]> git.proxmox.com Git - ovs.git/blob - ofproto/ofproto.c
6fd88339768e575862e94b5d6abb0fe53ca8e5a3
[ovs.git] / ofproto / ofproto.c
1 /*
2 * Copyright (c) 2009, 2010, 2011 Nicira Networks.
3 * Copyright (c) 2010 Jean Tourrilhes - HP-Labs.
4 *
5 * Licensed under the Apache License, Version 2.0 (the "License");
6 * you may not use this file except in compliance with the License.
7 * You may obtain a copy of the License at:
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17
18 #include <config.h>
19 #include "ofproto.h"
20 #include <errno.h>
21 #include <inttypes.h>
22 #include <sys/socket.h>
23 #include <net/if.h>
24 #include <netinet/in.h>
25 #include <stdbool.h>
26 #include <stdlib.h>
27 #include "byte-order.h"
28 #include "cfm.h"
29 #include "classifier.h"
30 #include "coverage.h"
31 #include "dpif.h"
32 #include "dynamic-string.h"
33 #include "fail-open.h"
34 #include "hash.h"
35 #include "hmap.h"
36 #include "in-band.h"
37 #include "mac-learning.h"
38 #include "multipath.h"
39 #include "netdev.h"
40 #include "netflow.h"
41 #include "netlink.h"
42 #include "nx-match.h"
43 #include "odp-util.h"
44 #include "ofp-print.h"
45 #include "ofp-util.h"
46 #include "ofproto-sflow.h"
47 #include "ofpbuf.h"
48 #include "openflow/nicira-ext.h"
49 #include "openflow/openflow.h"
50 #include "openvswitch/datapath-protocol.h"
51 #include "packets.h"
52 #include "pinsched.h"
53 #include "pktbuf.h"
54 #include "poll-loop.h"
55 #include "rconn.h"
56 #include "shash.h"
57 #include "stream-ssl.h"
58 #include "svec.h"
59 #include "tag.h"
60 #include "timeval.h"
61 #include "unaligned.h"
62 #include "unixctl.h"
63 #include "vconn.h"
64 #include "vlog.h"
65
66 VLOG_DEFINE_THIS_MODULE(ofproto);
67
68 COVERAGE_DEFINE(facet_changed_rule);
69 COVERAGE_DEFINE(facet_revalidate);
70 COVERAGE_DEFINE(odp_overflow);
71 COVERAGE_DEFINE(ofproto_agg_request);
72 COVERAGE_DEFINE(ofproto_costly_flags);
73 COVERAGE_DEFINE(ofproto_ctlr_action);
74 COVERAGE_DEFINE(ofproto_del_rule);
75 COVERAGE_DEFINE(ofproto_error);
76 COVERAGE_DEFINE(ofproto_expiration);
77 COVERAGE_DEFINE(ofproto_expired);
78 COVERAGE_DEFINE(ofproto_flows_req);
79 COVERAGE_DEFINE(ofproto_flush);
80 COVERAGE_DEFINE(ofproto_invalidated);
81 COVERAGE_DEFINE(ofproto_no_packet_in);
82 COVERAGE_DEFINE(ofproto_ofconn_stuck);
83 COVERAGE_DEFINE(ofproto_ofp2odp);
84 COVERAGE_DEFINE(ofproto_packet_in);
85 COVERAGE_DEFINE(ofproto_packet_out);
86 COVERAGE_DEFINE(ofproto_queue_req);
87 COVERAGE_DEFINE(ofproto_recv_openflow);
88 COVERAGE_DEFINE(ofproto_reinit_ports);
89 COVERAGE_DEFINE(ofproto_unexpected_rule);
90 COVERAGE_DEFINE(ofproto_uninstallable);
91 COVERAGE_DEFINE(ofproto_update_port);
92
93 /* Maximum depth of flow table recursion (due to NXAST_RESUBMIT actions) in a
94 * flow translation. */
95 #define MAX_RESUBMIT_RECURSION 16
96
97 struct rule;
98
99 struct ofport {
100 struct hmap_node hmap_node; /* In struct ofproto's "ports" hmap. */
101 struct netdev *netdev;
102 struct ofp_phy_port opp; /* In host byte order. */
103 uint16_t odp_port;
104 struct cfm *cfm; /* Connectivity Fault Management, if any. */
105 };
106
107 static void ofport_free(struct ofport *);
108 static void ofport_run(struct ofproto *, struct ofport *);
109 static void ofport_wait(struct ofport *);
110 static void hton_ofp_phy_port(struct ofp_phy_port *);
111
112 struct action_xlate_ctx {
113 /* action_xlate_ctx_init() initializes these members. */
114
115 /* The ofproto. */
116 struct ofproto *ofproto;
117
118 /* Flow to which the OpenFlow actions apply. xlate_actions() will modify
119 * this flow when actions change header fields. */
120 struct flow flow;
121
122 /* The packet corresponding to 'flow', or a null pointer if we are
123 * revalidating without a packet to refer to. */
124 const struct ofpbuf *packet;
125
126 /* If nonnull, called just before executing a resubmit action.
127 *
128 * This is normally null so the client has to set it manually after
129 * calling action_xlate_ctx_init(). */
130 void (*resubmit_hook)(struct action_xlate_ctx *, struct rule *);
131
132 /* If true, the speciality of 'flow' should be checked before executing
133 * its actions. If special_cb returns false on 'flow' rendered
134 * uninstallable and no actions will be executed. */
135 bool check_special;
136
137 /* xlate_actions() initializes and uses these members. The client might want
138 * to look at them after it returns. */
139
140 struct ofpbuf *odp_actions; /* Datapath actions. */
141 tag_type tags; /* Tags associated with OFPP_NORMAL actions. */
142 bool may_set_up_flow; /* True ordinarily; false if the actions must
143 * be reassessed for every packet. */
144 uint16_t nf_output_iface; /* Output interface index for NetFlow. */
145
146 /* xlate_actions() initializes and uses these members, but the client has no
147 * reason to look at them. */
148
149 int recurse; /* Recursion level, via xlate_table_action. */
150 int last_pop_priority; /* Offset in 'odp_actions' just past most
151 * recent ODP_ACTION_ATTR_SET_PRIORITY. */
152 };
153
154 static void action_xlate_ctx_init(struct action_xlate_ctx *,
155 struct ofproto *, const struct flow *,
156 const struct ofpbuf *);
157 static struct ofpbuf *xlate_actions(struct action_xlate_ctx *,
158 const union ofp_action *in, size_t n_in);
159
160 /* An OpenFlow flow. */
161 struct rule {
162 long long int used; /* Time last used; time created if not used. */
163 long long int created; /* Creation time. */
164
165 /* These statistics:
166 *
167 * - Do include packets and bytes from facets that have been deleted or
168 * whose own statistics have been folded into the rule.
169 *
170 * - Do include packets and bytes sent "by hand" that were accounted to
171 * the rule without any facet being involved (this is a rare corner
172 * case in rule_execute()).
173 *
174 * - Do not include packet or bytes that can be obtained from any facet's
175 * packet_count or byte_count member or that can be obtained from the
176 * datapath by, e.g., dpif_flow_get() for any facet.
177 */
178 uint64_t packet_count; /* Number of packets received. */
179 uint64_t byte_count; /* Number of bytes received. */
180
181 ovs_be64 flow_cookie; /* Controller-issued identifier. */
182
183 struct cls_rule cr; /* In owning ofproto's classifier. */
184 uint16_t idle_timeout; /* In seconds from time of last use. */
185 uint16_t hard_timeout; /* In seconds from time of creation. */
186 bool send_flow_removed; /* Send a flow removed message? */
187 int n_actions; /* Number of elements in actions[]. */
188 union ofp_action *actions; /* OpenFlow actions. */
189 struct list facets; /* List of "struct facet"s. */
190 };
191
192 static struct rule *rule_from_cls_rule(const struct cls_rule *);
193 static bool rule_is_hidden(const struct rule *);
194
195 static struct rule *rule_create(const struct cls_rule *,
196 const union ofp_action *, size_t n_actions,
197 uint16_t idle_timeout, uint16_t hard_timeout,
198 ovs_be64 flow_cookie, bool send_flow_removed);
199 static void rule_destroy(struct ofproto *, struct rule *);
200 static void rule_free(struct rule *);
201
202 static struct rule *rule_lookup(struct ofproto *, const struct flow *);
203 static void rule_insert(struct ofproto *, struct rule *);
204 static void rule_remove(struct ofproto *, struct rule *);
205
206 static void rule_send_removed(struct ofproto *, struct rule *, uint8_t reason);
207 static void rule_get_stats(const struct rule *, uint64_t *packets,
208 uint64_t *bytes);
209
210 /* An exact-match instantiation of an OpenFlow flow. */
211 struct facet {
212 long long int used; /* Time last used; time created if not used. */
213
214 /* These statistics:
215 *
216 * - Do include packets and bytes sent "by hand", e.g. with
217 * dpif_execute().
218 *
219 * - Do include packets and bytes that were obtained from the datapath
220 * when a flow was deleted (e.g. dpif_flow_del()) or when its
221 * statistics were reset (e.g. dpif_flow_put() with
222 * DPIF_FP_ZERO_STATS).
223 *
224 * - Do not include any packets or bytes that can currently be obtained
225 * from the datapath by, e.g., dpif_flow_get().
226 */
227 uint64_t packet_count; /* Number of packets received. */
228 uint64_t byte_count; /* Number of bytes received. */
229
230 uint64_t dp_packet_count; /* Last known packet count in the datapath. */
231 uint64_t dp_byte_count; /* Last known byte count in the datapath. */
232
233 uint64_t rs_packet_count; /* Packets pushed to resubmit children. */
234 uint64_t rs_byte_count; /* Bytes pushed to resubmit children. */
235 long long int rs_used; /* Used time pushed to resubmit children. */
236
237 /* Number of bytes passed to account_cb. This may include bytes that can
238 * currently obtained from the datapath (thus, it can be greater than
239 * byte_count). */
240 uint64_t accounted_bytes;
241
242 struct hmap_node hmap_node; /* In owning ofproto's 'facets' hmap. */
243 struct list list_node; /* In owning rule's 'facets' list. */
244 struct rule *rule; /* Owning rule. */
245 struct flow flow; /* Exact-match flow. */
246 bool installed; /* Installed in datapath? */
247 bool may_install; /* True ordinarily; false if actions must
248 * be reassessed for every packet. */
249 size_t actions_len; /* Number of bytes in actions[]. */
250 struct nlattr *actions; /* Datapath actions. */
251 tag_type tags; /* Tags (set only by hooks). */
252 struct netflow_flow nf_flow; /* Per-flow NetFlow tracking data. */
253 };
254
255 static struct facet *facet_create(struct ofproto *, struct rule *,
256 const struct flow *,
257 const struct ofpbuf *packet);
258 static void facet_remove(struct ofproto *, struct facet *);
259 static void facet_free(struct facet *);
260
261 static struct facet *facet_lookup_valid(struct ofproto *, const struct flow *);
262 static bool facet_revalidate(struct ofproto *, struct facet *);
263
264 static void facet_install(struct ofproto *, struct facet *, bool zero_stats);
265 static void facet_uninstall(struct ofproto *, struct facet *);
266 static void facet_flush_stats(struct ofproto *, struct facet *);
267
268 static void facet_make_actions(struct ofproto *, struct facet *,
269 const struct ofpbuf *packet);
270 static void facet_update_stats(struct ofproto *, struct facet *,
271 const struct dpif_flow_stats *);
272 static void facet_push_stats(struct ofproto *, struct facet *);
273
274 /* ofproto supports two kinds of OpenFlow connections:
275 *
276 * - "Primary" connections to ordinary OpenFlow controllers. ofproto
277 * maintains persistent connections to these controllers and by default
278 * sends them asynchronous messages such as packet-ins.
279 *
280 * - "Service" connections, e.g. from ovs-ofctl. When these connections
281 * drop, it is the other side's responsibility to reconnect them if
282 * necessary. ofproto does not send them asynchronous messages by default.
283 *
284 * Currently, active (tcp, ssl, unix) connections are always "primary"
285 * connections and passive (ptcp, pssl, punix) connections are always "service"
286 * connections. There is no inherent reason for this, but it reflects the
287 * common case.
288 */
289 enum ofconn_type {
290 OFCONN_PRIMARY, /* An ordinary OpenFlow controller. */
291 OFCONN_SERVICE /* A service connection, e.g. "ovs-ofctl". */
292 };
293
294 /* A listener for incoming OpenFlow "service" connections. */
295 struct ofservice {
296 struct hmap_node node; /* In struct ofproto's "services" hmap. */
297 struct pvconn *pvconn; /* OpenFlow connection listener. */
298
299 /* These are not used by ofservice directly. They are settings for
300 * accepted "struct ofconn"s from the pvconn. */
301 int probe_interval; /* Max idle time before probing, in seconds. */
302 int rate_limit; /* Max packet-in rate in packets per second. */
303 int burst_limit; /* Limit on accumulating packet credits. */
304 };
305
306 static struct ofservice *ofservice_lookup(struct ofproto *,
307 const char *target);
308 static int ofservice_create(struct ofproto *,
309 const struct ofproto_controller *);
310 static void ofservice_reconfigure(struct ofservice *,
311 const struct ofproto_controller *);
312 static void ofservice_destroy(struct ofproto *, struct ofservice *);
313
314 /* An OpenFlow connection. */
315 struct ofconn {
316 struct ofproto *ofproto; /* The ofproto that owns this connection. */
317 struct list node; /* In struct ofproto's "all_conns" list. */
318 struct rconn *rconn; /* OpenFlow connection. */
319 enum ofconn_type type; /* Type. */
320 enum nx_flow_format flow_format; /* Currently selected flow format. */
321
322 /* OFPT_PACKET_IN related data. */
323 struct rconn_packet_counter *packet_in_counter; /* # queued on 'rconn'. */
324 #define N_SCHEDULERS 2
325 struct pinsched *schedulers[N_SCHEDULERS];
326 struct pktbuf *pktbuf; /* OpenFlow packet buffers. */
327 int miss_send_len; /* Bytes to send of buffered packets. */
328
329 /* Number of OpenFlow messages queued on 'rconn' as replies to OpenFlow
330 * requests, and the maximum number before we stop reading OpenFlow
331 * requests. */
332 #define OFCONN_REPLY_MAX 100
333 struct rconn_packet_counter *reply_counter;
334
335 /* type == OFCONN_PRIMARY only. */
336 enum nx_role role; /* Role. */
337 struct hmap_node hmap_node; /* In struct ofproto's "controllers" map. */
338 enum ofproto_band band; /* In-band or out-of-band? */
339 };
340
341
342 static struct ofconn *ofconn_create(struct ofproto *, struct rconn *,
343 enum ofconn_type);
344 static void ofconn_destroy(struct ofconn *);
345 static void ofconn_run(struct ofconn *);
346 static void ofconn_wait(struct ofconn *);
347 static bool ofconn_receives_async_msgs(const struct ofconn *);
348 static char *ofconn_make_name(const struct ofproto *, const char *target);
349 static void ofconn_set_rate_limit(struct ofconn *, int rate, int burst);
350
351 static void queue_tx(struct ofpbuf *msg, const struct ofconn *ofconn,
352 struct rconn_packet_counter *counter);
353
354 static void send_packet_in(struct ofproto *, struct dpif_upcall *,
355 const struct flow *, bool clone);
356 static void do_send_packet_in(struct ofpbuf *ofp_packet_in, void *ofconn);
357
358 struct ofproto {
359 /* Settings. */
360 uint64_t datapath_id; /* Datapath ID. */
361 uint64_t fallback_dpid; /* Datapath ID if no better choice found. */
362 char *mfr_desc; /* Manufacturer. */
363 char *hw_desc; /* Hardware. */
364 char *sw_desc; /* Software version. */
365 char *serial_desc; /* Serial number. */
366 char *dp_desc; /* Datapath description. */
367
368 /* Datapath. */
369 struct dpif *dpif;
370 struct netdev_monitor *netdev_monitor;
371 struct hmap ports; /* Contains "struct ofport"s. */
372 struct shash port_by_name;
373 uint32_t max_ports;
374
375 /* Configuration. */
376 struct fail_open *fail_open;
377 struct netflow *netflow;
378 struct ofproto_sflow *sflow;
379
380 /* In-band control. */
381 struct in_band *in_band;
382 long long int next_in_band_update;
383 struct sockaddr_in *extra_in_band_remotes;
384 size_t n_extra_remotes;
385 int in_band_queue;
386
387 /* Flow table. */
388 struct classifier cls;
389 long long int next_expiration;
390
391 /* Facets. */
392 struct hmap facets;
393 bool need_revalidate;
394 struct tag_set revalidate_set;
395
396 /* OpenFlow connections. */
397 struct hmap controllers; /* Controller "struct ofconn"s. */
398 struct list all_conns; /* Contains "struct ofconn"s. */
399 enum ofproto_fail_mode fail_mode;
400
401 /* OpenFlow listeners. */
402 struct hmap services; /* Contains "struct ofservice"s. */
403 struct pvconn **snoops;
404 size_t n_snoops;
405
406 /* Hooks for ovs-vswitchd. */
407 const struct ofhooks *ofhooks;
408 void *aux;
409
410 /* Used by default ofhooks. */
411 struct mac_learning *ml;
412 };
413
414 /* Map from dpif name to struct ofproto, for use by unixctl commands. */
415 static struct shash all_ofprotos = SHASH_INITIALIZER(&all_ofprotos);
416
417 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
418
419 static const struct ofhooks default_ofhooks;
420
421 static uint64_t pick_datapath_id(const struct ofproto *);
422 static uint64_t pick_fallback_dpid(void);
423
424 static int ofproto_expire(struct ofproto *);
425 static void flow_push_stats(struct ofproto *, const struct rule *,
426 struct flow *, uint64_t packets, uint64_t bytes,
427 long long int used);
428
429 static void handle_upcall(struct ofproto *, struct dpif_upcall *);
430
431 static void handle_openflow(struct ofconn *, struct ofpbuf *);
432
433 static struct ofport *get_port(const struct ofproto *, uint16_t odp_port);
434 static void update_port(struct ofproto *, const char *devname);
435 static int init_ports(struct ofproto *);
436 static void reinit_ports(struct ofproto *);
437
438 static void ofproto_unixctl_init(void);
439
440 int
441 ofproto_create(const char *datapath, const char *datapath_type,
442 const struct ofhooks *ofhooks, void *aux,
443 struct ofproto **ofprotop)
444 {
445 struct ofproto *p;
446 struct dpif *dpif;
447 int error;
448
449 *ofprotop = NULL;
450
451 ofproto_unixctl_init();
452
453 /* Connect to datapath and start listening for messages. */
454 error = dpif_open(datapath, datapath_type, &dpif);
455 if (error) {
456 VLOG_ERR("failed to open datapath %s: %s", datapath, strerror(error));
457 return error;
458 }
459 error = dpif_recv_set_mask(dpif,
460 ((1u << DPIF_UC_MISS) |
461 (1u << DPIF_UC_ACTION) |
462 (1u << DPIF_UC_SAMPLE)));
463 if (error) {
464 VLOG_ERR("failed to listen on datapath %s: %s",
465 datapath, strerror(error));
466 dpif_close(dpif);
467 return error;
468 }
469 dpif_flow_flush(dpif);
470 dpif_recv_purge(dpif);
471
472 /* Initialize settings. */
473 p = xzalloc(sizeof *p);
474 p->fallback_dpid = pick_fallback_dpid();
475 p->datapath_id = p->fallback_dpid;
476 p->mfr_desc = xstrdup(DEFAULT_MFR_DESC);
477 p->hw_desc = xstrdup(DEFAULT_HW_DESC);
478 p->sw_desc = xstrdup(DEFAULT_SW_DESC);
479 p->serial_desc = xstrdup(DEFAULT_SERIAL_DESC);
480 p->dp_desc = xstrdup(DEFAULT_DP_DESC);
481
482 /* Initialize datapath. */
483 p->dpif = dpif;
484 p->netdev_monitor = netdev_monitor_create();
485 hmap_init(&p->ports);
486 shash_init(&p->port_by_name);
487 p->max_ports = dpif_get_max_ports(dpif);
488
489 /* Initialize submodules. */
490 p->fail_open = NULL;
491 p->netflow = NULL;
492 p->sflow = NULL;
493
494 /* Initialize in-band control. */
495 p->in_band = NULL;
496 p->in_band_queue = -1;
497
498 /* Initialize flow table. */
499 classifier_init(&p->cls);
500 p->next_expiration = time_msec() + 1000;
501
502 /* Initialize facet table. */
503 hmap_init(&p->facets);
504 p->need_revalidate = false;
505 tag_set_init(&p->revalidate_set);
506
507 /* Initialize OpenFlow connections. */
508 list_init(&p->all_conns);
509 hmap_init(&p->controllers);
510 hmap_init(&p->services);
511 p->snoops = NULL;
512 p->n_snoops = 0;
513
514 /* Initialize hooks. */
515 if (ofhooks) {
516 p->ofhooks = ofhooks;
517 p->aux = aux;
518 p->ml = NULL;
519 } else {
520 p->ofhooks = &default_ofhooks;
521 p->aux = p;
522 p->ml = mac_learning_create();
523 }
524
525 /* Pick final datapath ID. */
526 p->datapath_id = pick_datapath_id(p);
527 VLOG_INFO("using datapath ID %016"PRIx64, p->datapath_id);
528
529 shash_add_once(&all_ofprotos, dpif_name(p->dpif), p);
530
531 *ofprotop = p;
532 return 0;
533 }
534
535 void
536 ofproto_set_datapath_id(struct ofproto *p, uint64_t datapath_id)
537 {
538 uint64_t old_dpid = p->datapath_id;
539 p->datapath_id = datapath_id ? datapath_id : pick_datapath_id(p);
540 if (p->datapath_id != old_dpid) {
541 VLOG_INFO("datapath ID changed to %016"PRIx64, p->datapath_id);
542
543 /* Force all active connections to reconnect, since there is no way to
544 * notify a controller that the datapath ID has changed. */
545 ofproto_reconnect_controllers(p);
546 }
547 }
548
549 /* Creates a new controller in 'ofproto'. Some of the settings are initially
550 * drawn from 'c', but update_controller() needs to be called later to finish
551 * the new ofconn's configuration. */
552 static void
553 add_controller(struct ofproto *ofproto, const struct ofproto_controller *c)
554 {
555 char *name = ofconn_make_name(ofproto, c->target);
556 struct ofconn *ofconn;
557
558 ofconn = ofconn_create(ofproto, rconn_create(5, 8), OFCONN_PRIMARY);
559 ofconn->pktbuf = pktbuf_create();
560 ofconn->miss_send_len = OFP_DEFAULT_MISS_SEND_LEN;
561 rconn_connect(ofconn->rconn, c->target, name);
562 hmap_insert(&ofproto->controllers, &ofconn->hmap_node,
563 hash_string(c->target, 0));
564
565 free(name);
566 }
567
568 /* Reconfigures 'ofconn' to match 'c'. This function cannot update an ofconn's
569 * target (this is done by creating new ofconns and deleting old ones), but it
570 * can update the rest of an ofconn's settings. */
571 static void
572 update_controller(struct ofconn *ofconn, const struct ofproto_controller *c)
573 {
574 int probe_interval;
575
576 ofconn->band = c->band;
577
578 rconn_set_max_backoff(ofconn->rconn, c->max_backoff);
579
580 probe_interval = c->probe_interval ? MAX(c->probe_interval, 5) : 0;
581 rconn_set_probe_interval(ofconn->rconn, probe_interval);
582
583 ofconn_set_rate_limit(ofconn, c->rate_limit, c->burst_limit);
584 }
585
586 static const char *
587 ofconn_get_target(const struct ofconn *ofconn)
588 {
589 return rconn_get_target(ofconn->rconn);
590 }
591
592 static struct ofconn *
593 find_controller_by_target(struct ofproto *ofproto, const char *target)
594 {
595 struct ofconn *ofconn;
596
597 HMAP_FOR_EACH_WITH_HASH (ofconn, hmap_node,
598 hash_string(target, 0), &ofproto->controllers) {
599 if (!strcmp(ofconn_get_target(ofconn), target)) {
600 return ofconn;
601 }
602 }
603 return NULL;
604 }
605
606 static void
607 update_in_band_remotes(struct ofproto *ofproto)
608 {
609 const struct ofconn *ofconn;
610 struct sockaddr_in *addrs;
611 size_t max_addrs, n_addrs;
612 size_t i;
613
614 /* Allocate enough memory for as many remotes as we could possibly have. */
615 max_addrs = ofproto->n_extra_remotes + hmap_count(&ofproto->controllers);
616 addrs = xmalloc(max_addrs * sizeof *addrs);
617 n_addrs = 0;
618
619 /* Add all the remotes. */
620 HMAP_FOR_EACH (ofconn, hmap_node, &ofproto->controllers) {
621 struct sockaddr_in *sin = &addrs[n_addrs];
622
623 if (ofconn->band == OFPROTO_OUT_OF_BAND) {
624 continue;
625 }
626
627 sin->sin_addr.s_addr = rconn_get_remote_ip(ofconn->rconn);
628 if (sin->sin_addr.s_addr) {
629 sin->sin_port = rconn_get_remote_port(ofconn->rconn);
630 n_addrs++;
631 }
632 }
633 for (i = 0; i < ofproto->n_extra_remotes; i++) {
634 addrs[n_addrs++] = ofproto->extra_in_band_remotes[i];
635 }
636
637 /* Create or update or destroy in-band. */
638 if (n_addrs) {
639 if (!ofproto->in_band) {
640 in_band_create(ofproto, ofproto->dpif, &ofproto->in_band);
641 }
642 if (ofproto->in_band) {
643 in_band_set_remotes(ofproto->in_band, addrs, n_addrs);
644 }
645 in_band_set_queue(ofproto->in_band, ofproto->in_band_queue);
646 ofproto->next_in_band_update = time_msec() + 1000;
647 } else {
648 in_band_destroy(ofproto->in_band);
649 ofproto->in_band = NULL;
650 }
651
652 /* Clean up. */
653 free(addrs);
654 }
655
656 static void
657 update_fail_open(struct ofproto *p)
658 {
659 struct ofconn *ofconn;
660
661 if (!hmap_is_empty(&p->controllers)
662 && p->fail_mode == OFPROTO_FAIL_STANDALONE) {
663 struct rconn **rconns;
664 size_t n;
665
666 if (!p->fail_open) {
667 p->fail_open = fail_open_create(p);
668 }
669
670 n = 0;
671 rconns = xmalloc(hmap_count(&p->controllers) * sizeof *rconns);
672 HMAP_FOR_EACH (ofconn, hmap_node, &p->controllers) {
673 rconns[n++] = ofconn->rconn;
674 }
675
676 fail_open_set_controllers(p->fail_open, rconns, n);
677 /* p->fail_open takes ownership of 'rconns'. */
678 } else {
679 fail_open_destroy(p->fail_open);
680 p->fail_open = NULL;
681 }
682 }
683
684 void
685 ofproto_set_controllers(struct ofproto *p,
686 const struct ofproto_controller *controllers,
687 size_t n_controllers)
688 {
689 struct shash new_controllers;
690 struct ofconn *ofconn, *next_ofconn;
691 struct ofservice *ofservice, *next_ofservice;
692 size_t i;
693
694 /* Create newly configured controllers and services.
