]> git.proxmox.com Git - mirror_ovs.git/blob - ofproto/ofproto-dpif.c
ofproto-dpif: Do not give stats to rules bypassed by "drop" frag policy.
[mirror_ovs.git] / ofproto / ofproto-dpif.c
1 /*
2 * Copyright (c) 2009, 2010, 2011, 2012, 2013 Nicira, Inc.
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at:
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <config.h>
18
19 #include "ofproto/ofproto-provider.h"
20
21 #include <errno.h>
22
23 #include "bfd.h"
24 #include "bond.h"
25 #include "bundle.h"
26 #include "byte-order.h"
27 #include "connmgr.h"
28 #include "coverage.h"
29 #include "cfm.h"
30 #include "dpif.h"
31 #include "dynamic-string.h"
32 #include "fail-open.h"
33 #include "hmapx.h"
34 #include "lacp.h"
35 #include "learn.h"
36 #include "mac-learning.h"
37 #include "meta-flow.h"
38 #include "multipath.h"
39 #include "netdev-vport.h"
40 #include "netdev.h"
41 #include "netlink.h"
42 #include "nx-match.h"
43 #include "odp-util.h"
44 #include "ofp-util.h"
45 #include "ofpbuf.h"
46 #include "ofp-actions.h"
47 #include "ofp-parse.h"
48 #include "ofp-print.h"
49 #include "ofproto-dpif-governor.h"
50 #include "ofproto-dpif-ipfix.h"
51 #include "ofproto-dpif-sflow.h"
52 #include "poll-loop.h"
53 #include "simap.h"
54 #include "smap.h"
55 #include "timer.h"
56 #include "tunnel.h"
57 #include "unaligned.h"
58 #include "unixctl.h"
59 #include "vlan-bitmap.h"
60 #include "vlog.h"
61
62 VLOG_DEFINE_THIS_MODULE(ofproto_dpif);
63
64 COVERAGE_DEFINE(ofproto_dpif_expired);
65 COVERAGE_DEFINE(ofproto_dpif_xlate);
66 COVERAGE_DEFINE(facet_changed_rule);
67 COVERAGE_DEFINE(facet_revalidate);
68 COVERAGE_DEFINE(facet_unexpected);
69 COVERAGE_DEFINE(facet_suppress);
70
71 /* Maximum depth of flow table recursion (due to resubmit actions) in a
72 * flow translation. */
73 #define MAX_RESUBMIT_RECURSION 64
74
75 /* Number of implemented OpenFlow tables. */
76 enum { N_TABLES = 255 };
77 enum { TBL_INTERNAL = N_TABLES - 1 }; /* Used for internal hidden rules. */
78 BUILD_ASSERT_DECL(N_TABLES >= 2 && N_TABLES <= 255);
79
80 struct ofport_dpif;
81 struct ofproto_dpif;
82 struct flow_miss;
83 struct facet;
84
85 struct rule_dpif {
86 struct rule up;
87
88 /* These statistics:
89 *
90 * - Do include packets and bytes from facets that have been deleted or
91 * whose own statistics have been folded into the rule.
92 *
93 * - Do include packets and bytes sent "by hand" that were accounted to
94 * the rule without any facet being involved (this is a rare corner
95 * case in rule_execute()).
96 *
97 * - Do not include packet or bytes that can be obtained from any facet's
98 * packet_count or byte_count member or that can be obtained from the
99 * datapath by, e.g., dpif_flow_get() for any subfacet.
100 */
101 uint64_t packet_count; /* Number of packets received. */
102 uint64_t byte_count; /* Number of bytes received. */
103
104 tag_type tag; /* Caches rule_calculate_tag() result. */
105
106 struct list facets; /* List of "struct facet"s. */
107 };
108
109 static struct rule_dpif *rule_dpif_cast(const struct rule *rule)
110 {
111 return rule ? CONTAINER_OF(rule, struct rule_dpif, up) : NULL;
112 }
113
114 static struct rule_dpif *rule_dpif_lookup(struct ofproto_dpif *,
115 const struct flow *);
116 static struct rule_dpif *rule_dpif_lookup__(struct ofproto_dpif *,
117 const struct flow *,
118 uint8_t table);
119 static struct rule_dpif *rule_dpif_miss_rule(struct ofproto_dpif *ofproto,
120 const struct flow *flow);
121
122 static void rule_get_stats(struct rule *, uint64_t *packets, uint64_t *bytes);
123 static void rule_credit_stats(struct rule_dpif *,
124 const struct dpif_flow_stats *);
125 static tag_type rule_calculate_tag(const struct flow *,
126 const struct minimask *, uint32_t basis);
127 static void rule_invalidate(const struct rule_dpif *);
128
129 #define MAX_MIRRORS 32
130 typedef uint32_t mirror_mask_t;
131 #define MIRROR_MASK_C(X) UINT32_C(X)
132 BUILD_ASSERT_DECL(sizeof(mirror_mask_t) * CHAR_BIT >= MAX_MIRRORS);
133 struct ofmirror {
134 struct ofproto_dpif *ofproto; /* Owning ofproto. */
135 size_t idx; /* In ofproto's "mirrors" array. */
136 void *aux; /* Key supplied by ofproto's client. */
137 char *name; /* Identifier for log messages. */
138
139 /* Selection criteria. */
140 struct hmapx srcs; /* Contains "struct ofbundle *"s. */
141 struct hmapx dsts; /* Contains "struct ofbundle *"s. */
142 unsigned long *vlans; /* Bitmap of chosen VLANs, NULL selects all. */
143
144 /* Output (exactly one of out == NULL and out_vlan == -1 is true). */
145 struct ofbundle *out; /* Output port or NULL. */
146 int out_vlan; /* Output VLAN or -1. */
147 mirror_mask_t dup_mirrors; /* Bitmap of mirrors with the same output. */
148
149 /* Counters. */
150 int64_t packet_count; /* Number of packets sent. */
151 int64_t byte_count; /* Number of bytes sent. */
152 };
153
154 static void mirror_destroy(struct ofmirror *);
155 static void update_mirror_stats(struct ofproto_dpif *ofproto,
156 mirror_mask_t mirrors,
157 uint64_t packets, uint64_t bytes);
158
159 struct ofbundle {
160 struct hmap_node hmap_node; /* In struct ofproto's "bundles" hmap. */
161 struct ofproto_dpif *ofproto; /* Owning ofproto. */
162 void *aux; /* Key supplied by ofproto's client. */
163 char *name; /* Identifier for log messages. */
164
165 /* Configuration. */
166 struct list ports; /* Contains "struct ofport"s. */
167 enum port_vlan_mode vlan_mode; /* VLAN mode */
168 int vlan; /* -1=trunk port, else a 12-bit VLAN ID. */
169 unsigned long *trunks; /* Bitmap of trunked VLANs, if 'vlan' == -1.
170 * NULL if all VLANs are trunked. */
171 struct lacp *lacp; /* LACP if LACP is enabled, otherwise NULL. */
172 struct bond *bond; /* Nonnull iff more than one port. */
173 bool use_priority_tags; /* Use 802.1p tag for frames in VLAN 0? */
174
175 /* Status. */
176 bool floodable; /* True if no port has OFPUTIL_PC_NO_FLOOD set. */
177
178 /* Port mirroring info. */
179 mirror_mask_t src_mirrors; /* Mirrors triggered when packet received. */
180 mirror_mask_t dst_mirrors; /* Mirrors triggered when packet sent. */
181 mirror_mask_t mirror_out; /* Mirrors that output to this bundle. */
182 };
183
184 static void bundle_remove(struct ofport *);
185 static void bundle_update(struct ofbundle *);
186 static void bundle_destroy(struct ofbundle *);
187 static void bundle_del_port(struct ofport_dpif *);
188 static void bundle_run(struct ofbundle *);
189 static void bundle_wait(struct ofbundle *);
190 static struct ofbundle *lookup_input_bundle(const struct ofproto_dpif *,
191 uint16_t in_port, bool warn,
192 struct ofport_dpif **in_ofportp);
193
194 /* A controller may use OFPP_NONE as the ingress port to indicate that
195 * it did not arrive on a "real" port. 'ofpp_none_bundle' exists for
196 * when an input bundle is needed for validation (e.g., mirroring or
197 * OFPP_NORMAL processing). It is not connected to an 'ofproto' or have
198 * any 'port' structs, so care must be taken when dealing with it. */
199 static struct ofbundle ofpp_none_bundle = {
200 .name = "OFPP_NONE",
201 .vlan_mode = PORT_VLAN_TRUNK
202 };
203
204 static void stp_run(struct ofproto_dpif *ofproto);
205 static void stp_wait(struct ofproto_dpif *ofproto);
206 static int set_stp_port(struct ofport *,
207 const struct ofproto_port_stp_settings *);
208
209 static bool ofbundle_includes_vlan(const struct ofbundle *, uint16_t vlan);
210
211 struct xlate_ctx;
212
213 /* Initial values of fields of the packet that may be changed during
214 * flow processing and needed later. */
215 struct initial_vals {
216 /* This is the value of vlan_tci in the packet as actually received from
217 * dpif. This is the same as the facet's flow.vlan_tci unless the packet
218 * was received via a VLAN splinter. In that case, this value is 0
219 * (because the packet as actually received from the dpif had no 802.1Q
220 * tag) but the facet's flow.vlan_tci is set to the VLAN that the splinter
221 * represents.
222 *
223 * This member should be removed when the VLAN splinters feature is no
224 * longer needed. */
225 ovs_be16 vlan_tci;
226 };
227
228 struct xlate_out {
229 tag_type tags; /* Tags associated with actions. */
230 enum slow_path_reason slow; /* 0 if fast path may be used. */
231 bool has_learn; /* Actions include NXAST_LEARN? */
232 bool has_normal; /* Actions output to OFPP_NORMAL? */
233 bool has_fin_timeout; /* Actions include NXAST_FIN_TIMEOUT? */
234 uint16_t nf_output_iface; /* Output interface index for NetFlow. */
235 mirror_mask_t mirrors; /* Bitmap of associated mirrors. */
236
237 uint64_t odp_actions_stub[256 / 8];
238 struct ofpbuf odp_actions;
239 };
240
241 struct xlate_in {
242 struct ofproto_dpif *ofproto;
243
244 /* Flow to which the OpenFlow actions apply. xlate_actions() will modify
245 * this flow when actions change header fields. */
246 struct flow flow;
247
248 struct initial_vals initial_vals;
249
250 /* The packet corresponding to 'flow', or a null pointer if we are
251 * revalidating without a packet to refer to. */
252 const struct ofpbuf *packet;
253
254 /* Should OFPP_NORMAL update the MAC learning table? Should "learn"
255 * actions update the flow table?
256 *
257 * We want to update these tables if we are actually processing a packet,
258 * or if we are accounting for packets that the datapath has processed, but
259 * not if we are just revalidating. */
260 bool may_learn;
261
262 /* The rule initiating translation or NULL. */
263 struct rule_dpif *rule;
264
265 /* The actions to translate. If 'rule' is not NULL, these may be NULL. */
266 const struct ofpact *ofpacts;
267 size_t ofpacts_len;
268
269 /* Union of the set of TCP flags seen so far in this flow. (Used only by
270 * NXAST_FIN_TIMEOUT. Set to zero to avoid updating updating rules'
271 * timeouts.) */
272 uint8_t tcp_flags;
273
274 /* If nonnull, flow translation calls this function just before executing a
275 * resubmit or OFPP_TABLE action. In addition, disables logging of traces
276 * when the recursion depth is exceeded.
277 *
278 * 'rule' is the rule being submitted into. It will be null if the
279 * resubmit or OFPP_TABLE action didn't find a matching rule.
280 *
281 * This is normally null so the client has to set it manually after
282 * calling xlate_in_init(). */
283 void (*resubmit_hook)(struct xlate_ctx *, struct rule_dpif *rule);
284
285 /* If nonnull, flow translation calls this function to report some
286 * significant decision, e.g. to explain why OFPP_NORMAL translation
287 * dropped a packet. */
288 void (*report_hook)(struct xlate_ctx *, const char *s);
289
290 /* If nonnull, flow translation credits the specified statistics to each
291 * rule reached through a resubmit or OFPP_TABLE action.
292 *
293 * This is normally null so the client has to set it manually after
294 * calling xlate_in_init(). */
295 const struct dpif_flow_stats *resubmit_stats;
296 };
297
298 /* Context used by xlate_actions() and its callees. */
299 struct xlate_ctx {
300 struct xlate_in *xin;
301 struct xlate_out *xout;
302
303 struct ofproto_dpif *ofproto;
304
305 /* Flow at the last commit. */
306 struct flow base_flow;
307
308 /* Tunnel IP destination address as received. This is stored separately
309 * as the base_flow.tunnel is cleared on init to reflect the datapath
310 * behavior. Used to make sure not to send tunneled output to ourselves,
311 * which might lead to an infinite loop. This could happen easily
312 * if a tunnel is marked as 'ip_remote=flow', and the flow does not
313 * actually set the tun_dst field. */
314 ovs_be32 orig_tunnel_ip_dst;
315
316 /* Stack for the push and pop actions. Each stack element is of type
317 * "union mf_subvalue". */
318 union mf_subvalue init_stack[1024 / sizeof(union mf_subvalue)];
319 struct ofpbuf stack;
320
321 /* The rule that we are currently translating, or NULL. */
322 struct rule_dpif *rule;
323
324 int recurse; /* Recursion level, via xlate_table_action. */
325 bool max_resubmit_trigger; /* Recursed too deeply during translation. */
326 uint32_t orig_skb_priority; /* Priority when packet arrived. */
327 uint8_t table_id; /* OpenFlow table ID where flow was found. */
328 uint32_t sflow_n_outputs; /* Number of output ports. */
329 uint32_t sflow_odp_port; /* Output port for composing sFlow action. */
330 uint16_t user_cookie_offset;/* Used for user_action_cookie fixup. */
331 bool exit; /* No further actions should be processed. */
332 };
333
334 static void xlate_in_init(struct xlate_in *, struct ofproto_dpif *,
335 const struct flow *, const struct initial_vals *,
336 struct rule_dpif *, uint8_t tcp_flags,
337 const struct ofpbuf *);
338
339 static void xlate_out_uninit(struct xlate_out *);
340
341 static void xlate_actions(struct xlate_in *, struct xlate_out *);
342
343 static void xlate_actions_for_side_effects(struct xlate_in *);
344
345 static void xlate_table_action(struct xlate_ctx *, uint16_t in_port,
346 uint8_t table_id, bool may_packet_in);
347
348 static size_t put_userspace_action(const struct ofproto_dpif *,
349 struct ofpbuf *odp_actions,
350 const struct flow *,
351 const union user_action_cookie *,
352 const size_t);
353
354 static void compose_slow_path(const struct ofproto_dpif *, const struct flow *,
355 enum slow_path_reason,
356 uint64_t *stub, size_t stub_size,
357 const struct nlattr **actionsp,
358 size_t *actions_lenp);
359
360 static void xlate_report(struct xlate_ctx *ctx, const char *s);
361
362 /* A subfacet (see "struct subfacet" below) has three possible installation
363 * states:
364 *
365 * - SF_NOT_INSTALLED: Not installed in the datapath. This will only be the
366 * case just after the subfacet is created, just before the subfacet is
367 * destroyed, or if the datapath returns an error when we try to install a
368 * subfacet.
369 *
370 * - SF_FAST_PATH: The subfacet's actions are installed in the datapath.
371 *
372 * - SF_SLOW_PATH: An action that sends every packet for the subfacet through
373 * ofproto_dpif is installed in the datapath.
374 */
375 enum subfacet_path {
376 SF_NOT_INSTALLED, /* No datapath flow for this subfacet. */
377 SF_FAST_PATH, /* Full actions are installed. */
378 SF_SLOW_PATH, /* Send-to-userspace action is installed. */
379 };
380
381 /* A dpif flow and actions associated with a facet.
382 *
383 * See also the large comment on struct facet. */
384 struct subfacet {
385 /* Owners. */
386 struct hmap_node hmap_node; /* In struct ofproto_dpif 'subfacets' list. */
387 struct list list_node; /* In struct facet's 'facets' list. */
388 struct facet *facet; /* Owning facet. */
389
390 enum odp_key_fitness key_fitness;
391 struct nlattr *key;
392 int key_len;
393
394 long long int used; /* Time last used; time created if not used. */
395 long long int created; /* Time created. */
396
397 uint64_t dp_packet_count; /* Last known packet count in the datapath. */
398 uint64_t dp_byte_count; /* Last known byte count in the datapath. */
399
400 enum subfacet_path path; /* Installed in datapath? */
401 };
402
403 #define SUBFACET_DESTROY_MAX_BATCH 50
404
405 static struct subfacet *subfacet_create(struct facet *, struct flow_miss *miss,
406 long long int now);
407 static struct subfacet *subfacet_find(struct ofproto_dpif *,
408 const struct nlattr *key, size_t key_len,
409 uint32_t key_hash);
410 static void subfacet_destroy(struct subfacet *);
411 static void subfacet_destroy__(struct subfacet *);
412 static void subfacet_destroy_batch(struct ofproto_dpif *,
413 struct subfacet **, int n);
414 static void subfacet_reset_dp_stats(struct subfacet *,
415 struct dpif_flow_stats *);
416 static void subfacet_update_stats(struct subfacet *,
417 const struct dpif_flow_stats *);
418 static int subfacet_install(struct subfacet *,
419 const struct ofpbuf *odp_actions,
420 struct dpif_flow_stats *);
421 static void subfacet_uninstall(struct subfacet *);
422
423 /* An exact-match instantiation of an OpenFlow flow.
424 *
425 * A facet associates a "struct flow", which represents the Open vSwitch
426 * userspace idea of an exact-match flow, with one or more subfacets. Each
427 * subfacet tracks the datapath's idea of the exact-match flow equivalent to
428 * the facet. When the kernel module (or other dpif implementation) and Open
429 * vSwitch userspace agree on the definition of a flow key, there is exactly
430 * one subfacet per facet. If the dpif implementation supports more-specific
431 * flow matching than userspace, however, a facet can have more than one
432 * subfacet, each of which corresponds to some distinction in flow that
433 * userspace simply doesn't understand.
434 *
435 * Flow expiration works in terms of subfacets, so a facet must have at least
436 * one subfacet or it will never expire, leaking memory. */
437 struct facet {
438 /* Owners. */
439 struct hmap_node hmap_node; /* In owning ofproto's 'facets' hmap. */
440 struct list list_node; /* In owning rule's 'facets' list. */
441 struct rule_dpif *rule; /* Owning rule. */
442
443 /* Owned data. */
444 struct list subfacets;
445 long long int used; /* Time last used; time created if not used. */
446
447 /* Key. */
448 struct flow flow;
449
450 /* These statistics:
451 *
452 * - Do include packets and bytes sent "by hand", e.g. with
453 * dpif_execute().
454 *
455 * - Do include packets and bytes that were obtained from the datapath
456 * when a subfacet's statistics were reset (e.g. dpif_flow_put() with
457 * DPIF_FP_ZERO_STATS).
458 *
459 * - Do not include packets or bytes that can be obtained from the
460 * datapath for any existing subfacet.
461 */
462 uint64_t packet_count; /* Number of packets received. */
463 uint64_t byte_count; /* Number of bytes received. */
464
465 /* Resubmit statistics. */
466 uint64_t prev_packet_count; /* Number of packets from last stats push. */
467 uint64_t prev_byte_count; /* Number of bytes from last stats push. */
468 long long int prev_used; /* Used time from last stats push. */
469
470 /* Accounting. */
471 uint64_t accounted_bytes; /* Bytes processed by facet_account(). */
472 struct netflow_flow nf_flow; /* Per-flow NetFlow tracking data. */
473 uint8_t tcp_flags; /* TCP flags seen for this 'rule'. */
474
475 struct xlate_out xout;
476
477 /* Initial values of the packet that may be needed later. */
478 struct initial_vals initial_vals;
479
480 /* Storage for a single subfacet, to reduce malloc() time and space
481 * overhead. (A facet always has at least one subfacet and in the common
482 * case has exactly one subfacet. However, 'one_subfacet' may not
483 * always be valid, since it could have been removed after newer
484 * subfacets were pushed onto the 'subfacets' list.) */
485 struct subfacet one_subfacet;
486
487 long long int learn_rl; /* Rate limiter for facet_learn(). */
488 };
489
490 static struct facet *facet_create(const struct flow_miss *, uint32_t hash);
491 static void facet_remove(struct facet *);
492 static void facet_free(struct facet *);
493
494 static struct facet *facet_find(struct ofproto_dpif *,
495 const struct flow *, uint32_t hash);
496 static struct facet *facet_lookup_valid(struct ofproto_dpif *,
497 const struct flow *, uint32_t hash);
498 static bool facet_revalidate(struct facet *);
499 static bool facet_check_consistency(struct facet *);
500
501 static void facet_flush_stats(struct facet *);
502
503 static void facet_reset_counters(struct facet *);
504 static void facet_push_stats(struct facet *, bool may_learn);
505 static void facet_learn(struct facet *);
506 static void facet_account(struct facet *);
507 static void push_all_stats(void);
508
509 static bool facet_is_controller_flow(struct facet *);
510
511 struct ofport_dpif {
512 struct hmap_node odp_port_node; /* In dpif_backer's "odp_to_ofport_map". */
513 struct ofport up;
514
515 uint32_t odp_port;
516 struct ofbundle *bundle; /* Bundle that contains this port, if any. */
517 struct list bundle_node; /* In struct ofbundle's "ports" list. */
518 struct cfm *cfm; /* Connectivity Fault Management, if any. */
519 struct bfd *bfd; /* BFD, if any. */
520 tag_type tag; /* Tag associated with this port. */
521 bool may_enable; /* May be enabled in bonds. */
522 long long int carrier_seq; /* Carrier status changes. */
523 struct tnl_port *tnl_port; /* Tunnel handle, or null. */
524
525 /* Spanning tree. */
526 struct stp_port *stp_port; /* Spanning Tree Protocol, if any. */
527 enum stp_state stp_state; /* Always STP_DISABLED if STP not in use. */
528 long long int stp_state_entered;
529
530 struct hmap priorities; /* Map of attached 'priority_to_dscp's. */
531
532 /* Linux VLAN device support (e.g. "eth0.10" for VLAN 10.)
533 *
534 * This is deprecated. It is only for compatibility with broken device
535 * drivers in old versions of Linux that do not properly support VLANs when
536 * VLAN devices are not used. When broken device drivers are no longer in
537 * widespread use, we will delete these interfaces. */
538 uint16_t realdev_ofp_port;
539 int vlandev_vid;
540 };
541
542 /* Node in 'ofport_dpif''s 'priorities' map. Used to maintain a map from
543 * 'priority' (the datapath's term for QoS queue) to the dscp bits which all
544 * traffic egressing the 'ofport' with that priority should be marked with. */
545 struct priority_to_dscp {
546 struct hmap_node hmap_node; /* Node in 'ofport_dpif''s 'priorities' map. */
547 uint32_t priority; /* Priority of this queue (see struct flow). */
548
549 uint8_t dscp; /* DSCP bits to mark outgoing traffic with. */
550 };
551
552 /* Linux VLAN device support (e.g. "eth0.10" for VLAN 10.)
553 *
554 * This is deprecated. It is only for compatibility with broken device drivers
555 * in old versions of Linux that do not properly support VLANs when VLAN
556 * devices are not used. When broken device drivers are no longer in
557 * widespread use, we will delete these interfaces. */
558 struct vlan_splinter {
559 struct hmap_node realdev_vid_node;
560 struct hmap_node vlandev_node;
561 uint16_t realdev_ofp_port;
562 uint16_t vlandev_ofp_port;
563 int vid;
564 };
565
566 static uint16_t vsp_realdev_to_vlandev(const struct ofproto_dpif *,
567 uint16_t realdev_ofp_port,
568 ovs_be16 vlan_tci);
569 static bool vsp_adjust_flow(const struct ofproto_dpif *, struct flow *);
570 static void vsp_remove(struct ofport_dpif *);
571 static void vsp_add(struct ofport_dpif *, uint16_t realdev_ofp_port, int vid);
572
573 static uint32_t ofp_port_to_odp_port(const struct ofproto_dpif *,
574 uint16_t ofp_port);
575 static uint16_t odp_port_to_ofp_port(const struct ofproto_dpif *,
576 uint32_t odp_port);
577
578 static struct ofport_dpif *
579 ofport_dpif_cast(const struct ofport *ofport)
580 {
581 return ofport ? CONTAINER_OF(ofport, struct ofport_dpif, up) : NULL;
582 }
583
584 static void port_run(struct ofport_dpif *);
585 static void port_run_fast(struct ofport_dpif *);
586 static void port_wait(struct ofport_dpif *);
587 static int set_bfd(struct ofport *, const struct smap *);
588 static int set_cfm(struct ofport *, const struct cfm_settings *);
589 static void ofport_clear_priorities(struct ofport_dpif *);
590 static void run_fast_rl(void);
591
592 struct dpif_completion {
593 struct list list_node;
594 struct ofoperation *op;
595 };
596
597 /* Extra information about a classifier table.
598 * Currently used just for optimized flow revalidation. */
599 struct table_dpif {
600 /* If either of these is nonnull, then this table has a form that allows
601 * flows to be tagged to avoid revalidating most flows for the most common
602 * kinds of flow table changes. */
603 struct cls_table *catchall_table; /* Table that wildcards all fields. */
604 struct cls_table *other_table; /* Table with any other wildcard set. */
605 uint32_t basis; /* Keeps each table's tags separate. */
606 };
607
608 /* Reasons that we might need to revalidate every facet, and corresponding
609 * coverage counters.
610 *
611 * A value of 0 means that there is no need to revalidate.
612 *
613 * It would be nice to have some cleaner way to integrate with coverage
614 * counters, but with only a few reasons I guess this is good enough for
615 * now. */
616 enum revalidate_reason {
617 REV_RECONFIGURE = 1, /* Switch configuration changed. */
618 REV_STP, /* Spanning tree protocol port status change. */
619 REV_PORT_TOGGLED, /* Port enabled or disabled by CFM, LACP, ...*/
620 REV_FLOW_TABLE, /* Flow table changed. */
621 REV_INCONSISTENCY /* Facet self-check failed. */
622 };
623 COVERAGE_DEFINE(rev_reconfigure);
624 COVERAGE_DEFINE(rev_stp);
625 COVERAGE_DEFINE(rev_port_toggled);
626 COVERAGE_DEFINE(rev_flow_table);
627 COVERAGE_DEFINE(rev_inconsistency);
628
629 /* Drop keys are odp flow keys which have drop flows installed in the kernel.
630 * These are datapath flows which have no associated ofproto, if they did we
631 * would use facets. */
632 struct drop_key {
633 struct hmap_node hmap_node;
634 struct nlattr *key;
635 size_t key_len;
636 };
637
638 /* All datapaths of a given type share a single dpif backer instance. */
639 struct dpif_backer {
640 char *type;
641 int refcount;
642 struct dpif *dpif;
643 struct timer next_expiration;
644 struct hmap odp_to_ofport_map; /* ODP port to ofport mapping. */
645
646 struct simap tnl_backers; /* Set of dpif ports backing tunnels. */
647
648 /* Facet revalidation flags applying to facets which use this backer. */
649 enum revalidate_reason need_revalidate; /* Revalidate every facet. */
650 struct tag_set revalidate_set; /* Revalidate only matching facets. */
651
652 struct hmap drop_keys; /* Set of dropped odp keys. */
653 bool recv_set_enable; /* Enables or disables receiving packets. */
654 };
655
656 /* All existing ofproto_backer instances, indexed by ofproto->up.type. */
657 static struct shash all_dpif_backers = SHASH_INITIALIZER(&all_dpif_backers);
658
659 static void drop_key_clear(struct dpif_backer *);
660 static struct ofport_dpif *
661 odp_port_to_ofport(const struct dpif_backer *, uint32_t odp_port);
662
663 struct avg_subfacet_rates {
664 double add_rate; /* Moving average of new flows created per minute. */
665 double del_rate; /* Moving average of flows deleted per minute. */
666 };
667 static void show_dp_rates(struct ds *ds, const char *heading,
668 const struct avg_subfacet_rates *rates);
669 static void exp_mavg(double *avg, int base, double new);
670
671 struct ofproto_dpif {
672 struct hmap_node all_ofproto_dpifs_node; /* In 'all_ofproto_dpifs'. */
673 struct ofproto up;
674 struct dpif_backer *backer;
675
676 /* Special OpenFlow rules. */
677 struct rule_dpif *miss_rule; /* Sends flow table misses to controller. */
678 struct rule_dpif *no_packet_in_rule; /* Drops flow table misses. */
679 struct rule_dpif *drop_frags_rule; /* Used in OFPC_FRAG_DROP mode. */
680
681 /* Bridging. */
682 struct netflow *netflow;
683 struct dpif_sflow *sflow;
684 struct dpif_ipfix *ipfix;
685 struct hmap bundles; /* Contains "struct ofbundle"s. */
686 struct mac_learning *ml;
687 struct ofmirror *mirrors[MAX_MIRRORS];
688 bool has_mirrors;
689 bool has_bonded_bundles;
690
691 /* Facets. */
692 struct hmap facets;
693 struct hmap subfacets;
694 struct governor *governor;
695 long long int consistency_rl;
696
697 /* Revalidation. */
698 struct table_dpif tables[N_TABLES];
699
700 /* Support for debugging async flow mods. */
701 struct list completions;
702
703 bool has_bundle_action; /* True when the first bundle action appears. */
704 struct netdev_stats stats; /* To account packets generated and consumed in
705 * userspace. */
706
707 /* Spanning tree. */
708 struct stp *stp;
709 long long int stp_last_tick;
710
711 /* VLAN splinters. */
712 struct hmap realdev_vid_map; /* (realdev,vid) -> vlandev. */
713 struct hmap vlandev_map; /* vlandev -> (realdev,vid). */
714
715 /* Ports. */
716 struct sset ports; /* Set of standard port names. */
717 struct sset ghost_ports; /* Ports with no datapath port. */
718 struct sset port_poll_set; /* Queued names for port_poll() reply. */
719 int port_poll_errno; /* Last errno for port_poll() reply. */
720
721 /* Per ofproto's dpif stats. */
722 uint64_t n_hit;
723 uint64_t n_missed;
724
725 /* Subfacet statistics.
726 *
727 * These keep track of the total number of subfacets added and deleted and
728 * flow life span. They are useful for computing the flow rates stats
729 * exposed via "ovs-appctl dpif/show". The goal is to learn about
730 * traffic patterns in ways that we can use later to improve Open vSwitch
731 * performance in new situations. */
732 long long int created; /* Time when it is created. */
733 unsigned int max_n_subfacet; /* Maximum number of flows */
734
735 /* The average number of subfacets... */
736 struct avg_subfacet_rates hourly; /* ...over the last hour. */
737 struct avg_subfacet_rates daily; /* ...over the last day. */
738 long long int last_minute; /* Last time 'hourly' was updated. */
739
740 /* Number of subfacets added or deleted since 'last_minute'. */
741 unsigned int subfacet_add_count;
742 unsigned int subfacet_del_count;
743
744 /* Number of subfacets added or deleted from 'created' to 'last_minute.' */
745 unsigned long long int total_subfacet_add_count;
746 unsigned long long int total_subfacet_del_count;
747
748 /* Sum of the number of milliseconds that each subfacet existed,
749 * over the subfacets that have been added and then later deleted. */
750 unsigned long long int total_subfacet_life_span;
751
752 /* Incremented by the number of currently existing subfacets, each
753 * time we pull statistics from the kernel. */
754 unsigned long long int total_subfacet_count;
755
756 /* Number of times we pull statistics from the kernel. */
757 unsigned long long int n_update_stats;
758 };
759 static unsigned long long int avg_subfacet_life_span(
760 const struct ofproto_dpif *);
761 static double avg_subfacet_count(const struct ofproto_dpif *ofproto);
762 static void update_moving_averages(struct ofproto_dpif *ofproto);
763 static void update_max_subfacet_count(struct ofproto_dpif *ofproto);
764
765 /* Defer flow mod completion until "ovs-appctl ofproto/unclog"? (Useful only
766 * for debugging the asynchronous flow_mod implementation.) */
767 static bool clogged;
768
769 /* All existing ofproto_dpif instances, indexed by ->up.name. */
770 static struct hmap all_ofproto_dpifs = HMAP_INITIALIZER(&all_ofproto_dpifs);
771
772 static void ofproto_dpif_unixctl_init(void);
773
774 static struct ofproto_dpif *
775 ofproto_dpif_cast(const struct ofproto *ofproto)
776 {
777 ovs_assert(ofproto->ofproto_class == &ofproto_dpif_class);
778 return CONTAINER_OF(ofproto, struct ofproto_dpif, up);
779 }
780
781 static struct ofport_dpif *get_ofp_port(const struct ofproto_dpif *,
782 uint16_t ofp_port);
783 static struct ofport_dpif *get_odp_port(const struct ofproto_dpif *,
784 uint32_t odp_port);
785 static void ofproto_trace(struct ofproto_dpif *, const struct flow *,
786 const struct ofpbuf *,
787 const struct initial_vals *, struct ds *);
788
789 /* Packet processing. */
790 static void update_learning_table(struct ofproto_dpif *,
791 const struct flow *, int vlan,
792 struct ofbundle *);
793 /* Upcalls. */
794 #define FLOW_MISS_MAX_BATCH 50
795 static int handle_upcalls(struct dpif_backer *, unsigned int max_batch);
796
797 /* Flow expiration. */
798 static int expire(struct dpif_backer *);
799
800 /* NetFlow. */
801 static void send_netflow_active_timeouts(struct ofproto_dpif *);
802
803 /* Utilities. */
804 static int send_packet(const struct ofport_dpif *, struct ofpbuf *packet);
805 static size_t compose_sflow_action(const struct ofproto_dpif *,
806 struct ofpbuf *odp_actions,
807 const struct flow *, uint32_t odp_port);
808 static void compose_ipfix_action(const struct ofproto_dpif *,
809 struct ofpbuf *odp_actions,
810 const struct flow *);
811 static void add_mirror_actions(struct xlate_ctx *ctx,
812 const struct flow *flow);
813 /* Global variables. */
814 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
815
816 /* Initial mappings of port to bridge mappings. */
817 static struct shash init_ofp_ports = SHASH_INITIALIZER(&init_ofp_ports);
818 \f
819 /* Factory functions. */
820
821 static void
822 init(const struct shash *iface_hints)
823 {
824 struct shash_node *node;
825
826 /* Make a local copy, since we don't own 'iface_hints' elements. */
827 SHASH_FOR_EACH(node, iface_hints) {
828 const struct iface_hint *orig_hint = node->data;
829 struct iface_hint *new_hint = xmalloc(sizeof *new_hint);
830
831 new_hint->br_name = xstrdup(orig_hint->br_name);
832 new_hint->br_type = xstrdup(orig_hint->br_type);
833 new_hint->ofp_port = orig_hint->ofp_port;
834
835 shash_add(&init_ofp_ports, node->name, new_hint);
836 }
837 }
838
839 static void
840 enumerate_types(struct sset *types)
841 {
842 dp_enumerate_types(types);
843 }
844
845 static int
846 enumerate_names(const char *type, struct sset *names)
847 {
848 struct ofproto_dpif *ofproto;
849
850 sset_clear(names);
851 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
852 if (strcmp(type, ofproto->up.type)) {
853 continue;
854 }
855 sset_add(names, ofproto->up.name);
856 }
857
858 return 0;
859 }
860
861 static int
862 del(const char *type, const char *name)
863 {
864 struct dpif *dpif;
865 int error;
866
867 error = dpif_open(name, type, &dpif);
868 if (!error) {
869 error = dpif_delete(dpif);
870 dpif_close(dpif);
871 }
872 return error;
873 }
874 \f
875 static const char *
876 port_open_type(const char *datapath_type, const char *port_type)
877 {
878 return dpif_port_open_type(datapath_type, port_type);
879 }
880
881 /* Type functions. */
882
883 static struct ofproto_dpif *
884 lookup_ofproto_dpif_by_port_name(const char *name)
885 {
886 struct ofproto_dpif *ofproto;
887
888 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
889 if (sset_contains(&ofproto->ports, name)) {
890 return ofproto;
891 }
892 }
893
894 return NULL;
895 }
896
897 static int
898 type_run(const char *type)
899 {
900 static long long int push_timer = LLONG_MIN;
901 struct dpif_backer *backer;
902 char *devname;
903 int error;
904
905 backer = shash_find_data(&all_dpif_backers, type);
906 if (!backer) {
907 /* This is not necessarily a problem, since backers are only
908 * created on demand. */
909 return 0;
910 }
911
912 dpif_run(backer->dpif);
913
914 /* The most natural place to push facet statistics is when they're pulled
915 * from the datapath. However, when there are many flows in the datapath,
916 * this expensive operation can occur so frequently, that it reduces our
917 * ability to quickly set up flows. To reduce the cost, we push statistics
918 * here instead. */
919 if (time_msec() > push_timer) {
920 push_timer = time_msec() + 2000;
921 push_all_stats();
922 }
923
924 /* If vswitchd started with other_config:flow_restore_wait set as "true",
925 * and the configuration has now changed to "false", enable receiving
926 * packets from the datapath. */
927 if (!backer->recv_set_enable && !ofproto_get_flow_restore_wait()) {
928 backer->recv_set_enable = true;
929
930 error = dpif_recv_set(backer->dpif, backer->recv_set_enable);
931 if (error) {
932 VLOG_ERR("Failed to enable receiving packets in dpif.");
933 return error;
934 }
935 dpif_flow_flush(backer->dpif);
936 backer->need_revalidate = REV_RECONFIGURE;
937 }
938
939 if (backer->need_revalidate
940 || !tag_set_is_empty(&backer->revalidate_set)) {
941 struct tag_set revalidate_set = backer->revalidate_set;
942 bool need_revalidate = backer->need_revalidate;
943 struct ofproto_dpif *ofproto;
944 struct simap_node *node;
945 struct simap tmp_backers;
946
947 /* Handle tunnel garbage collection. */
948 simap_init(&tmp_backers);
949 simap_swap(&backer->tnl_backers, &tmp_backers);
950
951 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
952 struct ofport_dpif *iter;
953
954 if (backer != ofproto->backer) {
955 continue;
956 }
957
958 HMAP_FOR_EACH (iter, up.hmap_node, &ofproto->up.ports) {
959 const char *dp_port;
960
961 if (!iter->tnl_port) {
962 continue;
963 }
964
965 dp_port = netdev_vport_get_dpif_port(iter->up.netdev);
966 node = simap_find(&tmp_backers, dp_port);
967 if (node) {
968 simap_put(&backer->tnl_backers, dp_port, node->data);
969 simap_delete(&tmp_backers, node);
970 node = simap_find(&backer->tnl_backers, dp_port);
971 } else {
972 node = simap_find(&backer->tnl_backers, dp_port);
973 if (!node) {
974 uint32_t odp_port = UINT32_MAX;
975
976 if (!dpif_port_add(backer->dpif, iter->up.netdev,
977 &odp_port)) {
978 simap_put(&backer->tnl_backers, dp_port, odp_port);
979 node = simap_find(&backer->tnl_backers, dp_port);
980 }
981 }
982 }
983
984 iter->odp_port = node ? node->data : OVSP_NONE;
985 if (tnl_port_reconfigure(&iter->up, iter->odp_port,
986 &iter->tnl_port)) {
987 backer->need_revalidate = REV_RECONFIGURE;
988 }
989 }
990 }
991
992 SIMAP_FOR_EACH (node, &tmp_backers) {
993 dpif_port_del(backer->dpif, node->data);
994 }
995 simap_destroy(&tmp_backers);
996
997 switch (backer->need_revalidate) {
998 case REV_RECONFIGURE: COVERAGE_INC(rev_reconfigure); break;
999 case REV_STP: COVERAGE_INC(rev_stp); break;
1000 case REV_PORT_TOGGLED: COVERAGE_INC(rev_port_toggled); break;
1001 case REV_FLOW_TABLE: COVERAGE_INC(rev_flow_table); break;
1002 case REV_INCONSISTENCY: COVERAGE_INC(rev_inconsistency); break;
1003 }
1004
1005 if (backer->need_revalidate) {
1006 /* Clear the drop_keys in case we should now be accepting some
1007 * formerly dropped flows. */
1008 drop_key_clear(backer);
1009 }
1010
1011 /* Clear the revalidation flags. */
1012 tag_set_init(&backer->revalidate_set);
1013 backer->need_revalidate = 0;
1014
1015 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
1016 struct facet *facet, *next;
1017
1018 if (ofproto->backer != backer) {
1019 continue;
1020 }
1021
1022 HMAP_FOR_EACH_SAFE (facet, next, hmap_node, &ofproto->facets) {
1023 if (need_revalidate
1024 || tag_set_intersects(&revalidate_set, facet->xout.tags)) {
1025 facet_revalidate(facet);
1026 run_fast_rl();
1027 }
1028 }
1029 }
1030 }
1031
1032 if (!backer->recv_set_enable) {
1033 /* Wake up before a max of 1000ms. */
1034 timer_set_duration(&backer->next_expiration, 1000);
1035 } else if (timer_expired(&backer->next_expiration)) {
1036 int delay = expire(backer);
1037 timer_set_duration(&backer->next_expiration, delay);
1038 }
1039
1040 /* Check for port changes in the dpif. */
1041 while ((error = dpif_port_poll(backer->dpif, &devname)) == 0) {
1042 struct ofproto_dpif *ofproto;
1043 struct dpif_port port;
1044
1045 /* Don't report on the datapath's device. */
1046 if (!strcmp(devname, dpif_base_name(backer->dpif))) {
1047 goto next;
1048 }
1049
1050 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node,
1051 &all_ofproto_dpifs) {
1052 if (simap_contains(&ofproto->backer->tnl_backers, devname)) {
1053 goto next;
1054 }
1055 }
1056
1057 ofproto = lookup_ofproto_dpif_by_port_name(devname);
1058 if (dpif_port_query_by_name(backer->dpif, devname, &port)) {
1059 /* The port was removed. If we know the datapath,
1060 * report it through poll_set(). If we don't, it may be
1061 * notifying us of a removal we initiated, so ignore it.
