]> git.proxmox.com Git - ovs.git/blob - ofproto/ofproto.c
147ade3a0cf099767af323c43603cf89117aa19e
[ovs.git] / ofproto / ofproto.c
1 /*
2 * Copyright (c) 2009, 2010, 2011 Nicira Networks.
3 * Copyright (c) 2010 Jean Tourrilhes - HP-Labs.
4 *
5 * Licensed under the Apache License, Version 2.0 (the "License");
6 * you may not use this file except in compliance with the License.
7 * You may obtain a copy of the License at:
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17
18 #include <config.h>
19 #include "ofproto.h"
20 #include <errno.h>
21 #include <inttypes.h>
22 #include <sys/socket.h>
23 #include <net/if.h>
24 #include <netinet/in.h>
25 #include <stdbool.h>
26 #include <stdlib.h>
27 #include "byte-order.h"
28 #include "classifier.h"
29 #include "coverage.h"
30 #include "discovery.h"
31 #include "dpif.h"
32 #include "dynamic-string.h"
33 #include "fail-open.h"
34 #include "hash.h"
35 #include "hmap.h"
36 #include "in-band.h"
37 #include "mac-learning.h"
38 #include "multipath.h"
39 #include "netdev.h"
40 #include "netflow.h"
41 #include "netlink.h"
42 #include "nx-match.h"
43 #include "odp-util.h"
44 #include "ofp-print.h"
45 #include "ofp-util.h"
46 #include "ofproto-sflow.h"
47 #include "ofpbuf.h"
48 #include "openflow/nicira-ext.h"
49 #include "openflow/openflow.h"
50 #include "openvswitch/datapath-protocol.h"
51 #include "packets.h"
52 #include "pinsched.h"
53 #include "pktbuf.h"
54 #include "poll-loop.h"
55 #include "rconn.h"
56 #include "shash.h"
57 #include "status.h"
58 #include "stream-ssl.h"
59 #include "svec.h"
60 #include "tag.h"
61 #include "timeval.h"
62 #include "unaligned.h"
63 #include "unixctl.h"
64 #include "vconn.h"
65 #include "vlog.h"
66
67 VLOG_DEFINE_THIS_MODULE(ofproto);
68
69 COVERAGE_DEFINE(facet_changed_rule);
70 COVERAGE_DEFINE(facet_revalidate);
71 COVERAGE_DEFINE(odp_overflow);
72 COVERAGE_DEFINE(ofproto_agg_request);
73 COVERAGE_DEFINE(ofproto_costly_flags);
74 COVERAGE_DEFINE(ofproto_ctlr_action);
75 COVERAGE_DEFINE(ofproto_del_rule);
76 COVERAGE_DEFINE(ofproto_error);
77 COVERAGE_DEFINE(ofproto_expiration);
78 COVERAGE_DEFINE(ofproto_expired);
79 COVERAGE_DEFINE(ofproto_flows_req);
80 COVERAGE_DEFINE(ofproto_flush);
81 COVERAGE_DEFINE(ofproto_invalidated);
82 COVERAGE_DEFINE(ofproto_no_packet_in);
83 COVERAGE_DEFINE(ofproto_ofconn_stuck);
84 COVERAGE_DEFINE(ofproto_ofp2odp);
85 COVERAGE_DEFINE(ofproto_packet_in);
86 COVERAGE_DEFINE(ofproto_packet_out);
87 COVERAGE_DEFINE(ofproto_queue_req);
88 COVERAGE_DEFINE(ofproto_recv_openflow);
89 COVERAGE_DEFINE(ofproto_reinit_ports);
90 COVERAGE_DEFINE(ofproto_unexpected_rule);
91 COVERAGE_DEFINE(ofproto_uninstallable);
92 COVERAGE_DEFINE(ofproto_update_port);
93
94 #include "sflow_api.h"
95
96 /* Maximum depth of flow table recursion (due to NXAST_RESUBMIT actions) in a
97 * flow translation. */
98 #define MAX_RESUBMIT_RECURSION 16
99
100 struct rule;
101
102 struct ofport {
103 struct hmap_node hmap_node; /* In struct ofproto's "ports" hmap. */
104 struct netdev *netdev;
105 struct ofp_phy_port opp; /* In host byte order. */
106 uint16_t odp_port;
107 };
108
109 static void ofport_free(struct ofport *);
110 static void hton_ofp_phy_port(struct ofp_phy_port *);
111
112 struct action_xlate_ctx {
113 /* action_xlate_ctx_init() initializes these members. */
114
115 /* The ofproto. */
116 struct ofproto *ofproto;
117
118 /* Flow to which the OpenFlow actions apply. xlate_actions() will modify
119 * this flow when actions change header fields. */
120 struct flow flow;
121
122 /* The packet corresponding to 'flow', or a null pointer if we are
123 * revalidating without a packet to refer to. */
124 const struct ofpbuf *packet;
125
126 /* If nonnull, called just before executing a resubmit action.
127 *
128 * This is normally null so the client has to set it manually after
129 * calling action_xlate_ctx_init(). */
130 void (*resubmit_hook)(struct action_xlate_ctx *, struct rule *);
131
132 /* If true, the speciality of 'flow' should be checked before executing
133 * its actions. If special_cb returns false on 'flow' rendered
134 * uninstallable and no actions will be executed. */
135 bool check_special;
136
137 /* xlate_actions() initializes and uses these members. The client might want
138 * to look at them after it returns. */
139
140 struct ofpbuf *odp_actions; /* Datapath actions. */
141 tag_type tags; /* Tags associated with OFPP_NORMAL actions. */
142 bool may_set_up_flow; /* True ordinarily; false if the actions must
143 * be reassessed for every packet. */
144 uint16_t nf_output_iface; /* Output interface index for NetFlow. */
145
146 /* xlate_actions() initializes and uses these members, but the client has no
147 * reason to look at them. */
148
149 int recurse; /* Recursion level, via xlate_table_action. */
150 int last_pop_priority; /* Offset in 'odp_actions' just past most
151 * recent ODP_ACTION_ATTR_SET_PRIORITY. */
152 };
153
154 static void action_xlate_ctx_init(struct action_xlate_ctx *,
155 struct ofproto *, const struct flow *,
156 const struct ofpbuf *);
157 static struct ofpbuf *xlate_actions(struct action_xlate_ctx *,
158 const union ofp_action *in, size_t n_in);
159
160 /* An OpenFlow flow. */
161 struct rule {
162 long long int used; /* Time last used; time created if not used. */
163 long long int created; /* Creation time. */
164
165 /* These statistics:
166 *
167 * - Do include packets and bytes from facets that have been deleted or
168 * whose own statistics have been folded into the rule.
169 *
170 * - Do include packets and bytes sent "by hand" that were accounted to
171 * the rule without any facet being involved (this is a rare corner
172 * case in rule_execute()).
173 *
174 * - Do not include packet or bytes that can be obtained from any facet's
175 * packet_count or byte_count member or that can be obtained from the
176 * datapath by, e.g., dpif_flow_get() for any facet.
177 */
178 uint64_t packet_count; /* Number of packets received. */
179 uint64_t byte_count; /* Number of bytes received. */
180
181 ovs_be64 flow_cookie; /* Controller-issued identifier. */
182
183 struct cls_rule cr; /* In owning ofproto's classifier. */
184 uint16_t idle_timeout; /* In seconds from time of last use. */
185 uint16_t hard_timeout; /* In seconds from time of creation. */
186 bool send_flow_removed; /* Send a flow removed message? */
187 int n_actions; /* Number of elements in actions[]. */
188 union ofp_action *actions; /* OpenFlow actions. */
189 struct list facets; /* List of "struct facet"s. */
190 };
191
192 static struct rule *rule_from_cls_rule(const struct cls_rule *);
193 static bool rule_is_hidden(const struct rule *);
194
195 static struct rule *rule_create(const struct cls_rule *,
196 const union ofp_action *, size_t n_actions,
197 uint16_t idle_timeout, uint16_t hard_timeout,
198 ovs_be64 flow_cookie, bool send_flow_removed);
199 static void rule_destroy(struct ofproto *, struct rule *);
200 static void rule_free(struct rule *);
201
202 static struct rule *rule_lookup(struct ofproto *, const struct flow *);
203 static void rule_insert(struct ofproto *, struct rule *);
204 static void rule_remove(struct ofproto *, struct rule *);
205
206 static void rule_send_removed(struct ofproto *, struct rule *, uint8_t reason);
207 static void rule_get_stats(const struct rule *, uint64_t *packets,
208 uint64_t *bytes);
209
210 /* An exact-match instantiation of an OpenFlow flow. */
211 struct facet {
212 long long int used; /* Time last used; time created if not used. */
213
214 /* These statistics:
215 *
216 * - Do include packets and bytes sent "by hand", e.g. with
217 * dpif_execute().
218 *
219 * - Do include packets and bytes that were obtained from the datapath
220 * when a flow was deleted (e.g. dpif_flow_del()) or when its
221 * statistics were reset (e.g. dpif_flow_put() with
222 * DPIF_FP_ZERO_STATS).
223 *
224 * - Do not include any packets or bytes that can currently be obtained
225 * from the datapath by, e.g., dpif_flow_get().
226 */
227 uint64_t packet_count; /* Number of packets received. */
228 uint64_t byte_count; /* Number of bytes received. */
229
230 uint64_t dp_packet_count; /* Last known packet count in the datapath. */
231 uint64_t dp_byte_count; /* Last known byte count in the datapath. */
232
233 uint64_t rs_packet_count; /* Packets pushed to resubmit children. */
234 uint64_t rs_byte_count; /* Bytes pushed to resubmit children. */
235 long long int rs_used; /* Used time pushed to resubmit children. */
236
237 /* Number of bytes passed to account_cb. This may include bytes that can
238 * currently obtained from the datapath (thus, it can be greater than
239 * byte_count). */
240 uint64_t accounted_bytes;
241
242 struct hmap_node hmap_node; /* In owning ofproto's 'facets' hmap. */
243 struct list list_node; /* In owning rule's 'facets' list. */
244 struct rule *rule; /* Owning rule. */
245 struct flow flow; /* Exact-match flow. */
246 bool installed; /* Installed in datapath? */
247 bool may_install; /* True ordinarily; false if actions must
248 * be reassessed for every packet. */
249 size_t actions_len; /* Number of bytes in actions[]. */
250 struct nlattr *actions; /* Datapath actions. */
251 tag_type tags; /* Tags (set only by hooks). */
252 struct netflow_flow nf_flow; /* Per-flow NetFlow tracking data. */
253 };
254
255 static struct facet *facet_create(struct ofproto *, struct rule *,
256 const struct flow *,
257 const struct ofpbuf *packet);
258 static void facet_remove(struct ofproto *, struct facet *);
259 static void facet_free(struct facet *);
260
261 static struct facet *facet_lookup_valid(struct ofproto *, const struct flow *);
262 static bool facet_revalidate(struct ofproto *, struct facet *);
263
264 static void facet_install(struct ofproto *, struct facet *, bool zero_stats);
265 static void facet_uninstall(struct ofproto *, struct facet *);
266 static void facet_flush_stats(struct ofproto *, struct facet *);
267
268 static void facet_make_actions(struct ofproto *, struct facet *,
269 const struct ofpbuf *packet);
270 static void facet_update_stats(struct ofproto *, struct facet *,
271 const struct dpif_flow_stats *);
272 static void facet_push_stats(struct ofproto *, struct facet *);
273
274 /* ofproto supports two kinds of OpenFlow connections:
275 *
276 * - "Primary" connections to ordinary OpenFlow controllers. ofproto
277 * maintains persistent connections to these controllers and by default
278 * sends them asynchronous messages such as packet-ins.
279 *
280 * - "Service" connections, e.g. from ovs-ofctl. When these connections
281 * drop, it is the other side's responsibility to reconnect them if
282 * necessary. ofproto does not send them asynchronous messages by default.
283 *
284 * Currently, active (tcp, ssl, unix) connections are always "primary"
285 * connections and passive (ptcp, pssl, punix) connections are always "service"
286 * connections. There is no inherent reason for this, but it reflects the
287 * common case.
288 */
289 enum ofconn_type {
290 OFCONN_PRIMARY, /* An ordinary OpenFlow controller. */
291 OFCONN_SERVICE /* A service connection, e.g. "ovs-ofctl". */
292 };
293
294 /* A listener for incoming OpenFlow "service" connections. */
295 struct ofservice {
296 struct hmap_node node; /* In struct ofproto's "services" hmap. */
297 struct pvconn *pvconn; /* OpenFlow connection listener. */
298
299 /* These are not used by ofservice directly. They are settings for
300 * accepted "struct ofconn"s from the pvconn. */
301 int probe_interval; /* Max idle time before probing, in seconds. */
302 int rate_limit; /* Max packet-in rate in packets per second. */
303 int burst_limit; /* Limit on accumulating packet credits. */
304 };
305
306 static struct ofservice *ofservice_lookup(struct ofproto *,
307 const char *target);
308 static int ofservice_create(struct ofproto *,
309 const struct ofproto_controller *);
310 static void ofservice_reconfigure(struct ofservice *,
311 const struct ofproto_controller *);
312 static void ofservice_destroy(struct ofproto *, struct ofservice *);
313
314 /* An OpenFlow connection. */
315 struct ofconn {
316 struct ofproto *ofproto; /* The ofproto that owns this connection. */
317 struct list node; /* In struct ofproto's "all_conns" list. */
318 struct rconn *rconn; /* OpenFlow connection. */
319 enum ofconn_type type; /* Type. */
320 enum nx_flow_format flow_format; /* Currently selected flow format. */
321
322 /* OFPT_PACKET_IN related data. */
323 struct rconn_packet_counter *packet_in_counter; /* # queued on 'rconn'. */
324 #define N_SCHEDULERS 2
325 struct pinsched *schedulers[N_SCHEDULERS];
326 struct pktbuf *pktbuf; /* OpenFlow packet buffers. */
327 int miss_send_len; /* Bytes to send of buffered packets. */
328
329 /* Number of OpenFlow messages queued on 'rconn' as replies to OpenFlow
330 * requests, and the maximum number before we stop reading OpenFlow
331 * requests. */
332 #define OFCONN_REPLY_MAX 100
333 struct rconn_packet_counter *reply_counter;
334
335 /* type == OFCONN_PRIMARY only. */
336 enum nx_role role; /* Role. */
337 struct hmap_node hmap_node; /* In struct ofproto's "controllers" map. */
338 struct discovery *discovery; /* Controller discovery object, if enabled. */
339 struct status_category *ss; /* Switch status category. */
340 enum ofproto_band band; /* In-band or out-of-band? */
341 };
342
343
344 static struct ofconn *ofconn_create(struct ofproto *, struct rconn *,
345 enum ofconn_type);
346 static void ofconn_destroy(struct ofconn *);
347 static void ofconn_run(struct ofconn *);
348 static void ofconn_wait(struct ofconn *);
349 static bool ofconn_receives_async_msgs(const struct ofconn *);
350 static char *ofconn_make_name(const struct ofproto *, const char *target);
351 static void ofconn_set_rate_limit(struct ofconn *, int rate, int burst);
352
353 static void queue_tx(struct ofpbuf *msg, const struct ofconn *ofconn,
354 struct rconn_packet_counter *counter);
355
356 static void send_packet_in(struct ofproto *, struct dpif_upcall *,
357 const struct flow *, bool clone);
358 static void do_send_packet_in(struct ofpbuf *ofp_packet_in, void *ofconn);
359
360 struct ofproto {
361 /* Settings. */
362 uint64_t datapath_id; /* Datapath ID. */
363 uint64_t fallback_dpid; /* Datapath ID if no better choice found. */
364 char *mfr_desc; /* Manufacturer. */
365 char *hw_desc; /* Hardware. */
366 char *sw_desc; /* Software version. */
367 char *serial_desc; /* Serial number. */
368 char *dp_desc; /* Datapath description. */
369
370 /* Datapath. */
371 struct dpif *dpif;
372 struct netdev_monitor *netdev_monitor;
373 struct hmap ports; /* Contains "struct ofport"s. */
374 struct shash port_by_name;
375 uint32_t max_ports;
376
377 /* Configuration. */
378 struct switch_status *switch_status;
379 struct fail_open *fail_open;
380 struct netflow *netflow;
381 struct ofproto_sflow *sflow;
382
383 /* In-band control. */
384 struct in_band *in_band;
385 long long int next_in_band_update;
386 struct sockaddr_in *extra_in_band_remotes;
387 size_t n_extra_remotes;
388 int in_band_queue;
389
390 /* Flow table. */
391 struct classifier cls;
392 long long int next_expiration;
393
394 /* Facets. */
395 struct hmap facets;
396 bool need_revalidate;
397 struct tag_set revalidate_set;
398
399 /* OpenFlow connections. */
400 struct hmap controllers; /* Controller "struct ofconn"s. */
401 struct list all_conns; /* Contains "struct ofconn"s. */
402 enum ofproto_fail_mode fail_mode;
403
404 /* OpenFlow listeners. */
405 struct hmap services; /* Contains "struct ofservice"s. */
406 struct pvconn **snoops;
407 size_t n_snoops;
408
409 /* Hooks for ovs-vswitchd. */
410 const struct ofhooks *ofhooks;
411 void *aux;
412
413 /* Used by default ofhooks. */
414 struct mac_learning *ml;
415 };
416
417 /* Map from dpif name to struct ofproto, for use by unixctl commands. */
418 static struct shash all_ofprotos = SHASH_INITIALIZER(&all_ofprotos);
419
420 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
421
422 static const struct ofhooks default_ofhooks;
423
424 static uint64_t pick_datapath_id(const struct ofproto *);
425 static uint64_t pick_fallback_dpid(void);
426
427 static int ofproto_expire(struct ofproto *);
428 static void flow_push_stats(struct ofproto *, const struct rule *,
429 struct flow *, uint64_t packets, uint64_t bytes,
430 long long int used);
431
432 static void handle_upcall(struct ofproto *, struct dpif_upcall *);
433
434 static void handle_openflow(struct ofconn *, struct ofpbuf *);
435
436 static struct ofport *get_port(const struct ofproto *, uint16_t odp_port);
437 static void update_port(struct ofproto *, const char *devname);
438 static int init_ports(struct ofproto *);
439 static void reinit_ports(struct ofproto *);
440
441 static void ofproto_unixctl_init(void);
442
443 int
444 ofproto_create(const char *datapath, const char *datapath_type,
445 const struct ofhooks *ofhooks, void *aux,
446 struct ofproto **ofprotop)
447 {
448 struct ofproto *p;
449 struct dpif *dpif;
450 int error;
451
452 *ofprotop = NULL;
453
454 ofproto_unixctl_init();
455
456 /* Connect to datapath and start listening for messages. */
457 error = dpif_open(datapath, datapath_type, &dpif);
458 if (error) {
459 VLOG_ERR("failed to open datapath %s: %s", datapath, strerror(error));
460 return error;
461 }
462 error = dpif_recv_set_mask(dpif,
463 ((1u << DPIF_UC_MISS) |
464 (1u << DPIF_UC_ACTION) |
465 (1u << DPIF_UC_SAMPLE)));
466 if (error) {
467 VLOG_ERR("failed to listen on datapath %s: %s",
468 datapath, strerror(error));
469 dpif_close(dpif);
470 return error;
471 }
472 dpif_flow_flush(dpif);
473 dpif_recv_purge(dpif);
474
475 /* Initialize settings. */
476 p = xzalloc(sizeof *p);
477 p->fallback_dpid = pick_fallback_dpid();
478 p->datapath_id = p->fallback_dpid;
479 p->mfr_desc = xstrdup(DEFAULT_MFR_DESC);
480 p->hw_desc = xstrdup(DEFAULT_HW_DESC);
481 p->sw_desc = xstrdup(DEFAULT_SW_DESC);
482 p->serial_desc = xstrdup(DEFAULT_SERIAL_DESC);
483 p->dp_desc = xstrdup(DEFAULT_DP_DESC);
484
485 /* Initialize datapath. */
486 p->dpif = dpif;
487 p->netdev_monitor = netdev_monitor_create();
488 hmap_init(&p->ports);
489 shash_init(&p->port_by_name);
490 p->max_ports = dpif_get_max_ports(dpif);
491
492 /* Initialize submodules. */
493 p->switch_status = switch_status_create(p);
494 p->fail_open = NULL;
495 p->netflow = NULL;
496 p->sflow = NULL;
497
498 /* Initialize in-band control. */
499 p->in_band = NULL;
500 p->in_band_queue = -1;
501
502 /* Initialize flow table. */
503 classifier_init(&p->cls);
504 p->next_expiration = time_msec() + 1000;
505
506 /* Initialize facet table. */
507 hmap_init(&p->facets);
508 p->need_revalidate = false;
509 tag_set_init(&p->revalidate_set);
510
511 /* Initialize OpenFlow connections. */
512 list_init(&p->all_conns);
513 hmap_init(&p->controllers);
514 hmap_init(&p->services);
515 p->snoops = NULL;
516 p->n_snoops = 0;
517
518 /* Initialize hooks. */
519 if (ofhooks) {
520 p->ofhooks = ofhooks;
521 p->aux = aux;
522 p->ml = NULL;
523 } else {
524 p->ofhooks = &default_ofhooks;
525 p->aux = p;
526 p->ml = mac_learning_create();
527 }
528
529 /* Pick final datapath ID. */
530 p->datapath_id = pick_datapath_id(p);
531 VLOG_INFO("using datapath ID %016"PRIx64, p->datapath_id);
532
533 shash_add_once(&all_ofprotos, dpif_name(p->dpif), p);
534
535 *ofprotop = p;
536 return 0;
537 }
538
539 void
540 ofproto_set_datapath_id(struct ofproto *p, uint64_t datapath_id)
541 {
542 uint64_t old_dpid = p->datapath_id;
543 p->datapath_id = datapath_id ? datapath_id : pick_datapath_id(p);
544 if (p->datapath_id != old_dpid) {
545 VLOG_INFO("datapath ID changed to %016"PRIx64, p->datapath_id);
546
547 /* Force all active connections to reconnect, since there is no way to
548 * notify a controller that the datapath ID has changed. */
549 ofproto_reconnect_controllers(p);
550 }
551 }
552
553 static bool
554 is_discovery_controller(const struct ofproto_controller *c)
555 {
556 return !strcmp(c->target, "discover");
557 }
558
559 static bool
560 is_in_band_controller(const struct ofproto_controller *c)
561 {
562 return is_discovery_controller(c) || c->band == OFPROTO_IN_BAND;
563 }
564
565 /* Creates a new controller in 'ofproto'. Some of the settings are initially
566 * drawn from 'c', but update_controller() needs to be called later to finish
567 * the new ofconn's configuration. */
568 static void
569 add_controller(struct ofproto *ofproto, const struct ofproto_controller *c)
570 {
571 struct discovery *discovery;
572 struct ofconn *ofconn;
573
574 if (is_discovery_controller(c)) {
575 int error = discovery_create(c->accept_re, c->update_resolv_conf,
576 ofproto->dpif, ofproto->switch_status,
577 &discovery);
578 if (error) {
579 return;
580 }
581 } else {
582 discovery = NULL;
583 }
584
585 ofconn = ofconn_create(ofproto, rconn_create(5, 8), OFCONN_PRIMARY);
586 ofconn->pktbuf = pktbuf_create();
587 ofconn->miss_send_len = OFP_DEFAULT_MISS_SEND_LEN;
588 if (discovery) {
589 ofconn->discovery = discovery;
590 } else {
591 char *name = ofconn_make_name(ofproto, c->target);
592 rconn_connect(ofconn->rconn, c->target, name);
593 free(name);
594 }
595 hmap_insert(&ofproto->controllers, &ofconn->hmap_node,
596 hash_string(c->target, 0));
597 }
598
599 /* Reconfigures 'ofconn' to match 'c'. This function cannot update an ofconn's
600 * target or turn discovery on or off (these are done by creating new ofconns
601 * and deleting old ones), but it can update the rest of an ofconn's
602 * settings. */
603 static void
604 update_controller(struct ofconn *ofconn, const struct ofproto_controller *c)
605 {
606 int probe_interval;
607
608 ofconn->band = (is_in_band_controller(c)
609 ? OFPROTO_IN_BAND : OFPROTO_OUT_OF_BAND);
610
611 rconn_set_max_backoff(ofconn->rconn, c->max_backoff);
612
613 probe_interval = c->probe_interval ? MAX(c->probe_interval, 5) : 0;
614 rconn_set_probe_interval(ofconn->rconn, probe_interval);
615
616 if (ofconn->discovery) {
617 discovery_set_update_resolv_conf(ofconn->discovery,
618 c->update_resolv_conf);
619 discovery_set_accept_controller_re(ofconn->discovery, c->accept_re);
620 }
621
622 ofconn_set_rate_limit(ofconn, c->rate_limit, c->burst_limit);
623 }
624
625 static const char *
626 ofconn_get_target(const struct ofconn *ofconn)
627 {
628 return ofconn->discovery ? "discover" : rconn_get_target(ofconn->rconn);
629 }
630
631 static struct ofconn *
632 find_controller_by_target(struct ofproto *ofproto, const char *target)
633 {
634 struct ofconn *ofconn;
635
636 HMAP_FOR_EACH_WITH_HASH (ofconn, hmap_node,
637 hash_string(target, 0), &ofproto->controllers) {
638 if (!strcmp(ofconn_get_target(ofconn), target)) {
639 return ofconn;
640 }
641 }
642 return NULL;
643 }
644
645 static void
646 update_in_band_remotes(struct ofproto *ofproto)
647 {
648 const struct ofconn *ofconn;
649 struct sockaddr_in *addrs;
650 size_t max_addrs, n_addrs;
651 bool discovery;
652 size_t i;
653
654 /* Allocate enough memory for as many remotes as we could possibly have. */
655 max_addrs = ofproto->n_extra_remotes + hmap_count(&ofproto->controllers);
656 addrs = xmalloc(max_addrs * sizeof *addrs);
657 n_addrs = 0;
658
659 /* Add all the remotes. */
660 discovery = false;
661 HMAP_FOR_EACH (ofconn, hmap_node, &ofproto->controllers) {
662 struct sockaddr_in *sin = &addrs[n_addrs];
663
664 if (ofconn->band == OFPROTO_OUT_OF_BAND) {
665 continue;
666 }
667
668 sin->sin_addr.s_addr = rconn_get_remote_ip(ofconn->rconn);
669 if (sin->sin_addr.s_addr) {
670 sin->sin_port = rconn_get_remote_port(ofconn->rconn);
671 n_addrs++;
672 }
673 if (ofconn->discovery) {
674 discovery = true;
675 }
676 }
677 for (i = 0; i < ofproto->n_extra_remotes; i++) {
678 addrs[n_addrs++] = ofproto->extra_in_band_remotes[i];
679 }
680
681 /* Create or update or destroy in-band.
