]> git.proxmox.com Git - mirror_ovs.git/blob - ofproto/ofproto-dpif.c
ofproto-dpif: Push statistics in rule_get_stats().
[mirror_ovs.git] / ofproto / ofproto-dpif.c
1 /*
2 * Copyright (c) 2009, 2010, 2011, 2012, 2013 Nicira, Inc.
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at:
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <config.h>
18
19 #include "ofproto/ofproto-provider.h"
20
21 #include <errno.h>
22
23 #include "bond.h"
24 #include "bundle.h"
25 #include "byte-order.h"
26 #include "connmgr.h"
27 #include "coverage.h"
28 #include "cfm.h"
29 #include "dpif.h"
30 #include "dynamic-string.h"
31 #include "fail-open.h"
32 #include "hmapx.h"
33 #include "lacp.h"
34 #include "learn.h"
35 #include "mac-learning.h"
36 #include "meta-flow.h"
37 #include "multipath.h"
38 #include "netdev-vport.h"
39 #include "netdev.h"
40 #include "netlink.h"
41 #include "nx-match.h"
42 #include "odp-util.h"
43 #include "ofp-util.h"
44 #include "ofpbuf.h"
45 #include "ofp-actions.h"
46 #include "ofp-parse.h"
47 #include "ofp-print.h"
48 #include "ofproto-dpif-governor.h"
49 #include "ofproto-dpif-sflow.h"
50 #include "poll-loop.h"
51 #include "simap.h"
52 #include "smap.h"
53 #include "timer.h"
54 #include "tunnel.h"
55 #include "unaligned.h"
56 #include "unixctl.h"
57 #include "vlan-bitmap.h"
58 #include "vlog.h"
59
60 VLOG_DEFINE_THIS_MODULE(ofproto_dpif);
61
62 COVERAGE_DEFINE(ofproto_dpif_expired);
63 COVERAGE_DEFINE(ofproto_dpif_xlate);
64 COVERAGE_DEFINE(facet_changed_rule);
65 COVERAGE_DEFINE(facet_revalidate);
66 COVERAGE_DEFINE(facet_unexpected);
67 COVERAGE_DEFINE(facet_suppress);
68
69 /* Maximum depth of flow table recursion (due to resubmit actions) in a
70 * flow translation. */
71 #define MAX_RESUBMIT_RECURSION 64
72
73 /* Number of implemented OpenFlow tables. */
74 enum { N_TABLES = 255 };
75 enum { TBL_INTERNAL = N_TABLES - 1 }; /* Used for internal hidden rules. */
76 BUILD_ASSERT_DECL(N_TABLES >= 2 && N_TABLES <= 255);
77
78 struct ofport_dpif;
79 struct ofproto_dpif;
80 struct flow_miss;
81 struct facet;
82
83 struct rule_dpif {
84 struct rule up;
85
86 /* These statistics:
87 *
88 * - Do include packets and bytes from facets that have been deleted or
89 * whose own statistics have been folded into the rule.
90 *
91 * - Do include packets and bytes sent "by hand" that were accounted to
92 * the rule without any facet being involved (this is a rare corner
93 * case in rule_execute()).
94 *
95 * - Do not include packet or bytes that can be obtained from any facet's
96 * packet_count or byte_count member or that can be obtained from the
97 * datapath by, e.g., dpif_flow_get() for any subfacet.
98 */
99 uint64_t packet_count; /* Number of packets received. */
100 uint64_t byte_count; /* Number of bytes received. */
101
102 tag_type tag; /* Caches rule_calculate_tag() result. */
103
104 struct list facets; /* List of "struct facet"s. */
105 };
106
107 static struct rule_dpif *rule_dpif_cast(const struct rule *rule)
108 {
109 return rule ? CONTAINER_OF(rule, struct rule_dpif, up) : NULL;
110 }
111
112 static struct rule_dpif *rule_dpif_lookup(struct ofproto_dpif *,
113 const struct flow *);
114 static struct rule_dpif *rule_dpif_lookup__(struct ofproto_dpif *,
115 const struct flow *,
116 uint8_t table);
117 static struct rule_dpif *rule_dpif_miss_rule(struct ofproto_dpif *ofproto,
118 const struct flow *flow);
119
120 static void rule_credit_stats(struct rule_dpif *,
121 const struct dpif_flow_stats *);
122 static void flow_push_stats(struct facet *, const struct dpif_flow_stats *);
123 static tag_type rule_calculate_tag(const struct flow *,
124 const struct minimask *, uint32_t basis);
125 static void rule_invalidate(const struct rule_dpif *);
126
127 #define MAX_MIRRORS 32
128 typedef uint32_t mirror_mask_t;
129 #define MIRROR_MASK_C(X) UINT32_C(X)
130 BUILD_ASSERT_DECL(sizeof(mirror_mask_t) * CHAR_BIT >= MAX_MIRRORS);
131 struct ofmirror {
132 struct ofproto_dpif *ofproto; /* Owning ofproto. */
133 size_t idx; /* In ofproto's "mirrors" array. */
134 void *aux; /* Key supplied by ofproto's client. */
135 char *name; /* Identifier for log messages. */
136
137 /* Selection criteria. */
138 struct hmapx srcs; /* Contains "struct ofbundle *"s. */
139 struct hmapx dsts; /* Contains "struct ofbundle *"s. */
140 unsigned long *vlans; /* Bitmap of chosen VLANs, NULL selects all. */
141
142 /* Output (exactly one of out == NULL and out_vlan == -1 is true). */
143 struct ofbundle *out; /* Output port or NULL. */
144 int out_vlan; /* Output VLAN or -1. */
145 mirror_mask_t dup_mirrors; /* Bitmap of mirrors with the same output. */
146
147 /* Counters. */
148 int64_t packet_count; /* Number of packets sent. */
149 int64_t byte_count; /* Number of bytes sent. */
150 };
151
152 static void mirror_destroy(struct ofmirror *);
153 static void update_mirror_stats(struct ofproto_dpif *ofproto,
154 mirror_mask_t mirrors,
155 uint64_t packets, uint64_t bytes);
156
157 struct ofbundle {
158 struct hmap_node hmap_node; /* In struct ofproto's "bundles" hmap. */
159 struct ofproto_dpif *ofproto; /* Owning ofproto. */
160 void *aux; /* Key supplied by ofproto's client. */
161 char *name; /* Identifier for log messages. */
162
163 /* Configuration. */
164 struct list ports; /* Contains "struct ofport"s. */
165 enum port_vlan_mode vlan_mode; /* VLAN mode */
166 int vlan; /* -1=trunk port, else a 12-bit VLAN ID. */
167 unsigned long *trunks; /* Bitmap of trunked VLANs, if 'vlan' == -1.
168 * NULL if all VLANs are trunked. */
169 struct lacp *lacp; /* LACP if LACP is enabled, otherwise NULL. */
170 struct bond *bond; /* Nonnull iff more than one port. */
171 bool use_priority_tags; /* Use 802.1p tag for frames in VLAN 0? */
172
173 /* Status. */
174 bool floodable; /* True if no port has OFPUTIL_PC_NO_FLOOD set. */
175
176 /* Port mirroring info. */
177 mirror_mask_t src_mirrors; /* Mirrors triggered when packet received. */
178 mirror_mask_t dst_mirrors; /* Mirrors triggered when packet sent. */
179 mirror_mask_t mirror_out; /* Mirrors that output to this bundle. */
180 };
181
182 static void bundle_remove(struct ofport *);
183 static void bundle_update(struct ofbundle *);
184 static void bundle_destroy(struct ofbundle *);
185 static void bundle_del_port(struct ofport_dpif *);
186 static void bundle_run(struct ofbundle *);
187 static void bundle_wait(struct ofbundle *);
188 static struct ofbundle *lookup_input_bundle(const struct ofproto_dpif *,
189 uint16_t in_port, bool warn,
190 struct ofport_dpif **in_ofportp);
191
192 /* A controller may use OFPP_NONE as the ingress port to indicate that
193 * it did not arrive on a "real" port. 'ofpp_none_bundle' exists for
194 * when an input bundle is needed for validation (e.g., mirroring or
195 * OFPP_NORMAL processing). It is not connected to an 'ofproto' or have
196 * any 'port' structs, so care must be taken when dealing with it. */
197 static struct ofbundle ofpp_none_bundle = {
198 .name = "OFPP_NONE",
199 .vlan_mode = PORT_VLAN_TRUNK
200 };
201
202 static void stp_run(struct ofproto_dpif *ofproto);
203 static void stp_wait(struct ofproto_dpif *ofproto);
204 static int set_stp_port(struct ofport *,
205 const struct ofproto_port_stp_settings *);
206
207 static bool ofbundle_includes_vlan(const struct ofbundle *, uint16_t vlan);
208
209 struct action_xlate_ctx {
210 /* action_xlate_ctx_init() initializes these members. */
211
212 /* The ofproto. */
213 struct ofproto_dpif *ofproto;
214
215 /* Flow to which the OpenFlow actions apply. xlate_actions() will modify
216 * this flow when actions change header fields. */
217 struct flow flow;
218
219 /* stack for the push and pop actions.
220 * Each stack element is of the type "union mf_subvalue". */
221 struct ofpbuf stack;
222 union mf_subvalue init_stack[1024 / sizeof(union mf_subvalue)];
223
224 /* The packet corresponding to 'flow', or a null pointer if we are
225 * revalidating without a packet to refer to. */
226 const struct ofpbuf *packet;
227
228 /* Should OFPP_NORMAL update the MAC learning table? Should "learn"
229 * actions update the flow table?
230 *
231 * We want to update these tables if we are actually processing a packet,
232 * or if we are accounting for packets that the datapath has processed, but
233 * not if we are just revalidating. */
234 bool may_learn;
235
236 /* The rule that we are currently translating, or NULL. */
237 struct rule_dpif *rule;
238
239 /* Union of the set of TCP flags seen so far in this flow. (Used only by
240 * NXAST_FIN_TIMEOUT. Set to zero to avoid updating updating rules'
241 * timeouts.) */
242 uint8_t tcp_flags;
243
244 /* If nonnull, flow translation calls this function just before executing a
245 * resubmit or OFPP_TABLE action. In addition, disables logging of traces
246 * when the recursion depth is exceeded.
247 *
248 * 'rule' is the rule being submitted into. It will be null if the
249 * resubmit or OFPP_TABLE action didn't find a matching rule.
250 *
251 * This is normally null so the client has to set it manually after
252 * calling action_xlate_ctx_init(). */
253 void (*resubmit_hook)(struct action_xlate_ctx *, struct rule_dpif *rule);
254
255 /* If nonnull, flow translation calls this function to report some
256 * significant decision, e.g. to explain why OFPP_NORMAL translation
257 * dropped a packet. */
258 void (*report_hook)(struct action_xlate_ctx *, const char *s);
259
260 /* If nonnull, flow translation credits the specified statistics to each
261 * rule reached through a resubmit or OFPP_TABLE action.
262 *
263 * This is normally null so the client has to set it manually after
264 * calling action_xlate_ctx_init(). */
265 const struct dpif_flow_stats *resubmit_stats;
266
267 /* xlate_actions() initializes and uses these members. The client might want
268 * to look at them after it returns. */
269
270 struct ofpbuf *odp_actions; /* Datapath actions. */
271 tag_type tags; /* Tags associated with actions. */
272 enum slow_path_reason slow; /* 0 if fast path may be used. */
273 bool has_learn; /* Actions include NXAST_LEARN? */
274 bool has_normal; /* Actions output to OFPP_NORMAL? */
275 bool has_fin_timeout; /* Actions include NXAST_FIN_TIMEOUT? */
276 uint16_t nf_output_iface; /* Output interface index for NetFlow. */
277 mirror_mask_t mirrors; /* Bitmap of associated mirrors. */
278
279 /* xlate_actions() initializes and uses these members, but the client has no
280 * reason to look at them. */
281
282 int recurse; /* Recursion level, via xlate_table_action. */
283 bool max_resubmit_trigger; /* Recursed too deeply during translation. */
284 struct flow base_flow; /* Flow at the last commit. */
285 uint32_t orig_skb_priority; /* Priority when packet arrived. */
286 uint8_t table_id; /* OpenFlow table ID where flow was found. */
287 uint32_t sflow_n_outputs; /* Number of output ports. */
288 uint32_t sflow_odp_port; /* Output port for composing sFlow action. */
289 uint16_t user_cookie_offset;/* Used for user_action_cookie fixup. */
290 bool exit; /* No further actions should be processed. */
291 };
292
293 /* Initial values of fields of the packet that may be changed during
294 * flow processing and needed later. */
295 struct initial_vals {
296 /* This is the value of vlan_tci in the packet as actually received from
297 * dpif. This is the same as the facet's flow.vlan_tci unless the packet
298 * was received via a VLAN splinter. In that case, this value is 0
299 * (because the packet as actually received from the dpif had no 802.1Q
300 * tag) but the facet's flow.vlan_tci is set to the VLAN that the splinter
301 * represents.
302 *
303 * This member should be removed when the VLAN splinters feature is no
304 * longer needed. */
305 ovs_be16 vlan_tci;
306
307 /* If received on a tunnel, the IP TOS value of the tunnel. */
308 uint8_t tunnel_ip_tos;
309 };
310
311 static void action_xlate_ctx_init(struct action_xlate_ctx *,
312 struct ofproto_dpif *, const struct flow *,
313 const struct initial_vals *initial_vals,
314 struct rule_dpif *,
315 uint8_t tcp_flags, const struct ofpbuf *);
316 static void xlate_actions(struct action_xlate_ctx *,
317 const struct ofpact *ofpacts, size_t ofpacts_len,
318 struct ofpbuf *odp_actions);
319 static void xlate_actions_for_side_effects(struct action_xlate_ctx *,
320 const struct ofpact *ofpacts,
321 size_t ofpacts_len);
322 static void xlate_table_action(struct action_xlate_ctx *, uint16_t in_port,
323 uint8_t table_id, bool may_packet_in);
324
325 static size_t put_userspace_action(const struct ofproto_dpif *,
326 struct ofpbuf *odp_actions,
327 const struct flow *,
328 const union user_action_cookie *);
329
330 static void compose_slow_path(const struct ofproto_dpif *, const struct flow *,
331 enum slow_path_reason,
332 uint64_t *stub, size_t stub_size,
333 const struct nlattr **actionsp,
334 size_t *actions_lenp);
335
336 static void xlate_report(struct action_xlate_ctx *ctx, const char *s);
337
338 /* A subfacet (see "struct subfacet" below) has three possible installation
339 * states:
340 *
341 * - SF_NOT_INSTALLED: Not installed in the datapath. This will only be the
342 * case just after the subfacet is created, just before the subfacet is
343 * destroyed, or if the datapath returns an error when we try to install a
344 * subfacet.
345 *
346 * - SF_FAST_PATH: The subfacet's actions are installed in the datapath.
347 *
348 * - SF_SLOW_PATH: An action that sends every packet for the subfacet through
349 * ofproto_dpif is installed in the datapath.
350 */
351 enum subfacet_path {
352 SF_NOT_INSTALLED, /* No datapath flow for this subfacet. */
353 SF_FAST_PATH, /* Full actions are installed. */
354 SF_SLOW_PATH, /* Send-to-userspace action is installed. */
355 };
356
357 static const char *subfacet_path_to_string(enum subfacet_path);
358
359 /* A dpif flow and actions associated with a facet.
360 *
361 * See also the large comment on struct facet. */
362 struct subfacet {
363 /* Owners. */
364 struct hmap_node hmap_node; /* In struct ofproto_dpif 'subfacets' list. */
365 struct list list_node; /* In struct facet's 'facets' list. */
366 struct facet *facet; /* Owning facet. */
367
368 enum odp_key_fitness key_fitness;
369 struct nlattr *key;
370 int key_len;
371
372 long long int used; /* Time last used; time created if not used. */
373
374 uint64_t dp_packet_count; /* Last known packet count in the datapath. */
375 uint64_t dp_byte_count; /* Last known byte count in the datapath. */
376
377 /* Datapath actions.
378 *
379 * These should be essentially identical for every subfacet in a facet, but
380 * may differ in trivial ways due to VLAN splinters. */
381 size_t actions_len; /* Number of bytes in actions[]. */
382 struct nlattr *actions; /* Datapath actions. */
383
384 enum slow_path_reason slow; /* 0 if fast path may be used. */
385 enum subfacet_path path; /* Installed in datapath? */
386
387 /* Initial values of the packet that may be needed later. */
388 struct initial_vals initial_vals;
389
390 /* Datapath port the packet arrived on. This is needed to remove
391 * flows for ports that are no longer part of the bridge. Since the
392 * flow definition only has the OpenFlow port number and the port is
393 * no longer part of the bridge, we can't determine the datapath port
394 * number needed to delete the flow from the datapath. */
395 uint32_t odp_in_port;
396 };
397
398 #define SUBFACET_DESTROY_MAX_BATCH 50
399
400 static struct subfacet *subfacet_create(struct facet *, struct flow_miss *miss,
401 long long int now);
402 static struct subfacet *subfacet_find(struct ofproto_dpif *,
403 const struct nlattr *key, size_t key_len,
404 uint32_t key_hash);
405 static void subfacet_destroy(struct subfacet *);
406 static void subfacet_destroy__(struct subfacet *);
407 static void subfacet_destroy_batch(struct ofproto_dpif *,
408 struct subfacet **, int n);
409 static void subfacet_reset_dp_stats(struct subfacet *,
410 struct dpif_flow_stats *);
411 static void subfacet_update_time(struct subfacet *, long long int used);
412 static void subfacet_update_stats(struct subfacet *,
413 const struct dpif_flow_stats *);
414 static void subfacet_make_actions(struct subfacet *,
415 const struct ofpbuf *packet,
416 struct ofpbuf *odp_actions);
417 static int subfacet_install(struct subfacet *,
418 const struct nlattr *actions, size_t actions_len,
419 struct dpif_flow_stats *, enum slow_path_reason);
420 static void subfacet_uninstall(struct subfacet *);
421
422 static enum subfacet_path subfacet_want_path(enum slow_path_reason);
423
424 /* An exact-match instantiation of an OpenFlow flow.
425 *
426 * A facet associates a "struct flow", which represents the Open vSwitch
427 * userspace idea of an exact-match flow, with one or more subfacets. Each
428 * subfacet tracks the datapath's idea of the exact-match flow equivalent to
429 * the facet. When the kernel module (or other dpif implementation) and Open
430 * vSwitch userspace agree on the definition of a flow key, there is exactly
431 * one subfacet per facet. If the dpif implementation supports more-specific
432 * flow matching than userspace, however, a facet can have more than one
433 * subfacet, each of which corresponds to some distinction in flow that
434 * userspace simply doesn't understand.
435 *
436 * Flow expiration works in terms of subfacets, so a facet must have at least
437 * one subfacet or it will never expire, leaking memory. */
438 struct facet {
439 /* Owners. */
440 struct hmap_node hmap_node; /* In owning ofproto's 'facets' hmap. */
441 struct list list_node; /* In owning rule's 'facets' list. */
442 struct rule_dpif *rule; /* Owning rule. */
443
444 /* Owned data. */
445 struct list subfacets;
446 long long int used; /* Time last used; time created if not used. */
447
448 /* Key. */
449 struct flow flow;
450
451 /* These statistics:
452 *
453 * - Do include packets and bytes sent "by hand", e.g. with
454 * dpif_execute().
455 *
456 * - Do include packets and bytes that were obtained from the datapath
457 * when a subfacet's statistics were reset (e.g. dpif_flow_put() with
458 * DPIF_FP_ZERO_STATS).
459 *
460 * - Do not include packets or bytes that can be obtained from the
461 * datapath for any existing subfacet.
462 */
463 uint64_t packet_count; /* Number of packets received. */
464 uint64_t byte_count; /* Number of bytes received. */
465
466 /* Resubmit statistics. */
467 uint64_t prev_packet_count; /* Number of packets from last stats push. */
468 uint64_t prev_byte_count; /* Number of bytes from last stats push. */
469 long long int prev_used; /* Used time from last stats push. */
470
471 /* Accounting. */
472 uint64_t accounted_bytes; /* Bytes processed by facet_account(). */
473 struct netflow_flow nf_flow; /* Per-flow NetFlow tracking data. */
474 uint8_t tcp_flags; /* TCP flags seen for this 'rule'. */
475
476 /* Properties of datapath actions.
477 *
478 * Every subfacet has its own actions because actions can differ slightly
479 * between splintered and non-splintered subfacets due to the VLAN tag
480 * being initially different (present vs. absent). All of them have these
481 * properties in common so we just store one copy of them here. */
482 bool has_learn; /* Actions include NXAST_LEARN? */
483 bool has_normal; /* Actions output to OFPP_NORMAL? */
484 bool has_fin_timeout; /* Actions include NXAST_FIN_TIMEOUT? */
485 tag_type tags; /* Tags that would require revalidation. */
486 mirror_mask_t mirrors; /* Bitmap of dependent mirrors. */
487
488 /* Storage for a single subfacet, to reduce malloc() time and space
489 * overhead. (A facet always has at least one subfacet and in the common
490 * case has exactly one subfacet. However, 'one_subfacet' may not
491 * always be valid, since it could have been removed after newer
492 * subfacets were pushed onto the 'subfacets' list.) */
493 struct subfacet one_subfacet;
494 };
495
496 static struct facet *facet_create(struct rule_dpif *,
497 const struct flow *, uint32_t hash);
498 static void facet_remove(struct facet *);
499 static void facet_free(struct facet *);
500
501 static struct facet *facet_find(struct ofproto_dpif *,
502 const struct flow *, uint32_t hash);
503 static struct facet *facet_lookup_valid(struct ofproto_dpif *,
504 const struct flow *, uint32_t hash);
505 static void facet_revalidate(struct facet *);
506 static bool facet_check_consistency(struct facet *);
507
508 static void facet_flush_stats(struct facet *);
509
510 static void facet_update_time(struct facet *, long long int used);
511 static void facet_reset_counters(struct facet *);
512 static void facet_push_stats(struct facet *);
513 static void facet_learn(struct facet *);
514 static void facet_account(struct facet *);
515
516 static struct subfacet *facet_get_subfacet(struct facet *);
517
518 static bool facet_is_controller_flow(struct facet *);
519
520 struct ofport_dpif {
521 struct hmap_node odp_port_node; /* In dpif_backer's "odp_to_ofport_map". */
522 struct ofport up;
523
524 uint32_t odp_port;
525 struct ofbundle *bundle; /* Bundle that contains this port, if any. */
526 struct list bundle_node; /* In struct ofbundle's "ports" list. */
527 struct cfm *cfm; /* Connectivity Fault Management, if any. */
528 tag_type tag; /* Tag associated with this port. */
529 bool may_enable; /* May be enabled in bonds. */
530 long long int carrier_seq; /* Carrier status changes. */
531 struct tnl_port *tnl_port; /* Tunnel handle, or null. */
532
533 /* Spanning tree. */
534 struct stp_port *stp_port; /* Spanning Tree Protocol, if any. */
535 enum stp_state stp_state; /* Always STP_DISABLED if STP not in use. */
536 long long int stp_state_entered;
537
538 struct hmap priorities; /* Map of attached 'priority_to_dscp's. */
539
540 /* Linux VLAN device support (e.g. "eth0.10" for VLAN 10.)
541 *
542 * This is deprecated. It is only for compatibility with broken device
543 * drivers in old versions of Linux that do not properly support VLANs when
544 * VLAN devices are not used. When broken device drivers are no longer in
545 * widespread use, we will delete these interfaces. */
546 uint16_t realdev_ofp_port;
547 int vlandev_vid;
548 };
549
550 /* Node in 'ofport_dpif''s 'priorities' map. Used to maintain a map from
551 * 'priority' (the datapath's term for QoS queue) to the dscp bits which all
552 * traffic egressing the 'ofport' with that priority should be marked with. */
553 struct priority_to_dscp {
554 struct hmap_node hmap_node; /* Node in 'ofport_dpif''s 'priorities' map. */
555 uint32_t priority; /* Priority of this queue (see struct flow). */
556
557 uint8_t dscp; /* DSCP bits to mark outgoing traffic with. */
558 };
559
560 /* Linux VLAN device support (e.g. "eth0.10" for VLAN 10.)
561 *
562 * This is deprecated. It is only for compatibility with broken device drivers
563 * in old versions of Linux that do not properly support VLANs when VLAN
564 * devices are not used. When broken device drivers are no longer in
565 * widespread use, we will delete these interfaces. */
566 struct vlan_splinter {
567 struct hmap_node realdev_vid_node;
568 struct hmap_node vlandev_node;
569 uint16_t realdev_ofp_port;
570 uint16_t vlandev_ofp_port;
571 int vid;
572 };
573
574 static uint32_t vsp_realdev_to_vlandev(const struct ofproto_dpif *,
575 uint32_t realdev, ovs_be16 vlan_tci);
576 static bool vsp_adjust_flow(const struct ofproto_dpif *, struct flow *);
577 static void vsp_remove(struct ofport_dpif *);
578 static void vsp_add(struct ofport_dpif *, uint16_t realdev_ofp_port, int vid);
579
580 static uint32_t ofp_port_to_odp_port(const struct ofproto_dpif *,
581 uint16_t ofp_port);
582 static uint16_t odp_port_to_ofp_port(const struct ofproto_dpif *,
583 uint32_t odp_port);
584
585 static struct ofport_dpif *
586 ofport_dpif_cast(const struct ofport *ofport)
587 {
588 ovs_assert(ofport->ofproto->ofproto_class == &ofproto_dpif_class);
589 return ofport ? CONTAINER_OF(ofport, struct ofport_dpif, up) : NULL;
590 }
591
592 static void port_run(struct ofport_dpif *);
593 static void port_run_fast(struct ofport_dpif *);
594 static void port_wait(struct ofport_dpif *);
595 static int set_cfm(struct ofport *, const struct cfm_settings *);
596 static void ofport_clear_priorities(struct ofport_dpif *);
597
598 struct dpif_completion {
599 struct list list_node;
600 struct ofoperation *op;
601 };
602
603 /* Extra information about a classifier table.
604 * Currently used just for optimized flow revalidation. */
605 struct table_dpif {
606 /* If either of these is nonnull, then this table has a form that allows
607 * flows to be tagged to avoid revalidating most flows for the most common
608 * kinds of flow table changes. */
609 struct cls_table *catchall_table; /* Table that wildcards all fields. */
610 struct cls_table *other_table; /* Table with any other wildcard set. */
611 uint32_t basis; /* Keeps each table's tags separate. */
612 };
613
614 /* Reasons that we might need to revalidate every facet, and corresponding
615 * coverage counters.
616 *
617 * A value of 0 means that there is no need to revalidate.
618 *
619 * It would be nice to have some cleaner way to integrate with coverage
620 * counters, but with only a few reasons I guess this is good enough for
621 * now. */
622 enum revalidate_reason {
623 REV_RECONFIGURE = 1, /* Switch configuration changed. */
624 REV_STP, /* Spanning tree protocol port status change. */
625 REV_PORT_TOGGLED, /* Port enabled or disabled by CFM, LACP, ...*/
626 REV_FLOW_TABLE, /* Flow table changed. */
627 REV_INCONSISTENCY /* Facet self-check failed. */
628 };
629 COVERAGE_DEFINE(rev_reconfigure);
630 COVERAGE_DEFINE(rev_stp);
631 COVERAGE_DEFINE(rev_port_toggled);
632 COVERAGE_DEFINE(rev_flow_table);
633 COVERAGE_DEFINE(rev_inconsistency);
634
635 /* Drop keys are odp flow keys which have drop flows installed in the kernel.
636 * These are datapath flows which have no associated ofproto, if they did we
637 * would use facets. */
638 struct drop_key {
639 struct hmap_node hmap_node;
640 struct nlattr *key;
641 size_t key_len;
642 };
643
644 /* All datapaths of a given type share a single dpif backer instance. */
645 struct dpif_backer {
646 char *type;
647 int refcount;
648 struct dpif *dpif;
649 struct timer next_expiration;
650 struct hmap odp_to_ofport_map; /* ODP port to ofport mapping. */
651
652 struct simap tnl_backers; /* Set of dpif ports backing tunnels. */
653
654 /* Facet revalidation flags applying to facets which use this backer. */
655 enum revalidate_reason need_revalidate; /* Revalidate every facet. */
656 struct tag_set revalidate_set; /* Revalidate only matching facets. */
657
658 struct hmap drop_keys; /* Set of dropped odp keys. */
659 };
660
661 /* All existing ofproto_backer instances, indexed by ofproto->up.type. */
662 static struct shash all_dpif_backers = SHASH_INITIALIZER(&all_dpif_backers);
663
664 static void drop_key_clear(struct dpif_backer *);
665 static struct ofport_dpif *
666 odp_port_to_ofport(const struct dpif_backer *, uint32_t odp_port);
667
668 static void dpif_stats_update_hit_count(struct ofproto_dpif *ofproto,
669 uint64_t delta);
670
671 struct ofproto_dpif {
672 struct hmap_node all_ofproto_dpifs_node; /* In 'all_ofproto_dpifs'. */
673 struct ofproto up;
674 struct dpif_backer *backer;
675
676 /* Special OpenFlow rules. */
677 struct rule_dpif *miss_rule; /* Sends flow table misses to controller. */
678 struct rule_dpif *no_packet_in_rule; /* Drops flow table misses. */
679
680 /* Statistics. */
681 uint64_t n_matches;
682
683 /* Bridging. */
684 struct netflow *netflow;
685 struct dpif_sflow *sflow;
686 struct hmap bundles; /* Contains "struct ofbundle"s. */
687 struct mac_learning *ml;
688 struct ofmirror *mirrors[MAX_MIRRORS];
689 bool has_mirrors;
690 bool has_bonded_bundles;
691
692 /* Facets. */
693 struct hmap facets;
694 struct hmap subfacets;
695 struct governor *governor;
696
697 /* Revalidation. */
698 struct table_dpif tables[N_TABLES];
699
700 /* Support for debugging async flow mods. */
701 struct list completions;
702
703 bool has_bundle_action; /* True when the first bundle action appears. */
704 struct netdev_stats stats; /* To account packets generated and consumed in
705 * userspace. */
706
707 /* Spanning tree. */
708 struct stp *stp;
709 long long int stp_last_tick;
710
711 /* VLAN splinters. */
712 struct hmap realdev_vid_map; /* (realdev,vid) -> vlandev. */
713 struct hmap vlandev_map; /* vlandev -> (realdev,vid). */
714
715 /* Ports. */
716 struct sset ports; /* Set of standard port names. */
717 struct sset ghost_ports; /* Ports with no datapath port. */
718 struct sset port_poll_set; /* Queued names for port_poll() reply. */
719 int port_poll_errno; /* Last errno for port_poll() reply. */
720
721 /* Per ofproto's dpif stats. */
722 uint64_t n_hit;
723 uint64_t n_missed;
724 };
725
726 /* Defer flow mod completion until "ovs-appctl ofproto/unclog"? (Useful only
727 * for debugging the asynchronous flow_mod implementation.) */
728 static bool clogged;
729
730 /* All existing ofproto_dpif instances, indexed by ->up.name. */
731 static struct hmap all_ofproto_dpifs = HMAP_INITIALIZER(&all_ofproto_dpifs);
732
733 static void ofproto_dpif_unixctl_init(void);
734
735 static struct ofproto_dpif *
736 ofproto_dpif_cast(const struct ofproto *ofproto)
737 {
738 ovs_assert(ofproto->ofproto_class == &ofproto_dpif_class);
739 return CONTAINER_OF(ofproto, struct ofproto_dpif, up);
740 }
741
742 static struct ofport_dpif *get_ofp_port(const struct ofproto_dpif *,
743 uint16_t ofp_port);
744 static struct ofport_dpif *get_odp_port(const struct ofproto_dpif *,
745 uint32_t odp_port);
746 static void ofproto_trace(struct ofproto_dpif *, const struct flow *,
747 const struct ofpbuf *,
748 const struct initial_vals *, struct ds *);
749
750 /* Packet processing. */
751 static void update_learning_table(struct ofproto_dpif *,
752 const struct flow *, int vlan,
753 struct ofbundle *);
754 /* Upcalls. */
755 #define FLOW_MISS_MAX_BATCH 50
756 static int handle_upcalls(struct dpif_backer *, unsigned int max_batch);
757
758 /* Flow expiration. */
759 static int expire(struct dpif_backer *);
760
761 /* NetFlow. */
762 static void send_netflow_active_timeouts(struct ofproto_dpif *);
763
764 /* Utilities. */
765 static int send_packet(const struct ofport_dpif *, struct ofpbuf *packet);
766 static size_t compose_sflow_action(const struct ofproto_dpif *,
767 struct ofpbuf *odp_actions,
768 const struct flow *, uint32_t odp_port);
769 static void add_mirror_actions(struct action_xlate_ctx *ctx,
770 const struct flow *flow);
771 /* Global variables. */
772 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
773
774 /* Initial mappings of port to bridge mappings. */
775 static struct shash init_ofp_ports = SHASH_INITIALIZER(&init_ofp_ports);
776 \f
777 /* Factory functions. */
778
779 static void
780 init(const struct shash *iface_hints)
781 {
782 struct shash_node *node;
783
784 /* Make a local copy, since we don't own 'iface_hints' elements. */
785 SHASH_FOR_EACH(node, iface_hints) {
786 const struct iface_hint *orig_hint = node->data;
787 struct iface_hint *new_hint = xmalloc(sizeof *new_hint);
788
789 new_hint->br_name = xstrdup(orig_hint->br_name);
790 new_hint->br_type = xstrdup(orig_hint->br_type);
791 new_hint->ofp_port = orig_hint->ofp_port;
792
793 shash_add(&init_ofp_ports, node->name, new_hint);
794 }
795 }
796
797 static void
798 enumerate_types(struct sset *types)
799 {
800 dp_enumerate_types(types);
801 }
802
803 static int
804 enumerate_names(const char *type, struct sset *names)
805 {
806 struct ofproto_dpif *ofproto;
807
808 sset_clear(names);
809 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
810 if (strcmp(type, ofproto->up.type)) {
811 continue;
812 }
813 sset_add(names, ofproto->up.name);
814 }
815
816 return 0;
817 }
818
819 static int
820 del(const char *type, const char *name)
821 {
822 struct dpif *dpif;
823 int error;
824
825 error = dpif_open(name, type, &dpif);
826 if (!error) {
827 error = dpif_delete(dpif);
828 dpif_close(dpif);
829 }
830 return error;
831 }
832 \f
833 static const char *
834 port_open_type(const char *datapath_type, const char *port_type)
835 {
836 return dpif_port_open_type(datapath_type, port_type);
837 }
838
839 /* Type functions. */
840
841 static struct ofproto_dpif *
842 lookup_ofproto_dpif_by_port_name(const char *name)
843 {
844 struct ofproto_dpif *ofproto;
845
846 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
847 if (sset_contains(&ofproto->ports, name)) {
848 return ofproto;
849 }
850 }
851
852 return NULL;
853 }
854
855 static int
856 type_run(const char *type)
857 {
858 struct dpif_backer *backer;
859 char *devname;
860 int error;
861
862 backer = shash_find_data(&all_dpif_backers, type);
863 if (!backer) {
864 /* This is not necessarily a problem, since backers are only
865 * created on demand. */
866 return 0;
867 }
868
869 dpif_run(backer->dpif);
870
871 if (backer->need_revalidate
872 || !tag_set_is_empty(&backer->revalidate_set)) {
873 struct tag_set revalidate_set = backer->revalidate_set;
874 bool need_revalidate = backer->need_revalidate;
875 struct ofproto_dpif *ofproto;
876 struct simap_node *node;
877 struct simap tmp_backers;
878
879 /* Handle tunnel garbage collection. */
880 simap_init(&tmp_backers);
881 simap_swap(&backer->tnl_backers, &tmp_backers);
882
883 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
884 struct ofport_dpif *iter;
885
886 if (backer != ofproto->backer) {
887 continue;
888 }
889
890 HMAP_FOR_EACH (iter, up.hmap_node, &ofproto->up.ports) {
891 const char *dp_port;
892
893 if (!iter->tnl_port) {
894 continue;
895 }
896
897 dp_port = netdev_vport_get_dpif_port(iter->up.netdev);
898 node = simap_find(&tmp_backers, dp_port);
899 if (node) {
900 simap_put(&backer->tnl_backers, dp_port, node->data);
901 simap_delete(&tmp_backers, node);
902 node = simap_find(&backer->tnl_backers, dp_port);
903 } else {
904 node = simap_find(&backer->tnl_backers, dp_port);
905 if (!node) {
906 uint32_t odp_port = UINT32_MAX;
907
908 if (!dpif_port_add(backer->dpif, iter->up.netdev,
909 &odp_port)) {
910 simap_put(&backer->tnl_backers, dp_port, odp_port);
911 node = simap_find(&backer->tnl_backers, dp_port);
912 }
913 }
914 }
915
916 iter->odp_port = node ? node->data : OVSP_NONE;
917 if (tnl_port_reconfigure(&iter->up, iter->odp_port,
918 &iter->tnl_port)) {
919 backer->need_revalidate = REV_RECONFIGURE;
920 }
921 }
922 }
923
924 SIMAP_FOR_EACH (node, &tmp_backers) {
925 dpif_port_del(backer->dpif, node->data);
926 }
927 simap_destroy(&tmp_backers);
928
929 switch (backer->need_revalidate) {
930 case REV_RECONFIGURE: COVERAGE_INC(rev_reconfigure); break;
931 case REV_STP: COVERAGE_INC(rev_stp); break;
932 case REV_PORT_TOGGLED: COVERAGE_INC(rev_port_toggled); break;
933 case REV_FLOW_TABLE: COVERAGE_INC(rev_flow_table); break;
934 case REV_INCONSISTENCY: COVERAGE_INC(rev_inconsistency); break;
935 }
936
937 if (backer->need_revalidate) {
938 /* Clear the drop_keys in case we should now be accepting some
939 * formerly dropped flows. */
940 drop_key_clear(backer);
941 }
942
943 /* Clear the revalidation flags. */
944 tag_set_init(&backer->revalidate_set);
945 backer->need_revalidate = 0;
946
947 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
948 struct facet *facet, *next;
949
950 if (ofproto->backer != backer) {
951 continue;
952 }
953
954 HMAP_FOR_EACH_SAFE (facet, next, hmap_node, &ofproto->facets) {
955 if (need_revalidate
956 || tag_set_intersects(&revalidate_set, facet->tags)) {
957 facet_revalidate(facet);
958 }
959 }
960 }
961 }
962
963 if (timer_expired(&backer->next_expiration)) {
964 int delay = expire(backer);
965 timer_set_duration(&backer->next_expiration, delay);
966 }
967
968 /* Check for port changes in the dpif. */
969 while ((error = dpif_port_poll(backer->dpif, &devname)) == 0) {
970 struct ofproto_dpif *ofproto;
971 struct dpif_port port;
972
973 /* Don't report on the datapath's device. */
974 if (!strcmp(devname, dpif_base_name(backer->dpif))) {
975 goto next;
976 }
977
978 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node,
979 &all_ofproto_dpifs) {
980 if (simap_contains(&ofproto->backer->tnl_backers, devname)) {
981 goto next;
982 }
983 }
984
985 ofproto = lookup_ofproto_dpif_by_port_name(devname);
986 if (dpif_port_query_by_name(backer->dpif, devname, &port)) {
987 /* The port was removed. If we know the datapath,
988 * report it through poll_set(). If we don't, it may be
989 * notifying us of a removal we initiated, so ignore it.
990 * If there's a pending ENOBUFS, let it stand, since
991 * everything will be reevaluated. */
992 if (ofproto && ofproto->port_poll_errno != ENOBUFS) {
993 sset_add(&ofproto->port_poll_set, devname);
994 ofproto->port_poll_errno = 0;
995 }
996 } else if (!ofproto) {
997 /* The port was added, but we don't know with which
998 * ofproto we should associate it. Delete it. */
999 dpif_port_del(backer->dpif, port.port_no);
1000 }
1001 dpif_port_destroy(&port);
1002
1003 next:
1004 free(devname);
1005 }
1006
1007 if (error != EAGAIN) {
1008 struct ofproto_dpif *ofproto;
1009
1010 /* There was some sort of error, so propagate it to all
1011 * ofprotos that use this backer. */
1012 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node,
1013 &all_ofproto_dpifs) {
1014 if (ofproto->backer == backer) {
1015 sset_clear(&ofproto->port_poll_set);
1016 ofproto->port_poll_errno = error;
1017 }
1018 }
1019 }
1020
1021 return 0;
1022 }
1023
1024 static int
1025 type_run_fast(const char *type)
1026 {
1027 struct dpif_backer *backer;
1028 unsigned int work;
1029
1030 backer = shash_find_data(&all_dpif_backers, type);
1031 if (!backer) {
1032 /* This is not necessarily a problem, since backers are only
1033 * created on demand. */
1034 return 0;
1035 }
1036
1037 /* Handle one or more batches of upcalls, until there's nothing left to do
1038 * or until we do a fixed total amount of work.