1062 * If there's a pending ENOBUFS, let it stand, since
1063 * everything will be reevaluated. */
1064 if (ofproto && ofproto->port_poll_errno != ENOBUFS) {
1065 sset_add(&ofproto->port_poll_set, devname);
1066 ofproto->port_poll_errno = 0;
1067 }
1068 } else if (!ofproto) {
1069 /* The port was added, but we don't know with which
1070 * ofproto we should associate it. Delete it. */
1071 dpif_port_del(backer->dpif, port.port_no);
1072 }
1073 dpif_port_destroy(&port);
1074
1075 next:
1076 free(devname);
1077 }
1078
1079 if (error != EAGAIN) {
1080 struct ofproto_dpif *ofproto;
1081
1082 /* There was some sort of error, so propagate it to all
1083 * ofprotos that use this backer. */
1084 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node,
1085 &all_ofproto_dpifs) {
1086 if (ofproto->backer == backer) {
1087 sset_clear(&ofproto->port_poll_set);
1088 ofproto->port_poll_errno = error;
1089 }
1090 }
1091 }
1092
1093 return 0;
1094 }
1095
1096 static int
1097 dpif_backer_run_fast(struct dpif_backer *backer, int max_batch)
1098 {
1099 unsigned int work;
1100
1101 /* If recv_set_enable is false, we should not handle upcalls. */
1102 if (!backer->recv_set_enable) {
1103 return 0;
1104 }
1105
1106 /* Handle one or more batches of upcalls, until there's nothing left to do
1107 * or until we do a fixed total amount of work.
1108 *
1109 * We do work in batches because it can be much cheaper to set up a number
1110 * of flows and fire off their patches all at once. We do multiple batches
1111 * because in some cases handling a packet can cause another packet to be
1112 * queued almost immediately as part of the return flow. Both
1113 * optimizations can make major improvements on some benchmarks and
1114 * presumably for real traffic as well. */
1115 work = 0;
1116 while (work < max_batch) {
1117 int retval = handle_upcalls(backer, max_batch - work);
1118 if (retval <= 0) {
1119 return -retval;
1120 }
1121 work += retval;
1122 }
1123
1124 return 0;
1125 }
1126
1127 static int
1128 type_run_fast(const char *type)
1129 {
1130 struct dpif_backer *backer;
1131
1132 backer = shash_find_data(&all_dpif_backers, type);
1133 if (!backer) {
1134 /* This is not necessarily a problem, since backers are only
1135 * created on demand. */
1136 return 0;
1137 }
1138
1139 return dpif_backer_run_fast(backer, FLOW_MISS_MAX_BATCH);
1140 }
1141
1142 static void
1143 run_fast_rl(void)
1144 {
1145 static long long int port_rl = LLONG_MIN;
1146 static unsigned int backer_rl = 0;
1147
1148 if (time_msec() >= port_rl) {
1149 struct ofproto_dpif *ofproto;
1150 struct ofport_dpif *ofport;
1151
1152 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
1153
1154 HMAP_FOR_EACH (ofport, up.hmap_node, &ofproto->up.ports) {
1155 port_run_fast(ofport);
1156 }
1157 }
1158 port_rl = time_msec() + 200;
1159 }
1160
1161 /* XXX: We have to be careful not to do too much work in this function. If
1162 * we call dpif_backer_run_fast() too often, or with too large a batch,
1163 * performance improves signifcantly, but at a cost. It's possible for the
1164 * number of flows in the datapath to increase without bound, and for poll
1165 * loops to take 10s of seconds. The correct solution to this problem,
1166 * long term, is to separate flow miss handling into it's own thread so it
1167 * isn't affected by revalidations, and expirations. Until then, this is
1168 * the best we can do. */
1169 if (++backer_rl >= 10) {
1170 struct shash_node *node;
1171
1172 backer_rl = 0;
1173 SHASH_FOR_EACH (node, &all_dpif_backers) {
1174 dpif_backer_run_fast(node->data, 1);
1175 }
1176 }
1177 }
1178
1179 static void
1180 type_wait(const char *type)
1181 {
1182 struct dpif_backer *backer;
1183
1184 backer = shash_find_data(&all_dpif_backers, type);
1185 if (!backer) {
1186 /* This is not necessarily a problem, since backers are only
1187 * created on demand. */
1188 return;
1189 }
1190
1191 timer_wait(&backer->next_expiration);
1192 }
1193 \f
1194 /* Basic life-cycle. */
1195
1196 static int add_internal_flows(struct ofproto_dpif *);
1197
1198 static struct ofproto *
1199 alloc(void)
1200 {
1201 struct ofproto_dpif *ofproto = xmalloc(sizeof *ofproto);
1202 return &ofproto->up;
1203 }
1204
1205 static void
1206 dealloc(struct ofproto *ofproto_)
1207 {
1208 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1209 free(ofproto);
1210 }
1211
1212 static void
1213 close_dpif_backer(struct dpif_backer *backer)
1214 {
1215 struct shash_node *node;
1216
1217 ovs_assert(backer->refcount > 0);
1218
1219 if (--backer->refcount) {
1220 return;
1221 }
1222
1223 drop_key_clear(backer);
1224 hmap_destroy(&backer->drop_keys);
1225
1226 simap_destroy(&backer->tnl_backers);
1227 hmap_destroy(&backer->odp_to_ofport_map);
1228 node = shash_find(&all_dpif_backers, backer->type);
1229 free(backer->type);
1230 shash_delete(&all_dpif_backers, node);
1231 dpif_close(backer->dpif);
1232
1233 free(backer);
1234 }
1235
1236 /* Datapath port slated for removal from datapath. */
1237 struct odp_garbage {
1238 struct list list_node;
1239 uint32_t odp_port;
1240 };
1241
1242 static int
1243 open_dpif_backer(const char *type, struct dpif_backer **backerp)
1244 {
1245 struct dpif_backer *backer;
1246 struct dpif_port_dump port_dump;
1247 struct dpif_port port;
1248 struct shash_node *node;
1249 struct list garbage_list;
1250 struct odp_garbage *garbage, *next;
1251 struct sset names;
1252 char *backer_name;
1253 const char *name;
1254 int error;
1255
1256 backer = shash_find_data(&all_dpif_backers, type);
1257 if (backer) {
1258 backer->refcount++;
1259 *backerp = backer;
1260 return 0;
1261 }
1262
1263 backer_name = xasprintf("ovs-%s", type);
1264
1265 /* Remove any existing datapaths, since we assume we're the only
1266 * userspace controlling the datapath. */
1267 sset_init(&names);
1268 dp_enumerate_names(type, &names);
1269 SSET_FOR_EACH(name, &names) {
1270 struct dpif *old_dpif;
1271
1272 /* Don't remove our backer if it exists. */
1273 if (!strcmp(name, backer_name)) {
1274 continue;
1275 }
1276
1277 if (dpif_open(name, type, &old_dpif)) {
1278 VLOG_WARN("couldn't open old datapath %s to remove it", name);
1279 } else {
1280 dpif_delete(old_dpif);
1281 dpif_close(old_dpif);
1282 }
1283 }
1284 sset_destroy(&names);
1285
1286 backer = xmalloc(sizeof *backer);
1287
1288 error = dpif_create_and_open(backer_name, type, &backer->dpif);
1289 free(backer_name);
1290 if (error) {
1291 VLOG_ERR("failed to open datapath of type %s: %s", type,
1292 strerror(error));
1293 free(backer);
1294 return error;
1295 }
1296
1297 backer->type = xstrdup(type);
1298 backer->refcount = 1;
1299 hmap_init(&backer->odp_to_ofport_map);
1300 hmap_init(&backer->drop_keys);
1301 timer_set_duration(&backer->next_expiration, 1000);
1302 backer->need_revalidate = 0;
1303 simap_init(&backer->tnl_backers);
1304 tag_set_init(&backer->revalidate_set);
1305 backer->recv_set_enable = !ofproto_get_flow_restore_wait();
1306 *backerp = backer;
1307
1308 if (backer->recv_set_enable) {
1309 dpif_flow_flush(backer->dpif);
1310 }
1311
1312 /* Loop through the ports already on the datapath and remove any
1313 * that we don't need anymore. */
1314 list_init(&garbage_list);
1315 dpif_port_dump_start(&port_dump, backer->dpif);
1316 while (dpif_port_dump_next(&port_dump, &port)) {
1317 node = shash_find(&init_ofp_ports, port.name);
1318 if (!node && strcmp(port.name, dpif_base_name(backer->dpif))) {
1319 garbage = xmalloc(sizeof *garbage);
1320 garbage->odp_port = port.port_no;
1321 list_push_front(&garbage_list, &garbage->list_node);
1322 }
1323 }
1324 dpif_port_dump_done(&port_dump);
1325
1326 LIST_FOR_EACH_SAFE (garbage, next, list_node, &garbage_list) {
1327 dpif_port_del(backer->dpif, garbage->odp_port);
1328 list_remove(&garbage->list_node);
1329 free(garbage);
1330 }
1331
1332 shash_add(&all_dpif_backers, type, backer);
1333
1334 error = dpif_recv_set(backer->dpif, backer->recv_set_enable);
1335 if (error) {
1336 VLOG_ERR("failed to listen on datapath of type %s: %s",
1337 type, strerror(error));
1338 close_dpif_backer(backer);
1339 return error;
1340 }
1341
1342 return error;
1343 }
1344
1345 static int
1346 construct(struct ofproto *ofproto_)
1347 {
1348 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1349 struct shash_node *node, *next;
1350 int max_ports;
1351 int error;
1352 int i;
1353
1354 error = open_dpif_backer(ofproto->up.type, &ofproto->backer);
1355 if (error) {
1356 return error;
1357 }
1358
1359 max_ports = dpif_get_max_ports(ofproto->backer->dpif);
1360 ofproto_init_max_ports(ofproto_, MIN(max_ports, OFPP_MAX));
1361
1362 ofproto->netflow = NULL;
1363 ofproto->sflow = NULL;
1364 ofproto->ipfix = NULL;
1365 ofproto->stp = NULL;
1366 hmap_init(&ofproto->bundles);
1367 ofproto->ml = mac_learning_create(MAC_ENTRY_DEFAULT_IDLE_TIME);
1368 for (i = 0; i < MAX_MIRRORS; i++) {
1369 ofproto->mirrors[i] = NULL;
1370 }
1371 ofproto->has_bonded_bundles = false;
1372
1373 hmap_init(&ofproto->facets);
1374 hmap_init(&ofproto->subfacets);
1375 ofproto->governor = NULL;
1376 ofproto->consistency_rl = LLONG_MIN;
1377
1378 for (i = 0; i < N_TABLES; i++) {
1379 struct table_dpif *table = &ofproto->tables[i];
1380
1381 table->catchall_table = NULL;
1382 table->other_table = NULL;
1383 table->basis = random_uint32();
1384 }
1385
1386 list_init(&ofproto->completions);
1387
1388 ofproto_dpif_unixctl_init();
1389
1390 ofproto->has_mirrors = false;
1391 ofproto->has_bundle_action = false;
1392
1393 hmap_init(&ofproto->vlandev_map);
1394 hmap_init(&ofproto->realdev_vid_map);
1395
1396 sset_init(&ofproto->ports);
1397 sset_init(&ofproto->ghost_ports);
1398 sset_init(&ofproto->port_poll_set);
1399 ofproto->port_poll_errno = 0;
1400
1401 SHASH_FOR_EACH_SAFE (node, next, &init_ofp_ports) {
1402 struct iface_hint *iface_hint = node->data;
1403
1404 if (!strcmp(iface_hint->br_name, ofproto->up.name)) {
1405 /* Check if the datapath already has this port. */
1406 if (dpif_port_exists(ofproto->backer->dpif, node->name)) {
1407 sset_add(&ofproto->ports, node->name);
1408 }
1409
1410 free(iface_hint->br_name);
1411 free(iface_hint->br_type);
1412 free(iface_hint);
1413 shash_delete(&init_ofp_ports, node);
1414 }
1415 }
1416
1417 hmap_insert(&all_ofproto_dpifs, &ofproto->all_ofproto_dpifs_node,
1418 hash_string(ofproto->up.name, 0));
1419 memset(&ofproto->stats, 0, sizeof ofproto->stats);
1420
1421 ofproto_init_tables(ofproto_, N_TABLES);
1422 error = add_internal_flows(ofproto);
1423 ofproto->up.tables[TBL_INTERNAL].flags = OFTABLE_HIDDEN | OFTABLE_READONLY;
1424
1425 ofproto->n_hit = 0;
1426 ofproto->n_missed = 0;
1427
1428 ofproto->max_n_subfacet = 0;
1429 ofproto->created = time_msec();
1430 ofproto->last_minute = ofproto->created;
1431 memset(&ofproto->hourly, 0, sizeof ofproto->hourly);
1432 memset(&ofproto->daily, 0, sizeof ofproto->daily);
1433 ofproto->subfacet_add_count = 0;
1434 ofproto->subfacet_del_count = 0;
1435 ofproto->total_subfacet_add_count = 0;
1436 ofproto->total_subfacet_del_count = 0;
1437 ofproto->total_subfacet_life_span = 0;
1438 ofproto->total_subfacet_count = 0;
1439 ofproto->n_update_stats = 0;
1440
1441 return error;
1442 }
1443
1444 static int
1445 add_internal_flow(struct ofproto_dpif *ofproto, int id,
1446 const struct ofpbuf *ofpacts, struct rule_dpif **rulep)
1447 {
1448 struct ofputil_flow_mod fm;
1449 int error;
1450
1451 match_init_catchall(&fm.match);
1452 fm.priority = 0;
1453 match_set_reg(&fm.match, 0, id);
1454 fm.new_cookie = htonll(0);
1455 fm.cookie = htonll(0);
1456 fm.cookie_mask = htonll(0);
1457 fm.table_id = TBL_INTERNAL;
1458 fm.command = OFPFC_ADD;
1459 fm.idle_timeout = 0;
1460 fm.hard_timeout = 0;
1461 fm.buffer_id = 0;
1462 fm.out_port = 0;
1463 fm.flags = 0;
1464 fm.ofpacts = ofpacts->data;
1465 fm.ofpacts_len = ofpacts->size;
1466
1467 error = ofproto_flow_mod(&ofproto->up, &fm);
1468 if (error) {
1469 VLOG_ERR_RL(&rl, "failed to add internal flow %d (%s)",
1470 id, ofperr_to_string(error));
1471 return error;
1472 }
1473
1474 *rulep = rule_dpif_lookup__(ofproto, &fm.match.flow, TBL_INTERNAL);
1475 ovs_assert(*rulep != NULL);
1476
1477 return 0;
1478 }
1479
1480 static int
1481 add_internal_flows(struct ofproto_dpif *ofproto)
1482 {
1483 struct ofpact_controller *controller;
1484 uint64_t ofpacts_stub[128 / 8];
1485 struct ofpbuf ofpacts;
1486 int error;
1487 int id;
1488
1489 ofpbuf_use_stack(&ofpacts, ofpacts_stub, sizeof ofpacts_stub);
1490 id = 1;
1491
1492 controller = ofpact_put_CONTROLLER(&ofpacts);
1493 controller->max_len = UINT16_MAX;
1494 controller->controller_id = 0;
1495 controller->reason = OFPR_NO_MATCH;
1496 ofpact_pad(&ofpacts);
1497
1498 error = add_internal_flow(ofproto, id++, &ofpacts, &ofproto->miss_rule);
1499 if (error) {
1500 return error;
1501 }
1502
1503 ofpbuf_clear(&ofpacts);
1504 error = add_internal_flow(ofproto, id++, &ofpacts,
1505 &ofproto->no_packet_in_rule);
1506 if (error) {
1507 return error;
1508 }
1509
1510 error = add_internal_flow(ofproto, id++, &ofpacts,
1511 &ofproto->drop_frags_rule);
1512 return error;
1513 }
1514
1515 static void
1516 complete_operations(struct ofproto_dpif *ofproto)
1517 {
1518 struct dpif_completion *c, *next;
1519
1520 LIST_FOR_EACH_SAFE (c, next, list_node, &ofproto->completions) {
1521 ofoperation_complete(c->op, 0);
1522 list_remove(&c->list_node);
1523 free(c);
1524 }
1525 }
1526
1527 static void
1528 destruct(struct ofproto *ofproto_)
1529 {
1530 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1531 struct rule_dpif *rule, *next_rule;
1532 struct oftable *table;
1533 int i;
1534
1535 hmap_remove(&all_ofproto_dpifs, &ofproto->all_ofproto_dpifs_node);
1536 complete_operations(ofproto);
1537
1538 OFPROTO_FOR_EACH_TABLE (table, &ofproto->up) {
1539 struct cls_cursor cursor;
1540
1541 cls_cursor_init(&cursor, &table->cls, NULL);
1542 CLS_CURSOR_FOR_EACH_SAFE (rule, next_rule, up.cr, &cursor) {
1543 ofproto_rule_destroy(&rule->up);
1544 }
1545 }
1546
1547 for (i = 0; i < MAX_MIRRORS; i++) {
1548 mirror_destroy(ofproto->mirrors[i]);
1549 }
1550
1551 netflow_destroy(ofproto->netflow);
1552 dpif_sflow_destroy(ofproto->sflow);
1553 hmap_destroy(&ofproto->bundles);
1554 mac_learning_destroy(ofproto->ml);
1555
1556 hmap_destroy(&ofproto->facets);
1557 hmap_destroy(&ofproto->subfacets);
1558 governor_destroy(ofproto->governor);
1559
1560 hmap_destroy(&ofproto->vlandev_map);
1561 hmap_destroy(&ofproto->realdev_vid_map);
1562
1563 sset_destroy(&ofproto->ports);
1564 sset_destroy(&ofproto->ghost_ports);
1565 sset_destroy(&ofproto->port_poll_set);
1566
1567 close_dpif_backer(ofproto->backer);
1568 }
1569
1570 static int
1571 run_fast(struct ofproto *ofproto_)
1572 {
1573 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1574 struct ofport_dpif *ofport;
1575
1576 /* Do not perform any periodic activity required by 'ofproto' while
1577 * waiting for flow restore to complete. */
1578 if (ofproto_get_flow_restore_wait()) {
1579 return 0;
1580 }
1581
1582 HMAP_FOR_EACH (ofport, up.hmap_node, &ofproto->up.ports) {
1583 port_run_fast(ofport);
1584 }
1585
1586 return 0;
1587 }
1588
1589 static int
1590 run(struct ofproto *ofproto_)
1591 {
1592 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1593 struct ofport_dpif *ofport;
1594 struct ofbundle *bundle;
1595 int error;
1596
1597 if (!clogged) {
1598 complete_operations(ofproto);
1599 }
1600
1601 /* Do not perform any periodic activity below required by 'ofproto' while
1602 * waiting for flow restore to complete. */
1603 if (ofproto_get_flow_restore_wait()) {
1604 return 0;
1605 }
1606
1607 error = run_fast(ofproto_);
1608 if (error) {
1609 return error;
1610 }
1611
1612 if (ofproto->netflow) {
1613 if (netflow_run(ofproto->netflow)) {
1614 send_netflow_active_timeouts(ofproto);
1615 }
1616 }
1617 if (ofproto->sflow) {
1618 dpif_sflow_run(ofproto->sflow);
1619 }
1620
1621 HMAP_FOR_EACH (ofport, up.hmap_node, &ofproto->up.ports) {
1622 port_run(ofport);
1623 }
1624 HMAP_FOR_EACH (bundle, hmap_node, &ofproto->bundles) {
1625 bundle_run(bundle);
1626 }
1627
1628 stp_run(ofproto);
1629 mac_learning_run(ofproto->ml, &ofproto->backer->revalidate_set);
1630
1631 /* Check the consistency of a random facet, to aid debugging. */
1632 if (time_msec() >= ofproto->consistency_rl
1633 && !hmap_is_empty(&ofproto->facets)
1634 && !ofproto->backer->need_revalidate) {
1635 struct facet *facet;
1636
1637 ofproto->consistency_rl = time_msec() + 250;
1638
1639 facet = CONTAINER_OF(hmap_random_node(&ofproto->facets),
1640 struct facet, hmap_node);
1641 if (!tag_set_intersects(&ofproto->backer->revalidate_set,
1642 facet->xout.tags)) {
1643 if (!facet_check_consistency(facet)) {
1644 ofproto->backer->need_revalidate = REV_INCONSISTENCY;
1645 }
1646 }
1647 }
1648
1649 if (ofproto->governor) {
1650 size_t n_subfacets;
1651
1652 governor_run(ofproto->governor);
1653
1654 /* If the governor has shrunk to its minimum size and the number of
1655 * subfacets has dwindled, then drop the governor entirely.
1656 *
1657 * For hysteresis, the number of subfacets to drop the governor is
1658 * smaller than the number needed to trigger its creation. */
1659 n_subfacets = hmap_count(&ofproto->subfacets);
1660 if (n_subfacets * 4 < ofproto->up.flow_eviction_threshold
1661 && governor_is_idle(ofproto->governor)) {
1662 governor_destroy(ofproto->governor);
1663 ofproto->governor = NULL;
1664 }
1665 }
1666
1667 return 0;
1668 }
1669
1670 static void
1671 wait(struct ofproto *ofproto_)
1672 {
1673 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1674 struct ofport_dpif *ofport;
1675 struct ofbundle *bundle;
1676
1677 if (!clogged && !list_is_empty(&ofproto->completions)) {
1678 poll_immediate_wake();
1679 }
1680
1681 if (ofproto_get_flow_restore_wait()) {
1682 return;
1683 }
1684
1685 dpif_wait(ofproto->backer->dpif);
1686 dpif_recv_wait(ofproto->backer->dpif);
1687 if (ofproto->sflow) {
1688 dpif_sflow_wait(ofproto->sflow);
1689 }
1690 if (!tag_set_is_empty(&ofproto->backer->revalidate_set)) {
1691 poll_immediate_wake();
1692 }
1693 HMAP_FOR_EACH (ofport, up.hmap_node, &ofproto->up.ports) {
1694 port_wait(ofport);
1695 }
1696 HMAP_FOR_EACH (bundle, hmap_node, &ofproto->bundles) {
1697 bundle_wait(bundle);
1698 }
1699 if (ofproto->netflow) {
1700 netflow_wait(ofproto->netflow);
1701 }
1702 mac_learning_wait(ofproto->ml);
1703 stp_wait(ofproto);
1704 if (ofproto->backer->need_revalidate) {
1705 /* Shouldn't happen, but if it does just go around again. */
1706 VLOG_DBG_RL(&rl, "need revalidate in ofproto_wait_cb()");
1707 poll_immediate_wake();
1708 }
1709 if (ofproto->governor) {
1710 governor_wait(ofproto->governor);
1711 }
1712 }
1713
1714 static void
1715 get_memory_usage(const struct ofproto *ofproto_, struct simap *usage)
1716 {
1717 const struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1718
1719 simap_increase(usage, "facets", hmap_count(&ofproto->facets));
1720 simap_increase(usage, "subfacets", hmap_count(&ofproto->subfacets));
1721 }
1722
1723 static void
1724 flush(struct ofproto *ofproto_)
1725 {
1726 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1727 struct subfacet *subfacet, *next_subfacet;
1728 struct subfacet *batch[SUBFACET_DESTROY_MAX_BATCH];
1729 int n_batch;
1730
1731 n_batch = 0;
1732 HMAP_FOR_EACH_SAFE (subfacet, next_subfacet, hmap_node,
1733 &ofproto->subfacets) {
1734 if (subfacet->path != SF_NOT_INSTALLED) {
1735 batch[n_batch++] = subfacet;
1736 if (n_batch >= SUBFACET_DESTROY_MAX_BATCH) {
1737 subfacet_destroy_batch(ofproto, batch, n_batch);
1738 n_batch = 0;
1739 }
1740 } else {
1741 subfacet_destroy(subfacet);
1742 }
1743 }
1744
1745 if (n_batch > 0) {
1746 subfacet_destroy_batch(ofproto, batch, n_batch);
1747 }
1748 }
1749
1750 static void
1751 get_features(struct ofproto *ofproto_ OVS_UNUSED,
1752 bool *arp_match_ip, enum ofputil_action_bitmap *actions)
1753 {
1754 *arp_match_ip = true;
1755 *actions = (OFPUTIL_A_OUTPUT |
1756 OFPUTIL_A_SET_VLAN_VID |
1757 OFPUTIL_A_SET_VLAN_PCP |
1758 OFPUTIL_A_STRIP_VLAN |
1759 OFPUTIL_A_SET_DL_SRC |
1760 OFPUTIL_A_SET_DL_DST |
1761 OFPUTIL_A_SET_NW_SRC |
1762 OFPUTIL_A_SET_NW_DST |
1763 OFPUTIL_A_SET_NW_TOS |
1764 OFPUTIL_A_SET_TP_SRC |
1765 OFPUTIL_A_SET_TP_DST |
1766 OFPUTIL_A_ENQUEUE);
1767 }
1768
1769 static void
1770 get_tables(struct ofproto *ofproto_, struct ofp12_table_stats *ots)
1771 {
1772 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1773 struct dpif_dp_stats s;
1774 uint64_t n_miss, n_no_pkt_in, n_bytes, n_dropped_frags;
1775 uint64_t n_lookup;
1776
1777 strcpy(ots->name, "classifier");
1778
1779 dpif_get_dp_stats(ofproto->backer->dpif, &s);
1780 rule_get_stats(&ofproto->miss_rule->up, &n_miss, &n_bytes);
1781 rule_get_stats(&ofproto->no_packet_in_rule->up, &n_no_pkt_in, &n_bytes);
1782 rule_get_stats(&ofproto->drop_frags_rule->up, &n_dropped_frags, &n_bytes);
1783
1784 n_lookup = s.n_hit + s.n_missed - n_dropped_frags;
1785 ots->lookup_count = htonll(n_lookup);
1786 ots->matched_count = htonll(n_lookup - n_miss - n_no_pkt_in);
1787 }
1788
1789 static struct ofport *
1790 port_alloc(void)
1791 {
1792 struct ofport_dpif *port = xmalloc(sizeof *port);
1793 return &port->up;
1794 }
1795
1796 static void
1797 port_dealloc(struct ofport *port_)
1798 {
1799 struct ofport_dpif *port = ofport_dpif_cast(port_);
1800 free(port);
1801 }
1802
1803 static int
1804 port_construct(struct ofport *port_)
1805 {
1806 struct ofport_dpif *port = ofport_dpif_cast(port_);
1807 struct ofproto_dpif *ofproto = ofproto_dpif_cast(port->up.ofproto);
1808 const struct netdev *netdev = port->up.netdev;
1809 struct dpif_port dpif_port;
1810 int error;
1811
1812 ofproto->backer->need_revalidate = REV_RECONFIGURE;
1813 port->bundle = NULL;
1814 port->cfm = NULL;
1815 port->bfd = NULL;
1816 port->tag = tag_create_random();
1817 port->may_enable = true;
1818 port->stp_port = NULL;
1819 port->stp_state = STP_DISABLED;
1820 port->tnl_port = NULL;
1821 hmap_init(&port->priorities);
1822 port->realdev_ofp_port = 0;
1823 port->vlandev_vid = 0;
1824 port->carrier_seq = netdev_get_carrier_resets(netdev);
1825
1826 if (netdev_vport_is_patch(netdev)) {
1827 /* By bailing out here, we don't submit the port to the sFlow module
1828 * to be considered for counter polling export. This is correct
1829 * because the patch port represents an interface that sFlow considers
1830 * to be "internal" to the switch as a whole, and therefore not an
1831 * candidate for counter polling. */
1832 port->odp_port = OVSP_NONE;
1833 return 0;
1834 }
1835
1836 error = dpif_port_query_by_name(ofproto->backer->dpif,
1837 netdev_vport_get_dpif_port(netdev),
1838 &dpif_port);
1839 if (error) {
1840 return error;
1841 }
1842
1843 port->odp_port = dpif_port.port_no;
1844
1845 if (netdev_get_tunnel_config(netdev)) {
1846 port->tnl_port = tnl_port_add(&port->up, port->odp_port);
1847 } else {
1848 /* Sanity-check that a mapping doesn't already exist. This
1849 * shouldn't happen for non-tunnel ports. */
1850 if (odp_port_to_ofp_port(ofproto, port->odp_port) != OFPP_NONE) {
1851 VLOG_ERR("port %s already has an OpenFlow port number",
1852 dpif_port.name);
1853 dpif_port_destroy(&dpif_port);
1854 return EBUSY;
1855 }
1856
1857 hmap_insert(&ofproto->backer->odp_to_ofport_map, &port->odp_port_node,
1858 hash_int(port->odp_port, 0));
1859 }
1860 dpif_port_destroy(&dpif_port);
1861
1862 if (ofproto->sflow) {
1863 dpif_sflow_add_port(ofproto->sflow, port_, port->odp_port);
1864 }
1865
1866 return 0;
1867 }
1868
1869 static void
1870 port_destruct(struct ofport *port_)
1871 {
1872 struct ofport_dpif *port = ofport_dpif_cast(port_);
1873 struct ofproto_dpif *ofproto = ofproto_dpif_cast(port->up.ofproto);
1874 const char *dp_port_name = netdev_vport_get_dpif_port(port->up.netdev);
1875 const char *devname = netdev_get_name(port->up.netdev);
1876
1877 if (dpif_port_exists(ofproto->backer->dpif, dp_port_name)) {
1878 /* The underlying device is still there, so delete it. This
1879 * happens when the ofproto is being destroyed, since the caller
1880 * assumes that removal of attached ports will happen as part of
1881 * destruction. */
1882 if (!port->tnl_port) {
1883 dpif_port_del(ofproto->backer->dpif, port->odp_port);
1884 }
1885 ofproto->backer->need_revalidate = REV_RECONFIGURE;
1886 }
1887
1888 if (port->odp_port != OVSP_NONE && !port->tnl_port) {
1889 hmap_remove(&ofproto->backer->odp_to_ofport_map, &port->odp_port_node);
1890 }
1891
1892 tnl_port_del(port->tnl_port);
1893 sset_find_and_delete(&ofproto->ports, devname);
1894 sset_find_and_delete(&ofproto->ghost_ports, devname);
1895 ofproto->backer->need_revalidate = REV_RECONFIGURE;
1896 bundle_remove(port_);
1897 set_cfm(port_, NULL);
1898 set_bfd(port_, NULL);
1899 if (ofproto->sflow) {
1900 dpif_sflow_del_port(ofproto->sflow, port->odp_port);
1901 }
1902
1903 ofport_clear_priorities(port);
1904 hmap_destroy(&port->priorities);
1905 }
1906
1907 static void
1908 port_modified(struct ofport *port_)
1909 {
1910 struct ofport_dpif *port = ofport_dpif_cast(port_);
1911
1912 if (port->bundle && port->bundle->bond) {
1913 bond_slave_set_netdev(port->bundle->bond, port, port->up.netdev);
1914 }
1915
1916 if (port->cfm) {
1917 cfm_set_netdev(port->cfm, port->up.netdev);
1918 }
1919 }
1920
1921 static void
1922 port_reconfigured(struct ofport *port_, enum ofputil_port_config old_config)
1923 {
1924 struct ofport_dpif *port = ofport_dpif_cast(port_);
1925 struct ofproto_dpif *ofproto = ofproto_dpif_cast(port->up.ofproto);
1926 enum ofputil_port_config changed = old_config ^ port->up.pp.config;
1927
1928 if (changed & (OFPUTIL_PC_NO_RECV | OFPUTIL_PC_NO_RECV_STP |
1929 OFPUTIL_PC_NO_FWD | OFPUTIL_PC_NO_FLOOD |
1930 OFPUTIL_PC_NO_PACKET_IN)) {
1931 ofproto->backer->need_revalidate = REV_RECONFIGURE;
1932
1933 if (changed & OFPUTIL_PC_NO_FLOOD && port->bundle) {
1934 bundle_update(port->bundle);
1935 }
1936 }
1937 }
1938
1939 static int
1940 set_sflow(struct ofproto *ofproto_,
1941 const struct ofproto_sflow_options *sflow_options)
1942 {
1943 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1944 struct dpif_sflow *ds = ofproto->sflow;
1945
1946 if (sflow_options) {
1947 if (!ds) {
1948 struct ofport_dpif *ofport;
1949
1950 ds = ofproto->sflow = dpif_sflow_create();
1951 HMAP_FOR_EACH (ofport, up.hmap_node, &ofproto->up.ports) {
1952 dpif_sflow_add_port(ds, &ofport->up, ofport->odp_port);
1953 }
1954 ofproto->backer->need_revalidate = REV_RECONFIGURE;
1955 }
1956 dpif_sflow_set_options(ds, sflow_options);
1957 } else {
1958 if (ds) {
1959 dpif_sflow_destroy(ds);
1960 ofproto->backer->need_revalidate = REV_RECONFIGURE;
1961 ofproto->sflow = NULL;
1962 }
1963 }
1964 return 0;
1965 }
1966
1967 static int
1968 set_ipfix(
1969 struct ofproto *ofproto_,
1970 const struct ofproto_ipfix_bridge_exporter_options *bridge_exporter_options,
1971 const struct ofproto_ipfix_flow_exporter_options *flow_exporters_options,
1972 size_t n_flow_exporters_options)
1973 {
1974 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1975 struct dpif_ipfix *di = ofproto->ipfix;
1976
1977 if (bridge_exporter_options || flow_exporters_options) {
1978 if (!di) {
1979 di = ofproto->ipfix = dpif_ipfix_create();
1980 }
1981 dpif_ipfix_set_options(
1982 di, bridge_exporter_options, flow_exporters_options,
1983 n_flow_exporters_options);
1984 } else {
1985 if (di) {
1986 dpif_ipfix_destroy(di);
1987 ofproto->ipfix = NULL;
1988 }
1989 }
1990 return 0;
1991 }
1992
1993 static int
1994 set_cfm(struct ofport *ofport_, const struct cfm_settings *s)
1995 {
1996 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
1997 int error;
1998
1999 if (!s) {
2000 error = 0;
2001 } else {
2002 if (!ofport->cfm) {
2003 struct ofproto_dpif *ofproto;
2004
2005 ofproto = ofproto_dpif_cast(ofport->up.ofproto);
2006 ofproto->backer->need_revalidate = REV_RECONFIGURE;
2007 ofport->cfm = cfm_create(ofport->up.netdev);
2008 }
2009
2010 if (cfm_configure(ofport->cfm, s)) {
2011 return 0;
2012 }
2013
2014 error = EINVAL;
2015 }
2016 cfm_destroy(ofport->cfm);
2017 ofport->cfm = NULL;
2018 return error;
2019 }
2020
2021 static bool
2022 get_cfm_status(const struct ofport *ofport_,
2023 struct ofproto_cfm_status *status)
2024 {
2025 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
2026
2027 if (ofport->cfm) {
2028 status->faults = cfm_get_fault(ofport->cfm);
2029 status->remote_opstate = cfm_get_opup(ofport->cfm);
2030 status->health = cfm_get_health(ofport->cfm);
2031 cfm_get_remote_mpids(ofport->cfm, &status->rmps, &status->n_rmps);
2032 return true;
2033 } else {
2034 return false;
2035 }
2036 }
2037
2038 static int
2039 set_bfd(struct ofport *ofport_, const struct smap *cfg)
2040 {
2041 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport_->ofproto);
2042 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
2043 struct bfd *old;
2044
2045 old = ofport->bfd;
2046 ofport->bfd = bfd_configure(old, netdev_get_name(ofport->up.netdev), cfg);
2047 if (ofport->bfd != old) {
2048 ofproto->backer->need_revalidate = REV_RECONFIGURE;
2049 }
2050
2051 return 0;
2052 }
2053
2054 static int
2055 get_bfd_status(struct ofport *ofport_, struct smap *smap)
2056 {
2057 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
2058
2059 if (ofport->bfd) {
2060 bfd_get_status(ofport->bfd, smap);
2061 return 0;
2062 } else {
2063 return ENOENT;
2064 }
2065 }
2066 \f
2067 /* Spanning Tree. */
2068
2069 static void
2070 send_bpdu_cb(struct ofpbuf *pkt, int port_num, void *ofproto_)
2071 {
2072 struct ofproto_dpif *ofproto = ofproto_;
2073 struct stp_port *sp = stp_get_port(ofproto->stp, port_num);
2074 struct ofport_dpif *ofport;
2075
2076 ofport = stp_port_get_aux(sp);
2077 if (!ofport) {
2078 VLOG_WARN_RL(&rl, "%s: cannot send BPDU on unknown port %d",
2079 ofproto->up.name, port_num);
2080 } else {
2081 struct eth_header *eth = pkt->l2;
2082
2083 netdev_get_etheraddr(ofport->up.netdev, eth->eth_src);
2084 if (eth_addr_is_zero(eth->eth_src)) {
2085 VLOG_WARN_RL(&rl, "%s: cannot send BPDU on port %d "
2086 "with unknown MAC", ofproto->up.name, port_num);
2087 } else {
2088 send_packet(ofport, pkt);
2089 }
2090 }
2091 ofpbuf_delete(pkt);
2092 }
2093
2094 /* Configures STP on 'ofproto_' using the settings defined in 's'. */
2095 static int
2096 set_stp(struct ofproto *ofproto_, const struct ofproto_stp_settings *s)
2097 {
2098 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2099
2100 /* Only revalidate flows if the configuration changed. */
2101 if (!s != !ofproto->stp) {
2102 ofproto->backer->need_revalidate = REV_RECONFIGURE;
2103 }
2104
2105 if (s) {
2106 if (!ofproto->stp) {
2107 ofproto->stp = stp_create(ofproto_->name, s->system_id,
2108 send_bpdu_cb, ofproto);
2109 ofproto->stp_last_tick = time_msec();
2110 }
2111
2112 stp_set_bridge_id(ofproto->stp, s->system_id);
2113 stp_set_bridge_priority(ofproto->stp, s->priority);
2114 stp_set_hello_time(ofproto->stp, s->hello_time);
2115 stp_set_max_age(ofproto->stp, s->max_age);
2116 stp_set_forward_delay(ofproto->stp, s->fwd_delay);
2117 } else {
2118 struct ofport *ofport;
2119
2120 HMAP_FOR_EACH (ofport, hmap_node, &ofproto->up.ports) {
2121 set_stp_port(ofport, NULL);
2122 }
2123
2124 stp_destroy(ofproto->stp);
2125 ofproto->stp = NULL;
2126 }
2127
2128 return 0;
2129 }
2130
2131 static int
2132 get_stp_status(struct ofproto *ofproto_, struct ofproto_stp_status *s)
2133 {
2134 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2135
2136 if (ofproto->stp) {
2137 s->enabled = true;
2138 s->bridge_id = stp_get_bridge_id(ofproto->stp);
2139 s->designated_root = stp_get_designated_root(ofproto->stp);
2140 s->root_path_cost = stp_get_root_path_cost(ofproto->stp);
2141 } else {
2142 s->enabled = false;
2143 }
2144
2145 return 0;
2146 }
2147
2148 static void
2149 update_stp_port_state(struct ofport_dpif *ofport)
2150 {
2151 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
2152 enum stp_state state;
2153
2154 /* Figure out new state. */
2155 state = ofport->stp_port ? stp_port_get_state(ofport->stp_port)
2156 : STP_DISABLED;
2157
2158 /* Update state. */
2159 if (ofport->stp_state != state) {
2160 enum ofputil_port_state of_state;
2161 bool fwd_change;
2162
2163 VLOG_DBG_RL(&rl, "port %s: STP state changed from %s to %s",
2164 netdev_get_name(ofport->up.netdev),
2165 stp_state_name(ofport->stp_state),
2166 stp_state_name(state));
2167 if (stp_learn_in_state(ofport->stp_state)
2168 != stp_learn_in_state(state)) {
2169 /* xxx Learning action flows should also be flushed. */
2170 mac_learning_flush(ofproto->ml,
2171 &ofproto->backer->revalidate_set);
2172 }
2173 fwd_change = stp_forward_in_state(ofport->stp_state)
2174 != stp_forward_in_state(state);
2175
2176 ofproto->backer->need_revalidate = REV_STP;
2177 ofport->stp_state = state;
2178 ofport->stp_state_entered = time_msec();
2179
2180 if (fwd_change && ofport->bundle) {
2181 bundle_update(ofport->bundle);
2182 }
2183
2184 /* Update the STP state bits in the OpenFlow port description. */
2185 of_state = ofport->up.pp.state & ~OFPUTIL_PS_STP_MASK;
2186 of_state |= (state == STP_LISTENING ? OFPUTIL_PS_STP_LISTEN
2187 : state == STP_LEARNING ? OFPUTIL_PS_STP_LEARN
2188 : state == STP_FORWARDING ? OFPUTIL_PS_STP_FORWARD
2189 : state == STP_BLOCKING ? OFPUTIL_PS_STP_BLOCK
2190 : 0);
2191 ofproto_port_set_state(&ofport->up, of_state);
2192 }
2193 }
2194
2195 /* Configures STP on 'ofport_' using the settings defined in 's'. The
2196 * caller is responsible for assigning STP port numbers and ensuring
2197 * there are no duplicates. */
2198 static int
2199 set_stp_port(struct ofport *ofport_,
2200 const struct ofproto_port_stp_settings *s)
2201 {
2202 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
2203 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
2204 struct stp_port *sp = ofport->stp_port;
2205
2206 if (!s || !s->enable) {
2207 if (sp) {
2208 ofport->stp_port = NULL;
2209 stp_port_disable(sp);
2210 update_stp_port_state(ofport);
2211 }
2212 return 0;
2213 } else if (sp && stp_port_no(sp) != s->port_num
2214 && ofport == stp_port_get_aux(sp)) {
2215 /* The port-id changed, so disable the old one if it's not
2216 * already in use by another port. */
2217 stp_port_disable(sp);
2218 }
2219
2220 sp = ofport->stp_port = stp_get_port(ofproto->stp, s->port_num);
2221 stp_port_enable(sp);
2222
2223 stp_port_set_aux(sp, ofport);
2224 stp_port_set_priority(sp, s->priority);
2225 stp_port_set_path_cost(sp, s->path_cost);
2226
2227 update_stp_port_state(ofport);
2228
2229 return 0;
2230 }
2231
2232 static int
2233 get_stp_port_status(struct ofport *ofport_,
2234 struct ofproto_port_stp_status *s)
2235 {
2236 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
2237 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
2238 struct stp_port *sp = ofport->stp_port;
2239
2240 if (!ofproto->stp || !sp) {
2241 s->enabled = false;
2242 return 0;
2243 }
2244
2245 s->enabled = true;
2246 s->port_id = stp_port_get_id(sp);
2247 s->state = stp_port_get_state(sp);
2248 s->sec_in_state = (time_msec() - ofport->stp_state_entered) / 1000;
2249 s->role = stp_port_get_role(sp);
2250 stp_port_get_counts(sp, &s->tx_count, &s->rx_count, &s->error_count);
2251
2252 return 0;
2253 }
2254
2255 static void
2256 stp_run(struct ofproto_dpif *ofproto)
2257 {
2258 if (ofproto->stp) {
2259 long long int now = time_msec();
2260 long long int elapsed = now - ofproto->stp_last_tick;
2261 struct stp_port *sp;
2262
2263 if (elapsed > 0) {
2264 stp_tick(ofproto->stp, MIN(INT_MAX, elapsed));
2265 ofproto->stp_last_tick = now;
2266 }
2267 while (stp_get_changed_port(ofproto->stp, &sp)) {
2268 struct ofport_dpif *ofport = stp_port_get_aux(sp);
2269
2270 if (ofport) {
2271 update_stp_port_state(ofport);
2272 }
2273 }
2274
2275 if (stp_check_and_reset_fdb_flush(ofproto->stp)) {
2276 mac_learning_flush(ofproto->ml, &ofproto->backer->revalidate_set);
2277 }
2278 }
2279 }
2280
2281 static void
2282 stp_wait(struct ofproto_dpif *ofproto)
2283 {
2284 if (ofproto->stp) {
2285 poll_timer_wait(1000);
2286 }
2287 }
2288
2289 /* Returns true if STP should process 'flow'. */
2290 static bool
2291 stp_should_process_flow(const struct flow *flow)
2292 {
2293 return eth_addr_equals(flow->dl_dst, eth_addr_stp);
2294 }
2295
2296 static void
2297 stp_process_packet(const struct ofport_dpif *ofport,
2298 const struct ofpbuf *packet)
2299 {
2300 struct ofpbuf payload = *packet;
2301 struct eth_header *eth = payload.data;
2302 struct stp_port *sp = ofport->stp_port;
2303
2304 /* Sink packets on ports that have STP disabled when the bridge has
2305 * STP enabled. */
2306 if (!sp || stp_port_get_state(sp) == STP_DISABLED) {
2307 return;
2308 }
2309
2310 /* Trim off padding on payload. */
2311 if (payload.size > ntohs(eth->eth_type) + ETH_HEADER_LEN) {
2312 payload.size = ntohs(eth->eth_type) + ETH_HEADER_LEN;
2313 }
2314
2315 if (ofpbuf_try_pull(&payload, ETH_HEADER_LEN + LLC_HEADER_LEN)) {
2316 stp_received_bpdu(sp, payload.data, payload.size);
2317 }
2318 }
2319 \f
2320 static struct priority_to_dscp *
2321 get_priority(const struct ofport_dpif *ofport, uint32_t priority)
2322 {
2323 struct priority_to_dscp *pdscp;
2324 uint32_t hash;
2325
2326 hash = hash_int(priority, 0);
2327 HMAP_FOR_EACH_IN_BUCKET (pdscp, hmap_node, hash, &ofport->priorities) {
2328 if (pdscp->priority == priority) {
2329 return pdscp;
2330 }
2331 }
2332 return NULL;
2333 }
2334
2335 static void
2336 ofport_clear_priorities(struct ofport_dpif *ofport)
2337 {
2338 struct priority_to_dscp *pdscp, *next;
2339
2340 HMAP_FOR_EACH_SAFE (pdscp, next, hmap_node, &ofport->priorities) {
2341 hmap_remove(&ofport->priorities, &pdscp->hmap_node);
2342 free(pdscp);
2343 }
2344 }
2345
2346 static int
2347 set_queues(struct ofport *ofport_,
2348 const struct ofproto_port_queue *qdscp_list,
2349 size_t n_qdscp)
2350 {
2351 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
2352 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
2353 struct hmap new = HMAP_INITIALIZER(&new);
2354 size_t i;
2355
2356 for (i = 0; i < n_qdscp; i++) {
2357 struct priority_to_dscp *pdscp;
2358 uint32_t priority;
2359 uint8_t dscp;
2360
2361 dscp = (qdscp_list[i].dscp << 2) & IP_DSCP_MASK;
2362 if (dpif_queue_to_priority(ofproto->backer->dpif, qdscp_list[i].queue,
2363 &priority)) {
2364 continue;
2365 }
2366
2367 pdscp = get_priority(ofport, priority);
2368 if (pdscp) {
2369 hmap_remove(&ofport->priorities, &pdscp->hmap_node);
2370 } else {
2371 pdscp = xmalloc(sizeof *pdscp);
2372 pdscp->priority = priority;
2373 pdscp->dscp = dscp;
2374 ofproto->backer->need_revalidate = REV_RECONFIGURE;
2375 }
2376
2377 if (pdscp->dscp != dscp) {
2378 pdscp->dscp = dscp;
2379 ofproto->backer->need_revalidate = REV_RECONFIGURE;
2380 }
2381
2382 hmap_insert(&new, &pdscp->hmap_node, hash_int(pdscp->priority, 0));
2383 }
2384
2385 if (!hmap_is_empty(&ofport->priorities)) {
2386 ofport_clear_priorities(ofport);
2387 ofproto->backer->need_revalidate = REV_RECONFIGURE;
2388 }
2389
2390 hmap_swap(&new, &ofport->priorities);
2391 hmap_destroy(&new);
2392
2393 return 0;
2394 }
2395 \f
2396 /* Bundles. */
2397
2398 /* Expires all MAC learning entries associated with 'bundle' and forces its
2399 * ofproto to revalidate every flow.
