcs; /* Contains "struct ofbundle *"s. */
2907 struct hmapx dsts; /* Contains "struct ofbundle *"s. */
2908 int out_vlan;
2909
2910 mirror = mirror_lookup(ofproto, aux);
2911 if (!s) {
2912 mirror_destroy(mirror);
2913 return 0;
2914 }
2915 if (!mirror) {
2916 int idx;
2917
2918 idx = mirror_scan(ofproto);
2919 if (idx < 0) {
2920 VLOG_WARN("bridge %s: maximum of %d port mirrors reached, "
2921 "cannot create %s",
2922 ofproto->up.name, MAX_MIRRORS, s->name);
2923 return EFBIG;
2924 }
2925
2926 mirror = ofproto->mirrors[idx] = xzalloc(sizeof *mirror);
2927 mirror->ofproto = ofproto;
2928 mirror->idx = idx;
2929 mirror->aux = aux;
2930 mirror->out_vlan = -1;
2931 mirror->name = NULL;
2932 }
2933
2934 if (!mirror->name || strcmp(s->name, mirror->name)) {
2935 free(mirror->name);
2936 mirror->name = xstrdup(s->name);
2937 }
2938
2939 /* Get the new configuration. */
2940 if (s->out_bundle) {
2941 out = bundle_lookup(ofproto, s->out_bundle);
2942 if (!out) {
2943 mirror_destroy(mirror);
2944 return EINVAL;
2945 }
2946 out_vlan = -1;
2947 } else {
2948 out = NULL;
2949 out_vlan = s->out_vlan;
2950 }
2951 bundle_lookup_multiple(ofproto, s->srcs, s->n_srcs, &srcs);
2952 bundle_lookup_multiple(ofproto, s->dsts, s->n_dsts, &dsts);
2953
2954 /* If the configuration has not changed, do nothing. */
2955 if (hmapx_equals(&srcs, &mirror->srcs)
2956 && hmapx_equals(&dsts, &mirror->dsts)
2957 && vlan_bitmap_equal(mirror->vlans, s->src_vlans)
2958 && mirror->out == out
2959 && mirror->out_vlan == out_vlan)
2960 {
2961 hmapx_destroy(&srcs);
2962 hmapx_destroy(&dsts);
2963 return 0;
2964 }
2965
2966 hmapx_swap(&srcs, &mirror->srcs);
2967 hmapx_destroy(&srcs);
2968
2969 hmapx_swap(&dsts, &mirror->dsts);
2970 hmapx_destroy(&dsts);
2971
2972 free(mirror->vlans);
2973 mirror->vlans = vlan_bitmap_clone(s->src_vlans);
2974
2975 mirror->out = out;
2976 mirror->out_vlan = out_vlan;
2977
2978 /* Update bundles. */
2979 mirror_bit = MIRROR_MASK_C(1) << mirror->idx;
2980 HMAP_FOR_EACH (bundle, hmap_node, &mirror->ofproto->bundles) {
2981 if (hmapx_contains(&mirror->srcs, bundle)) {
2982 bundle->src_mirrors |= mirror_bit;
2983 } else {
2984 bundle->src_mirrors &= ~mirror_bit;
2985 }
2986
2987 if (hmapx_contains(&mirror->dsts, bundle)) {
2988 bundle->dst_mirrors |= mirror_bit;
2989 } else {
2990 bundle->dst_mirrors &= ~mirror_bit;
2991 }
2992
2993 if (mirror->out == bundle) {
2994 bundle->mirror_out |= mirror_bit;
2995 } else {
2996 bundle->mirror_out &= ~mirror_bit;
2997 }
2998 }
2999
3000 ofproto->backer->need_revalidate = REV_RECONFIGURE;
3001 ofproto->has_mirrors = true;
3002 mac_learning_flush(ofproto->ml,
3003 &ofproto->backer->revalidate_set);
3004 mirror_update_dups(ofproto);
3005
3006 return 0;
3007 }
3008
3009 static void
3010 mirror_destroy(struct ofmirror *mirror)
3011 {
3012 struct ofproto_dpif *ofproto;
3013 mirror_mask_t mirror_bit;
3014 struct ofbundle *bundle;
3015 int i;
3016
3017 if (!mirror) {
3018 return;
3019 }
3020
3021 ofproto = mirror->ofproto;
3022 ofproto->backer->need_revalidate = REV_RECONFIGURE;
3023 mac_learning_flush(ofproto->ml, &ofproto->backer->revalidate_set);
3024
3025 mirror_bit = MIRROR_MASK_C(1) << mirror->idx;
3026 HMAP_FOR_EACH (bundle, hmap_node, &ofproto->bundles) {
3027 bundle->src_mirrors &= ~mirror_bit;
3028 bundle->dst_mirrors &= ~mirror_bit;
3029 bundle->mirror_out &= ~mirror_bit;
3030 }
3031
3032 hmapx_destroy(&mirror->srcs);
3033 hmapx_destroy(&mirror->dsts);
3034 free(mirror->vlans);
3035
3036 ofproto->mirrors[mirror->idx] = NULL;
3037 free(mirror->name);
3038 free(mirror);
3039
3040 mirror_update_dups(ofproto);
3041
3042 ofproto->has_mirrors = false;
3043 for (i = 0; i < MAX_MIRRORS; i++) {
3044 if (ofproto->mirrors[i]) {
3045 ofproto->has_mirrors = true;
3046 break;
3047 }
3048 }
3049 }
3050
3051 static int
3052 mirror_get_stats(struct ofproto *ofproto_, void *aux,
3053 uint64_t *packets, uint64_t *bytes)
3054 {
3055 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
3056 struct ofmirror *mirror = mirror_lookup(ofproto, aux);
3057
3058 if (!mirror) {
3059 *packets = *bytes = UINT64_MAX;
3060 return 0;
3061 }
3062
3063 push_all_stats();
3064
3065 *packets = mirror->packet_count;
3066 *bytes = mirror->byte_count;
3067
3068 return 0;
3069 }
3070
3071 static int
3072 set_flood_vlans(struct ofproto *ofproto_, unsigned long *flood_vlans)
3073 {
3074 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
3075 if (mac_learning_set_flood_vlans(ofproto->ml, flood_vlans)) {
3076 mac_learning_flush(ofproto->ml, &ofproto->backer->revalidate_set);
3077 }
3078 return 0;
3079 }
3080
3081 static bool
3082 is_mirror_output_bundle(const struct ofproto *ofproto_, void *aux)
3083 {
3084 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
3085 struct ofbundle *bundle = bundle_lookup(ofproto, aux);
3086 return bundle && bundle->mirror_out != 0;
3087 }
3088
3089 static void
3090 forward_bpdu_changed(struct ofproto *ofproto_)
3091 {
3092 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
3093 ofproto->backer->need_revalidate = REV_RECONFIGURE;
3094 }
3095
3096 static void
3097 set_mac_table_config(struct ofproto *ofproto_, unsigned int idle_time,
3098 size_t max_entries)
3099 {
3100 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
3101 mac_learning_set_idle_time(ofproto->ml, idle_time);
3102 mac_learning_set_max_entries(ofproto->ml, max_entries);
3103 }
3104 \f
3105 /* Ports. */
3106
3107 static struct ofport_dpif *
3108 get_ofp_port(const struct ofproto_dpif *ofproto, uint16_t ofp_port)
3109 {
3110 struct ofport *ofport = ofproto_get_port(&ofproto->up, ofp_port);
3111 return ofport ? ofport_dpif_cast(ofport) : NULL;
3112 }
3113
3114 static struct ofport_dpif *
3115 get_odp_port(const struct ofproto_dpif *ofproto, uint32_t odp_port)
3116 {
3117 struct ofport_dpif *port = odp_port_to_ofport(ofproto->backer, odp_port);
3118 return port && &ofproto->up == port->up.ofproto ? port : NULL;
3119 }
3120
3121 static void
3122 ofproto_port_from_dpif_port(struct ofproto_dpif *ofproto,
3123 struct ofproto_port *ofproto_port,
3124 struct dpif_port *dpif_port)
3125 {
3126 ofproto_port->name = dpif_port->name;
3127 ofproto_port->type = dpif_port->type;
3128 ofproto_port->ofp_port = odp_port_to_ofp_port(ofproto, dpif_port->port_no);
3129 }
3130
3131 static struct ofport_dpif *
3132 ofport_get_peer(const struct ofport_dpif *ofport_dpif)
3133 {
3134 const struct ofproto_dpif *ofproto;
3135 const char *peer;
3136
3137 peer = netdev_vport_patch_peer(ofport_dpif->up.netdev);
3138 if (!peer) {
3139 return NULL;
3140 }
3141
3142 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
3143 struct ofport *ofport;
3144
3145 ofport = shash_find_data(&ofproto->up.port_by_name, peer);
3146 if (ofport && ofport->ofproto->ofproto_class == &ofproto_dpif_class) {
3147 return ofport_dpif_cast(ofport);
3148 }
3149 }
3150 return NULL;
3151 }
3152
3153 static void
3154 port_run_fast(struct ofport_dpif *ofport)
3155 {
3156 if (ofport->cfm && cfm_should_send_ccm(ofport->cfm)) {
3157 struct ofpbuf packet;
3158
3159 ofpbuf_init(&packet, 0);
3160 cfm_compose_ccm(ofport->cfm, &packet, ofport->up.pp.hw_addr);
3161 send_packet(ofport, &packet);
3162 ofpbuf_uninit(&packet);
3163 }
3164
3165 if (ofport->bfd && bfd_should_send_packet(ofport->bfd)) {
3166 struct ofpbuf packet;
3167
3168 ofpbuf_init(&packet, 0);
3169 bfd_put_packet(ofport->bfd, &packet, ofport->up.pp.hw_addr);
3170 send_packet(ofport, &packet);
3171 ofpbuf_uninit(&packet);
3172 }
3173 }
3174
3175 static void
3176 port_run(struct ofport_dpif *ofport)
3177 {
3178 long long int carrier_seq = netdev_get_carrier_resets(ofport->up.netdev);
3179 bool carrier_changed = carrier_seq != ofport->carrier_seq;
3180 bool enable = netdev_get_carrier(ofport->up.netdev);
3181
3182 ofport->carrier_seq = carrier_seq;
3183
3184 port_run_fast(ofport);
3185
3186 if (ofport->tnl_port
3187 && tnl_port_reconfigure(&ofport->up, ofport->odp_port,
3188 &ofport->tnl_port)) {
3189 ofproto_dpif_cast(ofport->up.ofproto)->backer->need_revalidate = true;
3190 }
3191
3192 if (ofport->cfm) {
3193 int cfm_opup = cfm_get_opup(ofport->cfm);
3194
3195 cfm_run(ofport->cfm);
3196 enable = enable && !cfm_get_fault(ofport->cfm);
3197
3198 if (cfm_opup >= 0) {
3199 enable = enable && cfm_opup;
3200 }
3201 }
3202
3203 if (ofport->bfd) {
3204 bfd_run(ofport->bfd);
3205 enable = enable && bfd_forwarding(ofport->bfd);
3206 }
3207
3208 if (ofport->bundle) {
3209 enable = enable && lacp_slave_may_enable(ofport->bundle->lacp, ofport);
3210 if (carrier_changed) {
3211 lacp_slave_carrier_changed(ofport->bundle->lacp, ofport);
3212 }
3213 }
3214
3215 if (ofport->may_enable != enable) {
3216 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
3217
3218 if (ofproto->has_bundle_action) {
3219 ofproto->backer->need_revalidate = REV_PORT_TOGGLED;
3220 }
3221 }
3222
3223 ofport->may_enable = enable;
3224 }
3225
3226 static void
3227 port_wait(struct ofport_dpif *ofport)
3228 {
3229 if (ofport->cfm) {
3230 cfm_wait(ofport->cfm);
3231 }
3232
3233 if (ofport->bfd) {
3234 bfd_wait(ofport->bfd);
3235 }
3236 }
3237
3238 static int
3239 port_query_by_name(const struct ofproto *ofproto_, const char *devname,
3240 struct ofproto_port *ofproto_port)
3241 {
3242 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
3243 struct dpif_port dpif_port;
3244 int error;
3245
3246 if (sset_contains(&ofproto->ghost_ports, devname)) {
3247 const char *type = netdev_get_type_from_name(devname);
3248
3249 /* We may be called before ofproto->up.port_by_name is populated with
3250 * the appropriate ofport. For this reason, we must get the name and
3251 * type from the netdev layer directly. */
3252 if (type) {
3253 const struct ofport *ofport;
3254
3255 ofport = shash_find_data(&ofproto->up.port_by_name, devname);
3256 ofproto_port->ofp_port = ofport ? ofport->ofp_port : OFPP_NONE;
3257 ofproto_port->name = xstrdup(devname);
3258 ofproto_port->type = xstrdup(type);
3259 return 0;
3260 }
3261 return ENODEV;
3262 }
3263
3264 if (!sset_contains(&ofproto->ports, devname)) {
3265 return ENODEV;
3266 }
3267 error = dpif_port_query_by_name(ofproto->backer->dpif,
3268 devname, &dpif_port);
3269 if (!error) {
3270 ofproto_port_from_dpif_port(ofproto, ofproto_port, &dpif_port);
3271 }
3272 return error;
3273 }
3274
3275 static int
3276 port_add(struct ofproto *ofproto_, struct netdev *netdev)
3277 {
3278 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
3279 const char *dp_port_name = netdev_vport_get_dpif_port(netdev);
3280 const char *devname = netdev_get_name(netdev);
3281
3282 if (netdev_vport_is_patch(netdev)) {
3283 sset_add(&ofproto->ghost_ports, netdev_get_name(netdev));
3284 return 0;
3285 }
3286
3287 if (!dpif_port_exists(ofproto->backer->dpif, dp_port_name)) {
3288 uint32_t port_no = UINT32_MAX;
3289 int error;
3290
3291 error = dpif_port_add(ofproto->backer->dpif, netdev, &port_no);
3292 if (error) {
3293 return error;
3294 }
3295 if (netdev_get_tunnel_config(netdev)) {
3296 simap_put(&ofproto->backer->tnl_backers, dp_port_name, port_no);
3297 }
3298 }
3299
3300 if (netdev_get_tunnel_config(netdev)) {
3301 sset_add(&ofproto->ghost_ports, devname);
3302 } else {
3303 sset_add(&ofproto->ports, devname);
3304 }
3305 return 0;
3306 }
3307
3308 static int
3309 port_del(struct ofproto *ofproto_, uint16_t ofp_port)
3310 {
3311 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
3312 struct ofport_dpif *ofport = get_ofp_port(ofproto, ofp_port);
3313 int error = 0;
3314
3315 if (!ofport) {
3316 return 0;
3317 }
3318
3319 sset_find_and_delete(&ofproto->ghost_ports,
3320 netdev_get_name(ofport->up.netdev));
3321 ofproto->backer->need_revalidate = REV_RECONFIGURE;
3322 if (!ofport->tnl_port) {
3323 error = dpif_port_del(ofproto->backer->dpif, ofport->odp_port);
3324 if (!error) {
3325 /* The caller is going to close ofport->up.netdev. If this is a
3326 * bonded port, then the bond is using that netdev, so remove it
3327 * from the bond. The client will need to reconfigure everything
3328 * after deleting ports, so then the slave will get re-added. */
3329 bundle_remove(&ofport->up);
3330 }
3331 }
3332 return error;
3333 }
3334
3335 static int
3336 port_get_stats(const struct ofport *ofport_, struct netdev_stats *stats)
3337 {
3338 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
3339 int error;
3340
3341 push_all_stats();
3342
3343 error = netdev_get_stats(ofport->up.netdev, stats);
3344
3345 if (!error && ofport_->ofp_port == OFPP_LOCAL) {
3346 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
3347
3348 /* ofproto->stats.tx_packets represents packets that we created
3349 * internally and sent to some port (e.g. packets sent with
3350 * send_packet()). Account for them as if they had come from
3351 * OFPP_LOCAL and got forwarded. */
3352
3353 if (stats->rx_packets != UINT64_MAX) {
3354 stats->rx_packets += ofproto->stats.tx_packets;
3355 }
3356
3357 if (stats->rx_bytes != UINT64_MAX) {
3358 stats->rx_bytes += ofproto->stats.tx_bytes;
3359 }
3360
3361 /* ofproto->stats.rx_packets represents packets that were received on
3362 * some port and we processed internally and dropped (e.g. STP).
3363 * Account for them as if they had been forwarded to OFPP_LOCAL. */
3364
3365 if (stats->tx_packets != UINT64_MAX) {
3366 stats->tx_packets += ofproto->stats.rx_packets;
3367 }
3368
3369 if (stats->tx_bytes != UINT64_MAX) {
3370 stats->tx_bytes += ofproto->stats.rx_bytes;
3371 }
3372 }
3373
3374 return error;
3375 }
3376
3377 struct port_dump_state {
3378 uint32_t bucket;
3379 uint32_t offset;
3380 bool ghost;
3381
3382 struct ofproto_port port;
3383 bool has_port;
3384 };
3385
3386 static int
3387 port_dump_start(const struct ofproto *ofproto_ OVS_UNUSED, void **statep)
3388 {
3389 *statep = xzalloc(sizeof(struct port_dump_state));
3390 return 0;
3391 }
3392
3393 static int
3394 port_dump_next(const struct ofproto *ofproto_, void *state_,
3395 struct ofproto_port *port)
3396 {
3397 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
3398 struct port_dump_state *state = state_;
3399 const struct sset *sset;
3400 struct sset_node *node;
3401
3402 if (state->has_port) {
3403 ofproto_port_destroy(&state->port);
3404 state->has_port = false;
3405 }
3406 sset = state->ghost ? &ofproto->ghost_ports : &ofproto->ports;
3407 while ((node = sset_at_position(sset, &state->bucket, &state->offset))) {
3408 int error;
3409
3410 error = port_query_by_name(ofproto_, node->name, &state->port);
3411 if (!error) {
3412 *port = state->port;
3413 state->has_port = true;
3414 return 0;
3415 } else if (error != ENODEV) {
3416 return error;
3417 }
3418 }
3419
3420 if (!state->ghost) {
3421 state->ghost = true;
3422 state->bucket = 0;
3423 state->offset = 0;
3424 return port_dump_next(ofproto_, state_, port);
3425 }
3426
3427 return EOF;
3428 }
3429
3430 static int
3431 port_dump_done(const struct ofproto *ofproto_ OVS_UNUSED, void *state_)
3432 {
3433 struct port_dump_state *state = state_;
3434
3435 if (state->has_port) {
3436 ofproto_port_destroy(&state->port);
3437 }
3438 free(state);
3439 return 0;
3440 }
3441
3442 static int
3443 port_poll(const struct ofproto *ofproto_, char **devnamep)
3444 {
3445 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
3446
3447 if (ofproto->port_poll_errno) {
3448 int error = ofproto->port_poll_errno;
3449 ofproto->port_poll_errno = 0;
3450 return error;
3451 }
3452
3453 if (sset_is_empty(&ofproto->port_poll_set)) {
3454 return EAGAIN;
3455 }
3456
3457 *devnamep = sset_pop(&ofproto->port_poll_set);
3458 return 0;
3459 }
3460
3461 static void
3462 port_poll_wait(const struct ofproto *ofproto_)
3463 {
3464 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
3465 dpif_port_poll_wait(ofproto->backer->dpif);
3466 }
3467
3468 static int
3469 port_is_lacp_current(const struct ofport *ofport_)
3470 {
3471 const struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
3472 return (ofport->bundle && ofport->bundle->lacp
3473 ? lacp_slave_is_current(ofport->bundle->lacp, ofport)
3474 : -1);
3475 }
3476 \f
3477 /* Upcall handling. */
3478
3479 /* Flow miss batching.
3480 *
3481 * Some dpifs implement operations faster when you hand them off in a batch.
3482 * To allow batching, "struct flow_miss" queues the dpif-related work needed
3483 * for a given flow. Each "struct flow_miss" corresponds to sending one or
3484 * more packets, plus possibly installing the flow in the dpif.
3485 *
3486 * So far we only batch the operations that affect flow setup time the most.
3487 * It's possible to batch more than that, but the benefit might be minimal. */
3488 struct flow_miss {
3489 struct hmap_node hmap_node;
3490 struct ofproto_dpif *ofproto;
3491 struct flow flow;
3492 enum odp_key_fitness key_fitness;
3493 const struct nlattr *key;
3494 size_t key_len;
3495 struct initial_vals initial_vals;
3496 struct list packets;
3497 enum dpif_upcall_type upcall_type;
3498 uint32_t odp_in_port;
3499 };
3500
3501 struct flow_miss_op {
3502 struct dpif_op dpif_op;
3503 void *garbage; /* Pointer to pass to free(), NULL if none. */
3504 uint64_t stub[1024 / 8]; /* Temporary buffer. */
3505 };
3506
3507 /* Sends an OFPT_PACKET_IN message for 'packet' of type OFPR_NO_MATCH to each
3508 * OpenFlow controller as necessary according to their individual
3509 * configurations. */
3510 static void
3511 send_packet_in_miss(struct ofproto_dpif *ofproto, const struct ofpbuf *packet,
3512 const struct flow *flow)
3513 {
3514 struct ofputil_packet_in pin;
3515
3516 pin.packet = packet->data;
3517 pin.packet_len = packet->size;
3518 pin.reason = OFPR_NO_MATCH;
3519 pin.controller_id = 0;
3520
3521 pin.table_id = 0;
3522 pin.cookie = 0;
3523
3524 pin.send_len = 0; /* not used for flow table misses */
3525
3526 flow_get_metadata(flow, &pin.fmd);
3527
3528 connmgr_send_packet_in(ofproto->up.connmgr, &pin);
3529 }
3530
3531 static enum slow_path_reason
3532 process_special(struct ofproto_dpif *ofproto, const struct flow *flow,
3533 const struct ofport_dpif *ofport, const struct ofpbuf *packet)
3534 {
3535 if (!ofport) {
3536 return 0;
3537 } else if (ofport->cfm && cfm_should_process_flow(ofport->cfm, flow)) {
3538 if (packet) {
3539 cfm_process_heartbeat(ofport->cfm, packet);
3540 }
3541 return SLOW_CFM;
3542 } else if (ofport->bfd && bfd_should_process_flow(flow)) {
3543 if (packet) {
3544 bfd_process_packet(ofport->bfd, flow, packet);
3545 }
3546 return SLOW_BFD;
3547 } else if (ofport->bundle && ofport->bundle->lacp
3548 && flow->dl_type == htons(ETH_TYPE_LACP)) {
3549 if (packet) {
3550 lacp_process_packet(ofport->bundle->lacp, ofport, packet);
3551 }
3552 return SLOW_LACP;
3553 } else if (ofproto->stp && stp_should_process_flow(flow)) {
3554 if (packet) {
3555 stp_process_packet(ofport, packet);
3556 }
3557 return SLOW_STP;
3558 } else {
3559 return 0;
3560 }
3561 }
3562
3563 static struct flow_miss *
3564 flow_miss_find(struct hmap *todo, const struct ofproto_dpif *ofproto,
3565 const struct flow *flow, uint32_t hash)
3566 {
3567 struct flow_miss *miss;
3568
3569 HMAP_FOR_EACH_WITH_HASH (miss, hmap_node, hash, todo) {
3570 if (miss->ofproto == ofproto && flow_equal(&miss->flow, flow)) {
3571 return miss;
3572 }
3573 }
3574
3575 return NULL;
3576 }
3577
3578 /* Partially Initializes 'op' as an "execute" operation for 'miss' and
3579 * 'packet'. The caller must initialize op->actions and op->actions_len. If
3580 * 'miss' is associated with a subfacet the caller must also initialize the
3581 * returned op->subfacet, and if anything needs to be freed after processing
3582 * the op, the caller must initialize op->garbage also. */
3583 static void
3584 init_flow_miss_execute_op(struct flow_miss *miss, struct ofpbuf *packet,
3585 struct flow_miss_op *op)
3586 {
3587 if (miss->flow.vlan_tci != miss->initial_vals.vlan_tci) {
3588 /* This packet was received on a VLAN splinter port. We
3589 * added a VLAN to the packet to make the packet resemble
3590 * the flow, but the actions were composed assuming that
3591 * the packet contained no VLAN. So, we must remove the
3592 * VLAN header from the packet before trying to execute the
3593 * actions. */
3594 eth_pop_vlan(packet);
3595 }
3596
3597 op->garbage = NULL;
3598 op->dpif_op.type = DPIF_OP_EXECUTE;
3599 op->dpif_op.u.execute.key = miss->key;
3600 op->dpif_op.u.execute.key_len = miss->key_len;
3601 op->dpif_op.u.execute.packet = packet;
3602 }
3603
3604 /* Helper for handle_flow_miss_without_facet() and
3605 * handle_flow_miss_with_facet(). */
3606 static void
3607 handle_flow_miss_common(struct rule_dpif *rule,
3608 struct ofpbuf *packet, const struct flow *flow)
3609 {
3610 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
3611
3612 ofproto->n_matches++;
3613
3614 if (rule->up.cr.priority == FAIL_OPEN_PRIORITY) {
3615 /*
3616 * Extra-special case for fail-open mode.
3617 *
3618 * We are in fail-open mode and the packet matched the fail-open
3619 * rule, but we are connected to a controller too. We should send
3620 * the packet up to the controller in the hope that it will try to
3621 * set up a flow and thereby allow us to exit fail-open.
3622 *
3623 * See the top-level comment in fail-open.c for more information.
3624 */
3625 send_packet_in_miss(ofproto, packet, flow);
3626 }
3627 }
3628
3629 /* Figures out whether a flow that missed in 'ofproto', whose details are in
3630 * 'miss', is likely to be worth tracking in detail in userspace and (usually)
3631 * installing a datapath flow. The answer is usually "yes" (a return value of
3632 * true). However, for short flows the cost of bookkeeping is much higher than
3633 * the benefits, so when the datapath holds a large number of flows we impose
3634 * some heuristics to decide which flows are likely to be worth tracking. */
3635 static bool
3636 flow_miss_should_make_facet(struct ofproto_dpif *ofproto,
3637 struct flow_miss *miss, uint32_t hash)
3638 {
3639 if (!ofproto->governor) {
3640 size_t n_subfacets;
3641
3642 n_subfacets = hmap_count(&ofproto->subfacets);
3643 if (n_subfacets * 2 <= ofproto->up.flow_eviction_threshold) {
3644 return true;
3645 }
3646
3647 ofproto->governor = governor_create(ofproto->up.name);
3648 }
3649
3650 return governor_should_install_flow(ofproto->governor, hash,
3651 list_size(&miss->packets));
3652 }
3653
3654 /* Handles 'miss', which matches 'rule', without creating a facet or subfacet
3655 * or creating any datapath flow. May add an "execute" operation to 'ops' and
3656 * increment '*n_ops'. */
3657 static void
3658 handle_flow_miss_without_facet(struct flow_miss *miss,
3659 struct rule_dpif *rule,
3660 struct flow_miss_op *ops, size_t *n_ops)
3661 {
3662 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
3663 long long int now = time_msec();
3664 struct action_xlate_ctx ctx;
3665 struct ofpbuf *packet;
3666
3667 LIST_FOR_EACH (packet, list_node, &miss->packets) {
3668 struct flow_miss_op *op = &ops[*n_ops];
3669 struct dpif_flow_stats stats;
3670 struct ofpbuf odp_actions;
3671
3672 COVERAGE_INC(facet_suppress);
3673
3674 ofpbuf_use_stub(&odp_actions, op->stub, sizeof op->stub);
3675
3676 dpif_flow_stats_extract(&miss->flow, packet, now, &stats);
3677 rule_credit_stats(rule, &stats);
3678
3679 action_xlate_ctx_init(&ctx, ofproto, &miss->flow,
3680 &miss->initial_vals, rule, 0, packet);
3681 ctx.resubmit_stats = &stats;
3682 xlate_actions(&ctx, rule->up.ofpacts, rule->up.ofpacts_len,
3683 &odp_actions);
3684
3685 if (odp_actions.size) {
3686 struct dpif_execute *execute = &op->dpif_op.u.execute;
3687
3688 init_flow_miss_execute_op(miss, packet, op);
3689 execute->actions = odp_actions.data;
3690 execute->actions_len = odp_actions.size;
3691 op->garbage = ofpbuf_get_uninit_pointer(&odp_actions);
3692
3693 (*n_ops)++;
3694 } else {
3695 ofpbuf_uninit(&odp_actions);
3696 }
3697 }
3698 }
3699
3700 /* Handles 'miss', which matches 'facet'. May add any required datapath
3701 * operations to 'ops', incrementing '*n_ops' for each new op.
3702 *
3703 * All of the packets in 'miss' are considered to have arrived at time 'now'.