682 *
683 * Ordinarily we only enable in-band if there's at least one remote
684 * address, but discovery needs the in-band rules for DHCP to be installed
685 * even before we know any remote addresses. */
686 if (n_addrs || discovery) {
687 if (!ofproto->in_band) {
688 in_band_create(ofproto, ofproto->dpif, ofproto->switch_status,
689 &ofproto->in_band);
690 }
691 if (ofproto->in_band) {
692 in_band_set_remotes(ofproto->in_band, addrs, n_addrs);
693 }
694 in_band_set_queue(ofproto->in_band, ofproto->in_band_queue);
695 ofproto->next_in_band_update = time_msec() + 1000;
696 } else {
697 in_band_destroy(ofproto->in_band);
698 ofproto->in_band = NULL;
699 }
700
701 /* Clean up. */
702 free(addrs);
703 }
704
705 static void
706 update_fail_open(struct ofproto *p)
707 {
708 struct ofconn *ofconn;
709
710 if (!hmap_is_empty(&p->controllers)
711 && p->fail_mode == OFPROTO_FAIL_STANDALONE) {
712 struct rconn **rconns;
713 size_t n;
714
715 if (!p->fail_open) {
716 p->fail_open = fail_open_create(p, p->switch_status);
717 }
718
719 n = 0;
720 rconns = xmalloc(hmap_count(&p->controllers) * sizeof *rconns);
721 HMAP_FOR_EACH (ofconn, hmap_node, &p->controllers) {
722 rconns[n++] = ofconn->rconn;
723 }
724
725 fail_open_set_controllers(p->fail_open, rconns, n);
726 /* p->fail_open takes ownership of 'rconns'. */
727 } else {
728 fail_open_destroy(p->fail_open);
729 p->fail_open = NULL;
730 }
731 }
732
733 void
734 ofproto_set_controllers(struct ofproto *p,
735 const struct ofproto_controller *controllers,
736 size_t n_controllers)
737 {
738 struct shash new_controllers;
739 struct ofconn *ofconn, *next_ofconn;
740 struct ofservice *ofservice, *next_ofservice;
741 bool ss_exists;
742 size_t i;
743
744 /* Create newly configured controllers and services.
745 * Create a name to ofproto_controller mapping in 'new_controllers'. */
746 shash_init(&new_controllers);
747 for (i = 0; i < n_controllers; i++) {
748 const struct ofproto_controller *c = &controllers[i];
749
750 if (!vconn_verify_name(c->target) || !strcmp(c->target, "discover")) {
751 if (!find_controller_by_target(p, c->target)) {
752 add_controller(p, c);
753 }
754 } else if (!pvconn_verify_name(c->target)) {
755 if (!ofservice_lookup(p, c->target) && ofservice_create(p, c)) {
756 continue;
757 }
758 } else {
759 VLOG_WARN_RL(&rl, "%s: unsupported controller \"%s\"",
760 dpif_name(p->dpif), c->target);
761 continue;
762 }
763
764 shash_add_once(&new_controllers, c->target, &controllers[i]);
765 }
766
767 /* Delete controllers that are no longer configured.
768 * Update configuration of all now-existing controllers. */
769 ss_exists = false;
770 HMAP_FOR_EACH_SAFE (ofconn, next_ofconn, hmap_node, &p->controllers) {
771 struct ofproto_controller *c;
772
773 c = shash_find_data(&new_controllers, ofconn_get_target(ofconn));
774 if (!c) {
775 ofconn_destroy(ofconn);
776 } else {
777 update_controller(ofconn, c);
778 if (ofconn->ss) {
779 ss_exists = true;
780 }
781 }
782 }
783
784 /* Delete services that are no longer configured.
785 * Update configuration of all now-existing services. */
786 HMAP_FOR_EACH_SAFE (ofservice, next_ofservice, node, &p->services) {
787 struct ofproto_controller *c;
788
789 c = shash_find_data(&new_controllers,
790 pvconn_get_name(ofservice->pvconn));
791 if (!c) {
792 ofservice_destroy(p, ofservice);
793 } else {
794 ofservice_reconfigure(ofservice, c);
795 }
796 }
797
798 shash_destroy(&new_controllers);
799
800 update_in_band_remotes(p);
801 update_fail_open(p);
802
803 if (!hmap_is_empty(&p->controllers) && !ss_exists) {
804 ofconn = CONTAINER_OF(hmap_first(&p->controllers),
805 struct ofconn, hmap_node);
806 ofconn->ss = switch_status_register(p->switch_status, "remote",
807 rconn_status_cb, ofconn->rconn);
808 }
809 }
810
811 void
812 ofproto_set_fail_mode(struct ofproto *p, enum ofproto_fail_mode fail_mode)
813 {
814 p->fail_mode = fail_mode;
815 update_fail_open(p);
816 }
817
818 /* Drops the connections between 'ofproto' and all of its controllers, forcing
819 * them to reconnect. */
820 void
821 ofproto_reconnect_controllers(struct ofproto *ofproto)
822 {
823 struct ofconn *ofconn;
824
825 LIST_FOR_EACH (ofconn, node, &ofproto->all_conns) {
826 rconn_reconnect(ofconn->rconn);
827 }
828 }
829
830 static bool
831 any_extras_changed(const struct ofproto *ofproto,
832 const struct sockaddr_in *extras, size_t n)
833 {
834 size_t i;
835
836 if (n != ofproto->n_extra_remotes) {
837 return true;
838 }
839
840 for (i = 0; i < n; i++) {
841 const struct sockaddr_in *old = &ofproto->extra_in_band_remotes[i];
842 const struct sockaddr_in *new = &extras[i];
843
844 if (old->sin_addr.s_addr != new->sin_addr.s_addr ||
845 old->sin_port != new->sin_port) {
846 return true;
847 }
848 }
849
850 return false;
851 }
852
853 /* Sets the 'n' TCP port addresses in 'extras' as ones to which 'ofproto''s
854 * in-band control should guarantee access, in the same way that in-band
855 * control guarantees access to OpenFlow controllers. */
856 void
857 ofproto_set_extra_in_band_remotes(struct ofproto *ofproto,
858 const struct sockaddr_in *extras, size_t n)
859 {
860 if (!any_extras_changed(ofproto, extras, n)) {
861 return;
862 }
863
864 free(ofproto->extra_in_band_remotes);
865 ofproto->n_extra_remotes = n;
866 ofproto->extra_in_band_remotes = xmemdup(extras, n * sizeof *extras);
867
868 update_in_band_remotes(ofproto);
869 }
870
871 /* Sets the OpenFlow queue used by flows set up by in-band control on
872 * 'ofproto' to 'queue_id'. If 'queue_id' is negative, then in-band control
873 * flows will use the default queue. */
874 void
875 ofproto_set_in_band_queue(struct ofproto *ofproto, int queue_id)
876 {
877 if (queue_id != ofproto->in_band_queue) {
878 ofproto->in_band_queue = queue_id;
879 update_in_band_remotes(ofproto);
880 }
881 }
882
883 void
884 ofproto_set_desc(struct ofproto *p,
885 const char *mfr_desc, const char *hw_desc,
886 const char *sw_desc, const char *serial_desc,
887 const char *dp_desc)
888 {
889 struct ofp_desc_stats *ods;
890
891 if (mfr_desc) {
892 if (strlen(mfr_desc) >= sizeof ods->mfr_desc) {
893 VLOG_WARN("truncating mfr_desc, must be less than %zu characters",
894 sizeof ods->mfr_desc);
895 }
896 free(p->mfr_desc);
897 p->mfr_desc = xstrdup(mfr_desc);
898 }
899 if (hw_desc) {
900 if (strlen(hw_desc) >= sizeof ods->hw_desc) {
901 VLOG_WARN("truncating hw_desc, must be less than %zu characters",
902 sizeof ods->hw_desc);
903 }
904 free(p->hw_desc);
905 p->hw_desc = xstrdup(hw_desc);
906 }
907 if (sw_desc) {
908 if (strlen(sw_desc) >= sizeof ods->sw_desc) {
909 VLOG_WARN("truncating sw_desc, must be less than %zu characters",
910 sizeof ods->sw_desc);
911 }
912 free(p->sw_desc);
913 p->sw_desc = xstrdup(sw_desc);
914 }
915 if (serial_desc) {
916 if (strlen(serial_desc) >= sizeof ods->serial_num) {
917 VLOG_WARN("truncating serial_desc, must be less than %zu "
918 "characters",
919 sizeof ods->serial_num);
920 }
921 free(p->serial_desc);
922 p->serial_desc = xstrdup(serial_desc);
923 }
924 if (dp_desc) {
925 if (strlen(dp_desc) >= sizeof ods->dp_desc) {
926 VLOG_WARN("truncating dp_desc, must be less than %zu characters",
927 sizeof ods->dp_desc);
928 }
929 free(p->dp_desc);
930 p->dp_desc = xstrdup(dp_desc);
931 }
932 }
933
934 static int
935 set_pvconns(struct pvconn ***pvconnsp, size_t *n_pvconnsp,
936 const struct svec *svec)
937 {
938 struct pvconn **pvconns = *pvconnsp;
939 size_t n_pvconns = *n_pvconnsp;
940 int retval = 0;
941 size_t i;
942
943 for (i = 0; i < n_pvconns; i++) {
944 pvconn_close(pvconns[i]);
945 }
946 free(pvconns);
947
948 pvconns = xmalloc(svec->n * sizeof *pvconns);
949 n_pvconns = 0;
950 for (i = 0; i < svec->n; i++) {
951 const char *name = svec->names[i];
952 struct pvconn *pvconn;
953 int error;
954
955 error = pvconn_open(name, &pvconn);
956 if (!error) {
957 pvconns[n_pvconns++] = pvconn;
958 } else {
959 VLOG_ERR("failed to listen on %s: %s", name, strerror(error));
960 if (!retval) {
961 retval = error;
962 }
963 }
964 }
965
966 *pvconnsp = pvconns;
967 *n_pvconnsp = n_pvconns;
968
969 return retval;
970 }
971
972 int
973 ofproto_set_snoops(struct ofproto *ofproto, const struct svec *snoops)
974 {
975 return set_pvconns(&ofproto->snoops, &ofproto->n_snoops, snoops);
976 }
977
978 int
979 ofproto_set_netflow(struct ofproto *ofproto,
980 const struct netflow_options *nf_options)
981 {
982 if (nf_options && nf_options->collectors.n) {
983 if (!ofproto->netflow) {
984 ofproto->netflow = netflow_create();
985 }
986 return netflow_set_options(ofproto->netflow, nf_options);
987 } else {
988 netflow_destroy(ofproto->netflow);
989 ofproto->netflow = NULL;
990 return 0;
991 }
992 }
993
994 void
995 ofproto_set_sflow(struct ofproto *ofproto,
996 const struct ofproto_sflow_options *oso)
997 {
998 struct ofproto_sflow *os = ofproto->sflow;
999 if (oso) {
1000 if (!os) {
1001 struct ofport *ofport;
1002
1003 os = ofproto->sflow = ofproto_sflow_create(ofproto->dpif);
1004 HMAP_FOR_EACH (ofport, hmap_node, &ofproto->ports) {
1005 ofproto_sflow_add_port(os, ofport->odp_port,
1006 netdev_get_name(ofport->netdev));
1007 }
1008 }
1009 ofproto_sflow_set_options(os, oso);
1010 } else {
1011 ofproto_sflow_destroy(os);
1012 ofproto->sflow = NULL;
1013 }
1014 }
1015
1016 uint64_t
1017 ofproto_get_datapath_id(const struct ofproto *ofproto)
1018 {
1019 return ofproto->datapath_id;
1020 }
1021
1022 bool
1023 ofproto_has_primary_controller(const struct ofproto *ofproto)
1024 {
1025 return !hmap_is_empty(&ofproto->controllers);
1026 }
1027
1028 enum ofproto_fail_mode
1029 ofproto_get_fail_mode(const struct ofproto *p)
1030 {
1031 return p->fail_mode;
1032 }
1033
1034 void
1035 ofproto_get_snoops(const struct ofproto *ofproto, struct svec *snoops)
1036 {
1037 size_t i;
1038
1039 for (i = 0; i < ofproto->n_snoops; i++) {
1040 svec_add(snoops, pvconn_get_name(ofproto->snoops[i]));
1041 }
1042 }
1043
1044 void
1045 ofproto_destroy(struct ofproto *p)
1046 {
1047 struct ofservice *ofservice, *next_ofservice;
1048 struct ofconn *ofconn, *next_ofconn;
1049 struct ofport *ofport, *next_ofport;
1050 size_t i;
1051
1052 if (!p) {
1053 return;
1054 }
1055
1056 shash_find_and_delete(&all_ofprotos, dpif_name(p->dpif));
1057
1058 /* Destroy fail-open and in-band early, since they touch the classifier. */
1059 fail_open_destroy(p->fail_open);
1060 p->fail_open = NULL;
1061
1062 in_band_destroy(p->in_band);
1063 p->in_band = NULL;
1064 free(p->extra_in_band_remotes);
1065
1066 ofproto_flush_flows(p);
1067 classifier_destroy(&p->cls);
1068 hmap_destroy(&p->facets);
1069
1070 LIST_FOR_EACH_SAFE (ofconn, next_ofconn, node, &p->all_conns) {
1071 ofconn_destroy(ofconn);
1072 }
1073 hmap_destroy(&p->controllers);
1074
1075 dpif_close(p->dpif);
1076 netdev_monitor_destroy(p->netdev_monitor);
1077 HMAP_FOR_EACH_SAFE (ofport, next_ofport, hmap_node, &p->ports) {
1078 hmap_remove(&p->ports, &ofport->hmap_node);
1079 ofport_free(ofport);
1080 }
1081 shash_destroy(&p->port_by_name);
1082
1083 switch_status_destroy(p->switch_status);
1084 netflow_destroy(p->netflow);
1085 ofproto_sflow_destroy(p->sflow);
1086
1087 HMAP_FOR_EACH_SAFE (ofservice, next_ofservice, node, &p->services) {
1088 ofservice_destroy(p, ofservice);
1089 }
1090 hmap_destroy(&p->services);
1091
1092 for (i = 0; i < p->n_snoops; i++) {
1093 pvconn_close(p->snoops[i]);
1094 }
1095 free(p->snoops);
1096
1097 mac_learning_destroy(p->ml);
1098
1099 free(p->mfr_desc);
1100 free(p->hw_desc);
1101 free(p->sw_desc);
1102 free(p->serial_desc);
1103 free(p->dp_desc);
1104
1105 hmap_destroy(&p->ports);
1106
1107 free(p);
1108 }
1109
1110 int
1111 ofproto_run(struct ofproto *p)
1112 {
1113 int error = ofproto_run1(p);
1114 if (!error) {
1115 error = ofproto_run2(p, false);
1116 }
1117 return error;
1118 }
1119
1120 static void
1121 process_port_change(struct ofproto *ofproto, int error, char *devname)
1122 {
1123 if (error == ENOBUFS) {
1124 reinit_ports(ofproto);
1125 } else if (!error) {
1126 update_port(ofproto, devname);
1127 free(devname);
1128 }
1129 }
1130
1131 /* Returns a "preference level" for snooping 'ofconn'. A higher return value
1132 * means that 'ofconn' is more interesting for monitoring than a lower return
1133 * value. */
1134 static int
1135 snoop_preference(const struct ofconn *ofconn)
1136 {
1137 switch (ofconn->role) {
1138 case NX_ROLE_MASTER:
1139 return 3;
1140 case NX_ROLE_OTHER:
1141 return 2;
1142 case NX_ROLE_SLAVE:
1143 return 1;
1144 default:
1145 /* Shouldn't happen. */
1146 return 0;
1147 }
1148 }
1149
1150 /* One of ofproto's "snoop" pvconns has accepted a new connection on 'vconn'.
1151 * Connects this vconn to a controller. */
1152 static void
1153 add_snooper(struct ofproto *ofproto, struct vconn *vconn)
1154 {
1155 struct ofconn *ofconn, *best;
1156
1157 /* Pick a controller for monitoring. */
1158 best = NULL;
1159 LIST_FOR_EACH (ofconn, node, &ofproto->all_conns) {
1160 if (ofconn->type == OFCONN_PRIMARY
1161 && (!best || snoop_preference(ofconn) > snoop_preference(best))) {
1162 best = ofconn;
1163 }
1164 }
1165
1166 if (best) {
1167 rconn_add_monitor(best->rconn, vconn);
1168 } else {
1169 VLOG_INFO_RL(&rl, "no controller connection to snoop");
1170 vconn_close(vconn);
1171 }
1172 }
1173
1174 int
1175 ofproto_run1(struct ofproto *p)
1176 {
1177 struct ofconn *ofconn, *next_ofconn;
1178 struct ofservice *ofservice;
1179 char *devname;
1180 int error;
1181 int i;
1182
1183 if (shash_is_empty(&p->port_by_name)) {
1184 init_ports(p);
1185 }
1186
1187 for (i = 0; i < 50; i++) {
1188 struct dpif_upcall packet;
1189
1190 error = dpif_recv(p->dpif, &packet);
1191 if (error) {
1192 if (error == ENODEV) {
1193 /* Someone destroyed the datapath behind our back. The caller
1194 * better destroy us and give up, because we're just going to
1195 * spin from here on out. */
1196 static struct vlog_rate_limit rl2 = VLOG_RATE_LIMIT_INIT(1, 5);
1197 VLOG_ERR_RL(&rl2, "%s: datapath was destroyed externally",
1198 dpif_name(p->dpif));
1199 return ENODEV;
1200 }
1201 break;
1202 }
1203
1204 handle_upcall(p, &packet);
1205 }
1206
1207 while ((error = dpif_port_poll(p->dpif, &devname)) != EAGAIN) {
1208 process_port_change(p, error, devname);
1209 }
1210 while ((error = netdev_monitor_poll(p->netdev_monitor,
1211 &devname)) != EAGAIN) {
1212 process_port_change(p, error, devname);
1213 }
1214
1215 if (p->in_band) {
1216 if (time_msec() >= p->next_in_band_update) {
1217 update_in_band_remotes(p);
1218 }
1219 in_band_run(p->in_band);
1220 }
1221
1222 LIST_FOR_EACH_SAFE (ofconn, next_ofconn, node, &p->all_conns) {
1223 ofconn_run(ofconn);
1224 }
1225
1226 /* Fail-open maintenance. Do this after processing the ofconns since
1227 * fail-open checks the status of the controller rconn. */
1228 if (p->fail_open) {
1229 fail_open_run(p->fail_open);
1230 }
1231
1232 HMAP_FOR_EACH (ofservice, node, &p->services) {
1233 struct vconn *vconn;
1234 int retval;
1235
1236 retval = pvconn_accept(ofservice->pvconn, OFP_VERSION, &vconn);
1237 if (!retval) {
1238 struct rconn *rconn;
1239 char *name;
1240
1241 rconn = rconn_create(ofservice->probe_interval, 0);
1242 name = ofconn_make_name(p, vconn_get_name(vconn));
1243 rconn_connect_unreliably(rconn, vconn, name);
1244 free(name);
1245
1246 ofconn = ofconn_create(p, rconn, OFCONN_SERVICE);
1247 ofconn_set_rate_limit(ofconn, ofservice->rate_limit,
1248 ofservice->burst_limit);
1249 } else if (retval != EAGAIN) {
1250 VLOG_WARN_RL(&rl, "accept failed (%s)", strerror(retval));
1251 }
1252 }
1253
1254 for (i = 0; i < p->n_snoops; i++) {
1255 struct vconn *vconn;
1256 int retval;
1257
1258 retval = pvconn_accept(p->snoops[i], OFP_VERSION, &vconn);
1259 if (!retval) {
1260 add_snooper(p, vconn);
1261 } else if (retval != EAGAIN) {
1262 VLOG_WARN_RL(&rl, "accept failed (%s)", strerror(retval));
1263 }
1264 }
1265
1266 if (time_msec() >= p->next_expiration) {
1267 int delay = ofproto_expire(p);
1268 p->next_expiration = time_msec() + delay;
1269 COVERAGE_INC(ofproto_expiration);
1270 }
1271
1272 if (p->netflow) {
1273 netflow_run(p->netflow);
1274 }
1275 if (p->sflow) {
1276 ofproto_sflow_run(p->sflow);
1277 }
1278
1279 return 0;
1280 }
1281
1282 int
1283 ofproto_run2(struct ofproto *p, bool revalidate_all)
1284 {
1285 /* Figure out what we need to revalidate now, if anything. */
1286 struct tag_set revalidate_set = p->revalidate_set;
1287 if (p->need_revalidate) {
1288 revalidate_all = true;
1289 }
1290
1291 /* Clear the revalidation flags. */
1292 tag_set_init(&p->revalidate_set);
1293 p->need_revalidate = false;
1294
1295 /* Now revalidate if there's anything to do. */
1296 if (revalidate_all || !tag_set_is_empty(&revalidate_set)) {
1297 struct facet *facet, *next;
1298
1299 HMAP_FOR_EACH_SAFE (facet, next, hmap_node, &p->facets) {
1300 if (revalidate_all
1301 || tag_set_intersects(&revalidate_set, facet->tags)) {
1302 facet_revalidate(p, facet);
1303 }
1304 }
1305 }
1306
1307 return 0;
1308 }
1309
1310 void
1311 ofproto_wait(struct ofproto *p)
1312 {
1313 struct ofservice *ofservice;
1314 struct ofconn *ofconn;
1315 size_t i;
1316
1317 dpif_recv_wait(p->dpif);
1318 dpif_port_poll_wait(p->dpif);
1319 netdev_monitor_poll_wait(p->netdev_monitor);
1320 LIST_FOR_EACH (ofconn, node, &p->all_conns) {
1321 ofconn_wait(ofconn);
1322 }
1323 if (p->in_band) {
1324 poll_timer_wait_until(p->next_in_band_update);
1325 in_band_wait(p->in_band);
1326 }
1327 if (p->fail_open) {
1328 fail_open_wait(p->fail_open);
1329 }
1330 if (p->sflow) {
1331 ofproto_sflow_wait(p->sflow);
1332 }
1333 if (!tag_set_is_empty(&p->revalidate_set)) {
1334 poll_immediate_wake();
1335 }
1336 if (p->need_revalidate) {
1337 /* Shouldn't happen, but if it does just go around again. */
1338 VLOG_DBG_RL(&rl, "need revalidate in ofproto_wait_cb()");
1339 poll_immediate_wake();
1340 } else if (p->next_expiration != LLONG_MAX) {
1341 poll_timer_wait_until(p->next_expiration);
1342 }
1343 HMAP_FOR_EACH (ofservice, node, &p->services) {
1344 pvconn_wait(ofservice->pvconn);
1345 }
1346 for (i = 0; i < p->n_snoops; i++) {
1347 pvconn_wait(p->snoops[i]);
1348 }
1349 }
1350
1351 void
1352 ofproto_revalidate(struct ofproto *ofproto, tag_type tag)
1353 {
1354 tag_set_add(&ofproto->revalidate_set, tag);
1355 }
1356
1357 struct tag_set *
1358 ofproto_get_revalidate_set(struct ofproto *ofproto)
1359 {
1360 return &ofproto->revalidate_set;
1361 }
1362
1363 bool
1364 ofproto_is_alive(const struct ofproto *p)
1365 {
1366 return !hmap_is_empty(&p->controllers);
1367 }
1368
1369 void
1370 ofproto_get_ofproto_controller_info(const struct ofproto *ofproto,
1371 struct shash *info)
1372 {
1373 const struct ofconn *ofconn;
1374
1375 shash_init(info);
1376
1377 HMAP_FOR_EACH (ofconn, hmap_node, &ofproto->controllers) {
1378 const struct rconn *rconn = ofconn->rconn;
1379 time_t now = time_now();
1380 time_t last_connection = rconn_get_last_connection(rconn);
1381 time_t last_disconnect = rconn_get_last_disconnect(rconn);
1382 const int last_error = rconn_get_last_error(rconn);
1383 struct ofproto_controller_info *cinfo = xmalloc(sizeof *cinfo);
1384
1385 shash_add(info, rconn_get_target(rconn), cinfo);
1386
1387 cinfo->is_connected = rconn_is_connected(rconn);
1388 cinfo->role = ofconn->role;
1389
1390 cinfo->pairs.n = 0;
1391
1392 if (last_error) {
1393 cinfo->pairs.keys[cinfo->pairs.n] = "last_error";
1394 cinfo->pairs.values[cinfo->pairs.n++] =
1395 xstrdup(ovs_retval_to_string(last_error));
1396 }
1397
1398 cinfo->pairs.keys[cinfo->pairs.n] = "state";
1399 cinfo->pairs.values[cinfo->pairs.n++] =
1400 xstrdup(rconn_get_state(rconn));
1401
1402 if (last_connection != TIME_MIN) {
1403 cinfo->pairs.keys[cinfo->pairs.n] = "sec_since_connect";
1404 cinfo->pairs.values[cinfo->pairs.n++]
1405 = xasprintf("%ld", (long int) (now - last_connection));
1406 }
1407
1408 if (last_disconnect != TIME_MIN) {
1409 cinfo->pairs.keys[cinfo->pairs.n] = "sec_since_disconnect";
1410 cinfo->pairs.values[cinfo->pairs.n++]
1411 = xasprintf("%ld", (long int) (now - last_disconnect));
1412 }
1413 }
1414 }
1415
1416 void
1417 ofproto_free_ofproto_controller_info(struct shash *info)
1418 {
1419 struct shash_node *node;
1420
1421 SHASH_FOR_EACH (node, info) {
1422 struct ofproto_controller_info *cinfo = node->data;
1423 while (cinfo->pairs.n) {
1424 free((char *) cinfo->pairs.values[--cinfo->pairs.n]);
1425 }
1426 free(cinfo);
1427 }
1428 shash_destroy(info);
1429 }
1430
1431 /* Deletes port number 'odp_port' from the datapath for 'ofproto'.