2400 *
2401 * Normally MAC learning entries are removed only from the ofproto associated
2402 * with 'bundle', but if 'all_ofprotos' is true, then the MAC learning entries
2403 * are removed from every ofproto. When patch ports and SLB bonds are in use
2404 * and a VM migration happens and the gratuitous ARPs are somehow lost, this
2405 * avoids a MAC_ENTRY_IDLE_TIME delay before the migrated VM can communicate
2406 * with the host from which it migrated. */
2407 static void
2408 bundle_flush_macs(struct ofbundle *bundle, bool all_ofprotos)
2409 {
2410 struct ofproto_dpif *ofproto = bundle->ofproto;
2411 struct mac_learning *ml = ofproto->ml;
2412 struct mac_entry *mac, *next_mac;
2413
2414 ofproto->backer->need_revalidate = REV_RECONFIGURE;
2415 LIST_FOR_EACH_SAFE (mac, next_mac, lru_node, &ml->lrus) {
2416 if (mac->port.p == bundle) {
2417 if (all_ofprotos) {
2418 struct ofproto_dpif *o;
2419
2420 HMAP_FOR_EACH (o, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
2421 if (o != ofproto) {
2422 struct mac_entry *e;
2423
2424 e = mac_learning_lookup(o->ml, mac->mac, mac->vlan,
2425 NULL);
2426 if (e) {
2427 mac_learning_expire(o->ml, e);
2428 }
2429 }
2430 }
2431 }
2432
2433 mac_learning_expire(ml, mac);
2434 }
2435 }
2436 }
2437
2438 static struct ofbundle *
2439 bundle_lookup(const struct ofproto_dpif *ofproto, void *aux)
2440 {
2441 struct ofbundle *bundle;
2442
2443 HMAP_FOR_EACH_IN_BUCKET (bundle, hmap_node, hash_pointer(aux, 0),
2444 &ofproto->bundles) {
2445 if (bundle->aux == aux) {
2446 return bundle;
2447 }
2448 }
2449 return NULL;
2450 }
2451
2452 /* Looks up each of the 'n_auxes' pointers in 'auxes' as bundles and adds the
2453 * ones that are found to 'bundles'. */
2454 static void
2455 bundle_lookup_multiple(struct ofproto_dpif *ofproto,
2456 void **auxes, size_t n_auxes,
2457 struct hmapx *bundles)
2458 {
2459 size_t i;
2460
2461 hmapx_init(bundles);
2462 for (i = 0; i < n_auxes; i++) {
2463 struct ofbundle *bundle = bundle_lookup(ofproto, auxes[i]);
2464 if (bundle) {
2465 hmapx_add(bundles, bundle);
2466 }
2467 }
2468 }
2469
2470 static void
2471 bundle_update(struct ofbundle *bundle)
2472 {
2473 struct ofport_dpif *port;
2474
2475 bundle->floodable = true;
2476 LIST_FOR_EACH (port, bundle_node, &bundle->ports) {
2477 if (port->up.pp.config & OFPUTIL_PC_NO_FLOOD
2478 || !stp_forward_in_state(port->stp_state)) {
2479 bundle->floodable = false;
2480 break;
2481 }
2482 }
2483 }
2484
2485 static void
2486 bundle_del_port(struct ofport_dpif *port)
2487 {
2488 struct ofbundle *bundle = port->bundle;
2489
2490 bundle->ofproto->backer->need_revalidate = REV_RECONFIGURE;
2491
2492 list_remove(&port->bundle_node);
2493 port->bundle = NULL;
2494
2495 if (bundle->lacp) {
2496 lacp_slave_unregister(bundle->lacp, port);
2497 }
2498 if (bundle->bond) {
2499 bond_slave_unregister(bundle->bond, port);
2500 }
2501
2502 bundle_update(bundle);
2503 }
2504
2505 static bool
2506 bundle_add_port(struct ofbundle *bundle, uint16_t ofp_port,
2507 struct lacp_slave_settings *lacp)
2508 {
2509 struct ofport_dpif *port;
2510
2511 port = get_ofp_port(bundle->ofproto, ofp_port);
2512 if (!port) {
2513 return false;
2514 }
2515
2516 if (port->bundle != bundle) {
2517 bundle->ofproto->backer->need_revalidate = REV_RECONFIGURE;
2518 if (port->bundle) {
2519 bundle_del_port(port);
2520 }
2521
2522 port->bundle = bundle;
2523 list_push_back(&bundle->ports, &port->bundle_node);
2524 if (port->up.pp.config & OFPUTIL_PC_NO_FLOOD
2525 || !stp_forward_in_state(port->stp_state)) {
2526 bundle->floodable = false;
2527 }
2528 }
2529 if (lacp) {
2530 bundle->ofproto->backer->need_revalidate = REV_RECONFIGURE;
2531 lacp_slave_register(bundle->lacp, port, lacp);
2532 }
2533
2534 return true;
2535 }
2536
2537 static void
2538 bundle_destroy(struct ofbundle *bundle)
2539 {
2540 struct ofproto_dpif *ofproto;
2541 struct ofport_dpif *port, *next_port;
2542 int i;
2543
2544 if (!bundle) {
2545 return;
2546 }
2547
2548 ofproto = bundle->ofproto;
2549 for (i = 0; i < MAX_MIRRORS; i++) {
2550 struct ofmirror *m = ofproto->mirrors[i];
2551 if (m) {
2552 if (m->out == bundle) {
2553 mirror_destroy(m);
2554 } else if (hmapx_find_and_delete(&m->srcs, bundle)
2555 || hmapx_find_and_delete(&m->dsts, bundle)) {
2556 ofproto->backer->need_revalidate = REV_RECONFIGURE;
2557 }
2558 }
2559 }
2560
2561 LIST_FOR_EACH_SAFE (port, next_port, bundle_node, &bundle->ports) {
2562 bundle_del_port(port);
2563 }
2564
2565 bundle_flush_macs(bundle, true);
2566 hmap_remove(&ofproto->bundles, &bundle->hmap_node);
2567 free(bundle->name);
2568 free(bundle->trunks);
2569 lacp_destroy(bundle->lacp);
2570 bond_destroy(bundle->bond);
2571 free(bundle);
2572 }
2573
2574 static int
2575 bundle_set(struct ofproto *ofproto_, void *aux,
2576 const struct ofproto_bundle_settings *s)
2577 {
2578 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2579 bool need_flush = false;
2580 struct ofport_dpif *port;
2581 struct ofbundle *bundle;
2582 unsigned long *trunks;
2583 int vlan;
2584 size_t i;
2585 bool ok;
2586
2587 if (!s) {
2588 bundle_destroy(bundle_lookup(ofproto, aux));
2589 return 0;
2590 }
2591
2592 ovs_assert(s->n_slaves == 1 || s->bond != NULL);
2593 ovs_assert((s->lacp != NULL) == (s->lacp_slaves != NULL));
2594
2595 bundle = bundle_lookup(ofproto, aux);
2596 if (!bundle) {
2597 bundle = xmalloc(sizeof *bundle);
2598
2599 bundle->ofproto = ofproto;
2600 hmap_insert(&ofproto->bundles, &bundle->hmap_node,
2601 hash_pointer(aux, 0));
2602 bundle->aux = aux;
2603 bundle->name = NULL;
2604
2605 list_init(&bundle->ports);
2606 bundle->vlan_mode = PORT_VLAN_TRUNK;
2607 bundle->vlan = -1;
2608 bundle->trunks = NULL;
2609 bundle->use_priority_tags = s->use_priority_tags;
2610 bundle->lacp = NULL;
2611 bundle->bond = NULL;
2612
2613 bundle->floodable = true;
2614
2615 bundle->src_mirrors = 0;
2616 bundle->dst_mirrors = 0;
2617 bundle->mirror_out = 0;
2618 }
2619
2620 if (!bundle->name || strcmp(s->name, bundle->name)) {
2621 free(bundle->name);
2622 bundle->name = xstrdup(s->name);
2623 }
2624
2625 /* LACP. */
2626 if (s->lacp) {
2627 if (!bundle->lacp) {
2628 ofproto->backer->need_revalidate = REV_RECONFIGURE;
2629 bundle->lacp = lacp_create();
2630 }
2631 lacp_configure(bundle->lacp, s->lacp);
2632 } else {
2633 lacp_destroy(bundle->lacp);
2634 bundle->lacp = NULL;
2635 }
2636
2637 /* Update set of ports. */
2638 ok = true;
2639 for (i = 0; i < s->n_slaves; i++) {
2640 if (!bundle_add_port(bundle, s->slaves[i],
2641 s->lacp ? &s->lacp_slaves[i] : NULL)) {
2642 ok = false;
2643 }
2644 }
2645 if (!ok || list_size(&bundle->ports) != s->n_slaves) {
2646 struct ofport_dpif *next_port;
2647
2648 LIST_FOR_EACH_SAFE (port, next_port, bundle_node, &bundle->ports) {
2649 for (i = 0; i < s->n_slaves; i++) {
2650 if (s->slaves[i] == port->up.ofp_port) {
2651 goto found;
2652 }
2653 }
2654
2655 bundle_del_port(port);
2656 found: ;
2657 }
2658 }
2659 ovs_assert(list_size(&bundle->ports) <= s->n_slaves);
2660
2661 if (list_is_empty(&bundle->ports)) {
2662 bundle_destroy(bundle);
2663 return EINVAL;
2664 }
2665
2666 /* Set VLAN tagging mode */
2667 if (s->vlan_mode != bundle->vlan_mode
2668 || s->use_priority_tags != bundle->use_priority_tags) {
2669 bundle->vlan_mode = s->vlan_mode;
2670 bundle->use_priority_tags = s->use_priority_tags;
2671 need_flush = true;
2672 }
2673
2674 /* Set VLAN tag. */
2675 vlan = (s->vlan_mode == PORT_VLAN_TRUNK ? -1
2676 : s->vlan >= 0 && s->vlan <= 4095 ? s->vlan
2677 : 0);
2678 if (vlan != bundle->vlan) {
2679 bundle->vlan = vlan;
2680 need_flush = true;
2681 }
2682
2683 /* Get trunked VLANs. */
2684 switch (s->vlan_mode) {
2685 case PORT_VLAN_ACCESS:
2686 trunks = NULL;
2687 break;
2688
2689 case PORT_VLAN_TRUNK:
2690 trunks = CONST_CAST(unsigned long *, s->trunks);
2691 break;
2692
2693 case PORT_VLAN_NATIVE_UNTAGGED:
2694 case PORT_VLAN_NATIVE_TAGGED:
2695 if (vlan != 0 && (!s->trunks
2696 || !bitmap_is_set(s->trunks, vlan)
2697 || bitmap_is_set(s->trunks, 0))) {
2698 /* Force trunking the native VLAN and prohibit trunking VLAN 0. */
2699 if (s->trunks) {
2700 trunks = bitmap_clone(s->trunks, 4096);
2701 } else {
2702 trunks = bitmap_allocate1(4096);
2703 }
2704 bitmap_set1(trunks, vlan);
2705 bitmap_set0(trunks, 0);
2706 } else {
2707 trunks = CONST_CAST(unsigned long *, s->trunks);
2708 }
2709 break;
2710
2711 default:
2712 NOT_REACHED();
2713 }
2714 if (!vlan_bitmap_equal(trunks, bundle->trunks)) {
2715 free(bundle->trunks);
2716 if (trunks == s->trunks) {
2717 bundle->trunks = vlan_bitmap_clone(trunks);
2718 } else {
2719 bundle->trunks = trunks;
2720 trunks = NULL;
2721 }
2722 need_flush = true;
2723 }
2724 if (trunks != s->trunks) {
2725 free(trunks);
2726 }
2727
2728 /* Bonding. */
2729 if (!list_is_short(&bundle->ports)) {
2730 bundle->ofproto->has_bonded_bundles = true;
2731 if (bundle->bond) {
2732 if (bond_reconfigure(bundle->bond, s->bond)) {
2733 ofproto->backer->need_revalidate = REV_RECONFIGURE;
2734 }
2735 } else {
2736 bundle->bond = bond_create(s->bond);
2737 ofproto->backer->need_revalidate = REV_RECONFIGURE;
2738 }
2739
2740 LIST_FOR_EACH (port, bundle_node, &bundle->ports) {
2741 bond_slave_register(bundle->bond, port, port->up.netdev);
2742 }
2743 } else {
2744 bond_destroy(bundle->bond);
2745 bundle->bond = NULL;
2746 }
2747
2748 /* If we changed something that would affect MAC learning, un-learn
2749 * everything on this port and force flow revalidation. */
2750 if (need_flush) {
2751 bundle_flush_macs(bundle, false);
2752 }
2753
2754 return 0;
2755 }
2756
2757 static void
2758 bundle_remove(struct ofport *port_)
2759 {
2760 struct ofport_dpif *port = ofport_dpif_cast(port_);
2761 struct ofbundle *bundle = port->bundle;
2762
2763 if (bundle) {
2764 bundle_del_port(port);
2765 if (list_is_empty(&bundle->ports)) {
2766 bundle_destroy(bundle);
2767 } else if (list_is_short(&bundle->ports)) {
2768 bond_destroy(bundle->bond);
2769 bundle->bond = NULL;
2770 }
2771 }
2772 }
2773
2774 static void
2775 send_pdu_cb(void *port_, const void *pdu, size_t pdu_size)
2776 {
2777 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 10);
2778 struct ofport_dpif *port = port_;
2779 uint8_t ea[ETH_ADDR_LEN];
2780 int error;
2781
2782 error = netdev_get_etheraddr(port->up.netdev, ea);
2783 if (!error) {
2784 struct ofpbuf packet;
2785 void *packet_pdu;
2786
2787 ofpbuf_init(&packet, 0);
2788 packet_pdu = eth_compose(&packet, eth_addr_lacp, ea, ETH_TYPE_LACP,
2789 pdu_size);
2790 memcpy(packet_pdu, pdu, pdu_size);
2791
2792 send_packet(port, &packet);
2793 ofpbuf_uninit(&packet);
2794 } else {
2795 VLOG_ERR_RL(&rl, "port %s: cannot obtain Ethernet address of iface "
2796 "%s (%s)", port->bundle->name,
2797 netdev_get_name(port->up.netdev), strerror(error));
2798 }
2799 }
2800
2801 static void
2802 bundle_send_learning_packets(struct ofbundle *bundle)
2803 {
2804 struct ofproto_dpif *ofproto = bundle->ofproto;
2805 int error, n_packets, n_errors;
2806 struct mac_entry *e;
2807
2808 error = n_packets = n_errors = 0;
2809 LIST_FOR_EACH (e, lru_node, &ofproto->ml->lrus) {
2810 if (e->port.p != bundle) {
2811 struct ofpbuf *learning_packet;
2812 struct ofport_dpif *port;
2813 void *port_void;
2814 int ret;
2815
2816 /* The assignment to "port" is unnecessary but makes "grep"ing for
2817 * struct ofport_dpif more effective. */
2818 learning_packet = bond_compose_learning_packet(bundle->bond,
2819 e->mac, e->vlan,
2820 &port_void);
2821 port = port_void;
2822 ret = send_packet(port, learning_packet);
2823 ofpbuf_delete(learning_packet);
2824 if (ret) {
2825 error = ret;
2826 n_errors++;
2827 }
2828 n_packets++;
2829 }
2830 }
2831
2832 if (n_errors) {
2833 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
2834 VLOG_WARN_RL(&rl, "bond %s: %d errors sending %d gratuitous learning "
2835 "packets, last error was: %s",
2836 bundle->name, n_errors, n_packets, strerror(error));
2837 } else {
2838 VLOG_DBG("bond %s: sent %d gratuitous learning packets",
2839 bundle->name, n_packets);
2840 }
2841 }
2842
2843 static void
2844 bundle_run(struct ofbundle *bundle)
2845 {
2846 if (bundle->lacp) {
2847 lacp_run(bundle->lacp, send_pdu_cb);
2848 }
2849 if (bundle->bond) {
2850 struct ofport_dpif *port;
2851
2852 LIST_FOR_EACH (port, bundle_node, &bundle->ports) {
2853 bond_slave_set_may_enable(bundle->bond, port, port->may_enable);
2854 }
2855
2856 bond_run(bundle->bond, &bundle->ofproto->backer->revalidate_set,
2857 lacp_status(bundle->lacp));
2858 if (bond_should_send_learning_packets(bundle->bond)) {
2859 bundle_send_learning_packets(bundle);
2860 }
2861 }
2862 }
2863
2864 static void
2865 bundle_wait(struct ofbundle *bundle)
2866 {
2867 if (bundle->lacp) {
2868 lacp_wait(bundle->lacp);
2869 }
2870 if (bundle->bond) {
2871 bond_wait(bundle->bond);
2872 }
2873 }
2874 \f
2875 /* Mirrors. */
2876
2877 static int
2878 mirror_scan(struct ofproto_dpif *ofproto)
2879 {
2880 int idx;
2881
2882 for (idx = 0; idx < MAX_MIRRORS; idx++) {
2883 if (!ofproto->mirrors[idx]) {
2884 return idx;
2885 }
2886 }
2887 return -1;
2888 }
2889
2890 static struct ofmirror *
2891 mirror_lookup(struct ofproto_dpif *ofproto, void *aux)
2892 {
2893 int i;
2894
2895 for (i = 0; i < MAX_MIRRORS; i++) {
2896 struct ofmirror *mirror = ofproto->mirrors[i];
2897 if (mirror && mirror->aux == aux) {
2898 return mirror;
2899 }
2900 }
2901
2902 return NULL;
2903 }
2904
2905 /* Update the 'dup_mirrors' member of each of the ofmirrors in 'ofproto'. */
2906 static void
2907 mirror_update_dups(struct ofproto_dpif *ofproto)
2908 {
2909 int i;
2910
2911 for (i = 0; i < MAX_MIRRORS; i++) {
2912 struct ofmirror *m = ofproto->mirrors[i];
2913
2914 if (m) {
2915 m->dup_mirrors = MIRROR_MASK_C(1) << i;
2916 }
2917 }
2918
2919 for (i = 0; i < MAX_MIRRORS; i++) {
2920 struct ofmirror *m1 = ofproto->mirrors[i];
2921 int j;
2922
2923 if (!m1) {
2924 continue;
2925 }
2926
2927 for (j = i + 1; j < MAX_MIRRORS; j++) {
2928 struct ofmirror *m2 = ofproto->mirrors[j];
2929
2930 if (m2 && m1->out == m2->out && m1->out_vlan == m2->out_vlan) {
2931 m1->dup_mirrors |= MIRROR_MASK_C(1) << j;
2932 m2->dup_mirrors |= m1->dup_mirrors;
2933 }
2934 }
2935 }
2936 }
2937
2938 static int
2939 mirror_set(struct ofproto *ofproto_, void *aux,
2940 const struct ofproto_mirror_settings *s)
2941 {
2942 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2943 mirror_mask_t mirror_bit;
2944 struct ofbundle *bundle;
2945 struct ofmirror *mirror;
2946 struct ofbundle *out;
2947 struct hmapx srcs; /* Contains "struct ofbundle *"s. */
2948 struct hmapx dsts; /* Contains "struct ofbundle *"s. */
2949 int out_vlan;
2950
2951 mirror = mirror_lookup(ofproto, aux);
2952 if (!s) {
2953 mirror_destroy(mirror);
2954 return 0;
2955 }
2956 if (!mirror) {
2957 int idx;
2958
2959 idx = mirror_scan(ofproto);
2960 if (idx < 0) {
2961 VLOG_WARN("bridge %s: maximum of %d port mirrors reached, "
2962 "cannot create %s",
2963 ofproto->up.name, MAX_MIRRORS, s->name);
2964 return EFBIG;
2965 }
2966
2967 mirror = ofproto->mirrors[idx] = xzalloc(sizeof *mirror);
2968 mirror->ofproto = ofproto;
2969 mirror->idx = idx;
2970 mirror->aux = aux;
2971 mirror->out_vlan = -1;
2972 mirror->name = NULL;
2973 }
2974
2975 if (!mirror->name || strcmp(s->name, mirror->name)) {
2976 free(mirror->name);
2977 mirror->name = xstrdup(s->name);
2978 }
2979
2980 /* Get the new configuration. */
2981 if (s->out_bundle) {
2982 out = bundle_lookup(ofproto, s->out_bundle);
2983 if (!out) {
2984 mirror_destroy(mirror);
2985 return EINVAL;
2986 }
2987 out_vlan = -1;
2988 } else {
2989 out = NULL;
2990 out_vlan = s->out_vlan;
2991 }
2992 bundle_lookup_multiple(ofproto, s->srcs, s->n_srcs, &srcs);
2993 bundle_lookup_multiple(ofproto, s->dsts, s->n_dsts, &dsts);
2994
2995 /* If the configuration has not changed, do nothing. */
2996 if (hmapx_equals(&srcs, &mirror->srcs)
2997 && hmapx_equals(&dsts, &mirror->dsts)
2998 && vlan_bitmap_equal(mirror->vlans, s->src_vlans)
2999 && mirror->out == out
3000 && mirror->out_vlan == out_vlan)
3001 {
3002 hmapx_destroy(&srcs);
3003 hmapx_destroy(&dsts);
3004 return 0;
3005 }
3006
3007 hmapx_swap(&srcs, &mirror->srcs);
3008 hmapx_destroy(&srcs);
3009
3010 hmapx_swap(&dsts, &mirror->dsts);
3011 hmapx_destroy(&dsts);
3012
3013 free(mirror->vlans);
3014 mirror->vlans = vlan_bitmap_clone(s->src_vlans);
3015
3016 mirror->out = out;
3017 mirror->out_vlan = out_vlan;
3018
3019 /* Update bundles. */
3020 mirror_bit = MIRROR_MASK_C(1) << mirror->idx;
3021 HMAP_FOR_EACH (bundle, hmap_node, &mirror->ofproto->bundles) {
3022 if (hmapx_contains(&mirror->srcs, bundle)) {
3023 bundle->src_mirrors |= mirror_bit;
3024 } else {
3025 bundle->src_mirrors &= ~mirror_bit;
3026 }
3027
3028 if (hmapx_contains(&mirror->dsts, bundle)) {
3029 bundle->dst_mirrors |= mirror_bit;
3030 } else {
3031 bundle->dst_mirrors &= ~mirror_bit;
3032 }
3033
3034 if (mirror->out == bundle) {
3035 bundle->mirror_out |= mirror_bit;
3036 } else {
3037 bundle->mirror_out &= ~mirror_bit;
3038 }
3039 }
3040
3041 ofproto->backer->need_revalidate = REV_RECONFIGURE;
3042 ofproto->has_mirrors = true;
3043 mac_learning_flush(ofproto->ml,
3044 &ofproto->backer->revalidate_set);
3045 mirror_update_dups(ofproto);
3046
3047 return 0;
3048 }
3049
3050 static void
3051 mirror_destroy(struct ofmirror *mirror)
3052 {
3053 struct ofproto_dpif *ofproto;
3054 mirror_mask_t mirror_bit;
3055 struct ofbundle *bundle;
3056 int i;
3057
3058 if (!mirror) {
3059 return;
3060 }
3061
3062 ofproto = mirror->ofproto;
3063 ofproto->backer->need_revalidate = REV_RECONFIGURE;
3064 mac_learning_flush(ofproto->ml, &ofproto->backer->revalidate_set);
3065
3066 mirror_bit = MIRROR_MASK_C(1) << mirror->idx;
3067 HMAP_FOR_EACH (bundle, hmap_node, &ofproto->bundles) {
3068 bundle->src_mirrors &= ~mirror_bit;
3069 bundle->dst_mirrors &= ~mirror_bit;
3070 bundle->mirror_out &= ~mirror_bit;
3071 }
3072
3073 hmapx_destroy(&mirror->srcs);
3074 hmapx_destroy(&mirror->dsts);
3075 free(mirror->vlans);
3076
3077 ofproto->mirrors[mirror->idx] = NULL;
3078 free(mirror->name);
3079 free(mirror);
3080
3081 mirror_update_dups(ofproto);
3082
3083 ofproto->has_mirrors = false;
3084 for (i = 0; i < MAX_MIRRORS; i++) {
3085 if (ofproto->mirrors[i]) {
3086 ofproto->has_mirrors = true;
3087 break;
3088 }
3089 }
3090 }
3091
3092 static int
3093 mirror_get_stats(struct ofproto *ofproto_, void *aux,
3094 uint64_t *packets, uint64_t *bytes)
3095 {
3096 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
3097 struct ofmirror *mirror = mirror_lookup(ofproto, aux);
3098
3099 if (!mirror) {
3100 *packets = *bytes = UINT64_MAX;
3101 return 0;
3102 }
3103
3104 push_all_stats();
3105
3106 *packets = mirror->packet_count;
3107 *bytes = mirror->byte_count;
3108
3109 return 0;
3110 }
3111
3112 static int
3113 set_flood_vlans(struct ofproto *ofproto_, unsigned long *flood_vlans)
3114 {
3115 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
3116 if (mac_learning_set_flood_vlans(ofproto->ml, flood_vlans)) {
3117 mac_learning_flush(ofproto->ml, &ofproto->backer->revalidate_set);
3118 }
3119 return 0;
3120 }
3121
3122 static bool
3123 is_mirror_output_bundle(const struct ofproto *ofproto_, void *aux)
3124 {
3125 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
3126 struct ofbundle *bundle = bundle_lookup(ofproto, aux);
3127 return bundle && bundle->mirror_out != 0;
3128 }
3129
3130 static void
3131 forward_bpdu_changed(struct ofproto *ofproto_)
3132 {
3133 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
3134 ofproto->backer->need_revalidate = REV_RECONFIGURE;
3135 }
3136
3137 static void
3138 set_mac_table_config(struct ofproto *ofproto_, unsigned int idle_time,
3139 size_t max_entries)
3140 {
3141 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
3142 mac_learning_set_idle_time(ofproto->ml, idle_time);
3143 mac_learning_set_max_entries(ofproto->ml, max_entries);
3144 }
3145 \f
3146 /* Ports. */
3147
3148 static struct ofport_dpif *
3149 get_ofp_port(const struct ofproto_dpif *ofproto, uint16_t ofp_port)
3150 {
3151 struct ofport *ofport = ofproto_get_port(&ofproto->up, ofp_port);
3152 return ofport ? ofport_dpif_cast(ofport) : NULL;
3153 }
3154
3155 static struct ofport_dpif *
3156 get_odp_port(const struct ofproto_dpif *ofproto, uint32_t odp_port)
3157 {
3158 struct ofport_dpif *port = odp_port_to_ofport(ofproto->backer, odp_port);
3159 return port && &ofproto->up == port->up.ofproto ? port : NULL;
3160 }
3161
3162 static void
3163 ofproto_port_from_dpif_port(struct ofproto_dpif *ofproto,
3164 struct ofproto_port *ofproto_port,
3165 struct dpif_port *dpif_port)
3166 {
3167 ofproto_port->name = dpif_port->name;
3168 ofproto_port->type = dpif_port->type;
3169 ofproto_port->ofp_port = odp_port_to_ofp_port(ofproto, dpif_port->port_no);
3170 }
3171
3172 static struct ofport_dpif *
3173 ofport_get_peer(const struct ofport_dpif *ofport_dpif)
3174 {
3175 const struct ofproto_dpif *ofproto;
3176 const char *peer;
3177
3178 peer = netdev_vport_patch_peer(ofport_dpif->up.netdev);
3179 if (!peer) {
3180 return NULL;
3181 }
3182
3183 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
3184 struct ofport *ofport;
3185
3186 ofport = shash_find_data(&ofproto->up.port_by_name, peer);
3187 if (ofport && ofport->ofproto->ofproto_class == &ofproto_dpif_class) {
3188 return ofport_dpif_cast(ofport);
3189 }
3190 }
3191 return NULL;
3192 }
3193
3194 static void
3195 port_run_fast(struct ofport_dpif *ofport)
3196 {
3197 if (ofport->cfm && cfm_should_send_ccm(ofport->cfm)) {
3198 struct ofpbuf packet;
3199
3200 ofpbuf_init(&packet, 0);
3201 cfm_compose_ccm(ofport->cfm, &packet, ofport->up.pp.hw_addr);
3202 send_packet(ofport, &packet);
3203 ofpbuf_uninit(&packet);
3204 }
3205
3206 if (ofport->bfd && bfd_should_send_packet(ofport->bfd)) {
3207 struct ofpbuf packet;
3208
3209 ofpbuf_init(&packet, 0);
3210 bfd_put_packet(ofport->bfd, &packet, ofport->up.pp.hw_addr);
3211 send_packet(ofport, &packet);
3212 ofpbuf_uninit(&packet);
3213 }
3214 }
3215
3216 static void
3217 port_run(struct ofport_dpif *ofport)
3218 {
3219 long long int carrier_seq = netdev_get_carrier_resets(ofport->up.netdev);
3220 bool carrier_changed = carrier_seq != ofport->carrier_seq;
3221 bool enable = netdev_get_carrier(ofport->up.netdev);
3222
3223 ofport->carrier_seq = carrier_seq;
3224
3225 port_run_fast(ofport);
3226
3227 if (ofport->tnl_port
3228 && tnl_port_reconfigure(&ofport->up, ofport->odp_port,
3229 &ofport->tnl_port)) {
3230 ofproto_dpif_cast(ofport->up.ofproto)->backer->need_revalidate = true;
3231 }
3232
3233 if (ofport->cfm) {
3234 int cfm_opup = cfm_get_opup(ofport->cfm);
3235
3236 cfm_run(ofport->cfm);
3237 enable = enable && !cfm_get_fault(ofport->cfm);
3238
3239 if (cfm_opup >= 0) {
3240 enable = enable && cfm_opup;
3241 }
3242 }
3243
3244 if (ofport->bfd) {
3245 bfd_run(ofport->bfd);
3246 enable = enable && bfd_forwarding(ofport->bfd);
3247 }
3248
3249 if (ofport->bundle) {
3250 enable = enable && lacp_slave_may_enable(ofport->bundle->lacp, ofport);
3251 if (carrier_changed) {
3252 lacp_slave_carrier_changed(ofport->bundle->lacp, ofport);
3253 }
3254 }
3255
3256 if (ofport->may_enable != enable) {
3257 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
3258
3259 if (ofproto->has_bundle_action) {
3260 ofproto->backer->need_revalidate = REV_PORT_TOGGLED;
3261 }
3262 }
3263
3264 ofport->may_enable = enable;
3265 }
3266
3267 static void
3268 port_wait(struct ofport_dpif *ofport)
3269 {
3270 if (ofport->cfm) {
3271 cfm_wait(ofport->cfm);
3272 }
3273
3274 if (ofport->bfd) {
3275 bfd_wait(ofport->bfd);
3276 }
3277 }
3278
3279 static int
3280 port_query_by_name(const struct ofproto *ofproto_, const char *devname,
3281 struct ofproto_port *ofproto_port)
3282 {
3283 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
3284 struct dpif_port dpif_port;
3285 int error;
3286
3287 if (sset_contains(&ofproto->ghost_ports, devname)) {
3288 const char *type = netdev_get_type_from_name(devname);
3289
3290 /* We may be called before ofproto->up.port_by_name is populated with
3291 * the appropriate ofport. For this reason, we must get the name and
3292 * type from the netdev layer directly. */
3293 if (type) {
3294 const struct ofport *ofport;
3295
3296 ofport = shash_find_data(&ofproto->up.port_by_name, devname);
3297 ofproto_port->ofp_port = ofport ? ofport->ofp_port : OFPP_NONE;
3298 ofproto_port->name = xstrdup(devname);
3299 ofproto_port->type = xstrdup(type);
3300 return 0;
3301 }
3302 return ENODEV;
3303 }
3304
3305 if (!sset_contains(&ofproto->ports, devname)) {
3306 return ENODEV;
3307 }
3308 error = dpif_port_query_by_name(ofproto->backer->dpif,
3309 devname, &dpif_port);
3310 if (!error) {
3311 ofproto_port_from_dpif_port(ofproto, ofproto_port, &dpif_port);
3312 }
3313 return error;
3314 }
3315
3316 static int
3317 port_add(struct ofproto *ofproto_, struct netdev *netdev)
3318 {
3319 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
3320 const char *dp_port_name = netdev_vport_get_dpif_port(netdev);
3321 const char *devname = netdev_get_name(netdev);
3322
3323 if (netdev_vport_is_patch(netdev)) {
3324 sset_add(&ofproto->ghost_ports, netdev_get_name(netdev));
3325 return 0;
3326 }
3327
3328 if (!dpif_port_exists(ofproto->backer->dpif, dp_port_name)) {
3329 uint32_t port_no = UINT32_MAX;
3330 int error;
3331
3332 error = dpif_port_add(ofproto->backer->dpif, netdev, &port_no);
3333 if (error) {
3334 return error;
3335 }
3336 if (netdev_get_tunnel_config(netdev)) {
3337 simap_put(&ofproto->backer->tnl_backers, dp_port_name, port_no);
3338 }
3339 }
3340
3341 if (netdev_get_tunnel_config(netdev)) {
3342 sset_add(&ofproto->ghost_ports, devname);
3343 } else {
3344 sset_add(&ofproto->ports, devname);
3345 }
3346 return 0;
3347 }
3348
3349 static int
3350 port_del(struct ofproto *ofproto_, uint16_t ofp_port)
3351 {
3352 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
3353 struct ofport_dpif *ofport = get_ofp_port(ofproto, ofp_port);
3354 int error = 0;
3355
3356 if (!ofport) {
3357 return 0;
3358 }
3359
3360 sset_find_and_delete(&ofproto->ghost_ports,
3361 netdev_get_name(ofport->up.netdev));
3362 ofproto->backer->need_revalidate = REV_RECONFIGURE;
3363 if (!ofport->tnl_port) {
3364 error = dpif_port_del(ofproto->backer->dpif, ofport->odp_port);
3365 if (!error) {
3366 /* The caller is going to close ofport->up.netdev. If this is a
3367 * bonded port, then the bond is using that netdev, so remove it
3368 * from the bond. The client will need to reconfigure everything
3369 * after deleting ports, so then the slave will get re-added. */
3370 bundle_remove(&ofport->up);
3371 }
3372 }
3373 return error;
3374 }
3375
3376 static int
3377 port_get_stats(const struct ofport *ofport_, struct netdev_stats *stats)
3378 {
3379 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
3380 int error;
3381
3382 push_all_stats();
3383
3384 error = netdev_get_stats(ofport->up.netdev, stats);
3385
3386 if (!error && ofport_->ofp_port == OFPP_LOCAL) {
3387 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
3388
3389 /* ofproto->stats.tx_packets represents packets that we created
3390 * internally and sent to some port (e.g. packets sent with
3391 * send_packet()). Account for them as if they had come from
3392 * OFPP_LOCAL and got forwarded. */
3393
3394 if (stats->rx_packets != UINT64_MAX) {
3395 stats->rx_packets += ofproto->stats.tx_packets;
3396 }
3397
3398 if (stats->rx_bytes != UINT64_MAX) {
3399 stats->rx_bytes += ofproto->stats.tx_bytes;
3400 }
3401
3402 /* ofproto->stats.rx_packets represents packets that were received on
3403 * some port and we processed internally and dropped (e.g. STP).
3404 * Account for them as if they had been forwarded to OFPP_LOCAL. */
3405
3406 if (stats->tx_packets != UINT64_MAX) {
3407 stats->tx_packets += ofproto->stats.rx_packets;
3408 }
3409
3410 if (stats->tx_bytes != UINT64_MAX) {
3411 stats->tx_bytes += ofproto->stats.rx_bytes;
3412 }
3413 }
3414
3415 return error;
3416 }
3417
3418 struct port_dump_state {
3419 uint32_t bucket;
3420 uint32_t offset;
3421 bool ghost;
3422
3423 struct ofproto_port port;
3424 bool has_port;
3425 };
3426
3427 static int
3428 port_dump_start(const struct ofproto *ofproto_ OVS_UNUSED, void **statep)
3429 {
3430 *statep = xzalloc(sizeof(struct port_dump_state));
3431 return 0;
3432 }
3433
3434 static int
3435 port_dump_next(const struct ofproto *ofproto_, void *state_,
3436 struct ofproto_port *port)
3437 {
3438 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
3439 struct port_dump_state *state = state_;
3440 const struct sset *sset;
3441 struct sset_node *node;
3442
3443 if (state->has_port) {
3444 ofproto_port_destroy(&state->port);
3445 state->has_port = false;
3446 }
3447 sset = state->ghost ? &ofproto->ghost_ports : &ofproto->ports;
3448 while ((node = sset_at_position(sset, &state->bucket, &state->offset))) {
3449 int error;
3450
3451 error = port_query_by_name(ofproto_, node->name, &state->port);
3452 if (!error) {
3453 *port = state->port;
3454 state->has_port = true;
3455 return 0;
3456 } else if (error != ENODEV) {
3457 return error;
3458 }
3459 }
3460
3461 if (!state->ghost) {
3462 state->ghost = true;
3463 state->bucket = 0;
3464 state->offset = 0;
3465 return port_dump_next(ofproto_, state_, port);
3466 }
3467
3468 return EOF;
3469 }
3470
3471 static int
3472 port_dump_done(const struct ofproto *ofproto_ OVS_UNUSED, void *state_)
3473 {
3474 struct port_dump_state *state = state_;
3475
3476 if (state->has_port) {
3477 ofproto_port_destroy(&state->port);
3478 }
3479 free(state);
3480 return 0;
3481 }
3482
3483 static int
3484 port_poll(const struct ofproto *ofproto_, char **devnamep)
3485 {
3486 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
3487
3488 if (ofproto->port_poll_errno) {
3489 int error = ofproto->port_poll_errno;
3490 ofproto->port_poll_errno = 0;
3491 return error;
3492 }
3493
3494 if (sset_is_empty(&ofproto->port_poll_set)) {
3495 return EAGAIN;
3496 }
3497
3498 *devnamep = sset_pop(&ofproto->port_poll_set);
3499 return 0;
3500 }
3501
3502 static void
3503 port_poll_wait(const struct ofproto *ofproto_)
3504 {
3505 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
3506 dpif_port_poll_wait(ofproto->backer->dpif);
3507 }
3508
3509 static int
3510 port_is_lacp_current(const struct ofport *ofport_)
3511 {
3512 const struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
3513 return (ofport->bundle && ofport->bundle->lacp
3514 ? lacp_slave_is_current(ofport->bundle->lacp, ofport)
3515 : -1);
3516 }
3517 \f
3518 /* Upcall handling. */
3519
3520 /* Flow miss batching.