695 * Create a name to ofproto_controller mapping in 'new_controllers'. */
696 shash_init(&new_controllers);
697 for (i = 0; i < n_controllers; i++) {
698 const struct ofproto_controller *c = &controllers[i];
699
700 if (!vconn_verify_name(c->target)) {
701 if (!find_controller_by_target(p, c->target)) {
702 add_controller(p, c);
703 }
704 } else if (!pvconn_verify_name(c->target)) {
705 if (!ofservice_lookup(p, c->target) && ofservice_create(p, c)) {
706 continue;
707 }
708 } else {
709 VLOG_WARN_RL(&rl, "%s: unsupported controller \"%s\"",
710 dpif_name(p->dpif), c->target);
711 continue;
712 }
713
714 shash_add_once(&new_controllers, c->target, &controllers[i]);
715 }
716
717 /* Delete controllers that are no longer configured.
718 * Update configuration of all now-existing controllers. */
719 HMAP_FOR_EACH_SAFE (ofconn, next_ofconn, hmap_node, &p->controllers) {
720 struct ofproto_controller *c;
721
722 c = shash_find_data(&new_controllers, ofconn_get_target(ofconn));
723 if (!c) {
724 ofconn_destroy(ofconn);
725 } else {
726 update_controller(ofconn, c);
727 }
728 }
729
730 /* Delete services that are no longer configured.
731 * Update configuration of all now-existing services. */
732 HMAP_FOR_EACH_SAFE (ofservice, next_ofservice, node, &p->services) {
733 struct ofproto_controller *c;
734
735 c = shash_find_data(&new_controllers,
736 pvconn_get_name(ofservice->pvconn));
737 if (!c) {
738 ofservice_destroy(p, ofservice);
739 } else {
740 ofservice_reconfigure(ofservice, c);
741 }
742 }
743
744 shash_destroy(&new_controllers);
745
746 update_in_band_remotes(p);
747 update_fail_open(p);
748 }
749
750 void
751 ofproto_set_fail_mode(struct ofproto *p, enum ofproto_fail_mode fail_mode)
752 {
753 p->fail_mode = fail_mode;
754 update_fail_open(p);
755 }
756
757 /* Drops the connections between 'ofproto' and all of its controllers, forcing
758 * them to reconnect. */
759 void
760 ofproto_reconnect_controllers(struct ofproto *ofproto)
761 {
762 struct ofconn *ofconn;
763
764 LIST_FOR_EACH (ofconn, node, &ofproto->all_conns) {
765 rconn_reconnect(ofconn->rconn);
766 }
767 }
768
769 static bool
770 any_extras_changed(const struct ofproto *ofproto,
771 const struct sockaddr_in *extras, size_t n)
772 {
773 size_t i;
774
775 if (n != ofproto->n_extra_remotes) {
776 return true;
777 }
778
779 for (i = 0; i < n; i++) {
780 const struct sockaddr_in *old = &ofproto->extra_in_band_remotes[i];
781 const struct sockaddr_in *new = &extras[i];
782
783 if (old->sin_addr.s_addr != new->sin_addr.s_addr ||
784 old->sin_port != new->sin_port) {
785 return true;
786 }
787 }
788
789 return false;
790 }
791
792 /* Sets the 'n' TCP port addresses in 'extras' as ones to which 'ofproto''s
793 * in-band control should guarantee access, in the same way that in-band
794 * control guarantees access to OpenFlow controllers. */
795 void
796 ofproto_set_extra_in_band_remotes(struct ofproto *ofproto,
797 const struct sockaddr_in *extras, size_t n)
798 {
799 if (!any_extras_changed(ofproto, extras, n)) {
800 return;
801 }
802
803 free(ofproto->extra_in_band_remotes);
804 ofproto->n_extra_remotes = n;
805 ofproto->extra_in_band_remotes = xmemdup(extras, n * sizeof *extras);
806
807 update_in_band_remotes(ofproto);
808 }
809
810 /* Sets the OpenFlow queue used by flows set up by in-band control on
811 * 'ofproto' to 'queue_id'. If 'queue_id' is negative, then in-band control
812 * flows will use the default queue. */
813 void
814 ofproto_set_in_band_queue(struct ofproto *ofproto, int queue_id)
815 {
816 if (queue_id != ofproto->in_band_queue) {
817 ofproto->in_band_queue = queue_id;
818 update_in_band_remotes(ofproto);
819 }
820 }
821
822 void
823 ofproto_set_desc(struct ofproto *p,
824 const char *mfr_desc, const char *hw_desc,
825 const char *sw_desc, const char *serial_desc,
826 const char *dp_desc)
827 {
828 struct ofp_desc_stats *ods;
829
830 if (mfr_desc) {
831 if (strlen(mfr_desc) >= sizeof ods->mfr_desc) {
832 VLOG_WARN("truncating mfr_desc, must be less than %zu characters",
833 sizeof ods->mfr_desc);
834 }
835 free(p->mfr_desc);
836 p->mfr_desc = xstrdup(mfr_desc);
837 }
838 if (hw_desc) {
839 if (strlen(hw_desc) >= sizeof ods->hw_desc) {
840 VLOG_WARN("truncating hw_desc, must be less than %zu characters",
841 sizeof ods->hw_desc);
842 }
843 free(p->hw_desc);
844 p->hw_desc = xstrdup(hw_desc);
845 }
846 if (sw_desc) {
847 if (strlen(sw_desc) >= sizeof ods->sw_desc) {
848 VLOG_WARN("truncating sw_desc, must be less than %zu characters",
849 sizeof ods->sw_desc);
850 }
851 free(p->sw_desc);
852 p->sw_desc = xstrdup(sw_desc);
853 }
854 if (serial_desc) {
855 if (strlen(serial_desc) >= sizeof ods->serial_num) {
856 VLOG_WARN("truncating serial_desc, must be less than %zu "
857 "characters",
858 sizeof ods->serial_num);
859 }
860 free(p->serial_desc);
861 p->serial_desc = xstrdup(serial_desc);
862 }
863 if (dp_desc) {
864 if (strlen(dp_desc) >= sizeof ods->dp_desc) {
865 VLOG_WARN("truncating dp_desc, must be less than %zu characters",
866 sizeof ods->dp_desc);
867 }
868 free(p->dp_desc);
869 p->dp_desc = xstrdup(dp_desc);
870 }
871 }
872
873 static int
874 set_pvconns(struct pvconn ***pvconnsp, size_t *n_pvconnsp,
875 const struct svec *svec)
876 {
877 struct pvconn **pvconns = *pvconnsp;
878 size_t n_pvconns = *n_pvconnsp;
879 int retval = 0;
880 size_t i;
881
882 for (i = 0; i < n_pvconns; i++) {
883 pvconn_close(pvconns[i]);
884 }
885 free(pvconns);
886
887 pvconns = xmalloc(svec->n * sizeof *pvconns);
888 n_pvconns = 0;
889 for (i = 0; i < svec->n; i++) {
890 const char *name = svec->names[i];
891 struct pvconn *pvconn;
892 int error;
893
894 error = pvconn_open(name, &pvconn);
895 if (!error) {
896 pvconns[n_pvconns++] = pvconn;
897 } else {
898 VLOG_ERR("failed to listen on %s: %s", name, strerror(error));
899 if (!retval) {
900 retval = error;
901 }
902 }
903 }
904
905 *pvconnsp = pvconns;
906 *n_pvconnsp = n_pvconns;
907
908 return retval;
909 }
910
911 int
912 ofproto_set_snoops(struct ofproto *ofproto, const struct svec *snoops)
913 {
914 return set_pvconns(&ofproto->snoops, &ofproto->n_snoops, snoops);
915 }
916
917 int
918 ofproto_set_netflow(struct ofproto *ofproto,
919 const struct netflow_options *nf_options)
920 {
921 if (nf_options && nf_options->collectors.n) {
922 if (!ofproto->netflow) {
923 ofproto->netflow = netflow_create();
924 }
925 return netflow_set_options(ofproto->netflow, nf_options);
926 } else {
927 netflow_destroy(ofproto->netflow);
928 ofproto->netflow = NULL;
929 return 0;
930 }
931 }
932
933 void
934 ofproto_set_sflow(struct ofproto *ofproto,
935 const struct ofproto_sflow_options *oso)
936 {
937 struct ofproto_sflow *os = ofproto->sflow;
938 if (oso) {
939 if (!os) {
940 struct ofport *ofport;
941
942 os = ofproto->sflow = ofproto_sflow_create(ofproto->dpif);
943 HMAP_FOR_EACH (ofport, hmap_node, &ofproto->ports) {
944 ofproto_sflow_add_port(os, ofport->odp_port,
945 netdev_get_name(ofport->netdev));
946 }
947 }
948 ofproto_sflow_set_options(os, oso);
949 } else {
950 ofproto_sflow_destroy(os);
951 ofproto->sflow = NULL;
952 }
953 }
954 \f
955 /* Connectivity Fault Management configuration. */
956
957 /* Clears the CFM configuration from 'port_no' on 'ofproto'. */
958 void
959 ofproto_iface_clear_cfm(struct ofproto *ofproto, uint32_t port_no)
960 {
961 struct ofport *ofport = get_port(ofproto, port_no);
962 if (ofport && ofport->cfm){
963 cfm_destroy(ofport->cfm);
964 ofport->cfm = NULL;
965 }
966 }
967
968 /* Configures connectivity fault management on 'port_no' in 'ofproto'. Takes
969 * basic configuration from the configuration members in 'cfm', and the set of
970 * remote maintenance points from the 'n_remote_mps' elements in 'remote_mps'.
971 * Ignores the statistics members of 'cfm'.
972 *
973 * This function has no effect if 'ofproto' does not have a port 'port_no'. */
974 void
975 ofproto_iface_set_cfm(struct ofproto *ofproto, uint32_t port_no,
976 const struct cfm *cfm,
977 const uint16_t *remote_mps, size_t n_remote_mps)
978 {
979 struct ofport *ofport;
980
981 ofport = get_port(ofproto, port_no);
982 if (!ofport) {
983 VLOG_WARN("%s: cannot configure CFM on nonexistent port %"PRIu32,
984 dpif_name(ofproto->dpif), port_no);
985 return;
986 }
987
988 if (!ofport->cfm) {
989 ofport->cfm = cfm_create();
990 }
991
992 ofport->cfm->mpid = cfm->mpid;
993 ofport->cfm->interval = cfm->interval;
994 memcpy(ofport->cfm->maid, cfm->maid, CCM_MAID_LEN);
995
996 cfm_update_remote_mps(ofport->cfm, remote_mps, n_remote_mps);
997
998 if (!cfm_configure(ofport->cfm)) {
999 VLOG_WARN("%s: CFM configuration on port %"PRIu32" (%s) failed",
1000 dpif_name(ofproto->dpif), port_no,
1001 netdev_get_name(ofport->netdev));
1002 cfm_destroy(ofport->cfm);
1003 ofport->cfm = NULL;
1004 }
1005 }
1006
1007 /* Returns the connectivity fault management object associated with 'port_no'
1008 * within 'ofproto', or a null pointer if 'ofproto' does not have a port
1009 * 'port_no' or if that port does not have CFM configured. The caller must not
1010 * modify or destroy the returned object. */
1011 const struct cfm *
1012 ofproto_iface_get_cfm(struct ofproto *ofproto, uint32_t port_no)
1013 {
1014 struct ofport *ofport = get_port(ofproto, port_no);
1015 return ofport ? ofport->cfm : NULL;
1016 }
1017 \f
1018 uint64_t
1019 ofproto_get_datapath_id(const struct ofproto *ofproto)
1020 {
1021 return ofproto->datapath_id;
1022 }
1023
1024 bool
1025 ofproto_has_primary_controller(const struct ofproto *ofproto)
1026 {
1027 return !hmap_is_empty(&ofproto->controllers);
1028 }
1029
1030 enum ofproto_fail_mode
1031 ofproto_get_fail_mode(const struct ofproto *p)
1032 {
1033 return p->fail_mode;
1034 }
1035
1036 void
1037 ofproto_get_snoops(const struct ofproto *ofproto, struct svec *snoops)
1038 {
1039 size_t i;
1040
1041 for (i = 0; i < ofproto->n_snoops; i++) {
1042 svec_add(snoops, pvconn_get_name(ofproto->snoops[i]));
1043 }
1044 }
1045
1046 void
1047 ofproto_destroy(struct ofproto *p)
1048 {
1049 struct ofservice *ofservice, *next_ofservice;
1050 struct ofconn *ofconn, *next_ofconn;
1051 struct ofport *ofport, *next_ofport;
1052 size_t i;
1053
1054 if (!p) {
1055 return;
1056 }
1057
1058 shash_find_and_delete(&all_ofprotos, dpif_name(p->dpif));
1059
1060 /* Destroy fail-open and in-band early, since they touch the classifier. */
1061 fail_open_destroy(p->fail_open);
1062 p->fail_open = NULL;
1063
1064 in_band_destroy(p->in_band);
1065 p->in_band = NULL;
1066 free(p->extra_in_band_remotes);
1067
1068 ofproto_flush_flows(p);
1069 classifier_destroy(&p->cls);
1070 hmap_destroy(&p->facets);
1071
1072 LIST_FOR_EACH_SAFE (ofconn, next_ofconn, node, &p->all_conns) {
1073 ofconn_destroy(ofconn);
1074 }
1075 hmap_destroy(&p->controllers);
1076
1077 dpif_close(p->dpif);
1078 netdev_monitor_destroy(p->netdev_monitor);
1079 HMAP_FOR_EACH_SAFE (ofport, next_ofport, hmap_node, &p->ports) {
1080 hmap_remove(&p->ports, &ofport->hmap_node);
1081 ofport_free(ofport);
1082 }
1083 shash_destroy(&p->port_by_name);
1084
1085 netflow_destroy(p->netflow);
1086 ofproto_sflow_destroy(p->sflow);
1087
1088 HMAP_FOR_EACH_SAFE (ofservice, next_ofservice, node, &p->services) {
1089 ofservice_destroy(p, ofservice);
1090 }
1091 hmap_destroy(&p->services);
1092
1093 for (i = 0; i < p->n_snoops; i++) {
1094 pvconn_close(p->snoops[i]);
1095 }
1096 free(p->snoops);
1097
1098 mac_learning_destroy(p->ml);
1099
1100 free(p->mfr_desc);
1101 free(p->hw_desc);
1102 free(p->sw_desc);
1103 free(p->serial_desc);
1104 free(p->dp_desc);
1105
1106 hmap_destroy(&p->ports);
1107
1108 free(p);
1109 }
1110
1111 int
1112 ofproto_run(struct ofproto *p)
1113 {
1114 int error = ofproto_run1(p);
1115 if (!error) {
1116 error = ofproto_run2(p, false);
1117 }
1118 return error;
1119 }
1120
1121 static void
1122 process_port_change(struct ofproto *ofproto, int error, char *devname)
1123 {
1124 if (error == ENOBUFS) {
1125 reinit_ports(ofproto);
1126 } else if (!error) {
1127 update_port(ofproto, devname);
1128 free(devname);
1129 }
1130 }
1131
1132 /* Returns a "preference level" for snooping 'ofconn'. A higher return value
1133 * means that 'ofconn' is more interesting for monitoring than a lower return
1134 * value. */
1135 static int
1136 snoop_preference(const struct ofconn *ofconn)
1137 {
1138 switch (ofconn->role) {
1139 case NX_ROLE_MASTER:
1140 return 3;
1141 case NX_ROLE_OTHER:
1142 return 2;
1143 case NX_ROLE_SLAVE:
1144 return 1;
1145 default:
1146 /* Shouldn't happen. */
1147 return 0;
1148 }
1149 }
1150
1151 /* One of ofproto's "snoop" pvconns has accepted a new connection on 'vconn'.
1152 * Connects this vconn to a controller. */
1153 static void
1154 add_snooper(struct ofproto *ofproto, struct vconn *vconn)
1155 {
1156 struct ofconn *ofconn, *best;
1157
1158 /* Pick a controller for monitoring. */
1159 best = NULL;
1160 LIST_FOR_EACH (ofconn, node, &ofproto->all_conns) {
1161 if (ofconn->type == OFCONN_PRIMARY
1162 && (!best || snoop_preference(ofconn) > snoop_preference(best))) {
1163 best = ofconn;
1164 }
1165 }
1166
1167 if (best) {
1168 rconn_add_monitor(best->rconn, vconn);
1169 } else {
1170 VLOG_INFO_RL(&rl, "no controller connection to snoop");
1171 vconn_close(vconn);
1172 }
1173 }
1174
1175 int
1176 ofproto_run1(struct ofproto *p)
1177 {
1178 struct ofconn *ofconn, *next_ofconn;
1179 struct ofservice *ofservice;
1180 struct ofport *ofport;
1181 char *devname;
1182 int error;
1183 int i;
1184
1185 if (shash_is_empty(&p->port_by_name)) {
1186 init_ports(p);
1187 }
1188
1189 for (i = 0; i < 50; i++) {
1190 struct dpif_upcall packet;
1191
1192 error = dpif_recv(p->dpif, &packet);
1193 if (error) {
1194 if (error == ENODEV) {
1195 /* Someone destroyed the datapath behind our back. The caller
1196 * better destroy us and give up, because we're just going to
1197 * spin from here on out. */
1198 static struct vlog_rate_limit rl2 = VLOG_RATE_LIMIT_INIT(1, 5);
1199 VLOG_ERR_RL(&rl2, "%s: datapath was destroyed externally",
1200 dpif_name(p->dpif));
1201 return ENODEV;
1202 }
1203 break;
1204 }
1205
1206 handle_upcall(p, &packet);
1207 }
1208
1209 while ((error = dpif_port_poll(p->dpif, &devname)) != EAGAIN) {
1210 process_port_change(p, error, devname);
1211 }
1212 while ((error = netdev_monitor_poll(p->netdev_monitor,
1213 &devname)) != EAGAIN) {
1214 process_port_change(p, error, devname);
1215 }
1216
1217 HMAP_FOR_EACH (ofport, hmap_node, &p->ports) {
1218 ofport_run(p, ofport);
1219 }
1220
1221 if (p->in_band) {
1222 if (time_msec() >= p->next_in_band_update) {
1223 update_in_band_remotes(p);
1224 }
1225 in_band_run(p->in_band);
1226 }
1227
1228 LIST_FOR_EACH_SAFE (ofconn, next_ofconn, node, &p->all_conns) {
1229 ofconn_run(ofconn);
1230 }
1231
1232 /* Fail-open maintenance. Do this after processing the ofconns since
1233 * fail-open checks the status of the controller rconn. */
1234 if (p->fail_open) {
1235 fail_open_run(p->fail_open);
1236 }
1237
1238 HMAP_FOR_EACH (ofservice, node, &p->services) {
1239 struct vconn *vconn;
1240 int retval;
1241
1242 retval = pvconn_accept(ofservice->pvconn, OFP_VERSION, &vconn);
1243 if (!retval) {
1244 struct rconn *rconn;
1245 char *name;
1246
1247 rconn = rconn_create(ofservice->probe_interval, 0);
1248 name = ofconn_make_name(p, vconn_get_name(vconn));
1249 rconn_connect_unreliably(rconn, vconn, name);
1250 free(name);
1251
1252 ofconn = ofconn_create(p, rconn, OFCONN_SERVICE);
1253 ofconn_set_rate_limit(ofconn, ofservice->rate_limit,
1254 ofservice->burst_limit);
1255 } else if (retval != EAGAIN) {
1256 VLOG_WARN_RL(&rl, "accept failed (%s)", strerror(retval));
1257 }
1258 }
1259
1260 for (i = 0; i < p->n_snoops; i++) {
1261 struct vconn *vconn;
1262 int retval;
1263
1264 retval = pvconn_accept(p->snoops[i], OFP_VERSION, &vconn);
1265 if (!retval) {
1266 add_snooper(p, vconn);
1267 } else if (retval != EAGAIN) {
1268 VLOG_WARN_RL(&rl, "accept failed (%s)", strerror(retval));
1269 }
1270 }
1271
1272 if (time_msec() >= p->next_expiration) {
1273 int delay = ofproto_expire(p);
1274 p->next_expiration = time_msec() + delay;
1275 COVERAGE_INC(ofproto_expiration);
1276 }
1277
1278 if (p->netflow) {
1279 netflow_run(p->netflow);
1280 }
1281 if (p->sflow) {
1282 ofproto_sflow_run(p->sflow);
1283 }
1284
1285 return 0;
1286 }
1287
1288 int
1289 ofproto_run2(struct ofproto *p, bool revalidate_all)
1290 {
1291 /* Figure out what we need to revalidate now, if anything. */
1292 struct tag_set revalidate_set = p->revalidate_set;
1293 if (p->need_revalidate) {
1294 revalidate_all = true;
1295 }
1296
1297 /* Clear the revalidation flags. */
1298 tag_set_init(&p->revalidate_set);
1299 p->need_revalidate = false;
1300
1301 /* Now revalidate if there's anything to do. */
1302 if (revalidate_all || !tag_set_is_empty(&revalidate_set)) {
1303 struct facet *facet, *next;
1304
1305 HMAP_FOR_EACH_SAFE (facet, next, hmap_node, &p->facets) {
1306 if (revalidate_all
1307 || tag_set_intersects(&revalidate_set, facet->tags)) {
1308 facet_revalidate(p, facet);
1309 }
1310 }
1311 }
1312
1313 return 0;
1314 }
1315
1316 void
1317 ofproto_wait(struct ofproto *p)
1318 {
1319 struct ofservice *ofservice;
1320 struct ofconn *ofconn;
1321 struct ofport *ofport;
1322 size_t i;
1323
1324 dpif_recv_wait(p->dpif);
1325 dpif_port_poll_wait(p->dpif);
1326 netdev_monitor_poll_wait(p->netdev_monitor);
1327 HMAP_FOR_EACH (ofport, hmap_node, &p->ports) {
1328 ofport_wait(ofport);
1329 }
1330 LIST_FOR_EACH (ofconn, node, &p->all_conns) {
1331 ofconn_wait(ofconn);
1332 }
1333 if (p->in_band) {
1334 poll_timer_wait_until(p->next_in_band_update);
1335 in_band_wait(p->in_band);
1336 }
1337 if (p->fail_open) {
1338 fail_open_wait(p->fail_open);
1339 }
1340 if (p->sflow) {
1341 ofproto_sflow_wait(p->sflow);
1342 }
1343 if (!tag_set_is_empty(&p->revalidate_set)) {
1344 poll_immediate_wake();
1345 }
1346 if (p->need_revalidate) {
1347 /* Shouldn't happen, but if it does just go around again. */
1348 VLOG_DBG_RL(&rl, "need revalidate in ofproto_wait_cb()");
1349 poll_immediate_wake();
1350 } else if (p->next_expiration != LLONG_MAX) {
1351 poll_timer_wait_until(p->next_expiration);
1352 }
1353 HMAP_FOR_EACH (ofservice, node, &p->services) {
1354 pvconn_wait(ofservice->pvconn);
1355 }
1356 for (i = 0; i < p->n_snoops; i++) {
1357 pvconn_wait(p->snoops[i]);
1358 }
1359 }
1360
1361 void
1362 ofproto_revalidate(struct ofproto *ofproto, tag_type tag)
1363 {
1364 tag_set_add(&ofproto->revalidate_set, tag);
1365 }
1366
1367 struct tag_set *
1368 ofproto_get_revalidate_set(struct ofproto *ofproto)
1369 {
1370 return &ofproto->revalidate_set;
1371 }
1372
1373 bool
1374 ofproto_is_alive(const struct ofproto *p)
1375 {
1376 return !hmap_is_empty(&p->controllers);
1377 }
1378
1379 void
1380 ofproto_get_ofproto_controller_info(const struct ofproto *ofproto,
1381 struct shash *info)
1382 {
1383 const struct ofconn *ofconn;
1384
1385 shash_init(info);
1386
1387 HMAP_FOR_EACH (ofconn, hmap_node, &ofproto->controllers) {
1388 const struct rconn *rconn = ofconn->rconn;
1389 time_t now = time_now();
1390 time_t last_connection = rconn_get_last_connection(rconn);
1391 time_t last_disconnect = rconn_get_last_disconnect(rconn);
1392 const int last_error = rconn_get_last_error(rconn);
1393 struct ofproto_controller_info *cinfo = xmalloc(sizeof *cinfo);
1394
1395 shash_add(info, rconn_get_target(rconn), cinfo);
1396
1397 cinfo->is_connected = rconn_is_connected(rconn);
1398 cinfo->role = ofconn->role;
1399
1400 cinfo->pairs.n = 0;
1401
1402 if (last_error) {
1403 cinfo->pairs.keys[cinfo->pairs.n] = "last_error";
1404 cinfo->pairs.values[cinfo->pairs.n++] =
1405 xstrdup(ovs_retval_to_string(last_error));
1406 }
1407
1408 cinfo->pairs.keys[cinfo->pairs.n] = "state";
1409 cinfo->pairs.values[cinfo->pairs.n++] =
1410 xstrdup(rconn_get_state(rconn));
1411
1412 if (last_connection != TIME_MIN) {
1413 cinfo->pairs.keys[cinfo->pairs.n] = "sec_since_connect";
1414 cinfo->pairs.values[cinfo->pairs.n++]
1415 = xasprintf("%ld", (long int) (now - last_connection));
1416 }
1417
1418 if (last_disconnect != TIME_MIN) {
1419 cinfo->pairs.keys[cinfo->pairs.n] = "sec_since_disconnect";
1420 cinfo->pairs.values[cinfo->pairs.n++]
1421 = xasprintf("%ld", (long int) (now - last_disconnect));
1422 }
1423 }
1424 }
1425
1426 void
1427 ofproto_free_ofproto_controller_info(struct shash *info)
1428 {
1429 struct shash_node *node;
1430
1431 SHASH_FOR_EACH (node, info) {
1432 struct ofproto_controller_info *cinfo = node->data;
1433 while (cinfo->pairs.n) {
1434 free((char *) cinfo->pairs.values[--cinfo->pairs.n]);
1435 }
1436 free(cinfo);
1437 }
1438 shash_destroy(info);
1439 }
1440
1441 /* Deletes port number 'odp_port' from the datapath for 'ofproto'.
