]> git.proxmox.com Git - mirror_ovs.git/blob - ofproto/ofproto.c
ofproto: Break subrules out of "struct rule" into new "struct facet".
[mirror_ovs.git] / ofproto / ofproto.c
1 /*
2 * Copyright (c) 2009, 2010 Nicira Networks.
3 * Copyright (c) 2010 Jean Tourrilhes - HP-Labs.
4 *
5 * Licensed under the Apache License, Version 2.0 (the "License");
6 * you may not use this file except in compliance with the License.
7 * You may obtain a copy of the License at:
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17
18 #include <config.h>
19 #include "ofproto.h"
20 #include <errno.h>
21 #include <inttypes.h>
22 #include <sys/socket.h>
23 #include <net/if.h>
24 #include <netinet/in.h>
25 #include <stdbool.h>
26 #include <stdlib.h>
27 #include "byte-order.h"
28 #include "classifier.h"
29 #include "coverage.h"
30 #include "discovery.h"
31 #include "dpif.h"
32 #include "dynamic-string.h"
33 #include "fail-open.h"
34 #include "hash.h"
35 #include "hmap.h"
36 #include "in-band.h"
37 #include "mac-learning.h"
38 #include "netdev.h"
39 #include "netflow.h"
40 #include "nx-match.h"
41 #include "odp-util.h"
42 #include "ofp-print.h"
43 #include "ofp-util.h"
44 #include "ofproto-sflow.h"
45 #include "ofpbuf.h"
46 #include "openflow/nicira-ext.h"
47 #include "openflow/openflow.h"
48 #include "openvswitch/datapath-protocol.h"
49 #include "packets.h"
50 #include "pinsched.h"
51 #include "pktbuf.h"
52 #include "poll-loop.h"
53 #include "rconn.h"
54 #include "shash.h"
55 #include "status.h"
56 #include "stream-ssl.h"
57 #include "svec.h"
58 #include "tag.h"
59 #include "timeval.h"
60 #include "unixctl.h"
61 #include "vconn.h"
62 #include "vlog.h"
63
64 VLOG_DEFINE_THIS_MODULE(ofproto);
65
66 #include "sflow_api.h"
67
68 struct ofport {
69 struct hmap_node hmap_node; /* In struct ofproto's "ports" hmap. */
70 struct netdev *netdev;
71 struct ofp_phy_port opp; /* In host byte order. */
72 uint16_t odp_port;
73 };
74
75 static void ofport_free(struct ofport *);
76 static void hton_ofp_phy_port(struct ofp_phy_port *);
77
78 static int xlate_actions(const union ofp_action *in, size_t n_in,
79 const struct flow *, struct ofproto *,
80 const struct ofpbuf *packet,
81 struct odp_actions *out, tag_type *tags,
82 bool *may_set_up_flow, uint16_t *nf_output_iface);
83
84 /* An OpenFlow flow. */
85 struct rule {
86 long long int used; /* Time last used; time created if not used. */
87 long long int created; /* Creation time. */
88
89 /* These statistics:
90 *
91 * - Do include packets and bytes from facets that have been deleted or
92 * whose own statistics have been folded into the rule.
93 *
94 * - Do include packets and bytes sent "by hand" that were accounted to
95 * the rule without any facet being involved (this is a rare corner
96 * case in rule_execute()).
97 *
98 * - Do not include packet or bytes that can be obtained from any facet's
99 * packet_count or byte_count member or that can be obtained from the
100 * datapath by, e.g., dpif_flow_get() for any facet.
101 */
102 uint64_t packet_count; /* Number of packets received. */
103 uint64_t byte_count; /* Number of bytes received. */
104
105 ovs_be64 flow_cookie; /* Controller-issued identifier. */
106
107 struct cls_rule cr; /* In owning ofproto's classifier. */
108 uint16_t idle_timeout; /* In seconds from time of last use. */
109 uint16_t hard_timeout; /* In seconds from time of creation. */
110 bool send_flow_removed; /* Send a flow removed message? */
111 int n_actions; /* Number of elements in actions[]. */
112 union ofp_action *actions; /* OpenFlow actions. */
113 struct list facets; /* List of "struct facet"s. */
114 };
115
116 static struct rule *rule_from_cls_rule(const struct cls_rule *);
117 static bool rule_is_hidden(const struct rule *);
118
119 static struct rule *rule_create(const struct cls_rule *,
120 const union ofp_action *, size_t n_actions,
121 uint16_t idle_timeout, uint16_t hard_timeout,
122 ovs_be64 flow_cookie, bool send_flow_removed);
123 static void rule_destroy(struct ofproto *, struct rule *);
124 static void rule_free(struct rule *);
125
126 static struct rule *rule_lookup(struct ofproto *, const struct flow *);
127 static void rule_insert(struct ofproto *, struct rule *,
128 struct ofpbuf *packet, uint16_t in_port);
129 static void rule_remove(struct ofproto *, struct rule *);
130
131 static void rule_send_removed(struct ofproto *, struct rule *, uint8_t reason);
132
133 /* An exact-match instantiation of an OpenFlow flow. */
134 struct facet {
135 long long int used; /* Time last used; time created if not used. */
136
137 /* These statistics:
138 *
139 * - Do include packets and bytes sent "by hand", e.g. with
140 * dpif_execute().
141 *
142 * - Do include packets and bytes that were obtained from the datapath
143 * when a flow was deleted (e.g. dpif_flow_del()) or when its
144 * statistics were reset (e.g. dpif_flow_put() with ODPPF_ZERO_STATS).
145 *
146 * - Do not include any packets or bytes that can currently be obtained
147 * from the datapath by, e.g., dpif_flow_get().
148 */
149 uint64_t packet_count; /* Number of packets received. */
150 uint64_t byte_count; /* Number of bytes received. */
151
152 /* Number of bytes passed to account_cb. This may include bytes that can
153 * currently obtained from the datapath (thus, it can be greater than
154 * byte_count). */
155 uint64_t accounted_bytes;
156
157 struct hmap_node hmap_node; /* In owning ofproto's 'facets' hmap. */
158 struct list list_node; /* In owning rule's 'facets' list. */
159 struct rule *rule; /* Owning rule. */
160 struct flow flow; /* Exact-match flow. */
161 bool installed; /* Installed in datapath? */
162 bool may_install; /* True ordinarily; false if actions must
163 * be reassessed for every packet. */
164 int n_actions; /* Number of elements in actions[]. */
165 union odp_action *actions; /* Datapath actions. */
166 tag_type tags; /* Tags (set only by hooks). */
167 struct netflow_flow nf_flow; /* Per-flow NetFlow tracking data. */
168 };
169
170 static struct facet *facet_create(struct ofproto *, struct rule *,
171 const struct flow *,
172 const struct ofpbuf *packet);
173 static void facet_remove(struct ofproto *, struct facet *);
174 static void facet_free(struct facet *);
175
176 static struct facet *facet_lookup_valid(struct ofproto *, const struct flow *);
177 static bool facet_revalidate(struct ofproto *, struct facet *);
178
179 static void facet_install(struct ofproto *, struct facet *, bool zero_stats);
180 static void facet_uninstall(struct ofproto *, struct facet *);
181 static void facet_post_uninstall(struct ofproto *, struct facet *);
182
183 static bool facet_make_actions(struct ofproto *, struct facet *,
184 const struct ofpbuf *packet);
185 static void facet_update_stats(struct ofproto *, struct facet *,
186 const struct odp_flow_stats *);
187
188 /* ofproto supports two kinds of OpenFlow connections:
189 *
190 * - "Primary" connections to ordinary OpenFlow controllers. ofproto
191 * maintains persistent connections to these controllers and by default
192 * sends them asynchronous messages such as packet-ins.
193 *
194 * - "Service" connections, e.g. from ovs-ofctl. When these connections
195 * drop, it is the other side's responsibility to reconnect them if
196 * necessary. ofproto does not send them asynchronous messages by default.
197 *
198 * Currently, active (tcp, ssl, unix) connections are always "primary"
199 * connections and passive (ptcp, pssl, punix) connections are always "service"
200 * connections. There is no inherent reason for this, but it reflects the
201 * common case.
202 */
203 enum ofconn_type {
204 OFCONN_PRIMARY, /* An ordinary OpenFlow controller. */
205 OFCONN_SERVICE /* A service connection, e.g. "ovs-ofctl". */
206 };
207
208 /* A listener for incoming OpenFlow "service" connections. */
209 struct ofservice {
210 struct hmap_node node; /* In struct ofproto's "services" hmap. */
211 struct pvconn *pvconn; /* OpenFlow connection listener. */
212
213 /* These are not used by ofservice directly. They are settings for
214 * accepted "struct ofconn"s from the pvconn. */
215 int probe_interval; /* Max idle time before probing, in seconds. */
216 int rate_limit; /* Max packet-in rate in packets per second. */
217 int burst_limit; /* Limit on accumulating packet credits. */
218 };
219
220 static struct ofservice *ofservice_lookup(struct ofproto *,
221 const char *target);
222 static int ofservice_create(struct ofproto *,
223 const struct ofproto_controller *);
224 static void ofservice_reconfigure(struct ofservice *,
225 const struct ofproto_controller *);
226 static void ofservice_destroy(struct ofproto *, struct ofservice *);
227
228 /* An OpenFlow connection. */
229 struct ofconn {
230 struct ofproto *ofproto; /* The ofproto that owns this connection. */
231 struct list node; /* In struct ofproto's "all_conns" list. */
232 struct rconn *rconn; /* OpenFlow connection. */
233 enum ofconn_type type; /* Type. */
234 int flow_format; /* One of NXFF_*. */
235
236 /* OFPT_PACKET_IN related data. */
237 struct rconn_packet_counter *packet_in_counter; /* # queued on 'rconn'. */
238 struct pinsched *schedulers[2]; /* Indexed by reason code; see below. */
239 struct pktbuf *pktbuf; /* OpenFlow packet buffers. */
240 int miss_send_len; /* Bytes to send of buffered packets. */
241
242 /* Number of OpenFlow messages queued on 'rconn' as replies to OpenFlow
243 * requests, and the maximum number before we stop reading OpenFlow
244 * requests. */
245 #define OFCONN_REPLY_MAX 100
246 struct rconn_packet_counter *reply_counter;
247
248 /* type == OFCONN_PRIMARY only. */
249 enum nx_role role; /* Role. */
250 struct hmap_node hmap_node; /* In struct ofproto's "controllers" map. */
251 struct discovery *discovery; /* Controller discovery object, if enabled. */
252 struct status_category *ss; /* Switch status category. */
253 enum ofproto_band band; /* In-band or out-of-band? */
254 };
255
256 /* We use OFPR_NO_MATCH and OFPR_ACTION as indexes into struct ofconn's
257 * "schedulers" array. Their values are 0 and 1, and their meanings and values
258 * coincide with _ODPL_MISS_NR and _ODPL_ACTION_NR, so this is convenient. In
259 * case anything ever changes, check their values here. */
260 #define N_SCHEDULERS 2
261 BUILD_ASSERT_DECL(OFPR_NO_MATCH == 0);
262 BUILD_ASSERT_DECL(OFPR_NO_MATCH == _ODPL_MISS_NR);
263 BUILD_ASSERT_DECL(OFPR_ACTION == 1);
264 BUILD_ASSERT_DECL(OFPR_ACTION == _ODPL_ACTION_NR);
265
266 static struct ofconn *ofconn_create(struct ofproto *, struct rconn *,
267 enum ofconn_type);
268 static void ofconn_destroy(struct ofconn *);
269 static void ofconn_run(struct ofconn *);
270 static void ofconn_wait(struct ofconn *);
271 static bool ofconn_receives_async_msgs(const struct ofconn *);
272 static char *ofconn_make_name(const struct ofproto *, const char *target);
273 static void ofconn_set_rate_limit(struct ofconn *, int rate, int burst);
274
275 static void queue_tx(struct ofpbuf *msg, const struct ofconn *ofconn,
276 struct rconn_packet_counter *counter);
277
278 static void send_packet_in(struct ofproto *, struct ofpbuf *odp_msg);
279 static void do_send_packet_in(struct ofpbuf *odp_msg, void *ofconn);
280
281 struct ofproto {
282 /* Settings. */
283 uint64_t datapath_id; /* Datapath ID. */
284 uint64_t fallback_dpid; /* Datapath ID if no better choice found. */
285 char *mfr_desc; /* Manufacturer. */
286 char *hw_desc; /* Hardware. */
287 char *sw_desc; /* Software version. */
288 char *serial_desc; /* Serial number. */
289 char *dp_desc; /* Datapath description. */
290
291 /* Datapath. */
292 struct dpif *dpif;
293 struct netdev_monitor *netdev_monitor;
294 struct hmap ports; /* Contains "struct ofport"s. */
295 struct shash port_by_name;
296 uint32_t max_ports;
297
298 /* Configuration. */
299 struct switch_status *switch_status;
300 struct fail_open *fail_open;
301 struct netflow *netflow;
302 struct ofproto_sflow *sflow;
303
304 /* In-band control. */
305 struct in_band *in_band;
306 long long int next_in_band_update;
307 struct sockaddr_in *extra_in_band_remotes;
308 size_t n_extra_remotes;
309
310 /* Flow table. */
311 struct classifier cls;
312 long long int next_expiration;
313
314 /* Facets. */
315 struct hmap facets;
316 bool need_revalidate;
317 struct tag_set revalidate_set;
318
319 /* OpenFlow connections. */
320 struct hmap controllers; /* Controller "struct ofconn"s. */
321 struct list all_conns; /* Contains "struct ofconn"s. */
322 enum ofproto_fail_mode fail_mode;
323
324 /* OpenFlow listeners. */
325 struct hmap services; /* Contains "struct ofservice"s. */
326 struct pvconn **snoops;
327 size_t n_snoops;
328
329 /* Hooks for ovs-vswitchd. */
330 const struct ofhooks *ofhooks;
331 void *aux;
332
333 /* Used by default ofhooks. */
334 struct mac_learning *ml;
335 };
336
337 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
338
339 static const struct ofhooks default_ofhooks;
340
341 static uint64_t pick_datapath_id(const struct ofproto *);
342 static uint64_t pick_fallback_dpid(void);
343
344 static int ofproto_expire(struct ofproto *);
345
346 static void handle_odp_msg(struct ofproto *, struct ofpbuf *);
347
348 static void handle_openflow(struct ofconn *, struct ofpbuf *);
349
350 static struct ofport *get_port(const struct ofproto *, uint16_t odp_port);
351 static void update_port(struct ofproto *, const char *devname);
352 static int init_ports(struct ofproto *);
353 static void reinit_ports(struct ofproto *);
354
355 int
356 ofproto_create(const char *datapath, const char *datapath_type,
357 const struct ofhooks *ofhooks, void *aux,
358 struct ofproto **ofprotop)
359 {
360 struct odp_stats stats;
361 struct ofproto *p;
362 struct dpif *dpif;
363 int error;
364
365 *ofprotop = NULL;
366
367 /* Connect to datapath and start listening for messages. */
368 error = dpif_open(datapath, datapath_type, &dpif);
369 if (error) {
370 VLOG_ERR("failed to open datapath %s: %s", datapath, strerror(error));
371 return error;
372 }
373 error = dpif_get_dp_stats(dpif, &stats);
374 if (error) {
375 VLOG_ERR("failed to obtain stats for datapath %s: %s",
376 datapath, strerror(error));
377 dpif_close(dpif);
378 return error;
379 }
380 error = dpif_recv_set_mask(dpif, ODPL_MISS | ODPL_ACTION | ODPL_SFLOW);
381 if (error) {
382 VLOG_ERR("failed to listen on datapath %s: %s",
383 datapath, strerror(error));
384 dpif_close(dpif);
385 return error;
386 }
387 dpif_flow_flush(dpif);
388 dpif_recv_purge(dpif);
389
390 /* Initialize settings. */
391 p = xzalloc(sizeof *p);
392 p->fallback_dpid = pick_fallback_dpid();
393 p->datapath_id = p->fallback_dpid;
394 p->mfr_desc = xstrdup(DEFAULT_MFR_DESC);
395 p->hw_desc = xstrdup(DEFAULT_HW_DESC);
396 p->sw_desc = xstrdup(DEFAULT_SW_DESC);
397 p->serial_desc = xstrdup(DEFAULT_SERIAL_DESC);
398 p->dp_desc = xstrdup(DEFAULT_DP_DESC);
399
400 /* Initialize datapath. */
401 p->dpif = dpif;
402 p->netdev_monitor = netdev_monitor_create();
403 hmap_init(&p->ports);
404 shash_init(&p->port_by_name);
405 p->max_ports = stats.max_ports;
406
407 /* Initialize submodules. */
408 p->switch_status = switch_status_create(p);
409 p->in_band = NULL;
410 p->fail_open = NULL;
411 p->netflow = NULL;
412 p->sflow = NULL;
413
414 /* Initialize flow table. */
415 classifier_init(&p->cls);
416 p->next_expiration = time_msec() + 1000;
417
418 /* Initialize facet table. */
419 hmap_init(&p->facets);
420 p->need_revalidate = false;
421 tag_set_init(&p->revalidate_set);
422
423 /* Initialize OpenFlow connections. */
424 list_init(&p->all_conns);
425 hmap_init(&p->controllers);
426 hmap_init(&p->services);
427 p->snoops = NULL;
428 p->n_snoops = 0;
429
430 /* Initialize hooks. */
431 if (ofhooks) {
432 p->ofhooks = ofhooks;
433 p->aux = aux;
434 p->ml = NULL;
435 } else {
436 p->ofhooks = &default_ofhooks;
437 p->aux = p;
438 p->ml = mac_learning_create();
439 }
440
441 /* Pick final datapath ID. */
442 p->datapath_id = pick_datapath_id(p);
443 VLOG_INFO("using datapath ID %016"PRIx64, p->datapath_id);
444
445 *ofprotop = p;
446 return 0;
447 }
448
449 void
450 ofproto_set_datapath_id(struct ofproto *p, uint64_t datapath_id)
451 {
452 uint64_t old_dpid = p->datapath_id;
453 p->datapath_id = datapath_id ? datapath_id : pick_datapath_id(p);
454 if (p->datapath_id != old_dpid) {
455 VLOG_INFO("datapath ID changed to %016"PRIx64, p->datapath_id);
456
457 /* Force all active connections to reconnect, since there is no way to
458 * notify a controller that the datapath ID has changed. */
459 ofproto_reconnect_controllers(p);
460 }
461 }
462
463 static bool
464 is_discovery_controller(const struct ofproto_controller *c)
465 {
466 return !strcmp(c->target, "discover");
467 }
468
469 static bool
470 is_in_band_controller(const struct ofproto_controller *c)
471 {
472 return is_discovery_controller(c) || c->band == OFPROTO_IN_BAND;
473 }
474
475 /* Creates a new controller in 'ofproto'. Some of the settings are initially
476 * drawn from 'c', but update_controller() needs to be called later to finish
477 * the new ofconn's configuration. */
478 static void
479 add_controller(struct ofproto *ofproto, const struct ofproto_controller *c)
480 {
481 struct discovery *discovery;
482 struct ofconn *ofconn;
483
484 if (is_discovery_controller(c)) {
485 int error = discovery_create(c->accept_re, c->update_resolv_conf,
486 ofproto->dpif, ofproto->switch_status,
487 &discovery);
488 if (error) {
489 return;
490 }
491 } else {
492 discovery = NULL;
493 }
494
495 ofconn = ofconn_create(ofproto, rconn_create(5, 8), OFCONN_PRIMARY);
496 ofconn->pktbuf = pktbuf_create();
497 ofconn->miss_send_len = OFP_DEFAULT_MISS_SEND_LEN;
498 if (discovery) {
499 ofconn->discovery = discovery;
500 } else {
501 char *name = ofconn_make_name(ofproto, c->target);
502 rconn_connect(ofconn->rconn, c->target, name);
503 free(name);
504 }
505 hmap_insert(&ofproto->controllers, &ofconn->hmap_node,
506 hash_string(c->target, 0));
507 }
508
509 /* Reconfigures 'ofconn' to match 'c'. This function cannot update an ofconn's
510 * target or turn discovery on or off (these are done by creating new ofconns
511 * and deleting old ones), but it can update the rest of an ofconn's
512 * settings. */
513 static void
514 update_controller(struct ofconn *ofconn, const struct ofproto_controller *c)
515 {
516 int probe_interval;
517
518 ofconn->band = (is_in_band_controller(c)
519 ? OFPROTO_IN_BAND : OFPROTO_OUT_OF_BAND);
520
521 rconn_set_max_backoff(ofconn->rconn, c->max_backoff);
522
523 probe_interval = c->probe_interval ? MAX(c->probe_interval, 5) : 0;
524 rconn_set_probe_interval(ofconn->rconn, probe_interval);
525
526 if (ofconn->discovery) {
527 discovery_set_update_resolv_conf(ofconn->discovery,
528 c->update_resolv_conf);
529 discovery_set_accept_controller_re(ofconn->discovery, c->accept_re);
530 }
531
532 ofconn_set_rate_limit(ofconn, c->rate_limit, c->burst_limit);
533 }
534
535 static const char *
536 ofconn_get_target(const struct ofconn *ofconn)
537 {
538 return ofconn->discovery ? "discover" : rconn_get_target(ofconn->rconn);
539 }
540
541 static struct ofconn *
542 find_controller_by_target(struct ofproto *ofproto, const char *target)
543 {
544 struct ofconn *ofconn;
545
546 HMAP_FOR_EACH_WITH_HASH (ofconn, hmap_node,
547 hash_string(target, 0), &ofproto->controllers) {
548 if (!strcmp(ofconn_get_target(ofconn), target)) {
549 return ofconn;
550 }
551 }
552 return NULL;
553 }
554
555 static void
556 update_in_band_remotes(struct ofproto *ofproto)
557 {
558 const struct ofconn *ofconn;
559 struct sockaddr_in *addrs;
560 size_t max_addrs, n_addrs;
561 bool discovery;
562 size_t i;
563
564 /* Allocate enough memory for as many remotes as we could possibly have. */
565 max_addrs = ofproto->n_extra_remotes + hmap_count(&ofproto->controllers);
566 addrs = xmalloc(max_addrs * sizeof *addrs);
567 n_addrs = 0;
568
569 /* Add all the remotes. */
570 discovery = false;
571 HMAP_FOR_EACH (ofconn, hmap_node, &ofproto->controllers) {
572 struct sockaddr_in *sin = &addrs[n_addrs];
573
574 if (ofconn->band == OFPROTO_OUT_OF_BAND) {
575 continue;
576 }
577
578 sin->sin_addr.s_addr = rconn_get_remote_ip(ofconn->rconn);
579 if (sin->sin_addr.s_addr) {
580 sin->sin_port = rconn_get_remote_port(ofconn->rconn);
581 n_addrs++;
582 }
583 if (ofconn->discovery) {
584 discovery = true;
585 }
586 }
587 for (i = 0; i < ofproto->n_extra_remotes; i++) {
588 addrs[n_addrs++] = ofproto->extra_in_band_remotes[i];
589 }
590
591 /* Create or update or destroy in-band.
592 *
593 * Ordinarily we only enable in-band if there's at least one remote
594 * address, but discovery needs the in-band rules for DHCP to be installed
595 * even before we know any remote addresses. */
596 if (n_addrs || discovery) {
597 if (!ofproto->in_band) {
598 in_band_create(ofproto, ofproto->dpif, ofproto->switch_status,
599 &ofproto->in_band);
600 }
601 if (ofproto->in_band) {
602 in_band_set_remotes(ofproto->in_band, addrs, n_addrs);
603 }
604 ofproto->next_in_band_update = time_msec() + 1000;
605 } else {
606 in_band_destroy(ofproto->in_band);
607 ofproto->in_band = NULL;
608 }
609
610 /* Clean up. */
611 free(addrs);
612 }
613
614 static void
615 update_fail_open(struct ofproto *p)
616 {
617 struct ofconn *ofconn;
618
619 if (!hmap_is_empty(&p->controllers)
620 && p->fail_mode == OFPROTO_FAIL_STANDALONE) {
621 struct rconn **rconns;
622 size_t n;
623
624 if (!p->fail_open) {
625 p->fail_open = fail_open_create(p, p->switch_status);
626 }
627
628 n = 0;
629 rconns = xmalloc(hmap_count(&p->controllers) * sizeof *rconns);
630 HMAP_FOR_EACH (ofconn, hmap_node, &p->controllers) {
631 rconns[n++] = ofconn->rconn;
632 }
633
634 fail_open_set_controllers(p->fail_open, rconns, n);
635 /* p->fail_open takes ownership of 'rconns'. */
636 } else {
637 fail_open_destroy(p->fail_open);
638 p->fail_open = NULL;
639 }
640 }
641
642 void
643 ofproto_set_controllers(struct ofproto *p,
644 const struct ofproto_controller *controllers,
645 size_t n_controllers)
646 {
647 struct shash new_controllers;
648 struct ofconn *ofconn, *next_ofconn;
649 struct ofservice *ofservice, *next_ofservice;
650 bool ss_exists;
651 size_t i;
652
653 /* Create newly configured controllers and services.