1039 *
1040 * We do work in batches because it can be much cheaper to set up a number
1041 * of flows and fire off their patches all at once. We do multiple batches
1042 * because in some cases handling a packet can cause another packet to be
1043 * queued almost immediately as part of the return flow. Both
1044 * optimizations can make major improvements on some benchmarks and
1045 * presumably for real traffic as well. */
1046 work = 0;
1047 while (work < FLOW_MISS_MAX_BATCH) {
1048 int retval = handle_upcalls(backer, FLOW_MISS_MAX_BATCH - work);
1049 if (retval <= 0) {
1050 return -retval;
1051 }
1052 work += retval;
1053 }
1054
1055 return 0;
1056 }
1057
1058 static void
1059 type_wait(const char *type)
1060 {
1061 struct dpif_backer *backer;
1062
1063 backer = shash_find_data(&all_dpif_backers, type);
1064 if (!backer) {
1065 /* This is not necessarily a problem, since backers are only
1066 * created on demand. */
1067 return;
1068 }
1069
1070 timer_wait(&backer->next_expiration);
1071 }
1072 \f
1073 /* Basic life-cycle. */
1074
1075 static int add_internal_flows(struct ofproto_dpif *);
1076
1077 static struct ofproto *
1078 alloc(void)
1079 {
1080 struct ofproto_dpif *ofproto = xmalloc(sizeof *ofproto);
1081 return &ofproto->up;
1082 }
1083
1084 static void
1085 dealloc(struct ofproto *ofproto_)
1086 {
1087 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1088 free(ofproto);
1089 }
1090
1091 static void
1092 close_dpif_backer(struct dpif_backer *backer)
1093 {
1094 struct shash_node *node;
1095
1096 ovs_assert(backer->refcount > 0);
1097
1098 if (--backer->refcount) {
1099 return;
1100 }
1101
1102 drop_key_clear(backer);
1103 hmap_destroy(&backer->drop_keys);
1104
1105 simap_destroy(&backer->tnl_backers);
1106 hmap_destroy(&backer->odp_to_ofport_map);
1107 node = shash_find(&all_dpif_backers, backer->type);
1108 free(backer->type);
1109 shash_delete(&all_dpif_backers, node);
1110 dpif_close(backer->dpif);
1111
1112 free(backer);
1113 }
1114
1115 /* Datapath port slated for removal from datapath. */
1116 struct odp_garbage {
1117 struct list list_node;
1118 uint32_t odp_port;
1119 };
1120
1121 static int
1122 open_dpif_backer(const char *type, struct dpif_backer **backerp)
1123 {
1124 struct dpif_backer *backer;
1125 struct dpif_port_dump port_dump;
1126 struct dpif_port port;
1127 struct shash_node *node;
1128 struct list garbage_list;
1129 struct odp_garbage *garbage, *next;
1130 struct sset names;
1131 char *backer_name;
1132 const char *name;
1133 int error;
1134
1135 backer = shash_find_data(&all_dpif_backers, type);
1136 if (backer) {
1137 backer->refcount++;
1138 *backerp = backer;
1139 return 0;
1140 }
1141
1142 backer_name = xasprintf("ovs-%s", type);
1143
1144 /* Remove any existing datapaths, since we assume we're the only
1145 * userspace controlling the datapath. */
1146 sset_init(&names);
1147 dp_enumerate_names(type, &names);
1148 SSET_FOR_EACH(name, &names) {
1149 struct dpif *old_dpif;
1150
1151 /* Don't remove our backer if it exists. */
1152 if (!strcmp(name, backer_name)) {
1153 continue;
1154 }
1155
1156 if (dpif_open(name, type, &old_dpif)) {
1157 VLOG_WARN("couldn't open old datapath %s to remove it", name);
1158 } else {
1159 dpif_delete(old_dpif);
1160 dpif_close(old_dpif);
1161 }
1162 }
1163 sset_destroy(&names);
1164
1165 backer = xmalloc(sizeof *backer);
1166
1167 error = dpif_create_and_open(backer_name, type, &backer->dpif);
1168 free(backer_name);
1169 if (error) {
1170 VLOG_ERR("failed to open datapath of type %s: %s", type,
1171 strerror(error));
1172 free(backer);
1173 return error;
1174 }
1175
1176 backer->type = xstrdup(type);
1177 backer->refcount = 1;
1178 hmap_init(&backer->odp_to_ofport_map);
1179 hmap_init(&backer->drop_keys);
1180 timer_set_duration(&backer->next_expiration, 1000);
1181 backer->need_revalidate = 0;
1182 simap_init(&backer->tnl_backers);
1183 tag_set_init(&backer->revalidate_set);
1184 *backerp = backer;
1185
1186 dpif_flow_flush(backer->dpif);
1187
1188 /* Loop through the ports already on the datapath and remove any
1189 * that we don't need anymore. */
1190 list_init(&garbage_list);
1191 dpif_port_dump_start(&port_dump, backer->dpif);
1192 while (dpif_port_dump_next(&port_dump, &port)) {
1193 node = shash_find(&init_ofp_ports, port.name);
1194 if (!node && strcmp(port.name, dpif_base_name(backer->dpif))) {
1195 garbage = xmalloc(sizeof *garbage);
1196 garbage->odp_port = port.port_no;
1197 list_push_front(&garbage_list, &garbage->list_node);
1198 }
1199 }
1200 dpif_port_dump_done(&port_dump);
1201
1202 LIST_FOR_EACH_SAFE (garbage, next, list_node, &garbage_list) {
1203 dpif_port_del(backer->dpif, garbage->odp_port);
1204 list_remove(&garbage->list_node);
1205 free(garbage);
1206 }
1207
1208 shash_add(&all_dpif_backers, type, backer);
1209
1210 error = dpif_recv_set(backer->dpif, true);
1211 if (error) {
1212 VLOG_ERR("failed to listen on datapath of type %s: %s",
1213 type, strerror(error));
1214 close_dpif_backer(backer);
1215 return error;
1216 }
1217
1218 return error;
1219 }
1220
1221 static int
1222 construct(struct ofproto *ofproto_)
1223 {
1224 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1225 struct shash_node *node, *next;
1226 int max_ports;
1227 int error;
1228 int i;
1229
1230 error = open_dpif_backer(ofproto->up.type, &ofproto->backer);
1231 if (error) {
1232 return error;
1233 }
1234
1235 max_ports = dpif_get_max_ports(ofproto->backer->dpif);
1236 ofproto_init_max_ports(ofproto_, MIN(max_ports, OFPP_MAX));
1237
1238 ofproto->n_matches = 0;
1239
1240 ofproto->netflow = NULL;
1241 ofproto->sflow = NULL;
1242 ofproto->stp = NULL;
1243 hmap_init(&ofproto->bundles);
1244 ofproto->ml = mac_learning_create(MAC_ENTRY_DEFAULT_IDLE_TIME);
1245 for (i = 0; i < MAX_MIRRORS; i++) {
1246 ofproto->mirrors[i] = NULL;
1247 }
1248 ofproto->has_bonded_bundles = false;
1249
1250 hmap_init(&ofproto->facets);
1251 hmap_init(&ofproto->subfacets);
1252 ofproto->governor = NULL;
1253
1254 for (i = 0; i < N_TABLES; i++) {
1255 struct table_dpif *table = &ofproto->tables[i];
1256
1257 table->catchall_table = NULL;
1258 table->other_table = NULL;
1259 table->basis = random_uint32();
1260 }
1261
1262 list_init(&ofproto->completions);
1263
1264 ofproto_dpif_unixctl_init();
1265
1266 ofproto->has_mirrors = false;
1267 ofproto->has_bundle_action = false;
1268
1269 hmap_init(&ofproto->vlandev_map);
1270 hmap_init(&ofproto->realdev_vid_map);
1271
1272 sset_init(&ofproto->ports);
1273 sset_init(&ofproto->ghost_ports);
1274 sset_init(&ofproto->port_poll_set);
1275 ofproto->port_poll_errno = 0;
1276
1277 SHASH_FOR_EACH_SAFE (node, next, &init_ofp_ports) {
1278 struct iface_hint *iface_hint = node->data;
1279
1280 if (!strcmp(iface_hint->br_name, ofproto->up.name)) {
1281 /* Check if the datapath already has this port. */
1282 if (dpif_port_exists(ofproto->backer->dpif, node->name)) {
1283 sset_add(&ofproto->ports, node->name);
1284 }
1285
1286 free(iface_hint->br_name);
1287 free(iface_hint->br_type);
1288 free(iface_hint);
1289 shash_delete(&init_ofp_ports, node);
1290 }
1291 }
1292
1293 hmap_insert(&all_ofproto_dpifs, &ofproto->all_ofproto_dpifs_node,
1294 hash_string(ofproto->up.name, 0));
1295 memset(&ofproto->stats, 0, sizeof ofproto->stats);
1296
1297 ofproto_init_tables(ofproto_, N_TABLES);
1298 error = add_internal_flows(ofproto);
1299 ofproto->up.tables[TBL_INTERNAL].flags = OFTABLE_HIDDEN | OFTABLE_READONLY;
1300
1301 ofproto->n_hit = 0;
1302 ofproto->n_missed = 0;
1303
1304 return error;
1305 }
1306
1307 static int
1308 add_internal_flow(struct ofproto_dpif *ofproto, int id,
1309 const struct ofpbuf *ofpacts, struct rule_dpif **rulep)
1310 {
1311 struct ofputil_flow_mod fm;
1312 int error;
1313
1314 match_init_catchall(&fm.match);
1315 fm.priority = 0;
1316 match_set_reg(&fm.match, 0, id);
1317 fm.new_cookie = htonll(0);
1318 fm.cookie = htonll(0);
1319 fm.cookie_mask = htonll(0);
1320 fm.table_id = TBL_INTERNAL;
1321 fm.command = OFPFC_ADD;
1322 fm.idle_timeout = 0;
1323 fm.hard_timeout = 0;
1324 fm.buffer_id = 0;
1325 fm.out_port = 0;
1326 fm.flags = 0;
1327 fm.ofpacts = ofpacts->data;
1328 fm.ofpacts_len = ofpacts->size;
1329
1330 error = ofproto_flow_mod(&ofproto->up, &fm);
1331 if (error) {
1332 VLOG_ERR_RL(&rl, "failed to add internal flow %d (%s)",
1333 id, ofperr_to_string(error));
1334 return error;
1335 }
1336
1337 *rulep = rule_dpif_lookup__(ofproto, &fm.match.flow, TBL_INTERNAL);
1338 ovs_assert(*rulep != NULL);
1339
1340 return 0;
1341 }
1342
1343 static int
1344 add_internal_flows(struct ofproto_dpif *ofproto)
1345 {
1346 struct ofpact_controller *controller;
1347 uint64_t ofpacts_stub[128 / 8];
1348 struct ofpbuf ofpacts;
1349 int error;
1350 int id;
1351
1352 ofpbuf_use_stack(&ofpacts, ofpacts_stub, sizeof ofpacts_stub);
1353 id = 1;
1354
1355 controller = ofpact_put_CONTROLLER(&ofpacts);
1356 controller->max_len = UINT16_MAX;
1357 controller->controller_id = 0;
1358 controller->reason = OFPR_NO_MATCH;
1359 ofpact_pad(&ofpacts);
1360
1361 error = add_internal_flow(ofproto, id++, &ofpacts, &ofproto->miss_rule);
1362 if (error) {
1363 return error;
1364 }
1365
1366 ofpbuf_clear(&ofpacts);
1367 error = add_internal_flow(ofproto, id++, &ofpacts,
1368 &ofproto->no_packet_in_rule);
1369 return error;
1370 }
1371
1372 static void
1373 complete_operations(struct ofproto_dpif *ofproto)
1374 {
1375 struct dpif_completion *c, *next;
1376
1377 LIST_FOR_EACH_SAFE (c, next, list_node, &ofproto->completions) {
1378 ofoperation_complete(c->op, 0);
1379 list_remove(&c->list_node);
1380 free(c);
1381 }
1382 }
1383
1384 static void
1385 destruct(struct ofproto *ofproto_)
1386 {
1387 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1388 struct rule_dpif *rule, *next_rule;
1389 struct oftable *table;
1390 int i;
1391
1392 hmap_remove(&all_ofproto_dpifs, &ofproto->all_ofproto_dpifs_node);
1393 complete_operations(ofproto);
1394
1395 OFPROTO_FOR_EACH_TABLE (table, &ofproto->up) {
1396 struct cls_cursor cursor;
1397
1398 cls_cursor_init(&cursor, &table->cls, NULL);
1399 CLS_CURSOR_FOR_EACH_SAFE (rule, next_rule, up.cr, &cursor) {
1400 ofproto_rule_destroy(&rule->up);
1401 }
1402 }
1403
1404 for (i = 0; i < MAX_MIRRORS; i++) {
1405 mirror_destroy(ofproto->mirrors[i]);
1406 }
1407
1408 netflow_destroy(ofproto->netflow);
1409 dpif_sflow_destroy(ofproto->sflow);
1410 hmap_destroy(&ofproto->bundles);
1411 mac_learning_destroy(ofproto->ml);
1412
1413 hmap_destroy(&ofproto->facets);
1414 hmap_destroy(&ofproto->subfacets);
1415 governor_destroy(ofproto->governor);
1416
1417 hmap_destroy(&ofproto->vlandev_map);
1418 hmap_destroy(&ofproto->realdev_vid_map);
1419
1420 sset_destroy(&ofproto->ports);
1421 sset_destroy(&ofproto->ghost_ports);
1422 sset_destroy(&ofproto->port_poll_set);
1423
1424 close_dpif_backer(ofproto->backer);
1425 }
1426
1427 static int
1428 run_fast(struct ofproto *ofproto_)
1429 {
1430 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1431 struct ofport_dpif *ofport;
1432
1433 HMAP_FOR_EACH (ofport, up.hmap_node, &ofproto->up.ports) {
1434 port_run_fast(ofport);
1435 }
1436
1437 return 0;
1438 }
1439
1440 static int
1441 run(struct ofproto *ofproto_)
1442 {
1443 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1444 struct ofport_dpif *ofport;
1445 struct ofbundle *bundle;
1446 int error;
1447
1448 if (!clogged) {
1449 complete_operations(ofproto);
1450 }
1451
1452 error = run_fast(ofproto_);
1453 if (error) {
1454 return error;
1455 }
1456
1457 if (ofproto->netflow) {
1458 if (netflow_run(ofproto->netflow)) {
1459 send_netflow_active_timeouts(ofproto);
1460 }
1461 }
1462 if (ofproto->sflow) {
1463 dpif_sflow_run(ofproto->sflow);
1464 }
1465
1466 HMAP_FOR_EACH (ofport, up.hmap_node, &ofproto->up.ports) {
1467 port_run(ofport);
1468 }
1469 HMAP_FOR_EACH (bundle, hmap_node, &ofproto->bundles) {
1470 bundle_run(bundle);
1471 }
1472
1473 stp_run(ofproto);
1474 mac_learning_run(ofproto->ml, &ofproto->backer->revalidate_set);
1475
1476 /* Check the consistency of a random facet, to aid debugging. */
1477 if (!hmap_is_empty(&ofproto->facets)
1478 && !ofproto->backer->need_revalidate) {
1479 struct facet *facet;
1480
1481 facet = CONTAINER_OF(hmap_random_node(&ofproto->facets),
1482 struct facet, hmap_node);
1483 if (!tag_set_intersects(&ofproto->backer->revalidate_set,
1484 facet->tags)) {
1485 if (!facet_check_consistency(facet)) {
1486 ofproto->backer->need_revalidate = REV_INCONSISTENCY;
1487 }
1488 }
1489 }
1490
1491 if (ofproto->governor) {
1492 size_t n_subfacets;
1493
1494 governor_run(ofproto->governor);
1495
1496 /* If the governor has shrunk to its minimum size and the number of
1497 * subfacets has dwindled, then drop the governor entirely.
1498 *
1499 * For hysteresis, the number of subfacets to drop the governor is
1500 * smaller than the number needed to trigger its creation. */
1501 n_subfacets = hmap_count(&ofproto->subfacets);
1502 if (n_subfacets * 4 < ofproto->up.flow_eviction_threshold
1503 && governor_is_idle(ofproto->governor)) {
1504 governor_destroy(ofproto->governor);
1505 ofproto->governor = NULL;
1506 }
1507 }
1508
1509 return 0;
1510 }
1511
1512 static void
1513 wait(struct ofproto *ofproto_)
1514 {
1515 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1516 struct ofport_dpif *ofport;
1517 struct ofbundle *bundle;
1518
1519 if (!clogged && !list_is_empty(&ofproto->completions)) {
1520 poll_immediate_wake();
1521 }
1522
1523 dpif_wait(ofproto->backer->dpif);
1524 dpif_recv_wait(ofproto->backer->dpif);
1525 if (ofproto->sflow) {
1526 dpif_sflow_wait(ofproto->sflow);
1527 }
1528 if (!tag_set_is_empty(&ofproto->backer->revalidate_set)) {
1529 poll_immediate_wake();
1530 }
1531 HMAP_FOR_EACH (ofport, up.hmap_node, &ofproto->up.ports) {
1532 port_wait(ofport);
1533 }
1534 HMAP_FOR_EACH (bundle, hmap_node, &ofproto->bundles) {
1535 bundle_wait(bundle);
1536 }
1537 if (ofproto->netflow) {
1538 netflow_wait(ofproto->netflow);
1539 }
1540 mac_learning_wait(ofproto->ml);
1541 stp_wait(ofproto);
1542 if (ofproto->backer->need_revalidate) {
1543 /* Shouldn't happen, but if it does just go around again. */
1544 VLOG_DBG_RL(&rl, "need revalidate in ofproto_wait_cb()");
1545 poll_immediate_wake();
1546 }
1547 if (ofproto->governor) {
1548 governor_wait(ofproto->governor);
1549 }
1550 }
1551
1552 static void
1553 get_memory_usage(const struct ofproto *ofproto_, struct simap *usage)
1554 {
1555 const struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1556
1557 simap_increase(usage, "facets", hmap_count(&ofproto->facets));
1558 simap_increase(usage, "subfacets", hmap_count(&ofproto->subfacets));
1559 }
1560
1561 static void
1562 flush(struct ofproto *ofproto_)
1563 {
1564 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1565 struct subfacet *subfacet, *next_subfacet;
1566 struct subfacet *batch[SUBFACET_DESTROY_MAX_BATCH];
1567 int n_batch;
1568
1569 n_batch = 0;
1570 HMAP_FOR_EACH_SAFE (subfacet, next_subfacet, hmap_node,
1571 &ofproto->subfacets) {
1572 if (subfacet->path != SF_NOT_INSTALLED) {
1573 batch[n_batch++] = subfacet;
1574 if (n_batch >= SUBFACET_DESTROY_MAX_BATCH) {
1575 subfacet_destroy_batch(ofproto, batch, n_batch);
1576 n_batch = 0;
1577 }
1578 } else {
1579 subfacet_destroy(subfacet);
1580 }
1581 }
1582
1583 if (n_batch > 0) {
1584 subfacet_destroy_batch(ofproto, batch, n_batch);
1585 }
1586 }
1587
1588 static void
1589 get_features(struct ofproto *ofproto_ OVS_UNUSED,
1590 bool *arp_match_ip, enum ofputil_action_bitmap *actions)
1591 {
1592 *arp_match_ip = true;
1593 *actions = (OFPUTIL_A_OUTPUT |
1594 OFPUTIL_A_SET_VLAN_VID |
1595 OFPUTIL_A_SET_VLAN_PCP |
1596 OFPUTIL_A_STRIP_VLAN |
1597 OFPUTIL_A_SET_DL_SRC |
1598 OFPUTIL_A_SET_DL_DST |
1599 OFPUTIL_A_SET_NW_SRC |
1600 OFPUTIL_A_SET_NW_DST |
1601 OFPUTIL_A_SET_NW_TOS |
1602 OFPUTIL_A_SET_TP_SRC |
1603 OFPUTIL_A_SET_TP_DST |
1604 OFPUTIL_A_ENQUEUE);
1605 }
1606
1607 static void
1608 get_tables(struct ofproto *ofproto_, struct ofp12_table_stats *ots)
1609 {
1610 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1611 struct dpif_dp_stats s;
1612
1613 strcpy(ots->name, "classifier");
1614
1615 dpif_get_dp_stats(ofproto->backer->dpif, &s);
1616
1617 ots->lookup_count = htonll(s.n_hit + s.n_missed);
1618 ots->matched_count = htonll(s.n_hit + ofproto->n_matches);
1619 }
1620
1621 static struct ofport *
1622 port_alloc(void)
1623 {
1624 struct ofport_dpif *port = xmalloc(sizeof *port);
1625 return &port->up;
1626 }
1627
1628 static void
1629 port_dealloc(struct ofport *port_)
1630 {
1631 struct ofport_dpif *port = ofport_dpif_cast(port_);
1632 free(port);
1633 }
1634
1635 static int
1636 port_construct(struct ofport *port_)
1637 {
1638 struct ofport_dpif *port = ofport_dpif_cast(port_);
1639 struct ofproto_dpif *ofproto = ofproto_dpif_cast(port->up.ofproto);
1640 const struct netdev *netdev = port->up.netdev;
1641 struct dpif_port dpif_port;
1642 int error;
1643
1644 ofproto->backer->need_revalidate = REV_RECONFIGURE;
1645 port->bundle = NULL;
1646 port->cfm = NULL;
1647 port->tag = tag_create_random();
1648 port->may_enable = true;
1649 port->stp_port = NULL;
1650 port->stp_state = STP_DISABLED;
1651 port->tnl_port = NULL;
1652 hmap_init(&port->priorities);
1653 port->realdev_ofp_port = 0;
1654 port->vlandev_vid = 0;
1655 port->carrier_seq = netdev_get_carrier_resets(netdev);
1656
1657 if (netdev_vport_is_patch(netdev)) {
1658 /* XXX By bailing out here, we don't do required sFlow work. */
1659 port->odp_port = OVSP_NONE;
1660 return 0;
1661 }
1662
1663 error = dpif_port_query_by_name(ofproto->backer->dpif,
1664 netdev_vport_get_dpif_port(netdev),
1665 &dpif_port);
1666 if (error) {
1667 return error;
1668 }
1669
1670 port->odp_port = dpif_port.port_no;
1671
1672 if (netdev_get_tunnel_config(netdev)) {
1673 port->tnl_port = tnl_port_add(&port->up, port->odp_port);
1674 } else {
1675 /* Sanity-check that a mapping doesn't already exist. This
1676 * shouldn't happen for non-tunnel ports. */
1677 if (odp_port_to_ofp_port(ofproto, port->odp_port) != OFPP_NONE) {
1678 VLOG_ERR("port %s already has an OpenFlow port number",
1679 dpif_port.name);
1680 dpif_port_destroy(&dpif_port);
1681 return EBUSY;
1682 }
1683
1684 hmap_insert(&ofproto->backer->odp_to_ofport_map, &port->odp_port_node,
1685 hash_int(port->odp_port, 0));
1686 }
1687 dpif_port_destroy(&dpif_port);
1688
1689 if (ofproto->sflow) {
1690 dpif_sflow_add_port(ofproto->sflow, port_, port->odp_port);
1691 }
1692
1693 return 0;
1694 }
1695
1696 static void
1697 port_destruct(struct ofport *port_)
1698 {
1699 struct ofport_dpif *port = ofport_dpif_cast(port_);
1700 struct ofproto_dpif *ofproto = ofproto_dpif_cast(port->up.ofproto);
1701 const char *dp_port_name = netdev_vport_get_dpif_port(port->up.netdev);
1702 const char *devname = netdev_get_name(port->up.netdev);
1703
1704 if (dpif_port_exists(ofproto->backer->dpif, dp_port_name)) {
1705 /* The underlying device is still there, so delete it. This
1706 * happens when the ofproto is being destroyed, since the caller
1707 * assumes that removal of attached ports will happen as part of
1708 * destruction. */
1709 if (!port->tnl_port) {
1710 dpif_port_del(ofproto->backer->dpif, port->odp_port);
1711 }
1712 ofproto->backer->need_revalidate = REV_RECONFIGURE;
1713 }
1714
1715 if (port->odp_port != OVSP_NONE && !port->tnl_port) {
1716 hmap_remove(&ofproto->backer->odp_to_ofport_map, &port->odp_port_node);
1717 }
1718
1719 tnl_port_del(port->tnl_port);
1720 sset_find_and_delete(&ofproto->ports, devname);
1721 sset_find_and_delete(&ofproto->ghost_ports, devname);
1722 ofproto->backer->need_revalidate = REV_RECONFIGURE;
1723 bundle_remove(port_);
1724 set_cfm(port_, NULL);
1725 if (ofproto->sflow) {
1726 dpif_sflow_del_port(ofproto->sflow, port->odp_port);
1727 }
1728
1729 ofport_clear_priorities(port);
1730 hmap_destroy(&port->priorities);
1731 }
1732
1733 static void
1734 port_modified(struct ofport *port_)
1735 {
1736 struct ofport_dpif *port = ofport_dpif_cast(port_);
1737
1738 if (port->bundle && port->bundle->bond) {
1739 bond_slave_set_netdev(port->bundle->bond, port, port->up.netdev);
1740 }
1741 }
1742
1743 static void
1744 port_reconfigured(struct ofport *port_, enum ofputil_port_config old_config)
1745 {
1746 struct ofport_dpif *port = ofport_dpif_cast(port_);
1747 struct ofproto_dpif *ofproto = ofproto_dpif_cast(port->up.ofproto);
1748 enum ofputil_port_config changed = old_config ^ port->up.pp.config;
1749
1750 if (changed & (OFPUTIL_PC_NO_RECV | OFPUTIL_PC_NO_RECV_STP |
1751 OFPUTIL_PC_NO_FWD | OFPUTIL_PC_NO_FLOOD |
1752 OFPUTIL_PC_NO_PACKET_IN)) {
1753 ofproto->backer->need_revalidate = REV_RECONFIGURE;
1754
1755 if (changed & OFPUTIL_PC_NO_FLOOD && port->bundle) {
1756 bundle_update(port->bundle);
1757 }
1758 }
1759 }
1760
1761 static int
1762 set_sflow(struct ofproto *ofproto_,
1763 const struct ofproto_sflow_options *sflow_options)
1764 {
1765 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1766 struct dpif_sflow *ds = ofproto->sflow;
1767
1768 if (sflow_options) {
1769 if (!ds) {
1770 struct ofport_dpif *ofport;
1771
1772 ds = ofproto->sflow = dpif_sflow_create();
1773 HMAP_FOR_EACH (ofport, up.hmap_node, &ofproto->up.ports) {
1774 dpif_sflow_add_port(ds, &ofport->up, ofport->odp_port);
1775 }
1776 ofproto->backer->need_revalidate = REV_RECONFIGURE;
1777 }
1778 dpif_sflow_set_options(ds, sflow_options);
1779 } else {
1780 if (ds) {
1781 dpif_sflow_destroy(ds);
1782 ofproto->backer->need_revalidate = REV_RECONFIGURE;
1783 ofproto->sflow = NULL;
1784 }
1785 }
1786 return 0;
1787 }
1788
1789 static int
1790 set_cfm(struct ofport *ofport_, const struct cfm_settings *s)
1791 {
1792 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
1793 int error;
1794
1795 if (!s) {
1796 error = 0;
1797 } else {
1798 if (!ofport->cfm) {
1799 struct ofproto_dpif *ofproto;
1800
1801 ofproto = ofproto_dpif_cast(ofport->up.ofproto);
1802 ofproto->backer->need_revalidate = REV_RECONFIGURE;
1803 ofport->cfm = cfm_create(netdev_get_name(ofport->up.netdev));
1804 }
1805
1806 if (cfm_configure(ofport->cfm, s)) {
1807 return 0;
1808 }
1809
1810 error = EINVAL;
1811 }
1812 cfm_destroy(ofport->cfm);
1813 ofport->cfm = NULL;
1814 return error;
1815 }
1816
1817 static bool
1818 get_cfm_status(const struct ofport *ofport_,
1819 struct ofproto_cfm_status *status)
1820 {
1821 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
1822
1823 if (ofport->cfm) {
1824 status->faults = cfm_get_fault(ofport->cfm);
1825 status->remote_opstate = cfm_get_opup(ofport->cfm);
1826 status->health = cfm_get_health(ofport->cfm);
1827 cfm_get_remote_mpids(ofport->cfm, &status->rmps, &status->n_rmps);
1828 return true;
1829 } else {
1830 return false;
1831 }
1832 }
1833 \f
1834 /* Spanning Tree. */
1835
1836 static void
1837 send_bpdu_cb(struct ofpbuf *pkt, int port_num, void *ofproto_)
1838 {
1839 struct ofproto_dpif *ofproto = ofproto_;
1840 struct stp_port *sp = stp_get_port(ofproto->stp, port_num);
1841 struct ofport_dpif *ofport;
1842
1843 ofport = stp_port_get_aux(sp);
1844 if (!ofport) {
1845 VLOG_WARN_RL(&rl, "%s: cannot send BPDU on unknown port %d",
1846 ofproto->up.name, port_num);
1847 } else {
1848 struct eth_header *eth = pkt->l2;
1849
1850 netdev_get_etheraddr(ofport->up.netdev, eth->eth_src);
1851 if (eth_addr_is_zero(eth->eth_src)) {
1852 VLOG_WARN_RL(&rl, "%s: cannot send BPDU on port %d "
1853 "with unknown MAC", ofproto->up.name, port_num);
1854 } else {
1855 send_packet(ofport, pkt);
1856 }
1857 }
1858 ofpbuf_delete(pkt);
1859 }
1860
1861 /* Configures STP on 'ofproto_' using the settings defined in 's'. */
1862 static int
1863 set_stp(struct ofproto *ofproto_, const struct ofproto_stp_settings *s)
1864 {
1865 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1866
1867 /* Only revalidate flows if the configuration changed. */
1868 if (!s != !ofproto->stp) {
1869 ofproto->backer->need_revalidate = REV_RECONFIGURE;
1870 }
1871
1872 if (s) {
1873 if (!ofproto->stp) {
1874 ofproto->stp = stp_create(ofproto_->name, s->system_id,
1875 send_bpdu_cb, ofproto);
1876 ofproto->stp_last_tick = time_msec();
1877 }
1878
1879 stp_set_bridge_id(ofproto->stp, s->system_id);
1880 stp_set_bridge_priority(ofproto->stp, s->priority);
1881 stp_set_hello_time(ofproto->stp, s->hello_time);
1882 stp_set_max_age(ofproto->stp, s->max_age);
1883 stp_set_forward_delay(ofproto->stp, s->fwd_delay);
1884 } else {
1885 struct ofport *ofport;
1886
1887 HMAP_FOR_EACH (ofport, hmap_node, &ofproto->up.ports) {
1888 set_stp_port(ofport, NULL);
1889 }
1890
1891 stp_destroy(ofproto->stp);
1892 ofproto->stp = NULL;
1893 }
1894
1895 return 0;
1896 }
1897
1898 static int
1899 get_stp_status(struct ofproto *ofproto_, struct ofproto_stp_status *s)
1900 {
1901 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1902
1903 if (ofproto->stp) {
1904 s->enabled = true;
1905 s->bridge_id = stp_get_bridge_id(ofproto->stp);
1906 s->designated_root = stp_get_designated_root(ofproto->stp);
1907 s->root_path_cost = stp_get_root_path_cost(ofproto->stp);
1908 } else {
1909 s->enabled = false;
1910 }
1911
1912 return 0;
1913 }
1914
1915 static void
1916 update_stp_port_state(struct ofport_dpif *ofport)
1917 {
1918 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
1919 enum stp_state state;
1920
1921 /* Figure out new state. */
1922 state = ofport->stp_port ? stp_port_get_state(ofport->stp_port)
1923 : STP_DISABLED;
1924
1925 /* Update state. */
1926 if (ofport->stp_state != state) {
1927 enum ofputil_port_state of_state;
1928 bool fwd_change;
1929
1930 VLOG_DBG_RL(&rl, "port %s: STP state changed from %s to %s",
1931 netdev_get_name(ofport->up.netdev),
1932 stp_state_name(ofport->stp_state),
1933 stp_state_name(state));
1934 if (stp_learn_in_state(ofport->stp_state)
1935 != stp_learn_in_state(state)) {
1936 /* xxx Learning action flows should also be flushed. */
1937 mac_learning_flush(ofproto->ml,
1938 &ofproto->backer->revalidate_set);
1939 }
1940 fwd_change = stp_forward_in_state(ofport->stp_state)
1941 != stp_forward_in_state(state);
1942
1943 ofproto->backer->need_revalidate = REV_STP;
1944 ofport->stp_state = state;
1945 ofport->stp_state_entered = time_msec();
1946
1947 if (fwd_change && ofport->bundle) {
1948 bundle_update(ofport->bundle);
1949 }
1950
1951 /* Update the STP state bits in the OpenFlow port description. */
1952 of_state = ofport->up.pp.state & ~OFPUTIL_PS_STP_MASK;
1953 of_state |= (state == STP_LISTENING ? OFPUTIL_PS_STP_LISTEN
1954 : state == STP_LEARNING ? OFPUTIL_PS_STP_LEARN
1955 : state == STP_FORWARDING ? OFPUTIL_PS_STP_FORWARD
1956 : state == STP_BLOCKING ? OFPUTIL_PS_STP_BLOCK
1957 : 0);
1958 ofproto_port_set_state(&ofport->up, of_state);
1959 }
1960 }
1961
1962 /* Configures STP on 'ofport_' using the settings defined in 's'. The
1963 * caller is responsible for assigning STP port numbers and ensuring
1964 * there are no duplicates. */
1965 static int
1966 set_stp_port(struct ofport *ofport_,
1967 const struct ofproto_port_stp_settings *s)
1968 {
1969 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
1970 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
1971 struct stp_port *sp = ofport->stp_port;
1972
1973 if (!s || !s->enable) {
1974 if (sp) {
1975 ofport->stp_port = NULL;
1976 stp_port_disable(sp);
1977 update_stp_port_state(ofport);
1978 }
1979 return 0;
1980 } else if (sp && stp_port_no(sp) != s->port_num
1981 && ofport == stp_port_get_aux(sp)) {
1982 /* The port-id changed, so disable the old one if it's not
1983 * already in use by another port. */
1984 stp_port_disable(sp);
1985 }
1986
1987 sp = ofport->stp_port = stp_get_port(ofproto->stp, s->port_num);
1988 stp_port_enable(sp);
1989
1990 stp_port_set_aux(sp, ofport);
1991 stp_port_set_priority(sp, s->priority);
1992 stp_port_set_path_cost(sp, s->path_cost);
1993
1994 update_stp_port_state(ofport);
1995
1996 return 0;
1997 }
1998
1999 static int
2000 get_stp_port_status(struct ofport *ofport_,
2001 struct ofproto_port_stp_status *s)
2002 {
2003 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
2004 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
2005 struct stp_port *sp = ofport->stp_port;
2006
2007 if (!ofproto->stp || !sp) {
2008 s->enabled = false;
2009 return 0;
2010 }
2011
2012 s->enabled = true;
2013 s->port_id = stp_port_get_id(sp);
2014 s->state = stp_port_get_state(sp);
2015 s->sec_in_state = (time_msec() - ofport->stp_state_entered) / 1000;
2016 s->role = stp_port_get_role(sp);
2017 stp_port_get_counts(sp, &s->tx_count, &s->rx_count, &s->error_count);
2018
2019 return 0;
2020 }
2021
2022 static void
2023 stp_run(struct ofproto_dpif *ofproto)
2024 {
2025 if (ofproto->stp) {
2026 long long int now = time_msec();
2027 long long int elapsed = now - ofproto->stp_last_tick;
2028 struct stp_port *sp;
2029
2030 if (elapsed > 0) {
2031 stp_tick(ofproto->stp, MIN(INT_MAX, elapsed));
2032 ofproto->stp_last_tick = now;
2033 }
2034 while (stp_get_changed_port(ofproto->stp, &sp)) {
2035 struct ofport_dpif *ofport = stp_port_get_aux(sp);
2036
2037 if (ofport) {
2038 update_stp_port_state(ofport);
2039 }
2040 }
2041
2042 if (stp_check_and_reset_fdb_flush(ofproto->stp)) {
2043 mac_learning_flush(ofproto->ml, &ofproto->backer->revalidate_set);
2044 }
2045 }
2046 }
2047
2048 static void
2049 stp_wait(struct ofproto_dpif *ofproto)
2050 {
2051 if (ofproto->stp) {
2052 poll_timer_wait(1000);
2053 }
2054 }
2055
2056 /* Returns true if STP should process 'flow'. */
2057 static bool
2058 stp_should_process_flow(const struct flow *flow)
2059 {
2060 return eth_addr_equals(flow->dl_dst, eth_addr_stp);
2061 }
2062
2063 static void
2064 stp_process_packet(const struct ofport_dpif *ofport,
2065 const struct ofpbuf *packet)
2066 {
2067 struct ofpbuf payload = *packet;
2068 struct eth_header *eth = payload.data;
2069 struct stp_port *sp = ofport->stp_port;
2070
2071 /* Sink packets on ports that have STP disabled when the bridge has
2072 * STP enabled. */
2073 if (!sp || stp_port_get_state(sp) == STP_DISABLED) {
2074 return;
2075 }
2076
2077 /* Trim off padding on payload. */
2078 if (payload.size > ntohs(eth->eth_type) + ETH_HEADER_LEN) {
2079 payload.size = ntohs(eth->eth_type) + ETH_HEADER_LEN;
2080 }
2081
2082 if (ofpbuf_try_pull(&payload, ETH_HEADER_LEN + LLC_HEADER_LEN)) {
2083 stp_received_bpdu(sp, payload.data, payload.size);
2084 }
2085 }
2086 \f
2087 static struct priority_to_dscp *
2088 get_priority(const struct ofport_dpif *ofport, uint32_t priority)
2089 {
2090 struct priority_to_dscp *pdscp;
2091 uint32_t hash;
2092
2093 hash = hash_int(priority, 0);
2094 HMAP_FOR_EACH_IN_BUCKET (pdscp, hmap_node, hash, &ofport->priorities) {
2095 if (pdscp->priority == priority) {
2096 return pdscp;
2097 }
2098 }
2099 return NULL;
2100 }
2101
2102 static void
2103 ofport_clear_priorities(struct ofport_dpif *ofport)
2104 {
2105 struct priority_to_dscp *pdscp, *next;
2106
2107 HMAP_FOR_EACH_SAFE (pdscp, next, hmap_node, &ofport->priorities) {
2108 hmap_remove(&ofport->priorities, &pdscp->hmap_node);
2109 free(pdscp);
2110 }
2111 }
2112
2113 static int
2114 set_queues(struct ofport *ofport_,
2115 const struct ofproto_port_queue *qdscp_list,
2116 size_t n_qdscp)
2117 {
2118 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
2119 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
2120 struct hmap new = HMAP_INITIALIZER(&new);
2121 size_t i;
2122
2123 for (i = 0; i < n_qdscp; i++) {
2124 struct priority_to_dscp *pdscp;
2125 uint32_t priority;
2126 uint8_t dscp;
2127
2128 dscp = (qdscp_list[i].dscp << 2) & IP_DSCP_MASK;
2129 if (dpif_queue_to_priority(ofproto->backer->dpif, qdscp_list[i].queue,
2130 &priority)) {
2131 continue;
2132 }
2133
2134 pdscp = get_priority(ofport, priority);
2135 if (pdscp) {
2136 hmap_remove(&ofport->priorities, &pdscp->hmap_node);
2137 } else {
2138 pdscp = xmalloc(sizeof *pdscp);
2139 pdscp->priority = priority;
2140 pdscp->dscp = dscp;
2141 ofproto->backer->need_revalidate = REV_RECONFIGURE;
2142 }
2143
2144 if (pdscp->dscp != dscp) {
2145 pdscp->dscp = dscp;
2146 ofproto->backer->need_revalidate = REV_RECONFIGURE;
2147 }
2148
2149 hmap_insert(&new, &pdscp->hmap_node, hash_int(pdscp->priority, 0));
2150 }
2151
2152 if (!hmap_is_empty(&ofport->priorities)) {
2153 ofport_clear_priorities(ofport);
2154 ofproto->backer->need_revalidate = REV_RECONFIGURE;
2155 }
2156
2157 hmap_swap(&new, &ofport->priorities);
2158 hmap_destroy(&new);
2159
2160 return 0;
2161 }
2162 \f
2163 /* Bundles. */
2164
2165 /* Expires all MAC learning entries associated with 'bundle' and forces its
2166 * ofproto to revalidate every flow.