1442 *
1443 * This is almost the same as calling dpif_port_del() directly on the
1444 * datapath, but it also makes 'ofproto' close its open netdev for the port
1445 * (if any). This makes it possible to create a new netdev of a different
1446 * type under the same name, which otherwise the netdev library would refuse
1447 * to do because of the conflict. (The netdev would eventually get closed on
1448 * the next trip through ofproto_run(), but this interface is more direct.)
1449 *
1450 * Returns 0 if successful, otherwise a positive errno. */
1451 int
1452 ofproto_port_del(struct ofproto *ofproto, uint16_t odp_port)
1453 {
1454 struct ofport *ofport = get_port(ofproto, odp_port);
1455 const char *name = ofport ? ofport->opp.name : "<unknown>";
1456 int error;
1457
1458 error = dpif_port_del(ofproto->dpif, odp_port);
1459 if (error) {
1460 VLOG_ERR("%s: failed to remove port %"PRIu16" (%s) interface (%s)",
1461 dpif_name(ofproto->dpif), odp_port, name, strerror(error));
1462 } else if (ofport) {
1463 /* 'name' is ofport->opp.name and update_port() is going to destroy
1464 * 'ofport'. Just in case update_port() refers to 'name' after it
1465 * destroys 'ofport', make a copy of it around the update_port()
1466 * call. */
1467 char *devname = xstrdup(name);
1468 update_port(ofproto, devname);
1469 free(devname);
1470 }
1471 return error;
1472 }
1473
1474 /* Checks if 'ofproto' thinks 'odp_port' should be included in floods. Returns
1475 * true if 'odp_port' exists and should be included, false otherwise. */
1476 bool
1477 ofproto_port_is_floodable(struct ofproto *ofproto, uint16_t odp_port)
1478 {
1479 struct ofport *ofport = get_port(ofproto, odp_port);
1480 return ofport && !(ofport->opp.config & OFPPC_NO_FLOOD);
1481 }
1482
1483 /* Sends 'packet' out of port 'port_no' within 'p'. If 'vlan_tci' is zero the
1484 * packet will not have any 802.1Q hader; if it is nonzero, then the packet
1485 * will be sent with the VLAN TCI specified by 'vlan_tci & ~VLAN_CFI'.
1486 *
1487 * Returns 0 if successful, otherwise a positive errno value. */
1488 int
1489 ofproto_send_packet(struct ofproto *ofproto,
1490 uint32_t port_no, uint16_t vlan_tci,
1491 const struct ofpbuf *packet)
1492 {
1493 struct ofpbuf odp_actions;
1494 int error;
1495
1496 ofpbuf_init(&odp_actions, 32);
1497 if (vlan_tci != 0) {
1498 nl_msg_put_u32(&odp_actions, ODP_ACTION_ATTR_SET_DL_TCI,
1499 ntohs(vlan_tci & ~VLAN_CFI));
1500 }
1501 nl_msg_put_u32(&odp_actions, ODP_ACTION_ATTR_OUTPUT, port_no);
1502 error = dpif_execute(ofproto->dpif, odp_actions.data, odp_actions.size,
1503 packet);
1504 ofpbuf_uninit(&odp_actions);
1505
1506 if (error) {
1507 VLOG_WARN_RL(&rl, "%s: failed to send packet on port %"PRIu32" (%s)",
1508 dpif_name(ofproto->dpif), port_no, strerror(error));
1509 }
1510 return error;
1511 }
1512
1513 /* Adds a flow to the OpenFlow flow table in 'p' that matches 'cls_rule' and
1514 * performs the 'n_actions' actions in 'actions'. The new flow will not
1515 * timeout.
1516 *
1517 * If cls_rule->priority is in the range of priorities supported by OpenFlow
1518 * (0...65535, inclusive) then the flow will be visible to OpenFlow
1519 * controllers; otherwise, it will be hidden.
1520 *
1521 * The caller retains ownership of 'cls_rule' and 'actions'. */
1522 void
1523 ofproto_add_flow(struct ofproto *p, const struct cls_rule *cls_rule,
1524 const union ofp_action *actions, size_t n_actions)
1525 {
1526 struct rule *rule;
1527 rule = rule_create(cls_rule, actions, n_actions, 0, 0, 0, false);
1528 rule_insert(p, rule);
1529 }
1530
1531 void
1532 ofproto_delete_flow(struct ofproto *ofproto, const struct cls_rule *target)
1533 {
1534 struct rule *rule;
1535
1536 rule = rule_from_cls_rule(classifier_find_rule_exactly(&ofproto->cls,
1537 target));
1538 if (rule) {
1539 rule_remove(ofproto, rule);
1540 }
1541 }
1542
1543 void
1544 ofproto_flush_flows(struct ofproto *ofproto)
1545 {
1546 struct facet *facet, *next_facet;
1547 struct rule *rule, *next_rule;
1548 struct cls_cursor cursor;
1549
1550 COVERAGE_INC(ofproto_flush);
1551
1552 HMAP_FOR_EACH_SAFE (facet, next_facet, hmap_node, &ofproto->facets) {
1553 /* Mark the facet as not installed so that facet_remove() doesn't
1554 * bother trying to uninstall it. There is no point in uninstalling it
1555 * individually since we are about to blow away all the facets with
1556 * dpif_flow_flush(). */
1557 facet->installed = false;
1558 facet->dp_packet_count = 0;
1559 facet->dp_byte_count = 0;
1560 facet_remove(ofproto, facet);
1561 }
1562
1563 cls_cursor_init(&cursor, &ofproto->cls, NULL);
1564 CLS_CURSOR_FOR_EACH_SAFE (rule, next_rule, cr, &cursor) {
1565 rule_remove(ofproto, rule);
1566 }
1567
1568 dpif_flow_flush(ofproto->dpif);
1569 if (ofproto->in_band) {
1570 in_band_flushed(ofproto->in_band);
1571 }
1572 if (ofproto->fail_open) {
1573 fail_open_flushed(ofproto->fail_open);
1574 }
1575 }
1576 \f
1577 static void
1578 reinit_ports(struct ofproto *p)
1579 {
1580 struct dpif_port_dump dump;
1581 struct shash_node *node;
1582 struct shash devnames;
1583 struct ofport *ofport;
1584 struct dpif_port dpif_port;
1585
1586 COVERAGE_INC(ofproto_reinit_ports);
1587
1588 shash_init(&devnames);
1589 HMAP_FOR_EACH (ofport, hmap_node, &p->ports) {
1590 shash_add_once (&devnames, ofport->opp.name, NULL);
1591 }
1592 DPIF_PORT_FOR_EACH (&dpif_port, &dump, p->dpif) {
1593 shash_add_once (&devnames, dpif_port.name, NULL);
1594 }
1595
1596 SHASH_FOR_EACH (node, &devnames) {
1597 update_port(p, node->name);
1598 }
1599 shash_destroy(&devnames);
1600 }
1601
1602 static struct ofport *
1603 make_ofport(const struct dpif_port *dpif_port)
1604 {
1605 struct netdev_options netdev_options;
1606 enum netdev_flags flags;
1607 struct ofport *ofport;
1608 struct netdev *netdev;
1609 int error;
1610
1611 memset(&netdev_options, 0, sizeof netdev_options);
1612 netdev_options.name = dpif_port->name;
1613 netdev_options.type = dpif_port->type;
1614 netdev_options.ethertype = NETDEV_ETH_TYPE_NONE;
1615
1616 error = netdev_open(&netdev_options, &netdev);
1617 if (error) {
1618 VLOG_WARN_RL(&rl, "ignoring port %s (%"PRIu16") because netdev %s "
1619 "cannot be opened (%s)",
1620 dpif_port->name, dpif_port->port_no,
1621 dpif_port->name, strerror(error));
1622 return NULL;
1623 }
1624
1625 ofport = xzalloc(sizeof *ofport);
1626 ofport->netdev = netdev;
1627 ofport->odp_port = dpif_port->port_no;
1628 ofport->opp.port_no = odp_port_to_ofp_port(dpif_port->port_no);
1629 netdev_get_etheraddr(netdev, ofport->opp.hw_addr);
1630 ovs_strlcpy(ofport->opp.name, dpif_port->name, sizeof ofport->opp.name);
1631
1632 netdev_get_flags(netdev, &flags);
1633 ofport->opp.config = flags & NETDEV_UP ? 0 : OFPPC_PORT_DOWN;
1634
1635 ofport->opp.state = netdev_get_carrier(netdev) ? 0 : OFPPS_LINK_DOWN;
1636
1637 netdev_get_features(netdev,
1638 &ofport->opp.curr, &ofport->opp.advertised,
1639 &ofport->opp.supported, &ofport->opp.peer);
1640 return ofport;
1641 }
1642
1643 static bool
1644 ofport_conflicts(const struct ofproto *p, const struct dpif_port *dpif_port)
1645 {
1646 if (get_port(p, dpif_port->port_no)) {
1647 VLOG_WARN_RL(&rl, "ignoring duplicate port %"PRIu16" in datapath",
1648 dpif_port->port_no);
1649 return true;
1650 } else if (shash_find(&p->port_by_name, dpif_port->name)) {
1651 VLOG_WARN_RL(&rl, "ignoring duplicate device %s in datapath",
1652 dpif_port->name);
1653 return true;
1654 } else {
1655 return false;
1656 }
1657 }
1658
1659 static int
1660 ofport_equal(const struct ofport *a_, const struct ofport *b_)
1661 {
1662 const struct ofp_phy_port *a = &a_->opp;
1663 const struct ofp_phy_port *b = &b_->opp;
1664
1665 BUILD_ASSERT_DECL(sizeof *a == 48); /* Detect ofp_phy_port changes. */
1666 return (a->port_no == b->port_no
1667 && !memcmp(a->hw_addr, b->hw_addr, sizeof a->hw_addr)
1668 && !strcmp(a->name, b->name)
1669 && a->state == b->state
1670 && a->config == b->config
1671 && a->curr == b->curr
1672 && a->advertised == b->advertised
1673 && a->supported == b->supported
1674 && a->peer == b->peer);
1675 }
1676
1677 static void
1678 send_port_status(struct ofproto *p, const struct ofport *ofport,
1679 uint8_t reason)
1680 {
1681 /* XXX Should limit the number of queued port status change messages. */
1682 struct ofconn *ofconn;
1683 LIST_FOR_EACH (ofconn, node, &p->all_conns) {
1684 struct ofp_port_status *ops;
1685 struct ofpbuf *b;
1686
1687 /* Primary controllers, even slaves, should always get port status
1688 updates. Otherwise obey ofconn_receives_async_msgs(). */
1689 if (ofconn->type != OFCONN_PRIMARY
1690 && !ofconn_receives_async_msgs(ofconn)) {
1691 continue;
1692 }
1693
1694 ops = make_openflow_xid(sizeof *ops, OFPT_PORT_STATUS, 0, &b);
1695 ops->reason = reason;
1696 ops->desc = ofport->opp;
1697 hton_ofp_phy_port(&ops->desc);
1698 queue_tx(b, ofconn, NULL);
1699 }
1700 }
1701
1702 static void
1703 ofport_install(struct ofproto *p, struct ofport *ofport)
1704 {
1705 const char *netdev_name = ofport->opp.name;
1706
1707 netdev_monitor_add(p->netdev_monitor, ofport->netdev);
1708 hmap_insert(&p->ports, &ofport->hmap_node, hash_int(ofport->odp_port, 0));
1709 shash_add(&p->port_by_name, netdev_name, ofport);
1710 if (p->sflow) {
1711 ofproto_sflow_add_port(p->sflow, ofport->odp_port, netdev_name);
1712 }
1713 }
1714
1715 static void
1716 ofport_remove(struct ofproto *p, struct ofport *ofport)
1717 {
1718 netdev_monitor_remove(p->netdev_monitor, ofport->netdev);
1719 hmap_remove(&p->ports, &ofport->hmap_node);
1720 shash_delete(&p->port_by_name,
1721 shash_find(&p->port_by_name, ofport->opp.name));
1722 if (p->sflow) {
1723 ofproto_sflow_del_port(p->sflow, ofport->odp_port);
1724 }
1725 }
1726
1727 static void
1728 ofport_run(struct ofproto *ofproto, struct ofport *ofport)
1729 {
1730 if (ofport->cfm) {
1731 cfm_run(ofport->cfm);
1732
1733 if (cfm_should_send_ccm(ofport->cfm)) {
1734 struct ofpbuf packet;
1735 struct ccm *ccm;
1736
1737 ofpbuf_init(&packet, 0);
1738 ccm = compose_packet(&packet, eth_addr_ccm, ofport->opp.hw_addr,
1739 ETH_TYPE_CFM, sizeof *ccm);
1740 cfm_compose_ccm(ofport->cfm, ccm);
1741 ofproto_send_packet(ofproto, ofport->odp_port, 0, &packet);
1742 ofpbuf_uninit(&packet);
1743 }
1744 }
1745 }
1746
1747 static void
1748 ofport_wait(struct ofport *ofport)
1749 {
1750 if (ofport->cfm) {
1751 cfm_wait(ofport->cfm);
1752 }
1753 }
1754
1755 static void
1756 ofport_free(struct ofport *ofport)
1757 {
1758 if (ofport) {
1759 cfm_destroy(ofport->cfm);
1760 netdev_close(ofport->netdev);
1761 free(ofport);
1762 }
1763 }
1764
1765 static struct ofport *
1766 get_port(const struct ofproto *ofproto, uint16_t odp_port)
1767 {
1768 struct ofport *port;
1769
1770 HMAP_FOR_EACH_IN_BUCKET (port, hmap_node,
1771 hash_int(odp_port, 0), &ofproto->ports) {
1772 if (port->odp_port == odp_port) {
1773 return port;
1774 }
1775 }
1776 return NULL;
1777 }
1778
1779 static void
1780 update_port(struct ofproto *p, const char *devname)
1781 {
1782 struct dpif_port dpif_port;
1783 struct ofport *old_ofport;
1784 struct ofport *new_ofport;
1785 int error;
1786
1787 COVERAGE_INC(ofproto_update_port);
1788
1789 /* Query the datapath for port information. */
1790 error = dpif_port_query_by_name(p->dpif, devname, &dpif_port);
1791
1792 /* Find the old ofport. */
1793 old_ofport = shash_find_data(&p->port_by_name, devname);
1794 if (!error) {
1795 if (!old_ofport) {
1796 /* There's no port named 'devname' but there might be a port with
1797 * the same port number. This could happen if a port is deleted
1798 * and then a new one added in its place very quickly, or if a port
1799 * is renamed. In the former case we want to send an OFPPR_DELETE
1800 * and an OFPPR_ADD, and in the latter case we want to send a
1801 * single OFPPR_MODIFY. We can distinguish the cases by comparing
1802 * the old port's ifindex against the new port, or perhaps less
1803 * reliably but more portably by comparing the old port's MAC
1804 * against the new port's MAC. However, this code isn't that smart
1805 * and always sends an OFPPR_MODIFY (XXX). */
1806 old_ofport = get_port(p, dpif_port.port_no);
1807 }
1808 } else if (error != ENOENT && error != ENODEV) {
1809 VLOG_WARN_RL(&rl, "dpif_port_query_by_name returned unexpected error "
1810 "%s", strerror(error));
1811 goto exit;
1812 }
1813
1814 /* Create a new ofport. */
1815 new_ofport = !error ? make_ofport(&dpif_port) : NULL;
1816
1817 /* Eliminate a few pathological cases. */
1818 if (!old_ofport && !new_ofport) {
1819 goto exit;
1820 } else if (old_ofport && new_ofport) {
1821 /* Most of the 'config' bits are OpenFlow soft state, but
1822 * OFPPC_PORT_DOWN is maintained by the kernel. So transfer the
1823 * OpenFlow bits from old_ofport. (make_ofport() only sets
1824 * OFPPC_PORT_DOWN and leaves the other bits 0.) */
1825 new_ofport->opp.config |= old_ofport->opp.config & ~OFPPC_PORT_DOWN;
1826
1827 if (ofport_equal(old_ofport, new_ofport)) {
1828 /* False alarm--no change. */
1829 ofport_free(new_ofport);
1830 goto exit;
1831 }
1832 }
1833
1834 /* Now deal with the normal cases. */
1835 if (old_ofport) {
1836 ofport_remove(p, old_ofport);
1837 }
1838 if (new_ofport) {
1839 ofport_install(p, new_ofport);
1840 }
1841 send_port_status(p, new_ofport ? new_ofport : old_ofport,
1842 (!old_ofport ? OFPPR_ADD
1843 : !new_ofport ? OFPPR_DELETE
1844 : OFPPR_MODIFY));
1845 ofport_free(old_ofport);
1846
1847 exit:
1848 dpif_port_destroy(&dpif_port);
1849 }
1850
1851 static int
1852 init_ports(struct ofproto *p)
1853 {
1854 struct dpif_port_dump dump;
1855 struct dpif_port dpif_port;
1856
1857 DPIF_PORT_FOR_EACH (&dpif_port, &dump, p->dpif) {
1858 if (!ofport_conflicts(p, &dpif_port)) {
1859 struct ofport *ofport = make_ofport(&dpif_port);
1860 if (ofport) {
1861 ofport_install(p, ofport);
1862 }
1863 }
1864 }
1865
1866 return 0;
1867 }
1868 \f
1869 static struct ofconn *
1870 ofconn_create(struct ofproto *p, struct rconn *rconn, enum ofconn_type type)
1871 {
1872 struct ofconn *ofconn = xzalloc(sizeof *ofconn);
1873 ofconn->ofproto = p;
1874 list_push_back(&p->all_conns, &ofconn->node);
1875 ofconn->rconn = rconn;
1876 ofconn->type = type;
1877 ofconn->flow_format = NXFF_OPENFLOW10;
1878 ofconn->role = NX_ROLE_OTHER;
1879 ofconn->packet_in_counter = rconn_packet_counter_create ();
1880 ofconn->pktbuf = NULL;
1881 ofconn->miss_send_len = 0;
1882 ofconn->reply_counter = rconn_packet_counter_create ();
1883 return ofconn;
1884 }
1885
1886 static void
1887 ofconn_destroy(struct ofconn *ofconn)
1888 {
1889 if (ofconn->type == OFCONN_PRIMARY) {
1890 hmap_remove(&ofconn->ofproto->controllers, &ofconn->hmap_node);
1891 }
1892
1893 list_remove(&ofconn->node);
1894 rconn_destroy(ofconn->rconn);
1895 rconn_packet_counter_destroy(ofconn->packet_in_counter);
1896 rconn_packet_counter_destroy(ofconn->reply_counter);
1897 pktbuf_destroy(ofconn->pktbuf);
1898 free(ofconn);
1899 }
1900
1901 static void
1902 ofconn_run(struct ofconn *ofconn)
1903 {
1904 struct ofproto *p = ofconn->ofproto;
1905 int iteration;
1906 size_t i;
1907
1908 for (i = 0; i < N_SCHEDULERS; i++) {
1909 pinsched_run(ofconn->schedulers[i], do_send_packet_in, ofconn);
1910 }
1911
1912 rconn_run(ofconn->rconn);
1913
1914 if (rconn_packet_counter_read (ofconn->reply_counter) < OFCONN_REPLY_MAX) {
1915 /* Limit the number of iterations to prevent other tasks from
1916 * starving. */
1917 for (iteration = 0; iteration < 50; iteration++) {
1918 struct ofpbuf *of_msg = rconn_recv(ofconn->rconn);
1919 if (!of_msg) {
1920 break;
1921 }
1922 if (p->fail_open) {
1923 fail_open_maybe_recover(p->fail_open);
1924 }
1925 handle_openflow(ofconn, of_msg);
1926 ofpbuf_delete(of_msg);
1927 }
1928 }
1929
1930 if (!rconn_is_alive(ofconn->rconn)) {
1931 ofconn_destroy(ofconn);
1932 }
1933 }
1934
1935 static void
1936 ofconn_wait(struct ofconn *ofconn)
1937 {
1938 int i;
1939
1940 for (i = 0; i < N_SCHEDULERS; i++) {
1941 pinsched_wait(ofconn->schedulers[i]);
1942 }
1943 rconn_run_wait(ofconn->rconn);
1944 if (rconn_packet_counter_read (ofconn->reply_counter) < OFCONN_REPLY_MAX) {
1945 rconn_recv_wait(ofconn->rconn);
1946 } else {
1947 COVERAGE_INC(ofproto_ofconn_stuck);
1948 }
1949 }
1950
1951 /* Returns true if 'ofconn' should receive asynchronous messages. */
1952 static bool
1953 ofconn_receives_async_msgs(const struct ofconn *ofconn)
1954 {
1955 if (ofconn->type == OFCONN_PRIMARY) {
1956 /* Primary controllers always get asynchronous messages unless they
1957 * have configured themselves as "slaves". */
1958 return ofconn->role != NX_ROLE_SLAVE;
1959 } else {
1960 /* Service connections don't get asynchronous messages unless they have
1961 * explicitly asked for them by setting a nonzero miss send length. */
1962 return ofconn->miss_send_len > 0;
1963 }
1964 }
1965
1966 /* Returns a human-readable name for an OpenFlow connection between 'ofproto'
1967 * and 'target', suitable for use in log messages for identifying the
1968 * connection.
1969 *
1970 * The name is dynamically allocated. The caller should free it (with free())
1971 * when it is no longer needed. */
1972 static char *
1973 ofconn_make_name(const struct ofproto *ofproto, const char *target)
1974 {
1975 return xasprintf("%s<->%s", dpif_base_name(ofproto->dpif), target);
1976 }
1977
1978 static void
1979 ofconn_set_rate_limit(struct ofconn *ofconn, int rate, int burst)
1980 {
1981 int i;
1982
1983 for (i = 0; i < N_SCHEDULERS; i++) {
1984 struct pinsched **s = &ofconn->schedulers[i];
1985
1986 if (rate > 0) {
1987 if (!*s) {
1988 *s = pinsched_create(rate, burst);
1989 } else {
1990 pinsched_set_limits(*s, rate, burst);
1991 }
1992 } else {
1993 pinsched_destroy(*s);
1994 *s = NULL;
1995 }
1996 }
1997 }
1998 \f
1999 static void
2000 ofservice_reconfigure(struct ofservice *ofservice,
2001 const struct ofproto_controller *c)
2002 {
2003 ofservice->probe_interval = c->probe_interval;
2004 ofservice->rate_limit = c->rate_limit;
2005 ofservice->burst_limit = c->burst_limit;
2006 }
2007
2008 /* Creates a new ofservice in 'ofproto'. Returns 0 if successful, otherwise a
2009 * positive errno value. */
2010 static int
2011 ofservice_create(struct ofproto *ofproto, const struct ofproto_controller *c)
2012 {
2013 struct ofservice *ofservice;
2014 struct pvconn *pvconn;
2015 int error;
2016
2017 error = pvconn_open(c->target, &pvconn);
2018 if (error) {
2019 return error;
2020 }
2021
2022 ofservice = xzalloc(sizeof *ofservice);
2023 hmap_insert(&ofproto->services, &ofservice->node,
2024 hash_string(c->target, 0));
2025 ofservice->pvconn = pvconn;
2026
2027 ofservice_reconfigure(ofservice, c);
2028
2029 return 0;
2030 }
2031
2032 static void
2033 ofservice_destroy(struct ofproto *ofproto, struct ofservice *ofservice)
2034 {
2035 hmap_remove(&ofproto->services, &ofservice->node);
2036 pvconn_close(ofservice->pvconn);
2037 free(ofservice);
2038 }
2039
2040 /* Finds and returns the ofservice within 'ofproto' that has the given
2041 * 'target', or a null pointer if none exists. */
2042 static struct ofservice *
2043 ofservice_lookup(struct ofproto *ofproto, const char *target)
2044 {
2045 struct ofservice *ofservice;
2046
2047 HMAP_FOR_EACH_WITH_HASH (ofservice, node, hash_string(target, 0),
2048 &ofproto->services) {
2049 if (!strcmp(pvconn_get_name(ofservice->pvconn), target)) {
2050 return ofservice;
2051 }
2052 }
2053 return NULL;
2054 }
2055 \f
2056 /* Returns true if 'rule' should be hidden from the controller.
2057 *
2058 * Rules with priority higher than UINT16_MAX are set up by ofproto itself
2059 * (e.g. by in-band control) and are intentionally hidden from the
2060 * controller. */
2061 static bool
2062 rule_is_hidden(const struct rule *rule)
2063 {
2064 return rule->cr.priority > UINT16_MAX;
2065 }
2066
2067 /* Creates and returns a new rule initialized as specified.