3704 * This is really important only for new facets: if we just called time_msec()
3705 * here, then the new subfacet or its packets could look (occasionally) as
3706 * though it was used some time after the facet was used. That can make a
3707 * one-packet flow look like it has a nonzero duration, which looks odd in
3708 * e.g. NetFlow statistics. */
3709 static void
3710 handle_flow_miss_with_facet(struct flow_miss *miss, struct facet *facet,
3711 long long int now,
3712 struct flow_miss_op *ops, size_t *n_ops)
3713 {
3714 struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto);
3715 enum subfacet_path want_path;
3716 struct subfacet *subfacet;
3717 struct ofpbuf *packet;
3718
3719 subfacet = subfacet_create(facet, miss, now);
3720
3721 LIST_FOR_EACH (packet, list_node, &miss->packets) {
3722 struct flow_miss_op *op = &ops[*n_ops];
3723 struct dpif_flow_stats stats;
3724 struct ofpbuf odp_actions;
3725
3726 handle_flow_miss_common(facet->rule, packet, &miss->flow);
3727
3728 ofpbuf_use_stub(&odp_actions, op->stub, sizeof op->stub);
3729 if (!subfacet->actions || subfacet->slow) {
3730 subfacet_make_actions(subfacet, packet, &odp_actions);
3731 }
3732
3733 dpif_flow_stats_extract(&facet->flow, packet, now, &stats);
3734 subfacet_update_stats(subfacet, &stats);
3735
3736 if (subfacet->actions_len) {
3737 struct dpif_execute *execute = &op->dpif_op.u.execute;
3738
3739 init_flow_miss_execute_op(miss, packet, op);
3740 if (!subfacet->slow) {
3741 execute->actions = subfacet->actions;
3742 execute->actions_len = subfacet->actions_len;
3743 ofpbuf_uninit(&odp_actions);
3744 } else {
3745 execute->actions = odp_actions.data;
3746 execute->actions_len = odp_actions.size;
3747 op->garbage = ofpbuf_get_uninit_pointer(&odp_actions);
3748 }
3749
3750 (*n_ops)++;
3751 } else {
3752 ofpbuf_uninit(&odp_actions);
3753 }
3754 }
3755
3756 want_path = subfacet_want_path(subfacet->slow);
3757 if (miss->upcall_type == DPIF_UC_MISS || subfacet->path != want_path) {
3758 struct flow_miss_op *op = &ops[(*n_ops)++];
3759 struct dpif_flow_put *put = &op->dpif_op.u.flow_put;
3760
3761 subfacet->path = want_path;
3762
3763 op->garbage = NULL;
3764 op->dpif_op.type = DPIF_OP_FLOW_PUT;
3765 put->flags = DPIF_FP_CREATE | DPIF_FP_MODIFY;
3766 put->key = miss->key;
3767 put->key_len = miss->key_len;
3768 if (want_path == SF_FAST_PATH) {
3769 put->actions = subfacet->actions;
3770 put->actions_len = subfacet->actions_len;
3771 } else {
3772 compose_slow_path(ofproto, &facet->flow, subfacet->slow,
3773 op->stub, sizeof op->stub,
3774 &put->actions, &put->actions_len);
3775 }
3776 put->stats = NULL;
3777 }
3778 }
3779
3780 /* Handles flow miss 'miss'. May add any required datapath operations
3781 * to 'ops', incrementing '*n_ops' for each new op. */
3782 static void
3783 handle_flow_miss(struct flow_miss *miss, struct flow_miss_op *ops,
3784 size_t *n_ops)
3785 {
3786 struct ofproto_dpif *ofproto = miss->ofproto;
3787 struct facet *facet;
3788 long long int now;
3789 uint32_t hash;
3790
3791 /* The caller must ensure that miss->hmap_node.hash contains
3792 * flow_hash(miss->flow, 0). */
3793 hash = miss->hmap_node.hash;
3794
3795 facet = facet_lookup_valid(ofproto, &miss->flow, hash);
3796 if (!facet) {
3797 struct rule_dpif *rule = rule_dpif_lookup(ofproto, &miss->flow);
3798
3799 if (!flow_miss_should_make_facet(ofproto, miss, hash)) {
3800 handle_flow_miss_without_facet(miss, rule, ops, n_ops);
3801 return;
3802 }
3803
3804 facet = facet_create(rule, &miss->flow, hash);
3805 now = facet->used;
3806 } else {
3807 now = time_msec();
3808 }
3809 handle_flow_miss_with_facet(miss, facet, now, ops, n_ops);
3810 }
3811
3812 static struct drop_key *
3813 drop_key_lookup(const struct dpif_backer *backer, const struct nlattr *key,
3814 size_t key_len)
3815 {
3816 struct drop_key *drop_key;
3817
3818 HMAP_FOR_EACH_WITH_HASH (drop_key, hmap_node, hash_bytes(key, key_len, 0),
3819 &backer->drop_keys) {
3820 if (drop_key->key_len == key_len
3821 && !memcmp(drop_key->key, key, key_len)) {
3822 return drop_key;
3823 }
3824 }
3825 return NULL;
3826 }
3827
3828 static void
3829 drop_key_clear(struct dpif_backer *backer)
3830 {
3831 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 15);
3832 struct drop_key *drop_key, *next;
3833
3834 HMAP_FOR_EACH_SAFE (drop_key, next, hmap_node, &backer->drop_keys) {
3835 int error;
3836
3837 error = dpif_flow_del(backer->dpif, drop_key->key, drop_key->key_len,
3838 NULL);
3839 if (error && !VLOG_DROP_WARN(&rl)) {
3840 struct ds ds = DS_EMPTY_INITIALIZER;
3841 odp_flow_key_format(drop_key->key, drop_key->key_len, &ds);
3842 VLOG_WARN("Failed to delete drop key (%s) (%s)", strerror(error),
3843 ds_cstr(&ds));
3844 ds_destroy(&ds);
3845 }
3846
3847 hmap_remove(&backer->drop_keys, &drop_key->hmap_node);
3848 free(drop_key->key);
3849 free(drop_key);
3850 }
3851 }
3852
3853 /* Given a datpath, packet, and flow metadata ('backer', 'packet', and 'key'
3854 * respectively), populates 'flow' with the result of odp_flow_key_to_flow().
3855 * Optionally, if nonnull, populates 'fitnessp' with the fitness of 'flow' as
3856 * returned by odp_flow_key_to_flow(). Also, optionally populates 'ofproto'
3857 * with the ofproto_dpif, and 'odp_in_port' with the datapath in_port, that
3858 * 'packet' ingressed.
3859 *
3860 * If 'ofproto' is nonnull, requires 'flow''s in_port to exist. Otherwise sets
3861 * 'flow''s in_port to OFPP_NONE.
3862 *
3863 * This function does post-processing on data returned from
3864 * odp_flow_key_to_flow() to help make VLAN splinters transparent to the rest
3865 * of the upcall processing logic. In particular, if the extracted in_port is
3866 * a VLAN splinter port, it replaces flow->in_port by the "real" port, sets
3867 * flow->vlan_tci correctly for the VLAN of the VLAN splinter port, and pushes
3868 * a VLAN header onto 'packet' (if it is nonnull).
3869 *
3870 * Optionally, if 'initial_vals' is nonnull, sets 'initial_vals->vlan_tci'
3871 * to the VLAN TCI with which the packet was really received, that is, the
3872 * actual VLAN TCI extracted by odp_flow_key_to_flow(). (This differs from
3873 * the value returned in flow->vlan_tci only for packets received on
3874 * VLAN splinters.)
3875 *
3876 * Similarly, this function also includes some logic to help with tunnels. It
3877 * may modify 'flow' as necessary to make the tunneling implementation
3878 * transparent to the upcall processing logic.
3879 *
3880 * Returns 0 if successful, ENODEV if the parsed flow has no associated ofport,
3881 * or some other positive errno if there are other problems. */
3882 static int
3883 ofproto_receive(const struct dpif_backer *backer, struct ofpbuf *packet,
3884 const struct nlattr *key, size_t key_len,
3885 struct flow *flow, enum odp_key_fitness *fitnessp,
3886 struct ofproto_dpif **ofproto, uint32_t *odp_in_port,
3887 struct initial_vals *initial_vals)
3888 {
3889 const struct ofport_dpif *port;
3890 enum odp_key_fitness fitness;
3891 int error = ENODEV;
3892
3893 fitness = odp_flow_key_to_flow(key, key_len, flow);
3894 if (fitness == ODP_FIT_ERROR) {
3895 error = EINVAL;
3896 goto exit;
3897 }
3898
3899 if (initial_vals) {
3900 initial_vals->vlan_tci = flow->vlan_tci;
3901 }
3902
3903 if (odp_in_port) {
3904 *odp_in_port = flow->in_port;
3905 }
3906
3907 port = (tnl_port_should_receive(flow)
3908 ? ofport_dpif_cast(tnl_port_receive(flow))
3909 : odp_port_to_ofport(backer, flow->in_port));
3910 flow->in_port = port ? port->up.ofp_port : OFPP_NONE;
3911 if (!port) {
3912 goto exit;
3913 }
3914
3915 /* XXX: Since the tunnel module is not scoped per backer, for a tunnel port
3916 * it's theoretically possible that we'll receive an ofport belonging to an
3917 * entirely different datapath. In practice, this can't happen because no
3918 * platforms has two separate datapaths which each support tunneling. */
3919 ovs_assert(ofproto_dpif_cast(port->up.ofproto)->backer == backer);
3920
3921 if (vsp_adjust_flow(ofproto_dpif_cast(port->up.ofproto), flow)) {
3922 if (packet) {
3923 /* Make the packet resemble the flow, so that it gets sent to
3924 * an OpenFlow controller properly, so that it looks correct
3925 * for sFlow, and so that flow_extract() will get the correct
3926 * vlan_tci if it is called on 'packet'.
3927 *
3928 * The allocated space inside 'packet' probably also contains
3929 * 'key', that is, both 'packet' and 'key' are probably part of
3930 * a struct dpif_upcall (see the large comment on that
3931 * structure definition), so pushing data on 'packet' is in
3932 * general not a good idea since it could overwrite 'key' or
3933 * free it as a side effect. However, it's OK in this special
3934 * case because we know that 'packet' is inside a Netlink
3935 * attribute: pushing 4 bytes will just overwrite the 4-byte
3936 * "struct nlattr", which is fine since we don't need that
3937 * header anymore. */
3938 eth_push_vlan(packet, flow->vlan_tci);
3939 }
3940 /* We can't reproduce 'key' from 'flow'. */
3941 fitness = fitness == ODP_FIT_PERFECT ? ODP_FIT_TOO_MUCH : fitness;
3942 }
3943 error = 0;
3944
3945 if (ofproto) {
3946 *ofproto = ofproto_dpif_cast(port->up.ofproto);
3947 }
3948
3949 exit:
3950 if (fitnessp) {
3951 *fitnessp = fitness;
3952 }
3953 return error;
3954 }
3955
3956 static void
3957 handle_miss_upcalls(struct dpif_backer *backer, struct dpif_upcall *upcalls,
3958 size_t n_upcalls)
3959 {
3960 struct dpif_upcall *upcall;
3961 struct flow_miss *miss;
3962 struct flow_miss misses[FLOW_MISS_MAX_BATCH];
3963 struct flow_miss_op flow_miss_ops[FLOW_MISS_MAX_BATCH * 2];
3964 struct dpif_op *dpif_ops[FLOW_MISS_MAX_BATCH * 2];
3965 struct hmap todo;
3966 int n_misses;
3967 size_t n_ops;
3968 size_t i;
3969
3970 if (!n_upcalls) {
3971 return;
3972 }
3973
3974 /* Construct the to-do list.
3975 *
3976 * This just amounts to extracting the flow from each packet and sticking
3977 * the packets that have the same flow in the same "flow_miss" structure so
3978 * that we can process them together. */
3979 hmap_init(&todo);
3980 n_misses = 0;
3981 for (upcall = upcalls; upcall < &upcalls[n_upcalls]; upcall++) {
3982 struct flow_miss *miss = &misses[n_misses];
3983 struct flow_miss *existing_miss;
3984 struct ofproto_dpif *ofproto;
3985 uint32_t odp_in_port;
3986 struct flow flow;
3987 uint32_t hash;
3988 int error;
3989
3990 error = ofproto_receive(backer, upcall->packet, upcall->key,
3991 upcall->key_len, &flow, &miss->key_fitness,
3992 &ofproto, &odp_in_port, &miss->initial_vals);
3993 if (error == ENODEV) {
3994 struct drop_key *drop_key;
3995
3996 /* Received packet on port for which we couldn't associate
3997 * an ofproto. This can happen if a port is removed while
3998 * traffic is being received. Print a rate-limited message
3999 * in case it happens frequently. Install a drop flow so
4000 * that future packets of the flow are inexpensively dropped
4001 * in the kernel. */
4002 VLOG_INFO_RL(&rl, "received packet on unassociated port %"PRIu32,
4003 flow.in_port);
4004
4005 drop_key = drop_key_lookup(backer, upcall->key, upcall->key_len);
4006 if (!drop_key) {
4007 drop_key = xmalloc(sizeof *drop_key);
4008 drop_key->key = xmemdup(upcall->key, upcall->key_len);
4009 drop_key->key_len = upcall->key_len;
4010
4011 hmap_insert(&backer->drop_keys, &drop_key->hmap_node,
4012 hash_bytes(drop_key->key, drop_key->key_len, 0));
4013 dpif_flow_put(backer->dpif, DPIF_FP_CREATE | DPIF_FP_MODIFY,
4014 drop_key->key, drop_key->key_len, NULL, 0, NULL);
4015 }
4016 continue;
4017 }
4018 if (error) {
4019 continue;
4020 }
4021
4022 ofproto->n_missed++;
4023 flow_extract(upcall->packet, flow.skb_priority, flow.skb_mark,
4024 &flow.tunnel, flow.in_port, &miss->flow);
4025
4026 /* Add other packets to a to-do list. */
4027 hash = flow_hash(&miss->flow, 0);
4028 existing_miss = flow_miss_find(&todo, ofproto, &miss->flow, hash);
4029 if (!existing_miss) {
4030 hmap_insert(&todo, &miss->hmap_node, hash);
4031 miss->ofproto = ofproto;
4032 miss->key = upcall->key;
4033 miss->key_len = upcall->key_len;
4034 miss->upcall_type = upcall->type;
4035 miss->odp_in_port = odp_in_port;
4036 list_init(&miss->packets);
4037
4038 n_misses++;
4039 } else {
4040 miss = existing_miss;
4041 }
4042 list_push_back(&miss->packets, &upcall->packet->list_node);
4043 }
4044
4045 /* Process each element in the to-do list, constructing the set of
4046 * operations to batch. */
4047 n_ops = 0;
4048 HMAP_FOR_EACH (miss, hmap_node, &todo) {
4049 handle_flow_miss(miss, flow_miss_ops, &n_ops);
4050 }
4051 ovs_assert(n_ops <= ARRAY_SIZE(flow_miss_ops));
4052
4053 /* Execute batch. */
4054 for (i = 0; i < n_ops; i++) {
4055 dpif_ops[i] = &flow_miss_ops[i].dpif_op;
4056 }
4057 dpif_operate(backer->dpif, dpif_ops, n_ops);
4058
4059 /* Free memory. */
4060 for (i = 0; i < n_ops; i++) {
4061 free(flow_miss_ops[i].garbage);
4062 }
4063 hmap_destroy(&todo);
4064 }
4065
4066 static enum { SFLOW_UPCALL, MISS_UPCALL, BAD_UPCALL, FLOW_SAMPLE_UPCALL,
4067 IPFIX_UPCALL }
4068 classify_upcall(const struct dpif_upcall *upcall)
4069 {
4070 size_t userdata_len;
4071 union user_action_cookie cookie;
4072
4073 /* First look at the upcall type. */
4074 switch (upcall->type) {
4075 case DPIF_UC_ACTION:
4076 break;
4077
4078 case DPIF_UC_MISS:
4079 return MISS_UPCALL;
4080
4081 case DPIF_N_UC_TYPES:
4082 default:
4083 VLOG_WARN_RL(&rl, "upcall has unexpected type %"PRIu32, upcall->type);
4084 return BAD_UPCALL;
4085 }
4086
4087 /* "action" upcalls need a closer look. */
4088 if (!upcall->userdata) {
4089 VLOG_WARN_RL(&rl, "action upcall missing cookie");
4090 return BAD_UPCALL;
4091 }
4092 userdata_len = nl_attr_get_size(upcall->userdata);
4093 if (userdata_len < sizeof cookie.type
4094 || userdata_len > sizeof cookie) {
4095 VLOG_WARN_RL(&rl, "action upcall cookie has unexpected size %zu",
4096 userdata_len);
4097 return BAD_UPCALL;
4098 }
4099 memset(&cookie, 0, sizeof cookie);
4100 memcpy(&cookie, nl_attr_get(upcall->userdata), userdata_len);
4101 if (userdata_len == sizeof cookie.sflow
4102 && cookie.type == USER_ACTION_COOKIE_SFLOW) {
4103 return SFLOW_UPCALL;
4104 } else if (userdata_len == sizeof cookie.slow_path
4105 && cookie.type == USER_ACTION_COOKIE_SLOW_PATH) {
4106 return MISS_UPCALL;
4107 } else if (userdata_len == sizeof cookie.flow_sample
4108 && cookie.type == USER_ACTION_COOKIE_FLOW_SAMPLE) {
4109 return FLOW_SAMPLE_UPCALL;
4110 } else if (userdata_len == sizeof cookie.ipfix
4111 && cookie.type == USER_ACTION_COOKIE_IPFIX) {
4112 return IPFIX_UPCALL;
4113 } else {
4114 VLOG_WARN_RL(&rl, "invalid user cookie of type %"PRIu16
4115 " and size %zu", cookie.type, userdata_len);
4116 return BAD_UPCALL;
4117 }
4118 }
4119
4120 static void
4121 handle_sflow_upcall(struct dpif_backer *backer,
4122 const struct dpif_upcall *upcall)
4123 {
4124 struct ofproto_dpif *ofproto;
4125 union user_action_cookie cookie;
4126 struct flow flow;
4127 uint32_t odp_in_port;
4128
4129 if (ofproto_receive(backer, upcall->packet, upcall->key, upcall->key_len,
4130 &flow, NULL, &ofproto, &odp_in_port, NULL)
4131 || !ofproto->sflow) {
4132 return;
4133 }
4134
4135 memset(&cookie, 0, sizeof cookie);
4136 memcpy(&cookie, nl_attr_get(upcall->userdata), sizeof cookie.sflow);
4137 dpif_sflow_received(ofproto->sflow, upcall->packet, &flow,
4138 odp_in_port, &cookie);
4139 }
4140
4141 static void
4142 handle_flow_sample_upcall(struct dpif_backer *backer,
4143 const struct dpif_upcall *upcall)
4144 {
4145 struct ofproto_dpif *ofproto;
4146 union user_action_cookie cookie;
4147 struct flow flow;
4148
4149 if (ofproto_receive(backer, upcall->packet, upcall->key, upcall->key_len,
4150 &flow, NULL, &ofproto, NULL, NULL)
4151 || !ofproto->ipfix) {
4152 return;
4153 }
4154
4155 memset(&cookie, 0, sizeof cookie);
4156 memcpy(&cookie, nl_attr_get(upcall->userdata), sizeof cookie.flow_sample);
4157
4158 /* The flow reflects exactly the contents of the packet. Sample
4159 * the packet using it. */
4160 dpif_ipfix_flow_sample(ofproto->ipfix, upcall->packet, &flow,
4161 cookie.flow_sample.collector_set_id,
4162 cookie.flow_sample.probability,
4163 cookie.flow_sample.obs_domain_id,
4164 cookie.flow_sample.obs_point_id);
4165 }
4166
4167 static void
4168 handle_ipfix_upcall(struct dpif_backer *backer,
4169 const struct dpif_upcall *upcall)
4170 {
4171 struct ofproto_dpif *ofproto;
4172 struct flow flow;
4173
4174 if (ofproto_receive(backer, upcall->packet, upcall->key, upcall->key_len,
4175 &flow, NULL, &ofproto, NULL, NULL)
4176 || !ofproto->ipfix) {
4177 return;
4178 }
4179
4180 /* The flow reflects exactly the contents of the packet. Sample
4181 * the packet using it. */
4182 dpif_ipfix_bridge_sample(ofproto->ipfix, upcall->packet, &flow);
4183 }
4184
4185 static int
4186 handle_upcalls(struct dpif_backer *backer, unsigned int max_batch)
4187 {
4188 struct dpif_upcall misses[FLOW_MISS_MAX_BATCH];
4189 struct ofpbuf miss_bufs[FLOW_MISS_MAX_BATCH];
4190 uint64_t miss_buf_stubs[FLOW_MISS_MAX_BATCH][4096 / 8];
4191 int n_processed;
4192 int n_misses;
4193 int i;
4194
4195 ovs_assert(max_batch <= FLOW_MISS_MAX_BATCH);
4196
4197 n_misses = 0;
4198 for (n_processed = 0; n_processed < max_batch; n_processed++) {
4199 struct dpif_upcall *upcall = &misses[n_misses];
4200 struct ofpbuf *buf = &miss_bufs[n_misses];
4201 int error;
4202
4203 ofpbuf_use_stub(buf, miss_buf_stubs[n_misses],
4204 sizeof miss_buf_stubs[n_misses]);
4205 error = dpif_recv(backer->dpif, upcall, buf);
4206 if (error) {
4207 ofpbuf_uninit(buf);
4208 break;
4209 }
4210
4211 switch (classify_upcall(upcall)) {
4212 case MISS_UPCALL:
4213 /* Handle it later. */
4214 n_misses++;
4215 break;
4216
4217 case SFLOW_UPCALL:
4218 handle_sflow_upcall(backer, upcall);
4219 ofpbuf_uninit(buf);
4220 break;
4221
4222 case FLOW_SAMPLE_UPCALL:
4223 handle_flow_sample_upcall(backer, upcall);
4224 ofpbuf_uninit(buf);
4225 break;
4226
4227 case IPFIX_UPCALL:
4228 handle_ipfix_upcall(backer, upcall);
4229 ofpbuf_uninit(buf);
4230 break;
4231
4232 case BAD_UPCALL:
4233 ofpbuf_uninit(buf);
4234 break;
4235 }
4236 }
4237
4238 /* Handle deferred MISS_UPCALL processing. */
4239 handle_miss_upcalls(backer, misses, n_misses);
4240 for (i = 0; i < n_misses; i++) {
4241 ofpbuf_uninit(&miss_bufs[i]);
4242 }
4243
4244 return n_processed;
4245 }
4246 \f
4247 /* Flow expiration. */
4248
4249 static int subfacet_max_idle(const struct ofproto_dpif *);
4250 static void update_stats(struct dpif_backer *);
4251 static void rule_expire(struct rule_dpif *);
4252 static void expire_subfacets(struct ofproto_dpif *, int dp_max_idle);
4253
4254 /* This function is called periodically by run(). Its job is to collect
4255 * updates for the flows that have been installed into the datapath, most
4256 * importantly when they last were used, and then use that information to
4257 * expire flows that have not been used recently.
4258 *
4259 * Returns the number of milliseconds after which it should be called again. */
4260 static int
4261 expire(struct dpif_backer *backer)
4262 {
4263 struct ofproto_dpif *ofproto;
4264 int max_idle = INT32_MAX;
4265
4266 /* Periodically clear out the drop keys in an effort to keep them
4267 * relatively few. */
4268 drop_key_clear(backer);
4269
4270 /* Update stats for each flow in the backer. */
4271 update_stats(backer);
4272
4273 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
4274 struct rule *rule, *next_rule;
4275 int dp_max_idle;
4276
4277 if (ofproto->backer != backer) {
4278 continue;
4279 }
4280
4281 /* Keep track of the max number of flows per ofproto_dpif. */
4282 update_max_subfacet_count(ofproto);
4283
4284 /* Expire subfacets that have been idle too long. */
4285 dp_max_idle = subfacet_max_idle(ofproto);
4286 expire_subfacets(ofproto, dp_max_idle);
4287
4288 max_idle = MIN(max_idle, dp_max_idle);
4289
4290 /* Expire OpenFlow flows whose idle_timeout or hard_timeout
4291 * has passed. */
4292 LIST_FOR_EACH_SAFE (rule, next_rule, expirable,
4293 &ofproto->up.expirable) {
4294 rule_expire(rule_dpif_cast(rule));
4295 }
4296
4297 /* All outstanding data in existing flows has been accounted, so it's a
4298 * good time to do bond rebalancing. */
4299 if (ofproto->has_bonded_bundles) {
4300 struct ofbundle *bundle;
4301
4302 HMAP_FOR_EACH (bundle, hmap_node, &ofproto->bundles) {
4303 if (bundle->bond) {
4304 bond_rebalance(bundle->bond, &backer->revalidate_set);
4305 }
4306 }
4307 }
4308 }
4309
4310 return MIN(max_idle, 1000);
4311 }
4312
4313 /* Updates flow table statistics given that the datapath just reported 'stats'
4314 * as 'subfacet''s statistics. */
4315 static void
4316 update_subfacet_stats(struct subfacet *subfacet,
4317 const struct dpif_flow_stats *stats)
4318 {
4319 struct facet *facet = subfacet->facet;
4320
4321 if (stats->n_packets >= subfacet->dp_packet_count) {
4322 uint64_t extra = stats->n_packets - subfacet->dp_packet_count;
4323 facet->packet_count += extra;
4324 } else {
4325 VLOG_WARN_RL(&rl, "unexpected packet count from the datapath");
4326 }
4327
4328 if (stats->n_bytes >= subfacet->dp_byte_count) {
4329 facet->byte_count += stats->n_bytes - subfacet->dp_byte_count;
4330 } else {
4331 VLOG_WARN_RL(&rl, "unexpected byte count from datapath");
4332 }
4333
4334 subfacet->dp_packet_count = stats->n_packets;
4335 subfacet->dp_byte_count = stats->n_bytes;
4336
4337 facet->tcp_flags |= stats->tcp_flags;
4338
4339 subfacet_update_time(subfacet, stats->used);
4340 if (facet->accounted_bytes < facet->byte_count) {
4341 facet_learn(facet);
4342 facet_account(facet);
4343 facet->accounted_bytes = facet->byte_count;
4344 }
4345 }
4346
4347 /* 'key' with length 'key_len' bytes is a flow in 'dpif' that we know nothing
4348 * about, or a flow that shouldn't be installed but was anyway. Delete it. */
4349 static void
4350 delete_unexpected_flow(struct ofproto_dpif *ofproto,
4351 const struct nlattr *key, size_t key_len)
4352 {
4353 if (!VLOG_DROP_WARN(&rl)) {
4354 struct ds s;
4355
4356 ds_init(&s);
4357 odp_flow_key_format(key, key_len, &s);
4358 VLOG_WARN("unexpected flow on %s: %s", ofproto->up.name, ds_cstr(&s));
4359 ds_destroy(&s);
4360 }
4361
4362 COVERAGE_INC(facet_unexpected);
4363 dpif_flow_del(ofproto->backer->dpif, key, key_len, NULL);
4364 }
4365
4366 /* Update 'packet_count', 'byte_count', and 'used' members of installed facets.
4367 *
4368 * This function also pushes statistics updates to rules which each facet
4369 * resubmits into. Generally these statistics will be accurate. However, if a
4370 * facet changes the rule it resubmits into at some time in between
4371 * update_stats() runs, it is possible that statistics accrued to the
4372 * old rule will be incorrectly attributed to the new rule. This could be
4373 * avoided by calling update_stats() whenever rules are created or
4374 * deleted. However, the performance impact of making so many calls to the
4375 * datapath do not justify the benefit of having perfectly accurate statistics.
4376 *
4377 * In addition, this function maintains per ofproto flow hit counts. The patch
4378 * port is not treated specially. e.g. A packet ingress from br0 patched into
4379 * br1 will increase the hit count of br0 by 1, however, does not affect
4380 * the hit or miss counts of br1.
4381 */
4382 static void
4383 update_stats(struct dpif_backer *backer)
4384 {
4385 const struct dpif_flow_stats *stats;
4386 struct dpif_flow_dump dump;
4387 const struct nlattr *key;
4388 struct ofproto_dpif *ofproto;
4389 size_t key_len;
4390
4391 dpif_flow_dump_start(&dump, backer->dpif);
4392 while (dpif_flow_dump_next(&dump, &key, &key_len, NULL, NULL, &stats)) {
4393 struct flow flow;
4394 struct subfacet *subfacet;
4395 struct ofport_dpif *ofport;
4396 uint32_t key_hash;
4397
4398 if (ofproto_receive(backer, NULL, key, key_len, &flow, NULL, &ofproto,
4399 NULL, NULL)) {
4400 continue;
4401 }
4402
4403 ofproto->total_subfacet_count += hmap_count(&ofproto->subfacets);
4404 ofproto->n_update_stats++;
4405
4406 ofport = get_ofp_port(ofproto, flow.in_port);
4407 if (ofport && ofport->tnl_port) {
4408 netdev_vport_inc_rx(ofport->up.netdev, stats);
4409 }
4410
4411 key_hash = odp_flow_key_hash(key, key_len);
4412 subfacet = subfacet_find(ofproto, key, key_len, key_hash);
4413 switch (subfacet ? subfacet->path : SF_NOT_INSTALLED) {
4414 case SF_FAST_PATH:
4415 /* Update ofproto_dpif's hit count. */
4416 if (stats->n_packets > subfacet->dp_packet_count) {
4417 uint64_t delta = stats->n_packets - subfacet->dp_packet_count;
4418 dpif_stats_update_hit_count(ofproto, delta);
4419 }
4420
4421 update_subfacet_stats(subfacet, stats);
4422 break;
4423
4424 case SF_SLOW_PATH:
4425 /* Stats are updated per-packet. */
4426 break;
4427
4428 case SF_NOT_INSTALLED:
4429 default:
4430 delete_unexpected_flow(ofproto, key, key_len);
4431 break;
4432 }
4433 run_fast_rl();
4434 }
4435 dpif_flow_dump_done(&dump);
4436
4437 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
4438 update_moving_averages(ofproto);
4439 }
4440
4441 }
4442
4443 /* Calculates and returns the number of milliseconds of idle time after which
4444 * subfacets should expire from the datapath. When a subfacet expires, we fold
4445 * its statistics into its facet, and when a facet's last subfacet expires, we
4446 * fold its statistic into its rule. */
4447 static int
4448 subfacet_max_idle(const struct ofproto_dpif *ofproto)
4449 {
4450 /*
4451 * Idle time histogram.
4452 *
4453 * Most of the time a switch has a relatively small number of subfacets.
4454 * When this is the case we might as well keep statistics for all of them
4455 * in userspace and to cache them in the kernel datapath for performance as
4456 * well.
4457 *
4458 * As the number of subfacets increases, the memory required to maintain
4459 * statistics about them in userspace and in the kernel becomes
4460 * significant. However, with a large number of subfacets it is likely
4461 * that only a few of them are "heavy hitters" that consume a large amount
4462 * of bandwidth. At this point, only heavy hitters are worth caching in
4463 * the kernel and maintaining in userspaces; other subfacets we can
4464 * discard.
4465 *
4466 * The technique used to compute the idle time is to build a histogram with
4467 * N_BUCKETS buckets whose width is BUCKET_WIDTH msecs each. Each subfacet
4468 * that is installed in the kernel gets dropped in the appropriate bucket.
4469 * After the histogram has been built, we compute the cutoff so that only
4470 * the most-recently-used 1% of subfacets (but at least
4471 * ofproto->up.flow_eviction_threshold flows) are kept cached. At least
4472 * the most-recently-used bucket of subfacets is kept, so actually an
4473 * arbitrary number of subfacets can be kept in any given expiration run
4474 * (though the next run will delete most of those unless they receive
4475 * additional data).