2167 *
2168 * Normally MAC learning entries are removed only from the ofproto associated
2169 * with 'bundle', but if 'all_ofprotos' is true, then the MAC learning entries
2170 * are removed from every ofproto. When patch ports and SLB bonds are in use
2171 * and a VM migration happens and the gratuitous ARPs are somehow lost, this
2172 * avoids a MAC_ENTRY_IDLE_TIME delay before the migrated VM can communicate
2173 * with the host from which it migrated. */
2174 static void
2175 bundle_flush_macs(struct ofbundle *bundle, bool all_ofprotos)
2176 {
2177 struct ofproto_dpif *ofproto = bundle->ofproto;
2178 struct mac_learning *ml = ofproto->ml;
2179 struct mac_entry *mac, *next_mac;
2180
2181 ofproto->backer->need_revalidate = REV_RECONFIGURE;
2182 LIST_FOR_EACH_SAFE (mac, next_mac, lru_node, &ml->lrus) {
2183 if (mac->port.p == bundle) {
2184 if (all_ofprotos) {
2185 struct ofproto_dpif *o;
2186
2187 HMAP_FOR_EACH (o, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
2188 if (o != ofproto) {
2189 struct mac_entry *e;
2190
2191 e = mac_learning_lookup(o->ml, mac->mac, mac->vlan,
2192 NULL);
2193 if (e) {
2194 mac_learning_expire(o->ml, e);
2195 }
2196 }
2197 }
2198 }
2199
2200 mac_learning_expire(ml, mac);
2201 }
2202 }
2203 }
2204
2205 static struct ofbundle *
2206 bundle_lookup(const struct ofproto_dpif *ofproto, void *aux)
2207 {
2208 struct ofbundle *bundle;
2209
2210 HMAP_FOR_EACH_IN_BUCKET (bundle, hmap_node, hash_pointer(aux, 0),
2211 &ofproto->bundles) {
2212 if (bundle->aux == aux) {
2213 return bundle;
2214 }
2215 }
2216 return NULL;
2217 }
2218
2219 /* Looks up each of the 'n_auxes' pointers in 'auxes' as bundles and adds the
2220 * ones that are found to 'bundles'. */
2221 static void
2222 bundle_lookup_multiple(struct ofproto_dpif *ofproto,
2223 void **auxes, size_t n_auxes,
2224 struct hmapx *bundles)
2225 {
2226 size_t i;
2227
2228 hmapx_init(bundles);
2229 for (i = 0; i < n_auxes; i++) {
2230 struct ofbundle *bundle = bundle_lookup(ofproto, auxes[i]);
2231 if (bundle) {
2232 hmapx_add(bundles, bundle);
2233 }
2234 }
2235 }
2236
2237 static void
2238 bundle_update(struct ofbundle *bundle)
2239 {
2240 struct ofport_dpif *port;
2241
2242 bundle->floodable = true;
2243 LIST_FOR_EACH (port, bundle_node, &bundle->ports) {
2244 if (port->up.pp.config & OFPUTIL_PC_NO_FLOOD
2245 || !stp_forward_in_state(port->stp_state)) {
2246 bundle->floodable = false;
2247 break;
2248 }
2249 }
2250 }
2251
2252 static void
2253 bundle_del_port(struct ofport_dpif *port)
2254 {
2255 struct ofbundle *bundle = port->bundle;
2256
2257 bundle->ofproto->backer->need_revalidate = REV_RECONFIGURE;
2258
2259 list_remove(&port->bundle_node);
2260 port->bundle = NULL;
2261
2262 if (bundle->lacp) {
2263 lacp_slave_unregister(bundle->lacp, port);
2264 }
2265 if (bundle->bond) {
2266 bond_slave_unregister(bundle->bond, port);
2267 }
2268
2269 bundle_update(bundle);
2270 }
2271
2272 static bool
2273 bundle_add_port(struct ofbundle *bundle, uint32_t ofp_port,
2274 struct lacp_slave_settings *lacp)
2275 {
2276 struct ofport_dpif *port;
2277
2278 port = get_ofp_port(bundle->ofproto, ofp_port);
2279 if (!port) {
2280 return false;
2281 }
2282
2283 if (port->bundle != bundle) {
2284 bundle->ofproto->backer->need_revalidate = REV_RECONFIGURE;
2285 if (port->bundle) {
2286 bundle_del_port(port);
2287 }
2288
2289 port->bundle = bundle;
2290 list_push_back(&bundle->ports, &port->bundle_node);
2291 if (port->up.pp.config & OFPUTIL_PC_NO_FLOOD
2292 || !stp_forward_in_state(port->stp_state)) {
2293 bundle->floodable = false;
2294 }
2295 }
2296 if (lacp) {
2297 bundle->ofproto->backer->need_revalidate = REV_RECONFIGURE;
2298 lacp_slave_register(bundle->lacp, port, lacp);
2299 }
2300
2301 return true;
2302 }
2303
2304 static void
2305 bundle_destroy(struct ofbundle *bundle)
2306 {
2307 struct ofproto_dpif *ofproto;
2308 struct ofport_dpif *port, *next_port;
2309 int i;
2310
2311 if (!bundle) {
2312 return;
2313 }
2314
2315 ofproto = bundle->ofproto;
2316 for (i = 0; i < MAX_MIRRORS; i++) {
2317 struct ofmirror *m = ofproto->mirrors[i];
2318 if (m) {
2319 if (m->out == bundle) {
2320 mirror_destroy(m);
2321 } else if (hmapx_find_and_delete(&m->srcs, bundle)
2322 || hmapx_find_and_delete(&m->dsts, bundle)) {
2323 ofproto->backer->need_revalidate = REV_RECONFIGURE;
2324 }
2325 }
2326 }
2327
2328 LIST_FOR_EACH_SAFE (port, next_port, bundle_node, &bundle->ports) {
2329 bundle_del_port(port);
2330 }
2331
2332 bundle_flush_macs(bundle, true);
2333 hmap_remove(&ofproto->bundles, &bundle->hmap_node);
2334 free(bundle->name);
2335 free(bundle->trunks);
2336 lacp_destroy(bundle->lacp);
2337 bond_destroy(bundle->bond);
2338 free(bundle);
2339 }
2340
2341 static int
2342 bundle_set(struct ofproto *ofproto_, void *aux,
2343 const struct ofproto_bundle_settings *s)
2344 {
2345 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2346 bool need_flush = false;
2347 struct ofport_dpif *port;
2348 struct ofbundle *bundle;
2349 unsigned long *trunks;
2350 int vlan;
2351 size_t i;
2352 bool ok;
2353
2354 if (!s) {
2355 bundle_destroy(bundle_lookup(ofproto, aux));
2356 return 0;
2357 }
2358
2359 ovs_assert(s->n_slaves == 1 || s->bond != NULL);
2360 ovs_assert((s->lacp != NULL) == (s->lacp_slaves != NULL));
2361
2362 bundle = bundle_lookup(ofproto, aux);
2363 if (!bundle) {
2364 bundle = xmalloc(sizeof *bundle);
2365
2366 bundle->ofproto = ofproto;
2367 hmap_insert(&ofproto->bundles, &bundle->hmap_node,
2368 hash_pointer(aux, 0));
2369 bundle->aux = aux;
2370 bundle->name = NULL;
2371
2372 list_init(&bundle->ports);
2373 bundle->vlan_mode = PORT_VLAN_TRUNK;
2374 bundle->vlan = -1;
2375 bundle->trunks = NULL;
2376 bundle->use_priority_tags = s->use_priority_tags;
2377 bundle->lacp = NULL;
2378 bundle->bond = NULL;
2379
2380 bundle->floodable = true;
2381
2382 bundle->src_mirrors = 0;
2383 bundle->dst_mirrors = 0;
2384 bundle->mirror_out = 0;
2385 }
2386
2387 if (!bundle->name || strcmp(s->name, bundle->name)) {
2388 free(bundle->name);
2389 bundle->name = xstrdup(s->name);
2390 }
2391
2392 /* LACP. */
2393 if (s->lacp) {
2394 if (!bundle->lacp) {
2395 ofproto->backer->need_revalidate = REV_RECONFIGURE;
2396 bundle->lacp = lacp_create();
2397 }
2398 lacp_configure(bundle->lacp, s->lacp);
2399 } else {
2400 lacp_destroy(bundle->lacp);
2401 bundle->lacp = NULL;
2402 }
2403
2404 /* Update set of ports. */
2405 ok = true;
2406 for (i = 0; i < s->n_slaves; i++) {
2407 if (!bundle_add_port(bundle, s->slaves[i],
2408 s->lacp ? &s->lacp_slaves[i] : NULL)) {
2409 ok = false;
2410 }
2411 }
2412 if (!ok || list_size(&bundle->ports) != s->n_slaves) {
2413 struct ofport_dpif *next_port;
2414
2415 LIST_FOR_EACH_SAFE (port, next_port, bundle_node, &bundle->ports) {
2416 for (i = 0; i < s->n_slaves; i++) {
2417 if (s->slaves[i] == port->up.ofp_port) {
2418 goto found;
2419 }
2420 }
2421
2422 bundle_del_port(port);
2423 found: ;
2424 }
2425 }
2426 ovs_assert(list_size(&bundle->ports) <= s->n_slaves);
2427
2428 if (list_is_empty(&bundle->ports)) {
2429 bundle_destroy(bundle);
2430 return EINVAL;
2431 }
2432
2433 /* Set VLAN tagging mode */
2434 if (s->vlan_mode != bundle->vlan_mode
2435 || s->use_priority_tags != bundle->use_priority_tags) {
2436 bundle->vlan_mode = s->vlan_mode;
2437 bundle->use_priority_tags = s->use_priority_tags;
2438 need_flush = true;
2439 }
2440
2441 /* Set VLAN tag. */
2442 vlan = (s->vlan_mode == PORT_VLAN_TRUNK ? -1
2443 : s->vlan >= 0 && s->vlan <= 4095 ? s->vlan
2444 : 0);
2445 if (vlan != bundle->vlan) {
2446 bundle->vlan = vlan;
2447 need_flush = true;
2448 }
2449
2450 /* Get trunked VLANs. */
2451 switch (s->vlan_mode) {
2452 case PORT_VLAN_ACCESS:
2453 trunks = NULL;
2454 break;
2455
2456 case PORT_VLAN_TRUNK:
2457 trunks = CONST_CAST(unsigned long *, s->trunks);
2458 break;
2459
2460 case PORT_VLAN_NATIVE_UNTAGGED:
2461 case PORT_VLAN_NATIVE_TAGGED:
2462 if (vlan != 0 && (!s->trunks
2463 || !bitmap_is_set(s->trunks, vlan)
2464 || bitmap_is_set(s->trunks, 0))) {
2465 /* Force trunking the native VLAN and prohibit trunking VLAN 0. */
2466 if (s->trunks) {
2467 trunks = bitmap_clone(s->trunks, 4096);
2468 } else {
2469 trunks = bitmap_allocate1(4096);
2470 }
2471 bitmap_set1(trunks, vlan);
2472 bitmap_set0(trunks, 0);
2473 } else {
2474 trunks = CONST_CAST(unsigned long *, s->trunks);
2475 }
2476 break;
2477
2478 default:
2479 NOT_REACHED();
2480 }
2481 if (!vlan_bitmap_equal(trunks, bundle->trunks)) {
2482 free(bundle->trunks);
2483 if (trunks == s->trunks) {
2484 bundle->trunks = vlan_bitmap_clone(trunks);
2485 } else {
2486 bundle->trunks = trunks;
2487 trunks = NULL;
2488 }
2489 need_flush = true;
2490 }
2491 if (trunks != s->trunks) {
2492 free(trunks);
2493 }
2494
2495 /* Bonding. */
2496 if (!list_is_short(&bundle->ports)) {
2497 bundle->ofproto->has_bonded_bundles = true;
2498 if (bundle->bond) {
2499 if (bond_reconfigure(bundle->bond, s->bond)) {
2500 ofproto->backer->need_revalidate = REV_RECONFIGURE;
2501 }
2502 } else {
2503 bundle->bond = bond_create(s->bond);
2504 ofproto->backer->need_revalidate = REV_RECONFIGURE;
2505 }
2506
2507 LIST_FOR_EACH (port, bundle_node, &bundle->ports) {
2508 bond_slave_register(bundle->bond, port, port->up.netdev);
2509 }
2510 } else {
2511 bond_destroy(bundle->bond);
2512 bundle->bond = NULL;
2513 }
2514
2515 /* If we changed something that would affect MAC learning, un-learn
2516 * everything on this port and force flow revalidation. */
2517 if (need_flush) {
2518 bundle_flush_macs(bundle, false);
2519 }
2520
2521 return 0;
2522 }
2523
2524 static void
2525 bundle_remove(struct ofport *port_)
2526 {
2527 struct ofport_dpif *port = ofport_dpif_cast(port_);
2528 struct ofbundle *bundle = port->bundle;
2529
2530 if (bundle) {
2531 bundle_del_port(port);
2532 if (list_is_empty(&bundle->ports)) {
2533 bundle_destroy(bundle);
2534 } else if (list_is_short(&bundle->ports)) {
2535 bond_destroy(bundle->bond);
2536 bundle->bond = NULL;
2537 }
2538 }
2539 }
2540
2541 static void
2542 send_pdu_cb(void *port_, const void *pdu, size_t pdu_size)
2543 {
2544 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 10);
2545 struct ofport_dpif *port = port_;
2546 uint8_t ea[ETH_ADDR_LEN];
2547 int error;
2548
2549 error = netdev_get_etheraddr(port->up.netdev, ea);
2550 if (!error) {
2551 struct ofpbuf packet;
2552 void *packet_pdu;
2553
2554 ofpbuf_init(&packet, 0);
2555 packet_pdu = eth_compose(&packet, eth_addr_lacp, ea, ETH_TYPE_LACP,
2556 pdu_size);
2557 memcpy(packet_pdu, pdu, pdu_size);
2558
2559 send_packet(port, &packet);
2560 ofpbuf_uninit(&packet);
2561 } else {
2562 VLOG_ERR_RL(&rl, "port %s: cannot obtain Ethernet address of iface "
2563 "%s (%s)", port->bundle->name,
2564 netdev_get_name(port->up.netdev), strerror(error));
2565 }
2566 }
2567
2568 static void
2569 bundle_send_learning_packets(struct ofbundle *bundle)
2570 {
2571 struct ofproto_dpif *ofproto = bundle->ofproto;
2572 int error, n_packets, n_errors;
2573 struct mac_entry *e;
2574
2575 error = n_packets = n_errors = 0;
2576 LIST_FOR_EACH (e, lru_node, &ofproto->ml->lrus) {
2577 if (e->port.p != bundle) {
2578 struct ofpbuf *learning_packet;
2579 struct ofport_dpif *port;
2580 void *port_void;
2581 int ret;
2582
2583 /* The assignment to "port" is unnecessary but makes "grep"ing for
2584 * struct ofport_dpif more effective. */
2585 learning_packet = bond_compose_learning_packet(bundle->bond,
2586 e->mac, e->vlan,
2587 &port_void);
2588 port = port_void;
2589 ret = send_packet(port, learning_packet);
2590 ofpbuf_delete(learning_packet);
2591 if (ret) {
2592 error = ret;
2593 n_errors++;
2594 }
2595 n_packets++;
2596 }
2597 }
2598
2599 if (n_errors) {
2600 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
2601 VLOG_WARN_RL(&rl, "bond %s: %d errors sending %d gratuitous learning "
2602 "packets, last error was: %s",
2603 bundle->name, n_errors, n_packets, strerror(error));
2604 } else {
2605 VLOG_DBG("bond %s: sent %d gratuitous learning packets",
2606 bundle->name, n_packets);
2607 }
2608 }
2609
2610 static void
2611 bundle_run(struct ofbundle *bundle)
2612 {
2613 if (bundle->lacp) {
2614 lacp_run(bundle->lacp, send_pdu_cb);
2615 }
2616 if (bundle->bond) {
2617 struct ofport_dpif *port;
2618
2619 LIST_FOR_EACH (port, bundle_node, &bundle->ports) {
2620 bond_slave_set_may_enable(bundle->bond, port, port->may_enable);
2621 }
2622
2623 bond_run(bundle->bond, &bundle->ofproto->backer->revalidate_set,
2624 lacp_status(bundle->lacp));
2625 if (bond_should_send_learning_packets(bundle->bond)) {
2626 bundle_send_learning_packets(bundle);
2627 }
2628 }
2629 }
2630
2631 static void
2632 bundle_wait(struct ofbundle *bundle)
2633 {
2634 if (bundle->lacp) {
2635 lacp_wait(bundle->lacp);
2636 }
2637 if (bundle->bond) {
2638 bond_wait(bundle->bond);
2639 }
2640 }
2641 \f
2642 /* Mirrors. */
2643
2644 static int
2645 mirror_scan(struct ofproto_dpif *ofproto)
2646 {
2647 int idx;
2648
2649 for (idx = 0; idx < MAX_MIRRORS; idx++) {
2650 if (!ofproto->mirrors[idx]) {
2651 return idx;
2652 }
2653 }
2654 return -1;
2655 }
2656
2657 static struct ofmirror *
2658 mirror_lookup(struct ofproto_dpif *ofproto, void *aux)
2659 {
2660 int i;
2661
2662 for (i = 0; i < MAX_MIRRORS; i++) {
2663 struct ofmirror *mirror = ofproto->mirrors[i];
2664 if (mirror && mirror->aux == aux) {
2665 return mirror;
2666 }
2667 }
2668
2669 return NULL;
2670 }
2671
2672 /* Update the 'dup_mirrors' member of each of the ofmirrors in 'ofproto'. */
2673 static void
2674 mirror_update_dups(struct ofproto_dpif *ofproto)
2675 {
2676 int i;
2677
2678 for (i = 0; i < MAX_MIRRORS; i++) {
2679 struct ofmirror *m = ofproto->mirrors[i];
2680
2681 if (m) {
2682 m->dup_mirrors = MIRROR_MASK_C(1) << i;
2683 }
2684 }
2685
2686 for (i = 0; i < MAX_MIRRORS; i++) {
2687 struct ofmirror *m1 = ofproto->mirrors[i];
2688 int j;
2689
2690 if (!m1) {
2691 continue;
2692 }
2693
2694 for (j = i + 1; j < MAX_MIRRORS; j++) {
2695 struct ofmirror *m2 = ofproto->mirrors[j];
2696
2697 if (m2 && m1->out == m2->out && m1->out_vlan == m2->out_vlan) {
2698 m1->dup_mirrors |= MIRROR_MASK_C(1) << j;
2699 m2->dup_mirrors |= m1->dup_mirrors;
2700 }
2701 }
2702 }
2703 }
2704
2705 static int
2706 mirror_set(struct ofproto *ofproto_, void *aux,
2707 const struct ofproto_mirror_settings *s)
2708 {
2709 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2710 mirror_mask_t mirror_bit;
2711 struct ofbundle *bundle;
2712 struct ofmirror *mirror;
2713 struct ofbundle *out;
2714 struct hmapx srcs; /* Contains "struct ofbundle *"s. */
2715 struct hmapx dsts; /* Contains "struct ofbundle *"s. */
2716 int out_vlan;
2717
2718 mirror = mirror_lookup(ofproto, aux);
2719 if (!s) {
2720 mirror_destroy(mirror);
2721 return 0;
2722 }
2723 if (!mirror) {
2724 int idx;
2725
2726 idx = mirror_scan(ofproto);
2727 if (idx < 0) {
2728 VLOG_WARN("bridge %s: maximum of %d port mirrors reached, "
2729 "cannot create %s",
2730 ofproto->up.name, MAX_MIRRORS, s->name);
2731 return EFBIG;
2732 }
2733
2734 mirror = ofproto->mirrors[idx] = xzalloc(sizeof *mirror);
2735 mirror->ofproto = ofproto;
2736 mirror->idx = idx;
2737 mirror->aux = aux;
2738 mirror->out_vlan = -1;
2739 mirror->name = NULL;
2740 }
2741
2742 if (!mirror->name || strcmp(s->name, mirror->name)) {
2743 free(mirror->name);
2744 mirror->name = xstrdup(s->name);
2745 }
2746
2747 /* Get the new configuration. */
2748 if (s->out_bundle) {
2749 out = bundle_lookup(ofproto, s->out_bundle);
2750 if (!out) {
2751 mirror_destroy(mirror);
2752 return EINVAL;
2753 }
2754 out_vlan = -1;
2755 } else {
2756 out = NULL;
2757 out_vlan = s->out_vlan;
2758 }
2759 bundle_lookup_multiple(ofproto, s->srcs, s->n_srcs, &srcs);
2760 bundle_lookup_multiple(ofproto, s->dsts, s->n_dsts, &dsts);
2761
2762 /* If the configuration has not changed, do nothing. */
2763 if (hmapx_equals(&srcs, &mirror->srcs)
2764 && hmapx_equals(&dsts, &mirror->dsts)
2765 && vlan_bitmap_equal(mirror->vlans, s->src_vlans)
2766 && mirror->out == out
2767 && mirror->out_vlan == out_vlan)
2768 {
2769 hmapx_destroy(&srcs);
2770 hmapx_destroy(&dsts);
2771 return 0;
2772 }
2773
2774 hmapx_swap(&srcs, &mirror->srcs);
2775 hmapx_destroy(&srcs);
2776
2777 hmapx_swap(&dsts, &mirror->dsts);
2778 hmapx_destroy(&dsts);
2779
2780 free(mirror->vlans);
2781 mirror->vlans = vlan_bitmap_clone(s->src_vlans);
2782
2783 mirror->out = out;
2784 mirror->out_vlan = out_vlan;
2785
2786 /* Update bundles. */
2787 mirror_bit = MIRROR_MASK_C(1) << mirror->idx;
2788 HMAP_FOR_EACH (bundle, hmap_node, &mirror->ofproto->bundles) {
2789 if (hmapx_contains(&mirror->srcs, bundle)) {
2790 bundle->src_mirrors |= mirror_bit;
2791 } else {
2792 bundle->src_mirrors &= ~mirror_bit;
2793 }
2794
2795 if (hmapx_contains(&mirror->dsts, bundle)) {
2796 bundle->dst_mirrors |= mirror_bit;
2797 } else {
2798 bundle->dst_mirrors &= ~mirror_bit;
2799 }
2800
2801 if (mirror->out == bundle) {
2802 bundle->mirror_out |= mirror_bit;
2803 } else {
2804 bundle->mirror_out &= ~mirror_bit;
2805 }
2806 }
2807
2808 ofproto->backer->need_revalidate = REV_RECONFIGURE;
2809 ofproto->has_mirrors = true;
2810 mac_learning_flush(ofproto->ml,
2811 &ofproto->backer->revalidate_set);
2812 mirror_update_dups(ofproto);
2813
2814 return 0;
2815 }
2816
2817 static void
2818 mirror_destroy(struct ofmirror *mirror)
2819 {
2820 struct ofproto_dpif *ofproto;
2821 mirror_mask_t mirror_bit;
2822 struct ofbundle *bundle;
2823 int i;
2824
2825 if (!mirror) {
2826 return;
2827 }
2828
2829 ofproto = mirror->ofproto;
2830 ofproto->backer->need_revalidate = REV_RECONFIGURE;
2831 mac_learning_flush(ofproto->ml, &ofproto->backer->revalidate_set);
2832
2833 mirror_bit = MIRROR_MASK_C(1) << mirror->idx;
2834 HMAP_FOR_EACH (bundle, hmap_node, &ofproto->bundles) {
2835 bundle->src_mirrors &= ~mirror_bit;
2836 bundle->dst_mirrors &= ~mirror_bit;
2837 bundle->mirror_out &= ~mirror_bit;
2838 }
2839
2840 hmapx_destroy(&mirror->srcs);
2841 hmapx_destroy(&mirror->dsts);
2842 free(mirror->vlans);
2843
2844 ofproto->mirrors[mirror->idx] = NULL;
2845 free(mirror->name);
2846 free(mirror);
2847
2848 mirror_update_dups(ofproto);
2849
2850 ofproto->has_mirrors = false;
2851 for (i = 0; i < MAX_MIRRORS; i++) {
2852 if (ofproto->mirrors[i]) {
2853 ofproto->has_mirrors = true;
2854 break;
2855 }
2856 }
2857 }
2858
2859 static int
2860 mirror_get_stats(struct ofproto *ofproto_, void *aux,
2861 uint64_t *packets, uint64_t *bytes)
2862 {
2863 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2864 struct ofmirror *mirror = mirror_lookup(ofproto, aux);
2865
2866 if (!mirror) {
2867 *packets = *bytes = UINT64_MAX;
2868 return 0;
2869 }
2870
2871 *packets = mirror->packet_count;
2872 *bytes = mirror->byte_count;
2873
2874 return 0;
2875 }
2876
2877 static int
2878 set_flood_vlans(struct ofproto *ofproto_, unsigned long *flood_vlans)
2879 {
2880 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2881 if (mac_learning_set_flood_vlans(ofproto->ml, flood_vlans)) {
2882 mac_learning_flush(ofproto->ml, &ofproto->backer->revalidate_set);
2883 }
2884 return 0;
2885 }
2886
2887 static bool
2888 is_mirror_output_bundle(const struct ofproto *ofproto_, void *aux)
2889 {
2890 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2891 struct ofbundle *bundle = bundle_lookup(ofproto, aux);
2892 return bundle && bundle->mirror_out != 0;
2893 }
2894
2895 static void
2896 forward_bpdu_changed(struct ofproto *ofproto_)
2897 {
2898 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2899 ofproto->backer->need_revalidate = REV_RECONFIGURE;
2900 }
2901
2902 static void
2903 set_mac_table_config(struct ofproto *ofproto_, unsigned int idle_time,
2904 size_t max_entries)
2905 {
2906 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
2907 mac_learning_set_idle_time(ofproto->ml, idle_time);
2908 mac_learning_set_max_entries(ofproto->ml, max_entries);
2909 }
2910 \f
2911 /* Ports. */
2912
2913 static struct ofport_dpif *
2914 get_ofp_port(const struct ofproto_dpif *ofproto, uint16_t ofp_port)
2915 {
2916 struct ofport *ofport = ofproto_get_port(&ofproto->up, ofp_port);
2917 return ofport ? ofport_dpif_cast(ofport) : NULL;
2918 }
2919
2920 static struct ofport_dpif *
2921 get_odp_port(const struct ofproto_dpif *ofproto, uint32_t odp_port)
2922 {
2923 struct ofport_dpif *port = odp_port_to_ofport(ofproto->backer, odp_port);
2924 return port && &ofproto->up == port->up.ofproto ? port : NULL;
2925 }
2926
2927 static void
2928 ofproto_port_from_dpif_port(struct ofproto_dpif *ofproto,
2929 struct ofproto_port *ofproto_port,
2930 struct dpif_port *dpif_port)
2931 {
2932 ofproto_port->name = dpif_port->name;
2933 ofproto_port->type = dpif_port->type;
2934 ofproto_port->ofp_port = odp_port_to_ofp_port(ofproto, dpif_port->port_no);
2935 }
2936
2937 static struct ofport_dpif *
2938 ofport_get_peer(const struct ofport_dpif *ofport_dpif)
2939 {
2940 const struct ofproto_dpif *ofproto;
2941 const char *peer;
2942
2943 peer = netdev_vport_patch_peer(ofport_dpif->up.netdev);
2944 if (!peer) {
2945 return NULL;
2946 }
2947
2948 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
2949 struct ofport *ofport;
2950
2951 ofport = shash_find_data(&ofproto->up.port_by_name, peer);
2952 if (ofport && ofport->ofproto->ofproto_class == &ofproto_dpif_class) {
2953 return ofport_dpif_cast(ofport);
2954 }
2955 }
2956 return NULL;
2957 }
2958
2959 static void
2960 port_run_fast(struct ofport_dpif *ofport)
2961 {
2962 if (ofport->cfm && cfm_should_send_ccm(ofport->cfm)) {
2963 struct ofpbuf packet;
2964
2965 ofpbuf_init(&packet, 0);
2966 cfm_compose_ccm(ofport->cfm, &packet, ofport->up.pp.hw_addr);
2967 send_packet(ofport, &packet);
2968 ofpbuf_uninit(&packet);
2969 }
2970 }
2971
2972 static void
2973 port_run(struct ofport_dpif *ofport)
2974 {
2975 long long int carrier_seq = netdev_get_carrier_resets(ofport->up.netdev);
2976 bool carrier_changed = carrier_seq != ofport->carrier_seq;
2977 bool enable = netdev_get_carrier(ofport->up.netdev);
2978
2979 ofport->carrier_seq = carrier_seq;
2980
2981 port_run_fast(ofport);
2982
2983 if (ofport->tnl_port
2984 && tnl_port_reconfigure(&ofport->up, ofport->odp_port,
2985 &ofport->tnl_port)) {
2986 ofproto_dpif_cast(ofport->up.ofproto)->backer->need_revalidate = true;
2987 }
2988
2989 if (ofport->cfm) {
2990 int cfm_opup = cfm_get_opup(ofport->cfm);
2991
2992 cfm_run(ofport->cfm);
2993 enable = enable && !cfm_get_fault(ofport->cfm);
2994
2995 if (cfm_opup >= 0) {
2996 enable = enable && cfm_opup;
2997 }
2998 }
2999
3000 if (ofport->bundle) {
3001 enable = enable && lacp_slave_may_enable(ofport->bundle->lacp, ofport);
3002 if (carrier_changed) {
3003 lacp_slave_carrier_changed(ofport->bundle->lacp, ofport);
3004 }
3005 }
3006
3007 if (ofport->may_enable != enable) {
3008 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
3009
3010 if (ofproto->has_bundle_action) {
3011 ofproto->backer->need_revalidate = REV_PORT_TOGGLED;
3012 }
3013 }
3014
3015 ofport->may_enable = enable;
3016 }
3017
3018 static void
3019 port_wait(struct ofport_dpif *ofport)
3020 {
3021 if (ofport->cfm) {
3022 cfm_wait(ofport->cfm);
3023 }
3024 }
3025
3026 static int
3027 port_query_by_name(const struct ofproto *ofproto_, const char *devname,
3028 struct ofproto_port *ofproto_port)
3029 {
3030 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
3031 struct dpif_port dpif_port;
3032 int error;
3033
3034 if (sset_contains(&ofproto->ghost_ports, devname)) {
3035 const char *type = netdev_get_type_from_name(devname);
3036
3037 /* We may be called before ofproto->up.port_by_name is populated with
3038 * the appropriate ofport. For this reason, we must get the name and
3039 * type from the netdev layer directly. */
3040 if (type) {
3041 const struct ofport *ofport;
3042
3043 ofport = shash_find_data(&ofproto->up.port_by_name, devname);
3044 ofproto_port->ofp_port = ofport ? ofport->ofp_port : OFPP_NONE;
3045 ofproto_port->name = xstrdup(devname);
3046 ofproto_port->type = xstrdup(type);
3047 return 0;
3048 }
3049 return ENODEV;
3050 }
3051
3052 if (!sset_contains(&ofproto->ports, devname)) {
3053 return ENODEV;
3054 }
3055 error = dpif_port_query_by_name(ofproto->backer->dpif,
3056 devname, &dpif_port);
3057 if (!error) {
3058 ofproto_port_from_dpif_port(ofproto, ofproto_port, &dpif_port);
3059 }
3060 return error;
3061 }
3062
3063 static int
3064 port_add(struct ofproto *ofproto_, struct netdev *netdev)
3065 {
3066 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
3067 const char *dp_port_name = netdev_vport_get_dpif_port(netdev);
3068 const char *devname = netdev_get_name(netdev);
3069
3070 if (netdev_vport_is_patch(netdev)) {
3071 sset_add(&ofproto->ghost_ports, netdev_get_name(netdev));
3072 return 0;
3073 }
3074
3075 if (!dpif_port_exists(ofproto->backer->dpif, dp_port_name)) {
3076 uint32_t port_no = UINT32_MAX;
3077 int error;
3078
3079 error = dpif_port_add(ofproto->backer->dpif, netdev, &port_no);
3080 if (error) {
3081 return error;
3082 }
3083 if (netdev_get_tunnel_config(netdev)) {
3084 simap_put(&ofproto->backer->tnl_backers, dp_port_name, port_no);
3085 }
3086 }
3087
3088 if (netdev_get_tunnel_config(netdev)) {
3089 sset_add(&ofproto->ghost_ports, devname);
3090 } else {
3091 sset_add(&ofproto->ports, devname);
3092 }
3093 return 0;
3094 }
3095
3096 static int
3097 port_del(struct ofproto *ofproto_, uint16_t ofp_port)
3098 {
3099 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
3100 struct ofport_dpif *ofport = get_ofp_port(ofproto, ofp_port);
3101 int error = 0;
3102
3103 if (!ofport) {
3104 return 0;
3105 }
3106
3107 sset_find_and_delete(&ofproto->ghost_ports,
3108 netdev_get_name(ofport->up.netdev));
3109 ofproto->backer->need_revalidate = REV_RECONFIGURE;
3110 if (!ofport->tnl_port) {
3111 error = dpif_port_del(ofproto->backer->dpif, ofport->odp_port);
3112 if (!error) {
3113 /* The caller is going to close ofport->up.netdev. If this is a
3114 * bonded port, then the bond is using that netdev, so remove it
3115 * from the bond. The client will need to reconfigure everything
3116 * after deleting ports, so then the slave will get re-added. */
3117 bundle_remove(&ofport->up);
3118 }
3119 }
3120 return error;
3121 }
3122
3123 static int
3124 port_get_stats(const struct ofport *ofport_, struct netdev_stats *stats)
3125 {
3126 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
3127 int error;
3128
3129 error = netdev_get_stats(ofport->up.netdev, stats);
3130
3131 if (!error && ofport_->ofp_port == OFPP_LOCAL) {
3132 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
3133
3134 /* ofproto->stats.tx_packets represents packets that we created
3135 * internally and sent to some port (e.g. packets sent with
3136 * send_packet()). Account for them as if they had come from
3137 * OFPP_LOCAL and got forwarded. */
3138
3139 if (stats->rx_packets != UINT64_MAX) {
3140 stats->rx_packets += ofproto->stats.tx_packets;
3141 }
3142
3143 if (stats->rx_bytes != UINT64_MAX) {
3144 stats->rx_bytes += ofproto->stats.tx_bytes;
3145 }
3146
3147 /* ofproto->stats.rx_packets represents packets that were received on
3148 * some port and we processed internally and dropped (e.g. STP).
3149 * Account for them as if they had been forwarded to OFPP_LOCAL. */
3150
3151 if (stats->tx_packets != UINT64_MAX) {
3152 stats->tx_packets += ofproto->stats.rx_packets;
3153 }
3154
3155 if (stats->tx_bytes != UINT64_MAX) {
3156 stats->tx_bytes += ofproto->stats.rx_bytes;
3157 }
3158 }
3159
3160 return error;
3161 }
3162
3163 /* Account packets for LOCAL port. */
3164 static void
3165 ofproto_update_local_port_stats(const struct ofproto *ofproto_,
3166 size_t tx_size, size_t rx_size)
3167 {
3168 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
3169
3170 if (rx_size) {
3171 ofproto->stats.rx_packets++;
3172 ofproto->stats.rx_bytes += rx_size;
3173 }
3174 if (tx_size) {
3175 ofproto->stats.tx_packets++;
3176 ofproto->stats.tx_bytes += tx_size;
3177 }
3178 }
3179
3180 struct port_dump_state {
3181 uint32_t bucket;
3182 uint32_t offset;
3183 bool ghost;
3184
3185 struct ofproto_port port;
3186 bool has_port;
3187 };
3188
3189 static int
3190 port_dump_start(const struct ofproto *ofproto_ OVS_UNUSED, void **statep)
3191 {
3192 *statep = xzalloc(sizeof(struct port_dump_state));
3193 return 0;
3194 }
3195
3196 static int
3197 port_dump_next(const struct ofproto *ofproto_, void *state_,
3198 struct ofproto_port *port)
3199 {
3200 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
3201 struct port_dump_state *state = state_;
3202 const struct sset *sset;
3203 struct sset_node *node;
3204
3205 if (state->has_port) {
3206 ofproto_port_destroy(&state->port);
3207 state->has_port = false;
3208 }
3209 sset = state->ghost ? &ofproto->ghost_ports : &ofproto->ports;
3210 while ((node = sset_at_position(sset, &state->bucket, &state->offset))) {
3211 int error;
3212
3213 error = port_query_by_name(ofproto_, node->name, &state->port);
3214 if (!error) {
3215 *port = state->port;
3216 state->has_port = true;
3217 return 0;
3218 } else if (error != ENODEV) {
3219 return error;
3220 }
3221 }
3222
3223 if (!state->ghost) {
3224 state->ghost = true;
3225 state->bucket = 0;
3226 state->offset = 0;
3227 return port_dump_next(ofproto_, state_, port);
3228 }
3229
3230 return EOF;
3231 }
3232
3233 static int
3234 port_dump_done(const struct ofproto *ofproto_ OVS_UNUSED, void *state_)
3235 {
3236 struct port_dump_state *state = state_;
3237
3238 if (state->has_port) {
3239 ofproto_port_destroy(&state->port);
3240 }
3241 free(state);
3242 return 0;
3243 }
3244
3245 static int
3246 port_poll(const struct ofproto *ofproto_, char **devnamep)
3247 {
3248 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
3249
3250 if (ofproto->port_poll_errno) {
3251 int error = ofproto->port_poll_errno;
3252 ofproto->port_poll_errno = 0;
3253 return error;
3254 }
3255
3256 if (sset_is_empty(&ofproto->port_poll_set)) {
3257 return EAGAIN;
3258 }
3259
3260 *devnamep = sset_pop(&ofproto->port_poll_set);
3261 return 0;
3262 }
3263
3264 static void
3265 port_poll_wait(const struct ofproto *ofproto_)
3266 {
3267 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
3268 dpif_port_poll_wait(ofproto->backer->dpif);
3269 }
3270
3271 static int
3272 port_is_lacp_current(const struct ofport *ofport_)
3273 {
3274 const struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
3275 return (ofport->bundle && ofport->bundle->lacp
3276 ? lacp_slave_is_current(ofport->bundle->lacp, ofport)
3277 : -1);
3278 }
3279 \f
3280 /* Upcall handling. */
3281
3282 /* Flow miss batching.
3283 *
3284 * Some dpifs implement operations faster when you hand them off in a batch.
3285 * To allow batching, "struct flow_miss" queues the dpif-related work needed
3286 * for a given flow. Each "struct flow_miss" corresponds to sending one or
3287 * more packets, plus possibly installing the flow in the dpif.
3288 *
3289 * So far we only batch the operations that affect flow setup time the most.
3290 * It's possible to batch more than that, but the benefit might be minimal. */
3291 struct flow_miss {
3292 struct hmap_node hmap_node;
3293 struct ofproto_dpif *ofproto;
3294 struct flow flow;
3295 enum odp_key_fitness key_fitness;
3296 const struct nlattr *key;
3297 size_t key_len;
3298 struct initial_vals initial_vals;
3299 struct list packets;
3300 enum dpif_upcall_type upcall_type;
3301 uint32_t odp_in_port;
3302 };
3303
3304 struct flow_miss_op {
3305 struct dpif_op dpif_op;
3306 void *garbage; /* Pointer to pass to free(), NULL if none. */
3307 uint64_t stub[1024 / 8]; /* Temporary buffer. */
3308 };
3309
3310 /* Sends an OFPT_PACKET_IN message for 'packet' of type OFPR_NO_MATCH to each
3311 * OpenFlow controller as necessary according to their individual
3312 * configurations. */
3313 static void
3314 send_packet_in_miss(struct ofproto_dpif *ofproto, const struct ofpbuf *packet,
3315 const struct flow *flow)
3316 {
3317 struct ofputil_packet_in pin;
3318
3319 pin.packet = packet->data;
3320 pin.packet_len = packet->size;
3321 pin.reason = OFPR_NO_MATCH;
3322 pin.controller_id = 0;
3323
3324 pin.table_id = 0;
3325 pin.cookie = 0;
3326
3327 pin.send_len = 0; /* not used for flow table misses */
3328
3329 flow_get_metadata(flow, &pin.fmd);
3330
3331 connmgr_send_packet_in(ofproto->up.connmgr, &pin);
3332 }
3333
3334 static enum slow_path_reason
3335 process_special(struct ofproto_dpif *ofproto, const struct flow *flow,
3336 const struct ofport_dpif *ofport, const struct ofpbuf *packet)
3337 {
3338 if (!ofport) {
3339 return 0;
3340 } else if (ofport->cfm && cfm_should_process_flow(ofport->cfm, flow)) {
3341 if (packet) {
3342 cfm_process_heartbeat(ofport->cfm, packet);
3343 }
3344 return SLOW_CFM;
3345 } else if (ofport->bundle && ofport->bundle->lacp
3346 && flow->dl_type == htons(ETH_TYPE_LACP)) {
3347 if (packet) {
3348 lacp_process_packet(ofport->bundle->lacp, ofport, packet);
3349 }
3350 return SLOW_LACP;
3351 } else if (ofproto->stp && stp_should_process_flow(flow)) {
3352 if (packet) {
3353 stp_process_packet(ofport, packet);
3354 }
3355 return SLOW_STP;
3356 } else {
3357 return 0;
3358 }
3359 }
3360
3361 static struct flow_miss *
3362 flow_miss_find(struct hmap *todo, const struct ofproto_dpif *ofproto,
3363 const struct flow *flow, uint32_t hash)
3364 {
3365 struct flow_miss *miss;
3366
3367 HMAP_FOR_EACH_WITH_HASH (miss, hmap_node, hash, todo) {
3368 if (miss->ofproto == ofproto && flow_equal(&miss->flow, flow)) {
3369 return miss;
3370 }
3371 }
3372
3373 return NULL;
3374 }
3375
3376 /* Partially Initializes 'op' as an "execute" operation for 'miss' and
3377 * 'packet'. The caller must initialize op->actions and op->actions_len. If
3378 * 'miss' is associated with a subfacet the caller must also initialize the
3379 * returned op->subfacet, and if anything needs to be freed after processing
3380 * the op, the caller must initialize op->garbage also. */
3381 static void
3382 init_flow_miss_execute_op(struct flow_miss *miss, struct ofpbuf *packet,
3383 struct flow_miss_op *op)
3384 {
3385 if (miss->flow.vlan_tci != miss->initial_vals.vlan_tci) {
3386 /* This packet was received on a VLAN splinter port. We
3387 * added a VLAN to the packet to make the packet resemble
3388 * the flow, but the actions were composed assuming that
3389 * the packet contained no VLAN. So, we must remove the
3390 * VLAN header from the packet before trying to execute the
3391 * actions. */
3392 eth_pop_vlan(packet);
3393 }
3394
3395 op->garbage = NULL;
3396 op->dpif_op.type = DPIF_OP_EXECUTE;
3397 op->dpif_op.u.execute.key = miss->key;
3398 op->dpif_op.u.execute.key_len = miss->key_len;
3399 op->dpif_op.u.execute.packet = packet;
3400 }
3401
3402 /* Helper for handle_flow_miss_without_facet() and
3403 * handle_flow_miss_with_facet(). */
3404 static void
3405 handle_flow_miss_common(struct rule_dpif *rule,
3406 struct ofpbuf *packet, const struct flow *flow)
3407 {
3408 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
3409
3410 ofproto->n_matches++;
3411
3412 if (rule->up.cr.priority == FAIL_OPEN_PRIORITY) {
3413 /*
3414 * Extra-special case for fail-open mode.