2068 *
2069 * The caller is responsible for inserting the rule into the classifier (with
2070 * rule_insert()). */
2071 static struct rule *
2072 rule_create(const struct cls_rule *cls_rule,
2073 const union ofp_action *actions, size_t n_actions,
2074 uint16_t idle_timeout, uint16_t hard_timeout,
2075 ovs_be64 flow_cookie, bool send_flow_removed)
2076 {
2077 struct rule *rule = xzalloc(sizeof *rule);
2078 rule->cr = *cls_rule;
2079 rule->idle_timeout = idle_timeout;
2080 rule->hard_timeout = hard_timeout;
2081 rule->flow_cookie = flow_cookie;
2082 rule->used = rule->created = time_msec();
2083 rule->send_flow_removed = send_flow_removed;
2084 list_init(&rule->facets);
2085 if (n_actions > 0) {
2086 rule->n_actions = n_actions;
2087 rule->actions = xmemdup(actions, n_actions * sizeof *actions);
2088 }
2089
2090 return rule;
2091 }
2092
2093 static struct rule *
2094 rule_from_cls_rule(const struct cls_rule *cls_rule)
2095 {
2096 return cls_rule ? CONTAINER_OF(cls_rule, struct rule, cr) : NULL;
2097 }
2098
2099 static void
2100 rule_free(struct rule *rule)
2101 {
2102 free(rule->actions);
2103 free(rule);
2104 }
2105
2106 /* Destroys 'rule' and iterates through all of its facets and revalidates them,
2107 * destroying any that no longer has a rule (which is probably all of them).
2108 *
2109 * The caller must have already removed 'rule' from the classifier. */
2110 static void
2111 rule_destroy(struct ofproto *ofproto, struct rule *rule)
2112 {
2113 struct facet *facet, *next_facet;
2114 LIST_FOR_EACH_SAFE (facet, next_facet, list_node, &rule->facets) {
2115 facet_revalidate(ofproto, facet);
2116 }
2117 rule_free(rule);
2118 }
2119
2120 /* Returns true if 'rule' has an OpenFlow OFPAT_OUTPUT or OFPAT_ENQUEUE action
2121 * that outputs to 'out_port' (output to OFPP_FLOOD and OFPP_ALL doesn't
2122 * count). */
2123 static bool
2124 rule_has_out_port(const struct rule *rule, ovs_be16 out_port)
2125 {
2126 const union ofp_action *oa;
2127 struct actions_iterator i;
2128
2129 if (out_port == htons(OFPP_NONE)) {
2130 return true;
2131 }
2132 for (oa = actions_first(&i, rule->actions, rule->n_actions); oa;
2133 oa = actions_next(&i)) {
2134 if (action_outputs_to_port(oa, out_port)) {
2135 return true;
2136 }
2137 }
2138 return false;
2139 }
2140
2141 /* Executes, within 'ofproto', the 'n_actions' actions in 'actions' on
2142 * 'packet', which arrived on 'in_port'.
2143 *
2144 * Takes ownership of 'packet'. */
2145 static bool
2146 execute_odp_actions(struct ofproto *ofproto, const struct flow *flow,
2147 const struct nlattr *odp_actions, size_t actions_len,
2148 struct ofpbuf *packet)
2149 {
2150 if (actions_len == NLA_ALIGN(NLA_HDRLEN + sizeof(uint64_t))
2151 && odp_actions->nla_type == ODP_ACTION_ATTR_CONTROLLER) {
2152 /* As an optimization, avoid a round-trip from userspace to kernel to
2153 * userspace. This also avoids possibly filling up kernel packet
2154 * buffers along the way. */
2155 struct dpif_upcall upcall;
2156
2157 upcall.type = DPIF_UC_ACTION;
2158 upcall.packet = packet;
2159 upcall.key = NULL;
2160 upcall.key_len = 0;
2161 upcall.userdata = nl_attr_get_u64(odp_actions);
2162 upcall.sample_pool = 0;
2163 upcall.actions = NULL;
2164 upcall.actions_len = 0;
2165
2166 send_packet_in(ofproto, &upcall, flow, false);
2167
2168 return true;
2169 } else {
2170 int error;
2171
2172 error = dpif_execute(ofproto->dpif, odp_actions, actions_len, packet);
2173 ofpbuf_delete(packet);
2174 return !error;
2175 }
2176 }
2177
2178 /* Executes the actions indicated by 'facet' on 'packet' and credits 'facet''s
2179 * statistics appropriately. 'packet' must have at least sizeof(struct
2180 * ofp_packet_in) bytes of headroom.
2181 *
2182 * For correct results, 'packet' must actually be in 'facet''s flow; that is,
2183 * applying flow_extract() to 'packet' would yield the same flow as
2184 * 'facet->flow'.
2185 *
2186 * 'facet' must have accurately composed ODP actions; that is, it must not be
2187 * in need of revalidation.
2188 *
2189 * Takes ownership of 'packet'. */
2190 static void
2191 facet_execute(struct ofproto *ofproto, struct facet *facet,
2192 struct ofpbuf *packet)
2193 {
2194 struct dpif_flow_stats stats;
2195
2196 assert(ofpbuf_headroom(packet) >= sizeof(struct ofp_packet_in));
2197
2198 flow_extract_stats(&facet->flow, packet, &stats);
2199 stats.used = time_msec();
2200 if (execute_odp_actions(ofproto, &facet->flow,
2201 facet->actions, facet->actions_len, packet)) {
2202 facet_update_stats(ofproto, facet, &stats);
2203 }
2204 }
2205
2206 /* Executes the actions indicated by 'rule' on 'packet' and credits 'rule''s
2207 * statistics (or the statistics for one of its facets) appropriately.
2208 * 'packet' must have at least sizeof(struct ofp_packet_in) bytes of headroom.
2209 *
2210 * 'packet' doesn't necessarily have to match 'rule'. 'rule' will be credited
2211 * with statistics for 'packet' either way.
2212 *
2213 * Takes ownership of 'packet'. */
2214 static void
2215 rule_execute(struct ofproto *ofproto, struct rule *rule, uint16_t in_port,
2216 struct ofpbuf *packet)
2217 {
2218 struct action_xlate_ctx ctx;
2219 struct ofpbuf *odp_actions;
2220 struct facet *facet;
2221 struct flow flow;
2222 size_t size;
2223
2224 assert(ofpbuf_headroom(packet) >= sizeof(struct ofp_packet_in));
2225
2226 flow_extract(packet, 0, in_port, &flow);
2227
2228 /* First look for a related facet. If we find one, account it to that. */
2229 facet = facet_lookup_valid(ofproto, &flow);
2230 if (facet && facet->rule == rule) {
2231 facet_execute(ofproto, facet, packet);
2232 return;
2233 }
2234
2235 /* Otherwise, if 'rule' is in fact the correct rule for 'packet', then
2236 * create a new facet for it and use that. */
2237 if (rule_lookup(ofproto, &flow) == rule) {
2238 facet = facet_create(ofproto, rule, &flow, packet);
2239 facet_execute(ofproto, facet, packet);
2240 facet_install(ofproto, facet, true);
2241 return;
2242 }
2243
2244 /* We can't account anything to a facet. If we were to try, then that
2245 * facet would have a non-matching rule, busting our invariants. */
2246 action_xlate_ctx_init(&ctx, ofproto, &flow, packet);
2247 odp_actions = xlate_actions(&ctx, rule->actions, rule->n_actions);
2248 size = packet->size;
2249 if (execute_odp_actions(ofproto, &flow, odp_actions->data,
2250 odp_actions->size, packet)) {
2251 rule->used = time_msec();
2252 rule->packet_count++;
2253 rule->byte_count += size;
2254 flow_push_stats(ofproto, rule, &flow, 1, size, rule->used);
2255 }
2256 ofpbuf_delete(odp_actions);
2257 }
2258
2259 /* Inserts 'rule' into 'p''s flow table. */
2260 static void
2261 rule_insert(struct ofproto *p, struct rule *rule)
2262 {
2263 struct rule *displaced_rule;
2264
2265 displaced_rule = rule_from_cls_rule(classifier_insert(&p->cls, &rule->cr));
2266 if (displaced_rule) {
2267 rule_destroy(p, displaced_rule);
2268 }
2269 p->need_revalidate = true;
2270 }
2271
2272 /* Creates and returns a new facet within 'ofproto' owned by 'rule', given a
2273 * 'flow' and an example 'packet' within that flow.
2274 *
2275 * The caller must already have determined that no facet with an identical
2276 * 'flow' exists in 'ofproto' and that 'flow' is the best match for 'rule' in
2277 * 'ofproto''s classifier table. */
2278 static struct facet *
2279 facet_create(struct ofproto *ofproto, struct rule *rule,
2280 const struct flow *flow, const struct ofpbuf *packet)
2281 {
2282 struct facet *facet;
2283
2284 facet = xzalloc(sizeof *facet);
2285 facet->used = time_msec();
2286 hmap_insert(&ofproto->facets, &facet->hmap_node, flow_hash(flow, 0));
2287 list_push_back(&rule->facets, &facet->list_node);
2288 facet->rule = rule;
2289 facet->flow = *flow;
2290 netflow_flow_init(&facet->nf_flow);
2291 netflow_flow_update_time(ofproto->netflow, &facet->nf_flow, facet->used);
2292
2293 facet_make_actions(ofproto, facet, packet);
2294
2295 return facet;
2296 }
2297
2298 static void
2299 facet_free(struct facet *facet)
2300 {
2301 free(facet->actions);
2302 free(facet);
2303 }
2304
2305 /* Remove 'rule' from 'ofproto' and free up the associated memory:
2306 *
2307 * - Removes 'rule' from the classifier.
2308 *
2309 * - If 'rule' has facets, revalidates them (and possibly uninstalls and
2310 * destroys them), via rule_destroy().
2311 */
2312 static void
2313 rule_remove(struct ofproto *ofproto, struct rule *rule)
2314 {
2315 COVERAGE_INC(ofproto_del_rule);
2316 ofproto->need_revalidate = true;
2317 classifier_remove(&ofproto->cls, &rule->cr);
2318 rule_destroy(ofproto, rule);
2319 }
2320
2321 /* Remove 'facet' from 'ofproto' and free up the associated memory:
2322 *
2323 * - If 'facet' was installed in the datapath, uninstalls it and updates its
2324 * rule's statistics, via facet_uninstall().
2325 *
2326 * - Removes 'facet' from its rule and from ofproto->facets.
2327 */
2328 static void
2329 facet_remove(struct ofproto *ofproto, struct facet *facet)
2330 {
2331 facet_uninstall(ofproto, facet);
2332 facet_flush_stats(ofproto, facet);
2333 hmap_remove(&ofproto->facets, &facet->hmap_node);
2334 list_remove(&facet->list_node);
2335 facet_free(facet);
2336 }
2337
2338 /* Composes the ODP actions for 'facet' based on its rule's actions. */
2339 static void
2340 facet_make_actions(struct ofproto *p, struct facet *facet,
2341 const struct ofpbuf *packet)
2342 {
2343 const struct rule *rule = facet->rule;
2344 struct ofpbuf *odp_actions;
2345 struct action_xlate_ctx ctx;
2346
2347 action_xlate_ctx_init(&ctx, p, &facet->flow, packet);
2348 odp_actions = xlate_actions(&ctx, rule->actions, rule->n_actions);
2349 facet->tags = ctx.tags;
2350 facet->may_install = ctx.may_set_up_flow;
2351 facet->nf_flow.output_iface = ctx.nf_output_iface;
2352
2353 if (facet->actions_len != odp_actions->size
2354 || memcmp(facet->actions, odp_actions->data, odp_actions->size)) {
2355 free(facet->actions);
2356 facet->actions_len = odp_actions->size;
2357 facet->actions = xmemdup(odp_actions->data, odp_actions->size);
2358 }
2359
2360 ofpbuf_delete(odp_actions);
2361 }
2362
2363 static int
2364 facet_put__(struct ofproto *ofproto, struct facet *facet,
2365 const struct nlattr *actions, size_t actions_len,
2366 struct dpif_flow_stats *stats)
2367 {
2368 uint32_t keybuf[ODPUTIL_FLOW_KEY_U32S];
2369 enum dpif_flow_put_flags flags;
2370 struct ofpbuf key;
2371
2372 flags = DPIF_FP_CREATE | DPIF_FP_MODIFY;
2373 if (stats) {
2374 flags |= DPIF_FP_ZERO_STATS;
2375 facet->dp_packet_count = 0;
2376 facet->dp_byte_count = 0;
2377 }
2378
2379 ofpbuf_use_stack(&key, keybuf, sizeof keybuf);
2380 odp_flow_key_from_flow(&key, &facet->flow);
2381 assert(key.base == keybuf);
2382
2383 return dpif_flow_put(ofproto->dpif, flags, key.data, key.size,
2384 actions, actions_len, stats);
2385 }
2386
2387 /* If 'facet' is installable, inserts or re-inserts it into 'p''s datapath. If
2388 * 'zero_stats' is true, clears any existing statistics from the datapath for
2389 * 'facet'. */
2390 static void
2391 facet_install(struct ofproto *p, struct facet *facet, bool zero_stats)
2392 {
2393 struct dpif_flow_stats stats;
2394
2395 if (facet->may_install
2396 && !facet_put__(p, facet, facet->actions, facet->actions_len,
2397 zero_stats ? &stats : NULL)) {
2398 facet->installed = true;
2399 }
2400 }
2401
2402 /* Ensures that the bytes in 'facet', plus 'extra_bytes', have been passed up
2403 * to the accounting hook function in the ofhooks structure. */
2404 static void
2405 facet_account(struct ofproto *ofproto,
2406 struct facet *facet, uint64_t extra_bytes)
2407 {
2408 uint64_t total_bytes = facet->byte_count + extra_bytes;
2409
2410 if (ofproto->ofhooks->account_flow_cb
2411 && total_bytes > facet->accounted_bytes)
2412 {
2413 ofproto->ofhooks->account_flow_cb(
2414 &facet->flow, facet->tags, facet->actions, facet->actions_len,
2415 total_bytes - facet->accounted_bytes, ofproto->aux);
2416 facet->accounted_bytes = total_bytes;
2417 }
2418 }
2419
2420 /* If 'rule' is installed in the datapath, uninstalls it. */
2421 static void
2422 facet_uninstall(struct ofproto *p, struct facet *facet)
2423 {
2424 if (facet->installed) {
2425 uint32_t keybuf[ODPUTIL_FLOW_KEY_U32S];
2426 struct dpif_flow_stats stats;
2427 struct ofpbuf key;
2428
2429 ofpbuf_use_stack(&key, keybuf, sizeof keybuf);
2430 odp_flow_key_from_flow(&key, &facet->flow);
2431 assert(key.base == keybuf);
2432
2433 if (!dpif_flow_del(p->dpif, key.data, key.size, &stats)) {
2434 facet_update_stats(p, facet, &stats);
2435 }
2436 facet->installed = false;
2437 facet->dp_packet_count = 0;
2438 facet->dp_byte_count = 0;
2439 } else {
2440 assert(facet->dp_packet_count == 0);
2441 assert(facet->dp_byte_count == 0);
2442 }
2443 }
2444
2445 /* Returns true if the only action for 'facet' is to send to the controller.
2446 * (We don't report NetFlow expiration messages for such facets because they
2447 * are just part of the control logic for the network, not real traffic). */
2448 static bool
2449 facet_is_controller_flow(struct facet *facet)
2450 {
2451 return (facet
2452 && facet->rule->n_actions == 1
2453 && action_outputs_to_port(&facet->rule->actions[0],
2454 htons(OFPP_CONTROLLER)));
2455 }
2456
2457 /* Folds all of 'facet''s statistics into its rule. Also updates the
2458 * accounting ofhook and emits a NetFlow expiration if appropriate. All of
2459 * 'facet''s statistics in the datapath should have been zeroed and folded into
2460 * its packet and byte counts before this function is called. */
2461 static void
2462 facet_flush_stats(struct ofproto *ofproto, struct facet *facet)
2463 {
2464 assert(!facet->dp_byte_count);
2465 assert(!facet->dp_packet_count);
2466
2467 facet_push_stats(ofproto, facet);
2468 facet_account(ofproto, facet, 0);
2469
2470 if (ofproto->netflow && !facet_is_controller_flow(facet)) {
2471 struct ofexpired expired;
2472 expired.flow = facet->flow;
2473 expired.packet_count = facet->packet_count;
2474 expired.byte_count = facet->byte_count;
2475 expired.used = facet->used;
2476 netflow_expire(ofproto->netflow, &facet->nf_flow, &expired);
2477 }
2478
2479 facet->rule->packet_count += facet->packet_count;
2480 facet->rule->byte_count += facet->byte_count;
2481
2482 /* Reset counters to prevent double counting if 'facet' ever gets
2483 * reinstalled. */
2484 facet->packet_count = 0;
2485 facet->byte_count = 0;
2486 facet->rs_packet_count = 0;
2487 facet->rs_byte_count = 0;
2488 facet->accounted_bytes = 0;
2489
2490 netflow_flow_clear(&facet->nf_flow);
2491 }
2492
2493 /* Searches 'ofproto''s table of facets for one exactly equal to 'flow'.
2494 * Returns it if found, otherwise a null pointer.
2495 *
2496 * The returned facet might need revalidation; use facet_lookup_valid()
2497 * instead if that is important. */
2498 static struct facet *
2499 facet_find(struct ofproto *ofproto, const struct flow *flow)
2500 {
2501 struct facet *facet;
2502
2503 HMAP_FOR_EACH_WITH_HASH (facet, hmap_node, flow_hash(flow, 0),
2504 &ofproto->facets) {
2505 if (flow_equal(flow, &facet->flow)) {
2506 return facet;
2507 }
2508 }
2509
2510 return NULL;
2511 }
2512
2513 /* Searches 'ofproto''s table of facets for one exactly equal to 'flow'.
2514 * Returns it if found, otherwise a null pointer.
2515 *
2516 * The returned facet is guaranteed to be valid. */
2517 static struct facet *
2518 facet_lookup_valid(struct ofproto *ofproto, const struct flow *flow)
2519 {
2520 struct facet *facet = facet_find(ofproto, flow);
2521
2522 /* The facet we found might not be valid, since we could be in need of
2523 * revalidation. If it is not valid, don't return it. */
2524 if (facet
2525 && ofproto->need_revalidate
2526 && !facet_revalidate(ofproto, facet)) {
2527 COVERAGE_INC(ofproto_invalidated);
2528 return NULL;
2529 }
2530
2531 return facet;
2532 }
2533
2534 /* Re-searches 'ofproto''s classifier for a rule matching 'facet':
2535 *
2536 * - If the rule found is different from 'facet''s current rule, moves
2537 * 'facet' to the new rule and recompiles its actions.
2538 *
2539 * - If the rule found is the same as 'facet''s current rule, leaves 'facet'
2540 * where it is and recompiles its actions anyway.
2541 *
2542 * - If there is none, destroys 'facet'.
2543 *
2544 * Returns true if 'facet' still exists, false if it has been destroyed. */
2545 static bool
2546 facet_revalidate(struct ofproto *ofproto, struct facet *facet)
2547 {
2548 struct action_xlate_ctx ctx;
2549 struct ofpbuf *odp_actions;
2550 struct rule *new_rule;
2551 bool actions_changed;
2552
2553 COVERAGE_INC(facet_revalidate);
2554
2555 /* Determine the new rule. */
2556 new_rule = rule_lookup(ofproto, &facet->flow);
2557 if (!new_rule) {
2558 /* No new rule, so delete the facet. */
2559 facet_remove(ofproto, facet);
2560 return false;
2561 }
2562
2563 /* Calculate new ODP actions.
2564 *
2565 * We do not modify any 'facet' state yet, because we might need to, e.g.,
2566 * emit a NetFlow expiration and, if so, we need to have the old state
2567 * around to properly compose it. */
2568 action_xlate_ctx_init(&ctx, ofproto, &facet->flow, NULL);
2569 odp_actions = xlate_actions(&ctx, new_rule->actions, new_rule->n_actions);
2570 actions_changed = (facet->actions_len != odp_actions->size
2571 || memcmp(facet->actions, odp_actions->data,
2572 facet->actions_len));
2573
2574 /* If the ODP actions changed or the installability changed, then we need
2575 * to talk to the datapath. */
2576 if (actions_changed || ctx.may_set_up_flow != facet->installed) {
2577 if (ctx.may_set_up_flow) {
2578 struct dpif_flow_stats stats;
2579
2580 facet_put__(ofproto, facet,
2581 odp_actions->data, odp_actions->size, &stats);
2582 facet_update_stats(ofproto, facet, &stats);
2583 } else {
2584 facet_uninstall(ofproto, facet);
2585 }
2586
2587 /* The datapath flow is gone or has zeroed stats, so push stats out of
2588 * 'facet' into 'rule'. */
2589 facet_flush_stats(ofproto, facet);
2590 }
2591
2592 /* Update 'facet' now that we've taken care of all the old state. */
2593 facet->tags = ctx.tags;
2594 facet->nf_flow.output_iface = ctx.nf_output_iface;
2595 facet->may_install = ctx.may_set_up_flow;
2596 if (actions_changed) {
2597 free(facet->actions);
2598 facet->actions_len = odp_actions->size;
2599 facet->actions = xmemdup(odp_actions->data, odp_actions->size);
2600 }
2601 if (facet->rule != new_rule) {
2602 COVERAGE_INC(facet_changed_rule);
2603 list_remove(&facet->list_node);
2604 list_push_back(&new_rule->facets, &facet->list_node);
2605 facet->rule = new_rule;
2606 facet->used = new_rule->created;
2607 facet->rs_used = facet->used;
2608 }
2609
2610 ofpbuf_delete(odp_actions);
2611
2612 return true;
2613 }
2614 \f
2615 static void
2616 queue_tx(struct ofpbuf *msg, const struct ofconn *ofconn,
2617 struct rconn_packet_counter *counter)
2618 {
2619 update_openflow_length(msg);
2620 if (rconn_send(ofconn->rconn, msg, counter)) {
2621 ofpbuf_delete(msg);
2622 }
2623 }
2624
2625 static void
2626 send_error_oh(const struct ofconn *ofconn, const struct ofp_header *oh,
2627 int error)
2628 {
2629 struct ofpbuf *buf = ofputil_encode_error_msg(error, oh);
2630 if (buf) {
2631 COVERAGE_INC(ofproto_error);
2632 queue_tx(buf, ofconn, ofconn->reply_counter);
2633 }
2634 }
2635
2636 static void
2637 hton_ofp_phy_port(struct ofp_phy_port *opp)
2638 {
2639 opp->port_no = htons(opp->port_no);
2640 opp->config = htonl(opp->config);
2641 opp->state = htonl(opp->state);
2642 opp->curr = htonl(opp->curr);
2643 opp->advertised = htonl(opp->advertised);
2644 opp->supported = htonl(opp->supported);
2645 opp->peer = htonl(opp->peer);
2646 }
2647
2648 static int
2649 handle_echo_request(struct ofconn *ofconn, const struct ofp_header *oh)
2650 {
2651 queue_tx(make_echo_reply(oh), ofconn, ofconn->reply_counter);
2652 return 0;
2653 }
2654
2655 static int
2656 handle_features_request(struct ofconn *ofconn, const struct ofp_header *oh)
2657 {
2658 struct ofp_switch_features *osf;
2659 struct ofpbuf *buf;
2660 struct ofport *port;
2661
2662 osf = make_openflow_xid(sizeof *osf, OFPT_FEATURES_REPLY, oh->xid, &buf);
2663 osf->datapath_id = htonll(ofconn->ofproto->datapath_id);
2664 osf->n_buffers = htonl(pktbuf_capacity());
2665 osf->n_tables = 2;
2666 osf->capabilities = htonl(OFPC_FLOW_STATS | OFPC_TABLE_STATS |
2667 OFPC_PORT_STATS | OFPC_ARP_MATCH_IP);
2668 osf->actions = htonl((1u << OFPAT_OUTPUT) |
2669 (1u << OFPAT_SET_VLAN_VID) |
2670 (1u << OFPAT_SET_VLAN_PCP) |
2671 (1u << OFPAT_STRIP_VLAN) |
2672 (1u << OFPAT_SET_DL_SRC) |
2673 (1u << OFPAT_SET_DL_DST) |
2674 (1u << OFPAT_SET_NW_SRC) |
2675 (1u << OFPAT_SET_NW_DST) |
2676 (1u << OFPAT_SET_NW_TOS) |
2677 (1u << OFPAT_SET_TP_SRC) |
2678 (1u << OFPAT_SET_TP_DST) |
2679 (1u << OFPAT_ENQUEUE));
2680
2681 HMAP_FOR_EACH (port, hmap_node, &ofconn->ofproto->ports) {
2682 hton_ofp_phy_port(ofpbuf_put(buf, &port->opp, sizeof port->opp));
2683 }
2684
2685 queue_tx(buf, ofconn, ofconn->reply_counter);
2686 return 0;
2687 }
2688
2689 static int
2690 handle_get_config_request(struct ofconn *ofconn, const struct ofp_header *oh)
2691 {
2692 struct ofpbuf *buf;
2693 struct ofp_switch_config *osc;
2694 uint16_t flags;
2695 bool drop_frags;
2696
2697 /* Figure out flags. */
2698 dpif_get_drop_frags(ofconn->ofproto->dpif, &drop_frags);
2699 flags = drop_frags ? OFPC_FRAG_DROP : OFPC_FRAG_NORMAL;
2700
2701 /* Send reply. */
2702 osc = make_openflow_xid(sizeof *osc, OFPT_GET_CONFIG_REPLY, oh->xid, &buf);
2703 osc->flags = htons(flags);
2704 osc->miss_send_len = htons(ofconn->miss_send_len);
2705 queue_tx(buf, ofconn, ofconn->reply_counter);
2706
2707 return 0;
2708 }
2709
2710 static int
2711 handle_set_config(struct ofconn *ofconn, const struct ofp_switch_config *osc)
2712 {
2713 uint16_t flags = ntohs(osc->flags);
2714
2715 if (ofconn->type == OFCONN_PRIMARY && ofconn->role != NX_ROLE_SLAVE) {
2716 switch (flags & OFPC_FRAG_MASK) {
2717 case OFPC_FRAG_NORMAL:
2718 dpif_set_drop_frags(ofconn->ofproto->dpif, false);
2719 break;
2720 case OFPC_FRAG_DROP:
2721 dpif_set_drop_frags(ofconn->ofproto->dpif, true);
2722 break;
2723 default:
2724 VLOG_WARN_RL(&rl, "requested bad fragment mode (flags=%"PRIx16")",
2725 osc->flags);
2726 break;
2727 }
2728 }
2729
2730 ofconn->miss_send_len = ntohs(osc->miss_send_len);
2731
2732 return 0;
2733 }
2734
2735 static void do_xlate_actions(const union ofp_action *in, size_t n_in,
2736 struct action_xlate_ctx *ctx);
2737
2738 static void
2739 add_output_action(struct action_xlate_ctx *ctx, uint16_t port)
2740 {
2741 const struct ofport *ofport = get_port(ctx->ofproto, port);
2742
2743 if (ofport) {
2744 if (ofport->opp.config & OFPPC_NO_FWD) {
2745 /* Forwarding disabled on port. */
2746 return;
2747 }
2748 } else {
2749 /*
2750 * We don't have an ofport record for this port, but it doesn't hurt to
2751 * allow forwarding to it anyhow. Maybe such a port will appear later
2752 * and we're pre-populating the flow table.