4476 *
4477 * This requires a second pass through the subfacets, in addition to the
4478 * pass made by update_stats(), because the former function never looks at
4479 * uninstallable subfacets.
4480 */
4481 enum { BUCKET_WIDTH = ROUND_UP(100, TIME_UPDATE_INTERVAL) };
4482 enum { N_BUCKETS = 5000 / BUCKET_WIDTH };
4483 int buckets[N_BUCKETS] = { 0 };
4484 int total, subtotal, bucket;
4485 struct subfacet *subfacet;
4486 long long int now;
4487 int i;
4488
4489 total = hmap_count(&ofproto->subfacets);
4490 if (total <= ofproto->up.flow_eviction_threshold) {
4491 return N_BUCKETS * BUCKET_WIDTH;
4492 }
4493
4494 /* Build histogram. */
4495 now = time_msec();
4496 HMAP_FOR_EACH (subfacet, hmap_node, &ofproto->subfacets) {
4497 long long int idle = now - subfacet->used;
4498 int bucket = (idle <= 0 ? 0
4499 : idle >= BUCKET_WIDTH * N_BUCKETS ? N_BUCKETS - 1
4500 : (unsigned int) idle / BUCKET_WIDTH);
4501 buckets[bucket]++;
4502 }
4503
4504 /* Find the first bucket whose flows should be expired. */
4505 subtotal = bucket = 0;
4506 do {
4507 subtotal += buckets[bucket++];
4508 } while (bucket < N_BUCKETS &&
4509 subtotal < MAX(ofproto->up.flow_eviction_threshold, total / 100));
4510
4511 if (VLOG_IS_DBG_ENABLED()) {
4512 struct ds s;
4513
4514 ds_init(&s);
4515 ds_put_cstr(&s, "keep");
4516 for (i = 0; i < N_BUCKETS; i++) {
4517 if (i == bucket) {
4518 ds_put_cstr(&s, ", drop");
4519 }
4520 if (buckets[i]) {
4521 ds_put_format(&s, " %d:%d", i * BUCKET_WIDTH, buckets[i]);
4522 }
4523 }
4524 VLOG_INFO("%s: %s (msec:count)", ofproto->up.name, ds_cstr(&s));
4525 ds_destroy(&s);
4526 }
4527
4528 return bucket * BUCKET_WIDTH;
4529 }
4530
4531 static void
4532 expire_subfacets(struct ofproto_dpif *ofproto, int dp_max_idle)
4533 {
4534 /* Cutoff time for most flows. */
4535 long long int normal_cutoff = time_msec() - dp_max_idle;
4536
4537 /* We really want to keep flows for special protocols around, so use a more
4538 * conservative cutoff. */
4539 long long int special_cutoff = time_msec() - 10000;
4540
4541 struct subfacet *subfacet, *next_subfacet;
4542 struct subfacet *batch[SUBFACET_DESTROY_MAX_BATCH];
4543 int n_batch;
4544
4545 n_batch = 0;
4546 HMAP_FOR_EACH_SAFE (subfacet, next_subfacet, hmap_node,
4547 &ofproto->subfacets) {
4548 long long int cutoff;
4549
4550 cutoff = (subfacet->slow & (SLOW_CFM | SLOW_BFD | SLOW_LACP | SLOW_STP)
4551 ? special_cutoff
4552 : normal_cutoff);
4553 if (subfacet->used < cutoff) {
4554 if (subfacet->path != SF_NOT_INSTALLED) {
4555 batch[n_batch++] = subfacet;
4556 if (n_batch >= SUBFACET_DESTROY_MAX_BATCH) {
4557 subfacet_destroy_batch(ofproto, batch, n_batch);
4558 n_batch = 0;
4559 }
4560 } else {
4561 subfacet_destroy(subfacet);
4562 }
4563 }
4564 }
4565
4566 if (n_batch > 0) {
4567 subfacet_destroy_batch(ofproto, batch, n_batch);
4568 }
4569 }
4570
4571 /* If 'rule' is an OpenFlow rule, that has expired according to OpenFlow rules,
4572 * then delete it entirely. */
4573 static void
4574 rule_expire(struct rule_dpif *rule)
4575 {
4576 struct facet *facet, *next_facet;
4577 long long int now;
4578 uint8_t reason;
4579
4580 if (rule->up.pending) {
4581 /* We'll have to expire it later. */
4582 return;
4583 }
4584
4585 /* Has 'rule' expired? */
4586 now = time_msec();
4587 if (rule->up.hard_timeout
4588 && now > rule->up.modified + rule->up.hard_timeout * 1000) {
4589 reason = OFPRR_HARD_TIMEOUT;
4590 } else if (rule->up.idle_timeout
4591 && now > rule->up.used + rule->up.idle_timeout * 1000) {
4592 reason = OFPRR_IDLE_TIMEOUT;
4593 } else {
4594 return;
4595 }
4596
4597 COVERAGE_INC(ofproto_dpif_expired);
4598
4599 /* Update stats. (This is a no-op if the rule expired due to an idle
4600 * timeout, because that only happens when the rule has no facets left.) */
4601 LIST_FOR_EACH_SAFE (facet, next_facet, list_node, &rule->facets) {
4602 facet_remove(facet);
4603 }
4604
4605 /* Get rid of the rule. */
4606 ofproto_rule_expire(&rule->up, reason);
4607 }
4608 \f
4609 /* Facets. */
4610
4611 /* Creates and returns a new facet owned by 'rule', given a 'flow'.
4612 *
4613 * The caller must already have determined that no facet with an identical
4614 * 'flow' exists in 'ofproto' and that 'flow' is the best match for 'rule' in
4615 * the ofproto's classifier table.
4616 *
4617 * 'hash' must be the return value of flow_hash(flow, 0).
4618 *
4619 * The facet will initially have no subfacets. The caller should create (at
4620 * least) one subfacet with subfacet_create(). */
4621 static struct facet *
4622 facet_create(struct rule_dpif *rule, const struct flow *flow, uint32_t hash)
4623 {
4624 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
4625 struct facet *facet;
4626
4627 facet = xzalloc(sizeof *facet);
4628 facet->used = time_msec();
4629 hmap_insert(&ofproto->facets, &facet->hmap_node, hash);
4630 list_push_back(&rule->facets, &facet->list_node);
4631 facet->rule = rule;
4632 facet->flow = *flow;
4633 list_init(&facet->subfacets);
4634 netflow_flow_init(&facet->nf_flow);
4635 netflow_flow_update_time(ofproto->netflow, &facet->nf_flow, facet->used);
4636
4637 facet->learn_rl = time_msec() + 500;
4638
4639 return facet;
4640 }
4641
4642 static void
4643 facet_free(struct facet *facet)
4644 {
4645 free(facet);
4646 }
4647
4648 /* Executes, within 'ofproto', the 'n_actions' actions in 'actions' on
4649 * 'packet', which arrived on 'in_port'. */
4650 static bool
4651 execute_odp_actions(struct ofproto_dpif *ofproto, const struct flow *flow,
4652 const struct nlattr *odp_actions, size_t actions_len,
4653 struct ofpbuf *packet)
4654 {
4655 struct odputil_keybuf keybuf;
4656 struct ofpbuf key;
4657 int error;
4658
4659 ofpbuf_use_stack(&key, &keybuf, sizeof keybuf);
4660 odp_flow_key_from_flow(&key, flow,
4661 ofp_port_to_odp_port(ofproto, flow->in_port));
4662
4663 error = dpif_execute(ofproto->backer->dpif, key.data, key.size,
4664 odp_actions, actions_len, packet);
4665 return !error;
4666 }
4667
4668 /* Remove 'facet' from 'ofproto' and free up the associated memory:
4669 *
4670 * - If 'facet' was installed in the datapath, uninstalls it and updates its
4671 * rule's statistics, via subfacet_uninstall().
4672 *
4673 * - Removes 'facet' from its rule and from ofproto->facets.
4674 */
4675 static void
4676 facet_remove(struct facet *facet)
4677 {
4678 struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto);
4679 struct subfacet *subfacet, *next_subfacet;
4680
4681 ovs_assert(!list_is_empty(&facet->subfacets));
4682
4683 /* First uninstall all of the subfacets to get final statistics. */
4684 LIST_FOR_EACH (subfacet, list_node, &facet->subfacets) {
4685 subfacet_uninstall(subfacet);
4686 }
4687
4688 /* Flush the final stats to the rule.
4689 *
4690 * This might require us to have at least one subfacet around so that we
4691 * can use its actions for accounting in facet_account(), which is why we
4692 * have uninstalled but not yet destroyed the subfacets. */
4693 facet_flush_stats(facet);
4694
4695 /* Now we're really all done so destroy everything. */
4696 LIST_FOR_EACH_SAFE (subfacet, next_subfacet, list_node,
4697 &facet->subfacets) {
4698 subfacet_destroy__(subfacet);
4699 }
4700 hmap_remove(&ofproto->facets, &facet->hmap_node);
4701 list_remove(&facet->list_node);
4702 facet_free(facet);
4703 }
4704
4705 /* Feed information from 'facet' back into the learning table to keep it in
4706 * sync with what is actually flowing through the datapath. */
4707 static void
4708 facet_learn(struct facet *facet)
4709 {
4710 struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto);
4711 struct subfacet *subfacet= CONTAINER_OF(list_front(&facet->subfacets),
4712 struct subfacet, list_node);
4713 long long int now = time_msec();
4714 struct action_xlate_ctx ctx;
4715
4716 if (!facet->has_fin_timeout && now < facet->learn_rl) {
4717 return;
4718 }
4719
4720 facet->learn_rl = now + 500;
4721
4722 if (!facet->has_learn
4723 && !facet->has_normal
4724 && (!facet->has_fin_timeout
4725 || !(facet->tcp_flags & (TCP_FIN | TCP_RST)))) {
4726 return;
4727 }
4728
4729 action_xlate_ctx_init(&ctx, ofproto, &facet->flow,
4730 &subfacet->initial_vals,
4731 facet->rule, facet->tcp_flags, NULL);
4732 ctx.may_learn = true;
4733 xlate_actions_for_side_effects(&ctx, facet->rule->up.ofpacts,
4734 facet->rule->up.ofpacts_len);
4735 }
4736
4737 static void
4738 facet_account(struct facet *facet)
4739 {
4740 struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto);
4741 struct subfacet *subfacet = facet_get_subfacet(facet);
4742 const struct nlattr *a;
4743 unsigned int left;
4744 ovs_be16 vlan_tci;
4745 uint64_t n_bytes;
4746
4747 if (!facet->has_normal || !ofproto->has_bonded_bundles) {
4748 return;
4749 }
4750 n_bytes = facet->byte_count - facet->accounted_bytes;
4751
4752 /* This loop feeds byte counters to bond_account() for rebalancing to use
4753 * as a basis. We also need to track the actual VLAN on which the packet
4754 * is going to be sent to ensure that it matches the one passed to
4755 * bond_choose_output_slave(). (Otherwise, we will account to the wrong
4756 * hash bucket.)
4757 *
4758 * We use the actions from an arbitrary subfacet because they should all
4759 * be equally valid for our purpose. */
4760 vlan_tci = facet->flow.vlan_tci;
4761 NL_ATTR_FOR_EACH_UNSAFE (a, left,
4762 subfacet->actions, subfacet->actions_len) {
4763 const struct ovs_action_push_vlan *vlan;
4764 struct ofport_dpif *port;
4765
4766 switch (nl_attr_type(a)) {
4767 case OVS_ACTION_ATTR_OUTPUT:
4768 port = get_odp_port(ofproto, nl_attr_get_u32(a));
4769 if (port && port->bundle && port->bundle->bond) {
4770 bond_account(port->bundle->bond, &facet->flow,
4771 vlan_tci_to_vid(vlan_tci), n_bytes);
4772 }
4773 break;
4774
4775 case OVS_ACTION_ATTR_POP_VLAN:
4776 vlan_tci = htons(0);
4777 break;
4778
4779 case OVS_ACTION_ATTR_PUSH_VLAN:
4780 vlan = nl_attr_get(a);
4781 vlan_tci = vlan->vlan_tci;
4782 break;
4783 }
4784 }
4785 }
4786
4787 /* Returns true if the only action for 'facet' is to send to the controller.
4788 * (We don't report NetFlow expiration messages for such facets because they
4789 * are just part of the control logic for the network, not real traffic). */
4790 static bool
4791 facet_is_controller_flow(struct facet *facet)
4792 {
4793 if (facet) {
4794 const struct rule *rule = &facet->rule->up;
4795 const struct ofpact *ofpacts = rule->ofpacts;
4796 size_t ofpacts_len = rule->ofpacts_len;
4797
4798 if (ofpacts_len > 0 &&
4799 ofpacts->type == OFPACT_CONTROLLER &&
4800 ofpact_next(ofpacts) >= ofpact_end(ofpacts, ofpacts_len)) {
4801 return true;
4802 }
4803 }
4804 return false;
4805 }
4806
4807 /* Folds all of 'facet''s statistics into its rule. Also updates the
4808 * accounting ofhook and emits a NetFlow expiration if appropriate. All of
4809 * 'facet''s statistics in the datapath should have been zeroed and folded into
4810 * its packet and byte counts before this function is called. */
4811 static void
4812 facet_flush_stats(struct facet *facet)
4813 {
4814 struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto);
4815 struct subfacet *subfacet;
4816
4817 LIST_FOR_EACH (subfacet, list_node, &facet->subfacets) {
4818 ovs_assert(!subfacet->dp_byte_count);
4819 ovs_assert(!subfacet->dp_packet_count);
4820 }
4821
4822 facet_push_stats(facet);
4823 if (facet->accounted_bytes < facet->byte_count) {
4824 facet_account(facet);
4825 facet->accounted_bytes = facet->byte_count;
4826 }
4827
4828 if (ofproto->netflow && !facet_is_controller_flow(facet)) {
4829 struct ofexpired expired;
4830 expired.flow = facet->flow;
4831 expired.packet_count = facet->packet_count;
4832 expired.byte_count = facet->byte_count;
4833 expired.used = facet->used;
4834 netflow_expire(ofproto->netflow, &facet->nf_flow, &expired);
4835 }
4836
4837 facet->rule->packet_count += facet->packet_count;
4838 facet->rule->byte_count += facet->byte_count;
4839
4840 /* Reset counters to prevent double counting if 'facet' ever gets
4841 * reinstalled. */
4842 facet_reset_counters(facet);
4843
4844 netflow_flow_clear(&facet->nf_flow);
4845 facet->tcp_flags = 0;
4846 }
4847
4848 /* Searches 'ofproto''s table of facets for one exactly equal to 'flow'.
4849 * Returns it if found, otherwise a null pointer.
4850 *
4851 * 'hash' must be the return value of flow_hash(flow, 0).
4852 *
4853 * The returned facet might need revalidation; use facet_lookup_valid()
4854 * instead if that is important. */
4855 static struct facet *
4856 facet_find(struct ofproto_dpif *ofproto,
4857 const struct flow *flow, uint32_t hash)
4858 {
4859 struct facet *facet;
4860
4861 HMAP_FOR_EACH_WITH_HASH (facet, hmap_node, hash, &ofproto->facets) {
4862 if (flow_equal(flow, &facet->flow)) {
4863 return facet;
4864 }
4865 }
4866
4867 return NULL;
4868 }
4869
4870 /* Searches 'ofproto''s table of facets for one exactly equal to 'flow'.
4871 * Returns it if found, otherwise a null pointer.
4872 *
4873 * 'hash' must be the return value of flow_hash(flow, 0).
4874 *
4875 * The returned facet is guaranteed to be valid. */
4876 static struct facet *
4877 facet_lookup_valid(struct ofproto_dpif *ofproto, const struct flow *flow,
4878 uint32_t hash)
4879 {
4880 struct facet *facet;
4881
4882 facet = facet_find(ofproto, flow, hash);
4883 if (facet
4884 && (ofproto->backer->need_revalidate
4885 || tag_set_intersects(&ofproto->backer->revalidate_set,
4886 facet->tags))) {
4887 facet_revalidate(facet);
4888
4889 /* facet_revalidate() may have destroyed 'facet'. */
4890 facet = facet_find(ofproto, flow, hash);
4891 }
4892
4893 return facet;
4894 }
4895
4896 /* Return a subfacet from 'facet'. A facet consists of one or more
4897 * subfacets, and this function returns one of them. */
4898 static struct subfacet *facet_get_subfacet(struct facet *facet)
4899 {
4900 return CONTAINER_OF(list_front(&facet->subfacets), struct subfacet,
4901 list_node);
4902 }
4903
4904 static const char *
4905 subfacet_path_to_string(enum subfacet_path path)
4906 {
4907 switch (path) {
4908 case SF_NOT_INSTALLED:
4909 return "not installed";
4910 case SF_FAST_PATH:
4911 return "in fast path";
4912 case SF_SLOW_PATH:
4913 return "in slow path";
4914 default:
4915 return "<error>";
4916 }
4917 }
4918
4919 /* Returns the path in which a subfacet should be installed if its 'slow'
4920 * member has the specified value. */
4921 static enum subfacet_path
4922 subfacet_want_path(enum slow_path_reason slow)
4923 {
4924 return slow ? SF_SLOW_PATH : SF_FAST_PATH;
4925 }
4926
4927 /* Returns true if 'subfacet' needs to have its datapath flow updated,
4928 * supposing that its actions have been recalculated as 'want_actions' and that
4929 * 'slow' is nonzero iff 'subfacet' should be in the slow path. */
4930 static bool
4931 subfacet_should_install(struct subfacet *subfacet, enum slow_path_reason slow,
4932 const struct ofpbuf *want_actions)
4933 {
4934 enum subfacet_path want_path = subfacet_want_path(slow);
4935 return (want_path != subfacet->path
4936 || (want_path == SF_FAST_PATH
4937 && (subfacet->actions_len != want_actions->size
4938 || memcmp(subfacet->actions, want_actions->data,
4939 subfacet->actions_len))));
4940 }
4941
4942 static bool
4943 facet_check_consistency(struct facet *facet)
4944 {
4945 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 15);
4946
4947 struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto);
4948
4949 uint64_t odp_actions_stub[1024 / 8];
4950 struct ofpbuf odp_actions;
4951
4952 struct rule_dpif *rule;
4953 struct subfacet *subfacet;
4954 bool may_log = false;
4955 bool ok;
4956
4957 /* Check the rule for consistency. */
4958 rule = rule_dpif_lookup(ofproto, &facet->flow);
4959 ok = rule == facet->rule;
4960 if (!ok) {
4961 may_log = !VLOG_DROP_WARN(&rl);
4962 if (may_log) {
4963 struct ds s;
4964
4965 ds_init(&s);
4966 flow_format(&s, &facet->flow);
4967 ds_put_format(&s, ": facet associated with wrong rule (was "
4968 "table=%"PRIu8",", facet->rule->up.table_id);
4969 cls_rule_format(&facet->rule->up.cr, &s);
4970 ds_put_format(&s, ") (should have been table=%"PRIu8",",
4971 rule->up.table_id);
4972 cls_rule_format(&rule->up.cr, &s);
4973 ds_put_char(&s, ')');
4974
4975 VLOG_WARN("%s", ds_cstr(&s));
4976 ds_destroy(&s);
4977 }
4978 }
4979
4980 /* Check the datapath actions for consistency. */
4981 ofpbuf_use_stub(&odp_actions, odp_actions_stub, sizeof odp_actions_stub);
4982 LIST_FOR_EACH (subfacet, list_node, &facet->subfacets) {
4983 enum subfacet_path want_path;
4984 struct action_xlate_ctx ctx;
4985 struct ds s;
4986
4987 action_xlate_ctx_init(&ctx, ofproto, &facet->flow,
4988 &subfacet->initial_vals, rule, 0, NULL);
4989 xlate_actions(&ctx, rule->up.ofpacts, rule->up.ofpacts_len,
4990 &odp_actions);
4991
4992 if (subfacet->path == SF_NOT_INSTALLED) {
4993 /* This only happens if the datapath reported an error when we
4994 * tried to install the flow. Don't flag another error here. */
4995 continue;
4996 }
4997
4998 want_path = subfacet_want_path(subfacet->slow);
4999 if (want_path == SF_SLOW_PATH && subfacet->path == SF_SLOW_PATH) {
5000 /* The actions for slow-path flows may legitimately vary from one
5001 * packet to the next. We're done. */
5002 continue;
5003 }
5004
5005 if (!subfacet_should_install(subfacet, subfacet->slow, &odp_actions)) {
5006 continue;
5007 }
5008
5009 /* Inconsistency! */
5010 if (ok) {
5011 may_log = !VLOG_DROP_WARN(&rl);
5012 ok = false;
5013 }
5014 if (!may_log) {
5015 /* Rate-limited, skip reporting. */
5016 continue;
5017 }
5018
5019 ds_init(&s);
5020 odp_flow_key_format(subfacet->key, subfacet->key_len, &s);
5021
5022 ds_put_cstr(&s, ": inconsistency in subfacet");
5023 if (want_path != subfacet->path) {
5024 enum odp_key_fitness fitness = subfacet->key_fitness;
5025
5026 ds_put_format(&s, " (%s, fitness=%s)",
5027 subfacet_path_to_string(subfacet->path),
5028 odp_key_fitness_to_string(fitness));
5029 ds_put_format(&s, " (should have been %s)",
5030 subfacet_path_to_string(want_path));
5031 } else if (want_path == SF_FAST_PATH) {
5032 ds_put_cstr(&s, " (actions were: ");
5033 format_odp_actions(&s, subfacet->actions,
5034 subfacet->actions_len);
5035 ds_put_cstr(&s, ") (correct actions: ");
5036 format_odp_actions(&s, odp_actions.data, odp_actions.size);
5037 ds_put_char(&s, ')');
5038 } else {
5039 ds_put_cstr(&s, " (actions: ");
5040 format_odp_actions(&s, subfacet->actions,
5041 subfacet->actions_len);
5042 ds_put_char(&s, ')');
5043 }
5044 VLOG_WARN("%s", ds_cstr(&s));
5045 ds_destroy(&s);
5046 }
5047 ofpbuf_uninit(&odp_actions);
5048
5049 return ok;
5050 }
5051
5052 /* Re-searches the classifier for 'facet':
5053 *
5054 * - If the rule found is different from 'facet''s current rule, moves
5055 * 'facet' to the new rule and recompiles its actions.
5056 *
5057 * - If the rule found is the same as 'facet''s current rule, leaves 'facet'
5058 * where it is and recompiles its actions anyway.
5059 *
5060 * - If any of 'facet''s subfacets correspond to a new flow according to
5061 * ofproto_receive(), 'facet' is removed. */
5062 static void
5063 facet_revalidate(struct facet *facet)
5064 {
5065 struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto);
5066 struct actions {
5067 struct nlattr *odp_actions;
5068 size_t actions_len;
5069 };
5070 struct actions *new_actions;
5071
5072 struct action_xlate_ctx ctx;
5073 uint64_t odp_actions_stub[1024 / 8];
5074 struct ofpbuf odp_actions;
5075
5076 struct rule_dpif *new_rule;
5077 struct subfacet *subfacet;
5078 int i;
5079
5080 COVERAGE_INC(facet_revalidate);
5081
5082 /* Check that child subfacets still correspond to this facet. Tunnel
5083 * configuration changes could cause a subfacet's OpenFlow in_port to
5084 * change. */
5085 LIST_FOR_EACH (subfacet, list_node, &facet->subfacets) {
5086 struct ofproto_dpif *recv_ofproto;
5087 struct flow recv_flow;
5088 int error;
5089
5090 error = ofproto_receive(ofproto->backer, NULL, subfacet->key,
5091 subfacet->key_len, &recv_flow, NULL,
5092 &recv_ofproto, NULL, NULL);
5093 if (error
5094 || recv_ofproto != ofproto
5095 || memcmp(&recv_flow, &facet->flow, sizeof recv_flow)) {
5096 facet_remove(facet);
5097 return;
5098 }
5099 }
5100
5101 new_rule = rule_dpif_lookup(ofproto, &facet->flow);
5102
5103 /* Calculate new datapath actions.
5104 *
5105 * We do not modify any 'facet' state yet, because we might need to, e.g.,
5106 * emit a NetFlow expiration and, if so, we need to have the old state
5107 * around to properly compose it. */
5108
5109 /* If the datapath actions changed or the installability changed,
5110 * then we need to talk to the datapath. */
5111 i = 0;
5112 new_actions = NULL;
5113 memset(&ctx, 0, sizeof ctx);
5114 ofpbuf_use_stub(&odp_actions, odp_actions_stub, sizeof odp_actions_stub);
5115 LIST_FOR_EACH (subfacet, list_node, &facet->subfacets) {
5116 enum slow_path_reason slow;
5117
5118 action_xlate_ctx_init(&ctx, ofproto, &facet->flow,
5119 &subfacet->initial_vals, new_rule, 0, NULL);
5120 xlate_actions(&ctx, new_rule->up.ofpacts, new_rule->up.ofpacts_len,
5121 &odp_actions);
5122
5123 slow = (subfacet->slow & SLOW_MATCH) | ctx.slow;
5124 if (subfacet_should_install(subfacet, slow, &odp_actions)) {
5125 struct dpif_flow_stats stats;
5126
5127 subfacet_install(subfacet,
5128 odp_actions.data, odp_actions.size, &stats, slow);
5129 subfacet_update_stats(subfacet, &stats);
5130
5131 if (!new_actions) {
5132 new_actions = xcalloc(list_size(&facet->subfacets),
5133 sizeof *new_actions);
5134 }
5135 new_actions[i].odp_actions = xmemdup(odp_actions.data,
5136 odp_actions.size);
5137 new_actions[i].actions_len = odp_actions.size;
5138 }
5139
5140 i++;
5141 }
5142 ofpbuf_uninit(&odp_actions);
5143
5144 if (new_actions) {
5145 facet_flush_stats(facet);
5146 }
5147
5148 /* Update 'facet' now that we've taken care of all the old state. */
5149 facet->tags = ctx.tags;
5150 facet->nf_flow.output_iface = ctx.nf_output_iface;
5151 facet->has_learn = ctx.has_learn;
5152 facet->has_normal = ctx.has_normal;
5153 facet->has_fin_timeout = ctx.has_fin_timeout;
5154 facet->mirrors = ctx.mirrors;
5155
5156 i = 0;
5157 LIST_FOR_EACH (subfacet, list_node, &facet->subfacets) {
5158 subfacet->slow = (subfacet->slow & SLOW_MATCH) | ctx.slow;
5159
5160 if (new_actions && new_actions[i].odp_actions) {
5161 free(subfacet->actions);
5162 subfacet->actions = new_actions[i].odp_actions;
5163 subfacet->actions_len = new_actions[i].actions_len;
5164 }
5165 i++;
5166 }
5167 free(new_actions);
5168
5169 if (facet->rule != new_rule) {
5170 COVERAGE_INC(facet_changed_rule);
5171 list_remove(&facet->list_node);
5172 list_push_back(&new_rule->facets, &facet->list_node);
5173 facet->rule = new_rule;
5174 facet->used = new_rule->up.created;
5175 facet->prev_used = facet->used;
5176 }
5177 }
5178
5179 /* Updates 'facet''s used time. Caller is responsible for calling
5180 * facet_push_stats() to update the flows which 'facet' resubmits into. */
5181 static void
5182 facet_update_time(struct facet *facet, long long int used)
5183 {
5184 struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto);
5185 if (used > facet->used) {
5186 facet->used = used;
5187 ofproto_rule_update_used(&facet->rule->up, used);
5188 netflow_flow_update_time(ofproto->netflow, &facet->nf_flow, used);
5189 }
5190 }
5191
5192 static void
5193 facet_reset_counters(struct facet *facet)
5194 {
5195 facet->packet_count = 0;
5196 facet->byte_count = 0;
5197 facet->prev_packet_count = 0;
5198 facet->prev_byte_count = 0;
5199 facet->accounted_bytes = 0;
5200 }
5201
5202 static void
5203 facet_push_stats(struct facet *facet)
5204 {
5205 struct dpif_flow_stats stats;
5206
5207 ovs_assert(facet->packet_count >= facet->prev_packet_count);
5208 ovs_assert(facet->byte_count >= facet->prev_byte_count);
5209 ovs_assert(facet->used >= facet->prev_used);
5210
5211 stats.n_packets = facet->packet_count - facet->prev_packet_count;
5212 stats.n_bytes = facet->byte_count - facet->prev_byte_count;
5213 stats.used = facet->used;
5214 stats.tcp_flags = 0;
5215
5216 if (stats.n_packets || stats.n_bytes || facet->used > facet->prev_used) {
5217 facet->prev_packet_count = facet->packet_count;
5218 facet->prev_byte_count = facet->byte_count;
5219 facet->prev_used = facet->used;
5220
5221 flow_push_stats(facet, &stats);
5222
5223 update_mirror_stats(ofproto_dpif_cast(facet->rule->up.ofproto),
5224 facet->mirrors, stats.n_packets, stats.n_bytes);
5225 }
5226 }
5227
5228 static void
5229 push_all_stats__(bool run_fast)
5230 {
5231 static long long int rl = LLONG_MIN;
5232 struct ofproto_dpif *ofproto;
5233
5234 if (time_msec() < rl) {
5235 return;
5236 }
5237
5238 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
5239 struct facet *facet;
5240
5241 HMAP_FOR_EACH (facet, hmap_node, &ofproto->facets) {
5242 facet_push_stats(facet);
5243 if (run_fast) {
5244 run_fast_rl();
5245 }
5246 }
5247 }
5248
5249 rl = time_msec() + 100;
5250 }
5251
5252 static void
5253 push_all_stats(void)
5254 {
5255 push_all_stats__(true);
5256 }
5257
5258 static void
5259 rule_credit_stats(struct rule_dpif *rule, const struct dpif_flow_stats *stats)
5260 {
5261 rule->packet_count += stats->n_packets;
5262 rule->byte_count += stats->n_bytes;
5263 ofproto_rule_update_used(&rule->up, stats->used);
5264 }
5265
5266 /* Pushes flow statistics to the rules which 'facet->flow' resubmits
5267 * into given 'facet->rule''s actions and mirrors. */
5268 static void
5269 flow_push_stats(struct facet *facet, const struct dpif_flow_stats *stats)
5270 {
5271 struct rule_dpif *rule = facet->rule;
5272 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
5273 struct subfacet *subfacet = facet_get_subfacet(facet);
5274 struct action_xlate_ctx ctx;
5275
5276 ofproto_rule_update_used(&rule->up, stats->used);
5277
5278 action_xlate_ctx_init(&ctx, ofproto, &facet->flow,
5279 &subfacet->initial_vals, rule, 0, NULL);
5280 ctx.resubmit_stats = stats;
5281 xlate_actions_for_side_effects(&ctx, rule->up.ofpacts,
5282 rule->up.ofpacts_len);
5283 }
5284 \f
5285 /* Subfacets. */
5286
5287 static struct subfacet *
5288 subfacet_find(struct ofproto_dpif *ofproto,
5289 const struct nlattr *key, size_t key_len, uint32_t key_hash)
5290 {
5291 struct subfacet *subfacet;
5292
5293 HMAP_FOR_EACH_WITH_HASH (subfacet, hmap_node, key_hash,
5294 &ofproto->subfacets) {
5295 if (subfacet->key_len == key_len
5296 && !memcmp(key, subfacet->key, key_len)) {
5297 return subfacet;
5298 }
5299 }
5300
5301 return NULL;
5302 }
5303
5304 /* Searches 'facet' (within 'ofproto') for a subfacet with the specified
5305 * 'key_fitness', 'key', and 'key_len' members in 'miss'. Returns the
5306 * existing subfacet if there is one, otherwise creates and returns a
5307 * new subfacet.