1432 *
1433 * This is almost the same as calling dpif_port_del() directly on the
1434 * datapath, but it also makes 'ofproto' close its open netdev for the port
1435 * (if any). This makes it possible to create a new netdev of a different
1436 * type under the same name, which otherwise the netdev library would refuse
1437 * to do because of the conflict. (The netdev would eventually get closed on
1438 * the next trip through ofproto_run(), but this interface is more direct.)
1439 *
1440 * Returns 0 if successful, otherwise a positive errno. */
1441 int
1442 ofproto_port_del(struct ofproto *ofproto, uint16_t odp_port)
1443 {
1444 struct ofport *ofport = get_port(ofproto, odp_port);
1445 const char *name = ofport ? ofport->opp.name : "<unknown>";
1446 int error;
1447
1448 error = dpif_port_del(ofproto->dpif, odp_port);
1449 if (error) {
1450 VLOG_ERR("%s: failed to remove port %"PRIu16" (%s) interface (%s)",
1451 dpif_name(ofproto->dpif), odp_port, name, strerror(error));
1452 } else if (ofport) {
1453 /* 'name' is ofport->opp.name and update_port() is going to destroy
1454 * 'ofport'. Just in case update_port() refers to 'name' after it
1455 * destroys 'ofport', make a copy of it around the update_port()
1456 * call. */
1457 char *devname = xstrdup(name);
1458 update_port(ofproto, devname);
1459 free(devname);
1460 }
1461 return error;
1462 }
1463
1464 /* Checks if 'ofproto' thinks 'odp_port' should be included in floods. Returns
1465 * true if 'odp_port' exists and should be included, false otherwise. */
1466 bool
1467 ofproto_port_is_floodable(struct ofproto *ofproto, uint16_t odp_port)
1468 {
1469 struct ofport *ofport = get_port(ofproto, odp_port);
1470 return ofport && !(ofport->opp.config & OFPPC_NO_FLOOD);
1471 }
1472
1473 int
1474 ofproto_send_packet(struct ofproto *p, const struct flow *flow,
1475 const union ofp_action *actions, size_t n_actions,
1476 const struct ofpbuf *packet)
1477 {
1478 struct action_xlate_ctx ctx;
1479 struct ofpbuf *odp_actions;
1480
1481 action_xlate_ctx_init(&ctx, p, flow, packet);
1482 /* Always xlate packets originated in this function. */
1483 ctx.check_special = false;
1484 odp_actions = xlate_actions(&ctx, actions, n_actions);
1485
1486 /* XXX Should we translate the dpif_execute() errno value into an OpenFlow
1487 * error code? */
1488 dpif_execute(p->dpif, odp_actions->data, odp_actions->size, packet);
1489
1490 ofpbuf_delete(odp_actions);
1491
1492 return 0;
1493 }
1494
1495 /* Adds a flow to the OpenFlow flow table in 'p' that matches 'cls_rule' and
1496 * performs the 'n_actions' actions in 'actions'. The new flow will not
1497 * timeout.
1498 *
1499 * If cls_rule->priority is in the range of priorities supported by OpenFlow
1500 * (0...65535, inclusive) then the flow will be visible to OpenFlow
1501 * controllers; otherwise, it will be hidden.
1502 *
1503 * The caller retains ownership of 'cls_rule' and 'actions'. */
1504 void
1505 ofproto_add_flow(struct ofproto *p, const struct cls_rule *cls_rule,
1506 const union ofp_action *actions, size_t n_actions)
1507 {
1508 struct rule *rule;
1509 rule = rule_create(cls_rule, actions, n_actions, 0, 0, 0, false);
1510 rule_insert(p, rule);
1511 }
1512
1513 void
1514 ofproto_delete_flow(struct ofproto *ofproto, const struct cls_rule *target)
1515 {
1516 struct rule *rule;
1517
1518 rule = rule_from_cls_rule(classifier_find_rule_exactly(&ofproto->cls,
1519 target));
1520 if (rule) {
1521 rule_remove(ofproto, rule);
1522 }
1523 }
1524
1525 void
1526 ofproto_flush_flows(struct ofproto *ofproto)
1527 {
1528 struct facet *facet, *next_facet;
1529 struct rule *rule, *next_rule;
1530 struct cls_cursor cursor;
1531
1532 COVERAGE_INC(ofproto_flush);
1533
1534 HMAP_FOR_EACH_SAFE (facet, next_facet, hmap_node, &ofproto->facets) {
1535 /* Mark the facet as not installed so that facet_remove() doesn't
1536 * bother trying to uninstall it. There is no point in uninstalling it
1537 * individually since we are about to blow away all the facets with
1538 * dpif_flow_flush(). */
1539 facet->installed = false;
1540 facet->dp_packet_count = 0;
1541 facet->dp_byte_count = 0;
1542 facet_remove(ofproto, facet);
1543 }
1544
1545 cls_cursor_init(&cursor, &ofproto->cls, NULL);
1546 CLS_CURSOR_FOR_EACH_SAFE (rule, next_rule, cr, &cursor) {
1547 rule_remove(ofproto, rule);
1548 }
1549
1550 dpif_flow_flush(ofproto->dpif);
1551 if (ofproto->in_band) {
1552 in_band_flushed(ofproto->in_band);
1553 }
1554 if (ofproto->fail_open) {
1555 fail_open_flushed(ofproto->fail_open);
1556 }
1557 }
1558 \f
1559 static void
1560 reinit_ports(struct ofproto *p)
1561 {
1562 struct dpif_port_dump dump;
1563 struct shash_node *node;
1564 struct shash devnames;
1565 struct ofport *ofport;
1566 struct dpif_port dpif_port;
1567
1568 COVERAGE_INC(ofproto_reinit_ports);
1569
1570 shash_init(&devnames);
1571 HMAP_FOR_EACH (ofport, hmap_node, &p->ports) {
1572 shash_add_once (&devnames, ofport->opp.name, NULL);
1573 }
1574 DPIF_PORT_FOR_EACH (&dpif_port, &dump, p->dpif) {
1575 shash_add_once (&devnames, dpif_port.name, NULL);
1576 }
1577
1578 SHASH_FOR_EACH (node, &devnames) {
1579 update_port(p, node->name);
1580 }
1581 shash_destroy(&devnames);
1582 }
1583
1584 static struct ofport *
1585 make_ofport(const struct dpif_port *dpif_port)
1586 {
1587 struct netdev_options netdev_options;
1588 enum netdev_flags flags;
1589 struct ofport *ofport;
1590 struct netdev *netdev;
1591 int error;
1592
1593 memset(&netdev_options, 0, sizeof netdev_options);
1594 netdev_options.name = dpif_port->name;
1595 netdev_options.type = dpif_port->type;
1596 netdev_options.ethertype = NETDEV_ETH_TYPE_NONE;
1597
1598 error = netdev_open(&netdev_options, &netdev);
1599 if (error) {
1600 VLOG_WARN_RL(&rl, "ignoring port %s (%"PRIu16") because netdev %s "
1601 "cannot be opened (%s)",
1602 dpif_port->name, dpif_port->port_no,
1603 dpif_port->name, strerror(error));
1604 return NULL;
1605 }
1606
1607 ofport = xzalloc(sizeof *ofport);
1608 ofport->netdev = netdev;
1609 ofport->odp_port = dpif_port->port_no;
1610 ofport->opp.port_no = odp_port_to_ofp_port(dpif_port->port_no);
1611 netdev_get_etheraddr(netdev, ofport->opp.hw_addr);
1612 ovs_strlcpy(ofport->opp.name, dpif_port->name, sizeof ofport->opp.name);
1613
1614 netdev_get_flags(netdev, &flags);
1615 ofport->opp.config = flags & NETDEV_UP ? 0 : OFPPC_PORT_DOWN;
1616
1617 ofport->opp.state = netdev_get_carrier(netdev) ? 0 : OFPPS_LINK_DOWN;
1618
1619 netdev_get_features(netdev,
1620 &ofport->opp.curr, &ofport->opp.advertised,
1621 &ofport->opp.supported, &ofport->opp.peer);
1622 return ofport;
1623 }
1624
1625 static bool
1626 ofport_conflicts(const struct ofproto *p, const struct dpif_port *dpif_port)
1627 {
1628 if (get_port(p, dpif_port->port_no)) {
1629 VLOG_WARN_RL(&rl, "ignoring duplicate port %"PRIu16" in datapath",
1630 dpif_port->port_no);
1631 return true;
1632 } else if (shash_find(&p->port_by_name, dpif_port->name)) {
1633 VLOG_WARN_RL(&rl, "ignoring duplicate device %s in datapath",
1634 dpif_port->name);
1635 return true;
1636 } else {
1637 return false;
1638 }
1639 }
1640
1641 static int
1642 ofport_equal(const struct ofport *a_, const struct ofport *b_)
1643 {
1644 const struct ofp_phy_port *a = &a_->opp;
1645 const struct ofp_phy_port *b = &b_->opp;
1646
1647 BUILD_ASSERT_DECL(sizeof *a == 48); /* Detect ofp_phy_port changes. */
1648 return (a->port_no == b->port_no
1649 && !memcmp(a->hw_addr, b->hw_addr, sizeof a->hw_addr)
1650 && !strcmp(a->name, b->name)
1651 && a->state == b->state
1652 && a->config == b->config
1653 && a->curr == b->curr
1654 && a->advertised == b->advertised
1655 && a->supported == b->supported
1656 && a->peer == b->peer);
1657 }
1658
1659 static void
1660 send_port_status(struct ofproto *p, const struct ofport *ofport,
1661 uint8_t reason)
1662 {
1663 /* XXX Should limit the number of queued port status change messages. */
1664 struct ofconn *ofconn;
1665 LIST_FOR_EACH (ofconn, node, &p->all_conns) {
1666 struct ofp_port_status *ops;
1667 struct ofpbuf *b;
1668
1669 /* Primary controllers, even slaves, should always get port status
1670 updates. Otherwise obey ofconn_receives_async_msgs(). */
1671 if (ofconn->type != OFCONN_PRIMARY
1672 && !ofconn_receives_async_msgs(ofconn)) {
1673 continue;
1674 }
1675
1676 ops = make_openflow_xid(sizeof *ops, OFPT_PORT_STATUS, 0, &b);
1677 ops->reason = reason;
1678 ops->desc = ofport->opp;
1679 hton_ofp_phy_port(&ops->desc);
1680 queue_tx(b, ofconn, NULL);
1681 }
1682 }
1683
1684 static void
1685 ofport_install(struct ofproto *p, struct ofport *ofport)
1686 {
1687 const char *netdev_name = ofport->opp.name;
1688
1689 netdev_monitor_add(p->netdev_monitor, ofport->netdev);
1690 hmap_insert(&p->ports, &ofport->hmap_node, hash_int(ofport->odp_port, 0));
1691 shash_add(&p->port_by_name, netdev_name, ofport);
1692 if (p->sflow) {
1693 ofproto_sflow_add_port(p->sflow, ofport->odp_port, netdev_name);
1694 }
1695 }
1696
1697 static void
1698 ofport_remove(struct ofproto *p, struct ofport *ofport)
1699 {
1700 netdev_monitor_remove(p->netdev_monitor, ofport->netdev);
1701 hmap_remove(&p->ports, &ofport->hmap_node);
1702 shash_delete(&p->port_by_name,
1703 shash_find(&p->port_by_name, ofport->opp.name));
1704 if (p->sflow) {
1705 ofproto_sflow_del_port(p->sflow, ofport->odp_port);
1706 }
1707 }
1708
1709 static void
1710 ofport_free(struct ofport *ofport)
1711 {
1712 if (ofport) {
1713 netdev_close(ofport->netdev);
1714 free(ofport);
1715 }
1716 }
1717
1718 static struct ofport *
1719 get_port(const struct ofproto *ofproto, uint16_t odp_port)
1720 {
1721 struct ofport *port;
1722
1723 HMAP_FOR_EACH_IN_BUCKET (port, hmap_node,
1724 hash_int(odp_port, 0), &ofproto->ports) {
1725 if (port->odp_port == odp_port) {
1726 return port;
1727 }
1728 }
1729 return NULL;
1730 }
1731
1732 static void
1733 update_port(struct ofproto *p, const char *devname)
1734 {
1735 struct dpif_port dpif_port;
1736 struct ofport *old_ofport;
1737 struct ofport *new_ofport;
1738 int error;
1739
1740 COVERAGE_INC(ofproto_update_port);
1741
1742 /* Query the datapath for port information. */
1743 error = dpif_port_query_by_name(p->dpif, devname, &dpif_port);
1744
1745 /* Find the old ofport. */
1746 old_ofport = shash_find_data(&p->port_by_name, devname);
1747 if (!error) {
1748 if (!old_ofport) {
1749 /* There's no port named 'devname' but there might be a port with
1750 * the same port number. This could happen if a port is deleted
1751 * and then a new one added in its place very quickly, or if a port
1752 * is renamed. In the former case we want to send an OFPPR_DELETE
1753 * and an OFPPR_ADD, and in the latter case we want to send a
1754 * single OFPPR_MODIFY. We can distinguish the cases by comparing
1755 * the old port's ifindex against the new port, or perhaps less
1756 * reliably but more portably by comparing the old port's MAC
1757 * against the new port's MAC. However, this code isn't that smart
1758 * and always sends an OFPPR_MODIFY (XXX). */
1759 old_ofport = get_port(p, dpif_port.port_no);
1760 }
1761 } else if (error != ENOENT && error != ENODEV) {
1762 VLOG_WARN_RL(&rl, "dpif_port_query_by_name returned unexpected error "
1763 "%s", strerror(error));
1764 goto exit;
1765 }
1766
1767 /* Create a new ofport. */
1768 new_ofport = !error ? make_ofport(&dpif_port) : NULL;
1769
1770 /* Eliminate a few pathological cases. */
1771 if (!old_ofport && !new_ofport) {
1772 goto exit;
1773 } else if (old_ofport && new_ofport) {
1774 /* Most of the 'config' bits are OpenFlow soft state, but
1775 * OFPPC_PORT_DOWN is maintained by the kernel. So transfer the
1776 * OpenFlow bits from old_ofport. (make_ofport() only sets
1777 * OFPPC_PORT_DOWN and leaves the other bits 0.) */
1778 new_ofport->opp.config |= old_ofport->opp.config & ~OFPPC_PORT_DOWN;
1779
1780 if (ofport_equal(old_ofport, new_ofport)) {
1781 /* False alarm--no change. */
1782 ofport_free(new_ofport);
1783 goto exit;
1784 }
1785 }
1786
1787 /* Now deal with the normal cases. */
1788 if (old_ofport) {
1789 ofport_remove(p, old_ofport);
1790 }
1791 if (new_ofport) {
1792 ofport_install(p, new_ofport);
1793 }
1794 send_port_status(p, new_ofport ? new_ofport : old_ofport,
1795 (!old_ofport ? OFPPR_ADD
1796 : !new_ofport ? OFPPR_DELETE
1797 : OFPPR_MODIFY));
1798 ofport_free(old_ofport);
1799
1800 exit:
1801 dpif_port_destroy(&dpif_port);
1802 }
1803
1804 static int
1805 init_ports(struct ofproto *p)
1806 {
1807 struct dpif_port_dump dump;
1808 struct dpif_port dpif_port;
1809
1810 DPIF_PORT_FOR_EACH (&dpif_port, &dump, p->dpif) {
1811 if (!ofport_conflicts(p, &dpif_port)) {
1812 struct ofport *ofport = make_ofport(&dpif_port);
1813 if (ofport) {
1814 ofport_install(p, ofport);
1815 }
1816 }
1817 }
1818
1819 return 0;
1820 }
1821 \f
1822 static struct ofconn *
1823 ofconn_create(struct ofproto *p, struct rconn *rconn, enum ofconn_type type)
1824 {
1825 struct ofconn *ofconn = xzalloc(sizeof *ofconn);
1826 ofconn->ofproto = p;
1827 list_push_back(&p->all_conns, &ofconn->node);
1828 ofconn->rconn = rconn;
1829 ofconn->type = type;
1830 ofconn->flow_format = NXFF_OPENFLOW10;
1831 ofconn->role = NX_ROLE_OTHER;
1832 ofconn->packet_in_counter = rconn_packet_counter_create ();
1833 ofconn->pktbuf = NULL;
1834 ofconn->miss_send_len = 0;
1835 ofconn->reply_counter = rconn_packet_counter_create ();
1836 return ofconn;
1837 }
1838
1839 static void
1840 ofconn_destroy(struct ofconn *ofconn)
1841 {
1842 if (ofconn->type == OFCONN_PRIMARY) {
1843 hmap_remove(&ofconn->ofproto->controllers, &ofconn->hmap_node);
1844 }
1845 discovery_destroy(ofconn->discovery);
1846
1847 list_remove(&ofconn->node);
1848 switch_status_unregister(ofconn->ss);
1849 rconn_destroy(ofconn->rconn);
1850 rconn_packet_counter_destroy(ofconn->packet_in_counter);
1851 rconn_packet_counter_destroy(ofconn->reply_counter);
1852 pktbuf_destroy(ofconn->pktbuf);
1853 free(ofconn);
1854 }
1855
1856 static void
1857 ofconn_run(struct ofconn *ofconn)
1858 {
1859 struct ofproto *p = ofconn->ofproto;
1860 int iteration;
1861 size_t i;
1862
1863 if (ofconn->discovery) {
1864 char *controller_name;
1865 if (rconn_is_connectivity_questionable(ofconn->rconn)) {
1866 discovery_question_connectivity(ofconn->discovery);
1867 }
1868 if (discovery_run(ofconn->discovery, &controller_name)) {
1869 if (controller_name) {
1870 char *ofconn_name = ofconn_make_name(p, controller_name);
1871 rconn_connect(ofconn->rconn, controller_name, ofconn_name);
1872 free(ofconn_name);
1873 free(controller_name);
1874 } else {
1875 rconn_disconnect(ofconn->rconn);
1876 }
1877 }
1878 }
1879
1880 for (i = 0; i < N_SCHEDULERS; i++) {
1881 pinsched_run(ofconn->schedulers[i], do_send_packet_in, ofconn);
1882 }
1883
1884 rconn_run(ofconn->rconn);
1885
1886 if (rconn_packet_counter_read (ofconn->reply_counter) < OFCONN_REPLY_MAX) {
1887 /* Limit the number of iterations to prevent other tasks from
1888 * starving. */
1889 for (iteration = 0; iteration < 50; iteration++) {
1890 struct ofpbuf *of_msg = rconn_recv(ofconn->rconn);
1891 if (!of_msg) {
1892 break;
1893 }
1894 if (p->fail_open) {
1895 fail_open_maybe_recover(p->fail_open);
1896 }
1897 handle_openflow(ofconn, of_msg);
1898 ofpbuf_delete(of_msg);
1899 }
1900 }
1901
1902 if (!ofconn->discovery && !rconn_is_alive(ofconn->rconn)) {
1903 ofconn_destroy(ofconn);
1904 }
1905 }
1906
1907 static void
1908 ofconn_wait(struct ofconn *ofconn)
1909 {
1910 int i;
1911
1912 if (ofconn->discovery) {
1913 discovery_wait(ofconn->discovery);
1914 }
1915 for (i = 0; i < N_SCHEDULERS; i++) {
1916 pinsched_wait(ofconn->schedulers[i]);
1917 }
1918 rconn_run_wait(ofconn->rconn);
1919 if (rconn_packet_counter_read (ofconn->reply_counter) < OFCONN_REPLY_MAX) {
1920 rconn_recv_wait(ofconn->rconn);
1921 } else {
1922 COVERAGE_INC(ofproto_ofconn_stuck);
1923 }
1924 }
1925
1926 /* Returns true if 'ofconn' should receive asynchronous messages. */
1927 static bool
1928 ofconn_receives_async_msgs(const struct ofconn *ofconn)
1929 {
1930 if (ofconn->type == OFCONN_PRIMARY) {
1931 /* Primary controllers always get asynchronous messages unless they
1932 * have configured themselves as "slaves". */
1933 return ofconn->role != NX_ROLE_SLAVE;
1934 } else {
1935 /* Service connections don't get asynchronous messages unless they have
1936 * explicitly asked for them by setting a nonzero miss send length. */
1937 return ofconn->miss_send_len > 0;
1938 }
1939 }
1940
1941 /* Returns a human-readable name for an OpenFlow connection between 'ofproto'
1942 * and 'target', suitable for use in log messages for identifying the
1943 * connection.
1944 *
1945 * The name is dynamically allocated. The caller should free it (with free())
1946 * when it is no longer needed. */
1947 static char *
1948 ofconn_make_name(const struct ofproto *ofproto, const char *target)
1949 {
1950 return xasprintf("%s<->%s", dpif_base_name(ofproto->dpif), target);
1951 }
1952
1953 static void
1954 ofconn_set_rate_limit(struct ofconn *ofconn, int rate, int burst)
1955 {
1956 int i;
1957
1958 for (i = 0; i < N_SCHEDULERS; i++) {
1959 struct pinsched **s = &ofconn->schedulers[i];
1960
1961 if (rate > 0) {
1962 if (!*s) {
1963 *s = pinsched_create(rate, burst,
1964 ofconn->ofproto->switch_status);
1965 } else {
1966 pinsched_set_limits(*s, rate, burst);
1967 }
1968 } else {
1969 pinsched_destroy(*s);
1970 *s = NULL;
1971 }
1972 }
1973 }
1974 \f
1975 static void
1976 ofservice_reconfigure(struct ofservice *ofservice,
1977 const struct ofproto_controller *c)
1978 {
1979 ofservice->probe_interval = c->probe_interval;
1980 ofservice->rate_limit = c->rate_limit;
1981 ofservice->burst_limit = c->burst_limit;
1982 }
1983
1984 /* Creates a new ofservice in 'ofproto'. Returns 0 if successful, otherwise a
1985 * positive errno value. */
1986 static int
1987 ofservice_create(struct ofproto *ofproto, const struct ofproto_controller *c)
1988 {
1989 struct ofservice *ofservice;
1990 struct pvconn *pvconn;
1991 int error;
1992
1993 error = pvconn_open(c->target, &pvconn);
1994 if (error) {
1995 return error;
1996 }
1997
1998 ofservice = xzalloc(sizeof *ofservice);
1999 hmap_insert(&ofproto->services, &ofservice->node,
2000 hash_string(c->target, 0));
2001 ofservice->pvconn = pvconn;
2002
2003 ofservice_reconfigure(ofservice, c);
2004
2005 return 0;
2006 }
2007
2008 static void
2009 ofservice_destroy(struct ofproto *ofproto, struct ofservice *ofservice)
2010 {
2011 hmap_remove(&ofproto->services, &ofservice->node);
2012 pvconn_close(ofservice->pvconn);
2013 free(ofservice);
2014 }
2015
2016 /* Finds and returns the ofservice within 'ofproto' that has the given
2017 * 'target', or a null pointer if none exists. */
2018 static struct ofservice *
2019 ofservice_lookup(struct ofproto *ofproto, const char *target)
2020 {
2021 struct ofservice *ofservice;
2022
2023 HMAP_FOR_EACH_WITH_HASH (ofservice, node, hash_string(target, 0),
2024 &ofproto->services) {
2025 if (!strcmp(pvconn_get_name(ofservice->pvconn), target)) {
2026 return ofservice;
2027 }
2028 }
2029 return NULL;
2030 }
2031 \f
2032 /* Returns true if 'rule' should be hidden from the controller.
2033 *
2034 * Rules with priority higher than UINT16_MAX are set up by ofproto itself
2035 * (e.g. by in-band control) and are intentionally hidden from the
2036 * controller. */
2037 static bool
2038 rule_is_hidden(const struct rule *rule)
2039 {
2040 return rule->cr.priority > UINT16_MAX;
2041 }
2042
2043 /* Creates and returns a new rule initialized as specified.
2044 *
2045 * The caller is responsible for inserting the rule into the classifier (with
2046 * rule_insert()). */
2047 static struct rule *
2048 rule_create(const struct cls_rule *cls_rule,
2049 const union ofp_action *actions, size_t n_actions,
2050 uint16_t idle_timeout, uint16_t hard_timeout,
2051 ovs_be64 flow_cookie, bool send_flow_removed)
2052 {
2053 struct rule *rule = xzalloc(sizeof *rule);
2054 rule->cr = *cls_rule;
2055 rule->idle_timeout = idle_timeout;
2056 rule->hard_timeout = hard_timeout;
2057 rule->flow_cookie = flow_cookie;
2058 rule->used = rule->created = time_msec();
2059 rule->send_flow_removed = send_flow_removed;
2060 list_init(&rule->facets);
2061 if (n_actions > 0) {
2062 rule->n_actions = n_actions;
2063 rule->actions = xmemdup(actions, n_actions * sizeof *actions);
2064 }
2065
2066 return rule;
2067 }
2068
2069 static struct rule *
2070 rule_from_cls_rule(const struct cls_rule *cls_rule)
2071 {
2072 return cls_rule ? CONTAINER_OF(cls_rule, struct rule, cr) : NULL;
2073 }
2074
2075 static void
2076 rule_free(struct rule *rule)
2077 {
2078 free(rule->actions);
2079 free(rule);
2080 }
2081
2082 /* Destroys 'rule' and iterates through all of its facets and revalidates them,
2083 * destroying any that no longer has a rule (which is probably all of them).