2753 */
2754 }
2755
2756 nl_msg_put_u32(ctx->odp_actions, ODP_ACTION_ATTR_OUTPUT, port);
2757 ctx->nf_output_iface = port;
2758 }
2759
2760 static struct rule *
2761 rule_lookup(struct ofproto *ofproto, const struct flow *flow)
2762 {
2763 return rule_from_cls_rule(classifier_lookup(&ofproto->cls, flow));
2764 }
2765
2766 static void
2767 xlate_table_action(struct action_xlate_ctx *ctx, uint16_t in_port)
2768 {
2769 if (ctx->recurse < MAX_RESUBMIT_RECURSION) {
2770 uint16_t old_in_port;
2771 struct rule *rule;
2772
2773 /* Look up a flow with 'in_port' as the input port. Then restore the
2774 * original input port (otherwise OFPP_NORMAL and OFPP_IN_PORT will
2775 * have surprising behavior). */
2776 old_in_port = ctx->flow.in_port;
2777 ctx->flow.in_port = in_port;
2778 rule = rule_lookup(ctx->ofproto, &ctx->flow);
2779 ctx->flow.in_port = old_in_port;
2780
2781 if (ctx->resubmit_hook) {
2782 ctx->resubmit_hook(ctx, rule);
2783 }
2784
2785 if (rule) {
2786 ctx->recurse++;
2787 do_xlate_actions(rule->actions, rule->n_actions, ctx);
2788 ctx->recurse--;
2789 }
2790 } else {
2791 static struct vlog_rate_limit recurse_rl = VLOG_RATE_LIMIT_INIT(1, 1);
2792
2793 VLOG_ERR_RL(&recurse_rl, "NXAST_RESUBMIT recursed over %d times",
2794 MAX_RESUBMIT_RECURSION);
2795 }
2796 }
2797
2798 static void
2799 flood_packets(struct ofproto *ofproto, uint16_t odp_in_port, uint32_t mask,
2800 uint16_t *nf_output_iface, struct ofpbuf *odp_actions)
2801 {
2802 struct ofport *ofport;
2803
2804 HMAP_FOR_EACH (ofport, hmap_node, &ofproto->ports) {
2805 uint16_t odp_port = ofport->odp_port;
2806 if (odp_port != odp_in_port && !(ofport->opp.config & mask)) {
2807 nl_msg_put_u32(odp_actions, ODP_ACTION_ATTR_OUTPUT, odp_port);
2808 }
2809 }
2810 *nf_output_iface = NF_OUT_FLOOD;
2811 }
2812
2813 static void
2814 xlate_output_action__(struct action_xlate_ctx *ctx,
2815 uint16_t port, uint16_t max_len)
2816 {
2817 uint16_t odp_port;
2818 uint16_t prev_nf_output_iface = ctx->nf_output_iface;
2819
2820 ctx->nf_output_iface = NF_OUT_DROP;
2821
2822 switch (port) {
2823 case OFPP_IN_PORT:
2824 add_output_action(ctx, ctx->flow.in_port);
2825 break;
2826 case OFPP_TABLE:
2827 xlate_table_action(ctx, ctx->flow.in_port);
2828 break;
2829 case OFPP_NORMAL:
2830 if (!ctx->ofproto->ofhooks->normal_cb(&ctx->flow, ctx->packet,
2831 ctx->odp_actions, &ctx->tags,
2832 &ctx->nf_output_iface,
2833 ctx->ofproto->aux)) {
2834 COVERAGE_INC(ofproto_uninstallable);
2835 ctx->may_set_up_flow = false;
2836 }
2837 break;
2838 case OFPP_FLOOD:
2839 flood_packets(ctx->ofproto, ctx->flow.in_port, OFPPC_NO_FLOOD,
2840 &ctx->nf_output_iface, ctx->odp_actions);
2841 break;
2842 case OFPP_ALL:
2843 flood_packets(ctx->ofproto, ctx->flow.in_port, 0,
2844 &ctx->nf_output_iface, ctx->odp_actions);
2845 break;
2846 case OFPP_CONTROLLER:
2847 nl_msg_put_u64(ctx->odp_actions, ODP_ACTION_ATTR_CONTROLLER, max_len);
2848 break;
2849 case OFPP_LOCAL:
2850 add_output_action(ctx, ODPP_LOCAL);
2851 break;
2852 default:
2853 odp_port = ofp_port_to_odp_port(port);
2854 if (odp_port != ctx->flow.in_port) {
2855 add_output_action(ctx, odp_port);
2856 }
2857 break;
2858 }
2859
2860 if (prev_nf_output_iface == NF_OUT_FLOOD) {
2861 ctx->nf_output_iface = NF_OUT_FLOOD;
2862 } else if (ctx->nf_output_iface == NF_OUT_DROP) {
2863 ctx->nf_output_iface = prev_nf_output_iface;
2864 } else if (prev_nf_output_iface != NF_OUT_DROP &&
2865 ctx->nf_output_iface != NF_OUT_FLOOD) {
2866 ctx->nf_output_iface = NF_OUT_MULTI;
2867 }
2868 }
2869
2870 static void
2871 xlate_output_action(struct action_xlate_ctx *ctx,
2872 const struct ofp_action_output *oao)
2873 {
2874 xlate_output_action__(ctx, ntohs(oao->port), ntohs(oao->max_len));
2875 }
2876
2877 /* If the final ODP action in 'ctx' is "pop priority", drop it, as an
2878 * optimization, because we're going to add another action that sets the
2879 * priority immediately after, or because there are no actions following the
2880 * pop. */
2881 static void
2882 remove_pop_action(struct action_xlate_ctx *ctx)
2883 {
2884 if (ctx->odp_actions->size == ctx->last_pop_priority) {
2885 ctx->odp_actions->size -= NLA_ALIGN(NLA_HDRLEN);
2886 ctx->last_pop_priority = -1;
2887 }
2888 }
2889
2890 static void
2891 add_pop_action(struct action_xlate_ctx *ctx)
2892 {
2893 if (ctx->odp_actions->size != ctx->last_pop_priority) {
2894 nl_msg_put_flag(ctx->odp_actions, ODP_ACTION_ATTR_POP_PRIORITY);
2895 ctx->last_pop_priority = ctx->odp_actions->size;
2896 }
2897 }
2898
2899 static void
2900 xlate_enqueue_action(struct action_xlate_ctx *ctx,
2901 const struct ofp_action_enqueue *oae)
2902 {
2903 uint16_t ofp_port, odp_port;
2904 uint32_t priority;
2905 int error;
2906
2907 error = dpif_queue_to_priority(ctx->ofproto->dpif, ntohl(oae->queue_id),
2908 &priority);
2909 if (error) {
2910 /* Fall back to ordinary output action. */
2911 xlate_output_action__(ctx, ntohs(oae->port), 0);
2912 return;
2913 }
2914
2915 /* Figure out ODP output port. */
2916 ofp_port = ntohs(oae->port);
2917 if (ofp_port != OFPP_IN_PORT) {
2918 odp_port = ofp_port_to_odp_port(ofp_port);
2919 } else {
2920 odp_port = ctx->flow.in_port;
2921 }
2922
2923 /* Add ODP actions. */
2924 remove_pop_action(ctx);
2925 nl_msg_put_u32(ctx->odp_actions, ODP_ACTION_ATTR_SET_PRIORITY, priority);
2926 add_output_action(ctx, odp_port);
2927 add_pop_action(ctx);
2928
2929 /* Update NetFlow output port. */
2930 if (ctx->nf_output_iface == NF_OUT_DROP) {
2931 ctx->nf_output_iface = odp_port;
2932 } else if (ctx->nf_output_iface != NF_OUT_FLOOD) {
2933 ctx->nf_output_iface = NF_OUT_MULTI;
2934 }
2935 }
2936
2937 static void
2938 xlate_set_queue_action(struct action_xlate_ctx *ctx,
2939 const struct nx_action_set_queue *nasq)
2940 {
2941 uint32_t priority;
2942 int error;
2943
2944 error = dpif_queue_to_priority(ctx->ofproto->dpif, ntohl(nasq->queue_id),
2945 &priority);
2946 if (error) {
2947 /* Couldn't translate queue to a priority, so ignore. A warning
2948 * has already been logged. */
2949 return;
2950 }
2951
2952 remove_pop_action(ctx);
2953 nl_msg_put_u32(ctx->odp_actions, ODP_ACTION_ATTR_SET_PRIORITY, priority);
2954 }
2955
2956 static void
2957 xlate_set_dl_tci(struct action_xlate_ctx *ctx)
2958 {
2959 ovs_be16 tci = ctx->flow.vlan_tci;
2960 if (!(tci & htons(VLAN_CFI))) {
2961 nl_msg_put_flag(ctx->odp_actions, ODP_ACTION_ATTR_STRIP_VLAN);
2962 } else {
2963 nl_msg_put_be16(ctx->odp_actions, ODP_ACTION_ATTR_SET_DL_TCI,
2964 tci & ~htons(VLAN_CFI));
2965 }
2966 }
2967
2968 struct xlate_reg_state {
2969 ovs_be16 vlan_tci;
2970 ovs_be64 tun_id;
2971 };
2972
2973 static void
2974 save_reg_state(const struct action_xlate_ctx *ctx,
2975 struct xlate_reg_state *state)
2976 {
2977 state->vlan_tci = ctx->flow.vlan_tci;
2978 state->tun_id = ctx->flow.tun_id;
2979 }
2980
2981 static void
2982 update_reg_state(struct action_xlate_ctx *ctx,
2983 const struct xlate_reg_state *state)
2984 {
2985 if (ctx->flow.vlan_tci != state->vlan_tci) {
2986 xlate_set_dl_tci(ctx);
2987 }
2988 if (ctx->flow.tun_id != state->tun_id) {
2989 nl_msg_put_be64(ctx->odp_actions,
2990 ODP_ACTION_ATTR_SET_TUNNEL, ctx->flow.tun_id);
2991 }
2992 }
2993
2994 static void
2995 xlate_nicira_action(struct action_xlate_ctx *ctx,
2996 const struct nx_action_header *nah)
2997 {
2998 const struct nx_action_resubmit *nar;
2999 const struct nx_action_set_tunnel *nast;
3000 const struct nx_action_set_queue *nasq;
3001 const struct nx_action_multipath *nam;
3002 enum nx_action_subtype subtype = ntohs(nah->subtype);
3003 struct xlate_reg_state state;
3004 ovs_be64 tun_id;
3005
3006 assert(nah->vendor == htonl(NX_VENDOR_ID));
3007 switch (subtype) {
3008 case NXAST_RESUBMIT:
3009 nar = (const struct nx_action_resubmit *) nah;
3010 xlate_table_action(ctx, ofp_port_to_odp_port(ntohs(nar->in_port)));
3011 break;
3012
3013 case NXAST_SET_TUNNEL:
3014 nast = (const struct nx_action_set_tunnel *) nah;
3015 tun_id = htonll(ntohl(nast->tun_id));
3016 nl_msg_put_be64(ctx->odp_actions, ODP_ACTION_ATTR_SET_TUNNEL, tun_id);
3017 ctx->flow.tun_id = tun_id;
3018 break;
3019
3020 case NXAST_DROP_SPOOFED_ARP:
3021 if (ctx->flow.dl_type == htons(ETH_TYPE_ARP)) {
3022 nl_msg_put_flag(ctx->odp_actions,
3023 ODP_ACTION_ATTR_DROP_SPOOFED_ARP);
3024 }
3025 break;
3026
3027 case NXAST_SET_QUEUE:
3028 nasq = (const struct nx_action_set_queue *) nah;
3029 xlate_set_queue_action(ctx, nasq);
3030 break;
3031
3032 case NXAST_POP_QUEUE:
3033 add_pop_action(ctx);
3034 break;
3035
3036 case NXAST_REG_MOVE:
3037 save_reg_state(ctx, &state);
3038 nxm_execute_reg_move((const struct nx_action_reg_move *) nah,
3039 &ctx->flow);
3040 update_reg_state(ctx, &state);
3041 break;
3042
3043 case NXAST_REG_LOAD:
3044 save_reg_state(ctx, &state);
3045 nxm_execute_reg_load((const struct nx_action_reg_load *) nah,
3046 &ctx->flow);
3047 update_reg_state(ctx, &state);
3048 break;
3049
3050 case NXAST_NOTE:
3051 /* Nothing to do. */
3052 break;
3053
3054 case NXAST_SET_TUNNEL64:
3055 tun_id = ((const struct nx_action_set_tunnel64 *) nah)->tun_id;
3056 nl_msg_put_be64(ctx->odp_actions, ODP_ACTION_ATTR_SET_TUNNEL, tun_id);
3057 ctx->flow.tun_id = tun_id;
3058 break;
3059
3060 case NXAST_MULTIPATH:
3061 nam = (const struct nx_action_multipath *) nah;
3062 multipath_execute(nam, &ctx->flow);
3063 break;
3064
3065 /* If you add a new action here that modifies flow data, don't forget to
3066 * update the flow key in ctx->flow at the same time. */
3067
3068 case NXAST_SNAT__OBSOLETE:
3069 default:
3070 VLOG_DBG_RL(&rl, "unknown Nicira action type %d", (int) subtype);
3071 break;
3072 }
3073 }
3074
3075 static void
3076 do_xlate_actions(const union ofp_action *in, size_t n_in,
3077 struct action_xlate_ctx *ctx)
3078 {
3079 struct actions_iterator iter;
3080 const union ofp_action *ia;
3081 const struct ofport *port;
3082
3083 port = get_port(ctx->ofproto, ctx->flow.in_port);
3084 if (port && port->opp.config & (OFPPC_NO_RECV | OFPPC_NO_RECV_STP) &&
3085 port->opp.config & (eth_addr_equals(ctx->flow.dl_dst, eth_addr_stp)
3086 ? OFPPC_NO_RECV_STP : OFPPC_NO_RECV)) {
3087 /* Drop this flow. */
3088 return;
3089 }
3090
3091 for (ia = actions_first(&iter, in, n_in); ia; ia = actions_next(&iter)) {
3092 enum ofp_action_type type = ntohs(ia->type);
3093 const struct ofp_action_dl_addr *oada;
3094
3095 switch (type) {
3096 case OFPAT_OUTPUT:
3097 xlate_output_action(ctx, &ia->output);
3098 break;
3099
3100 case OFPAT_SET_VLAN_VID:
3101 ctx->flow.vlan_tci &= ~htons(VLAN_VID_MASK);
3102 ctx->flow.vlan_tci |= ia->vlan_vid.vlan_vid | htons(VLAN_CFI);
3103 xlate_set_dl_tci(ctx);
3104 break;
3105
3106 case OFPAT_SET_VLAN_PCP:
3107 ctx->flow.vlan_tci &= ~htons(VLAN_PCP_MASK);
3108 ctx->flow.vlan_tci |= htons(
3109 (ia->vlan_pcp.vlan_pcp << VLAN_PCP_SHIFT) | VLAN_CFI);
3110 xlate_set_dl_tci(ctx);
3111 break;
3112
3113 case OFPAT_STRIP_VLAN:
3114 ctx->flow.vlan_tci = htons(0);
3115 xlate_set_dl_tci(ctx);
3116 break;
3117
3118 case OFPAT_SET_DL_SRC:
3119 oada = ((struct ofp_action_dl_addr *) ia);
3120 nl_msg_put_unspec(ctx->odp_actions, ODP_ACTION_ATTR_SET_DL_SRC,
3121 oada->dl_addr, ETH_ADDR_LEN);
3122 memcpy(ctx->flow.dl_src, oada->dl_addr, ETH_ADDR_LEN);
3123 break;
3124
3125 case OFPAT_SET_DL_DST:
3126 oada = ((struct ofp_action_dl_addr *) ia);
3127 nl_msg_put_unspec(ctx->odp_actions, ODP_ACTION_ATTR_SET_DL_DST,
3128 oada->dl_addr, ETH_ADDR_LEN);
3129 memcpy(ctx->flow.dl_dst, oada->dl_addr, ETH_ADDR_LEN);
3130 break;
3131
3132 case OFPAT_SET_NW_SRC:
3133 nl_msg_put_be32(ctx->odp_actions, ODP_ACTION_ATTR_SET_NW_SRC,
3134 ia->nw_addr.nw_addr);
3135 ctx->flow.nw_src = ia->nw_addr.nw_addr;
3136 break;
3137
3138 case OFPAT_SET_NW_DST:
3139 nl_msg_put_be32(ctx->odp_actions, ODP_ACTION_ATTR_SET_NW_DST,
3140 ia->nw_addr.nw_addr);
3141 ctx->flow.nw_dst = ia->nw_addr.nw_addr;
3142 break;
3143
3144 case OFPAT_SET_NW_TOS:
3145 nl_msg_put_u8(ctx->odp_actions, ODP_ACTION_ATTR_SET_NW_TOS,
3146 ia->nw_tos.nw_tos);
3147 ctx->flow.nw_tos = ia->nw_tos.nw_tos;
3148 break;
3149
3150 case OFPAT_SET_TP_SRC:
3151 nl_msg_put_be16(ctx->odp_actions, ODP_ACTION_ATTR_SET_TP_SRC,
3152 ia->tp_port.tp_port);
3153 ctx->flow.tp_src = ia->tp_port.tp_port;
3154 break;
3155
3156 case OFPAT_SET_TP_DST:
3157 nl_msg_put_be16(ctx->odp_actions, ODP_ACTION_ATTR_SET_TP_DST,
3158 ia->tp_port.tp_port);
3159 ctx->flow.tp_dst = ia->tp_port.tp_port;
3160 break;
3161
3162 case OFPAT_VENDOR:
3163 xlate_nicira_action(ctx, (const struct nx_action_header *) ia);
3164 break;
3165
3166 case OFPAT_ENQUEUE:
3167 xlate_enqueue_action(ctx, (const struct ofp_action_enqueue *) ia);
3168 break;
3169
3170 default:
3171 VLOG_DBG_RL(&rl, "unknown action type %d", (int) type);
3172 break;
3173 }
3174 }
3175 }
3176
3177 static void
3178 action_xlate_ctx_init(struct action_xlate_ctx *ctx,
3179 struct ofproto *ofproto, const struct flow *flow,
3180 const struct ofpbuf *packet)
3181 {
3182 ctx->ofproto = ofproto;
3183 ctx->flow = *flow;
3184 ctx->packet = packet;
3185 ctx->resubmit_hook = NULL;
3186 ctx->check_special = true;
3187 }
3188
3189 static void
3190 ofproto_process_cfm(struct ofproto *ofproto, const struct flow *flow,
3191 const struct ofpbuf *packet)
3192 {
3193 struct ofport *ofport;
3194
3195 ofport = get_port(ofproto, flow->in_port);
3196 if (ofport && ofport->cfm) {
3197 cfm_process_heartbeat(ofport->cfm, packet);
3198 }
3199 }
3200
3201 static struct ofpbuf *
3202 xlate_actions(struct action_xlate_ctx *ctx,
3203 const union ofp_action *in, size_t n_in)
3204 {
3205 COVERAGE_INC(ofproto_ofp2odp);
3206
3207 ctx->odp_actions = ofpbuf_new(512);
3208 ctx->tags = 0;
3209 ctx->may_set_up_flow = true;
3210 ctx->nf_output_iface = NF_OUT_DROP;
3211 ctx->recurse = 0;
3212 ctx->last_pop_priority = -1;
3213
3214 if (ctx->check_special && cfm_should_process_flow(&ctx->flow)) {
3215 if (ctx->packet) {
3216 ofproto_process_cfm(ctx->ofproto, &ctx->flow, ctx->packet);
3217 }
3218 ctx->may_set_up_flow = false;
3219 } else if (ctx->check_special
3220 && ctx->ofproto->ofhooks->special_cb
3221 && !ctx->ofproto->ofhooks->special_cb(&ctx->flow, ctx->packet,
3222 ctx->ofproto->aux)) {
3223 ctx->may_set_up_flow = false;
3224 } else {
3225 do_xlate_actions(in, n_in, ctx);
3226 }
3227
3228 remove_pop_action(ctx);
3229
3230 /* Check with in-band control to see if we're allowed to set up this
3231 * flow. */
3232 if (!in_band_rule_check(ctx->ofproto->in_band, &ctx->flow,
3233 ctx->odp_actions->data, ctx->odp_actions->size)) {
3234 ctx->may_set_up_flow = false;
3235 }
3236
3237 return ctx->odp_actions;
3238 }
3239
3240 /* Checks whether 'ofconn' is a slave controller. If so, returns an OpenFlow
3241 * error message code (composed with ofp_mkerr()) for the caller to propagate
3242 * upward. Otherwise, returns 0.