5308 *
5309 * If the returned subfacet is new, then subfacet->actions will be NULL, in
5310 * which case the caller must populate the actions with
5311 * subfacet_make_actions(). */
5312 static struct subfacet *
5313 subfacet_create(struct facet *facet, struct flow_miss *miss,
5314 long long int now)
5315 {
5316 struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto);
5317 enum odp_key_fitness key_fitness = miss->key_fitness;
5318 const struct nlattr *key = miss->key;
5319 size_t key_len = miss->key_len;
5320 uint32_t key_hash;
5321 struct subfacet *subfacet;
5322
5323 key_hash = odp_flow_key_hash(key, key_len);
5324
5325 if (list_is_empty(&facet->subfacets)) {
5326 subfacet = &facet->one_subfacet;
5327 } else {
5328 subfacet = subfacet_find(ofproto, key, key_len, key_hash);
5329 if (subfacet) {
5330 if (subfacet->facet == facet) {
5331 return subfacet;
5332 }
5333
5334 /* This shouldn't happen. */
5335 VLOG_ERR_RL(&rl, "subfacet with wrong facet");
5336 subfacet_destroy(subfacet);
5337 }
5338
5339 subfacet = xmalloc(sizeof *subfacet);
5340 }
5341
5342 hmap_insert(&ofproto->subfacets, &subfacet->hmap_node, key_hash);
5343 list_push_back(&facet->subfacets, &subfacet->list_node);
5344 subfacet->facet = facet;
5345 subfacet->key_fitness = key_fitness;
5346 subfacet->key = xmemdup(key, key_len);
5347 subfacet->key_len = key_len;
5348 subfacet->used = now;
5349 subfacet->created = now;
5350 subfacet->dp_packet_count = 0;
5351 subfacet->dp_byte_count = 0;
5352 subfacet->actions_len = 0;
5353 subfacet->actions = NULL;
5354 subfacet->slow = (subfacet->key_fitness == ODP_FIT_TOO_LITTLE
5355 ? SLOW_MATCH
5356 : 0);
5357 subfacet->path = SF_NOT_INSTALLED;
5358 subfacet->initial_vals = miss->initial_vals;
5359 subfacet->odp_in_port = miss->odp_in_port;
5360
5361 ofproto->subfacet_add_count++;
5362 return subfacet;
5363 }
5364
5365 /* Uninstalls 'subfacet' from the datapath, if it is installed, removes it from
5366 * its facet within 'ofproto', and frees it. */
5367 static void
5368 subfacet_destroy__(struct subfacet *subfacet)
5369 {
5370 struct facet *facet = subfacet->facet;
5371 struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto);
5372
5373 /* Update ofproto stats before uninstall the subfacet. */
5374 ofproto->subfacet_del_count++;
5375 ofproto->total_subfacet_life_span += (time_msec() - subfacet->created);
5376
5377 subfacet_uninstall(subfacet);
5378 hmap_remove(&ofproto->subfacets, &subfacet->hmap_node);
5379 list_remove(&subfacet->list_node);
5380 free(subfacet->key);
5381 free(subfacet->actions);
5382 if (subfacet != &facet->one_subfacet) {
5383 free(subfacet);
5384 }
5385 }
5386
5387 /* Destroys 'subfacet', as with subfacet_destroy__(), and then if this was the
5388 * last remaining subfacet in its facet destroys the facet too. */
5389 static void
5390 subfacet_destroy(struct subfacet *subfacet)
5391 {
5392 struct facet *facet = subfacet->facet;
5393
5394 if (list_is_singleton(&facet->subfacets)) {
5395 /* facet_remove() needs at least one subfacet (it will remove it). */
5396 facet_remove(facet);
5397 } else {
5398 subfacet_destroy__(subfacet);
5399 }
5400 }
5401
5402 static void
5403 subfacet_destroy_batch(struct ofproto_dpif *ofproto,
5404 struct subfacet **subfacets, int n)
5405 {
5406 struct dpif_op ops[SUBFACET_DESTROY_MAX_BATCH];
5407 struct dpif_op *opsp[SUBFACET_DESTROY_MAX_BATCH];
5408 struct dpif_flow_stats stats[SUBFACET_DESTROY_MAX_BATCH];
5409 int i;
5410
5411 for (i = 0; i < n; i++) {
5412 ops[i].type = DPIF_OP_FLOW_DEL;
5413 ops[i].u.flow_del.key = subfacets[i]->key;
5414 ops[i].u.flow_del.key_len = subfacets[i]->key_len;
5415 ops[i].u.flow_del.stats = &stats[i];
5416 opsp[i] = &ops[i];
5417 }
5418
5419 dpif_operate(ofproto->backer->dpif, opsp, n);
5420 for (i = 0; i < n; i++) {
5421 subfacet_reset_dp_stats(subfacets[i], &stats[i]);
5422 subfacets[i]->path = SF_NOT_INSTALLED;
5423 subfacet_destroy(subfacets[i]);
5424 run_fast_rl();
5425 }
5426 }
5427
5428 /* Composes the datapath actions for 'subfacet' based on its rule's actions.
5429 * Translates the actions into 'odp_actions', which the caller must have
5430 * initialized and is responsible for uninitializing. */
5431 static void
5432 subfacet_make_actions(struct subfacet *subfacet, const struct ofpbuf *packet,
5433 struct ofpbuf *odp_actions)
5434 {
5435 struct facet *facet = subfacet->facet;
5436 struct rule_dpif *rule = facet->rule;
5437 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
5438
5439 struct action_xlate_ctx ctx;
5440
5441 action_xlate_ctx_init(&ctx, ofproto, &facet->flow,
5442 &subfacet->initial_vals, rule, 0, packet);
5443 xlate_actions(&ctx, rule->up.ofpacts, rule->up.ofpacts_len, odp_actions);
5444 facet->tags = ctx.tags;
5445 facet->has_learn = ctx.has_learn;
5446 facet->has_normal = ctx.has_normal;
5447 facet->has_fin_timeout = ctx.has_fin_timeout;
5448 facet->nf_flow.output_iface = ctx.nf_output_iface;
5449 facet->mirrors = ctx.mirrors;
5450
5451 subfacet->slow = (subfacet->slow & SLOW_MATCH) | ctx.slow;
5452 if (subfacet->actions_len != odp_actions->size
5453 || memcmp(subfacet->actions, odp_actions->data, odp_actions->size)) {
5454 free(subfacet->actions);
5455 subfacet->actions_len = odp_actions->size;
5456 subfacet->actions = xmemdup(odp_actions->data, odp_actions->size);
5457 }
5458 }
5459
5460 /* Updates 'subfacet''s datapath flow, setting its actions to 'actions_len'
5461 * bytes of actions in 'actions'. If 'stats' is non-null, statistics counters
5462 * in the datapath will be zeroed and 'stats' will be updated with traffic new
5463 * since 'subfacet' was last updated.
5464 *
5465 * Returns 0 if successful, otherwise a positive errno value. */
5466 static int
5467 subfacet_install(struct subfacet *subfacet,
5468 const struct nlattr *actions, size_t actions_len,
5469 struct dpif_flow_stats *stats,
5470 enum slow_path_reason slow)
5471 {
5472 struct facet *facet = subfacet->facet;
5473 struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto);
5474 enum subfacet_path path = subfacet_want_path(slow);
5475 uint64_t slow_path_stub[128 / 8];
5476 enum dpif_flow_put_flags flags;
5477 int ret;
5478
5479 flags = DPIF_FP_CREATE | DPIF_FP_MODIFY;
5480 if (stats) {
5481 flags |= DPIF_FP_ZERO_STATS;
5482 }
5483
5484 if (path == SF_SLOW_PATH) {
5485 compose_slow_path(ofproto, &facet->flow, slow,
5486 slow_path_stub, sizeof slow_path_stub,
5487 &actions, &actions_len);
5488 }
5489
5490 ret = dpif_flow_put(ofproto->backer->dpif, flags, subfacet->key,
5491 subfacet->key_len, actions, actions_len, stats);
5492
5493 if (stats) {
5494 subfacet_reset_dp_stats(subfacet, stats);
5495 }
5496
5497 if (!ret) {
5498 subfacet->path = path;
5499 }
5500 return ret;
5501 }
5502
5503 static int
5504 subfacet_reinstall(struct subfacet *subfacet, struct dpif_flow_stats *stats)
5505 {
5506 return subfacet_install(subfacet, subfacet->actions, subfacet->actions_len,
5507 stats, subfacet->slow);
5508 }
5509
5510 /* If 'subfacet' is installed in the datapath, uninstalls it. */
5511 static void
5512 subfacet_uninstall(struct subfacet *subfacet)
5513 {
5514 if (subfacet->path != SF_NOT_INSTALLED) {
5515 struct rule_dpif *rule = subfacet->facet->rule;
5516 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
5517 struct dpif_flow_stats stats;
5518 int error;
5519
5520 error = dpif_flow_del(ofproto->backer->dpif, subfacet->key,
5521 subfacet->key_len, &stats);
5522 subfacet_reset_dp_stats(subfacet, &stats);
5523 if (!error) {
5524 subfacet_update_stats(subfacet, &stats);
5525 }
5526 subfacet->path = SF_NOT_INSTALLED;
5527 } else {
5528 ovs_assert(subfacet->dp_packet_count == 0);
5529 ovs_assert(subfacet->dp_byte_count == 0);
5530 }
5531 }
5532
5533 /* Resets 'subfacet''s datapath statistics counters. This should be called
5534 * when 'subfacet''s statistics are cleared in the datapath. If 'stats' is
5535 * non-null, it should contain the statistics returned by dpif when 'subfacet'
5536 * was reset in the datapath. 'stats' will be modified to include only
5537 * statistics new since 'subfacet' was last updated. */
5538 static void
5539 subfacet_reset_dp_stats(struct subfacet *subfacet,
5540 struct dpif_flow_stats *stats)
5541 {
5542 if (stats
5543 && subfacet->dp_packet_count <= stats->n_packets
5544 && subfacet->dp_byte_count <= stats->n_bytes) {
5545 stats->n_packets -= subfacet->dp_packet_count;
5546 stats->n_bytes -= subfacet->dp_byte_count;
5547 }
5548
5549 subfacet->dp_packet_count = 0;
5550 subfacet->dp_byte_count = 0;
5551 }
5552
5553 /* Updates 'subfacet''s used time. The caller is responsible for calling
5554 * facet_push_stats() to update the flows which 'subfacet' resubmits into. */
5555 static void
5556 subfacet_update_time(struct subfacet *subfacet, long long int used)
5557 {
5558 if (used > subfacet->used) {
5559 subfacet->used = used;
5560 facet_update_time(subfacet->facet, used);
5561 }
5562 }
5563
5564 /* Folds the statistics from 'stats' into the counters in 'subfacet'.
5565 *
5566 * Because of the meaning of a subfacet's counters, it only makes sense to do
5567 * this if 'stats' are not tracked in the datapath, that is, if 'stats'
5568 * represents a packet that was sent by hand or if it represents statistics
5569 * that have been cleared out of the datapath. */
5570 static void
5571 subfacet_update_stats(struct subfacet *subfacet,
5572 const struct dpif_flow_stats *stats)
5573 {
5574 if (stats->n_packets || stats->used > subfacet->used) {
5575 struct facet *facet = subfacet->facet;
5576
5577 subfacet_update_time(subfacet, stats->used);
5578 facet->packet_count += stats->n_packets;
5579 facet->byte_count += stats->n_bytes;
5580 facet->tcp_flags |= stats->tcp_flags;
5581 netflow_flow_update_flags(&facet->nf_flow, stats->tcp_flags);
5582 }
5583 }
5584 \f
5585 /* Rules. */
5586
5587 static struct rule_dpif *
5588 rule_dpif_lookup(struct ofproto_dpif *ofproto, const struct flow *flow)
5589 {
5590 struct rule_dpif *rule;
5591
5592 rule = rule_dpif_lookup__(ofproto, flow, 0);
5593 if (rule) {
5594 return rule;
5595 }
5596
5597 return rule_dpif_miss_rule(ofproto, flow);
5598 }
5599
5600 static struct rule_dpif *
5601 rule_dpif_lookup__(struct ofproto_dpif *ofproto, const struct flow *flow,
5602 uint8_t table_id)
5603 {
5604 struct cls_rule *cls_rule;
5605 struct classifier *cls;
5606
5607 if (table_id >= N_TABLES) {
5608 return NULL;
5609 }
5610
5611 cls = &ofproto->up.tables[table_id].cls;
5612 if (flow->nw_frag & FLOW_NW_FRAG_ANY
5613 && ofproto->up.frag_handling == OFPC_FRAG_NORMAL) {
5614 /* For OFPC_NORMAL frag_handling, we must pretend that transport ports
5615 * are unavailable. */
5616 struct flow ofpc_normal_flow = *flow;
5617 ofpc_normal_flow.tp_src = htons(0);
5618 ofpc_normal_flow.tp_dst = htons(0);
5619 cls_rule = classifier_lookup(cls, &ofpc_normal_flow);
5620 } else {
5621 cls_rule = classifier_lookup(cls, flow);
5622 }
5623 return rule_dpif_cast(rule_from_cls_rule(cls_rule));
5624 }
5625
5626 static struct rule_dpif *
5627 rule_dpif_miss_rule(struct ofproto_dpif *ofproto, const struct flow *flow)
5628 {
5629 struct ofport_dpif *port;
5630
5631 port = get_ofp_port(ofproto, flow->in_port);
5632 if (!port) {
5633 VLOG_WARN_RL(&rl, "packet-in on unknown port %"PRIu16, flow->in_port);
5634 return ofproto->miss_rule;
5635 }
5636
5637 if (port->up.pp.config & OFPUTIL_PC_NO_PACKET_IN) {
5638 return ofproto->no_packet_in_rule;
5639 }
5640 return ofproto->miss_rule;
5641 }
5642
5643 static void
5644 complete_operation(struct rule_dpif *rule)
5645 {
5646 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
5647
5648 rule_invalidate(rule);
5649 if (clogged) {
5650 struct dpif_completion *c = xmalloc(sizeof *c);
5651 c->op = rule->up.pending;
5652 list_push_back(&ofproto->completions, &c->list_node);
5653 } else {
5654 ofoperation_complete(rule->up.pending, 0);
5655 }
5656 }
5657
5658 static struct rule *
5659 rule_alloc(void)
5660 {
5661 struct rule_dpif *rule = xmalloc(sizeof *rule);
5662 return &rule->up;
5663 }
5664
5665 static void
5666 rule_dealloc(struct rule *rule_)
5667 {
5668 struct rule_dpif *rule = rule_dpif_cast(rule_);
5669 free(rule);
5670 }
5671
5672 static enum ofperr
5673 rule_construct(struct rule *rule_)
5674 {
5675 struct rule_dpif *rule = rule_dpif_cast(rule_);
5676 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
5677 struct rule_dpif *victim;
5678 uint8_t table_id;
5679
5680 rule->packet_count = 0;
5681 rule->byte_count = 0;
5682
5683 victim = rule_dpif_cast(ofoperation_get_victim(rule->up.pending));
5684 if (victim && !list_is_empty(&victim->facets)) {
5685 struct facet *facet;
5686
5687 rule->facets = victim->facets;
5688 list_moved(&rule->facets);
5689 LIST_FOR_EACH (facet, list_node, &rule->facets) {
5690 /* XXX: We're only clearing our local counters here. It's possible
5691 * that quite a few packets are unaccounted for in the datapath
5692 * statistics. These will be accounted to the new rule instead of
5693 * cleared as required. This could be fixed by clearing out the
5694 * datapath statistics for this facet, but currently it doesn't
5695 * seem worth it. */
5696 facet_reset_counters(facet);
5697 facet->rule = rule;
5698 }
5699 } else {
5700 /* Must avoid list_moved() in this case. */
5701 list_init(&rule->facets);
5702 }
5703
5704 table_id = rule->up.table_id;
5705 if (victim) {
5706 rule->tag = victim->tag;
5707 } else if (table_id == 0) {
5708 rule->tag = 0;
5709 } else {
5710 struct flow flow;
5711
5712 miniflow_expand(&rule->up.cr.match.flow, &flow);
5713 rule->tag = rule_calculate_tag(&flow, &rule->up.cr.match.mask,
5714 ofproto->tables[table_id].basis);
5715 }
5716
5717 complete_operation(rule);
5718 return 0;
5719 }
5720
5721 static void
5722 rule_destruct(struct rule *rule_)
5723 {
5724 struct rule_dpif *rule = rule_dpif_cast(rule_);
5725 struct facet *facet, *next_facet;
5726
5727 LIST_FOR_EACH_SAFE (facet, next_facet, list_node, &rule->facets) {
5728 facet_revalidate(facet);
5729 }
5730
5731 complete_operation(rule);
5732 }
5733
5734 static void
5735 rule_get_stats(struct rule *rule_, uint64_t *packets, uint64_t *bytes)
5736 {
5737 struct rule_dpif *rule = rule_dpif_cast(rule_);
5738 struct facet *facet;
5739
5740 /* push_all_stats() can handle flow misses which, when using the learn
5741 * action, can cause rules to be added and deleted. This can corrupt our
5742 * caller's datastructures which assume that rule_get_stats() doesn't have
5743 * an impact on the flow table. To be safe, we disable miss handling. */
5744 push_all_stats__(false);
5745
5746 /* Start from historical data for 'rule' itself that are no longer tracked
5747 * in facets. This counts, for example, facets that have expired. */
5748 *packets = rule->packet_count;
5749 *bytes = rule->byte_count;
5750
5751 /* Add any statistics that are tracked by facets. This includes
5752 * statistical data recently updated by ofproto_update_stats() as well as
5753 * stats for packets that were executed "by hand" via dpif_execute(). */
5754 LIST_FOR_EACH (facet, list_node, &rule->facets) {
5755 *packets += facet->packet_count;
5756 *bytes += facet->byte_count;
5757 }
5758 }
5759
5760 static void
5761 rule_dpif_execute(struct rule_dpif *rule, const struct flow *flow,
5762 struct ofpbuf *packet)
5763 {
5764 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
5765 struct initial_vals initial_vals;
5766 struct dpif_flow_stats stats;
5767 struct action_xlate_ctx ctx;
5768 uint64_t odp_actions_stub[1024 / 8];
5769 struct ofpbuf odp_actions;
5770
5771 dpif_flow_stats_extract(flow, packet, time_msec(), &stats);
5772 rule_credit_stats(rule, &stats);
5773
5774 initial_vals.vlan_tci = flow->vlan_tci;
5775 ofpbuf_use_stub(&odp_actions, odp_actions_stub, sizeof odp_actions_stub);
5776 action_xlate_ctx_init(&ctx, ofproto, flow, &initial_vals,
5777 rule, stats.tcp_flags, packet);
5778 ctx.resubmit_stats = &stats;
5779 xlate_actions(&ctx, rule->up.ofpacts, rule->up.ofpacts_len, &odp_actions);
5780
5781 execute_odp_actions(ofproto, flow, odp_actions.data,
5782 odp_actions.size, packet);
5783
5784 ofpbuf_uninit(&odp_actions);
5785 }
5786
5787 static enum ofperr
5788 rule_execute(struct rule *rule, const struct flow *flow,
5789 struct ofpbuf *packet)
5790 {
5791 rule_dpif_execute(rule_dpif_cast(rule), flow, packet);
5792 ofpbuf_delete(packet);
5793 return 0;
5794 }
5795
5796 static void
5797 rule_modify_actions(struct rule *rule_)
5798 {
5799 struct rule_dpif *rule = rule_dpif_cast(rule_);
5800
5801 complete_operation(rule);
5802 }
5803 \f
5804 /* Sends 'packet' out 'ofport'.
5805 * May modify 'packet'.
5806 * Returns 0 if successful, otherwise a positive errno value. */
5807 static int
5808 send_packet(const struct ofport_dpif *ofport, struct ofpbuf *packet)
5809 {
5810 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
5811 uint64_t odp_actions_stub[1024 / 8];
5812 struct ofpbuf key, odp_actions;
5813 struct odputil_keybuf keybuf;
5814 uint32_t odp_port;
5815 struct flow flow;
5816 int error;
5817
5818 flow_extract(packet, 0, 0, NULL, OFPP_LOCAL, &flow);
5819 if (netdev_vport_is_patch(ofport->up.netdev)) {
5820 struct ofproto_dpif *peer_ofproto;
5821 struct dpif_flow_stats stats;
5822 struct ofport_dpif *peer;
5823 struct rule_dpif *rule;
5824
5825 peer = ofport_get_peer(ofport);
5826 if (!peer) {
5827 return ENODEV;
5828 }
5829
5830 dpif_flow_stats_extract(&flow, packet, time_msec(), &stats);
5831 netdev_vport_inc_tx(ofport->up.netdev, &stats);
5832 netdev_vport_inc_rx(peer->up.netdev, &stats);
5833
5834 flow.in_port = peer->up.ofp_port;
5835 peer_ofproto = ofproto_dpif_cast(peer->up.ofproto);
5836 rule = rule_dpif_lookup(peer_ofproto, &flow);
5837 rule_dpif_execute(rule, &flow, packet);
5838
5839 return 0;
5840 }
5841
5842 ofpbuf_use_stub(&odp_actions, odp_actions_stub, sizeof odp_actions_stub);
5843
5844 if (ofport->tnl_port) {
5845 struct dpif_flow_stats stats;
5846
5847 odp_port = tnl_port_send(ofport->tnl_port, &flow);
5848 if (odp_port == OVSP_NONE) {
5849 return ENODEV;
5850 }
5851
5852 dpif_flow_stats_extract(&flow, packet, time_msec(), &stats);
5853 netdev_vport_inc_tx(ofport->up.netdev, &stats);
5854 odp_put_tunnel_action(&flow.tunnel, &odp_actions);
5855 odp_put_skb_mark_action(flow.skb_mark, &odp_actions);
5856 } else {
5857 odp_port = vsp_realdev_to_vlandev(ofproto, ofport->odp_port,
5858 flow.vlan_tci);
5859 if (odp_port != ofport->odp_port) {
5860 eth_pop_vlan(packet);
5861 flow.vlan_tci = htons(0);
5862 }
5863 }
5864
5865 ofpbuf_use_stack(&key, &keybuf, sizeof keybuf);
5866 odp_flow_key_from_flow(&key, &flow,
5867 ofp_port_to_odp_port(ofproto, flow.in_port));
5868
5869 compose_sflow_action(ofproto, &odp_actions, &flow, odp_port);
5870 compose_ipfix_action(ofproto, &odp_actions, &flow);
5871
5872 nl_msg_put_u32(&odp_actions, OVS_ACTION_ATTR_OUTPUT, odp_port);
5873 error = dpif_execute(ofproto->backer->dpif,
5874 key.data, key.size,
5875 odp_actions.data, odp_actions.size,
5876 packet);
5877 ofpbuf_uninit(&odp_actions);
5878
5879 if (error) {
5880 VLOG_WARN_RL(&rl, "%s: failed to send packet on port %"PRIu32" (%s)",
5881 ofproto->up.name, odp_port, strerror(error));
5882 }
5883
5884 ofproto->stats.tx_packets++;
5885 ofproto->stats.tx_bytes += packet->size;
5886 return error;
5887 }
5888 \f
5889 /* OpenFlow to datapath action translation. */
5890
5891 static bool may_receive(const struct ofport_dpif *, struct action_xlate_ctx *);
5892 static void do_xlate_actions(const struct ofpact *, size_t ofpacts_len,
5893 struct action_xlate_ctx *);
5894 static void xlate_normal(struct action_xlate_ctx *);
5895
5896 /* Composes an ODP action for a "slow path" action for 'flow' within 'ofproto'.
5897 * The action will state 'slow' as the reason that the action is in the slow
5898 * path. (This is purely informational: it allows a human viewing "ovs-dpctl
5899 * dump-flows" output to see why a flow is in the slow path.)
5900 *
5901 * The 'stub_size' bytes in 'stub' will be used to store the action.
5902 * 'stub_size' must be large enough for the action.
5903 *
5904 * The action and its size will be stored in '*actionsp' and '*actions_lenp',
5905 * respectively. */
5906 static void
5907 compose_slow_path(const struct ofproto_dpif *ofproto, const struct flow *flow,
5908 enum slow_path_reason slow,
5909 uint64_t *stub, size_t stub_size,
5910 const struct nlattr **actionsp, size_t *actions_lenp)
5911 {
5912 union user_action_cookie cookie;
5913 struct ofpbuf buf;
5914
5915 cookie.type = USER_ACTION_COOKIE_SLOW_PATH;
5916 cookie.slow_path.unused = 0;
5917 cookie.slow_path.reason = slow;
5918
5919 ofpbuf_use_stack(&buf, stub, stub_size);
5920 if (slow & (SLOW_CFM | SLOW_BFD | SLOW_LACP | SLOW_STP)) {
5921 uint32_t pid = dpif_port_get_pid(ofproto->backer->dpif, UINT32_MAX);
5922 odp_put_userspace_action(pid, &cookie, sizeof cookie.slow_path, &buf);
5923 } else {
5924 put_userspace_action(ofproto, &buf, flow, &cookie,
5925 sizeof cookie.slow_path);
5926 }
5927 *actionsp = buf.data;
5928 *actions_lenp = buf.size;
5929 }
5930
5931 static size_t
5932 put_userspace_action(const struct ofproto_dpif *ofproto,
5933 struct ofpbuf *odp_actions,
5934 const struct flow *flow,
5935 const union user_action_cookie *cookie,
5936 const size_t cookie_size)
5937 {
5938 uint32_t pid;
5939
5940 pid = dpif_port_get_pid(ofproto->backer->dpif,
5941 ofp_port_to_odp_port(ofproto, flow->in_port));
5942
5943 return odp_put_userspace_action(pid, cookie, cookie_size, odp_actions);
5944 }
5945
5946 /* Compose SAMPLE action for sFlow or IPFIX. The given probability is
5947 * the number of packets out of UINT32_MAX to sample. The given
5948 * cookie is passed back in the callback for each sampled packet.