3415 *
3416 * We are in fail-open mode and the packet matched the fail-open
3417 * rule, but we are connected to a controller too. We should send
3418 * the packet up to the controller in the hope that it will try to
3419 * set up a flow and thereby allow us to exit fail-open.
3420 *
3421 * See the top-level comment in fail-open.c for more information.
3422 */
3423 send_packet_in_miss(ofproto, packet, flow);
3424 }
3425 }
3426
3427 /* Figures out whether a flow that missed in 'ofproto', whose details are in
3428 * 'miss', is likely to be worth tracking in detail in userspace and (usually)
3429 * installing a datapath flow. The answer is usually "yes" (a return value of
3430 * true). However, for short flows the cost of bookkeeping is much higher than
3431 * the benefits, so when the datapath holds a large number of flows we impose
3432 * some heuristics to decide which flows are likely to be worth tracking. */
3433 static bool
3434 flow_miss_should_make_facet(struct ofproto_dpif *ofproto,
3435 struct flow_miss *miss, uint32_t hash)
3436 {
3437 if (!ofproto->governor) {
3438 size_t n_subfacets;
3439
3440 n_subfacets = hmap_count(&ofproto->subfacets);
3441 if (n_subfacets * 2 <= ofproto->up.flow_eviction_threshold) {
3442 return true;
3443 }
3444
3445 ofproto->governor = governor_create(ofproto->up.name);
3446 }
3447
3448 return governor_should_install_flow(ofproto->governor, hash,
3449 list_size(&miss->packets));
3450 }
3451
3452 /* Handles 'miss', which matches 'rule', without creating a facet or subfacet
3453 * or creating any datapath flow. May add an "execute" operation to 'ops' and
3454 * increment '*n_ops'. */
3455 static void
3456 handle_flow_miss_without_facet(struct flow_miss *miss,
3457 struct rule_dpif *rule,
3458 struct flow_miss_op *ops, size_t *n_ops)
3459 {
3460 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
3461 long long int now = time_msec();
3462 struct action_xlate_ctx ctx;
3463 struct ofpbuf *packet;
3464
3465 LIST_FOR_EACH (packet, list_node, &miss->packets) {
3466 struct flow_miss_op *op = &ops[*n_ops];
3467 struct dpif_flow_stats stats;
3468 struct ofpbuf odp_actions;
3469
3470 COVERAGE_INC(facet_suppress);
3471
3472 ofpbuf_use_stub(&odp_actions, op->stub, sizeof op->stub);
3473
3474 dpif_flow_stats_extract(&miss->flow, packet, now, &stats);
3475 rule_credit_stats(rule, &stats);
3476
3477 action_xlate_ctx_init(&ctx, ofproto, &miss->flow,
3478 &miss->initial_vals, rule, 0, packet);
3479 ctx.resubmit_stats = &stats;
3480 xlate_actions(&ctx, rule->up.ofpacts, rule->up.ofpacts_len,
3481 &odp_actions);
3482
3483 if (odp_actions.size) {
3484 struct dpif_execute *execute = &op->dpif_op.u.execute;
3485
3486 init_flow_miss_execute_op(miss, packet, op);
3487 execute->actions = odp_actions.data;
3488 execute->actions_len = odp_actions.size;
3489 op->garbage = ofpbuf_get_uninit_pointer(&odp_actions);
3490
3491 (*n_ops)++;
3492 } else {
3493 ofpbuf_uninit(&odp_actions);
3494 }
3495 }
3496 }
3497
3498 /* Handles 'miss', which matches 'facet'. May add any required datapath
3499 * operations to 'ops', incrementing '*n_ops' for each new op.
3500 *
3501 * All of the packets in 'miss' are considered to have arrived at time 'now'.
3502 * This is really important only for new facets: if we just called time_msec()
3503 * here, then the new subfacet or its packets could look (occasionally) as
3504 * though it was used some time after the facet was used. That can make a
3505 * one-packet flow look like it has a nonzero duration, which looks odd in
3506 * e.g. NetFlow statistics. */
3507 static void
3508 handle_flow_miss_with_facet(struct flow_miss *miss, struct facet *facet,
3509 long long int now,
3510 struct flow_miss_op *ops, size_t *n_ops)
3511 {
3512 struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto);
3513 enum subfacet_path want_path;
3514 struct subfacet *subfacet;
3515 struct ofpbuf *packet;
3516
3517 subfacet = subfacet_create(facet, miss, now);
3518
3519 LIST_FOR_EACH (packet, list_node, &miss->packets) {
3520 struct flow_miss_op *op = &ops[*n_ops];
3521 struct dpif_flow_stats stats;
3522 struct ofpbuf odp_actions;
3523
3524 handle_flow_miss_common(facet->rule, packet, &miss->flow);
3525
3526 ofpbuf_use_stub(&odp_actions, op->stub, sizeof op->stub);
3527 if (!subfacet->actions || subfacet->slow) {
3528 subfacet_make_actions(subfacet, packet, &odp_actions);
3529 }
3530
3531 dpif_flow_stats_extract(&facet->flow, packet, now, &stats);
3532 subfacet_update_stats(subfacet, &stats);
3533
3534 if (subfacet->actions_len) {
3535 struct dpif_execute *execute = &op->dpif_op.u.execute;
3536
3537 init_flow_miss_execute_op(miss, packet, op);
3538 if (!subfacet->slow) {
3539 execute->actions = subfacet->actions;
3540 execute->actions_len = subfacet->actions_len;
3541 ofpbuf_uninit(&odp_actions);
3542 } else {
3543 execute->actions = odp_actions.data;
3544 execute->actions_len = odp_actions.size;
3545 op->garbage = ofpbuf_get_uninit_pointer(&odp_actions);
3546 }
3547
3548 (*n_ops)++;
3549 } else {
3550 ofpbuf_uninit(&odp_actions);
3551 }
3552 }
3553
3554 want_path = subfacet_want_path(subfacet->slow);
3555 if (miss->upcall_type == DPIF_UC_MISS || subfacet->path != want_path) {
3556 struct flow_miss_op *op = &ops[(*n_ops)++];
3557 struct dpif_flow_put *put = &op->dpif_op.u.flow_put;
3558
3559 subfacet->path = want_path;
3560
3561 op->garbage = NULL;
3562 op->dpif_op.type = DPIF_OP_FLOW_PUT;
3563 put->flags = DPIF_FP_CREATE | DPIF_FP_MODIFY;
3564 put->key = miss->key;
3565 put->key_len = miss->key_len;
3566 if (want_path == SF_FAST_PATH) {
3567 put->actions = subfacet->actions;
3568 put->actions_len = subfacet->actions_len;
3569 } else {
3570 compose_slow_path(ofproto, &facet->flow, subfacet->slow,
3571 op->stub, sizeof op->stub,
3572 &put->actions, &put->actions_len);
3573 }
3574 put->stats = NULL;
3575 }
3576 }
3577
3578 /* Handles flow miss 'miss'. May add any required datapath operations
3579 * to 'ops', incrementing '*n_ops' for each new op. */
3580 static void
3581 handle_flow_miss(struct flow_miss *miss, struct flow_miss_op *ops,
3582 size_t *n_ops)
3583 {
3584 struct ofproto_dpif *ofproto = miss->ofproto;
3585 struct facet *facet;
3586 long long int now;
3587 uint32_t hash;
3588
3589 /* The caller must ensure that miss->hmap_node.hash contains
3590 * flow_hash(miss->flow, 0). */
3591 hash = miss->hmap_node.hash;
3592
3593 facet = facet_lookup_valid(ofproto, &miss->flow, hash);
3594 if (!facet) {
3595 struct rule_dpif *rule = rule_dpif_lookup(ofproto, &miss->flow);
3596
3597 if (!flow_miss_should_make_facet(ofproto, miss, hash)) {
3598 handle_flow_miss_without_facet(miss, rule, ops, n_ops);
3599 return;
3600 }
3601
3602 facet = facet_create(rule, &miss->flow, hash);
3603 now = facet->used;
3604 } else {
3605 now = time_msec();
3606 }
3607 handle_flow_miss_with_facet(miss, facet, now, ops, n_ops);
3608 }
3609
3610 static struct drop_key *
3611 drop_key_lookup(const struct dpif_backer *backer, const struct nlattr *key,
3612 size_t key_len)
3613 {
3614 struct drop_key *drop_key;
3615
3616 HMAP_FOR_EACH_WITH_HASH (drop_key, hmap_node, hash_bytes(key, key_len, 0),
3617 &backer->drop_keys) {
3618 if (drop_key->key_len == key_len
3619 && !memcmp(drop_key->key, key, key_len)) {
3620 return drop_key;
3621 }
3622 }
3623 return NULL;
3624 }
3625
3626 static void
3627 drop_key_clear(struct dpif_backer *backer)
3628 {
3629 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 15);
3630 struct drop_key *drop_key, *next;
3631
3632 HMAP_FOR_EACH_SAFE (drop_key, next, hmap_node, &backer->drop_keys) {
3633 int error;
3634
3635 error = dpif_flow_del(backer->dpif, drop_key->key, drop_key->key_len,
3636 NULL);
3637 if (error && !VLOG_DROP_WARN(&rl)) {
3638 struct ds ds = DS_EMPTY_INITIALIZER;
3639 odp_flow_key_format(drop_key->key, drop_key->key_len, &ds);
3640 VLOG_WARN("Failed to delete drop key (%s) (%s)", strerror(error),
3641 ds_cstr(&ds));
3642 ds_destroy(&ds);
3643 }
3644
3645 hmap_remove(&backer->drop_keys, &drop_key->hmap_node);
3646 free(drop_key->key);
3647 free(drop_key);
3648 }
3649 }
3650
3651 /* Given a datpath, packet, and flow metadata ('backer', 'packet', and 'key'
3652 * respectively), populates 'flow' with the result of odp_flow_key_to_flow().
3653 * Optionally, if nonnull, populates 'fitnessp' with the fitness of 'flow' as
3654 * returned by odp_flow_key_to_flow(). Also, optionally populates 'ofproto'
3655 * with the ofproto_dpif, and 'odp_in_port' with the datapath in_port, that
3656 * 'packet' ingressed.
3657 *
3658 * If 'ofproto' is nonnull, requires 'flow''s in_port to exist. Otherwise sets
3659 * 'flow''s in_port to OFPP_NONE.
3660 *
3661 * This function does post-processing on data returned from
3662 * odp_flow_key_to_flow() to help make VLAN splinters transparent to the rest
3663 * of the upcall processing logic. In particular, if the extracted in_port is
3664 * a VLAN splinter port, it replaces flow->in_port by the "real" port, sets
3665 * flow->vlan_tci correctly for the VLAN of the VLAN splinter port, and pushes
3666 * a VLAN header onto 'packet' (if it is nonnull).
3667 *
3668 * Optionally, if 'initial_vals' is nonnull, sets 'initial_vals->vlan_tci'
3669 * to the VLAN TCI with which the packet was really received, that is, the
3670 * actual VLAN TCI extracted by odp_flow_key_to_flow(). (This differs from
3671 * the value returned in flow->vlan_tci only for packets received on
3672 * VLAN splinters.) Also, if received on an IP tunnel, sets
3673 * 'initial_vals->tunnel_ip_tos' to the tunnel's IP TOS.
3674 *
3675 * Similarly, this function also includes some logic to help with tunnels. It
3676 * may modify 'flow' as necessary to make the tunneling implementation
3677 * transparent to the upcall processing logic.
3678 *
3679 * Returns 0 if successful, ENODEV if the parsed flow has no associated ofport,
3680 * or some other positive errno if there are other problems. */
3681 static int
3682 ofproto_receive(const struct dpif_backer *backer, struct ofpbuf *packet,
3683 const struct nlattr *key, size_t key_len,
3684 struct flow *flow, enum odp_key_fitness *fitnessp,
3685 struct ofproto_dpif **ofproto, uint32_t *odp_in_port,
3686 struct initial_vals *initial_vals)
3687 {
3688 const struct ofport_dpif *port;
3689 enum odp_key_fitness fitness;
3690 int error = ENODEV;
3691
3692 fitness = odp_flow_key_to_flow(key, key_len, flow);
3693 if (fitness == ODP_FIT_ERROR) {
3694 error = EINVAL;
3695 goto exit;
3696 }
3697
3698 if (initial_vals) {
3699 initial_vals->vlan_tci = flow->vlan_tci;
3700 initial_vals->tunnel_ip_tos = flow->tunnel.ip_tos;
3701 }
3702
3703 if (odp_in_port) {
3704 *odp_in_port = flow->in_port;
3705 }
3706
3707 if (tnl_port_should_receive(flow)) {
3708 const struct ofport *ofport = tnl_port_receive(flow);
3709 if (!ofport) {
3710 flow->in_port = OFPP_NONE;
3711 goto exit;
3712 }
3713 port = ofport_dpif_cast(ofport);
3714
3715 /* We can't reproduce 'key' from 'flow'. */
3716 fitness = fitness == ODP_FIT_PERFECT ? ODP_FIT_TOO_MUCH : fitness;
3717
3718 /* XXX: Since the tunnel module is not scoped per backer, it's
3719 * theoretically possible that we'll receive an ofport belonging to an
3720 * entirely different datapath. In practice, this can't happen because
3721 * no platforms has two separate datapaths which each support
3722 * tunneling. */
3723 ovs_assert(ofproto_dpif_cast(port->up.ofproto)->backer == backer);
3724 } else {
3725 port = odp_port_to_ofport(backer, flow->in_port);
3726 if (!port) {
3727 flow->in_port = OFPP_NONE;
3728 goto exit;
3729 }
3730
3731 flow->in_port = port->up.ofp_port;
3732 if (vsp_adjust_flow(ofproto_dpif_cast(port->up.ofproto), flow)) {
3733 if (packet) {
3734 /* Make the packet resemble the flow, so that it gets sent to
3735 * an OpenFlow controller properly, so that it looks correct
3736 * for sFlow, and so that flow_extract() will get the correct
3737 * vlan_tci if it is called on 'packet'.
3738 *
3739 * The allocated space inside 'packet' probably also contains
3740 * 'key', that is, both 'packet' and 'key' are probably part of
3741 * a struct dpif_upcall (see the large comment on that
3742 * structure definition), so pushing data on 'packet' is in
3743 * general not a good idea since it could overwrite 'key' or
3744 * free it as a side effect. However, it's OK in this special
3745 * case because we know that 'packet' is inside a Netlink
3746 * attribute: pushing 4 bytes will just overwrite the 4-byte
3747 * "struct nlattr", which is fine since we don't need that
3748 * header anymore. */
3749 eth_push_vlan(packet, flow->vlan_tci);
3750 }
3751 /* We can't reproduce 'key' from 'flow'. */
3752 fitness = fitness == ODP_FIT_PERFECT ? ODP_FIT_TOO_MUCH : fitness;
3753 }
3754 }
3755 error = 0;
3756
3757 if (ofproto) {
3758 *ofproto = ofproto_dpif_cast(port->up.ofproto);
3759 }
3760
3761 exit:
3762 if (fitnessp) {
3763 *fitnessp = fitness;
3764 }
3765 return error;
3766 }
3767
3768 static void
3769 handle_miss_upcalls(struct dpif_backer *backer, struct dpif_upcall *upcalls,
3770 size_t n_upcalls)
3771 {
3772 struct dpif_upcall *upcall;
3773 struct flow_miss *miss;
3774 struct flow_miss misses[FLOW_MISS_MAX_BATCH];
3775 struct flow_miss_op flow_miss_ops[FLOW_MISS_MAX_BATCH * 2];
3776 struct dpif_op *dpif_ops[FLOW_MISS_MAX_BATCH * 2];
3777 struct hmap todo;
3778 int n_misses;
3779 size_t n_ops;
3780 size_t i;
3781
3782 if (!n_upcalls) {
3783 return;
3784 }
3785
3786 /* Construct the to-do list.
3787 *
3788 * This just amounts to extracting the flow from each packet and sticking
3789 * the packets that have the same flow in the same "flow_miss" structure so
3790 * that we can process them together. */
3791 hmap_init(&todo);
3792 n_misses = 0;
3793 for (upcall = upcalls; upcall < &upcalls[n_upcalls]; upcall++) {
3794 struct flow_miss *miss = &misses[n_misses];
3795 struct flow_miss *existing_miss;
3796 struct ofproto_dpif *ofproto;
3797 uint32_t odp_in_port;
3798 struct flow flow;
3799 uint32_t hash;
3800 int error;
3801
3802 error = ofproto_receive(backer, upcall->packet, upcall->key,
3803 upcall->key_len, &flow, &miss->key_fitness,
3804 &ofproto, &odp_in_port, &miss->initial_vals);
3805 if (error == ENODEV) {
3806 struct drop_key *drop_key;
3807
3808 /* Received packet on port for which we couldn't associate
3809 * an ofproto. This can happen if a port is removed while
3810 * traffic is being received. Print a rate-limited message
3811 * in case it happens frequently. Install a drop flow so
3812 * that future packets of the flow are inexpensively dropped
3813 * in the kernel. */
3814 VLOG_INFO_RL(&rl, "received packet on unassociated port %"PRIu32,
3815 flow.in_port);
3816
3817 drop_key = drop_key_lookup(backer, upcall->key, upcall->key_len);
3818 if (!drop_key) {
3819 drop_key = xmalloc(sizeof *drop_key);
3820 drop_key->key = xmemdup(upcall->key, upcall->key_len);
3821 drop_key->key_len = upcall->key_len;
3822
3823 hmap_insert(&backer->drop_keys, &drop_key->hmap_node,
3824 hash_bytes(drop_key->key, drop_key->key_len, 0));
3825 dpif_flow_put(backer->dpif, DPIF_FP_CREATE | DPIF_FP_MODIFY,
3826 drop_key->key, drop_key->key_len, NULL, 0, NULL);
3827 }
3828 continue;
3829 }
3830 if (error) {
3831 continue;
3832 }
3833
3834 ofproto->n_missed++;
3835 flow_extract(upcall->packet, flow.skb_priority, flow.skb_mark,
3836 &flow.tunnel, flow.in_port, &miss->flow);
3837
3838 /* Add other packets to a to-do list. */
3839 hash = flow_hash(&miss->flow, 0);
3840 existing_miss = flow_miss_find(&todo, ofproto, &miss->flow, hash);
3841 if (!existing_miss) {
3842 hmap_insert(&todo, &miss->hmap_node, hash);
3843 miss->ofproto = ofproto;
3844 miss->key = upcall->key;
3845 miss->key_len = upcall->key_len;
3846 miss->upcall_type = upcall->type;
3847 miss->odp_in_port = odp_in_port;
3848 list_init(&miss->packets);
3849
3850 n_misses++;
3851 } else {
3852 miss = existing_miss;
3853 }
3854 list_push_back(&miss->packets, &upcall->packet->list_node);
3855 }
3856
3857 /* Process each element in the to-do list, constructing the set of
3858 * operations to batch. */
3859 n_ops = 0;
3860 HMAP_FOR_EACH (miss, hmap_node, &todo) {
3861 handle_flow_miss(miss, flow_miss_ops, &n_ops);
3862 }
3863 ovs_assert(n_ops <= ARRAY_SIZE(flow_miss_ops));
3864
3865 /* Execute batch. */
3866 for (i = 0; i < n_ops; i++) {
3867 dpif_ops[i] = &flow_miss_ops[i].dpif_op;
3868 }
3869 dpif_operate(backer->dpif, dpif_ops, n_ops);
3870
3871 /* Free memory. */
3872 for (i = 0; i < n_ops; i++) {
3873 free(flow_miss_ops[i].garbage);
3874 }
3875 hmap_destroy(&todo);
3876 }
3877
3878 static enum { SFLOW_UPCALL, MISS_UPCALL, BAD_UPCALL }
3879 classify_upcall(const struct dpif_upcall *upcall)
3880 {
3881 union user_action_cookie cookie;
3882
3883 /* First look at the upcall type. */
3884 switch (upcall->type) {
3885 case DPIF_UC_ACTION:
3886 break;
3887
3888 case DPIF_UC_MISS:
3889 return MISS_UPCALL;
3890
3891 case DPIF_N_UC_TYPES:
3892 default:
3893 VLOG_WARN_RL(&rl, "upcall has unexpected type %"PRIu32, upcall->type);
3894 return BAD_UPCALL;
3895 }
3896
3897 /* "action" upcalls need a closer look. */
3898 if (!upcall->userdata) {
3899 VLOG_WARN_RL(&rl, "action upcall missing cookie");
3900 return BAD_UPCALL;
3901 }
3902 if (nl_attr_get_size(upcall->userdata) != sizeof(cookie)) {
3903 VLOG_WARN_RL(&rl, "action upcall cookie has unexpected size %zu",
3904 nl_attr_get_size(upcall->userdata));
3905 return BAD_UPCALL;
3906 }
3907 memcpy(&cookie, nl_attr_get(upcall->userdata), sizeof(cookie));
3908 switch (cookie.type) {
3909 case USER_ACTION_COOKIE_SFLOW:
3910 return SFLOW_UPCALL;
3911
3912 case USER_ACTION_COOKIE_SLOW_PATH:
3913 return MISS_UPCALL;
3914
3915 case USER_ACTION_COOKIE_UNSPEC:
3916 default:
3917 VLOG_WARN_RL(&rl, "invalid user cookie : 0x%"PRIx64,
3918 nl_attr_get_u64(upcall->userdata));
3919 return BAD_UPCALL;
3920 }
3921 }
3922
3923 static void
3924 handle_sflow_upcall(struct dpif_backer *backer,
3925 const struct dpif_upcall *upcall)
3926 {
3927 struct ofproto_dpif *ofproto;
3928 union user_action_cookie cookie;
3929 struct flow flow;
3930 uint32_t odp_in_port;
3931
3932 if (ofproto_receive(backer, upcall->packet, upcall->key, upcall->key_len,
3933 &flow, NULL, &ofproto, &odp_in_port, NULL)
3934 || !ofproto->sflow) {
3935 return;
3936 }
3937
3938 memcpy(&cookie, nl_attr_get(upcall->userdata), sizeof(cookie));
3939 dpif_sflow_received(ofproto->sflow, upcall->packet, &flow,
3940 odp_in_port, &cookie);
3941 }
3942
3943 static int
3944 handle_upcalls(struct dpif_backer *backer, unsigned int max_batch)
3945 {
3946 struct dpif_upcall misses[FLOW_MISS_MAX_BATCH];
3947 struct ofpbuf miss_bufs[FLOW_MISS_MAX_BATCH];
3948 uint64_t miss_buf_stubs[FLOW_MISS_MAX_BATCH][4096 / 8];
3949 int n_processed;
3950 int n_misses;
3951 int i;
3952
3953 ovs_assert(max_batch <= FLOW_MISS_MAX_BATCH);
3954
3955 n_misses = 0;
3956 for (n_processed = 0; n_processed < max_batch; n_processed++) {
3957 struct dpif_upcall *upcall = &misses[n_misses];
3958 struct ofpbuf *buf = &miss_bufs[n_misses];
3959 int error;
3960
3961 ofpbuf_use_stub(buf, miss_buf_stubs[n_misses],
3962 sizeof miss_buf_stubs[n_misses]);
3963 error = dpif_recv(backer->dpif, upcall, buf);
3964 if (error) {
3965 ofpbuf_uninit(buf);
3966 break;
3967 }
3968
3969 switch (classify_upcall(upcall)) {
3970 case MISS_UPCALL:
3971 /* Handle it later. */
3972 n_misses++;
3973 break;
3974
3975 case SFLOW_UPCALL:
3976 handle_sflow_upcall(backer, upcall);
3977 ofpbuf_uninit(buf);
3978 break;
3979
3980 case BAD_UPCALL:
3981 ofpbuf_uninit(buf);
3982 break;
3983 }
3984 }
3985
3986 /* Handle deferred MISS_UPCALL processing. */
3987 handle_miss_upcalls(backer, misses, n_misses);
3988 for (i = 0; i < n_misses; i++) {
3989 ofpbuf_uninit(&miss_bufs[i]);
3990 }
3991
3992 return n_processed;
3993 }
3994 \f
3995 /* Flow expiration. */
3996
3997 static int subfacet_max_idle(const struct ofproto_dpif *);
3998 static void update_stats(struct dpif_backer *);
3999 static void rule_expire(struct rule_dpif *);
4000 static void expire_subfacets(struct ofproto_dpif *, int dp_max_idle);
4001
4002 /* This function is called periodically by run(). Its job is to collect
4003 * updates for the flows that have been installed into the datapath, most
4004 * importantly when they last were used, and then use that information to
4005 * expire flows that have not been used recently.
4006 *
4007 * Returns the number of milliseconds after which it should be called again. */
4008 static int
4009 expire(struct dpif_backer *backer)
4010 {
4011 struct ofproto_dpif *ofproto;
4012 int max_idle = INT32_MAX;
4013
4014 /* Periodically clear out the drop keys in an effort to keep them
4015 * relatively few. */
4016 drop_key_clear(backer);
4017
4018 /* Update stats for each flow in the backer. */
4019 update_stats(backer);
4020
4021 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
4022 struct rule *rule, *next_rule;
4023 int dp_max_idle;
4024
4025 if (ofproto->backer != backer) {
4026 continue;
4027 }
4028
4029 /* Expire subfacets that have been idle too long. */
4030 dp_max_idle = subfacet_max_idle(ofproto);
4031 expire_subfacets(ofproto, dp_max_idle);
4032
4033 max_idle = MIN(max_idle, dp_max_idle);
4034
4035 /* Expire OpenFlow flows whose idle_timeout or hard_timeout
4036 * has passed. */
4037 LIST_FOR_EACH_SAFE (rule, next_rule, expirable,
4038 &ofproto->up.expirable) {
4039 rule_expire(rule_dpif_cast(rule));
4040 }
4041
4042 /* All outstanding data in existing flows has been accounted, so it's a
4043 * good time to do bond rebalancing. */
4044 if (ofproto->has_bonded_bundles) {
4045 struct ofbundle *bundle;
4046
4047 HMAP_FOR_EACH (bundle, hmap_node, &ofproto->bundles) {
4048 if (bundle->bond) {
4049 bond_rebalance(bundle->bond, &backer->revalidate_set);
4050 }
4051 }
4052 }
4053 }
4054
4055 return MIN(max_idle, 1000);
4056 }
4057
4058 /* Updates flow table statistics given that the datapath just reported 'stats'
4059 * as 'subfacet''s statistics. */
4060 static void
4061 update_subfacet_stats(struct subfacet *subfacet,
4062 const struct dpif_flow_stats *stats)
4063 {
4064 struct facet *facet = subfacet->facet;
4065
4066 if (stats->n_packets >= subfacet->dp_packet_count) {
4067 uint64_t extra = stats->n_packets - subfacet->dp_packet_count;
4068 facet->packet_count += extra;
4069 } else {
4070 VLOG_WARN_RL(&rl, "unexpected packet count from the datapath");
4071 }
4072
4073 if (stats->n_bytes >= subfacet->dp_byte_count) {
4074 facet->byte_count += stats->n_bytes - subfacet->dp_byte_count;
4075 } else {
4076 VLOG_WARN_RL(&rl, "unexpected byte count from datapath");
4077 }
4078
4079 subfacet->dp_packet_count = stats->n_packets;
4080 subfacet->dp_byte_count = stats->n_bytes;
4081
4082 facet->tcp_flags |= stats->tcp_flags;
4083
4084 subfacet_update_time(subfacet, stats->used);
4085 if (facet->accounted_bytes < facet->byte_count) {
4086 facet_learn(facet);
4087 facet_account(facet);
4088 facet->accounted_bytes = facet->byte_count;
4089 }
4090 facet_push_stats(facet);
4091 }
4092
4093 /* 'key' with length 'key_len' bytes is a flow in 'dpif' that we know nothing
4094 * about, or a flow that shouldn't be installed but was anyway. Delete it. */
4095 static void
4096 delete_unexpected_flow(struct ofproto_dpif *ofproto,
4097 const struct nlattr *key, size_t key_len)
4098 {
4099 if (!VLOG_DROP_WARN(&rl)) {
4100 struct ds s;
4101
4102 ds_init(&s);
4103 odp_flow_key_format(key, key_len, &s);
4104 VLOG_WARN("unexpected flow on %s: %s", ofproto->up.name, ds_cstr(&s));
4105 ds_destroy(&s);
4106 }
4107
4108 COVERAGE_INC(facet_unexpected);
4109 dpif_flow_del(ofproto->backer->dpif, key, key_len, NULL);
4110 }
4111
4112 /* Update 'packet_count', 'byte_count', and 'used' members of installed facets.
4113 *
4114 * This function also pushes statistics updates to rules which each facet
4115 * resubmits into. Generally these statistics will be accurate. However, if a
4116 * facet changes the rule it resubmits into at some time in between
4117 * update_stats() runs, it is possible that statistics accrued to the
4118 * old rule will be incorrectly attributed to the new rule. This could be
4119 * avoided by calling update_stats() whenever rules are created or
4120 * deleted. However, the performance impact of making so many calls to the
4121 * datapath do not justify the benefit of having perfectly accurate statistics.
4122 *
4123 * In addition, this function maintains per ofproto flow hit counts. The patch
4124 * port is not treated specially. e.g. A packet ingress from br0 patched into
4125 * br1 will increase the hit count of br0 by 1, however, does not affect
4126 * the hit or miss counts of br1.
4127 */
4128 static void
4129 update_stats(struct dpif_backer *backer)
4130 {
4131 const struct dpif_flow_stats *stats;
4132 struct dpif_flow_dump dump;
4133 const struct nlattr *key;
4134 size_t key_len;
4135
4136 dpif_flow_dump_start(&dump, backer->dpif);
4137 while (dpif_flow_dump_next(&dump, &key, &key_len, NULL, NULL, &stats)) {
4138 struct flow flow;
4139 struct subfacet *subfacet;
4140 struct ofproto_dpif *ofproto;
4141 struct ofport_dpif *ofport;
4142 uint32_t key_hash;
4143
4144 if (ofproto_receive(backer, NULL, key, key_len, &flow, NULL, &ofproto,
4145 NULL, NULL)) {
4146 continue;
4147 }
4148
4149 ofport = get_ofp_port(ofproto, flow.in_port);
4150 if (ofport && ofport->tnl_port) {
4151 netdev_vport_inc_rx(ofport->up.netdev, stats);
4152 }
4153
4154 key_hash = odp_flow_key_hash(key, key_len);
4155 subfacet = subfacet_find(ofproto, key, key_len, key_hash);
4156 switch (subfacet ? subfacet->path : SF_NOT_INSTALLED) {
4157 case SF_FAST_PATH:
4158 /* Update ofproto_dpif's hit count. */
4159 if (stats->n_packets > subfacet->dp_packet_count) {
4160 uint64_t delta = stats->n_packets - subfacet->dp_packet_count;
4161 dpif_stats_update_hit_count(ofproto, delta);
4162 }
4163
4164 update_subfacet_stats(subfacet, stats);
4165 break;
4166
4167 case SF_SLOW_PATH:
4168 /* Stats are updated per-packet. */
4169 break;
4170
4171 case SF_NOT_INSTALLED:
4172 default:
4173 delete_unexpected_flow(ofproto, key, key_len);
4174 break;
4175 }
4176 }
4177 dpif_flow_dump_done(&dump);
4178 }
4179
4180 /* Calculates and returns the number of milliseconds of idle time after which
4181 * subfacets should expire from the datapath. When a subfacet expires, we fold
4182 * its statistics into its facet, and when a facet's last subfacet expires, we
4183 * fold its statistic into its rule. */
4184 static int
4185 subfacet_max_idle(const struct ofproto_dpif *ofproto)
4186 {
4187 /*
4188 * Idle time histogram.
4189 *
4190 * Most of the time a switch has a relatively small number of subfacets.
4191 * When this is the case we might as well keep statistics for all of them
4192 * in userspace and to cache them in the kernel datapath for performance as
4193 * well.
4194 *
4195 * As the number of subfacets increases, the memory required to maintain
4196 * statistics about them in userspace and in the kernel becomes
4197 * significant. However, with a large number of subfacets it is likely
4198 * that only a few of them are "heavy hitters" that consume a large amount
4199 * of bandwidth. At this point, only heavy hitters are worth caching in
4200 * the kernel and maintaining in userspaces; other subfacets we can
4201 * discard.
4202 *
4203 * The technique used to compute the idle time is to build a histogram with
4204 * N_BUCKETS buckets whose width is BUCKET_WIDTH msecs each. Each subfacet
4205 * that is installed in the kernel gets dropped in the appropriate bucket.
4206 * After the histogram has been built, we compute the cutoff so that only
4207 * the most-recently-used 1% of subfacets (but at least
4208 * ofproto->up.flow_eviction_threshold flows) are kept cached. At least
4209 * the most-recently-used bucket of subfacets is kept, so actually an
4210 * arbitrary number of subfacets can be kept in any given expiration run
4211 * (though the next run will delete most of those unless they receive
4212 * additional data).
4213 *
4214 * This requires a second pass through the subfacets, in addition to the
4215 * pass made by update_stats(), because the former function never looks at
4216 * uninstallable subfacets.
4217 */
4218 enum { BUCKET_WIDTH = ROUND_UP(100, TIME_UPDATE_INTERVAL) };
4219 enum { N_BUCKETS = 5000 / BUCKET_WIDTH };
4220 int buckets[N_BUCKETS] = { 0 };
4221 int total, subtotal, bucket;
4222 struct subfacet *subfacet;
4223 long long int now;
4224 int i;
4225
4226 total = hmap_count(&ofproto->subfacets);
4227 if (total <= ofproto->up.flow_eviction_threshold) {
4228 return N_BUCKETS * BUCKET_WIDTH;
4229 }
4230
4231 /* Build histogram. */
4232 now = time_msec();
4233 HMAP_FOR_EACH (subfacet, hmap_node, &ofproto->subfacets) {
4234 long long int idle = now - subfacet->used;
4235 int bucket = (idle <= 0 ? 0
4236 : idle >= BUCKET_WIDTH * N_BUCKETS ? N_BUCKETS - 1
4237 : (unsigned int) idle / BUCKET_WIDTH);
4238 buckets[bucket]++;
4239 }
4240
4241 /* Find the first bucket whose flows should be expired. */
4242 subtotal = bucket = 0;
4243 do {
4244 subtotal += buckets[bucket++];
4245 } while (bucket < N_BUCKETS &&
4246 subtotal < MAX(ofproto->up.flow_eviction_threshold, total / 100));
4247
4248 if (VLOG_IS_DBG_ENABLED()) {
4249 struct ds s;
4250
4251 ds_init(&s);
4252 ds_put_cstr(&s, "keep");
4253 for (i = 0; i < N_BUCKETS; i++) {
4254 if (i == bucket) {
4255 ds_put_cstr(&s, ", drop");
4256 }
4257 if (buckets[i]) {
4258 ds_put_format(&s, " %d:%d", i * BUCKET_WIDTH, buckets[i]);
4259 }
4260 }
4261 VLOG_INFO("%s: %s (msec:count)", ofproto->up.name, ds_cstr(&s));
4262 ds_destroy(&s);
4263 }
4264
4265 return bucket * BUCKET_WIDTH;
4266 }
4267
4268 static void
4269 expire_subfacets(struct ofproto_dpif *ofproto, int dp_max_idle)
4270 {
4271 /* Cutoff time for most flows. */
4272 long long int normal_cutoff = time_msec() - dp_max_idle;
4273
4274 /* We really want to keep flows for special protocols around, so use a more
4275 * conservative cutoff. */
4276 long long int special_cutoff = time_msec() - 10000;
4277
4278 struct subfacet *subfacet, *next_subfacet;
4279 struct subfacet *batch[SUBFACET_DESTROY_MAX_BATCH];
4280 int n_batch;
4281
4282 n_batch = 0;
4283 HMAP_FOR_EACH_SAFE (subfacet, next_subfacet, hmap_node,
4284 &ofproto->subfacets) {
4285 long long int cutoff;
4286
4287 cutoff = (subfacet->slow & (SLOW_CFM | SLOW_LACP | SLOW_STP)
4288 ? special_cutoff
4289 : normal_cutoff);
4290 if (subfacet->used < cutoff) {
4291 if (subfacet->path != SF_NOT_INSTALLED) {
4292 batch[n_batch++] = subfacet;
4293 if (n_batch >= SUBFACET_DESTROY_MAX_BATCH) {
4294 subfacet_destroy_batch(ofproto, batch, n_batch);
4295 n_batch = 0;
4296 }
4297 } else {
4298 subfacet_destroy(subfacet);
4299 }
4300 }
4301 }
4302
4303 if (n_batch > 0) {
4304 subfacet_destroy_batch(ofproto, batch, n_batch);
4305 }
4306 }
4307
4308 /* If 'rule' is an OpenFlow rule, that has expired according to OpenFlow rules,
4309 * then delete it entirely. */
4310 static void
4311 rule_expire(struct rule_dpif *rule)
4312 {
4313 struct facet *facet, *next_facet;
4314 long long int now;
4315 uint8_t reason;
4316
4317 if (rule->up.pending) {
4318 /* We'll have to expire it later. */
4319 return;
4320 }
4321
4322 /* Has 'rule' expired? */
4323 now = time_msec();
4324 if (rule->up.hard_timeout
4325 && now > rule->up.modified + rule->up.hard_timeout * 1000) {
4326 reason = OFPRR_HARD_TIMEOUT;
4327 } else if (rule->up.idle_timeout
4328 && now > rule->up.used + rule->up.idle_timeout * 1000) {
4329 reason = OFPRR_IDLE_TIMEOUT;
4330 } else {
4331 return;
4332 }
4333
4334 COVERAGE_INC(ofproto_dpif_expired);
4335
4336 /* Update stats. (This is a no-op if the rule expired due to an idle
4337 * timeout, because that only happens when the rule has no facets left.) */
4338 LIST_FOR_EACH_SAFE (facet, next_facet, list_node, &rule->facets) {
4339 facet_remove(facet);
4340 }
4341
4342 /* Get rid of the rule. */
4343 ofproto_rule_expire(&rule->up, reason);
4344 }
4345 \f
4346 /* Facets. */
4347
4348 /* Creates and returns a new facet owned by 'rule', given a 'flow'.
4349 *
4350 * The caller must already have determined that no facet with an identical
4351 * 'flow' exists in 'ofproto' and that 'flow' is the best match for 'rule' in
4352 * the ofproto's classifier table.
4353 *
4354 * 'hash' must be the return value of flow_hash(flow, 0).
4355 *
4356 * The facet will initially have no subfacets. The caller should create (at
4357 * least) one subfacet with subfacet_create(). */
4358 static struct facet *
4359 facet_create(struct rule_dpif *rule, const struct flow *flow, uint32_t hash)
4360 {
4361 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
4362 struct facet *facet;
4363
4364 facet = xzalloc(sizeof *facet);
4365 facet->used = time_msec();
4366 hmap_insert(&ofproto->facets, &facet->hmap_node, hash);
4367 list_push_back(&rule->facets, &facet->list_node);
4368 facet->rule = rule;
4369 facet->flow = *flow;
4370 list_init(&facet->subfacets);
4371 netflow_flow_init(&facet->nf_flow);
4372 netflow_flow_update_time(ofproto->netflow, &facet->nf_flow, facet->used);
4373
4374 return facet;
4375 }
4376
4377 static void
4378 facet_free(struct facet *facet)
4379 {
4380 free(facet);
4381 }
4382
4383 /* Executes, within 'ofproto', the 'n_actions' actions in 'actions' on
4384 * 'packet', which arrived on 'in_port'. */
4385 static bool
4386 execute_odp_actions(struct ofproto_dpif *ofproto, const struct flow *flow,
4387 const struct nlattr *odp_actions, size_t actions_len,
4388 struct ofpbuf *packet)
4389 {
4390 struct odputil_keybuf keybuf;
4391 struct ofpbuf key;
4392 int error;
4393
4394 ofpbuf_use_stack(&key, &keybuf, sizeof keybuf);
4395 odp_flow_key_from_flow(&key, flow,
4396 ofp_port_to_odp_port(ofproto, flow->in_port));
4397
4398 error = dpif_execute(ofproto->backer->dpif, key.data, key.size,
4399 odp_actions, actions_len, packet);
4400 return !error;
4401 }
4402
4403 /* Remove 'facet' from 'ofproto' and free up the associated memory:
4404 *
4405 * - If 'facet' was installed in the datapath, uninstalls it and updates its
4406 * rule's statistics, via subfacet_uninstall().