654 * Create a name to ofproto_controller mapping in 'new_controllers'. */
655 shash_init(&new_controllers);
656 for (i = 0; i < n_controllers; i++) {
657 const struct ofproto_controller *c = &controllers[i];
658
659 if (!vconn_verify_name(c->target) || !strcmp(c->target, "discover")) {
660 if (!find_controller_by_target(p, c->target)) {
661 add_controller(p, c);
662 }
663 } else if (!pvconn_verify_name(c->target)) {
664 if (!ofservice_lookup(p, c->target) && ofservice_create(p, c)) {
665 continue;
666 }
667 } else {
668 VLOG_WARN_RL(&rl, "%s: unsupported controller \"%s\"",
669 dpif_name(p->dpif), c->target);
670 continue;
671 }
672
673 shash_add_once(&new_controllers, c->target, &controllers[i]);
674 }
675
676 /* Delete controllers that are no longer configured.
677 * Update configuration of all now-existing controllers. */
678 ss_exists = false;
679 HMAP_FOR_EACH_SAFE (ofconn, next_ofconn, hmap_node, &p->controllers) {
680 struct ofproto_controller *c;
681
682 c = shash_find_data(&new_controllers, ofconn_get_target(ofconn));
683 if (!c) {
684 ofconn_destroy(ofconn);
685 } else {
686 update_controller(ofconn, c);
687 if (ofconn->ss) {
688 ss_exists = true;
689 }
690 }
691 }
692
693 /* Delete services that are no longer configured.
694 * Update configuration of all now-existing services. */
695 HMAP_FOR_EACH_SAFE (ofservice, next_ofservice, node, &p->services) {
696 struct ofproto_controller *c;
697
698 c = shash_find_data(&new_controllers,
699 pvconn_get_name(ofservice->pvconn));
700 if (!c) {
701 ofservice_destroy(p, ofservice);
702 } else {
703 ofservice_reconfigure(ofservice, c);
704 }
705 }
706
707 shash_destroy(&new_controllers);
708
709 update_in_band_remotes(p);
710 update_fail_open(p);
711
712 if (!hmap_is_empty(&p->controllers) && !ss_exists) {
713 ofconn = CONTAINER_OF(hmap_first(&p->controllers),
714 struct ofconn, hmap_node);
715 ofconn->ss = switch_status_register(p->switch_status, "remote",
716 rconn_status_cb, ofconn->rconn);
717 }
718 }
719
720 void
721 ofproto_set_fail_mode(struct ofproto *p, enum ofproto_fail_mode fail_mode)
722 {
723 p->fail_mode = fail_mode;
724 update_fail_open(p);
725 }
726
727 /* Drops the connections between 'ofproto' and all of its controllers, forcing
728 * them to reconnect. */
729 void
730 ofproto_reconnect_controllers(struct ofproto *ofproto)
731 {
732 struct ofconn *ofconn;
733
734 LIST_FOR_EACH (ofconn, node, &ofproto->all_conns) {
735 rconn_reconnect(ofconn->rconn);
736 }
737 }
738
739 static bool
740 any_extras_changed(const struct ofproto *ofproto,
741 const struct sockaddr_in *extras, size_t n)
742 {
743 size_t i;
744
745 if (n != ofproto->n_extra_remotes) {
746 return true;
747 }
748
749 for (i = 0; i < n; i++) {
750 const struct sockaddr_in *old = &ofproto->extra_in_band_remotes[i];
751 const struct sockaddr_in *new = &extras[i];
752
753 if (old->sin_addr.s_addr != new->sin_addr.s_addr ||
754 old->sin_port != new->sin_port) {
755 return true;
756 }
757 }
758
759 return false;
760 }
761
762 /* Sets the 'n' TCP port addresses in 'extras' as ones to which 'ofproto''s
763 * in-band control should guarantee access, in the same way that in-band
764 * control guarantees access to OpenFlow controllers. */
765 void
766 ofproto_set_extra_in_band_remotes(struct ofproto *ofproto,
767 const struct sockaddr_in *extras, size_t n)
768 {
769 if (!any_extras_changed(ofproto, extras, n)) {
770 return;
771 }
772
773 free(ofproto->extra_in_band_remotes);
774 ofproto->n_extra_remotes = n;
775 ofproto->extra_in_band_remotes = xmemdup(extras, n * sizeof *extras);
776
777 update_in_band_remotes(ofproto);
778 }
779
780 void
781 ofproto_set_desc(struct ofproto *p,
782 const char *mfr_desc, const char *hw_desc,
783 const char *sw_desc, const char *serial_desc,
784 const char *dp_desc)
785 {
786 struct ofp_desc_stats *ods;
787
788 if (mfr_desc) {
789 if (strlen(mfr_desc) >= sizeof ods->mfr_desc) {
790 VLOG_WARN("truncating mfr_desc, must be less than %zu characters",
791 sizeof ods->mfr_desc);
792 }
793 free(p->mfr_desc);
794 p->mfr_desc = xstrdup(mfr_desc);
795 }
796 if (hw_desc) {
797 if (strlen(hw_desc) >= sizeof ods->hw_desc) {
798 VLOG_WARN("truncating hw_desc, must be less than %zu characters",
799 sizeof ods->hw_desc);
800 }
801 free(p->hw_desc);
802 p->hw_desc = xstrdup(hw_desc);
803 }
804 if (sw_desc) {
805 if (strlen(sw_desc) >= sizeof ods->sw_desc) {
806 VLOG_WARN("truncating sw_desc, must be less than %zu characters",
807 sizeof ods->sw_desc);
808 }
809 free(p->sw_desc);
810 p->sw_desc = xstrdup(sw_desc);
811 }
812 if (serial_desc) {
813 if (strlen(serial_desc) >= sizeof ods->serial_num) {
814 VLOG_WARN("truncating serial_desc, must be less than %zu "
815 "characters",
816 sizeof ods->serial_num);
817 }
818 free(p->serial_desc);
819 p->serial_desc = xstrdup(serial_desc);
820 }
821 if (dp_desc) {
822 if (strlen(dp_desc) >= sizeof ods->dp_desc) {
823 VLOG_WARN("truncating dp_desc, must be less than %zu characters",
824 sizeof ods->dp_desc);
825 }
826 free(p->dp_desc);
827 p->dp_desc = xstrdup(dp_desc);
828 }
829 }
830
831 static int
832 set_pvconns(struct pvconn ***pvconnsp, size_t *n_pvconnsp,
833 const struct svec *svec)
834 {
835 struct pvconn **pvconns = *pvconnsp;
836 size_t n_pvconns = *n_pvconnsp;
837 int retval = 0;
838 size_t i;
839
840 for (i = 0; i < n_pvconns; i++) {
841 pvconn_close(pvconns[i]);
842 }
843 free(pvconns);
844
845 pvconns = xmalloc(svec->n * sizeof *pvconns);
846 n_pvconns = 0;
847 for (i = 0; i < svec->n; i++) {
848 const char *name = svec->names[i];
849 struct pvconn *pvconn;
850 int error;
851
852 error = pvconn_open(name, &pvconn);
853 if (!error) {
854 pvconns[n_pvconns++] = pvconn;
855 } else {
856 VLOG_ERR("failed to listen on %s: %s", name, strerror(error));
857 if (!retval) {
858 retval = error;
859 }
860 }
861 }
862
863 *pvconnsp = pvconns;
864 *n_pvconnsp = n_pvconns;
865
866 return retval;
867 }
868
869 int
870 ofproto_set_snoops(struct ofproto *ofproto, const struct svec *snoops)
871 {
872 return set_pvconns(&ofproto->snoops, &ofproto->n_snoops, snoops);
873 }
874
875 int
876 ofproto_set_netflow(struct ofproto *ofproto,
877 const struct netflow_options *nf_options)
878 {
879 if (nf_options && nf_options->collectors.n) {
880 if (!ofproto->netflow) {
881 ofproto->netflow = netflow_create();
882 }
883 return netflow_set_options(ofproto->netflow, nf_options);
884 } else {
885 netflow_destroy(ofproto->netflow);
886 ofproto->netflow = NULL;
887 return 0;
888 }
889 }
890
891 void
892 ofproto_set_sflow(struct ofproto *ofproto,
893 const struct ofproto_sflow_options *oso)
894 {
895 struct ofproto_sflow *os = ofproto->sflow;
896 if (oso) {
897 if (!os) {
898 struct ofport *ofport;
899
900 os = ofproto->sflow = ofproto_sflow_create(ofproto->dpif);
901 HMAP_FOR_EACH (ofport, hmap_node, &ofproto->ports) {
902 ofproto_sflow_add_port(os, ofport->odp_port,
903 netdev_get_name(ofport->netdev));
904 }
905 }
906 ofproto_sflow_set_options(os, oso);
907 } else {
908 ofproto_sflow_destroy(os);
909 ofproto->sflow = NULL;
910 }
911 }
912
913 uint64_t
914 ofproto_get_datapath_id(const struct ofproto *ofproto)
915 {
916 return ofproto->datapath_id;
917 }
918
919 bool
920 ofproto_has_primary_controller(const struct ofproto *ofproto)
921 {
922 return !hmap_is_empty(&ofproto->controllers);
923 }
924
925 enum ofproto_fail_mode
926 ofproto_get_fail_mode(const struct ofproto *p)
927 {
928 return p->fail_mode;
929 }
930
931 void
932 ofproto_get_snoops(const struct ofproto *ofproto, struct svec *snoops)
933 {
934 size_t i;
935
936 for (i = 0; i < ofproto->n_snoops; i++) {
937 svec_add(snoops, pvconn_get_name(ofproto->snoops[i]));
938 }
939 }
940
941 void
942 ofproto_destroy(struct ofproto *p)
943 {
944 struct ofservice *ofservice, *next_ofservice;
945 struct ofconn *ofconn, *next_ofconn;
946 struct ofport *ofport, *next_ofport;
947 size_t i;
948
949 if (!p) {
950 return;
951 }
952
953 /* Destroy fail-open and in-band early, since they touch the classifier. */
954 fail_open_destroy(p->fail_open);
955 p->fail_open = NULL;
956
957 in_band_destroy(p->in_band);
958 p->in_band = NULL;
959 free(p->extra_in_band_remotes);
960
961 ofproto_flush_flows(p);
962 classifier_destroy(&p->cls);
963 hmap_destroy(&p->facets);
964
965 LIST_FOR_EACH_SAFE (ofconn, next_ofconn, node, &p->all_conns) {
966 ofconn_destroy(ofconn);
967 }
968 hmap_destroy(&p->controllers);
969
970 dpif_close(p->dpif);
971 netdev_monitor_destroy(p->netdev_monitor);
972 HMAP_FOR_EACH_SAFE (ofport, next_ofport, hmap_node, &p->ports) {
973 hmap_remove(&p->ports, &ofport->hmap_node);
974 ofport_free(ofport);
975 }
976 shash_destroy(&p->port_by_name);
977
978 switch_status_destroy(p->switch_status);
979 netflow_destroy(p->netflow);
980 ofproto_sflow_destroy(p->sflow);
981
982 HMAP_FOR_EACH_SAFE (ofservice, next_ofservice, node, &p->services) {
983 ofservice_destroy(p, ofservice);
984 }
985 hmap_destroy(&p->services);
986
987 for (i = 0; i < p->n_snoops; i++) {
988 pvconn_close(p->snoops[i]);
989 }
990 free(p->snoops);
991
992 mac_learning_destroy(p->ml);
993
994 free(p->mfr_desc);
995 free(p->hw_desc);
996 free(p->sw_desc);
997 free(p->serial_desc);
998 free(p->dp_desc);
999
1000 hmap_destroy(&p->ports);
1001
1002 free(p);
1003 }
1004
1005 int
1006 ofproto_run(struct ofproto *p)
1007 {
1008 int error = ofproto_run1(p);
1009 if (!error) {
1010 error = ofproto_run2(p, false);
1011 }
1012 return error;
1013 }
1014
1015 static void
1016 process_port_change(struct ofproto *ofproto, int error, char *devname)
1017 {
1018 if (error == ENOBUFS) {
1019 reinit_ports(ofproto);
1020 } else if (!error) {
1021 update_port(ofproto, devname);
1022 free(devname);
1023 }
1024 }
1025
1026 /* Returns a "preference level" for snooping 'ofconn'. A higher return value
1027 * means that 'ofconn' is more interesting for monitoring than a lower return
1028 * value. */
1029 static int
1030 snoop_preference(const struct ofconn *ofconn)
1031 {
1032 switch (ofconn->role) {
1033 case NX_ROLE_MASTER:
1034 return 3;
1035 case NX_ROLE_OTHER:
1036 return 2;
1037 case NX_ROLE_SLAVE:
1038 return 1;
1039 default:
1040 /* Shouldn't happen. */
1041 return 0;
1042 }
1043 }
1044
1045 /* One of ofproto's "snoop" pvconns has accepted a new connection on 'vconn'.
1046 * Connects this vconn to a controller. */
1047 static void
1048 add_snooper(struct ofproto *ofproto, struct vconn *vconn)
1049 {
1050 struct ofconn *ofconn, *best;
1051
1052 /* Pick a controller for monitoring. */
1053 best = NULL;
1054 LIST_FOR_EACH (ofconn, node, &ofproto->all_conns) {
1055 if (ofconn->type == OFCONN_PRIMARY
1056 && (!best || snoop_preference(ofconn) > snoop_preference(best))) {
1057 best = ofconn;
1058 }
1059 }
1060
1061 if (best) {
1062 rconn_add_monitor(best->rconn, vconn);
1063 } else {
1064 VLOG_INFO_RL(&rl, "no controller connection to snoop");
1065 vconn_close(vconn);
1066 }
1067 }
1068
1069 int
1070 ofproto_run1(struct ofproto *p)
1071 {
1072 struct ofconn *ofconn, *next_ofconn;
1073 struct ofservice *ofservice;
1074 char *devname;
1075 int error;
1076 int i;
1077
1078 if (shash_is_empty(&p->port_by_name)) {
1079 init_ports(p);
1080 }
1081
1082 for (i = 0; i < 50; i++) {
1083 struct ofpbuf *buf;
1084
1085 error = dpif_recv(p->dpif, &buf);
1086 if (error) {
1087 if (error == ENODEV) {
1088 /* Someone destroyed the datapath behind our back. The caller
1089 * better destroy us and give up, because we're just going to
1090 * spin from here on out. */
1091 static struct vlog_rate_limit rl2 = VLOG_RATE_LIMIT_INIT(1, 5);
1092 VLOG_ERR_RL(&rl2, "%s: datapath was destroyed externally",
1093 dpif_name(p->dpif));
1094 return ENODEV;
1095 }
1096 break;
1097 }
1098
1099 handle_odp_msg(p, buf);
1100 }
1101
1102 while ((error = dpif_port_poll(p->dpif, &devname)) != EAGAIN) {
1103 process_port_change(p, error, devname);
1104 }
1105 while ((error = netdev_monitor_poll(p->netdev_monitor,
1106 &devname)) != EAGAIN) {
1107 process_port_change(p, error, devname);
1108 }
1109
1110 if (p->in_band) {
1111 if (time_msec() >= p->next_in_band_update) {
1112 update_in_band_remotes(p);
1113 }
1114 in_band_run(p->in_band);
1115 }
1116
1117 LIST_FOR_EACH_SAFE (ofconn, next_ofconn, node, &p->all_conns) {
1118 ofconn_run(ofconn);
1119 }
1120
1121 /* Fail-open maintenance. Do this after processing the ofconns since
1122 * fail-open checks the status of the controller rconn. */
1123 if (p->fail_open) {
1124 fail_open_run(p->fail_open);
1125 }
1126
1127 HMAP_FOR_EACH (ofservice, node, &p->services) {
1128 struct vconn *vconn;
1129 int retval;
1130
1131 retval = pvconn_accept(ofservice->pvconn, OFP_VERSION, &vconn);
1132 if (!retval) {
1133 struct rconn *rconn;
1134 char *name;
1135
1136 rconn = rconn_create(ofservice->probe_interval, 0);
1137 name = ofconn_make_name(p, vconn_get_name(vconn));
1138 rconn_connect_unreliably(rconn, vconn, name);
1139 free(name);
1140
1141 ofconn = ofconn_create(p, rconn, OFCONN_SERVICE);
1142 ofconn_set_rate_limit(ofconn, ofservice->rate_limit,
1143 ofservice->burst_limit);
1144 } else if (retval != EAGAIN) {
1145 VLOG_WARN_RL(&rl, "accept failed (%s)", strerror(retval));
1146 }
1147 }
1148
1149 for (i = 0; i < p->n_snoops; i++) {
1150 struct vconn *vconn;
1151 int retval;
1152
1153 retval = pvconn_accept(p->snoops[i], OFP_VERSION, &vconn);
1154 if (!retval) {
1155 add_snooper(p, vconn);
1156 } else if (retval != EAGAIN) {
1157 VLOG_WARN_RL(&rl, "accept failed (%s)", strerror(retval));
1158 }
1159 }
1160
1161 if (time_msec() >= p->next_expiration) {
1162 int delay = ofproto_expire(p);
1163 p->next_expiration = time_msec() + delay;
1164 COVERAGE_INC(ofproto_expiration);
1165 }
1166
1167 if (p->netflow) {
1168 netflow_run(p->netflow);
1169 }
1170 if (p->sflow) {
1171 ofproto_sflow_run(p->sflow);
1172 }
1173
1174 return 0;
1175 }
1176
1177 int
1178 ofproto_run2(struct ofproto *p, bool revalidate_all)
1179 {
1180 /* Figure out what we need to revalidate now, if anything. */
1181 struct tag_set revalidate_set = p->revalidate_set;
1182 if (p->need_revalidate) {
1183 revalidate_all = true;
1184 }
1185
1186 /* Clear the revalidation flags. */
1187 tag_set_init(&p->revalidate_set);
1188 p->need_revalidate = false;
1189
1190 /* Now revalidate if there's anything to do. */
1191 if (revalidate_all || !tag_set_is_empty(&revalidate_set)) {
1192 struct facet *facet, *next;
1193
1194 HMAP_FOR_EACH_SAFE (facet, next, hmap_node, &p->facets) {
1195 if (revalidate_all
1196 || tag_set_intersects(&revalidate_set, facet->tags)) {
1197 facet_revalidate(p, facet);
1198 }
1199 }
1200 }
1201
1202 return 0;
1203 }
1204
1205 void
1206 ofproto_wait(struct ofproto *p)
1207 {
1208 struct ofservice *ofservice;
1209 struct ofconn *ofconn;
1210 size_t i;
1211
1212 dpif_recv_wait(p->dpif);
1213 dpif_port_poll_wait(p->dpif);
1214 netdev_monitor_poll_wait(p->netdev_monitor);
1215 LIST_FOR_EACH (ofconn, node, &p->all_conns) {
1216 ofconn_wait(ofconn);
1217 }
1218 if (p->in_band) {
1219 poll_timer_wait_until(p->next_in_band_update);
1220 in_band_wait(p->in_band);
1221 }
1222 if (p->fail_open) {
1223 fail_open_wait(p->fail_open);
1224 }
1225 if (p->sflow) {
1226 ofproto_sflow_wait(p->sflow);
1227 }
1228 if (!tag_set_is_empty(&p->revalidate_set)) {
1229 poll_immediate_wake();
1230 }
1231 if (p->need_revalidate) {
1232 /* Shouldn't happen, but if it does just go around again. */
1233 VLOG_DBG_RL(&rl, "need revalidate in ofproto_wait_cb()");
1234 poll_immediate_wake();
1235 } else if (p->next_expiration != LLONG_MAX) {
1236 poll_timer_wait_until(p->next_expiration);
1237 }
1238 HMAP_FOR_EACH (ofservice, node, &p->services) {
1239 pvconn_wait(ofservice->pvconn);
1240 }
1241 for (i = 0; i < p->n_snoops; i++) {
1242 pvconn_wait(p->snoops[i]);
1243 }
1244 }
1245
1246 void
1247 ofproto_revalidate(struct ofproto *ofproto, tag_type tag)
1248 {
1249 tag_set_add(&ofproto->revalidate_set, tag);
1250 }
1251
1252 struct tag_set *
1253 ofproto_get_revalidate_set(struct ofproto *ofproto)
1254 {
1255 return &ofproto->revalidate_set;
1256 }
1257
1258 bool
1259 ofproto_is_alive(const struct ofproto *p)
1260 {
1261 return !hmap_is_empty(&p->controllers);
1262 }
1263
1264 /* Deletes port number 'odp_port' from the datapath for 'ofproto'.
1265 *
1266 * This is almost the same as calling dpif_port_del() directly on the
1267 * datapath, but it also makes 'ofproto' close its open netdev for the port
1268 * (if any). This makes it possible to create a new netdev of a different
1269 * type under the same name, which otherwise the netdev library would refuse
1270 * to do because of the conflict. (The netdev would eventually get closed on
1271 * the next trip through ofproto_run(), but this interface is more direct.)
1272 *
1273 * Returns 0 if successful, otherwise a positive errno. */
1274 int
1275 ofproto_port_del(struct ofproto *ofproto, uint16_t odp_port)
1276 {
1277 struct ofport *ofport = get_port(ofproto, odp_port);
1278 const char *name = ofport ? (char *) ofport->opp.name : "<unknown>";
1279 int error;
1280
1281 error = dpif_port_del(ofproto->dpif, odp_port);
1282 if (error) {
1283 VLOG_ERR("%s: failed to remove port %"PRIu16" (%s) interface (%s)",
1284 dpif_name(ofproto->dpif), odp_port, name, strerror(error));
1285 } else if (ofport) {
1286 /* 'name' is ofport->opp.name and update_port() is going to destroy
1287 * 'ofport'. Just in case update_port() refers to 'name' after it
1288 * destroys 'ofport', make a copy of it around the update_port()
1289 * call. */
1290 char *devname = xstrdup(name);
1291 update_port(ofproto, devname);
1292 free(devname);
1293 }
1294 return error;
1295 }
1296
1297 /* Checks if 'ofproto' thinks 'odp_port' should be included in floods. Returns
1298 * true if 'odp_port' exists and should be included, false otherwise. */
1299 bool
1300 ofproto_port_is_floodable(struct ofproto *ofproto, uint16_t odp_port)
1301 {
1302 struct ofport *ofport = get_port(ofproto, odp_port);
1303 return ofport && !(ofport->opp.config & OFPPC_NO_FLOOD);
1304 }
1305
1306 int
1307 ofproto_send_packet(struct ofproto *p, const struct flow *flow,
1308 const union ofp_action *actions, size_t n_actions,
1309 const struct ofpbuf *packet)
1310 {
1311 struct odp_actions odp_actions;
1312 int error;
1313
1314 error = xlate_actions(actions, n_actions, flow, p, packet, &odp_actions,
1315 NULL, NULL, NULL);
1316 if (error) {
1317 return error;
1318 }
1319
1320 /* XXX Should we translate the dpif_execute() errno value into an OpenFlow
1321 * error code? */
1322 dpif_execute(p->dpif, odp_actions.actions, odp_actions.n_actions, packet);
1323 return 0;
1324 }
1325
1326 /* Adds a flow to the OpenFlow flow table in 'p' that matches 'cls_rule' and
1327 * performs the 'n_actions' actions in 'actions'. The new flow will not
1328 * timeout.
1329 *
1330 * If cls_rule->priority is in the range of priorities supported by OpenFlow
1331 * (0...65535, inclusive) then the flow will be visible to OpenFlow
1332 * controllers; otherwise, it will be hidden.