3521 *
3522 * Some dpifs implement operations faster when you hand them off in a batch.
3523 * To allow batching, "struct flow_miss" queues the dpif-related work needed
3524 * for a given flow. Each "struct flow_miss" corresponds to sending one or
3525 * more packets, plus possibly installing the flow in the dpif.
3526 *
3527 * So far we only batch the operations that affect flow setup time the most.
3528 * It's possible to batch more than that, but the benefit might be minimal. */
3529 struct flow_miss {
3530 struct hmap_node hmap_node;
3531 struct ofproto_dpif *ofproto;
3532 struct flow flow;
3533 enum odp_key_fitness key_fitness;
3534 const struct nlattr *key;
3535 size_t key_len;
3536 struct initial_vals initial_vals;
3537 struct list packets;
3538 enum dpif_upcall_type upcall_type;
3539 };
3540
3541 struct flow_miss_op {
3542 struct dpif_op dpif_op;
3543
3544 uint64_t slow_stub[128 / 8]; /* Buffer for compose_slow_path() */
3545 struct xlate_out xout;
3546 bool xout_garbage; /* 'xout' needs to be uninitialized? */
3547 };
3548
3549 /* Sends an OFPT_PACKET_IN message for 'packet' of type OFPR_NO_MATCH to each
3550 * OpenFlow controller as necessary according to their individual
3551 * configurations. */
3552 static void
3553 send_packet_in_miss(struct ofproto_dpif *ofproto, const struct ofpbuf *packet,
3554 const struct flow *flow)
3555 {
3556 struct ofputil_packet_in pin;
3557
3558 pin.packet = packet->data;
3559 pin.packet_len = packet->size;
3560 pin.reason = OFPR_NO_MATCH;
3561 pin.controller_id = 0;
3562
3563 pin.table_id = 0;
3564 pin.cookie = 0;
3565
3566 pin.send_len = 0; /* not used for flow table misses */
3567
3568 flow_get_metadata(flow, &pin.fmd);
3569
3570 connmgr_send_packet_in(ofproto->up.connmgr, &pin);
3571 }
3572
3573 static enum slow_path_reason
3574 process_special(struct ofproto_dpif *ofproto, const struct flow *flow,
3575 const struct ofport_dpif *ofport, const struct ofpbuf *packet)
3576 {
3577 if (!ofport) {
3578 return 0;
3579 } else if (ofport->cfm && cfm_should_process_flow(ofport->cfm, flow)) {
3580 if (packet) {
3581 cfm_process_heartbeat(ofport->cfm, packet);
3582 }
3583 return SLOW_CFM;
3584 } else if (ofport->bfd && bfd_should_process_flow(flow)) {
3585 if (packet) {
3586 bfd_process_packet(ofport->bfd, flow, packet);
3587 }
3588 return SLOW_BFD;
3589 } else if (ofport->bundle && ofport->bundle->lacp
3590 && flow->dl_type == htons(ETH_TYPE_LACP)) {
3591 if (packet) {
3592 lacp_process_packet(ofport->bundle->lacp, ofport, packet);
3593 }
3594 return SLOW_LACP;
3595 } else if (ofproto->stp && stp_should_process_flow(flow)) {
3596 if (packet) {
3597 stp_process_packet(ofport, packet);
3598 }
3599 return SLOW_STP;
3600 } else {
3601 return 0;
3602 }
3603 }
3604
3605 static struct flow_miss *
3606 flow_miss_find(struct hmap *todo, const struct ofproto_dpif *ofproto,
3607 const struct flow *flow, uint32_t hash)
3608 {
3609 struct flow_miss *miss;
3610
3611 HMAP_FOR_EACH_WITH_HASH (miss, hmap_node, hash, todo) {
3612 if (miss->ofproto == ofproto && flow_equal(&miss->flow, flow)) {
3613 return miss;
3614 }
3615 }
3616
3617 return NULL;
3618 }
3619
3620 /* Partially Initializes 'op' as an "execute" operation for 'miss' and
3621 * 'packet'. The caller must initialize op->actions and op->actions_len. If
3622 * 'miss' is associated with a subfacet the caller must also initialize the
3623 * returned op->subfacet, and if anything needs to be freed after processing
3624 * the op, the caller must initialize op->garbage also. */
3625 static void
3626 init_flow_miss_execute_op(struct flow_miss *miss, struct ofpbuf *packet,
3627 struct flow_miss_op *op)
3628 {
3629 if (miss->flow.vlan_tci != miss->initial_vals.vlan_tci) {
3630 /* This packet was received on a VLAN splinter port. We
3631 * added a VLAN to the packet to make the packet resemble
3632 * the flow, but the actions were composed assuming that
3633 * the packet contained no VLAN. So, we must remove the
3634 * VLAN header from the packet before trying to execute the
3635 * actions. */
3636 eth_pop_vlan(packet);
3637 }
3638
3639 op->xout_garbage = false;
3640 op->dpif_op.type = DPIF_OP_EXECUTE;
3641 op->dpif_op.u.execute.key = miss->key;
3642 op->dpif_op.u.execute.key_len = miss->key_len;
3643 op->dpif_op.u.execute.packet = packet;
3644 }
3645
3646 /* Helper for handle_flow_miss_without_facet() and
3647 * handle_flow_miss_with_facet(). */
3648 static void
3649 handle_flow_miss_common(struct rule_dpif *rule,
3650 struct ofpbuf *packet, const struct flow *flow)
3651 {
3652 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
3653
3654 if (rule->up.cr.priority == FAIL_OPEN_PRIORITY) {
3655 /*
3656 * Extra-special case for fail-open mode.
3657 *
3658 * We are in fail-open mode and the packet matched the fail-open
3659 * rule, but we are connected to a controller too. We should send
3660 * the packet up to the controller in the hope that it will try to
3661 * set up a flow and thereby allow us to exit fail-open.
3662 *
3663 * See the top-level comment in fail-open.c for more information.
3664 */
3665 send_packet_in_miss(ofproto, packet, flow);
3666 }
3667 }
3668
3669 /* Figures out whether a flow that missed in 'ofproto', whose details are in
3670 * 'miss', is likely to be worth tracking in detail in userspace and (usually)
3671 * installing a datapath flow. The answer is usually "yes" (a return value of
3672 * true). However, for short flows the cost of bookkeeping is much higher than
3673 * the benefits, so when the datapath holds a large number of flows we impose
3674 * some heuristics to decide which flows are likely to be worth tracking. */
3675 static bool
3676 flow_miss_should_make_facet(struct ofproto_dpif *ofproto,
3677 struct flow_miss *miss, uint32_t hash)
3678 {
3679 if (!ofproto->governor) {
3680 size_t n_subfacets;
3681
3682 n_subfacets = hmap_count(&ofproto->subfacets);
3683 if (n_subfacets * 2 <= ofproto->up.flow_eviction_threshold) {
3684 return true;
3685 }
3686
3687 ofproto->governor = governor_create(ofproto->up.name);
3688 }
3689
3690 return governor_should_install_flow(ofproto->governor, hash,
3691 list_size(&miss->packets));
3692 }
3693
3694 /* Handles 'miss', which matches 'rule', without creating a facet or subfacet
3695 * or creating any datapath flow. May add an "execute" operation to 'ops' and
3696 * increment '*n_ops'. */
3697 static void
3698 handle_flow_miss_without_facet(struct flow_miss *miss,
3699 struct flow_miss_op *ops, size_t *n_ops)
3700 {
3701 struct rule_dpif *rule = rule_dpif_lookup(miss->ofproto, &miss->flow);
3702 long long int now = time_msec();
3703 struct ofpbuf *packet;
3704 struct xlate_in xin;
3705
3706 LIST_FOR_EACH (packet, list_node, &miss->packets) {
3707 struct flow_miss_op *op = &ops[*n_ops];
3708 struct dpif_flow_stats stats;
3709
3710 COVERAGE_INC(facet_suppress);
3711
3712 handle_flow_miss_common(rule, packet, &miss->flow);
3713
3714 dpif_flow_stats_extract(&miss->flow, packet, now, &stats);
3715 rule_credit_stats(rule, &stats);
3716
3717 xlate_in_init(&xin, miss->ofproto, &miss->flow, &miss->initial_vals,
3718 rule, stats.tcp_flags, packet);
3719 xin.resubmit_stats = &stats;
3720 xlate_actions(&xin, &op->xout);
3721
3722 if (op->xout.odp_actions.size) {
3723 struct dpif_execute *execute = &op->dpif_op.u.execute;
3724
3725 init_flow_miss_execute_op(miss, packet, op);
3726 execute->actions = op->xout.odp_actions.data;
3727 execute->actions_len = op->xout.odp_actions.size;
3728 op->xout_garbage = true;
3729
3730 (*n_ops)++;
3731 } else {
3732 xlate_out_uninit(&op->xout);
3733 }
3734 }
3735 }
3736
3737 /* Handles 'miss', which matches 'facet'. May add any required datapath
3738 * operations to 'ops', incrementing '*n_ops' for each new op.
3739 *
3740 * All of the packets in 'miss' are considered to have arrived at time 'now'.
3741 * This is really important only for new facets: if we just called time_msec()
3742 * here, then the new subfacet or its packets could look (occasionally) as
3743 * though it was used some time after the facet was used. That can make a
3744 * one-packet flow look like it has a nonzero duration, which looks odd in
3745 * e.g. NetFlow statistics. */
3746 static void
3747 handle_flow_miss_with_facet(struct flow_miss *miss, struct facet *facet,
3748 long long int now,
3749 struct flow_miss_op *ops, size_t *n_ops)
3750 {
3751 struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto);
3752 enum subfacet_path want_path;
3753 struct subfacet *subfacet;
3754 struct ofpbuf *packet;
3755
3756 subfacet = subfacet_create(facet, miss, now);
3757 want_path = subfacet->facet->xout.slow ? SF_SLOW_PATH : SF_FAST_PATH;
3758
3759 LIST_FOR_EACH (packet, list_node, &miss->packets) {
3760 struct flow_miss_op *op = &ops[*n_ops];
3761 struct dpif_flow_stats stats;
3762
3763 handle_flow_miss_common(facet->rule, packet, &miss->flow);
3764
3765 if (want_path != SF_FAST_PATH) {
3766 struct xlate_in xin;
3767
3768 xlate_in_init(&xin, ofproto, &facet->flow, &facet->initial_vals,
3769 facet->rule, 0, packet);
3770 xlate_actions_for_side_effects(&xin);
3771 }
3772
3773 dpif_flow_stats_extract(&facet->flow, packet, now, &stats);
3774 subfacet_update_stats(subfacet, &stats);
3775
3776 if (facet->xout.odp_actions.size) {
3777 struct dpif_execute *execute = &op->dpif_op.u.execute;
3778
3779 init_flow_miss_execute_op(miss, packet, op);
3780 execute->actions = facet->xout.odp_actions.data,
3781 execute->actions_len = facet->xout.odp_actions.size;
3782 (*n_ops)++;
3783 }
3784 }
3785
3786 if (miss->upcall_type == DPIF_UC_MISS || subfacet->path != want_path) {
3787 struct flow_miss_op *op = &ops[(*n_ops)++];
3788 struct dpif_flow_put *put = &op->dpif_op.u.flow_put;
3789
3790 subfacet->path = want_path;
3791
3792 op->xout_garbage = false;
3793 op->dpif_op.type = DPIF_OP_FLOW_PUT;
3794 put->flags = DPIF_FP_CREATE | DPIF_FP_MODIFY;
3795 put->key = miss->key;
3796 put->key_len = miss->key_len;
3797 if (want_path == SF_FAST_PATH) {
3798 put->actions = facet->xout.odp_actions.data;
3799 put->actions_len = facet->xout.odp_actions.size;
3800 } else {
3801 compose_slow_path(ofproto, &facet->flow, facet->xout.slow,
3802 op->slow_stub, sizeof op->slow_stub,
3803 &put->actions, &put->actions_len);
3804 }
3805 put->stats = NULL;
3806 }
3807 }
3808
3809 /* Handles flow miss 'miss'. May add any required datapath operations
3810 * to 'ops', incrementing '*n_ops' for each new op. */
3811 static void
3812 handle_flow_miss(struct flow_miss *miss, struct flow_miss_op *ops,
3813 size_t *n_ops)
3814 {
3815 struct ofproto_dpif *ofproto = miss->ofproto;
3816 struct facet *facet;
3817 long long int now;
3818 uint32_t hash;
3819
3820 /* The caller must ensure that miss->hmap_node.hash contains
3821 * flow_hash(miss->flow, 0). */
3822 hash = miss->hmap_node.hash;
3823
3824 facet = facet_lookup_valid(ofproto, &miss->flow, hash);
3825 if (!facet) {
3826 /* There does not exist a bijection between 'struct flow' and datapath
3827 * flow keys with fitness ODP_FIT_TO_LITTLE. This breaks a fundamental
3828 * assumption used throughout the facet and subfacet handling code.
3829 * Since we have to handle these misses in userspace anyway, we simply
3830 * skip facet creation, avoiding the problem altogether. */
3831 if (miss->key_fitness == ODP_FIT_TOO_LITTLE
3832 || !flow_miss_should_make_facet(ofproto, miss, hash)) {
3833 handle_flow_miss_without_facet(miss, ops, n_ops);
3834 return;
3835 }
3836
3837 facet = facet_create(miss, hash);
3838 now = facet->used;
3839 } else {
3840 now = time_msec();
3841 }
3842 handle_flow_miss_with_facet(miss, facet, now, ops, n_ops);
3843 }
3844
3845 static struct drop_key *
3846 drop_key_lookup(const struct dpif_backer *backer, const struct nlattr *key,
3847 size_t key_len)
3848 {
3849 struct drop_key *drop_key;
3850
3851 HMAP_FOR_EACH_WITH_HASH (drop_key, hmap_node, hash_bytes(key, key_len, 0),
3852 &backer->drop_keys) {
3853 if (drop_key->key_len == key_len
3854 && !memcmp(drop_key->key, key, key_len)) {
3855 return drop_key;
3856 }
3857 }
3858 return NULL;
3859 }
3860
3861 static void
3862 drop_key_clear(struct dpif_backer *backer)
3863 {
3864 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 15);
3865 struct drop_key *drop_key, *next;
3866
3867 HMAP_FOR_EACH_SAFE (drop_key, next, hmap_node, &backer->drop_keys) {
3868 int error;
3869
3870 error = dpif_flow_del(backer->dpif, drop_key->key, drop_key->key_len,
3871 NULL);
3872 if (error && !VLOG_DROP_WARN(&rl)) {
3873 struct ds ds = DS_EMPTY_INITIALIZER;
3874 odp_flow_key_format(drop_key->key, drop_key->key_len, &ds);
3875 VLOG_WARN("Failed to delete drop key (%s) (%s)", strerror(error),
3876 ds_cstr(&ds));
3877 ds_destroy(&ds);
3878 }
3879
3880 hmap_remove(&backer->drop_keys, &drop_key->hmap_node);
3881 free(drop_key->key);
3882 free(drop_key);
3883 }
3884 }
3885
3886 /* Given a datpath, packet, and flow metadata ('backer', 'packet', and 'key'
3887 * respectively), populates 'flow' with the result of odp_flow_key_to_flow().
3888 * Optionally, if nonnull, populates 'fitnessp' with the fitness of 'flow' as
3889 * returned by odp_flow_key_to_flow(). Also, optionally populates 'ofproto'
3890 * with the ofproto_dpif, and 'odp_in_port' with the datapath in_port, that
3891 * 'packet' ingressed.
3892 *
3893 * If 'ofproto' is nonnull, requires 'flow''s in_port to exist. Otherwise sets
3894 * 'flow''s in_port to OFPP_NONE.
3895 *
3896 * This function does post-processing on data returned from
3897 * odp_flow_key_to_flow() to help make VLAN splinters transparent to the rest
3898 * of the upcall processing logic. In particular, if the extracted in_port is
3899 * a VLAN splinter port, it replaces flow->in_port by the "real" port, sets
3900 * flow->vlan_tci correctly for the VLAN of the VLAN splinter port, and pushes
3901 * a VLAN header onto 'packet' (if it is nonnull).
3902 *
3903 * Optionally, if 'initial_vals' is nonnull, sets 'initial_vals->vlan_tci'
3904 * to the VLAN TCI with which the packet was really received, that is, the
3905 * actual VLAN TCI extracted by odp_flow_key_to_flow(). (This differs from
3906 * the value returned in flow->vlan_tci only for packets received on
3907 * VLAN splinters.)
3908 *
3909 * Similarly, this function also includes some logic to help with tunnels. It
3910 * may modify 'flow' as necessary to make the tunneling implementation
3911 * transparent to the upcall processing logic.
3912 *
3913 * Returns 0 if successful, ENODEV if the parsed flow has no associated ofport,
3914 * or some other positive errno if there are other problems. */
3915 static int
3916 ofproto_receive(const struct dpif_backer *backer, struct ofpbuf *packet,
3917 const struct nlattr *key, size_t key_len,
3918 struct flow *flow, enum odp_key_fitness *fitnessp,
3919 struct ofproto_dpif **ofproto, uint32_t *odp_in_port,
3920 struct initial_vals *initial_vals)
3921 {
3922 const struct ofport_dpif *port;
3923 enum odp_key_fitness fitness;
3924 int error = ENODEV;
3925
3926 fitness = odp_flow_key_to_flow(key, key_len, flow);
3927 if (fitness == ODP_FIT_ERROR) {
3928 error = EINVAL;
3929 goto exit;
3930 }
3931
3932 if (initial_vals) {
3933 initial_vals->vlan_tci = flow->vlan_tci;
3934 }
3935
3936 if (odp_in_port) {
3937 *odp_in_port = flow->in_port;
3938 }
3939
3940 port = (tnl_port_should_receive(flow)
3941 ? ofport_dpif_cast(tnl_port_receive(flow))
3942 : odp_port_to_ofport(backer, flow->in_port));
3943 flow->in_port = port ? port->up.ofp_port : OFPP_NONE;
3944 if (!port) {
3945 goto exit;
3946 }
3947
3948 /* XXX: Since the tunnel module is not scoped per backer, for a tunnel port
3949 * it's theoretically possible that we'll receive an ofport belonging to an
3950 * entirely different datapath. In practice, this can't happen because no
3951 * platforms has two separate datapaths which each support tunneling. */
3952 ovs_assert(ofproto_dpif_cast(port->up.ofproto)->backer == backer);
3953
3954 if (vsp_adjust_flow(ofproto_dpif_cast(port->up.ofproto), flow)) {
3955 if (packet) {
3956 /* Make the packet resemble the flow, so that it gets sent to
3957 * an OpenFlow controller properly, so that it looks correct
3958 * for sFlow, and so that flow_extract() will get the correct
3959 * vlan_tci if it is called on 'packet'.
3960 *
3961 * The allocated space inside 'packet' probably also contains
3962 * 'key', that is, both 'packet' and 'key' are probably part of
3963 * a struct dpif_upcall (see the large comment on that
3964 * structure definition), so pushing data on 'packet' is in
3965 * general not a good idea since it could overwrite 'key' or
3966 * free it as a side effect. However, it's OK in this special
3967 * case because we know that 'packet' is inside a Netlink
3968 * attribute: pushing 4 bytes will just overwrite the 4-byte
3969 * "struct nlattr", which is fine since we don't need that
3970 * header anymore. */
3971 eth_push_vlan(packet, flow->vlan_tci);
3972 }
3973 /* We can't reproduce 'key' from 'flow'. */
3974 fitness = fitness == ODP_FIT_PERFECT ? ODP_FIT_TOO_MUCH : fitness;
3975 }
3976 error = 0;
3977
3978 if (ofproto) {
3979 *ofproto = ofproto_dpif_cast(port->up.ofproto);
3980 }
3981
3982 exit:
3983 if (fitnessp) {
3984 *fitnessp = fitness;
3985 }
3986 return error;
3987 }
3988
3989 static void
3990 handle_miss_upcalls(struct dpif_backer *backer, struct dpif_upcall *upcalls,
3991 size_t n_upcalls)
3992 {
3993 struct dpif_upcall *upcall;
3994 struct flow_miss *miss;
3995 struct flow_miss misses[FLOW_MISS_MAX_BATCH];
3996 struct flow_miss_op flow_miss_ops[FLOW_MISS_MAX_BATCH * 2];
3997 struct dpif_op *dpif_ops[FLOW_MISS_MAX_BATCH * 2];
3998 struct hmap todo;
3999 int n_misses;
4000 size_t n_ops;
4001 size_t i;
4002
4003 if (!n_upcalls) {
4004 return;
4005 }
4006
4007 /* Construct the to-do list.
4008 *
4009 * This just amounts to extracting the flow from each packet and sticking
4010 * the packets that have the same flow in the same "flow_miss" structure so
4011 * that we can process them together. */
4012 hmap_init(&todo);
4013 n_misses = 0;
4014 for (upcall = upcalls; upcall < &upcalls[n_upcalls]; upcall++) {
4015 struct flow_miss *miss = &misses[n_misses];
4016 struct flow_miss *existing_miss;
4017 struct ofproto_dpif *ofproto;
4018 uint32_t odp_in_port;
4019 struct flow flow;
4020 uint32_t hash;
4021 int error;
4022
4023 error = ofproto_receive(backer, upcall->packet, upcall->key,
4024 upcall->key_len, &flow, &miss->key_fitness,
4025 &ofproto, &odp_in_port, &miss->initial_vals);
4026 if (error == ENODEV) {
4027 struct drop_key *drop_key;
4028
4029 /* Received packet on datapath port for which we couldn't
4030 * associate an ofproto. This can happen if a port is removed
4031 * while traffic is being received. Print a rate-limited message
4032 * in case it happens frequently. Install a drop flow so
4033 * that future packets of the flow are inexpensively dropped
4034 * in the kernel. */
4035 VLOG_INFO_RL(&rl, "received packet on unassociated datapath port "
4036 "%"PRIu32, odp_in_port);
4037
4038 drop_key = drop_key_lookup(backer, upcall->key, upcall->key_len);
4039 if (!drop_key) {
4040 drop_key = xmalloc(sizeof *drop_key);
4041 drop_key->key = xmemdup(upcall->key, upcall->key_len);
4042 drop_key->key_len = upcall->key_len;
4043
4044 hmap_insert(&backer->drop_keys, &drop_key->hmap_node,
4045 hash_bytes(drop_key->key, drop_key->key_len, 0));
4046 dpif_flow_put(backer->dpif, DPIF_FP_CREATE | DPIF_FP_MODIFY,
4047 drop_key->key, drop_key->key_len, NULL, 0, NULL);
4048 }
4049 continue;
4050 }
4051 if (error) {
4052 continue;
4053 }
4054
4055 ofproto->n_missed++;
4056 flow_extract(upcall->packet, flow.skb_priority, flow.skb_mark,
4057 &flow.tunnel, flow.in_port, &miss->flow);
4058
4059 /* Add other packets to a to-do list. */
4060 hash = flow_hash(&miss->flow, 0);
4061 existing_miss = flow_miss_find(&todo, ofproto, &miss->flow, hash);
4062 if (!existing_miss) {
4063 hmap_insert(&todo, &miss->hmap_node, hash);
4064 miss->ofproto = ofproto;
4065 miss->key = upcall->key;
4066 miss->key_len = upcall->key_len;
4067 miss->upcall_type = upcall->type;
4068 list_init(&miss->packets);
4069
4070 n_misses++;
4071 } else {
4072 miss = existing_miss;
4073 }
4074 list_push_back(&miss->packets, &upcall->packet->list_node);
4075 }
4076
4077 /* Process each element in the to-do list, constructing the set of
4078 * operations to batch. */
4079 n_ops = 0;
4080 HMAP_FOR_EACH (miss, hmap_node, &todo) {
4081 handle_flow_miss(miss, flow_miss_ops, &n_ops);
4082 }
4083 ovs_assert(n_ops <= ARRAY_SIZE(flow_miss_ops));
4084
4085 /* Execute batch. */
4086 for (i = 0; i < n_ops; i++) {
4087 dpif_ops[i] = &flow_miss_ops[i].dpif_op;
4088 }
4089 dpif_operate(backer->dpif, dpif_ops, n_ops);
4090
4091 /* Free memory. */
4092 for (i = 0; i < n_ops; i++) {
4093 if (flow_miss_ops[i].xout_garbage) {
4094 xlate_out_uninit(&flow_miss_ops[i].xout);
4095 }
4096 }
4097 hmap_destroy(&todo);
4098 }
4099
4100 static enum { SFLOW_UPCALL, MISS_UPCALL, BAD_UPCALL, FLOW_SAMPLE_UPCALL,
4101 IPFIX_UPCALL }
4102 classify_upcall(const struct dpif_upcall *upcall)
4103 {
4104 size_t userdata_len;
4105 union user_action_cookie cookie;
4106
4107 /* First look at the upcall type. */
4108 switch (upcall->type) {
4109 case DPIF_UC_ACTION:
4110 break;
4111
4112 case DPIF_UC_MISS:
4113 return MISS_UPCALL;
4114
4115 case DPIF_N_UC_TYPES:
4116 default:
4117 VLOG_WARN_RL(&rl, "upcall has unexpected type %"PRIu32, upcall->type);
4118 return BAD_UPCALL;
4119 }
4120
4121 /* "action" upcalls need a closer look. */
4122 if (!upcall->userdata) {
4123 VLOG_WARN_RL(&rl, "action upcall missing cookie");
4124 return BAD_UPCALL;
4125 }
4126 userdata_len = nl_attr_get_size(upcall->userdata);
4127 if (userdata_len < sizeof cookie.type
4128 || userdata_len > sizeof cookie) {
4129 VLOG_WARN_RL(&rl, "action upcall cookie has unexpected size %zu",
4130 userdata_len);
4131 return BAD_UPCALL;
4132 }
4133 memset(&cookie, 0, sizeof cookie);
4134 memcpy(&cookie, nl_attr_get(upcall->userdata), userdata_len);
4135 if (userdata_len == sizeof cookie.sflow
4136 && cookie.type == USER_ACTION_COOKIE_SFLOW) {
4137 return SFLOW_UPCALL;
4138 } else if (userdata_len == sizeof cookie.slow_path
4139 && cookie.type == USER_ACTION_COOKIE_SLOW_PATH) {
4140 return MISS_UPCALL;
4141 } else if (userdata_len == sizeof cookie.flow_sample
4142 && cookie.type == USER_ACTION_COOKIE_FLOW_SAMPLE) {
4143 return FLOW_SAMPLE_UPCALL;
4144 } else if (userdata_len == sizeof cookie.ipfix
4145 && cookie.type == USER_ACTION_COOKIE_IPFIX) {
4146 return IPFIX_UPCALL;
4147 } else {
4148 VLOG_WARN_RL(&rl, "invalid user cookie of type %"PRIu16
4149 " and size %zu", cookie.type, userdata_len);
4150 return BAD_UPCALL;
4151 }
4152 }
4153
4154 static void
4155 handle_sflow_upcall(struct dpif_backer *backer,
4156 const struct dpif_upcall *upcall)
4157 {
4158 struct ofproto_dpif *ofproto;
4159 union user_action_cookie cookie;
4160 struct flow flow;
4161 uint32_t odp_in_port;
4162
4163 if (ofproto_receive(backer, upcall->packet, upcall->key, upcall->key_len,
4164 &flow, NULL, &ofproto, &odp_in_port, NULL)
4165 || !ofproto->sflow) {
4166 return;
4167 }
4168
4169 memset(&cookie, 0, sizeof cookie);
4170 memcpy(&cookie, nl_attr_get(upcall->userdata), sizeof cookie.sflow);
4171 dpif_sflow_received(ofproto->sflow, upcall->packet, &flow,
4172 odp_in_port, &cookie);
4173 }
4174
4175 static void
4176 handle_flow_sample_upcall(struct dpif_backer *backer,
4177 const struct dpif_upcall *upcall)
4178 {
4179 struct ofproto_dpif *ofproto;
4180 union user_action_cookie cookie;
4181 struct flow flow;
4182
4183 if (ofproto_receive(backer, upcall->packet, upcall->key, upcall->key_len,
4184 &flow, NULL, &ofproto, NULL, NULL)
4185 || !ofproto->ipfix) {
4186 return;
4187 }
4188
4189 memset(&cookie, 0, sizeof cookie);
4190 memcpy(&cookie, nl_attr_get(upcall->userdata), sizeof cookie.flow_sample);
4191
4192 /* The flow reflects exactly the contents of the packet. Sample
4193 * the packet using it. */
4194 dpif_ipfix_flow_sample(ofproto->ipfix, upcall->packet, &flow,
4195 cookie.flow_sample.collector_set_id,
4196 cookie.flow_sample.probability,
4197 cookie.flow_sample.obs_domain_id,
4198 cookie.flow_sample.obs_point_id);
4199 }
4200
4201 static void
4202 handle_ipfix_upcall(struct dpif_backer *backer,
4203 const struct dpif_upcall *upcall)
4204 {
4205 struct ofproto_dpif *ofproto;
4206 struct flow flow;
4207
4208 if (ofproto_receive(backer, upcall->packet, upcall->key, upcall->key_len,
4209 &flow, NULL, &ofproto, NULL, NULL)
4210 || !ofproto->ipfix) {
4211 return;
4212 }
4213
4214 /* The flow reflects exactly the contents of the packet. Sample
4215 * the packet using it. */
4216 dpif_ipfix_bridge_sample(ofproto->ipfix, upcall->packet, &flow);
4217 }
4218
4219 static int
4220 handle_upcalls(struct dpif_backer *backer, unsigned int max_batch)
4221 {
4222 struct dpif_upcall misses[FLOW_MISS_MAX_BATCH];
4223 struct ofpbuf miss_bufs[FLOW_MISS_MAX_BATCH];
4224 uint64_t miss_buf_stubs[FLOW_MISS_MAX_BATCH][4096 / 8];
4225 int n_processed;
4226 int n_misses;
4227 int i;
4228
4229 ovs_assert(max_batch <= FLOW_MISS_MAX_BATCH);
4230
4231 n_misses = 0;
4232 for (n_processed = 0; n_processed < max_batch; n_processed++) {
4233 struct dpif_upcall *upcall = &misses[n_misses];
4234 struct ofpbuf *buf = &miss_bufs[n_misses];
4235 int error;
4236
4237 ofpbuf_use_stub(buf, miss_buf_stubs[n_misses],
4238 sizeof miss_buf_stubs[n_misses]);
4239 error = dpif_recv(backer->dpif, upcall, buf);
4240 if (error) {
4241 ofpbuf_uninit(buf);
4242 break;
4243 }
4244
4245 switch (classify_upcall(upcall)) {
4246 case MISS_UPCALL:
4247 /* Handle it later. */
4248 n_misses++;
4249 break;
4250
4251 case SFLOW_UPCALL:
4252 handle_sflow_upcall(backer, upcall);
4253 ofpbuf_uninit(buf);
4254 break;
4255
4256 case FLOW_SAMPLE_UPCALL:
4257 handle_flow_sample_upcall(backer, upcall);
4258 ofpbuf_uninit(buf);
4259 break;
4260
4261 case IPFIX_UPCALL:
4262 handle_ipfix_upcall(backer, upcall);
4263 ofpbuf_uninit(buf);
4264 break;
4265
4266 case BAD_UPCALL:
4267 ofpbuf_uninit(buf);
4268 break;
4269 }
4270 }
4271
4272 /* Handle deferred MISS_UPCALL processing. */
4273 handle_miss_upcalls(backer, misses, n_misses);
4274 for (i = 0; i < n_misses; i++) {
4275 ofpbuf_uninit(&miss_bufs[i]);
4276 }
4277
4278 return n_processed;
4279 }
4280 \f
4281 /* Flow expiration. */
4282
4283 static int subfacet_max_idle(const struct ofproto_dpif *);
4284 static void update_stats(struct dpif_backer *);
4285 static void rule_expire(struct rule_dpif *);
4286 static void expire_subfacets(struct ofproto_dpif *, int dp_max_idle);
4287
4288 /* This function is called periodically by run(). Its job is to collect
4289 * updates for the flows that have been installed into the datapath, most
4290 * importantly when they last were used, and then use that information to
4291 * expire flows that have not been used recently.
4292 *
4293 * Returns the number of milliseconds after which it should be called again. */
4294 static int
4295 expire(struct dpif_backer *backer)
4296 {
4297 struct ofproto_dpif *ofproto;
4298 int max_idle = INT32_MAX;
4299
4300 /* Periodically clear out the drop keys in an effort to keep them
4301 * relatively few. */
4302 drop_key_clear(backer);
4303
4304 /* Update stats for each flow in the backer. */
4305 update_stats(backer);
4306
4307 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
4308 struct rule *rule, *next_rule;
4309 int dp_max_idle;
4310
4311 if (ofproto->backer != backer) {
4312 continue;
4313 }
4314
4315 /* Keep track of the max number of flows per ofproto_dpif. */
4316 update_max_subfacet_count(ofproto);
4317
4318 /* Expire subfacets that have been idle too long. */
4319 dp_max_idle = subfacet_max_idle(ofproto);
4320 expire_subfacets(ofproto, dp_max_idle);
4321
4322 max_idle = MIN(max_idle, dp_max_idle);
4323
4324 /* Expire OpenFlow flows whose idle_timeout or hard_timeout
4325 * has passed. */
4326 LIST_FOR_EACH_SAFE (rule, next_rule, expirable,
4327 &ofproto->up.expirable) {
4328 rule_expire(rule_dpif_cast(rule));
4329 }
4330
4331 /* All outstanding data in existing flows has been accounted, so it's a
4332 * good time to do bond rebalancing. */
4333 if (ofproto->has_bonded_bundles) {
4334 struct ofbundle *bundle;
4335
4336 HMAP_FOR_EACH (bundle, hmap_node, &ofproto->bundles) {
4337 if (bundle->bond) {
4338 bond_rebalance(bundle->bond, &backer->revalidate_set);
4339 }
4340 }
4341 }
4342 }
4343
4344 return MIN(max_idle, 1000);
4345 }
4346
4347 /* Updates flow table statistics given that the datapath just reported 'stats'
4348 * as 'subfacet''s statistics. */
4349 static void
4350 update_subfacet_stats(struct subfacet *subfacet,
4351 const struct dpif_flow_stats *stats)
4352 {
4353 struct facet *facet = subfacet->facet;
4354 struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto);
4355 struct dpif_flow_stats diff;
4356
4357 diff.tcp_flags = stats->tcp_flags;
4358 diff.used = stats->used;
4359
4360 if (stats->n_packets >= subfacet->dp_packet_count) {
4361 diff.n_packets = stats->n_packets - subfacet->dp_packet_count;
4362 } else {
4363 VLOG_WARN_RL(&rl, "unexpected packet count from the datapath");
4364 diff.n_packets = 0;
4365 }
4366
4367 if (stats->n_bytes >= subfacet->dp_byte_count) {
4368 diff.n_bytes = stats->n_bytes - subfacet->dp_byte_count;
4369 } else {
4370 VLOG_WARN_RL(&rl, "unexpected byte count from datapath");
4371 diff.n_bytes = 0;
4372 }
4373
4374 ofproto->n_hit += diff.n_packets;
4375 subfacet->dp_packet_count = stats->n_packets;
4376 subfacet->dp_byte_count = stats->n_bytes;
4377 subfacet_update_stats(subfacet, &diff);
4378
4379 if (facet->accounted_bytes < facet->byte_count) {
4380 facet_learn(facet);
4381 facet_account(facet);
4382 facet->accounted_bytes = facet->byte_count;
4383 }
4384 }
4385
4386 /* 'key' with length 'key_len' bytes is a flow in 'dpif' that we know nothing
4387 * about, or a flow that shouldn't be installed but was anyway. Delete it. */
4388 static void
4389 delete_unexpected_flow(struct ofproto_dpif *ofproto,
4390 const struct nlattr *key, size_t key_len)
4391 {
4392 if (!VLOG_DROP_WARN(&rl)) {
4393 struct ds s;
4394
4395 ds_init(&s);
4396 odp_flow_key_format(key, key_len, &s);
4397 VLOG_WARN("unexpected flow on %s: %s", ofproto->up.name, ds_cstr(&s));
4398 ds_destroy(&s);
4399 }
4400
4401 COVERAGE_INC(facet_unexpected);
4402 dpif_flow_del(ofproto->backer->dpif, key, key_len, NULL);
4403 }
4404
4405 /* Update 'packet_count', 'byte_count', and 'used' members of installed facets.
4406 *
4407 * This function also pushes statistics updates to rules which each facet
4408 * resubmits into. Generally these statistics will be accurate. However, if a
4409 * facet changes the rule it resubmits into at some time in between
4410 * update_stats() runs, it is possible that statistics accrued to the
4411 * old rule will be incorrectly attributed to the new rule. This could be
4412 * avoided by calling update_stats() whenever rules are created or
4413 * deleted. However, the performance impact of making so many calls to the
4414 * datapath do not justify the benefit of having perfectly accurate statistics.
4415 *
4416 * In addition, this function maintains per ofproto flow hit counts. The patch
4417 * port is not treated specially. e.g. A packet ingress from br0 patched into
4418 * br1 will increase the hit count of br0 by 1, however, does not affect
4419 * the hit or miss counts of br1.
4420 */
4421 static void
4422 update_stats(struct dpif_backer *backer)
4423 {
4424 const struct dpif_flow_stats *stats;
4425 struct dpif_flow_dump dump;
4426 const struct nlattr *key;
4427 struct ofproto_dpif *ofproto;
4428 size_t key_len;
4429
4430 dpif_flow_dump_start(&dump, backer->dpif);
4431 while (dpif_flow_dump_next(&dump, &key, &key_len, NULL, NULL, &stats)) {
4432 struct flow flow;
4433 struct subfacet *subfacet;
4434 uint32_t key_hash;
4435
4436 if (ofproto_receive(backer, NULL, key, key_len, &flow, NULL, &ofproto,
4437 NULL, NULL)) {
4438 continue;
4439 }
4440
4441 ofproto->total_subfacet_count += hmap_count(&ofproto->subfacets);
4442 ofproto->n_update_stats++;
4443
4444 key_hash = odp_flow_key_hash(key, key_len);
4445 subfacet = subfacet_find(ofproto, key, key_len, key_hash);
4446 switch (subfacet ? subfacet->path : SF_NOT_INSTALLED) {
4447 case SF_FAST_PATH:
4448 update_subfacet_stats(subfacet, stats);
4449 break;
4450
4451 case SF_SLOW_PATH:
4452 /* Stats are updated per-packet. */
4453 break;
4454
4455 case SF_NOT_INSTALLED:
4456 default:
4457 delete_unexpected_flow(ofproto, key, key_len);
4458 break;
4459 }
4460 run_fast_rl();
4461 }
4462 dpif_flow_dump_done(&dump);
4463
4464 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
4465 update_moving_averages(ofproto);
4466 }
4467
4468 }
4469
4470 /* Calculates and returns the number of milliseconds of idle time after which
4471 * subfacets should expire from the datapath. When a subfacet expires, we fold
4472 * its statistics into its facet, and when a facet's last subfacet expires, we
4473 * fold its statistic into its rule. */
4474 static int
4475 subfacet_max_idle(const struct ofproto_dpif *ofproto)
4476 {
4477 /*
4478 * Idle time histogram.
4479 *
4480 * Most of the time a switch has a relatively small number of subfacets.
4481 * When this is the case we might as well keep statistics for all of them
4482 * in userspace and to cache them in the kernel datapath for performance as
4483 * well.
4484 *
4485 * As the number of subfacets increases, the memory required to maintain
4486 * statistics about them in userspace and in the kernel becomes
4487 * significant. However, with a large number of subfacets it is likely
4488 * that only a few of them are "heavy hitters" that consume a large amount
4489 * of bandwidth. At this point, only heavy hitters are worth caching in
4490 * the kernel and maintaining in userspaces; other subfacets we can
4491 * discard.
4492 *
4493 * The technique used to compute the idle time is to build a histogram with
4494 * N_BUCKETS buckets whose width is BUCKET_WIDTH msecs each. Each subfacet
4495 * that is installed in the kernel gets dropped in the appropriate bucket.
4496 * After the histogram has been built, we compute the cutoff so that only
4497 * the most-recently-used 1% of subfacets (but at least
4498 * ofproto->up.flow_eviction_threshold flows) are kept cached. At least
4499 * the most-recently-used bucket of subfacets is kept, so actually an
4500 * arbitrary number of subfacets can be kept in any given expiration run
4501 * (though the next run will delete most of those unless they receive
4502 * additional data).
4503 *
4504 * This requires a second pass through the subfacets, in addition to the
4505 * pass made by update_stats(), because the former function never looks at
4506 * uninstallable subfacets.