2084 *
2085 * The caller must have already removed 'rule' from the classifier. */
2086 static void
2087 rule_destroy(struct ofproto *ofproto, struct rule *rule)
2088 {
2089 struct facet *facet, *next_facet;
2090 LIST_FOR_EACH_SAFE (facet, next_facet, list_node, &rule->facets) {
2091 facet_revalidate(ofproto, facet);
2092 }
2093 rule_free(rule);
2094 }
2095
2096 /* Returns true if 'rule' has an OpenFlow OFPAT_OUTPUT or OFPAT_ENQUEUE action
2097 * that outputs to 'out_port' (output to OFPP_FLOOD and OFPP_ALL doesn't
2098 * count). */
2099 static bool
2100 rule_has_out_port(const struct rule *rule, ovs_be16 out_port)
2101 {
2102 const union ofp_action *oa;
2103 struct actions_iterator i;
2104
2105 if (out_port == htons(OFPP_NONE)) {
2106 return true;
2107 }
2108 for (oa = actions_first(&i, rule->actions, rule->n_actions); oa;
2109 oa = actions_next(&i)) {
2110 if (action_outputs_to_port(oa, out_port)) {
2111 return true;
2112 }
2113 }
2114 return false;
2115 }
2116
2117 /* Executes, within 'ofproto', the 'n_actions' actions in 'actions' on
2118 * 'packet', which arrived on 'in_port'.
2119 *
2120 * Takes ownership of 'packet'. */
2121 static bool
2122 execute_odp_actions(struct ofproto *ofproto, const struct flow *flow,
2123 const struct nlattr *odp_actions, size_t actions_len,
2124 struct ofpbuf *packet)
2125 {
2126 if (actions_len == NLA_ALIGN(NLA_HDRLEN + sizeof(uint64_t))
2127 && odp_actions->nla_type == ODP_ACTION_ATTR_CONTROLLER) {
2128 /* As an optimization, avoid a round-trip from userspace to kernel to
2129 * userspace. This also avoids possibly filling up kernel packet
2130 * buffers along the way. */
2131 struct dpif_upcall upcall;
2132
2133 upcall.type = DPIF_UC_ACTION;
2134 upcall.packet = packet;
2135 upcall.key = NULL;
2136 upcall.key_len = 0;
2137 upcall.userdata = nl_attr_get_u64(odp_actions);
2138 upcall.sample_pool = 0;
2139 upcall.actions = NULL;
2140 upcall.actions_len = 0;
2141
2142 send_packet_in(ofproto, &upcall, flow, false);
2143
2144 return true;
2145 } else {
2146 int error;
2147
2148 error = dpif_execute(ofproto->dpif, odp_actions, actions_len, packet);
2149 ofpbuf_delete(packet);
2150 return !error;
2151 }
2152 }
2153
2154 /* Executes the actions indicated by 'facet' on 'packet' and credits 'facet''s
2155 * statistics appropriately. 'packet' must have at least sizeof(struct
2156 * ofp_packet_in) bytes of headroom.
2157 *
2158 * For correct results, 'packet' must actually be in 'facet''s flow; that is,
2159 * applying flow_extract() to 'packet' would yield the same flow as
2160 * 'facet->flow'.
2161 *
2162 * 'facet' must have accurately composed ODP actions; that is, it must not be
2163 * in need of revalidation.
2164 *
2165 * Takes ownership of 'packet'. */
2166 static void
2167 facet_execute(struct ofproto *ofproto, struct facet *facet,
2168 struct ofpbuf *packet)
2169 {
2170 struct dpif_flow_stats stats;
2171
2172 assert(ofpbuf_headroom(packet) >= sizeof(struct ofp_packet_in));
2173
2174 flow_extract_stats(&facet->flow, packet, &stats);
2175 stats.used = time_msec();
2176 if (execute_odp_actions(ofproto, &facet->flow,
2177 facet->actions, facet->actions_len, packet)) {
2178 facet_update_stats(ofproto, facet, &stats);
2179 }
2180 }
2181
2182 /* Executes the actions indicated by 'rule' on 'packet' and credits 'rule''s
2183 * statistics (or the statistics for one of its facets) appropriately.
2184 * 'packet' must have at least sizeof(struct ofp_packet_in) bytes of headroom.
2185 *
2186 * 'packet' doesn't necessarily have to match 'rule'. 'rule' will be credited
2187 * with statistics for 'packet' either way.
2188 *
2189 * Takes ownership of 'packet'. */
2190 static void
2191 rule_execute(struct ofproto *ofproto, struct rule *rule, uint16_t in_port,
2192 struct ofpbuf *packet)
2193 {
2194 struct action_xlate_ctx ctx;
2195 struct ofpbuf *odp_actions;
2196 struct facet *facet;
2197 struct flow flow;
2198 size_t size;
2199
2200 assert(ofpbuf_headroom(packet) >= sizeof(struct ofp_packet_in));
2201
2202 flow_extract(packet, 0, in_port, &flow);
2203
2204 /* First look for a related facet. If we find one, account it to that. */
2205 facet = facet_lookup_valid(ofproto, &flow);
2206 if (facet && facet->rule == rule) {
2207 facet_execute(ofproto, facet, packet);
2208 return;
2209 }
2210
2211 /* Otherwise, if 'rule' is in fact the correct rule for 'packet', then
2212 * create a new facet for it and use that. */
2213 if (rule_lookup(ofproto, &flow) == rule) {
2214 facet = facet_create(ofproto, rule, &flow, packet);
2215 facet_execute(ofproto, facet, packet);
2216 facet_install(ofproto, facet, true);
2217 return;
2218 }
2219
2220 /* We can't account anything to a facet. If we were to try, then that
2221 * facet would have a non-matching rule, busting our invariants. */
2222 action_xlate_ctx_init(&ctx, ofproto, &flow, packet);
2223 odp_actions = xlate_actions(&ctx, rule->actions, rule->n_actions);
2224 size = packet->size;
2225 if (execute_odp_actions(ofproto, &flow, odp_actions->data,
2226 odp_actions->size, packet)) {
2227 rule->used = time_msec();
2228 rule->packet_count++;
2229 rule->byte_count += size;
2230 flow_push_stats(ofproto, rule, &flow, 1, size, rule->used);
2231 }
2232 ofpbuf_delete(odp_actions);
2233 }
2234
2235 /* Inserts 'rule' into 'p''s flow table. */
2236 static void
2237 rule_insert(struct ofproto *p, struct rule *rule)
2238 {
2239 struct rule *displaced_rule;
2240
2241 displaced_rule = rule_from_cls_rule(classifier_insert(&p->cls, &rule->cr));
2242 if (displaced_rule) {
2243 rule_destroy(p, displaced_rule);
2244 }
2245 p->need_revalidate = true;
2246 }
2247
2248 /* Creates and returns a new facet within 'ofproto' owned by 'rule', given a
2249 * 'flow' and an example 'packet' within that flow.
2250 *
2251 * The caller must already have determined that no facet with an identical
2252 * 'flow' exists in 'ofproto' and that 'flow' is the best match for 'rule' in
2253 * 'ofproto''s classifier table. */
2254 static struct facet *
2255 facet_create(struct ofproto *ofproto, struct rule *rule,
2256 const struct flow *flow, const struct ofpbuf *packet)
2257 {
2258 struct facet *facet;
2259
2260 facet = xzalloc(sizeof *facet);
2261 facet->used = time_msec();
2262 hmap_insert(&ofproto->facets, &facet->hmap_node, flow_hash(flow, 0));
2263 list_push_back(&rule->facets, &facet->list_node);
2264 facet->rule = rule;
2265 facet->flow = *flow;
2266 netflow_flow_init(&facet->nf_flow);
2267 netflow_flow_update_time(ofproto->netflow, &facet->nf_flow, facet->used);
2268
2269 facet_make_actions(ofproto, facet, packet);
2270
2271 return facet;
2272 }
2273
2274 static void
2275 facet_free(struct facet *facet)
2276 {
2277 free(facet->actions);
2278 free(facet);
2279 }
2280
2281 /* Remove 'rule' from 'ofproto' and free up the associated memory:
2282 *
2283 * - Removes 'rule' from the classifier.
2284 *
2285 * - If 'rule' has facets, revalidates them (and possibly uninstalls and
2286 * destroys them), via rule_destroy().
2287 */
2288 static void
2289 rule_remove(struct ofproto *ofproto, struct rule *rule)
2290 {
2291 COVERAGE_INC(ofproto_del_rule);
2292 ofproto->need_revalidate = true;
2293 classifier_remove(&ofproto->cls, &rule->cr);
2294 rule_destroy(ofproto, rule);
2295 }
2296
2297 /* Remove 'facet' from 'ofproto' and free up the associated memory:
2298 *
2299 * - If 'facet' was installed in the datapath, uninstalls it and updates its
2300 * rule's statistics, via facet_uninstall().
2301 *
2302 * - Removes 'facet' from its rule and from ofproto->facets.
2303 */
2304 static void
2305 facet_remove(struct ofproto *ofproto, struct facet *facet)
2306 {
2307 facet_uninstall(ofproto, facet);
2308 facet_flush_stats(ofproto, facet);
2309 hmap_remove(&ofproto->facets, &facet->hmap_node);
2310 list_remove(&facet->list_node);
2311 facet_free(facet);
2312 }
2313
2314 /* Composes the ODP actions for 'facet' based on its rule's actions. */
2315 static void
2316 facet_make_actions(struct ofproto *p, struct facet *facet,
2317 const struct ofpbuf *packet)
2318 {
2319 const struct rule *rule = facet->rule;
2320 struct ofpbuf *odp_actions;
2321 struct action_xlate_ctx ctx;
2322
2323 action_xlate_ctx_init(&ctx, p, &facet->flow, packet);
2324 odp_actions = xlate_actions(&ctx, rule->actions, rule->n_actions);
2325 facet->tags = ctx.tags;
2326 facet->may_install = ctx.may_set_up_flow;
2327 facet->nf_flow.output_iface = ctx.nf_output_iface;
2328
2329 if (facet->actions_len != odp_actions->size
2330 || memcmp(facet->actions, odp_actions->data, odp_actions->size)) {
2331 free(facet->actions);
2332 facet->actions_len = odp_actions->size;
2333 facet->actions = xmemdup(odp_actions->data, odp_actions->size);
2334 }
2335
2336 ofpbuf_delete(odp_actions);
2337 }
2338
2339 static int
2340 facet_put__(struct ofproto *ofproto, struct facet *facet,
2341 const struct nlattr *actions, size_t actions_len,
2342 struct dpif_flow_stats *stats)
2343 {
2344 uint32_t keybuf[ODPUTIL_FLOW_KEY_U32S];
2345 enum dpif_flow_put_flags flags;
2346 struct ofpbuf key;
2347
2348 flags = DPIF_FP_CREATE | DPIF_FP_MODIFY;
2349 if (stats) {
2350 flags |= DPIF_FP_ZERO_STATS;
2351 facet->dp_packet_count = 0;
2352 facet->dp_byte_count = 0;
2353 }
2354
2355 ofpbuf_use_stack(&key, keybuf, sizeof keybuf);
2356 odp_flow_key_from_flow(&key, &facet->flow);
2357 assert(key.base == keybuf);
2358
2359 return dpif_flow_put(ofproto->dpif, flags, key.data, key.size,
2360 actions, actions_len, stats);
2361 }
2362
2363 /* If 'facet' is installable, inserts or re-inserts it into 'p''s datapath. If
2364 * 'zero_stats' is true, clears any existing statistics from the datapath for
2365 * 'facet'. */
2366 static void
2367 facet_install(struct ofproto *p, struct facet *facet, bool zero_stats)
2368 {
2369 struct dpif_flow_stats stats;
2370
2371 if (facet->may_install
2372 && !facet_put__(p, facet, facet->actions, facet->actions_len,
2373 zero_stats ? &stats : NULL)) {
2374 facet->installed = true;
2375 }
2376 }
2377
2378 /* Ensures that the bytes in 'facet', plus 'extra_bytes', have been passed up
2379 * to the accounting hook function in the ofhooks structure. */
2380 static void
2381 facet_account(struct ofproto *ofproto,
2382 struct facet *facet, uint64_t extra_bytes)
2383 {
2384 uint64_t total_bytes = facet->byte_count + extra_bytes;
2385
2386 if (ofproto->ofhooks->account_flow_cb
2387 && total_bytes > facet->accounted_bytes)
2388 {
2389 ofproto->ofhooks->account_flow_cb(
2390 &facet->flow, facet->tags, facet->actions, facet->actions_len,
2391 total_bytes - facet->accounted_bytes, ofproto->aux);
2392 facet->accounted_bytes = total_bytes;
2393 }
2394 }
2395
2396 /* If 'rule' is installed in the datapath, uninstalls it. */
2397 static void
2398 facet_uninstall(struct ofproto *p, struct facet *facet)
2399 {
2400 if (facet->installed) {
2401 uint32_t keybuf[ODPUTIL_FLOW_KEY_U32S];
2402 struct dpif_flow_stats stats;
2403 struct ofpbuf key;
2404
2405 ofpbuf_use_stack(&key, keybuf, sizeof keybuf);
2406 odp_flow_key_from_flow(&key, &facet->flow);
2407 assert(key.base == keybuf);
2408
2409 if (!dpif_flow_del(p->dpif, key.data, key.size, &stats)) {
2410 facet_update_stats(p, facet, &stats);
2411 }
2412 facet->installed = false;
2413 facet->dp_packet_count = 0;
2414 facet->dp_byte_count = 0;
2415 } else {
2416 assert(facet->dp_packet_count == 0);
2417 assert(facet->dp_byte_count == 0);
2418 }
2419 }
2420
2421 /* Returns true if the only action for 'facet' is to send to the controller.
2422 * (We don't report NetFlow expiration messages for such facets because they
2423 * are just part of the control logic for the network, not real traffic). */
2424 static bool
2425 facet_is_controller_flow(struct facet *facet)
2426 {
2427 return (facet
2428 && facet->rule->n_actions == 1
2429 && action_outputs_to_port(&facet->rule->actions[0],
2430 htons(OFPP_CONTROLLER)));
2431 }
2432
2433 /* Folds all of 'facet''s statistics into its rule. Also updates the
2434 * accounting ofhook and emits a NetFlow expiration if appropriate. All of
2435 * 'facet''s statistics in the datapath should have been zeroed and folded into
2436 * its packet and byte counts before this function is called. */
2437 static void
2438 facet_flush_stats(struct ofproto *ofproto, struct facet *facet)
2439 {
2440 assert(!facet->dp_byte_count);
2441 assert(!facet->dp_packet_count);
2442
2443 facet_push_stats(ofproto, facet);
2444 facet_account(ofproto, facet, 0);
2445
2446 if (ofproto->netflow && !facet_is_controller_flow(facet)) {
2447 struct ofexpired expired;
2448 expired.flow = facet->flow;
2449 expired.packet_count = facet->packet_count;
2450 expired.byte_count = facet->byte_count;
2451 expired.used = facet->used;
2452 netflow_expire(ofproto->netflow, &facet->nf_flow, &expired);
2453 }
2454
2455 facet->rule->packet_count += facet->packet_count;
2456 facet->rule->byte_count += facet->byte_count;
2457
2458 /* Reset counters to prevent double counting if 'facet' ever gets
2459 * reinstalled. */
2460 facet->packet_count = 0;
2461 facet->byte_count = 0;
2462 facet->rs_packet_count = 0;
2463 facet->rs_byte_count = 0;
2464 facet->accounted_bytes = 0;
2465
2466 netflow_flow_clear(&facet->nf_flow);
2467 }
2468
2469 /* Searches 'ofproto''s table of facets for one exactly equal to 'flow'.
2470 * Returns it if found, otherwise a null pointer.
2471 *
2472 * The returned facet might need revalidation; use facet_lookup_valid()
2473 * instead if that is important. */
2474 static struct facet *
2475 facet_find(struct ofproto *ofproto, const struct flow *flow)
2476 {
2477 struct facet *facet;
2478
2479 HMAP_FOR_EACH_WITH_HASH (facet, hmap_node, flow_hash(flow, 0),
2480 &ofproto->facets) {
2481 if (flow_equal(flow, &facet->flow)) {
2482 return facet;
2483 }
2484 }
2485
2486 return NULL;
2487 }
2488
2489 /* Searches 'ofproto''s table of facets for one exactly equal to 'flow'.
2490 * Returns it if found, otherwise a null pointer.
2491 *
2492 * The returned facet is guaranteed to be valid. */
2493 static struct facet *
2494 facet_lookup_valid(struct ofproto *ofproto, const struct flow *flow)
2495 {
2496 struct facet *facet = facet_find(ofproto, flow);
2497
2498 /* The facet we found might not be valid, since we could be in need of
2499 * revalidation. If it is not valid, don't return it. */
2500 if (facet
2501 && ofproto->need_revalidate
2502 && !facet_revalidate(ofproto, facet)) {
2503 COVERAGE_INC(ofproto_invalidated);
2504 return NULL;
2505 }
2506
2507 return facet;
2508 }
2509
2510 /* Re-searches 'ofproto''s classifier for a rule matching 'facet':
2511 *
2512 * - If the rule found is different from 'facet''s current rule, moves
2513 * 'facet' to the new rule and recompiles its actions.
2514 *
2515 * - If the rule found is the same as 'facet''s current rule, leaves 'facet'
2516 * where it is and recompiles its actions anyway.
2517 *
2518 * - If there is none, destroys 'facet'.
2519 *
2520 * Returns true if 'facet' still exists, false if it has been destroyed. */
2521 static bool
2522 facet_revalidate(struct ofproto *ofproto, struct facet *facet)
2523 {
2524 struct action_xlate_ctx ctx;
2525 struct ofpbuf *odp_actions;
2526 struct rule *new_rule;
2527 bool actions_changed;
2528
2529 COVERAGE_INC(facet_revalidate);
2530
2531 /* Determine the new rule. */
2532 new_rule = rule_lookup(ofproto, &facet->flow);
2533 if (!new_rule) {
2534 /* No new rule, so delete the facet. */
2535 facet_remove(ofproto, facet);
2536 return false;
2537 }
2538
2539 /* Calculate new ODP actions.
2540 *
2541 * We do not modify any 'facet' state yet, because we might need to, e.g.,
2542 * emit a NetFlow expiration and, if so, we need to have the old state
2543 * around to properly compose it. */
2544 action_xlate_ctx_init(&ctx, ofproto, &facet->flow, NULL);
2545 odp_actions = xlate_actions(&ctx, new_rule->actions, new_rule->n_actions);
2546 actions_changed = (facet->actions_len != odp_actions->size
2547 || memcmp(facet->actions, odp_actions->data,
2548 facet->actions_len));
2549
2550 /* If the ODP actions changed or the installability changed, then we need
2551 * to talk to the datapath. */
2552 if (actions_changed || ctx.may_set_up_flow != facet->installed) {
2553 if (ctx.may_set_up_flow) {
2554 struct dpif_flow_stats stats;
2555
2556 facet_put__(ofproto, facet,
2557 odp_actions->data, odp_actions->size, &stats);
2558 facet_update_stats(ofproto, facet, &stats);
2559 } else {
2560 facet_uninstall(ofproto, facet);
2561 }
2562
2563 /* The datapath flow is gone or has zeroed stats, so push stats out of
2564 * 'facet' into 'rule'. */
2565 facet_flush_stats(ofproto, facet);
2566 }
2567
2568 /* Update 'facet' now that we've taken care of all the old state. */
2569 facet->tags = ctx.tags;
2570 facet->nf_flow.output_iface = ctx.nf_output_iface;
2571 facet->may_install = ctx.may_set_up_flow;
2572 if (actions_changed) {
2573 free(facet->actions);
2574 facet->actions_len = odp_actions->size;
2575 facet->actions = xmemdup(odp_actions->data, odp_actions->size);
2576 }
2577 if (facet->rule != new_rule) {
2578 COVERAGE_INC(facet_changed_rule);
2579 list_remove(&facet->list_node);
2580 list_push_back(&new_rule->facets, &facet->list_node);
2581 facet->rule = new_rule;
2582 facet->used = new_rule->created;
2583 facet->rs_used = facet->used;
2584 }
2585
2586 ofpbuf_delete(odp_actions);
2587
2588 return true;
2589 }
2590 \f
2591 static void
2592 queue_tx(struct ofpbuf *msg, const struct ofconn *ofconn,
2593 struct rconn_packet_counter *counter)
2594 {
2595 update_openflow_length(msg);
2596 if (rconn_send(ofconn->rconn, msg, counter)) {
2597 ofpbuf_delete(msg);
2598 }
2599 }
2600
2601 static void
2602 send_error_oh(const struct ofconn *ofconn, const struct ofp_header *oh,
2603 int error)
2604 {
2605 struct ofpbuf *buf = ofputil_encode_error_msg(error, oh);
2606 if (buf) {
2607 COVERAGE_INC(ofproto_error);
2608 queue_tx(buf, ofconn, ofconn->reply_counter);
2609 }
2610 }
2611
2612 static void
2613 hton_ofp_phy_port(struct ofp_phy_port *opp)
2614 {
2615 opp->port_no = htons(opp->port_no);
2616 opp->config = htonl(opp->config);
2617 opp->state = htonl(opp->state);
2618 opp->curr = htonl(opp->curr);
2619 opp->advertised = htonl(opp->advertised);
2620 opp->supported = htonl(opp->supported);
2621 opp->peer = htonl(opp->peer);
2622 }
2623
2624 static int
2625 handle_echo_request(struct ofconn *ofconn, const struct ofp_header *oh)
2626 {
2627 queue_tx(make_echo_reply(oh), ofconn, ofconn->reply_counter);
2628 return 0;
2629 }
2630
2631 static int
2632 handle_features_request(struct ofconn *ofconn, const struct ofp_header *oh)
2633 {
2634 struct ofp_switch_features *osf;
2635 struct ofpbuf *buf;
2636 struct ofport *port;
2637
2638 osf = make_openflow_xid(sizeof *osf, OFPT_FEATURES_REPLY, oh->xid, &buf);
2639 osf->datapath_id = htonll(ofconn->ofproto->datapath_id);
2640 osf->n_buffers = htonl(pktbuf_capacity());
2641 osf->n_tables = 2;
2642 osf->capabilities = htonl(OFPC_FLOW_STATS | OFPC_TABLE_STATS |
2643 OFPC_PORT_STATS | OFPC_ARP_MATCH_IP);
2644 osf->actions = htonl((1u << OFPAT_OUTPUT) |
2645 (1u << OFPAT_SET_VLAN_VID) |
2646 (1u << OFPAT_SET_VLAN_PCP) |
2647 (1u << OFPAT_STRIP_VLAN) |
2648 (1u << OFPAT_SET_DL_SRC) |
2649 (1u << OFPAT_SET_DL_DST) |
2650 (1u << OFPAT_SET_NW_SRC) |
2651 (1u << OFPAT_SET_NW_DST) |
2652 (1u << OFPAT_SET_NW_TOS) |
2653 (1u << OFPAT_SET_TP_SRC) |
2654 (1u << OFPAT_SET_TP_DST) |
2655 (1u << OFPAT_ENQUEUE));
2656
2657 HMAP_FOR_EACH (port, hmap_node, &ofconn->ofproto->ports) {
2658 hton_ofp_phy_port(ofpbuf_put(buf, &port->opp, sizeof port->opp));
2659 }
2660
2661 queue_tx(buf, ofconn, ofconn->reply_counter);
2662 return 0;
2663 }
2664
2665 static int
2666 handle_get_config_request(struct ofconn *ofconn, const struct ofp_header *oh)
2667 {
2668 struct ofpbuf *buf;
2669 struct ofp_switch_config *osc;
2670 uint16_t flags;
2671 bool drop_frags;
2672
2673 /* Figure out flags. */
2674 dpif_get_drop_frags(ofconn->ofproto->dpif, &drop_frags);
2675 flags = drop_frags ? OFPC_FRAG_DROP : OFPC_FRAG_NORMAL;
2676
2677 /* Send reply. */
2678 osc = make_openflow_xid(sizeof *osc, OFPT_GET_CONFIG_REPLY, oh->xid, &buf);
2679 osc->flags = htons(flags);
2680 osc->miss_send_len = htons(ofconn->miss_send_len);
2681 queue_tx(buf, ofconn, ofconn->reply_counter);
2682
2683 return 0;
2684 }
2685
2686 static int
2687 handle_set_config(struct ofconn *ofconn, const struct ofp_switch_config *osc)
2688 {
2689 uint16_t flags = ntohs(osc->flags);
2690
2691 if (ofconn->type == OFCONN_PRIMARY && ofconn->role != NX_ROLE_SLAVE) {
2692 switch (flags & OFPC_FRAG_MASK) {
2693 case OFPC_FRAG_NORMAL:
2694 dpif_set_drop_frags(ofconn->ofproto->dpif, false);
2695 break;
2696 case OFPC_FRAG_DROP:
2697 dpif_set_drop_frags(ofconn->ofproto->dpif, true);
2698 break;
2699 default:
2700 VLOG_WARN_RL(&rl, "requested bad fragment mode (flags=%"PRIx16")",
2701 osc->flags);
2702 break;
2703 }
2704 }
2705
2706 ofconn->miss_send_len = ntohs(osc->miss_send_len);
2707
2708 return 0;
2709 }
2710
2711 static void do_xlate_actions(const union ofp_action *in, size_t n_in,
2712 struct action_xlate_ctx *ctx);
2713
2714 static void
2715 add_output_action(struct action_xlate_ctx *ctx, uint16_t port)
2716 {
2717 const struct ofport *ofport = get_port(ctx->ofproto, port);
2718
2719 if (ofport) {
2720 if (ofport->opp.config & OFPPC_NO_FWD) {
2721 /* Forwarding disabled on port. */
2722 return;
2723 }
2724 } else {
2725 /*
2726 * We don't have an ofport record for this port, but it doesn't hurt to
2727 * allow forwarding to it anyhow. Maybe such a port will appear later
2728 * and we're pre-populating the flow table.