4407 *
4408 * - Removes 'facet' from its rule and from ofproto->facets.
4409 */
4410 static void
4411 facet_remove(struct facet *facet)
4412 {
4413 struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto);
4414 struct subfacet *subfacet, *next_subfacet;
4415
4416 ovs_assert(!list_is_empty(&facet->subfacets));
4417
4418 /* First uninstall all of the subfacets to get final statistics. */
4419 LIST_FOR_EACH (subfacet, list_node, &facet->subfacets) {
4420 subfacet_uninstall(subfacet);
4421 }
4422
4423 /* Flush the final stats to the rule.
4424 *
4425 * This might require us to have at least one subfacet around so that we
4426 * can use its actions for accounting in facet_account(), which is why we
4427 * have uninstalled but not yet destroyed the subfacets. */
4428 facet_flush_stats(facet);
4429
4430 /* Now we're really all done so destroy everything. */
4431 LIST_FOR_EACH_SAFE (subfacet, next_subfacet, list_node,
4432 &facet->subfacets) {
4433 subfacet_destroy__(subfacet);
4434 }
4435 hmap_remove(&ofproto->facets, &facet->hmap_node);
4436 list_remove(&facet->list_node);
4437 facet_free(facet);
4438 }
4439
4440 /* Feed information from 'facet' back into the learning table to keep it in
4441 * sync with what is actually flowing through the datapath. */
4442 static void
4443 facet_learn(struct facet *facet)
4444 {
4445 struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto);
4446 struct subfacet *subfacet= CONTAINER_OF(list_front(&facet->subfacets),
4447 struct subfacet, list_node);
4448 struct action_xlate_ctx ctx;
4449
4450 if (!facet->has_learn
4451 && !facet->has_normal
4452 && (!facet->has_fin_timeout
4453 || !(facet->tcp_flags & (TCP_FIN | TCP_RST)))) {
4454 return;
4455 }
4456
4457 action_xlate_ctx_init(&ctx, ofproto, &facet->flow,
4458 &subfacet->initial_vals,
4459 facet->rule, facet->tcp_flags, NULL);
4460 ctx.may_learn = true;
4461 xlate_actions_for_side_effects(&ctx, facet->rule->up.ofpacts,
4462 facet->rule->up.ofpacts_len);
4463 }
4464
4465 static void
4466 facet_account(struct facet *facet)
4467 {
4468 struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto);
4469 struct subfacet *subfacet = facet_get_subfacet(facet);
4470 const struct nlattr *a;
4471 unsigned int left;
4472 ovs_be16 vlan_tci;
4473 uint64_t n_bytes;
4474
4475 if (!facet->has_normal || !ofproto->has_bonded_bundles) {
4476 return;
4477 }
4478 n_bytes = facet->byte_count - facet->accounted_bytes;
4479
4480 /* This loop feeds byte counters to bond_account() for rebalancing to use
4481 * as a basis. We also need to track the actual VLAN on which the packet
4482 * is going to be sent to ensure that it matches the one passed to
4483 * bond_choose_output_slave(). (Otherwise, we will account to the wrong
4484 * hash bucket.)
4485 *
4486 * We use the actions from an arbitrary subfacet because they should all
4487 * be equally valid for our purpose. */
4488 vlan_tci = facet->flow.vlan_tci;
4489 NL_ATTR_FOR_EACH_UNSAFE (a, left,
4490 subfacet->actions, subfacet->actions_len) {
4491 const struct ovs_action_push_vlan *vlan;
4492 struct ofport_dpif *port;
4493
4494 switch (nl_attr_type(a)) {
4495 case OVS_ACTION_ATTR_OUTPUT:
4496 port = get_odp_port(ofproto, nl_attr_get_u32(a));
4497 if (port && port->bundle && port->bundle->bond) {
4498 bond_account(port->bundle->bond, &facet->flow,
4499 vlan_tci_to_vid(vlan_tci), n_bytes);
4500 }
4501 break;
4502
4503 case OVS_ACTION_ATTR_POP_VLAN:
4504 vlan_tci = htons(0);
4505 break;
4506
4507 case OVS_ACTION_ATTR_PUSH_VLAN:
4508 vlan = nl_attr_get(a);
4509 vlan_tci = vlan->vlan_tci;
4510 break;
4511 }
4512 }
4513 }
4514
4515 /* Returns true if the only action for 'facet' is to send to the controller.
4516 * (We don't report NetFlow expiration messages for such facets because they
4517 * are just part of the control logic for the network, not real traffic). */
4518 static bool
4519 facet_is_controller_flow(struct facet *facet)
4520 {
4521 if (facet) {
4522 const struct rule *rule = &facet->rule->up;
4523 const struct ofpact *ofpacts = rule->ofpacts;
4524 size_t ofpacts_len = rule->ofpacts_len;
4525
4526 if (ofpacts_len > 0 &&
4527 ofpacts->type == OFPACT_CONTROLLER &&
4528 ofpact_next(ofpacts) >= ofpact_end(ofpacts, ofpacts_len)) {
4529 return true;
4530 }
4531 }
4532 return false;
4533 }
4534
4535 /* Folds all of 'facet''s statistics into its rule. Also updates the
4536 * accounting ofhook and emits a NetFlow expiration if appropriate. All of
4537 * 'facet''s statistics in the datapath should have been zeroed and folded into
4538 * its packet and byte counts before this function is called. */
4539 static void
4540 facet_flush_stats(struct facet *facet)
4541 {
4542 struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto);
4543 struct subfacet *subfacet;
4544
4545 LIST_FOR_EACH (subfacet, list_node, &facet->subfacets) {
4546 ovs_assert(!subfacet->dp_byte_count);
4547 ovs_assert(!subfacet->dp_packet_count);
4548 }
4549
4550 facet_push_stats(facet);
4551 if (facet->accounted_bytes < facet->byte_count) {
4552 facet_account(facet);
4553 facet->accounted_bytes = facet->byte_count;
4554 }
4555
4556 if (ofproto->netflow && !facet_is_controller_flow(facet)) {
4557 struct ofexpired expired;
4558 expired.flow = facet->flow;
4559 expired.packet_count = facet->packet_count;
4560 expired.byte_count = facet->byte_count;
4561 expired.used = facet->used;
4562 netflow_expire(ofproto->netflow, &facet->nf_flow, &expired);
4563 }
4564
4565 facet->rule->packet_count += facet->packet_count;
4566 facet->rule->byte_count += facet->byte_count;
4567
4568 /* Reset counters to prevent double counting if 'facet' ever gets
4569 * reinstalled. */
4570 facet_reset_counters(facet);
4571
4572 netflow_flow_clear(&facet->nf_flow);
4573 facet->tcp_flags = 0;
4574 }
4575
4576 /* Searches 'ofproto''s table of facets for one exactly equal to 'flow'.
4577 * Returns it if found, otherwise a null pointer.
4578 *
4579 * 'hash' must be the return value of flow_hash(flow, 0).
4580 *
4581 * The returned facet might need revalidation; use facet_lookup_valid()
4582 * instead if that is important. */
4583 static struct facet *
4584 facet_find(struct ofproto_dpif *ofproto,
4585 const struct flow *flow, uint32_t hash)
4586 {
4587 struct facet *facet;
4588
4589 HMAP_FOR_EACH_WITH_HASH (facet, hmap_node, hash, &ofproto->facets) {
4590 if (flow_equal(flow, &facet->flow)) {
4591 return facet;
4592 }
4593 }
4594
4595 return NULL;
4596 }
4597
4598 /* Searches 'ofproto''s table of facets for one exactly equal to 'flow'.
4599 * Returns it if found, otherwise a null pointer.
4600 *
4601 * 'hash' must be the return value of flow_hash(flow, 0).
4602 *
4603 * The returned facet is guaranteed to be valid. */
4604 static struct facet *
4605 facet_lookup_valid(struct ofproto_dpif *ofproto, const struct flow *flow,
4606 uint32_t hash)
4607 {
4608 struct facet *facet;
4609
4610 facet = facet_find(ofproto, flow, hash);
4611 if (facet
4612 && (ofproto->backer->need_revalidate
4613 || tag_set_intersects(&ofproto->backer->revalidate_set,
4614 facet->tags))) {
4615 facet_revalidate(facet);
4616
4617 /* facet_revalidate() may have destroyed 'facet'. */
4618 facet = facet_find(ofproto, flow, hash);
4619 }
4620
4621 return facet;
4622 }
4623
4624 /* Return a subfacet from 'facet'. A facet consists of one or more
4625 * subfacets, and this function returns one of them. */
4626 static struct subfacet *facet_get_subfacet(struct facet *facet)
4627 {
4628 return CONTAINER_OF(list_front(&facet->subfacets), struct subfacet,
4629 list_node);
4630 }
4631
4632 static const char *
4633 subfacet_path_to_string(enum subfacet_path path)
4634 {
4635 switch (path) {
4636 case SF_NOT_INSTALLED:
4637 return "not installed";
4638 case SF_FAST_PATH:
4639 return "in fast path";
4640 case SF_SLOW_PATH:
4641 return "in slow path";
4642 default:
4643 return "<error>";
4644 }
4645 }
4646
4647 /* Returns the path in which a subfacet should be installed if its 'slow'
4648 * member has the specified value. */
4649 static enum subfacet_path
4650 subfacet_want_path(enum slow_path_reason slow)
4651 {
4652 return slow ? SF_SLOW_PATH : SF_FAST_PATH;
4653 }
4654
4655 /* Returns true if 'subfacet' needs to have its datapath flow updated,
4656 * supposing that its actions have been recalculated as 'want_actions' and that
4657 * 'slow' is nonzero iff 'subfacet' should be in the slow path. */
4658 static bool
4659 subfacet_should_install(struct subfacet *subfacet, enum slow_path_reason slow,
4660 const struct ofpbuf *want_actions)
4661 {
4662 enum subfacet_path want_path = subfacet_want_path(slow);
4663 return (want_path != subfacet->path
4664 || (want_path == SF_FAST_PATH
4665 && (subfacet->actions_len != want_actions->size
4666 || memcmp(subfacet->actions, want_actions->data,
4667 subfacet->actions_len))));
4668 }
4669
4670 static bool
4671 facet_check_consistency(struct facet *facet)
4672 {
4673 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 15);
4674
4675 struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto);
4676
4677 uint64_t odp_actions_stub[1024 / 8];
4678 struct ofpbuf odp_actions;
4679
4680 struct rule_dpif *rule;
4681 struct subfacet *subfacet;
4682 bool may_log = false;
4683 bool ok;
4684
4685 /* Check the rule for consistency. */
4686 rule = rule_dpif_lookup(ofproto, &facet->flow);
4687 ok = rule == facet->rule;
4688 if (!ok) {
4689 may_log = !VLOG_DROP_WARN(&rl);
4690 if (may_log) {
4691 struct ds s;
4692
4693 ds_init(&s);
4694 flow_format(&s, &facet->flow);
4695 ds_put_format(&s, ": facet associated with wrong rule (was "
4696 "table=%"PRIu8",", facet->rule->up.table_id);
4697 cls_rule_format(&facet->rule->up.cr, &s);
4698 ds_put_format(&s, ") (should have been table=%"PRIu8",",
4699 rule->up.table_id);
4700 cls_rule_format(&rule->up.cr, &s);
4701 ds_put_char(&s, ')');
4702
4703 VLOG_WARN("%s", ds_cstr(&s));
4704 ds_destroy(&s);
4705 }
4706 }
4707
4708 /* Check the datapath actions for consistency. */
4709 ofpbuf_use_stub(&odp_actions, odp_actions_stub, sizeof odp_actions_stub);
4710 LIST_FOR_EACH (subfacet, list_node, &facet->subfacets) {
4711 enum subfacet_path want_path;
4712 struct action_xlate_ctx ctx;
4713 struct ds s;
4714
4715 action_xlate_ctx_init(&ctx, ofproto, &facet->flow,
4716 &subfacet->initial_vals, rule, 0, NULL);
4717 xlate_actions(&ctx, rule->up.ofpacts, rule->up.ofpacts_len,
4718 &odp_actions);
4719
4720 if (subfacet->path == SF_NOT_INSTALLED) {
4721 /* This only happens if the datapath reported an error when we
4722 * tried to install the flow. Don't flag another error here. */
4723 continue;
4724 }
4725
4726 want_path = subfacet_want_path(subfacet->slow);
4727 if (want_path == SF_SLOW_PATH && subfacet->path == SF_SLOW_PATH) {
4728 /* The actions for slow-path flows may legitimately vary from one
4729 * packet to the next. We're done. */
4730 continue;
4731 }
4732
4733 if (!subfacet_should_install(subfacet, subfacet->slow, &odp_actions)) {
4734 continue;
4735 }
4736
4737 /* Inconsistency! */
4738 if (ok) {
4739 may_log = !VLOG_DROP_WARN(&rl);
4740 ok = false;
4741 }
4742 if (!may_log) {
4743 /* Rate-limited, skip reporting. */
4744 continue;
4745 }
4746
4747 ds_init(&s);
4748 odp_flow_key_format(subfacet->key, subfacet->key_len, &s);
4749
4750 ds_put_cstr(&s, ": inconsistency in subfacet");
4751 if (want_path != subfacet->path) {
4752 enum odp_key_fitness fitness = subfacet->key_fitness;
4753
4754 ds_put_format(&s, " (%s, fitness=%s)",
4755 subfacet_path_to_string(subfacet->path),
4756 odp_key_fitness_to_string(fitness));
4757 ds_put_format(&s, " (should have been %s)",
4758 subfacet_path_to_string(want_path));
4759 } else if (want_path == SF_FAST_PATH) {
4760 ds_put_cstr(&s, " (actions were: ");
4761 format_odp_actions(&s, subfacet->actions,
4762 subfacet->actions_len);
4763 ds_put_cstr(&s, ") (correct actions: ");
4764 format_odp_actions(&s, odp_actions.data, odp_actions.size);
4765 ds_put_char(&s, ')');
4766 } else {
4767 ds_put_cstr(&s, " (actions: ");
4768 format_odp_actions(&s, subfacet->actions,
4769 subfacet->actions_len);
4770 ds_put_char(&s, ')');
4771 }
4772 VLOG_WARN("%s", ds_cstr(&s));
4773 ds_destroy(&s);
4774 }
4775 ofpbuf_uninit(&odp_actions);
4776
4777 return ok;
4778 }
4779
4780 /* Re-searches the classifier for 'facet':
4781 *
4782 * - If the rule found is different from 'facet''s current rule, moves
4783 * 'facet' to the new rule and recompiles its actions.
4784 *
4785 * - If the rule found is the same as 'facet''s current rule, leaves 'facet'
4786 * where it is and recompiles its actions anyway.
4787 *
4788 * - If any of 'facet''s subfacets correspond to a new flow according to
4789 * ofproto_receive(), 'facet' is removed. */
4790 static void
4791 facet_revalidate(struct facet *facet)
4792 {
4793 struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto);
4794 struct actions {
4795 struct nlattr *odp_actions;
4796 size_t actions_len;
4797 };
4798 struct actions *new_actions;
4799
4800 struct action_xlate_ctx ctx;
4801 uint64_t odp_actions_stub[1024 / 8];
4802 struct ofpbuf odp_actions;
4803
4804 struct rule_dpif *new_rule;
4805 struct subfacet *subfacet;
4806 int i;
4807
4808 COVERAGE_INC(facet_revalidate);
4809
4810 /* Check that child subfacets still correspond to this facet. Tunnel
4811 * configuration changes could cause a subfacet's OpenFlow in_port to
4812 * change. */
4813 LIST_FOR_EACH (subfacet, list_node, &facet->subfacets) {
4814 struct ofproto_dpif *recv_ofproto;
4815 struct flow recv_flow;
4816 int error;
4817
4818 error = ofproto_receive(ofproto->backer, NULL, subfacet->key,
4819 subfacet->key_len, &recv_flow, NULL,
4820 &recv_ofproto, NULL, NULL);
4821 if (error
4822 || recv_ofproto != ofproto
4823 || memcmp(&recv_flow, &facet->flow, sizeof recv_flow)) {
4824 facet_remove(facet);
4825 return;
4826 }
4827 }
4828
4829 new_rule = rule_dpif_lookup(ofproto, &facet->flow);
4830
4831 /* Calculate new datapath actions.
4832 *
4833 * We do not modify any 'facet' state yet, because we might need to, e.g.,
4834 * emit a NetFlow expiration and, if so, we need to have the old state
4835 * around to properly compose it. */
4836
4837 /* If the datapath actions changed or the installability changed,
4838 * then we need to talk to the datapath. */
4839 i = 0;
4840 new_actions = NULL;
4841 memset(&ctx, 0, sizeof ctx);
4842 ofpbuf_use_stub(&odp_actions, odp_actions_stub, sizeof odp_actions_stub);
4843 LIST_FOR_EACH (subfacet, list_node, &facet->subfacets) {
4844 enum slow_path_reason slow;
4845
4846 action_xlate_ctx_init(&ctx, ofproto, &facet->flow,
4847 &subfacet->initial_vals, new_rule, 0, NULL);
4848 xlate_actions(&ctx, new_rule->up.ofpacts, new_rule->up.ofpacts_len,
4849 &odp_actions);
4850
4851 slow = (subfacet->slow & SLOW_MATCH) | ctx.slow;
4852 if (subfacet_should_install(subfacet, slow, &odp_actions)) {
4853 struct dpif_flow_stats stats;
4854
4855 subfacet_install(subfacet,
4856 odp_actions.data, odp_actions.size, &stats, slow);
4857 subfacet_update_stats(subfacet, &stats);
4858
4859 if (!new_actions) {
4860 new_actions = xcalloc(list_size(&facet->subfacets),
4861 sizeof *new_actions);
4862 }
4863 new_actions[i].odp_actions = xmemdup(odp_actions.data,
4864 odp_actions.size);
4865 new_actions[i].actions_len = odp_actions.size;
4866 }
4867
4868 i++;
4869 }
4870 ofpbuf_uninit(&odp_actions);
4871
4872 if (new_actions) {
4873 facet_flush_stats(facet);
4874 }
4875
4876 /* Update 'facet' now that we've taken care of all the old state. */
4877 facet->tags = ctx.tags;
4878 facet->nf_flow.output_iface = ctx.nf_output_iface;
4879 facet->has_learn = ctx.has_learn;
4880 facet->has_normal = ctx.has_normal;
4881 facet->has_fin_timeout = ctx.has_fin_timeout;
4882 facet->mirrors = ctx.mirrors;
4883
4884 i = 0;
4885 LIST_FOR_EACH (subfacet, list_node, &facet->subfacets) {
4886 subfacet->slow = (subfacet->slow & SLOW_MATCH) | ctx.slow;
4887
4888 if (new_actions && new_actions[i].odp_actions) {
4889 free(subfacet->actions);
4890 subfacet->actions = new_actions[i].odp_actions;
4891 subfacet->actions_len = new_actions[i].actions_len;
4892 }
4893 i++;
4894 }
4895 free(new_actions);
4896
4897 if (facet->rule != new_rule) {
4898 COVERAGE_INC(facet_changed_rule);
4899 list_remove(&facet->list_node);
4900 list_push_back(&new_rule->facets, &facet->list_node);
4901 facet->rule = new_rule;
4902 facet->used = new_rule->up.created;
4903 facet->prev_used = facet->used;
4904 }
4905 }
4906
4907 /* Updates 'facet''s used time. Caller is responsible for calling
4908 * facet_push_stats() to update the flows which 'facet' resubmits into. */
4909 static void
4910 facet_update_time(struct facet *facet, long long int used)
4911 {
4912 struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto);
4913 if (used > facet->used) {
4914 facet->used = used;
4915 ofproto_rule_update_used(&facet->rule->up, used);
4916 netflow_flow_update_time(ofproto->netflow, &facet->nf_flow, used);
4917 }
4918 }
4919
4920 static void
4921 facet_reset_counters(struct facet *facet)
4922 {
4923 facet->packet_count = 0;
4924 facet->byte_count = 0;
4925 facet->prev_packet_count = 0;
4926 facet->prev_byte_count = 0;
4927 facet->accounted_bytes = 0;
4928 }
4929
4930 static void
4931 facet_push_stats(struct facet *facet)
4932 {
4933 struct dpif_flow_stats stats;
4934
4935 ovs_assert(facet->packet_count >= facet->prev_packet_count);
4936 ovs_assert(facet->byte_count >= facet->prev_byte_count);
4937 ovs_assert(facet->used >= facet->prev_used);
4938
4939 stats.n_packets = facet->packet_count - facet->prev_packet_count;
4940 stats.n_bytes = facet->byte_count - facet->prev_byte_count;
4941 stats.used = facet->used;
4942 stats.tcp_flags = 0;
4943
4944 if (stats.n_packets || stats.n_bytes || facet->used > facet->prev_used) {
4945 facet->prev_packet_count = facet->packet_count;
4946 facet->prev_byte_count = facet->byte_count;
4947 facet->prev_used = facet->used;
4948
4949 flow_push_stats(facet, &stats);
4950
4951 update_mirror_stats(ofproto_dpif_cast(facet->rule->up.ofproto),
4952 facet->mirrors, stats.n_packets, stats.n_bytes);
4953 }
4954 }
4955
4956 static void
4957 rule_credit_stats(struct rule_dpif *rule, const struct dpif_flow_stats *stats)
4958 {
4959 rule->packet_count += stats->n_packets;
4960 rule->byte_count += stats->n_bytes;
4961 ofproto_rule_update_used(&rule->up, stats->used);
4962 }
4963
4964 /* Pushes flow statistics to the rules which 'facet->flow' resubmits
4965 * into given 'facet->rule''s actions and mirrors. */
4966 static void
4967 flow_push_stats(struct facet *facet, const struct dpif_flow_stats *stats)
4968 {
4969 struct rule_dpif *rule = facet->rule;
4970 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
4971 struct subfacet *subfacet = facet_get_subfacet(facet);
4972 struct action_xlate_ctx ctx;
4973
4974 ofproto_rule_update_used(&rule->up, stats->used);
4975
4976 action_xlate_ctx_init(&ctx, ofproto, &facet->flow,
4977 &subfacet->initial_vals, rule, 0, NULL);
4978 ctx.resubmit_stats = stats;
4979 xlate_actions_for_side_effects(&ctx, rule->up.ofpacts,
4980 rule->up.ofpacts_len);
4981 }
4982 \f
4983 /* Subfacets. */
4984
4985 static struct subfacet *
4986 subfacet_find(struct ofproto_dpif *ofproto,
4987 const struct nlattr *key, size_t key_len, uint32_t key_hash)
4988 {
4989 struct subfacet *subfacet;
4990
4991 HMAP_FOR_EACH_WITH_HASH (subfacet, hmap_node, key_hash,
4992 &ofproto->subfacets) {
4993 if (subfacet->key_len == key_len
4994 && !memcmp(key, subfacet->key, key_len)) {
4995 return subfacet;
4996 }
4997 }
4998
4999 return NULL;
5000 }
5001
5002 /* Searches 'facet' (within 'ofproto') for a subfacet with the specified
5003 * 'key_fitness', 'key', and 'key_len' members in 'miss'. Returns the
5004 * existing subfacet if there is one, otherwise creates and returns a
5005 * new subfacet.
5006 *
5007 * If the returned subfacet is new, then subfacet->actions will be NULL, in
5008 * which case the caller must populate the actions with
5009 * subfacet_make_actions(). */
5010 static struct subfacet *
5011 subfacet_create(struct facet *facet, struct flow_miss *miss,
5012 long long int now)
5013 {
5014 struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto);
5015 enum odp_key_fitness key_fitness = miss->key_fitness;
5016 const struct nlattr *key = miss->key;
5017 size_t key_len = miss->key_len;
5018 uint32_t key_hash;
5019 struct subfacet *subfacet;
5020
5021 key_hash = odp_flow_key_hash(key, key_len);
5022
5023 if (list_is_empty(&facet->subfacets)) {
5024 subfacet = &facet->one_subfacet;
5025 } else {
5026 subfacet = subfacet_find(ofproto, key, key_len, key_hash);
5027 if (subfacet) {
5028 if (subfacet->facet == facet) {
5029 return subfacet;
5030 }
5031
5032 /* This shouldn't happen. */
5033 VLOG_ERR_RL(&rl, "subfacet with wrong facet");
5034 subfacet_destroy(subfacet);
5035 }
5036
5037 subfacet = xmalloc(sizeof *subfacet);
5038 }
5039
5040 hmap_insert(&ofproto->subfacets, &subfacet->hmap_node, key_hash);
5041 list_push_back(&facet->subfacets, &subfacet->list_node);
5042 subfacet->facet = facet;
5043 subfacet->key_fitness = key_fitness;
5044 subfacet->key = xmemdup(key, key_len);
5045 subfacet->key_len = key_len;
5046 subfacet->used = now;
5047 subfacet->dp_packet_count = 0;
5048 subfacet->dp_byte_count = 0;
5049 subfacet->actions_len = 0;
5050 subfacet->actions = NULL;
5051 subfacet->slow = (subfacet->key_fitness == ODP_FIT_TOO_LITTLE
5052 ? SLOW_MATCH
5053 : 0);
5054 subfacet->path = SF_NOT_INSTALLED;
5055 subfacet->initial_vals = miss->initial_vals;
5056 subfacet->odp_in_port = miss->odp_in_port;
5057
5058 return subfacet;
5059 }
5060
5061 /* Uninstalls 'subfacet' from the datapath, if it is installed, removes it from
5062 * its facet within 'ofproto', and frees it. */
5063 static void
5064 subfacet_destroy__(struct subfacet *subfacet)
5065 {
5066 struct facet *facet = subfacet->facet;
5067 struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto);
5068
5069 subfacet_uninstall(subfacet);
5070 hmap_remove(&ofproto->subfacets, &subfacet->hmap_node);
5071 list_remove(&subfacet->list_node);
5072 free(subfacet->key);
5073 free(subfacet->actions);
5074 if (subfacet != &facet->one_subfacet) {
5075 free(subfacet);
5076 }
5077 }
5078
5079 /* Destroys 'subfacet', as with subfacet_destroy__(), and then if this was the
5080 * last remaining subfacet in its facet destroys the facet too. */
5081 static void
5082 subfacet_destroy(struct subfacet *subfacet)
5083 {
5084 struct facet *facet = subfacet->facet;
5085
5086 if (list_is_singleton(&facet->subfacets)) {
5087 /* facet_remove() needs at least one subfacet (it will remove it). */
5088 facet_remove(facet);
5089 } else {
5090 subfacet_destroy__(subfacet);
5091 }
5092 }
5093
5094 static void
5095 subfacet_destroy_batch(struct ofproto_dpif *ofproto,
5096 struct subfacet **subfacets, int n)
5097 {
5098 struct dpif_op ops[SUBFACET_DESTROY_MAX_BATCH];
5099 struct dpif_op *opsp[SUBFACET_DESTROY_MAX_BATCH];
5100 struct dpif_flow_stats stats[SUBFACET_DESTROY_MAX_BATCH];
5101 int i;
5102
5103 for (i = 0; i < n; i++) {
5104 ops[i].type = DPIF_OP_FLOW_DEL;
5105 ops[i].u.flow_del.key = subfacets[i]->key;
5106 ops[i].u.flow_del.key_len = subfacets[i]->key_len;
5107 ops[i].u.flow_del.stats = &stats[i];
5108 opsp[i] = &ops[i];
5109 }
5110
5111 dpif_operate(ofproto->backer->dpif, opsp, n);
5112 for (i = 0; i < n; i++) {
5113 subfacet_reset_dp_stats(subfacets[i], &stats[i]);
5114 subfacets[i]->path = SF_NOT_INSTALLED;
5115 subfacet_destroy(subfacets[i]);
5116 }
5117 }
5118
5119 /* Composes the datapath actions for 'subfacet' based on its rule's actions.
5120 * Translates the actions into 'odp_actions', which the caller must have
5121 * initialized and is responsible for uninitializing. */
5122 static void
5123 subfacet_make_actions(struct subfacet *subfacet, const struct ofpbuf *packet,
5124 struct ofpbuf *odp_actions)
5125 {
5126 struct facet *facet = subfacet->facet;
5127 struct rule_dpif *rule = facet->rule;
5128 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
5129
5130 struct action_xlate_ctx ctx;
5131
5132 action_xlate_ctx_init(&ctx, ofproto, &facet->flow,
5133 &subfacet->initial_vals, rule, 0, packet);
5134 xlate_actions(&ctx, rule->up.ofpacts, rule->up.ofpacts_len, odp_actions);
5135 facet->tags = ctx.tags;
5136 facet->has_learn = ctx.has_learn;
5137 facet->has_normal = ctx.has_normal;
5138 facet->has_fin_timeout = ctx.has_fin_timeout;
5139 facet->nf_flow.output_iface = ctx.nf_output_iface;
5140 facet->mirrors = ctx.mirrors;
5141
5142 subfacet->slow = (subfacet->slow & SLOW_MATCH) | ctx.slow;
5143 if (subfacet->actions_len != odp_actions->size
5144 || memcmp(subfacet->actions, odp_actions->data, odp_actions->size)) {
5145 free(subfacet->actions);
5146 subfacet->actions_len = odp_actions->size;
5147 subfacet->actions = xmemdup(odp_actions->data, odp_actions->size);
5148 }
5149 }
5150
5151 /* Updates 'subfacet''s datapath flow, setting its actions to 'actions_len'
5152 * bytes of actions in 'actions'. If 'stats' is non-null, statistics counters
5153 * in the datapath will be zeroed and 'stats' will be updated with traffic new
5154 * since 'subfacet' was last updated.
5155 *
5156 * Returns 0 if successful, otherwise a positive errno value. */
5157 static int
5158 subfacet_install(struct subfacet *subfacet,
5159 const struct nlattr *actions, size_t actions_len,
5160 struct dpif_flow_stats *stats,
5161 enum slow_path_reason slow)
5162 {
5163 struct facet *facet = subfacet->facet;
5164 struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto);
5165 enum subfacet_path path = subfacet_want_path(slow);
5166 uint64_t slow_path_stub[128 / 8];
5167 enum dpif_flow_put_flags flags;
5168 int ret;
5169
5170 flags = DPIF_FP_CREATE | DPIF_FP_MODIFY;
5171 if (stats) {
5172 flags |= DPIF_FP_ZERO_STATS;
5173 }
5174
5175 if (path == SF_SLOW_PATH) {
5176 compose_slow_path(ofproto, &facet->flow, slow,
5177 slow_path_stub, sizeof slow_path_stub,
5178 &actions, &actions_len);
5179 }
5180
5181 ret = dpif_flow_put(ofproto->backer->dpif, flags, subfacet->key,
5182 subfacet->key_len, actions, actions_len, stats);
5183
5184 if (stats) {
5185 subfacet_reset_dp_stats(subfacet, stats);
5186 }
5187
5188 if (!ret) {
5189 subfacet->path = path;
5190 }
5191 return ret;
5192 }
5193
5194 static int
5195 subfacet_reinstall(struct subfacet *subfacet, struct dpif_flow_stats *stats)
5196 {
5197 return subfacet_install(subfacet, subfacet->actions, subfacet->actions_len,
5198 stats, subfacet->slow);
5199 }
5200
5201 /* If 'subfacet' is installed in the datapath, uninstalls it. */
5202 static void
5203 subfacet_uninstall(struct subfacet *subfacet)
5204 {
5205 if (subfacet->path != SF_NOT_INSTALLED) {
5206 struct rule_dpif *rule = subfacet->facet->rule;
5207 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
5208 struct dpif_flow_stats stats;
5209 int error;
5210
5211 error = dpif_flow_del(ofproto->backer->dpif, subfacet->key,
5212 subfacet->key_len, &stats);
5213 subfacet_reset_dp_stats(subfacet, &stats);
5214 if (!error) {
5215 subfacet_update_stats(subfacet, &stats);
5216 }
5217 subfacet->path = SF_NOT_INSTALLED;
5218 } else {
5219 ovs_assert(subfacet->dp_packet_count == 0);
5220 ovs_assert(subfacet->dp_byte_count == 0);
5221 }
5222 }
5223
5224 /* Resets 'subfacet''s datapath statistics counters. This should be called
5225 * when 'subfacet''s statistics are cleared in the datapath. If 'stats' is
5226 * non-null, it should contain the statistics returned by dpif when 'subfacet'
5227 * was reset in the datapath. 'stats' will be modified to include only
5228 * statistics new since 'subfacet' was last updated. */
5229 static void
5230 subfacet_reset_dp_stats(struct subfacet *subfacet,
5231 struct dpif_flow_stats *stats)
5232 {
5233 if (stats
5234 && subfacet->dp_packet_count <= stats->n_packets
5235 && subfacet->dp_byte_count <= stats->n_bytes) {
5236 stats->n_packets -= subfacet->dp_packet_count;
5237 stats->n_bytes -= subfacet->dp_byte_count;
5238 }
5239
5240 subfacet->dp_packet_count = 0;
5241 subfacet->dp_byte_count = 0;
5242 }
5243
5244 /* Updates 'subfacet''s used time. The caller is responsible for calling
5245 * facet_push_stats() to update the flows which 'subfacet' resubmits into. */
5246 static void
5247 subfacet_update_time(struct subfacet *subfacet, long long int used)
5248 {
5249 if (used > subfacet->used) {
5250 subfacet->used = used;
5251 facet_update_time(subfacet->facet, used);
5252 }
5253 }
5254
5255 /* Folds the statistics from 'stats' into the counters in 'subfacet'.
5256 *
5257 * Because of the meaning of a subfacet's counters, it only makes sense to do
5258 * this if 'stats' are not tracked in the datapath, that is, if 'stats'
5259 * represents a packet that was sent by hand or if it represents statistics
5260 * that have been cleared out of the datapath. */
5261 static void
5262 subfacet_update_stats(struct subfacet *subfacet,
5263 const struct dpif_flow_stats *stats)
5264 {
5265 if (stats->n_packets || stats->used > subfacet->used) {
5266 struct facet *facet = subfacet->facet;
5267
5268 subfacet_update_time(subfacet, stats->used);
5269 facet->packet_count += stats->n_packets;
5270 facet->byte_count += stats->n_bytes;
5271 facet->tcp_flags |= stats->tcp_flags;
5272 netflow_flow_update_flags(&facet->nf_flow, stats->tcp_flags);
5273 }
5274 }
5275 \f
5276 /* Rules. */
5277
5278 static struct rule_dpif *
5279 rule_dpif_lookup(struct ofproto_dpif *ofproto, const struct flow *flow)
5280 {
5281 struct rule_dpif *rule;
5282
5283 rule = rule_dpif_lookup__(ofproto, flow, 0);
5284 if (rule) {
5285 return rule;
5286 }
5287
5288 return rule_dpif_miss_rule(ofproto, flow);
5289 }
5290
5291 static struct rule_dpif *
5292 rule_dpif_lookup__(struct ofproto_dpif *ofproto, const struct flow *flow,
5293 uint8_t table_id)
5294 {
5295 struct cls_rule *cls_rule;
5296 struct classifier *cls;
5297
5298 if (table_id >= N_TABLES) {
5299 return NULL;
5300 }
5301
5302 cls = &ofproto->up.tables[table_id].cls;
5303 if (flow->nw_frag & FLOW_NW_FRAG_ANY
5304 && ofproto->up.frag_handling == OFPC_FRAG_NORMAL) {
5305 /* For OFPC_NORMAL frag_handling, we must pretend that transport ports
5306 * are unavailable. */
5307 struct flow ofpc_normal_flow = *flow;
5308 ofpc_normal_flow.tp_src = htons(0);
5309 ofpc_normal_flow.tp_dst = htons(0);
5310 cls_rule = classifier_lookup(cls, &ofpc_normal_flow);
5311 } else {
5312 cls_rule = classifier_lookup(cls, flow);
5313 }
5314 return rule_dpif_cast(rule_from_cls_rule(cls_rule));
5315 }
5316
5317 static struct rule_dpif *
5318 rule_dpif_miss_rule(struct ofproto_dpif *ofproto, const struct flow *flow)
5319 {
5320 struct ofport_dpif *port;
5321
5322 port = get_ofp_port(ofproto, flow->in_port);
5323 if (!port) {
5324 VLOG_WARN_RL(&rl, "packet-in on unknown port %"PRIu16, flow->in_port);
5325 return ofproto->miss_rule;
5326 }
5327
5328 if (port->up.pp.config & OFPUTIL_PC_NO_PACKET_IN) {
5329 return ofproto->no_packet_in_rule;
5330 }
5331 return ofproto->miss_rule;
5332 }
5333
5334 static void
5335 complete_operation(struct rule_dpif *rule)
5336 {
5337 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
5338
5339 rule_invalidate(rule);
5340 if (clogged) {
5341 struct dpif_completion *c = xmalloc(sizeof *c);
5342 c->op = rule->up.pending;
5343 list_push_back(&ofproto->completions, &c->list_node);
5344 } else {
5345 ofoperation_complete(rule->up.pending, 0);
5346 }
5347 }
5348
5349 static struct rule *
5350 rule_alloc(void)
5351 {
5352 struct rule_dpif *rule = xmalloc(sizeof *rule);
5353 return &rule->up;
5354 }
5355
5356 static void
5357 rule_dealloc(struct rule *rule_)
5358 {
5359 struct rule_dpif *rule = rule_dpif_cast(rule_);
5360 free(rule);
5361 }
5362
5363 static enum ofperr
5364 rule_construct(struct rule *rule_)
5365 {
5366 struct rule_dpif *rule = rule_dpif_cast(rule_);
5367 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
5368 struct rule_dpif *victim;
5369 uint8_t table_id;
5370
5371 rule->packet_count = 0;
5372 rule->byte_count = 0;
5373
5374 victim = rule_dpif_cast(ofoperation_get_victim(rule->up.pending));
5375 if (victim && !list_is_empty(&victim->facets)) {
5376 struct facet *facet;
5377
5378 rule->facets = victim->facets;
5379 list_moved(&rule->facets);
5380 LIST_FOR_EACH (facet, list_node, &rule->facets) {
5381 /* XXX: We're only clearing our local counters here. It's possible
5382 * that quite a few packets are unaccounted for in the datapath
5383 * statistics. These will be accounted to the new rule instead of
5384 * cleared as required. This could be fixed by clearing out the
5385 * datapath statistics for this facet, but currently it doesn't
5386 * seem worth it. */
5387 facet_reset_counters(facet);
5388 facet->rule = rule;
5389 }
5390 } else {
5391 /* Must avoid list_moved() in this case. */
5392 list_init(&rule->facets);
5393 }
5394
5395 table_id = rule->up.table_id;
5396 if (victim) {
5397 rule->tag = victim->tag;
5398 } else if (table_id == 0) {
5399 rule->tag = 0;
5400 } else {
5401 struct flow flow;
5402
5403 miniflow_expand(&rule->up.cr.match.flow, &flow);
5404 rule->tag = rule_calculate_tag(&flow, &rule->up.cr.match.mask,
5405 ofproto->tables[table_id].basis);
5406 }
5407
5408 complete_operation(rule);
5409 return 0;
5410 }
5411
5412 static void
5413 rule_destruct(struct rule *rule_)
5414 {
5415 struct rule_dpif *rule = rule_dpif_cast(rule_);
5416 struct facet *facet, *next_facet;
5417
5418 LIST_FOR_EACH_SAFE (facet, next_facet, list_node, &rule->facets) {
5419 facet_revalidate(facet);
5420 }
5421
5422 complete_operation(rule);
5423 }
5424
5425 static void
5426 rule_get_stats(struct rule *rule_, uint64_t *packets, uint64_t *bytes)
5427 {
5428 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule_->ofproto);
5429 struct rule_dpif *rule = rule_dpif_cast(rule_);
5430 struct facet *facet;
5431
5432 HMAP_FOR_EACH (facet, hmap_node, &ofproto->facets) {
5433 facet_push_stats(facet);
5434 }
5435
5436 /* Start from historical data for 'rule' itself that are no longer tracked
5437 * in facets. This counts, for example, facets that have expired. */
5438 *packets = rule->packet_count;
5439 *bytes = rule->byte_count;
5440
5441 /* Add any statistics that are tracked by facets. This includes
5442 * statistical data recently updated by ofproto_update_stats() as well as
5443 * stats for packets that were executed "by hand" via dpif_execute(). */
5444 LIST_FOR_EACH (facet, list_node, &rule->facets) {
5445 *packets += facet->packet_count;
5446 *bytes += facet->byte_count;
5447 }
5448 }
5449
5450 static void
5451 rule_dpif_execute(struct rule_dpif *rule, const struct flow *flow,
5452 struct ofpbuf *packet)
5453 {
5454 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
5455 struct initial_vals initial_vals;
5456 struct dpif_flow_stats stats;
5457 struct action_xlate_ctx ctx;
5458 uint64_t odp_actions_stub[1024 / 8];
5459 struct ofpbuf odp_actions;
5460
5461 dpif_flow_stats_extract(flow, packet, time_msec(), &stats);
5462 rule_credit_stats(rule, &stats);
5463
5464 initial_vals.vlan_tci = flow->vlan_tci;
5465 initial_vals.tunnel_ip_tos = flow->tunnel.ip_tos;
5466 ofpbuf_use_stub(&odp_actions, odp_actions_stub, sizeof odp_actions_stub);
5467 action_xlate_ctx_init(&ctx, ofproto, flow, &initial_vals,
5468 rule, stats.tcp_flags, packet);
5469 ctx.resubmit_stats = &stats;
5470 xlate_actions(&ctx, rule->up.ofpacts, rule->up.ofpacts_len, &odp_actions);
5471
5472 execute_odp_actions(ofproto, flow, odp_actions.data,
5473 odp_actions.size, packet);
5474
5475 ofpbuf_uninit(&odp_actions);
5476 }
5477
5478 static enum ofperr
5479 rule_execute(struct rule *rule, const struct flow *flow,
5480 struct ofpbuf *packet)
5481 {
5482 rule_dpif_execute(rule_dpif_cast(rule), flow, packet);
5483 ofpbuf_delete(packet);
5484 return 0;
5485 }
5486
5487 static void
5488 rule_modify_actions(struct rule *rule_)
5489 {
5490 struct rule_dpif *rule = rule_dpif_cast(rule_);
5491
5492 complete_operation(rule);
5493 }
5494 \f
5495 /* Sends 'packet' out 'ofport'.
