]> git.proxmox.com Git - mirror_ovs.git/blob - ofproto/ofproto.c
c2c48e12bccbb55df556fef8a7d65ba86330dc3b
[mirror_ovs.git] / ofproto / ofproto.c
1 /*
2 * Copyright (c) 2009, 2010 Nicira Networks.
3 * Copyright (c) 2010 Jean Tourrilhes - HP-Labs.
4 *
5 * Licensed under the Apache License, Version 2.0 (the "License");
6 * you may not use this file except in compliance with the License.
7 * You may obtain a copy of the License at:
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17
18 #include <config.h>
19 #include "ofproto.h"
20 #include <errno.h>
21 #include <inttypes.h>
22 #include <sys/socket.h>
23 #include <net/if.h>
24 #include <netinet/in.h>
25 #include <stdbool.h>
26 #include <stdlib.h>
27 #include "byte-order.h"
28 #include "classifier.h"
29 #include "coverage.h"
30 #include "discovery.h"
31 #include "dpif.h"
32 #include "dynamic-string.h"
33 #include "fail-open.h"
34 #include "hash.h"
35 #include "hmap.h"
36 #include "in-band.h"
37 #include "mac-learning.h"
38 #include "netdev.h"
39 #include "netflow.h"
40 #include "nx-match.h"
41 #include "odp-util.h"
42 #include "ofp-print.h"
43 #include "ofp-util.h"
44 #include "ofproto-sflow.h"
45 #include "ofpbuf.h"
46 #include "openflow/nicira-ext.h"
47 #include "openflow/openflow.h"
48 #include "openvswitch/datapath-protocol.h"
49 #include "packets.h"
50 #include "pinsched.h"
51 #include "pktbuf.h"
52 #include "poll-loop.h"
53 #include "rconn.h"
54 #include "shash.h"
55 #include "status.h"
56 #include "stream-ssl.h"
57 #include "svec.h"
58 #include "tag.h"
59 #include "timeval.h"
60 #include "unixctl.h"
61 #include "vconn.h"
62 #include "vlog.h"
63
64 VLOG_DEFINE_THIS_MODULE(ofproto);
65
66 #include "sflow_api.h"
67
68 struct ofport {
69 struct hmap_node hmap_node; /* In struct ofproto's "ports" hmap. */
70 struct netdev *netdev;
71 struct ofp_phy_port opp; /* In host byte order. */
72 uint16_t odp_port;
73 };
74
75 static void ofport_free(struct ofport *);
76 static void hton_ofp_phy_port(struct ofp_phy_port *);
77
78 static int xlate_actions(const union ofp_action *in, size_t n_in,
79 const struct flow *, struct ofproto *,
80 const struct ofpbuf *packet,
81 struct odp_actions *out, tag_type *tags,
82 bool *may_set_up_flow, uint16_t *nf_output_iface);
83
84 /* An OpenFlow flow. */
85 struct rule {
86 long long int used; /* Time last used; time created if not used. */
87 long long int created; /* Creation time. */
88
89 /* These statistics:
90 *
91 * - Do include packets and bytes from facets that have been deleted or
92 * whose own statistics have been folded into the rule.
93 *
94 * - Do include packets and bytes sent "by hand" that were accounted to
95 * the rule without any facet being involved (this is a rare corner
96 * case in rule_execute()).
97 *
98 * - Do not include packet or bytes that can be obtained from any facet's
99 * packet_count or byte_count member or that can be obtained from the
100 * datapath by, e.g., dpif_flow_get() for any facet.
101 */
102 uint64_t packet_count; /* Number of packets received. */
103 uint64_t byte_count; /* Number of bytes received. */
104
105 ovs_be64 flow_cookie; /* Controller-issued identifier. */
106
107 struct cls_rule cr; /* In owning ofproto's classifier. */
108 uint16_t idle_timeout; /* In seconds from time of last use. */
109 uint16_t hard_timeout; /* In seconds from time of creation. */
110 bool send_flow_removed; /* Send a flow removed message? */
111 int n_actions; /* Number of elements in actions[]. */
112 union ofp_action *actions; /* OpenFlow actions. */
113 struct list facets; /* List of "struct facet"s. */
114 };
115
116 static struct rule *rule_from_cls_rule(const struct cls_rule *);
117 static bool rule_is_hidden(const struct rule *);
118
119 static struct rule *rule_create(const struct cls_rule *,
120 const union ofp_action *, size_t n_actions,
121 uint16_t idle_timeout, uint16_t hard_timeout,
122 ovs_be64 flow_cookie, bool send_flow_removed);
123 static void rule_destroy(struct ofproto *, struct rule *);
124 static void rule_free(struct rule *);
125
126 static struct rule *rule_lookup(struct ofproto *, const struct flow *);
127 static void rule_insert(struct ofproto *, struct rule *);
128 static void rule_remove(struct ofproto *, struct rule *);
129
130 static void rule_send_removed(struct ofproto *, struct rule *, uint8_t reason);
131
132 /* An exact-match instantiation of an OpenFlow flow. */
133 struct facet {
134 long long int used; /* Time last used; time created if not used. */
135
136 /* These statistics:
137 *
138 * - Do include packets and bytes sent "by hand", e.g. with
139 * dpif_execute().