1333 *
1334 * The caller retains ownership of 'cls_rule' and 'actions'. */
1335 void
1336 ofproto_add_flow(struct ofproto *p, const struct cls_rule *cls_rule,
1337 const union ofp_action *actions, size_t n_actions)
1338 {
1339 struct rule *rule;
1340 rule = rule_create(cls_rule, actions, n_actions, 0, 0, 0, false);
1341 rule_insert(p, rule, NULL, 0);
1342 }
1343
1344 void
1345 ofproto_delete_flow(struct ofproto *ofproto, const struct cls_rule *target)
1346 {
1347 struct rule *rule;
1348
1349 rule = rule_from_cls_rule(classifier_find_rule_exactly(&ofproto->cls,
1350 target));
1351 if (rule) {
1352 rule_remove(ofproto, rule);
1353 }
1354 }
1355
1356 static void
1357 destroy_rule(struct cls_rule *rule_, void *ofproto_)
1358 {
1359 struct rule *rule = rule_from_cls_rule(rule_);
1360 struct ofproto *ofproto = ofproto_;
1361
1362 rule_remove(ofproto, rule);
1363 }
1364
1365 void
1366 ofproto_flush_flows(struct ofproto *ofproto)
1367 {
1368 struct facet *facet, *next_facet;
1369
1370 COVERAGE_INC(ofproto_flush);
1371
1372 HMAP_FOR_EACH_SAFE (facet, next_facet, hmap_node, &ofproto->facets) {
1373 /* Mark the facet as not installed so that facet_remove() doesn't
1374 * bother trying to uninstall it. There is no point in uninstalling it
1375 * individually since we are about to blow away all the facets with
1376 * dpif_flow_flush(). */
1377 facet->installed = false;
1378 facet_remove(ofproto, facet);
1379 }
1380 classifier_for_each(&ofproto->cls, CLS_INC_ALL, destroy_rule, ofproto);
1381 dpif_flow_flush(ofproto->dpif);
1382 if (ofproto->in_band) {
1383 in_band_flushed(ofproto->in_band);
1384 }
1385 if (ofproto->fail_open) {
1386 fail_open_flushed(ofproto->fail_open);
1387 }
1388 }
1389 \f
1390 static void
1391 reinit_ports(struct ofproto *p)
1392 {
1393 struct svec devnames;
1394 struct ofport *ofport;
1395 struct odp_port *odp_ports;
1396 size_t n_odp_ports;
1397 size_t i;
1398
1399 COVERAGE_INC(ofproto_reinit_ports);
1400
1401 svec_init(&devnames);
1402 HMAP_FOR_EACH (ofport, hmap_node, &p->ports) {
1403 svec_add (&devnames, (char *) ofport->opp.name);
1404 }
1405 dpif_port_list(p->dpif, &odp_ports, &n_odp_ports);
1406 for (i = 0; i < n_odp_ports; i++) {
1407 svec_add (&devnames, odp_ports[i].devname);
1408 }
1409 free(odp_ports);
1410
1411 svec_sort_unique(&devnames);
1412 for (i = 0; i < devnames.n; i++) {
1413 update_port(p, devnames.names[i]);
1414 }
1415 svec_destroy(&devnames);
1416 }
1417
1418 static struct ofport *
1419 make_ofport(const struct odp_port *odp_port)
1420 {
1421 struct netdev_options netdev_options;
1422 enum netdev_flags flags;
1423 struct ofport *ofport;
1424 struct netdev *netdev;
1425 int error;
1426
1427 memset(&netdev_options, 0, sizeof netdev_options);
1428 netdev_options.name = odp_port->devname;
1429 netdev_options.ethertype = NETDEV_ETH_TYPE_NONE;
1430
1431 error = netdev_open(&netdev_options, &netdev);
1432 if (error) {
1433 VLOG_WARN_RL(&rl, "ignoring port %s (%"PRIu16") because netdev %s "
1434 "cannot be opened (%s)",
1435 odp_port->devname, odp_port->port,
1436 odp_port->devname, strerror(error));
1437 return NULL;
1438 }
1439
1440 ofport = xmalloc(sizeof *ofport);
1441 ofport->netdev = netdev;
1442 ofport->odp_port = odp_port->port;
1443 ofport->opp.port_no = odp_port_to_ofp_port(odp_port->port);
1444 netdev_get_etheraddr(netdev, ofport->opp.hw_addr);
1445 memcpy(ofport->opp.name, odp_port->devname,
1446 MIN(sizeof ofport->opp.name, sizeof odp_port->devname));
1447 ofport->opp.name[sizeof ofport->opp.name - 1] = '\0';
1448
1449 netdev_get_flags(netdev, &flags);
1450 ofport->opp.config = flags & NETDEV_UP ? 0 : OFPPC_PORT_DOWN;
1451
1452 ofport->opp.state = netdev_get_carrier(netdev) ? 0 : OFPPS_LINK_DOWN;
1453
1454 netdev_get_features(netdev,
1455 &ofport->opp.curr, &ofport->opp.advertised,
1456 &ofport->opp.supported, &ofport->opp.peer);
1457 return ofport;
1458 }
1459
1460 static bool
1461 ofport_conflicts(const struct ofproto *p, const struct odp_port *odp_port)
1462 {
1463 if (get_port(p, odp_port->port)) {
1464 VLOG_WARN_RL(&rl, "ignoring duplicate port %"PRIu16" in datapath",
1465 odp_port->port);
1466 return true;
1467 } else if (shash_find(&p->port_by_name, odp_port->devname)) {
1468 VLOG_WARN_RL(&rl, "ignoring duplicate device %s in datapath",
1469 odp_port->devname);
1470 return true;
1471 } else {
1472 return false;
1473 }
1474 }
1475
1476 static int
1477 ofport_equal(const struct ofport *a_, const struct ofport *b_)
1478 {
1479 const struct ofp_phy_port *a = &a_->opp;
1480 const struct ofp_phy_port *b = &b_->opp;
1481
1482 BUILD_ASSERT_DECL(sizeof *a == 48); /* Detect ofp_phy_port changes. */
1483 return (a->port_no == b->port_no
1484 && !memcmp(a->hw_addr, b->hw_addr, sizeof a->hw_addr)
1485 && !strcmp((char *) a->name, (char *) b->name)
1486 && a->state == b->state
1487 && a->config == b->config
1488 && a->curr == b->curr
1489 && a->advertised == b->advertised
1490 && a->supported == b->supported
1491 && a->peer == b->peer);
1492 }
1493
1494 static void
1495 send_port_status(struct ofproto *p, const struct ofport *ofport,
1496 uint8_t reason)
1497 {
1498 /* XXX Should limit the number of queued port status change messages. */
1499 struct ofconn *ofconn;
1500 LIST_FOR_EACH (ofconn, node, &p->all_conns) {
1501 struct ofp_port_status *ops;
1502 struct ofpbuf *b;
1503
1504 if (!ofconn_receives_async_msgs(ofconn)) {
1505 continue;
1506 }
1507
1508 ops = make_openflow_xid(sizeof *ops, OFPT_PORT_STATUS, 0, &b);
1509 ops->reason = reason;
1510 ops->desc = ofport->opp;
1511 hton_ofp_phy_port(&ops->desc);
1512 queue_tx(b, ofconn, NULL);
1513 }
1514 }
1515
1516 static void
1517 ofport_install(struct ofproto *p, struct ofport *ofport)
1518 {
1519 const char *netdev_name = (const char *) ofport->opp.name;
1520
1521 netdev_monitor_add(p->netdev_monitor, ofport->netdev);
1522 hmap_insert(&p->ports, &ofport->hmap_node, hash_int(ofport->odp_port, 0));
1523 shash_add(&p->port_by_name, netdev_name, ofport);
1524 if (p->sflow) {
1525 ofproto_sflow_add_port(p->sflow, ofport->odp_port, netdev_name);
1526 }
1527 }
1528
1529 static void
1530 ofport_remove(struct ofproto *p, struct ofport *ofport)
1531 {
1532 netdev_monitor_remove(p->netdev_monitor, ofport->netdev);
1533 hmap_remove(&p->ports, &ofport->hmap_node);
1534 shash_delete(&p->port_by_name,
1535 shash_find(&p->port_by_name, (char *) ofport->opp.name));
1536 if (p->sflow) {
1537 ofproto_sflow_del_port(p->sflow, ofport->odp_port);
1538 }
1539 }
1540
1541 static void
1542 ofport_free(struct ofport *ofport)
1543 {
1544 if (ofport) {
1545 netdev_close(ofport->netdev);
1546 free(ofport);
1547 }
1548 }
1549
1550 static struct ofport *
1551 get_port(const struct ofproto *ofproto, uint16_t odp_port)
1552 {
1553 struct ofport *port;
1554
1555 HMAP_FOR_EACH_IN_BUCKET (port, hmap_node,
1556 hash_int(odp_port, 0), &ofproto->ports) {
1557 if (port->odp_port == odp_port) {
1558 return port;
1559 }
1560 }
1561 return NULL;
1562 }
1563
1564 static void
1565 update_port(struct ofproto *p, const char *devname)
1566 {
1567 struct odp_port odp_port;
1568 struct ofport *old_ofport;
1569 struct ofport *new_ofport;
1570 int error;
1571
1572 COVERAGE_INC(ofproto_update_port);
1573
1574 /* Query the datapath for port information. */
1575 error = dpif_port_query_by_name(p->dpif, devname, &odp_port);
1576
1577 /* Find the old ofport. */
1578 old_ofport = shash_find_data(&p->port_by_name, devname);
1579 if (!error) {
1580 if (!old_ofport) {
1581 /* There's no port named 'devname' but there might be a port with
1582 * the same port number. This could happen if a port is deleted
1583 * and then a new one added in its place very quickly, or if a port
1584 * is renamed. In the former case we want to send an OFPPR_DELETE
1585 * and an OFPPR_ADD, and in the latter case we want to send a
1586 * single OFPPR_MODIFY. We can distinguish the cases by comparing
1587 * the old port's ifindex against the new port, or perhaps less
1588 * reliably but more portably by comparing the old port's MAC
1589 * against the new port's MAC. However, this code isn't that smart
1590 * and always sends an OFPPR_MODIFY (XXX). */
1591 old_ofport = get_port(p, odp_port.port);
1592 }
1593 } else if (error != ENOENT && error != ENODEV) {
1594 VLOG_WARN_RL(&rl, "dpif_port_query_by_name returned unexpected error "
1595 "%s", strerror(error));
1596 return;
1597 }
1598
1599 /* Create a new ofport. */
1600 new_ofport = !error ? make_ofport(&odp_port) : NULL;
1601
1602 /* Eliminate a few pathological cases. */
1603 if (!old_ofport && !new_ofport) {
1604 return;
1605 } else if (old_ofport && new_ofport) {
1606 /* Most of the 'config' bits are OpenFlow soft state, but
1607 * OFPPC_PORT_DOWN is maintained the kernel. So transfer the OpenFlow
1608 * bits from old_ofport. (make_ofport() only sets OFPPC_PORT_DOWN and
1609 * leaves the other bits 0.) */
1610 new_ofport->opp.config |= old_ofport->opp.config & ~OFPPC_PORT_DOWN;
1611
1612 if (ofport_equal(old_ofport, new_ofport)) {
1613 /* False alarm--no change. */
1614 ofport_free(new_ofport);
1615 return;
1616 }
1617 }
1618
1619 /* Now deal with the normal cases. */
1620 if (old_ofport) {
1621 ofport_remove(p, old_ofport);
1622 }
1623 if (new_ofport) {
1624 ofport_install(p, new_ofport);
1625 }
1626 send_port_status(p, new_ofport ? new_ofport : old_ofport,
1627 (!old_ofport ? OFPPR_ADD
1628 : !new_ofport ? OFPPR_DELETE
1629 : OFPPR_MODIFY));
1630 ofport_free(old_ofport);
1631 }
1632
1633 static int
1634 init_ports(struct ofproto *p)
1635 {
1636 struct odp_port *ports;
1637 size_t n_ports;
1638 size_t i;
1639 int error;
1640
1641 error = dpif_port_list(p->dpif, &ports, &n_ports);
1642 if (error) {
1643 return error;
1644 }
1645
1646 for (i = 0; i < n_ports; i++) {
1647 const struct odp_port *odp_port = &ports[i];
1648 if (!ofport_conflicts(p, odp_port)) {
1649 struct ofport *ofport = make_ofport(odp_port);
1650 if (ofport) {
1651 ofport_install(p, ofport);
1652 }
1653 }
1654 }
1655 free(ports);
1656 return 0;
1657 }
1658 \f
1659 static struct ofconn *
1660 ofconn_create(struct ofproto *p, struct rconn *rconn, enum ofconn_type type)
1661 {
1662 struct ofconn *ofconn = xzalloc(sizeof *ofconn);
1663 ofconn->ofproto = p;
1664 list_push_back(&p->all_conns, &ofconn->node);
1665 ofconn->rconn = rconn;
1666 ofconn->type = type;
1667 ofconn->flow_format = NXFF_OPENFLOW10;
1668 ofconn->role = NX_ROLE_OTHER;
1669 ofconn->packet_in_counter = rconn_packet_counter_create ();
1670 ofconn->pktbuf = NULL;
1671 ofconn->miss_send_len = 0;
1672 ofconn->reply_counter = rconn_packet_counter_create ();
1673 return ofconn;
1674 }
1675
1676 static void
1677 ofconn_destroy(struct ofconn *ofconn)
1678 {
1679 if (ofconn->type == OFCONN_PRIMARY) {
1680 hmap_remove(&ofconn->ofproto->controllers, &ofconn->hmap_node);
1681 }
1682 discovery_destroy(ofconn->discovery);
1683
1684 list_remove(&ofconn->node);
1685 switch_status_unregister(ofconn->ss);
1686 rconn_destroy(ofconn->rconn);
1687 rconn_packet_counter_destroy(ofconn->packet_in_counter);
1688 rconn_packet_counter_destroy(ofconn->reply_counter);
1689 pktbuf_destroy(ofconn->pktbuf);
1690 free(ofconn);
1691 }
1692
1693 static void
1694 ofconn_run(struct ofconn *ofconn)
1695 {
1696 struct ofproto *p = ofconn->ofproto;
1697 int iteration;
1698 size_t i;
1699
1700 if (ofconn->discovery) {
1701 char *controller_name;
1702 if (rconn_is_connectivity_questionable(ofconn->rconn)) {
1703 discovery_question_connectivity(ofconn->discovery);
1704 }
1705 if (discovery_run(ofconn->discovery, &controller_name)) {
1706 if (controller_name) {
1707 char *ofconn_name = ofconn_make_name(p, controller_name);
1708 rconn_connect(ofconn->rconn, controller_name, ofconn_name);
1709 free(ofconn_name);
1710 } else {
1711 rconn_disconnect(ofconn->rconn);
1712 }
1713 }
1714 }
1715
1716 for (i = 0; i < N_SCHEDULERS; i++) {
1717 pinsched_run(ofconn->schedulers[i], do_send_packet_in, ofconn);
1718 }
1719
1720 rconn_run(ofconn->rconn);
1721
1722 if (rconn_packet_counter_read (ofconn->reply_counter) < OFCONN_REPLY_MAX) {
1723 /* Limit the number of iterations to prevent other tasks from
1724 * starving. */
1725 for (iteration = 0; iteration < 50; iteration++) {
1726 struct ofpbuf *of_msg = rconn_recv(ofconn->rconn);
1727 if (!of_msg) {
1728 break;
1729 }
1730 if (p->fail_open) {
1731 fail_open_maybe_recover(p->fail_open);
1732 }
1733 handle_openflow(ofconn, of_msg);
1734 ofpbuf_delete(of_msg);
1735 }
1736 }
1737
1738 if (!ofconn->discovery && !rconn_is_alive(ofconn->rconn)) {
1739 ofconn_destroy(ofconn);
1740 }
1741 }
1742
1743 static void
1744 ofconn_wait(struct ofconn *ofconn)
1745 {
1746 int i;
1747
1748 if (ofconn->discovery) {
1749 discovery_wait(ofconn->discovery);
1750 }
1751 for (i = 0; i < N_SCHEDULERS; i++) {
1752 pinsched_wait(ofconn->schedulers[i]);
1753 }
1754 rconn_run_wait(ofconn->rconn);
1755 if (rconn_packet_counter_read (ofconn->reply_counter) < OFCONN_REPLY_MAX) {
1756 rconn_recv_wait(ofconn->rconn);
1757 } else {
1758 COVERAGE_INC(ofproto_ofconn_stuck);
1759 }
1760 }
1761
1762 /* Returns true if 'ofconn' should receive asynchronous messages. */
1763 static bool
1764 ofconn_receives_async_msgs(const struct ofconn *ofconn)
1765 {
1766 if (ofconn->type == OFCONN_PRIMARY) {
1767 /* Primary controllers always get asynchronous messages unless they
1768 * have configured themselves as "slaves". */
1769 return ofconn->role != NX_ROLE_SLAVE;
1770 } else {
1771 /* Service connections don't get asynchronous messages unless they have
1772 * explicitly asked for them by setting a nonzero miss send length. */
1773 return ofconn->miss_send_len > 0;
1774 }
1775 }
1776
1777 /* Returns a human-readable name for an OpenFlow connection between 'ofproto'
1778 * and 'target', suitable for use in log messages for identifying the
1779 * connection.
1780 *
1781 * The name is dynamically allocated. The caller should free it (with free())
1782 * when it is no longer needed. */
1783 static char *
1784 ofconn_make_name(const struct ofproto *ofproto, const char *target)
1785 {
1786 return xasprintf("%s<->%s", dpif_base_name(ofproto->dpif), target);
1787 }
1788
1789 static void
1790 ofconn_set_rate_limit(struct ofconn *ofconn, int rate, int burst)
1791 {
1792 int i;
1793
1794 for (i = 0; i < N_SCHEDULERS; i++) {
1795 struct pinsched **s = &ofconn->schedulers[i];
1796
1797 if (rate > 0) {
1798 if (!*s) {
1799 *s = pinsched_create(rate, burst,
1800 ofconn->ofproto->switch_status);
1801 } else {
1802 pinsched_set_limits(*s, rate, burst);
1803 }
1804 } else {
1805 pinsched_destroy(*s);
1806 *s = NULL;
1807 }
1808 }
1809 }
1810 \f
1811 static void
1812 ofservice_reconfigure(struct ofservice *ofservice,
1813 const struct ofproto_controller *c)
1814 {
1815 ofservice->probe_interval = c->probe_interval;
1816 ofservice->rate_limit = c->rate_limit;
1817 ofservice->burst_limit = c->burst_limit;
1818 }
1819
1820 /* Creates a new ofservice in 'ofproto'. Returns 0 if successful, otherwise a
1821 * positive errno value. */
1822 static int
1823 ofservice_create(struct ofproto *ofproto, const struct ofproto_controller *c)
1824 {
1825 struct ofservice *ofservice;
1826 struct pvconn *pvconn;
1827 int error;
1828
1829 error = pvconn_open(c->target, &pvconn);
1830 if (error) {
1831 return error;
1832 }
1833
1834 ofservice = xzalloc(sizeof *ofservice);
1835 hmap_insert(&ofproto->services, &ofservice->node,
1836 hash_string(c->target, 0));
1837 ofservice->pvconn = pvconn;
1838
1839 ofservice_reconfigure(ofservice, c);
1840
1841 return 0;
1842 }
1843
1844 static void
1845 ofservice_destroy(struct ofproto *ofproto, struct ofservice *ofservice)
1846 {
1847 hmap_remove(&ofproto->services, &ofservice->node);
1848 pvconn_close(ofservice->pvconn);
1849 free(ofservice);
1850 }
1851
1852 /* Finds and returns the ofservice within 'ofproto' that has the given
1853 * 'target', or a null pointer if none exists. */
1854 static struct ofservice *
1855 ofservice_lookup(struct ofproto *ofproto, const char *target)
1856 {
1857 struct ofservice *ofservice;
1858
1859 HMAP_FOR_EACH_WITH_HASH (ofservice, node, hash_string(target, 0),
1860 &ofproto->services) {
1861 if (!strcmp(pvconn_get_name(ofservice->pvconn), target)) {
1862 return ofservice;
1863 }
1864 }
1865 return NULL;
1866 }
1867 \f
1868 /* Returns true if 'rule' should be hidden from the controller.
1869 *
1870 * Rules with priority higher than UINT16_MAX are set up by ofproto itself
1871 * (e.g. by in-band control) and are intentionally hidden from the
1872 * controller. */
1873 static bool
1874 rule_is_hidden(const struct rule *rule)
1875 {
1876 return rule->cr.priority > UINT16_MAX;
1877 }
1878
1879 /* Creates and returns a new rule initialized as specified.
1880 *
1881 * The caller is responsible for inserting the rule into the classifier (with
1882 * rule_insert()). */
1883 static struct rule *
1884 rule_create(const struct cls_rule *cls_rule,
1885 const union ofp_action *actions, size_t n_actions,
1886 uint16_t idle_timeout, uint16_t hard_timeout,
1887 ovs_be64 flow_cookie, bool send_flow_removed)
1888 {
1889 struct rule *rule = xzalloc(sizeof *rule);
1890 rule->cr = *cls_rule;
1891 rule->idle_timeout = idle_timeout;
1892 rule->hard_timeout = hard_timeout;
1893 rule->flow_cookie = flow_cookie;
1894 rule->used = rule->created = time_msec();
1895 rule->send_flow_removed = send_flow_removed;
1896 list_init(&rule->facets);
1897 if (n_actions > 0) {
1898 rule->n_actions = n_actions;
1899 rule->actions = xmemdup(actions, n_actions * sizeof *actions);
1900 }
1901
1902 return rule;
1903 }
1904
1905 static struct rule *
1906 rule_from_cls_rule(const struct cls_rule *cls_rule)
1907 {
1908 return cls_rule ? CONTAINER_OF(cls_rule, struct rule, cr) : NULL;
1909 }
1910
1911 static void
1912 rule_free(struct rule *rule)
1913 {
1914 free(rule->actions);
1915 free(rule);
1916 }
1917
1918 /* Destroys 'rule' and iterates through all of its facets and revalidates them,
1919 * destroying any that no longer has a rule (which is probably all of them).
1920 *
1921 * The caller must have already removed 'rule' from the classifier. */
1922 static void
1923 rule_destroy(struct ofproto *ofproto, struct rule *rule)
1924 {
1925 struct facet *facet, *next_facet;
1926 LIST_FOR_EACH_SAFE (facet, next_facet, list_node, &rule->facets) {
1927 facet_revalidate(ofproto, facet);
1928 }
1929 rule_free(rule);
1930 }
1931
1932 /* Returns true if 'rule' has an OpenFlow OFPAT_OUTPUT or OFPAT_ENQUEUE action
1933 * that outputs to 'out_port' (output to OFPP_FLOOD and OFPP_ALL doesn't
1934 * count). */
1935 static bool
1936 rule_has_out_port(const struct rule *rule, ovs_be16 out_port)
1937 {
1938 const union ofp_action *oa;
1939 struct actions_iterator i;
1940
1941 if (out_port == htons(OFPP_NONE)) {
1942 return true;
1943 }
1944 for (oa = actions_first(&i, rule->actions, rule->n_actions); oa;
1945 oa = actions_next(&i)) {
1946 if (action_outputs_to_port(oa, out_port)) {
1947 return true;
1948 }
1949 }
1950 return false;
1951 }
1952
1953 /* Executes, within 'ofproto', the 'n_actions' actions in 'actions' on
1954 * 'packet', which arrived on 'in_port'.
1955 *
1956 * Takes ownership of 'packet'. */
1957 static bool
1958 execute_odp_actions(struct ofproto *ofproto, uint16_t in_port,
1959 const union odp_action *actions, size_t n_actions,
1960 struct ofpbuf *packet)
1961 {
1962 if (n_actions == 1 && actions[0].type == ODPAT_CONTROLLER) {
1963 /* As an optimization, avoid a round-trip from userspace to kernel to
1964 * userspace. This also avoids possibly filling up kernel packet
1965 * buffers along the way. */
1966 struct odp_msg *msg;
1967
1968 msg = ofpbuf_push_uninit(packet, sizeof *msg);
1969 msg->type = _ODPL_ACTION_NR;
1970 msg->length = sizeof(struct odp_msg) + packet->size;
1971 msg->port = in_port;
1972 msg->reserved = 0;
1973 msg->arg = actions[0].controller.arg;
1974
1975 send_packet_in(ofproto, packet);
1976
1977 return true;
1978 } else {
1979 int error;
1980
1981 error = dpif_execute(ofproto->dpif, actions, n_actions, packet);
1982 ofpbuf_delete(packet);
1983 return !error;
1984 }
1985 }
1986
1987 /* Executes the actions indicated by 'facet' on 'packet' and credits 'facet''s
1988 * statistics appropriately. 'packet' must have at least sizeof(struct
1989 * ofp_packet_in) bytes of headroom.
1990 *
1991 * For correct results, 'packet' must actually be in 'facet''s flow; that is,
1992 * applying flow_extract() to 'packet' would yield the same flow as
1993 * 'facet->flow'.
1994 *
1995 * 'facet' must have accurately composed ODP actions; that is, it must not be
1996 * in need of revalidation.
1997 *
1998 * Takes ownership of 'packet'. */
1999 static void
2000 facet_execute(struct ofproto *ofproto, struct facet *facet,
2001 struct ofpbuf *packet)
2002 {
2003 struct odp_flow_stats stats;
2004
2005 assert(ofpbuf_headroom(packet) >= sizeof(struct ofp_packet_in));
2006
2007 flow_extract_stats(&facet->flow, packet, &stats);
2008 if (execute_odp_actions(ofproto, facet->flow.in_port,
2009 facet->actions, facet->n_actions, packet)) {
2010 facet_update_stats(ofproto, facet, &stats);
2011 facet->used = time_msec();
2012 netflow_flow_update_time(ofproto->netflow,
2013 &facet->nf_flow, facet->used);
2014 }
2015 }
2016
2017 /* Executes the actions indicated by 'rule' on 'packet' and credits 'rule''s
2018 * statistics (or the statistics for one of its facets) appropriately.
2019 * 'packet' must have at least sizeof(struct ofp_packet_in) bytes of headroom.
2020 *
2021 * 'packet' doesn't necessarily have to match 'rule'. 'rule' will be credited
2022 * with statistics for 'packet' either way.