4507 */
4508 enum { BUCKET_WIDTH = ROUND_UP(100, TIME_UPDATE_INTERVAL) };
4509 enum { N_BUCKETS = 5000 / BUCKET_WIDTH };
4510 int buckets[N_BUCKETS] = { 0 };
4511 int total, subtotal, bucket;
4512 struct subfacet *subfacet;
4513 long long int now;
4514 int i;
4515
4516 total = hmap_count(&ofproto->subfacets);
4517 if (total <= ofproto->up.flow_eviction_threshold) {
4518 return N_BUCKETS * BUCKET_WIDTH;
4519 }
4520
4521 /* Build histogram. */
4522 now = time_msec();
4523 HMAP_FOR_EACH (subfacet, hmap_node, &ofproto->subfacets) {
4524 long long int idle = now - subfacet->used;
4525 int bucket = (idle <= 0 ? 0
4526 : idle >= BUCKET_WIDTH * N_BUCKETS ? N_BUCKETS - 1
4527 : (unsigned int) idle / BUCKET_WIDTH);
4528 buckets[bucket]++;
4529 }
4530
4531 /* Find the first bucket whose flows should be expired. */
4532 subtotal = bucket = 0;
4533 do {
4534 subtotal += buckets[bucket++];
4535 } while (bucket < N_BUCKETS &&
4536 subtotal < MAX(ofproto->up.flow_eviction_threshold, total / 100));
4537
4538 if (VLOG_IS_DBG_ENABLED()) {
4539 struct ds s;
4540
4541 ds_init(&s);
4542 ds_put_cstr(&s, "keep");
4543 for (i = 0; i < N_BUCKETS; i++) {
4544 if (i == bucket) {
4545 ds_put_cstr(&s, ", drop");
4546 }
4547 if (buckets[i]) {
4548 ds_put_format(&s, " %d:%d", i * BUCKET_WIDTH, buckets[i]);
4549 }
4550 }
4551 VLOG_INFO("%s: %s (msec:count)", ofproto->up.name, ds_cstr(&s));
4552 ds_destroy(&s);
4553 }
4554
4555 return bucket * BUCKET_WIDTH;
4556 }
4557
4558 static void
4559 expire_subfacets(struct ofproto_dpif *ofproto, int dp_max_idle)
4560 {
4561 /* Cutoff time for most flows. */
4562 long long int normal_cutoff = time_msec() - dp_max_idle;
4563
4564 /* We really want to keep flows for special protocols around, so use a more
4565 * conservative cutoff. */
4566 long long int special_cutoff = time_msec() - 10000;
4567
4568 struct subfacet *subfacet, *next_subfacet;
4569 struct subfacet *batch[SUBFACET_DESTROY_MAX_BATCH];
4570 int n_batch;
4571
4572 n_batch = 0;
4573 HMAP_FOR_EACH_SAFE (subfacet, next_subfacet, hmap_node,
4574 &ofproto->subfacets) {
4575 long long int cutoff;
4576
4577 cutoff = (subfacet->facet->xout.slow & (SLOW_CFM | SLOW_BFD | SLOW_LACP
4578 | SLOW_STP)
4579 ? special_cutoff
4580 : normal_cutoff);
4581 if (subfacet->used < cutoff) {
4582 if (subfacet->path != SF_NOT_INSTALLED) {
4583 batch[n_batch++] = subfacet;
4584 if (n_batch >= SUBFACET_DESTROY_MAX_BATCH) {
4585 subfacet_destroy_batch(ofproto, batch, n_batch);
4586 n_batch = 0;
4587 }
4588 } else {
4589 subfacet_destroy(subfacet);
4590 }
4591 }
4592 }
4593
4594 if (n_batch > 0) {
4595 subfacet_destroy_batch(ofproto, batch, n_batch);
4596 }
4597 }
4598
4599 /* If 'rule' is an OpenFlow rule, that has expired according to OpenFlow rules,
4600 * then delete it entirely. */
4601 static void
4602 rule_expire(struct rule_dpif *rule)
4603 {
4604 struct facet *facet, *next_facet;
4605 long long int now;
4606 uint8_t reason;
4607
4608 if (rule->up.pending) {
4609 /* We'll have to expire it later. */
4610 return;
4611 }
4612
4613 /* Has 'rule' expired? */
4614 now = time_msec();
4615 if (rule->up.hard_timeout
4616 && now > rule->up.modified + rule->up.hard_timeout * 1000) {
4617 reason = OFPRR_HARD_TIMEOUT;
4618 } else if (rule->up.idle_timeout
4619 && now > rule->up.used + rule->up.idle_timeout * 1000) {
4620 reason = OFPRR_IDLE_TIMEOUT;
4621 } else {
4622 return;
4623 }
4624
4625 COVERAGE_INC(ofproto_dpif_expired);
4626
4627 /* Update stats. (This is a no-op if the rule expired due to an idle
4628 * timeout, because that only happens when the rule has no facets left.) */
4629 LIST_FOR_EACH_SAFE (facet, next_facet, list_node, &rule->facets) {
4630 facet_remove(facet);
4631 }
4632
4633 /* Get rid of the rule. */
4634 ofproto_rule_expire(&rule->up, reason);
4635 }
4636 \f
4637 /* Facets. */
4638
4639 /* Creates and returns a new facet based on 'miss'.
4640 *
4641 * The caller must already have determined that no facet with an identical
4642 * 'miss->flow' exists in 'miss->ofproto'.
4643 *
4644 * 'hash' must be the return value of flow_hash(miss->flow, 0).
4645 *
4646 * The facet will initially have no subfacets. The caller should create (at
4647 * least) one subfacet with subfacet_create(). */
4648 static struct facet *
4649 facet_create(const struct flow_miss *miss, uint32_t hash)
4650 {
4651 struct ofproto_dpif *ofproto = miss->ofproto;
4652 struct xlate_in xin;
4653 struct facet *facet;
4654
4655 facet = xzalloc(sizeof *facet);
4656 facet->used = time_msec();
4657 facet->flow = miss->flow;
4658 facet->initial_vals = miss->initial_vals;
4659 facet->rule = rule_dpif_lookup(ofproto, &facet->flow);
4660 facet->learn_rl = time_msec() + 500;
4661
4662 hmap_insert(&ofproto->facets, &facet->hmap_node, hash);
4663 list_push_back(&facet->rule->facets, &facet->list_node);
4664 list_init(&facet->subfacets);
4665 netflow_flow_init(&facet->nf_flow);
4666 netflow_flow_update_time(ofproto->netflow, &facet->nf_flow, facet->used);
4667
4668 xlate_in_init(&xin, ofproto, &facet->flow, &facet->initial_vals,
4669 facet->rule, 0, NULL);
4670 xin.may_learn = true;
4671 xlate_actions(&xin, &facet->xout);
4672 facet->nf_flow.output_iface = facet->xout.nf_output_iface;
4673
4674 return facet;
4675 }
4676
4677 static void
4678 facet_free(struct facet *facet)
4679 {
4680 if (facet) {
4681 xlate_out_uninit(&facet->xout);
4682 free(facet);
4683 }
4684 }
4685
4686 /* Executes, within 'ofproto', the 'n_actions' actions in 'actions' on
4687 * 'packet', which arrived on 'in_port'. */
4688 static bool
4689 execute_odp_actions(struct ofproto_dpif *ofproto, const struct flow *flow,
4690 const struct nlattr *odp_actions, size_t actions_len,
4691 struct ofpbuf *packet)
4692 {
4693 struct odputil_keybuf keybuf;
4694 struct ofpbuf key;
4695 int error;
4696
4697 ofpbuf_use_stack(&key, &keybuf, sizeof keybuf);
4698 odp_flow_key_from_flow(&key, flow,
4699 ofp_port_to_odp_port(ofproto, flow->in_port));
4700
4701 error = dpif_execute(ofproto->backer->dpif, key.data, key.size,
4702 odp_actions, actions_len, packet);
4703 return !error;
4704 }
4705
4706 /* Remove 'facet' from 'ofproto' and free up the associated memory:
4707 *
4708 * - If 'facet' was installed in the datapath, uninstalls it and updates its
4709 * rule's statistics, via subfacet_uninstall().
4710 *
4711 * - Removes 'facet' from its rule and from ofproto->facets.
4712 */
4713 static void
4714 facet_remove(struct facet *facet)
4715 {
4716 struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto);
4717 struct subfacet *subfacet, *next_subfacet;
4718
4719 ovs_assert(!list_is_empty(&facet->subfacets));
4720
4721 /* First uninstall all of the subfacets to get final statistics. */
4722 LIST_FOR_EACH (subfacet, list_node, &facet->subfacets) {
4723 subfacet_uninstall(subfacet);
4724 }
4725
4726 /* Flush the final stats to the rule.
4727 *
4728 * This might require us to have at least one subfacet around so that we
4729 * can use its actions for accounting in facet_account(), which is why we
4730 * have uninstalled but not yet destroyed the subfacets. */
4731 facet_flush_stats(facet);
4732
4733 /* Now we're really all done so destroy everything. */
4734 LIST_FOR_EACH_SAFE (subfacet, next_subfacet, list_node,
4735 &facet->subfacets) {
4736 subfacet_destroy__(subfacet);
4737 }
4738 hmap_remove(&ofproto->facets, &facet->hmap_node);
4739 list_remove(&facet->list_node);
4740 facet_free(facet);
4741 }
4742
4743 /* Feed information from 'facet' back into the learning table to keep it in
4744 * sync with what is actually flowing through the datapath. */
4745 static void
4746 facet_learn(struct facet *facet)
4747 {
4748 long long int now = time_msec();
4749
4750 if (!facet->xout.has_fin_timeout && now < facet->learn_rl) {
4751 return;
4752 }
4753
4754 facet->learn_rl = now + 500;
4755
4756 if (!facet->xout.has_learn
4757 && !facet->xout.has_normal
4758 && (!facet->xout.has_fin_timeout
4759 || !(facet->tcp_flags & (TCP_FIN | TCP_RST)))) {
4760 return;
4761 }
4762
4763 facet_push_stats(facet, true);
4764 }
4765
4766 static void
4767 facet_account(struct facet *facet)
4768 {
4769 struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto);
4770 const struct nlattr *a;
4771 unsigned int left;
4772 ovs_be16 vlan_tci;
4773 uint64_t n_bytes;
4774
4775 if (!facet->xout.has_normal || !ofproto->has_bonded_bundles) {
4776 return;
4777 }
4778 n_bytes = facet->byte_count - facet->accounted_bytes;
4779
4780 /* This loop feeds byte counters to bond_account() for rebalancing to use
4781 * as a basis. We also need to track the actual VLAN on which the packet
4782 * is going to be sent to ensure that it matches the one passed to
4783 * bond_choose_output_slave(). (Otherwise, we will account to the wrong
4784 * hash bucket.)
4785 *
4786 * We use the actions from an arbitrary subfacet because they should all
4787 * be equally valid for our purpose. */
4788 vlan_tci = facet->flow.vlan_tci;
4789 NL_ATTR_FOR_EACH_UNSAFE (a, left, facet->xout.odp_actions.data,
4790 facet->xout.odp_actions.size) {
4791 const struct ovs_action_push_vlan *vlan;
4792 struct ofport_dpif *port;
4793
4794 switch (nl_attr_type(a)) {
4795 case OVS_ACTION_ATTR_OUTPUT:
4796 port = get_odp_port(ofproto, nl_attr_get_u32(a));
4797 if (port && port->bundle && port->bundle->bond) {
4798 bond_account(port->bundle->bond, &facet->flow,
4799 vlan_tci_to_vid(vlan_tci), n_bytes);
4800 }
4801 break;
4802
4803 case OVS_ACTION_ATTR_POP_VLAN:
4804 vlan_tci = htons(0);
4805 break;
4806
4807 case OVS_ACTION_ATTR_PUSH_VLAN:
4808 vlan = nl_attr_get(a);
4809 vlan_tci = vlan->vlan_tci;
4810 break;
4811 }
4812 }
4813 }
4814
4815 /* Returns true if the only action for 'facet' is to send to the controller.
4816 * (We don't report NetFlow expiration messages for such facets because they
4817 * are just part of the control logic for the network, not real traffic). */
4818 static bool
4819 facet_is_controller_flow(struct facet *facet)
4820 {
4821 if (facet) {
4822 const struct rule *rule = &facet->rule->up;
4823 const struct ofpact *ofpacts = rule->ofpacts;
4824 size_t ofpacts_len = rule->ofpacts_len;
4825
4826 if (ofpacts_len > 0 &&
4827 ofpacts->type == OFPACT_CONTROLLER &&
4828 ofpact_next(ofpacts) >= ofpact_end(ofpacts, ofpacts_len)) {
4829 return true;
4830 }
4831 }
4832 return false;
4833 }
4834
4835 /* Folds all of 'facet''s statistics into its rule. Also updates the
4836 * accounting ofhook and emits a NetFlow expiration if appropriate. All of
4837 * 'facet''s statistics in the datapath should have been zeroed and folded into
4838 * its packet and byte counts before this function is called. */
4839 static void
4840 facet_flush_stats(struct facet *facet)
4841 {
4842 struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto);
4843 struct subfacet *subfacet;
4844
4845 LIST_FOR_EACH (subfacet, list_node, &facet->subfacets) {
4846 ovs_assert(!subfacet->dp_byte_count);
4847 ovs_assert(!subfacet->dp_packet_count);
4848 }
4849
4850 facet_push_stats(facet, false);
4851 if (facet->accounted_bytes < facet->byte_count) {
4852 facet_account(facet);
4853 facet->accounted_bytes = facet->byte_count;
4854 }
4855
4856 if (ofproto->netflow && !facet_is_controller_flow(facet)) {
4857 struct ofexpired expired;
4858 expired.flow = facet->flow;
4859 expired.packet_count = facet->packet_count;
4860 expired.byte_count = facet->byte_count;
4861 expired.used = facet->used;
4862 netflow_expire(ofproto->netflow, &facet->nf_flow, &expired);
4863 }
4864
4865 /* Reset counters to prevent double counting if 'facet' ever gets
4866 * reinstalled. */
4867 facet_reset_counters(facet);
4868
4869 netflow_flow_clear(&facet->nf_flow);
4870 facet->tcp_flags = 0;
4871 }
4872
4873 /* Searches 'ofproto''s table of facets for one exactly equal to 'flow'.
4874 * Returns it if found, otherwise a null pointer.
4875 *
4876 * 'hash' must be the return value of flow_hash(flow, 0).
4877 *
4878 * The returned facet might need revalidation; use facet_lookup_valid()
4879 * instead if that is important. */
4880 static struct facet *
4881 facet_find(struct ofproto_dpif *ofproto,
4882 const struct flow *flow, uint32_t hash)
4883 {
4884 struct facet *facet;
4885
4886 HMAP_FOR_EACH_WITH_HASH (facet, hmap_node, hash, &ofproto->facets) {
4887 if (flow_equal(flow, &facet->flow)) {
4888 return facet;
4889 }
4890 }
4891
4892 return NULL;
4893 }
4894
4895 /* Searches 'ofproto''s table of facets for one exactly equal to 'flow'.
4896 * Returns it if found, otherwise a null pointer.
4897 *
4898 * 'hash' must be the return value of flow_hash(flow, 0).
4899 *
4900 * The returned facet is guaranteed to be valid. */
4901 static struct facet *
4902 facet_lookup_valid(struct ofproto_dpif *ofproto, const struct flow *flow,
4903 uint32_t hash)
4904 {
4905 struct facet *facet;
4906
4907 facet = facet_find(ofproto, flow, hash);
4908 if (facet
4909 && (ofproto->backer->need_revalidate
4910 || tag_set_intersects(&ofproto->backer->revalidate_set,
4911 facet->xout.tags))
4912 && !facet_revalidate(facet)) {
4913 return NULL;
4914 }
4915
4916 return facet;
4917 }
4918
4919 static bool
4920 facet_check_consistency(struct facet *facet)
4921 {
4922 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 15);
4923
4924 struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto);
4925
4926 struct xlate_out xout;
4927 struct xlate_in xin;
4928
4929 struct rule_dpif *rule;
4930 bool ok;
4931
4932 /* Check the rule for consistency. */
4933 rule = rule_dpif_lookup(ofproto, &facet->flow);
4934 if (rule != facet->rule) {
4935 if (!VLOG_DROP_WARN(&rl)) {
4936 struct ds s = DS_EMPTY_INITIALIZER;
4937
4938 flow_format(&s, &facet->flow);
4939 ds_put_format(&s, ": facet associated with wrong rule (was "
4940 "table=%"PRIu8",", facet->rule->up.table_id);
4941 cls_rule_format(&facet->rule->up.cr, &s);
4942 ds_put_format(&s, ") (should have been table=%"PRIu8",",
4943 rule->up.table_id);
4944 cls_rule_format(&rule->up.cr, &s);
4945 ds_put_cstr(&s, ")\n");
4946
4947 ds_destroy(&s);
4948 }
4949 return false;
4950 }
4951
4952 /* Check the datapath actions for consistency. */
4953 xlate_in_init(&xin, ofproto, &facet->flow, &facet->initial_vals, rule,
4954 0, NULL);
4955 xlate_actions(&xin, &xout);
4956
4957 ok = ofpbuf_equal(&facet->xout.odp_actions, &xout.odp_actions)
4958 && facet->xout.slow == xout.slow;
4959 if (!ok && !VLOG_DROP_WARN(&rl)) {
4960 struct ds s = DS_EMPTY_INITIALIZER;
4961
4962 flow_format(&s, &facet->flow);
4963 ds_put_cstr(&s, ": inconsistency in facet");
4964
4965 if (!ofpbuf_equal(&facet->xout.odp_actions, &xout.odp_actions)) {
4966 ds_put_cstr(&s, " (actions were: ");
4967 format_odp_actions(&s, facet->xout.odp_actions.data,
4968 facet->xout.odp_actions.size);
4969 ds_put_cstr(&s, ") (correct actions: ");
4970 format_odp_actions(&s, xout.odp_actions.data,
4971 xout.odp_actions.size);
4972 ds_put_cstr(&s, ")");
4973 }
4974
4975 if (facet->xout.slow != xout.slow) {
4976 ds_put_format(&s, " slow path incorrect. should be %d", xout.slow);
4977 }
4978
4979 ds_destroy(&s);
4980 }
4981 xlate_out_uninit(&xout);
4982
4983 return ok;
4984 }
4985
4986 /* Re-searches the classifier for 'facet':
4987 *
4988 * - If the rule found is different from 'facet''s current rule, moves
4989 * 'facet' to the new rule and recompiles its actions.
4990 *
4991 * - If the rule found is the same as 'facet''s current rule, leaves 'facet'
4992 * where it is and recompiles its actions anyway.
4993 *
4994 * - If any of 'facet''s subfacets correspond to a new flow according to
4995 * ofproto_receive(), 'facet' is removed.
4996 *
4997 * Returns true if 'facet' is still valid. False if 'facet' was removed. */
4998 static bool
4999 facet_revalidate(struct facet *facet)
5000 {
5001 struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto);
5002 struct rule_dpif *new_rule;
5003 struct subfacet *subfacet;
5004 struct xlate_out xout;
5005 struct xlate_in xin;
5006
5007 COVERAGE_INC(facet_revalidate);
5008
5009 /* Check that child subfacets still correspond to this facet. Tunnel
5010 * configuration changes could cause a subfacet's OpenFlow in_port to
5011 * change. */
5012 LIST_FOR_EACH (subfacet, list_node, &facet->subfacets) {
5013 struct ofproto_dpif *recv_ofproto;
5014 struct flow recv_flow;
5015 int error;
5016
5017 error = ofproto_receive(ofproto->backer, NULL, subfacet->key,
5018 subfacet->key_len, &recv_flow, NULL,
5019 &recv_ofproto, NULL, NULL);
5020 if (error
5021 || recv_ofproto != ofproto
5022 || memcmp(&recv_flow, &facet->flow, sizeof recv_flow)) {
5023 facet_remove(facet);
5024 return false;
5025 }
5026 }
5027
5028 new_rule = rule_dpif_lookup(ofproto, &facet->flow);
5029
5030 /* Calculate new datapath actions.
5031 *
5032 * We do not modify any 'facet' state yet, because we might need to, e.g.,
5033 * emit a NetFlow expiration and, if so, we need to have the old state
5034 * around to properly compose it. */
5035 xlate_in_init(&xin, ofproto, &facet->flow, &facet->initial_vals, new_rule,
5036 0, NULL);
5037 xlate_actions(&xin, &xout);
5038
5039 /* A facet's slow path reason should only change under dramatic
5040 * circumstances. Rather than try to update everything, it's simpler to
5041 * remove the facet and start over. */
5042 if (facet->xout.slow != xout.slow) {
5043 facet_remove(facet);
5044 xlate_out_uninit(&xout);
5045 return false;
5046 }
5047
5048 if (!ofpbuf_equal(&facet->xout.odp_actions, &xout.odp_actions)) {
5049 LIST_FOR_EACH(subfacet, list_node, &facet->subfacets) {
5050 if (subfacet->path == SF_FAST_PATH) {
5051 struct dpif_flow_stats stats;
5052
5053 subfacet_install(subfacet, &xout.odp_actions, &stats);
5054 subfacet_update_stats(subfacet, &stats);
5055 }
5056 }
5057
5058 facet_flush_stats(facet);
5059
5060 ofpbuf_clear(&facet->xout.odp_actions);
5061 ofpbuf_put(&facet->xout.odp_actions, xout.odp_actions.data,
5062 xout.odp_actions.size);
5063 }
5064
5065 /* Update 'facet' now that we've taken care of all the old state. */
5066 facet->xout.tags = xout.tags;
5067 facet->xout.slow = xout.slow;
5068 facet->xout.has_learn = xout.has_learn;
5069 facet->xout.has_normal = xout.has_normal;
5070 facet->xout.has_fin_timeout = xout.has_fin_timeout;
5071 facet->xout.nf_output_iface = xout.nf_output_iface;
5072 facet->xout.mirrors = xout.mirrors;
5073 facet->nf_flow.output_iface = facet->xout.nf_output_iface;
5074
5075 if (facet->rule != new_rule) {
5076 COVERAGE_INC(facet_changed_rule);
5077 list_remove(&facet->list_node);
5078 list_push_back(&new_rule->facets, &facet->list_node);
5079 facet->rule = new_rule;
5080 facet->used = new_rule->up.created;
5081 facet->prev_used = facet->used;
5082 }
5083
5084 xlate_out_uninit(&xout);
5085 return true;
5086 }
5087
5088 static void
5089 facet_reset_counters(struct facet *facet)
5090 {
5091 facet->packet_count = 0;
5092 facet->byte_count = 0;
5093 facet->prev_packet_count = 0;
5094 facet->prev_byte_count = 0;
5095 facet->accounted_bytes = 0;
5096 }
5097
5098 static void
5099 facet_push_stats(struct facet *facet, bool may_learn)
5100 {
5101 struct dpif_flow_stats stats;
5102
5103 ovs_assert(facet->packet_count >= facet->prev_packet_count);
5104 ovs_assert(facet->byte_count >= facet->prev_byte_count);
5105 ovs_assert(facet->used >= facet->prev_used);
5106
5107 stats.n_packets = facet->packet_count - facet->prev_packet_count;
5108 stats.n_bytes = facet->byte_count - facet->prev_byte_count;
5109 stats.used = facet->used;
5110 stats.tcp_flags = facet->tcp_flags;
5111
5112 if (may_learn || stats.n_packets || facet->used > facet->prev_used) {
5113 struct ofproto_dpif *ofproto =
5114 ofproto_dpif_cast(facet->rule->up.ofproto);
5115
5116 struct ofport_dpif *in_port;
5117 struct xlate_in xin;
5118
5119 facet->prev_packet_count = facet->packet_count;
5120 facet->prev_byte_count = facet->byte_count;
5121 facet->prev_used = facet->used;
5122
5123 in_port = get_ofp_port(ofproto, facet->flow.in_port);
5124 if (in_port && in_port->tnl_port) {
5125 netdev_vport_inc_rx(in_port->up.netdev, &stats);
5126 }
5127
5128 rule_credit_stats(facet->rule, &stats);
5129 netflow_flow_update_time(ofproto->netflow, &facet->nf_flow,
5130 facet->used);
5131 netflow_flow_update_flags(&facet->nf_flow, facet->tcp_flags);
5132 update_mirror_stats(ofproto, facet->xout.mirrors, stats.n_packets,
5133 stats.n_bytes);
5134
5135 xlate_in_init(&xin, ofproto, &facet->flow, &facet->initial_vals,
5136 facet->rule, stats.tcp_flags, NULL);
5137 xin.resubmit_stats = &stats;
5138 xin.may_learn = may_learn;
5139 xlate_actions_for_side_effects(&xin);
5140 }
5141 }
5142
5143 static void
5144 push_all_stats__(bool run_fast)
5145 {
5146 static long long int rl = LLONG_MIN;
5147 struct ofproto_dpif *ofproto;
5148
5149 if (time_msec() < rl) {
5150 return;
5151 }
5152
5153 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
5154 struct facet *facet;
5155
5156 HMAP_FOR_EACH (facet, hmap_node, &ofproto->facets) {
5157 facet_push_stats(facet, false);
5158 if (run_fast) {
5159 run_fast_rl();
5160 }
5161 }
5162 }
5163
5164 rl = time_msec() + 100;
5165 }
5166
5167 static void
5168 push_all_stats(void)
5169 {
5170 push_all_stats__(true);
5171 }
5172
5173 static void
5174 rule_credit_stats(struct rule_dpif *rule, const struct dpif_flow_stats *stats)
5175 {
5176 rule->packet_count += stats->n_packets;
5177 rule->byte_count += stats->n_bytes;
5178 ofproto_rule_update_used(&rule->up, stats->used);
5179 }
5180 \f
5181 /* Subfacets. */
5182
5183 static struct subfacet *
5184 subfacet_find(struct ofproto_dpif *ofproto,
5185 const struct nlattr *key, size_t key_len, uint32_t key_hash)
5186 {
5187 struct subfacet *subfacet;
5188
5189 HMAP_FOR_EACH_WITH_HASH (subfacet, hmap_node, key_hash,
5190 &ofproto->subfacets) {
5191 if (subfacet->key_len == key_len
5192 && !memcmp(key, subfacet->key, key_len)) {
5193 return subfacet;
5194 }
5195 }
5196
5197 return NULL;
5198 }
5199
5200 /* Searches 'facet' (within 'ofproto') for a subfacet with the specified
5201 * 'key_fitness', 'key', and 'key_len' members in 'miss'. Returns the
5202 * existing subfacet if there is one, otherwise creates and returns a
5203 * new subfacet. */
5204 static struct subfacet *
5205 subfacet_create(struct facet *facet, struct flow_miss *miss,
5206 long long int now)
5207 {
5208 struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto);
5209 enum odp_key_fitness key_fitness = miss->key_fitness;
5210 const struct nlattr *key = miss->key;
5211 size_t key_len = miss->key_len;
5212 uint32_t key_hash;
5213 struct subfacet *subfacet;
5214
5215 key_hash = odp_flow_key_hash(key, key_len);
5216
5217 if (list_is_empty(&facet->subfacets)) {
5218 subfacet = &facet->one_subfacet;
5219 } else {
5220 subfacet = subfacet_find(ofproto, key, key_len, key_hash);
5221 if (subfacet) {
5222 if (subfacet->facet == facet) {
5223 return subfacet;
5224 }
5225
5226 /* This shouldn't happen. */
5227 VLOG_ERR_RL(&rl, "subfacet with wrong facet");
5228 subfacet_destroy(subfacet);
5229 }
5230
5231 subfacet = xmalloc(sizeof *subfacet);
5232 }
5233
5234 hmap_insert(&ofproto->subfacets, &subfacet->hmap_node, key_hash);
5235 list_push_back(&facet->subfacets, &subfacet->list_node);
5236 subfacet->facet = facet;
5237 subfacet->key_fitness = key_fitness;
5238 subfacet->key = xmemdup(key, key_len);
5239 subfacet->key_len = key_len;
5240 subfacet->used = now;
5241 subfacet->created = now;
5242 subfacet->dp_packet_count = 0;
5243 subfacet->dp_byte_count = 0;
5244 subfacet->path = SF_NOT_INSTALLED;
5245
5246 ofproto->subfacet_add_count++;
5247 return subfacet;
5248 }
5249
5250 /* Uninstalls 'subfacet' from the datapath, if it is installed, removes it from
5251 * its facet within 'ofproto', and frees it. */
5252 static void
5253 subfacet_destroy__(struct subfacet *subfacet)
5254 {
5255 struct facet *facet = subfacet->facet;
5256 struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto);
5257
5258 /* Update ofproto stats before uninstall the subfacet. */
5259 ofproto->subfacet_del_count++;
5260 ofproto->total_subfacet_life_span += (time_msec() - subfacet->created);
5261
5262 subfacet_uninstall(subfacet);
5263 hmap_remove(&ofproto->subfacets, &subfacet->hmap_node);
5264 list_remove(&subfacet->list_node);
5265 free(subfacet->key);
5266 if (subfacet != &facet->one_subfacet) {
5267 free(subfacet);
5268 }
5269 }
5270
5271 /* Destroys 'subfacet', as with subfacet_destroy__(), and then if this was the
5272 * last remaining subfacet in its facet destroys the facet too. */
5273 static void
5274 subfacet_destroy(struct subfacet *subfacet)
5275 {
5276 struct facet *facet = subfacet->facet;
5277
5278 if (list_is_singleton(&facet->subfacets)) {
5279 /* facet_remove() needs at least one subfacet (it will remove it). */
5280 facet_remove(facet);
5281 } else {
5282 subfacet_destroy__(subfacet);
5283 }
5284 }
5285
5286 static void
5287 subfacet_destroy_batch(struct ofproto_dpif *ofproto,
5288 struct subfacet **subfacets, int n)
5289 {
5290 struct dpif_op ops[SUBFACET_DESTROY_MAX_BATCH];
5291 struct dpif_op *opsp[SUBFACET_DESTROY_MAX_BATCH];
5292 struct dpif_flow_stats stats[SUBFACET_DESTROY_MAX_BATCH];
5293 int i;
5294
5295 for (i = 0; i < n; i++) {
5296 ops[i].type = DPIF_OP_FLOW_DEL;
5297 ops[i].u.flow_del.key = subfacets[i]->key;
5298 ops[i].u.flow_del.key_len = subfacets[i]->key_len;
5299 ops[i].u.flow_del.stats = &stats[i];
5300 opsp[i] = &ops[i];
5301 }
5302
5303 dpif_operate(ofproto->backer->dpif, opsp, n);
5304 for (i = 0; i < n; i++) {
5305 subfacet_reset_dp_stats(subfacets[i], &stats[i]);
5306 subfacets[i]->path = SF_NOT_INSTALLED;
5307 subfacet_destroy(subfacets[i]);
5308 run_fast_rl();
5309 }
5310 }
5311
5312 /* Updates 'subfacet''s datapath flow, setting its actions to 'actions_len'
5313 * bytes of actions in 'actions'. If 'stats' is non-null, statistics counters
5314 * in the datapath will be zeroed and 'stats' will be updated with traffic new
5315 * since 'subfacet' was last updated.
5316 *
5317 * Returns 0 if successful, otherwise a positive errno value. */
5318 static int
5319 subfacet_install(struct subfacet *subfacet, const struct ofpbuf *odp_actions,
5320 struct dpif_flow_stats *stats)
5321 {
5322 struct facet *facet = subfacet->facet;
5323 struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto);
5324 enum subfacet_path path = facet->xout.slow ? SF_SLOW_PATH : SF_FAST_PATH;
5325 const struct nlattr *actions = odp_actions->data;
5326 size_t actions_len = odp_actions->size;
5327
5328 uint64_t slow_path_stub[128 / 8];
5329 enum dpif_flow_put_flags flags;
5330 int ret;
5331
5332 flags = DPIF_FP_CREATE | DPIF_FP_MODIFY;
5333 if (stats) {
5334 flags |= DPIF_FP_ZERO_STATS;
5335 }
5336
5337 if (path == SF_SLOW_PATH) {
5338 compose_slow_path(ofproto, &facet->flow, facet->xout.slow,
5339 slow_path_stub, sizeof slow_path_stub,
5340 &actions, &actions_len);
5341 }
5342
5343 ret = dpif_flow_put(ofproto->backer->dpif, flags, subfacet->key,
5344 subfacet->key_len, actions, actions_len, stats);
5345
5346 if (stats) {
5347 subfacet_reset_dp_stats(subfacet, stats);
5348 }
5349
5350 if (!ret) {
5351 subfacet->path = path;
5352 }
5353 return ret;
5354 }
5355
5356 /* If 'subfacet' is installed in the datapath, uninstalls it. */
5357 static void
5358 subfacet_uninstall(struct subfacet *subfacet)
5359 {
5360 if (subfacet->path != SF_NOT_INSTALLED) {
5361 struct rule_dpif *rule = subfacet->facet->rule;
5362 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
5363 struct dpif_flow_stats stats;
5364 int error;
5365
5366 error = dpif_flow_del(ofproto->backer->dpif, subfacet->key,
5367 subfacet->key_len, &stats);
5368 subfacet_reset_dp_stats(subfacet, &stats);
5369 if (!error) {
5370 subfacet_update_stats(subfacet, &stats);
5371 }
5372 subfacet->path = SF_NOT_INSTALLED;
5373 } else {
5374 ovs_assert(subfacet->dp_packet_count == 0);
5375 ovs_assert(subfacet->dp_byte_count == 0);
5376 }
5377 }
5378
5379 /* Resets 'subfacet''s datapath statistics counters. This should be called
5380 * when 'subfacet''s statistics are cleared in the datapath. If 'stats' is
5381 * non-null, it should contain the statistics returned by dpif when 'subfacet'
5382 * was reset in the datapath. 'stats' will be modified to include only
5383 * statistics new since 'subfacet' was last updated. */
5384 static void
5385 subfacet_reset_dp_stats(struct subfacet *subfacet,
5386 struct dpif_flow_stats *stats)
5387 {
5388 if (stats
5389 && subfacet->dp_packet_count <= stats->n_packets
5390 && subfacet->dp_byte_count <= stats->n_bytes) {
5391 stats->n_packets -= subfacet->dp_packet_count;
5392 stats->n_bytes -= subfacet->dp_byte_count;
5393 }
5394
5395 subfacet->dp_packet_count = 0;
5396 subfacet->dp_byte_count = 0;
5397 }
5398
5399 /* Folds the statistics from 'stats' into the counters in 'subfacet'.
5400 *
5401 * Because of the meaning of a subfacet's counters, it only makes sense to do
5402 * this if 'stats' are not tracked in the datapath, that is, if 'stats'
5403 * represents a packet that was sent by hand or if it represents statistics
5404 * that have been cleared out of the datapath. */
5405 static void
5406 subfacet_update_stats(struct subfacet *subfacet,
5407 const struct dpif_flow_stats *stats)
5408 {
5409 if (stats->n_packets || stats->used > subfacet->used) {
5410 struct facet *facet = subfacet->facet;
5411
5412 subfacet->used = MAX(subfacet->used, stats->used);
5413 facet->used = MAX(facet->used, stats->used);
5414 facet->packet_count += stats->n_packets;
5415 facet->byte_count += stats->n_bytes;
5416 facet->tcp_flags |= stats->tcp_flags;
5417 }
5418 }
5419 \f
5420 /* Rules. */
5421
5422 static struct rule_dpif *
5423 rule_dpif_lookup(struct ofproto_dpif *ofproto, const struct flow *flow)
5424 {
5425 struct rule_dpif *rule;
5426
5427 rule = rule_dpif_lookup__(ofproto, flow, 0);
5428 if (rule) {
5429 return rule;
5430 }
5431
5432 return rule_dpif_miss_rule(ofproto, flow);
5433 }
5434
5435 static struct rule_dpif *
5436 rule_dpif_lookup__(struct ofproto_dpif *ofproto, const struct flow *flow,
5437 uint8_t table_id)
5438 {
5439 struct cls_rule *cls_rule;
5440 struct classifier *cls;
5441 bool frag;
5442
5443 if (table_id >= N_TABLES) {
5444 return NULL;
5445 }
5446
5447 cls = &ofproto->up.tables[table_id].cls;
5448 frag = (flow->nw_frag & FLOW_NW_FRAG_ANY) != 0;
5449 if (frag && ofproto->up.frag_handling == OFPC_FRAG_NORMAL) {
5450 /* We must pretend that transport ports are unavailable. */
5451 struct flow ofpc_normal_flow = *flow;
5452 ofpc_normal_flow.tp_src = htons(0);
5453 ofpc_normal_flow.tp_dst = htons(0);
5454 cls_rule = classifier_lookup(cls, &ofpc_normal_flow);
5455 } else if (frag && ofproto->up.frag_handling == OFPC_FRAG_DROP) {
5456 cls_rule = &ofproto->drop_frags_rule->up.cr;
5457 } else {
5458 cls_rule = classifier_lookup(cls, flow);
5459 }
5460 return rule_dpif_cast(rule_from_cls_rule(cls_rule));
5461 }
5462
5463 static struct rule_dpif *
5464 rule_dpif_miss_rule(struct ofproto_dpif *ofproto, const struct flow *flow)
5465 {
5466 struct ofport_dpif *port;
5467
5468 port = get_ofp_port(ofproto, flow->in_port);
5469 if (!port) {
5470 VLOG_WARN_RL(&rl, "packet-in on unknown port %"PRIu16, flow->in_port);
5471 return ofproto->miss_rule;
5472 }
5473
5474 if (port->up.pp.config & OFPUTIL_PC_NO_PACKET_IN) {
5475 return ofproto->no_packet_in_rule;
5476 }
5477 return ofproto->miss_rule;
5478 }
5479
5480 static void
5481 complete_operation(struct rule_dpif *rule)
5482 {
5483 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
5484
5485 rule_invalidate(rule);
5486 if (clogged) {
5487 struct dpif_completion *c = xmalloc(sizeof *c);
5488 c->op = rule->up.pending;
5489 list_push_back(&ofproto->completions, &c->list_node);
5490 } else {
5491 ofoperation_complete(rule->up.pending, 0);
5492 }
5493 }
5494
5495 static struct rule *
5496 rule_alloc(void)
5497 {
5498 struct rule_dpif *rule = xmalloc(sizeof *rule);
5499 return &rule->up;
5500 }
5501
5502 static void
5503 rule_dealloc(struct rule *rule_)
5504 {
5505 struct rule_dpif *rule = rule_dpif_cast(rule_);
5506 free(rule);
5507 }
5508
5509 static enum ofperr
5510 rule_construct(struct rule *rule_)
5511 {
5512 struct rule_dpif *rule = rule_dpif_cast(rule_);
5513 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
5514 struct rule_dpif *victim;
5515 uint8_t table_id;
5516
5517 rule->packet_count = 0;
5518 rule->byte_count = 0;
5519
5520 victim = rule_dpif_cast(ofoperation_get_victim(rule->up.pending));
5521 if (victim && !list_is_empty(&victim->facets)) {
5522 struct facet *facet;
5523
5524 rule->facets = victim->facets;
5525 list_moved(&rule->facets);
5526 LIST_FOR_EACH (facet, list_node, &rule->facets) {
5527 /* XXX: We're only clearing our local counters here. It's possible
5528 * that quite a few packets are unaccounted for in the datapath
5529 * statistics. These will be accounted to the new rule instead of
5530 * cleared as required. This could be fixed by clearing out the
5531 * datapath statistics for this facet, but currently it doesn't
5532 * seem worth it. */
5533 facet_reset_counters(facet);
5534 facet->rule = rule;
5535 }
5536 } else {
5537 /* Must avoid list_moved() in this case. */
5538 list_init(&rule->facets);
5539 }
5540
5541 table_id = rule->up.table_id;
5542 if (victim) {
5543 rule->tag = victim->tag;
5544 } else if (table_id == 0) {
5545 rule->tag = 0;
5546 } else {
5547 struct flow flow;
5548
5549 miniflow_expand(&rule->up.cr.match.flow, &flow);
5550 rule->tag = rule_calculate_tag(&flow, &rule->up.cr.match.mask,
5551 ofproto->tables[table_id].basis);
5552 }
5553
5554 complete_operation(rule);
5555 return 0;
5556 }
5557
5558 static void
5559 rule_destruct(struct rule *rule_)
5560 {
5561 struct rule_dpif *rule = rule_dpif_cast(rule_);
5562 struct facet *facet, *next_facet;
5563
5564 LIST_FOR_EACH_SAFE (facet, next_facet, list_node, &rule->facets) {
5565 facet_revalidate(facet);
5566 }
5567
5568 complete_operation(rule);
5569 }
5570
5571 static void
5572 rule_get_stats(struct rule *rule_, uint64_t *packets, uint64_t *bytes)
5573 {
5574 struct rule_dpif *rule = rule_dpif_cast(rule_);
5575
5576 /* push_all_stats() can handle flow misses which, when using the learn
5577 * action, can cause rules to be added and deleted. This can corrupt our
5578 * caller's datastructures which assume that rule_get_stats() doesn't have
5579 * an impact on the flow table. To be safe, we disable miss handling. */
5580 push_all_stats__(false);
5581
5582 /* Start from historical data for 'rule' itself that are no longer tracked
5583 * in facets. This counts, for example, facets that have expired. */
5584 *packets = rule->packet_count;
5585 *bytes = rule->byte_count;
5586 }
5587
5588 static void
5589 rule_dpif_execute(struct rule_dpif *rule, const struct flow *flow,
5590 struct ofpbuf *packet)
5591 {
5592 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
5593 struct initial_vals initial_vals;
5594 struct dpif_flow_stats stats;
5595 struct xlate_out xout;
5596 struct xlate_in xin;
5597
5598 dpif_flow_stats_extract(flow, packet, time_msec(), &stats);
5599 rule_credit_stats(rule, &stats);
5600
5601 initial_vals.vlan_tci = flow->vlan_tci;
5602 xlate_in_init(&xin, ofproto, flow, &initial_vals, rule, stats.tcp_flags,
5603 packet);
5604 xin.resubmit_stats = &stats;
5605 xlate_actions(&xin, &xout);
5606
5607 execute_odp_actions(ofproto, flow, xout.odp_actions.data,
5608 xout.odp_actions.size, packet);
5609
5610 xlate_out_uninit(&xout);
5611 }
5612
5613 static enum ofperr
5614 rule_execute(struct rule *rule, const struct flow *flow,
5615 struct ofpbuf *packet)
5616 {
5617 rule_dpif_execute(rule_dpif_cast(rule), flow, packet);
5618 ofpbuf_delete(packet);
5619 return 0;
5620 }
5621
5622 static void
5623 rule_modify_actions(struct rule *rule_)
5624 {
5625 struct rule_dpif *rule = rule_dpif_cast(rule_);
5626
5627 complete_operation(rule);
5628 }
5629 \f
5630 /* Sends 'packet' out 'ofport'.
5631 * May modify 'packet'.
5632 * Returns 0 if successful, otherwise a positive errno value. */
5633 static int
5634 send_packet(const struct ofport_dpif *ofport, struct ofpbuf *packet)
5635 {
5636 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
5637 uint64_t odp_actions_stub[1024 / 8];
5638 struct ofpbuf key, odp_actions;
5639 struct dpif_flow_stats stats;
5640 struct odputil_keybuf keybuf;
5641 struct ofpact_output output;
5642 struct xlate_out xout;
5643 struct xlate_in xin;
5644 struct flow flow;
5645 int error;
5646
5647 ofpbuf_use_stub(&odp_actions, odp_actions_stub, sizeof odp_actions_stub);
5648 ofpbuf_use_stack(&key, &keybuf, sizeof keybuf);
5649
5650 /* Use OFPP_NONE as the in_port to avoid special packet processing. */
5651 flow_extract(packet, 0, 0, NULL, OFPP_NONE, &flow);
5652 odp_flow_key_from_flow(&key, &flow, ofp_port_to_odp_port(ofproto,
5653 OFPP_LOCAL));
5654 dpif_flow_stats_extract(&flow, packet, time_msec(), &stats);
5655
5656 ofpact_init(&output.ofpact, OFPACT_OUTPUT, sizeof output);
5657 output.port = ofport->up.ofp_port;
5658 output.max_len = 0;
5659
5660 xlate_in_init(&xin, ofproto, &flow, NULL, NULL, 0, packet);
5661 xin.ofpacts_len = sizeof output;
5662 xin.ofpacts = &output.ofpact;
5663 xin.resubmit_stats = &stats;
5664 xlate_actions(&xin, &xout);
5665
5666 error = dpif_execute(ofproto->backer->dpif,
5667 key.data, key.size,
5668 xout.odp_actions.data, xout.odp_actions.size,
5669 packet);
5670 xlate_out_uninit(&xout);
5671
5672 if (error) {
5673 VLOG_WARN_RL(&rl, "%s: failed to send packet on port %s (%s)",
5674 ofproto->up.name, netdev_get_name(ofport->up.netdev),
5675 strerror(error));
5676 }
5677
5678 ofproto->stats.tx_packets++;
5679 ofproto->stats.tx_bytes += packet->size;
5680 return error;
5681 }
5682 \f
5683 /* OpenFlow to datapath action translation. */
5684
5685 static bool may_receive(const struct ofport_dpif *, struct xlate_ctx *);
5686 static void do_xlate_actions(const struct ofpact *, size_t ofpacts_len,
5687 struct xlate_ctx *);
5688 static void xlate_normal(struct xlate_ctx *);
5689
5690 /* Composes an ODP action for a "slow path" action for 'flow' within 'ofproto'.