2729 */
2730 }
2731
2732 nl_msg_put_u32(ctx->odp_actions, ODP_ACTION_ATTR_OUTPUT, port);
2733 ctx->nf_output_iface = port;
2734 }
2735
2736 static struct rule *
2737 rule_lookup(struct ofproto *ofproto, const struct flow *flow)
2738 {
2739 return rule_from_cls_rule(classifier_lookup(&ofproto->cls, flow));
2740 }
2741
2742 static void
2743 xlate_table_action(struct action_xlate_ctx *ctx, uint16_t in_port)
2744 {
2745 if (ctx->recurse < MAX_RESUBMIT_RECURSION) {
2746 uint16_t old_in_port;
2747 struct rule *rule;
2748
2749 /* Look up a flow with 'in_port' as the input port. Then restore the
2750 * original input port (otherwise OFPP_NORMAL and OFPP_IN_PORT will
2751 * have surprising behavior). */
2752 old_in_port = ctx->flow.in_port;
2753 ctx->flow.in_port = in_port;
2754 rule = rule_lookup(ctx->ofproto, &ctx->flow);
2755 ctx->flow.in_port = old_in_port;
2756
2757 if (ctx->resubmit_hook) {
2758 ctx->resubmit_hook(ctx, rule);
2759 }
2760
2761 if (rule) {
2762 ctx->recurse++;
2763 do_xlate_actions(rule->actions, rule->n_actions, ctx);
2764 ctx->recurse--;
2765 }
2766 } else {
2767 static struct vlog_rate_limit recurse_rl = VLOG_RATE_LIMIT_INIT(1, 1);
2768
2769 VLOG_ERR_RL(&recurse_rl, "NXAST_RESUBMIT recursed over %d times",
2770 MAX_RESUBMIT_RECURSION);
2771 }
2772 }
2773
2774 static void
2775 flood_packets(struct ofproto *ofproto, uint16_t odp_in_port, uint32_t mask,
2776 uint16_t *nf_output_iface, struct ofpbuf *odp_actions)
2777 {
2778 struct ofport *ofport;
2779
2780 HMAP_FOR_EACH (ofport, hmap_node, &ofproto->ports) {
2781 uint16_t odp_port = ofport->odp_port;
2782 if (odp_port != odp_in_port && !(ofport->opp.config & mask)) {
2783 nl_msg_put_u32(odp_actions, ODP_ACTION_ATTR_OUTPUT, odp_port);
2784 }
2785 }
2786 *nf_output_iface = NF_OUT_FLOOD;
2787 }
2788
2789 static void
2790 xlate_output_action__(struct action_xlate_ctx *ctx,
2791 uint16_t port, uint16_t max_len)
2792 {
2793 uint16_t odp_port;
2794 uint16_t prev_nf_output_iface = ctx->nf_output_iface;
2795
2796 ctx->nf_output_iface = NF_OUT_DROP;
2797
2798 switch (port) {
2799 case OFPP_IN_PORT:
2800 add_output_action(ctx, ctx->flow.in_port);
2801 break;
2802 case OFPP_TABLE:
2803 xlate_table_action(ctx, ctx->flow.in_port);
2804 break;
2805 case OFPP_NORMAL:
2806 if (!ctx->ofproto->ofhooks->normal_cb(&ctx->flow, ctx->packet,
2807 ctx->odp_actions, &ctx->tags,
2808 &ctx->nf_output_iface,
2809 ctx->ofproto->aux)) {
2810 COVERAGE_INC(ofproto_uninstallable);
2811 ctx->may_set_up_flow = false;
2812 }
2813 break;
2814 case OFPP_FLOOD:
2815 flood_packets(ctx->ofproto, ctx->flow.in_port, OFPPC_NO_FLOOD,
2816 &ctx->nf_output_iface, ctx->odp_actions);
2817 break;
2818 case OFPP_ALL:
2819 flood_packets(ctx->ofproto, ctx->flow.in_port, 0,
2820 &ctx->nf_output_iface, ctx->odp_actions);
2821 break;
2822 case OFPP_CONTROLLER:
2823 nl_msg_put_u64(ctx->odp_actions, ODP_ACTION_ATTR_CONTROLLER, max_len);
2824 break;
2825 case OFPP_LOCAL:
2826 add_output_action(ctx, ODPP_LOCAL);
2827 break;
2828 default:
2829 odp_port = ofp_port_to_odp_port(port);
2830 if (odp_port != ctx->flow.in_port) {
2831 add_output_action(ctx, odp_port);
2832 }
2833 break;
2834 }
2835
2836 if (prev_nf_output_iface == NF_OUT_FLOOD) {
2837 ctx->nf_output_iface = NF_OUT_FLOOD;
2838 } else if (ctx->nf_output_iface == NF_OUT_DROP) {
2839 ctx->nf_output_iface = prev_nf_output_iface;
2840 } else if (prev_nf_output_iface != NF_OUT_DROP &&
2841 ctx->nf_output_iface != NF_OUT_FLOOD) {
2842 ctx->nf_output_iface = NF_OUT_MULTI;
2843 }
2844 }
2845
2846 static void
2847 xlate_output_action(struct action_xlate_ctx *ctx,
2848 const struct ofp_action_output *oao)
2849 {
2850 xlate_output_action__(ctx, ntohs(oao->port), ntohs(oao->max_len));
2851 }
2852
2853 /* If the final ODP action in 'ctx' is "pop priority", drop it, as an
2854 * optimization, because we're going to add another action that sets the
2855 * priority immediately after, or because there are no actions following the
2856 * pop. */
2857 static void
2858 remove_pop_action(struct action_xlate_ctx *ctx)
2859 {
2860 if (ctx->odp_actions->size == ctx->last_pop_priority) {
2861 ctx->odp_actions->size -= NLA_ALIGN(NLA_HDRLEN);
2862 ctx->last_pop_priority = -1;
2863 }
2864 }
2865
2866 static void
2867 add_pop_action(struct action_xlate_ctx *ctx)
2868 {
2869 if (ctx->odp_actions->size != ctx->last_pop_priority) {
2870 nl_msg_put_flag(ctx->odp_actions, ODP_ACTION_ATTR_POP_PRIORITY);
2871 ctx->last_pop_priority = ctx->odp_actions->size;
2872 }
2873 }
2874
2875 static void
2876 xlate_enqueue_action(struct action_xlate_ctx *ctx,
2877 const struct ofp_action_enqueue *oae)
2878 {
2879 uint16_t ofp_port, odp_port;
2880 uint32_t priority;
2881 int error;
2882
2883 error = dpif_queue_to_priority(ctx->ofproto->dpif, ntohl(oae->queue_id),
2884 &priority);
2885 if (error) {
2886 /* Fall back to ordinary output action. */
2887 xlate_output_action__(ctx, ntohs(oae->port), 0);
2888 return;
2889 }
2890
2891 /* Figure out ODP output port. */
2892 ofp_port = ntohs(oae->port);
2893 if (ofp_port != OFPP_IN_PORT) {
2894 odp_port = ofp_port_to_odp_port(ofp_port);
2895 } else {
2896 odp_port = ctx->flow.in_port;
2897 }
2898
2899 /* Add ODP actions. */
2900 remove_pop_action(ctx);
2901 nl_msg_put_u32(ctx->odp_actions, ODP_ACTION_ATTR_SET_PRIORITY, priority);
2902 add_output_action(ctx, odp_port);
2903 add_pop_action(ctx);
2904
2905 /* Update NetFlow output port. */
2906 if (ctx->nf_output_iface == NF_OUT_DROP) {
2907 ctx->nf_output_iface = odp_port;
2908 } else if (ctx->nf_output_iface != NF_OUT_FLOOD) {
2909 ctx->nf_output_iface = NF_OUT_MULTI;
2910 }
2911 }
2912
2913 static void
2914 xlate_set_queue_action(struct action_xlate_ctx *ctx,
2915 const struct nx_action_set_queue *nasq)
2916 {
2917 uint32_t priority;
2918 int error;
2919
2920 error = dpif_queue_to_priority(ctx->ofproto->dpif, ntohl(nasq->queue_id),
2921 &priority);
2922 if (error) {
2923 /* Couldn't translate queue to a priority, so ignore. A warning
2924 * has already been logged. */
2925 return;
2926 }
2927
2928 remove_pop_action(ctx);
2929 nl_msg_put_u32(ctx->odp_actions, ODP_ACTION_ATTR_SET_PRIORITY, priority);
2930 }
2931
2932 static void
2933 xlate_set_dl_tci(struct action_xlate_ctx *ctx)
2934 {
2935 ovs_be16 tci = ctx->flow.vlan_tci;
2936 if (!(tci & htons(VLAN_CFI))) {
2937 nl_msg_put_flag(ctx->odp_actions, ODP_ACTION_ATTR_STRIP_VLAN);
2938 } else {
2939 nl_msg_put_be16(ctx->odp_actions, ODP_ACTION_ATTR_SET_DL_TCI,
2940 tci & ~htons(VLAN_CFI));
2941 }
2942 }
2943
2944 struct xlate_reg_state {
2945 ovs_be16 vlan_tci;
2946 ovs_be64 tun_id;
2947 };
2948
2949 static void
2950 save_reg_state(const struct action_xlate_ctx *ctx,
2951 struct xlate_reg_state *state)
2952 {
2953 state->vlan_tci = ctx->flow.vlan_tci;
2954 state->tun_id = ctx->flow.tun_id;
2955 }
2956
2957 static void
2958 update_reg_state(struct action_xlate_ctx *ctx,
2959 const struct xlate_reg_state *state)
2960 {
2961 if (ctx->flow.vlan_tci != state->vlan_tci) {
2962 xlate_set_dl_tci(ctx);
2963 }
2964 if (ctx->flow.tun_id != state->tun_id) {
2965 nl_msg_put_be64(ctx->odp_actions,
2966 ODP_ACTION_ATTR_SET_TUNNEL, ctx->flow.tun_id);
2967 }
2968 }
2969
2970 static void
2971 xlate_nicira_action(struct action_xlate_ctx *ctx,
2972 const struct nx_action_header *nah)
2973 {
2974 const struct nx_action_resubmit *nar;
2975 const struct nx_action_set_tunnel *nast;
2976 const struct nx_action_set_queue *nasq;
2977 const struct nx_action_multipath *nam;
2978 enum nx_action_subtype subtype = ntohs(nah->subtype);
2979 struct xlate_reg_state state;
2980 ovs_be64 tun_id;
2981
2982 assert(nah->vendor == htonl(NX_VENDOR_ID));
2983 switch (subtype) {
2984 case NXAST_RESUBMIT:
2985 nar = (const struct nx_action_resubmit *) nah;
2986 xlate_table_action(ctx, ofp_port_to_odp_port(ntohs(nar->in_port)));
2987 break;
2988
2989 case NXAST_SET_TUNNEL:
2990 nast = (const struct nx_action_set_tunnel *) nah;
2991 tun_id = htonll(ntohl(nast->tun_id));
2992 nl_msg_put_be64(ctx->odp_actions, ODP_ACTION_ATTR_SET_TUNNEL, tun_id);
2993 ctx->flow.tun_id = tun_id;
2994 break;
2995
2996 case NXAST_DROP_SPOOFED_ARP:
2997 if (ctx->flow.dl_type == htons(ETH_TYPE_ARP)) {
2998 nl_msg_put_flag(ctx->odp_actions,
2999 ODP_ACTION_ATTR_DROP_SPOOFED_ARP);
3000 }
3001 break;
3002
3003 case NXAST_SET_QUEUE:
3004 nasq = (const struct nx_action_set_queue *) nah;
3005 xlate_set_queue_action(ctx, nasq);
3006 break;
3007
3008 case NXAST_POP_QUEUE:
3009 add_pop_action(ctx);
3010 break;
3011
3012 case NXAST_REG_MOVE:
3013 save_reg_state(ctx, &state);
3014 nxm_execute_reg_move((const struct nx_action_reg_move *) nah,
3015 &ctx->flow);
3016 update_reg_state(ctx, &state);
3017 break;
3018
3019 case NXAST_REG_LOAD:
3020 save_reg_state(ctx, &state);
3021 nxm_execute_reg_load((const struct nx_action_reg_load *) nah,
3022 &ctx->flow);
3023 update_reg_state(ctx, &state);
3024 break;
3025
3026 case NXAST_NOTE:
3027 /* Nothing to do. */
3028 break;
3029
3030 case NXAST_SET_TUNNEL64:
3031 tun_id = ((const struct nx_action_set_tunnel64 *) nah)->tun_id;
3032 nl_msg_put_be64(ctx->odp_actions, ODP_ACTION_ATTR_SET_TUNNEL, tun_id);
3033 ctx->flow.tun_id = tun_id;
3034 break;
3035
3036 case NXAST_MULTIPATH:
3037 nam = (const struct nx_action_multipath *) nah;
3038 multipath_execute(nam, &ctx->flow);
3039 break;
3040
3041 /* If you add a new action here that modifies flow data, don't forget to
3042 * update the flow key in ctx->flow at the same time. */
3043
3044 case NXAST_SNAT__OBSOLETE:
3045 default:
3046 VLOG_DBG_RL(&rl, "unknown Nicira action type %d", (int) subtype);
3047 break;
3048 }
3049 }
3050
3051 static void
3052 do_xlate_actions(const union ofp_action *in, size_t n_in,
3053 struct action_xlate_ctx *ctx)
3054 {
3055 struct actions_iterator iter;
3056 const union ofp_action *ia;
3057 const struct ofport *port;
3058
3059 port = get_port(ctx->ofproto, ctx->flow.in_port);
3060 if (port && port->opp.config & (OFPPC_NO_RECV | OFPPC_NO_RECV_STP) &&
3061 port->opp.config & (eth_addr_equals(ctx->flow.dl_dst, eth_addr_stp)
3062 ? OFPPC_NO_RECV_STP : OFPPC_NO_RECV)) {
3063 /* Drop this flow. */
3064 return;
3065 }
3066
3067 for (ia = actions_first(&iter, in, n_in); ia; ia = actions_next(&iter)) {
3068 enum ofp_action_type type = ntohs(ia->type);
3069 const struct ofp_action_dl_addr *oada;
3070
3071 switch (type) {
3072 case OFPAT_OUTPUT:
3073 xlate_output_action(ctx, &ia->output);
3074 break;
3075
3076 case OFPAT_SET_VLAN_VID:
3077 ctx->flow.vlan_tci &= ~htons(VLAN_VID_MASK);
3078 ctx->flow.vlan_tci |= ia->vlan_vid.vlan_vid | htons(VLAN_CFI);
3079 xlate_set_dl_tci(ctx);
3080 break;
3081
3082 case OFPAT_SET_VLAN_PCP:
3083 ctx->flow.vlan_tci &= ~htons(VLAN_PCP_MASK);
3084 ctx->flow.vlan_tci |= htons(
3085 (ia->vlan_pcp.vlan_pcp << VLAN_PCP_SHIFT) | VLAN_CFI);
3086 xlate_set_dl_tci(ctx);
3087 break;
3088
3089 case OFPAT_STRIP_VLAN:
3090 ctx->flow.vlan_tci = htons(0);
3091 xlate_set_dl_tci(ctx);
3092 break;
3093
3094 case OFPAT_SET_DL_SRC:
3095 oada = ((struct ofp_action_dl_addr *) ia);
3096 nl_msg_put_unspec(ctx->odp_actions, ODP_ACTION_ATTR_SET_DL_SRC,
3097 oada->dl_addr, ETH_ADDR_LEN);
3098 memcpy(ctx->flow.dl_src, oada->dl_addr, ETH_ADDR_LEN);
3099 break;
3100
3101 case OFPAT_SET_DL_DST:
3102 oada = ((struct ofp_action_dl_addr *) ia);
3103 nl_msg_put_unspec(ctx->odp_actions, ODP_ACTION_ATTR_SET_DL_DST,
3104 oada->dl_addr, ETH_ADDR_LEN);
3105 memcpy(ctx->flow.dl_dst, oada->dl_addr, ETH_ADDR_LEN);
3106 break;
3107
3108 case OFPAT_SET_NW_SRC:
3109 nl_msg_put_be32(ctx->odp_actions, ODP_ACTION_ATTR_SET_NW_SRC,
3110 ia->nw_addr.nw_addr);
3111 ctx->flow.nw_src = ia->nw_addr.nw_addr;
3112 break;
3113
3114 case OFPAT_SET_NW_DST:
3115 nl_msg_put_be32(ctx->odp_actions, ODP_ACTION_ATTR_SET_NW_DST,
3116 ia->nw_addr.nw_addr);
3117 ctx->flow.nw_dst = ia->nw_addr.nw_addr;
3118 break;
3119
3120 case OFPAT_SET_NW_TOS:
3121 nl_msg_put_u8(ctx->odp_actions, ODP_ACTION_ATTR_SET_NW_TOS,
3122 ia->nw_tos.nw_tos);
3123 ctx->flow.nw_tos = ia->nw_tos.nw_tos;
3124 break;
3125
3126 case OFPAT_SET_TP_SRC:
3127 nl_msg_put_be16(ctx->odp_actions, ODP_ACTION_ATTR_SET_TP_SRC,
3128 ia->tp_port.tp_port);
3129 ctx->flow.tp_src = ia->tp_port.tp_port;
3130 break;
3131
3132 case OFPAT_SET_TP_DST:
3133 nl_msg_put_be16(ctx->odp_actions, ODP_ACTION_ATTR_SET_TP_DST,
3134 ia->tp_port.tp_port);
3135 ctx->flow.tp_dst = ia->tp_port.tp_port;
3136 break;
3137
3138 case OFPAT_VENDOR:
3139 xlate_nicira_action(ctx, (const struct nx_action_header *) ia);
3140 break;
3141
3142 case OFPAT_ENQUEUE:
3143 xlate_enqueue_action(ctx, (const struct ofp_action_enqueue *) ia);
3144 break;
3145
3146 default:
3147 VLOG_DBG_RL(&rl, "unknown action type %d", (int) type);
3148 break;
3149 }
3150 }
3151 }
3152
3153 static void
3154 action_xlate_ctx_init(struct action_xlate_ctx *ctx,
3155 struct ofproto *ofproto, const struct flow *flow,
3156 const struct ofpbuf *packet)
3157 {
3158 ctx->ofproto = ofproto;
3159 ctx->flow = *flow;
3160 ctx->packet = packet;
3161 ctx->resubmit_hook = NULL;
3162 ctx->check_special = true;
3163 }
3164
3165 static struct ofpbuf *
3166 xlate_actions(struct action_xlate_ctx *ctx,
3167 const union ofp_action *in, size_t n_in)
3168 {
3169 COVERAGE_INC(ofproto_ofp2odp);
3170
3171 ctx->odp_actions = ofpbuf_new(512);
3172 ctx->tags = 0;
3173 ctx->may_set_up_flow = true;
3174 ctx->nf_output_iface = NF_OUT_DROP;
3175 ctx->recurse = 0;
3176 ctx->last_pop_priority = -1;
3177
3178 if (!ctx->check_special
3179 || !ctx->ofproto->ofhooks->special_cb
3180 || ctx->ofproto->ofhooks->special_cb(&ctx->flow, ctx->packet,
3181 ctx->ofproto->aux)) {
3182 do_xlate_actions(in, n_in, ctx);
3183 } else {
3184 ctx->may_set_up_flow = false;
3185 }
3186
3187 remove_pop_action(ctx);
3188
3189 /* Check with in-band control to see if we're allowed to set up this
3190 * flow. */
3191 if (!in_band_rule_check(ctx->ofproto->in_band, &ctx->flow,
3192 ctx->odp_actions->data, ctx->odp_actions->size)) {
3193 ctx->may_set_up_flow = false;
3194 }
3195
3196 return ctx->odp_actions;
3197 }
3198
3199 /* Checks whether 'ofconn' is a slave controller. If so, returns an OpenFlow
3200 * error message code (composed with ofp_mkerr()) for the caller to propagate
3201 * upward. Otherwise, returns 0.