2023 *
2024 * Takes ownership of 'packet'. */
2025 static void
2026 rule_execute(struct ofproto *ofproto, struct rule *rule, uint16_t in_port,
2027 struct ofpbuf *packet)
2028 {
2029 struct facet *facet;
2030 struct odp_actions a;
2031 struct flow flow;
2032 size_t size;
2033
2034 assert(ofpbuf_headroom(packet) >= sizeof(struct ofp_packet_in));
2035
2036 flow_extract(packet, 0, in_port, &flow);
2037
2038 /* First look for a related facet. If we find one, account it to that. */
2039 facet = facet_lookup_valid(ofproto, &flow);
2040 if (facet && facet->rule == rule) {
2041 facet_execute(ofproto, facet, packet);
2042 return;
2043 }
2044
2045 /* Otherwise, if 'rule' is in fact the correct rule for 'packet', then
2046 * create a new facet for it and use that. */
2047 if (rule_lookup(ofproto, &flow) == rule) {
2048 facet = facet_create(ofproto, rule, &flow, packet);
2049 facet_execute(ofproto, facet, packet);
2050 facet_install(ofproto, facet, true);
2051 return;
2052 }
2053
2054 /* We can't account anything to a facet. If we were to try, then that
2055 * facet would have a non-matching rule, busting our invariants. */
2056 if (xlate_actions(rule->actions, rule->n_actions, &flow, ofproto,
2057 packet, &a, NULL, 0, NULL)) {
2058 ofpbuf_delete(packet);
2059 return;
2060 }
2061 size = packet->size;
2062 if (execute_odp_actions(ofproto, in_port,
2063 a.actions, a.n_actions, packet)) {
2064 rule->used = time_msec();
2065 rule->packet_count++;
2066 rule->byte_count += size;
2067 }
2068 }
2069
2070 /* Inserts 'rule' into 'p''s flow table.
2071 *
2072 * If 'packet' is nonnull, takes ownership of 'packet', executes 'rule''s
2073 * actions on it and credits the statistics for sending the packet to 'rule'.
2074 * 'packet' must have at least sizeof(struct ofp_packet_in) bytes of
2075 * headroom. */
2076 static void
2077 rule_insert(struct ofproto *p, struct rule *rule, struct ofpbuf *packet,
2078 uint16_t in_port)
2079 {
2080 struct rule *displaced_rule;
2081
2082 displaced_rule = rule_from_cls_rule(classifier_insert(&p->cls, &rule->cr));
2083 if (displaced_rule) {
2084 rule_destroy(p, displaced_rule);
2085 }
2086 p->need_revalidate = true;
2087
2088 if (packet) {
2089 rule_execute(p, rule, in_port, packet);
2090 }
2091 }
2092
2093 /* Creates and returns a new facet within 'ofproto' owned by 'rule', given a
2094 * 'flow' and an example 'packet' within that flow.
2095 *
2096 * The caller must already have determined that no facet with an identical
2097 * 'flow' exists in 'ofproto' and that 'flow' is the best match for 'rule' in
2098 * 'ofproto''s classifier table. */
2099 static struct facet *
2100 facet_create(struct ofproto *ofproto, struct rule *rule,
2101 const struct flow *flow, const struct ofpbuf *packet)
2102 {
2103 struct facet *facet;
2104
2105 facet = xzalloc(sizeof *facet);
2106 facet->used = time_msec();
2107 hmap_insert(&ofproto->facets, &facet->hmap_node, flow_hash(flow, 0));
2108 list_push_back(&rule->facets, &facet->list_node);
2109 facet->rule = rule;
2110 facet->flow = *flow;
2111 netflow_flow_init(&facet->nf_flow);
2112 netflow_flow_update_time(ofproto->netflow, &facet->nf_flow, facet->used);
2113
2114 facet_make_actions(ofproto, facet, packet);
2115
2116 return facet;
2117 }
2118
2119 static void
2120 facet_free(struct facet *facet)
2121 {
2122 free(facet->actions);
2123 free(facet);
2124 }
2125
2126 /* Remove 'rule' from 'ofproto' and free up the associated memory:
2127 *
2128 * - Removes 'rule' from the classifier.
2129 *
2130 * - If 'rule' has facets, revalidates them (and possibly uninstalls and
2131 * destroys them), via rule_destroy().
2132 */
2133 static void
2134 rule_remove(struct ofproto *ofproto, struct rule *rule)
2135 {
2136 COVERAGE_INC(ofproto_del_rule);
2137 ofproto->need_revalidate = true;
2138 classifier_remove(&ofproto->cls, &rule->cr);
2139 rule_destroy(ofproto, rule);
2140 }
2141
2142 /* Remove 'facet' from 'ofproto' and free up the associated memory:
2143 *
2144 * - If 'facet' was installed in the datapath, uninstalls it and updates its
2145 * rule's statistics, via facet_uninstall().
2146 *
2147 * - Removes 'facet' from its rule and from ofproto->facets.
2148 */
2149 static void
2150 facet_remove(struct ofproto *ofproto, struct facet *facet)
2151 {
2152 facet_uninstall(ofproto, facet);
2153 hmap_remove(&ofproto->facets, &facet->hmap_node);
2154 list_remove(&facet->list_node);
2155 facet_free(facet);
2156 }
2157
2158 /* Composes the ODP actions for 'facet' based on its rule's actions.
2159 * Returns true if the actions changed, false otherwise. */
2160 static bool
2161 facet_make_actions(struct ofproto *p, struct facet *facet,
2162 const struct ofpbuf *packet)
2163 {
2164 const struct rule *rule = facet->rule;
2165 struct odp_actions a;
2166 size_t actions_len;
2167
2168 xlate_actions(rule->actions, rule->n_actions, &facet->flow, p,
2169 packet, &a, &facet->tags, &facet->may_install,
2170 &facet->nf_flow.output_iface);
2171
2172 actions_len = a.n_actions * sizeof *a.actions;
2173 if (facet->n_actions == a.n_actions
2174 && !memcmp(facet->actions, a.actions, actions_len)) {
2175 return false;
2176 }
2177
2178 free(facet->actions);
2179 facet->n_actions = a.n_actions;
2180 facet->actions = xmemdup(a.actions, actions_len);
2181 return true;
2182 }
2183
2184 static int
2185 facet_put__(struct ofproto *ofproto, struct facet *facet, int flags,
2186 struct odp_flow_put *put)
2187 {
2188 memset(&put->flow.stats, 0, sizeof put->flow.stats);
2189 odp_flow_key_from_flow(&put->flow.key, &facet->flow);
2190 put->flow.actions = facet->actions;
2191 put->flow.n_actions = facet->n_actions;
2192 put->flow.flags = 0;
2193 put->flags = flags;
2194 return dpif_flow_put(ofproto->dpif, put);
2195 }
2196
2197 /* If 'facet' is installable, inserts or re-inserts it into 'p''s datapath. If
2198 * 'zero_stats' is true, clears any existing statistics from the datapath for
2199 * 'facet'. */
2200 static void
2201 facet_install(struct ofproto *p, struct facet *facet, bool zero_stats)
2202 {
2203 if (facet->may_install) {
2204 struct odp_flow_put put;
2205 int flags;
2206
2207 flags = ODPPF_CREATE | ODPPF_MODIFY;
2208 if (zero_stats) {
2209 flags |= ODPPF_ZERO_STATS;
2210 }
2211 if (!facet_put__(p, facet, flags, &put)) {
2212 facet->installed = true;
2213 }
2214 }
2215 }
2216
2217 /* Recomposes the ODP actions for 'facet' and installs or uninstalls or
2218 * reinstalls them as necessary. */
2219 static void
2220 facet_update_actions(struct ofproto *ofproto, struct facet *facet)
2221 {
2222 bool actions_changed;
2223 uint16_t new_out_iface, old_out_iface;
2224
2225 old_out_iface = facet->nf_flow.output_iface;
2226 actions_changed = facet_make_actions(ofproto, facet, NULL);
2227
2228 if (facet->may_install) {
2229 if (facet->installed) {
2230 if (actions_changed) {
2231 struct odp_flow_put put;
2232 facet_put__(ofproto, facet, ODPPF_CREATE | ODPPF_MODIFY
2233 | ODPPF_ZERO_STATS, &put);
2234 facet_update_stats(ofproto, facet, &put.flow.stats);
2235
2236 /* Temporarily set the old output iface so that NetFlow
2237 * messages have the correct output interface for the old
2238 * stats. */
2239 new_out_iface = facet->nf_flow.output_iface;
2240 facet->nf_flow.output_iface = old_out_iface;
2241 facet_post_uninstall(ofproto, facet);
2242 facet->nf_flow.output_iface = new_out_iface;
2243 }
2244 } else {
2245 facet_install(ofproto, facet, true);
2246 }
2247 } else {
2248 facet_uninstall(ofproto, facet);
2249 }
2250 }
2251
2252 /* Ensures that the bytes in 'facet', plus 'extra_bytes', have been passed up
2253 * to the accounting hook function in the ofhooks structure. */
2254 static void
2255 facet_account(struct ofproto *ofproto,
2256 struct facet *facet, uint64_t extra_bytes)
2257 {
2258 uint64_t total_bytes = facet->byte_count + extra_bytes;
2259
2260 if (ofproto->ofhooks->account_flow_cb
2261 && total_bytes > facet->accounted_bytes)
2262 {
2263 ofproto->ofhooks->account_flow_cb(
2264 &facet->flow, facet->tags, facet->actions, facet->n_actions,
2265 total_bytes - facet->accounted_bytes, ofproto->aux);
2266 facet->accounted_bytes = total_bytes;
2267 }
2268 }
2269
2270 /* If 'rule' is installed in the datapath, uninstalls it and updates its
2271 * rule's statistics.
2272 *
2273 * If 'rule' is not installed, this function has no effect. */
2274 static void
2275 facet_uninstall(struct ofproto *p, struct facet *facet)
2276 {
2277 if (facet->installed) {
2278 struct odp_flow odp_flow;
2279
2280 odp_flow_key_from_flow(&odp_flow.key, &facet->flow);
2281 odp_flow.actions = NULL;
2282 odp_flow.n_actions = 0;
2283 odp_flow.flags = 0;
2284 if (!dpif_flow_del(p->dpif, &odp_flow)) {
2285 facet_update_stats(p, facet, &odp_flow.stats);
2286 }
2287 facet->installed = false;
2288
2289 facet_post_uninstall(p, facet);
2290 }
2291 }
2292
2293 /* Returns true if the only action for 'facet' is to send to the controller.
2294 * (We don't report NetFlow expiration messages for such facets because they
2295 * are just part of the control logic for the network, not real traffic). */
2296 static bool
2297 facet_is_controller_flow(struct facet *facet)
2298 {
2299 return (facet
2300 && facet->rule->n_actions == 1
2301 && action_outputs_to_port(&facet->rule->actions[0],
2302 htons(OFPP_CONTROLLER)));
2303 }
2304
2305 /* Folds all of 'facet''s statistics into its rule. Also updates the
2306 * accounting ofhook and emits a NetFlow expiration if appropriate. */
2307 static void
2308 facet_post_uninstall(struct ofproto *ofproto, struct facet *facet)
2309 {
2310 facet_account(ofproto, facet, 0);
2311
2312 if (ofproto->netflow && !facet_is_controller_flow(facet)) {
2313 struct ofexpired expired;
2314 expired.flow = facet->flow;
2315 expired.packet_count = facet->packet_count;
2316 expired.byte_count = facet->byte_count;
2317 expired.used = facet->used;
2318 netflow_expire(ofproto->netflow, &facet->nf_flow, &expired);
2319 }
2320
2321 facet->rule->packet_count += facet->packet_count;
2322 facet->rule->byte_count += facet->byte_count;
2323
2324 /* Reset counters to prevent double counting if 'facet' ever gets
2325 * reinstalled. */
2326 facet->packet_count = 0;
2327 facet->byte_count = 0;
2328 facet->accounted_bytes = 0;
2329
2330 netflow_flow_clear(&facet->nf_flow);
2331 }
2332
2333 /* Searches 'ofproto''s table of facets for one exactly equal to 'flow'.
2334 * Returns it if found, otherwise a null pointer.
2335 *
2336 * The returned facet might need revalidation; use facet_lookup_valid()
2337 * instead if that is important. */
2338 static struct facet *
2339 facet_find(struct ofproto *ofproto, const struct flow *flow)
2340 {
2341 struct facet *facet;
2342
2343 HMAP_FOR_EACH_WITH_HASH (facet, hmap_node, flow_hash(flow, 0),
2344 &ofproto->facets) {
2345 if (flow_equal(flow, &facet->flow)) {
2346 return facet;
2347 }
2348 }
2349
2350 return NULL;
2351 }
2352
2353 /* Searches 'ofproto''s table of facets for one exactly equal to 'flow'.
2354 * Returns it if found, otherwise a null pointer.
2355 *
2356 * The returned facet is guaranteed to be valid. */
2357 static struct facet *
2358 facet_lookup_valid(struct ofproto *ofproto, const struct flow *flow)
2359 {
2360 struct facet *facet = facet_find(ofproto, flow);
2361
2362 /* The facet we found might not be valid, since we could be in need of
2363 * revalidation. If it is not valid, don't return it. */
2364 if (facet
2365 && ofproto->need_revalidate
2366 && !facet_revalidate(ofproto, facet)) {
2367 COVERAGE_INC(ofproto_invalidated);
2368 return NULL;
2369 }
2370
2371 return facet;
2372 }
2373
2374 /* Re-searches 'ofproto''s classifier for a rule matching 'facet':
2375 *
2376 * - If the rule found is different from 'facet''s current rule, moves
2377 * 'facet' to the new rule and recompiles its actions.
2378 *
2379 * - If the rule found is the same as 'facet''s current rule, leaves 'facet'
2380 * where it is and recompiles its actions anyway.
2381 *
2382 * - If there is none, destroys 'facet'.
2383 *
2384 * Returns true if 'facet' still exists, false if it has been destroyed.
2385 */
2386 static bool
2387 facet_revalidate(struct ofproto *ofproto, struct facet *facet)
2388 {
2389 struct rule *rule;
2390
2391 COVERAGE_INC(facet_revalidate);
2392 rule = rule_lookup(ofproto, &facet->flow);
2393 if (!rule) {
2394 facet_remove(ofproto, facet);
2395 return false;
2396 }
2397
2398 if (rule != facet->rule) {
2399 COVERAGE_INC(facet_changed_rule);
2400 list_remove(&facet->list_node);
2401 list_push_back(&rule->facets, &facet->list_node);
2402 facet->rule = rule;
2403 facet->used = rule->created;
2404 }
2405
2406 facet_update_actions(ofproto, facet);
2407 return true;
2408 }
2409 \f
2410 static void
2411 queue_tx(struct ofpbuf *msg, const struct ofconn *ofconn,
2412 struct rconn_packet_counter *counter)
2413 {
2414 update_openflow_length(msg);
2415 if (rconn_send(ofconn->rconn, msg, counter)) {
2416 ofpbuf_delete(msg);
2417 }
2418 }
2419
2420 static void
2421 send_error_oh(const struct ofconn *ofconn, const struct ofp_header *oh,
2422 int error)
2423 {
2424 struct ofpbuf *buf = make_ofp_error_msg(error, oh);
2425 if (buf) {
2426 COVERAGE_INC(ofproto_error);
2427 queue_tx(buf, ofconn, ofconn->reply_counter);
2428 }
2429 }
2430
2431 static void
2432 hton_ofp_phy_port(struct ofp_phy_port *opp)
2433 {
2434 opp->port_no = htons(opp->port_no);
2435 opp->config = htonl(opp->config);
2436 opp->state = htonl(opp->state);
2437 opp->curr = htonl(opp->curr);
2438 opp->advertised = htonl(opp->advertised);
2439 opp->supported = htonl(opp->supported);
2440 opp->peer = htonl(opp->peer);
2441 }
2442
2443 static int
2444 handle_echo_request(struct ofconn *ofconn, struct ofp_header *oh)
2445 {
2446 struct ofp_header *rq = oh;
2447 queue_tx(make_echo_reply(rq), ofconn, ofconn->reply_counter);
2448 return 0;
2449 }
2450
2451 static int
2452 handle_features_request(struct ofconn *ofconn, struct ofp_header *oh)
2453 {
2454 struct ofp_switch_features *osf;
2455 struct ofpbuf *buf;
2456 struct ofport *port;
2457
2458 osf = make_openflow_xid(sizeof *osf, OFPT_FEATURES_REPLY, oh->xid, &buf);
2459 osf->datapath_id = htonll(ofconn->ofproto->datapath_id);
2460 osf->n_buffers = htonl(pktbuf_capacity());
2461 osf->n_tables = 2;
2462 osf->capabilities = htonl(OFPC_FLOW_STATS | OFPC_TABLE_STATS |
2463 OFPC_PORT_STATS | OFPC_ARP_MATCH_IP);
2464 osf->actions = htonl((1u << OFPAT_OUTPUT) |
2465 (1u << OFPAT_SET_VLAN_VID) |
2466 (1u << OFPAT_SET_VLAN_PCP) |
2467 (1u << OFPAT_STRIP_VLAN) |
2468 (1u << OFPAT_SET_DL_SRC) |
2469 (1u << OFPAT_SET_DL_DST) |
2470 (1u << OFPAT_SET_NW_SRC) |
2471 (1u << OFPAT_SET_NW_DST) |
2472 (1u << OFPAT_SET_NW_TOS) |
2473 (1u << OFPAT_SET_TP_SRC) |
2474 (1u << OFPAT_SET_TP_DST) |
2475 (1u << OFPAT_ENQUEUE));
2476
2477 HMAP_FOR_EACH (port, hmap_node, &ofconn->ofproto->ports) {
2478 hton_ofp_phy_port(ofpbuf_put(buf, &port->opp, sizeof port->opp));
2479 }
2480
2481 queue_tx(buf, ofconn, ofconn->reply_counter);
2482 return 0;
2483 }
2484
2485 static int
2486 handle_get_config_request(struct ofconn *ofconn, struct ofp_header *oh)
2487 {
2488 struct ofpbuf *buf;
2489 struct ofp_switch_config *osc;
2490 uint16_t flags;
2491 bool drop_frags;
2492
2493 /* Figure out flags. */
2494 dpif_get_drop_frags(ofconn->ofproto->dpif, &drop_frags);
2495 flags = drop_frags ? OFPC_FRAG_DROP : OFPC_FRAG_NORMAL;
2496
2497 /* Send reply. */
2498 osc = make_openflow_xid(sizeof *osc, OFPT_GET_CONFIG_REPLY, oh->xid, &buf);
2499 osc->flags = htons(flags);
2500 osc->miss_send_len = htons(ofconn->miss_send_len);
2501 queue_tx(buf, ofconn, ofconn->reply_counter);
2502
2503 return 0;
2504 }
2505
2506 static int
2507 handle_set_config(struct ofconn *ofconn, struct ofp_switch_config *osc)
2508 {
2509 uint16_t flags;
2510 int error;
2511
2512 error = check_ofp_message(&osc->header, OFPT_SET_CONFIG, sizeof *osc);
2513 if (error) {
2514 return error;
2515 }
2516 flags = ntohs(osc->flags);
2517
2518 if (ofconn->type == OFCONN_PRIMARY && ofconn->role != NX_ROLE_SLAVE) {
2519 switch (flags & OFPC_FRAG_MASK) {
2520 case OFPC_FRAG_NORMAL:
2521 dpif_set_drop_frags(ofconn->ofproto->dpif, false);
2522 break;
2523 case OFPC_FRAG_DROP:
2524 dpif_set_drop_frags(ofconn->ofproto->dpif, true);
2525 break;
2526 default:
2527 VLOG_WARN_RL(&rl, "requested bad fragment mode (flags=%"PRIx16")",
2528 osc->flags);
2529 break;
2530 }
2531 }
2532
2533 ofconn->miss_send_len = ntohs(osc->miss_send_len);
2534
2535 return 0;
2536 }
2537
2538 static void
2539 add_controller_action(struct odp_actions *actions, uint16_t max_len)
2540 {
2541 union odp_action *a = odp_actions_add(actions, ODPAT_CONTROLLER);
2542 a->controller.arg = max_len;
2543 }
2544
2545 struct action_xlate_ctx {
2546 /* Input. */
2547 struct flow flow; /* Flow to which these actions correspond. */
2548 int recurse; /* Recursion level, via xlate_table_action. */
2549 struct ofproto *ofproto;
2550 const struct ofpbuf *packet; /* The packet corresponding to 'flow', or a
2551 * null pointer if we are revalidating
2552 * without a packet to refer to. */
2553
2554 /* Output. */
2555 struct odp_actions *out; /* Datapath actions. */
2556 tag_type tags; /* Tags associated with OFPP_NORMAL actions. */
2557 bool may_set_up_flow; /* True ordinarily; false if the actions must
2558 * be reassessed for every packet. */
2559 uint16_t nf_output_iface; /* Output interface index for NetFlow. */
2560 };
2561
2562 /* Maximum depth of flow table recursion (due to NXAST_RESUBMIT actions) in a
2563 * flow translation. */
2564 #define MAX_RESUBMIT_RECURSION 8
2565
2566 static void do_xlate_actions(const union ofp_action *in, size_t n_in,
2567 struct action_xlate_ctx *ctx);
2568
2569 static void
2570 add_output_action(struct action_xlate_ctx *ctx, uint16_t port)
2571 {
2572 const struct ofport *ofport = get_port(ctx->ofproto, port);
2573
2574 if (ofport) {
2575 if (ofport->opp.config & OFPPC_NO_FWD) {
2576 /* Forwarding disabled on port. */
2577 return;
2578 }
2579 } else {
2580 /*
2581 * We don't have an ofport record for this port, but it doesn't hurt to
2582 * allow forwarding to it anyhow. Maybe such a port will appear later
2583 * and we're pre-populating the flow table.