5691 * The action will state 'slow' as the reason that the action is in the slow
5692 * path. (This is purely informational: it allows a human viewing "ovs-dpctl
5693 * dump-flows" output to see why a flow is in the slow path.)
5694 *
5695 * The 'stub_size' bytes in 'stub' will be used to store the action.
5696 * 'stub_size' must be large enough for the action.
5697 *
5698 * The action and its size will be stored in '*actionsp' and '*actions_lenp',
5699 * respectively. */
5700 static void
5701 compose_slow_path(const struct ofproto_dpif *ofproto, const struct flow *flow,
5702 enum slow_path_reason slow,
5703 uint64_t *stub, size_t stub_size,
5704 const struct nlattr **actionsp, size_t *actions_lenp)
5705 {
5706 union user_action_cookie cookie;
5707 struct ofpbuf buf;
5708
5709 cookie.type = USER_ACTION_COOKIE_SLOW_PATH;
5710 cookie.slow_path.unused = 0;
5711 cookie.slow_path.reason = slow;
5712
5713 ofpbuf_use_stack(&buf, stub, stub_size);
5714 if (slow & (SLOW_CFM | SLOW_BFD | SLOW_LACP | SLOW_STP)) {
5715 uint32_t pid = dpif_port_get_pid(ofproto->backer->dpif, UINT32_MAX);
5716 odp_put_userspace_action(pid, &cookie, sizeof cookie.slow_path, &buf);
5717 } else {
5718 put_userspace_action(ofproto, &buf, flow, &cookie,
5719 sizeof cookie.slow_path);
5720 }
5721 *actionsp = buf.data;
5722 *actions_lenp = buf.size;
5723 }
5724
5725 static size_t
5726 put_userspace_action(const struct ofproto_dpif *ofproto,
5727 struct ofpbuf *odp_actions,
5728 const struct flow *flow,
5729 const union user_action_cookie *cookie,
5730 const size_t cookie_size)
5731 {
5732 uint32_t pid;
5733
5734 pid = dpif_port_get_pid(ofproto->backer->dpif,
5735 ofp_port_to_odp_port(ofproto, flow->in_port));
5736
5737 return odp_put_userspace_action(pid, cookie, cookie_size, odp_actions);
5738 }
5739
5740 /* Compose SAMPLE action for sFlow or IPFIX. The given probability is
5741 * the number of packets out of UINT32_MAX to sample. The given
5742 * cookie is passed back in the callback for each sampled packet.
5743 */
5744 static size_t
5745 compose_sample_action(const struct ofproto_dpif *ofproto,
5746 struct ofpbuf *odp_actions,
5747 const struct flow *flow,
5748 const uint32_t probability,
5749 const union user_action_cookie *cookie,
5750 const size_t cookie_size)
5751 {
5752 size_t sample_offset, actions_offset;
5753 int cookie_offset;
5754
5755 sample_offset = nl_msg_start_nested(odp_actions, OVS_ACTION_ATTR_SAMPLE);
5756
5757 nl_msg_put_u32(odp_actions, OVS_SAMPLE_ATTR_PROBABILITY, probability);
5758
5759 actions_offset = nl_msg_start_nested(odp_actions, OVS_SAMPLE_ATTR_ACTIONS);
5760 cookie_offset = put_userspace_action(ofproto, odp_actions, flow, cookie,
5761 cookie_size);
5762
5763 nl_msg_end_nested(odp_actions, actions_offset);
5764 nl_msg_end_nested(odp_actions, sample_offset);
5765 return cookie_offset;
5766 }
5767
5768 static void
5769 compose_sflow_cookie(const struct ofproto_dpif *ofproto,
5770 ovs_be16 vlan_tci, uint32_t odp_port,
5771 unsigned int n_outputs, union user_action_cookie *cookie)
5772 {
5773 int ifindex;
5774
5775 cookie->type = USER_ACTION_COOKIE_SFLOW;
5776 cookie->sflow.vlan_tci = vlan_tci;
5777
5778 /* See http://www.sflow.org/sflow_version_5.txt (search for "Input/output
5779 * port information") for the interpretation of cookie->output. */
5780 switch (n_outputs) {
5781 case 0:
5782 /* 0x40000000 | 256 means "packet dropped for unknown reason". */
5783 cookie->sflow.output = 0x40000000 | 256;
5784 break;
5785
5786 case 1:
5787 ifindex = dpif_sflow_odp_port_to_ifindex(ofproto->sflow, odp_port);
5788 if (ifindex) {
5789 cookie->sflow.output = ifindex;
5790 break;
5791 }
5792 /* Fall through. */
5793 default:
5794 /* 0x80000000 means "multiple output ports. */
5795 cookie->sflow.output = 0x80000000 | n_outputs;
5796 break;
5797 }
5798 }
5799
5800 /* Compose SAMPLE action for sFlow bridge sampling. */
5801 static size_t
5802 compose_sflow_action(const struct ofproto_dpif *ofproto,
5803 struct ofpbuf *odp_actions,
5804 const struct flow *flow,
5805 uint32_t odp_port)
5806 {
5807 uint32_t probability;
5808 union user_action_cookie cookie;
5809
5810 if (!ofproto->sflow || flow->in_port == OFPP_NONE) {
5811 return 0;
5812 }
5813
5814 probability = dpif_sflow_get_probability(ofproto->sflow);
5815 compose_sflow_cookie(ofproto, htons(0), odp_port,
5816 odp_port == OVSP_NONE ? 0 : 1, &cookie);
5817
5818 return compose_sample_action(ofproto, odp_actions, flow, probability,
5819 &cookie, sizeof cookie.sflow);
5820 }
5821
5822 static void
5823 compose_flow_sample_cookie(uint16_t probability, uint32_t collector_set_id,
5824 uint32_t obs_domain_id, uint32_t obs_point_id,
5825 union user_action_cookie *cookie)
5826 {
5827 cookie->type = USER_ACTION_COOKIE_FLOW_SAMPLE;
5828 cookie->flow_sample.probability = probability;
5829 cookie->flow_sample.collector_set_id = collector_set_id;
5830 cookie->flow_sample.obs_domain_id = obs_domain_id;
5831 cookie->flow_sample.obs_point_id = obs_point_id;
5832 }
5833
5834 static void
5835 compose_ipfix_cookie(union user_action_cookie *cookie)
5836 {
5837 cookie->type = USER_ACTION_COOKIE_IPFIX;
5838 }
5839
5840 /* Compose SAMPLE action for IPFIX bridge sampling. */
5841 static void
5842 compose_ipfix_action(const struct ofproto_dpif *ofproto,
5843 struct ofpbuf *odp_actions,
5844 const struct flow *flow)
5845 {
5846 uint32_t probability;
5847 union user_action_cookie cookie;
5848
5849 if (!ofproto->ipfix || flow->in_port == OFPP_NONE) {
5850 return;
5851 }
5852
5853 probability = dpif_ipfix_get_bridge_exporter_probability(ofproto->ipfix);
5854 compose_ipfix_cookie(&cookie);
5855
5856 compose_sample_action(ofproto, odp_actions, flow, probability,
5857 &cookie, sizeof cookie.ipfix);
5858 }
5859
5860 /* SAMPLE action for sFlow must be first action in any given list of
5861 * actions. At this point we do not have all information required to
5862 * build it. So try to build sample action as complete as possible. */
5863 static void
5864 add_sflow_action(struct xlate_ctx *ctx)
5865 {
5866 ctx->user_cookie_offset = compose_sflow_action(ctx->ofproto,
5867 &ctx->xout->odp_actions,
5868 &ctx->xin->flow, OVSP_NONE);
5869 ctx->sflow_odp_port = 0;
5870 ctx->sflow_n_outputs = 0;
5871 }
5872
5873 /* SAMPLE action for IPFIX must be 1st or 2nd action in any given list
5874 * of actions, eventually after the SAMPLE action for sFlow. */
5875 static void
5876 add_ipfix_action(struct xlate_ctx *ctx)
5877 {
5878 compose_ipfix_action(ctx->ofproto, &ctx->xout->odp_actions,
5879 &ctx->xin->flow);
5880 }
5881
5882 /* Fix SAMPLE action according to data collected while composing ODP actions.
5883 * We need to fix SAMPLE actions OVS_SAMPLE_ATTR_ACTIONS attribute, i.e. nested
5884 * USERSPACE action's user-cookie which is required for sflow. */
5885 static void
5886 fix_sflow_action(struct xlate_ctx *ctx)
5887 {
5888 const struct flow *base = &ctx->base_flow;
5889 union user_action_cookie *cookie;
5890
5891 if (!ctx->user_cookie_offset) {
5892 return;
5893 }
5894
5895 cookie = ofpbuf_at(&ctx->xout->odp_actions, ctx->user_cookie_offset,
5896 sizeof cookie->sflow);
5897 ovs_assert(cookie->type == USER_ACTION_COOKIE_SFLOW);
5898
5899 compose_sflow_cookie(ctx->ofproto, base->vlan_tci,
5900 ctx->sflow_odp_port, ctx->sflow_n_outputs, cookie);
5901 }
5902
5903 static void
5904 compose_output_action__(struct xlate_ctx *ctx, uint16_t ofp_port,
5905 bool check_stp)
5906 {
5907 const struct ofport_dpif *ofport = get_ofp_port(ctx->ofproto, ofp_port);
5908 ovs_be16 flow_vlan_tci;
5909 uint32_t flow_skb_mark;
5910 uint8_t flow_nw_tos;
5911 struct priority_to_dscp *pdscp;
5912 uint32_t out_port, odp_port;
5913
5914 /* If 'struct flow' gets additional metadata, we'll need to zero it out
5915 * before traversing a patch port. */
5916 BUILD_ASSERT_DECL(FLOW_WC_SEQ == 20);
5917
5918 if (!ofport) {
5919 xlate_report(ctx, "Nonexistent output port");
5920 return;
5921 } else if (ofport->up.pp.config & OFPUTIL_PC_NO_FWD) {
5922 xlate_report(ctx, "OFPPC_NO_FWD set, skipping output");
5923 return;
5924 } else if (check_stp && !stp_forward_in_state(ofport->stp_state)) {
5925 xlate_report(ctx, "STP not in forwarding state, skipping output");
5926 return;
5927 }
5928
5929 if (netdev_vport_is_patch(ofport->up.netdev)) {
5930 struct ofport_dpif *peer = ofport_get_peer(ofport);
5931 struct flow old_flow = ctx->xin->flow;
5932 const struct ofproto_dpif *peer_ofproto;
5933 enum slow_path_reason special;
5934 struct ofport_dpif *in_port;
5935
5936 if (!peer) {
5937 xlate_report(ctx, "Nonexistent patch port peer");
5938 return;
5939 }
5940
5941 peer_ofproto = ofproto_dpif_cast(peer->up.ofproto);
5942 if (peer_ofproto->backer != ctx->ofproto->backer) {
5943 xlate_report(ctx, "Patch port peer on a different datapath");
5944 return;
5945 }
5946
5947 ctx->ofproto = ofproto_dpif_cast(peer->up.ofproto);
5948 ctx->xin->flow.in_port = peer->up.ofp_port;
5949 ctx->xin->flow.metadata = htonll(0);
5950 memset(&ctx->xin->flow.tunnel, 0, sizeof ctx->xin->flow.tunnel);
5951 memset(ctx->xin->flow.regs, 0, sizeof ctx->xin->flow.regs);
5952
5953 in_port = get_ofp_port(ctx->ofproto, ctx->xin->flow.in_port);
5954 special = process_special(ctx->ofproto, &ctx->xin->flow, in_port,
5955 ctx->xin->packet);
5956 if (special) {
5957 ctx->xout->slow = special;
5958 } else if (!in_port || may_receive(in_port, ctx)) {
5959 if (!in_port || stp_forward_in_state(in_port->stp_state)) {
5960 xlate_table_action(ctx, ctx->xin->flow.in_port, 0, true);
5961 } else {
5962 /* Forwarding is disabled by STP. Let OFPP_NORMAL and the
5963 * learning action look at the packet, then drop it. */
5964 struct flow old_base_flow = ctx->base_flow;
5965 size_t old_size = ctx->xout->odp_actions.size;
5966 xlate_table_action(ctx, ctx->xin->flow.in_port, 0, true);
5967 ctx->base_flow = old_base_flow;
5968 ctx->xout->odp_actions.size = old_size;
5969 }
5970 }
5971
5972 ctx->xin->flow = old_flow;
5973 ctx->ofproto = ofproto_dpif_cast(ofport->up.ofproto);
5974
5975 if (ctx->xin->resubmit_stats) {
5976 netdev_vport_inc_tx(ofport->up.netdev, ctx->xin->resubmit_stats);
5977 netdev_vport_inc_rx(peer->up.netdev, ctx->xin->resubmit_stats);
5978 }
5979
5980 return;
5981 }
5982
5983 flow_vlan_tci = ctx->xin->flow.vlan_tci;
5984 flow_skb_mark = ctx->xin->flow.skb_mark;
5985 flow_nw_tos = ctx->xin->flow.nw_tos;
5986
5987 pdscp = get_priority(ofport, ctx->xin->flow.skb_priority);
5988 if (pdscp) {
5989 ctx->xin->flow.nw_tos &= ~IP_DSCP_MASK;
5990 ctx->xin->flow.nw_tos |= pdscp->dscp;
5991 }
5992
5993 if (ofport->tnl_port) {
5994 /* Save tunnel metadata so that changes made due to
5995 * the Logical (tunnel) Port are not visible for any further
5996 * matches, while explicit set actions on tunnel metadata are.
5997 */
5998 struct flow_tnl flow_tnl = ctx->xin->flow.tunnel;
5999 odp_port = tnl_port_send(ofport->tnl_port, &ctx->xin->flow);
6000 if (odp_port == OVSP_NONE) {
6001 xlate_report(ctx, "Tunneling decided against output");
6002 goto out; /* restore flow_nw_tos */
6003 }
6004 if (ctx->xin->flow.tunnel.ip_dst == ctx->orig_tunnel_ip_dst) {
6005 xlate_report(ctx, "Not tunneling to our own address");
6006 goto out; /* restore flow_nw_tos */
6007 }
6008 if (ctx->xin->resubmit_stats) {
6009 netdev_vport_inc_tx(ofport->up.netdev, ctx->xin->resubmit_stats);
6010 }
6011 out_port = odp_port;
6012 commit_odp_tunnel_action(&ctx->xin->flow, &ctx->base_flow,
6013 &ctx->xout->odp_actions);
6014 ctx->xin->flow.tunnel = flow_tnl; /* Restore tunnel metadata */
6015 } else {
6016 uint16_t vlandev_port;
6017 odp_port = ofport->odp_port;
6018 vlandev_port = vsp_realdev_to_vlandev(ctx->ofproto, ofp_port,
6019 ctx->xin->flow.vlan_tci);
6020 if (vlandev_port == ofp_port) {
6021 out_port = odp_port;
6022 } else {
6023 out_port = ofp_port_to_odp_port(ctx->ofproto, vlandev_port);
6024 ctx->xin->flow.vlan_tci = htons(0);
6025 }
6026 ctx->xin->flow.skb_mark &= ~IPSEC_MARK;
6027 }
6028 commit_odp_actions(&ctx->xin->flow, &ctx->base_flow,
6029 &ctx->xout->odp_actions);
6030 nl_msg_put_u32(&ctx->xout->odp_actions, OVS_ACTION_ATTR_OUTPUT, out_port);
6031
6032 ctx->sflow_odp_port = odp_port;
6033 ctx->sflow_n_outputs++;
6034 ctx->xout->nf_output_iface = ofp_port;
6035
6036 /* Restore flow */
6037 ctx->xin->flow.vlan_tci = flow_vlan_tci;
6038 ctx->xin->flow.skb_mark = flow_skb_mark;
6039 out:
6040 ctx->xin->flow.nw_tos = flow_nw_tos;
6041 }
6042
6043 static void
6044 compose_output_action(struct xlate_ctx *ctx, uint16_t ofp_port)
6045 {
6046 compose_output_action__(ctx, ofp_port, true);
6047 }
6048
6049 static void
6050 tag_the_flow(struct xlate_ctx *ctx, struct rule_dpif *rule)
6051 {
6052 struct ofproto_dpif *ofproto = ctx->ofproto;
6053 uint8_t table_id = ctx->table_id;
6054
6055 if (table_id > 0 && table_id < N_TABLES) {
6056 struct table_dpif *table = &ofproto->tables[table_id];
6057 if (table->other_table) {
6058 ctx->xout->tags |= (rule && rule->tag
6059 ? rule->tag
6060 : rule_calculate_tag(&ctx->xin->flow,
6061 &table->other_table->mask,
6062 table->basis));
6063 }
6064 }
6065 }
6066
6067 /* Common rule processing in one place to avoid duplicating code. */
6068 static struct rule_dpif *
6069 ctx_rule_hooks(struct xlate_ctx *ctx, struct rule_dpif *rule,
6070 bool may_packet_in)
6071 {
6072 if (ctx->xin->resubmit_hook) {
6073 ctx->xin->resubmit_hook(ctx, rule);
6074 }
6075 if (rule == NULL && may_packet_in) {
6076 /* XXX
6077 * check if table configuration flags
6078 * OFPTC_TABLE_MISS_CONTROLLER, default.
6079 * OFPTC_TABLE_MISS_CONTINUE,
6080 * OFPTC_TABLE_MISS_DROP
6081 * When OF1.0, OFPTC_TABLE_MISS_CONTINUE is used. What to do?
6082 */
6083 rule = rule_dpif_miss_rule(ctx->ofproto, &ctx->xin->flow);
6084 }
6085 if (rule && ctx->xin->resubmit_stats) {
6086 rule_credit_stats(rule, ctx->xin->resubmit_stats);
6087 }
6088 return rule;
6089 }
6090
6091 static void
6092 xlate_table_action(struct xlate_ctx *ctx,
6093 uint16_t in_port, uint8_t table_id, bool may_packet_in)
6094 {
6095 if (ctx->recurse < MAX_RESUBMIT_RECURSION) {
6096 struct rule_dpif *rule;
6097 uint16_t old_in_port = ctx->xin->flow.in_port;
6098 uint8_t old_table_id = ctx->table_id;
6099
6100 ctx->table_id = table_id;
6101
6102 /* Look up a flow with 'in_port' as the input port. */
6103 ctx->xin->flow.in_port = in_port;
6104 rule = rule_dpif_lookup__(ctx->ofproto, &ctx->xin->flow, table_id);
6105
6106 tag_the_flow(ctx, rule);
6107
6108 /* Restore the original input port. Otherwise OFPP_NORMAL and
6109 * OFPP_IN_PORT will have surprising behavior. */
6110 ctx->xin->flow.in_port = old_in_port;
6111
6112 rule = ctx_rule_hooks(ctx, rule, may_packet_in);
6113
6114 if (rule) {
6115 struct rule_dpif *old_rule = ctx->rule;
6116
6117 ctx->recurse++;
6118 ctx->rule = rule;
6119 do_xlate_actions(rule->up.ofpacts, rule->up.ofpacts_len, ctx);
6120 ctx->rule = old_rule;
6121 ctx->recurse--;
6122 }
6123
6124 ctx->table_id = old_table_id;
6125 } else {
6126 static struct vlog_rate_limit recurse_rl = VLOG_RATE_LIMIT_INIT(1, 1);
6127
6128 VLOG_ERR_RL(&recurse_rl, "resubmit actions recursed over %d times",
6129 MAX_RESUBMIT_RECURSION);
6130 ctx->max_resubmit_trigger = true;
6131 }
6132 }
6133
6134 static void
6135 xlate_ofpact_resubmit(struct xlate_ctx *ctx,
6136 const struct ofpact_resubmit *resubmit)
6137 {
6138 uint16_t in_port;
6139 uint8_t table_id;
6140
6141 in_port = resubmit->in_port;
6142 if (in_port == OFPP_IN_PORT) {
6143 in_port = ctx->xin->flow.in_port;
6144 }
6145
6146 table_id = resubmit->table_id;
6147 if (table_id == 255) {
6148 table_id = ctx->table_id;
6149 }
6150
6151 xlate_table_action(ctx, in_port, table_id, false);
6152 }
6153
6154 static void
6155 flood_packets(struct xlate_ctx *ctx, bool all)
6156 {
6157 struct ofport_dpif *ofport;
6158
6159 HMAP_FOR_EACH (ofport, up.hmap_node, &ctx->ofproto->up.ports) {
6160 uint16_t ofp_port = ofport->up.ofp_port;
6161
6162 if (ofp_port == ctx->xin->flow.in_port) {
6163 continue;
6164 }
6165
6166 if (all) {
6167 compose_output_action__(ctx, ofp_port, false);
6168 } else if (!(ofport->up.pp.config & OFPUTIL_PC_NO_FLOOD)) {
6169 compose_output_action(ctx, ofp_port);
6170 }
6171 }
6172
6173 ctx->xout->nf_output_iface = NF_OUT_FLOOD;
6174 }
6175
6176 static void
6177 execute_controller_action(struct xlate_ctx *ctx, int len,
6178 enum ofp_packet_in_reason reason,
6179 uint16_t controller_id)
6180 {
6181 struct ofputil_packet_in pin;
6182 struct ofpbuf *packet;
6183
6184 ovs_assert(!ctx->xout->slow || ctx->xout->slow == SLOW_CONTROLLER);
6185 ctx->xout->slow = SLOW_CONTROLLER;
6186 if (!ctx->xin->packet) {
6187 return;
6188 }
6189
6190 packet = ofpbuf_clone(ctx->xin->packet);
6191
6192 if (packet->l2 && packet->l3) {
6193 struct eth_header *eh;
6194 uint16_t mpls_depth;
6195
6196 eth_pop_vlan(packet);
6197 eh = packet->l2;
6198
6199 memcpy(eh->eth_src, ctx->xin->flow.dl_src, sizeof eh->eth_src);
6200 memcpy(eh->eth_dst, ctx->xin->flow.dl_dst, sizeof eh->eth_dst);
6201
6202 if (ctx->xin->flow.vlan_tci & htons(VLAN_CFI)) {
6203 eth_push_vlan(packet, ctx->xin->flow.vlan_tci);
6204 }
6205
6206 mpls_depth = eth_mpls_depth(packet);
6207
6208 if (mpls_depth < ctx->xin->flow.mpls_depth) {
6209 push_mpls(packet, ctx->xin->flow.dl_type, ctx->xin->flow.mpls_lse);
6210 } else if (mpls_depth > ctx->xin->flow.mpls_depth) {
6211 pop_mpls(packet, ctx->xin->flow.dl_type);
6212 } else if (mpls_depth) {
6213 set_mpls_lse(packet, ctx->xin->flow.mpls_lse);
6214 }
6215
6216 if (packet->l4) {
6217 if (ctx->xin->flow.dl_type == htons(ETH_TYPE_IP)) {
6218 packet_set_ipv4(packet, ctx->xin->flow.nw_src,
6219 ctx->xin->flow.nw_dst, ctx->xin->flow.nw_tos,
6220 ctx->xin->flow.nw_ttl);
6221 }
6222
6223 if (packet->l7) {
6224 if (ctx->xin->flow.nw_proto == IPPROTO_TCP) {
6225 packet_set_tcp_port(packet, ctx->xin->flow.tp_src,
6226 ctx->xin->flow.tp_dst);
6227 } else if (ctx->xin->flow.nw_proto == IPPROTO_UDP) {
6228 packet_set_udp_port(packet, ctx->xin->flow.tp_src,
6229 ctx->xin->flow.tp_dst);
6230 }
6231 }
6232 }
6233 }
6234
6235 pin.packet = packet->data;
6236 pin.packet_len = packet->size;
6237 pin.reason = reason;
6238 pin.controller_id = controller_id;
6239 pin.table_id = ctx->table_id;
6240 pin.cookie = ctx->rule ? ctx->rule->up.flow_cookie : 0;
6241
6242 pin.send_len = len;
6243 flow_get_metadata(&ctx->xin->flow, &pin.fmd);
6244
6245 connmgr_send_packet_in(ctx->ofproto->up.connmgr, &pin);
6246 ofpbuf_delete(packet);
6247 }
6248
6249 static void
6250 execute_mpls_push_action(struct xlate_ctx *ctx, ovs_be16 eth_type)
6251 {
6252 ovs_assert(eth_type_mpls(eth_type));
6253
6254 if (ctx->base_flow.mpls_depth) {
6255 ctx->xin->flow.mpls_lse &= ~htonl(MPLS_BOS_MASK);
6256 ctx->xin->flow.mpls_depth++;
6257 } else {
6258 ovs_be32 label;
6259 uint8_t tc, ttl;
6260
6261 if (ctx->xin->flow.dl_type == htons(ETH_TYPE_IPV6)) {
6262 label = htonl(0x2); /* IPV6 Explicit Null. */
6263 } else {
6264 label = htonl(0x0); /* IPV4 Explicit Null. */
6265 }
6266 tc = (ctx->xin->flow.nw_tos & IP_DSCP_MASK) >> 2;
6267 ttl = ctx->xin->flow.nw_ttl ? ctx->xin->flow.nw_ttl : 0x40;
6268 ctx->xin->flow.mpls_lse = set_mpls_lse_values(ttl, tc, 1, label);
6269 ctx->xin->flow.mpls_depth = 1;
6270 }
6271 ctx->xin->flow.dl_type = eth_type;
6272 }
6273
6274 static void
6275 execute_mpls_pop_action(struct xlate_ctx *ctx, ovs_be16 eth_type)
6276 {
6277 ovs_assert(eth_type_mpls(ctx->xin->flow.dl_type));
6278 ovs_assert(!eth_type_mpls(eth_type));
6279
6280 if (ctx->xin->flow.mpls_depth) {
6281 ctx->xin->flow.mpls_depth--;
6282 ctx->xin->flow.mpls_lse = htonl(0);
6283 if (!ctx->xin->flow.mpls_depth) {
6284 ctx->xin->flow.dl_type = eth_type;
6285 }
6286 }
6287 }
6288
6289 static bool
6290 compose_dec_ttl(struct xlate_ctx *ctx, struct ofpact_cnt_ids *ids)
6291 {
6292 if (ctx->xin->flow.dl_type != htons(ETH_TYPE_IP) &&
6293 ctx->xin->flow.dl_type != htons(ETH_TYPE_IPV6)) {
6294 return false;
6295 }
6296
6297 if (ctx->xin->flow.nw_ttl > 1) {
6298 ctx->xin->flow.nw_ttl--;
6299 return false;
6300 } else {
6301 size_t i;
6302
6303 for (i = 0; i < ids->n_controllers; i++) {
6304 execute_controller_action(ctx, UINT16_MAX, OFPR_INVALID_TTL,
6305 ids->cnt_ids[i]);
6306 }
6307
6308 /* Stop processing for current table. */
6309 return true;
6310 }
6311 }
6312
6313 static bool
6314 execute_set_mpls_ttl_action(struct xlate_ctx *ctx, uint8_t ttl)
6315 {
6316 if (!eth_type_mpls(ctx->xin->flow.dl_type)) {
6317 return true;
6318 }
6319
6320 set_mpls_lse_ttl(&ctx->xin->flow.mpls_lse, ttl);
6321 return false;
6322 }
6323
6324 static bool
6325 execute_dec_mpls_ttl_action(struct xlate_ctx *ctx)
6326 {
6327 uint8_t ttl = mpls_lse_to_ttl(ctx->xin->flow.mpls_lse);
6328
6329 if (!eth_type_mpls(ctx->xin->flow.dl_type)) {
6330 return false;
6331 }
6332
6333 if (ttl > 1) {
6334 ttl--;
6335 set_mpls_lse_ttl(&ctx->xin->flow.mpls_lse, ttl);
6336 return false;
6337 } else {
6338 execute_controller_action(ctx, UINT16_MAX, OFPR_INVALID_TTL, 0);
6339
6340 /* Stop processing for current table. */
6341 return true;
6342 }
6343 }
6344
6345 static void
6346 xlate_output_action(struct xlate_ctx *ctx,
6347 uint16_t port, uint16_t max_len, bool may_packet_in)
6348 {
6349 uint16_t prev_nf_output_iface = ctx->xout->nf_output_iface;
6350
6351 ctx->xout->nf_output_iface = NF_OUT_DROP;
6352
6353 switch (port) {
6354 case OFPP_IN_PORT:
6355 compose_output_action(ctx, ctx->xin->flow.in_port);
6356 break;
6357 case OFPP_TABLE:
6358 xlate_table_action(ctx, ctx->xin->flow.in_port, 0, may_packet_in);
6359 break;
6360 case OFPP_NORMAL:
6361 xlate_normal(ctx);
6362 break;
6363 case OFPP_FLOOD:
6364 flood_packets(ctx, false);
6365 break;
6366 case OFPP_ALL:
6367 flood_packets(ctx, true);
6368 break;
6369 case OFPP_CONTROLLER:
6370 execute_controller_action(ctx, max_len, OFPR_ACTION, 0);
6371 break;
6372 case OFPP_NONE:
6373 break;
6374 case OFPP_LOCAL:
6375 default:
6376 if (port != ctx->xin->flow.in_port) {
6377 compose_output_action(ctx, port);
6378 } else {
6379 xlate_report(ctx, "skipping output to input port");
6380 }
6381 break;
6382 }
6383
6384 if (prev_nf_output_iface == NF_OUT_FLOOD) {
6385 ctx->xout->nf_output_iface = NF_OUT_FLOOD;
6386 } else if (ctx->xout->nf_output_iface == NF_OUT_DROP) {
6387 ctx->xout->nf_output_iface = prev_nf_output_iface;
6388 } else if (prev_nf_output_iface != NF_OUT_DROP &&
6389 ctx->xout->nf_output_iface != NF_OUT_FLOOD) {
6390 ctx->xout->nf_output_iface = NF_OUT_MULTI;
6391 }
6392 }
6393
6394 static void
6395 xlate_output_reg_action(struct xlate_ctx *ctx,
6396 const struct ofpact_output_reg *or)
6397 {
6398 uint64_t port = mf_get_subfield(&or->src, &ctx->xin->flow);
6399 if (port <= UINT16_MAX) {
6400 xlate_output_action(ctx, port, or->max_len, false);
6401 }
6402 }
6403
6404 static void
6405 xlate_enqueue_action(struct xlate_ctx *ctx,
6406 const struct ofpact_enqueue *enqueue)
6407 {
6408 uint16_t ofp_port = enqueue->port;
6409 uint32_t queue_id = enqueue->queue;
6410 uint32_t flow_priority, priority;
6411 int error;
6412
6413 /* Translate queue to priority. */
6414 error = dpif_queue_to_priority(ctx->ofproto->backer->dpif,
6415 queue_id, &priority);
6416 if (error) {
6417 /* Fall back to ordinary output action. */
6418 xlate_output_action(ctx, enqueue->port, 0, false);
6419 return;
6420 }
6421
6422 /* Check output port. */
6423 if (ofp_port == OFPP_IN_PORT) {
6424 ofp_port = ctx->xin->flow.in_port;
6425 } else if (ofp_port == ctx->xin->flow.in_port) {
6426 return;
6427 }
6428
6429 /* Add datapath actions. */
6430 flow_priority = ctx->xin->flow.skb_priority;
6431 ctx->xin->flow.skb_priority = priority;
6432 compose_output_action(ctx, ofp_port);
6433 ctx->xin->flow.skb_priority = flow_priority;
6434
6435 /* Update NetFlow output port. */
6436 if (ctx->xout->nf_output_iface == NF_OUT_DROP) {
6437 ctx->xout->nf_output_iface = ofp_port;
6438 } else if (ctx->xout->nf_output_iface != NF_OUT_FLOOD) {
6439 ctx->xout->nf_output_iface = NF_OUT_MULTI;
6440 }
6441 }
6442
6443 static void
6444 xlate_set_queue_action(struct xlate_ctx *ctx, uint32_t queue_id)
6445 {
6446 uint32_t skb_priority;
6447
6448 if (!dpif_queue_to_priority(ctx->ofproto->backer->dpif,
6449 queue_id, &skb_priority)) {
6450 ctx->xin->flow.skb_priority = skb_priority;
6451 } else {
6452 /* Couldn't translate queue to a priority. Nothing to do. A warning
6453 * has already been logged. */
6454 }
6455 }
6456
6457 static bool
6458 slave_enabled_cb(uint16_t ofp_port, void *ofproto_)
6459 {
6460 struct ofproto_dpif *ofproto = ofproto_;
6461 struct ofport_dpif *port;
6462
6463 switch (ofp_port) {
6464 case OFPP_IN_PORT:
6465 case OFPP_TABLE:
6466 case OFPP_NORMAL:
6467 case OFPP_FLOOD:
6468 case OFPP_ALL:
6469 case OFPP_NONE:
6470 return true;
6471 case OFPP_CONTROLLER: /* Not supported by the bundle action. */
6472 return false;
6473 default:
6474 port = get_ofp_port(ofproto, ofp_port);
6475 return port ? port->may_enable : false;
6476 }
6477 }
6478
6479 static void
6480 xlate_bundle_action(struct xlate_ctx *ctx,
6481 const struct ofpact_bundle *bundle)
6482 {
6483 uint16_t port;
6484
6485 port = bundle_execute(bundle, &ctx->xin->flow, slave_enabled_cb,
6486 ctx->ofproto);
6487 if (bundle->dst.field) {
6488 nxm_reg_load(&bundle->dst, port, &ctx->xin->flow);
6489 } else {
6490 xlate_output_action(ctx, port, 0, false);
6491 }
6492 }
6493
6494 static void
6495 xlate_learn_action(struct xlate_ctx *ctx,
6496 const struct ofpact_learn *learn)
6497 {
6498 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(5, 1);
6499 struct ofputil_flow_mod fm;
6500 uint64_t ofpacts_stub[1024 / 8];
6501 struct ofpbuf ofpacts;
6502 int error;
6503
6504 ofpbuf_use_stack(&ofpacts, ofpacts_stub, sizeof ofpacts_stub);
6505 learn_execute(learn, &ctx->xin->flow, &fm, &ofpacts);
6506
6507 error = ofproto_flow_mod(&ctx->ofproto->up, &fm);
6508 if (error && !VLOG_DROP_WARN(&rl)) {
6509 VLOG_WARN("learning action failed to modify flow table (%s)",
6510 ofperr_get_name(error));
6511 }
6512
6513 ofpbuf_uninit(&ofpacts);
6514 }
6515
6516 /* Reduces '*timeout' to no more than 'max'. A value of zero in either case
6517 * means "infinite". */
6518 static void
6519 reduce_timeout(uint16_t max, uint16_t *timeout)
6520 {
6521 if (max && (!*timeout || *timeout > max)) {
6522 *timeout = max;
6523 }
6524 }
6525
6526 static void
6527 xlate_fin_timeout(struct xlate_ctx *ctx,
6528 const struct ofpact_fin_timeout *oft)
6529 {
6530 if (ctx->xin->tcp_flags & (TCP_FIN | TCP_RST) && ctx->rule) {
6531 struct rule_dpif *rule = ctx->rule;
6532
6533 reduce_timeout(oft->fin_idle_timeout, &rule->up.idle_timeout);
6534 reduce_timeout(oft->fin_hard_timeout, &rule->up.hard_timeout);
6535 }
6536 }
6537
6538 static void
6539 xlate_sample_action(struct xlate_ctx *ctx,
6540 const struct ofpact_sample *os)
6541 {
6542 union user_action_cookie cookie;
6543 /* Scale the probability from 16-bit to 32-bit while representing
6544 * the same percentage. */
6545 uint32_t probability = (os->probability << 16) | os->probability;
6546
6547 commit_odp_actions(&ctx->xin->flow, &ctx->base_flow,
6548 &ctx->xout->odp_actions);
6549
6550 compose_flow_sample_cookie(os->probability, os->collector_set_id,
6551 os->obs_domain_id, os->obs_point_id, &cookie);
6552 compose_sample_action(ctx->ofproto, &ctx->xout->odp_actions, &ctx->xin->flow,
6553 probability, &cookie, sizeof cookie.flow_sample);
6554 }
6555
6556 static bool
6557 may_receive(const struct ofport_dpif *port, struct xlate_ctx *ctx)
6558 {
6559 if (port->up.pp.config & (eth_addr_equals(ctx->xin->flow.dl_dst,
6560 eth_addr_stp)
6561 ? OFPUTIL_PC_NO_RECV_STP
6562 : OFPUTIL_PC_NO_RECV)) {
6563 return false;
6564 }
6565
6566 /* Only drop packets here if both forwarding and learning are
6567 * disabled. If just learning is enabled, we need to have
6568 * OFPP_NORMAL and the learning action have a look at the packet
6569 * before we can drop it. */
6570 if (!stp_forward_in_state(port->stp_state)
6571 && !stp_learn_in_state(port->stp_state)) {
6572 return false;
6573 }
6574
6575 return true;
6576 }
6577
6578 static bool
6579 tunnel_ecn_ok(struct xlate_ctx *ctx)
6580 {
6581 if (is_ip_any(&ctx->base_flow)
6582 && (ctx->xin->flow.tunnel.ip_tos & IP_ECN_MASK) == IP_ECN_CE) {
6583 if ((ctx->base_flow.nw_tos & IP_ECN_MASK) == IP_ECN_NOT_ECT) {
6584 VLOG_WARN_RL(&rl, "dropping tunnel packet marked ECN CE"
6585 " but is not ECN capable");
6586 return false;
6587 } else {
6588 /* Set the ECN CE value in the tunneled packet. */
6589 ctx->xin->flow.nw_tos |= IP_ECN_CE;
6590 }
6591 }
6592
6593 return true;
6594 }
6595
6596 static void
6597 do_xlate_actions(const struct ofpact *ofpacts, size_t ofpacts_len,
6598 struct xlate_ctx *ctx)
6599 {
6600 bool was_evictable = true;
6601 const struct ofpact *a;
6602
6603 if (ctx->rule) {
6604 /* Don't let the rule we're working on get evicted underneath us. */
6605 was_evictable = ctx->rule->up.evictable;
6606 ctx->rule->up.evictable = false;
6607 }
6608
6609 do_xlate_actions_again:
6610 OFPACT_FOR_EACH (a, ofpacts, ofpacts_len) {
6611 struct ofpact_controller *controller;
6612 const struct ofpact_metadata *metadata;
6613
6614 if (ctx->exit) {
6615 break;
6616 }
6617
6618 switch (a->type) {
6619 case OFPACT_OUTPUT:
6620 xlate_output_action(ctx, ofpact_get_OUTPUT(a)->port,
6621 ofpact_get_OUTPUT(a)->max_len, true);
6622 break;
6623
6624 case OFPACT_CONTROLLER:
6625 controller = ofpact_get_CONTROLLER(a);
6626 execute_controller_action(ctx, controller->max_len,
6627 controller->reason,
6628 controller->controller_id);
6629 break;
6630
6631 case OFPACT_ENQUEUE:
6632 xlate_enqueue_action(ctx, ofpact_get_ENQUEUE(a));
6633 break;
6634
6635 case OFPACT_SET_VLAN_VID:
6636 ctx->xin->flow.vlan_tci &= ~htons(VLAN_VID_MASK);
6637 ctx->xin->flow.vlan_tci |=
6638 (htons(ofpact_get_SET_VLAN_VID(a)->vlan_vid)
6639 | htons(VLAN_CFI));
6640 break;
6641
6642 case OFPACT_SET_VLAN_PCP:
6643 ctx->xin->flow.vlan_tci &= ~htons(VLAN_PCP_MASK);
6644 ctx->xin->flow.vlan_tci |=
6645 htons((ofpact_get_SET_VLAN_PCP(a)->vlan_pcp << VLAN_PCP_SHIFT)
6646 | VLAN_CFI);
6647 break;
6648
6649 case OFPACT_STRIP_VLAN:
6650 ctx->xin->flow.vlan_tci = htons(0);
6651 break;
6652
6653 case OFPACT_PUSH_VLAN:
6654 /* XXX 802.1AD(QinQ) */
6655 ctx->xin->flow.vlan_tci = htons(VLAN_CFI);
6656 break;
6657
6658 case OFPACT_SET_ETH_SRC:
6659 memcpy(ctx->xin->flow.dl_src, ofpact_get_SET_ETH_SRC(a)->mac,
6660 ETH_ADDR_LEN);
6661 break;
6662
6663 case OFPACT_SET_ETH_DST:
6664 memcpy(ctx->xin->flow.dl_dst, ofpact_get_SET_ETH_DST(a)->mac,
6665 ETH_ADDR_LEN);
6666 break;
6667
6668 case OFPACT_SET_IPV4_SRC:
6669 if (ctx->xin->flow.dl_type == htons(ETH_TYPE_IP)) {
6670 ctx->xin->flow.nw_src = ofpact_get_SET_IPV4_SRC(a)->ipv4;
6671 }
6672 break;
6673
6674 case OFPACT_SET_IPV4_DST:
6675 if (ctx->xin->flow.dl_type == htons(ETH_TYPE_IP)) {
6676 ctx->xin->flow.nw_dst = ofpact_get_SET_IPV4_DST(a)->ipv4;
6677 }
6678 break;
6679
6680 case OFPACT_SET_IPV4_DSCP:
6681 /* OpenFlow 1.0 only supports IPv4. */
6682 if (ctx->xin->flow.dl_type == htons(ETH_TYPE_IP)) {
6683 ctx->xin->flow.nw_tos &= ~IP_DSCP_MASK;
6684 ctx->xin->flow.nw_tos |= ofpact_get_SET_IPV4_DSCP(a)->dscp;
6685 }
6686 break;
6687
6688 case OFPACT_SET_L4_SRC_PORT:
6689 if (is_ip_any(&ctx->xin->flow)) {
6690 ctx->xin->flow.tp_src =
6691 htons(ofpact_get_SET_L4_SRC_PORT(a)->port);
6692 }
6693 break;
6694
6695 case OFPACT_SET_L4_DST_PORT:
6696 if (is_ip_any(&ctx->xin->flow)) {
6697 ctx->xin->flow.tp_dst =
6698 htons(ofpact_get_SET_L4_DST_PORT(a)->port);
6699 }
6700 break;
6701
6702 case OFPACT_RESUBMIT:
6703 xlate_ofpact_resubmit(ctx, ofpact_get_RESUBMIT(a));
6704 break;
6705
6706 case OFPACT_SET_TUNNEL:
6707 ctx->xin->flow.tunnel.tun_id =
6708 htonll(ofpact_get_SET_TUNNEL(a)->tun_id);
6709 break;
6710
6711 case OFPACT_SET_QUEUE:
6712 xlate_set_queue_action(ctx, ofpact_get_SET_QUEUE(a)->queue_id);
6713 break;
6714
6715 case OFPACT_POP_QUEUE:
6716 ctx->xin->flow.skb_priority = ctx->orig_skb_priority;
6717 break;
6718
6719 case OFPACT_REG_MOVE:
6720 nxm_execute_reg_move(ofpact_get_REG_MOVE(a), &ctx->xin->flow);
6721 break;
6722
6723 case OFPACT_REG_LOAD:
6724 nxm_execute_reg_load(ofpact_get_REG_LOAD(a), &ctx->xin->flow);
6725 break;
6726
6727 case OFPACT_STACK_PUSH:
6728 nxm_execute_stack_push(ofpact_get_STACK_PUSH(a), &ctx->xin->flow,
6729 &ctx->stack);
6730 break;
6731
6732 case OFPACT_STACK_POP:
6733 nxm_execute_stack_pop(ofpact_get_STACK_POP(a), &ctx->xin->flow,
6734 &ctx->stack);
6735 break;
6736
6737 case OFPACT_PUSH_MPLS:
6738 execute_mpls_push_action(ctx, ofpact_get_PUSH_MPLS(a)->ethertype);
6739 break;
6740
6741 case OFPACT_POP_MPLS:
6742 execute_mpls_pop_action(ctx, ofpact_get_POP_MPLS(a)->ethertype);
6743 break;
6744
6745 case OFPACT_SET_MPLS_TTL:
6746 if (execute_set_mpls_ttl_action(ctx,
6747 ofpact_get_SET_MPLS_TTL(a)->ttl)) {
6748 goto out;
6749 }
6750 break;
6751
6752 case OFPACT_DEC_MPLS_TTL:
6753 if (execute_dec_mpls_ttl_action(ctx)) {
6754 goto out;
6755 }
6756 break;
6757
6758 case OFPACT_DEC_TTL:
6759 if (compose_dec_ttl(ctx, ofpact_get_DEC_TTL(a))) {
6760 goto out;
6761 }
6762 break;
6763
6764 case OFPACT_NOTE:
6765 /* Nothing to do. */
6766 break;
6767
6768 case OFPACT_MULTIPATH:
6769 multipath_execute(ofpact_get_MULTIPATH(a), &ctx->xin->flow);
6770 break;
6771
6772 case OFPACT_BUNDLE:
6773 ctx->ofproto->has_bundle_action = true;
6774 xlate_bundle_action(ctx, ofpact_get_BUNDLE(a));
6775 break;
6776
6777 case OFPACT_OUTPUT_REG:
6778 xlate_output_reg_action(ctx, ofpact_get_OUTPUT_REG(a));
6779 break;
6780
6781 case OFPACT_LEARN:
6782 ctx->xout->has_learn = true;
6783 if (ctx->xin->may_learn) {
6784 xlate_learn_action(ctx, ofpact_get_LEARN(a));
6785 }
6786 break;
6787
6788 case OFPACT_EXIT:
6789 ctx->exit = true;
6790 break;
6791
6792 case OFPACT_FIN_TIMEOUT:
6793 ctx->xout->has_fin_timeout = true;
6794 xlate_fin_timeout(ctx, ofpact_get_FIN_TIMEOUT(a));
6795 break;
6796
6797 case OFPACT_CLEAR_ACTIONS:
6798 /* XXX
6799 * Nothing to do because writa-actions is not supported for now.