3202 *
3203 * The log message mentions 'msg_type'. */
3204 static int
3205 reject_slave_controller(struct ofconn *ofconn, const const char *msg_type)
3206 {
3207 if (ofconn->type == OFCONN_PRIMARY && ofconn->role == NX_ROLE_SLAVE) {
3208 static struct vlog_rate_limit perm_rl = VLOG_RATE_LIMIT_INIT(1, 5);
3209 VLOG_WARN_RL(&perm_rl, "rejecting %s message from slave controller",
3210 msg_type);
3211
3212 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_EPERM);
3213 } else {
3214 return 0;
3215 }
3216 }
3217
3218 static int
3219 handle_packet_out(struct ofconn *ofconn, const struct ofp_header *oh)
3220 {
3221 struct ofproto *p = ofconn->ofproto;
3222 struct ofp_packet_out *opo;
3223 struct ofpbuf payload, *buffer;
3224 union ofp_action *ofp_actions;
3225 struct action_xlate_ctx ctx;
3226 struct ofpbuf *odp_actions;
3227 struct ofpbuf request;
3228 struct flow flow;
3229 size_t n_ofp_actions;
3230 uint16_t in_port;
3231 int error;
3232
3233 COVERAGE_INC(ofproto_packet_out);
3234
3235 error = reject_slave_controller(ofconn, "OFPT_PACKET_OUT");
3236 if (error) {
3237 return error;
3238 }
3239
3240 /* Get ofp_packet_out. */
3241 ofpbuf_use_const(&request, oh, ntohs(oh->length));
3242 opo = ofpbuf_pull(&request, offsetof(struct ofp_packet_out, actions));
3243
3244 /* Get actions. */
3245 error = ofputil_pull_actions(&request, ntohs(opo->actions_len),
3246 &ofp_actions, &n_ofp_actions);
3247 if (error) {
3248 return error;
3249 }
3250
3251 /* Get payload. */
3252 if (opo->buffer_id != htonl(UINT32_MAX)) {
3253 error = pktbuf_retrieve(ofconn->pktbuf, ntohl(opo->buffer_id),
3254 &buffer, &in_port);
3255 if (error || !buffer) {
3256 return error;
3257 }
3258 payload = *buffer;
3259 } else {
3260 payload = request;
3261 buffer = NULL;
3262 }
3263
3264 /* Extract flow, check actions. */
3265 flow_extract(&payload, 0, ofp_port_to_odp_port(ntohs(opo->in_port)),
3266 &flow);
3267 error = validate_actions(ofp_actions, n_ofp_actions, &flow, p->max_ports);
3268 if (error) {
3269 goto exit;
3270 }
3271
3272 /* Send. */
3273 action_xlate_ctx_init(&ctx, p, &flow, &payload);
3274 odp_actions = xlate_actions(&ctx, ofp_actions, n_ofp_actions);
3275 dpif_execute(p->dpif, odp_actions->data, odp_actions->size, &payload);
3276 ofpbuf_delete(odp_actions);
3277
3278 exit:
3279 ofpbuf_delete(buffer);
3280 return 0;
3281 }
3282
3283 static void
3284 update_port_config(struct ofproto *p, struct ofport *port,
3285 uint32_t config, uint32_t mask)
3286 {
3287 mask &= config ^ port->opp.config;
3288 if (mask & OFPPC_PORT_DOWN) {
3289 if (config & OFPPC_PORT_DOWN) {
3290 netdev_turn_flags_off(port->netdev, NETDEV_UP, true);
3291 } else {
3292 netdev_turn_flags_on(port->netdev, NETDEV_UP, true);
3293 }
3294 }
3295 #define REVALIDATE_BITS (OFPPC_NO_RECV | OFPPC_NO_RECV_STP | \
3296 OFPPC_NO_FWD | OFPPC_NO_FLOOD)
3297 if (mask & REVALIDATE_BITS) {
3298 COVERAGE_INC(ofproto_costly_flags);
3299 port->opp.config ^= mask & REVALIDATE_BITS;
3300 p->need_revalidate = true;
3301 }
3302 #undef REVALIDATE_BITS
3303 if (mask & OFPPC_NO_PACKET_IN) {
3304 port->opp.config ^= OFPPC_NO_PACKET_IN;
3305 }
3306 }
3307
3308 static int
3309 handle_port_mod(struct ofconn *ofconn, const struct ofp_header *oh)
3310 {
3311 struct ofproto *p = ofconn->ofproto;
3312 const struct ofp_port_mod *opm = (const struct ofp_port_mod *) oh;
3313 struct ofport *port;
3314 int error;
3315
3316 error = reject_slave_controller(ofconn, "OFPT_PORT_MOD");
3317 if (error) {
3318 return error;
3319 }
3320
3321 port = get_port(p, ofp_port_to_odp_port(ntohs(opm->port_no)));
3322 if (!port) {
3323 return ofp_mkerr(OFPET_PORT_MOD_FAILED, OFPPMFC_BAD_PORT);
3324 } else if (memcmp(port->opp.hw_addr, opm->hw_addr, OFP_ETH_ALEN)) {
3325 return ofp_mkerr(OFPET_PORT_MOD_FAILED, OFPPMFC_BAD_HW_ADDR);
3326 } else {
3327 update_port_config(p, port, ntohl(opm->config), ntohl(opm->mask));
3328 if (opm->advertise) {
3329 netdev_set_advertisements(port->netdev, ntohl(opm->advertise));
3330 }
3331 }
3332 return 0;
3333 }
3334
3335 static struct ofpbuf *
3336 make_ofp_stats_reply(ovs_be32 xid, ovs_be16 type, size_t body_len)
3337 {
3338 struct ofp_stats_reply *osr;
3339 struct ofpbuf *msg;
3340
3341 msg = ofpbuf_new(MIN(sizeof *osr + body_len, UINT16_MAX));
3342 osr = put_openflow_xid(sizeof *osr, OFPT_STATS_REPLY, xid, msg);
3343 osr->type = type;
3344 osr->flags = htons(0);
3345 return msg;
3346 }
3347
3348 static struct ofpbuf *
3349 start_ofp_stats_reply(const struct ofp_header *request, size_t body_len)
3350 {
3351 const struct ofp_stats_request *osr
3352 = (const struct ofp_stats_request *) request;
3353 return make_ofp_stats_reply(osr->header.xid, osr->type, body_len);
3354 }
3355
3356 static void *
3357 append_ofp_stats_reply(size_t nbytes, struct ofconn *ofconn,
3358 struct ofpbuf **msgp)
3359 {
3360 struct ofpbuf *msg = *msgp;
3361 assert(nbytes <= UINT16_MAX - sizeof(struct ofp_stats_reply));
3362 if (nbytes + msg->size > UINT16_MAX) {
3363 struct ofp_stats_reply *reply = msg->data;
3364 reply->flags = htons(OFPSF_REPLY_MORE);
3365 *msgp = make_ofp_stats_reply(reply->header.xid, reply->type, nbytes);
3366 queue_tx(msg, ofconn, ofconn->reply_counter);
3367 }
3368 return ofpbuf_put_uninit(*msgp, nbytes);
3369 }
3370
3371 static struct ofpbuf *
3372 make_nxstats_reply(ovs_be32 xid, ovs_be32 subtype, size_t body_len)
3373 {
3374 struct nicira_stats_msg *nsm;
3375 struct ofpbuf *msg;
3376
3377 msg = ofpbuf_new(MIN(sizeof *nsm + body_len, UINT16_MAX));
3378 nsm = put_openflow_xid(sizeof *nsm, OFPT_STATS_REPLY, xid, msg);
3379 nsm->type = htons(OFPST_VENDOR);
3380 nsm->flags = htons(0);
3381 nsm->vendor = htonl(NX_VENDOR_ID);
3382 nsm->subtype = subtype;
3383 return msg;
3384 }
3385
3386 static struct ofpbuf *
3387 start_nxstats_reply(const struct nicira_stats_msg *request, size_t body_len)
3388 {
3389 return make_nxstats_reply(request->header.xid, request->subtype, body_len);
3390 }
3391
3392 static void
3393 append_nxstats_reply(size_t nbytes, struct ofconn *ofconn,
3394 struct ofpbuf **msgp)
3395 {
3396 struct ofpbuf *msg = *msgp;
3397 assert(nbytes <= UINT16_MAX - sizeof(struct nicira_stats_msg));
3398 if (nbytes + msg->size > UINT16_MAX) {
3399 struct nicira_stats_msg *reply = msg->data;
3400 reply->flags = htons(OFPSF_REPLY_MORE);
3401 *msgp = make_nxstats_reply(reply->header.xid, reply->subtype, nbytes);
3402 queue_tx(msg, ofconn, ofconn->reply_counter);
3403 }
3404 ofpbuf_prealloc_tailroom(*msgp, nbytes);
3405 }
3406
3407 static int
3408 handle_desc_stats_request(struct ofconn *ofconn,
3409 const struct ofp_header *request)
3410 {
3411 struct ofproto *p = ofconn->ofproto;
3412 struct ofp_desc_stats *ods;
3413 struct ofpbuf *msg;
3414
3415 msg = start_ofp_stats_reply(request, sizeof *ods);
3416 ods = append_ofp_stats_reply(sizeof *ods, ofconn, &msg);
3417 memset(ods, 0, sizeof *ods);
3418 ovs_strlcpy(ods->mfr_desc, p->mfr_desc, sizeof ods->mfr_desc);
3419 ovs_strlcpy(ods->hw_desc, p->hw_desc, sizeof ods->hw_desc);
3420 ovs_strlcpy(ods->sw_desc, p->sw_desc, sizeof ods->sw_desc);
3421 ovs_strlcpy(ods->serial_num, p->serial_desc, sizeof ods->serial_num);
3422 ovs_strlcpy(ods->dp_desc, p->dp_desc, sizeof ods->dp_desc);
3423 queue_tx(msg, ofconn, ofconn->reply_counter);
3424
3425 return 0;
3426 }
3427
3428 static int
3429 handle_table_stats_request(struct ofconn *ofconn,
3430 const struct ofp_header *request)
3431 {
3432 struct ofproto *p = ofconn->ofproto;
3433 struct ofp_table_stats *ots;
3434 struct ofpbuf *msg;
3435
3436 msg = start_ofp_stats_reply(request, sizeof *ots * 2);
3437
3438 /* Classifier table. */
3439 ots = append_ofp_stats_reply(sizeof *ots, ofconn, &msg);
3440 memset(ots, 0, sizeof *ots);
3441 strcpy(ots->name, "classifier");
3442 ots->wildcards = (ofconn->flow_format == NXFF_OPENFLOW10
3443 ? htonl(OFPFW_ALL) : htonl(OVSFW_ALL));
3444 ots->max_entries = htonl(1024 * 1024); /* An arbitrary big number. */
3445 ots->active_count = htonl(classifier_count(&p->cls));
3446 put_32aligned_be64(&ots->lookup_count, htonll(0)); /* XXX */
3447 put_32aligned_be64(&ots->matched_count, htonll(0)); /* XXX */
3448
3449 queue_tx(msg, ofconn, ofconn->reply_counter);
3450 return 0;
3451 }
3452
3453 static void
3454 append_port_stat(struct ofport *port, struct ofconn *ofconn,
3455 struct ofpbuf **msgp)
3456 {
3457 struct netdev_stats stats;
3458 struct ofp_port_stats *ops;
3459
3460 /* Intentionally ignore return value, since errors will set
3461 * 'stats' to all-1s, which is correct for OpenFlow, and
3462 * netdev_get_stats() will log errors. */
3463 netdev_get_stats(port->netdev, &stats);
3464
3465 ops = append_ofp_stats_reply(sizeof *ops, ofconn, msgp);
3466 ops->port_no = htons(port->opp.port_no);
3467 memset(ops->pad, 0, sizeof ops->pad);
3468 put_32aligned_be64(&ops->rx_packets, htonll(stats.rx_packets));
3469 put_32aligned_be64(&ops->tx_packets, htonll(stats.tx_packets));
3470 put_32aligned_be64(&ops->rx_bytes, htonll(stats.rx_bytes));
3471 put_32aligned_be64(&ops->tx_bytes, htonll(stats.tx_bytes));
3472 put_32aligned_be64(&ops->rx_dropped, htonll(stats.rx_dropped));
3473 put_32aligned_be64(&ops->tx_dropped, htonll(stats.tx_dropped));
3474 put_32aligned_be64(&ops->rx_errors, htonll(stats.rx_errors));
3475 put_32aligned_be64(&ops->tx_errors, htonll(stats.tx_errors));
3476 put_32aligned_be64(&ops->rx_frame_err, htonll(stats.rx_frame_errors));
3477 put_32aligned_be64(&ops->rx_over_err, htonll(stats.rx_over_errors));
3478 put_32aligned_be64(&ops->rx_crc_err, htonll(stats.rx_crc_errors));
3479 put_32aligned_be64(&ops->collisions, htonll(stats.collisions));
3480 }
3481
3482 static int
3483 handle_port_stats_request(struct ofconn *ofconn, const struct ofp_header *oh)
3484 {
3485 struct ofproto *p = ofconn->ofproto;
3486 const struct ofp_port_stats_request *psr = ofputil_stats_body(oh);
3487 struct ofp_port_stats *ops;
3488 struct ofpbuf *msg;
3489 struct ofport *port;
3490
3491 msg = start_ofp_stats_reply(oh, sizeof *ops * 16);
3492 if (psr->port_no != htons(OFPP_NONE)) {
3493 port = get_port(p, ofp_port_to_odp_port(ntohs(psr->port_no)));
3494 if (port) {
3495 append_port_stat(port, ofconn, &msg);
3496 }
3497 } else {
3498 HMAP_FOR_EACH (port, hmap_node, &p->ports) {
3499 append_port_stat(port, ofconn, &msg);
3500 }
3501 }
3502
3503 queue_tx(msg, ofconn, ofconn->reply_counter);
3504 return 0;
3505 }
3506
3507 static void
3508 calc_flow_duration(long long int start, ovs_be32 *sec, ovs_be32 *nsec)
3509 {
3510 long long int msecs = time_msec() - start;
3511 *sec = htonl(msecs / 1000);
3512 *nsec = htonl((msecs % 1000) * (1000 * 1000));
3513 }
3514
3515 static void
3516 put_ofp_flow_stats(struct ofconn *ofconn, struct rule *rule,
3517 ovs_be16 out_port, struct ofpbuf **replyp)
3518 {
3519 struct ofp_flow_stats *ofs;
3520 uint64_t packet_count, byte_count;
3521 ovs_be64 cookie;
3522 size_t act_len, len;
3523
3524 if (rule_is_hidden(rule) || !rule_has_out_port(rule, out_port)) {
3525 return;
3526 }
3527
3528 act_len = sizeof *rule->actions * rule->n_actions;
3529 len = offsetof(struct ofp_flow_stats, actions) + act_len;
3530
3531 rule_get_stats(rule, &packet_count, &byte_count);
3532
3533 ofs = append_ofp_stats_reply(len, ofconn, replyp);
3534 ofs->length = htons(len);
3535 ofs->table_id = 0;
3536 ofs->pad = 0;
3537 ofputil_cls_rule_to_match(&rule->cr, ofconn->flow_format, &ofs->match,
3538 rule->flow_cookie, &cookie);
3539 put_32aligned_be64(&ofs->cookie, cookie);
3540 calc_flow_duration(rule->created, &ofs->duration_sec, &ofs->duration_nsec);
3541 ofs->priority = htons(rule->cr.priority);
3542 ofs->idle_timeout = htons(rule->idle_timeout);
3543 ofs->hard_timeout = htons(rule->hard_timeout);
3544 memset(ofs->pad2, 0, sizeof ofs->pad2);
3545 put_32aligned_be64(&ofs->packet_count, htonll(packet_count));
3546 put_32aligned_be64(&ofs->byte_count, htonll(byte_count));
3547 if (rule->n_actions > 0) {
3548 memcpy(ofs->actions, rule->actions, act_len);
3549 }
3550 }
3551
3552 static bool
3553 is_valid_table(uint8_t table_id)
3554 {
3555 if (table_id == 0 || table_id == 0xff) {
3556 return true;
3557 } else {
3558 /* It would probably be better to reply with an error but there doesn't
3559 * seem to be any appropriate value, so that might just be
3560 * confusing. */
3561 VLOG_WARN_RL(&rl, "controller asked for invalid table %"PRIu8,
3562 table_id);
3563 return false;
3564 }
3565 }
3566
3567 static int
3568 handle_flow_stats_request(struct ofconn *ofconn, const struct ofp_header *oh)
3569 {
3570 const struct ofp_flow_stats_request *fsr = ofputil_stats_body(oh);
3571 struct ofpbuf *reply;
3572
3573 COVERAGE_INC(ofproto_flows_req);
3574 reply = start_ofp_stats_reply(oh, 1024);
3575 if (is_valid_table(fsr->table_id)) {
3576 struct cls_cursor cursor;
3577 struct cls_rule target;
3578 struct rule *rule;
3579
3580 ofputil_cls_rule_from_match(&fsr->match, 0, NXFF_OPENFLOW10, 0,
3581 &target);
3582 cls_cursor_init(&cursor, &ofconn->ofproto->cls, &target);
3583 CLS_CURSOR_FOR_EACH (rule, cr, &cursor) {
3584 put_ofp_flow_stats(ofconn, rule, fsr->out_port, &reply);
3585 }
3586 }
3587 queue_tx(reply, ofconn, ofconn->reply_counter);
3588
3589 return 0;
3590 }
3591
3592 static void
3593 put_nx_flow_stats(struct ofconn *ofconn, struct rule *rule,
3594 ovs_be16 out_port, struct ofpbuf **replyp)
3595 {
3596 struct nx_flow_stats *nfs;
3597 uint64_t packet_count, byte_count;
3598 size_t act_len, start_len;
3599 struct ofpbuf *reply;
3600
3601 if (rule_is_hidden(rule) || !rule_has_out_port(rule, out_port)) {
3602 return;
3603 }
3604
3605 rule_get_stats(rule, &packet_count, &byte_count);
3606
3607 act_len = sizeof *rule->actions * rule->n_actions;
3608
3609 append_nxstats_reply(sizeof *nfs + NXM_MAX_LEN + act_len, ofconn, replyp);
3610 start_len = (*replyp)->size;
3611 reply = *replyp;
3612
3613 nfs = ofpbuf_put_uninit(reply, sizeof *nfs);
3614 nfs->table_id = 0;
3615 nfs->pad = 0;
3616 calc_flow_duration(rule->created, &nfs->duration_sec, &nfs->duration_nsec);
3617 nfs->cookie = rule->flow_cookie;
3618 nfs->priority = htons(rule->cr.priority);
3619 nfs->idle_timeout = htons(rule->idle_timeout);
3620 nfs->hard_timeout = htons(rule->hard_timeout);
3621 nfs->match_len = htons(nx_put_match(reply, &rule->cr));
3622 memset(nfs->pad2, 0, sizeof nfs->pad2);
3623 nfs->packet_count = htonll(packet_count);
3624 nfs->byte_count = htonll(byte_count);
3625 if (rule->n_actions > 0) {
3626 ofpbuf_put(reply, rule->actions, act_len);
3627 }
3628 nfs->length = htons(reply->size - start_len);
3629 }
3630
3631 static int
3632 handle_nxst_flow(struct ofconn *ofconn, const struct ofp_header *oh)
3633 {
3634 struct nx_flow_stats_request *nfsr;
3635 struct cls_rule target;
3636 struct ofpbuf *reply;
3637 struct ofpbuf b;
3638 int error;
3639
3640 ofpbuf_use_const(&b, oh, ntohs(oh->length));
3641
3642 /* Dissect the message. */
3643 nfsr = ofpbuf_pull(&b, sizeof *nfsr);
3644 error = nx_pull_match(&b, ntohs(nfsr->match_len), 0, &target);
3645 if (error) {
3646 return error;
3647 }
3648 if (b.size) {
3649 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
3650 }
3651
3652 COVERAGE_INC(ofproto_flows_req);
3653 reply = start_nxstats_reply(&nfsr->nsm, 1024);
3654 if (is_valid_table(nfsr->table_id)) {
3655 struct cls_cursor cursor;
3656 struct rule *rule;
3657
3658 cls_cursor_init(&cursor, &ofconn->ofproto->cls, &target);
3659 CLS_CURSOR_FOR_EACH (rule, cr, &cursor) {
3660 put_nx_flow_stats(ofconn, rule, nfsr->out_port, &reply);
3661 }
3662 }
3663 queue_tx(reply, ofconn, ofconn->reply_counter);
3664
3665 return 0;
3666 }
3667
3668 static void
3669 flow_stats_ds(struct rule *rule, struct ds *results)
3670 {
3671 uint64_t packet_count, byte_count;
3672 size_t act_len = sizeof *rule->actions * rule->n_actions;
3673
3674 rule_get_stats(rule, &packet_count, &byte_count);
3675
3676 ds_put_format(results, "duration=%llds, ",
3677 (time_msec() - rule->created) / 1000);
3678 ds_put_format(results, "idle=%.3fs, ", (time_msec() - rule->used) / 1000.0);
3679 ds_put_format(results, "priority=%u, ", rule->cr.priority);
3680 ds_put_format(results, "n_packets=%"PRIu64", ", packet_count);
3681 ds_put_format(results, "n_bytes=%"PRIu64", ", byte_count);
3682 cls_rule_format(&rule->cr, results);
3683 ds_put_char(results, ',');
3684 if (act_len > 0) {
3685 ofp_print_actions(results, &rule->actions->header, act_len);
3686 } else {
3687 ds_put_cstr(results, "drop");
3688 }
3689 ds_put_cstr(results, "\n");
3690 }
3691
3692 /* Adds a pretty-printed description of all flows to 'results', including
3693 * those marked hidden by secchan (e.g., by in-band control). */
3694 void
3695 ofproto_get_all_flows(struct ofproto *p, struct ds *results)
3696 {
3697 struct cls_cursor cursor;
3698 struct rule *rule;
3699
3700 cls_cursor_init(&cursor, &p->cls, NULL);
3701 CLS_CURSOR_FOR_EACH (rule, cr, &cursor) {
3702 flow_stats_ds(rule, results);
3703 }
3704 }
3705
3706 static void
3707 query_aggregate_stats(struct ofproto *ofproto, struct cls_rule *target,
3708 ovs_be16 out_port, uint8_t table_id,
3709 struct ofp_aggregate_stats_reply *oasr)
3710 {
3711 uint64_t total_packets = 0;
3712 uint64_t total_bytes = 0;
3713 int n_flows = 0;
3714
3715 COVERAGE_INC(ofproto_agg_request);
3716
3717 if (is_valid_table(table_id)) {
3718 struct cls_cursor cursor;
3719 struct rule *rule;
3720
3721 cls_cursor_init(&cursor, &ofproto->cls, target);
3722 CLS_CURSOR_FOR_EACH (rule, cr, &cursor) {
3723 if (!rule_is_hidden(rule) && rule_has_out_port(rule, out_port)) {
3724 uint64_t packet_count;
3725 uint64_t byte_count;
3726
3727 rule_get_stats(rule, &packet_count, &byte_count);
3728
3729 total_packets += packet_count;
3730 total_bytes += byte_count;
3731 n_flows++;
3732 }
3733 }
3734 }
3735
3736 oasr->flow_count = htonl(n_flows);
3737 put_32aligned_be64(&oasr->packet_count, htonll(total_packets));
3738 put_32aligned_be64(&oasr->byte_count, htonll(total_bytes));
3739 memset(oasr->pad, 0, sizeof oasr->pad);
3740 }
3741
3742 static int
3743 handle_aggregate_stats_request(struct ofconn *ofconn,
3744 const struct ofp_header *oh)
3745 {
3746 const struct ofp_aggregate_stats_request *request = ofputil_stats_body(oh);
3747 struct ofp_aggregate_stats_reply *reply;
3748 struct cls_rule target;
3749 struct ofpbuf *msg;
3750
3751 ofputil_cls_rule_from_match(&request->match, 0, NXFF_OPENFLOW10, 0,
3752 &target);
3753
3754 msg = start_ofp_stats_reply(oh, sizeof *reply);
3755 reply = append_ofp_stats_reply(sizeof *reply, ofconn, &msg);
3756 query_aggregate_stats(ofconn->ofproto, &target, request->out_port,
3757 request->table_id, reply);
3758 queue_tx(msg, ofconn, ofconn->reply_counter);
3759 return 0;
3760 }
3761
3762 static int
3763 handle_nxst_aggregate(struct ofconn *ofconn, const struct ofp_header *oh)
3764 {
3765 struct nx_aggregate_stats_request *request;
3766 struct ofp_aggregate_stats_reply *reply;
3767 struct cls_rule target;
3768 struct ofpbuf b;
3769 struct ofpbuf *buf;
3770 int error;
3771
3772 ofpbuf_use_const(&b, oh, ntohs(oh->length));
3773
3774 /* Dissect the message. */
3775 request = ofpbuf_pull(&b, sizeof *request);
3776 error = nx_pull_match(&b, ntohs(request->match_len), 0, &target);
3777 if (error) {
3778 return error;
3779 }
3780 if (b.size) {
3781 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
3782 }
3783
3784 /* Reply. */
3785 COVERAGE_INC(ofproto_flows_req);
3786 buf = start_nxstats_reply(&request->nsm, sizeof *reply);
3787 reply = ofpbuf_put_uninit(buf, sizeof *reply);
3788 query_aggregate_stats(ofconn->ofproto, &target, request->out_port,
3789 request->table_id, reply);
3790 queue_tx(buf, ofconn, ofconn->reply_counter);
3791
3792 return 0;
3793 }
3794
3795 struct queue_stats_cbdata {
3796 struct ofconn *ofconn;
3797 struct ofport *ofport;
3798 struct ofpbuf *msg;
3799 };
3800
3801 static void
3802 put_queue_stats(struct queue_stats_cbdata *cbdata, uint32_t queue_id,
3803 const struct netdev_queue_stats *stats)
3804 {
3805 struct ofp_queue_stats *reply;
3806
3807 reply = append_ofp_stats_reply(sizeof *reply, cbdata->ofconn, &cbdata->msg);
3808 reply->port_no = htons(cbdata->ofport->opp.port_no);
3809 memset(reply->pad, 0, sizeof reply->pad);
3810 reply->queue_id = htonl(queue_id);
3811 put_32aligned_be64(&reply->tx_bytes, htonll(stats->tx_bytes));
3812 put_32aligned_be64(&reply->tx_packets, htonll(stats->tx_packets));
3813 put_32aligned_be64(&reply->tx_errors, htonll(stats->tx_errors));
3814 }
3815
3816 static void
3817 handle_queue_stats_dump_cb(uint32_t queue_id,
3818 struct netdev_queue_stats *stats,
3819 void *cbdata_)
3820 {
3821 struct queue_stats_cbdata *cbdata = cbdata_;
3822
3823 put_queue_stats(cbdata, queue_id, stats);
3824 }
3825
3826 static void
3827 handle_queue_stats_for_port(struct ofport *port, uint32_t queue_id,
3828 struct queue_stats_cbdata *cbdata)
3829 {
3830 cbdata->ofport = port;
3831 if (queue_id == OFPQ_ALL) {
3832 netdev_dump_queue_stats(port->netdev,
3833 handle_queue_stats_dump_cb, cbdata);
3834 } else {
3835 struct netdev_queue_stats stats;
3836
3837 if (!netdev_get_queue_stats(port->netdev, queue_id, &stats)) {
3838 put_queue_stats(cbdata, queue_id, &stats);
3839 }
3840 }
3841 }
3842
3843 static int
3844 handle_queue_stats_request(struct ofconn *ofconn, const struct ofp_header *oh)
3845 {
3846 struct ofproto *ofproto = ofconn->ofproto;
3847 const struct ofp_queue_stats_request *qsr;
3848 struct queue_stats_cbdata cbdata;
3849 struct ofport *port;
3850 unsigned int port_no;
3851 uint32_t queue_id;
3852
3853 qsr = ofputil_stats_body(oh);
3854 if (!qsr) {
3855 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
3856 }
3857
3858 COVERAGE_INC(ofproto_queue_req);
3859
3860 cbdata.ofconn = ofconn;
3861 cbdata.msg = start_ofp_stats_reply(oh, 128);
3862
3863 port_no = ntohs(qsr->port_no);
3864 queue_id = ntohl(qsr->queue_id);
3865 if (port_no == OFPP_ALL) {
3866 HMAP_FOR_EACH (port, hmap_node, &ofproto->ports) {
3867 handle_queue_stats_for_port(port, queue_id, &cbdata);
3868 }
3869 } else if (port_no < ofproto->max_ports) {
3870 port = get_port(ofproto, ofp_port_to_odp_port(port_no));
3871 if (port) {
3872 handle_queue_stats_for_port(port, queue_id, &cbdata);
3873 }
3874 } else {
3875 ofpbuf_delete(cbdata.msg);
3876 return ofp_mkerr(OFPET_QUEUE_OP_FAILED, OFPQOFC_BAD_PORT);
3877 }
3878 queue_tx(cbdata.msg, ofconn, ofconn->reply_counter);
3879
3880 return 0;
3881 }
3882
3883 /* Updates 'facet''s used time. Caller is responsible for calling
3884 * facet_push_stats() to update the flows which 'facet' resubmits into. */
3885 static void
3886 facet_update_time(struct ofproto *ofproto, struct facet *facet,
3887 long long int used)
3888 {
3889 if (used > facet->used) {
3890 facet->used = used;
3891 if (used > facet->rule->used) {
3892 facet->rule->used = used;
3893 }
3894 netflow_flow_update_time(ofproto->netflow, &facet->nf_flow, used);
3895 }
3896 }
3897
3898 /* Folds the statistics from 'stats' into the counters in 'facet'.
3899 *
3900 * Because of the meaning of a facet's counters, it only makes sense to do this
3901 * if 'stats' are not tracked in the datapath, that is, if 'stats' represents a
3902 * packet that was sent by hand or if it represents statistics that have been
3903 * cleared out of the datapath. */
3904 static void
3905 facet_update_stats(struct ofproto *ofproto, struct facet *facet,
3906 const struct dpif_flow_stats *stats)
3907 {
3908 if (stats->n_packets || stats->used > facet->used) {
3909 facet_update_time(ofproto, facet, stats->used);
3910 facet->packet_count += stats->n_packets;
3911 facet->byte_count += stats->n_bytes;
3912 facet_push_stats(ofproto, facet);
3913 netflow_flow_update_flags(&facet->nf_flow, stats->tcp_flags);
3914 }
3915 }
3916
3917 static void
3918 facet_push_stats(struct ofproto *ofproto, struct facet *facet)
3919 {
3920 uint64_t rs_packets, rs_bytes;
3921
3922 assert(facet->packet_count >= facet->rs_packet_count);
3923 assert(facet->byte_count >= facet->rs_byte_count);
3924 assert(facet->used >= facet->rs_used);
3925
3926 rs_packets = facet->packet_count - facet->rs_packet_count;
3927 rs_bytes = facet->byte_count - facet->rs_byte_count;
3928
3929 if (rs_packets || rs_bytes || facet->used > facet->rs_used) {
3930 facet->rs_packet_count = facet->packet_count;
3931 facet->rs_byte_count = facet->byte_count;
3932 facet->rs_used = facet->used;
3933
3934 flow_push_stats(ofproto, facet->rule, &facet->flow,
3935 rs_packets, rs_bytes, facet->used);
3936 }
3937 }
3938
3939 struct ofproto_push {
3940 struct action_xlate_ctx ctx;
3941 uint64_t packets;
3942 uint64_t bytes;
3943 long long int used;
3944 };
3945
3946 static void
3947 push_resubmit(struct action_xlate_ctx *ctx, struct rule *rule)
3948 {
3949 struct ofproto_push *push = CONTAINER_OF(ctx, struct ofproto_push, ctx);
3950
3951 if (rule) {
3952 rule->packet_count += push->packets;
3953 rule->byte_count += push->bytes;
3954 rule->used = MAX(push->used, rule->used);
3955 }
3956 }
3957
3958 /* Pushes flow statistics to the rules which 'flow' resubmits into given
3959 * 'rule''s actions. */
3960 static void
3961 flow_push_stats(struct ofproto *ofproto, const struct rule *rule,
3962 struct flow *flow, uint64_t packets, uint64_t bytes,
3963 long long int used)
3964 {
3965 struct ofproto_push push;
3966
3967 push.packets = packets;
3968 push.bytes = bytes;
3969 push.used = used;
3970
3971 action_xlate_ctx_init(&push.ctx, ofproto, flow, NULL);
3972 push.ctx.resubmit_hook = push_resubmit;
3973 ofpbuf_delete(xlate_actions(&push.ctx, rule->actions, rule->n_actions));
3974 }
3975
3976 /* Implements OFPFC_ADD and the cases for OFPFC_MODIFY and OFPFC_MODIFY_STRICT
3977 * in which no matching flow already exists in the flow table.
3978 *
3979 * Adds the flow specified by 'ofm', which is followed by 'n_actions'
3980 * ofp_actions, to ofconn->ofproto's flow table. Returns 0 on success or an
3981 * OpenFlow error code as encoded by ofp_mkerr() on failure.