2584 */
2585 }
2586
2587 odp_actions_add(ctx->out, ODPAT_OUTPUT)->output.port = port;
2588 ctx->nf_output_iface = port;
2589 }
2590
2591 static struct rule *
2592 rule_lookup(struct ofproto *ofproto, const struct flow *flow)
2593 {
2594 return rule_from_cls_rule(classifier_lookup(&ofproto->cls, flow,
2595 CLS_INC_ALL));
2596 }
2597
2598 static void
2599 xlate_table_action(struct action_xlate_ctx *ctx, uint16_t in_port)
2600 {
2601 if (ctx->recurse < MAX_RESUBMIT_RECURSION) {
2602 uint16_t old_in_port;
2603 struct rule *rule;
2604
2605 /* Look up a flow with 'in_port' as the input port. Then restore the
2606 * original input port (otherwise OFPP_NORMAL and OFPP_IN_PORT will
2607 * have surprising behavior). */
2608 old_in_port = ctx->flow.in_port;
2609 ctx->flow.in_port = in_port;
2610 rule = rule_lookup(ctx->ofproto, &ctx->flow);
2611 ctx->flow.in_port = old_in_port;
2612
2613 if (rule) {
2614 ctx->recurse++;
2615 do_xlate_actions(rule->actions, rule->n_actions, ctx);
2616 ctx->recurse--;
2617 }
2618 } else {
2619 struct vlog_rate_limit recurse_rl = VLOG_RATE_LIMIT_INIT(1, 1);
2620
2621 VLOG_ERR_RL(&recurse_rl, "NXAST_RESUBMIT recursed over %d times",
2622 MAX_RESUBMIT_RECURSION);
2623 }
2624 }
2625
2626 static void
2627 flood_packets(struct ofproto *ofproto, uint16_t odp_in_port, uint32_t mask,
2628 uint16_t *nf_output_iface, struct odp_actions *actions)
2629 {
2630 struct ofport *ofport;
2631
2632 HMAP_FOR_EACH (ofport, hmap_node, &ofproto->ports) {
2633 uint16_t odp_port = ofport->odp_port;
2634 if (odp_port != odp_in_port && !(ofport->opp.config & mask)) {
2635 odp_actions_add(actions, ODPAT_OUTPUT)->output.port = odp_port;
2636 }
2637 }
2638 *nf_output_iface = NF_OUT_FLOOD;
2639 }
2640
2641 static void
2642 xlate_output_action__(struct action_xlate_ctx *ctx,
2643 uint16_t port, uint16_t max_len)
2644 {
2645 uint16_t odp_port;
2646 uint16_t prev_nf_output_iface = ctx->nf_output_iface;
2647
2648 ctx->nf_output_iface = NF_OUT_DROP;
2649
2650 switch (port) {
2651 case OFPP_IN_PORT:
2652 add_output_action(ctx, ctx->flow.in_port);
2653 break;
2654 case OFPP_TABLE:
2655 xlate_table_action(ctx, ctx->flow.in_port);
2656 break;
2657 case OFPP_NORMAL:
2658 if (!ctx->ofproto->ofhooks->normal_cb(&ctx->flow, ctx->packet,
2659 ctx->out, &ctx->tags,
2660 &ctx->nf_output_iface,
2661 ctx->ofproto->aux)) {
2662 COVERAGE_INC(ofproto_uninstallable);
2663 ctx->may_set_up_flow = false;
2664 }
2665 break;
2666 case OFPP_FLOOD:
2667 flood_packets(ctx->ofproto, ctx->flow.in_port, OFPPC_NO_FLOOD,
2668 &ctx->nf_output_iface, ctx->out);
2669 break;
2670 case OFPP_ALL:
2671 flood_packets(ctx->ofproto, ctx->flow.in_port, 0,
2672 &ctx->nf_output_iface, ctx->out);
2673 break;
2674 case OFPP_CONTROLLER:
2675 add_controller_action(ctx->out, max_len);
2676 break;
2677 case OFPP_LOCAL:
2678 add_output_action(ctx, ODPP_LOCAL);
2679 break;
2680 default:
2681 odp_port = ofp_port_to_odp_port(port);
2682 if (odp_port != ctx->flow.in_port) {
2683 add_output_action(ctx, odp_port);
2684 }
2685 break;
2686 }
2687
2688 if (prev_nf_output_iface == NF_OUT_FLOOD) {
2689 ctx->nf_output_iface = NF_OUT_FLOOD;
2690 } else if (ctx->nf_output_iface == NF_OUT_DROP) {
2691 ctx->nf_output_iface = prev_nf_output_iface;
2692 } else if (prev_nf_output_iface != NF_OUT_DROP &&
2693 ctx->nf_output_iface != NF_OUT_FLOOD) {
2694 ctx->nf_output_iface = NF_OUT_MULTI;
2695 }
2696 }
2697
2698 static void
2699 xlate_output_action(struct action_xlate_ctx *ctx,
2700 const struct ofp_action_output *oao)
2701 {
2702 xlate_output_action__(ctx, ntohs(oao->port), ntohs(oao->max_len));
2703 }
2704
2705 /* If the final ODP action in 'ctx' is "pop priority", drop it, as an
2706 * optimization, because we're going to add another action that sets the
2707 * priority immediately after, or because there are no actions following the
2708 * pop. */
2709 static void
2710 remove_pop_action(struct action_xlate_ctx *ctx)
2711 {
2712 size_t n = ctx->out->n_actions;
2713 if (n > 0 && ctx->out->actions[n - 1].type == ODPAT_POP_PRIORITY) {
2714 ctx->out->n_actions--;
2715 }
2716 }
2717
2718 static void
2719 xlate_enqueue_action(struct action_xlate_ctx *ctx,
2720 const struct ofp_action_enqueue *oae)
2721 {
2722 uint16_t ofp_port, odp_port;
2723 uint32_t priority;
2724 int error;
2725
2726 error = dpif_queue_to_priority(ctx->ofproto->dpif, ntohl(oae->queue_id),
2727 &priority);
2728 if (error) {
2729 /* Fall back to ordinary output action. */
2730 xlate_output_action__(ctx, ntohs(oae->port), 0);
2731 return;
2732 }
2733
2734 /* Figure out ODP output port. */
2735 ofp_port = ntohs(oae->port);
2736 if (ofp_port != OFPP_IN_PORT) {
2737 odp_port = ofp_port_to_odp_port(ofp_port);
2738 } else {
2739 odp_port = ctx->flow.in_port;
2740 }
2741
2742 /* Add ODP actions. */
2743 remove_pop_action(ctx);
2744 odp_actions_add(ctx->out, ODPAT_SET_PRIORITY)->priority.priority
2745 = priority;
2746 add_output_action(ctx, odp_port);
2747 odp_actions_add(ctx->out, ODPAT_POP_PRIORITY);
2748
2749 /* Update NetFlow output port. */
2750 if (ctx->nf_output_iface == NF_OUT_DROP) {
2751 ctx->nf_output_iface = odp_port;
2752 } else if (ctx->nf_output_iface != NF_OUT_FLOOD) {
2753 ctx->nf_output_iface = NF_OUT_MULTI;
2754 }
2755 }
2756
2757 static void
2758 xlate_set_queue_action(struct action_xlate_ctx *ctx,
2759 const struct nx_action_set_queue *nasq)
2760 {
2761 uint32_t priority;
2762 int error;
2763
2764 error = dpif_queue_to_priority(ctx->ofproto->dpif, ntohl(nasq->queue_id),
2765 &priority);
2766 if (error) {
2767 /* Couldn't translate queue to a priority, so ignore. A warning
2768 * has already been logged. */
2769 return;
2770 }
2771
2772 remove_pop_action(ctx);
2773 odp_actions_add(ctx->out, ODPAT_SET_PRIORITY)->priority.priority
2774 = priority;
2775 }
2776
2777 static void
2778 xlate_set_dl_tci(struct action_xlate_ctx *ctx)
2779 {
2780 ovs_be16 dl_vlan = ctx->flow.dl_vlan;
2781 uint8_t dl_vlan_pcp = ctx->flow.dl_vlan_pcp;
2782
2783 if (dl_vlan == htons(OFP_VLAN_NONE)) {
2784 odp_actions_add(ctx->out, ODPAT_STRIP_VLAN);
2785 } else {
2786 union odp_action *oa = odp_actions_add(ctx->out, ODPAT_SET_DL_TCI);
2787 oa->dl_tci.tci = htons(ntohs(dl_vlan & htons(VLAN_VID_MASK))
2788 | (dl_vlan_pcp << VLAN_PCP_SHIFT)
2789 | VLAN_CFI);
2790 }
2791 }
2792
2793 static void
2794 xlate_reg_move_action(struct action_xlate_ctx *ctx,
2795 const struct nx_action_reg_move *narm)
2796 {
2797 ovs_be16 old_vlan = ctx->flow.dl_vlan;
2798 uint8_t old_pcp = ctx->flow.dl_vlan_pcp;
2799
2800 nxm_execute_reg_move(narm, &ctx->flow);
2801
2802 if (ctx->flow.dl_vlan != old_vlan || ctx->flow.dl_vlan_pcp != old_pcp) {
2803 xlate_set_dl_tci(ctx);
2804 }
2805 }
2806
2807 static void
2808 xlate_nicira_action(struct action_xlate_ctx *ctx,
2809 const struct nx_action_header *nah)
2810 {
2811 const struct nx_action_resubmit *nar;
2812 const struct nx_action_set_tunnel *nast;
2813 const struct nx_action_set_queue *nasq;
2814 union odp_action *oa;
2815 int subtype = ntohs(nah->subtype);
2816
2817 assert(nah->vendor == htonl(NX_VENDOR_ID));
2818 switch (subtype) {
2819 case NXAST_RESUBMIT:
2820 nar = (const struct nx_action_resubmit *) nah;
2821 xlate_table_action(ctx, ofp_port_to_odp_port(ntohs(nar->in_port)));
2822 break;
2823
2824 case NXAST_SET_TUNNEL:
2825 nast = (const struct nx_action_set_tunnel *) nah;
2826 oa = odp_actions_add(ctx->out, ODPAT_SET_TUNNEL);
2827 ctx->flow.tun_id = oa->tunnel.tun_id = nast->tun_id;
2828 break;
2829
2830 case NXAST_DROP_SPOOFED_ARP:
2831 if (ctx->flow.dl_type == htons(ETH_TYPE_ARP)) {
2832 odp_actions_add(ctx->out, ODPAT_DROP_SPOOFED_ARP);
2833 }
2834 break;
2835
2836 case NXAST_SET_QUEUE:
2837 nasq = (const struct nx_action_set_queue *) nah;
2838 xlate_set_queue_action(ctx, nasq);
2839 break;
2840
2841 case NXAST_POP_QUEUE:
2842 odp_actions_add(ctx->out, ODPAT_POP_PRIORITY);
2843 break;
2844
2845 case NXAST_REG_MOVE:
2846 xlate_reg_move_action(ctx, (const struct nx_action_reg_move *) nah);
2847 break;
2848
2849 case NXAST_REG_LOAD:
2850 nxm_execute_reg_load((const struct nx_action_reg_load *) nah,
2851 &ctx->flow);
2852 break;
2853
2854 /* If you add a new action here that modifies flow data, don't forget to
2855 * update the flow key in ctx->flow at the same time. */
2856
2857 default:
2858 VLOG_DBG_RL(&rl, "unknown Nicira action type %"PRIu16, subtype);
2859 break;
2860 }
2861 }
2862
2863 static void
2864 do_xlate_actions(const union ofp_action *in, size_t n_in,
2865 struct action_xlate_ctx *ctx)
2866 {
2867 struct actions_iterator iter;
2868 const union ofp_action *ia;
2869 const struct ofport *port;
2870
2871 port = get_port(ctx->ofproto, ctx->flow.in_port);
2872 if (port && port->opp.config & (OFPPC_NO_RECV | OFPPC_NO_RECV_STP) &&
2873 port->opp.config & (eth_addr_equals(ctx->flow.dl_dst, eth_addr_stp)
2874 ? OFPPC_NO_RECV_STP : OFPPC_NO_RECV)) {
2875 /* Drop this flow. */
2876 return;
2877 }
2878
2879 for (ia = actions_first(&iter, in, n_in); ia; ia = actions_next(&iter)) {
2880 uint16_t type = ntohs(ia->type);
2881 union odp_action *oa;
2882
2883 switch (type) {
2884 case OFPAT_OUTPUT:
2885 xlate_output_action(ctx, &ia->output);
2886 break;
2887
2888 case OFPAT_SET_VLAN_VID:
2889 ctx->flow.dl_vlan = ia->vlan_vid.vlan_vid;
2890 xlate_set_dl_tci(ctx);
2891 break;
2892
2893 case OFPAT_SET_VLAN_PCP:
2894 ctx->flow.dl_vlan_pcp = ia->vlan_pcp.vlan_pcp;
2895 xlate_set_dl_tci(ctx);
2896 break;
2897
2898 case OFPAT_STRIP_VLAN:
2899 ctx->flow.dl_vlan = htons(OFP_VLAN_NONE);
2900 ctx->flow.dl_vlan_pcp = 0;
2901 xlate_set_dl_tci(ctx);
2902 break;
2903
2904 case OFPAT_SET_DL_SRC:
2905 oa = odp_actions_add(ctx->out, ODPAT_SET_DL_SRC);
2906 memcpy(oa->dl_addr.dl_addr,
2907 ((struct ofp_action_dl_addr *) ia)->dl_addr, ETH_ADDR_LEN);
2908 memcpy(ctx->flow.dl_src,
2909 ((struct ofp_action_dl_addr *) ia)->dl_addr, ETH_ADDR_LEN);
2910 break;
2911
2912 case OFPAT_SET_DL_DST:
2913 oa = odp_actions_add(ctx->out, ODPAT_SET_DL_DST);
2914 memcpy(oa->dl_addr.dl_addr,
2915 ((struct ofp_action_dl_addr *) ia)->dl_addr, ETH_ADDR_LEN);
2916 memcpy(ctx->flow.dl_dst,
2917 ((struct ofp_action_dl_addr *) ia)->dl_addr, ETH_ADDR_LEN);
2918 break;
2919
2920 case OFPAT_SET_NW_SRC:
2921 oa = odp_actions_add(ctx->out, ODPAT_SET_NW_SRC);
2922 ctx->flow.nw_src = oa->nw_addr.nw_addr = ia->nw_addr.nw_addr;
2923 break;
2924
2925 case OFPAT_SET_NW_DST:
2926 oa = odp_actions_add(ctx->out, ODPAT_SET_NW_DST);
2927 ctx->flow.nw_dst = oa->nw_addr.nw_addr = ia->nw_addr.nw_addr;
2928 break;
2929
2930 case OFPAT_SET_NW_TOS:
2931 oa = odp_actions_add(ctx->out, ODPAT_SET_NW_TOS);
2932 ctx->flow.nw_tos = oa->nw_tos.nw_tos = ia->nw_tos.nw_tos;
2933 break;
2934
2935 case OFPAT_SET_TP_SRC:
2936 oa = odp_actions_add(ctx->out, ODPAT_SET_TP_SRC);
2937 ctx->flow.tp_src = oa->tp_port.tp_port = ia->tp_port.tp_port;
2938 break;
2939
2940 case OFPAT_SET_TP_DST:
2941 oa = odp_actions_add(ctx->out, ODPAT_SET_TP_DST);
2942 ctx->flow.tp_dst = oa->tp_port.tp_port = ia->tp_port.tp_port;
2943 break;
2944
2945 case OFPAT_VENDOR:
2946 xlate_nicira_action(ctx, (const struct nx_action_header *) ia);
2947 break;
2948
2949 case OFPAT_ENQUEUE:
2950 xlate_enqueue_action(ctx, (const struct ofp_action_enqueue *) ia);
2951 break;
2952
2953 default:
2954 VLOG_DBG_RL(&rl, "unknown action type %"PRIu16, type);
2955 break;
2956 }
2957 }
2958 }
2959
2960 static int
2961 xlate_actions(const union ofp_action *in, size_t n_in,
2962 const struct flow *flow, struct ofproto *ofproto,
2963 const struct ofpbuf *packet,
2964 struct odp_actions *out, tag_type *tags, bool *may_set_up_flow,
2965 uint16_t *nf_output_iface)
2966 {
2967 struct action_xlate_ctx ctx;
2968
2969 COVERAGE_INC(ofproto_ofp2odp);
2970 odp_actions_init(out);
2971 ctx.flow = *flow;
2972 ctx.recurse = 0;
2973 ctx.ofproto = ofproto;
2974 ctx.packet = packet;
2975 ctx.out = out;
2976 ctx.tags = 0;
2977 ctx.may_set_up_flow = true;
2978 ctx.nf_output_iface = NF_OUT_DROP;
2979 do_xlate_actions(in, n_in, &ctx);
2980 remove_pop_action(&ctx);
2981
2982 /* Check with in-band control to see if we're allowed to set up this
2983 * flow. */
2984 if (!in_band_rule_check(ofproto->in_band, flow, out)) {
2985 ctx.may_set_up_flow = false;
2986 }
2987
2988 if (tags) {
2989 *tags = ctx.tags;
2990 }
2991 if (may_set_up_flow) {
2992 *may_set_up_flow = ctx.may_set_up_flow;
2993 }
2994 if (nf_output_iface) {
2995 *nf_output_iface = ctx.nf_output_iface;
2996 }
2997 if (odp_actions_overflow(out)) {
2998 COVERAGE_INC(odp_overflow);
2999 odp_actions_init(out);
3000 return ofp_mkerr(OFPET_BAD_ACTION, OFPBAC_TOO_MANY);
3001 }
3002 return 0;
3003 }
3004
3005 /* Checks whether 'ofconn' is a slave controller. If so, returns an OpenFlow
3006 * error message code (composed with ofp_mkerr()) for the caller to propagate
3007 * upward. Otherwise, returns 0.
3008 *
3009 * The log message mentions 'msg_type'. */
3010 static int
3011 reject_slave_controller(struct ofconn *ofconn, const const char *msg_type)
3012 {
3013 if (ofconn->type == OFCONN_PRIMARY && ofconn->role == NX_ROLE_SLAVE) {
3014 static struct vlog_rate_limit perm_rl = VLOG_RATE_LIMIT_INIT(1, 5);
3015 VLOG_WARN_RL(&perm_rl, "rejecting %s message from slave controller",
3016 msg_type);
3017
3018 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_EPERM);
3019 } else {
3020 return 0;
3021 }
3022 }
3023
3024 static int
3025 handle_packet_out(struct ofconn *ofconn, struct ofp_header *oh)
3026 {
3027 struct ofproto *p = ofconn->ofproto;
3028 struct ofp_packet_out *opo;
3029 struct ofpbuf payload, *buffer;
3030 union ofp_action *ofp_actions;
3031 struct odp_actions odp_actions;
3032 struct ofpbuf request;
3033 struct flow flow;
3034 size_t n_ofp_actions;
3035 uint16_t in_port;
3036 int error;
3037
3038 COVERAGE_INC(ofproto_packet_out);
3039
3040 error = reject_slave_controller(ofconn, "OFPT_PACKET_OUT");
3041 if (error) {
3042 return error;
3043 }
3044
3045 /* Get ofp_packet_out. */
3046 request.data = oh;
3047 request.size = ntohs(oh->length);
3048 opo = ofpbuf_try_pull(&request, offsetof(struct ofp_packet_out, actions));
3049 if (!opo) {
3050 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
3051 }
3052
3053 /* Get actions. */
3054 error = ofputil_pull_actions(&request, ntohs(opo->actions_len),
3055 &ofp_actions, &n_ofp_actions);
3056 if (error) {
3057 return error;
3058 }
3059
3060 /* Get payload. */
3061 if (opo->buffer_id != htonl(UINT32_MAX)) {
3062 error = pktbuf_retrieve(ofconn->pktbuf, ntohl(opo->buffer_id),
3063 &buffer, &in_port);
3064 if (error || !buffer) {
3065 return error;
3066 }
3067 payload = *buffer;
3068 } else {
3069 payload = request;
3070 buffer = NULL;
3071 }
3072
3073 /* Extract flow, check actions. */
3074 flow_extract(&payload, 0, ofp_port_to_odp_port(ntohs(opo->in_port)),
3075 &flow);
3076 error = validate_actions(ofp_actions, n_ofp_actions, &flow, p->max_ports);
3077 if (error) {
3078 goto exit;
3079 }
3080
3081 /* Send. */
3082 error = xlate_actions(ofp_actions, n_ofp_actions, &flow, p, &payload,
3083 &odp_actions, NULL, NULL, NULL);
3084 if (!error) {
3085 dpif_execute(p->dpif, odp_actions.actions, odp_actions.n_actions,
3086 &payload);
3087 }
3088
3089 exit:
3090 ofpbuf_delete(buffer);
3091 return 0;
3092 }
3093
3094 static void
3095 update_port_config(struct ofproto *p, struct ofport *port,
3096 uint32_t config, uint32_t mask)
3097 {
3098 mask &= config ^ port->opp.config;
3099 if (mask & OFPPC_PORT_DOWN) {
3100 if (config & OFPPC_PORT_DOWN) {
3101 netdev_turn_flags_off(port->netdev, NETDEV_UP, true);
3102 } else {
3103 netdev_turn_flags_on(port->netdev, NETDEV_UP, true);
3104 }
3105 }
3106 #define REVALIDATE_BITS (OFPPC_NO_RECV | OFPPC_NO_RECV_STP | \
3107 OFPPC_NO_FWD | OFPPC_NO_FLOOD)
3108 if (mask & REVALIDATE_BITS) {
3109 COVERAGE_INC(ofproto_costly_flags);
3110 port->opp.config ^= mask & REVALIDATE_BITS;
3111 p->need_revalidate = true;
3112 }
3113 #undef REVALIDATE_BITS
3114 if (mask & OFPPC_NO_PACKET_IN) {
3115 port->opp.config ^= OFPPC_NO_PACKET_IN;
3116 }
3117 }
3118
3119 static int
3120 handle_port_mod(struct ofconn *ofconn, struct ofp_header *oh)
3121 {
3122 struct ofproto *p = ofconn->ofproto;
3123 const struct ofp_port_mod *opm;
3124 struct ofport *port;
3125 int error;
3126
3127 error = reject_slave_controller(ofconn, "OFPT_PORT_MOD");
3128 if (error) {
3129 return error;
3130 }
3131 error = check_ofp_message(oh, OFPT_PORT_MOD, sizeof *opm);
3132 if (error) {
3133 return error;
3134 }
3135 opm = (struct ofp_port_mod *) oh;
3136
3137 port = get_port(p, ofp_port_to_odp_port(ntohs(opm->port_no)));
3138 if (!port) {
3139 return ofp_mkerr(OFPET_PORT_MOD_FAILED, OFPPMFC_BAD_PORT);
3140 } else if (memcmp(port->opp.hw_addr, opm->hw_addr, OFP_ETH_ALEN)) {
3141 return ofp_mkerr(OFPET_PORT_MOD_FAILED, OFPPMFC_BAD_HW_ADDR);
3142 } else {
3143 update_port_config(p, port, ntohl(opm->config), ntohl(opm->mask));
3144 if (opm->advertise) {
3145 netdev_set_advertisements(port->netdev, ntohl(opm->advertise));
3146 }
3147 }
3148 return 0;
3149 }
3150
3151 static struct ofpbuf *
3152 make_ofp_stats_reply(ovs_be32 xid, ovs_be16 type, size_t body_len)
3153 {
3154 struct ofp_stats_reply *osr;
3155 struct ofpbuf *msg;
3156
3157 msg = ofpbuf_new(MIN(sizeof *osr + body_len, UINT16_MAX));
3158 osr = put_openflow_xid(sizeof *osr, OFPT_STATS_REPLY, xid, msg);
3159 osr->type = type;
3160 osr->flags = htons(0);
3161 return msg;
3162 }
3163
3164 static struct ofpbuf *
3165 start_ofp_stats_reply(const struct ofp_stats_request *request, size_t body_len)
3166 {
3167 return make_ofp_stats_reply(request->header.xid, request->type, body_len);
3168 }
3169
3170 static void *
3171 append_ofp_stats_reply(size_t nbytes, struct ofconn *ofconn,
3172 struct ofpbuf **msgp)
3173 {
3174 struct ofpbuf *msg = *msgp;
3175 assert(nbytes <= UINT16_MAX - sizeof(struct ofp_stats_reply));
3176 if (nbytes + msg->size > UINT16_MAX) {
3177 struct ofp_stats_reply *reply = msg->data;
3178 reply->flags = htons(OFPSF_REPLY_MORE);
3179 *msgp = make_ofp_stats_reply(reply->header.xid, reply->type, nbytes);
3180 queue_tx(msg, ofconn, ofconn->reply_counter);
3181 }
3182 return ofpbuf_put_uninit(*msgp, nbytes);
3183 }
3184
3185 static struct ofpbuf *
3186 make_nxstats_reply(ovs_be32 xid, ovs_be32 subtype, size_t body_len)
3187 {
3188 struct nicira_stats_msg *nsm;
3189 struct ofpbuf *msg;
3190
3191 msg = ofpbuf_new(MIN(sizeof *nsm + body_len, UINT16_MAX));
3192 nsm = put_openflow_xid(sizeof *nsm, OFPT_STATS_REPLY, xid, msg);
3193 nsm->type = htons(OFPST_VENDOR);
3194 nsm->flags = htons(0);
3195 nsm->vendor = htonl(NX_VENDOR_ID);
3196 nsm->subtype = htonl(subtype);
3197 return msg;
3198 }
3199
3200 static struct ofpbuf *
3201 start_nxstats_reply(const struct nicira_stats_msg *request, size_t body_len)
3202 {
3203 return make_nxstats_reply(request->header.xid, request->subtype, body_len);
3204 }
3205
3206 static void
3207 append_nxstats_reply(size_t nbytes, struct ofconn *ofconn,
3208 struct ofpbuf **msgp)
3209 {
3210 struct ofpbuf *msg = *msgp;
3211 assert(nbytes <= UINT16_MAX - sizeof(struct nicira_stats_msg));
3212 if (nbytes + msg->size > UINT16_MAX) {
3213 struct nicira_stats_msg *reply = msg->data;
3214 reply->flags = htons(OFPSF_REPLY_MORE);
3215 *msgp = make_nxstats_reply(reply->header.xid, reply->subtype, nbytes);
3216 queue_tx(msg, ofconn, ofconn->reply_counter);
3217 }
3218 ofpbuf_prealloc_tailroom(*msgp, nbytes);
3219 }
3220
3221 static int
3222 handle_desc_stats_request(struct ofconn *ofconn,
3223 struct ofp_stats_request *request)
3224 {
3225 struct ofproto *p = ofconn->ofproto;
3226 struct ofp_desc_stats *ods;
3227 struct ofpbuf *msg;
3228
3229 msg = start_ofp_stats_reply(request, sizeof *ods);
3230 ods = append_ofp_stats_reply(sizeof *ods, ofconn, &msg);
3231 memset(ods, 0, sizeof *ods);
3232 ovs_strlcpy(ods->mfr_desc, p->mfr_desc, sizeof ods->mfr_desc);
3233 ovs_strlcpy(ods->hw_desc, p->hw_desc, sizeof ods->hw_desc);
3234 ovs_strlcpy(ods->sw_desc, p->sw_desc, sizeof ods->sw_desc);
3235 ovs_strlcpy(ods->serial_num, p->serial_desc, sizeof ods->serial_num);
3236 ovs_strlcpy(ods->dp_desc, p->dp_desc, sizeof ods->dp_desc);
3237 queue_tx(msg, ofconn, ofconn->reply_counter);
3238
3239 return 0;
3240 }
3241
3242 static int
3243 handle_table_stats_request(struct ofconn *ofconn,
3244 struct ofp_stats_request *request)
3245 {
3246 struct ofproto *p = ofconn->ofproto;
3247 struct ofp_table_stats *ots;
3248 struct ofpbuf *msg;
3249
3250 msg = start_ofp_stats_reply(request, sizeof *ots * 2);
3251
3252 /* Classifier table. */
3253 ots = append_ofp_stats_reply(sizeof *ots, ofconn, &msg);
3254 memset(ots, 0, sizeof *ots);
3255 strcpy(ots->name, "classifier");
3256 ots->wildcards = (ofconn->flow_format == NXFF_OPENFLOW10
3257 ? htonl(OFPFW_ALL) : htonl(OVSFW_ALL));
3258 ots->max_entries = htonl(1024 * 1024); /* An arbitrary big number. */
3259 ots->active_count = htonl(classifier_count(&p->cls));
3260 ots->lookup_count = htonll(0); /* XXX */
3261 ots->matched_count = htonll(0); /* XXX */
3262
3263 queue_tx(msg, ofconn, ofconn->reply_counter);
3264 return 0;
3265 }
3266
3267 static void
3268 append_port_stat(struct ofport *port, struct ofconn *ofconn,
3269 struct ofpbuf **msgp)
3270 {
3271 struct netdev_stats stats;
3272 struct ofp_port_stats *ops;
3273
3274 /* Intentionally ignore return value, since errors will set
3275 * 'stats' to all-1s, which is correct for OpenFlow, and
3276 * netdev_get_stats() will log errors. */
3277 netdev_get_stats(port->netdev, &stats);
3278
3279 ops = append_ofp_stats_reply(sizeof *ops, ofconn, msgp);
3280 ops->port_no = htons(port->opp.port_no);
3281 memset(ops->pad, 0, sizeof ops->pad);
3282 ops->rx_packets = htonll(stats.rx_packets);
3283 ops->tx_packets = htonll(stats.tx_packets);
3284 ops->rx_bytes = htonll(stats.rx_bytes);
3285 ops->tx_bytes = htonll(stats.tx_bytes);
3286 ops->rx_dropped = htonll(stats.rx_dropped);
3287 ops->tx_dropped = htonll(stats.tx_dropped);
3288 ops->rx_errors = htonll(stats.rx_errors);
3289 ops->tx_errors = htonll(stats.tx_errors);
3290 ops->rx_frame_err = htonll(stats.rx_frame_errors);
3291 ops->rx_over_err = htonll(stats.rx_over_errors);
3292 ops->rx_crc_err = htonll(stats.rx_crc_errors);
3293 ops->collisions = htonll(stats.collisions);
3294 }
3295
3296 static int
3297 handle_port_stats_request(struct ofconn *ofconn, struct ofp_stats_request *osr,
3298 size_t arg_size)
3299 {
3300 struct ofproto *p = ofconn->ofproto;
3301 struct ofp_port_stats_request *psr;
3302 struct ofp_port_stats *ops;
3303 struct ofpbuf *msg;
3304 struct ofport *port;
3305
3306 if (arg_size != sizeof *psr) {
3307 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
3308 }
3309 psr = (struct ofp_port_stats_request *) osr->body;
3310
3311 msg = start_ofp_stats_reply(osr, sizeof *ops * 16);
3312 if (psr->port_no != htons(OFPP_NONE)) {
3313 port = get_port(p, ofp_port_to_odp_port(ntohs(psr->port_no)));
3314 if (port) {
3315 append_port_stat(port, ofconn, &msg);
3316 }
3317 } else {
3318 HMAP_FOR_EACH (port, hmap_node, &p->ports) {
3319 append_port_stat(port, ofconn, &msg);
3320 }
3321 }
3322
3323 queue_tx(msg, ofconn, ofconn->reply_counter);
3324 return 0;
3325 }
3326
3327 struct flow_stats_cbdata {
3328 struct ofconn *ofconn;
3329 ovs_be16 out_port;
3330 struct ofpbuf *msg;
3331 };
3332
3333 /* Obtains statistic counters for 'rule' within 'p' and stores them into
3334 * '*packet_countp' and '*byte_countp'. The returned statistics include
3335 * statistics for all of 'rule''s facets. */
3336 static void
3337 query_stats(struct ofproto *p, struct rule *rule,
3338 uint64_t *packet_countp, uint64_t *byte_countp)
3339 {
3340 uint64_t packet_count, byte_count;
3341 struct facet *facet;
3342 struct odp_flow *odp_flows;
3343 size_t n_odp_flows;
3344
3345 /* Start from historical data for 'rule' itself that are no longer tracked
3346 * by the datapath. This counts, for example, facets that have expired. */
3347 packet_count = rule->packet_count;
3348 byte_count = rule->byte_count;
3349
3350 /* Prepare to ask the datapath for statistics on all of the rule's facets.