6800 * When writa-actions is supported, clear-actions also must
6801 * be supported at the same time.
6802 */
6803 break;
6804
6805 case OFPACT_WRITE_METADATA:
6806 metadata = ofpact_get_WRITE_METADATA(a);
6807 ctx->xin->flow.metadata &= ~metadata->mask;
6808 ctx->xin->flow.metadata |= metadata->metadata & metadata->mask;
6809 break;
6810
6811 case OFPACT_GOTO_TABLE: {
6812 /* It is assumed that goto-table is the last action. */
6813 struct ofpact_goto_table *ogt = ofpact_get_GOTO_TABLE(a);
6814 struct rule_dpif *rule;
6815
6816 ovs_assert(ctx->table_id < ogt->table_id);
6817
6818 ctx->table_id = ogt->table_id;
6819
6820 /* Look up a flow from the new table. */
6821 rule = rule_dpif_lookup__(ctx->ofproto, &ctx->xin->flow, ctx->table_id);
6822
6823 tag_the_flow(ctx, rule);
6824
6825 rule = ctx_rule_hooks(ctx, rule, true);
6826
6827 if (rule) {
6828 if (ctx->rule) {
6829 ctx->rule->up.evictable = was_evictable;
6830 }
6831 ctx->rule = rule;
6832 was_evictable = rule->up.evictable;
6833 rule->up.evictable = false;
6834
6835 /* Tail recursion removal. */
6836 ofpacts = rule->up.ofpacts;
6837 ofpacts_len = rule->up.ofpacts_len;
6838 goto do_xlate_actions_again;
6839 }
6840 break;
6841 }
6842
6843 case OFPACT_SAMPLE:
6844 xlate_sample_action(ctx, ofpact_get_SAMPLE(a));
6845 break;
6846 }
6847 }
6848
6849 out:
6850 if (ctx->rule) {
6851 ctx->rule->up.evictable = was_evictable;
6852 }
6853 }
6854
6855 static void
6856 xlate_in_init(struct xlate_in *xin, struct ofproto_dpif *ofproto,
6857 const struct flow *flow,
6858 const struct initial_vals *initial_vals,
6859 struct rule_dpif *rule, uint8_t tcp_flags,
6860 const struct ofpbuf *packet)
6861 {
6862 xin->ofproto = ofproto;
6863 xin->flow = *flow;
6864 xin->packet = packet;
6865 xin->may_learn = packet != NULL;
6866 xin->rule = rule;
6867 xin->ofpacts = NULL;
6868 xin->ofpacts_len = 0;
6869 xin->tcp_flags = tcp_flags;
6870 xin->resubmit_hook = NULL;
6871 xin->report_hook = NULL;
6872 xin->resubmit_stats = NULL;
6873
6874 if (initial_vals) {
6875 xin->initial_vals = *initial_vals;
6876 } else {
6877 xin->initial_vals.vlan_tci = xin->flow.vlan_tci;
6878 }
6879 }
6880
6881 static void
6882 xlate_out_uninit(struct xlate_out *xout)
6883 {
6884 if (xout) {
6885 ofpbuf_uninit(&xout->odp_actions);
6886 }
6887 }
6888
6889 /* Translates the 'ofpacts_len' bytes of "struct ofpacts" starting at 'ofpacts'
6890 * into datapath actions in 'odp_actions', using 'ctx'. */
6891 static void
6892 xlate_actions(struct xlate_in *xin, struct xlate_out *xout)
6893 {
6894 /* Normally false. Set to true if we ever hit MAX_RESUBMIT_RECURSION, so
6895 * that in the future we always keep a copy of the original flow for
6896 * tracing purposes. */
6897 static bool hit_resubmit_limit;
6898
6899 enum slow_path_reason special;
6900 const struct ofpact *ofpacts;
6901 struct ofport_dpif *in_port;
6902 struct flow orig_flow;
6903 struct xlate_ctx ctx;
6904 size_t ofpacts_len;
6905
6906 COVERAGE_INC(ofproto_dpif_xlate);
6907
6908 /* Flow initialization rules:
6909 * - 'base_flow' must match the kernel's view of the packet at the
6910 * time that action processing starts. 'flow' represents any
6911 * transformations we wish to make through actions.
6912 * - By default 'base_flow' and 'flow' are the same since the input
6913 * packet matches the output before any actions are applied.
6914 * - When using VLAN splinters, 'base_flow''s VLAN is set to the value
6915 * of the received packet as seen by the kernel. If we later output
6916 * to another device without any modifications this will cause us to
6917 * insert a new tag since the original one was stripped off by the
6918 * VLAN device.
6919 * - Tunnel metadata as received is retained in 'flow'. This allows
6920 * tunnel metadata matching also in later tables.
6921 * Since a kernel action for setting the tunnel metadata will only be
6922 * generated with actual tunnel output, changing the tunnel metadata
6923 * values in 'flow' (such as tun_id) will only have effect with a later
6924 * tunnel output action.
6925 * - Tunnel 'base_flow' is completely cleared since that is what the
6926 * kernel does. If we wish to maintain the original values an action
6927 * needs to be generated. */
6928
6929 ctx.xin = xin;
6930 ctx.xout = xout;
6931
6932 ctx.ofproto = xin->ofproto;
6933 ctx.rule = xin->rule;
6934
6935 ctx.base_flow = ctx.xin->flow;
6936 ctx.base_flow.vlan_tci = xin->initial_vals.vlan_tci;
6937 memset(&ctx.base_flow.tunnel, 0, sizeof ctx.base_flow.tunnel);
6938 ctx.orig_tunnel_ip_dst = ctx.xin->flow.tunnel.ip_dst;
6939
6940 ctx.xout->tags = 0;
6941 ctx.xout->slow = 0;
6942 ctx.xout->has_learn = false;
6943 ctx.xout->has_normal = false;
6944 ctx.xout->has_fin_timeout = false;
6945 ctx.xout->nf_output_iface = NF_OUT_DROP;
6946 ctx.xout->mirrors = 0;
6947
6948 ofpbuf_use_stub(&ctx.xout->odp_actions, ctx.xout->odp_actions_stub,
6949 sizeof ctx.xout->odp_actions_stub);
6950 ofpbuf_reserve(&ctx.xout->odp_actions, NL_A_U32_SIZE);
6951
6952 ctx.recurse = 0;
6953 ctx.max_resubmit_trigger = false;
6954 ctx.orig_skb_priority = ctx.xin->flow.skb_priority;
6955 ctx.table_id = 0;
6956 ctx.exit = false;
6957
6958 if (xin->ofpacts) {
6959 ofpacts = xin->ofpacts;
6960 ofpacts_len = xin->ofpacts_len;
6961 } else if (xin->rule) {
6962 ofpacts = xin->rule->up.ofpacts;
6963 ofpacts_len = xin->rule->up.ofpacts_len;
6964 } else {
6965 NOT_REACHED();
6966 }
6967
6968 ofpbuf_use_stub(&ctx.stack, ctx.init_stack, sizeof ctx.init_stack);
6969
6970 if (ctx.ofproto->has_mirrors || hit_resubmit_limit) {
6971 /* Do this conditionally because the copy is expensive enough that it
6972 * shows up in profiles. */
6973 orig_flow = ctx.xin->flow;
6974 }
6975
6976 if (ctx.xin->flow.nw_frag & FLOW_NW_FRAG_ANY) {
6977 switch (ctx.ofproto->up.frag_handling) {
6978 case OFPC_FRAG_NORMAL:
6979 /* We must pretend that transport ports are unavailable. */
6980 ctx.xin->flow.tp_src = ctx.base_flow.tp_src = htons(0);
6981 ctx.xin->flow.tp_dst = ctx.base_flow.tp_dst = htons(0);
6982 break;
6983
6984 case OFPC_FRAG_DROP:
6985 return;
6986
6987 case OFPC_FRAG_REASM:
6988 NOT_REACHED();
6989
6990 case OFPC_FRAG_NX_MATCH:
6991 /* Nothing to do. */
6992 break;
6993
6994 case OFPC_INVALID_TTL_TO_CONTROLLER:
6995 NOT_REACHED();
6996 }
6997 }
6998
6999 in_port = get_ofp_port(ctx.ofproto, ctx.xin->flow.in_port);
7000 special = process_special(ctx.ofproto, &ctx.xin->flow, in_port,
7001 ctx.xin->packet);
7002 if (special) {
7003 ctx.xout->slow = special;
7004 } else {
7005 static struct vlog_rate_limit trace_rl = VLOG_RATE_LIMIT_INIT(1, 1);
7006 struct initial_vals initial_vals;
7007 size_t sample_actions_len;
7008 uint32_t local_odp_port;
7009
7010 initial_vals.vlan_tci = ctx.base_flow.vlan_tci;
7011
7012 add_sflow_action(&ctx);
7013 add_ipfix_action(&ctx);
7014 sample_actions_len = ctx.xout->odp_actions.size;
7015
7016 if (tunnel_ecn_ok(&ctx) && (!in_port || may_receive(in_port, &ctx))) {
7017 do_xlate_actions(ofpacts, ofpacts_len, &ctx);
7018
7019 /* We've let OFPP_NORMAL and the learning action look at the
7020 * packet, so drop it now if forwarding is disabled. */
7021 if (in_port && !stp_forward_in_state(in_port->stp_state)) {
7022 ctx.xout->odp_actions.size = sample_actions_len;
7023 }
7024 }
7025
7026 if (ctx.max_resubmit_trigger && !ctx.xin->resubmit_hook) {
7027 if (!hit_resubmit_limit) {
7028 /* We didn't record the original flow. Make sure we do from
7029 * now on. */
7030 hit_resubmit_limit = true;
7031 } else if (!VLOG_DROP_ERR(&trace_rl)) {
7032 struct ds ds = DS_EMPTY_INITIALIZER;
7033
7034 ofproto_trace(ctx.ofproto, &orig_flow, ctx.xin->packet,
7035 &initial_vals, &ds);
7036 VLOG_ERR("Trace triggered by excessive resubmit "
7037 "recursion:\n%s", ds_cstr(&ds));
7038 ds_destroy(&ds);
7039 }
7040 }
7041
7042 local_odp_port = ofp_port_to_odp_port(ctx.ofproto, OFPP_LOCAL);
7043 if (!connmgr_must_output_local(ctx.ofproto->up.connmgr, &ctx.xin->flow,
7044 local_odp_port,
7045 ctx.xout->odp_actions.data,
7046 ctx.xout->odp_actions.size)) {
7047 compose_output_action(&ctx, OFPP_LOCAL);
7048 }
7049 if (ctx.ofproto->has_mirrors) {
7050 add_mirror_actions(&ctx, &orig_flow);
7051 }
7052 fix_sflow_action(&ctx);
7053 }
7054
7055 ofpbuf_uninit(&ctx.stack);
7056 }
7057
7058 /* Translates the 'ofpacts_len' bytes of "struct ofpact"s starting at 'ofpacts'
7059 * into datapath actions, using 'ctx', and discards the datapath actions. */
7060 static void
7061 xlate_actions_for_side_effects(struct xlate_in *xin)
7062 {
7063 struct xlate_out xout;
7064
7065 xlate_actions(xin, &xout);
7066 xlate_out_uninit(&xout);
7067 }
7068
7069 static void
7070 xlate_report(struct xlate_ctx *ctx, const char *s)
7071 {
7072 if (ctx->xin->report_hook) {
7073 ctx->xin->report_hook(ctx, s);
7074 }
7075 }
7076 \f
7077 /* OFPP_NORMAL implementation. */
7078
7079 static struct ofport_dpif *ofbundle_get_a_port(const struct ofbundle *);
7080
7081 /* Given 'vid', the VID obtained from the 802.1Q header that was received as
7082 * part of a packet (specify 0 if there was no 802.1Q header), and 'in_bundle',
7083 * the bundle on which the packet was received, returns the VLAN to which the
7084 * packet belongs.
7085 *
7086 * Both 'vid' and the return value are in the range 0...4095. */
7087 static uint16_t
7088 input_vid_to_vlan(const struct ofbundle *in_bundle, uint16_t vid)
7089 {
7090 switch (in_bundle->vlan_mode) {
7091 case PORT_VLAN_ACCESS:
7092 return in_bundle->vlan;
7093 break;
7094
7095 case PORT_VLAN_TRUNK:
7096 return vid;
7097
7098 case PORT_VLAN_NATIVE_UNTAGGED:
7099 case PORT_VLAN_NATIVE_TAGGED:
7100 return vid ? vid : in_bundle->vlan;
7101
7102 default:
7103 NOT_REACHED();
7104 }
7105 }
7106
7107 /* Checks whether a packet with the given 'vid' may ingress on 'in_bundle'.
7108 * If so, returns true. Otherwise, returns false and, if 'warn' is true, logs
7109 * a warning.
7110 *
7111 * 'vid' should be the VID obtained from the 802.1Q header that was received as
7112 * part of a packet (specify 0 if there was no 802.1Q header), in the range
7113 * 0...4095. */
7114 static bool
7115 input_vid_is_valid(uint16_t vid, struct ofbundle *in_bundle, bool warn)
7116 {
7117 /* Allow any VID on the OFPP_NONE port. */
7118 if (in_bundle == &ofpp_none_bundle) {
7119 return true;
7120 }
7121
7122 switch (in_bundle->vlan_mode) {
7123 case PORT_VLAN_ACCESS:
7124 if (vid) {
7125 if (warn) {
7126 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
7127 VLOG_WARN_RL(&rl, "bridge %s: dropping VLAN %"PRIu16" tagged "
7128 "packet received on port %s configured as VLAN "
7129 "%"PRIu16" access port",
7130 in_bundle->ofproto->up.name, vid,
7131 in_bundle->name, in_bundle->vlan);
7132 }
7133 return false;
7134 }
7135 return true;
7136
7137 case PORT_VLAN_NATIVE_UNTAGGED:
7138 case PORT_VLAN_NATIVE_TAGGED:
7139 if (!vid) {
7140 /* Port must always carry its native VLAN. */
7141 return true;
7142 }
7143 /* Fall through. */
7144 case PORT_VLAN_TRUNK:
7145 if (!ofbundle_includes_vlan(in_bundle, vid)) {
7146 if (warn) {
7147 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
7148 VLOG_WARN_RL(&rl, "bridge %s: dropping VLAN %"PRIu16" packet "
7149 "received on port %s not configured for trunking "
7150 "VLAN %"PRIu16,
7151 in_bundle->ofproto->up.name, vid,
7152 in_bundle->name, vid);
7153 }
7154 return false;
7155 }
7156 return true;
7157
7158 default:
7159 NOT_REACHED();
7160 }
7161
7162 }
7163
7164 /* Given 'vlan', the VLAN that a packet belongs to, and
7165 * 'out_bundle', a bundle on which the packet is to be output, returns the VID
7166 * that should be included in the 802.1Q header. (If the return value is 0,
7167 * then the 802.1Q header should only be included in the packet if there is a
7168 * nonzero PCP.)
7169 *
7170 * Both 'vlan' and the return value are in the range 0...4095. */
7171 static uint16_t
7172 output_vlan_to_vid(const struct ofbundle *out_bundle, uint16_t vlan)
7173 {
7174 switch (out_bundle->vlan_mode) {
7175 case PORT_VLAN_ACCESS:
7176 return 0;
7177
7178 case PORT_VLAN_TRUNK:
7179 case PORT_VLAN_NATIVE_TAGGED:
7180 return vlan;
7181
7182 case PORT_VLAN_NATIVE_UNTAGGED:
7183 return vlan == out_bundle->vlan ? 0 : vlan;
7184
7185 default:
7186 NOT_REACHED();
7187 }
7188 }
7189
7190 static void
7191 output_normal(struct xlate_ctx *ctx, const struct ofbundle *out_bundle,
7192 uint16_t vlan)
7193 {
7194 struct ofport_dpif *port;
7195 uint16_t vid;
7196 ovs_be16 tci, old_tci;
7197
7198 vid = output_vlan_to_vid(out_bundle, vlan);
7199 if (!out_bundle->bond) {
7200 port = ofbundle_get_a_port(out_bundle);
7201 } else {
7202 port = bond_choose_output_slave(out_bundle->bond, &ctx->xin->flow,
7203 vid, &ctx->xout->tags);
7204 if (!port) {
7205 /* No slaves enabled, so drop packet. */
7206 return;
7207 }
7208 }
7209
7210 old_tci = ctx->xin->flow.vlan_tci;
7211 tci = htons(vid);
7212 if (tci || out_bundle->use_priority_tags) {
7213 tci |= ctx->xin->flow.vlan_tci & htons(VLAN_PCP_MASK);
7214 if (tci) {
7215 tci |= htons(VLAN_CFI);
7216 }
7217 }
7218 ctx->xin->flow.vlan_tci = tci;
7219
7220 compose_output_action(ctx, port->up.ofp_port);
7221 ctx->xin->flow.vlan_tci = old_tci;
7222 }
7223
7224 static int
7225 mirror_mask_ffs(mirror_mask_t mask)
7226 {
7227 BUILD_ASSERT_DECL(sizeof(unsigned int) >= sizeof(mask));
7228 return ffs(mask);
7229 }
7230
7231 static bool
7232 ofbundle_trunks_vlan(const struct ofbundle *bundle, uint16_t vlan)
7233 {
7234 return (bundle->vlan_mode != PORT_VLAN_ACCESS
7235 && (!bundle->trunks || bitmap_is_set(bundle->trunks, vlan)));
7236 }
7237
7238 static bool
7239 ofbundle_includes_vlan(const struct ofbundle *bundle, uint16_t vlan)
7240 {
7241 return vlan == bundle->vlan || ofbundle_trunks_vlan(bundle, vlan);
7242 }
7243
7244 /* Returns an arbitrary interface within 'bundle'. */
7245 static struct ofport_dpif *
7246 ofbundle_get_a_port(const struct ofbundle *bundle)
7247 {
7248 return CONTAINER_OF(list_front(&bundle->ports),
7249 struct ofport_dpif, bundle_node);
7250 }
7251
7252 static bool
7253 vlan_is_mirrored(const struct ofmirror *m, int vlan)
7254 {
7255 return !m->vlans || bitmap_is_set(m->vlans, vlan);
7256 }
7257
7258 static void
7259 add_mirror_actions(struct xlate_ctx *ctx, const struct flow *orig_flow)
7260 {
7261 struct ofproto_dpif *ofproto = ctx->ofproto;
7262 mirror_mask_t mirrors;
7263 struct ofbundle *in_bundle;
7264 uint16_t vlan;
7265 uint16_t vid;
7266 const struct nlattr *a;
7267 size_t left;
7268
7269 in_bundle = lookup_input_bundle(ctx->ofproto, orig_flow->in_port,
7270 ctx->xin->packet != NULL, NULL);
7271 if (!in_bundle) {
7272 return;
7273 }
7274 mirrors = in_bundle->src_mirrors;
7275
7276 /* Drop frames on bundles reserved for mirroring. */
7277 if (in_bundle->mirror_out) {
7278 if (ctx->xin->packet != NULL) {
7279 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
7280 VLOG_WARN_RL(&rl, "bridge %s: dropping packet received on port "
7281 "%s, which is reserved exclusively for mirroring",
7282 ctx->ofproto->up.name, in_bundle->name);
7283 }
7284 return;
7285 }
7286
7287 /* Check VLAN. */
7288 vid = vlan_tci_to_vid(orig_flow->vlan_tci);
7289 if (!input_vid_is_valid(vid, in_bundle, ctx->xin->packet != NULL)) {
7290 return;
7291 }
7292 vlan = input_vid_to_vlan(in_bundle, vid);
7293
7294 /* Look at the output ports to check for destination selections. */
7295
7296 NL_ATTR_FOR_EACH (a, left, ctx->xout->odp_actions.data,
7297 ctx->xout->odp_actions.size) {
7298 enum ovs_action_attr type = nl_attr_type(a);
7299 struct ofport_dpif *ofport;
7300
7301 if (type != OVS_ACTION_ATTR_OUTPUT) {
7302 continue;
7303 }
7304
7305 ofport = get_odp_port(ofproto, nl_attr_get_u32(a));
7306 if (ofport && ofport->bundle) {
7307 mirrors |= ofport->bundle->dst_mirrors;
7308 }
7309 }
7310
7311 if (!mirrors) {
7312 return;
7313 }
7314
7315 /* Restore the original packet before adding the mirror actions. */
7316 ctx->xin->flow = *orig_flow;
7317
7318 while (mirrors) {
7319 struct ofmirror *m;
7320
7321 m = ofproto->mirrors[mirror_mask_ffs(mirrors) - 1];
7322
7323 if (!vlan_is_mirrored(m, vlan)) {
7324 mirrors = zero_rightmost_1bit(mirrors);
7325 continue;
7326 }
7327
7328 mirrors &= ~m->dup_mirrors;
7329 ctx->xout->mirrors |= m->dup_mirrors;
7330 if (m->out) {
7331 output_normal(ctx, m->out, vlan);
7332 } else if (vlan != m->out_vlan
7333 && !eth_addr_is_reserved(orig_flow->dl_dst)) {
7334 struct ofbundle *bundle;
7335
7336 HMAP_FOR_EACH (bundle, hmap_node, &ofproto->bundles) {
7337 if (ofbundle_includes_vlan(bundle, m->out_vlan)
7338 && !bundle->mirror_out) {
7339 output_normal(ctx, bundle, m->out_vlan);
7340 }
7341 }
7342 }
7343 }
7344 }
7345
7346 static void
7347 update_mirror_stats(struct ofproto_dpif *ofproto, mirror_mask_t mirrors,
7348 uint64_t packets, uint64_t bytes)
7349 {
7350 if (!mirrors) {
7351 return;
7352 }
7353
7354 for (; mirrors; mirrors = zero_rightmost_1bit(mirrors)) {
7355 struct ofmirror *m;
7356
7357 m = ofproto->mirrors[mirror_mask_ffs(mirrors) - 1];
7358
7359 if (!m) {
7360 /* In normal circumstances 'm' will not be NULL. However,
7361 * if mirrors are reconfigured, we can temporarily get out
7362 * of sync in facet_revalidate(). We could "correct" the
7363 * mirror list before reaching here, but doing that would
7364 * not properly account the traffic stats we've currently
7365 * accumulated for previous mirror configuration. */
7366 continue;
7367 }
7368
7369 m->packet_count += packets;
7370 m->byte_count += bytes;
7371 }
7372 }
7373
7374 /* A VM broadcasts a gratuitous ARP to indicate that it has resumed after
7375 * migration. Older Citrix-patched Linux DomU used gratuitous ARP replies to
7376 * indicate this; newer upstream kernels use gratuitous ARP requests. */
7377 static bool
7378 is_gratuitous_arp(const struct flow *flow)
7379 {
7380 return (flow->dl_type == htons(ETH_TYPE_ARP)
7381 && eth_addr_is_broadcast(flow->dl_dst)
7382 && (flow->nw_proto == ARP_OP_REPLY
7383 || (flow->nw_proto == ARP_OP_REQUEST
7384 && flow->nw_src == flow->nw_dst)));
7385 }
7386
7387 static void
7388 update_learning_table(struct ofproto_dpif *ofproto,
7389 const struct flow *flow, int vlan,
7390 struct ofbundle *in_bundle)
7391 {
7392 struct mac_entry *mac;
7393
7394 /* Don't learn the OFPP_NONE port. */
7395 if (in_bundle == &ofpp_none_bundle) {
7396 return;
7397 }
7398
7399 if (!mac_learning_may_learn(ofproto->ml, flow->dl_src, vlan)) {
7400 return;
7401 }
7402
7403 mac = mac_learning_insert(ofproto->ml, flow->dl_src, vlan);
7404 if (is_gratuitous_arp(flow)) {
7405 /* We don't want to learn from gratuitous ARP packets that are
7406 * reflected back over bond slaves so we lock the learning table. */
7407 if (!in_bundle->bond) {
7408 mac_entry_set_grat_arp_lock(mac);
7409 } else if (mac_entry_is_grat_arp_locked(mac)) {
7410 return;
7411 }
7412 }
7413
7414 if (mac_entry_is_new(mac) || mac->port.p != in_bundle) {
7415 /* The log messages here could actually be useful in debugging,
7416 * so keep the rate limit relatively high. */
7417 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(30, 300);
7418 VLOG_DBG_RL(&rl, "bridge %s: learned that "ETH_ADDR_FMT" is "
7419 "on port %s in VLAN %d",
7420 ofproto->up.name, ETH_ADDR_ARGS(flow->dl_src),
7421 in_bundle->name, vlan);
7422
7423 mac->port.p = in_bundle;
7424 tag_set_add(&ofproto->backer->revalidate_set,
7425 mac_learning_changed(ofproto->ml, mac));
7426 }
7427 }
7428
7429 static struct ofbundle *
7430 lookup_input_bundle(const struct ofproto_dpif *ofproto, uint16_t in_port,
7431 bool warn, struct ofport_dpif **in_ofportp)
7432 {
7433 struct ofport_dpif *ofport;
7434
7435 /* Find the port and bundle for the received packet. */
7436 ofport = get_ofp_port(ofproto, in_port);
7437 if (in_ofportp) {
7438 *in_ofportp = ofport;
7439 }
7440 if (ofport && ofport->bundle) {
7441 return ofport->bundle;
7442 }
7443
7444 /* Special-case OFPP_NONE, which a controller may use as the ingress
7445 * port for traffic that it is sourcing. */
7446 if (in_port == OFPP_NONE) {
7447 return &ofpp_none_bundle;
7448 }
7449
7450 /* Odd. A few possible reasons here:
7451 *
7452 * - We deleted a port but there are still a few packets queued up
7453 * from it.
7454 *
7455 * - Someone externally added a port (e.g. "ovs-dpctl add-if") that
7456 * we don't know about.
7457 *
7458 * - The ofproto client didn't configure the port as part of a bundle.
7459 * This is particularly likely to happen if a packet was received on the
7460 * port after it was created, but before the client had a chance to
7461 * configure its bundle.
7462 */
7463 if (warn) {
7464 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
7465
7466 VLOG_WARN_RL(&rl, "bridge %s: received packet on unknown "
7467 "port %"PRIu16, ofproto->up.name, in_port);
7468 }
7469 return NULL;
7470 }
7471
7472 /* Determines whether packets in 'flow' within 'ofproto' should be forwarded or
7473 * dropped. Returns true if they may be forwarded, false if they should be
7474 * dropped.
7475 *
7476 * 'in_port' must be the ofport_dpif that corresponds to flow->in_port.
7477 * 'in_port' must be part of a bundle (e.g. in_port->bundle must be nonnull).
7478 *
7479 * 'vlan' must be the VLAN that corresponds to flow->vlan_tci on 'in_port', as
7480 * returned by input_vid_to_vlan(). It must be a valid VLAN for 'in_port', as
7481 * checked by input_vid_is_valid().
7482 *
7483 * May also add tags to '*tags', although the current implementation only does
7484 * so in one special case.
7485 */
7486 static bool
7487 is_admissible(struct xlate_ctx *ctx, struct ofport_dpif *in_port,
7488 uint16_t vlan)
7489 {
7490 struct ofproto_dpif *ofproto = ctx->ofproto;
7491 struct flow *flow = &ctx->xin->flow;
7492 struct ofbundle *in_bundle = in_port->bundle;
7493
7494 /* Drop frames for reserved multicast addresses
7495 * only if forward_bpdu option is absent. */
7496 if (!ofproto->up.forward_bpdu && eth_addr_is_reserved(flow->dl_dst)) {
7497 xlate_report(ctx, "packet has reserved destination MAC, dropping");
7498 return false;
7499 }
7500
7501 if (in_bundle->bond) {
7502 struct mac_entry *mac;
7503
7504 switch (bond_check_admissibility(in_bundle->bond, in_port,
7505 flow->dl_dst, &ctx->xout->tags)) {
7506 case BV_ACCEPT:
7507 break;
7508
7509 case BV_DROP:
7510 xlate_report(ctx, "bonding refused admissibility, dropping");
7511 return false;
7512
7513 case BV_DROP_IF_MOVED:
7514 mac = mac_learning_lookup(ofproto->ml, flow->dl_src, vlan, NULL);
7515 if (mac && mac->port.p != in_bundle &&
7516 (!is_gratuitous_arp(flow)
7517 || mac_entry_is_grat_arp_locked(mac))) {
7518 xlate_report(ctx, "SLB bond thinks this packet looped back, "
7519 "dropping");
7520 return false;
7521 }
7522 break;
7523 }
7524 }
7525
7526 return true;
7527 }
7528
7529 static void
7530 xlate_normal(struct xlate_ctx *ctx)
7531 {
7532 struct ofport_dpif *in_port;
7533 struct ofbundle *in_bundle;
7534 struct mac_entry *mac;
7535 uint16_t vlan;
7536 uint16_t vid;
7537
7538 ctx->xout->has_normal = true;
7539
7540 in_bundle = lookup_input_bundle(ctx->ofproto, ctx->xin->flow.in_port,
7541 ctx->xin->packet != NULL, &in_port);
7542 if (!in_bundle) {
7543 xlate_report(ctx, "no input bundle, dropping");
7544 return;
7545 }
7546
7547 /* Drop malformed frames. */
7548 if (ctx->xin->flow.dl_type == htons(ETH_TYPE_VLAN) &&
7549 !(ctx->xin->flow.vlan_tci & htons(VLAN_CFI))) {
7550 if (ctx->xin->packet != NULL) {
7551 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
7552 VLOG_WARN_RL(&rl, "bridge %s: dropping packet with partial "
7553 "VLAN tag received on port %s",
7554 ctx->ofproto->up.name, in_bundle->name);
7555 }
7556 xlate_report(ctx, "partial VLAN tag, dropping");
7557 return;
7558 }
7559
7560 /* Drop frames on bundles reserved for mirroring. */
7561 if (in_bundle->mirror_out) {
7562 if (ctx->xin->packet != NULL) {
7563 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
7564 VLOG_WARN_RL(&rl, "bridge %s: dropping packet received on port "
7565 "%s, which is reserved exclusively for mirroring",
7566 ctx->ofproto->up.name, in_bundle->name);
7567 }
7568 xlate_report(ctx, "input port is mirror output port, dropping");
7569 return;
7570 }
7571
7572 /* Check VLAN. */
7573 vid = vlan_tci_to_vid(ctx->xin->flow.vlan_tci);
7574 if (!input_vid_is_valid(vid, in_bundle, ctx->xin->packet != NULL)) {
7575 xlate_report(ctx, "disallowed VLAN VID for this input port, dropping");
7576 return;
7577 }
7578 vlan = input_vid_to_vlan(in_bundle, vid);
7579
7580 /* Check other admissibility requirements. */
7581 if (in_port && !is_admissible(ctx, in_port, vlan)) {
7582 return;
7583 }
7584
7585 /* Learn source MAC. */
7586 if (ctx->xin->may_learn) {
7587 update_learning_table(ctx->ofproto, &ctx->xin->flow, vlan, in_bundle);
7588 }
7589
7590 /* Determine output bundle. */
7591 mac = mac_learning_lookup(ctx->ofproto->ml, ctx->xin->flow.dl_dst, vlan,
7592 &ctx->xout->tags);
7593 if (mac) {
7594 if (mac->port.p != in_bundle) {
7595 xlate_report(ctx, "forwarding to learned port");
7596 output_normal(ctx, mac->port.p, vlan);
7597 } else {
7598 xlate_report(ctx, "learned port is input port, dropping");
7599 }
7600 } else {
7601 struct ofbundle *bundle;
7602
7603 xlate_report(ctx, "no learned MAC for destination, flooding");
7604 HMAP_FOR_EACH (bundle, hmap_node, &ctx->ofproto->bundles) {
7605 if (bundle != in_bundle
7606 && ofbundle_includes_vlan(bundle, vlan)
7607 && bundle->floodable
7608 && !bundle->mirror_out) {
7609 output_normal(ctx, bundle, vlan);
7610 }
7611 }
7612 ctx->xout->nf_output_iface = NF_OUT_FLOOD;
7613 }
7614 }
7615 \f
7616 /* Optimized flow revalidation.
7617 *
7618 * It's a difficult problem, in general, to tell which facets need to have
7619 * their actions recalculated whenever the OpenFlow flow table changes. We
7620 * don't try to solve that general problem: for most kinds of OpenFlow flow
7621 * table changes, we recalculate the actions for every facet. This is
7622 * relatively expensive, but it's good enough if the OpenFlow flow table
7623 * doesn't change very often.
7624 *
7625 * However, we can expect one particular kind of OpenFlow flow table change to
7626 * happen frequently: changes caused by MAC learning. To avoid wasting a lot
7627 * of CPU on revalidating every facet whenever MAC learning modifies the flow
7628 * table, we add a special case that applies to flow tables in which every rule
7629 * has the same form (that is, the same wildcards), except that the table is
7630 * also allowed to have a single "catch-all" flow that matches all packets. We
7631 * optimize this case by tagging all of the facets that resubmit into the table
7632 * and invalidating the same tag whenever a flow changes in that table. The
7633 * end result is that we revalidate just the facets that need it (and sometimes
7634 * a few more, but not all of the facets or even all of the facets that
7635 * resubmit to the table modified by MAC learning). */
7636
7637 /* Calculates the tag to use for 'flow' and mask 'mask' when it is inserted
7638 * into an OpenFlow table with the given 'basis'. */
7639 static tag_type
7640 rule_calculate_tag(const struct flow *flow, const struct minimask *mask,
7641 uint32_t secret)
7642 {
7643 if (minimask_is_catchall(mask)) {
7644 return 0;
7645 } else {
7646 uint32_t hash = flow_hash_in_minimask(flow, mask, secret);
7647 return tag_create_deterministic(hash);
7648 }
7649 }
7650
7651 /* Following a change to OpenFlow table 'table_id' in 'ofproto', update the
7652 * taggability of that table.
7653 *
7654 * This function must be called after *each* change to a flow table. If you
7655 * skip calling it on some changes then the pointer comparisons at the end can
7656 * be invalid if you get unlucky. For example, if a flow removal causes a
7657 * cls_table to be destroyed and then a flow insertion causes a cls_table with
7658 * different wildcards to be created with the same address, then this function
7659 * will incorrectly skip revalidation. */
7660 static void
7661 table_update_taggable(struct ofproto_dpif *ofproto, uint8_t table_id)
7662 {
7663 struct table_dpif *table = &ofproto->tables[table_id];
7664 const struct oftable *oftable = &ofproto->up.tables[table_id];
7665 struct cls_table *catchall, *other;
7666 struct cls_table *t;
7667
7668 catchall = other = NULL;
7669
7670 switch (hmap_count(&oftable->cls.tables)) {
7671 case 0:
7672 /* We could tag this OpenFlow table but it would make the logic a
7673 * little harder and it's a corner case that doesn't seem worth it
7674 * yet. */
7675 break;
7676
7677 case 1:
7678 case 2:
7679 HMAP_FOR_EACH (t, hmap_node, &oftable->cls.tables) {
7680 if (cls_table_is_catchall(t)) {
7681 catchall = t;
7682 } else if (!other) {
7683 other = t;
7684 } else {
7685 /* Indicate that we can't tag this by setting both tables to
7686 * NULL. (We know that 'catchall' is already NULL.) */
7687 other = NULL;
7688 }
7689 }
7690 break;
7691
7692 default:
7693 /* Can't tag this table. */
7694 break;
7695 }
7696
7697 if (table->catchall_table != catchall || table->other_table != other) {
7698 table->catchall_table = catchall;
7699 table->other_table = other;
7700 ofproto->backer->need_revalidate = REV_FLOW_TABLE;
7701 }
7702 }
7703
7704 /* Given 'rule' that has changed in some way (either it is a rule being
7705 * inserted, a rule being deleted, or a rule whose actions are being
7706 * modified), marks facets for revalidation to ensure that packets will be
7707 * forwarded correctly according to the new state of the flow table.