5496 * May modify 'packet'.
5497 * Returns 0 if successful, otherwise a positive errno value. */
5498 static int
5499 send_packet(const struct ofport_dpif *ofport, struct ofpbuf *packet)
5500 {
5501 const struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
5502 uint64_t odp_actions_stub[1024 / 8];
5503 struct ofpbuf key, odp_actions;
5504 struct odputil_keybuf keybuf;
5505 uint32_t odp_port;
5506 struct flow flow;
5507 int error;
5508
5509 flow_extract(packet, 0, 0, NULL, OFPP_LOCAL, &flow);
5510 if (netdev_vport_is_patch(ofport->up.netdev)) {
5511 struct ofproto_dpif *peer_ofproto;
5512 struct dpif_flow_stats stats;
5513 struct ofport_dpif *peer;
5514 struct rule_dpif *rule;
5515
5516 peer = ofport_get_peer(ofport);
5517 if (!peer) {
5518 return ENODEV;
5519 }
5520
5521 dpif_flow_stats_extract(&flow, packet, time_msec(), &stats);
5522 netdev_vport_inc_tx(ofport->up.netdev, &stats);
5523 netdev_vport_inc_rx(peer->up.netdev, &stats);
5524
5525 flow.in_port = peer->up.ofp_port;
5526 peer_ofproto = ofproto_dpif_cast(peer->up.ofproto);
5527 rule = rule_dpif_lookup(peer_ofproto, &flow);
5528 rule_dpif_execute(rule, &flow, packet);
5529
5530 return 0;
5531 }
5532
5533 ofpbuf_use_stub(&odp_actions, odp_actions_stub, sizeof odp_actions_stub);
5534
5535 if (ofport->tnl_port) {
5536 struct dpif_flow_stats stats;
5537
5538 odp_port = tnl_port_send(ofport->tnl_port, &flow);
5539 if (odp_port == OVSP_NONE) {
5540 return ENODEV;
5541 }
5542
5543 dpif_flow_stats_extract(&flow, packet, time_msec(), &stats);
5544 netdev_vport_inc_tx(ofport->up.netdev, &stats);
5545 odp_put_tunnel_action(&flow.tunnel, &odp_actions);
5546 odp_put_skb_mark_action(flow.skb_mark, &odp_actions);
5547 } else {
5548 odp_port = vsp_realdev_to_vlandev(ofproto, ofport->odp_port,
5549 flow.vlan_tci);
5550 if (odp_port != ofport->odp_port) {
5551 eth_pop_vlan(packet);
5552 flow.vlan_tci = htons(0);
5553 }
5554 }
5555
5556 ofpbuf_use_stack(&key, &keybuf, sizeof keybuf);
5557 odp_flow_key_from_flow(&key, &flow,
5558 ofp_port_to_odp_port(ofproto, flow.in_port));
5559
5560 compose_sflow_action(ofproto, &odp_actions, &flow, odp_port);
5561
5562 nl_msg_put_u32(&odp_actions, OVS_ACTION_ATTR_OUTPUT, odp_port);
5563 error = dpif_execute(ofproto->backer->dpif,
5564 key.data, key.size,
5565 odp_actions.data, odp_actions.size,
5566 packet);
5567 ofpbuf_uninit(&odp_actions);
5568
5569 if (error) {
5570 VLOG_WARN_RL(&rl, "%s: failed to send packet on port %"PRIu32" (%s)",
5571 ofproto->up.name, odp_port, strerror(error));
5572 }
5573 ofproto_update_local_port_stats(ofport->up.ofproto, packet->size, 0);
5574 return error;
5575 }
5576 \f
5577 /* OpenFlow to datapath action translation. */
5578
5579 static bool may_receive(const struct ofport_dpif *, struct action_xlate_ctx *);
5580 static void do_xlate_actions(const struct ofpact *, size_t ofpacts_len,
5581 struct action_xlate_ctx *);
5582 static void xlate_normal(struct action_xlate_ctx *);
5583
5584 /* Composes an ODP action for a "slow path" action for 'flow' within 'ofproto'.
5585 * The action will state 'slow' as the reason that the action is in the slow
5586 * path. (This is purely informational: it allows a human viewing "ovs-dpctl
5587 * dump-flows" output to see why a flow is in the slow path.)
5588 *
5589 * The 'stub_size' bytes in 'stub' will be used to store the action.
5590 * 'stub_size' must be large enough for the action.
5591 *
5592 * The action and its size will be stored in '*actionsp' and '*actions_lenp',
5593 * respectively. */
5594 static void
5595 compose_slow_path(const struct ofproto_dpif *ofproto, const struct flow *flow,
5596 enum slow_path_reason slow,
5597 uint64_t *stub, size_t stub_size,
5598 const struct nlattr **actionsp, size_t *actions_lenp)
5599 {
5600 union user_action_cookie cookie;
5601 struct ofpbuf buf;
5602
5603 cookie.type = USER_ACTION_COOKIE_SLOW_PATH;
5604 cookie.slow_path.unused = 0;
5605 cookie.slow_path.reason = slow;
5606
5607 ofpbuf_use_stack(&buf, stub, stub_size);
5608 if (slow & (SLOW_CFM | SLOW_LACP | SLOW_STP)) {
5609 uint32_t pid = dpif_port_get_pid(ofproto->backer->dpif, UINT32_MAX);
5610 odp_put_userspace_action(pid, &cookie, sizeof cookie, &buf);
5611 } else {
5612 put_userspace_action(ofproto, &buf, flow, &cookie);
5613 }
5614 *actionsp = buf.data;
5615 *actions_lenp = buf.size;
5616 }
5617
5618 static size_t
5619 put_userspace_action(const struct ofproto_dpif *ofproto,
5620 struct ofpbuf *odp_actions,
5621 const struct flow *flow,
5622 const union user_action_cookie *cookie)
5623 {
5624 uint32_t pid;
5625
5626 pid = dpif_port_get_pid(ofproto->backer->dpif,
5627 ofp_port_to_odp_port(ofproto, flow->in_port));
5628
5629 return odp_put_userspace_action(pid, cookie, sizeof *cookie, odp_actions);
5630 }
5631
5632 static void
5633 compose_sflow_cookie(const struct ofproto_dpif *ofproto,
5634 ovs_be16 vlan_tci, uint32_t odp_port,
5635 unsigned int n_outputs, union user_action_cookie *cookie)
5636 {
5637 int ifindex;
5638
5639 cookie->type = USER_ACTION_COOKIE_SFLOW;
5640 cookie->sflow.vlan_tci = vlan_tci;
5641
5642 /* See http://www.sflow.org/sflow_version_5.txt (search for "Input/output
5643 * port information") for the interpretation of cookie->output. */
5644 switch (n_outputs) {
5645 case 0:
5646 /* 0x40000000 | 256 means "packet dropped for unknown reason". */
5647 cookie->sflow.output = 0x40000000 | 256;
5648 break;
5649
5650 case 1:
5651 ifindex = dpif_sflow_odp_port_to_ifindex(ofproto->sflow, odp_port);
5652 if (ifindex) {
5653 cookie->sflow.output = ifindex;
5654 break;
5655 }
5656 /* Fall through. */
5657 default:
5658 /* 0x80000000 means "multiple output ports. */
5659 cookie->sflow.output = 0x80000000 | n_outputs;
5660 break;
5661 }
5662 }
5663
5664 /* Compose SAMPLE action for sFlow. */
5665 static size_t
5666 compose_sflow_action(const struct ofproto_dpif *ofproto,
5667 struct ofpbuf *odp_actions,
5668 const struct flow *flow,
5669 uint32_t odp_port)
5670 {
5671 uint32_t probability;
5672 union user_action_cookie cookie;
5673 size_t sample_offset, actions_offset;
5674 int cookie_offset;
5675
5676 if (!ofproto->sflow || flow->in_port == OFPP_NONE) {
5677 return 0;
5678 }
5679
5680 sample_offset = nl_msg_start_nested(odp_actions, OVS_ACTION_ATTR_SAMPLE);
5681
5682 /* Number of packets out of UINT_MAX to sample. */
5683 probability = dpif_sflow_get_probability(ofproto->sflow);
5684 nl_msg_put_u32(odp_actions, OVS_SAMPLE_ATTR_PROBABILITY, probability);
5685
5686 actions_offset = nl_msg_start_nested(odp_actions, OVS_SAMPLE_ATTR_ACTIONS);
5687 compose_sflow_cookie(ofproto, htons(0), odp_port,
5688 odp_port == OVSP_NONE ? 0 : 1, &cookie);
5689 cookie_offset = put_userspace_action(ofproto, odp_actions, flow, &cookie);
5690
5691 nl_msg_end_nested(odp_actions, actions_offset);
5692 nl_msg_end_nested(odp_actions, sample_offset);
5693 return cookie_offset;
5694 }
5695
5696 /* SAMPLE action must be first action in any given list of actions.
5697 * At this point we do not have all information required to build it. So try to
5698 * build sample action as complete as possible. */
5699 static void
5700 add_sflow_action(struct action_xlate_ctx *ctx)
5701 {
5702 ctx->user_cookie_offset = compose_sflow_action(ctx->ofproto,
5703 ctx->odp_actions,
5704 &ctx->flow, OVSP_NONE);
5705 ctx->sflow_odp_port = 0;
5706 ctx->sflow_n_outputs = 0;
5707 }
5708
5709 /* Fix SAMPLE action according to data collected while composing ODP actions.
5710 * We need to fix SAMPLE actions OVS_SAMPLE_ATTR_ACTIONS attribute, i.e. nested
5711 * USERSPACE action's user-cookie which is required for sflow. */
5712 static void
5713 fix_sflow_action(struct action_xlate_ctx *ctx)
5714 {
5715 const struct flow *base = &ctx->base_flow;
5716 union user_action_cookie *cookie;
5717
5718 if (!ctx->user_cookie_offset) {
5719 return;
5720 }
5721
5722 cookie = ofpbuf_at(ctx->odp_actions, ctx->user_cookie_offset,
5723 sizeof(*cookie));
5724 ovs_assert(cookie->type == USER_ACTION_COOKIE_SFLOW);
5725
5726 compose_sflow_cookie(ctx->ofproto, base->vlan_tci,
5727 ctx->sflow_odp_port, ctx->sflow_n_outputs, cookie);
5728 }
5729
5730 static void
5731 compose_output_action__(struct action_xlate_ctx *ctx, uint16_t ofp_port,
5732 bool check_stp)
5733 {
5734 const struct ofport_dpif *ofport = get_ofp_port(ctx->ofproto, ofp_port);
5735 ovs_be16 flow_vlan_tci = ctx->flow.vlan_tci;
5736 ovs_be64 flow_tun_id = ctx->flow.tunnel.tun_id;
5737 uint8_t flow_nw_tos = ctx->flow.nw_tos;
5738 struct priority_to_dscp *pdscp;
5739 uint32_t out_port, odp_port;
5740
5741 /* If 'struct flow' gets additional metadata, we'll need to zero it out
5742 * before traversing a patch port. */
5743 BUILD_ASSERT_DECL(FLOW_WC_SEQ == 20);
5744
5745 if (!ofport) {
5746 xlate_report(ctx, "Nonexistent output port");
5747 return;
5748 } else if (ofport->up.pp.config & OFPUTIL_PC_NO_FWD) {
5749 xlate_report(ctx, "OFPPC_NO_FWD set, skipping output");
5750 return;
5751 } else if (check_stp && !stp_forward_in_state(ofport->stp_state)) {
5752 xlate_report(ctx, "STP not in forwarding state, skipping output");
5753 return;
5754 }
5755
5756 if (netdev_vport_is_patch(ofport->up.netdev)) {
5757 struct ofport_dpif *peer = ofport_get_peer(ofport);
5758 struct flow old_flow = ctx->flow;
5759 const struct ofproto_dpif *peer_ofproto;
5760 enum slow_path_reason special;
5761 struct ofport_dpif *in_port;
5762
5763 if (!peer) {
5764 xlate_report(ctx, "Nonexistent patch port peer");
5765 return;
5766 }
5767
5768 peer_ofproto = ofproto_dpif_cast(peer->up.ofproto);
5769 if (peer_ofproto->backer != ctx->ofproto->backer) {
5770 xlate_report(ctx, "Patch port peer on a different datapath");
5771 return;
5772 }
5773
5774 ctx->ofproto = ofproto_dpif_cast(peer->up.ofproto);
5775 ctx->flow.in_port = peer->up.ofp_port;
5776 ctx->flow.metadata = htonll(0);
5777 memset(&ctx->flow.tunnel, 0, sizeof ctx->flow.tunnel);
5778 memset(ctx->flow.regs, 0, sizeof ctx->flow.regs);
5779
5780 in_port = get_ofp_port(ctx->ofproto, ctx->flow.in_port);
5781 special = process_special(ctx->ofproto, &ctx->flow, in_port,
5782 ctx->packet);
5783 if (special) {
5784 ctx->slow |= special;
5785 } else if (!in_port || may_receive(in_port, ctx)) {
5786 if (!in_port || stp_forward_in_state(in_port->stp_state)) {
5787 xlate_table_action(ctx, ctx->flow.in_port, 0, true);
5788 } else {
5789 /* Forwarding is disabled by STP. Let OFPP_NORMAL and the
5790 * learning action look at the packet, then drop it. */
5791 struct flow old_base_flow = ctx->base_flow;
5792 size_t old_size = ctx->odp_actions->size;
5793 xlate_table_action(ctx, ctx->flow.in_port, 0, true);
5794 ctx->base_flow = old_base_flow;
5795 ctx->odp_actions->size = old_size;
5796 }
5797 }
5798
5799 ctx->flow = old_flow;
5800 ctx->ofproto = ofproto_dpif_cast(ofport->up.ofproto);
5801
5802 if (ctx->resubmit_stats) {
5803 netdev_vport_inc_tx(ofport->up.netdev, ctx->resubmit_stats);
5804 netdev_vport_inc_rx(peer->up.netdev, ctx->resubmit_stats);
5805 }
5806
5807 return;
5808 }
5809
5810 pdscp = get_priority(ofport, ctx->flow.skb_priority);
5811 if (pdscp) {
5812 ctx->flow.nw_tos &= ~IP_DSCP_MASK;
5813 ctx->flow.nw_tos |= pdscp->dscp;
5814 }
5815
5816 if (ofport->tnl_port) {
5817 odp_port = tnl_port_send(ofport->tnl_port, &ctx->flow);
5818 if (odp_port == OVSP_NONE) {
5819 xlate_report(ctx, "Tunneling decided against output");
5820 return;
5821 }
5822
5823 if (ctx->resubmit_stats) {
5824 netdev_vport_inc_tx(ofport->up.netdev, ctx->resubmit_stats);
5825 }
5826 out_port = odp_port;
5827 commit_odp_tunnel_action(&ctx->flow, &ctx->base_flow,
5828 ctx->odp_actions);
5829 } else {
5830 odp_port = ofport->odp_port;
5831 out_port = vsp_realdev_to_vlandev(ctx->ofproto, odp_port,
5832 ctx->flow.vlan_tci);
5833 if (out_port != odp_port) {
5834 ctx->flow.vlan_tci = htons(0);
5835 }
5836 ctx->flow.skb_mark &= ~IPSEC_MARK;
5837 }
5838 commit_odp_actions(&ctx->flow, &ctx->base_flow, ctx->odp_actions);
5839 nl_msg_put_u32(ctx->odp_actions, OVS_ACTION_ATTR_OUTPUT, out_port);
5840
5841 ctx->sflow_odp_port = odp_port;
5842 ctx->sflow_n_outputs++;
5843 ctx->nf_output_iface = ofp_port;
5844 ctx->flow.tunnel.tun_id = flow_tun_id;
5845 ctx->flow.vlan_tci = flow_vlan_tci;
5846 ctx->flow.nw_tos = flow_nw_tos;
5847 }
5848
5849 static void
5850 compose_output_action(struct action_xlate_ctx *ctx, uint16_t ofp_port)
5851 {
5852 compose_output_action__(ctx, ofp_port, true);
5853 }
5854
5855 static void
5856 tag_the_flow(struct action_xlate_ctx *ctx, struct rule_dpif *rule)
5857 {
5858 struct ofproto_dpif *ofproto = ctx->ofproto;
5859 uint8_t table_id = ctx->table_id;
5860
5861 if (table_id > 0 && table_id < N_TABLES) {
5862 struct table_dpif *table = &ofproto->tables[table_id];
5863 if (table->other_table) {
5864 ctx->tags |= (rule && rule->tag
5865 ? rule->tag
5866 : rule_calculate_tag(&ctx->flow,
5867 &table->other_table->mask,
5868 table->basis));
5869 }
5870 }
5871 }
5872
5873 /* Common rule processing in one place to avoid duplicating code. */
5874 static struct rule_dpif *
5875 ctx_rule_hooks(struct action_xlate_ctx *ctx, struct rule_dpif *rule,
5876 bool may_packet_in)
5877 {
5878 if (ctx->resubmit_hook) {
5879 ctx->resubmit_hook(ctx, rule);
5880 }
5881 if (rule == NULL && may_packet_in) {
5882 /* XXX
5883 * check if table configuration flags
5884 * OFPTC_TABLE_MISS_CONTROLLER, default.
5885 * OFPTC_TABLE_MISS_CONTINUE,
5886 * OFPTC_TABLE_MISS_DROP
5887 * When OF1.0, OFPTC_TABLE_MISS_CONTINUE is used. What to do?
5888 */
5889 rule = rule_dpif_miss_rule(ctx->ofproto, &ctx->flow);
5890 }
5891 if (rule && ctx->resubmit_stats) {
5892 rule_credit_stats(rule, ctx->resubmit_stats);
5893 }
5894 return rule;
5895 }
5896
5897 static void
5898 xlate_table_action(struct action_xlate_ctx *ctx,
5899 uint16_t in_port, uint8_t table_id, bool may_packet_in)
5900 {
5901 if (ctx->recurse < MAX_RESUBMIT_RECURSION) {
5902 struct rule_dpif *rule;
5903 uint16_t old_in_port = ctx->flow.in_port;
5904 uint8_t old_table_id = ctx->table_id;
5905
5906 ctx->table_id = table_id;
5907
5908 /* Look up a flow with 'in_port' as the input port. */
5909 ctx->flow.in_port = in_port;
5910 rule = rule_dpif_lookup__(ctx->ofproto, &ctx->flow, table_id);
5911
5912 tag_the_flow(ctx, rule);
5913
5914 /* Restore the original input port. Otherwise OFPP_NORMAL and
5915 * OFPP_IN_PORT will have surprising behavior. */
5916 ctx->flow.in_port = old_in_port;
5917
5918 rule = ctx_rule_hooks(ctx, rule, may_packet_in);
5919
5920 if (rule) {
5921 struct rule_dpif *old_rule = ctx->rule;
5922
5923 ctx->recurse++;
5924 ctx->rule = rule;
5925 do_xlate_actions(rule->up.ofpacts, rule->up.ofpacts_len, ctx);
5926 ctx->rule = old_rule;
5927 ctx->recurse--;
5928 }
5929
5930 ctx->table_id = old_table_id;
5931 } else {
5932 static struct vlog_rate_limit recurse_rl = VLOG_RATE_LIMIT_INIT(1, 1);
5933
5934 VLOG_ERR_RL(&recurse_rl, "resubmit actions recursed over %d times",
5935 MAX_RESUBMIT_RECURSION);
5936 ctx->max_resubmit_trigger = true;
5937 }
5938 }
5939
5940 static void
5941 xlate_ofpact_resubmit(struct action_xlate_ctx *ctx,
5942 const struct ofpact_resubmit *resubmit)
5943 {
5944 uint16_t in_port;
5945 uint8_t table_id;
5946
5947 in_port = resubmit->in_port;
5948 if (in_port == OFPP_IN_PORT) {
5949 in_port = ctx->flow.in_port;
5950 }
5951
5952 table_id = resubmit->table_id;
5953 if (table_id == 255) {
5954 table_id = ctx->table_id;
5955 }
5956
5957 xlate_table_action(ctx, in_port, table_id, false);
5958 }
5959
5960 static void
5961 flood_packets(struct action_xlate_ctx *ctx, bool all)
5962 {
5963 struct ofport_dpif *ofport;
5964
5965 HMAP_FOR_EACH (ofport, up.hmap_node, &ctx->ofproto->up.ports) {
5966 uint16_t ofp_port = ofport->up.ofp_port;
5967
5968 if (ofp_port == ctx->flow.in_port) {
5969 continue;
5970 }
5971
5972 if (all) {
5973 compose_output_action__(ctx, ofp_port, false);
5974 } else if (!(ofport->up.pp.config & OFPUTIL_PC_NO_FLOOD)) {
5975 compose_output_action(ctx, ofp_port);
5976 }
5977 }
5978
5979 ctx->nf_output_iface = NF_OUT_FLOOD;
5980 }
5981
5982 static void
5983 execute_controller_action(struct action_xlate_ctx *ctx, int len,
5984 enum ofp_packet_in_reason reason,
5985 uint16_t controller_id)
5986 {
5987 struct ofputil_packet_in pin;
5988 struct ofpbuf *packet;
5989
5990 ctx->slow |= SLOW_CONTROLLER;
5991 if (!ctx->packet) {
5992 return;
5993 }
5994
5995 packet = ofpbuf_clone(ctx->packet);
5996
5997 if (packet->l2 && packet->l3) {
5998 struct eth_header *eh;
5999 uint16_t mpls_depth;
6000
6001 eth_pop_vlan(packet);
6002 eh = packet->l2;
6003
6004 memcpy(eh->eth_src, ctx->flow.dl_src, sizeof eh->eth_src);
6005 memcpy(eh->eth_dst, ctx->flow.dl_dst, sizeof eh->eth_dst);
6006
6007 if (ctx->flow.vlan_tci & htons(VLAN_CFI)) {
6008 eth_push_vlan(packet, ctx->flow.vlan_tci);
6009 }
6010
6011 mpls_depth = eth_mpls_depth(packet);
6012
6013 if (mpls_depth < ctx->flow.mpls_depth) {
6014 push_mpls(packet, ctx->flow.dl_type, ctx->flow.mpls_lse);
6015 } else if (mpls_depth > ctx->flow.mpls_depth) {
6016 pop_mpls(packet, ctx->flow.dl_type);
6017 } else if (mpls_depth) {
6018 set_mpls_lse(packet, ctx->flow.mpls_lse);
6019 }
6020
6021 if (packet->l4) {
6022 if (ctx->flow.dl_type == htons(ETH_TYPE_IP)) {
6023 packet_set_ipv4(packet, ctx->flow.nw_src, ctx->flow.nw_dst,
6024 ctx->flow.nw_tos, ctx->flow.nw_ttl);
6025 }
6026
6027 if (packet->l7) {
6028 if (ctx->flow.nw_proto == IPPROTO_TCP) {
6029 packet_set_tcp_port(packet, ctx->flow.tp_src,
6030 ctx->flow.tp_dst);
6031 } else if (ctx->flow.nw_proto == IPPROTO_UDP) {
6032 packet_set_udp_port(packet, ctx->flow.tp_src,
6033 ctx->flow.tp_dst);
6034 }
6035 }
6036 }
6037 }
6038
6039 pin.packet = packet->data;
6040 pin.packet_len = packet->size;
6041 pin.reason = reason;
6042 pin.controller_id = controller_id;
6043 pin.table_id = ctx->table_id;
6044 pin.cookie = ctx->rule ? ctx->rule->up.flow_cookie : 0;
6045
6046 pin.send_len = len;
6047 flow_get_metadata(&ctx->flow, &pin.fmd);
6048
6049 connmgr_send_packet_in(ctx->ofproto->up.connmgr, &pin);
6050 ofpbuf_delete(packet);
6051 }
6052
6053 static void
6054 execute_mpls_push_action(struct action_xlate_ctx *ctx, ovs_be16 eth_type)
6055 {
6056 ovs_assert(eth_type_mpls(eth_type));
6057
6058 if (ctx->base_flow.mpls_depth) {
6059 ctx->flow.mpls_lse &= ~htonl(MPLS_BOS_MASK);
6060 ctx->flow.mpls_depth++;
6061 } else {
6062 ovs_be32 label;
6063 uint8_t tc, ttl;
6064
6065 if (ctx->flow.dl_type == htons(ETH_TYPE_IPV6)) {
6066 label = htonl(0x2); /* IPV6 Explicit Null. */
6067 } else {
6068 label = htonl(0x0); /* IPV4 Explicit Null. */
6069 }
6070 tc = (ctx->flow.nw_tos & IP_DSCP_MASK) >> 2;
6071 ttl = ctx->flow.nw_ttl ? ctx->flow.nw_ttl : 0x40;
6072 ctx->flow.mpls_lse = set_mpls_lse_values(ttl, tc, 1, label);
6073 ctx->flow.mpls_depth = 1;
6074 }
6075 ctx->flow.dl_type = eth_type;
6076 }
6077
6078 static void
6079 execute_mpls_pop_action(struct action_xlate_ctx *ctx, ovs_be16 eth_type)
6080 {
6081 ovs_assert(eth_type_mpls(ctx->flow.dl_type));
6082 ovs_assert(!eth_type_mpls(eth_type));
6083
6084 if (ctx->flow.mpls_depth) {
6085 ctx->flow.mpls_depth--;
6086 ctx->flow.mpls_lse = htonl(0);
6087 if (!ctx->flow.mpls_depth) {
6088 ctx->flow.dl_type = eth_type;
6089 }
6090 }
6091 }
6092
6093 static bool
6094 compose_dec_ttl(struct action_xlate_ctx *ctx, struct ofpact_cnt_ids *ids)
6095 {
6096 if (ctx->flow.dl_type != htons(ETH_TYPE_IP) &&
6097 ctx->flow.dl_type != htons(ETH_TYPE_IPV6)) {
6098 return false;
6099 }
6100
6101 if (ctx->flow.nw_ttl > 1) {
6102 ctx->flow.nw_ttl--;
6103 return false;
6104 } else {
6105 size_t i;
6106
6107 for (i = 0; i < ids->n_controllers; i++) {
6108 execute_controller_action(ctx, UINT16_MAX, OFPR_INVALID_TTL,
6109 ids->cnt_ids[i]);
6110 }
6111
6112 /* Stop processing for current table. */
6113 return true;
6114 }
6115 }
6116
6117 static bool
6118 execute_set_mpls_ttl_action(struct action_xlate_ctx *ctx, uint8_t ttl)
6119 {
6120 if (!eth_type_mpls(ctx->flow.dl_type)) {
6121 return true;
6122 }
6123
6124 set_mpls_lse_ttl(&ctx->flow.mpls_lse, ttl);
6125 return false;
6126 }
6127
6128 static bool
6129 execute_dec_mpls_ttl_action(struct action_xlate_ctx *ctx)
6130 {
6131 uint8_t ttl = mpls_lse_to_ttl(ctx->flow.mpls_lse);
6132
6133 if (!eth_type_mpls(ctx->flow.dl_type)) {
6134 return false;
6135 }
6136
6137 if (ttl > 1) {
6138 ttl--;
6139 set_mpls_lse_ttl(&ctx->flow.mpls_lse, ttl);
6140 return false;
6141 } else {
6142 execute_controller_action(ctx, UINT16_MAX, OFPR_INVALID_TTL, 0);
6143
6144 /* Stop processing for current table. */
6145 return true;
6146 }
6147 }
6148
6149 static void
6150 xlate_output_action(struct action_xlate_ctx *ctx,
6151 uint16_t port, uint16_t max_len, bool may_packet_in)
6152 {
6153 uint16_t prev_nf_output_iface = ctx->nf_output_iface;
6154
6155 ctx->nf_output_iface = NF_OUT_DROP;
6156
6157 switch (port) {
6158 case OFPP_IN_PORT:
6159 compose_output_action(ctx, ctx->flow.in_port);
6160 break;
6161 case OFPP_TABLE:
6162 xlate_table_action(ctx, ctx->flow.in_port, 0, may_packet_in);
6163 break;
6164 case OFPP_NORMAL:
6165 xlate_normal(ctx);
6166 break;
6167 case OFPP_FLOOD:
6168 flood_packets(ctx, false);
6169 break;
6170 case OFPP_ALL:
6171 flood_packets(ctx, true);
6172 break;
6173 case OFPP_CONTROLLER:
6174 execute_controller_action(ctx, max_len, OFPR_ACTION, 0);
6175 break;
6176 case OFPP_NONE:
6177 break;
6178 case OFPP_LOCAL:
6179 default:
6180 if (port != ctx->flow.in_port) {
6181 compose_output_action(ctx, port);
6182 } else {
6183 xlate_report(ctx, "skipping output to input port");
6184 }
6185 break;
6186 }
6187
6188 if (prev_nf_output_iface == NF_OUT_FLOOD) {
6189 ctx->nf_output_iface = NF_OUT_FLOOD;
6190 } else if (ctx->nf_output_iface == NF_OUT_DROP) {
6191 ctx->nf_output_iface = prev_nf_output_iface;
6192 } else if (prev_nf_output_iface != NF_OUT_DROP &&
6193 ctx->nf_output_iface != NF_OUT_FLOOD) {
6194 ctx->nf_output_iface = NF_OUT_MULTI;
6195 }
6196 }
6197
6198 static void
6199 xlate_output_reg_action(struct action_xlate_ctx *ctx,
6200 const struct ofpact_output_reg *or)
6201 {
6202 uint64_t port = mf_get_subfield(&or->src, &ctx->flow);
6203 if (port <= UINT16_MAX) {
6204 xlate_output_action(ctx, port, or->max_len, false);
6205 }
6206 }
6207
6208 static void
6209 xlate_enqueue_action(struct action_xlate_ctx *ctx,
6210 const struct ofpact_enqueue *enqueue)
6211 {
6212 uint16_t ofp_port = enqueue->port;
6213 uint32_t queue_id = enqueue->queue;
6214 uint32_t flow_priority, priority;
6215 int error;
6216
6217 /* Translate queue to priority. */
6218 error = dpif_queue_to_priority(ctx->ofproto->backer->dpif,
6219 queue_id, &priority);
6220 if (error) {
6221 /* Fall back to ordinary output action. */
6222 xlate_output_action(ctx, enqueue->port, 0, false);
6223 return;
6224 }
6225
6226 /* Check output port. */
6227 if (ofp_port == OFPP_IN_PORT) {
6228 ofp_port = ctx->flow.in_port;
6229 } else if (ofp_port == ctx->flow.in_port) {
6230 return;
6231 }
6232
6233 /* Add datapath actions. */
6234 flow_priority = ctx->flow.skb_priority;
6235 ctx->flow.skb_priority = priority;
6236 compose_output_action(ctx, ofp_port);
6237 ctx->flow.skb_priority = flow_priority;
6238
6239 /* Update NetFlow output port. */
6240 if (ctx->nf_output_iface == NF_OUT_DROP) {
6241 ctx->nf_output_iface = ofp_port;
6242 } else if (ctx->nf_output_iface != NF_OUT_FLOOD) {
6243 ctx->nf_output_iface = NF_OUT_MULTI;
6244 }
6245 }
6246
6247 static void
6248 xlate_set_queue_action(struct action_xlate_ctx *ctx, uint32_t queue_id)
6249 {
6250 uint32_t skb_priority;
6251
6252 if (!dpif_queue_to_priority(ctx->ofproto->backer->dpif,
6253 queue_id, &skb_priority)) {
6254 ctx->flow.skb_priority = skb_priority;
6255 } else {
6256 /* Couldn't translate queue to a priority. Nothing to do. A warning
6257 * has already been logged. */
6258 }
6259 }
6260
6261 struct xlate_reg_state {
6262 ovs_be16 vlan_tci;
6263 ovs_be64 tun_id;
6264 };
6265
6266 static bool
6267 slave_enabled_cb(uint16_t ofp_port, void *ofproto_)
6268 {
6269 struct ofproto_dpif *ofproto = ofproto_;
6270 struct ofport_dpif *port;
6271
6272 switch (ofp_port) {
6273 case OFPP_IN_PORT:
6274 case OFPP_TABLE:
6275 case OFPP_NORMAL:
6276 case OFPP_FLOOD:
6277 case OFPP_ALL:
6278 case OFPP_NONE:
6279 return true;
6280 case OFPP_CONTROLLER: /* Not supported by the bundle action. */
6281 return false;
6282 default:
6283 port = get_ofp_port(ofproto, ofp_port);
6284 return port ? port->may_enable : false;
6285 }
6286 }
6287
6288 static void
6289 xlate_bundle_action(struct action_xlate_ctx *ctx,
6290 const struct ofpact_bundle *bundle)
6291 {
6292 uint16_t port;
6293
6294 port = bundle_execute(bundle, &ctx->flow, slave_enabled_cb, ctx->ofproto);
6295 if (bundle->dst.field) {
6296 nxm_reg_load(&bundle->dst, port, &ctx->flow);
6297 } else {
6298 xlate_output_action(ctx, port, 0, false);
6299 }
6300 }
6301
6302 static void
6303 xlate_learn_action(struct action_xlate_ctx *ctx,
6304 const struct ofpact_learn *learn)
6305 {
6306 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(5, 1);
6307 struct ofputil_flow_mod fm;
6308 uint64_t ofpacts_stub[1024 / 8];
6309 struct ofpbuf ofpacts;
6310 int error;
6311
6312 ofpbuf_use_stack(&ofpacts, ofpacts_stub, sizeof ofpacts_stub);
6313 learn_execute(learn, &ctx->flow, &fm, &ofpacts);
6314
6315 error = ofproto_flow_mod(&ctx->ofproto->up, &fm);
6316 if (error && !VLOG_DROP_WARN(&rl)) {
6317 VLOG_WARN("learning action failed to modify flow table (%s)",
6318 ofperr_get_name(error));
6319 }
6320
6321 ofpbuf_uninit(&ofpacts);
6322 }
6323
6324 /* Reduces '*timeout' to no more than 'max'. A value of zero in either case
6325 * means "infinite". */
6326 static void
6327 reduce_timeout(uint16_t max, uint16_t *timeout)
6328 {
6329 if (max && (!*timeout || *timeout > max)) {
6330 *timeout = max;
6331 }
6332 }
6333
6334 static void
6335 xlate_fin_timeout(struct action_xlate_ctx *ctx,
6336 const struct ofpact_fin_timeout *oft)
6337 {
6338 if (ctx->tcp_flags & (TCP_FIN | TCP_RST) && ctx->rule) {
6339 struct rule_dpif *rule = ctx->rule;
6340
6341 reduce_timeout(oft->fin_idle_timeout, &rule->up.idle_timeout);
6342 reduce_timeout(oft->fin_hard_timeout, &rule->up.hard_timeout);
6343 }
6344 }
6345
6346 static bool
6347 may_receive(const struct ofport_dpif *port, struct action_xlate_ctx *ctx)
6348 {
6349 if (port->up.pp.config & (eth_addr_equals(ctx->flow.dl_dst, eth_addr_stp)
6350 ? OFPUTIL_PC_NO_RECV_STP
6351 : OFPUTIL_PC_NO_RECV)) {
6352 return false;
6353 }
6354
6355 /* Only drop packets here if both forwarding and learning are
6356 * disabled. If just learning is enabled, we need to have
6357 * OFPP_NORMAL and the learning action have a look at the packet
6358 * before we can drop it. */
6359 if (!stp_forward_in_state(port->stp_state)
6360 && !stp_learn_in_state(port->stp_state)) {
6361 return false;
6362 }
6363
6364 return true;
6365 }
6366
6367 static bool
6368 tunnel_ecn_ok(struct action_xlate_ctx *ctx)
6369 {
6370 if (is_ip_any(&ctx->base_flow)
6371 && (ctx->base_flow.tunnel.ip_tos & IP_ECN_MASK) == IP_ECN_CE) {
6372 if ((ctx->base_flow.nw_tos & IP_ECN_MASK) == IP_ECN_NOT_ECT) {
6373 VLOG_WARN_RL(&rl, "dropping tunnel packet marked ECN CE"
6374 " but is not ECN capable");
6375 return false;
6376 } else {
6377 /* Set the ECN CE value in the tunneled packet. */
6378 ctx->flow.nw_tos |= IP_ECN_CE;
6379 }
6380 }
6381
6382 return true;
6383 }
6384
6385 static void
6386 do_xlate_actions(const struct ofpact *ofpacts, size_t ofpacts_len,
6387 struct action_xlate_ctx *ctx)
6388 {
6389 bool was_evictable = true;
6390 const struct ofpact *a;
6391
6392 if (ctx->rule) {
6393 /* Don't let the rule we're working on get evicted underneath us. */
6394 was_evictable = ctx->rule->up.evictable;
6395 ctx->rule->up.evictable = false;
6396 }
6397
6398 do_xlate_actions_again:
6399 OFPACT_FOR_EACH (a, ofpacts, ofpacts_len) {
6400 struct ofpact_controller *controller;
6401 const struct ofpact_metadata *metadata;
6402
6403 if (ctx->exit) {
6404 break;
6405 }
6406
6407 switch (a->type) {
6408 case OFPACT_OUTPUT:
6409 xlate_output_action(ctx, ofpact_get_OUTPUT(a)->port,
6410 ofpact_get_OUTPUT(a)->max_len, true);
6411 break;
6412
6413 case OFPACT_CONTROLLER:
6414 controller = ofpact_get_CONTROLLER(a);
6415 execute_controller_action(ctx, controller->max_len,
6416 controller->reason,
6417 controller->controller_id);
6418 break;
6419
6420 case OFPACT_ENQUEUE:
6421 xlate_enqueue_action(ctx, ofpact_get_ENQUEUE(a));
6422 break;
6423
6424 case OFPACT_SET_VLAN_VID:
6425 ctx->flow.vlan_tci &= ~htons(VLAN_VID_MASK);
6426 ctx->flow.vlan_tci |= (htons(ofpact_get_SET_VLAN_VID(a)->vlan_vid)
6427 | htons(VLAN_CFI));
6428 break;
6429
6430 case OFPACT_SET_VLAN_PCP:
6431 ctx->flow.vlan_tci &= ~htons(VLAN_PCP_MASK);
6432 ctx->flow.vlan_tci |= htons((ofpact_get_SET_VLAN_PCP(a)->vlan_pcp
6433 << VLAN_PCP_SHIFT)
6434 | VLAN_CFI);
6435 break;
6436
6437 case OFPACT_STRIP_VLAN:
6438 ctx->flow.vlan_tci = htons(0);
6439 break;
6440
6441 case OFPACT_PUSH_VLAN:
6442 /* XXX 802.1AD(QinQ) */
6443 ctx->flow.vlan_tci = htons(VLAN_CFI);
6444 break;
6445
6446 case OFPACT_SET_ETH_SRC:
6447 memcpy(ctx->flow.dl_src, ofpact_get_SET_ETH_SRC(a)->mac,
6448 ETH_ADDR_LEN);
6449 break;
6450
6451 case OFPACT_SET_ETH_DST:
6452 memcpy(ctx->flow.dl_dst, ofpact_get_SET_ETH_DST(a)->mac,
6453 ETH_ADDR_LEN);
6454 break;
6455
6456 case OFPACT_SET_IPV4_SRC:
6457 if (ctx->flow.dl_type == htons(ETH_TYPE_IP)) {
6458 ctx->flow.nw_src = ofpact_get_SET_IPV4_SRC(a)->ipv4;
6459 }
6460 break;
6461
6462 case OFPACT_SET_IPV4_DST:
6463 if (ctx->flow.dl_type == htons(ETH_TYPE_IP)) {
6464 ctx->flow.nw_dst = ofpact_get_SET_IPV4_DST(a)->ipv4;
6465 }
6466 break;
6467
6468 case OFPACT_SET_IPV4_DSCP:
6469 /* OpenFlow 1.0 only supports IPv4. */
6470 if (ctx->flow.dl_type == htons(ETH_TYPE_IP)) {
6471 ctx->flow.nw_tos &= ~IP_DSCP_MASK;
6472 ctx->flow.nw_tos |= ofpact_get_SET_IPV4_DSCP(a)->dscp;
6473 }
6474 break;
6475
6476 case OFPACT_SET_L4_SRC_PORT:
6477 if (is_ip_any(&ctx->flow)) {
6478 ctx->flow.tp_src = htons(ofpact_get_SET_L4_SRC_PORT(a)->port);
6479 }
6480 break;
6481
6482 case OFPACT_SET_L4_DST_PORT:
6483 if (is_ip_any(&ctx->flow)) {
6484 ctx->flow.tp_dst = htons(ofpact_get_SET_L4_DST_PORT(a)->port);
6485 }
6486 break;
6487
6488 case OFPACT_RESUBMIT:
6489 xlate_ofpact_resubmit(ctx, ofpact_get_RESUBMIT(a));
6490 break;
6491
6492 case OFPACT_SET_TUNNEL:
6493 ctx->flow.tunnel.tun_id = htonll(ofpact_get_SET_TUNNEL(a)->tun_id);
6494 break;
6495
6496 case OFPACT_SET_QUEUE:
6497 xlate_set_queue_action(ctx, ofpact_get_SET_QUEUE(a)->queue_id);
6498 break;
6499
6500 case OFPACT_POP_QUEUE:
6501 ctx->flow.skb_priority = ctx->orig_skb_priority;
6502 break;
6503
6504 case OFPACT_REG_MOVE:
6505 nxm_execute_reg_move(ofpact_get_REG_MOVE(a), &ctx->flow);
6506 break;
6507
6508 case OFPACT_REG_LOAD:
6509 nxm_execute_reg_load(ofpact_get_REG_LOAD(a), &ctx->flow);
6510 break;
6511
6512 case OFPACT_STACK_PUSH:
6513 nxm_execute_stack_push(ofpact_get_STACK_PUSH(a), &ctx->flow,
6514 &ctx->stack);
6515 break;
6516
6517 case OFPACT_STACK_POP:
6518 nxm_execute_stack_pop(ofpact_get_STACK_POP(a), &ctx->flow,
6519 &ctx->stack);
6520 break;
6521
6522 case OFPACT_PUSH_MPLS:
6523 execute_mpls_push_action(ctx, ofpact_get_PUSH_MPLS(a)->ethertype);
6524 break;
6525
6526 case OFPACT_POP_MPLS:
6527 execute_mpls_pop_action(ctx, ofpact_get_POP_MPLS(a)->ethertype);
6528 break;
6529
6530 case OFPACT_SET_MPLS_TTL:
6531 if (execute_set_mpls_ttl_action(ctx, ofpact_get_SET_MPLS_TTL(a)->ttl)) {
6532 goto out;
6533 }
6534 break;
6535
6536 case OFPACT_DEC_MPLS_TTL:
6537 if (execute_dec_mpls_ttl_action(ctx)) {
6538 goto out;
6539 }
6540 break;
6541
6542 case OFPACT_DEC_TTL:
6543 if (compose_dec_ttl(ctx, ofpact_get_DEC_TTL(a))) {
6544 goto out;
6545 }
6546 break;
6547
6548 case OFPACT_NOTE:
6549 /* Nothing to do. */
6550 break;
6551
6552 case OFPACT_MULTIPATH:
6553 multipath_execute(ofpact_get_MULTIPATH(a), &ctx->flow);
6554 break;
6555
6556 case OFPACT_BUNDLE:
6557 ctx->ofproto->has_bundle_action = true;
6558 xlate_bundle_action(ctx, ofpact_get_BUNDLE(a));
6559 break;
6560
6561 case OFPACT_OUTPUT_REG:
6562 xlate_output_reg_action(ctx, ofpact_get_OUTPUT_REG(a));
6563 break;
6564
6565 case OFPACT_LEARN:
6566 ctx->has_learn = true;
6567 if (ctx->may_learn) {
6568 xlate_learn_action(ctx, ofpact_get_LEARN(a));
6569 }
6570 break;
6571
6572 case OFPACT_EXIT:
6573 ctx->exit = true;
6574 break;
6575
6576 case OFPACT_FIN_TIMEOUT:
6577 ctx->has_fin_timeout = true;
6578 xlate_fin_timeout(ctx, ofpact_get_FIN_TIMEOUT(a));
6579 break;
6580
6581 case OFPACT_CLEAR_ACTIONS:
6582 /* XXX
6583 * Nothing to do because writa-actions is not supported for now.