3351 *
3352 * Also, add any statistics that are not tracked by the datapath for each
3353 * facet. This includes, for example, statistics for packets that were
3354 * executed "by hand" by ofproto via dpif_execute() but must be accounted
3355 * to a rule. */
3356 odp_flows = xzalloc(list_size(&rule->facets) * sizeof *odp_flows);
3357 n_odp_flows = 0;
3358 LIST_FOR_EACH (facet, list_node, &rule->facets) {
3359 struct odp_flow *odp_flow = &odp_flows[n_odp_flows++];
3360 odp_flow_key_from_flow(&odp_flow->key, &facet->flow);
3361 packet_count += facet->packet_count;
3362 byte_count += facet->byte_count;
3363 }
3364
3365 /* Fetch up-to-date statistics from the datapath and add them in. */
3366 if (!dpif_flow_get_multiple(p->dpif, odp_flows, n_odp_flows)) {
3367 size_t i;
3368
3369 for (i = 0; i < n_odp_flows; i++) {
3370 struct odp_flow *odp_flow = &odp_flows[i];
3371 packet_count += odp_flow->stats.n_packets;
3372 byte_count += odp_flow->stats.n_bytes;
3373 }
3374 }
3375 free(odp_flows);
3376
3377 /* Return the stats to the caller. */
3378 *packet_countp = packet_count;
3379 *byte_countp = byte_count;
3380 }
3381
3382 static void
3383 calc_flow_duration(long long int start, ovs_be32 *sec, ovs_be32 *nsec)
3384 {
3385 long long int msecs = time_msec() - start;
3386 *sec = htonl(msecs / 1000);
3387 *nsec = htonl((msecs % 1000) * (1000 * 1000));
3388 }
3389
3390 static void
3391 flow_stats_cb(struct cls_rule *rule_, void *cbdata_)
3392 {
3393 struct rule *rule = rule_from_cls_rule(rule_);
3394 struct flow_stats_cbdata *cbdata = cbdata_;
3395 struct ofp_flow_stats *ofs;
3396 uint64_t packet_count, byte_count;
3397 size_t act_len, len;
3398
3399 if (rule_is_hidden(rule) || !rule_has_out_port(rule, cbdata->out_port)) {
3400 return;
3401 }
3402
3403 act_len = sizeof *rule->actions * rule->n_actions;
3404 len = offsetof(struct ofp_flow_stats, actions) + act_len;
3405
3406 query_stats(cbdata->ofconn->ofproto, rule, &packet_count, &byte_count);
3407
3408 ofs = append_ofp_stats_reply(len, cbdata->ofconn, &cbdata->msg);
3409 ofs->length = htons(len);
3410 ofs->table_id = 0;
3411 ofs->pad = 0;
3412 flow_to_match(&rule->cr.flow, rule->cr.wc.wildcards,
3413 cbdata->ofconn->flow_format, &ofs->match);
3414 calc_flow_duration(rule->created, &ofs->duration_sec, &ofs->duration_nsec);
3415 ofs->cookie = rule->flow_cookie;
3416 ofs->priority = htons(rule->cr.priority);
3417 ofs->idle_timeout = htons(rule->idle_timeout);
3418 ofs->hard_timeout = htons(rule->hard_timeout);
3419 memset(ofs->pad2, 0, sizeof ofs->pad2);
3420 ofs->packet_count = htonll(packet_count);
3421 ofs->byte_count = htonll(byte_count);
3422 if (rule->n_actions > 0) {
3423 memcpy(ofs->actions, rule->actions, act_len);
3424 }
3425 }
3426
3427 static int
3428 table_id_to_include(uint8_t table_id)
3429 {
3430 return table_id == 0 || table_id == 0xff ? CLS_INC_ALL : 0;
3431 }
3432
3433 static int
3434 handle_flow_stats_request(struct ofconn *ofconn,
3435 const struct ofp_stats_request *osr, size_t arg_size)
3436 {
3437 struct ofp_flow_stats_request *fsr;
3438 struct flow_stats_cbdata cbdata;
3439 struct cls_rule target;
3440
3441 if (arg_size != sizeof *fsr) {
3442 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
3443 }
3444 fsr = (struct ofp_flow_stats_request *) osr->body;
3445
3446 COVERAGE_INC(ofproto_flows_req);
3447 cbdata.ofconn = ofconn;
3448 cbdata.out_port = fsr->out_port;
3449 cbdata.msg = start_ofp_stats_reply(osr, 1024);
3450 cls_rule_from_match(&fsr->match, 0, NXFF_OPENFLOW10, 0, &target);
3451 classifier_for_each_match(&ofconn->ofproto->cls, &target,
3452 table_id_to_include(fsr->table_id),
3453 flow_stats_cb, &cbdata);
3454 queue_tx(cbdata.msg, ofconn, ofconn->reply_counter);
3455 return 0;
3456 }
3457
3458 static void
3459 nx_flow_stats_cb(struct cls_rule *rule_, void *cbdata_)
3460 {
3461 struct rule *rule = rule_from_cls_rule(rule_);
3462 struct flow_stats_cbdata *cbdata = cbdata_;
3463 struct nx_flow_stats *nfs;
3464 uint64_t packet_count, byte_count;
3465 size_t act_len, start_len;
3466
3467 if (rule_is_hidden(rule) || !rule_has_out_port(rule, cbdata->out_port)) {
3468 return;
3469 }
3470
3471 query_stats(cbdata->ofconn->ofproto, rule, &packet_count, &byte_count);
3472
3473 act_len = sizeof *rule->actions * rule->n_actions;
3474
3475 start_len = cbdata->msg->size;
3476 append_nxstats_reply(sizeof *nfs + NXM_MAX_LEN + act_len,
3477 cbdata->ofconn, &cbdata->msg);
3478 nfs = ofpbuf_put_uninit(cbdata->msg, sizeof *nfs);
3479 nfs->table_id = 0;
3480 nfs->pad = 0;
3481 calc_flow_duration(rule->created, &nfs->duration_sec, &nfs->duration_nsec);
3482 nfs->cookie = rule->flow_cookie;
3483 nfs->priority = htons(rule->cr.priority);
3484 nfs->idle_timeout = htons(rule->idle_timeout);
3485 nfs->hard_timeout = htons(rule->hard_timeout);
3486 nfs->match_len = htons(nx_put_match(cbdata->msg, &rule->cr));
3487 memset(nfs->pad2, 0, sizeof nfs->pad2);
3488 nfs->packet_count = htonll(packet_count);
3489 nfs->byte_count = htonll(byte_count);
3490 if (rule->n_actions > 0) {
3491 ofpbuf_put(cbdata->msg, rule->actions, act_len);
3492 }
3493 nfs->length = htons(cbdata->msg->size - start_len);
3494 }
3495
3496 static int
3497 handle_nxst_flow(struct ofconn *ofconn, struct ofpbuf *b)
3498 {
3499 struct nx_flow_stats_request *nfsr;
3500 struct flow_stats_cbdata cbdata;
3501 struct cls_rule target;
3502 int error;
3503
3504 /* Dissect the message. */
3505 nfsr = ofpbuf_try_pull(b, sizeof *nfsr);
3506 if (!nfsr) {
3507 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
3508 }
3509 error = nx_pull_match(b, ntohs(nfsr->match_len), 0, &target);
3510 if (error) {
3511 return error;
3512 }
3513
3514 COVERAGE_INC(ofproto_flows_req);
3515 cbdata.ofconn = ofconn;
3516 cbdata.out_port = nfsr->out_port;
3517 cbdata.msg = start_nxstats_reply(&nfsr->nsm, 1024);
3518 classifier_for_each_match(&ofconn->ofproto->cls, &target,
3519 table_id_to_include(nfsr->table_id),
3520 nx_flow_stats_cb, &cbdata);
3521 queue_tx(cbdata.msg, ofconn, ofconn->reply_counter);
3522 return 0;
3523 }
3524
3525 struct flow_stats_ds_cbdata {
3526 struct ofproto *ofproto;
3527 struct ds *results;
3528 };
3529
3530 static void
3531 flow_stats_ds_cb(struct cls_rule *rule_, void *cbdata_)
3532 {
3533 struct rule *rule = rule_from_cls_rule(rule_);
3534 struct flow_stats_ds_cbdata *cbdata = cbdata_;
3535 struct ds *results = cbdata->results;
3536 struct ofp_match match;
3537 uint64_t packet_count, byte_count;
3538 size_t act_len = sizeof *rule->actions * rule->n_actions;
3539
3540 query_stats(cbdata->ofproto, rule, &packet_count, &byte_count);
3541 flow_to_match(&rule->cr.flow, rule->cr.wc.wildcards,
3542 NXFF_OPENFLOW10, &match);
3543
3544 ds_put_format(results, "duration=%llds, ",
3545 (time_msec() - rule->created) / 1000);
3546 ds_put_format(results, "priority=%u, ", rule->cr.priority);
3547 ds_put_format(results, "n_packets=%"PRIu64", ", packet_count);
3548 ds_put_format(results, "n_bytes=%"PRIu64", ", byte_count);
3549 ofp_print_match(results, &match, true);
3550 if (act_len > 0) {
3551 ofp_print_actions(results, &rule->actions->header, act_len);
3552 } else {
3553 ds_put_cstr(results, "drop");
3554 }
3555 ds_put_cstr(results, "\n");
3556 }
3557
3558 /* Adds a pretty-printed description of all flows to 'results', including
3559 * those marked hidden by secchan (e.g., by in-band control). */
3560 void
3561 ofproto_get_all_flows(struct ofproto *p, struct ds *results)
3562 {
3563 struct ofp_match match;
3564 struct cls_rule target;
3565 struct flow_stats_ds_cbdata cbdata;
3566
3567 memset(&match, 0, sizeof match);
3568 match.wildcards = htonl(OVSFW_ALL);
3569
3570 cbdata.ofproto = p;
3571 cbdata.results = results;
3572
3573 cls_rule_from_match(&match, 0, NXFF_OPENFLOW10, 0, &target);
3574 classifier_for_each_match(&p->cls, &target, CLS_INC_ALL,
3575 flow_stats_ds_cb, &cbdata);
3576 }
3577
3578 struct aggregate_stats_cbdata {
3579 struct ofproto *ofproto;
3580 ovs_be16 out_port;
3581 uint64_t packet_count;
3582 uint64_t byte_count;
3583 uint32_t n_flows;
3584 };
3585
3586 static void
3587 aggregate_stats_cb(struct cls_rule *rule_, void *cbdata_)
3588 {
3589 struct rule *rule = rule_from_cls_rule(rule_);
3590 struct aggregate_stats_cbdata *cbdata = cbdata_;
3591 uint64_t packet_count, byte_count;
3592
3593 if (rule_is_hidden(rule) || !rule_has_out_port(rule, cbdata->out_port)) {
3594 return;
3595 }
3596
3597 query_stats(cbdata->ofproto, rule, &packet_count, &byte_count);
3598
3599 cbdata->packet_count += packet_count;
3600 cbdata->byte_count += byte_count;
3601 cbdata->n_flows++;
3602 }
3603
3604 static void
3605 query_aggregate_stats(struct ofproto *ofproto, struct cls_rule *target,
3606 ovs_be16 out_port, uint8_t table_id,
3607 struct ofp_aggregate_stats_reply *oasr)
3608 {
3609 struct aggregate_stats_cbdata cbdata;
3610
3611 COVERAGE_INC(ofproto_agg_request);
3612 cbdata.ofproto = ofproto;
3613 cbdata.out_port = out_port;
3614 cbdata.packet_count = 0;
3615 cbdata.byte_count = 0;
3616 cbdata.n_flows = 0;
3617 classifier_for_each_match(&ofproto->cls, target,
3618 table_id_to_include(table_id),
3619 aggregate_stats_cb, &cbdata);
3620
3621 oasr->flow_count = htonl(cbdata.n_flows);
3622 oasr->packet_count = htonll(cbdata.packet_count);
3623 oasr->byte_count = htonll(cbdata.byte_count);
3624 memset(oasr->pad, 0, sizeof oasr->pad);
3625 }
3626
3627 static int
3628 handle_aggregate_stats_request(struct ofconn *ofconn,
3629 const struct ofp_stats_request *osr,
3630 size_t arg_size)
3631 {
3632 struct ofp_aggregate_stats_request *request;
3633 struct ofp_aggregate_stats_reply *reply;
3634 struct cls_rule target;
3635 struct ofpbuf *msg;
3636
3637 if (arg_size != sizeof *request) {
3638 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
3639 }
3640 request = (struct ofp_aggregate_stats_request *) osr->body;
3641
3642 cls_rule_from_match(&request->match, 0, NXFF_OPENFLOW10, 0, &target);
3643
3644 msg = start_ofp_stats_reply(osr, sizeof *reply);
3645 reply = append_ofp_stats_reply(sizeof *reply, ofconn, &msg);
3646 query_aggregate_stats(ofconn->ofproto, &target, request->out_port,
3647 request->table_id, reply);
3648 queue_tx(msg, ofconn, ofconn->reply_counter);
3649 return 0;
3650 }
3651
3652 static int
3653 handle_nxst_aggregate(struct ofconn *ofconn, struct ofpbuf *b)
3654 {
3655 struct nx_aggregate_stats_request *request;
3656 struct ofp_aggregate_stats_reply *reply;
3657 struct cls_rule target;
3658 struct ofpbuf *buf;
3659 int error;
3660
3661 /* Dissect the message. */
3662 request = ofpbuf_try_pull(b, sizeof *request);
3663 if (!request) {
3664 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
3665 }
3666 error = nx_pull_match(b, ntohs(request->match_len), 0, &target);
3667 if (error) {
3668 return error;
3669 }
3670
3671 /* Reply. */
3672 COVERAGE_INC(ofproto_flows_req);
3673 buf = start_nxstats_reply(&request->nsm, sizeof *reply);
3674 reply = ofpbuf_put_uninit(buf, sizeof *reply);
3675 query_aggregate_stats(ofconn->ofproto, &target, request->out_port,
3676 request->table_id, reply);
3677 queue_tx(buf, ofconn, ofconn->reply_counter);
3678
3679 return 0;
3680 }
3681
3682 struct queue_stats_cbdata {
3683 struct ofconn *ofconn;
3684 struct ofport *ofport;
3685 struct ofpbuf *msg;
3686 };
3687
3688 static void
3689 put_queue_stats(struct queue_stats_cbdata *cbdata, uint32_t queue_id,
3690 const struct netdev_queue_stats *stats)
3691 {
3692 struct ofp_queue_stats *reply;
3693
3694 reply = append_ofp_stats_reply(sizeof *reply, cbdata->ofconn, &cbdata->msg);
3695 reply->port_no = htons(cbdata->ofport->opp.port_no);
3696 memset(reply->pad, 0, sizeof reply->pad);
3697 reply->queue_id = htonl(queue_id);
3698 reply->tx_bytes = htonll(stats->tx_bytes);
3699 reply->tx_packets = htonll(stats->tx_packets);
3700 reply->tx_errors = htonll(stats->tx_errors);
3701 }
3702
3703 static void
3704 handle_queue_stats_dump_cb(uint32_t queue_id,
3705 struct netdev_queue_stats *stats,
3706 void *cbdata_)
3707 {
3708 struct queue_stats_cbdata *cbdata = cbdata_;
3709
3710 put_queue_stats(cbdata, queue_id, stats);
3711 }
3712
3713 static void
3714 handle_queue_stats_for_port(struct ofport *port, uint32_t queue_id,
3715 struct queue_stats_cbdata *cbdata)
3716 {
3717 cbdata->ofport = port;
3718 if (queue_id == OFPQ_ALL) {
3719 netdev_dump_queue_stats(port->netdev,
3720 handle_queue_stats_dump_cb, cbdata);
3721 } else {
3722 struct netdev_queue_stats stats;
3723
3724 if (!netdev_get_queue_stats(port->netdev, queue_id, &stats)) {
3725 put_queue_stats(cbdata, queue_id, &stats);
3726 }
3727 }
3728 }
3729
3730 static int
3731 handle_queue_stats_request(struct ofconn *ofconn,
3732 const struct ofp_stats_request *osr,
3733 size_t arg_size)
3734 {
3735 struct ofproto *ofproto = ofconn->ofproto;
3736 struct ofp_queue_stats_request *qsr;
3737 struct queue_stats_cbdata cbdata;
3738 struct ofport *port;
3739 unsigned int port_no;
3740 uint32_t queue_id;
3741
3742 if (arg_size != sizeof *qsr) {
3743 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
3744 }
3745 qsr = (struct ofp_queue_stats_request *) osr->body;
3746
3747 COVERAGE_INC(ofproto_queue_req);
3748
3749 cbdata.ofconn = ofconn;
3750 cbdata.msg = start_ofp_stats_reply(osr, 128);
3751
3752 port_no = ntohs(qsr->port_no);
3753 queue_id = ntohl(qsr->queue_id);
3754 if (port_no == OFPP_ALL) {
3755 HMAP_FOR_EACH (port, hmap_node, &ofproto->ports) {
3756 handle_queue_stats_for_port(port, queue_id, &cbdata);
3757 }
3758 } else if (port_no < ofproto->max_ports) {
3759 port = get_port(ofproto, ofp_port_to_odp_port(port_no));
3760 if (port) {
3761 handle_queue_stats_for_port(port, queue_id, &cbdata);
3762 }
3763 } else {
3764 ofpbuf_delete(cbdata.msg);
3765 return ofp_mkerr(OFPET_QUEUE_OP_FAILED, OFPQOFC_BAD_PORT);
3766 }
3767 queue_tx(cbdata.msg, ofconn, ofconn->reply_counter);
3768
3769 return 0;
3770 }
3771
3772 static int
3773 handle_vendor_stats_request(struct ofconn *ofconn,
3774 struct ofp_stats_request *osr, size_t arg_size)
3775 {
3776 struct nicira_stats_msg *nsm;
3777 struct ofpbuf b;
3778 ovs_be32 vendor;
3779
3780 if (arg_size < 4) {
3781 VLOG_WARN_RL(&rl, "truncated vendor stats request body");
3782 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
3783 }
3784
3785 memcpy(&vendor, osr->body, sizeof vendor);
3786 if (vendor != htonl(NX_VENDOR_ID)) {
3787 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_VENDOR);
3788 }
3789
3790 if (ntohs(osr->header.length) < sizeof(struct nicira_stats_msg)) {
3791 VLOG_WARN_RL(&rl, "truncated Nicira stats request");
3792 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
3793 }
3794
3795 nsm = (struct nicira_stats_msg *) osr;
3796 b.data = nsm;
3797 b.size = ntohs(nsm->header.length);
3798 switch (ntohl(nsm->subtype)) {
3799 case NXST_FLOW:
3800 return handle_nxst_flow(ofconn, &b);
3801
3802 case NXST_AGGREGATE:
3803 return handle_nxst_aggregate(ofconn, &b);
3804
3805 default:
3806 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_SUBTYPE);
3807 }
3808 }
3809
3810 static int
3811 handle_stats_request(struct ofconn *ofconn, struct ofp_header *oh)
3812 {
3813 struct ofp_stats_request *osr;
3814 size_t arg_size;
3815 int error;
3816
3817 error = check_ofp_message_array(oh, OFPT_STATS_REQUEST, sizeof *osr,
3818 1, &arg_size);
3819 if (error) {
3820 return error;
3821 }
3822 osr = (struct ofp_stats_request *) oh;
3823
3824 switch (ntohs(osr->type)) {
3825 case OFPST_DESC:
3826 return handle_desc_stats_request(ofconn, osr);
3827
3828 case OFPST_FLOW:
3829 return handle_flow_stats_request(ofconn, osr, arg_size);
3830
3831 case OFPST_AGGREGATE:
3832 return handle_aggregate_stats_request(ofconn, osr, arg_size);
3833
3834 case OFPST_TABLE:
3835 return handle_table_stats_request(ofconn, osr);
3836
3837 case OFPST_PORT:
3838 return handle_port_stats_request(ofconn, osr, arg_size);
3839
3840 case OFPST_QUEUE:
3841 return handle_queue_stats_request(ofconn, osr, arg_size);
3842
3843 case OFPST_VENDOR:
3844 return handle_vendor_stats_request(ofconn, osr, arg_size);
3845
3846 default:
3847 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_STAT);
3848 }
3849 }
3850
3851 static long long int
3852 msec_from_nsec(uint64_t sec, uint32_t nsec)
3853 {
3854 return !sec ? 0 : sec * 1000 + nsec / 1000000;
3855 }
3856
3857 static void
3858 facet_update_time(struct ofproto *ofproto, struct facet *facet,
3859 const struct odp_flow_stats *stats)
3860 {
3861 long long int used = msec_from_nsec(stats->used_sec, stats->used_nsec);
3862 if (used > facet->used) {
3863 facet->used = used;
3864 if (used > facet->rule->used) {
3865 facet->rule->used = used;
3866 }
3867 netflow_flow_update_time(ofproto->netflow, &facet->nf_flow, used);
3868 }
3869 }
3870
3871 /* Folds the statistics from 'stats' into the counters in 'facet'.