7708 *
7709 * This function must be called after *each* change to a flow table. See
7710 * the comment on table_update_taggable() for more information. */
7711 static void
7712 rule_invalidate(const struct rule_dpif *rule)
7713 {
7714 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
7715
7716 table_update_taggable(ofproto, rule->up.table_id);
7717
7718 if (!ofproto->backer->need_revalidate) {
7719 struct table_dpif *table = &ofproto->tables[rule->up.table_id];
7720
7721 if (table->other_table && rule->tag) {
7722 tag_set_add(&ofproto->backer->revalidate_set, rule->tag);
7723 } else {
7724 ofproto->backer->need_revalidate = REV_FLOW_TABLE;
7725 }
7726 }
7727 }
7728 \f
7729 static bool
7730 set_frag_handling(struct ofproto *ofproto_,
7731 enum ofp_config_flags frag_handling)
7732 {
7733 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
7734 if (frag_handling != OFPC_FRAG_REASM) {
7735 ofproto->backer->need_revalidate = REV_RECONFIGURE;
7736 return true;
7737 } else {
7738 return false;
7739 }
7740 }
7741
7742 static enum ofperr
7743 packet_out(struct ofproto *ofproto_, struct ofpbuf *packet,
7744 const struct flow *flow,
7745 const struct ofpact *ofpacts, size_t ofpacts_len)
7746 {
7747 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
7748 struct initial_vals initial_vals;
7749 struct odputil_keybuf keybuf;
7750 struct dpif_flow_stats stats;
7751 struct xlate_out xout;
7752 struct xlate_in xin;
7753 struct ofpbuf key;
7754
7755
7756 ofpbuf_use_stack(&key, &keybuf, sizeof keybuf);
7757 odp_flow_key_from_flow(&key, flow,
7758 ofp_port_to_odp_port(ofproto, flow->in_port));
7759
7760 dpif_flow_stats_extract(flow, packet, time_msec(), &stats);
7761
7762 initial_vals.vlan_tci = flow->vlan_tci;
7763 xlate_in_init(&xin, ofproto, flow, &initial_vals, NULL, stats.tcp_flags,
7764 packet);
7765 xin.resubmit_stats = &stats;
7766 xin.ofpacts_len = ofpacts_len;
7767 xin.ofpacts = ofpacts;
7768
7769 xlate_actions(&xin, &xout);
7770 dpif_execute(ofproto->backer->dpif, key.data, key.size,
7771 xout.odp_actions.data, xout.odp_actions.size, packet);
7772 xlate_out_uninit(&xout);
7773
7774 return 0;
7775 }
7776 \f
7777 /* NetFlow. */
7778
7779 static int
7780 set_netflow(struct ofproto *ofproto_,
7781 const struct netflow_options *netflow_options)
7782 {
7783 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
7784
7785 if (netflow_options) {
7786 if (!ofproto->netflow) {
7787 ofproto->netflow = netflow_create();
7788 }
7789 return netflow_set_options(ofproto->netflow, netflow_options);
7790 } else {
7791 netflow_destroy(ofproto->netflow);
7792 ofproto->netflow = NULL;
7793 return 0;
7794 }
7795 }
7796
7797 static void
7798 get_netflow_ids(const struct ofproto *ofproto_,
7799 uint8_t *engine_type, uint8_t *engine_id)
7800 {
7801 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
7802
7803 dpif_get_netflow_ids(ofproto->backer->dpif, engine_type, engine_id);
7804 }
7805
7806 static void
7807 send_active_timeout(struct ofproto_dpif *ofproto, struct facet *facet)
7808 {
7809 if (!facet_is_controller_flow(facet) &&
7810 netflow_active_timeout_expired(ofproto->netflow, &facet->nf_flow)) {
7811 struct subfacet *subfacet;
7812 struct ofexpired expired;
7813
7814 LIST_FOR_EACH (subfacet, list_node, &facet->subfacets) {
7815 if (subfacet->path == SF_FAST_PATH) {
7816 struct dpif_flow_stats stats;
7817
7818 subfacet_install(subfacet, &facet->xout.odp_actions, &stats);
7819 subfacet_update_stats(subfacet, &stats);
7820 }
7821 }
7822
7823 expired.flow = facet->flow;
7824 expired.packet_count = facet->packet_count;
7825 expired.byte_count = facet->byte_count;
7826 expired.used = facet->used;
7827 netflow_expire(ofproto->netflow, &facet->nf_flow, &expired);
7828 }
7829 }
7830
7831 static void
7832 send_netflow_active_timeouts(struct ofproto_dpif *ofproto)
7833 {
7834 struct facet *facet;
7835
7836 HMAP_FOR_EACH (facet, hmap_node, &ofproto->facets) {
7837 send_active_timeout(ofproto, facet);
7838 }
7839 }
7840 \f
7841 static struct ofproto_dpif *
7842 ofproto_dpif_lookup(const char *name)
7843 {
7844 struct ofproto_dpif *ofproto;
7845
7846 HMAP_FOR_EACH_WITH_HASH (ofproto, all_ofproto_dpifs_node,
7847 hash_string(name, 0), &all_ofproto_dpifs) {
7848 if (!strcmp(ofproto->up.name, name)) {
7849 return ofproto;
7850 }
7851 }
7852 return NULL;
7853 }
7854
7855 static void
7856 ofproto_unixctl_fdb_flush(struct unixctl_conn *conn, int argc,
7857 const char *argv[], void *aux OVS_UNUSED)
7858 {
7859 struct ofproto_dpif *ofproto;
7860
7861 if (argc > 1) {
7862 ofproto = ofproto_dpif_lookup(argv[1]);
7863 if (!ofproto) {
7864 unixctl_command_reply_error(conn, "no such bridge");
7865 return;
7866 }
7867 mac_learning_flush(ofproto->ml, &ofproto->backer->revalidate_set);
7868 } else {
7869 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
7870 mac_learning_flush(ofproto->ml, &ofproto->backer->revalidate_set);
7871 }
7872 }
7873
7874 unixctl_command_reply(conn, "table successfully flushed");
7875 }
7876
7877 static void
7878 ofproto_unixctl_fdb_show(struct unixctl_conn *conn, int argc OVS_UNUSED,
7879 const char *argv[], void *aux OVS_UNUSED)
7880 {
7881 struct ds ds = DS_EMPTY_INITIALIZER;
7882 const struct ofproto_dpif *ofproto;
7883 const struct mac_entry *e;
7884
7885 ofproto = ofproto_dpif_lookup(argv[1]);
7886 if (!ofproto) {
7887 unixctl_command_reply_error(conn, "no such bridge");
7888 return;
7889 }
7890
7891 ds_put_cstr(&ds, " port VLAN MAC Age\n");
7892 LIST_FOR_EACH (e, lru_node, &ofproto->ml->lrus) {
7893 struct ofbundle *bundle = e->port.p;
7894 ds_put_format(&ds, "%5d %4d "ETH_ADDR_FMT" %3d\n",
7895 ofbundle_get_a_port(bundle)->odp_port,
7896 e->vlan, ETH_ADDR_ARGS(e->mac),
7897 mac_entry_age(ofproto->ml, e));
7898 }
7899 unixctl_command_reply(conn, ds_cstr(&ds));
7900 ds_destroy(&ds);
7901 }
7902
7903 struct trace_ctx {
7904 struct xlate_out xout;
7905 struct xlate_in xin;
7906 struct flow flow;
7907 struct ds *result;
7908 };
7909
7910 static void
7911 trace_format_rule(struct ds *result, uint8_t table_id, int level,
7912 const struct rule_dpif *rule)
7913 {
7914 ds_put_char_multiple(result, '\t', level);
7915 if (!rule) {
7916 ds_put_cstr(result, "No match\n");
7917 return;
7918 }
7919
7920 ds_put_format(result, "Rule: table=%"PRIu8" cookie=%#"PRIx64" ",
7921 table_id, ntohll(rule->up.flow_cookie));
7922 cls_rule_format(&rule->up.cr, result);
7923 ds_put_char(result, '\n');
7924
7925 ds_put_char_multiple(result, '\t', level);
7926 ds_put_cstr(result, "OpenFlow ");
7927 ofpacts_format(rule->up.ofpacts, rule->up.ofpacts_len, result);
7928 ds_put_char(result, '\n');
7929 }
7930
7931 static void
7932 trace_format_flow(struct ds *result, int level, const char *title,
7933 struct trace_ctx *trace)
7934 {
7935 ds_put_char_multiple(result, '\t', level);
7936 ds_put_format(result, "%s: ", title);
7937 if (flow_equal(&trace->xin.flow, &trace->flow)) {
7938 ds_put_cstr(result, "unchanged");
7939 } else {
7940 flow_format(result, &trace->xin.flow);
7941 trace->flow = trace->xin.flow;
7942 }
7943 ds_put_char(result, '\n');
7944 }
7945
7946 static void
7947 trace_format_regs(struct ds *result, int level, const char *title,
7948 struct trace_ctx *trace)
7949 {
7950 size_t i;
7951
7952 ds_put_char_multiple(result, '\t', level);
7953 ds_put_format(result, "%s:", title);
7954 for (i = 0; i < FLOW_N_REGS; i++) {
7955 ds_put_format(result, " reg%zu=0x%"PRIx32, i, trace->flow.regs[i]);
7956 }
7957 ds_put_char(result, '\n');
7958 }
7959
7960 static void
7961 trace_format_odp(struct ds *result, int level, const char *title,
7962 struct trace_ctx *trace)
7963 {
7964 struct ofpbuf *odp_actions = &trace->xout.odp_actions;
7965
7966 ds_put_char_multiple(result, '\t', level);
7967 ds_put_format(result, "%s: ", title);
7968 format_odp_actions(result, odp_actions->data, odp_actions->size);
7969 ds_put_char(result, '\n');
7970 }
7971
7972 static void
7973 trace_resubmit(struct xlate_ctx *ctx, struct rule_dpif *rule)
7974 {
7975 struct trace_ctx *trace = CONTAINER_OF(ctx->xin, struct trace_ctx, xin);
7976 struct ds *result = trace->result;
7977
7978 ds_put_char(result, '\n');
7979 trace_format_flow(result, ctx->recurse + 1, "Resubmitted flow", trace);
7980 trace_format_regs(result, ctx->recurse + 1, "Resubmitted regs", trace);
7981 trace_format_odp(result, ctx->recurse + 1, "Resubmitted odp", trace);
7982 trace_format_rule(result, ctx->table_id, ctx->recurse + 1, rule);
7983 }
7984
7985 static void
7986 trace_report(struct xlate_ctx *ctx, const char *s)
7987 {
7988 struct trace_ctx *trace = CONTAINER_OF(ctx->xin, struct trace_ctx, xin);
7989 struct ds *result = trace->result;
7990
7991 ds_put_char_multiple(result, '\t', ctx->recurse);
7992 ds_put_cstr(result, s);
7993 ds_put_char(result, '\n');
7994 }
7995
7996 static void
7997 ofproto_unixctl_trace(struct unixctl_conn *conn, int argc, const char *argv[],
7998 void *aux OVS_UNUSED)
7999 {
8000 const struct dpif_backer *backer;
8001 struct ofproto_dpif *ofproto;
8002 struct ofpbuf odp_key;
8003 struct ofpbuf *packet;
8004 struct initial_vals initial_vals;
8005 struct ds result;
8006 struct flow flow;
8007 char *s;
8008
8009 packet = NULL;
8010 backer = NULL;
8011 ds_init(&result);
8012 ofpbuf_init(&odp_key, 0);
8013
8014 /* Handle "-generate" or a hex string as the last argument. */
8015 if (!strcmp(argv[argc - 1], "-generate")) {
8016 packet = ofpbuf_new(0);
8017 argc--;
8018 } else {
8019 const char *error = eth_from_hex(argv[argc - 1], &packet);
8020 if (!error) {
8021 argc--;
8022 } else if (argc == 4) {
8023 /* The 3-argument form must end in "-generate' or a hex string. */
8024 unixctl_command_reply_error(conn, error);
8025 goto exit;
8026 }
8027 }
8028
8029 /* Parse the flow and determine whether a datapath or
8030 * bridge is specified. If function odp_flow_key_from_string()
8031 * returns 0, the flow is a odp_flow. If function
8032 * parse_ofp_exact_flow() returns 0, the flow is a br_flow. */
8033 if (!odp_flow_key_from_string(argv[argc - 1], NULL, &odp_key)) {
8034 /* If the odp_flow is the second argument,
8035 * the datapath name is the first argument. */
8036 if (argc == 3) {
8037 const char *dp_type;
8038 if (!strncmp(argv[1], "ovs-", 4)) {
8039 dp_type = argv[1] + 4;
8040 } else {
8041 dp_type = argv[1];
8042 }
8043 backer = shash_find_data(&all_dpif_backers, dp_type);
8044 if (!backer) {
8045 unixctl_command_reply_error(conn, "Cannot find datapath "
8046 "of this name");
8047 goto exit;
8048 }
8049 } else {
8050 /* No datapath name specified, so there should be only one
8051 * datapath. */
8052 struct shash_node *node;
8053 if (shash_count(&all_dpif_backers) != 1) {
8054 unixctl_command_reply_error(conn, "Must specify datapath "
8055 "name, there is more than one type of datapath");
8056 goto exit;
8057 }
8058 node = shash_first(&all_dpif_backers);
8059 backer = node->data;
8060 }
8061
8062 /* Extract the ofproto_dpif object from the ofproto_receive()
8063 * function. */
8064 if (ofproto_receive(backer, NULL, odp_key.data,
8065 odp_key.size, &flow, NULL, &ofproto, NULL,
8066 &initial_vals)) {
8067 unixctl_command_reply_error(conn, "Invalid datapath flow");
8068 goto exit;
8069 }
8070 ds_put_format(&result, "Bridge: %s\n", ofproto->up.name);
8071 } else if (!parse_ofp_exact_flow(&flow, argv[argc - 1])) {
8072 if (argc != 3) {
8073 unixctl_command_reply_error(conn, "Must specify bridge name");
8074 goto exit;
8075 }
8076
8077 ofproto = ofproto_dpif_lookup(argv[1]);
8078 if (!ofproto) {
8079 unixctl_command_reply_error(conn, "Unknown bridge name");
8080 goto exit;
8081 }
8082 initial_vals.vlan_tci = flow.vlan_tci;
8083 } else {
8084 unixctl_command_reply_error(conn, "Bad flow syntax");
8085 goto exit;
8086 }
8087
8088 /* Generate a packet, if requested. */
8089 if (packet) {
8090 if (!packet->size) {
8091 flow_compose(packet, &flow);
8092 } else {
8093 ds_put_cstr(&result, "Packet: ");
8094 s = ofp_packet_to_string(packet->data, packet->size);
8095 ds_put_cstr(&result, s);
8096 free(s);
8097
8098 /* Use the metadata from the flow and the packet argument
8099 * to reconstruct the flow. */
8100 flow_extract(packet, flow.skb_priority, flow.skb_mark, NULL,
8101 flow.in_port, &flow);
8102 initial_vals.vlan_tci = flow.vlan_tci;
8103 }
8104 }
8105
8106 ofproto_trace(ofproto, &flow, packet, &initial_vals, &result);
8107 unixctl_command_reply(conn, ds_cstr(&result));
8108
8109 exit:
8110 ds_destroy(&result);
8111 ofpbuf_delete(packet);
8112 ofpbuf_uninit(&odp_key);
8113 }
8114
8115 static void
8116 ofproto_trace(struct ofproto_dpif *ofproto, const struct flow *flow,
8117 const struct ofpbuf *packet,
8118 const struct initial_vals *initial_vals, struct ds *ds)
8119 {
8120 struct rule_dpif *rule;
8121
8122 ds_put_cstr(ds, "Flow: ");
8123 flow_format(ds, flow);
8124 ds_put_char(ds, '\n');
8125
8126 rule = rule_dpif_lookup(ofproto, flow);
8127
8128 trace_format_rule(ds, 0, 0, rule);
8129 if (rule == ofproto->miss_rule) {
8130 ds_put_cstr(ds, "\nNo match, flow generates \"packet in\"s.\n");
8131 } else if (rule == ofproto->no_packet_in_rule) {
8132 ds_put_cstr(ds, "\nNo match, packets dropped because "
8133 "OFPPC_NO_PACKET_IN is set on in_port.\n");
8134 } else if (rule == ofproto->drop_frags_rule) {
8135 ds_put_cstr(ds, "\nPackets dropped because they are IP fragments "
8136 "and the fragment handling mode is \"drop\".\n");
8137 }
8138
8139 if (rule) {
8140 uint64_t odp_actions_stub[1024 / 8];
8141 struct ofpbuf odp_actions;
8142
8143 struct trace_ctx trace;
8144 uint8_t tcp_flags;
8145
8146 tcp_flags = packet ? packet_get_tcp_flags(packet, flow) : 0;
8147 trace.result = ds;
8148 trace.flow = *flow;
8149 ofpbuf_use_stub(&odp_actions,
8150 odp_actions_stub, sizeof odp_actions_stub);
8151 xlate_in_init(&trace.xin, ofproto, flow, initial_vals, rule, tcp_flags,
8152 packet);
8153 trace.xin.resubmit_hook = trace_resubmit;
8154 trace.xin.report_hook = trace_report;
8155 xlate_actions(&trace.xin, &trace.xout);
8156
8157 ds_put_char(ds, '\n');
8158 trace_format_flow(ds, 0, "Final flow", &trace);
8159 ds_put_cstr(ds, "Datapath actions: ");
8160 format_odp_actions(ds, trace.xout.odp_actions.data,
8161 trace.xout.odp_actions.size);
8162
8163 if (trace.xout.slow) {
8164 ds_put_cstr(ds, "\nThis flow is handled by the userspace "
8165 "slow path because it:");
8166 switch (trace.xout.slow) {
8167 case SLOW_CFM:
8168 ds_put_cstr(ds, "\n\t- Consists of CFM packets.");
8169 break;
8170 case SLOW_LACP:
8171 ds_put_cstr(ds, "\n\t- Consists of LACP packets.");
8172 break;
8173 case SLOW_STP:
8174 ds_put_cstr(ds, "\n\t- Consists of STP packets.");
8175 break;
8176 case SLOW_BFD:
8177 ds_put_cstr(ds, "\n\t- Consists of BFD packets.");
8178 break;
8179 case SLOW_CONTROLLER:
8180 ds_put_cstr(ds, "\n\t- Sends \"packet-in\" messages "
8181 "to the OpenFlow controller.");
8182 break;
8183 case __SLOW_MAX:
8184 NOT_REACHED();
8185 }
8186 }
8187
8188 xlate_out_uninit(&trace.xout);
8189 }
8190 }
8191
8192 static void
8193 ofproto_dpif_clog(struct unixctl_conn *conn OVS_UNUSED, int argc OVS_UNUSED,
8194 const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED)
8195 {
8196 clogged = true;
8197 unixctl_command_reply(conn, NULL);
8198 }
8199
8200 static void
8201 ofproto_dpif_unclog(struct unixctl_conn *conn OVS_UNUSED, int argc OVS_UNUSED,
8202 const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED)
8203 {
8204 clogged = false;
8205 unixctl_command_reply(conn, NULL);
8206 }
8207
8208 /* Runs a self-check of flow translations in 'ofproto'. Appends a message to
8209 * 'reply' describing the results. */
8210 static void
8211 ofproto_dpif_self_check__(struct ofproto_dpif *ofproto, struct ds *reply)
8212 {
8213 struct facet *facet;
8214 int errors;
8215
8216 errors = 0;
8217 HMAP_FOR_EACH (facet, hmap_node, &ofproto->facets) {
8218 if (!facet_check_consistency(facet)) {
8219 errors++;
8220 }
8221 }
8222 if (errors) {
8223 ofproto->backer->need_revalidate = REV_INCONSISTENCY;
8224 }
8225
8226 if (errors) {
8227 ds_put_format(reply, "%s: self-check failed (%d errors)\n",
8228 ofproto->up.name, errors);
8229 } else {
8230 ds_put_format(reply, "%s: self-check passed\n", ofproto->up.name);
8231 }
8232 }
8233
8234 static void
8235 ofproto_dpif_self_check(struct unixctl_conn *conn,
8236 int argc, const char *argv[], void *aux OVS_UNUSED)
8237 {
8238 struct ds reply = DS_EMPTY_INITIALIZER;
8239 struct ofproto_dpif *ofproto;
8240
8241 if (argc > 1) {
8242 ofproto = ofproto_dpif_lookup(argv[1]);
8243 if (!ofproto) {
8244 unixctl_command_reply_error(conn, "Unknown ofproto (use "
8245 "ofproto/list for help)");
8246 return;
8247 }
8248 ofproto_dpif_self_check__(ofproto, &reply);
8249 } else {
8250 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
8251 ofproto_dpif_self_check__(ofproto, &reply);
8252 }
8253 }
8254
8255 unixctl_command_reply(conn, ds_cstr(&reply));
8256 ds_destroy(&reply);
8257 }
8258
8259 /* Store the current ofprotos in 'ofproto_shash'. Returns a sorted list
8260 * of the 'ofproto_shash' nodes. It is the responsibility of the caller
8261 * to destroy 'ofproto_shash' and free the returned value. */
8262 static const struct shash_node **
8263 get_ofprotos(struct shash *ofproto_shash)
8264 {
8265 const struct ofproto_dpif *ofproto;
8266
8267 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
8268 char *name = xasprintf("%s@%s", ofproto->up.type, ofproto->up.name);
8269 shash_add_nocopy(ofproto_shash, name, ofproto);
8270 }
8271
8272 return shash_sort(ofproto_shash);
8273 }
8274
8275 static void
8276 ofproto_unixctl_dpif_dump_dps(struct unixctl_conn *conn, int argc OVS_UNUSED,
8277 const char *argv[] OVS_UNUSED,
8278 void *aux OVS_UNUSED)
8279 {
8280 struct ds ds = DS_EMPTY_INITIALIZER;
8281 struct shash ofproto_shash;
8282 const struct shash_node **sorted_ofprotos;
8283 int i;
8284
8285 shash_init(&ofproto_shash);
8286 sorted_ofprotos = get_ofprotos(&ofproto_shash);
8287 for (i = 0; i < shash_count(&ofproto_shash); i++) {
8288 const struct shash_node *node = sorted_ofprotos[i];
8289 ds_put_format(&ds, "%s\n", node->name);
8290 }
8291
8292 shash_destroy(&ofproto_shash);
8293 free(sorted_ofprotos);
8294
8295 unixctl_command_reply(conn, ds_cstr(&ds));
8296 ds_destroy(&ds);
8297 }
8298
8299 static void
8300 show_dp_format(const struct ofproto_dpif *ofproto, struct ds *ds)
8301 {
8302 const struct shash_node **ports;
8303 int i;
8304 struct avg_subfacet_rates lifetime;
8305 unsigned long long int minutes;
8306 const int min_ms = 60 * 1000; /* milliseconds in one minute. */
8307
8308 minutes = (time_msec() - ofproto->created) / min_ms;
8309
8310 if (minutes > 0) {
8311 lifetime.add_rate = (double)ofproto->total_subfacet_add_count
8312 / minutes;
8313 lifetime.del_rate = (double)ofproto->total_subfacet_del_count
8314 / minutes;
8315 }else {
8316 lifetime.add_rate = 0.0;
8317 lifetime.del_rate = 0.0;
8318 }
8319
8320 ds_put_format(ds, "%s (%s):\n", ofproto->up.name,
8321 dpif_name(ofproto->backer->dpif));
8322 ds_put_format(ds,
8323 "\tlookups: hit:%"PRIu64" missed:%"PRIu64"\n",
8324 ofproto->n_hit, ofproto->n_missed);
8325 ds_put_format(ds, "\tflows: cur: %zu, avg: %5.3f, max: %d,"
8326 " life span: %llu(ms)\n",
8327 hmap_count(&ofproto->subfacets),
8328 avg_subfacet_count(ofproto),
8329 ofproto->max_n_subfacet,
8330 avg_subfacet_life_span(ofproto));
8331 if (minutes >= 60) {
8332 show_dp_rates(ds, "\t\thourly avg:", &ofproto->hourly);
8333 }
8334 if (minutes >= 60 * 24) {
8335 show_dp_rates(ds, "\t\tdaily avg:", &ofproto->daily);
8336 }
8337 show_dp_rates(ds, "\t\toverall avg:", &lifetime);
8338
8339 ports = shash_sort(&ofproto->up.port_by_name);
8340 for (i = 0; i < shash_count(&ofproto->up.port_by_name); i++) {
8341 const struct shash_node *node = ports[i];
8342 struct ofport *ofport = node->data;
8343 const char *name = netdev_get_name(ofport->netdev);
8344 const char *type = netdev_get_type(ofport->netdev);
8345 uint32_t odp_port;
8346
8347 ds_put_format(ds, "\t%s %u/", name, ofport->ofp_port);
8348
8349 odp_port = ofp_port_to_odp_port(ofproto, ofport->ofp_port);
8350 if (odp_port != OVSP_NONE) {
8351 ds_put_format(ds, "%"PRIu32":", odp_port);
8352 } else {
8353 ds_put_cstr(ds, "none:");
8354 }
8355
8356 if (strcmp(type, "system")) {
8357 struct netdev *netdev;
8358 int error;
8359
8360 ds_put_format(ds, " (%s", type);
8361
8362 error = netdev_open(name, type, &netdev);
8363 if (!error) {
8364 struct smap config;
8365
8366 smap_init(&config);
8367 error = netdev_get_config(netdev, &config);
8368 if (!error) {
8369 const struct smap_node **nodes;
8370 size_t i;
8371
8372 nodes = smap_sort(&config);
8373 for (i = 0; i < smap_count(&config); i++) {
8374 const struct smap_node *node = nodes[i];
8375 ds_put_format(ds, "%c %s=%s", i ? ',' : ':',
8376 node->key, node->value);
8377 }
8378 free(nodes);
8379 }
8380 smap_destroy(&config);
8381
8382 netdev_close(netdev);
8383 }
8384 ds_put_char(ds, ')');
8385 }
8386 ds_put_char(ds, '\n');
8387 }
8388 free(ports);
8389 }
8390
8391 static void
8392 ofproto_unixctl_dpif_show(struct unixctl_conn *conn, int argc,
8393 const char *argv[], void *aux OVS_UNUSED)
8394 {
8395 struct ds ds = DS_EMPTY_INITIALIZER;
8396 const struct ofproto_dpif *ofproto;
8397
8398 if (argc > 1) {
8399 int i;
8400 for (i = 1; i < argc; i++) {
8401 ofproto = ofproto_dpif_lookup(argv[i]);
8402 if (!ofproto) {
8403 ds_put_format(&ds, "Unknown bridge %s (use dpif/dump-dps "
8404 "for help)", argv[i]);
8405 unixctl_command_reply_error(conn, ds_cstr(&ds));
8406 return;
8407 }
8408 show_dp_format(ofproto, &ds);
8409 }
8410 } else {
8411 struct shash ofproto_shash;
8412 const struct shash_node **sorted_ofprotos;
8413 int i;
8414
8415 shash_init(&ofproto_shash);
8416 sorted_ofprotos = get_ofprotos(&ofproto_shash);
8417 for (i = 0; i < shash_count(&ofproto_shash); i++) {
8418 const struct shash_node *node = sorted_ofprotos[i];
8419 show_dp_format(node->data, &ds);
8420 }
8421
8422 shash_destroy(&ofproto_shash);
8423 free(sorted_ofprotos);
8424 }
8425
8426 unixctl_command_reply(conn, ds_cstr(&ds));
8427 ds_destroy(&ds);
8428 }
8429
8430 static void
8431 ofproto_unixctl_dpif_dump_flows(struct unixctl_conn *conn,
8432 int argc OVS_UNUSED, const char *argv[],
8433 void *aux OVS_UNUSED)
8434 {
8435 struct ds ds = DS_EMPTY_INITIALIZER;
8436 const struct ofproto_dpif *ofproto;
8437 struct subfacet *subfacet;
8438
8439 ofproto = ofproto_dpif_lookup(argv[1]);
8440 if (!ofproto) {
8441 unixctl_command_reply_error(conn, "no such bridge");
8442 return;
8443 }
8444
8445 update_stats(ofproto->backer);
8446
8447 HMAP_FOR_EACH (subfacet, hmap_node, &ofproto->subfacets) {
8448 struct facet *facet = subfacet->facet;
8449
8450 odp_flow_key_format(subfacet->key, subfacet->key_len, &ds);
8451
8452 ds_put_format(&ds, ", packets:%"PRIu64", bytes:%"PRIu64", used:",
8453 subfacet->dp_packet_count, subfacet->dp_byte_count);
8454 if (subfacet->used) {
8455 ds_put_format(&ds, "%.3fs",
8456 (time_msec() - subfacet->used) / 1000.0);
8457 } else {
8458 ds_put_format(&ds, "never");
8459 }
8460 if (subfacet->facet->tcp_flags) {
8461 ds_put_cstr(&ds, ", flags:");
8462 packet_format_tcp_flags(&ds, subfacet->facet->tcp_flags);
8463 }
8464
8465 ds_put_cstr(&ds, ", actions:");
8466 if (facet->xout.slow) {
8467 uint64_t slow_path_stub[128 / 8];
8468 const struct nlattr *actions;
8469 size_t actions_len;
8470
8471 compose_slow_path(ofproto, &facet->flow, facet->xout.slow,
8472 slow_path_stub, sizeof slow_path_stub,
8473 &actions, &actions_len);
8474 format_odp_actions(&ds, actions, actions_len);
8475 } else {
8476 format_odp_actions(&ds, facet->xout.odp_actions.data,
8477 facet->xout.odp_actions.size);
8478 }
8479 ds_put_char(&ds, '\n');
8480 }
8481
8482 unixctl_command_reply(conn, ds_cstr(&ds));
8483 ds_destroy(&ds);
8484 }
8485
8486 static void
8487 ofproto_unixctl_dpif_del_flows(struct unixctl_conn *conn,
8488 int argc OVS_UNUSED, const char *argv[],
8489 void *aux OVS_UNUSED)
8490 {
8491 struct ds ds = DS_EMPTY_INITIALIZER;
8492 struct ofproto_dpif *ofproto;
8493
8494 ofproto = ofproto_dpif_lookup(argv[1]);
8495 if (!ofproto) {
8496 unixctl_command_reply_error(conn, "no such bridge");
8497 return;
8498 }
8499
8500 flush(&ofproto->up);
8501
8502 unixctl_command_reply(conn, ds_cstr(&ds));
8503 ds_destroy(&ds);
8504 }
8505
8506 static void
8507 ofproto_dpif_unixctl_init(void)
8508 {
8509 static bool registered;
8510 if (registered) {
8511 return;
8512 }
8513 registered = true;
8514
8515 unixctl_command_register(
8516 "ofproto/trace",
8517 "[dp_name]|bridge odp_flow|br_flow [-generate|packet]",
8518 1, 3, ofproto_unixctl_trace, NULL);
8519 unixctl_command_register("fdb/flush", "[bridge]", 0, 1,
8520 ofproto_unixctl_fdb_flush, NULL);
8521 unixctl_command_register("fdb/show", "bridge", 1, 1,
8522 ofproto_unixctl_fdb_show, NULL);
8523 unixctl_command_register("ofproto/clog", "", 0, 0,
8524 ofproto_dpif_clog, NULL);
8525 unixctl_command_register("ofproto/unclog", "", 0, 0,
8526 ofproto_dpif_unclog, NULL);
8527 unixctl_command_register("ofproto/self-check", "[bridge]", 0, 1,
8528 ofproto_dpif_self_check, NULL);
8529 unixctl_command_register("dpif/dump-dps", "", 0, 0,
8530 ofproto_unixctl_dpif_dump_dps, NULL);
8531 unixctl_command_register("dpif/show", "[bridge]", 0, INT_MAX,
8532 ofproto_unixctl_dpif_show, NULL);
8533 unixctl_command_register("dpif/dump-flows", "bridge", 1, 1,
8534 ofproto_unixctl_dpif_dump_flows, NULL);
8535 unixctl_command_register("dpif/del-flows", "bridge", 1, 1,
8536 ofproto_unixctl_dpif_del_flows, NULL);
8537 }
8538 \f
8539 /* Linux VLAN device support (e.g. "eth0.10" for VLAN 10.)
8540 *
8541 * This is deprecated. It is only for compatibility with broken device drivers
8542 * in old versions of Linux that do not properly support VLANs when VLAN
8543 * devices are not used. When broken device drivers are no longer in
8544 * widespread use, we will delete these interfaces. */
8545
8546 static int
8547 set_realdev(struct ofport *ofport_, uint16_t realdev_ofp_port, int vid)
8548 {
8549 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport_->ofproto);
8550 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
8551
8552 if (realdev_ofp_port == ofport->realdev_ofp_port
8553 && vid == ofport->vlandev_vid) {
8554 return 0;
8555 }
8556
8557 ofproto->backer->need_revalidate = REV_RECONFIGURE;
8558
8559 if (ofport->realdev_ofp_port) {
8560 vsp_remove(ofport);
8561 }
8562 if (realdev_ofp_port && ofport->bundle) {
8563 /* vlandevs are enslaved to their realdevs, so they are not allowed to
8564 * themselves be part of a bundle. */
8565 bundle_set(ofport->up.ofproto, ofport->bundle, NULL);
8566 }
8567
8568 ofport->realdev_ofp_port = realdev_ofp_port;
8569 ofport->vlandev_vid = vid;
8570
8571 if (realdev_ofp_port) {
8572 vsp_add(ofport, realdev_ofp_port, vid);
8573 }
8574
8575 return 0;
8576 }
8577
8578 static uint32_t
8579 hash_realdev_vid(uint16_t realdev_ofp_port, int vid)
8580 {
8581 return hash_2words(realdev_ofp_port, vid);
8582 }
8583
8584 /* Returns the OFP port number of the Linux VLAN device that corresponds to
8585 * 'vlan_tci' on the network device with port number 'realdev_ofp_port' in
8586 * 'struct ofport_dpif'. For example, given 'realdev_ofp_port' of eth0 and
8587 * 'vlan_tci' 9, it would return the port number of eth0.9.
8588 *
8589 * Unless VLAN splinters are enabled for port 'realdev_ofp_port', this
8590 * function just returns its 'realdev_ofp_port' argument. */
8591 static uint16_t
8592 vsp_realdev_to_vlandev(const struct ofproto_dpif *ofproto,
8593 uint16_t realdev_ofp_port, ovs_be16 vlan_tci)
8594 {
8595 if (!hmap_is_empty(&ofproto->realdev_vid_map)) {
8596 int vid = vlan_tci_to_vid(vlan_tci);
8597 const struct vlan_splinter *vsp;
8598
8599 HMAP_FOR_EACH_WITH_HASH (vsp, realdev_vid_node,
8600 hash_realdev_vid(realdev_ofp_port, vid),
8601 &ofproto->realdev_vid_map) {
8602 if (vsp->realdev_ofp_port == realdev_ofp_port
8603 && vsp->vid == vid) {
8604 return vsp->vlandev_ofp_port;
8605 }
8606 }
8607 }
8608 return realdev_ofp_port;
8609 }
8610
8611 static struct vlan_splinter *
8612 vlandev_find(const struct ofproto_dpif *ofproto, uint16_t vlandev_ofp_port)
8613 {
8614 struct vlan_splinter *vsp;
8615
8616 HMAP_FOR_EACH_WITH_HASH (vsp, vlandev_node, hash_int(vlandev_ofp_port, 0),
8617 &ofproto->vlandev_map) {
8618 if (vsp->vlandev_ofp_port == vlandev_ofp_port) {
8619 return vsp;
8620 }
8621 }
8622
8623 return NULL;
8624 }
8625
8626 /* Returns the OpenFlow port number of the "real" device underlying the Linux
8627 * VLAN device with OpenFlow port number 'vlandev_ofp_port' and stores the
8628 * VLAN VID of the Linux VLAN device in '*vid'. For example, given
8629 * 'vlandev_ofp_port' of eth0.9, it would return the OpenFlow port number of
8630 * eth0 and store 9 in '*vid'.
8631 *
8632 * Returns 0 and does not modify '*vid' if 'vlandev_ofp_port' is not a Linux
8633 * VLAN device. Unless VLAN splinters are enabled, this is what this function
8634 * always does.*/
8635 static uint16_t
8636 vsp_vlandev_to_realdev(const struct ofproto_dpif *ofproto,
8637 uint16_t vlandev_ofp_port, int *vid)
8638 {
8639 if (!hmap_is_empty(&ofproto->vlandev_map)) {
8640 const struct vlan_splinter *vsp;
8641
8642 vsp = vlandev_find(ofproto, vlandev_ofp_port);
8643 if (vsp) {
8644 if (vid) {
8645 *vid = vsp->vid;
8646 }
8647 return vsp->realdev_ofp_port;
8648 }
8649 }
8650 return 0;
8651 }
8652
8653 /* Given 'flow', a flow representing a packet received on 'ofproto', checks
8654 * whether 'flow->in_port' represents a Linux VLAN device. If so, changes
8655 * 'flow->in_port' to the "real" device backing the VLAN device, sets
8656 * 'flow->vlan_tci' to the VLAN VID, and returns true. Otherwise (which is
8657 * always the case unless VLAN splinters are enabled), returns false without
8658 * making any changes. */
8659 static bool
8660 vsp_adjust_flow(const struct ofproto_dpif *ofproto, struct flow *flow)
8661 {
8662 uint16_t realdev;
8663 int vid;
8664
8665 realdev = vsp_vlandev_to_realdev(ofproto, flow->in_port, &vid);
8666 if (!realdev) {
8667 return false;
8668 }
8669
8670 /* Cause the flow to be processed as if it came in on the real device with
8671 * the VLAN device's VLAN ID. */
8672 flow->in_port = realdev;
8673 flow->vlan_tci = htons((vid & VLAN_VID_MASK) | VLAN_CFI);
8674 return true;
8675 }
8676
8677 static void
8678 vsp_remove(struct ofport_dpif *port)
8679 {
8680 struct ofproto_dpif *ofproto = ofproto_dpif_cast(port->up.ofproto);
8681 struct vlan_splinter *vsp;
8682
8683 vsp = vlandev_find(ofproto, port->up.ofp_port);
8684 if (vsp) {
8685 hmap_remove(&ofproto->vlandev_map, &vsp->vlandev_node);
8686 hmap_remove(&ofproto->realdev_vid_map, &vsp->realdev_vid_node);
8687 free(vsp);
8688
8689 port->realdev_ofp_port = 0;
8690 } else {
8691 VLOG_ERR("missing vlan device record");
8692 }
8693 }
8694
8695 static void
8696 vsp_add(struct ofport_dpif *port, uint16_t realdev_ofp_port, int vid)
8697 {
8698 struct ofproto_dpif *ofproto = ofproto_dpif_cast(port->up.ofproto);
8699
8700 if (!vsp_vlandev_to_realdev(ofproto, port->up.ofp_port, NULL)
8701 && (vsp_realdev_to_vlandev(ofproto, realdev_ofp_port, htons(vid))
8702 == realdev_ofp_port)) {
8703 struct vlan_splinter *vsp;
8704
8705 vsp = xmalloc(sizeof *vsp);
8706 hmap_insert(&ofproto->vlandev_map, &vsp->vlandev_node,
8707 hash_int(port->up.ofp_port, 0));
8708 hmap_insert(&ofproto->realdev_vid_map, &vsp->realdev_vid_node,
8709 hash_realdev_vid(realdev_ofp_port, vid));
8710 vsp->realdev_ofp_port = realdev_ofp_port;
8711 vsp->vlandev_ofp_port = port->up.ofp_port;
8712 vsp->vid = vid;
8713
8714 port->realdev_ofp_port = realdev_ofp_port;
8715 } else {
8716 VLOG_ERR("duplicate vlan device record");
8717 }
8718 }
8719
8720 static uint32_t
8721 ofp_port_to_odp_port(const struct ofproto_dpif *ofproto, uint16_t ofp_port)
8722 {
8723 const struct ofport_dpif *ofport = get_ofp_port(ofproto, ofp_port);
8724 return ofport ? ofport->odp_port : OVSP_NONE;
8725 }
8726
8727 static struct ofport_dpif *
8728 odp_port_to_ofport(const struct dpif_backer *backer, uint32_t odp_port)
8729 {
8730 struct ofport_dpif *port;
8731
8732 HMAP_FOR_EACH_IN_BUCKET (port, odp_port_node,
8733 hash_int(odp_port, 0),
8734 &backer->odp_to_ofport_map) {
8735 if (port->odp_port == odp_port) {
8736 return port;
8737 }
8738 }
8739
8740 return NULL;
8741 }
8742
8743 static uint16_t
8744 odp_port_to_ofp_port(const struct ofproto_dpif *ofproto, uint32_t odp_port)
8745 {
8746 struct ofport_dpif *port;
8747
8748 port = odp_port_to_ofport(ofproto->backer, odp_port);
8749 if (port && &ofproto->up == port->up.ofproto) {
8750 return port->up.ofp_port;
8751 } else {
8752 return OFPP_NONE;
8753 }
8754 }
8755 static unsigned long long int
8756 avg_subfacet_life_span(const struct ofproto_dpif *ofproto)
8757 {
8758 unsigned long long int dc;
8759 unsigned long long int avg;
8760
8761 dc = ofproto->total_subfacet_del_count + ofproto->subfacet_del_count;
8762 avg = dc ? ofproto->total_subfacet_life_span / dc : 0;
8763
8764 return avg;
8765 }
8766
8767 static double
8768 avg_subfacet_count(const struct ofproto_dpif *ofproto)
8769 {
8770 double avg_c = 0.0;
8771
8772 if (ofproto->n_update_stats) {
8773 avg_c = (double)ofproto->total_subfacet_count
8774 / ofproto->n_update_stats;
8775 }
8776
8777 return avg_c;
8778 }
8779
8780 static void
8781 show_dp_rates(struct ds *ds, const char *heading,
8782 const struct avg_subfacet_rates *rates)
8783 {
8784 ds_put_format(ds, "%s add rate: %5.3f/min, del rate: %5.3f/min\n",
8785 heading, rates->add_rate, rates->del_rate);
8786 }
8787
8788 static void
8789 update_max_subfacet_count(struct ofproto_dpif *ofproto)
8790 {
8791 ofproto->max_n_subfacet = MAX(ofproto->max_n_subfacet,
8792 hmap_count(&ofproto->subfacets));
8793 }
8794
8795 /* Compute exponentially weighted moving average, adding 'new' as the newest,
8796 * most heavily weighted element. 'base' designates the rate of decay: after
8797 * 'base' further updates, 'new''s weight in the EWMA decays to about 1/e
8798 * (about .37). */
8799 static void
8800 exp_mavg(double *avg, int base, double new)
8801 {
8802 *avg = (*avg * (base - 1) + new) / base;
8803 }
8804
8805 static void
8806 update_moving_averages(struct ofproto_dpif *ofproto)
8807 {
8808 const int min_ms = 60 * 1000; /* milliseconds in one minute. */
8809
8810 /* Update hourly averages on the minute boundaries. */
8811 if (time_msec() - ofproto->last_minute >= min_ms) {
8812 exp_mavg(&ofproto->hourly.add_rate, 60, ofproto->subfacet_add_count);
8813 exp_mavg(&ofproto->hourly.del_rate, 60, ofproto->subfacet_del_count);
8814
8815 /* Update daily averages on the hour boundaries. */
8816 if ((ofproto->last_minute - ofproto->created) / min_ms % 60 == 59) {
8817 exp_mavg(&ofproto->daily.add_rate, 24, ofproto->hourly.add_rate);
8818 exp_mavg(&ofproto->daily.del_rate, 24, ofproto->hourly.del_rate);
8819 }
8820
8821 ofproto->total_subfacet_add_count += ofproto->subfacet_add_count;
8822 ofproto->total_subfacet_del_count += ofproto->subfacet_del_count;
8823 ofproto->subfacet_add_count = 0;
8824 ofproto->subfacet_del_count = 0;
8825 ofproto->last_minute += min_ms;
8826 }
8827 }
8828
8829 const struct ofproto_class ofproto_dpif_class = {
8830 init,
8831 enumerate_types,
8832 enumerate_names,
8833 del,
8834 port_open_type,
8835 type_run,
8836 type_run_fast,
8837 type_wait,
8838 alloc,
8839 construct,
8840 destruct,
8841 dealloc,
8842 run,
8843 run_fast,
8844 wait,
8845 get_memory_usage,
8846 flush,
8847 get_features,
8848 get_tables,
8849 port_alloc,
8850 port_construct,
8851 port_destruct,
8852 port_dealloc,
8853 port_modified,
8854 port_reconfigured,
8855 port_query_by_name,
8856 port_add,
8857 port_del,
8858 port_get_stats,
8859 port_dump_start,
8860 port_dump_next,
8861 port_dump_done,
8862 port_poll,
8863 port_poll_wait,
8864 port_is_lacp_current,
8865 NULL, /* rule_choose_table */
8866 rule_alloc,
8867 rule_construct,
8868 rule_destruct,
8869 rule_dealloc,
8870 rule_get_stats,
8871 rule_execute,
8872 rule_modify_actions,
8873 set_frag_handling,
8874 packet_out,
8875 set_netflow,
8876 get_netflow_ids,
8877 set_sflow,
8878 set_ipfix,
8879 set_cfm,
8880 get_cfm_status,
8881 set_bfd,
8882 get_bfd_status,
8883 set_stp,
8884 get_stp_status,
8885 set_stp_port,
8886 get_stp_port_status,
8887 set_queues,
8888 bundle_set,
8889 bundle_remove,
8890 mirror_set,
8891 mirror_get_stats,
8892 set_flood_vlans,
8893 is_mirror_output_bundle,
8894 forward_bpdu_changed,
8895 set_mac_table_config,
8896 set_realdev,
8897 };