5949 */
5950 static size_t
5951 compose_sample_action(const struct ofproto_dpif *ofproto,
5952 struct ofpbuf *odp_actions,
5953 const struct flow *flow,
5954 const uint32_t probability,
5955 const union user_action_cookie *cookie,
5956 const size_t cookie_size)
5957 {
5958 size_t sample_offset, actions_offset;
5959 int cookie_offset;
5960
5961 sample_offset = nl_msg_start_nested(odp_actions, OVS_ACTION_ATTR_SAMPLE);
5962
5963 nl_msg_put_u32(odp_actions, OVS_SAMPLE_ATTR_PROBABILITY, probability);
5964
5965 actions_offset = nl_msg_start_nested(odp_actions, OVS_SAMPLE_ATTR_ACTIONS);
5966 cookie_offset = put_userspace_action(ofproto, odp_actions, flow, cookie,
5967 cookie_size);
5968
5969 nl_msg_end_nested(odp_actions, actions_offset);
5970 nl_msg_end_nested(odp_actions, sample_offset);
5971 return cookie_offset;
5972 }
5973
5974 static void
5975 compose_sflow_cookie(const struct ofproto_dpif *ofproto,
5976 ovs_be16 vlan_tci, uint32_t odp_port,
5977 unsigned int n_outputs, union user_action_cookie *cookie)
5978 {
5979 int ifindex;
5980
5981 cookie->type = USER_ACTION_COOKIE_SFLOW;
5982 cookie->sflow.vlan_tci = vlan_tci;
5983
5984 /* See http://www.sflow.org/sflow_version_5.txt (search for "Input/output
5985 * port information") for the interpretation of cookie->output. */
5986 switch (n_outputs) {
5987 case 0:
5988 /* 0x40000000 | 256 means "packet dropped for unknown reason". */
5989 cookie->sflow.output = 0x40000000 | 256;
5990 break;
5991
5992 case 1:
5993 ifindex = dpif_sflow_odp_port_to_ifindex(ofproto->sflow, odp_port);
5994 if (ifindex) {
5995 cookie->sflow.output = ifindex;
5996 break;
5997 }
5998 /* Fall through. */
5999 default:
6000 /* 0x80000000 means "multiple output ports. */
6001 cookie->sflow.output = 0x80000000 | n_outputs;
6002 break;
6003 }
6004 }
6005
6006 /* Compose SAMPLE action for sFlow bridge sampling. */
6007 static size_t
6008 compose_sflow_action(const struct ofproto_dpif *ofproto,
6009 struct ofpbuf *odp_actions,
6010 const struct flow *flow,
6011 uint32_t odp_port)
6012 {
6013 uint32_t probability;
6014 union user_action_cookie cookie;
6015
6016 if (!ofproto->sflow || flow->in_port == OFPP_NONE) {
6017 return 0;
6018 }
6019
6020 probability = dpif_sflow_get_probability(ofproto->sflow);
6021 compose_sflow_cookie(ofproto, htons(0), odp_port,
6022 odp_port == OVSP_NONE ? 0 : 1, &cookie);
6023
6024 return compose_sample_action(ofproto, odp_actions, flow, probability,
6025 &cookie, sizeof cookie.sflow);
6026 }
6027
6028 static void
6029 compose_flow_sample_cookie(uint16_t probability, uint32_t collector_set_id,
6030 uint32_t obs_domain_id, uint32_t obs_point_id,
6031 union user_action_cookie *cookie)
6032 {
6033 cookie->type = USER_ACTION_COOKIE_FLOW_SAMPLE;
6034 cookie->flow_sample.probability = probability;
6035 cookie->flow_sample.collector_set_id = collector_set_id;
6036 cookie->flow_sample.obs_domain_id = obs_domain_id;
6037 cookie->flow_sample.obs_point_id = obs_point_id;
6038 }
6039
6040 static void
6041 compose_ipfix_cookie(union user_action_cookie *cookie)
6042 {
6043 cookie->type = USER_ACTION_COOKIE_IPFIX;
6044 }
6045
6046 /* Compose SAMPLE action for IPFIX bridge sampling. */
6047 static void
6048 compose_ipfix_action(const struct ofproto_dpif *ofproto,
6049 struct ofpbuf *odp_actions,
6050 const struct flow *flow)
6051 {
6052 uint32_t probability;
6053 union user_action_cookie cookie;
6054
6055 if (!ofproto->ipfix || flow->in_port == OFPP_NONE) {
6056 return;
6057 }
6058
6059 probability = dpif_ipfix_get_bridge_exporter_probability(ofproto->ipfix);
6060 compose_ipfix_cookie(&cookie);
6061
6062 compose_sample_action(ofproto, odp_actions, flow, probability,
6063 &cookie, sizeof cookie.ipfix);
6064 }
6065
6066 /* SAMPLE action for sFlow must be first action in any given list of
6067 * actions. At this point we do not have all information required to
6068 * build it. So try to build sample action as complete as possible. */
6069 static void
6070 add_sflow_action(struct action_xlate_ctx *ctx)
6071 {
6072 ctx->user_cookie_offset = compose_sflow_action(ctx->ofproto,
6073 ctx->odp_actions,
6074 &ctx->flow, OVSP_NONE);
6075 ctx->sflow_odp_port = 0;
6076 ctx->sflow_n_outputs = 0;
6077 }
6078
6079 /* SAMPLE action for IPFIX must be 1st or 2nd action in any given list
6080 * of actions, eventually after the SAMPLE action for sFlow. */
6081 static void
6082 add_ipfix_action(struct action_xlate_ctx *ctx)
6083 {
6084 compose_ipfix_action(ctx->ofproto, ctx->odp_actions, &ctx->flow);
6085 }
6086
6087 /* Fix SAMPLE action according to data collected while composing ODP actions.
6088 * We need to fix SAMPLE actions OVS_SAMPLE_ATTR_ACTIONS attribute, i.e. nested
6089 * USERSPACE action's user-cookie which is required for sflow. */
6090 static void
6091 fix_sflow_action(struct action_xlate_ctx *ctx)
6092 {
6093 const struct flow *base = &ctx->base_flow;
6094 union user_action_cookie *cookie;
6095
6096 if (!ctx->user_cookie_offset) {
6097 return;
6098 }
6099
6100 cookie = ofpbuf_at(ctx->odp_actions, ctx->user_cookie_offset,
6101 sizeof cookie->sflow);
6102 ovs_assert(cookie->type == USER_ACTION_COOKIE_SFLOW);
6103
6104 compose_sflow_cookie(ctx->ofproto, base->vlan_tci,
6105 ctx->sflow_odp_port, ctx->sflow_n_outputs, cookie);
6106 }
6107
6108 static void
6109 compose_output_action__(struct action_xlate_ctx *ctx, uint16_t ofp_port,
6110 bool check_stp)
6111 {
6112 const struct ofport_dpif *ofport = get_ofp_port(ctx->ofproto, ofp_port);
6113 ovs_be16 flow_vlan_tci;
6114 uint32_t flow_skb_mark;
6115 uint8_t flow_nw_tos;
6116 struct priority_to_dscp *pdscp;
6117 uint32_t out_port, odp_port;
6118
6119 /* If 'struct flow' gets additional metadata, we'll need to zero it out
6120 * before traversing a patch port. */
6121 BUILD_ASSERT_DECL(FLOW_WC_SEQ == 20);
6122
6123 if (!ofport) {
6124 xlate_report(ctx, "Nonexistent output port");
6125 return;
6126 } else if (ofport->up.pp.config & OFPUTIL_PC_NO_FWD) {
6127 xlate_report(ctx, "OFPPC_NO_FWD set, skipping output");
6128 return;
6129 } else if (check_stp && !stp_forward_in_state(ofport->stp_state)) {
6130 xlate_report(ctx, "STP not in forwarding state, skipping output");
6131 return;
6132 }
6133
6134 if (netdev_vport_is_patch(ofport->up.netdev)) {
6135 struct ofport_dpif *peer = ofport_get_peer(ofport);
6136 struct flow old_flow = ctx->flow;
6137 const struct ofproto_dpif *peer_ofproto;
6138 enum slow_path_reason special;
6139 struct ofport_dpif *in_port;
6140
6141 if (!peer) {
6142 xlate_report(ctx, "Nonexistent patch port peer");
6143 return;
6144 }
6145
6146 peer_ofproto = ofproto_dpif_cast(peer->up.ofproto);
6147 if (peer_ofproto->backer != ctx->ofproto->backer) {
6148 xlate_report(ctx, "Patch port peer on a different datapath");
6149 return;
6150 }
6151
6152 ctx->ofproto = ofproto_dpif_cast(peer->up.ofproto);
6153 ctx->flow.in_port = peer->up.ofp_port;
6154 ctx->flow.metadata = htonll(0);
6155 memset(&ctx->flow.tunnel, 0, sizeof ctx->flow.tunnel);
6156 memset(ctx->flow.regs, 0, sizeof ctx->flow.regs);
6157
6158 in_port = get_ofp_port(ctx->ofproto, ctx->flow.in_port);
6159 special = process_special(ctx->ofproto, &ctx->flow, in_port,
6160 ctx->packet);
6161 if (special) {
6162 ctx->slow |= special;
6163 } else if (!in_port || may_receive(in_port, ctx)) {
6164 if (!in_port || stp_forward_in_state(in_port->stp_state)) {
6165 xlate_table_action(ctx, ctx->flow.in_port, 0, true);
6166 } else {
6167 /* Forwarding is disabled by STP. Let OFPP_NORMAL and the
6168 * learning action look at the packet, then drop it. */
6169 struct flow old_base_flow = ctx->base_flow;
6170 size_t old_size = ctx->odp_actions->size;
6171 xlate_table_action(ctx, ctx->flow.in_port, 0, true);
6172 ctx->base_flow = old_base_flow;
6173 ctx->odp_actions->size = old_size;
6174 }
6175 }
6176
6177 ctx->flow = old_flow;
6178 ctx->ofproto = ofproto_dpif_cast(ofport->up.ofproto);
6179
6180 if (ctx->resubmit_stats) {
6181 netdev_vport_inc_tx(ofport->up.netdev, ctx->resubmit_stats);
6182 netdev_vport_inc_rx(peer->up.netdev, ctx->resubmit_stats);
6183 }
6184
6185 return;
6186 }
6187
6188 flow_vlan_tci = ctx->flow.vlan_tci;
6189 flow_skb_mark = ctx->flow.skb_mark;
6190 flow_nw_tos = ctx->flow.nw_tos;
6191
6192 pdscp = get_priority(ofport, ctx->flow.skb_priority);
6193 if (pdscp) {
6194 ctx->flow.nw_tos &= ~IP_DSCP_MASK;
6195 ctx->flow.nw_tos |= pdscp->dscp;
6196 }
6197
6198 if (ofport->tnl_port) {
6199 /* Save tunnel metadata so that changes made due to
6200 * the Logical (tunnel) Port are not visible for any further
6201 * matches, while explicit set actions on tunnel metadata are.
6202 */
6203 struct flow_tnl flow_tnl = ctx->flow.tunnel;
6204 odp_port = tnl_port_send(ofport->tnl_port, &ctx->flow);
6205 if (odp_port == OVSP_NONE) {
6206 xlate_report(ctx, "Tunneling decided against output");
6207 goto out; /* restore flow_nw_tos */
6208 }
6209
6210 if (ctx->resubmit_stats) {
6211 netdev_vport_inc_tx(ofport->up.netdev, ctx->resubmit_stats);
6212 }
6213 out_port = odp_port;
6214 commit_odp_tunnel_action(&ctx->flow, &ctx->base_flow,
6215 ctx->odp_actions);
6216 ctx->flow.tunnel = flow_tnl; /* Restore tunnel metadata */
6217 } else {
6218 odp_port = ofport->odp_port;
6219 out_port = vsp_realdev_to_vlandev(ctx->ofproto, odp_port,
6220 ctx->flow.vlan_tci);
6221 if (out_port != odp_port) {
6222 ctx->flow.vlan_tci = htons(0);
6223 }
6224 ctx->flow.skb_mark &= ~IPSEC_MARK;
6225 }
6226 commit_odp_actions(&ctx->flow, &ctx->base_flow, ctx->odp_actions);
6227 nl_msg_put_u32(ctx->odp_actions, OVS_ACTION_ATTR_OUTPUT, out_port);
6228
6229 ctx->sflow_odp_port = odp_port;
6230 ctx->sflow_n_outputs++;
6231 ctx->nf_output_iface = ofp_port;
6232
6233 /* Restore flow */
6234 ctx->flow.vlan_tci = flow_vlan_tci;
6235 ctx->flow.skb_mark = flow_skb_mark;
6236 out:
6237 ctx->flow.nw_tos = flow_nw_tos;
6238 }
6239
6240 static void
6241 compose_output_action(struct action_xlate_ctx *ctx, uint16_t ofp_port)
6242 {
6243 compose_output_action__(ctx, ofp_port, true);
6244 }
6245
6246 static void
6247 tag_the_flow(struct action_xlate_ctx *ctx, struct rule_dpif *rule)
6248 {
6249 struct ofproto_dpif *ofproto = ctx->ofproto;
6250 uint8_t table_id = ctx->table_id;
6251
6252 if (table_id > 0 && table_id < N_TABLES) {
6253 struct table_dpif *table = &ofproto->tables[table_id];
6254 if (table->other_table) {
6255 ctx->tags |= (rule && rule->tag
6256 ? rule->tag
6257 : rule_calculate_tag(&ctx->flow,
6258 &table->other_table->mask,
6259 table->basis));
6260 }
6261 }
6262 }
6263
6264 /* Common rule processing in one place to avoid duplicating code. */
6265 static struct rule_dpif *
6266 ctx_rule_hooks(struct action_xlate_ctx *ctx, struct rule_dpif *rule,
6267 bool may_packet_in)
6268 {
6269 if (ctx->resubmit_hook) {
6270 ctx->resubmit_hook(ctx, rule);
6271 }
6272 if (rule == NULL && may_packet_in) {
6273 /* XXX
6274 * check if table configuration flags
6275 * OFPTC_TABLE_MISS_CONTROLLER, default.
6276 * OFPTC_TABLE_MISS_CONTINUE,
6277 * OFPTC_TABLE_MISS_DROP
6278 * When OF1.0, OFPTC_TABLE_MISS_CONTINUE is used. What to do?
6279 */
6280 rule = rule_dpif_miss_rule(ctx->ofproto, &ctx->flow);
6281 }
6282 if (rule && ctx->resubmit_stats) {
6283 rule_credit_stats(rule, ctx->resubmit_stats);
6284 }
6285 return rule;
6286 }
6287
6288 static void
6289 xlate_table_action(struct action_xlate_ctx *ctx,
6290 uint16_t in_port, uint8_t table_id, bool may_packet_in)
6291 {
6292 if (ctx->recurse < MAX_RESUBMIT_RECURSION) {
6293 struct rule_dpif *rule;
6294 uint16_t old_in_port = ctx->flow.in_port;
6295 uint8_t old_table_id = ctx->table_id;
6296
6297 ctx->table_id = table_id;
6298
6299 /* Look up a flow with 'in_port' as the input port. */
6300 ctx->flow.in_port = in_port;
6301 rule = rule_dpif_lookup__(ctx->ofproto, &ctx->flow, table_id);
6302
6303 tag_the_flow(ctx, rule);
6304
6305 /* Restore the original input port. Otherwise OFPP_NORMAL and
6306 * OFPP_IN_PORT will have surprising behavior. */
6307 ctx->flow.in_port = old_in_port;
6308
6309 rule = ctx_rule_hooks(ctx, rule, may_packet_in);
6310
6311 if (rule) {
6312 struct rule_dpif *old_rule = ctx->rule;
6313
6314 ctx->recurse++;
6315 ctx->rule = rule;
6316 do_xlate_actions(rule->up.ofpacts, rule->up.ofpacts_len, ctx);
6317 ctx->rule = old_rule;
6318 ctx->recurse--;
6319 }
6320
6321 ctx->table_id = old_table_id;
6322 } else {
6323 static struct vlog_rate_limit recurse_rl = VLOG_RATE_LIMIT_INIT(1, 1);
6324
6325 VLOG_ERR_RL(&recurse_rl, "resubmit actions recursed over %d times",
6326 MAX_RESUBMIT_RECURSION);
6327 ctx->max_resubmit_trigger = true;
6328 }
6329 }
6330
6331 static void
6332 xlate_ofpact_resubmit(struct action_xlate_ctx *ctx,
6333 const struct ofpact_resubmit *resubmit)
6334 {
6335 uint16_t in_port;
6336 uint8_t table_id;
6337
6338 in_port = resubmit->in_port;
6339 if (in_port == OFPP_IN_PORT) {
6340 in_port = ctx->flow.in_port;
6341 }
6342
6343 table_id = resubmit->table_id;
6344 if (table_id == 255) {
6345 table_id = ctx->table_id;
6346 }
6347
6348 xlate_table_action(ctx, in_port, table_id, false);
6349 }
6350
6351 static void
6352 flood_packets(struct action_xlate_ctx *ctx, bool all)
6353 {
6354 struct ofport_dpif *ofport;
6355
6356 HMAP_FOR_EACH (ofport, up.hmap_node, &ctx->ofproto->up.ports) {
6357 uint16_t ofp_port = ofport->up.ofp_port;
6358
6359 if (ofp_port == ctx->flow.in_port) {
6360 continue;
6361 }
6362
6363 if (all) {
6364 compose_output_action__(ctx, ofp_port, false);
6365 } else if (!(ofport->up.pp.config & OFPUTIL_PC_NO_FLOOD)) {
6366 compose_output_action(ctx, ofp_port);
6367 }
6368 }
6369
6370 ctx->nf_output_iface = NF_OUT_FLOOD;
6371 }
6372
6373 static void
6374 execute_controller_action(struct action_xlate_ctx *ctx, int len,
6375 enum ofp_packet_in_reason reason,
6376 uint16_t controller_id)
6377 {
6378 struct ofputil_packet_in pin;
6379 struct ofpbuf *packet;
6380
6381 ctx->slow |= SLOW_CONTROLLER;
6382 if (!ctx->packet) {
6383 return;
6384 }
6385
6386 packet = ofpbuf_clone(ctx->packet);
6387
6388 if (packet->l2 && packet->l3) {
6389 struct eth_header *eh;
6390 uint16_t mpls_depth;
6391
6392 eth_pop_vlan(packet);
6393 eh = packet->l2;
6394
6395 memcpy(eh->eth_src, ctx->flow.dl_src, sizeof eh->eth_src);
6396 memcpy(eh->eth_dst, ctx->flow.dl_dst, sizeof eh->eth_dst);
6397
6398 if (ctx->flow.vlan_tci & htons(VLAN_CFI)) {
6399 eth_push_vlan(packet, ctx->flow.vlan_tci);
6400 }
6401
6402 mpls_depth = eth_mpls_depth(packet);
6403
6404 if (mpls_depth < ctx->flow.mpls_depth) {
6405 push_mpls(packet, ctx->flow.dl_type, ctx->flow.mpls_lse);
6406 } else if (mpls_depth > ctx->flow.mpls_depth) {
6407 pop_mpls(packet, ctx->flow.dl_type);
6408 } else if (mpls_depth) {
6409 set_mpls_lse(packet, ctx->flow.mpls_lse);
6410 }
6411
6412 if (packet->l4) {
6413 if (ctx->flow.dl_type == htons(ETH_TYPE_IP)) {
6414 packet_set_ipv4(packet, ctx->flow.nw_src, ctx->flow.nw_dst,
6415 ctx->flow.nw_tos, ctx->flow.nw_ttl);
6416 }
6417
6418 if (packet->l7) {
6419 if (ctx->flow.nw_proto == IPPROTO_TCP) {
6420 packet_set_tcp_port(packet, ctx->flow.tp_src,
6421 ctx->flow.tp_dst);
6422 } else if (ctx->flow.nw_proto == IPPROTO_UDP) {
6423 packet_set_udp_port(packet, ctx->flow.tp_src,
6424 ctx->flow.tp_dst);
6425 }
6426 }
6427 }
6428 }
6429
6430 pin.packet = packet->data;
6431 pin.packet_len = packet->size;
6432 pin.reason = reason;
6433 pin.controller_id = controller_id;
6434 pin.table_id = ctx->table_id;
6435 pin.cookie = ctx->rule ? ctx->rule->up.flow_cookie : 0;
6436
6437 pin.send_len = len;
6438 flow_get_metadata(&ctx->flow, &pin.fmd);
6439
6440 connmgr_send_packet_in(ctx->ofproto->up.connmgr, &pin);
6441 ofpbuf_delete(packet);
6442 }
6443
6444 static void
6445 execute_mpls_push_action(struct action_xlate_ctx *ctx, ovs_be16 eth_type)
6446 {
6447 ovs_assert(eth_type_mpls(eth_type));
6448
6449 if (ctx->base_flow.mpls_depth) {
6450 ctx->flow.mpls_lse &= ~htonl(MPLS_BOS_MASK);
6451 ctx->flow.mpls_depth++;
6452 } else {
6453 ovs_be32 label;
6454 uint8_t tc, ttl;
6455
6456 if (ctx->flow.dl_type == htons(ETH_TYPE_IPV6)) {
6457 label = htonl(0x2); /* IPV6 Explicit Null. */
6458 } else {
6459 label = htonl(0x0); /* IPV4 Explicit Null. */
6460 }
6461 tc = (ctx->flow.nw_tos & IP_DSCP_MASK) >> 2;
6462 ttl = ctx->flow.nw_ttl ? ctx->flow.nw_ttl : 0x40;
6463 ctx->flow.mpls_lse = set_mpls_lse_values(ttl, tc, 1, label);
6464 ctx->flow.mpls_depth = 1;
6465 }
6466 ctx->flow.dl_type = eth_type;
6467 }
6468
6469 static void
6470 execute_mpls_pop_action(struct action_xlate_ctx *ctx, ovs_be16 eth_type)
6471 {
6472 ovs_assert(eth_type_mpls(ctx->flow.dl_type));
6473 ovs_assert(!eth_type_mpls(eth_type));
6474
6475 if (ctx->flow.mpls_depth) {
6476 ctx->flow.mpls_depth--;
6477 ctx->flow.mpls_lse = htonl(0);
6478 if (!ctx->flow.mpls_depth) {
6479 ctx->flow.dl_type = eth_type;
6480 }
6481 }
6482 }
6483
6484 static bool
6485 compose_dec_ttl(struct action_xlate_ctx *ctx, struct ofpact_cnt_ids *ids)
6486 {
6487 if (ctx->flow.dl_type != htons(ETH_TYPE_IP) &&
6488 ctx->flow.dl_type != htons(ETH_TYPE_IPV6)) {
6489 return false;
6490 }
6491
6492 if (ctx->flow.nw_ttl > 1) {
6493 ctx->flow.nw_ttl--;
6494 return false;
6495 } else {
6496 size_t i;
6497
6498 for (i = 0; i < ids->n_controllers; i++) {
6499 execute_controller_action(ctx, UINT16_MAX, OFPR_INVALID_TTL,
6500 ids->cnt_ids[i]);
6501 }
6502
6503 /* Stop processing for current table. */
6504 return true;
6505 }
6506 }
6507
6508 static bool
6509 execute_set_mpls_ttl_action(struct action_xlate_ctx *ctx, uint8_t ttl)
6510 {
6511 if (!eth_type_mpls(ctx->flow.dl_type)) {
6512 return true;
6513 }
6514
6515 set_mpls_lse_ttl(&ctx->flow.mpls_lse, ttl);
6516 return false;
6517 }
6518
6519 static bool
6520 execute_dec_mpls_ttl_action(struct action_xlate_ctx *ctx)
6521 {
6522 uint8_t ttl = mpls_lse_to_ttl(ctx->flow.mpls_lse);
6523
6524 if (!eth_type_mpls(ctx->flow.dl_type)) {
6525 return false;
6526 }
6527
6528 if (ttl > 1) {
6529 ttl--;
6530 set_mpls_lse_ttl(&ctx->flow.mpls_lse, ttl);
6531 return false;
6532 } else {
6533 execute_controller_action(ctx, UINT16_MAX, OFPR_INVALID_TTL, 0);
6534
6535 /* Stop processing for current table. */
6536 return true;
6537 }
6538 }
6539
6540 static void
6541 xlate_output_action(struct action_xlate_ctx *ctx,
6542 uint16_t port, uint16_t max_len, bool may_packet_in)
6543 {
6544 uint16_t prev_nf_output_iface = ctx->nf_output_iface;
6545
6546 ctx->nf_output_iface = NF_OUT_DROP;
6547
6548 switch (port) {
6549 case OFPP_IN_PORT:
6550 compose_output_action(ctx, ctx->flow.in_port);
6551 break;
6552 case OFPP_TABLE:
6553 xlate_table_action(ctx, ctx->flow.in_port, 0, may_packet_in);
6554 break;
6555 case OFPP_NORMAL:
6556 xlate_normal(ctx);
6557 break;
6558 case OFPP_FLOOD:
6559 flood_packets(ctx, false);
6560 break;
6561 case OFPP_ALL:
6562 flood_packets(ctx, true);
6563 break;
6564 case OFPP_CONTROLLER:
6565 execute_controller_action(ctx, max_len, OFPR_ACTION, 0);
6566 break;
6567 case OFPP_NONE:
6568 break;
6569 case OFPP_LOCAL:
6570 default:
6571 if (port != ctx->flow.in_port) {
6572 compose_output_action(ctx, port);
6573 } else {
6574 xlate_report(ctx, "skipping output to input port");
6575 }
6576 break;
6577 }
6578
6579 if (prev_nf_output_iface == NF_OUT_FLOOD) {
6580 ctx->nf_output_iface = NF_OUT_FLOOD;
6581 } else if (ctx->nf_output_iface == NF_OUT_DROP) {
6582 ctx->nf_output_iface = prev_nf_output_iface;
6583 } else if (prev_nf_output_iface != NF_OUT_DROP &&
6584 ctx->nf_output_iface != NF_OUT_FLOOD) {
6585 ctx->nf_output_iface = NF_OUT_MULTI;
6586 }
6587 }
6588
6589 static void
6590 xlate_output_reg_action(struct action_xlate_ctx *ctx,
6591 const struct ofpact_output_reg *or)
6592 {
6593 uint64_t port = mf_get_subfield(&or->src, &ctx->flow);
6594 if (port <= UINT16_MAX) {
6595 xlate_output_action(ctx, port, or->max_len, false);
6596 }
6597 }
6598
6599 static void
6600 xlate_enqueue_action(struct action_xlate_ctx *ctx,
6601 const struct ofpact_enqueue *enqueue)
6602 {
6603 uint16_t ofp_port = enqueue->port;
6604 uint32_t queue_id = enqueue->queue;
6605 uint32_t flow_priority, priority;
6606 int error;
6607
6608 /* Translate queue to priority. */
6609 error = dpif_queue_to_priority(ctx->ofproto->backer->dpif,
6610 queue_id, &priority);
6611 if (error) {
6612 /* Fall back to ordinary output action. */
6613 xlate_output_action(ctx, enqueue->port, 0, false);
6614 return;
6615 }
6616
6617 /* Check output port. */
6618 if (ofp_port == OFPP_IN_PORT) {
6619 ofp_port = ctx->flow.in_port;
6620 } else if (ofp_port == ctx->flow.in_port) {
6621 return;
6622 }
6623
6624 /* Add datapath actions. */
6625 flow_priority = ctx->flow.skb_priority;
6626 ctx->flow.skb_priority = priority;
6627 compose_output_action(ctx, ofp_port);
6628 ctx->flow.skb_priority = flow_priority;
6629
6630 /* Update NetFlow output port. */
6631 if (ctx->nf_output_iface == NF_OUT_DROP) {
6632 ctx->nf_output_iface = ofp_port;
6633 } else if (ctx->nf_output_iface != NF_OUT_FLOOD) {
6634 ctx->nf_output_iface = NF_OUT_MULTI;
6635 }
6636 }
6637
6638 static void
6639 xlate_set_queue_action(struct action_xlate_ctx *ctx, uint32_t queue_id)
6640 {
6641 uint32_t skb_priority;
6642
6643 if (!dpif_queue_to_priority(ctx->ofproto->backer->dpif,
6644 queue_id, &skb_priority)) {
6645 ctx->flow.skb_priority = skb_priority;
6646 } else {
6647 /* Couldn't translate queue to a priority. Nothing to do. A warning
6648 * has already been logged. */
6649 }
6650 }
6651
6652 static bool
6653 slave_enabled_cb(uint16_t ofp_port, void *ofproto_)
6654 {
6655 struct ofproto_dpif *ofproto = ofproto_;
6656 struct ofport_dpif *port;
6657
6658 switch (ofp_port) {
6659 case OFPP_IN_PORT:
6660 case OFPP_TABLE:
6661 case OFPP_NORMAL:
6662 case OFPP_FLOOD:
6663 case OFPP_ALL:
6664 case OFPP_NONE:
6665 return true;
6666 case OFPP_CONTROLLER: /* Not supported by the bundle action. */
6667 return false;
6668 default:
6669 port = get_ofp_port(ofproto, ofp_port);
6670 return port ? port->may_enable : false;
6671 }
6672 }
6673
6674 static void
6675 xlate_bundle_action(struct action_xlate_ctx *ctx,
6676 const struct ofpact_bundle *bundle)
6677 {
6678 uint16_t port;
6679
6680 port = bundle_execute(bundle, &ctx->flow, slave_enabled_cb, ctx->ofproto);
6681 if (bundle->dst.field) {
6682 nxm_reg_load(&bundle->dst, port, &ctx->flow);
6683 } else {
6684 xlate_output_action(ctx, port, 0, false);
6685 }
6686 }
6687
6688 static void
6689 xlate_learn_action(struct action_xlate_ctx *ctx,
6690 const struct ofpact_learn *learn)
6691 {
6692 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(5, 1);
6693 struct ofputil_flow_mod fm;
6694 uint64_t ofpacts_stub[1024 / 8];
6695 struct ofpbuf ofpacts;
6696 int error;
6697
6698 ofpbuf_use_stack(&ofpacts, ofpacts_stub, sizeof ofpacts_stub);
6699 learn_execute(learn, &ctx->flow, &fm, &ofpacts);
6700
6701 error = ofproto_flow_mod(&ctx->ofproto->up, &fm);
6702 if (error && !VLOG_DROP_WARN(&rl)) {
6703 VLOG_WARN("learning action failed to modify flow table (%s)",
6704 ofperr_get_name(error));
6705 }
6706
6707 ofpbuf_uninit(&ofpacts);
6708 }
6709
6710 /* Reduces '*timeout' to no more than 'max'. A value of zero in either case
6711 * means "infinite". */
6712 static void
6713 reduce_timeout(uint16_t max, uint16_t *timeout)
6714 {
6715 if (max && (!*timeout || *timeout > max)) {
6716 *timeout = max;
6717 }
6718 }
6719
6720 static void
6721 xlate_fin_timeout(struct action_xlate_ctx *ctx,
6722 const struct ofpact_fin_timeout *oft)
6723 {
6724 if (ctx->tcp_flags & (TCP_FIN | TCP_RST) && ctx->rule) {
6725 struct rule_dpif *rule = ctx->rule;
6726
6727 reduce_timeout(oft->fin_idle_timeout, &rule->up.idle_timeout);
6728 reduce_timeout(oft->fin_hard_timeout, &rule->up.hard_timeout);
6729 }
6730 }
6731
6732 static void
6733 xlate_sample_action(struct action_xlate_ctx *ctx,
6734 const struct ofpact_sample *os)
6735 {
6736 union user_action_cookie cookie;
6737 /* Scale the probability from 16-bit to 32-bit while representing
6738 * the same percentage. */
6739 uint32_t probability = (os->probability << 16) | os->probability;
6740
6741 commit_odp_actions(&ctx->flow, &ctx->base_flow, ctx->odp_actions);
6742
6743 compose_flow_sample_cookie(os->probability, os->collector_set_id,
6744 os->obs_domain_id, os->obs_point_id, &cookie);
6745 compose_sample_action(ctx->ofproto, ctx->odp_actions, &ctx->flow,
6746 probability, &cookie, sizeof cookie.flow_sample);
6747 }
6748
6749 static bool
6750 may_receive(const struct ofport_dpif *port, struct action_xlate_ctx *ctx)
6751 {
6752 if (port->up.pp.config & (eth_addr_equals(ctx->flow.dl_dst, eth_addr_stp)
6753 ? OFPUTIL_PC_NO_RECV_STP
6754 : OFPUTIL_PC_NO_RECV)) {
6755 return false;
6756 }
6757
6758 /* Only drop packets here if both forwarding and learning are
6759 * disabled. If just learning is enabled, we need to have
6760 * OFPP_NORMAL and the learning action have a look at the packet
6761 * before we can drop it. */
6762 if (!stp_forward_in_state(port->stp_state)
6763 && !stp_learn_in_state(port->stp_state)) {
6764 return false;
6765 }
6766
6767 return true;
6768 }
6769
6770 static bool
6771 tunnel_ecn_ok(struct action_xlate_ctx *ctx)
6772 {
6773 if (is_ip_any(&ctx->base_flow)
6774 && (ctx->flow.tunnel.ip_tos & IP_ECN_MASK) == IP_ECN_CE) {
6775 if ((ctx->base_flow.nw_tos & IP_ECN_MASK) == IP_ECN_NOT_ECT) {
6776 VLOG_WARN_RL(&rl, "dropping tunnel packet marked ECN CE"
6777 " but is not ECN capable");
6778 return false;
6779 } else {
6780 /* Set the ECN CE value in the tunneled packet. */
6781 ctx->flow.nw_tos |= IP_ECN_CE;
6782 }
6783 }
6784
6785 return true;
6786 }
6787
6788 static void
6789 do_xlate_actions(const struct ofpact *ofpacts, size_t ofpacts_len,
6790 struct action_xlate_ctx *ctx)
6791 {
6792 bool was_evictable = true;
6793 const struct ofpact *a;
6794
6795 if (ctx->rule) {
6796 /* Don't let the rule we're working on get evicted underneath us. */
6797 was_evictable = ctx->rule->up.evictable;
6798 ctx->rule->up.evictable = false;
6799 }
6800
6801 do_xlate_actions_again:
6802 OFPACT_FOR_EACH (a, ofpacts, ofpacts_len) {
6803 struct ofpact_controller *controller;
6804 const struct ofpact_metadata *metadata;
6805
6806 if (ctx->exit) {
6807 break;
6808 }
6809
6810 switch (a->type) {
6811 case OFPACT_OUTPUT:
6812 xlate_output_action(ctx, ofpact_get_OUTPUT(a)->port,
6813 ofpact_get_OUTPUT(a)->max_len, true);
6814 break;
6815
6816 case OFPACT_CONTROLLER:
6817 controller = ofpact_get_CONTROLLER(a);
6818 execute_controller_action(ctx, controller->max_len,
6819 controller->reason,
6820 controller->controller_id);
6821 break;
6822
6823 case OFPACT_ENQUEUE:
6824 xlate_enqueue_action(ctx, ofpact_get_ENQUEUE(a));
6825 break;
6826
6827 case OFPACT_SET_VLAN_VID:
6828 ctx->flow.vlan_tci &= ~htons(VLAN_VID_MASK);
6829 ctx->flow.vlan_tci |= (htons(ofpact_get_SET_VLAN_VID(a)->vlan_vid)
6830 | htons(VLAN_CFI));
6831 break;
6832
6833 case OFPACT_SET_VLAN_PCP:
6834 ctx->flow.vlan_tci &= ~htons(VLAN_PCP_MASK);
6835 ctx->flow.vlan_tci |= htons((ofpact_get_SET_VLAN_PCP(a)->vlan_pcp
6836 << VLAN_PCP_SHIFT)
6837 | VLAN_CFI);
6838 break;
6839
6840 case OFPACT_STRIP_VLAN:
6841 ctx->flow.vlan_tci = htons(0);
6842 break;
6843
6844 case OFPACT_PUSH_VLAN:
6845 /* XXX 802.1AD(QinQ) */
6846 ctx->flow.vlan_tci = htons(VLAN_CFI);
6847 break;
6848
6849 case OFPACT_SET_ETH_SRC:
6850 memcpy(ctx->flow.dl_src, ofpact_get_SET_ETH_SRC(a)->mac,
6851 ETH_ADDR_LEN);
6852 break;
6853
6854 case OFPACT_SET_ETH_DST:
6855 memcpy(ctx->flow.dl_dst, ofpact_get_SET_ETH_DST(a)->mac,
6856 ETH_ADDR_LEN);
6857 break;
6858
6859 case OFPACT_SET_IPV4_SRC:
6860 if (ctx->flow.dl_type == htons(ETH_TYPE_IP)) {
6861 ctx->flow.nw_src = ofpact_get_SET_IPV4_SRC(a)->ipv4;
6862 }
6863 break;
6864
6865 case OFPACT_SET_IPV4_DST:
6866 if (ctx->flow.dl_type == htons(ETH_TYPE_IP)) {
6867 ctx->flow.nw_dst = ofpact_get_SET_IPV4_DST(a)->ipv4;
6868 }
6869 break;
6870
6871 case OFPACT_SET_IPV4_DSCP:
6872 /* OpenFlow 1.0 only supports IPv4. */
6873 if (ctx->flow.dl_type == htons(ETH_TYPE_IP)) {
6874 ctx->flow.nw_tos &= ~IP_DSCP_MASK;
6875 ctx->flow.nw_tos |= ofpact_get_SET_IPV4_DSCP(a)->dscp;
6876 }
6877 break;
6878
6879 case OFPACT_SET_L4_SRC_PORT:
6880 if (is_ip_any(&ctx->flow)) {
6881 ctx->flow.tp_src = htons(ofpact_get_SET_L4_SRC_PORT(a)->port);
6882 }
6883 break;
6884
6885 case OFPACT_SET_L4_DST_PORT:
6886 if (is_ip_any(&ctx->flow)) {
6887 ctx->flow.tp_dst = htons(ofpact_get_SET_L4_DST_PORT(a)->port);
6888 }
6889 break;
6890
6891 case OFPACT_RESUBMIT:
6892 xlate_ofpact_resubmit(ctx, ofpact_get_RESUBMIT(a));
6893 break;
6894
6895 case OFPACT_SET_TUNNEL:
6896 ctx->flow.tunnel.tun_id = htonll(ofpact_get_SET_TUNNEL(a)->tun_id);
6897 break;
6898
6899 case OFPACT_SET_QUEUE:
6900 xlate_set_queue_action(ctx, ofpact_get_SET_QUEUE(a)->queue_id);
6901 break;
6902
6903 case OFPACT_POP_QUEUE:
6904 ctx->flow.skb_priority = ctx->orig_skb_priority;
6905 break;
6906
6907 case OFPACT_REG_MOVE:
6908 nxm_execute_reg_move(ofpact_get_REG_MOVE(a), &ctx->flow);
6909 break;
6910
6911 case OFPACT_REG_LOAD:
6912 nxm_execute_reg_load(ofpact_get_REG_LOAD(a), &ctx->flow);
6913 break;
6914
6915 case OFPACT_STACK_PUSH:
6916 nxm_execute_stack_push(ofpact_get_STACK_PUSH(a), &ctx->flow,
6917 &ctx->stack);
6918 break;
6919
6920 case OFPACT_STACK_POP:
6921 nxm_execute_stack_pop(ofpact_get_STACK_POP(a), &ctx->flow,
6922 &ctx->stack);
6923 break;
6924
6925 case OFPACT_PUSH_MPLS:
6926 execute_mpls_push_action(ctx, ofpact_get_PUSH_MPLS(a)->ethertype);
6927 break;
6928
6929 case OFPACT_POP_MPLS:
6930 execute_mpls_pop_action(ctx, ofpact_get_POP_MPLS(a)->ethertype);
6931 break;
6932
6933 case OFPACT_SET_MPLS_TTL:
6934 if (execute_set_mpls_ttl_action(ctx, ofpact_get_SET_MPLS_TTL(a)->ttl)) {
6935 goto out;
6936 }
6937 break;
6938
6939 case OFPACT_DEC_MPLS_TTL:
6940 if (execute_dec_mpls_ttl_action(ctx)) {
6941 goto out;
6942 }
6943 break;
6944
6945 case OFPACT_DEC_TTL:
6946 if (compose_dec_ttl(ctx, ofpact_get_DEC_TTL(a))) {
6947 goto out;
6948 }
6949 break;
6950
6951 case OFPACT_NOTE:
6952 /* Nothing to do. */
6953 break;
6954
6955 case OFPACT_MULTIPATH:
6956 multipath_execute(ofpact_get_MULTIPATH(a), &ctx->flow);
6957 break;
6958
6959 case OFPACT_BUNDLE:
6960 ctx->ofproto->has_bundle_action = true;
6961 xlate_bundle_action(ctx, ofpact_get_BUNDLE(a));
6962 break;
6963
6964 case OFPACT_OUTPUT_REG:
6965 xlate_output_reg_action(ctx, ofpact_get_OUTPUT_REG(a));
6966 break;
6967
6968 case OFPACT_LEARN:
6969 ctx->has_learn = true;
6970 if (ctx->may_learn) {
6971 xlate_learn_action(ctx, ofpact_get_LEARN(a));
6972 }
6973 break;
6974
6975 case OFPACT_EXIT:
6976 ctx->exit = true;
6977 break;
6978
6979 case OFPACT_FIN_TIMEOUT:
6980 ctx->has_fin_timeout = true;
6981 xlate_fin_timeout(ctx, ofpact_get_FIN_TIMEOUT(a));
6982 break;
6983
6984 case OFPACT_CLEAR_ACTIONS:
6985 /* XXX
6986 * Nothing to do because writa-actions is not supported for now.