3872 *
3873 * Because of the meaning of a facet's counters, it only makes sense to do this
3874 * if 'stats' are not tracked in the datapath, that is, if 'stats' represents a
3875 * packet that was sent by hand or if it represents statistics that have been
3876 * cleared out of the datapath. */
3877 static void
3878 facet_update_stats(struct ofproto *ofproto, struct facet *facet,
3879 const struct odp_flow_stats *stats)
3880 {
3881 if (stats->n_packets) {
3882 facet_update_time(ofproto, facet, stats);
3883 facet->packet_count += stats->n_packets;
3884 facet->byte_count += stats->n_bytes;
3885 netflow_flow_update_flags(&facet->nf_flow, stats->tcp_flags);
3886 }
3887 }
3888
3889 struct flow_mod {
3890 struct cls_rule cr;
3891 ovs_be64 cookie;
3892 uint16_t command;
3893 uint16_t idle_timeout;
3894 uint16_t hard_timeout;
3895 uint32_t buffer_id;
3896 uint16_t out_port;
3897 uint16_t flags;
3898 union ofp_action *actions;
3899 size_t n_actions;
3900 };
3901
3902 /* Implements OFPFC_ADD and the cases for OFPFC_MODIFY and OFPFC_MODIFY_STRICT
3903 * in which no matching flow already exists in the flow table.
3904 *
3905 * Adds the flow specified by 'ofm', which is followed by 'n_actions'
3906 * ofp_actions, to ofconn->ofproto's flow table. Returns 0 on success or an
3907 * OpenFlow error code as encoded by ofp_mkerr() on failure.
3908 *
3909 * 'ofconn' is used to retrieve the packet buffer specified in ofm->buffer_id,
3910 * if any. */
3911 static int
3912 add_flow(struct ofconn *ofconn, struct flow_mod *fm)
3913 {
3914 struct ofproto *p = ofconn->ofproto;
3915 struct ofpbuf *packet;
3916 struct rule *rule;
3917 uint16_t in_port;
3918 int error;
3919
3920 if (fm->flags & OFPFF_CHECK_OVERLAP
3921 && classifier_rule_overlaps(&p->cls, &fm->cr)) {
3922 return ofp_mkerr(OFPET_FLOW_MOD_FAILED, OFPFMFC_OVERLAP);
3923 }
3924
3925 error = 0;
3926 if (fm->buffer_id != UINT32_MAX) {
3927 error = pktbuf_retrieve(ofconn->pktbuf, fm->buffer_id,
3928 &packet, &in_port);
3929 } else {
3930 packet = NULL;
3931 in_port = UINT16_MAX;
3932 }
3933
3934 rule = rule_create(&fm->cr, fm->actions, fm->n_actions,
3935 fm->idle_timeout, fm->hard_timeout, fm->cookie,
3936 fm->flags & OFPFF_SEND_FLOW_REM);
3937 rule_insert(p, rule, packet, in_port);
3938 return error;
3939 }
3940
3941 static struct rule *
3942 find_flow_strict(struct ofproto *p, const struct flow_mod *fm)
3943 {
3944 return rule_from_cls_rule(classifier_find_rule_exactly(&p->cls, &fm->cr));
3945 }
3946
3947 static int
3948 send_buffered_packet(struct ofconn *ofconn,
3949 struct rule *rule, uint32_t buffer_id)
3950 {
3951 struct ofpbuf *packet;
3952 uint16_t in_port;
3953 int error;
3954
3955 if (buffer_id == UINT32_MAX) {
3956 return 0;
3957 }
3958
3959 error = pktbuf_retrieve(ofconn->pktbuf, buffer_id, &packet, &in_port);
3960 if (error) {
3961 return error;
3962 }
3963
3964 rule_execute(ofconn->ofproto, rule, in_port, packet);
3965
3966 return 0;
3967 }
3968 \f
3969 /* OFPFC_MODIFY and OFPFC_MODIFY_STRICT. */
3970
3971 struct modify_flows_cbdata {
3972 struct ofproto *ofproto;
3973 const struct flow_mod *fm;
3974 struct rule *match;
3975 };
3976
3977 static int modify_flow(struct ofproto *, const struct flow_mod *,
3978 struct rule *);
3979 static void modify_flows_cb(struct cls_rule *, void *cbdata_);
3980
3981 /* Implements OFPFC_MODIFY. Returns 0 on success or an OpenFlow error code as
3982 * encoded by ofp_mkerr() on failure.
3983 *
3984 * 'ofconn' is used to retrieve the packet buffer specified in ofm->buffer_id,
3985 * if any. */
3986 static int
3987 modify_flows_loose(struct ofconn *ofconn, struct flow_mod *fm)
3988 {
3989 struct modify_flows_cbdata cbdata;
3990
3991 cbdata.ofproto = ofconn->ofproto;
3992 cbdata.fm = fm;
3993 cbdata.match = NULL;
3994
3995 classifier_for_each_match(&ofconn->ofproto->cls, &fm->cr, CLS_INC_ALL,
3996 modify_flows_cb, &cbdata);
3997 if (cbdata.match) {
3998 /* This credits the packet to whichever flow happened to happened to
3999 * match last. That's weird. Maybe we should do a lookup for the
4000 * flow that actually matches the packet? Who knows. */
4001 send_buffered_packet(ofconn, cbdata.match, fm->buffer_id);
4002 return 0;
4003 } else {
4004 return add_flow(ofconn, fm);
4005 }
4006 }
4007
4008 /* Implements OFPFC_MODIFY_STRICT. Returns 0 on success or an OpenFlow error
4009 * code as encoded by ofp_mkerr() on failure.
4010 *
4011 * 'ofconn' is used to retrieve the packet buffer specified in ofm->buffer_id,
4012 * if any. */
4013 static int
4014 modify_flow_strict(struct ofconn *ofconn, struct flow_mod *fm)
4015 {
4016 struct ofproto *p = ofconn->ofproto;
4017 struct rule *rule = find_flow_strict(p, fm);
4018 if (rule && !rule_is_hidden(rule)) {
4019 modify_flow(p, fm, rule);
4020 return send_buffered_packet(ofconn, rule, fm->buffer_id);
4021 } else {
4022 return add_flow(ofconn, fm);
4023 }
4024 }
4025
4026 /* Callback for modify_flows_loose(). */
4027 static void
4028 modify_flows_cb(struct cls_rule *rule_, void *cbdata_)
4029 {
4030 struct rule *rule = rule_from_cls_rule(rule_);
4031 struct modify_flows_cbdata *cbdata = cbdata_;
4032
4033 if (!rule_is_hidden(rule)) {
4034 cbdata->match = rule;
4035 modify_flow(cbdata->ofproto, cbdata->fm, rule);
4036 }
4037 }
4038
4039 /* Implements core of OFPFC_MODIFY and OFPFC_MODIFY_STRICT where 'rule' has
4040 * been identified as a flow in 'p''s flow table to be modified, by changing
4041 * the rule's actions to match those in 'ofm' (which is followed by 'n_actions'
4042 * ofp_action[] structures). */
4043 static int
4044 modify_flow(struct ofproto *p, const struct flow_mod *fm, struct rule *rule)
4045 {
4046 size_t actions_len = fm->n_actions * sizeof *rule->actions;
4047
4048 rule->flow_cookie = fm->cookie;
4049
4050 /* If the actions are the same, do nothing. */
4051 if (fm->n_actions == rule->n_actions
4052 && (!fm->n_actions
4053 || !memcmp(fm->actions, rule->actions, actions_len))) {
4054 return 0;
4055 }
4056
4057 /* Replace actions. */
4058 free(rule->actions);
4059 rule->actions = fm->n_actions ? xmemdup(fm->actions, actions_len) : NULL;
4060 rule->n_actions = fm->n_actions;
4061
4062 p->need_revalidate = true;
4063
4064 return 0;
4065 }
4066 \f
4067 /* OFPFC_DELETE implementation. */
4068
4069 struct delete_flows_cbdata {
4070 struct ofproto *ofproto;
4071 ovs_be16 out_port;
4072 };
4073
4074 static void delete_flows_cb(struct cls_rule *, void *cbdata_);
4075 static void delete_flow(struct ofproto *, struct rule *, ovs_be16 out_port);
4076
4077 /* Implements OFPFC_DELETE. */
4078 static void
4079 delete_flows_loose(struct ofproto *p, const struct flow_mod *fm)
4080 {
4081 struct delete_flows_cbdata cbdata;
4082
4083 cbdata.ofproto = p;
4084 cbdata.out_port = htons(fm->out_port);
4085
4086 classifier_for_each_match(&p->cls, &fm->cr, CLS_INC_ALL,
4087 delete_flows_cb, &cbdata);
4088 }
4089
4090 /* Implements OFPFC_DELETE_STRICT. */
4091 static void
4092 delete_flow_strict(struct ofproto *p, struct flow_mod *fm)
4093 {
4094 struct rule *rule = find_flow_strict(p, fm);
4095 if (rule) {
4096 delete_flow(p, rule, htons(fm->out_port));
4097 }
4098 }
4099
4100 /* Callback for delete_flows_loose(). */
4101 static void
4102 delete_flows_cb(struct cls_rule *rule_, void *cbdata_)
4103 {
4104 struct rule *rule = rule_from_cls_rule(rule_);
4105 struct delete_flows_cbdata *cbdata = cbdata_;
4106
4107 delete_flow(cbdata->ofproto, rule, cbdata->out_port);
4108 }
4109
4110 /* Implements core of OFPFC_DELETE and OFPFC_DELETE_STRICT where 'rule' has
4111 * been identified as a flow to delete from 'p''s flow table, by deleting the
4112 * flow and sending out a OFPT_FLOW_REMOVED message to any interested
4113 * controller.
4114 *
4115 * Will not delete 'rule' if it is hidden. Will delete 'rule' only if
4116 * 'out_port' is htons(OFPP_NONE) or if 'rule' actually outputs to the
4117 * specified 'out_port'. */
4118 static void
4119 delete_flow(struct ofproto *p, struct rule *rule, ovs_be16 out_port)
4120 {
4121 if (rule_is_hidden(rule)) {
4122 return;
4123 }
4124
4125 if (out_port != htons(OFPP_NONE) && !rule_has_out_port(rule, out_port)) {
4126 return;
4127 }
4128
4129 rule_send_removed(p, rule, OFPRR_DELETE);
4130 rule_remove(p, rule);
4131 }
4132 \f
4133 static int
4134 flow_mod_core(struct ofconn *ofconn, struct flow_mod *fm)
4135 {
4136 struct ofproto *p = ofconn->ofproto;
4137 int error;
4138
4139 error = reject_slave_controller(ofconn, "flow_mod");
4140 if (error) {
4141 return error;
4142 }
4143
4144 error = validate_actions(fm->actions, fm->n_actions,
4145 &fm->cr.flow, p->max_ports);
4146 if (error) {
4147 return error;
4148 }
4149
4150 /* We do not support the emergency flow cache. It will hopefully
4151 * get dropped from OpenFlow in the near future. */
4152 if (fm->flags & OFPFF_EMERG) {
4153 /* There isn't a good fit for an error code, so just state that the
4154 * flow table is full. */
4155 return ofp_mkerr(OFPET_FLOW_MOD_FAILED, OFPFMFC_ALL_TABLES_FULL);
4156 }
4157
4158 switch (fm->command) {
4159 case OFPFC_ADD:
4160 return add_flow(ofconn, fm);
4161
4162 case OFPFC_MODIFY:
4163 return modify_flows_loose(ofconn, fm);
4164
4165 case OFPFC_MODIFY_STRICT:
4166 return modify_flow_strict(ofconn, fm);
4167
4168 case OFPFC_DELETE:
4169 delete_flows_loose(p, fm);
4170 return 0;
4171
4172 case OFPFC_DELETE_STRICT:
4173 delete_flow_strict(p, fm);
4174 return 0;
4175
4176 default:
4177 return ofp_mkerr(OFPET_FLOW_MOD_FAILED, OFPFMFC_BAD_COMMAND);
4178 }
4179 }
4180
4181 static int
4182 handle_ofpt_flow_mod(struct ofconn *ofconn, struct ofp_header *oh)
4183 {
4184 struct ofp_match orig_match;
4185 struct ofp_flow_mod *ofm;
4186 struct flow_mod fm;
4187 struct ofpbuf b;
4188 int error;
4189
4190 b.data = oh;
4191 b.size = ntohs(oh->length);
4192
4193 /* Dissect the message. */
4194 ofm = ofpbuf_try_pull(&b, sizeof *ofm);
4195 if (!ofm) {
4196 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
4197 }
4198 error = ofputil_pull_actions(&b, b.size, &fm.actions, &fm.n_actions);
4199 if (error) {
4200 return error;
4201 }
4202
4203 /* Normalize ofm->match. If normalization actually changes anything, then
4204 * log the differences. */
4205 ofm->match.pad1[0] = ofm->match.pad2[0] = 0;
4206 orig_match = ofm->match;
4207 normalize_match(&ofm->match);
4208 if (memcmp(&ofm->match, &orig_match, sizeof orig_match)) {
4209 static struct vlog_rate_limit normal_rl = VLOG_RATE_LIMIT_INIT(1, 1);
4210 if (!VLOG_DROP_INFO(&normal_rl)) {
4211 char *old = ofp_match_to_literal_string(&orig_match);
4212 char *new = ofp_match_to_literal_string(&ofm->match);
4213 VLOG_INFO("%s: normalization changed ofp_match, details:",
4214 rconn_get_name(ofconn->rconn));
4215 VLOG_INFO(" pre: %s", old);
4216 VLOG_INFO("post: %s", new);
4217 free(old);
4218 free(new);
4219 }
4220 }
4221
4222 /* Translate the message. */
4223 cls_rule_from_match(&ofm->match, ntohs(ofm->priority), ofconn->flow_format,
4224 ofm->cookie, &fm.cr);
4225 fm.cookie = ofm->cookie;
4226 fm.command = ntohs(ofm->command);
4227 fm.idle_timeout = ntohs(ofm->idle_timeout);
4228 fm.hard_timeout = ntohs(ofm->hard_timeout);
4229 fm.buffer_id = ntohl(ofm->buffer_id);
4230 fm.out_port = ntohs(ofm->out_port);
4231 fm.flags = ntohs(ofm->flags);
4232
4233 /* Execute the command. */
4234 return flow_mod_core(ofconn, &fm);
4235 }
4236
4237 static int
4238 handle_nxt_flow_mod(struct ofconn *ofconn, struct ofp_header *oh)
4239 {
4240 struct nx_flow_mod *nfm;
4241 struct flow_mod fm;
4242 struct ofpbuf b;
4243 int error;
4244
4245 b.data = oh;
4246 b.size = ntohs(oh->length);
4247
4248 /* Dissect the message. */
4249 nfm = ofpbuf_try_pull(&b, sizeof *nfm);
4250 if (!nfm) {
4251 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
4252 }
4253 error = nx_pull_match(&b, ntohs(nfm->match_len), ntohs(nfm->priority),
4254 &fm.cr);
4255 if (error) {
4256 return error;
4257 }
4258 error = ofputil_pull_actions(&b, b.size, &fm.actions, &fm.n_actions);
4259 if (error) {
4260 return error;
4261 }
4262
4263 /* Translate the message. */
4264 fm.cookie = nfm->cookie;
4265 fm.command = ntohs(nfm->command);
4266 fm.idle_timeout = ntohs(nfm->idle_timeout);
4267 fm.hard_timeout = ntohs(nfm->hard_timeout);
4268 fm.buffer_id = ntohl(nfm->buffer_id);
4269 fm.out_port = ntohs(nfm->out_port);
4270 fm.flags = ntohs(nfm->flags);
4271
4272 /* Execute the command. */
4273 return flow_mod_core(ofconn, &fm);
4274 }
4275
4276 static int
4277 handle_tun_id_from_cookie(struct ofconn *ofconn, struct nxt_tun_id_cookie *msg)
4278 {
4279 int error;
4280
4281 error = check_ofp_message(&msg->header, OFPT_VENDOR, sizeof *msg);
4282 if (error) {
4283 return error;
4284 }
4285
4286 ofconn->flow_format = msg->set ? NXFF_TUN_ID_FROM_COOKIE : NXFF_OPENFLOW10;
4287 return 0;
4288 }
4289
4290 static int
4291 handle_role_request(struct ofconn *ofconn, struct nicira_header *msg)
4292 {
4293 struct nx_role_request *nrr;
4294 struct nx_role_request *reply;
4295 struct ofpbuf *buf;
4296 uint32_t role;
4297
4298 if (ntohs(msg->header.length) != sizeof *nrr) {
4299 VLOG_WARN_RL(&rl, "received role request of length %u (expected %zu)",
4300 ntohs(msg->header.length), sizeof *nrr);
4301 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
4302 }
4303 nrr = (struct nx_role_request *) msg;
4304
4305 if (ofconn->type != OFCONN_PRIMARY) {
4306 VLOG_WARN_RL(&rl, "ignoring role request on non-controller "
4307 "connection");
4308 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_EPERM);
4309 }
4310
4311 role = ntohl(nrr->role);
4312 if (role != NX_ROLE_OTHER && role != NX_ROLE_MASTER
4313 && role != NX_ROLE_SLAVE) {
4314 VLOG_WARN_RL(&rl, "received request for unknown role %"PRIu32, role);
4315
4316 /* There's no good error code for this. */
4317 return ofp_mkerr(OFPET_BAD_REQUEST, -1);
4318 }
4319
4320 if (role == NX_ROLE_MASTER) {
4321 struct ofconn *other;
4322
4323 HMAP_FOR_EACH (other, hmap_node, &ofconn->ofproto->controllers) {
4324 if (other->role == NX_ROLE_MASTER) {
4325 other->role = NX_ROLE_SLAVE;
4326 }
4327 }
4328 }
4329 ofconn->role = role;
4330
4331 reply = make_nxmsg_xid(sizeof *reply, NXT_ROLE_REPLY, msg->header.xid,
4332 &buf);
4333 reply->role = htonl(role);
4334 queue_tx(buf, ofconn, ofconn->reply_counter);
4335
4336 return 0;
4337 }
4338
4339 static int
4340 handle_nxt_set_flow_format(struct ofconn *ofconn,
4341 struct nxt_set_flow_format *msg)
4342 {
4343 uint32_t format;
4344 int error;
4345
4346 error = check_ofp_message(&msg->header, OFPT_VENDOR, sizeof *msg);
4347 if (error) {
4348 return error;
4349 }
4350
4351 format = ntohl(msg->format);
4352 if (format == NXFF_OPENFLOW10
4353 || format == NXFF_TUN_ID_FROM_COOKIE
4354 || format == NXFF_NXM) {
4355 ofconn->flow_format = format;
4356 return 0;
4357 } else {
4358 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_EPERM);
4359 }
4360 }
4361
4362 static int
4363 handle_vendor(struct ofconn *ofconn, void *msg)
4364 {
4365 struct ofproto *p = ofconn->ofproto;
4366 struct ofp_vendor_header *ovh = msg;
4367 struct nicira_header *nh;
4368
4369 if (ntohs(ovh->header.length) < sizeof(struct ofp_vendor_header)) {
4370 VLOG_WARN_RL(&rl, "received vendor message of length %u "
4371 "(expected at least %zu)",
4372 ntohs(ovh->header.length), sizeof(struct ofp_vendor_header));
4373 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
4374 }
4375 if (ovh->vendor != htonl(NX_VENDOR_ID)) {
4376 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_VENDOR);
4377 }
4378 if (ntohs(ovh->header.length) < sizeof(struct nicira_header)) {
4379 VLOG_WARN_RL(&rl, "received Nicira vendor message of length %u "
4380 "(expected at least %zu)",
4381 ntohs(ovh->header.length), sizeof(struct nicira_header));
4382 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
4383 }
4384
4385 nh = msg;
4386 switch (ntohl(nh->subtype)) {
4387 case NXT_STATUS_REQUEST:
4388 return switch_status_handle_request(p->switch_status, ofconn->rconn,
4389 msg);
4390
4391 case NXT_TUN_ID_FROM_COOKIE:
4392 return handle_tun_id_from_cookie(ofconn, msg);
4393
4394 case NXT_ROLE_REQUEST:
4395 return handle_role_request(ofconn, msg);
4396
4397 case NXT_SET_FLOW_FORMAT:
4398 return handle_nxt_set_flow_format(ofconn, msg);
4399
4400 case NXT_FLOW_MOD:
4401 return handle_nxt_flow_mod(ofconn, &ovh->header);
4402 }
4403
4404 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_SUBTYPE);
4405 }
4406
4407 static int
4408 handle_barrier_request(struct ofconn *ofconn, struct ofp_header *oh)
4409 {
4410 struct ofp_header *ob;
4411 struct ofpbuf *buf;
4412
4413 /* Currently, everything executes synchronously, so we can just
4414 * immediately send the barrier reply. */
4415 ob = make_openflow_xid(sizeof *ob, OFPT_BARRIER_REPLY, oh->xid, &buf);
4416 queue_tx(buf, ofconn, ofconn->reply_counter);
4417 return 0;
4418 }
4419
4420 static void
4421 handle_openflow(struct ofconn *ofconn, struct ofpbuf *ofp_msg)
4422 {
4423 struct ofp_header *oh = ofp_msg->data;
4424 int error;
4425
4426 COVERAGE_INC(ofproto_recv_openflow);
4427 switch (oh->type) {
4428 case OFPT_ECHO_REQUEST:
4429 error = handle_echo_request(ofconn, oh);
4430 break;
4431
4432 case OFPT_ECHO_REPLY:
4433 error = 0;
4434 break;
4435
4436 case OFPT_FEATURES_REQUEST:
4437 error = handle_features_request(ofconn, oh);
4438 break;
4439
4440 case OFPT_GET_CONFIG_REQUEST:
4441 error = handle_get_config_request(ofconn, oh);
4442 break;
4443
4444 case OFPT_SET_CONFIG:
4445 error = handle_set_config(ofconn, ofp_msg->data);
4446 break;
4447
4448 case OFPT_PACKET_OUT:
4449 error = handle_packet_out(ofconn, ofp_msg->data);
4450 break;
4451
4452 case OFPT_PORT_MOD:
4453 error = handle_port_mod(ofconn, oh);
4454 break;
4455
4456 case OFPT_FLOW_MOD:
4457 error = handle_ofpt_flow_mod(ofconn, ofp_msg->data);
4458 break;
4459
4460 case OFPT_STATS_REQUEST:
4461 error = handle_stats_request(ofconn, oh);
4462 break;
4463
4464 case OFPT_VENDOR:
4465 error = handle_vendor(ofconn, ofp_msg->data);
4466 break;
4467
4468 case OFPT_BARRIER_REQUEST:
4469 error = handle_barrier_request(ofconn, oh);
4470 break;
4471
4472 default:
4473 if (VLOG_IS_WARN_ENABLED()) {
4474 char *s = ofp_to_string(oh, ntohs(oh->length), 2);
4475 VLOG_DBG_RL(&rl, "OpenFlow message ignored: %s", s);
4476 free(s);
4477 }
4478 error = ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_TYPE);
4479 break;
4480 }
4481
4482 if (error) {
4483 send_error_oh(ofconn, ofp_msg->data, error);
4484 }
4485 }
4486 \f
4487 static void
4488 handle_odp_miss_msg(struct ofproto *p, struct ofpbuf *packet)
4489 {
4490 struct odp_msg *msg = packet->data;
4491 struct ofpbuf payload;
4492 struct facet *facet;
4493 struct flow flow;
4494
4495 payload.data = msg + 1;
4496 payload.size = msg->length - sizeof *msg;
4497 flow_extract(&payload, msg->arg, msg->port, &flow);
4498
4499 /* Check with in-band control to see if this packet should be sent
4500 * to the local port regardless of the flow table. */
4501 if (in_band_msg_in_hook(p->in_band, &flow, &payload)) {
4502 union odp_action action;
4503
4504 memset(&action, 0, sizeof(action));
4505 action.output.type = ODPAT_OUTPUT;
4506 action.output.port = ODPP_LOCAL;
4507 dpif_execute(p->dpif, &action, 1, &payload);
4508 }
4509
4510 facet = facet_lookup_valid(p, &flow);
4511 if (!facet) {
4512 struct rule *rule = rule_lookup(p, &flow);
4513 if (!rule) {
4514 /* Don't send a packet-in if OFPPC_NO_PACKET_IN asserted. */
4515 struct ofport *port = get_port(p, msg->port);
4516 if (port) {
4517 if (port->opp.config & OFPPC_NO_PACKET_IN) {
4518 COVERAGE_INC(ofproto_no_packet_in);
4519 /* XXX install 'drop' flow entry */
4520 ofpbuf_delete(packet);
4521 return;
4522 }
4523 } else {
4524 VLOG_WARN_RL(&rl, "packet-in on unknown port %"PRIu16,
4525 msg->port);
4526 }
4527
4528 COVERAGE_INC(ofproto_packet_in);
4529 send_packet_in(p, packet);
4530 return;
4531 }
4532
4533 facet = facet_create(p, rule, &flow, packet);
4534 } else if (!facet->may_install) {
4535 /* The facet is not installable, that is, we need to process every
4536 * packet, so process the current packet's actions into 'facet'. */
4537 facet_make_actions(p, facet, packet);
4538 }
4539
4540 if (facet->rule->cr.priority == FAIL_OPEN_PRIORITY) {
4541 /*
4542 * Extra-special case for fail-open mode.