3243 *
3244 * The log message mentions 'msg_type'. */
3245 static int
3246 reject_slave_controller(struct ofconn *ofconn, const const char *msg_type)
3247 {
3248 if (ofconn->type == OFCONN_PRIMARY && ofconn->role == NX_ROLE_SLAVE) {
3249 static struct vlog_rate_limit perm_rl = VLOG_RATE_LIMIT_INIT(1, 5);
3250 VLOG_WARN_RL(&perm_rl, "rejecting %s message from slave controller",
3251 msg_type);
3252
3253 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_EPERM);
3254 } else {
3255 return 0;
3256 }
3257 }
3258
3259 static int
3260 handle_packet_out(struct ofconn *ofconn, const struct ofp_header *oh)
3261 {
3262 struct ofproto *p = ofconn->ofproto;
3263 struct ofp_packet_out *opo;
3264 struct ofpbuf payload, *buffer;
3265 union ofp_action *ofp_actions;
3266 struct action_xlate_ctx ctx;
3267 struct ofpbuf *odp_actions;
3268 struct ofpbuf request;
3269 struct flow flow;
3270 size_t n_ofp_actions;
3271 uint16_t in_port;
3272 int error;
3273
3274 COVERAGE_INC(ofproto_packet_out);
3275
3276 error = reject_slave_controller(ofconn, "OFPT_PACKET_OUT");
3277 if (error) {
3278 return error;
3279 }
3280
3281 /* Get ofp_packet_out. */
3282 ofpbuf_use_const(&request, oh, ntohs(oh->length));
3283 opo = ofpbuf_pull(&request, offsetof(struct ofp_packet_out, actions));
3284
3285 /* Get actions. */
3286 error = ofputil_pull_actions(&request, ntohs(opo->actions_len),
3287 &ofp_actions, &n_ofp_actions);
3288 if (error) {
3289 return error;
3290 }
3291
3292 /* Get payload. */
3293 if (opo->buffer_id != htonl(UINT32_MAX)) {
3294 error = pktbuf_retrieve(ofconn->pktbuf, ntohl(opo->buffer_id),
3295 &buffer, &in_port);
3296 if (error || !buffer) {
3297 return error;
3298 }
3299 payload = *buffer;
3300 } else {
3301 payload = request;
3302 buffer = NULL;
3303 }
3304
3305 /* Extract flow, check actions. */
3306 flow_extract(&payload, 0, ofp_port_to_odp_port(ntohs(opo->in_port)),
3307 &flow);
3308 error = validate_actions(ofp_actions, n_ofp_actions, &flow, p->max_ports);
3309 if (error) {
3310 goto exit;
3311 }
3312
3313 /* Send. */
3314 action_xlate_ctx_init(&ctx, p, &flow, &payload);
3315 odp_actions = xlate_actions(&ctx, ofp_actions, n_ofp_actions);
3316 dpif_execute(p->dpif, odp_actions->data, odp_actions->size, &payload);
3317 ofpbuf_delete(odp_actions);
3318
3319 exit:
3320 ofpbuf_delete(buffer);
3321 return 0;
3322 }
3323
3324 static void
3325 update_port_config(struct ofproto *p, struct ofport *port,
3326 uint32_t config, uint32_t mask)
3327 {
3328 mask &= config ^ port->opp.config;
3329 if (mask & OFPPC_PORT_DOWN) {
3330 if (config & OFPPC_PORT_DOWN) {
3331 netdev_turn_flags_off(port->netdev, NETDEV_UP, true);
3332 } else {
3333 netdev_turn_flags_on(port->netdev, NETDEV_UP, true);
3334 }
3335 }
3336 #define REVALIDATE_BITS (OFPPC_NO_RECV | OFPPC_NO_RECV_STP | \
3337 OFPPC_NO_FWD | OFPPC_NO_FLOOD)
3338 if (mask & REVALIDATE_BITS) {
3339 COVERAGE_INC(ofproto_costly_flags);
3340 port->opp.config ^= mask & REVALIDATE_BITS;
3341 p->need_revalidate = true;
3342 }
3343 #undef REVALIDATE_BITS
3344 if (mask & OFPPC_NO_PACKET_IN) {
3345 port->opp.config ^= OFPPC_NO_PACKET_IN;
3346 }
3347 }
3348
3349 static int
3350 handle_port_mod(struct ofconn *ofconn, const struct ofp_header *oh)
3351 {
3352 struct ofproto *p = ofconn->ofproto;
3353 const struct ofp_port_mod *opm = (const struct ofp_port_mod *) oh;
3354 struct ofport *port;
3355 int error;
3356
3357 error = reject_slave_controller(ofconn, "OFPT_PORT_MOD");
3358 if (error) {
3359 return error;
3360 }
3361
3362 port = get_port(p, ofp_port_to_odp_port(ntohs(opm->port_no)));
3363 if (!port) {
3364 return ofp_mkerr(OFPET_PORT_MOD_FAILED, OFPPMFC_BAD_PORT);
3365 } else if (memcmp(port->opp.hw_addr, opm->hw_addr, OFP_ETH_ALEN)) {
3366 return ofp_mkerr(OFPET_PORT_MOD_FAILED, OFPPMFC_BAD_HW_ADDR);
3367 } else {
3368 update_port_config(p, port, ntohl(opm->config), ntohl(opm->mask));
3369 if (opm->advertise) {
3370 netdev_set_advertisements(port->netdev, ntohl(opm->advertise));
3371 }
3372 }
3373 return 0;
3374 }
3375
3376 static struct ofpbuf *
3377 make_ofp_stats_reply(ovs_be32 xid, ovs_be16 type, size_t body_len)
3378 {
3379 struct ofp_stats_reply *osr;
3380 struct ofpbuf *msg;
3381
3382 msg = ofpbuf_new(MIN(sizeof *osr + body_len, UINT16_MAX));
3383 osr = put_openflow_xid(sizeof *osr, OFPT_STATS_REPLY, xid, msg);
3384 osr->type = type;
3385 osr->flags = htons(0);
3386 return msg;
3387 }
3388
3389 static struct ofpbuf *
3390 start_ofp_stats_reply(const struct ofp_header *request, size_t body_len)
3391 {
3392 const struct ofp_stats_request *osr
3393 = (const struct ofp_stats_request *) request;
3394 return make_ofp_stats_reply(osr->header.xid, osr->type, body_len);
3395 }
3396
3397 static void *
3398 append_ofp_stats_reply(size_t nbytes, struct ofconn *ofconn,
3399 struct ofpbuf **msgp)
3400 {
3401 struct ofpbuf *msg = *msgp;
3402 assert(nbytes <= UINT16_MAX - sizeof(struct ofp_stats_reply));
3403 if (nbytes + msg->size > UINT16_MAX) {
3404 struct ofp_stats_reply *reply = msg->data;
3405 reply->flags = htons(OFPSF_REPLY_MORE);
3406 *msgp = make_ofp_stats_reply(reply->header.xid, reply->type, nbytes);
3407 queue_tx(msg, ofconn, ofconn->reply_counter);
3408 }
3409 return ofpbuf_put_uninit(*msgp, nbytes);
3410 }
3411
3412 static struct ofpbuf *
3413 make_nxstats_reply(ovs_be32 xid, ovs_be32 subtype, size_t body_len)
3414 {
3415 struct nicira_stats_msg *nsm;
3416 struct ofpbuf *msg;
3417
3418 msg = ofpbuf_new(MIN(sizeof *nsm + body_len, UINT16_MAX));
3419 nsm = put_openflow_xid(sizeof *nsm, OFPT_STATS_REPLY, xid, msg);
3420 nsm->type = htons(OFPST_VENDOR);
3421 nsm->flags = htons(0);
3422 nsm->vendor = htonl(NX_VENDOR_ID);
3423 nsm->subtype = subtype;
3424 return msg;
3425 }
3426
3427 static struct ofpbuf *
3428 start_nxstats_reply(const struct nicira_stats_msg *request, size_t body_len)
3429 {
3430 return make_nxstats_reply(request->header.xid, request->subtype, body_len);
3431 }
3432
3433 static void
3434 append_nxstats_reply(size_t nbytes, struct ofconn *ofconn,
3435 struct ofpbuf **msgp)
3436 {
3437 struct ofpbuf *msg = *msgp;
3438 assert(nbytes <= UINT16_MAX - sizeof(struct nicira_stats_msg));
3439 if (nbytes + msg->size > UINT16_MAX) {
3440 struct nicira_stats_msg *reply = msg->data;
3441 reply->flags = htons(OFPSF_REPLY_MORE);
3442 *msgp = make_nxstats_reply(reply->header.xid, reply->subtype, nbytes);
3443 queue_tx(msg, ofconn, ofconn->reply_counter);
3444 }
3445 ofpbuf_prealloc_tailroom(*msgp, nbytes);
3446 }
3447
3448 static int
3449 handle_desc_stats_request(struct ofconn *ofconn,
3450 const struct ofp_header *request)
3451 {
3452 struct ofproto *p = ofconn->ofproto;
3453 struct ofp_desc_stats *ods;
3454 struct ofpbuf *msg;
3455
3456 msg = start_ofp_stats_reply(request, sizeof *ods);
3457 ods = append_ofp_stats_reply(sizeof *ods, ofconn, &msg);
3458 memset(ods, 0, sizeof *ods);
3459 ovs_strlcpy(ods->mfr_desc, p->mfr_desc, sizeof ods->mfr_desc);
3460 ovs_strlcpy(ods->hw_desc, p->hw_desc, sizeof ods->hw_desc);
3461 ovs_strlcpy(ods->sw_desc, p->sw_desc, sizeof ods->sw_desc);
3462 ovs_strlcpy(ods->serial_num, p->serial_desc, sizeof ods->serial_num);
3463 ovs_strlcpy(ods->dp_desc, p->dp_desc, sizeof ods->dp_desc);
3464 queue_tx(msg, ofconn, ofconn->reply_counter);
3465
3466 return 0;
3467 }
3468
3469 static int
3470 handle_table_stats_request(struct ofconn *ofconn,
3471 const struct ofp_header *request)
3472 {
3473 struct ofproto *p = ofconn->ofproto;
3474 struct ofp_table_stats *ots;
3475 struct ofpbuf *msg;
3476
3477 msg = start_ofp_stats_reply(request, sizeof *ots * 2);
3478
3479 /* Classifier table. */
3480 ots = append_ofp_stats_reply(sizeof *ots, ofconn, &msg);
3481 memset(ots, 0, sizeof *ots);
3482 strcpy(ots->name, "classifier");
3483 ots->wildcards = (ofconn->flow_format == NXFF_OPENFLOW10
3484 ? htonl(OFPFW_ALL) : htonl(OVSFW_ALL));
3485 ots->max_entries = htonl(1024 * 1024); /* An arbitrary big number. */
3486 ots->active_count = htonl(classifier_count(&p->cls));
3487 put_32aligned_be64(&ots->lookup_count, htonll(0)); /* XXX */
3488 put_32aligned_be64(&ots->matched_count, htonll(0)); /* XXX */
3489
3490 queue_tx(msg, ofconn, ofconn->reply_counter);
3491 return 0;
3492 }
3493
3494 static void
3495 append_port_stat(struct ofport *port, struct ofconn *ofconn,
3496 struct ofpbuf **msgp)
3497 {
3498 struct netdev_stats stats;
3499 struct ofp_port_stats *ops;
3500
3501 /* Intentionally ignore return value, since errors will set
3502 * 'stats' to all-1s, which is correct for OpenFlow, and
3503 * netdev_get_stats() will log errors. */
3504 netdev_get_stats(port->netdev, &stats);
3505
3506 ops = append_ofp_stats_reply(sizeof *ops, ofconn, msgp);
3507 ops->port_no = htons(port->opp.port_no);
3508 memset(ops->pad, 0, sizeof ops->pad);
3509 put_32aligned_be64(&ops->rx_packets, htonll(stats.rx_packets));
3510 put_32aligned_be64(&ops->tx_packets, htonll(stats.tx_packets));
3511 put_32aligned_be64(&ops->rx_bytes, htonll(stats.rx_bytes));
3512 put_32aligned_be64(&ops->tx_bytes, htonll(stats.tx_bytes));
3513 put_32aligned_be64(&ops->rx_dropped, htonll(stats.rx_dropped));
3514 put_32aligned_be64(&ops->tx_dropped, htonll(stats.tx_dropped));
3515 put_32aligned_be64(&ops->rx_errors, htonll(stats.rx_errors));
3516 put_32aligned_be64(&ops->tx_errors, htonll(stats.tx_errors));
3517 put_32aligned_be64(&ops->rx_frame_err, htonll(stats.rx_frame_errors));
3518 put_32aligned_be64(&ops->rx_over_err, htonll(stats.rx_over_errors));
3519 put_32aligned_be64(&ops->rx_crc_err, htonll(stats.rx_crc_errors));
3520 put_32aligned_be64(&ops->collisions, htonll(stats.collisions));
3521 }
3522
3523 static int
3524 handle_port_stats_request(struct ofconn *ofconn, const struct ofp_header *oh)
3525 {
3526 struct ofproto *p = ofconn->ofproto;
3527 const struct ofp_port_stats_request *psr = ofputil_stats_body(oh);
3528 struct ofp_port_stats *ops;
3529 struct ofpbuf *msg;
3530 struct ofport *port;
3531
3532 msg = start_ofp_stats_reply(oh, sizeof *ops * 16);
3533 if (psr->port_no != htons(OFPP_NONE)) {
3534 port = get_port(p, ofp_port_to_odp_port(ntohs(psr->port_no)));
3535 if (port) {
3536 append_port_stat(port, ofconn, &msg);
3537 }
3538 } else {
3539 HMAP_FOR_EACH (port, hmap_node, &p->ports) {
3540 append_port_stat(port, ofconn, &msg);
3541 }
3542 }
3543
3544 queue_tx(msg, ofconn, ofconn->reply_counter);
3545 return 0;
3546 }
3547
3548 static void
3549 calc_flow_duration__(long long int start, uint32_t *sec, uint32_t *nsec)
3550 {
3551 long long int msecs = time_msec() - start;
3552 *sec = msecs / 1000;
3553 *nsec = (msecs % 1000) * (1000 * 1000);
3554 }
3555
3556 static void
3557 calc_flow_duration(long long int start, ovs_be32 *sec_be, ovs_be32 *nsec_be)
3558 {
3559 uint32_t sec, nsec;
3560
3561 calc_flow_duration__(start, &sec, &nsec);
3562 *sec_be = htonl(sec);
3563 *nsec_be = htonl(nsec);
3564 }
3565
3566 static void
3567 put_ofp_flow_stats(struct ofconn *ofconn, struct rule *rule,
3568 ovs_be16 out_port, struct ofpbuf **replyp)
3569 {
3570 struct ofp_flow_stats *ofs;
3571 uint64_t packet_count, byte_count;
3572 ovs_be64 cookie;
3573 size_t act_len, len;
3574
3575 if (rule_is_hidden(rule) || !rule_has_out_port(rule, out_port)) {
3576 return;
3577 }
3578
3579 act_len = sizeof *rule->actions * rule->n_actions;
3580 len = offsetof(struct ofp_flow_stats, actions) + act_len;
3581
3582 rule_get_stats(rule, &packet_count, &byte_count);
3583
3584 ofs = append_ofp_stats_reply(len, ofconn, replyp);
3585 ofs->length = htons(len);
3586 ofs->table_id = 0;
3587 ofs->pad = 0;
3588 ofputil_cls_rule_to_match(&rule->cr, ofconn->flow_format, &ofs->match,
3589 rule->flow_cookie, &cookie);
3590 put_32aligned_be64(&ofs->cookie, cookie);
3591 calc_flow_duration(rule->created, &ofs->duration_sec, &ofs->duration_nsec);
3592 ofs->priority = htons(rule->cr.priority);
3593 ofs->idle_timeout = htons(rule->idle_timeout);
3594 ofs->hard_timeout = htons(rule->hard_timeout);
3595 memset(ofs->pad2, 0, sizeof ofs->pad2);
3596 put_32aligned_be64(&ofs->packet_count, htonll(packet_count));
3597 put_32aligned_be64(&ofs->byte_count, htonll(byte_count));
3598 if (rule->n_actions > 0) {
3599 memcpy(ofs->actions, rule->actions, act_len);
3600 }
3601 }
3602
3603 static bool
3604 is_valid_table(uint8_t table_id)
3605 {
3606 if (table_id == 0 || table_id == 0xff) {
3607 return true;
3608 } else {
3609 /* It would probably be better to reply with an error but there doesn't
3610 * seem to be any appropriate value, so that might just be
3611 * confusing. */
3612 VLOG_WARN_RL(&rl, "controller asked for invalid table %"PRIu8,
3613 table_id);
3614 return false;
3615 }
3616 }
3617
3618 static int
3619 handle_flow_stats_request(struct ofconn *ofconn, const struct ofp_header *oh)
3620 {
3621 const struct ofp_flow_stats_request *fsr = ofputil_stats_body(oh);
3622 struct ofpbuf *reply;
3623
3624 COVERAGE_INC(ofproto_flows_req);
3625 reply = start_ofp_stats_reply(oh, 1024);
3626 if (is_valid_table(fsr->table_id)) {
3627 struct cls_cursor cursor;
3628 struct cls_rule target;
3629 struct rule *rule;
3630
3631 ofputil_cls_rule_from_match(&fsr->match, 0, NXFF_OPENFLOW10, 0,
3632 &target);
3633 cls_cursor_init(&cursor, &ofconn->ofproto->cls, &target);
3634 CLS_CURSOR_FOR_EACH (rule, cr, &cursor) {
3635 put_ofp_flow_stats(ofconn, rule, fsr->out_port, &reply);
3636 }
3637 }
3638 queue_tx(reply, ofconn, ofconn->reply_counter);
3639
3640 return 0;
3641 }
3642
3643 static void
3644 put_nx_flow_stats(struct ofconn *ofconn, struct rule *rule,
3645 ovs_be16 out_port, struct ofpbuf **replyp)
3646 {
3647 struct nx_flow_stats *nfs;
3648 uint64_t packet_count, byte_count;
3649 size_t act_len, start_len;
3650 struct ofpbuf *reply;
3651
3652 if (rule_is_hidden(rule) || !rule_has_out_port(rule, out_port)) {
3653 return;
3654 }
3655
3656 rule_get_stats(rule, &packet_count, &byte_count);
3657
3658 act_len = sizeof *rule->actions * rule->n_actions;
3659
3660 append_nxstats_reply(sizeof *nfs + NXM_MAX_LEN + act_len, ofconn, replyp);
3661 start_len = (*replyp)->size;
3662 reply = *replyp;
3663
3664 nfs = ofpbuf_put_uninit(reply, sizeof *nfs);
3665 nfs->table_id = 0;
3666 nfs->pad = 0;
3667 calc_flow_duration(rule->created, &nfs->duration_sec, &nfs->duration_nsec);
3668 nfs->cookie = rule->flow_cookie;
3669 nfs->priority = htons(rule->cr.priority);
3670 nfs->idle_timeout = htons(rule->idle_timeout);
3671 nfs->hard_timeout = htons(rule->hard_timeout);
3672 nfs->match_len = htons(nx_put_match(reply, &rule->cr));
3673 memset(nfs->pad2, 0, sizeof nfs->pad2);
3674 nfs->packet_count = htonll(packet_count);
3675 nfs->byte_count = htonll(byte_count);
3676 if (rule->n_actions > 0) {
3677 ofpbuf_put(reply, rule->actions, act_len);
3678 }
3679 nfs->length = htons(reply->size - start_len);
3680 }
3681
3682 static int
3683 handle_nxst_flow(struct ofconn *ofconn, const struct ofp_header *oh)
3684 {
3685 struct nx_flow_stats_request *nfsr;
3686 struct cls_rule target;
3687 struct ofpbuf *reply;
3688 struct ofpbuf b;
3689 int error;
3690
3691 ofpbuf_use_const(&b, oh, ntohs(oh->length));
3692
3693 /* Dissect the message. */
3694 nfsr = ofpbuf_pull(&b, sizeof *nfsr);
3695 error = nx_pull_match(&b, ntohs(nfsr->match_len), 0, &target);
3696 if (error) {
3697 return error;
3698 }
3699 if (b.size) {
3700 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
3701 }
3702
3703 COVERAGE_INC(ofproto_flows_req);
3704 reply = start_nxstats_reply(&nfsr->nsm, 1024);
3705 if (is_valid_table(nfsr->table_id)) {
3706 struct cls_cursor cursor;
3707 struct rule *rule;
3708
3709 cls_cursor_init(&cursor, &ofconn->ofproto->cls, &target);
3710 CLS_CURSOR_FOR_EACH (rule, cr, &cursor) {
3711 put_nx_flow_stats(ofconn, rule, nfsr->out_port, &reply);
3712 }
3713 }
3714 queue_tx(reply, ofconn, ofconn->reply_counter);
3715
3716 return 0;
3717 }
3718
3719 static void
3720 flow_stats_ds(struct rule *rule, struct ds *results)
3721 {
3722 uint64_t packet_count, byte_count;
3723 size_t act_len = sizeof *rule->actions * rule->n_actions;
3724
3725 rule_get_stats(rule, &packet_count, &byte_count);
3726
3727 ds_put_format(results, "duration=%llds, ",
3728 (time_msec() - rule->created) / 1000);
3729 ds_put_format(results, "idle=%.3fs, ", (time_msec() - rule->used) / 1000.0);
3730 ds_put_format(results, "priority=%u, ", rule->cr.priority);
3731 ds_put_format(results, "n_packets=%"PRIu64", ", packet_count);
3732 ds_put_format(results, "n_bytes=%"PRIu64", ", byte_count);
3733 cls_rule_format(&rule->cr, results);
3734 ds_put_char(results, ',');
3735 if (act_len > 0) {
3736 ofp_print_actions(results, &rule->actions->header, act_len);
3737 } else {
3738 ds_put_cstr(results, "drop");
3739 }
3740 ds_put_cstr(results, "\n");
3741 }
3742
3743 /* Adds a pretty-printed description of all flows to 'results', including
3744 * hidden flows (e.g., set up by in-band control). */
3745 void
3746 ofproto_get_all_flows(struct ofproto *p, struct ds *results)
3747 {
3748 struct cls_cursor cursor;
3749 struct rule *rule;
3750
3751 cls_cursor_init(&cursor, &p->cls, NULL);
3752 CLS_CURSOR_FOR_EACH (rule, cr, &cursor) {
3753 flow_stats_ds(rule, results);
3754 }
3755 }
3756
3757 static void
3758 query_aggregate_stats(struct ofproto *ofproto, struct cls_rule *target,
3759 ovs_be16 out_port, uint8_t table_id,
3760 struct ofp_aggregate_stats_reply *oasr)
3761 {
3762 uint64_t total_packets = 0;
3763 uint64_t total_bytes = 0;
3764 int n_flows = 0;
3765
3766 COVERAGE_INC(ofproto_agg_request);
3767
3768 if (is_valid_table(table_id)) {
3769 struct cls_cursor cursor;
3770 struct rule *rule;
3771
3772 cls_cursor_init(&cursor, &ofproto->cls, target);
3773 CLS_CURSOR_FOR_EACH (rule, cr, &cursor) {
3774 if (!rule_is_hidden(rule) && rule_has_out_port(rule, out_port)) {
3775 uint64_t packet_count;
3776 uint64_t byte_count;
3777
3778 rule_get_stats(rule, &packet_count, &byte_count);
3779
3780 total_packets += packet_count;
3781 total_bytes += byte_count;
3782 n_flows++;
3783 }
3784 }
3785 }
3786
3787 oasr->flow_count = htonl(n_flows);
3788 put_32aligned_be64(&oasr->packet_count, htonll(total_packets));
3789 put_32aligned_be64(&oasr->byte_count, htonll(total_bytes));
3790 memset(oasr->pad, 0, sizeof oasr->pad);
3791 }
3792
3793 static int
3794 handle_aggregate_stats_request(struct ofconn *ofconn,
3795 const struct ofp_header *oh)
3796 {
3797 const struct ofp_aggregate_stats_request *request = ofputil_stats_body(oh);
3798 struct ofp_aggregate_stats_reply *reply;
3799 struct cls_rule target;
3800 struct ofpbuf *msg;
3801
3802 ofputil_cls_rule_from_match(&request->match, 0, NXFF_OPENFLOW10, 0,
3803 &target);
3804
3805 msg = start_ofp_stats_reply(oh, sizeof *reply);
3806 reply = append_ofp_stats_reply(sizeof *reply, ofconn, &msg);
3807 query_aggregate_stats(ofconn->ofproto, &target, request->out_port,
3808 request->table_id, reply);
3809 queue_tx(msg, ofconn, ofconn->reply_counter);
3810 return 0;
3811 }
3812
3813 static int
3814 handle_nxst_aggregate(struct ofconn *ofconn, const struct ofp_header *oh)
3815 {
3816 struct nx_aggregate_stats_request *request;
3817 struct ofp_aggregate_stats_reply *reply;
3818 struct cls_rule target;
3819 struct ofpbuf b;
3820 struct ofpbuf *buf;
3821 int error;
3822
3823 ofpbuf_use_const(&b, oh, ntohs(oh->length));
3824
3825 /* Dissect the message. */
3826 request = ofpbuf_pull(&b, sizeof *request);
3827 error = nx_pull_match(&b, ntohs(request->match_len), 0, &target);
3828 if (error) {
3829 return error;
3830 }
3831 if (b.size) {
3832 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
3833 }
3834
3835 /* Reply. */
3836 COVERAGE_INC(ofproto_flows_req);
3837 buf = start_nxstats_reply(&request->nsm, sizeof *reply);
3838 reply = ofpbuf_put_uninit(buf, sizeof *reply);
3839 query_aggregate_stats(ofconn->ofproto, &target, request->out_port,
3840 request->table_id, reply);
3841 queue_tx(buf, ofconn, ofconn->reply_counter);
3842
3843 return 0;
3844 }
3845
3846 struct queue_stats_cbdata {
3847 struct ofconn *ofconn;
3848 struct ofport *ofport;
3849 struct ofpbuf *msg;
3850 };
3851
3852 static void
3853 put_queue_stats(struct queue_stats_cbdata *cbdata, uint32_t queue_id,
3854 const struct netdev_queue_stats *stats)
3855 {
3856 struct ofp_queue_stats *reply;
3857
3858 reply = append_ofp_stats_reply(sizeof *reply, cbdata->ofconn, &cbdata->msg);
3859 reply->port_no = htons(cbdata->ofport->opp.port_no);
3860 memset(reply->pad, 0, sizeof reply->pad);
3861 reply->queue_id = htonl(queue_id);
3862 put_32aligned_be64(&reply->tx_bytes, htonll(stats->tx_bytes));
3863 put_32aligned_be64(&reply->tx_packets, htonll(stats->tx_packets));
3864 put_32aligned_be64(&reply->tx_errors, htonll(stats->tx_errors));
3865 }
3866
3867 static void
3868 handle_queue_stats_dump_cb(uint32_t queue_id,
3869 struct netdev_queue_stats *stats,
3870 void *cbdata_)
3871 {
3872 struct queue_stats_cbdata *cbdata = cbdata_;
3873
3874 put_queue_stats(cbdata, queue_id, stats);
3875 }
3876
3877 static void
3878 handle_queue_stats_for_port(struct ofport *port, uint32_t queue_id,
3879 struct queue_stats_cbdata *cbdata)
3880 {
3881 cbdata->ofport = port;
3882 if (queue_id == OFPQ_ALL) {
3883 netdev_dump_queue_stats(port->netdev,
3884 handle_queue_stats_dump_cb, cbdata);
3885 } else {
3886 struct netdev_queue_stats stats;
3887
3888 if (!netdev_get_queue_stats(port->netdev, queue_id, &stats)) {
3889 put_queue_stats(cbdata, queue_id, &stats);
3890 }
3891 }
3892 }
3893
3894 static int
3895 handle_queue_stats_request(struct ofconn *ofconn, const struct ofp_header *oh)
3896 {
3897 struct ofproto *ofproto = ofconn->ofproto;
3898 const struct ofp_queue_stats_request *qsr;
3899 struct queue_stats_cbdata cbdata;
3900 struct ofport *port;
3901 unsigned int port_no;
3902 uint32_t queue_id;
3903
3904 qsr = ofputil_stats_body(oh);
3905 if (!qsr) {
3906 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
3907 }
3908
3909 COVERAGE_INC(ofproto_queue_req);
3910
3911 cbdata.ofconn = ofconn;
3912 cbdata.msg = start_ofp_stats_reply(oh, 128);
3913
3914 port_no = ntohs(qsr->port_no);
3915 queue_id = ntohl(qsr->queue_id);
3916 if (port_no == OFPP_ALL) {
3917 HMAP_FOR_EACH (port, hmap_node, &ofproto->ports) {
3918 handle_queue_stats_for_port(port, queue_id, &cbdata);
3919 }
3920 } else if (port_no < ofproto->max_ports) {
3921 port = get_port(ofproto, ofp_port_to_odp_port(port_no));
3922 if (port) {
3923 handle_queue_stats_for_port(port, queue_id, &cbdata);
3924 }
3925 } else {
3926 ofpbuf_delete(cbdata.msg);
3927 return ofp_mkerr(OFPET_QUEUE_OP_FAILED, OFPQOFC_BAD_PORT);
3928 }
3929 queue_tx(cbdata.msg, ofconn, ofconn->reply_counter);
3930
3931 return 0;
3932 }
3933
3934 /* Updates 'facet''s used time. Caller is responsible for calling
3935 * facet_push_stats() to update the flows which 'facet' resubmits into. */
3936 static void
3937 facet_update_time(struct ofproto *ofproto, struct facet *facet,
3938 long long int used)
3939 {
3940 if (used > facet->used) {
3941 facet->used = used;
3942 if (used > facet->rule->used) {
3943 facet->rule->used = used;
3944 }
3945 netflow_flow_update_time(ofproto->netflow, &facet->nf_flow, used);
3946 }
3947 }
3948
3949 /* Folds the statistics from 'stats' into the counters in 'facet'.