3982 *
3983 * 'ofconn' is used to retrieve the packet buffer specified in ofm->buffer_id,
3984 * if any. */
3985 static int
3986 add_flow(struct ofconn *ofconn, struct flow_mod *fm)
3987 {
3988 struct ofproto *p = ofconn->ofproto;
3989 struct ofpbuf *packet;
3990 struct rule *rule;
3991 uint16_t in_port;
3992 int error;
3993
3994 if (fm->flags & OFPFF_CHECK_OVERLAP
3995 && classifier_rule_overlaps(&p->cls, &fm->cr)) {
3996 return ofp_mkerr(OFPET_FLOW_MOD_FAILED, OFPFMFC_OVERLAP);
3997 }
3998
3999 error = 0;
4000 if (fm->buffer_id != UINT32_MAX) {
4001 error = pktbuf_retrieve(ofconn->pktbuf, fm->buffer_id,
4002 &packet, &in_port);
4003 } else {
4004 packet = NULL;
4005 in_port = UINT16_MAX;
4006 }
4007
4008 rule = rule_create(&fm->cr, fm->actions, fm->n_actions,
4009 fm->idle_timeout, fm->hard_timeout, fm->cookie,
4010 fm->flags & OFPFF_SEND_FLOW_REM);
4011 rule_insert(p, rule);
4012 if (packet) {
4013 rule_execute(p, rule, in_port, packet);
4014 }
4015 return error;
4016 }
4017
4018 static struct rule *
4019 find_flow_strict(struct ofproto *p, const struct flow_mod *fm)
4020 {
4021 return rule_from_cls_rule(classifier_find_rule_exactly(&p->cls, &fm->cr));
4022 }
4023
4024 static int
4025 send_buffered_packet(struct ofconn *ofconn,
4026 struct rule *rule, uint32_t buffer_id)
4027 {
4028 struct ofpbuf *packet;
4029 uint16_t in_port;
4030 int error;
4031
4032 if (buffer_id == UINT32_MAX) {
4033 return 0;
4034 }
4035
4036 error = pktbuf_retrieve(ofconn->pktbuf, buffer_id, &packet, &in_port);
4037 if (error) {
4038 return error;
4039 }
4040
4041 rule_execute(ofconn->ofproto, rule, in_port, packet);
4042
4043 return 0;
4044 }
4045 \f
4046 /* OFPFC_MODIFY and OFPFC_MODIFY_STRICT. */
4047
4048 struct modify_flows_cbdata {
4049 struct ofproto *ofproto;
4050 const struct flow_mod *fm;
4051 struct rule *match;
4052 };
4053
4054 static int modify_flow(struct ofproto *, const struct flow_mod *,
4055 struct rule *);
4056
4057 /* Implements OFPFC_MODIFY. Returns 0 on success or an OpenFlow error code as
4058 * encoded by ofp_mkerr() on failure.
4059 *
4060 * 'ofconn' is used to retrieve the packet buffer specified in ofm->buffer_id,
4061 * if any. */
4062 static int
4063 modify_flows_loose(struct ofconn *ofconn, struct flow_mod *fm)
4064 {
4065 struct ofproto *p = ofconn->ofproto;
4066 struct rule *match = NULL;
4067 struct cls_cursor cursor;
4068 struct rule *rule;
4069
4070 cls_cursor_init(&cursor, &p->cls, &fm->cr);
4071 CLS_CURSOR_FOR_EACH (rule, cr, &cursor) {
4072 if (!rule_is_hidden(rule)) {
4073 match = rule;
4074 modify_flow(p, fm, rule);
4075 }
4076 }
4077
4078 if (match) {
4079 /* This credits the packet to whichever flow happened to match last.
4080 * That's weird. Maybe we should do a lookup for the flow that
4081 * actually matches the packet? Who knows. */
4082 send_buffered_packet(ofconn, match, fm->buffer_id);
4083 return 0;
4084 } else {
4085 return add_flow(ofconn, fm);
4086 }
4087 }
4088
4089 /* Implements OFPFC_MODIFY_STRICT. Returns 0 on success or an OpenFlow error
4090 * code as encoded by ofp_mkerr() on failure.
4091 *
4092 * 'ofconn' is used to retrieve the packet buffer specified in ofm->buffer_id,
4093 * if any. */
4094 static int
4095 modify_flow_strict(struct ofconn *ofconn, struct flow_mod *fm)
4096 {
4097 struct ofproto *p = ofconn->ofproto;
4098 struct rule *rule = find_flow_strict(p, fm);
4099 if (rule && !rule_is_hidden(rule)) {
4100 modify_flow(p, fm, rule);
4101 return send_buffered_packet(ofconn, rule, fm->buffer_id);
4102 } else {
4103 return add_flow(ofconn, fm);
4104 }
4105 }
4106
4107 /* Implements core of OFPFC_MODIFY and OFPFC_MODIFY_STRICT where 'rule' has
4108 * been identified as a flow in 'p''s flow table to be modified, by changing
4109 * the rule's actions to match those in 'ofm' (which is followed by 'n_actions'
4110 * ofp_action[] structures). */
4111 static int
4112 modify_flow(struct ofproto *p, const struct flow_mod *fm, struct rule *rule)
4113 {
4114 size_t actions_len = fm->n_actions * sizeof *rule->actions;
4115
4116 rule->flow_cookie = fm->cookie;
4117
4118 /* If the actions are the same, do nothing. */
4119 if (fm->n_actions == rule->n_actions
4120 && (!fm->n_actions
4121 || !memcmp(fm->actions, rule->actions, actions_len))) {
4122 return 0;
4123 }
4124
4125 /* Replace actions. */
4126 free(rule->actions);
4127 rule->actions = fm->n_actions ? xmemdup(fm->actions, actions_len) : NULL;
4128 rule->n_actions = fm->n_actions;
4129
4130 p->need_revalidate = true;
4131
4132 return 0;
4133 }
4134 \f
4135 /* OFPFC_DELETE implementation. */
4136
4137 static void delete_flow(struct ofproto *, struct rule *, ovs_be16 out_port);
4138
4139 /* Implements OFPFC_DELETE. */
4140 static void
4141 delete_flows_loose(struct ofproto *p, const struct flow_mod *fm)
4142 {
4143 struct rule *rule, *next_rule;
4144 struct cls_cursor cursor;
4145
4146 cls_cursor_init(&cursor, &p->cls, &fm->cr);
4147 CLS_CURSOR_FOR_EACH_SAFE (rule, next_rule, cr, &cursor) {
4148 delete_flow(p, rule, htons(fm->out_port));
4149 }
4150 }
4151
4152 /* Implements OFPFC_DELETE_STRICT. */
4153 static void
4154 delete_flow_strict(struct ofproto *p, struct flow_mod *fm)
4155 {
4156 struct rule *rule = find_flow_strict(p, fm);
4157 if (rule) {
4158 delete_flow(p, rule, htons(fm->out_port));
4159 }
4160 }
4161
4162 /* Implements core of OFPFC_DELETE and OFPFC_DELETE_STRICT where 'rule' has
4163 * been identified as a flow to delete from 'p''s flow table, by deleting the
4164 * flow and sending out a OFPT_FLOW_REMOVED message to any interested
4165 * controller.
4166 *
4167 * Will not delete 'rule' if it is hidden. Will delete 'rule' only if
4168 * 'out_port' is htons(OFPP_NONE) or if 'rule' actually outputs to the
4169 * specified 'out_port'. */
4170 static void
4171 delete_flow(struct ofproto *p, struct rule *rule, ovs_be16 out_port)
4172 {
4173 if (rule_is_hidden(rule)) {
4174 return;
4175 }
4176
4177 if (out_port != htons(OFPP_NONE) && !rule_has_out_port(rule, out_port)) {
4178 return;
4179 }
4180
4181 rule_send_removed(p, rule, OFPRR_DELETE);
4182 rule_remove(p, rule);
4183 }
4184 \f
4185 static int
4186 handle_flow_mod(struct ofconn *ofconn, const struct ofp_header *oh)
4187 {
4188 struct ofproto *p = ofconn->ofproto;
4189 struct flow_mod fm;
4190 int error;
4191
4192 error = reject_slave_controller(ofconn, "flow_mod");
4193 if (error) {
4194 return error;
4195 }
4196
4197 error = ofputil_decode_flow_mod(&fm, oh, ofconn->flow_format);
4198 if (error) {
4199 return error;
4200 }
4201
4202 /* We do not support the emergency flow cache. It will hopefully get
4203 * dropped from OpenFlow in the near future. */
4204 if (fm.flags & OFPFF_EMERG) {
4205 /* There isn't a good fit for an error code, so just state that the
4206 * flow table is full. */
4207 return ofp_mkerr(OFPET_FLOW_MOD_FAILED, OFPFMFC_ALL_TABLES_FULL);
4208 }
4209
4210 error = validate_actions(fm.actions, fm.n_actions,
4211 &fm.cr.flow, p->max_ports);
4212 if (error) {
4213 return error;
4214 }
4215
4216 switch (fm.command) {
4217 case OFPFC_ADD:
4218 return add_flow(ofconn, &fm);
4219
4220 case OFPFC_MODIFY:
4221 return modify_flows_loose(ofconn, &fm);
4222
4223 case OFPFC_MODIFY_STRICT:
4224 return modify_flow_strict(ofconn, &fm);
4225
4226 case OFPFC_DELETE:
4227 delete_flows_loose(p, &fm);
4228 return 0;
4229
4230 case OFPFC_DELETE_STRICT:
4231 delete_flow_strict(p, &fm);
4232 return 0;
4233
4234 default:
4235 return ofp_mkerr(OFPET_FLOW_MOD_FAILED, OFPFMFC_BAD_COMMAND);
4236 }
4237 }
4238
4239 static int
4240 handle_tun_id_from_cookie(struct ofconn *ofconn, const struct ofp_header *oh)
4241 {
4242 const struct nxt_tun_id_cookie *msg
4243 = (const struct nxt_tun_id_cookie *) oh;
4244
4245 ofconn->flow_format = msg->set ? NXFF_TUN_ID_FROM_COOKIE : NXFF_OPENFLOW10;
4246 return 0;
4247 }
4248
4249 static int
4250 handle_role_request(struct ofconn *ofconn, const struct ofp_header *oh)
4251 {
4252 struct nx_role_request *nrr = (struct nx_role_request *) oh;
4253 struct nx_role_request *reply;
4254 struct ofpbuf *buf;
4255 uint32_t role;
4256
4257 if (ofconn->type != OFCONN_PRIMARY) {
4258 VLOG_WARN_RL(&rl, "ignoring role request on non-controller "
4259 "connection");
4260 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_EPERM);
4261 }
4262
4263 role = ntohl(nrr->role);
4264 if (role != NX_ROLE_OTHER && role != NX_ROLE_MASTER
4265 && role != NX_ROLE_SLAVE) {
4266 VLOG_WARN_RL(&rl, "received request for unknown role %"PRIu32, role);
4267
4268 /* There's no good error code for this. */
4269 return ofp_mkerr(OFPET_BAD_REQUEST, -1);
4270 }
4271
4272 if (role == NX_ROLE_MASTER) {
4273 struct ofconn *other;
4274
4275 HMAP_FOR_EACH (other, hmap_node, &ofconn->ofproto->controllers) {
4276 if (other->role == NX_ROLE_MASTER) {
4277 other->role = NX_ROLE_SLAVE;
4278 }
4279 }
4280 }
4281 ofconn->role = role;
4282
4283 reply = make_nxmsg_xid(sizeof *reply, NXT_ROLE_REPLY, oh->xid, &buf);
4284 reply->role = htonl(role);
4285 queue_tx(buf, ofconn, ofconn->reply_counter);
4286
4287 return 0;
4288 }
4289
4290 static int
4291 handle_nxt_set_flow_format(struct ofconn *ofconn, const struct ofp_header *oh)
4292 {
4293 const struct nxt_set_flow_format *msg
4294 = (const struct nxt_set_flow_format *) oh;
4295 uint32_t format;
4296
4297 format = ntohl(msg->format);
4298 if (format == NXFF_OPENFLOW10
4299 || format == NXFF_TUN_ID_FROM_COOKIE
4300 || format == NXFF_NXM) {
4301 ofconn->flow_format = format;
4302 return 0;
4303 } else {
4304 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_EPERM);
4305 }
4306 }
4307
4308 static int
4309 handle_barrier_request(struct ofconn *ofconn, const struct ofp_header *oh)
4310 {
4311 struct ofp_header *ob;
4312 struct ofpbuf *buf;
4313
4314 /* Currently, everything executes synchronously, so we can just
4315 * immediately send the barrier reply. */
4316 ob = make_openflow_xid(sizeof *ob, OFPT_BARRIER_REPLY, oh->xid, &buf);
4317 queue_tx(buf, ofconn, ofconn->reply_counter);
4318 return 0;
4319 }
4320
4321 static int
4322 handle_openflow__(struct ofconn *ofconn, const struct ofpbuf *msg)
4323 {
4324 const struct ofp_header *oh = msg->data;
4325 const struct ofputil_msg_type *type;
4326 int error;
4327
4328 error = ofputil_decode_msg_type(oh, &type);
4329 if (error) {
4330 return error;
4331 }
4332
4333 switch (ofputil_msg_type_code(type)) {
4334 /* OpenFlow requests. */
4335 case OFPUTIL_OFPT_ECHO_REQUEST:
4336 return handle_echo_request(ofconn, oh);
4337
4338 case OFPUTIL_OFPT_FEATURES_REQUEST:
4339 return handle_features_request(ofconn, oh);
4340
4341 case OFPUTIL_OFPT_GET_CONFIG_REQUEST:
4342 return handle_get_config_request(ofconn, oh);
4343
4344 case OFPUTIL_OFPT_SET_CONFIG:
4345 return handle_set_config(ofconn, msg->data);
4346
4347 case OFPUTIL_OFPT_PACKET_OUT:
4348 return handle_packet_out(ofconn, oh);
4349
4350 case OFPUTIL_OFPT_PORT_MOD:
4351 return handle_port_mod(ofconn, oh);
4352
4353 case OFPUTIL_OFPT_FLOW_MOD:
4354 return handle_flow_mod(ofconn, oh);
4355
4356 case OFPUTIL_OFPT_BARRIER_REQUEST:
4357 return handle_barrier_request(ofconn, oh);
4358
4359 /* OpenFlow replies. */
4360 case OFPUTIL_OFPT_ECHO_REPLY:
4361 return 0;
4362
4363 /* Nicira extension requests. */
4364 case OFPUTIL_NXT_STATUS_REQUEST:
4365 return switch_status_handle_request(
4366 ofconn->ofproto->switch_status, ofconn->rconn, oh);
4367
4368 case OFPUTIL_NXT_TUN_ID_FROM_COOKIE:
4369 return handle_tun_id_from_cookie(ofconn, oh);
4370
4371 case OFPUTIL_NXT_ROLE_REQUEST:
4372 return handle_role_request(ofconn, oh);
4373
4374 case OFPUTIL_NXT_SET_FLOW_FORMAT:
4375 return handle_nxt_set_flow_format(ofconn, oh);
4376
4377 case OFPUTIL_NXT_FLOW_MOD:
4378 return handle_flow_mod(ofconn, oh);
4379
4380 /* OpenFlow statistics requests. */
4381 case OFPUTIL_OFPST_DESC_REQUEST:
4382 return handle_desc_stats_request(ofconn, oh);
4383
4384 case OFPUTIL_OFPST_FLOW_REQUEST:
4385 return handle_flow_stats_request(ofconn, oh);
4386
4387 case OFPUTIL_OFPST_AGGREGATE_REQUEST:
4388 return handle_aggregate_stats_request(ofconn, oh);
4389
4390 case OFPUTIL_OFPST_TABLE_REQUEST:
4391 return handle_table_stats_request(ofconn, oh);
4392
4393 case OFPUTIL_OFPST_PORT_REQUEST:
4394 return handle_port_stats_request(ofconn, oh);
4395
4396 case OFPUTIL_OFPST_QUEUE_REQUEST:
4397 return handle_queue_stats_request(ofconn, oh);
4398
4399 /* Nicira extension statistics requests. */
4400 case OFPUTIL_NXST_FLOW_REQUEST:
4401 return handle_nxst_flow(ofconn, oh);
4402
4403 case OFPUTIL_NXST_AGGREGATE_REQUEST:
4404 return handle_nxst_aggregate(ofconn, oh);
4405
4406 case OFPUTIL_INVALID:
4407 case OFPUTIL_OFPT_HELLO:
4408 case OFPUTIL_OFPT_ERROR:
4409 case OFPUTIL_OFPT_FEATURES_REPLY:
4410 case OFPUTIL_OFPT_GET_CONFIG_REPLY:
4411 case OFPUTIL_OFPT_PACKET_IN:
4412 case OFPUTIL_OFPT_FLOW_REMOVED:
4413 case OFPUTIL_OFPT_PORT_STATUS:
4414 case OFPUTIL_OFPT_BARRIER_REPLY:
4415 case OFPUTIL_OFPT_QUEUE_GET_CONFIG_REQUEST:
4416 case OFPUTIL_OFPT_QUEUE_GET_CONFIG_REPLY:
4417 case OFPUTIL_OFPST_DESC_REPLY:
4418 case OFPUTIL_OFPST_FLOW_REPLY:
4419 case OFPUTIL_OFPST_QUEUE_REPLY:
4420 case OFPUTIL_OFPST_PORT_REPLY:
4421 case OFPUTIL_OFPST_TABLE_REPLY:
4422 case OFPUTIL_OFPST_AGGREGATE_REPLY:
4423 case OFPUTIL_NXT_STATUS_REPLY:
4424 case OFPUTIL_NXT_ROLE_REPLY:
4425 case OFPUTIL_NXT_FLOW_REMOVED:
4426 case OFPUTIL_NXST_FLOW_REPLY:
4427 case OFPUTIL_NXST_AGGREGATE_REPLY:
4428 default:
4429 if (VLOG_IS_WARN_ENABLED()) {
4430 char *s = ofp_to_string(oh, ntohs(oh->length), 2);
4431 VLOG_DBG_RL(&rl, "OpenFlow message ignored: %s", s);
4432 free(s);
4433 }
4434 if (oh->type == OFPT_STATS_REQUEST || oh->type == OFPT_STATS_REPLY) {
4435 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_STAT);
4436 } else {
4437 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_TYPE);
4438 }
4439 }
4440 }
4441
4442 static void
4443 handle_openflow(struct ofconn *ofconn, struct ofpbuf *ofp_msg)
4444 {
4445 int error = handle_openflow__(ofconn, ofp_msg);
4446 if (error) {
4447 send_error_oh(ofconn, ofp_msg->data, error);
4448 }
4449 COVERAGE_INC(ofproto_recv_openflow);
4450 }
4451 \f
4452 static void
4453 handle_miss_upcall(struct ofproto *p, struct dpif_upcall *upcall)
4454 {
4455 struct facet *facet;
4456 struct flow flow;
4457
4458 /* Obtain in_port and tun_id, at least. */
4459 odp_flow_key_to_flow(upcall->key, upcall->key_len, &flow);
4460
4461 /* Set header pointers in 'flow'. */
4462 flow_extract(upcall->packet, flow.tun_id, flow.in_port, &flow);
4463
4464 if (p->ofhooks->special_cb
4465 && !p->ofhooks->special_cb(&flow, upcall->packet, p->aux)) {
4466 ofpbuf_delete(upcall->packet);
4467 return;
4468 }
4469
4470 /* Check with in-band control to see if this packet should be sent
4471 * to the local port regardless of the flow table. */
4472 if (in_band_msg_in_hook(p->in_band, &flow, upcall->packet)) {
4473 struct ofpbuf odp_actions;
4474
4475 ofpbuf_init(&odp_actions, 32);
4476 nl_msg_put_u32(&odp_actions, ODP_ACTION_ATTR_OUTPUT, ODPP_LOCAL);
4477 dpif_execute(p->dpif, odp_actions.data, odp_actions.size,
4478 upcall->packet);
4479 ofpbuf_uninit(&odp_actions);
4480 }
4481
4482 facet = facet_lookup_valid(p, &flow);
4483 if (!facet) {
4484 struct rule *rule = rule_lookup(p, &flow);
4485 if (!rule) {
4486 /* Don't send a packet-in if OFPPC_NO_PACKET_IN asserted. */
4487 struct ofport *port = get_port(p, flow.in_port);
4488 if (port) {
4489 if (port->opp.config & OFPPC_NO_PACKET_IN) {
4490 COVERAGE_INC(ofproto_no_packet_in);
4491 /* XXX install 'drop' flow entry */
4492 ofpbuf_delete(upcall->packet);
4493 return;
4494 }
4495 } else {
4496 VLOG_WARN_RL(&rl, "packet-in on unknown port %"PRIu16,
4497 flow.in_port);
4498 }
4499
4500 COVERAGE_INC(ofproto_packet_in);
4501 send_packet_in(p, upcall, &flow, false);
4502 return;
4503 }
4504
4505 facet = facet_create(p, rule, &flow, upcall->packet);
4506 } else if (!facet->may_install) {
4507 /* The facet is not installable, that is, we need to process every
4508 * packet, so process the current packet's actions into 'facet'. */
4509 facet_make_actions(p, facet, upcall->packet);
4510 }
4511
4512 if (facet->rule->cr.priority == FAIL_OPEN_PRIORITY) {
4513 /*
4514 * Extra-special case for fail-open mode.
4515 *
4516 * We are in fail-open mode and the packet matched the fail-open rule,
4517 * but we are connected to a controller too. We should send the packet
4518 * up to the controller in the hope that it will try to set up a flow
4519 * and thereby allow us to exit fail-open.
4520 *
4521 * See the top-level comment in fail-open.c for more information.
4522 */
4523 send_packet_in(p, upcall, &flow, true);
4524 }
4525
4526 facet_execute(p, facet, upcall->packet);
4527 facet_install(p, facet, false);
4528 }
4529
4530 static void
4531 handle_upcall(struct ofproto *p, struct dpif_upcall *upcall)
4532 {
4533 struct flow flow;
4534
4535 switch (upcall->type) {
4536 case DPIF_UC_ACTION:
4537 COVERAGE_INC(ofproto_ctlr_action);
4538 odp_flow_key_to_flow(upcall->key, upcall->key_len, &flow);
4539 send_packet_in(p, upcall, &flow, false);
4540 break;
4541
4542 case DPIF_UC_SAMPLE:
4543 if (p->sflow) {
4544 odp_flow_key_to_flow(upcall->key, upcall->key_len, &flow);
4545 ofproto_sflow_received(p->sflow, upcall, &flow);
4546 }
4547 ofpbuf_delete(upcall->packet);
4548 break;
4549
4550 case DPIF_UC_MISS:
4551 handle_miss_upcall(p, upcall);
4552 break;
4553
4554 case DPIF_N_UC_TYPES:
4555 default:
4556 VLOG_WARN_RL(&rl, "upcall has unexpected type %"PRIu32, upcall->type);
4557 break;
4558 }
4559 }
4560 \f
4561 /* Flow expiration. */
4562
4563 static int ofproto_dp_max_idle(const struct ofproto *);
4564 static void ofproto_update_stats(struct ofproto *);
4565 static void rule_expire(struct ofproto *, struct rule *);
4566 static void ofproto_expire_facets(struct ofproto *, int dp_max_idle);
4567
4568 /* This function is called periodically by ofproto_run(). Its job is to
4569 * collect updates for the flows that have been installed into the datapath,
4570 * most importantly when they last were used, and then use that information to
4571 * expire flows that have not been used recently.
4572 *
4573 * Returns the number of milliseconds after which it should be called again. */
4574 static int
4575 ofproto_expire(struct ofproto *ofproto)
4576 {
4577 struct rule *rule, *next_rule;
4578 struct cls_cursor cursor;
4579 int dp_max_idle;
4580
4581 /* Update stats for each flow in the datapath. */
4582 ofproto_update_stats(ofproto);
4583
4584 /* Expire facets that have been idle too long. */
4585 dp_max_idle = ofproto_dp_max_idle(ofproto);
4586 ofproto_expire_facets(ofproto, dp_max_idle);
4587
4588 /* Expire OpenFlow flows whose idle_timeout or hard_timeout has passed. */
4589 cls_cursor_init(&cursor, &ofproto->cls, NULL);
4590 CLS_CURSOR_FOR_EACH_SAFE (rule, next_rule, cr, &cursor) {
4591 rule_expire(ofproto, rule);
4592 }
4593
4594 /* Let the hook know that we're at a stable point: all outstanding data
4595 * in existing flows has been accounted to the account_cb. Thus, the
4596 * hook can now reasonably do operations that depend on having accurate
4597 * flow volume accounting (currently, that's just bond rebalancing). */
4598 if (ofproto->ofhooks->account_checkpoint_cb) {
4599 ofproto->ofhooks->account_checkpoint_cb(ofproto->aux);
4600 }
4601
4602 return MIN(dp_max_idle, 1000);
4603 }
4604
4605 /* Update 'packet_count', 'byte_count', and 'used' members of installed facets.
4606 *
4607 * This function also pushes statistics updates to rules which each facet
4608 * resubmits into. Generally these statistics will be accurate. However, if a
4609 * facet changes the rule it resubmits into at some time in between
4610 * ofproto_update_stats() runs, it is possible that statistics accrued to the
4611 * old rule will be incorrectly attributed to the new rule. This could be
4612 * avoided by calling ofproto_update_stats() whenever rules are created or
4613 * deleted. However, the performance impact of making so many calls to the
4614 * datapath do not justify the benefit of having perfectly accurate statistics.