6987 * When writa-actions is supported, clear-actions also must
6988 * be supported at the same time.
6989 */
6990 break;
6991
6992 case OFPACT_WRITE_METADATA:
6993 metadata = ofpact_get_WRITE_METADATA(a);
6994 ctx->flow.metadata &= ~metadata->mask;
6995 ctx->flow.metadata |= metadata->metadata & metadata->mask;
6996 break;
6997
6998 case OFPACT_GOTO_TABLE: {
6999 /* It is assumed that goto-table is the last action. */
7000 struct ofpact_goto_table *ogt = ofpact_get_GOTO_TABLE(a);
7001 struct rule_dpif *rule;
7002
7003 ovs_assert(ctx->table_id < ogt->table_id);
7004
7005 ctx->table_id = ogt->table_id;
7006
7007 /* Look up a flow from the new table. */
7008 rule = rule_dpif_lookup__(ctx->ofproto, &ctx->flow, ctx->table_id);
7009
7010 tag_the_flow(ctx, rule);
7011
7012 rule = ctx_rule_hooks(ctx, rule, true);
7013
7014 if (rule) {
7015 if (ctx->rule) {
7016 ctx->rule->up.evictable = was_evictable;
7017 }
7018 ctx->rule = rule;
7019 was_evictable = rule->up.evictable;
7020 rule->up.evictable = false;
7021
7022 /* Tail recursion removal. */
7023 ofpacts = rule->up.ofpacts;
7024 ofpacts_len = rule->up.ofpacts_len;
7025 goto do_xlate_actions_again;
7026 }
7027 break;
7028 }
7029
7030 case OFPACT_SAMPLE:
7031 xlate_sample_action(ctx, ofpact_get_SAMPLE(a));
7032 break;
7033 }
7034 }
7035
7036 out:
7037 if (ctx->rule) {
7038 ctx->rule->up.evictable = was_evictable;
7039 }
7040 }
7041
7042 static void
7043 action_xlate_ctx_init(struct action_xlate_ctx *ctx,
7044 struct ofproto_dpif *ofproto, const struct flow *flow,
7045 const struct initial_vals *initial_vals,
7046 struct rule_dpif *rule,
7047 uint8_t tcp_flags, const struct ofpbuf *packet)
7048 {
7049 /* Flow initialization rules:
7050 * - 'base_flow' must match the kernel's view of the packet at the
7051 * time that action processing starts. 'flow' represents any
7052 * transformations we wish to make through actions.
7053 * - By default 'base_flow' and 'flow' are the same since the input
7054 * packet matches the output before any actions are applied.
7055 * - When using VLAN splinters, 'base_flow''s VLAN is set to the value
7056 * of the received packet as seen by the kernel. If we later output
7057 * to another device without any modifications this will cause us to
7058 * insert a new tag since the original one was stripped off by the
7059 * VLAN device.
7060 * - Tunnel metadata as received is retained in 'flow'. This allows
7061 * tunnel metadata matching also in later tables.
7062 * Since a kernel action for setting the tunnel metadata will only be
7063 * generated with actual tunnel output, changing the tunnel metadata
7064 * values in 'flow' (such as tun_id) will only have effect with a later
7065 * tunnel output action.
7066 * - Tunnel 'base_flow' is completely cleared since that is what the
7067 * kernel does. If we wish to maintain the original values an action
7068 * needs to be generated. */
7069
7070 ctx->ofproto = ofproto;
7071 ctx->flow = *flow;
7072 ctx->base_flow = ctx->flow;
7073 memset(&ctx->base_flow.tunnel, 0, sizeof ctx->base_flow.tunnel);
7074 ctx->base_flow.vlan_tci = initial_vals->vlan_tci;
7075 ctx->rule = rule;
7076 ctx->packet = packet;
7077 ctx->may_learn = packet != NULL;
7078 ctx->tcp_flags = tcp_flags;
7079 ctx->resubmit_hook = NULL;
7080 ctx->report_hook = NULL;
7081 ctx->resubmit_stats = NULL;
7082 }
7083
7084 /* Translates the 'ofpacts_len' bytes of "struct ofpacts" starting at 'ofpacts'
7085 * into datapath actions in 'odp_actions', using 'ctx'. */
7086 static void
7087 xlate_actions(struct action_xlate_ctx *ctx,
7088 const struct ofpact *ofpacts, size_t ofpacts_len,
7089 struct ofpbuf *odp_actions)
7090 {
7091 /* Normally false. Set to true if we ever hit MAX_RESUBMIT_RECURSION, so
7092 * that in the future we always keep a copy of the original flow for
7093 * tracing purposes. */
7094 static bool hit_resubmit_limit;
7095
7096 enum slow_path_reason special;
7097 struct ofport_dpif *in_port;
7098 struct flow orig_flow;
7099
7100 COVERAGE_INC(ofproto_dpif_xlate);
7101
7102 ofpbuf_clear(odp_actions);
7103 ofpbuf_reserve(odp_actions, NL_A_U32_SIZE);
7104
7105 ctx->odp_actions = odp_actions;
7106 ctx->tags = 0;
7107 ctx->slow = 0;
7108 ctx->has_learn = false;
7109 ctx->has_normal = false;
7110 ctx->has_fin_timeout = false;
7111 ctx->nf_output_iface = NF_OUT_DROP;
7112 ctx->mirrors = 0;
7113 ctx->recurse = 0;
7114 ctx->max_resubmit_trigger = false;
7115 ctx->orig_skb_priority = ctx->flow.skb_priority;
7116 ctx->table_id = 0;
7117 ctx->exit = false;
7118
7119 ofpbuf_use_stub(&ctx->stack, ctx->init_stack, sizeof ctx->init_stack);
7120
7121 if (ctx->ofproto->has_mirrors || hit_resubmit_limit) {
7122 /* Do this conditionally because the copy is expensive enough that it
7123 * shows up in profiles. */
7124 orig_flow = ctx->flow;
7125 }
7126
7127 if (ctx->flow.nw_frag & FLOW_NW_FRAG_ANY) {
7128 switch (ctx->ofproto->up.frag_handling) {
7129 case OFPC_FRAG_NORMAL:
7130 /* We must pretend that transport ports are unavailable. */
7131 ctx->flow.tp_src = ctx->base_flow.tp_src = htons(0);
7132 ctx->flow.tp_dst = ctx->base_flow.tp_dst = htons(0);
7133 break;
7134
7135 case OFPC_FRAG_DROP:
7136 return;
7137
7138 case OFPC_FRAG_REASM:
7139 NOT_REACHED();
7140
7141 case OFPC_FRAG_NX_MATCH:
7142 /* Nothing to do. */
7143 break;
7144
7145 case OFPC_INVALID_TTL_TO_CONTROLLER:
7146 NOT_REACHED();
7147 }
7148 }
7149
7150 in_port = get_ofp_port(ctx->ofproto, ctx->flow.in_port);
7151 special = process_special(ctx->ofproto, &ctx->flow, in_port, ctx->packet);
7152 if (special) {
7153 ctx->slow |= special;
7154 } else {
7155 static struct vlog_rate_limit trace_rl = VLOG_RATE_LIMIT_INIT(1, 1);
7156 struct initial_vals initial_vals;
7157 size_t sample_actions_len;
7158 uint32_t local_odp_port;
7159
7160 initial_vals.vlan_tci = ctx->base_flow.vlan_tci;
7161
7162 add_sflow_action(ctx);
7163 add_ipfix_action(ctx);
7164 sample_actions_len = ctx->odp_actions->size;
7165
7166 if (tunnel_ecn_ok(ctx) && (!in_port || may_receive(in_port, ctx))) {
7167 do_xlate_actions(ofpacts, ofpacts_len, ctx);
7168
7169 /* We've let OFPP_NORMAL and the learning action look at the
7170 * packet, so drop it now if forwarding is disabled. */
7171 if (in_port && !stp_forward_in_state(in_port->stp_state)) {
7172 ctx->odp_actions->size = sample_actions_len;
7173 }
7174 }
7175
7176 if (ctx->max_resubmit_trigger && !ctx->resubmit_hook) {
7177 if (!hit_resubmit_limit) {
7178 /* We didn't record the original flow. Make sure we do from
7179 * now on. */
7180 hit_resubmit_limit = true;
7181 } else if (!VLOG_DROP_ERR(&trace_rl)) {
7182 struct ds ds = DS_EMPTY_INITIALIZER;
7183
7184 ofproto_trace(ctx->ofproto, &orig_flow, ctx->packet,
7185 &initial_vals, &ds);
7186 VLOG_ERR("Trace triggered by excessive resubmit "
7187 "recursion:\n%s", ds_cstr(&ds));
7188 ds_destroy(&ds);
7189 }
7190 }
7191
7192 local_odp_port = ofp_port_to_odp_port(ctx->ofproto, OFPP_LOCAL);
7193 if (!connmgr_may_set_up_flow(ctx->ofproto->up.connmgr, &ctx->flow,
7194 local_odp_port,
7195 ctx->odp_actions->data,
7196 ctx->odp_actions->size)) {
7197 ctx->slow |= SLOW_IN_BAND;
7198 if (ctx->packet
7199 && connmgr_msg_in_hook(ctx->ofproto->up.connmgr, &ctx->flow,
7200 ctx->packet)) {
7201 compose_output_action(ctx, OFPP_LOCAL);
7202 }
7203 }
7204 if (ctx->ofproto->has_mirrors) {
7205 add_mirror_actions(ctx, &orig_flow);
7206 }
7207 fix_sflow_action(ctx);
7208 }
7209
7210 ofpbuf_uninit(&ctx->stack);
7211 }
7212
7213 /* Translates the 'ofpacts_len' bytes of "struct ofpact"s starting at 'ofpacts'
7214 * into datapath actions, using 'ctx', and discards the datapath actions. */
7215 static void
7216 xlate_actions_for_side_effects(struct action_xlate_ctx *ctx,
7217 const struct ofpact *ofpacts,
7218 size_t ofpacts_len)
7219 {
7220 uint64_t odp_actions_stub[1024 / 8];
7221 struct ofpbuf odp_actions;
7222
7223 ofpbuf_use_stub(&odp_actions, odp_actions_stub, sizeof odp_actions_stub);
7224 xlate_actions(ctx, ofpacts, ofpacts_len, &odp_actions);
7225 ofpbuf_uninit(&odp_actions);
7226 }
7227
7228 static void
7229 xlate_report(struct action_xlate_ctx *ctx, const char *s)
7230 {
7231 if (ctx->report_hook) {
7232 ctx->report_hook(ctx, s);
7233 }
7234 }
7235 \f
7236 /* OFPP_NORMAL implementation. */
7237
7238 static struct ofport_dpif *ofbundle_get_a_port(const struct ofbundle *);
7239
7240 /* Given 'vid', the VID obtained from the 802.1Q header that was received as
7241 * part of a packet (specify 0 if there was no 802.1Q header), and 'in_bundle',
7242 * the bundle on which the packet was received, returns the VLAN to which the
7243 * packet belongs.
7244 *
7245 * Both 'vid' and the return value are in the range 0...4095. */
7246 static uint16_t
7247 input_vid_to_vlan(const struct ofbundle *in_bundle, uint16_t vid)
7248 {
7249 switch (in_bundle->vlan_mode) {
7250 case PORT_VLAN_ACCESS:
7251 return in_bundle->vlan;
7252 break;
7253
7254 case PORT_VLAN_TRUNK:
7255 return vid;
7256
7257 case PORT_VLAN_NATIVE_UNTAGGED:
7258 case PORT_VLAN_NATIVE_TAGGED:
7259 return vid ? vid : in_bundle->vlan;
7260
7261 default:
7262 NOT_REACHED();
7263 }
7264 }
7265
7266 /* Checks whether a packet with the given 'vid' may ingress on 'in_bundle'.
7267 * If so, returns true. Otherwise, returns false and, if 'warn' is true, logs
7268 * a warning.
7269 *
7270 * 'vid' should be the VID obtained from the 802.1Q header that was received as
7271 * part of a packet (specify 0 if there was no 802.1Q header), in the range
7272 * 0...4095. */
7273 static bool
7274 input_vid_is_valid(uint16_t vid, struct ofbundle *in_bundle, bool warn)
7275 {
7276 /* Allow any VID on the OFPP_NONE port. */
7277 if (in_bundle == &ofpp_none_bundle) {
7278 return true;
7279 }
7280
7281 switch (in_bundle->vlan_mode) {
7282 case PORT_VLAN_ACCESS:
7283 if (vid) {
7284 if (warn) {
7285 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
7286 VLOG_WARN_RL(&rl, "bridge %s: dropping VLAN %"PRIu16" tagged "
7287 "packet received on port %s configured as VLAN "
7288 "%"PRIu16" access port",
7289 in_bundle->ofproto->up.name, vid,
7290 in_bundle->name, in_bundle->vlan);
7291 }
7292 return false;
7293 }
7294 return true;
7295
7296 case PORT_VLAN_NATIVE_UNTAGGED:
7297 case PORT_VLAN_NATIVE_TAGGED:
7298 if (!vid) {
7299 /* Port must always carry its native VLAN. */
7300 return true;
7301 }
7302 /* Fall through. */
7303 case PORT_VLAN_TRUNK:
7304 if (!ofbundle_includes_vlan(in_bundle, vid)) {
7305 if (warn) {
7306 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
7307 VLOG_WARN_RL(&rl, "bridge %s: dropping VLAN %"PRIu16" packet "
7308 "received on port %s not configured for trunking "
7309 "VLAN %"PRIu16,
7310 in_bundle->ofproto->up.name, vid,
7311 in_bundle->name, vid);
7312 }
7313 return false;
7314 }
7315 return true;
7316
7317 default:
7318 NOT_REACHED();
7319 }
7320
7321 }
7322
7323 /* Given 'vlan', the VLAN that a packet belongs to, and
7324 * 'out_bundle', a bundle on which the packet is to be output, returns the VID
7325 * that should be included in the 802.1Q header. (If the return value is 0,
7326 * then the 802.1Q header should only be included in the packet if there is a
7327 * nonzero PCP.)
7328 *
7329 * Both 'vlan' and the return value are in the range 0...4095. */
7330 static uint16_t
7331 output_vlan_to_vid(const struct ofbundle *out_bundle, uint16_t vlan)
7332 {
7333 switch (out_bundle->vlan_mode) {
7334 case PORT_VLAN_ACCESS:
7335 return 0;
7336
7337 case PORT_VLAN_TRUNK:
7338 case PORT_VLAN_NATIVE_TAGGED:
7339 return vlan;
7340
7341 case PORT_VLAN_NATIVE_UNTAGGED:
7342 return vlan == out_bundle->vlan ? 0 : vlan;
7343
7344 default:
7345 NOT_REACHED();
7346 }
7347 }
7348
7349 static void
7350 output_normal(struct action_xlate_ctx *ctx, const struct ofbundle *out_bundle,
7351 uint16_t vlan)
7352 {
7353 struct ofport_dpif *port;
7354 uint16_t vid;
7355 ovs_be16 tci, old_tci;
7356
7357 vid = output_vlan_to_vid(out_bundle, vlan);
7358 if (!out_bundle->bond) {
7359 port = ofbundle_get_a_port(out_bundle);
7360 } else {
7361 port = bond_choose_output_slave(out_bundle->bond, &ctx->flow,
7362 vid, &ctx->tags);
7363 if (!port) {
7364 /* No slaves enabled, so drop packet. */
7365 return;
7366 }
7367 }
7368
7369 old_tci = ctx->flow.vlan_tci;
7370 tci = htons(vid);
7371 if (tci || out_bundle->use_priority_tags) {
7372 tci |= ctx->flow.vlan_tci & htons(VLAN_PCP_MASK);
7373 if (tci) {
7374 tci |= htons(VLAN_CFI);
7375 }
7376 }
7377 ctx->flow.vlan_tci = tci;
7378
7379 compose_output_action(ctx, port->up.ofp_port);
7380 ctx->flow.vlan_tci = old_tci;
7381 }
7382
7383 static int
7384 mirror_mask_ffs(mirror_mask_t mask)
7385 {
7386 BUILD_ASSERT_DECL(sizeof(unsigned int) >= sizeof(mask));
7387 return ffs(mask);
7388 }
7389
7390 static bool
7391 ofbundle_trunks_vlan(const struct ofbundle *bundle, uint16_t vlan)
7392 {
7393 return (bundle->vlan_mode != PORT_VLAN_ACCESS
7394 && (!bundle->trunks || bitmap_is_set(bundle->trunks, vlan)));
7395 }
7396
7397 static bool
7398 ofbundle_includes_vlan(const struct ofbundle *bundle, uint16_t vlan)
7399 {
7400 return vlan == bundle->vlan || ofbundle_trunks_vlan(bundle, vlan);
7401 }
7402
7403 /* Returns an arbitrary interface within 'bundle'. */
7404 static struct ofport_dpif *
7405 ofbundle_get_a_port(const struct ofbundle *bundle)
7406 {
7407 return CONTAINER_OF(list_front(&bundle->ports),
7408 struct ofport_dpif, bundle_node);
7409 }
7410
7411 static bool
7412 vlan_is_mirrored(const struct ofmirror *m, int vlan)
7413 {
7414 return !m->vlans || bitmap_is_set(m->vlans, vlan);
7415 }
7416
7417 static void
7418 add_mirror_actions(struct action_xlate_ctx *ctx, const struct flow *orig_flow)
7419 {
7420 struct ofproto_dpif *ofproto = ctx->ofproto;
7421 mirror_mask_t mirrors;
7422 struct ofbundle *in_bundle;
7423 uint16_t vlan;
7424 uint16_t vid;
7425 const struct nlattr *a;
7426 size_t left;
7427
7428 in_bundle = lookup_input_bundle(ctx->ofproto, orig_flow->in_port,
7429 ctx->packet != NULL, NULL);
7430 if (!in_bundle) {
7431 return;
7432 }
7433 mirrors = in_bundle->src_mirrors;
7434
7435 /* Drop frames on bundles reserved for mirroring. */
7436 if (in_bundle->mirror_out) {
7437 if (ctx->packet != NULL) {
7438 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
7439 VLOG_WARN_RL(&rl, "bridge %s: dropping packet received on port "
7440 "%s, which is reserved exclusively for mirroring",
7441 ctx->ofproto->up.name, in_bundle->name);
7442 }
7443 return;
7444 }
7445
7446 /* Check VLAN. */
7447 vid = vlan_tci_to_vid(orig_flow->vlan_tci);
7448 if (!input_vid_is_valid(vid, in_bundle, ctx->packet != NULL)) {
7449 return;
7450 }
7451 vlan = input_vid_to_vlan(in_bundle, vid);
7452
7453 /* Look at the output ports to check for destination selections. */
7454
7455 NL_ATTR_FOR_EACH (a, left, ctx->odp_actions->data,
7456 ctx->odp_actions->size) {
7457 enum ovs_action_attr type = nl_attr_type(a);
7458 struct ofport_dpif *ofport;
7459
7460 if (type != OVS_ACTION_ATTR_OUTPUT) {
7461 continue;
7462 }
7463
7464 ofport = get_odp_port(ofproto, nl_attr_get_u32(a));
7465 if (ofport && ofport->bundle) {
7466 mirrors |= ofport->bundle->dst_mirrors;
7467 }
7468 }
7469
7470 if (!mirrors) {
7471 return;
7472 }
7473
7474 /* Restore the original packet before adding the mirror actions. */
7475 ctx->flow = *orig_flow;
7476
7477 while (mirrors) {
7478 struct ofmirror *m;
7479
7480 m = ofproto->mirrors[mirror_mask_ffs(mirrors) - 1];
7481
7482 if (!vlan_is_mirrored(m, vlan)) {
7483 mirrors = zero_rightmost_1bit(mirrors);
7484 continue;
7485 }
7486
7487 mirrors &= ~m->dup_mirrors;
7488 ctx->mirrors |= m->dup_mirrors;
7489 if (m->out) {
7490 output_normal(ctx, m->out, vlan);
7491 } else if (vlan != m->out_vlan
7492 && !eth_addr_is_reserved(orig_flow->dl_dst)) {
7493 struct ofbundle *bundle;
7494
7495 HMAP_FOR_EACH (bundle, hmap_node, &ofproto->bundles) {
7496 if (ofbundle_includes_vlan(bundle, m->out_vlan)
7497 && !bundle->mirror_out) {
7498 output_normal(ctx, bundle, m->out_vlan);
7499 }
7500 }
7501 }
7502 }
7503 }
7504
7505 static void
7506 update_mirror_stats(struct ofproto_dpif *ofproto, mirror_mask_t mirrors,
7507 uint64_t packets, uint64_t bytes)
7508 {
7509 if (!mirrors) {
7510 return;
7511 }
7512
7513 for (; mirrors; mirrors = zero_rightmost_1bit(mirrors)) {
7514 struct ofmirror *m;
7515
7516 m = ofproto->mirrors[mirror_mask_ffs(mirrors) - 1];
7517
7518 if (!m) {
7519 /* In normal circumstances 'm' will not be NULL. However,
7520 * if mirrors are reconfigured, we can temporarily get out
7521 * of sync in facet_revalidate(). We could "correct" the
7522 * mirror list before reaching here, but doing that would
7523 * not properly account the traffic stats we've currently
7524 * accumulated for previous mirror configuration. */
7525 continue;
7526 }
7527
7528 m->packet_count += packets;
7529 m->byte_count += bytes;
7530 }
7531 }
7532
7533 /* A VM broadcasts a gratuitous ARP to indicate that it has resumed after
7534 * migration. Older Citrix-patched Linux DomU used gratuitous ARP replies to
7535 * indicate this; newer upstream kernels use gratuitous ARP requests. */
7536 static bool
7537 is_gratuitous_arp(const struct flow *flow)
7538 {
7539 return (flow->dl_type == htons(ETH_TYPE_ARP)
7540 && eth_addr_is_broadcast(flow->dl_dst)
7541 && (flow->nw_proto == ARP_OP_REPLY
7542 || (flow->nw_proto == ARP_OP_REQUEST
7543 && flow->nw_src == flow->nw_dst)));
7544 }
7545
7546 static void
7547 update_learning_table(struct ofproto_dpif *ofproto,
7548 const struct flow *flow, int vlan,
7549 struct ofbundle *in_bundle)
7550 {
7551 struct mac_entry *mac;
7552
7553 /* Don't learn the OFPP_NONE port. */
7554 if (in_bundle == &ofpp_none_bundle) {
7555 return;
7556 }
7557
7558 if (!mac_learning_may_learn(ofproto->ml, flow->dl_src, vlan)) {
7559 return;
7560 }
7561
7562 mac = mac_learning_insert(ofproto->ml, flow->dl_src, vlan);
7563 if (is_gratuitous_arp(flow)) {
7564 /* We don't want to learn from gratuitous ARP packets that are
7565 * reflected back over bond slaves so we lock the learning table. */
7566 if (!in_bundle->bond) {
7567 mac_entry_set_grat_arp_lock(mac);
7568 } else if (mac_entry_is_grat_arp_locked(mac)) {
7569 return;
7570 }
7571 }
7572
7573 if (mac_entry_is_new(mac) || mac->port.p != in_bundle) {
7574 /* The log messages here could actually be useful in debugging,
7575 * so keep the rate limit relatively high. */
7576 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(30, 300);
7577 VLOG_DBG_RL(&rl, "bridge %s: learned that "ETH_ADDR_FMT" is "
7578 "on port %s in VLAN %d",
7579 ofproto->up.name, ETH_ADDR_ARGS(flow->dl_src),
7580 in_bundle->name, vlan);
7581
7582 mac->port.p = in_bundle;
7583 tag_set_add(&ofproto->backer->revalidate_set,
7584 mac_learning_changed(ofproto->ml, mac));
7585 }
7586 }
7587
7588 static struct ofbundle *
7589 lookup_input_bundle(const struct ofproto_dpif *ofproto, uint16_t in_port,
7590 bool warn, struct ofport_dpif **in_ofportp)
7591 {
7592 struct ofport_dpif *ofport;
7593
7594 /* Find the port and bundle for the received packet. */
7595 ofport = get_ofp_port(ofproto, in_port);
7596 if (in_ofportp) {
7597 *in_ofportp = ofport;
7598 }
7599 if (ofport && ofport->bundle) {
7600 return ofport->bundle;
7601 }
7602
7603 /* Special-case OFPP_NONE, which a controller may use as the ingress
7604 * port for traffic that it is sourcing. */
7605 if (in_port == OFPP_NONE) {
7606 return &ofpp_none_bundle;
7607 }
7608
7609 /* Odd. A few possible reasons here:
7610 *
7611 * - We deleted a port but there are still a few packets queued up
7612 * from it.