3950 *
3951 * Because of the meaning of a facet's counters, it only makes sense to do this
3952 * if 'stats' are not tracked in the datapath, that is, if 'stats' represents a
3953 * packet that was sent by hand or if it represents statistics that have been
3954 * cleared out of the datapath. */
3955 static void
3956 facet_update_stats(struct ofproto *ofproto, struct facet *facet,
3957 const struct dpif_flow_stats *stats)
3958 {
3959 if (stats->n_packets || stats->used > facet->used) {
3960 facet_update_time(ofproto, facet, stats->used);
3961 facet->packet_count += stats->n_packets;
3962 facet->byte_count += stats->n_bytes;
3963 facet_push_stats(ofproto, facet);
3964 netflow_flow_update_flags(&facet->nf_flow, stats->tcp_flags);
3965 }
3966 }
3967
3968 static void
3969 facet_push_stats(struct ofproto *ofproto, struct facet *facet)
3970 {
3971 uint64_t rs_packets, rs_bytes;
3972
3973 assert(facet->packet_count >= facet->rs_packet_count);
3974 assert(facet->byte_count >= facet->rs_byte_count);
3975 assert(facet->used >= facet->rs_used);
3976
3977 rs_packets = facet->packet_count - facet->rs_packet_count;
3978 rs_bytes = facet->byte_count - facet->rs_byte_count;
3979
3980 if (rs_packets || rs_bytes || facet->used > facet->rs_used) {
3981 facet->rs_packet_count = facet->packet_count;
3982 facet->rs_byte_count = facet->byte_count;
3983 facet->rs_used = facet->used;
3984
3985 flow_push_stats(ofproto, facet->rule, &facet->flow,
3986 rs_packets, rs_bytes, facet->used);
3987 }
3988 }
3989
3990 struct ofproto_push {
3991 struct action_xlate_ctx ctx;
3992 uint64_t packets;
3993 uint64_t bytes;
3994 long long int used;
3995 };
3996
3997 static void
3998 push_resubmit(struct action_xlate_ctx *ctx, struct rule *rule)
3999 {
4000 struct ofproto_push *push = CONTAINER_OF(ctx, struct ofproto_push, ctx);
4001
4002 if (rule) {
4003 rule->packet_count += push->packets;
4004 rule->byte_count += push->bytes;
4005 rule->used = MAX(push->used, rule->used);
4006 }
4007 }
4008
4009 /* Pushes flow statistics to the rules which 'flow' resubmits into given
4010 * 'rule''s actions. */
4011 static void
4012 flow_push_stats(struct ofproto *ofproto, const struct rule *rule,
4013 struct flow *flow, uint64_t packets, uint64_t bytes,
4014 long long int used)
4015 {
4016 struct ofproto_push push;
4017
4018 push.packets = packets;
4019 push.bytes = bytes;
4020 push.used = used;
4021
4022 action_xlate_ctx_init(&push.ctx, ofproto, flow, NULL);
4023 push.ctx.resubmit_hook = push_resubmit;
4024 ofpbuf_delete(xlate_actions(&push.ctx, rule->actions, rule->n_actions));
4025 }
4026
4027 /* Implements OFPFC_ADD and the cases for OFPFC_MODIFY and OFPFC_MODIFY_STRICT
4028 * in which no matching flow already exists in the flow table.
4029 *
4030 * Adds the flow specified by 'ofm', which is followed by 'n_actions'
4031 * ofp_actions, to ofconn->ofproto's flow table. Returns 0 on success or an
4032 * OpenFlow error code as encoded by ofp_mkerr() on failure.
4033 *
4034 * 'ofconn' is used to retrieve the packet buffer specified in ofm->buffer_id,
4035 * if any. */
4036 static int
4037 add_flow(struct ofconn *ofconn, struct flow_mod *fm)
4038 {
4039 struct ofproto *p = ofconn->ofproto;
4040 struct ofpbuf *packet;
4041 struct rule *rule;
4042 uint16_t in_port;
4043 int error;
4044
4045 if (fm->flags & OFPFF_CHECK_OVERLAP
4046 && classifier_rule_overlaps(&p->cls, &fm->cr)) {
4047 return ofp_mkerr(OFPET_FLOW_MOD_FAILED, OFPFMFC_OVERLAP);
4048 }
4049
4050 error = 0;
4051 if (fm->buffer_id != UINT32_MAX) {
4052 error = pktbuf_retrieve(ofconn->pktbuf, fm->buffer_id,
4053 &packet, &in_port);
4054 } else {
4055 packet = NULL;
4056 in_port = UINT16_MAX;
4057 }
4058
4059 rule = rule_create(&fm->cr, fm->actions, fm->n_actions,
4060 fm->idle_timeout, fm->hard_timeout, fm->cookie,
4061 fm->flags & OFPFF_SEND_FLOW_REM);
4062 rule_insert(p, rule);
4063 if (packet) {
4064 rule_execute(p, rule, in_port, packet);
4065 }
4066 return error;
4067 }
4068
4069 static struct rule *
4070 find_flow_strict(struct ofproto *p, const struct flow_mod *fm)
4071 {
4072 return rule_from_cls_rule(classifier_find_rule_exactly(&p->cls, &fm->cr));
4073 }
4074
4075 static int
4076 send_buffered_packet(struct ofconn *ofconn,
4077 struct rule *rule, uint32_t buffer_id)
4078 {
4079 struct ofpbuf *packet;
4080 uint16_t in_port;
4081 int error;
4082
4083 if (buffer_id == UINT32_MAX) {
4084 return 0;
4085 }
4086
4087 error = pktbuf_retrieve(ofconn->pktbuf, buffer_id, &packet, &in_port);
4088 if (error) {
4089 return error;
4090 }
4091
4092 rule_execute(ofconn->ofproto, rule, in_port, packet);
4093
4094 return 0;
4095 }
4096 \f
4097 /* OFPFC_MODIFY and OFPFC_MODIFY_STRICT. */
4098
4099 struct modify_flows_cbdata {
4100 struct ofproto *ofproto;
4101 const struct flow_mod *fm;
4102 struct rule *match;
4103 };
4104
4105 static int modify_flow(struct ofproto *, const struct flow_mod *,
4106 struct rule *);
4107
4108 /* Implements OFPFC_MODIFY. Returns 0 on success or an OpenFlow error code as
4109 * encoded by ofp_mkerr() on failure.
4110 *
4111 * 'ofconn' is used to retrieve the packet buffer specified in ofm->buffer_id,
4112 * if any. */
4113 static int
4114 modify_flows_loose(struct ofconn *ofconn, struct flow_mod *fm)
4115 {
4116 struct ofproto *p = ofconn->ofproto;
4117 struct rule *match = NULL;
4118 struct cls_cursor cursor;
4119 struct rule *rule;
4120
4121 cls_cursor_init(&cursor, &p->cls, &fm->cr);
4122 CLS_CURSOR_FOR_EACH (rule, cr, &cursor) {
4123 if (!rule_is_hidden(rule)) {
4124 match = rule;
4125 modify_flow(p, fm, rule);
4126 }
4127 }
4128
4129 if (match) {
4130 /* This credits the packet to whichever flow happened to match last.
4131 * That's weird. Maybe we should do a lookup for the flow that
4132 * actually matches the packet? Who knows. */
4133 send_buffered_packet(ofconn, match, fm->buffer_id);
4134 return 0;
4135 } else {
4136 return add_flow(ofconn, fm);
4137 }
4138 }
4139
4140 /* Implements OFPFC_MODIFY_STRICT. Returns 0 on success or an OpenFlow error
4141 * code as encoded by ofp_mkerr() on failure.
4142 *
4143 * 'ofconn' is used to retrieve the packet buffer specified in ofm->buffer_id,
4144 * if any. */
4145 static int
4146 modify_flow_strict(struct ofconn *ofconn, struct flow_mod *fm)
4147 {
4148 struct ofproto *p = ofconn->ofproto;
4149 struct rule *rule = find_flow_strict(p, fm);
4150 if (rule && !rule_is_hidden(rule)) {
4151 modify_flow(p, fm, rule);
4152 return send_buffered_packet(ofconn, rule, fm->buffer_id);
4153 } else {
4154 return add_flow(ofconn, fm);
4155 }
4156 }
4157
4158 /* Implements core of OFPFC_MODIFY and OFPFC_MODIFY_STRICT where 'rule' has
4159 * been identified as a flow in 'p''s flow table to be modified, by changing
4160 * the rule's actions to match those in 'ofm' (which is followed by 'n_actions'
4161 * ofp_action[] structures). */
4162 static int
4163 modify_flow(struct ofproto *p, const struct flow_mod *fm, struct rule *rule)
4164 {
4165 size_t actions_len = fm->n_actions * sizeof *rule->actions;
4166
4167 rule->flow_cookie = fm->cookie;
4168
4169 /* If the actions are the same, do nothing. */
4170 if (fm->n_actions == rule->n_actions
4171 && (!fm->n_actions
4172 || !memcmp(fm->actions, rule->actions, actions_len))) {
4173 return 0;
4174 }
4175
4176 /* Replace actions. */
4177 free(rule->actions);
4178 rule->actions = fm->n_actions ? xmemdup(fm->actions, actions_len) : NULL;
4179 rule->n_actions = fm->n_actions;
4180
4181 p->need_revalidate = true;
4182
4183 return 0;
4184 }
4185 \f
4186 /* OFPFC_DELETE implementation. */
4187
4188 static void delete_flow(struct ofproto *, struct rule *, ovs_be16 out_port);
4189
4190 /* Implements OFPFC_DELETE. */
4191 static void
4192 delete_flows_loose(struct ofproto *p, const struct flow_mod *fm)
4193 {
4194 struct rule *rule, *next_rule;
4195 struct cls_cursor cursor;
4196
4197 cls_cursor_init(&cursor, &p->cls, &fm->cr);
4198 CLS_CURSOR_FOR_EACH_SAFE (rule, next_rule, cr, &cursor) {
4199 delete_flow(p, rule, htons(fm->out_port));
4200 }
4201 }
4202
4203 /* Implements OFPFC_DELETE_STRICT. */
4204 static void
4205 delete_flow_strict(struct ofproto *p, struct flow_mod *fm)
4206 {
4207 struct rule *rule = find_flow_strict(p, fm);
4208 if (rule) {
4209 delete_flow(p, rule, htons(fm->out_port));
4210 }
4211 }
4212
4213 /* Implements core of OFPFC_DELETE and OFPFC_DELETE_STRICT where 'rule' has
4214 * been identified as a flow to delete from 'p''s flow table, by deleting the
4215 * flow and sending out a OFPT_FLOW_REMOVED message to any interested
4216 * controller.
4217 *
4218 * Will not delete 'rule' if it is hidden. Will delete 'rule' only if
4219 * 'out_port' is htons(OFPP_NONE) or if 'rule' actually outputs to the
4220 * specified 'out_port'. */
4221 static void
4222 delete_flow(struct ofproto *p, struct rule *rule, ovs_be16 out_port)
4223 {
4224 if (rule_is_hidden(rule)) {
4225 return;
4226 }
4227
4228 if (out_port != htons(OFPP_NONE) && !rule_has_out_port(rule, out_port)) {
4229 return;
4230 }
4231
4232 rule_send_removed(p, rule, OFPRR_DELETE);
4233 rule_remove(p, rule);
4234 }
4235 \f
4236 static int
4237 handle_flow_mod(struct ofconn *ofconn, const struct ofp_header *oh)
4238 {
4239 struct ofproto *p = ofconn->ofproto;
4240 struct flow_mod fm;
4241 int error;
4242
4243 error = reject_slave_controller(ofconn, "flow_mod");
4244 if (error) {
4245 return error;
4246 }
4247
4248 error = ofputil_decode_flow_mod(&fm, oh, ofconn->flow_format);
4249 if (error) {
4250 return error;
4251 }
4252
4253 /* We do not support the emergency flow cache. It will hopefully get
4254 * dropped from OpenFlow in the near future. */
4255 if (fm.flags & OFPFF_EMERG) {
4256 /* There isn't a good fit for an error code, so just state that the
4257 * flow table is full. */
4258 return ofp_mkerr(OFPET_FLOW_MOD_FAILED, OFPFMFC_ALL_TABLES_FULL);
4259 }
4260
4261 error = validate_actions(fm.actions, fm.n_actions,
4262 &fm.cr.flow, p->max_ports);
4263 if (error) {
4264 return error;
4265 }
4266
4267 switch (fm.command) {
4268 case OFPFC_ADD:
4269 return add_flow(ofconn, &fm);
4270
4271 case OFPFC_MODIFY:
4272 return modify_flows_loose(ofconn, &fm);
4273
4274 case OFPFC_MODIFY_STRICT:
4275 return modify_flow_strict(ofconn, &fm);
4276
4277 case OFPFC_DELETE:
4278 delete_flows_loose(p, &fm);
4279 return 0;
4280
4281 case OFPFC_DELETE_STRICT:
4282 delete_flow_strict(p, &fm);
4283 return 0;
4284
4285 default:
4286 return ofp_mkerr(OFPET_FLOW_MOD_FAILED, OFPFMFC_BAD_COMMAND);
4287 }
4288 }
4289
4290 static int
4291 handle_tun_id_from_cookie(struct ofconn *ofconn, const struct ofp_header *oh)
4292 {
4293 const struct nxt_tun_id_cookie *msg
4294 = (const struct nxt_tun_id_cookie *) oh;
4295
4296 ofconn->flow_format = msg->set ? NXFF_TUN_ID_FROM_COOKIE : NXFF_OPENFLOW10;
4297 return 0;
4298 }
4299
4300 static int
4301 handle_role_request(struct ofconn *ofconn, const struct ofp_header *oh)
4302 {
4303 struct nx_role_request *nrr = (struct nx_role_request *) oh;
4304 struct nx_role_request *reply;
4305 struct ofpbuf *buf;
4306 uint32_t role;
4307
4308 if (ofconn->type != OFCONN_PRIMARY) {
4309 VLOG_WARN_RL(&rl, "ignoring role request on non-controller "
4310 "connection");
4311 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_EPERM);
4312 }
4313
4314 role = ntohl(nrr->role);
4315 if (role != NX_ROLE_OTHER && role != NX_ROLE_MASTER
4316 && role != NX_ROLE_SLAVE) {
4317 VLOG_WARN_RL(&rl, "received request for unknown role %"PRIu32, role);
4318
4319 /* There's no good error code for this. */
4320 return ofp_mkerr(OFPET_BAD_REQUEST, -1);
4321 }
4322
4323 if (role == NX_ROLE_MASTER) {
4324 struct ofconn *other;
4325
4326 HMAP_FOR_EACH (other, hmap_node, &ofconn->ofproto->controllers) {
4327 if (other->role == NX_ROLE_MASTER) {
4328 other->role = NX_ROLE_SLAVE;
4329 }
4330 }
4331 }
4332 ofconn->role = role;
4333
4334 reply = make_nxmsg_xid(sizeof *reply, NXT_ROLE_REPLY, oh->xid, &buf);
4335 reply->role = htonl(role);
4336 queue_tx(buf, ofconn, ofconn->reply_counter);
4337
4338 return 0;
4339 }
4340
4341 static int
4342 handle_nxt_set_flow_format(struct ofconn *ofconn, const struct ofp_header *oh)
4343 {
4344 const struct nxt_set_flow_format *msg
4345 = (const struct nxt_set_flow_format *) oh;
4346 uint32_t format;
4347
4348 format = ntohl(msg->format);
4349 if (format == NXFF_OPENFLOW10
4350 || format == NXFF_TUN_ID_FROM_COOKIE
4351 || format == NXFF_NXM) {
4352 ofconn->flow_format = format;
4353 return 0;
4354 } else {
4355 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_EPERM);
4356 }
4357 }
4358
4359 static int
4360 handle_barrier_request(struct ofconn *ofconn, const struct ofp_header *oh)
4361 {
4362 struct ofp_header *ob;
4363 struct ofpbuf *buf;
4364
4365 /* Currently, everything executes synchronously, so we can just
4366 * immediately send the barrier reply. */
4367 ob = make_openflow_xid(sizeof *ob, OFPT_BARRIER_REPLY, oh->xid, &buf);
4368 queue_tx(buf, ofconn, ofconn->reply_counter);
4369 return 0;
4370 }
4371
4372 static int
4373 handle_openflow__(struct ofconn *ofconn, const struct ofpbuf *msg)
4374 {
4375 const struct ofp_header *oh = msg->data;
4376 const struct ofputil_msg_type *type;
4377 int error;
4378
4379 error = ofputil_decode_msg_type(oh, &type);
4380 if (error) {
4381 return error;
4382 }
4383
4384 switch (ofputil_msg_type_code(type)) {
4385 /* OpenFlow requests. */
4386 case OFPUTIL_OFPT_ECHO_REQUEST:
4387 return handle_echo_request(ofconn, oh);
4388
4389 case OFPUTIL_OFPT_FEATURES_REQUEST:
4390 return handle_features_request(ofconn, oh);
4391
4392 case OFPUTIL_OFPT_GET_CONFIG_REQUEST:
4393 return handle_get_config_request(ofconn, oh);
4394
4395 case OFPUTIL_OFPT_SET_CONFIG:
4396 return handle_set_config(ofconn, msg->data);
4397
4398 case OFPUTIL_OFPT_PACKET_OUT:
4399 return handle_packet_out(ofconn, oh);
4400
4401 case OFPUTIL_OFPT_PORT_MOD:
4402 return handle_port_mod(ofconn, oh);
4403
4404 case OFPUTIL_OFPT_FLOW_MOD:
4405 return handle_flow_mod(ofconn, oh);
4406
4407 case OFPUTIL_OFPT_BARRIER_REQUEST:
4408 return handle_barrier_request(ofconn, oh);
4409
4410 /* OpenFlow replies. */
4411 case OFPUTIL_OFPT_ECHO_REPLY:
4412 return 0;
4413
4414 /* Nicira extension requests. */
4415 case OFPUTIL_NXT_TUN_ID_FROM_COOKIE:
4416 return handle_tun_id_from_cookie(ofconn, oh);
4417
4418 case OFPUTIL_NXT_ROLE_REQUEST:
4419 return handle_role_request(ofconn, oh);
4420
4421 case OFPUTIL_NXT_SET_FLOW_FORMAT:
4422 return handle_nxt_set_flow_format(ofconn, oh);
4423
4424 case OFPUTIL_NXT_FLOW_MOD:
4425 return handle_flow_mod(ofconn, oh);
4426
4427 /* OpenFlow statistics requests. */
4428 case OFPUTIL_OFPST_DESC_REQUEST:
4429 return handle_desc_stats_request(ofconn, oh);
4430
4431 case OFPUTIL_OFPST_FLOW_REQUEST:
4432 return handle_flow_stats_request(ofconn, oh);
4433
4434 case OFPUTIL_OFPST_AGGREGATE_REQUEST:
4435 return handle_aggregate_stats_request(ofconn, oh);
4436
4437 case OFPUTIL_OFPST_TABLE_REQUEST:
4438 return handle_table_stats_request(ofconn, oh);
4439
4440 case OFPUTIL_OFPST_PORT_REQUEST:
4441 return handle_port_stats_request(ofconn, oh);
4442
4443 case OFPUTIL_OFPST_QUEUE_REQUEST:
4444 return handle_queue_stats_request(ofconn, oh);
4445
4446 /* Nicira extension statistics requests. */
4447 case OFPUTIL_NXST_FLOW_REQUEST:
4448 return handle_nxst_flow(ofconn, oh);
4449
4450 case OFPUTIL_NXST_AGGREGATE_REQUEST:
4451 return handle_nxst_aggregate(ofconn, oh);
4452
4453 case OFPUTIL_INVALID:
4454 case OFPUTIL_OFPT_HELLO:
4455 case OFPUTIL_OFPT_ERROR:
4456 case OFPUTIL_OFPT_FEATURES_REPLY:
4457 case OFPUTIL_OFPT_GET_CONFIG_REPLY:
4458 case OFPUTIL_OFPT_PACKET_IN:
4459 case OFPUTIL_OFPT_FLOW_REMOVED:
4460 case OFPUTIL_OFPT_PORT_STATUS:
4461 case OFPUTIL_OFPT_BARRIER_REPLY:
4462 case OFPUTIL_OFPT_QUEUE_GET_CONFIG_REQUEST:
4463 case OFPUTIL_OFPT_QUEUE_GET_CONFIG_REPLY:
4464 case OFPUTIL_OFPST_DESC_REPLY:
4465 case OFPUTIL_OFPST_FLOW_REPLY:
4466 case OFPUTIL_OFPST_QUEUE_REPLY:
4467 case OFPUTIL_OFPST_PORT_REPLY:
4468 case OFPUTIL_OFPST_TABLE_REPLY:
4469 case OFPUTIL_OFPST_AGGREGATE_REPLY:
4470 case OFPUTIL_NXT_ROLE_REPLY:
4471 case OFPUTIL_NXT_FLOW_REMOVED:
4472 case OFPUTIL_NXST_FLOW_REPLY:
4473 case OFPUTIL_NXST_AGGREGATE_REPLY:
4474 default:
4475 if (VLOG_IS_WARN_ENABLED()) {
4476 char *s = ofp_to_string(oh, ntohs(oh->length), 2);
4477 VLOG_DBG_RL(&rl, "OpenFlow message ignored: %s", s);
4478 free(s);
4479 }
4480 if (oh->type == OFPT_STATS_REQUEST || oh->type == OFPT_STATS_REPLY) {
4481 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_STAT);
4482 } else {
4483 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_TYPE);
4484 }
4485 }
4486 }
4487
4488 static void
4489 handle_openflow(struct ofconn *ofconn, struct ofpbuf *ofp_msg)
4490 {
4491 int error = handle_openflow__(ofconn, ofp_msg);
4492 if (error) {
4493 send_error_oh(ofconn, ofp_msg->data, error);
4494 }
4495 COVERAGE_INC(ofproto_recv_openflow);
4496 }
4497 \f
4498 static void
4499 handle_miss_upcall(struct ofproto *p, struct dpif_upcall *upcall)
4500 {
4501 struct facet *facet;
4502 struct flow flow;
4503
4504 /* Obtain in_port and tun_id, at least. */
4505 odp_flow_key_to_flow(upcall->key, upcall->key_len, &flow);
4506
4507 /* Set header pointers in 'flow'. */
4508 flow_extract(upcall->packet, flow.tun_id, flow.in_port, &flow);
4509
4510 if (cfm_should_process_flow(&flow)) {
4511 ofproto_process_cfm(p, &flow, upcall->packet);
4512 ofpbuf_delete(upcall->packet);
4513 return;
4514 } else if (p->ofhooks->special_cb
4515 && !p->ofhooks->special_cb(&flow, upcall->packet, p->aux)) {
4516 ofpbuf_delete(upcall->packet);
4517 return;
4518 }
4519
4520 /* Check with in-band control to see if this packet should be sent
4521 * to the local port regardless of the flow table. */
4522 if (in_band_msg_in_hook(p->in_band, &flow, upcall->packet)) {
4523 ofproto_send_packet(p, ODPP_LOCAL, 0, upcall->packet);
4524 }
4525
4526 facet = facet_lookup_valid(p, &flow);
4527 if (!facet) {
4528 struct rule *rule = rule_lookup(p, &flow);
4529 if (!rule) {
4530 /* Don't send a packet-in if OFPPC_NO_PACKET_IN asserted. */
4531 struct ofport *port = get_port(p, flow.in_port);
4532 if (port) {
4533 if (port->opp.config & OFPPC_NO_PACKET_IN) {
4534 COVERAGE_INC(ofproto_no_packet_in);
4535 /* XXX install 'drop' flow entry */
4536 ofpbuf_delete(upcall->packet);
4537 return;
4538 }
4539 } else {
4540 VLOG_WARN_RL(&rl, "packet-in on unknown port %"PRIu16,
4541 flow.in_port);
4542 }
4543
4544 COVERAGE_INC(ofproto_packet_in);
4545 send_packet_in(p, upcall, &flow, false);
4546 return;
4547 }
4548
4549 facet = facet_create(p, rule, &flow, upcall->packet);
4550 } else if (!facet->may_install) {
4551 /* The facet is not installable, that is, we need to process every
4552 * packet, so process the current packet's actions into 'facet'. */
4553 facet_make_actions(p, facet, upcall->packet);
4554 }
4555
4556 if (facet->rule->cr.priority == FAIL_OPEN_PRIORITY) {
4557 /*
4558 * Extra-special case for fail-open mode.
4559 *
4560 * We are in fail-open mode and the packet matched the fail-open rule,
4561 * but we are connected to a controller too. We should send the packet
4562 * up to the controller in the hope that it will try to set up a flow
4563 * and thereby allow us to exit fail-open.
4564 *
4565 * See the top-level comment in fail-open.c for more information.
4566 */
4567 send_packet_in(p, upcall, &flow, true);
4568 }
4569
4570 facet_execute(p, facet, upcall->packet);
4571 facet_install(p, facet, false);
4572 }
4573
4574 static void
4575 handle_upcall(struct ofproto *p, struct dpif_upcall *upcall)
4576 {
4577 struct flow flow;
4578
4579 switch (upcall->type) {
4580 case DPIF_UC_ACTION:
4581 COVERAGE_INC(ofproto_ctlr_action);
4582 odp_flow_key_to_flow(upcall->key, upcall->key_len, &flow);
4583 send_packet_in(p, upcall, &flow, false);
4584 break;
4585
4586 case DPIF_UC_SAMPLE:
4587 if (p->sflow) {
4588 odp_flow_key_to_flow(upcall->key, upcall->key_len, &flow);
4589 ofproto_sflow_received(p->sflow, upcall, &flow);
4590 }
4591 ofpbuf_delete(upcall->packet);
4592 break;
4593
4594 case DPIF_UC_MISS:
4595 handle_miss_upcall(p, upcall);
4596 break;
4597
4598 case DPIF_N_UC_TYPES:
4599 default:
4600 VLOG_WARN_RL(&rl, "upcall has unexpected type %"PRIu32, upcall->type);
4601 break;
4602 }
4603 }
4604 \f
4605 /* Flow expiration. */
4606
4607 static int ofproto_dp_max_idle(const struct ofproto *);
4608 static void ofproto_update_stats(struct ofproto *);
4609 static void rule_expire(struct ofproto *, struct rule *);
4610 static void ofproto_expire_facets(struct ofproto *, int dp_max_idle);
4611
4612 /* This function is called periodically by ofproto_run(). Its job is to
4613 * collect updates for the flows that have been installed into the datapath,
4614 * most importantly when they last were used, and then use that information to
4615 * expire flows that have not been used recently.
4616 *
4617 * Returns the number of milliseconds after which it should be called again. */
4618 static int
4619 ofproto_expire(struct ofproto *ofproto)
4620 {
4621 struct rule *rule, *next_rule;
4622 struct cls_cursor cursor;
4623 int dp_max_idle;
4624
4625 /* Update stats for each flow in the datapath. */
4626 ofproto_update_stats(ofproto);
4627
4628 /* Expire facets that have been idle too long. */
4629 dp_max_idle = ofproto_dp_max_idle(ofproto);
4630 ofproto_expire_facets(ofproto, dp_max_idle);
4631
4632 /* Expire OpenFlow flows whose idle_timeout or hard_timeout has passed. */
4633 cls_cursor_init(&cursor, &ofproto->cls, NULL);
4634 CLS_CURSOR_FOR_EACH_SAFE (rule, next_rule, cr, &cursor) {
4635 rule_expire(ofproto, rule);
4636 }
4637
4638 /* Let the hook know that we're at a stable point: all outstanding data
4639 * in existing flows has been accounted to the account_cb. Thus, the
4640 * hook can now reasonably do operations that depend on having accurate
4641 * flow volume accounting (currently, that's just bond rebalancing). */
4642 if (ofproto->ofhooks->account_checkpoint_cb) {
4643 ofproto->ofhooks->account_checkpoint_cb(ofproto->aux);
4644 }
4645
4646 return MIN(dp_max_idle, 1000);
4647 }
4648
4649 /* Update 'packet_count', 'byte_count', and 'used' members of installed facets.