6584 * When writa-actions is supported, clear-actions also must
6585 * be supported at the same time.
6586 */
6587 break;
6588
6589 case OFPACT_WRITE_METADATA:
6590 metadata = ofpact_get_WRITE_METADATA(a);
6591 ctx->flow.metadata &= ~metadata->mask;
6592 ctx->flow.metadata |= metadata->metadata & metadata->mask;
6593 break;
6594
6595 case OFPACT_GOTO_TABLE: {
6596 /* It is assumed that goto-table is the last action. */
6597 struct ofpact_goto_table *ogt = ofpact_get_GOTO_TABLE(a);
6598 struct rule_dpif *rule;
6599
6600 ovs_assert(ctx->table_id < ogt->table_id);
6601
6602 ctx->table_id = ogt->table_id;
6603
6604 /* Look up a flow from the new table. */
6605 rule = rule_dpif_lookup__(ctx->ofproto, &ctx->flow, ctx->table_id);
6606
6607 tag_the_flow(ctx, rule);
6608
6609 rule = ctx_rule_hooks(ctx, rule, true);
6610
6611 if (rule) {
6612 if (ctx->rule) {
6613 ctx->rule->up.evictable = was_evictable;
6614 }
6615 ctx->rule = rule;
6616 was_evictable = rule->up.evictable;
6617 rule->up.evictable = false;
6618
6619 /* Tail recursion removal. */
6620 ofpacts = rule->up.ofpacts;
6621 ofpacts_len = rule->up.ofpacts_len;
6622 goto do_xlate_actions_again;
6623 }
6624 break;
6625 }
6626 }
6627 }
6628
6629 out:
6630 if (ctx->rule) {
6631 ctx->rule->up.evictable = was_evictable;
6632 }
6633 }
6634
6635 static void
6636 action_xlate_ctx_init(struct action_xlate_ctx *ctx,
6637 struct ofproto_dpif *ofproto, const struct flow *flow,
6638 const struct initial_vals *initial_vals,
6639 struct rule_dpif *rule,
6640 uint8_t tcp_flags, const struct ofpbuf *packet)
6641 {
6642 ovs_be64 initial_tun_id = flow->tunnel.tun_id;
6643
6644 /* Flow initialization rules:
6645 * - 'base_flow' must match the kernel's view of the packet at the
6646 * time that action processing starts. 'flow' represents any
6647 * transformations we wish to make through actions.
6648 * - By default 'base_flow' and 'flow' are the same since the input
6649 * packet matches the output before any actions are applied.
6650 * - When using VLAN splinters, 'base_flow''s VLAN is set to the value
6651 * of the received packet as seen by the kernel. If we later output
6652 * to another device without any modifications this will cause us to
6653 * insert a new tag since the original one was stripped off by the
6654 * VLAN device.
6655 * - Tunnel 'flow' is largely cleared when transitioning between
6656 * the input and output stages since it does not make sense to output
6657 * a packet with the exact headers that it was received with (i.e.
6658 * the destination IP is us). The one exception is the tun_id, which
6659 * is preserved to allow use in later resubmit lookups and loads into
6660 * registers.
6661 * - Tunnel 'base_flow' is completely cleared since that is what the
6662 * kernel does. If we wish to maintain the original values an action
6663 * needs to be generated. */
6664
6665 ctx->ofproto = ofproto;
6666 ctx->flow = *flow;
6667 memset(&ctx->flow.tunnel, 0, sizeof ctx->flow.tunnel);
6668 ctx->base_flow = ctx->flow;
6669 ctx->base_flow.vlan_tci = initial_vals->vlan_tci;
6670 ctx->base_flow.tunnel.ip_tos = initial_vals->tunnel_ip_tos;
6671 ctx->flow.tunnel.tun_id = initial_tun_id;
6672 ctx->rule = rule;
6673 ctx->packet = packet;
6674 ctx->may_learn = packet != NULL;
6675 ctx->tcp_flags = tcp_flags;
6676 ctx->resubmit_hook = NULL;
6677 ctx->report_hook = NULL;
6678 ctx->resubmit_stats = NULL;
6679 }
6680
6681 /* Translates the 'ofpacts_len' bytes of "struct ofpacts" starting at 'ofpacts'
6682 * into datapath actions in 'odp_actions', using 'ctx'. */
6683 static void
6684 xlate_actions(struct action_xlate_ctx *ctx,
6685 const struct ofpact *ofpacts, size_t ofpacts_len,
6686 struct ofpbuf *odp_actions)
6687 {
6688 /* Normally false. Set to true if we ever hit MAX_RESUBMIT_RECURSION, so
6689 * that in the future we always keep a copy of the original flow for
6690 * tracing purposes. */
6691 static bool hit_resubmit_limit;
6692
6693 enum slow_path_reason special;
6694 struct ofport_dpif *in_port;
6695 struct flow orig_flow;
6696
6697 COVERAGE_INC(ofproto_dpif_xlate);
6698
6699 ofpbuf_clear(odp_actions);
6700 ofpbuf_reserve(odp_actions, NL_A_U32_SIZE);
6701
6702 ctx->odp_actions = odp_actions;
6703 ctx->tags = 0;
6704 ctx->slow = 0;
6705 ctx->has_learn = false;
6706 ctx->has_normal = false;
6707 ctx->has_fin_timeout = false;
6708 ctx->nf_output_iface = NF_OUT_DROP;
6709 ctx->mirrors = 0;
6710 ctx->recurse = 0;
6711 ctx->max_resubmit_trigger = false;
6712 ctx->orig_skb_priority = ctx->flow.skb_priority;
6713 ctx->table_id = 0;
6714 ctx->exit = false;
6715
6716 ofpbuf_use_stub(&ctx->stack, ctx->init_stack, sizeof ctx->init_stack);
6717
6718 if (ctx->ofproto->has_mirrors || hit_resubmit_limit) {
6719 /* Do this conditionally because the copy is expensive enough that it
6720 * shows up in profiles. */
6721 orig_flow = ctx->flow;
6722 }
6723
6724 if (ctx->flow.nw_frag & FLOW_NW_FRAG_ANY) {
6725 switch (ctx->ofproto->up.frag_handling) {
6726 case OFPC_FRAG_NORMAL:
6727 /* We must pretend that transport ports are unavailable. */
6728 ctx->flow.tp_src = ctx->base_flow.tp_src = htons(0);
6729 ctx->flow.tp_dst = ctx->base_flow.tp_dst = htons(0);
6730 break;
6731
6732 case OFPC_FRAG_DROP:
6733 return;
6734
6735 case OFPC_FRAG_REASM:
6736 NOT_REACHED();
6737
6738 case OFPC_FRAG_NX_MATCH:
6739 /* Nothing to do. */
6740 break;
6741
6742 case OFPC_INVALID_TTL_TO_CONTROLLER:
6743 NOT_REACHED();
6744 }
6745 }
6746
6747 in_port = get_ofp_port(ctx->ofproto, ctx->flow.in_port);
6748 special = process_special(ctx->ofproto, &ctx->flow, in_port, ctx->packet);
6749 if (special) {
6750 ctx->slow |= special;
6751 } else {
6752 static struct vlog_rate_limit trace_rl = VLOG_RATE_LIMIT_INIT(1, 1);
6753 struct initial_vals initial_vals;
6754 uint32_t local_odp_port;
6755
6756 initial_vals.vlan_tci = ctx->base_flow.vlan_tci;
6757 initial_vals.tunnel_ip_tos = ctx->base_flow.tunnel.ip_tos;
6758
6759 add_sflow_action(ctx);
6760
6761 if (tunnel_ecn_ok(ctx) && (!in_port || may_receive(in_port, ctx))) {
6762 do_xlate_actions(ofpacts, ofpacts_len, ctx);
6763
6764 /* We've let OFPP_NORMAL and the learning action look at the
6765 * packet, so drop it now if forwarding is disabled. */
6766 if (in_port && !stp_forward_in_state(in_port->stp_state)) {
6767 ofpbuf_clear(ctx->odp_actions);
6768 add_sflow_action(ctx);
6769 }
6770 }
6771
6772 if (ctx->max_resubmit_trigger && !ctx->resubmit_hook) {
6773 if (!hit_resubmit_limit) {
6774 /* We didn't record the original flow. Make sure we do from
6775 * now on. */
6776 hit_resubmit_limit = true;
6777 } else if (!VLOG_DROP_ERR(&trace_rl)) {
6778 struct ds ds = DS_EMPTY_INITIALIZER;
6779
6780 ofproto_trace(ctx->ofproto, &orig_flow, ctx->packet,
6781 &initial_vals, &ds);
6782 VLOG_ERR("Trace triggered by excessive resubmit "
6783 "recursion:\n%s", ds_cstr(&ds));
6784 ds_destroy(&ds);
6785 }
6786 }
6787
6788 local_odp_port = ofp_port_to_odp_port(ctx->ofproto, OFPP_LOCAL);
6789 if (!connmgr_may_set_up_flow(ctx->ofproto->up.connmgr, &ctx->flow,
6790 local_odp_port,
6791 ctx->odp_actions->data,
6792 ctx->odp_actions->size)) {
6793 ctx->slow |= SLOW_IN_BAND;
6794 if (ctx->packet
6795 && connmgr_msg_in_hook(ctx->ofproto->up.connmgr, &ctx->flow,
6796 ctx->packet)) {
6797 compose_output_action(ctx, OFPP_LOCAL);
6798 }
6799 }
6800 if (ctx->ofproto->has_mirrors) {
6801 add_mirror_actions(ctx, &orig_flow);
6802 }
6803 fix_sflow_action(ctx);
6804 }
6805
6806 ofpbuf_uninit(&ctx->stack);
6807 }
6808
6809 /* Translates the 'ofpacts_len' bytes of "struct ofpact"s starting at 'ofpacts'
6810 * into datapath actions, using 'ctx', and discards the datapath actions. */
6811 static void
6812 xlate_actions_for_side_effects(struct action_xlate_ctx *ctx,
6813 const struct ofpact *ofpacts,
6814 size_t ofpacts_len)
6815 {
6816 uint64_t odp_actions_stub[1024 / 8];
6817 struct ofpbuf odp_actions;
6818
6819 ofpbuf_use_stub(&odp_actions, odp_actions_stub, sizeof odp_actions_stub);
6820 xlate_actions(ctx, ofpacts, ofpacts_len, &odp_actions);
6821 ofpbuf_uninit(&odp_actions);
6822 }
6823
6824 static void
6825 xlate_report(struct action_xlate_ctx *ctx, const char *s)
6826 {
6827 if (ctx->report_hook) {
6828 ctx->report_hook(ctx, s);
6829 }
6830 }
6831 \f
6832 /* OFPP_NORMAL implementation. */
6833
6834 static struct ofport_dpif *ofbundle_get_a_port(const struct ofbundle *);
6835
6836 /* Given 'vid', the VID obtained from the 802.1Q header that was received as
6837 * part of a packet (specify 0 if there was no 802.1Q header), and 'in_bundle',
6838 * the bundle on which the packet was received, returns the VLAN to which the
6839 * packet belongs.
6840 *
6841 * Both 'vid' and the return value are in the range 0...4095. */
6842 static uint16_t
6843 input_vid_to_vlan(const struct ofbundle *in_bundle, uint16_t vid)
6844 {
6845 switch (in_bundle->vlan_mode) {
6846 case PORT_VLAN_ACCESS:
6847 return in_bundle->vlan;
6848 break;
6849
6850 case PORT_VLAN_TRUNK:
6851 return vid;
6852
6853 case PORT_VLAN_NATIVE_UNTAGGED:
6854 case PORT_VLAN_NATIVE_TAGGED:
6855 return vid ? vid : in_bundle->vlan;
6856
6857 default:
6858 NOT_REACHED();
6859 }
6860 }
6861
6862 /* Checks whether a packet with the given 'vid' may ingress on 'in_bundle'.
6863 * If so, returns true. Otherwise, returns false and, if 'warn' is true, logs
6864 * a warning.
6865 *
6866 * 'vid' should be the VID obtained from the 802.1Q header that was received as
6867 * part of a packet (specify 0 if there was no 802.1Q header), in the range
6868 * 0...4095. */
6869 static bool
6870 input_vid_is_valid(uint16_t vid, struct ofbundle *in_bundle, bool warn)
6871 {
6872 /* Allow any VID on the OFPP_NONE port. */
6873 if (in_bundle == &ofpp_none_bundle) {
6874 return true;
6875 }
6876
6877 switch (in_bundle->vlan_mode) {
6878 case PORT_VLAN_ACCESS:
6879 if (vid) {
6880 if (warn) {
6881 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
6882 VLOG_WARN_RL(&rl, "bridge %s: dropping VLAN %"PRIu16" tagged "
6883 "packet received on port %s configured as VLAN "
6884 "%"PRIu16" access port",
6885 in_bundle->ofproto->up.name, vid,
6886 in_bundle->name, in_bundle->vlan);
6887 }
6888 return false;
6889 }
6890 return true;
6891
6892 case PORT_VLAN_NATIVE_UNTAGGED:
6893 case PORT_VLAN_NATIVE_TAGGED:
6894 if (!vid) {
6895 /* Port must always carry its native VLAN. */
6896 return true;
6897 }
6898 /* Fall through. */
6899 case PORT_VLAN_TRUNK:
6900 if (!ofbundle_includes_vlan(in_bundle, vid)) {
6901 if (warn) {
6902 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
6903 VLOG_WARN_RL(&rl, "bridge %s: dropping VLAN %"PRIu16" packet "
6904 "received on port %s not configured for trunking "
6905 "VLAN %"PRIu16,
6906 in_bundle->ofproto->up.name, vid,
6907 in_bundle->name, vid);
6908 }
6909 return false;
6910 }
6911 return true;
6912
6913 default:
6914 NOT_REACHED();
6915 }
6916
6917 }
6918
6919 /* Given 'vlan', the VLAN that a packet belongs to, and
6920 * 'out_bundle', a bundle on which the packet is to be output, returns the VID
6921 * that should be included in the 802.1Q header. (If the return value is 0,
6922 * then the 802.1Q header should only be included in the packet if there is a
6923 * nonzero PCP.)
6924 *
6925 * Both 'vlan' and the return value are in the range 0...4095. */
6926 static uint16_t
6927 output_vlan_to_vid(const struct ofbundle *out_bundle, uint16_t vlan)
6928 {
6929 switch (out_bundle->vlan_mode) {
6930 case PORT_VLAN_ACCESS:
6931 return 0;
6932
6933 case PORT_VLAN_TRUNK:
6934 case PORT_VLAN_NATIVE_TAGGED:
6935 return vlan;
6936
6937 case PORT_VLAN_NATIVE_UNTAGGED:
6938 return vlan == out_bundle->vlan ? 0 : vlan;
6939
6940 default:
6941 NOT_REACHED();
6942 }
6943 }
6944
6945 static void
6946 output_normal(struct action_xlate_ctx *ctx, const struct ofbundle *out_bundle,
6947 uint16_t vlan)
6948 {
6949 struct ofport_dpif *port;
6950 uint16_t vid;
6951 ovs_be16 tci, old_tci;
6952
6953 vid = output_vlan_to_vid(out_bundle, vlan);
6954 if (!out_bundle->bond) {
6955 port = ofbundle_get_a_port(out_bundle);
6956 } else {
6957 port = bond_choose_output_slave(out_bundle->bond, &ctx->flow,
6958 vid, &ctx->tags);
6959 if (!port) {
6960 /* No slaves enabled, so drop packet. */
6961 return;
6962 }
6963 }
6964
6965 old_tci = ctx->flow.vlan_tci;
6966 tci = htons(vid);
6967 if (tci || out_bundle->use_priority_tags) {
6968 tci |= ctx->flow.vlan_tci & htons(VLAN_PCP_MASK);
6969 if (tci) {
6970 tci |= htons(VLAN_CFI);
6971 }
6972 }
6973 ctx->flow.vlan_tci = tci;
6974
6975 compose_output_action(ctx, port->up.ofp_port);
6976 ctx->flow.vlan_tci = old_tci;
6977 }
6978
6979 static int
6980 mirror_mask_ffs(mirror_mask_t mask)
6981 {
6982 BUILD_ASSERT_DECL(sizeof(unsigned int) >= sizeof(mask));
6983 return ffs(mask);
6984 }
6985
6986 static bool
6987 ofbundle_trunks_vlan(const struct ofbundle *bundle, uint16_t vlan)
6988 {
6989 return (bundle->vlan_mode != PORT_VLAN_ACCESS
6990 && (!bundle->trunks || bitmap_is_set(bundle->trunks, vlan)));
6991 }
6992
6993 static bool
6994 ofbundle_includes_vlan(const struct ofbundle *bundle, uint16_t vlan)
6995 {
6996 return vlan == bundle->vlan || ofbundle_trunks_vlan(bundle, vlan);
6997 }
6998
6999 /* Returns an arbitrary interface within 'bundle'. */
7000 static struct ofport_dpif *
7001 ofbundle_get_a_port(const struct ofbundle *bundle)
7002 {
7003 return CONTAINER_OF(list_front(&bundle->ports),
7004 struct ofport_dpif, bundle_node);
7005 }
7006
7007 static bool
7008 vlan_is_mirrored(const struct ofmirror *m, int vlan)
7009 {
7010 return !m->vlans || bitmap_is_set(m->vlans, vlan);
7011 }
7012
7013 static void
7014 add_mirror_actions(struct action_xlate_ctx *ctx, const struct flow *orig_flow)
7015 {
7016 struct ofproto_dpif *ofproto = ctx->ofproto;
7017 mirror_mask_t mirrors;
7018 struct ofbundle *in_bundle;
7019 uint16_t vlan;
7020 uint16_t vid;
7021 const struct nlattr *a;
7022 size_t left;
7023
7024 in_bundle = lookup_input_bundle(ctx->ofproto, orig_flow->in_port,
7025 ctx->packet != NULL, NULL);
7026 if (!in_bundle) {
7027 return;
7028 }
7029 mirrors = in_bundle->src_mirrors;
7030
7031 /* Drop frames on bundles reserved for mirroring. */
7032 if (in_bundle->mirror_out) {
7033 if (ctx->packet != NULL) {
7034 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
7035 VLOG_WARN_RL(&rl, "bridge %s: dropping packet received on port "
7036 "%s, which is reserved exclusively for mirroring",
7037 ctx->ofproto->up.name, in_bundle->name);
7038 }
7039 return;
7040 }
7041
7042 /* Check VLAN. */
7043 vid = vlan_tci_to_vid(orig_flow->vlan_tci);
7044 if (!input_vid_is_valid(vid, in_bundle, ctx->packet != NULL)) {
7045 return;
7046 }
7047 vlan = input_vid_to_vlan(in_bundle, vid);
7048
7049 /* Look at the output ports to check for destination selections. */
7050
7051 NL_ATTR_FOR_EACH (a, left, ctx->odp_actions->data,
7052 ctx->odp_actions->size) {
7053 enum ovs_action_attr type = nl_attr_type(a);
7054 struct ofport_dpif *ofport;
7055
7056 if (type != OVS_ACTION_ATTR_OUTPUT) {
7057 continue;
7058 }
7059
7060 ofport = get_odp_port(ofproto, nl_attr_get_u32(a));
7061 if (ofport && ofport->bundle) {
7062 mirrors |= ofport->bundle->dst_mirrors;
7063 }
7064 }
7065
7066 if (!mirrors) {
7067 return;
7068 }
7069
7070 /* Restore the original packet before adding the mirror actions. */
7071 ctx->flow = *orig_flow;
7072
7073 while (mirrors) {
7074 struct ofmirror *m;
7075
7076 m = ofproto->mirrors[mirror_mask_ffs(mirrors) - 1];
7077
7078 if (!vlan_is_mirrored(m, vlan)) {
7079 mirrors = zero_rightmost_1bit(mirrors);
7080 continue;
7081 }
7082
7083 mirrors &= ~m->dup_mirrors;
7084 ctx->mirrors |= m->dup_mirrors;
7085 if (m->out) {
7086 output_normal(ctx, m->out, vlan);
7087 } else if (vlan != m->out_vlan
7088 && !eth_addr_is_reserved(orig_flow->dl_dst)) {
7089 struct ofbundle *bundle;
7090
7091 HMAP_FOR_EACH (bundle, hmap_node, &ofproto->bundles) {
7092 if (ofbundle_includes_vlan(bundle, m->out_vlan)
7093 && !bundle->mirror_out) {
7094 output_normal(ctx, bundle, m->out_vlan);
7095 }
7096 }
7097 }
7098 }
7099 }
7100
7101 static void
7102 update_mirror_stats(struct ofproto_dpif *ofproto, mirror_mask_t mirrors,
7103 uint64_t packets, uint64_t bytes)
7104 {
7105 if (!mirrors) {
7106 return;
7107 }
7108
7109 for (; mirrors; mirrors = zero_rightmost_1bit(mirrors)) {
7110 struct ofmirror *m;
7111
7112 m = ofproto->mirrors[mirror_mask_ffs(mirrors) - 1];
7113
7114 if (!m) {
7115 /* In normal circumstances 'm' will not be NULL. However,
7116 * if mirrors are reconfigured, we can temporarily get out
7117 * of sync in facet_revalidate(). We could "correct" the
7118 * mirror list before reaching here, but doing that would
7119 * not properly account the traffic stats we've currently
7120 * accumulated for previous mirror configuration. */
7121 continue;
7122 }
7123
7124 m->packet_count += packets;
7125 m->byte_count += bytes;
7126 }
7127 }
7128
7129 /* A VM broadcasts a gratuitous ARP to indicate that it has resumed after
7130 * migration. Older Citrix-patched Linux DomU used gratuitous ARP replies to
7131 * indicate this; newer upstream kernels use gratuitous ARP requests. */
7132 static bool
7133 is_gratuitous_arp(const struct flow *flow)
7134 {
7135 return (flow->dl_type == htons(ETH_TYPE_ARP)
7136 && eth_addr_is_broadcast(flow->dl_dst)
7137 && (flow->nw_proto == ARP_OP_REPLY
7138 || (flow->nw_proto == ARP_OP_REQUEST
7139 && flow->nw_src == flow->nw_dst)));
7140 }
7141
7142 static void
7143 update_learning_table(struct ofproto_dpif *ofproto,
7144 const struct flow *flow, int vlan,
7145 struct ofbundle *in_bundle)
7146 {
7147 struct mac_entry *mac;
7148
7149 /* Don't learn the OFPP_NONE port. */
7150 if (in_bundle == &ofpp_none_bundle) {
7151 return;
7152 }
7153
7154 if (!mac_learning_may_learn(ofproto->ml, flow->dl_src, vlan)) {
7155 return;
7156 }
7157
7158 mac = mac_learning_insert(ofproto->ml, flow->dl_src, vlan);
7159 if (is_gratuitous_arp(flow)) {
7160 /* We don't want to learn from gratuitous ARP packets that are
7161 * reflected back over bond slaves so we lock the learning table. */
7162 if (!in_bundle->bond) {
7163 mac_entry_set_grat_arp_lock(mac);
7164 } else if (mac_entry_is_grat_arp_locked(mac)) {
7165 return;
7166 }
7167 }
7168
7169 if (mac_entry_is_new(mac) || mac->port.p != in_bundle) {
7170 /* The log messages here could actually be useful in debugging,
7171 * so keep the rate limit relatively high. */
7172 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(30, 300);
7173 VLOG_DBG_RL(&rl, "bridge %s: learned that "ETH_ADDR_FMT" is "
7174 "on port %s in VLAN %d",
7175 ofproto->up.name, ETH_ADDR_ARGS(flow->dl_src),
7176 in_bundle->name, vlan);
7177
7178 mac->port.p = in_bundle;
7179 tag_set_add(&ofproto->backer->revalidate_set,
7180 mac_learning_changed(ofproto->ml, mac));
7181 }
7182 }
7183
7184 static struct ofbundle *
7185 lookup_input_bundle(const struct ofproto_dpif *ofproto, uint16_t in_port,
7186 bool warn, struct ofport_dpif **in_ofportp)
7187 {
7188 struct ofport_dpif *ofport;
7189
7190 /* Find the port and bundle for the received packet. */
7191 ofport = get_ofp_port(ofproto, in_port);
7192 if (in_ofportp) {
7193 *in_ofportp = ofport;
7194 }
7195 if (ofport && ofport->bundle) {
7196 return ofport->bundle;
7197 }
7198
7199 /* Special-case OFPP_NONE, which a controller may use as the ingress
7200 * port for traffic that it is sourcing. */
7201 if (in_port == OFPP_NONE) {
7202 return &ofpp_none_bundle;
7203 }
7204
7205 /* Odd. A few possible reasons here:
7206 *
7207 * - We deleted a port but there are still a few packets queued up
7208 * from it.
7209 *
7210 * - Someone externally added a port (e.g. "ovs-dpctl add-if") that
7211 * we don't know about.
7212 *
7213 * - The ofproto client didn't configure the port as part of a bundle.
7214 * This is particularly likely to happen if a packet was received on the
7215 * port after it was created, but before the client had a chance to
7216 * configure its bundle.
7217 */
7218 if (warn) {
7219 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
7220
7221 VLOG_WARN_RL(&rl, "bridge %s: received packet on unknown "
7222 "port %"PRIu16, ofproto->up.name, in_port);
7223 }
7224 return NULL;
7225 }
7226
7227 /* Determines whether packets in 'flow' within 'ofproto' should be forwarded or
7228 * dropped. Returns true if they may be forwarded, false if they should be
7229 * dropped.
7230 *
7231 * 'in_port' must be the ofport_dpif that corresponds to flow->in_port.
7232 * 'in_port' must be part of a bundle (e.g. in_port->bundle must be nonnull).
7233 *
7234 * 'vlan' must be the VLAN that corresponds to flow->vlan_tci on 'in_port', as
7235 * returned by input_vid_to_vlan(). It must be a valid VLAN for 'in_port', as
7236 * checked by input_vid_is_valid().
7237 *
7238 * May also add tags to '*tags', although the current implementation only does
7239 * so in one special case.
7240 */
7241 static bool
7242 is_admissible(struct action_xlate_ctx *ctx, struct ofport_dpif *in_port,
7243 uint16_t vlan)
7244 {
7245 struct ofproto_dpif *ofproto = ctx->ofproto;
7246 struct flow *flow = &ctx->flow;
7247 struct ofbundle *in_bundle = in_port->bundle;
7248
7249 /* Drop frames for reserved multicast addresses
7250 * only if forward_bpdu option is absent. */
7251 if (!ofproto->up.forward_bpdu && eth_addr_is_reserved(flow->dl_dst)) {
7252 xlate_report(ctx, "packet has reserved destination MAC, dropping");
7253 return false;
7254 }
7255
7256 if (in_bundle->bond) {
7257 struct mac_entry *mac;
7258
7259 switch (bond_check_admissibility(in_bundle->bond, in_port,
7260 flow->dl_dst, &ctx->tags)) {
7261 case BV_ACCEPT:
7262 break;
7263
7264 case BV_DROP:
7265 xlate_report(ctx, "bonding refused admissibility, dropping");
7266 return false;
7267
7268 case BV_DROP_IF_MOVED:
7269 mac = mac_learning_lookup(ofproto->ml, flow->dl_src, vlan, NULL);
7270 if (mac && mac->port.p != in_bundle &&
7271 (!is_gratuitous_arp(flow)
7272 || mac_entry_is_grat_arp_locked(mac))) {
7273 xlate_report(ctx, "SLB bond thinks this packet looped back, "
7274 "dropping");
7275 return false;
7276 }
7277 break;
7278 }
7279 }
7280
7281 return true;
7282 }
7283
7284 static void
7285 xlate_normal(struct action_xlate_ctx *ctx)
7286 {
7287 struct ofport_dpif *in_port;
7288 struct ofbundle *in_bundle;
7289 struct mac_entry *mac;
7290 uint16_t vlan;
7291 uint16_t vid;
7292
7293 ctx->has_normal = true;
7294
7295 in_bundle = lookup_input_bundle(ctx->ofproto, ctx->flow.in_port,
7296 ctx->packet != NULL, &in_port);
7297 if (!in_bundle) {
7298 xlate_report(ctx, "no input bundle, dropping");
7299 return;
7300 }
7301
7302 /* Drop malformed frames. */
7303 if (ctx->flow.dl_type == htons(ETH_TYPE_VLAN) &&
7304 !(ctx->flow.vlan_tci & htons(VLAN_CFI))) {
7305 if (ctx->packet != NULL) {
7306 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
7307 VLOG_WARN_RL(&rl, "bridge %s: dropping packet with partial "
7308 "VLAN tag received on port %s",
7309 ctx->ofproto->up.name, in_bundle->name);
7310 }
7311 xlate_report(ctx, "partial VLAN tag, dropping");
7312 return;
7313 }
7314
7315 /* Drop frames on bundles reserved for mirroring. */
7316 if (in_bundle->mirror_out) {
7317 if (ctx->packet != NULL) {
7318 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
7319 VLOG_WARN_RL(&rl, "bridge %s: dropping packet received on port "
7320 "%s, which is reserved exclusively for mirroring",
7321 ctx->ofproto->up.name, in_bundle->name);
7322 }
7323 xlate_report(ctx, "input port is mirror output port, dropping");
7324 return;
7325 }
7326
7327 /* Check VLAN. */
7328 vid = vlan_tci_to_vid(ctx->flow.vlan_tci);
7329 if (!input_vid_is_valid(vid, in_bundle, ctx->packet != NULL)) {
7330 xlate_report(ctx, "disallowed VLAN VID for this input port, dropping");
7331 return;
7332 }
7333 vlan = input_vid_to_vlan(in_bundle, vid);
7334
7335 /* Check other admissibility requirements. */
7336 if (in_port && !is_admissible(ctx, in_port, vlan)) {
7337 return;
7338 }
7339
7340 /* Learn source MAC. */
7341 if (ctx->may_learn) {
7342 update_learning_table(ctx->ofproto, &ctx->flow, vlan, in_bundle);
7343 }
7344
7345 /* Determine output bundle. */
7346 mac = mac_learning_lookup(ctx->ofproto->ml, ctx->flow.dl_dst, vlan,
7347 &ctx->tags);
7348 if (mac) {
7349 if (mac->port.p != in_bundle) {
7350 xlate_report(ctx, "forwarding to learned port");
7351 output_normal(ctx, mac->port.p, vlan);
7352 } else {
7353 xlate_report(ctx, "learned port is input port, dropping");
7354 }
7355 } else {
7356 struct ofbundle *bundle;
7357
7358 xlate_report(ctx, "no learned MAC for destination, flooding");
7359 HMAP_FOR_EACH (bundle, hmap_node, &ctx->ofproto->bundles) {
7360 if (bundle != in_bundle
7361 && ofbundle_includes_vlan(bundle, vlan)
7362 && bundle->floodable
7363 && !bundle->mirror_out) {
7364 output_normal(ctx, bundle, vlan);
7365 }
7366 }
7367 ctx->nf_output_iface = NF_OUT_FLOOD;
7368 }
7369 }
7370 \f
7371 /* Optimized flow revalidation.
7372 *
7373 * It's a difficult problem, in general, to tell which facets need to have
7374 * their actions recalculated whenever the OpenFlow flow table changes. We
7375 * don't try to solve that general problem: for most kinds of OpenFlow flow
7376 * table changes, we recalculate the actions for every facet. This is
7377 * relatively expensive, but it's good enough if the OpenFlow flow table
7378 * doesn't change very often.
7379 *
7380 * However, we can expect one particular kind of OpenFlow flow table change to
7381 * happen frequently: changes caused by MAC learning. To avoid wasting a lot
7382 * of CPU on revalidating every facet whenever MAC learning modifies the flow
7383 * table, we add a special case that applies to flow tables in which every rule
7384 * has the same form (that is, the same wildcards), except that the table is
7385 * also allowed to have a single "catch-all" flow that matches all packets. We
7386 * optimize this case by tagging all of the facets that resubmit into the table
7387 * and invalidating the same tag whenever a flow changes in that table. The
7388 * end result is that we revalidate just the facets that need it (and sometimes
7389 * a few more, but not all of the facets or even all of the facets that
7390 * resubmit to the table modified by MAC learning). */
7391
7392 /* Calculates the tag to use for 'flow' and mask 'mask' when it is inserted
7393 * into an OpenFlow table with the given 'basis'. */
7394 static tag_type
7395 rule_calculate_tag(const struct flow *flow, const struct minimask *mask,
7396 uint32_t secret)
7397 {
7398 if (minimask_is_catchall(mask)) {
7399 return 0;
7400 } else {
7401 uint32_t hash = flow_hash_in_minimask(flow, mask, secret);
7402 return tag_create_deterministic(hash);
7403 }
7404 }
7405
7406 /* Following a change to OpenFlow table 'table_id' in 'ofproto', update the
7407 * taggability of that table.
7408 *
7409 * This function must be called after *each* change to a flow table. If you
7410 * skip calling it on some changes then the pointer comparisons at the end can
7411 * be invalid if you get unlucky. For example, if a flow removal causes a
7412 * cls_table to be destroyed and then a flow insertion causes a cls_table with
7413 * different wildcards to be created with the same address, then this function
7414 * will incorrectly skip revalidation. */
7415 static void
7416 table_update_taggable(struct ofproto_dpif *ofproto, uint8_t table_id)
7417 {
7418 struct table_dpif *table = &ofproto->tables[table_id];
7419 const struct oftable *oftable = &ofproto->up.tables[table_id];
7420 struct cls_table *catchall, *other;
7421 struct cls_table *t;
7422
7423 catchall = other = NULL;
7424
7425 switch (hmap_count(&oftable->cls.tables)) {
7426 case 0:
7427 /* We could tag this OpenFlow table but it would make the logic a
7428 * little harder and it's a corner case that doesn't seem worth it
7429 * yet. */
7430 break;
7431
7432 case 1:
7433 case 2:
7434 HMAP_FOR_EACH (t, hmap_node, &oftable->cls.tables) {
7435 if (cls_table_is_catchall(t)) {
7436 catchall = t;
7437 } else if (!other) {
7438 other = t;
7439 } else {
7440 /* Indicate that we can't tag this by setting both tables to
7441 * NULL. (We know that 'catchall' is already NULL.) */
7442 other = NULL;
7443 }
7444 }
7445 break;
7446
7447 default:
7448 /* Can't tag this table. */
7449 break;
7450 }
7451
7452 if (table->catchall_table != catchall || table->other_table != other) {
7453 table->catchall_table = catchall;
7454 table->other_table = other;
7455 ofproto->backer->need_revalidate = REV_FLOW_TABLE;
7456 }
7457 }
7458
7459 /* Given 'rule' that has changed in some way (either it is a rule being
7460 * inserted, a rule being deleted, or a rule whose actions are being
7461 * modified), marks facets for revalidation to ensure that packets will be
7462 * forwarded correctly according to the new state of the flow table.