7613 *
7614 * - Someone externally added a port (e.g. "ovs-dpctl add-if") that
7615 * we don't know about.
7616 *
7617 * - The ofproto client didn't configure the port as part of a bundle.
7618 * This is particularly likely to happen if a packet was received on the
7619 * port after it was created, but before the client had a chance to
7620 * configure its bundle.
7621 */
7622 if (warn) {
7623 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
7624
7625 VLOG_WARN_RL(&rl, "bridge %s: received packet on unknown "
7626 "port %"PRIu16, ofproto->up.name, in_port);
7627 }
7628 return NULL;
7629 }
7630
7631 /* Determines whether packets in 'flow' within 'ofproto' should be forwarded or
7632 * dropped. Returns true if they may be forwarded, false if they should be
7633 * dropped.
7634 *
7635 * 'in_port' must be the ofport_dpif that corresponds to flow->in_port.
7636 * 'in_port' must be part of a bundle (e.g. in_port->bundle must be nonnull).
7637 *
7638 * 'vlan' must be the VLAN that corresponds to flow->vlan_tci on 'in_port', as
7639 * returned by input_vid_to_vlan(). It must be a valid VLAN for 'in_port', as
7640 * checked by input_vid_is_valid().
7641 *
7642 * May also add tags to '*tags', although the current implementation only does
7643 * so in one special case.
7644 */
7645 static bool
7646 is_admissible(struct action_xlate_ctx *ctx, struct ofport_dpif *in_port,
7647 uint16_t vlan)
7648 {
7649 struct ofproto_dpif *ofproto = ctx->ofproto;
7650 struct flow *flow = &ctx->flow;
7651 struct ofbundle *in_bundle = in_port->bundle;
7652
7653 /* Drop frames for reserved multicast addresses
7654 * only if forward_bpdu option is absent. */
7655 if (!ofproto->up.forward_bpdu && eth_addr_is_reserved(flow->dl_dst)) {
7656 xlate_report(ctx, "packet has reserved destination MAC, dropping");
7657 return false;
7658 }
7659
7660 if (in_bundle->bond) {
7661 struct mac_entry *mac;
7662
7663 switch (bond_check_admissibility(in_bundle->bond, in_port,
7664 flow->dl_dst, &ctx->tags)) {
7665 case BV_ACCEPT:
7666 break;
7667
7668 case BV_DROP:
7669 xlate_report(ctx, "bonding refused admissibility, dropping");
7670 return false;
7671
7672 case BV_DROP_IF_MOVED:
7673 mac = mac_learning_lookup(ofproto->ml, flow->dl_src, vlan, NULL);
7674 if (mac && mac->port.p != in_bundle &&
7675 (!is_gratuitous_arp(flow)
7676 || mac_entry_is_grat_arp_locked(mac))) {
7677 xlate_report(ctx, "SLB bond thinks this packet looped back, "
7678 "dropping");
7679 return false;
7680 }
7681 break;
7682 }
7683 }
7684
7685 return true;
7686 }
7687
7688 static void
7689 xlate_normal(struct action_xlate_ctx *ctx)
7690 {
7691 struct ofport_dpif *in_port;
7692 struct ofbundle *in_bundle;
7693 struct mac_entry *mac;
7694 uint16_t vlan;
7695 uint16_t vid;
7696
7697 ctx->has_normal = true;
7698
7699 in_bundle = lookup_input_bundle(ctx->ofproto, ctx->flow.in_port,
7700 ctx->packet != NULL, &in_port);
7701 if (!in_bundle) {
7702 xlate_report(ctx, "no input bundle, dropping");
7703 return;
7704 }
7705
7706 /* Drop malformed frames. */
7707 if (ctx->flow.dl_type == htons(ETH_TYPE_VLAN) &&
7708 !(ctx->flow.vlan_tci & htons(VLAN_CFI))) {
7709 if (ctx->packet != NULL) {
7710 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
7711 VLOG_WARN_RL(&rl, "bridge %s: dropping packet with partial "
7712 "VLAN tag received on port %s",
7713 ctx->ofproto->up.name, in_bundle->name);
7714 }
7715 xlate_report(ctx, "partial VLAN tag, dropping");
7716 return;
7717 }
7718
7719 /* Drop frames on bundles reserved for mirroring. */
7720 if (in_bundle->mirror_out) {
7721 if (ctx->packet != NULL) {
7722 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
7723 VLOG_WARN_RL(&rl, "bridge %s: dropping packet received on port "
7724 "%s, which is reserved exclusively for mirroring",
7725 ctx->ofproto->up.name, in_bundle->name);
7726 }
7727 xlate_report(ctx, "input port is mirror output port, dropping");
7728 return;
7729 }
7730
7731 /* Check VLAN. */
7732 vid = vlan_tci_to_vid(ctx->flow.vlan_tci);
7733 if (!input_vid_is_valid(vid, in_bundle, ctx->packet != NULL)) {
7734 xlate_report(ctx, "disallowed VLAN VID for this input port, dropping");
7735 return;
7736 }
7737 vlan = input_vid_to_vlan(in_bundle, vid);
7738
7739 /* Check other admissibility requirements. */
7740 if (in_port && !is_admissible(ctx, in_port, vlan)) {
7741 return;
7742 }
7743
7744 /* Learn source MAC. */
7745 if (ctx->may_learn) {
7746 update_learning_table(ctx->ofproto, &ctx->flow, vlan, in_bundle);
7747 }
7748
7749 /* Determine output bundle. */
7750 mac = mac_learning_lookup(ctx->ofproto->ml, ctx->flow.dl_dst, vlan,
7751 &ctx->tags);
7752 if (mac) {
7753 if (mac->port.p != in_bundle) {
7754 xlate_report(ctx, "forwarding to learned port");
7755 output_normal(ctx, mac->port.p, vlan);
7756 } else {
7757 xlate_report(ctx, "learned port is input port, dropping");
7758 }
7759 } else {
7760 struct ofbundle *bundle;
7761
7762 xlate_report(ctx, "no learned MAC for destination, flooding");
7763 HMAP_FOR_EACH (bundle, hmap_node, &ctx->ofproto->bundles) {
7764 if (bundle != in_bundle
7765 && ofbundle_includes_vlan(bundle, vlan)
7766 && bundle->floodable
7767 && !bundle->mirror_out) {
7768 output_normal(ctx, bundle, vlan);
7769 }
7770 }
7771 ctx->nf_output_iface = NF_OUT_FLOOD;
7772 }
7773 }
7774 \f
7775 /* Optimized flow revalidation.
7776 *
7777 * It's a difficult problem, in general, to tell which facets need to have
7778 * their actions recalculated whenever the OpenFlow flow table changes. We
7779 * don't try to solve that general problem: for most kinds of OpenFlow flow
7780 * table changes, we recalculate the actions for every facet. This is
7781 * relatively expensive, but it's good enough if the OpenFlow flow table
7782 * doesn't change very often.
7783 *
7784 * However, we can expect one particular kind of OpenFlow flow table change to
7785 * happen frequently: changes caused by MAC learning. To avoid wasting a lot
7786 * of CPU on revalidating every facet whenever MAC learning modifies the flow
7787 * table, we add a special case that applies to flow tables in which every rule
7788 * has the same form (that is, the same wildcards), except that the table is
7789 * also allowed to have a single "catch-all" flow that matches all packets. We
7790 * optimize this case by tagging all of the facets that resubmit into the table
7791 * and invalidating the same tag whenever a flow changes in that table. The
7792 * end result is that we revalidate just the facets that need it (and sometimes
7793 * a few more, but not all of the facets or even all of the facets that
7794 * resubmit to the table modified by MAC learning). */
7795
7796 /* Calculates the tag to use for 'flow' and mask 'mask' when it is inserted
7797 * into an OpenFlow table with the given 'basis'. */
7798 static tag_type
7799 rule_calculate_tag(const struct flow *flow, const struct minimask *mask,
7800 uint32_t secret)
7801 {
7802 if (minimask_is_catchall(mask)) {
7803 return 0;
7804 } else {
7805 uint32_t hash = flow_hash_in_minimask(flow, mask, secret);
7806 return tag_create_deterministic(hash);
7807 }
7808 }
7809
7810 /* Following a change to OpenFlow table 'table_id' in 'ofproto', update the
7811 * taggability of that table.
7812 *
7813 * This function must be called after *each* change to a flow table. If you
7814 * skip calling it on some changes then the pointer comparisons at the end can
7815 * be invalid if you get unlucky. For example, if a flow removal causes a
7816 * cls_table to be destroyed and then a flow insertion causes a cls_table with
7817 * different wildcards to be created with the same address, then this function
7818 * will incorrectly skip revalidation. */
7819 static void
7820 table_update_taggable(struct ofproto_dpif *ofproto, uint8_t table_id)
7821 {
7822 struct table_dpif *table = &ofproto->tables[table_id];
7823 const struct oftable *oftable = &ofproto->up.tables[table_id];
7824 struct cls_table *catchall, *other;
7825 struct cls_table *t;
7826
7827 catchall = other = NULL;
7828
7829 switch (hmap_count(&oftable->cls.tables)) {
7830 case 0:
7831 /* We could tag this OpenFlow table but it would make the logic a
7832 * little harder and it's a corner case that doesn't seem worth it
7833 * yet. */
7834 break;
7835
7836 case 1:
7837 case 2:
7838 HMAP_FOR_EACH (t, hmap_node, &oftable->cls.tables) {
7839 if (cls_table_is_catchall(t)) {
7840 catchall = t;
7841 } else if (!other) {
7842 other = t;
7843 } else {
7844 /* Indicate that we can't tag this by setting both tables to
7845 * NULL. (We know that 'catchall' is already NULL.) */
7846 other = NULL;
7847 }
7848 }
7849 break;
7850
7851 default:
7852 /* Can't tag this table. */
7853 break;
7854 }
7855
7856 if (table->catchall_table != catchall || table->other_table != other) {
7857 table->catchall_table = catchall;
7858 table->other_table = other;
7859 ofproto->backer->need_revalidate = REV_FLOW_TABLE;
7860 }
7861 }
7862
7863 /* Given 'rule' that has changed in some way (either it is a rule being
7864 * inserted, a rule being deleted, or a rule whose actions are being
7865 * modified), marks facets for revalidation to ensure that packets will be
7866 * forwarded correctly according to the new state of the flow table.
7867 *
7868 * This function must be called after *each* change to a flow table. See
7869 * the comment on table_update_taggable() for more information. */
7870 static void
7871 rule_invalidate(const struct rule_dpif *rule)
7872 {
7873 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
7874
7875 table_update_taggable(ofproto, rule->up.table_id);
7876
7877 if (!ofproto->backer->need_revalidate) {
7878 struct table_dpif *table = &ofproto->tables[rule->up.table_id];
7879
7880 if (table->other_table && rule->tag) {
7881 tag_set_add(&ofproto->backer->revalidate_set, rule->tag);
7882 } else {
7883 ofproto->backer->need_revalidate = REV_FLOW_TABLE;
7884 }
7885 }
7886 }
7887 \f
7888 static bool
7889 set_frag_handling(struct ofproto *ofproto_,
7890 enum ofp_config_flags frag_handling)
7891 {
7892 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
7893 if (frag_handling != OFPC_FRAG_REASM) {
7894 ofproto->backer->need_revalidate = REV_RECONFIGURE;
7895 return true;
7896 } else {
7897 return false;
7898 }
7899 }
7900
7901 static enum ofperr
7902 packet_out(struct ofproto *ofproto_, struct ofpbuf *packet,
7903 const struct flow *flow,
7904 const struct ofpact *ofpacts, size_t ofpacts_len)
7905 {
7906 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
7907 struct initial_vals initial_vals;
7908 struct odputil_keybuf keybuf;
7909 struct dpif_flow_stats stats;
7910
7911 struct ofpbuf key;
7912
7913 struct action_xlate_ctx ctx;
7914 uint64_t odp_actions_stub[1024 / 8];
7915 struct ofpbuf odp_actions;
7916
7917 ofpbuf_use_stack(&key, &keybuf, sizeof keybuf);
7918 odp_flow_key_from_flow(&key, flow,
7919 ofp_port_to_odp_port(ofproto, flow->in_port));
7920
7921 dpif_flow_stats_extract(flow, packet, time_msec(), &stats);
7922
7923 initial_vals.vlan_tci = flow->vlan_tci;
7924 action_xlate_ctx_init(&ctx, ofproto, flow, &initial_vals, NULL,
7925 packet_get_tcp_flags(packet, flow), packet);
7926 ctx.resubmit_stats = &stats;
7927
7928 ofpbuf_use_stub(&odp_actions,
7929 odp_actions_stub, sizeof odp_actions_stub);
7930 xlate_actions(&ctx, ofpacts, ofpacts_len, &odp_actions);
7931 dpif_execute(ofproto->backer->dpif, key.data, key.size,
7932 odp_actions.data, odp_actions.size, packet);
7933 ofpbuf_uninit(&odp_actions);
7934
7935 return 0;
7936 }
7937 \f
7938 /* NetFlow. */
7939
7940 static int
7941 set_netflow(struct ofproto *ofproto_,
7942 const struct netflow_options *netflow_options)
7943 {
7944 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
7945
7946 if (netflow_options) {
7947 if (!ofproto->netflow) {
7948 ofproto->netflow = netflow_create();
7949 }
7950 return netflow_set_options(ofproto->netflow, netflow_options);
7951 } else {
7952 netflow_destroy(ofproto->netflow);
7953 ofproto->netflow = NULL;
7954 return 0;
7955 }
7956 }
7957
7958 static void
7959 get_netflow_ids(const struct ofproto *ofproto_,
7960 uint8_t *engine_type, uint8_t *engine_id)
7961 {
7962 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
7963
7964 dpif_get_netflow_ids(ofproto->backer->dpif, engine_type, engine_id);
7965 }
7966
7967 static void
7968 send_active_timeout(struct ofproto_dpif *ofproto, struct facet *facet)
7969 {
7970 if (!facet_is_controller_flow(facet) &&
7971 netflow_active_timeout_expired(ofproto->netflow, &facet->nf_flow)) {
7972 struct subfacet *subfacet;
7973 struct ofexpired expired;
7974
7975 LIST_FOR_EACH (subfacet, list_node, &facet->subfacets) {
7976 if (subfacet->path == SF_FAST_PATH) {
7977 struct dpif_flow_stats stats;
7978
7979 subfacet_reinstall(subfacet, &stats);
7980 subfacet_update_stats(subfacet, &stats);
7981 }
7982 }
7983
7984 expired.flow = facet->flow;
7985 expired.packet_count = facet->packet_count;
7986 expired.byte_count = facet->byte_count;
7987 expired.used = facet->used;
7988 netflow_expire(ofproto->netflow, &facet->nf_flow, &expired);
7989 }
7990 }
7991
7992 static void
7993 send_netflow_active_timeouts(struct ofproto_dpif *ofproto)
7994 {
7995 struct facet *facet;
7996
7997 HMAP_FOR_EACH (facet, hmap_node, &ofproto->facets) {
7998 send_active_timeout(ofproto, facet);
7999 }
8000 }
8001 \f
8002 static struct ofproto_dpif *
8003 ofproto_dpif_lookup(const char *name)
8004 {
8005 struct ofproto_dpif *ofproto;
8006
8007 HMAP_FOR_EACH_WITH_HASH (ofproto, all_ofproto_dpifs_node,
8008 hash_string(name, 0), &all_ofproto_dpifs) {
8009 if (!strcmp(ofproto->up.name, name)) {
8010 return ofproto;
8011 }
8012 }
8013 return NULL;
8014 }
8015
8016 static void
8017 ofproto_unixctl_fdb_flush(struct unixctl_conn *conn, int argc,
8018 const char *argv[], void *aux OVS_UNUSED)
8019 {
8020 struct ofproto_dpif *ofproto;
8021
8022 if (argc > 1) {
8023 ofproto = ofproto_dpif_lookup(argv[1]);
8024 if (!ofproto) {
8025 unixctl_command_reply_error(conn, "no such bridge");
8026 return;
8027 }
8028 mac_learning_flush(ofproto->ml, &ofproto->backer->revalidate_set);
8029 } else {
8030 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
8031 mac_learning_flush(ofproto->ml, &ofproto->backer->revalidate_set);
8032 }
8033 }
8034
8035 unixctl_command_reply(conn, "table successfully flushed");
8036 }
8037
8038 static void
8039 ofproto_unixctl_fdb_show(struct unixctl_conn *conn, int argc OVS_UNUSED,
8040 const char *argv[], void *aux OVS_UNUSED)
8041 {
8042 struct ds ds = DS_EMPTY_INITIALIZER;
8043 const struct ofproto_dpif *ofproto;
8044 const struct mac_entry *e;
8045
8046 ofproto = ofproto_dpif_lookup(argv[1]);
8047 if (!ofproto) {
8048 unixctl_command_reply_error(conn, "no such bridge");
8049 return;
8050 }
8051
8052 ds_put_cstr(&ds, " port VLAN MAC Age\n");
8053 LIST_FOR_EACH (e, lru_node, &ofproto->ml->lrus) {
8054 struct ofbundle *bundle = e->port.p;
8055 ds_put_format(&ds, "%5d %4d "ETH_ADDR_FMT" %3d\n",
8056 ofbundle_get_a_port(bundle)->odp_port,
8057 e->vlan, ETH_ADDR_ARGS(e->mac),
8058 mac_entry_age(ofproto->ml, e));
8059 }
8060 unixctl_command_reply(conn, ds_cstr(&ds));
8061 ds_destroy(&ds);
8062 }
8063
8064 struct trace_ctx {
8065 struct action_xlate_ctx ctx;
8066 struct flow flow;
8067 struct ds *result;
8068 };
8069
8070 static void
8071 trace_format_rule(struct ds *result, uint8_t table_id, int level,
8072 const struct rule_dpif *rule)
8073 {
8074 ds_put_char_multiple(result, '\t', level);
8075 if (!rule) {
8076 ds_put_cstr(result, "No match\n");
8077 return;
8078 }
8079
8080 ds_put_format(result, "Rule: table=%"PRIu8" cookie=%#"PRIx64" ",
8081 table_id, ntohll(rule->up.flow_cookie));
8082 cls_rule_format(&rule->up.cr, result);
8083 ds_put_char(result, '\n');
8084
8085 ds_put_char_multiple(result, '\t', level);
8086 ds_put_cstr(result, "OpenFlow ");
8087 ofpacts_format(rule->up.ofpacts, rule->up.ofpacts_len, result);
8088 ds_put_char(result, '\n');
8089 }
8090
8091 static void
8092 trace_format_flow(struct ds *result, int level, const char *title,
8093 struct trace_ctx *trace)
8094 {
8095 ds_put_char_multiple(result, '\t', level);
8096 ds_put_format(result, "%s: ", title);
8097 if (flow_equal(&trace->ctx.flow, &trace->flow)) {
8098 ds_put_cstr(result, "unchanged");
8099 } else {
8100 flow_format(result, &trace->ctx.flow);
8101 trace->flow = trace->ctx.flow;
8102 }
8103 ds_put_char(result, '\n');
8104 }
8105
8106 static void
8107 trace_format_regs(struct ds *result, int level, const char *title,
8108 struct trace_ctx *trace)
8109 {
8110 size_t i;
8111
8112 ds_put_char_multiple(result, '\t', level);
8113 ds_put_format(result, "%s:", title);
8114 for (i = 0; i < FLOW_N_REGS; i++) {
8115 ds_put_format(result, " reg%zu=0x%"PRIx32, i, trace->flow.regs[i]);
8116 }
8117 ds_put_char(result, '\n');
8118 }
8119
8120 static void
8121 trace_format_odp(struct ds *result, int level, const char *title,
8122 struct trace_ctx *trace)
8123 {
8124 struct ofpbuf *odp_actions = trace->ctx.odp_actions;
8125
8126 ds_put_char_multiple(result, '\t', level);
8127 ds_put_format(result, "%s: ", title);
8128 format_odp_actions(result, odp_actions->data, odp_actions->size);
8129 ds_put_char(result, '\n');
8130 }
8131
8132 static void
8133 trace_resubmit(struct action_xlate_ctx *ctx, struct rule_dpif *rule)
8134 {
8135 struct trace_ctx *trace = CONTAINER_OF(ctx, struct trace_ctx, ctx);
8136 struct ds *result = trace->result;
8137
8138 ds_put_char(result, '\n');
8139 trace_format_flow(result, ctx->recurse + 1, "Resubmitted flow", trace);
8140 trace_format_regs(result, ctx->recurse + 1, "Resubmitted regs", trace);
8141 trace_format_odp(result, ctx->recurse + 1, "Resubmitted odp", trace);
8142 trace_format_rule(result, ctx->table_id, ctx->recurse + 1, rule);
8143 }
8144
8145 static void
8146 trace_report(struct action_xlate_ctx *ctx, const char *s)
8147 {
8148 struct trace_ctx *trace = CONTAINER_OF(ctx, struct trace_ctx, ctx);
8149 struct ds *result = trace->result;
8150
8151 ds_put_char_multiple(result, '\t', ctx->recurse);
8152 ds_put_cstr(result, s);
8153 ds_put_char(result, '\n');
8154 }
8155
8156 static void
8157 ofproto_unixctl_trace(struct unixctl_conn *conn, int argc, const char *argv[],
8158 void *aux OVS_UNUSED)
8159 {
8160 const char *dpname = argv[1];
8161 struct ofproto_dpif *ofproto;
8162 struct ofpbuf odp_key;
8163 struct ofpbuf *packet;
8164 struct initial_vals initial_vals;
8165 struct ds result;
8166 struct flow flow;
8167 char *s;
8168
8169 packet = NULL;
8170 ofpbuf_init(&odp_key, 0);
8171 ds_init(&result);
8172
8173 ofproto = ofproto_dpif_lookup(dpname);
8174 if (!ofproto) {
8175 unixctl_command_reply_error(conn, "Unknown ofproto (use ofproto/list "
8176 "for help)");
8177 goto exit;
8178 }
8179 if (argc == 3 || (argc == 4 && !strcmp(argv[3], "-generate"))) {
8180 /* ofproto/trace dpname flow [-generate] */
8181 const char *flow_s = argv[2];
8182 const char *generate_s = argv[3];
8183
8184 /* Allow 'flow_s' to be either a datapath flow or an OpenFlow-like
8185 * flow. We guess which type it is based on whether 'flow_s' contains
8186 * an '(', since a datapath flow always contains '(') but an
8187 * OpenFlow-like flow should not (in fact it's allowed but I believe
8188 * that's not documented anywhere).
8189 *
8190 * An alternative would be to try to parse 'flow_s' both ways, but then
8191 * it would be tricky giving a sensible error message. After all, do
8192 * you just say "syntax error" or do you present both error messages?