4650 *
4651 * This function also pushes statistics updates to rules which each facet
4652 * resubmits into. Generally these statistics will be accurate. However, if a
4653 * facet changes the rule it resubmits into at some time in between
4654 * ofproto_update_stats() runs, it is possible that statistics accrued to the
4655 * old rule will be incorrectly attributed to the new rule. This could be
4656 * avoided by calling ofproto_update_stats() whenever rules are created or
4657 * deleted. However, the performance impact of making so many calls to the
4658 * datapath do not justify the benefit of having perfectly accurate statistics.
4659 */
4660 static void
4661 ofproto_update_stats(struct ofproto *p)
4662 {
4663 const struct dpif_flow_stats *stats;
4664 struct dpif_flow_dump dump;
4665 const struct nlattr *key;
4666 size_t key_len;
4667
4668 dpif_flow_dump_start(&dump, p->dpif);
4669 while (dpif_flow_dump_next(&dump, &key, &key_len, NULL, NULL, &stats)) {
4670 struct facet *facet;
4671 struct flow flow;
4672
4673 if (odp_flow_key_to_flow(key, key_len, &flow)) {
4674 struct ds s;
4675
4676 ds_init(&s);
4677 odp_flow_key_format(key, key_len, &s);
4678 VLOG_WARN_RL(&rl, "failed to convert ODP flow key to flow: %s",
4679 ds_cstr(&s));
4680 ds_destroy(&s);
4681
4682 continue;
4683 }
4684 facet = facet_find(p, &flow);
4685
4686 if (facet && facet->installed) {
4687
4688 if (stats->n_packets >= facet->dp_packet_count) {
4689 facet->packet_count += stats->n_packets - facet->dp_packet_count;
4690 } else {
4691 VLOG_WARN_RL(&rl, "unexpected packet count from the datapath");
4692 }
4693
4694 if (stats->n_bytes >= facet->dp_byte_count) {
4695 facet->byte_count += stats->n_bytes - facet->dp_byte_count;
4696 } else {
4697 VLOG_WARN_RL(&rl, "unexpected byte count from datapath");
4698 }
4699
4700 facet->dp_packet_count = stats->n_packets;
4701 facet->dp_byte_count = stats->n_bytes;
4702
4703 facet_update_time(p, facet, stats->used);
4704 facet_account(p, facet, stats->n_bytes);
4705 facet_push_stats(p, facet);
4706 } else {
4707 /* There's a flow in the datapath that we know nothing about.
4708 * Delete it. */
4709 COVERAGE_INC(ofproto_unexpected_rule);
4710 dpif_flow_del(p->dpif, key, key_len, NULL);
4711 }
4712 }
4713 dpif_flow_dump_done(&dump);
4714 }
4715
4716 /* Calculates and returns the number of milliseconds of idle time after which
4717 * facets should expire from the datapath and we should fold their statistics
4718 * into their parent rules in userspace. */
4719 static int
4720 ofproto_dp_max_idle(const struct ofproto *ofproto)
4721 {
4722 /*
4723 * Idle time histogram.
4724 *
4725 * Most of the time a switch has a relatively small number of facets. When
4726 * this is the case we might as well keep statistics for all of them in
4727 * userspace and to cache them in the kernel datapath for performance as
4728 * well.
4729 *
4730 * As the number of facets increases, the memory required to maintain
4731 * statistics about them in userspace and in the kernel becomes
4732 * significant. However, with a large number of facets it is likely that
4733 * only a few of them are "heavy hitters" that consume a large amount of
4734 * bandwidth. At this point, only heavy hitters are worth caching in the
4735 * kernel and maintaining in userspaces; other facets we can discard.
4736 *
4737 * The technique used to compute the idle time is to build a histogram with
4738 * N_BUCKETS buckets whose width is BUCKET_WIDTH msecs each. Each facet
4739 * that is installed in the kernel gets dropped in the appropriate bucket.
4740 * After the histogram has been built, we compute the cutoff so that only
4741 * the most-recently-used 1% of facets (but at least 1000 flows) are kept
4742 * cached. At least the most-recently-used bucket of facets is kept, so
4743 * actually an arbitrary number of facets can be kept in any given
4744 * expiration run (though the next run will delete most of those unless
4745 * they receive additional data).
4746 *
4747 * This requires a second pass through the facets, in addition to the pass
4748 * made by ofproto_update_stats(), because the former function never looks
4749 * at uninstallable facets.
4750 */
4751 enum { BUCKET_WIDTH = ROUND_UP(100, TIME_UPDATE_INTERVAL) };
4752 enum { N_BUCKETS = 5000 / BUCKET_WIDTH };
4753 int buckets[N_BUCKETS] = { 0 };
4754 struct facet *facet;
4755 int total, bucket;
4756 long long int now;
4757 int i;
4758
4759 total = hmap_count(&ofproto->facets);
4760 if (total <= 1000) {
4761 return N_BUCKETS * BUCKET_WIDTH;
4762 }
4763
4764 /* Build histogram. */
4765 now = time_msec();
4766 HMAP_FOR_EACH (facet, hmap_node, &ofproto->facets) {
4767 long long int idle = now - facet->used;
4768 int bucket = (idle <= 0 ? 0
4769 : idle >= BUCKET_WIDTH * N_BUCKETS ? N_BUCKETS - 1
4770 : (unsigned int) idle / BUCKET_WIDTH);
4771 buckets[bucket]++;
4772 }
4773
4774 /* Find the first bucket whose flows should be expired. */
4775 for (bucket = 0; bucket < N_BUCKETS; bucket++) {
4776 if (buckets[bucket]) {
4777 int subtotal = 0;
4778 do {
4779 subtotal += buckets[bucket++];
4780 } while (bucket < N_BUCKETS && subtotal < MAX(1000, total / 100));
4781 break;
4782 }
4783 }
4784
4785 if (VLOG_IS_DBG_ENABLED()) {
4786 struct ds s;
4787
4788 ds_init(&s);
4789 ds_put_cstr(&s, "keep");
4790 for (i = 0; i < N_BUCKETS; i++) {
4791 if (i == bucket) {
4792 ds_put_cstr(&s, ", drop");
4793 }
4794 if (buckets[i]) {
4795 ds_put_format(&s, " %d:%d", i * BUCKET_WIDTH, buckets[i]);
4796 }
4797 }
4798 VLOG_INFO("%s: %s (msec:count)",
4799 dpif_name(ofproto->dpif), ds_cstr(&s));
4800 ds_destroy(&s);
4801 }
4802
4803 return bucket * BUCKET_WIDTH;
4804 }
4805
4806 static void
4807 facet_active_timeout(struct ofproto *ofproto, struct facet *facet)
4808 {
4809 if (ofproto->netflow && !facet_is_controller_flow(facet) &&
4810 netflow_active_timeout_expired(ofproto->netflow, &facet->nf_flow)) {
4811 struct ofexpired expired;
4812
4813 if (facet->installed) {
4814 struct dpif_flow_stats stats;
4815
4816 facet_put__(ofproto, facet, facet->actions, facet->actions_len,
4817 &stats);
4818 facet_update_stats(ofproto, facet, &stats);
4819 }
4820
4821 expired.flow = facet->flow;
4822 expired.packet_count = facet->packet_count;
4823 expired.byte_count = facet->byte_count;
4824 expired.used = facet->used;
4825 netflow_expire(ofproto->netflow, &facet->nf_flow, &expired);
4826 }
4827 }
4828
4829 static void
4830 ofproto_expire_facets(struct ofproto *ofproto, int dp_max_idle)
4831 {
4832 long long int cutoff = time_msec() - dp_max_idle;
4833 struct facet *facet, *next_facet;
4834
4835 HMAP_FOR_EACH_SAFE (facet, next_facet, hmap_node, &ofproto->facets) {
4836 facet_active_timeout(ofproto, facet);
4837 if (facet->used < cutoff) {
4838 facet_remove(ofproto, facet);
4839 }
4840 }
4841 }
4842
4843 /* If 'rule' is an OpenFlow rule, that has expired according to OpenFlow rules,
4844 * then delete it entirely. */
4845 static void
4846 rule_expire(struct ofproto *ofproto, struct rule *rule)
4847 {
4848 struct facet *facet, *next_facet;
4849 long long int now;
4850 uint8_t reason;
4851
4852 /* Has 'rule' expired? */
4853 now = time_msec();
4854 if (rule->hard_timeout
4855 && now > rule->created + rule->hard_timeout * 1000) {
4856 reason = OFPRR_HARD_TIMEOUT;
4857 } else if (rule->idle_timeout && list_is_empty(&rule->facets)
4858 && now >rule->used + rule->idle_timeout * 1000) {
4859 reason = OFPRR_IDLE_TIMEOUT;
4860 } else {
4861 return;
4862 }
4863
4864 COVERAGE_INC(ofproto_expired);
4865
4866 /* Update stats. (This is a no-op if the rule expired due to an idle
4867 * timeout, because that only happens when the rule has no facets left.) */
4868 LIST_FOR_EACH_SAFE (facet, next_facet, list_node, &rule->facets) {
4869 facet_remove(ofproto, facet);
4870 }
4871
4872 /* Get rid of the rule. */
4873 if (!rule_is_hidden(rule)) {
4874 rule_send_removed(ofproto, rule, reason);
4875 }
4876 rule_remove(ofproto, rule);
4877 }
4878 \f
4879 static void
4880 rule_send_removed(struct ofproto *p, struct rule *rule, uint8_t reason)
4881 {
4882 struct ofputil_flow_removed fr;
4883 struct ofconn *ofconn;
4884
4885 if (!rule->send_flow_removed) {
4886 return;
4887 }
4888
4889 fr.rule = rule->cr;
4890 fr.cookie = rule->flow_cookie;
4891 fr.reason = reason;
4892 calc_flow_duration__(rule->created, &fr.duration_sec, &fr.duration_nsec);
4893 fr.idle_timeout = rule->idle_timeout;
4894 fr.packet_count = rule->packet_count;
4895 fr.byte_count = rule->byte_count;
4896
4897 LIST_FOR_EACH (ofconn, node, &p->all_conns) {
4898 if (!rconn_is_connected(ofconn->rconn)
4899 || !ofconn_receives_async_msgs(ofconn)) {
4900 continue;
4901 }
4902
4903 /* Account flow expirations under ofconn->reply_counter, the counter
4904 * for replies to OpenFlow requests. That works because preventing
4905 * OpenFlow requests from being processed also prevents new flows from
4906 * being added (and expiring). (It also prevents processing OpenFlow
4907 * requests that would not add new flows, so it is imperfect.) */
4908 queue_tx(ofputil_encode_flow_removed(&fr, ofconn->flow_format),
4909 ofconn, ofconn->reply_counter);
4910 }
4911 }
4912
4913 /* Obtains statistics for 'rule' and stores them in '*packets' and '*bytes'.
4914 * The returned statistics include statistics for all of 'rule''s facets. */
4915 static void
4916 rule_get_stats(const struct rule *rule, uint64_t *packets, uint64_t *bytes)
4917 {
4918 uint64_t p, b;
4919 struct facet *facet;
4920
4921 /* Start from historical data for 'rule' itself that are no longer tracked
4922 * in facets. This counts, for example, facets that have expired. */
4923 p = rule->packet_count;
4924 b = rule->byte_count;
4925
4926 /* Add any statistics that are tracked by facets. This includes
4927 * statistical data recently updated by ofproto_update_stats() as well as
4928 * stats for packets that were executed "by hand" via dpif_execute(). */
4929 LIST_FOR_EACH (facet, list_node, &rule->facets) {
4930 p += facet->packet_count;
4931 b += facet->byte_count;
4932 }
4933
4934 *packets = p;
4935 *bytes = b;
4936 }
4937
4938 /* pinsched callback for sending 'ofp_packet_in' on 'ofconn'. */
4939 static void
4940 do_send_packet_in(struct ofpbuf *ofp_packet_in, void *ofconn_)
4941 {
4942 struct ofconn *ofconn = ofconn_;
4943
4944 rconn_send_with_limit(ofconn->rconn, ofp_packet_in,
4945 ofconn->packet_in_counter, 100);
4946 }
4947
4948 /* Takes 'upcall', whose packet has the flow specified by 'flow', composes an
4949 * OpenFlow packet-in message from it, and passes it to 'ofconn''s packet
4950 * scheduler for sending.
4951 *
4952 * If 'clone' is true, the caller retains ownership of 'upcall->packet'.
4953 * Otherwise, ownership is transferred to this function. */
4954 static void
4955 schedule_packet_in(struct ofconn *ofconn, struct dpif_upcall *upcall,
4956 const struct flow *flow, bool clone)
4957 {
4958 enum { OPI_SIZE = offsetof(struct ofp_packet_in, data) };
4959 struct ofproto *ofproto = ofconn->ofproto;
4960 struct ofp_packet_in *opi;
4961 int total_len, send_len;
4962 struct ofpbuf *packet;
4963 uint32_t buffer_id;
4964 int idx;
4965
4966 /* Get OpenFlow buffer_id. */
4967 if (upcall->type == DPIF_UC_ACTION) {
4968 buffer_id = UINT32_MAX;
4969 } else if (ofproto->fail_open && fail_open_is_active(ofproto->fail_open)) {
4970 buffer_id = pktbuf_get_null();
4971 } else if (!ofconn->pktbuf) {
4972 buffer_id = UINT32_MAX;
4973 } else {
4974 buffer_id = pktbuf_save(ofconn->pktbuf, upcall->packet, flow->in_port);
4975 }
4976
4977 /* Figure out how much of the packet to send. */
4978 total_len = send_len = upcall->packet->size;
4979 if (buffer_id != UINT32_MAX) {
4980 send_len = MIN(send_len, ofconn->miss_send_len);
4981 }
4982 if (upcall->type == DPIF_UC_ACTION) {
4983 send_len = MIN(send_len, upcall->userdata);
4984 }
4985
4986 /* Copy or steal buffer for OFPT_PACKET_IN. */
4987 if (clone) {
4988 packet = ofpbuf_clone_data_with_headroom(upcall->packet->data,
4989 send_len, OPI_SIZE);
4990 } else {
4991 packet = upcall->packet;
4992 packet->size = send_len;
4993 }
4994
4995 /* Add OFPT_PACKET_IN. */
4996 opi = ofpbuf_push_zeros(packet, OPI_SIZE);
4997 opi->header.version = OFP_VERSION;
4998 opi->header.type = OFPT_PACKET_IN;
4999 opi->total_len = htons(total_len);
5000 opi->in_port = htons(odp_port_to_ofp_port(flow->in_port));
5001 opi->reason = upcall->type == DPIF_UC_MISS ? OFPR_NO_MATCH : OFPR_ACTION;
5002 opi->buffer_id = htonl(buffer_id);
5003 update_openflow_length(packet);
5004
5005 /* Hand over to packet scheduler. It might immediately call into
5006 * do_send_packet_in() or it might buffer it for a while (until a later
5007 * call to pinsched_run()). */
5008 idx = upcall->type == DPIF_UC_MISS ? 0 : 1;
5009 pinsched_send(ofconn->schedulers[idx], flow->in_port,
5010 packet, do_send_packet_in, ofconn);
5011 }
5012
5013 /* Given 'upcall', of type DPIF_UC_ACTION or DPIF_UC_MISS, sends an
5014 * OFPT_PACKET_IN message to each OpenFlow controller as necessary according to
5015 * their individual configurations.
5016 *
5017 * If 'clone' is true, the caller retains ownership of 'upcall->packet'.
5018 * Otherwise, ownership is transferred to this function. */
5019 static void
5020 send_packet_in(struct ofproto *ofproto, struct dpif_upcall *upcall,
5021 const struct flow *flow, bool clone)
5022 {
5023 struct ofconn *ofconn, *prev;
5024
5025 prev = NULL;
5026 LIST_FOR_EACH (ofconn, node, &ofproto->all_conns) {
5027 if (ofconn_receives_async_msgs(ofconn)) {
5028 if (prev) {
5029 schedule_packet_in(prev, upcall, flow, true);
5030 }
5031 prev = ofconn;
5032 }
5033 }
5034 if (prev) {
5035 schedule_packet_in(prev, upcall, flow, clone);
5036 } else if (!clone) {
5037 ofpbuf_delete(upcall->packet);
5038 }
5039 }
5040
5041 static uint64_t
5042 pick_datapath_id(const struct ofproto *ofproto)
5043 {
5044 const struct ofport *port;
5045
5046 port = get_port(ofproto, ODPP_LOCAL);
5047 if (port) {
5048 uint8_t ea[ETH_ADDR_LEN];
5049 int error;
5050
5051 error = netdev_get_etheraddr(port->netdev, ea);
5052 if (!error) {
5053 return eth_addr_to_uint64(ea);
5054 }
5055 VLOG_WARN("could not get MAC address for %s (%s)",
5056 netdev_get_name(port->netdev), strerror(error));
5057 }
5058 return ofproto->fallback_dpid;
5059 }
5060
5061 static uint64_t
5062 pick_fallback_dpid(void)
5063 {
5064 uint8_t ea[ETH_ADDR_LEN];
5065 eth_addr_nicira_random(ea);
5066 return eth_addr_to_uint64(ea);
5067 }
5068 \f
5069 static void
5070 ofproto_unixctl_list(struct unixctl_conn *conn, const char *arg OVS_UNUSED,
5071 void *aux OVS_UNUSED)
5072 {
5073 const struct shash_node *node;
5074 struct ds results;
5075
5076 ds_init(&results);
5077 SHASH_FOR_EACH (node, &all_ofprotos) {
5078 ds_put_format(&results, "%s\n", node->name);
5079 }
5080 unixctl_command_reply(conn, 200, ds_cstr(&results));
5081 ds_destroy(&results);
5082 }
5083
5084 struct ofproto_trace {
5085 struct action_xlate_ctx ctx;
5086 struct flow flow;
5087 struct ds *result;
5088 };
5089
5090 static void
5091 trace_format_rule(struct ds *result, int level, const struct rule *rule)
5092 {
5093 ds_put_char_multiple(result, '\t', level);
5094 if (!rule) {
5095 ds_put_cstr(result, "No match\n");
5096 return;
5097 }
5098
5099 ds_put_format(result, "Rule: cookie=%#"PRIx64" ",
5100 ntohll(rule->flow_cookie));
5101 cls_rule_format(&rule->cr, result);
5102 ds_put_char(result, '\n');
5103
5104 ds_put_char_multiple(result, '\t', level);
5105 ds_put_cstr(result, "OpenFlow ");
5106 ofp_print_actions(result, (const struct ofp_action_header *) rule->actions,
5107 rule->n_actions * sizeof *rule->actions);
5108 ds_put_char(result, '\n');
5109 }
5110
5111 static void
5112 trace_format_flow(struct ds *result, int level, const char *title,
5113 struct ofproto_trace *trace)
5114 {
5115 ds_put_char_multiple(result, '\t', level);
5116 ds_put_format(result, "%s: ", title);
5117 if (flow_equal(&trace->ctx.flow, &trace->flow)) {
5118 ds_put_cstr(result, "unchanged");
5119 } else {
5120 flow_format(result, &trace->ctx.flow);
5121 trace->flow = trace->ctx.flow;
5122 }
5123 ds_put_char(result, '\n');
5124 }
5125
5126 static void
5127 trace_resubmit(struct action_xlate_ctx *ctx, struct rule *rule)
5128 {
5129 struct ofproto_trace *trace = CONTAINER_OF(ctx, struct ofproto_trace, ctx);
5130 struct ds *result = trace->result;
5131
5132 ds_put_char(result, '\n');
5133 trace_format_flow(result, ctx->recurse + 1, "Resubmitted flow", trace);
5134 trace_format_rule(result, ctx->recurse + 1, rule);
5135 }
5136
5137 static void
5138 ofproto_unixctl_trace(struct unixctl_conn *conn, const char *args_,
5139 void *aux OVS_UNUSED)
5140 {
5141 char *dpname, *in_port_s, *tun_id_s, *packet_s;
5142 char *args = xstrdup(args_);
5143 char *save_ptr = NULL;
5144 struct ofproto *ofproto;
5145 struct ofpbuf packet;
5146 struct rule *rule;
5147 struct ds result;
5148 struct flow flow;
5149 uint16_t in_port;
5150 ovs_be64 tun_id;
5151 char *s;
5152
5153 ofpbuf_init(&packet, strlen(args) / 2);
5154 ds_init(&result);
5155
5156 dpname = strtok_r(args, " ", &save_ptr);
5157 tun_id_s = strtok_r(NULL, " ", &save_ptr);
5158 in_port_s = strtok_r(NULL, " ", &save_ptr);
5159 packet_s = strtok_r(NULL, "", &save_ptr); /* Get entire rest of line. */
5160 if (!dpname || !in_port_s || !packet_s) {
5161 unixctl_command_reply(conn, 501, "Bad command syntax");
5162 goto exit;
5163 }
5164
5165 ofproto = shash_find_data(&all_ofprotos, dpname);
5166 if (!ofproto) {
5167 unixctl_command_reply(conn, 501, "Unknown ofproto (use ofproto/list "
5168 "for help)");
5169 goto exit;
5170 }
5171
5172 tun_id = htonll(strtoull(tun_id_s, NULL, 0));
5173 in_port = ofp_port_to_odp_port(atoi(in_port_s));
5174
5175 packet_s = ofpbuf_put_hex(&packet, packet_s, NULL);
5176 packet_s += strspn(packet_s, " ");
5177 if (*packet_s != '\0') {
5178 unixctl_command_reply(conn, 501, "Trailing garbage in command");
5179 goto exit;
5180 }
5181 if (packet.size < ETH_HEADER_LEN) {
5182 unixctl_command_reply(conn, 501, "Packet data too short for Ethernet");
5183 goto exit;
5184 }
5185
5186 ds_put_cstr(&result, "Packet: ");
5187 s = ofp_packet_to_string(packet.data, packet.size, packet.size);
5188 ds_put_cstr(&result, s);
5189 free(s);
5190
5191 flow_extract(&packet, tun_id, in_port, &flow);
5192 ds_put_cstr(&result, "Flow: ");
5193 flow_format(&result, &flow);
5194 ds_put_char(&result, '\n');
5195
5196 rule = rule_lookup(ofproto, &flow);
5197 trace_format_rule(&result, 0, rule);
5198 if (rule) {
5199 struct ofproto_trace trace;
5200 struct ofpbuf *odp_actions;
5201
5202 trace.result = &result;
5203 trace.flow = flow;
5204 action_xlate_ctx_init(&trace.ctx, ofproto, &flow, &packet);
5205 trace.ctx.resubmit_hook = trace_resubmit;
5206 odp_actions = xlate_actions(&trace.ctx,
5207 rule->actions, rule->n_actions);
5208
5209 ds_put_char(&result, '\n');
5210 trace_format_flow(&result, 0, "Final flow", &trace);
5211 ds_put_cstr(&result, "Datapath actions: ");
5212 format_odp_actions(&result, odp_actions->data, odp_actions->size);
5213 ofpbuf_delete(odp_actions);
5214 }
5215
5216 unixctl_command_reply(conn, 200, ds_cstr(&result));
5217
5218 exit:
5219 ds_destroy(&result);
5220 ofpbuf_uninit(&packet);
5221 free(args);
5222 }
5223
5224 static void
5225 ofproto_unixctl_init(void)
5226 {
5227 static bool registered;
5228 if (registered) {
5229 return;
5230 }
5231 registered = true;
5232
5233 unixctl_command_register("ofproto/list", ofproto_unixctl_list, NULL);
5234 unixctl_command_register("ofproto/trace", ofproto_unixctl_trace, NULL);
5235 }
5236 \f
5237 static bool
5238 default_normal_ofhook_cb(const struct flow *flow, const struct ofpbuf *packet,
5239 struct ofpbuf *odp_actions, tag_type *tags,
5240 uint16_t *nf_output_iface, void *ofproto_)
5241 {
5242 struct ofproto *ofproto = ofproto_;
5243 struct mac_entry *dst_mac;
5244
5245 /* Drop frames for reserved multicast addresses. */
5246 if (eth_addr_is_reserved(flow->dl_dst)) {
5247 return true;
5248 }
5249
5250 /* Learn source MAC (but don't try to learn from revalidation). */
5251 if (packet != NULL
5252 && mac_learning_may_learn(ofproto->ml, flow->dl_src, 0)) {
5253 struct mac_entry *src_mac;
5254
5255 src_mac = mac_learning_insert(ofproto->ml, flow->dl_src, 0);
5256 if (mac_entry_is_new(src_mac) || src_mac->port.i != flow->in_port) {
5257 /* The log messages here could actually be useful in debugging,
5258 * so keep the rate limit relatively high. */
5259 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(30, 300);
5260 VLOG_DBG_RL(&rl, "learned that "ETH_ADDR_FMT" is on port %"PRIu16,
5261 ETH_ADDR_ARGS(flow->dl_src), flow->in_port);
5262
5263 ofproto_revalidate(ofproto,
5264 mac_learning_changed(ofproto->ml, src_mac));
5265 src_mac->port.i = flow->in_port;
5266 }
5267 }
5268
5269 /* Determine output port. */
5270 dst_mac = mac_learning_lookup(ofproto->ml, flow->dl_dst, 0, tags);
5271 if (!dst_mac) {
5272 flood_packets(ofproto, flow->in_port, OFPPC_NO_FLOOD,
5273 nf_output_iface, odp_actions);
5274 } else {
5275 int out_port = dst_mac->port.i;
5276 if (out_port != flow->in_port) {
5277 nl_msg_put_u32(odp_actions, ODP_ACTION_ATTR_OUTPUT, out_port);
5278 *nf_output_iface = out_port;
5279 } else {
5280 /* Drop. */
5281 }
5282 }
5283
5284 return true;
5285 }
5286
5287 static const struct ofhooks default_ofhooks = {
5288 default_normal_ofhook_cb,
5289 NULL,
5290 NULL,
5291 NULL
5292 };