7463 *
7464 * This function must be called after *each* change to a flow table. See
7465 * the comment on table_update_taggable() for more information. */
7466 static void
7467 rule_invalidate(const struct rule_dpif *rule)
7468 {
7469 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
7470
7471 table_update_taggable(ofproto, rule->up.table_id);
7472
7473 if (!ofproto->backer->need_revalidate) {
7474 struct table_dpif *table = &ofproto->tables[rule->up.table_id];
7475
7476 if (table->other_table && rule->tag) {
7477 tag_set_add(&ofproto->backer->revalidate_set, rule->tag);
7478 } else {
7479 ofproto->backer->need_revalidate = REV_FLOW_TABLE;
7480 }
7481 }
7482 }
7483 \f
7484 static bool
7485 set_frag_handling(struct ofproto *ofproto_,
7486 enum ofp_config_flags frag_handling)
7487 {
7488 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
7489 if (frag_handling != OFPC_FRAG_REASM) {
7490 ofproto->backer->need_revalidate = REV_RECONFIGURE;
7491 return true;
7492 } else {
7493 return false;
7494 }
7495 }
7496
7497 static enum ofperr
7498 packet_out(struct ofproto *ofproto_, struct ofpbuf *packet,
7499 const struct flow *flow,
7500 const struct ofpact *ofpacts, size_t ofpacts_len)
7501 {
7502 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
7503 struct initial_vals initial_vals;
7504 struct odputil_keybuf keybuf;
7505 struct dpif_flow_stats stats;
7506
7507 struct ofpbuf key;
7508
7509 struct action_xlate_ctx ctx;
7510 uint64_t odp_actions_stub[1024 / 8];
7511 struct ofpbuf odp_actions;
7512
7513 ofpbuf_use_stack(&key, &keybuf, sizeof keybuf);
7514 odp_flow_key_from_flow(&key, flow,
7515 ofp_port_to_odp_port(ofproto, flow->in_port));
7516
7517 dpif_flow_stats_extract(flow, packet, time_msec(), &stats);
7518
7519 initial_vals.vlan_tci = flow->vlan_tci;
7520 initial_vals.tunnel_ip_tos = 0;
7521 action_xlate_ctx_init(&ctx, ofproto, flow, &initial_vals, NULL,
7522 packet_get_tcp_flags(packet, flow), packet);
7523 ctx.resubmit_stats = &stats;
7524
7525 ofpbuf_use_stub(&odp_actions,
7526 odp_actions_stub, sizeof odp_actions_stub);
7527 xlate_actions(&ctx, ofpacts, ofpacts_len, &odp_actions);
7528 dpif_execute(ofproto->backer->dpif, key.data, key.size,
7529 odp_actions.data, odp_actions.size, packet);
7530 ofpbuf_uninit(&odp_actions);
7531
7532 return 0;
7533 }
7534 \f
7535 /* NetFlow. */
7536
7537 static int
7538 set_netflow(struct ofproto *ofproto_,
7539 const struct netflow_options *netflow_options)
7540 {
7541 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
7542
7543 if (netflow_options) {
7544 if (!ofproto->netflow) {
7545 ofproto->netflow = netflow_create();
7546 }
7547 return netflow_set_options(ofproto->netflow, netflow_options);
7548 } else {
7549 netflow_destroy(ofproto->netflow);
7550 ofproto->netflow = NULL;
7551 return 0;
7552 }
7553 }
7554
7555 static void
7556 get_netflow_ids(const struct ofproto *ofproto_,
7557 uint8_t *engine_type, uint8_t *engine_id)
7558 {
7559 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
7560
7561 dpif_get_netflow_ids(ofproto->backer->dpif, engine_type, engine_id);
7562 }
7563
7564 static void
7565 send_active_timeout(struct ofproto_dpif *ofproto, struct facet *facet)
7566 {
7567 if (!facet_is_controller_flow(facet) &&
7568 netflow_active_timeout_expired(ofproto->netflow, &facet->nf_flow)) {
7569 struct subfacet *subfacet;
7570 struct ofexpired expired;
7571
7572 LIST_FOR_EACH (subfacet, list_node, &facet->subfacets) {
7573 if (subfacet->path == SF_FAST_PATH) {
7574 struct dpif_flow_stats stats;
7575
7576 subfacet_reinstall(subfacet, &stats);
7577 subfacet_update_stats(subfacet, &stats);
7578 }
7579 }
7580
7581 expired.flow = facet->flow;
7582 expired.packet_count = facet->packet_count;
7583 expired.byte_count = facet->byte_count;
7584 expired.used = facet->used;
7585 netflow_expire(ofproto->netflow, &facet->nf_flow, &expired);
7586 }
7587 }
7588
7589 static void
7590 send_netflow_active_timeouts(struct ofproto_dpif *ofproto)
7591 {
7592 struct facet *facet;
7593
7594 HMAP_FOR_EACH (facet, hmap_node, &ofproto->facets) {
7595 send_active_timeout(ofproto, facet);
7596 }
7597 }
7598 \f
7599 static struct ofproto_dpif *
7600 ofproto_dpif_lookup(const char *name)
7601 {
7602 struct ofproto_dpif *ofproto;
7603
7604 HMAP_FOR_EACH_WITH_HASH (ofproto, all_ofproto_dpifs_node,
7605 hash_string(name, 0), &all_ofproto_dpifs) {
7606 if (!strcmp(ofproto->up.name, name)) {
7607 return ofproto;
7608 }
7609 }
7610 return NULL;
7611 }
7612
7613 static void
7614 ofproto_unixctl_fdb_flush(struct unixctl_conn *conn, int argc,
7615 const char *argv[], void *aux OVS_UNUSED)
7616 {
7617 struct ofproto_dpif *ofproto;
7618
7619 if (argc > 1) {
7620 ofproto = ofproto_dpif_lookup(argv[1]);
7621 if (!ofproto) {
7622 unixctl_command_reply_error(conn, "no such bridge");
7623 return;
7624 }
7625 mac_learning_flush(ofproto->ml, &ofproto->backer->revalidate_set);
7626 } else {
7627 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
7628 mac_learning_flush(ofproto->ml, &ofproto->backer->revalidate_set);
7629 }
7630 }
7631
7632 unixctl_command_reply(conn, "table successfully flushed");
7633 }
7634
7635 static void
7636 ofproto_unixctl_fdb_show(struct unixctl_conn *conn, int argc OVS_UNUSED,
7637 const char *argv[], void *aux OVS_UNUSED)
7638 {
7639 struct ds ds = DS_EMPTY_INITIALIZER;
7640 const struct ofproto_dpif *ofproto;
7641 const struct mac_entry *e;
7642
7643 ofproto = ofproto_dpif_lookup(argv[1]);
7644 if (!ofproto) {
7645 unixctl_command_reply_error(conn, "no such bridge");
7646 return;
7647 }
7648
7649 ds_put_cstr(&ds, " port VLAN MAC Age\n");
7650 LIST_FOR_EACH (e, lru_node, &ofproto->ml->lrus) {
7651 struct ofbundle *bundle = e->port.p;
7652 ds_put_format(&ds, "%5d %4d "ETH_ADDR_FMT" %3d\n",
7653 ofbundle_get_a_port(bundle)->odp_port,
7654 e->vlan, ETH_ADDR_ARGS(e->mac),
7655 mac_entry_age(ofproto->ml, e));
7656 }
7657 unixctl_command_reply(conn, ds_cstr(&ds));
7658 ds_destroy(&ds);
7659 }
7660
7661 struct trace_ctx {
7662 struct action_xlate_ctx ctx;
7663 struct flow flow;
7664 struct ds *result;
7665 };
7666
7667 static void
7668 trace_format_rule(struct ds *result, uint8_t table_id, int level,
7669 const struct rule_dpif *rule)
7670 {
7671 ds_put_char_multiple(result, '\t', level);
7672 if (!rule) {
7673 ds_put_cstr(result, "No match\n");
7674 return;
7675 }
7676
7677 ds_put_format(result, "Rule: table=%"PRIu8" cookie=%#"PRIx64" ",
7678 table_id, ntohll(rule->up.flow_cookie));
7679 cls_rule_format(&rule->up.cr, result);
7680 ds_put_char(result, '\n');
7681
7682 ds_put_char_multiple(result, '\t', level);
7683 ds_put_cstr(result, "OpenFlow ");
7684 ofpacts_format(rule->up.ofpacts, rule->up.ofpacts_len, result);
7685 ds_put_char(result, '\n');
7686 }
7687
7688 static void
7689 trace_format_flow(struct ds *result, int level, const char *title,
7690 struct trace_ctx *trace)
7691 {
7692 ds_put_char_multiple(result, '\t', level);
7693 ds_put_format(result, "%s: ", title);
7694 if (flow_equal(&trace->ctx.flow, &trace->flow)) {
7695 ds_put_cstr(result, "unchanged");
7696 } else {
7697 flow_format(result, &trace->ctx.flow);
7698 trace->flow = trace->ctx.flow;
7699 }
7700 ds_put_char(result, '\n');
7701 }
7702
7703 static void
7704 trace_format_regs(struct ds *result, int level, const char *title,
7705 struct trace_ctx *trace)
7706 {
7707 size_t i;
7708
7709 ds_put_char_multiple(result, '\t', level);
7710 ds_put_format(result, "%s:", title);
7711 for (i = 0; i < FLOW_N_REGS; i++) {
7712 ds_put_format(result, " reg%zu=0x%"PRIx32, i, trace->flow.regs[i]);
7713 }
7714 ds_put_char(result, '\n');
7715 }
7716
7717 static void
7718 trace_format_odp(struct ds *result, int level, const char *title,
7719 struct trace_ctx *trace)
7720 {
7721 struct ofpbuf *odp_actions = trace->ctx.odp_actions;
7722
7723 ds_put_char_multiple(result, '\t', level);
7724 ds_put_format(result, "%s: ", title);
7725 format_odp_actions(result, odp_actions->data, odp_actions->size);
7726 ds_put_char(result, '\n');
7727 }
7728
7729 static void
7730 trace_resubmit(struct action_xlate_ctx *ctx, struct rule_dpif *rule)
7731 {
7732 struct trace_ctx *trace = CONTAINER_OF(ctx, struct trace_ctx, ctx);
7733 struct ds *result = trace->result;
7734
7735 ds_put_char(result, '\n');
7736 trace_format_flow(result, ctx->recurse + 1, "Resubmitted flow", trace);
7737 trace_format_regs(result, ctx->recurse + 1, "Resubmitted regs", trace);
7738 trace_format_odp(result, ctx->recurse + 1, "Resubmitted odp", trace);
7739 trace_format_rule(result, ctx->table_id, ctx->recurse + 1, rule);
7740 }
7741
7742 static void
7743 trace_report(struct action_xlate_ctx *ctx, const char *s)
7744 {
7745 struct trace_ctx *trace = CONTAINER_OF(ctx, struct trace_ctx, ctx);
7746 struct ds *result = trace->result;
7747
7748 ds_put_char_multiple(result, '\t', ctx->recurse);
7749 ds_put_cstr(result, s);
7750 ds_put_char(result, '\n');
7751 }
7752
7753 static void
7754 ofproto_unixctl_trace(struct unixctl_conn *conn, int argc, const char *argv[],
7755 void *aux OVS_UNUSED)
7756 {
7757 const char *dpname = argv[1];
7758 struct ofproto_dpif *ofproto;
7759 struct ofpbuf odp_key;
7760 struct ofpbuf *packet;
7761 struct initial_vals initial_vals;
7762 struct ds result;
7763 struct flow flow;
7764 char *s;
7765
7766 packet = NULL;
7767 ofpbuf_init(&odp_key, 0);
7768 ds_init(&result);
7769
7770 ofproto = ofproto_dpif_lookup(dpname);
7771 if (!ofproto) {
7772 unixctl_command_reply_error(conn, "Unknown ofproto (use ofproto/list "
7773 "for help)");
7774 goto exit;
7775 }
7776 if (argc == 3 || (argc == 4 && !strcmp(argv[3], "-generate"))) {
7777 /* ofproto/trace dpname flow [-generate] */
7778 const char *flow_s = argv[2];
7779 const char *generate_s = argv[3];
7780
7781 /* Allow 'flow_s' to be either a datapath flow or an OpenFlow-like
7782 * flow. We guess which type it is based on whether 'flow_s' contains
7783 * an '(', since a datapath flow always contains '(') but an
7784 * OpenFlow-like flow should not (in fact it's allowed but I believe
7785 * that's not documented anywhere).
7786 *
7787 * An alternative would be to try to parse 'flow_s' both ways, but then
7788 * it would be tricky giving a sensible error message. After all, do
7789 * you just say "syntax error" or do you present both error messages?
7790 * Both choices seem lousy. */
7791 if (strchr(flow_s, '(')) {
7792 int error;
7793
7794 /* Convert string to datapath key. */
7795 ofpbuf_init(&odp_key, 0);
7796 error = odp_flow_key_from_string(flow_s, NULL, &odp_key);
7797 if (error) {
7798 unixctl_command_reply_error(conn, "Bad flow syntax");
7799 goto exit;
7800 }
7801
7802 /* The user might have specified the wrong ofproto but within the
7803 * same backer. That's OK, ofproto_receive() can find the right
7804 * one for us. */
7805 if (ofproto_receive(ofproto->backer, NULL, odp_key.data,
7806 odp_key.size, &flow, NULL, &ofproto, NULL,
7807 &initial_vals)) {
7808 unixctl_command_reply_error(conn, "Invalid flow");
7809 goto exit;
7810 }
7811 ds_put_format(&result, "Bridge: %s\n", ofproto->up.name);
7812 } else {
7813 char *error_s;
7814
7815 error_s = parse_ofp_exact_flow(&flow, argv[2]);
7816 if (error_s) {
7817 unixctl_command_reply_error(conn, error_s);
7818 free(error_s);
7819 goto exit;
7820 }
7821
7822 initial_vals.vlan_tci = flow.vlan_tci;
7823 initial_vals.tunnel_ip_tos = flow.tunnel.ip_tos;
7824 }
7825
7826 /* Generate a packet, if requested. */
7827 if (generate_s) {
7828 packet = ofpbuf_new(0);
7829 flow_compose(packet, &flow);
7830 }
7831 } else if (argc == 7) {
7832 /* ofproto/trace dpname priority tun_id in_port mark packet */
7833 const char *priority_s = argv[2];
7834 const char *tun_id_s = argv[3];
7835 const char *in_port_s = argv[4];
7836 const char *mark_s = argv[5];
7837 const char *packet_s = argv[6];
7838 uint32_t in_port = atoi(in_port_s);
7839 ovs_be64 tun_id = htonll(strtoull(tun_id_s, NULL, 0));
7840 uint32_t priority = atoi(priority_s);
7841 uint32_t mark = atoi(mark_s);
7842 const char *msg;
7843
7844 msg = eth_from_hex(packet_s, &packet);
7845 if (msg) {
7846 unixctl_command_reply_error(conn, msg);
7847 goto exit;
7848 }
7849
7850 ds_put_cstr(&result, "Packet: ");
7851 s = ofp_packet_to_string(packet->data, packet->size);
7852 ds_put_cstr(&result, s);
7853 free(s);
7854
7855 flow_extract(packet, priority, mark, NULL, in_port, &flow);
7856 flow.tunnel.tun_id = tun_id;
7857 initial_vals.vlan_tci = flow.vlan_tci;
7858 initial_vals.tunnel_ip_tos = flow.tunnel.ip_tos;
7859 } else {
7860 unixctl_command_reply_error(conn, "Bad command syntax");
7861 goto exit;
7862 }
7863
7864 ofproto_trace(ofproto, &flow, packet, &initial_vals, &result);
7865 unixctl_command_reply(conn, ds_cstr(&result));
7866
7867 exit:
7868 ds_destroy(&result);
7869 ofpbuf_delete(packet);
7870 ofpbuf_uninit(&odp_key);
7871 }
7872
7873 static void
7874 ofproto_trace(struct ofproto_dpif *ofproto, const struct flow *flow,
7875 const struct ofpbuf *packet,
7876 const struct initial_vals *initial_vals, struct ds *ds)
7877 {
7878 struct rule_dpif *rule;
7879
7880 ds_put_cstr(ds, "Flow: ");
7881 flow_format(ds, flow);
7882 ds_put_char(ds, '\n');
7883
7884 rule = rule_dpif_lookup(ofproto, flow);
7885
7886 trace_format_rule(ds, 0, 0, rule);
7887 if (rule == ofproto->miss_rule) {
7888 ds_put_cstr(ds, "\nNo match, flow generates \"packet in\"s.\n");
7889 } else if (rule == ofproto->no_packet_in_rule) {
7890 ds_put_cstr(ds, "\nNo match, packets dropped because "
7891 "OFPPC_NO_PACKET_IN is set on in_port.\n");
7892 }
7893
7894 if (rule) {
7895 uint64_t odp_actions_stub[1024 / 8];
7896 struct ofpbuf odp_actions;
7897
7898 struct trace_ctx trace;
7899 uint8_t tcp_flags;
7900
7901 tcp_flags = packet ? packet_get_tcp_flags(packet, flow) : 0;
7902 trace.result = ds;
7903 trace.flow = *flow;
7904 ofpbuf_use_stub(&odp_actions,
7905 odp_actions_stub, sizeof odp_actions_stub);
7906 action_xlate_ctx_init(&trace.ctx, ofproto, flow, initial_vals,
7907 rule, tcp_flags, packet);
7908 trace.ctx.resubmit_hook = trace_resubmit;
7909 trace.ctx.report_hook = trace_report;
7910 xlate_actions(&trace.ctx, rule->up.ofpacts, rule->up.ofpacts_len,
7911 &odp_actions);
7912
7913 ds_put_char(ds, '\n');
7914 trace_format_flow(ds, 0, "Final flow", &trace);
7915 ds_put_cstr(ds, "Datapath actions: ");
7916 format_odp_actions(ds, odp_actions.data, odp_actions.size);
7917 ofpbuf_uninit(&odp_actions);
7918
7919 if (trace.ctx.slow) {
7920 enum slow_path_reason slow;
7921
7922 ds_put_cstr(ds, "\nThis flow is handled by the userspace "
7923 "slow path because it:");
7924 for (slow = trace.ctx.slow; slow; ) {
7925 enum slow_path_reason bit = rightmost_1bit(slow);
7926
7927 switch (bit) {
7928 case SLOW_CFM:
7929 ds_put_cstr(ds, "\n\t- Consists of CFM packets.");
7930 break;
7931 case SLOW_LACP:
7932 ds_put_cstr(ds, "\n\t- Consists of LACP packets.");
7933 break;
7934 case SLOW_STP:
7935 ds_put_cstr(ds, "\n\t- Consists of STP packets.");
7936 break;
7937 case SLOW_IN_BAND:
7938 ds_put_cstr(ds, "\n\t- Needs in-band special case "
7939 "processing.");
7940 if (!packet) {
7941 ds_put_cstr(ds, "\n\t (The datapath actions are "
7942 "incomplete--for complete actions, "
7943 "please supply a packet.)");
7944 }
7945 break;
7946 case SLOW_CONTROLLER:
7947 ds_put_cstr(ds, "\n\t- Sends \"packet-in\" messages "
7948 "to the OpenFlow controller.");
7949 break;
7950 case SLOW_MATCH:
7951 ds_put_cstr(ds, "\n\t- Needs more specific matching "
7952 "than the datapath supports.");
7953 break;
7954 }
7955
7956 slow &= ~bit;
7957 }
7958
7959 if (slow & ~SLOW_MATCH) {
7960 ds_put_cstr(ds, "\nThe datapath actions above do not reflect "
7961 "the special slow-path processing.");
7962 }
7963 }
7964 }
7965 }
7966
7967 static void
7968 ofproto_dpif_clog(struct unixctl_conn *conn OVS_UNUSED, int argc OVS_UNUSED,
7969 const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED)
7970 {
7971 clogged = true;
7972 unixctl_command_reply(conn, NULL);
7973 }
7974
7975 static void
7976 ofproto_dpif_unclog(struct unixctl_conn *conn OVS_UNUSED, int argc OVS_UNUSED,
7977 const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED)
7978 {
7979 clogged = false;
7980 unixctl_command_reply(conn, NULL);
7981 }
7982
7983 /* Runs a self-check of flow translations in 'ofproto'. Appends a message to
7984 * 'reply' describing the results. */
7985 static void
7986 ofproto_dpif_self_check__(struct ofproto_dpif *ofproto, struct ds *reply)
7987 {
7988 struct facet *facet;
7989 int errors;
7990
7991 errors = 0;
7992 HMAP_FOR_EACH (facet, hmap_node, &ofproto->facets) {
7993 if (!facet_check_consistency(facet)) {
7994 errors++;
7995 }
7996 }
7997 if (errors) {
7998 ofproto->backer->need_revalidate = REV_INCONSISTENCY;
7999 }
8000
8001 if (errors) {
8002 ds_put_format(reply, "%s: self-check failed (%d errors)\n",
8003 ofproto->up.name, errors);
8004 } else {
8005 ds_put_format(reply, "%s: self-check passed\n", ofproto->up.name);
8006 }
8007 }
8008
8009 static void
8010 ofproto_dpif_self_check(struct unixctl_conn *conn,
8011 int argc, const char *argv[], void *aux OVS_UNUSED)
8012 {
8013 struct ds reply = DS_EMPTY_INITIALIZER;
8014 struct ofproto_dpif *ofproto;
8015
8016 if (argc > 1) {
8017 ofproto = ofproto_dpif_lookup(argv[1]);
8018 if (!ofproto) {
8019 unixctl_command_reply_error(conn, "Unknown ofproto (use "
8020 "ofproto/list for help)");
8021 return;
8022 }
8023 ofproto_dpif_self_check__(ofproto, &reply);
8024 } else {
8025 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
8026 ofproto_dpif_self_check__(ofproto, &reply);
8027 }
8028 }
8029
8030 unixctl_command_reply(conn, ds_cstr(&reply));
8031 ds_destroy(&reply);
8032 }
8033
8034 /* Store the current ofprotos in 'ofproto_shash'. Returns a sorted list
8035 * of the 'ofproto_shash' nodes. It is the responsibility of the caller
8036 * to destroy 'ofproto_shash' and free the returned value. */
8037 static const struct shash_node **
8038 get_ofprotos(struct shash *ofproto_shash)
8039 {
8040 const struct ofproto_dpif *ofproto;
8041
8042 HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) {
8043 char *name = xasprintf("%s@%s", ofproto->up.type, ofproto->up.name);
8044 shash_add_nocopy(ofproto_shash, name, ofproto);
8045 }
8046
8047 return shash_sort(ofproto_shash);
8048 }
8049
8050 static void
8051 ofproto_unixctl_dpif_dump_dps(struct unixctl_conn *conn, int argc OVS_UNUSED,
8052 const char *argv[] OVS_UNUSED,
8053 void *aux OVS_UNUSED)
8054 {
8055 struct ds ds = DS_EMPTY_INITIALIZER;
8056 struct shash ofproto_shash;
8057 const struct shash_node **sorted_ofprotos;
8058 int i;
8059
8060 shash_init(&ofproto_shash);
8061 sorted_ofprotos = get_ofprotos(&ofproto_shash);
8062 for (i = 0; i < shash_count(&ofproto_shash); i++) {
8063 const struct shash_node *node = sorted_ofprotos[i];
8064 ds_put_format(&ds, "%s\n", node->name);
8065 }
8066
8067 shash_destroy(&ofproto_shash);
8068 free(sorted_ofprotos);
8069
8070 unixctl_command_reply(conn, ds_cstr(&ds));
8071 ds_destroy(&ds);
8072 }
8073
8074 static void
8075 show_dp_format(const struct ofproto_dpif *ofproto, struct ds *ds)
8076 {
8077 const struct shash_node **ports;
8078 int i;
8079
8080 ds_put_format(ds, "%s (%s):\n", ofproto->up.name,
8081 dpif_name(ofproto->backer->dpif));
8082 ds_put_format(ds,
8083 "\tlookups: hit:%"PRIu64" missed:%"PRIu64"\n",
8084 ofproto->n_hit, ofproto->n_missed);
8085 ds_put_format(ds, "\tflows: %zu\n",
8086 hmap_count(&ofproto->subfacets));
8087
8088 ports = shash_sort(&ofproto->up.port_by_name);
8089 for (i = 0; i < shash_count(&ofproto->up.port_by_name); i++) {
8090 const struct shash_node *node = ports[i];
8091 struct ofport *ofport = node->data;
8092 const char *name = netdev_get_name(ofport->netdev);
8093 const char *type = netdev_get_type(ofport->netdev);
8094 uint32_t odp_port;
8095
8096 ds_put_format(ds, "\t%s %u/", name, ofport->ofp_port);
8097
8098 odp_port = ofp_port_to_odp_port(ofproto, ofport->ofp_port);
8099 if (odp_port != OVSP_NONE) {
8100 ds_put_format(ds, "%"PRIu32":", odp_port);
8101 } else {
8102 ds_put_cstr(ds, "none:");
8103 }
8104
8105 if (strcmp(type, "system")) {
8106 struct netdev *netdev;
8107 int error;
8108
8109 ds_put_format(ds, " (%s", type);
8110
8111 error = netdev_open(name, type, &netdev);
8112 if (!error) {
8113 struct smap config;
8114
8115 smap_init(&config);
8116 error = netdev_get_config(netdev, &config);
8117 if (!error) {
8118 const struct smap_node **nodes;
8119 size_t i;
8120
8121 nodes = smap_sort(&config);
8122 for (i = 0; i < smap_count(&config); i++) {
8123 const struct smap_node *node = nodes[i];
8124 ds_put_format(ds, "%c %s=%s", i ? ',' : ':',
8125 node->key, node->value);
8126 }
8127 free(nodes);
8128 }
8129 smap_destroy(&config);
8130
8131 netdev_close(netdev);
8132 }
8133 ds_put_char(ds, ')');
8134 }
8135 ds_put_char(ds, '\n');
8136 }
8137 free(ports);
8138 }
8139
8140 static void
8141 ofproto_unixctl_dpif_show(struct unixctl_conn *conn, int argc,
8142 const char *argv[], void *aux OVS_UNUSED)
8143 {
8144 struct ds ds = DS_EMPTY_INITIALIZER;
8145 const struct ofproto_dpif *ofproto;
8146
8147 if (argc > 1) {
8148 int i;
8149 for (i = 1; i < argc; i++) {
8150 ofproto = ofproto_dpif_lookup(argv[i]);
8151 if (!ofproto) {
8152 ds_put_format(&ds, "Unknown bridge %s (use dpif/dump-dps "
8153 "for help)", argv[i]);
8154 unixctl_command_reply_error(conn, ds_cstr(&ds));
8155 return;
8156 }
8157 show_dp_format(ofproto, &ds);
8158 }
8159 } else {
8160 struct shash ofproto_shash;
8161 const struct shash_node **sorted_ofprotos;
8162 int i;
8163
8164 shash_init(&ofproto_shash);
8165 sorted_ofprotos = get_ofprotos(&ofproto_shash);
8166 for (i = 0; i < shash_count(&ofproto_shash); i++) {
8167 const struct shash_node *node = sorted_ofprotos[i];
8168 show_dp_format(node->data, &ds);
8169 }
8170
8171 shash_destroy(&ofproto_shash);
8172 free(sorted_ofprotos);
8173 }
8174
8175 unixctl_command_reply(conn, ds_cstr(&ds));
8176 ds_destroy(&ds);
8177 }
8178
8179 static void
8180 ofproto_unixctl_dpif_dump_flows(struct unixctl_conn *conn,
8181 int argc OVS_UNUSED, const char *argv[],
8182 void *aux OVS_UNUSED)
8183 {
8184 struct ds ds = DS_EMPTY_INITIALIZER;
8185 const struct ofproto_dpif *ofproto;
8186 struct subfacet *subfacet;
8187
8188 ofproto = ofproto_dpif_lookup(argv[1]);
8189 if (!ofproto) {
8190 unixctl_command_reply_error(conn, "no such bridge");
8191 return;
8192 }
8193
8194 update_stats(ofproto->backer);
8195
8196 HMAP_FOR_EACH (subfacet, hmap_node, &ofproto->subfacets) {
8197 odp_flow_key_format(subfacet->key, subfacet->key_len, &ds);
8198
8199 ds_put_format(&ds, ", packets:%"PRIu64", bytes:%"PRIu64", used:",
8200 subfacet->dp_packet_count, subfacet->dp_byte_count);
8201 if (subfacet->used) {
8202 ds_put_format(&ds, "%.3fs",
8203 (time_msec() - subfacet->used) / 1000.0);
8204 } else {
8205 ds_put_format(&ds, "never");
8206 }
8207 if (subfacet->facet->tcp_flags) {
8208 ds_put_cstr(&ds, ", flags:");
8209 packet_format_tcp_flags(&ds, subfacet->facet->tcp_flags);
8210 }
8211
8212 ds_put_cstr(&ds, ", actions:");
8213 if (subfacet->slow) {
8214 uint64_t slow_path_stub[128 / 8];
8215 const struct nlattr *actions;
8216 size_t actions_len;
8217
8218 compose_slow_path(ofproto, &subfacet->facet->flow, subfacet->slow,
8219 slow_path_stub, sizeof slow_path_stub,
8220 &actions, &actions_len);
8221 format_odp_actions(&ds, actions, actions_len);
8222 } else {
8223 format_odp_actions(&ds, subfacet->actions, subfacet->actions_len);
8224 }
8225 ds_put_char(&ds, '\n');
8226 }
8227
8228 unixctl_command_reply(conn, ds_cstr(&ds));
8229 ds_destroy(&ds);
8230 }
8231
8232 static void
8233 ofproto_unixctl_dpif_del_flows(struct unixctl_conn *conn,
8234 int argc OVS_UNUSED, const char *argv[],
8235 void *aux OVS_UNUSED)
8236 {
8237 struct ds ds = DS_EMPTY_INITIALIZER;
8238 struct ofproto_dpif *ofproto;
8239
8240 ofproto = ofproto_dpif_lookup(argv[1]);
8241 if (!ofproto) {
8242 unixctl_command_reply_error(conn, "no such bridge");
8243 return;
8244 }
8245
8246 flush(&ofproto->up);
8247
8248 unixctl_command_reply(conn, ds_cstr(&ds));
8249 ds_destroy(&ds);
8250 }
8251
8252 static void
8253 ofproto_dpif_unixctl_init(void)
8254 {
8255 static bool registered;
8256 if (registered) {
8257 return;
8258 }
8259 registered = true;
8260
8261 unixctl_command_register(
8262 "ofproto/trace",
8263 "bridge {priority tun_id in_port mark packet | odp_flow [-generate]}",
8264 2, 6, ofproto_unixctl_trace, NULL);
8265 unixctl_command_register("fdb/flush", "[bridge]", 0, 1,
8266 ofproto_unixctl_fdb_flush, NULL);
8267 unixctl_command_register("fdb/show", "bridge", 1, 1,
8268 ofproto_unixctl_fdb_show, NULL);
8269 unixctl_command_register("ofproto/clog", "", 0, 0,
8270 ofproto_dpif_clog, NULL);
8271 unixctl_command_register("ofproto/unclog", "", 0, 0,
8272 ofproto_dpif_unclog, NULL);
8273 unixctl_command_register("ofproto/self-check", "[bridge]", 0, 1,
8274 ofproto_dpif_self_check, NULL);
8275 unixctl_command_register("dpif/dump-dps", "", 0, 0,
8276 ofproto_unixctl_dpif_dump_dps, NULL);
8277 unixctl_command_register("dpif/show", "[bridge]", 0, INT_MAX,
8278 ofproto_unixctl_dpif_show, NULL);
8279 unixctl_command_register("dpif/dump-flows", "bridge", 1, 1,
8280 ofproto_unixctl_dpif_dump_flows, NULL);
8281 unixctl_command_register("dpif/del-flows", "bridge", 1, 1,
8282 ofproto_unixctl_dpif_del_flows, NULL);
8283 }
8284 \f
8285 /* Linux VLAN device support (e.g. "eth0.10" for VLAN 10.)
8286 *
8287 * This is deprecated. It is only for compatibility with broken device drivers
8288 * in old versions of Linux that do not properly support VLANs when VLAN
8289 * devices are not used. When broken device drivers are no longer in
8290 * widespread use, we will delete these interfaces. */
8291
8292 static int
8293 set_realdev(struct ofport *ofport_, uint16_t realdev_ofp_port, int vid)
8294 {
8295 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport_->ofproto);
8296 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
8297
8298 if (realdev_ofp_port == ofport->realdev_ofp_port
8299 && vid == ofport->vlandev_vid) {
8300 return 0;
8301 }
8302
8303 ofproto->backer->need_revalidate = REV_RECONFIGURE;
8304
8305 if (ofport->realdev_ofp_port) {
8306 vsp_remove(ofport);
8307 }
8308 if (realdev_ofp_port && ofport->bundle) {
8309 /* vlandevs are enslaved to their realdevs, so they are not allowed to
8310 * themselves be part of a bundle. */
8311 bundle_set(ofport->up.ofproto, ofport->bundle, NULL);
8312 }
8313
8314 ofport->realdev_ofp_port = realdev_ofp_port;
8315 ofport->vlandev_vid = vid;
8316
8317 if (realdev_ofp_port) {
8318 vsp_add(ofport, realdev_ofp_port, vid);
8319 }
8320
8321 return 0;
8322 }
8323
8324 static uint32_t
8325 hash_realdev_vid(uint16_t realdev_ofp_port, int vid)
8326 {
8327 return hash_2words(realdev_ofp_port, vid);
8328 }
8329
8330 /* Returns the ODP port number of the Linux VLAN device that corresponds to
8331 * 'vlan_tci' on the network device with port number 'realdev_odp_port' in
8332 * 'ofproto'. For example, given 'realdev_odp_port' of eth0 and 'vlan_tci' 9,
8333 * it would return the port number of eth0.9.
8334 *
8335 * Unless VLAN splinters are enabled for port 'realdev_odp_port', this
8336 * function just returns its 'realdev_odp_port' argument. */
8337 static uint32_t
8338 vsp_realdev_to_vlandev(const struct ofproto_dpif *ofproto,
8339 uint32_t realdev_odp_port, ovs_be16 vlan_tci)
8340 {
8341 if (!hmap_is_empty(&ofproto->realdev_vid_map)) {
8342 uint16_t realdev_ofp_port;
8343 int vid = vlan_tci_to_vid(vlan_tci);
8344 const struct vlan_splinter *vsp;
8345
8346 realdev_ofp_port = odp_port_to_ofp_port(ofproto, realdev_odp_port);
8347 HMAP_FOR_EACH_WITH_HASH (vsp, realdev_vid_node,
8348 hash_realdev_vid(realdev_ofp_port, vid),
8349 &ofproto->realdev_vid_map) {
8350 if (vsp->realdev_ofp_port == realdev_ofp_port
8351 && vsp->vid == vid) {
8352 return ofp_port_to_odp_port(ofproto, vsp->vlandev_ofp_port);
8353 }
8354 }
8355 }
8356 return realdev_odp_port;
8357 }
8358
8359 static struct vlan_splinter *
8360 vlandev_find(const struct ofproto_dpif *ofproto, uint16_t vlandev_ofp_port)
8361 {
8362 struct vlan_splinter *vsp;
8363
8364 HMAP_FOR_EACH_WITH_HASH (vsp, vlandev_node, hash_int(vlandev_ofp_port, 0),
8365 &ofproto->vlandev_map) {
8366 if (vsp->vlandev_ofp_port == vlandev_ofp_port) {
8367 return vsp;
8368 }
8369 }
8370
8371 return NULL;
8372 }
8373
8374 /* Returns the OpenFlow port number of the "real" device underlying the Linux
8375 * VLAN device with OpenFlow port number 'vlandev_ofp_port' and stores the
8376 * VLAN VID of the Linux VLAN device in '*vid'. For example, given
8377 * 'vlandev_ofp_port' of eth0.9, it would return the OpenFlow port number of
8378 * eth0 and store 9 in '*vid'.
8379 *
8380 * Returns 0 and does not modify '*vid' if 'vlandev_ofp_port' is not a Linux
8381 * VLAN device. Unless VLAN splinters are enabled, this is what this function
8382 * always does.*/
8383 static uint16_t
8384 vsp_vlandev_to_realdev(const struct ofproto_dpif *ofproto,
8385 uint16_t vlandev_ofp_port, int *vid)
8386 {
8387 if (!hmap_is_empty(&ofproto->vlandev_map)) {
8388 const struct vlan_splinter *vsp;
8389
8390 vsp = vlandev_find(ofproto, vlandev_ofp_port);
8391 if (vsp) {
8392 if (vid) {
8393 *vid = vsp->vid;
8394 }
8395 return vsp->realdev_ofp_port;
8396 }
8397 }
8398 return 0;
8399 }
8400
8401 /* Given 'flow', a flow representing a packet received on 'ofproto', checks
8402 * whether 'flow->in_port' represents a Linux VLAN device. If so, changes
8403 * 'flow->in_port' to the "real" device backing the VLAN device, sets
8404 * 'flow->vlan_tci' to the VLAN VID, and returns true. Otherwise (which is
8405 * always the case unless VLAN splinters are enabled), returns false without
8406 * making any changes. */
8407 static bool
8408 vsp_adjust_flow(const struct ofproto_dpif *ofproto, struct flow *flow)
8409 {
8410 uint16_t realdev;
8411 int vid;
8412
8413 realdev = vsp_vlandev_to_realdev(ofproto, flow->in_port, &vid);
8414 if (!realdev) {
8415 return false;
8416 }
8417
8418 /* Cause the flow to be processed as if it came in on the real device with
8419 * the VLAN device's VLAN ID. */
8420 flow->in_port = realdev;
8421 flow->vlan_tci = htons((vid & VLAN_VID_MASK) | VLAN_CFI);
8422 return true;
8423 }
8424
8425 static void
8426 vsp_remove(struct ofport_dpif *port)
8427 {
8428 struct ofproto_dpif *ofproto = ofproto_dpif_cast(port->up.ofproto);
8429 struct vlan_splinter *vsp;
8430
8431 vsp = vlandev_find(ofproto, port->up.ofp_port);
8432 if (vsp) {
8433 hmap_remove(&ofproto->vlandev_map, &vsp->vlandev_node);
8434 hmap_remove(&ofproto->realdev_vid_map, &vsp->realdev_vid_node);
8435 free(vsp);
8436
8437 port->realdev_ofp_port = 0;
8438 } else {
8439 VLOG_ERR("missing vlan device record");
8440 }
8441 }
8442
8443 static void
8444 vsp_add(struct ofport_dpif *port, uint16_t realdev_ofp_port, int vid)
8445 {
8446 struct ofproto_dpif *ofproto = ofproto_dpif_cast(port->up.ofproto);
8447
8448 if (!vsp_vlandev_to_realdev(ofproto, port->up.ofp_port, NULL)
8449 && (vsp_realdev_to_vlandev(ofproto, realdev_ofp_port, htons(vid))
8450 == realdev_ofp_port)) {
8451 struct vlan_splinter *vsp;
8452
8453 vsp = xmalloc(sizeof *vsp);
8454 hmap_insert(&ofproto->vlandev_map, &vsp->vlandev_node,
8455 hash_int(port->up.ofp_port, 0));
8456 hmap_insert(&ofproto->realdev_vid_map, &vsp->realdev_vid_node,
8457 hash_realdev_vid(realdev_ofp_port, vid));
8458 vsp->realdev_ofp_port = realdev_ofp_port;
8459 vsp->vlandev_ofp_port = port->up.ofp_port;
8460 vsp->vid = vid;
8461
8462 port->realdev_ofp_port = realdev_ofp_port;
8463 } else {
8464 VLOG_ERR("duplicate vlan device record");
8465 }
8466 }
8467
8468 static uint32_t
8469 ofp_port_to_odp_port(const struct ofproto_dpif *ofproto, uint16_t ofp_port)
8470 {
8471 const struct ofport_dpif *ofport = get_ofp_port(ofproto, ofp_port);
8472 return ofport ? ofport->odp_port : OVSP_NONE;
8473 }
8474
8475 static struct ofport_dpif *
8476 odp_port_to_ofport(const struct dpif_backer *backer, uint32_t odp_port)
8477 {
8478 struct ofport_dpif *port;
8479
8480 HMAP_FOR_EACH_IN_BUCKET (port, odp_port_node,
8481 hash_int(odp_port, 0),
8482 &backer->odp_to_ofport_map) {
8483 if (port->odp_port == odp_port) {
8484 return port;
8485 }
8486 }
8487
8488 return NULL;
8489 }
8490
8491 static uint16_t
8492 odp_port_to_ofp_port(const struct ofproto_dpif *ofproto, uint32_t odp_port)
8493 {
8494 struct ofport_dpif *port;
8495
8496 port = odp_port_to_ofport(ofproto->backer, odp_port);
8497 if (port && &ofproto->up == port->up.ofproto) {
8498 return port->up.ofp_port;
8499 } else {
8500 return OFPP_NONE;
8501 }
8502 }
8503
8504 static void
8505 dpif_stats_update_hit_count(struct ofproto_dpif *ofproto, uint64_t delta)
8506 {
8507 ofproto->n_hit += delta;
8508 }
8509
8510 const struct ofproto_class ofproto_dpif_class = {
8511 init,
8512 enumerate_types,
8513 enumerate_names,
8514 del,
8515 port_open_type,
8516 type_run,
8517 type_run_fast,
8518 type_wait,
8519 alloc,
8520 construct,
8521 destruct,
8522 dealloc,
8523 run,
8524 run_fast,
8525 wait,
8526 get_memory_usage,
8527 flush,
8528 get_features,
8529 get_tables,
8530 port_alloc,
8531 port_construct,
8532 port_destruct,
8533 port_dealloc,
8534 port_modified,
8535 port_reconfigured,
8536 port_query_by_name,
8537 port_add,
8538 port_del,
8539 port_get_stats,
8540 port_dump_start,
8541 port_dump_next,
8542 port_dump_done,
8543 port_poll,
8544 port_poll_wait,
8545 port_is_lacp_current,
8546 NULL, /* rule_choose_table */
8547 rule_alloc,
8548 rule_construct,
8549 rule_destruct,
8550 rule_dealloc,
8551 rule_get_stats,
8552 rule_execute,
8553 rule_modify_actions,
8554 set_frag_handling,
8555 packet_out,
8556 set_netflow,
8557 get_netflow_ids,
8558 set_sflow,
8559 set_cfm,
8560 get_cfm_status,
8561 set_stp,
8562 get_stp_status,
8563 set_stp_port,
8564 get_stp_port_status,
8565 set_queues,
8566 bundle_set,
8567 bundle_remove,
8568 mirror_set,
8569 mirror_get_stats,
8570 set_flood_vlans,
8571 is_mirror_output_bundle,
8572 forward_bpdu_changed,
8573 set_mac_table_config,
8574 set_realdev,
8575 };