8193 * Both choices seem lousy. */
8194 if (strchr(flow_s, '(')) {
8195 int error;
8196
8197 /* Convert string to datapath key. */
8198 ofpbuf_init(&odp_key, 0);
8199 error = odp_flow_key_from_string(flow_s, NULL, &odp_key);
8200 if (error) {
8201 unixctl_command_reply_error(conn, "Bad flow syntax");
8202 goto exit;
8203 }
8204
8205 /* The user might have specified the wrong ofproto but within the
8206 * same backer. That's OK, ofproto_receive() can find the right
8207 * one for us. */
8208 if (ofproto_receive(ofproto->backer, NULL, odp_key.data,
8209 odp_key.size, &flow, NULL, &ofproto, NULL,
8210 &initial_vals)) {
8211 unixctl_command_reply_error(conn, "Invalid flow");
8212 goto exit;
8213 }
8214 ds_put_format(&result, "Bridge: %s\n", ofproto->up.name);
8215 } else {
8216 char *error_s;
8217
8218 error_s = parse_ofp_exact_flow(&flow, argv[2]);
8219 if (error_s) {
8220 unixctl_command_reply_error(conn, error_s);
8221 free(error_s);
8222 goto exit;
8223 }
8224
8225 initial_vals.vlan_tci = flow.vlan_tci;
8226 }
8227
8228 /* Generate a packet, if requested. */
8229 if (generate_s) {
8230 packet = ofpbuf_new(0);
8231 flow_compose(packet, &flow);
8232 }
8233 } else if (argc == 7) {
8234 /* ofproto/trace dpname priority tun_id in_port mark packet */
8235 const char *priority_s = argv[2];
8236 const char *tun_id_s = argv[3];
8237 const char *in_port_s = argv[4];
8238 const char *mark_s = argv[5];
8239 const char *packet_s = argv[6];
8240 uint32_t in_port = atoi(in_port_s);
8241 ovs_be64 tun_id = htonll(strtoull(tun_id_s, NULL, 0));
8242 uint32_t priority = atoi(priority_s);
8243 uint32_t mark = atoi(mark_s);
8244 const char *msg;
8245
8246 msg = eth_from_hex(packet_s, &packet);
8247 if (msg) {
8248 unixctl_command_reply_error(conn, msg);
8249 goto exit;
8250 }
8251
8252 ds_put_cstr(&result, "Packet: ");
8253 s = ofp_packet_to_string(packet->data, packet->size);
8254 ds_put_cstr(&result, s);
8255 free(s);
8256
8257 flow_extract(packet, priority, mark, NULL, in_port, &flow);
8258 flow.tunnel.tun_id = tun_id;
8259 initial_vals.vlan_tci = flow.vlan_tci;
8260 } else {
8261 unixctl_command_reply_error(conn, "Bad command syntax");
8262 goto exit;
8263 }
8264
8265 ofproto_trace(ofproto, &flow, packet, &initial_vals, &result);
8266 unixctl_command_reply(conn, ds_cstr(&result));
8267
8268 exit:
8269 ds_destroy(&result);
8270 ofpbuf_delete(packet);
8271 ofpbuf_uninit(&odp_key);
8272 }
8273
8274 static void
8275 ofproto_trace(struct ofproto_dpif *ofproto, const struct flow *flow,
8276 const struct ofpbuf *packet,
8277 const struct initial_vals *initial_vals, struct ds *ds)
8278 {
8279 struct rule_dpif *rule;
8280
8281 ds_put_cstr(ds, "Flow: ");
8282 flow_format(ds, flow);
8283 ds_put_char(ds, '\n');
8284
8285 rule = rule_dpif_lookup(ofproto, flow);
8286
8287 trace_format_rule(ds, 0, 0, rule);
8288 if (rule == ofproto->miss_rule) {
8289 ds_put_cstr(ds, "\nNo match, flow generates \"packet in\"s.\n");
8290 } else if (rule == ofproto->no_packet_in_rule) {
8291 ds_put_cstr(ds, "\nNo match, packets dropped because "
8292 "OFPPC_NO_PACKET_IN is set on in_port.\n");
8293 }
8294
8295 if (rule) {
8296 uint64_t odp_actions_stub[1024 / 8];
8297 struct ofpbuf odp_actions;
8298
8299 struct trace_ctx trace;
8300 uint8_t tcp_flags;
8301
8302 tcp_flags = packet ? packet_get_tcp_flags(packet, flow) : 0;
8303 trace.result = ds;
8304 trace.flow = *flow;
8305 ofpbuf_use_stub(&odp_actions,
8306 odp_actions_stub, sizeof odp_actions_stub);
8307 action_xlate_ctx_init(&trace.ctx, ofproto, flow, initial_vals,
8308 rule, tcp_flags, packet);
8309 trace.ctx.resubmit_hook = trace_resubmit;
8310 trace.ctx.report_hook = trace_report;
8311 xlate_actions(&trace.ctx, rule->up.ofpacts, rule->up.ofpacts_len,
8312 &odp_actions);
8313
8314 ds_put_char(ds, '\n');
8315 trace_format_flow(ds, 0, "Final flow", &trace);
8316 ds_put_cstr(ds, "Datapath actions: ");
8317 format_odp_actions(ds, odp_actions.data, odp_actions.size);
8318 ofpbuf_uninit(&odp_actions);
8319
8320 if (trace.ctx.slow) {
8321 enum slow_path_reason slow;
8322
8323 ds_put_cstr(ds, "\nThis flow is handled by the userspace "
8324 "slow path because it:");
8325 for (slow = trace.ctx.slow; slow; ) {
8326 enum slow_path_reason bit = rightmost_1bit(slow);
8327
8328 switch (bit) {
8329 case SLOW_CFM:
8330 ds_put_cstr(ds, "\n\t- Consists of CFM packets.");
8331 break;
8332 case SLOW_LACP:
8333 ds_put_cstr(ds, "\n\t- Consists of LACP packets.");
8334 break;
8335 case SLOW_STP:
8336 ds_put_cstr(ds, "\n\t- Consists of STP packets.");
8337 break;
8338 case SLOW_BFD:
8339 ds_put_cstr(ds, "\n\t- Consists of BFD packets.");
8340 break;
8341 case SLOW_IN_BAND:
8342 ds_put_cstr(ds, "\n\t- Needs in-band special case "
8343 "processing.");
8344 if (!packet) {
8345 ds_put_cstr(ds, "\n\t (The datapath actions are "
8346 "incomplete--for complete actions, "
8347 "please supply a packet.)");
8348 }
8349 break;
8350 case SLOW_CONTROLLER:
8351 ds_put_cstr(ds, "\n\t- Sends \"packet-in\" messages "
8352 "to the OpenFlow controller.");
8353 break;
8354 case SLOW_MATCH:
8355 ds_put_cstr(ds, "\n\t- Needs more specific matching "
8356 "than the datapath supports.");
8357 break;
8358 }
8359
8360 slow &= ~bit;
8361 }
8362
8363 if (slow & ~SLOW_MATCH) {
8364 ds_put_cstr(ds, "\nThe datapath actions above do not reflect "
8365 "the special slow-path processing.");
8366 }
8367 }
8368 }
8369 }
8370
8371 static void
8372 ofproto_dpif_clog(struct unixctl_conn *conn OVS_UNUSED, int argc OVS_UNUSED,
8373 const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED)
8374 {
8375 clogged = true;
8376 unixctl_command_reply(conn, NULL);
8377 }
8378
8379 static void
8380 ofproto_dpif_unclog(struct unixctl_conn *conn OVS_UNUSED, int argc OVS_UNUSED,
8381 const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED)
8382 {
8383 clogged = false;
8384 unixctl_command_reply(conn, NULL);
8385 }
8386
8387 /* Runs a self-check of flow translations in 'ofproto'. Appends a message to
8388 * 'reply' describing the results. */
8389 static void
8390 ofproto_dpif_self_check__(struct ofproto_dpif *ofproto, struct ds *reply)
8391 {
8392 struct facet *facet;
8393 int errors;
8394
8395 errors = 0;
8396 HMAP_FOR_EACH (facet, hmap_node, &ofproto->facets) {
8397 if (!facet_check_consistency(facet)) {
8398 errors++;
8399 }
8400 }
8401 if (errors) {
8402 ofproto->backer->need_revalidate = REV_INCONSISTENCY;
8403 }
8404
8405 if (errors) {
8406 ds_put_format(reply, "%s: self-check failed (%d errors)\n",
8407 ofproto->up.name, errors);
8408 } else {
8409 ds_put_format(reply, "%s: self-check passed\n", ofproto->up.name);
8410 }
8411 }
8412
8413 static void
8414 ofproto_dpif_self_check(struct unixctl_conn *conn,
8415 int argc, const char *argv[], void *aux OVS_UNUSED)
8416 {
8417 struct ds reply = DS_EMPTY_INITIALIZER;
8418 struct ofproto_dpif *ofproto;
8419
8420 if (argc > 1) {
8421 ofproto = ofproto_dpif_lookup(argv[1]);
8422 if (!ofproto) {
8423 unixctl_command_reply_error(conn, "Unknown ofproto (use "
8424 "ofproto/list for help)");
8425 return;
8426 }
8427 ofproto_dpif_self_check__(ofproto, &reply);
8428 } else {
8429 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
8430 ofproto_dpif_self_check__(ofproto, &reply);
8431 }
8432 }
8433
8434 unixctl_command_reply(conn, ds_cstr(&reply));
8435 ds_destroy(&reply);
8436 }
8437
8438 /* Store the current ofprotos in 'ofproto_shash'. Returns a sorted list
8439 * of the 'ofproto_shash' nodes. It is the responsibility of the caller
8440 * to destroy 'ofproto_shash' and free the returned value. */
8441 static const struct shash_node **
8442 get_ofprotos(struct shash *ofproto_shash)
8443 {
8444 const struct ofproto_dpif *ofproto;
8445
8446 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
8447 char *name = xasprintf("%s@%s", ofproto->up.type, ofproto->up.name);
8448 shash_add_nocopy(ofproto_shash, name, ofproto);
8449 }
8450
8451 return shash_sort(ofproto_shash);
8452 }
8453
8454 static void
8455 ofproto_unixctl_dpif_dump_dps(struct unixctl_conn *conn, int argc OVS_UNUSED,
8456 const char *argv[] OVS_UNUSED,
8457 void *aux OVS_UNUSED)
8458 {
8459 struct ds ds = DS_EMPTY_INITIALIZER;
8460 struct shash ofproto_shash;
8461 const struct shash_node **sorted_ofprotos;
8462 int i;
8463
8464 shash_init(&ofproto_shash);
8465 sorted_ofprotos = get_ofprotos(&ofproto_shash);
8466 for (i = 0; i < shash_count(&ofproto_shash); i++) {
8467 const struct shash_node *node = sorted_ofprotos[i];
8468 ds_put_format(&ds, "%s\n", node->name);
8469 }
8470
8471 shash_destroy(&ofproto_shash);
8472 free(sorted_ofprotos);
8473
8474 unixctl_command_reply(conn, ds_cstr(&ds));
8475 ds_destroy(&ds);
8476 }
8477
8478 static void
8479 show_dp_format(const struct ofproto_dpif *ofproto, struct ds *ds)
8480 {
8481 const struct shash_node **ports;
8482 int i;
8483 struct avg_subfacet_rates lifetime;
8484 unsigned long long int minutes;
8485 const int min_ms = 60 * 1000; /* milliseconds in one minute. */
8486
8487 minutes = (time_msec() - ofproto->created) / min_ms;
8488
8489 if (minutes > 0) {
8490 lifetime.add_rate = (double)ofproto->total_subfacet_add_count
8491 / minutes;
8492 lifetime.del_rate = (double)ofproto->total_subfacet_del_count
8493 / minutes;
8494 }else {
8495 lifetime.add_rate = 0.0;
8496 lifetime.del_rate = 0.0;
8497 }
8498
8499 ds_put_format(ds, "%s (%s):\n", ofproto->up.name,
8500 dpif_name(ofproto->backer->dpif));
8501 ds_put_format(ds,
8502 "\tlookups: hit:%"PRIu64" missed:%"PRIu64"\n",
8503 ofproto->n_hit, ofproto->n_missed);
8504 ds_put_format(ds, "\tflows: cur: %zu, avg: %5.3f, max: %d,"
8505 " life span: %llu(ms)\n",
8506 hmap_count(&ofproto->subfacets),
8507 avg_subfacet_count(ofproto),
8508 ofproto->max_n_subfacet,
8509 avg_subfacet_life_span(ofproto));
8510 if (minutes >= 60) {
8511 show_dp_rates(ds, "\t\thourly avg:", &ofproto->hourly);
8512 }
8513 if (minutes >= 60 * 24) {
8514 show_dp_rates(ds, "\t\tdaily avg:", &ofproto->daily);
8515 }
8516 show_dp_rates(ds, "\t\toverall avg:", &lifetime);
8517
8518 ports = shash_sort(&ofproto->up.port_by_name);
8519 for (i = 0; i < shash_count(&ofproto->up.port_by_name); i++) {
8520 const struct shash_node *node = ports[i];
8521 struct ofport *ofport = node->data;
8522 const char *name = netdev_get_name(ofport->netdev);
8523 const char *type = netdev_get_type(ofport->netdev);
8524 uint32_t odp_port;
8525
8526 ds_put_format(ds, "\t%s %u/", name, ofport->ofp_port);
8527
8528 odp_port = ofp_port_to_odp_port(ofproto, ofport->ofp_port);
8529 if (odp_port != OVSP_NONE) {
8530 ds_put_format(ds, "%"PRIu32":", odp_port);
8531 } else {
8532 ds_put_cstr(ds, "none:");
8533 }
8534
8535 if (strcmp(type, "system")) {
8536 struct netdev *netdev;
8537 int error;
8538
8539 ds_put_format(ds, " (%s", type);
8540
8541 error = netdev_open(name, type, &netdev);
8542 if (!error) {
8543 struct smap config;
8544
8545 smap_init(&config);
8546 error = netdev_get_config(netdev, &config);
8547 if (!error) {
8548 const struct smap_node **nodes;
8549 size_t i;
8550
8551 nodes = smap_sort(&config);
8552 for (i = 0; i < smap_count(&config); i++) {
8553 const struct smap_node *node = nodes[i];
8554 ds_put_format(ds, "%c %s=%s", i ? ',' : ':',
8555 node->key, node->value);
8556 }
8557 free(nodes);
8558 }
8559 smap_destroy(&config);
8560
8561 netdev_close(netdev);
8562 }
8563 ds_put_char(ds, ')');
8564 }
8565 ds_put_char(ds, '\n');
8566 }
8567 free(ports);
8568 }
8569
8570 static void
8571 ofproto_unixctl_dpif_show(struct unixctl_conn *conn, int argc,
8572 const char *argv[], void *aux OVS_UNUSED)
8573 {
8574 struct ds ds = DS_EMPTY_INITIALIZER;
8575 const struct ofproto_dpif *ofproto;
8576
8577 if (argc > 1) {
8578 int i;
8579 for (i = 1; i < argc; i++) {
8580 ofproto = ofproto_dpif_lookup(argv[i]);
8581 if (!ofproto) {
8582 ds_put_format(&ds, "Unknown bridge %s (use dpif/dump-dps "
8583 "for help)", argv[i]);
8584 unixctl_command_reply_error(conn, ds_cstr(&ds));
8585 return;
8586 }
8587 show_dp_format(ofproto, &ds);
8588 }
8589 } else {
8590 struct shash ofproto_shash;
8591 const struct shash_node **sorted_ofprotos;
8592 int i;
8593
8594 shash_init(&ofproto_shash);
8595 sorted_ofprotos = get_ofprotos(&ofproto_shash);
8596 for (i = 0; i < shash_count(&ofproto_shash); i++) {
8597 const struct shash_node *node = sorted_ofprotos[i];
8598 show_dp_format(node->data, &ds);
8599 }
8600
8601 shash_destroy(&ofproto_shash);
8602 free(sorted_ofprotos);
8603 }
8604
8605 unixctl_command_reply(conn, ds_cstr(&ds));
8606 ds_destroy(&ds);
8607 }
8608
8609 static void
8610 ofproto_unixctl_dpif_dump_flows(struct unixctl_conn *conn,
8611 int argc OVS_UNUSED, const char *argv[],
8612 void *aux OVS_UNUSED)
8613 {
8614 struct ds ds = DS_EMPTY_INITIALIZER;
8615 const struct ofproto_dpif *ofproto;
8616 struct subfacet *subfacet;
8617
8618 ofproto = ofproto_dpif_lookup(argv[1]);
8619 if (!ofproto) {
8620 unixctl_command_reply_error(conn, "no such bridge");
8621 return;
8622 }
8623
8624 update_stats(ofproto->backer);
8625
8626 HMAP_FOR_EACH (subfacet, hmap_node, &ofproto->subfacets) {
8627 odp_flow_key_format(subfacet->key, subfacet->key_len, &ds);
8628
8629 ds_put_format(&ds, ", packets:%"PRIu64", bytes:%"PRIu64", used:",
8630 subfacet->dp_packet_count, subfacet->dp_byte_count);
8631 if (subfacet->used) {
8632 ds_put_format(&ds, "%.3fs",
8633 (time_msec() - subfacet->used) / 1000.0);
8634 } else {
8635 ds_put_format(&ds, "never");
8636 }
8637 if (subfacet->facet->tcp_flags) {
8638 ds_put_cstr(&ds, ", flags:");
8639 packet_format_tcp_flags(&ds, subfacet->facet->tcp_flags);
8640 }
8641
8642 ds_put_cstr(&ds, ", actions:");
8643 if (subfacet->slow) {
8644 uint64_t slow_path_stub[128 / 8];
8645 const struct nlattr *actions;
8646 size_t actions_len;
8647
8648 compose_slow_path(ofproto, &subfacet->facet->flow, subfacet->slow,
8649 slow_path_stub, sizeof slow_path_stub,
8650 &actions, &actions_len);
8651 format_odp_actions(&ds, actions, actions_len);
8652 } else {
8653 format_odp_actions(&ds, subfacet->actions, subfacet->actions_len);
8654 }
8655 ds_put_char(&ds, '\n');
8656 }
8657
8658 unixctl_command_reply(conn, ds_cstr(&ds));
8659 ds_destroy(&ds);
8660 }
8661
8662 static void
8663 ofproto_unixctl_dpif_del_flows(struct unixctl_conn *conn,
8664 int argc OVS_UNUSED, const char *argv[],
8665 void *aux OVS_UNUSED)
8666 {
8667 struct ds ds = DS_EMPTY_INITIALIZER;
8668 struct ofproto_dpif *ofproto;
8669
8670 ofproto = ofproto_dpif_lookup(argv[1]);
8671 if (!ofproto) {
8672 unixctl_command_reply_error(conn, "no such bridge");
8673 return;
8674 }
8675
8676 flush(&ofproto->up);
8677
8678 unixctl_command_reply(conn, ds_cstr(&ds));
8679 ds_destroy(&ds);
8680 }
8681
8682 static void
8683 ofproto_dpif_unixctl_init(void)
8684 {
8685 static bool registered;
8686 if (registered) {
8687 return;
8688 }
8689 registered = true;
8690
8691 unixctl_command_register(
8692 "ofproto/trace",
8693 "bridge {priority tun_id in_port mark packet | odp_flow [-generate]}",
8694 2, 6, ofproto_unixctl_trace, NULL);
8695 unixctl_command_register("fdb/flush", "[bridge]", 0, 1,
8696 ofproto_unixctl_fdb_flush, NULL);
8697 unixctl_command_register("fdb/show", "bridge", 1, 1,
8698 ofproto_unixctl_fdb_show, NULL);
8699 unixctl_command_register("ofproto/clog", "", 0, 0,
8700 ofproto_dpif_clog, NULL);
8701 unixctl_command_register("ofproto/unclog", "", 0, 0,
8702 ofproto_dpif_unclog, NULL);
8703 unixctl_command_register("ofproto/self-check", "[bridge]", 0, 1,
8704 ofproto_dpif_self_check, NULL);
8705 unixctl_command_register("dpif/dump-dps", "", 0, 0,
8706 ofproto_unixctl_dpif_dump_dps, NULL);
8707 unixctl_command_register("dpif/show", "[bridge]", 0, INT_MAX,
8708 ofproto_unixctl_dpif_show, NULL);
8709 unixctl_command_register("dpif/dump-flows", "bridge", 1, 1,
8710 ofproto_unixctl_dpif_dump_flows, NULL);
8711 unixctl_command_register("dpif/del-flows", "bridge", 1, 1,
8712 ofproto_unixctl_dpif_del_flows, NULL);
8713 }
8714 \f
8715 /* Linux VLAN device support (e.g. "eth0.10" for VLAN 10.)
8716 *
8717 * This is deprecated. It is only for compatibility with broken device drivers
8718 * in old versions of Linux that do not properly support VLANs when VLAN
8719 * devices are not used. When broken device drivers are no longer in
8720 * widespread use, we will delete these interfaces. */
8721
8722 static int
8723 set_realdev(struct ofport *ofport_, uint16_t realdev_ofp_port, int vid)
8724 {
8725 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport_->ofproto);
8726 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
8727
8728 if (realdev_ofp_port == ofport->realdev_ofp_port
8729 && vid == ofport->vlandev_vid) {
8730 return 0;
8731 }
8732
8733 ofproto->backer->need_revalidate = REV_RECONFIGURE;
8734
8735 if (ofport->realdev_ofp_port) {
8736 vsp_remove(ofport);
8737 }
8738 if (realdev_ofp_port && ofport->bundle) {
8739 /* vlandevs are enslaved to their realdevs, so they are not allowed to
8740 * themselves be part of a bundle. */
8741 bundle_set(ofport->up.ofproto, ofport->bundle, NULL);
8742 }
8743
8744 ofport->realdev_ofp_port = realdev_ofp_port;
8745 ofport->vlandev_vid = vid;
8746
8747 if (realdev_ofp_port) {
8748 vsp_add(ofport, realdev_ofp_port, vid);
8749 }
8750
8751 return 0;
8752 }
8753
8754 static uint32_t
8755 hash_realdev_vid(uint16_t realdev_ofp_port, int vid)
8756 {
8757 return hash_2words(realdev_ofp_port, vid);
8758 }
8759
8760 /* Returns the ODP port number of the Linux VLAN device that corresponds to
8761 * 'vlan_tci' on the network device with port number 'realdev_odp_port' in
8762 * 'ofproto'. For example, given 'realdev_odp_port' of eth0 and 'vlan_tci' 9,
8763 * it would return the port number of eth0.9.
8764 *
8765 * Unless VLAN splinters are enabled for port 'realdev_odp_port', this
8766 * function just returns its 'realdev_odp_port' argument. */
8767 static uint32_t
8768 vsp_realdev_to_vlandev(const struct ofproto_dpif *ofproto,
8769 uint32_t realdev_odp_port, ovs_be16 vlan_tci)
8770 {
8771 if (!hmap_is_empty(&ofproto->realdev_vid_map)) {
8772 uint16_t realdev_ofp_port;
8773 int vid = vlan_tci_to_vid(vlan_tci);
8774 const struct vlan_splinter *vsp;
8775
8776 realdev_ofp_port = odp_port_to_ofp_port(ofproto, realdev_odp_port);
8777 HMAP_FOR_EACH_WITH_HASH (vsp, realdev_vid_node,
8778 hash_realdev_vid(realdev_ofp_port, vid),
8779 &ofproto->realdev_vid_map) {
8780 if (vsp->realdev_ofp_port == realdev_ofp_port
8781 && vsp->vid == vid) {
8782 return ofp_port_to_odp_port(ofproto, vsp->vlandev_ofp_port);
8783 }
8784 }
8785 }
8786 return realdev_odp_port;
8787 }
8788
8789 static struct vlan_splinter *
8790 vlandev_find(const struct ofproto_dpif *ofproto, uint16_t vlandev_ofp_port)
8791 {
8792 struct vlan_splinter *vsp;
8793
8794 HMAP_FOR_EACH_WITH_HASH (vsp, vlandev_node, hash_int(vlandev_ofp_port, 0),
8795 &ofproto->vlandev_map) {
8796 if (vsp->vlandev_ofp_port == vlandev_ofp_port) {
8797 return vsp;
8798 }
8799 }
8800
8801 return NULL;
8802 }
8803
8804 /* Returns the OpenFlow port number of the "real" device underlying the Linux
8805 * VLAN device with OpenFlow port number 'vlandev_ofp_port' and stores the
8806 * VLAN VID of the Linux VLAN device in '*vid'. For example, given
8807 * 'vlandev_ofp_port' of eth0.9, it would return the OpenFlow port number of
8808 * eth0 and store 9 in '*vid'.
8809 *
8810 * Returns 0 and does not modify '*vid' if 'vlandev_ofp_port' is not a Linux
8811 * VLAN device. Unless VLAN splinters are enabled, this is what this function
8812 * always does.*/
8813 static uint16_t
8814 vsp_vlandev_to_realdev(const struct ofproto_dpif *ofproto,
8815 uint16_t vlandev_ofp_port, int *vid)
8816 {
8817 if (!hmap_is_empty(&ofproto->vlandev_map)) {
8818 const struct vlan_splinter *vsp;
8819
8820 vsp = vlandev_find(ofproto, vlandev_ofp_port);
8821 if (vsp) {
8822 if (vid) {
8823 *vid = vsp->vid;
8824 }
8825 return vsp->realdev_ofp_port;
8826 }
8827 }
8828 return 0;
8829 }
8830
8831 /* Given 'flow', a flow representing a packet received on 'ofproto', checks
8832 * whether 'flow->in_port' represents a Linux VLAN device. If so, changes
8833 * 'flow->in_port' to the "real" device backing the VLAN device, sets
8834 * 'flow->vlan_tci' to the VLAN VID, and returns true. Otherwise (which is
8835 * always the case unless VLAN splinters are enabled), returns false without
8836 * making any changes. */
8837 static bool
8838 vsp_adjust_flow(const struct ofproto_dpif *ofproto, struct flow *flow)
8839 {
8840 uint16_t realdev;
8841 int vid;
8842
8843 realdev = vsp_vlandev_to_realdev(ofproto, flow->in_port, &vid);
8844 if (!realdev) {
8845 return false;
8846 }
8847
8848 /* Cause the flow to be processed as if it came in on the real device with
8849 * the VLAN device's VLAN ID. */
8850 flow->in_port = realdev;
8851 flow->vlan_tci = htons((vid & VLAN_VID_MASK) | VLAN_CFI);
8852 return true;
8853 }
8854
8855 static void
8856 vsp_remove(struct ofport_dpif *port)
8857 {
8858 struct ofproto_dpif *ofproto = ofproto_dpif_cast(port->up.ofproto);
8859 struct vlan_splinter *vsp;
8860
8861 vsp = vlandev_find(ofproto, port->up.ofp_port);
8862 if (vsp) {
8863 hmap_remove(&ofproto->vlandev_map, &vsp->vlandev_node);
8864 hmap_remove(&ofproto->realdev_vid_map, &vsp->realdev_vid_node);
8865 free(vsp);
8866
8867 port->realdev_ofp_port = 0;
8868 } else {
8869 VLOG_ERR("missing vlan device record");
8870 }
8871 }
8872
8873 static void
8874 vsp_add(struct ofport_dpif *port, uint16_t realdev_ofp_port, int vid)
8875 {
8876 struct ofproto_dpif *ofproto = ofproto_dpif_cast(port->up.ofproto);
8877
8878 if (!vsp_vlandev_to_realdev(ofproto, port->up.ofp_port, NULL)
8879 && (vsp_realdev_to_vlandev(ofproto, realdev_ofp_port, htons(vid))
8880 == realdev_ofp_port)) {
8881 struct vlan_splinter *vsp;
8882
8883 vsp = xmalloc(sizeof *vsp);
8884 hmap_insert(&ofproto->vlandev_map, &vsp->vlandev_node,
8885 hash_int(port->up.ofp_port, 0));
8886 hmap_insert(&ofproto->realdev_vid_map, &vsp->realdev_vid_node,
8887 hash_realdev_vid(realdev_ofp_port, vid));
8888 vsp->realdev_ofp_port = realdev_ofp_port;
8889 vsp->vlandev_ofp_port = port->up.ofp_port;
8890 vsp->vid = vid;
8891
8892 port->realdev_ofp_port = realdev_ofp_port;
8893 } else {
8894 VLOG_ERR("duplicate vlan device record");
8895 }
8896 }
8897
8898 static uint32_t
8899 ofp_port_to_odp_port(const struct ofproto_dpif *ofproto, uint16_t ofp_port)
8900 {
8901 const struct ofport_dpif *ofport = get_ofp_port(ofproto, ofp_port);
8902 return ofport ? ofport->odp_port : OVSP_NONE;
8903 }
8904
8905 static struct ofport_dpif *
8906 odp_port_to_ofport(const struct dpif_backer *backer, uint32_t odp_port)
8907 {
8908 struct ofport_dpif *port;
8909
8910 HMAP_FOR_EACH_IN_BUCKET (port, odp_port_node,
8911 hash_int(odp_port, 0),
8912 &backer->odp_to_ofport_map) {
8913 if (port->odp_port == odp_port) {
8914 return port;
8915 }
8916 }
8917
8918 return NULL;
8919 }
8920
8921 static uint16_t
8922 odp_port_to_ofp_port(const struct ofproto_dpif *ofproto, uint32_t odp_port)
8923 {
8924 struct ofport_dpif *port;
8925
8926 port = odp_port_to_ofport(ofproto->backer, odp_port);
8927 if (port && &ofproto->up == port->up.ofproto) {
8928 return port->up.ofp_port;
8929 } else {
8930 return OFPP_NONE;
8931 }
8932 }
8933 static unsigned long long int
8934 avg_subfacet_life_span(const struct ofproto_dpif *ofproto)
8935 {
8936 unsigned long long int dc;
8937 unsigned long long int avg;
8938
8939 dc = ofproto->total_subfacet_del_count + ofproto->subfacet_del_count;
8940 avg = dc ? ofproto->total_subfacet_life_span / dc : 0;
8941
8942 return avg;
8943 }
8944
8945 static double
8946 avg_subfacet_count(const struct ofproto_dpif *ofproto)
8947 {
8948 double avg_c = 0.0;
8949
8950 if (ofproto->n_update_stats) {
8951 avg_c = (double)ofproto->total_subfacet_count
8952 / ofproto->n_update_stats;
8953 }
8954
8955 return avg_c;
8956 }
8957
8958 static void
8959 show_dp_rates(struct ds *ds, const char *heading,
8960 const struct avg_subfacet_rates *rates)
8961 {
8962 ds_put_format(ds, "%s add rate: %5.3f/min, del rate: %5.3f/min\n",
8963 heading, rates->add_rate, rates->del_rate);
8964 }
8965
8966 static void
8967 update_max_subfacet_count(struct ofproto_dpif *ofproto)
8968 {
8969 ofproto->max_n_subfacet = MAX(ofproto->max_n_subfacet,
8970 hmap_count(&ofproto->subfacets));
8971 }
8972
8973 /* Compute exponentially weighted moving average, adding 'new' as the newest,
8974 * most heavily weighted element. 'base' designates the rate of decay: after
8975 * 'base' further updates, 'new''s weight in the EWMA decays to about 1/e
8976 * (about .37). */
8977 static void
8978 exp_mavg(double *avg, int base, double new)
8979 {
8980 *avg = (*avg * (base - 1) + new) / base;
8981 }
8982
8983 static void
8984 update_moving_averages(struct ofproto_dpif *ofproto)
8985 {
8986 const int min_ms = 60 * 1000; /* milliseconds in one minute. */
8987
8988 /* Update hourly averages on the minute boundaries. */
8989 if (time_msec() - ofproto->last_minute >= min_ms) {
8990 exp_mavg(&ofproto->hourly.add_rate, 60, ofproto->subfacet_add_count);
8991 exp_mavg(&ofproto->hourly.del_rate, 60, ofproto->subfacet_del_count);
8992
8993 /* Update daily averages on the hour boundaries. */
8994 if ((ofproto->last_minute - ofproto->created) / min_ms % 60 == 59) {
8995 exp_mavg(&ofproto->daily.add_rate, 24, ofproto->hourly.add_rate);
8996 exp_mavg(&ofproto->daily.del_rate, 24, ofproto->hourly.del_rate);
8997 }
8998
8999 ofproto->total_subfacet_add_count += ofproto->subfacet_add_count;
9000 ofproto->total_subfacet_del_count += ofproto->subfacet_del_count;
9001 ofproto->subfacet_add_count = 0;
9002 ofproto->subfacet_del_count = 0;
9003 ofproto->last_minute += min_ms;
9004 }
9005 }
9006
9007 static void
9008 dpif_stats_update_hit_count(struct ofproto_dpif *ofproto, uint64_t delta)
9009 {
9010 ofproto->n_hit += delta;
9011 }
9012
9013 const struct ofproto_class ofproto_dpif_class = {
9014 init,
9015 enumerate_types,
9016 enumerate_names,
9017 del,
9018 port_open_type,
9019 type_run,
9020 type_run_fast,
9021 type_wait,
9022 alloc,
9023 construct,
9024 destruct,
9025 dealloc,
9026 run,
9027 run_fast,
9028 wait,
9029 get_memory_usage,
9030 flush,
9031 get_features,
9032 get_tables,
9033 port_alloc,
9034 port_construct,
9035 port_destruct,
9036 port_dealloc,
9037 port_modified,
9038 port_reconfigured,
9039 port_query_by_name,
9040 port_add,
9041 port_del,
9042 port_get_stats,
9043 port_dump_start,
9044 port_dump_next,
9045 port_dump_done,
9046 port_poll,
9047 port_poll_wait,
9048 port_is_lacp_current,
9049 NULL, /* rule_choose_table */
9050 rule_alloc,
9051 rule_construct,
9052 rule_destruct,
9053 rule_dealloc,
9054 rule_get_stats,
9055 rule_execute,
9056 rule_modify_actions,
9057 set_frag_handling,
9058 packet_out,
9059 set_netflow,
9060 get_netflow_ids,
9061 set_sflow,
9062 set_ipfix,
9063 set_cfm,
9064 get_cfm_status,
9065 set_bfd,
9066 get_bfd_status,
9067 set_stp,
9068 get_stp_status,
9069 set_stp_port,
9070 get_stp_port_status,
9071 set_queues,
9072 bundle_set,
9073 bundle_remove,
9074 mirror_set,
9075 mirror_get_stats,
9076 set_flood_vlans,
9077 is_mirror_output_bundle,
9078 forward_bpdu_changed,
9079 set_mac_table_config,
9080 set_realdev,
9081 };