4543 *
4544 * We are in fail-open mode and the packet matched the fail-open rule,
4545 * but we are connected to a controller too. We should send the packet
4546 * up to the controller in the hope that it will try to set up a flow
4547 * and thereby allow us to exit fail-open.
4548 *
4549 * See the top-level comment in fail-open.c for more information.
4550 */
4551 send_packet_in(p, ofpbuf_clone_with_headroom(packet,
4552 DPIF_RECV_MSG_PADDING));
4553 }
4554
4555 ofpbuf_pull(packet, sizeof *msg);
4556 facet_execute(p, facet, packet);
4557 facet_install(p, facet, false);
4558 }
4559
4560 static void
4561 handle_odp_msg(struct ofproto *p, struct ofpbuf *packet)
4562 {
4563 struct odp_msg *msg = packet->data;
4564
4565 switch (msg->type) {
4566 case _ODPL_ACTION_NR:
4567 COVERAGE_INC(ofproto_ctlr_action);
4568 send_packet_in(p, packet);
4569 break;
4570
4571 case _ODPL_SFLOW_NR:
4572 if (p->sflow) {
4573 ofproto_sflow_received(p->sflow, msg);
4574 }
4575 ofpbuf_delete(packet);
4576 break;
4577
4578 case _ODPL_MISS_NR:
4579 handle_odp_miss_msg(p, packet);
4580 break;
4581
4582 default:
4583 VLOG_WARN_RL(&rl, "received ODP message of unexpected type %"PRIu32,
4584 msg->type);
4585 break;
4586 }
4587 }
4588 \f
4589 /* Flow expiration. */
4590
4591 struct expire_cbdata {
4592 struct ofproto *ofproto;
4593 int dp_max_idle;
4594 };
4595
4596 static int ofproto_dp_max_idle(const struct ofproto *);
4597 static void ofproto_update_used(struct ofproto *);
4598 static void rule_expire(struct cls_rule *, void *cbdata);
4599 static void ofproto_expire_facets(struct ofproto *, int dp_max_idle);
4600
4601 /* This function is called periodically by ofproto_run(). Its job is to
4602 * collect updates for the flows that have been installed into the datapath,
4603 * most importantly when they last were used, and then use that information to
4604 * expire flows that have not been used recently.
4605 *
4606 * Returns the number of milliseconds after which it should be called again. */
4607 static int
4608 ofproto_expire(struct ofproto *ofproto)
4609 {
4610 struct expire_cbdata cbdata;
4611
4612 /* Update 'used' for each flow in the datapath. */
4613 ofproto_update_used(ofproto);
4614
4615 /* Expire facets that have been idle too long. */
4616 cbdata.dp_max_idle = ofproto_dp_max_idle(ofproto);
4617 ofproto_expire_facets(ofproto, cbdata.dp_max_idle);
4618
4619 /* Expire OpenFlow flows whose idle_timeout or hard_timeout has passed. */
4620 cbdata.ofproto = ofproto;
4621 classifier_for_each(&ofproto->cls, CLS_INC_ALL, rule_expire, &cbdata);
4622
4623 /* Let the hook know that we're at a stable point: all outstanding data
4624 * in existing flows has been accounted to the account_cb. Thus, the
4625 * hook can now reasonably do operations that depend on having accurate
4626 * flow volume accounting (currently, that's just bond rebalancing). */
4627 if (ofproto->ofhooks->account_checkpoint_cb) {
4628 ofproto->ofhooks->account_checkpoint_cb(ofproto->aux);
4629 }
4630
4631 return MIN(cbdata.dp_max_idle, 1000);
4632 }
4633
4634 /* Update 'used' member of installed facets. */
4635 static void
4636 ofproto_update_used(struct ofproto *p)
4637 {
4638 struct odp_flow *flows;
4639 size_t n_flows;
4640 size_t i;
4641 int error;
4642
4643 error = dpif_flow_list_all(p->dpif, &flows, &n_flows);
4644 if (error) {
4645 return;
4646 }
4647
4648 for (i = 0; i < n_flows; i++) {
4649 struct odp_flow *f = &flows[i];
4650 struct facet *facet;
4651 struct flow flow;
4652
4653 odp_flow_key_to_flow(&f->key, &flow);
4654 facet = facet_find(p, &flow);
4655
4656 if (facet && facet->installed) {
4657 facet_update_time(p, facet, &f->stats);
4658 facet_account(p, facet, f->stats.n_bytes);
4659 } else {
4660 /* There's a flow in the datapath that we know nothing about.
4661 * Delete it. */
4662 COVERAGE_INC(ofproto_unexpected_rule);
4663 dpif_flow_del(p->dpif, f);
4664 }
4665
4666 }
4667 free(flows);
4668 }
4669
4670 /* Calculates and returns the number of milliseconds of idle time after which
4671 * facets should expire from the datapath and we should fold their statistics
4672 * into their parent rules in userspace. */
4673 static int
4674 ofproto_dp_max_idle(const struct ofproto *ofproto)
4675 {
4676 /*
4677 * Idle time histogram.
4678 *
4679 * Most of the time a switch has a relatively small number of facets. When
4680 * this is the case we might as well keep statistics for all of them in
4681 * userspace and to cache them in the kernel datapath for performance as
4682 * well.
4683 *
4684 * As the number of facets increases, the memory required to maintain
4685 * statistics about them in userspace and in the kernel becomes
4686 * significant. However, with a large number of facets it is likely that
4687 * only a few of them are "heavy hitters" that consume a large amount of
4688 * bandwidth. At this point, only heavy hitters are worth caching in the
4689 * kernel and maintaining in userspaces; other facets we can discard.
4690 *
4691 * The technique used to compute the idle time is to build a histogram with
4692 * N_BUCKETS buckets whose width is BUCKET_WIDTH msecs each. Each facet
4693 * that is installed in the kernel gets dropped in the appropriate bucket.
4694 * After the histogram has been built, we compute the cutoff so that only
4695 * the most-recently-used 1% of facets (but at least 1000 flows) are kept
4696 * cached. At least the most-recently-used bucket of facets is kept, so
4697 * actually an arbitrary number of facets can be kept in any given
4698 * expiration run (though the next run will delete most of those unless
4699 * they receive additional data).
4700 *
4701 * This requires a second pass through the facets, in addition to the pass
4702 * made by ofproto_update_used(), because the former function never looks
4703 * at uninstallable facets.
4704 */
4705 enum { BUCKET_WIDTH = ROUND_UP(100, TIME_UPDATE_INTERVAL) };
4706 enum { N_BUCKETS = 5000 / BUCKET_WIDTH };
4707 int buckets[N_BUCKETS] = { 0 };
4708 struct facet *facet;
4709 int total, bucket;
4710 long long int now;
4711 int i;
4712
4713 total = hmap_count(&ofproto->facets);
4714 if (total <= 1000) {
4715 return N_BUCKETS * BUCKET_WIDTH;
4716 }
4717
4718 /* Build histogram. */
4719 now = time_msec();
4720 HMAP_FOR_EACH (facet, hmap_node, &ofproto->facets) {
4721 long long int idle = now - facet->used;
4722 int bucket = (idle <= 0 ? 0
4723 : idle >= BUCKET_WIDTH * N_BUCKETS ? N_BUCKETS - 1
4724 : (unsigned int) idle / BUCKET_WIDTH);
4725 buckets[bucket]++;
4726 }
4727
4728 /* Find the first bucket whose flows should be expired. */
4729 for (bucket = 0; bucket < N_BUCKETS; bucket++) {
4730 if (buckets[bucket]) {
4731 int subtotal = 0;
4732 do {
4733 subtotal += buckets[bucket++];
4734 } while (bucket < N_BUCKETS && subtotal < MAX(1000, total / 100));
4735 break;
4736 }
4737 }
4738
4739 if (VLOG_IS_DBG_ENABLED()) {
4740 struct ds s;
4741
4742 ds_init(&s);
4743 ds_put_cstr(&s, "keep");
4744 for (i = 0; i < N_BUCKETS; i++) {
4745 if (i == bucket) {
4746 ds_put_cstr(&s, ", drop");
4747 }
4748 if (buckets[i]) {
4749 ds_put_format(&s, " %d:%d", i * BUCKET_WIDTH, buckets[i]);
4750 }
4751 }
4752 VLOG_INFO("%s: %s (msec:count)",
4753 dpif_name(ofproto->dpif), ds_cstr(&s));
4754 ds_destroy(&s);
4755 }
4756
4757 return bucket * BUCKET_WIDTH;
4758 }
4759
4760 static void
4761 facet_active_timeout(struct ofproto *ofproto, struct facet *facet)
4762 {
4763 if (ofproto->netflow && !facet_is_controller_flow(facet) &&
4764 netflow_active_timeout_expired(ofproto->netflow, &facet->nf_flow)) {
4765 struct ofexpired expired;
4766 struct odp_flow odp_flow;
4767
4768 /* Get updated flow stats.
4769 *
4770 * XXX We could avoid this call entirely if (1) ofproto_update_used()
4771 * updated TCP flags and (2) the dpif_flow_list_all() in
4772 * ofproto_update_used() zeroed TCP flags. */
4773 memset(&odp_flow, 0, sizeof odp_flow);
4774 if (facet->installed) {
4775 odp_flow_key_from_flow(&odp_flow.key, &facet->flow);
4776 odp_flow.flags = ODPFF_ZERO_TCP_FLAGS;
4777 dpif_flow_get(ofproto->dpif, &odp_flow);
4778
4779 if (odp_flow.stats.n_packets) {
4780 facet_update_time(ofproto, facet, &odp_flow.stats);
4781 netflow_flow_update_flags(&facet->nf_flow,
4782 odp_flow.stats.tcp_flags);
4783 }
4784 }
4785
4786 expired.flow = facet->flow;
4787 expired.packet_count = facet->packet_count +
4788 odp_flow.stats.n_packets;
4789 expired.byte_count = facet->byte_count + odp_flow.stats.n_bytes;
4790 expired.used = facet->used;
4791
4792 netflow_expire(ofproto->netflow, &facet->nf_flow, &expired);
4793 }
4794 }
4795
4796 static void
4797 ofproto_expire_facets(struct ofproto *ofproto, int dp_max_idle)
4798 {
4799 long long int cutoff = time_msec() - dp_max_idle;
4800 struct facet *facet, *next_facet;
4801
4802 HMAP_FOR_EACH_SAFE (facet, next_facet, hmap_node, &ofproto->facets) {
4803 facet_active_timeout(ofproto, facet);
4804 if (facet->used < cutoff) {
4805 facet_remove(ofproto, facet);
4806 }
4807 }
4808 }
4809
4810 /* If 'cls_rule' is an OpenFlow rule, that has expired according to OpenFlow
4811 * rules, then delete it entirely.
4812 *
4813 * (This is a callback function for classifier_for_each().) */
4814 static void
4815 rule_expire(struct cls_rule *cls_rule, void *cbdata_)
4816 {
4817 struct expire_cbdata *cbdata = cbdata_;
4818 struct rule *rule = rule_from_cls_rule(cls_rule);
4819 struct facet *facet, *next_facet;
4820 long long int now;
4821 uint8_t reason;
4822
4823 /* Has 'rule' expired? */
4824 now = time_msec();
4825 if (rule->hard_timeout
4826 && now > rule->created + rule->hard_timeout * 1000) {
4827 reason = OFPRR_HARD_TIMEOUT;
4828 } else if (rule->idle_timeout && list_is_empty(&rule->facets)
4829 && now >rule->used + rule->idle_timeout * 1000) {
4830 reason = OFPRR_IDLE_TIMEOUT;
4831 } else {
4832 return;
4833 }
4834
4835 COVERAGE_INC(ofproto_expired);
4836
4837 /* Update stats. (This is a no-op if the rule expired due to an idle
4838 * timeout, because that only happens when the rule has no facets left.) */
4839 LIST_FOR_EACH_SAFE (facet, next_facet, list_node, &rule->facets) {
4840 facet_remove(cbdata->ofproto, facet);
4841 }
4842
4843 /* Get rid of the rule. */
4844 if (!rule_is_hidden(rule)) {
4845 rule_send_removed(cbdata->ofproto, rule, reason);
4846 }
4847 rule_remove(cbdata->ofproto, rule);
4848 }
4849 \f
4850 static struct ofpbuf *
4851 compose_ofp_flow_removed(struct ofconn *ofconn, const struct rule *rule,
4852 uint8_t reason)
4853 {
4854 struct ofp_flow_removed *ofr;
4855 struct ofpbuf *buf;
4856
4857 ofr = make_openflow(sizeof *ofr, OFPT_FLOW_REMOVED, &buf);
4858 flow_to_match(&rule->cr.flow, rule->cr.wc.wildcards, ofconn->flow_format,
4859 &ofr->match);
4860 ofr->cookie = rule->flow_cookie;
4861 ofr->priority = htons(rule->cr.priority);
4862 ofr->reason = reason;
4863 calc_flow_duration(rule->created, &ofr->duration_sec, &ofr->duration_nsec);
4864 ofr->idle_timeout = htons(rule->idle_timeout);
4865 ofr->packet_count = htonll(rule->packet_count);
4866 ofr->byte_count = htonll(rule->byte_count);
4867
4868 return buf;
4869 }
4870
4871 static struct ofpbuf *
4872 compose_nx_flow_removed(const struct rule *rule, uint8_t reason)
4873 {
4874 struct nx_flow_removed *nfr;
4875 struct ofpbuf *buf;
4876 int match_len;
4877
4878 nfr = make_nxmsg(sizeof *nfr, NXT_FLOW_REMOVED, &buf);
4879
4880 match_len = nx_put_match(buf, &rule->cr);
4881
4882 nfr->cookie = rule->flow_cookie;
4883 nfr->priority = htons(rule->cr.priority);
4884 nfr->reason = reason;
4885 calc_flow_duration(rule->created, &nfr->duration_sec, &nfr->duration_nsec);
4886 nfr->idle_timeout = htons(rule->idle_timeout);
4887 nfr->match_len = htons(match_len);
4888 nfr->packet_count = htonll(rule->packet_count);
4889 nfr->byte_count = htonll(rule->byte_count);
4890
4891 return buf;
4892 }
4893
4894 static void
4895 rule_send_removed(struct ofproto *p, struct rule *rule, uint8_t reason)
4896 {
4897 struct ofconn *ofconn;
4898
4899 if (!rule->send_flow_removed) {
4900 return;
4901 }
4902
4903 LIST_FOR_EACH (ofconn, node, &p->all_conns) {
4904 struct ofpbuf *msg;
4905
4906 if (!rconn_is_connected(ofconn->rconn)
4907 || !ofconn_receives_async_msgs(ofconn)) {
4908 continue;
4909 }
4910
4911 msg = (ofconn->flow_format == NXFF_NXM
4912 ? compose_nx_flow_removed(rule, reason)
4913 : compose_ofp_flow_removed(ofconn, rule, reason));
4914
4915 /* Account flow expirations under ofconn->reply_counter, the counter
4916 * for replies to OpenFlow requests. That works because preventing
4917 * OpenFlow requests from being processed also prevents new flows from
4918 * being added (and expiring). (It also prevents processing OpenFlow
4919 * requests that would not add new flows, so it is imperfect.) */
4920 queue_tx(msg, ofconn, ofconn->reply_counter);
4921 }
4922 }
4923
4924 /* pinsched callback for sending 'packet' on 'ofconn'. */
4925 static void
4926 do_send_packet_in(struct ofpbuf *packet, void *ofconn_)
4927 {
4928 struct ofconn *ofconn = ofconn_;
4929
4930 rconn_send_with_limit(ofconn->rconn, packet,
4931 ofconn->packet_in_counter, 100);
4932 }
4933
4934 /* Takes 'packet', which has been converted with do_convert_to_packet_in(), and
4935 * finalizes its content for sending on 'ofconn', and passes it to 'ofconn''s
4936 * packet scheduler for sending.
4937 *
4938 * 'max_len' specifies the maximum number of bytes of the packet to send on
4939 * 'ofconn' (INT_MAX specifies no limit).
4940 *
4941 * If 'clone' is true, the caller retains ownership of 'packet'. Otherwise,
4942 * ownership is transferred to this function. */
4943 static void
4944 schedule_packet_in(struct ofconn *ofconn, struct ofpbuf *packet, int max_len,
4945 bool clone)
4946 {
4947 struct ofproto *ofproto = ofconn->ofproto;
4948 struct ofp_packet_in *opi = packet->data;
4949 uint16_t in_port = ofp_port_to_odp_port(ntohs(opi->in_port));
4950 int send_len, trim_size;
4951 uint32_t buffer_id;
4952
4953 /* Get buffer. */
4954 if (opi->reason == OFPR_ACTION) {
4955 buffer_id = UINT32_MAX;
4956 } else if (ofproto->fail_open && fail_open_is_active(ofproto->fail_open)) {
4957 buffer_id = pktbuf_get_null();
4958 } else if (!ofconn->pktbuf) {
4959 buffer_id = UINT32_MAX;
4960 } else {
4961 struct ofpbuf payload;
4962 payload.data = opi->data;
4963 payload.size = packet->size - offsetof(struct ofp_packet_in, data);
4964 buffer_id = pktbuf_save(ofconn->pktbuf, &payload, in_port);
4965 }
4966
4967 /* Figure out how much of the packet to send. */
4968 send_len = ntohs(opi->total_len);
4969 if (buffer_id != UINT32_MAX) {
4970 send_len = MIN(send_len, ofconn->miss_send_len);
4971 }
4972 send_len = MIN(send_len, max_len);
4973
4974 /* Adjust packet length and clone if necessary. */
4975 trim_size = offsetof(struct ofp_packet_in, data) + send_len;
4976 if (clone) {
4977 packet = ofpbuf_clone_data(packet->data, trim_size);
4978 opi = packet->data;
4979 } else {
4980 packet->size = trim_size;
4981 }
4982
4983 /* Update packet headers. */
4984 opi->buffer_id = htonl(buffer_id);
4985 update_openflow_length(packet);
4986
4987 /* Hand over to packet scheduler. It might immediately call into
4988 * do_send_packet_in() or it might buffer it for a while (until a later
4989 * call to pinsched_run()). */
4990 pinsched_send(ofconn->schedulers[opi->reason], in_port,
4991 packet, do_send_packet_in, ofconn);
4992 }
4993
4994 /* Replace struct odp_msg header in 'packet' by equivalent struct
4995 * ofp_packet_in. The odp_msg must have sufficient headroom to do so (e.g. as
4996 * returned by dpif_recv()).
4997 *
4998 * The conversion is not complete: the caller still needs to trim any unneeded
4999 * payload off the end of the buffer, set the length in the OpenFlow header,
5000 * and set buffer_id. Those require us to know the controller settings and so
5001 * must be done on a per-controller basis.
5002 *
5003 * Returns the maximum number of bytes of the packet that should be sent to
5004 * the controller (INT_MAX if no limit). */
5005 static int
5006 do_convert_to_packet_in(struct ofpbuf *packet)
5007 {
5008 struct odp_msg *msg = packet->data;
5009 struct ofp_packet_in *opi;
5010 uint8_t reason;
5011 uint16_t total_len;
5012 uint16_t in_port;
5013 int max_len;
5014
5015 /* Extract relevant header fields */
5016 if (msg->type == _ODPL_ACTION_NR) {
5017 reason = OFPR_ACTION;
5018 max_len = msg->arg;
5019 } else {
5020 reason = OFPR_NO_MATCH;
5021 max_len = INT_MAX;
5022 }
5023 total_len = msg->length - sizeof *msg;
5024 in_port = odp_port_to_ofp_port(msg->port);
5025
5026 /* Repurpose packet buffer by overwriting header. */
5027 ofpbuf_pull(packet, sizeof(struct odp_msg));
5028 opi = ofpbuf_push_zeros(packet, offsetof(struct ofp_packet_in, data));
5029 opi->header.version = OFP_VERSION;
5030 opi->header.type = OFPT_PACKET_IN;
5031 opi->total_len = htons(total_len);
5032 opi->in_port = htons(in_port);
5033 opi->reason = reason;
5034
5035 return max_len;
5036 }
5037
5038 /* Given 'packet' containing an odp_msg of type _ODPL_ACTION_NR or
5039 * _ODPL_MISS_NR, sends an OFPT_PACKET_IN message to each OpenFlow controller
5040 * as necessary according to their individual configurations.
5041 *
5042 * 'packet' must have sufficient headroom to convert it into a struct
5043 * ofp_packet_in (e.g. as returned by dpif_recv()).
5044 *
5045 * Takes ownership of 'packet'. */
5046 static void
5047 send_packet_in(struct ofproto *ofproto, struct ofpbuf *packet)
5048 {
5049 struct ofconn *ofconn, *prev;
5050 int max_len;
5051
5052 max_len = do_convert_to_packet_in(packet);
5053
5054 prev = NULL;
5055 LIST_FOR_EACH (ofconn, node, &ofproto->all_conns) {
5056 if (ofconn_receives_async_msgs(ofconn)) {
5057 if (prev) {
5058 schedule_packet_in(prev, packet, max_len, true);
5059 }
5060 prev = ofconn;
5061 }
5062 }
5063 if (prev) {
5064 schedule_packet_in(prev, packet, max_len, false);
5065 } else {
5066 ofpbuf_delete(packet);
5067 }
5068 }
5069
5070 static uint64_t
5071 pick_datapath_id(const struct ofproto *ofproto)
5072 {
5073 const struct ofport *port;
5074
5075 port = get_port(ofproto, ODPP_LOCAL);
5076 if (port) {
5077 uint8_t ea[ETH_ADDR_LEN];
5078 int error;
5079
5080 error = netdev_get_etheraddr(port->netdev, ea);
5081 if (!error) {
5082 return eth_addr_to_uint64(ea);
5083 }
5084 VLOG_WARN("could not get MAC address for %s (%s)",
5085 netdev_get_name(port->netdev), strerror(error));
5086 }
5087 return ofproto->fallback_dpid;
5088 }
5089
5090 static uint64_t
5091 pick_fallback_dpid(void)
5092 {
5093 uint8_t ea[ETH_ADDR_LEN];
5094 eth_addr_nicira_random(ea);
5095 return eth_addr_to_uint64(ea);
5096 }
5097 \f
5098 static bool
5099 default_normal_ofhook_cb(const struct flow *flow, const struct ofpbuf *packet,
5100 struct odp_actions *actions, tag_type *tags,
5101 uint16_t *nf_output_iface, void *ofproto_)
5102 {
5103 struct ofproto *ofproto = ofproto_;
5104 int out_port;
5105
5106 /* Drop frames for reserved multicast addresses. */
5107 if (eth_addr_is_reserved(flow->dl_dst)) {
5108 return true;
5109 }
5110
5111 /* Learn source MAC (but don't try to learn from revalidation). */
5112 if (packet != NULL) {
5113 tag_type rev_tag = mac_learning_learn(ofproto->ml, flow->dl_src,
5114 0, flow->in_port,
5115 GRAT_ARP_LOCK_NONE);
5116 if (rev_tag) {
5117 /* The log messages here could actually be useful in debugging,
5118 * so keep the rate limit relatively high. */
5119 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(30, 300);
5120 VLOG_DBG_RL(&rl, "learned that "ETH_ADDR_FMT" is on port %"PRIu16,
5121 ETH_ADDR_ARGS(flow->dl_src), flow->in_port);
5122 ofproto_revalidate(ofproto, rev_tag);
5123 }
5124 }
5125
5126 /* Determine output port. */
5127 out_port = mac_learning_lookup_tag(ofproto->ml, flow->dl_dst, 0, tags,
5128 NULL);
5129 if (out_port < 0) {
5130 flood_packets(ofproto, flow->in_port, OFPPC_NO_FLOOD,
5131 nf_output_iface, actions);
5132 } else if (out_port != flow->in_port) {
5133 odp_actions_add(actions, ODPAT_OUTPUT)->output.port = out_port;
5134 *nf_output_iface = out_port;
5135 } else {
5136 /* Drop. */
5137 }
5138
5139 return true;
5140 }
5141
5142 static const struct ofhooks default_ofhooks = {
5143 default_normal_ofhook_cb,
5144 NULL,
5145 NULL
5146 };