4615 */
4616 static void
4617 ofproto_update_stats(struct ofproto *p)
4618 {
4619 const struct dpif_flow_stats *stats;
4620 struct dpif_flow_dump dump;
4621 const struct nlattr *key;
4622 size_t key_len;
4623
4624 dpif_flow_dump_start(&dump, p->dpif);
4625 while (dpif_flow_dump_next(&dump, &key, &key_len, NULL, NULL, &stats)) {
4626 struct facet *facet;
4627 struct flow flow;
4628
4629 if (odp_flow_key_to_flow(key, key_len, &flow)) {
4630 struct ds s;
4631
4632 ds_init(&s);
4633 odp_flow_key_format(key, key_len, &s);
4634 VLOG_WARN_RL(&rl, "failed to convert ODP flow key to flow: %s",
4635 ds_cstr(&s));
4636 ds_destroy(&s);
4637
4638 continue;
4639 }
4640 facet = facet_find(p, &flow);
4641
4642 if (facet && facet->installed) {
4643
4644 if (stats->n_packets >= facet->dp_packet_count) {
4645 facet->packet_count += stats->n_packets - facet->dp_packet_count;
4646 } else {
4647 VLOG_WARN_RL(&rl, "unexpected packet count from the datapath");
4648 }
4649
4650 if (stats->n_bytes >= facet->dp_byte_count) {
4651 facet->byte_count += stats->n_bytes - facet->dp_byte_count;
4652 } else {
4653 VLOG_WARN_RL(&rl, "unexpected byte count from datapath");
4654 }
4655
4656 facet->dp_packet_count = stats->n_packets;
4657 facet->dp_byte_count = stats->n_bytes;
4658
4659 facet_update_time(p, facet, stats->used);
4660 facet_account(p, facet, stats->n_bytes);
4661 facet_push_stats(p, facet);
4662 } else {
4663 /* There's a flow in the datapath that we know nothing about.
4664 * Delete it. */
4665 COVERAGE_INC(ofproto_unexpected_rule);
4666 dpif_flow_del(p->dpif, key, key_len, NULL);
4667 }
4668 }
4669 dpif_flow_dump_done(&dump);
4670 }
4671
4672 /* Calculates and returns the number of milliseconds of idle time after which
4673 * facets should expire from the datapath and we should fold their statistics
4674 * into their parent rules in userspace. */
4675 static int
4676 ofproto_dp_max_idle(const struct ofproto *ofproto)
4677 {
4678 /*
4679 * Idle time histogram.
4680 *
4681 * Most of the time a switch has a relatively small number of facets. When
4682 * this is the case we might as well keep statistics for all of them in
4683 * userspace and to cache them in the kernel datapath for performance as
4684 * well.
4685 *
4686 * As the number of facets increases, the memory required to maintain
4687 * statistics about them in userspace and in the kernel becomes
4688 * significant. However, with a large number of facets it is likely that
4689 * only a few of them are "heavy hitters" that consume a large amount of
4690 * bandwidth. At this point, only heavy hitters are worth caching in the
4691 * kernel and maintaining in userspaces; other facets we can discard.
4692 *
4693 * The technique used to compute the idle time is to build a histogram with
4694 * N_BUCKETS buckets whose width is BUCKET_WIDTH msecs each. Each facet
4695 * that is installed in the kernel gets dropped in the appropriate bucket.
4696 * After the histogram has been built, we compute the cutoff so that only
4697 * the most-recently-used 1% of facets (but at least 1000 flows) are kept
4698 * cached. At least the most-recently-used bucket of facets is kept, so
4699 * actually an arbitrary number of facets can be kept in any given
4700 * expiration run (though the next run will delete most of those unless
4701 * they receive additional data).
4702 *
4703 * This requires a second pass through the facets, in addition to the pass
4704 * made by ofproto_update_stats(), because the former function never looks
4705 * at uninstallable facets.
4706 */
4707 enum { BUCKET_WIDTH = ROUND_UP(100, TIME_UPDATE_INTERVAL) };
4708 enum { N_BUCKETS = 5000 / BUCKET_WIDTH };
4709 int buckets[N_BUCKETS] = { 0 };
4710 struct facet *facet;
4711 int total, bucket;
4712 long long int now;
4713 int i;
4714
4715 total = hmap_count(&ofproto->facets);
4716 if (total <= 1000) {
4717 return N_BUCKETS * BUCKET_WIDTH;
4718 }
4719
4720 /* Build histogram. */
4721 now = time_msec();
4722 HMAP_FOR_EACH (facet, hmap_node, &ofproto->facets) {
4723 long long int idle = now - facet->used;
4724 int bucket = (idle <= 0 ? 0
4725 : idle >= BUCKET_WIDTH * N_BUCKETS ? N_BUCKETS - 1
4726 : (unsigned int) idle / BUCKET_WIDTH);
4727 buckets[bucket]++;
4728 }
4729
4730 /* Find the first bucket whose flows should be expired. */
4731 for (bucket = 0; bucket < N_BUCKETS; bucket++) {
4732 if (buckets[bucket]) {
4733 int subtotal = 0;
4734 do {
4735 subtotal += buckets[bucket++];
4736 } while (bucket < N_BUCKETS && subtotal < MAX(1000, total / 100));
4737 break;
4738 }
4739 }
4740
4741 if (VLOG_IS_DBG_ENABLED()) {
4742 struct ds s;
4743
4744 ds_init(&s);
4745 ds_put_cstr(&s, "keep");
4746 for (i = 0; i < N_BUCKETS; i++) {
4747 if (i == bucket) {
4748 ds_put_cstr(&s, ", drop");
4749 }
4750 if (buckets[i]) {
4751 ds_put_format(&s, " %d:%d", i * BUCKET_WIDTH, buckets[i]);
4752 }
4753 }
4754 VLOG_INFO("%s: %s (msec:count)",
4755 dpif_name(ofproto->dpif), ds_cstr(&s));
4756 ds_destroy(&s);
4757 }
4758
4759 return bucket * BUCKET_WIDTH;
4760 }
4761
4762 static void
4763 facet_active_timeout(struct ofproto *ofproto, struct facet *facet)
4764 {
4765 if (ofproto->netflow && !facet_is_controller_flow(facet) &&
4766 netflow_active_timeout_expired(ofproto->netflow, &facet->nf_flow)) {
4767 struct ofexpired expired;
4768
4769 if (facet->installed) {
4770 struct dpif_flow_stats stats;
4771
4772 facet_put__(ofproto, facet, facet->actions, facet->actions_len,
4773 &stats);
4774 facet_update_stats(ofproto, facet, &stats);
4775 }
4776
4777 expired.flow = facet->flow;
4778 expired.packet_count = facet->packet_count;
4779 expired.byte_count = facet->byte_count;
4780 expired.used = facet->used;
4781 netflow_expire(ofproto->netflow, &facet->nf_flow, &expired);
4782 }
4783 }
4784
4785 static void
4786 ofproto_expire_facets(struct ofproto *ofproto, int dp_max_idle)
4787 {
4788 long long int cutoff = time_msec() - dp_max_idle;
4789 struct facet *facet, *next_facet;
4790
4791 HMAP_FOR_EACH_SAFE (facet, next_facet, hmap_node, &ofproto->facets) {
4792 facet_active_timeout(ofproto, facet);
4793 if (facet->used < cutoff) {
4794 facet_remove(ofproto, facet);
4795 }
4796 }
4797 }
4798
4799 /* If 'rule' is an OpenFlow rule, that has expired according to OpenFlow rules,
4800 * then delete it entirely. */
4801 static void
4802 rule_expire(struct ofproto *ofproto, struct rule *rule)
4803 {
4804 struct facet *facet, *next_facet;
4805 long long int now;
4806 uint8_t reason;
4807
4808 /* Has 'rule' expired? */
4809 now = time_msec();
4810 if (rule->hard_timeout
4811 && now > rule->created + rule->hard_timeout * 1000) {
4812 reason = OFPRR_HARD_TIMEOUT;
4813 } else if (rule->idle_timeout && list_is_empty(&rule->facets)
4814 && now >rule->used + rule->idle_timeout * 1000) {
4815 reason = OFPRR_IDLE_TIMEOUT;
4816 } else {
4817 return;
4818 }
4819
4820 COVERAGE_INC(ofproto_expired);
4821
4822 /* Update stats. (This is a no-op if the rule expired due to an idle
4823 * timeout, because that only happens when the rule has no facets left.) */
4824 LIST_FOR_EACH_SAFE (facet, next_facet, list_node, &rule->facets) {
4825 facet_remove(ofproto, facet);
4826 }
4827
4828 /* Get rid of the rule. */
4829 if (!rule_is_hidden(rule)) {
4830 rule_send_removed(ofproto, rule, reason);
4831 }
4832 rule_remove(ofproto, rule);
4833 }
4834 \f
4835 static struct ofpbuf *
4836 compose_ofp_flow_removed(struct ofconn *ofconn, const struct rule *rule,
4837 uint8_t reason)
4838 {
4839 struct ofp_flow_removed *ofr;
4840 struct ofpbuf *buf;
4841
4842 ofr = make_openflow_xid(sizeof *ofr, OFPT_FLOW_REMOVED, htonl(0), &buf);
4843 ofputil_cls_rule_to_match(&rule->cr, ofconn->flow_format, &ofr->match,
4844 rule->flow_cookie, &ofr->cookie);
4845 ofr->priority = htons(rule->cr.priority);
4846 ofr->reason = reason;
4847 calc_flow_duration(rule->created, &ofr->duration_sec, &ofr->duration_nsec);
4848 ofr->idle_timeout = htons(rule->idle_timeout);
4849 ofr->packet_count = htonll(rule->packet_count);
4850 ofr->byte_count = htonll(rule->byte_count);
4851
4852 return buf;
4853 }
4854
4855 static struct ofpbuf *
4856 compose_nx_flow_removed(const struct rule *rule, uint8_t reason)
4857 {
4858 struct nx_flow_removed *nfr;
4859 struct ofpbuf *buf;
4860 int match_len;
4861
4862 make_nxmsg_xid(sizeof *nfr, NXT_FLOW_REMOVED, htonl(0), &buf);
4863 match_len = nx_put_match(buf, &rule->cr);
4864
4865 nfr = buf->data;
4866 nfr->cookie = rule->flow_cookie;
4867 nfr->priority = htons(rule->cr.priority);
4868 nfr->reason = reason;
4869 calc_flow_duration(rule->created, &nfr->duration_sec, &nfr->duration_nsec);
4870 nfr->idle_timeout = htons(rule->idle_timeout);
4871 nfr->match_len = htons(match_len);
4872 nfr->packet_count = htonll(rule->packet_count);
4873 nfr->byte_count = htonll(rule->byte_count);
4874
4875 return buf;
4876 }
4877
4878 static void
4879 rule_send_removed(struct ofproto *p, struct rule *rule, uint8_t reason)
4880 {
4881 struct ofconn *ofconn;
4882
4883 if (!rule->send_flow_removed) {
4884 return;
4885 }
4886
4887 LIST_FOR_EACH (ofconn, node, &p->all_conns) {
4888 struct ofpbuf *msg;
4889
4890 if (!rconn_is_connected(ofconn->rconn)
4891 || !ofconn_receives_async_msgs(ofconn)) {
4892 continue;
4893 }
4894
4895 msg = (ofconn->flow_format == NXFF_NXM
4896 ? compose_nx_flow_removed(rule, reason)
4897 : compose_ofp_flow_removed(ofconn, rule, reason));
4898
4899 /* Account flow expirations under ofconn->reply_counter, the counter
4900 * for replies to OpenFlow requests. That works because preventing
4901 * OpenFlow requests from being processed also prevents new flows from
4902 * being added (and expiring). (It also prevents processing OpenFlow
4903 * requests that would not add new flows, so it is imperfect.) */
4904 queue_tx(msg, ofconn, ofconn->reply_counter);
4905 }
4906 }
4907
4908 /* Obtains statistics for 'rule' and stores them in '*packets' and '*bytes'.
4909 * The returned statistics include statistics for all of 'rule''s facets. */
4910 static void
4911 rule_get_stats(const struct rule *rule, uint64_t *packets, uint64_t *bytes)
4912 {
4913 uint64_t p, b;
4914 struct facet *facet;
4915
4916 /* Start from historical data for 'rule' itself that are no longer tracked
4917 * in facets. This counts, for example, facets that have expired. */
4918 p = rule->packet_count;
4919 b = rule->byte_count;
4920
4921 /* Add any statistics that are tracked by facets. This includes
4922 * statistical data recently updated by ofproto_update_stats() as well as
4923 * stats for packets that were executed "by hand" via dpif_execute(). */
4924 LIST_FOR_EACH (facet, list_node, &rule->facets) {
4925 p += facet->packet_count;
4926 b += facet->byte_count;
4927 }
4928
4929 *packets = p;
4930 *bytes = b;
4931 }
4932
4933 /* pinsched callback for sending 'ofp_packet_in' on 'ofconn'. */
4934 static void
4935 do_send_packet_in(struct ofpbuf *ofp_packet_in, void *ofconn_)
4936 {
4937 struct ofconn *ofconn = ofconn_;
4938
4939 rconn_send_with_limit(ofconn->rconn, ofp_packet_in,
4940 ofconn->packet_in_counter, 100);
4941 }
4942
4943 /* Takes 'upcall', whose packet has the flow specified by 'flow', composes an
4944 * OpenFlow packet-in message from it, and passes it to 'ofconn''s packet
4945 * scheduler for sending.
4946 *
4947 * If 'clone' is true, the caller retains ownership of 'upcall->packet'.
4948 * Otherwise, ownership is transferred to this function. */
4949 static void
4950 schedule_packet_in(struct ofconn *ofconn, struct dpif_upcall *upcall,
4951 const struct flow *flow, bool clone)
4952 {
4953 enum { OPI_SIZE = offsetof(struct ofp_packet_in, data) };
4954 struct ofproto *ofproto = ofconn->ofproto;
4955 struct ofp_packet_in *opi;
4956 int total_len, send_len;
4957 struct ofpbuf *packet;
4958 uint32_t buffer_id;
4959 int idx;
4960
4961 /* Get OpenFlow buffer_id. */
4962 if (upcall->type == DPIF_UC_ACTION) {
4963 buffer_id = UINT32_MAX;
4964 } else if (ofproto->fail_open && fail_open_is_active(ofproto->fail_open)) {
4965 buffer_id = pktbuf_get_null();
4966 } else if (!ofconn->pktbuf) {
4967 buffer_id = UINT32_MAX;
4968 } else {
4969 buffer_id = pktbuf_save(ofconn->pktbuf, upcall->packet, flow->in_port);
4970 }
4971
4972 /* Figure out how much of the packet to send. */
4973 total_len = send_len = upcall->packet->size;
4974 if (buffer_id != UINT32_MAX) {
4975 send_len = MIN(send_len, ofconn->miss_send_len);
4976 }
4977 if (upcall->type == DPIF_UC_ACTION) {
4978 send_len = MIN(send_len, upcall->userdata);
4979 }
4980
4981 /* Copy or steal buffer for OFPT_PACKET_IN. */
4982 if (clone) {
4983 packet = ofpbuf_clone_data_with_headroom(upcall->packet->data,
4984 send_len, OPI_SIZE);
4985 } else {
4986 packet = upcall->packet;
4987 packet->size = send_len;
4988 }
4989
4990 /* Add OFPT_PACKET_IN. */
4991 opi = ofpbuf_push_zeros(packet, OPI_SIZE);
4992 opi->header.version = OFP_VERSION;
4993 opi->header.type = OFPT_PACKET_IN;
4994 opi->total_len = htons(total_len);
4995 opi->in_port = htons(odp_port_to_ofp_port(flow->in_port));
4996 opi->reason = upcall->type == DPIF_UC_MISS ? OFPR_NO_MATCH : OFPR_ACTION;
4997 opi->buffer_id = htonl(buffer_id);
4998 update_openflow_length(packet);
4999
5000 /* Hand over to packet scheduler. It might immediately call into
5001 * do_send_packet_in() or it might buffer it for a while (until a later
5002 * call to pinsched_run()). */
5003 idx = upcall->type == DPIF_UC_MISS ? 0 : 1;
5004 pinsched_send(ofconn->schedulers[idx], flow->in_port,
5005 packet, do_send_packet_in, ofconn);
5006 }
5007
5008 /* Given 'upcall', of type DPIF_UC_ACTION or DPIF_UC_MISS, sends an
5009 * OFPT_PACKET_IN message to each OpenFlow controller as necessary according to
5010 * their individual configurations.
5011 *
5012 * Takes ownership of 'packet'. */
5013 static void
5014 send_packet_in(struct ofproto *ofproto, struct dpif_upcall *upcall,
5015 const struct flow *flow, bool clone)
5016 {
5017 struct ofconn *ofconn, *prev;
5018
5019 prev = NULL;
5020 LIST_FOR_EACH (ofconn, node, &ofproto->all_conns) {
5021 if (ofconn_receives_async_msgs(ofconn)) {
5022 if (prev) {
5023 schedule_packet_in(prev, upcall, flow, true);
5024 }
5025 prev = ofconn;
5026 }
5027 }
5028 if (prev) {
5029 schedule_packet_in(prev, upcall, flow, clone);
5030 } else if (!clone) {
5031 ofpbuf_delete(upcall->packet);
5032 }
5033 }
5034
5035 static uint64_t
5036 pick_datapath_id(const struct ofproto *ofproto)
5037 {
5038 const struct ofport *port;
5039
5040 port = get_port(ofproto, ODPP_LOCAL);
5041 if (port) {
5042 uint8_t ea[ETH_ADDR_LEN];
5043 int error;
5044
5045 error = netdev_get_etheraddr(port->netdev, ea);
5046 if (!error) {
5047 return eth_addr_to_uint64(ea);
5048 }
5049 VLOG_WARN("could not get MAC address for %s (%s)",
5050 netdev_get_name(port->netdev), strerror(error));
5051 }
5052 return ofproto->fallback_dpid;
5053 }
5054
5055 static uint64_t
5056 pick_fallback_dpid(void)
5057 {
5058 uint8_t ea[ETH_ADDR_LEN];
5059 eth_addr_nicira_random(ea);
5060 return eth_addr_to_uint64(ea);
5061 }
5062 \f
5063 static void
5064 ofproto_unixctl_list(struct unixctl_conn *conn, const char *arg OVS_UNUSED,
5065 void *aux OVS_UNUSED)
5066 {
5067 const struct shash_node *node;
5068 struct ds results;
5069
5070 ds_init(&results);
5071 SHASH_FOR_EACH (node, &all_ofprotos) {
5072 ds_put_format(&results, "%s\n", node->name);
5073 }
5074 unixctl_command_reply(conn, 200, ds_cstr(&results));
5075 ds_destroy(&results);
5076 }
5077
5078 struct ofproto_trace {
5079 struct action_xlate_ctx ctx;
5080 struct flow flow;
5081 struct ds *result;
5082 };
5083
5084 static void
5085 trace_format_rule(struct ds *result, int level, const struct rule *rule)
5086 {
5087 ds_put_char_multiple(result, '\t', level);
5088 if (!rule) {
5089 ds_put_cstr(result, "No match\n");
5090 return;
5091 }
5092
5093 ds_put_format(result, "Rule: cookie=%#"PRIx64" ",
5094 ntohll(rule->flow_cookie));
5095 cls_rule_format(&rule->cr, result);
5096 ds_put_char(result, '\n');
5097
5098 ds_put_char_multiple(result, '\t', level);
5099 ds_put_cstr(result, "OpenFlow ");
5100 ofp_print_actions(result, (const struct ofp_action_header *) rule->actions,
5101 rule->n_actions * sizeof *rule->actions);
5102 ds_put_char(result, '\n');
5103 }
5104
5105 static void
5106 trace_format_flow(struct ds *result, int level, const char *title,
5107 struct ofproto_trace *trace)
5108 {
5109 ds_put_char_multiple(result, '\t', level);
5110 ds_put_format(result, "%s: ", title);
5111 if (flow_equal(&trace->ctx.flow, &trace->flow)) {
5112 ds_put_cstr(result, "unchanged");
5113 } else {
5114 flow_format(result, &trace->ctx.flow);
5115 trace->flow = trace->ctx.flow;
5116 }
5117 ds_put_char(result, '\n');
5118 }
5119
5120 static void
5121 trace_resubmit(struct action_xlate_ctx *ctx, struct rule *rule)
5122 {
5123 struct ofproto_trace *trace = CONTAINER_OF(ctx, struct ofproto_trace, ctx);
5124 struct ds *result = trace->result;
5125
5126 ds_put_char(result, '\n');
5127 trace_format_flow(result, ctx->recurse + 1, "Resubmitted flow", trace);
5128 trace_format_rule(result, ctx->recurse + 1, rule);
5129 }
5130
5131 static void
5132 ofproto_unixctl_trace(struct unixctl_conn *conn, const char *args_,
5133 void *aux OVS_UNUSED)
5134 {
5135 char *dpname, *in_port_s, *tun_id_s, *packet_s;
5136 char *args = xstrdup(args_);
5137 char *save_ptr = NULL;
5138 struct ofproto *ofproto;
5139 struct ofpbuf packet;
5140 struct rule *rule;
5141 struct ds result;
5142 struct flow flow;
5143 uint16_t in_port;
5144 ovs_be64 tun_id;
5145 char *s;
5146
5147 ofpbuf_init(&packet, strlen(args) / 2);
5148 ds_init(&result);
5149
5150 dpname = strtok_r(args, " ", &save_ptr);
5151 tun_id_s = strtok_r(NULL, " ", &save_ptr);
5152 in_port_s = strtok_r(NULL, " ", &save_ptr);
5153 packet_s = strtok_r(NULL, "", &save_ptr); /* Get entire rest of line. */
5154 if (!dpname || !in_port_s || !packet_s) {
5155 unixctl_command_reply(conn, 501, "Bad command syntax");
5156 goto exit;
5157 }
5158
5159 ofproto = shash_find_data(&all_ofprotos, dpname);
5160 if (!ofproto) {
5161 unixctl_command_reply(conn, 501, "Unknown ofproto (use ofproto/list "
5162 "for help)");
5163 goto exit;
5164 }
5165
5166 tun_id = htonll(strtoull(tun_id_s, NULL, 10));
5167 in_port = ofp_port_to_odp_port(atoi(in_port_s));
5168
5169 packet_s = ofpbuf_put_hex(&packet, packet_s, NULL);
5170 packet_s += strspn(packet_s, " ");
5171 if (*packet_s != '\0') {
5172 unixctl_command_reply(conn, 501, "Trailing garbage in command");
5173 goto exit;
5174 }
5175 if (packet.size < ETH_HEADER_LEN) {
5176 unixctl_command_reply(conn, 501, "Packet data too short for Ethernet");
5177 goto exit;
5178 }
5179
5180 ds_put_cstr(&result, "Packet: ");
5181 s = ofp_packet_to_string(packet.data, packet.size, packet.size);
5182 ds_put_cstr(&result, s);
5183 free(s);
5184
5185 flow_extract(&packet, tun_id, in_port, &flow);
5186 ds_put_cstr(&result, "Flow: ");
5187 flow_format(&result, &flow);
5188 ds_put_char(&result, '\n');
5189
5190 rule = rule_lookup(ofproto, &flow);
5191 trace_format_rule(&result, 0, rule);
5192 if (rule) {
5193 struct ofproto_trace trace;
5194 struct ofpbuf *odp_actions;
5195
5196 trace.result = &result;
5197 trace.flow = flow;
5198 action_xlate_ctx_init(&trace.ctx, ofproto, &flow, &packet);
5199 trace.ctx.resubmit_hook = trace_resubmit;
5200 odp_actions = xlate_actions(&trace.ctx,
5201 rule->actions, rule->n_actions);
5202
5203 ds_put_char(&result, '\n');
5204 trace_format_flow(&result, 0, "Final flow", &trace);
5205 ds_put_cstr(&result, "Datapath actions: ");
5206 format_odp_actions(&result, odp_actions->data, odp_actions->size);
5207 ofpbuf_delete(odp_actions);
5208 }
5209
5210 unixctl_command_reply(conn, 200, ds_cstr(&result));
5211
5212 exit:
5213 ds_destroy(&result);
5214 ofpbuf_uninit(&packet);
5215 free(args);
5216 }
5217
5218 static void
5219 ofproto_unixctl_init(void)
5220 {
5221 static bool registered;
5222 if (registered) {
5223 return;
5224 }
5225 registered = true;
5226
5227 unixctl_command_register("ofproto/list", ofproto_unixctl_list, NULL);
5228 unixctl_command_register("ofproto/trace", ofproto_unixctl_trace, NULL);
5229 }
5230 \f
5231 static bool
5232 default_normal_ofhook_cb(const struct flow *flow, const struct ofpbuf *packet,
5233 struct ofpbuf *odp_actions, tag_type *tags,
5234 uint16_t *nf_output_iface, void *ofproto_)
5235 {
5236 struct ofproto *ofproto = ofproto_;
5237 int out_port;
5238
5239 /* Drop frames for reserved multicast addresses. */
5240 if (eth_addr_is_reserved(flow->dl_dst)) {
5241 return true;
5242 }
5243
5244 /* Learn source MAC (but don't try to learn from revalidation). */
5245 if (packet != NULL) {
5246 tag_type rev_tag = mac_learning_learn(ofproto->ml, flow->dl_src,
5247 0, flow->in_port,
5248 GRAT_ARP_LOCK_NONE);
5249 if (rev_tag) {
5250 /* The log messages here could actually be useful in debugging,
5251 * so keep the rate limit relatively high. */
5252 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(30, 300);
5253 VLOG_DBG_RL(&rl, "learned that "ETH_ADDR_FMT" is on port %"PRIu16,
5254 ETH_ADDR_ARGS(flow->dl_src), flow->in_port);
5255 ofproto_revalidate(ofproto, rev_tag);
5256 }
5257 }
5258
5259 /* Determine output port. */
5260 out_port = mac_learning_lookup_tag(ofproto->ml, flow->dl_dst, 0, tags,
5261 NULL);
5262 if (out_port < 0) {
5263 flood_packets(ofproto, flow->in_port, OFPPC_NO_FLOOD,
5264 nf_output_iface, odp_actions);
5265 } else if (out_port != flow->in_port) {
5266 nl_msg_put_u32(odp_actions, ODP_ACTION_ATTR_OUTPUT, out_port);
5267 *nf_output_iface = out_port;
5268 } else {
5269 /* Drop. */
5270 }
5271
5272 return true;
5273 }
5274
5275 static const struct ofhooks default_ofhooks = {
5276 default_normal_ofhook_cb,
5277 NULL,
5278 NULL,
5279 NULL
5280 };