140 *
141 * - Do include packets and bytes that were obtained from the datapath
142 * when a flow was deleted (e.g. dpif_flow_del()) or when its
143 * statistics were reset (e.g. dpif_flow_put() with ODPPF_ZERO_STATS).
144 *
145 * - Do not include any packets or bytes that can currently be obtained
146 * from the datapath by, e.g., dpif_flow_get().
147 */
148 uint64_t packet_count; /* Number of packets received. */
149 uint64_t byte_count; /* Number of bytes received. */
150
151 /* Number of bytes passed to account_cb. This may include bytes that can
152 * currently obtained from the datapath (thus, it can be greater than
153 * byte_count). */
154 uint64_t accounted_bytes;
155
156 struct hmap_node hmap_node; /* In owning ofproto's 'facets' hmap. */
157 struct list list_node; /* In owning rule's 'facets' list. */
158 struct rule *rule; /* Owning rule. */
159 struct flow flow; /* Exact-match flow. */
160 bool installed; /* Installed in datapath? */
161 bool may_install; /* True ordinarily; false if actions must
162 * be reassessed for every packet. */
163 int n_actions; /* Number of elements in actions[]. */
164 union odp_action *actions; /* Datapath actions. */
165 tag_type tags; /* Tags (set only by hooks). */
166 struct netflow_flow nf_flow; /* Per-flow NetFlow tracking data. */
167 };
168
169 static struct facet *facet_create(struct ofproto *, struct rule *,
170 const struct flow *,
171 const struct ofpbuf *packet);
172 static void facet_remove(struct ofproto *, struct facet *);
173 static void facet_free(struct facet *);
174
175 static struct facet *facet_lookup_valid(struct ofproto *, const struct flow *);
176 static bool facet_revalidate(struct ofproto *, struct facet *);
177
178 static void facet_install(struct ofproto *, struct facet *, bool zero_stats);
179 static void facet_uninstall(struct ofproto *, struct facet *);
180 static void facet_flush_stats(struct ofproto *, struct facet *);
181
182 static void facet_make_actions(struct ofproto *, struct facet *,
183 const struct ofpbuf *packet);
184 static void facet_update_stats(struct ofproto *, struct facet *,
185 const struct odp_flow_stats *);
186
187 /* ofproto supports two kinds of OpenFlow connections:
188 *
189 * - "Primary" connections to ordinary OpenFlow controllers. ofproto
190 * maintains persistent connections to these controllers and by default
191 * sends them asynchronous messages such as packet-ins.
192 *
193 * - "Service" connections, e.g. from ovs-ofctl. When these connections
194 * drop, it is the other side's responsibility to reconnect them if
195 * necessary. ofproto does not send them asynchronous messages by default.
196 *
197 * Currently, active (tcp, ssl, unix) connections are always "primary"
198 * connections and passive (ptcp, pssl, punix) connections are always "service"
199 * connections. There is no inherent reason for this, but it reflects the
200 * common case.
201 */
202 enum ofconn_type {
203 OFCONN_PRIMARY, /* An ordinary OpenFlow controller. */
204 OFCONN_SERVICE /* A service connection, e.g. "ovs-ofctl". */
205 };
206
207 /* A listener for incoming OpenFlow "service" connections. */
208 struct ofservice {
209 struct hmap_node node; /* In struct ofproto's "services" hmap. */
210 struct pvconn *pvconn; /* OpenFlow connection listener. */
211
212 /* These are not used by ofservice directly. They are settings for
213 * accepted "struct ofconn"s from the pvconn. */
214 int probe_interval; /* Max idle time before probing, in seconds. */
215 int rate_limit; /* Max packet-in rate in packets per second. */
216 int burst_limit; /* Limit on accumulating packet credits. */
217 };
218
219 static struct ofservice *ofservice_lookup(struct ofproto *,
220 const char *target);
221 static int ofservice_create(struct ofproto *,
222 const struct ofproto_controller *);
223 static void ofservice_reconfigure(struct ofservice *,
224 const struct ofproto_controller *);
225 static void ofservice_destroy(struct ofproto *, struct ofservice *);
226
227 /* An OpenFlow connection. */
228 struct ofconn {
229 struct ofproto *ofproto; /* The ofproto that owns this connection. */
230 struct list node; /* In struct ofproto's "all_conns" list. */
231 struct rconn *rconn; /* OpenFlow connection. */
232 enum ofconn_type type; /* Type. */
233 int flow_format; /* One of NXFF_*. */
234
235 /* OFPT_PACKET_IN related data. */
236 struct rconn_packet_counter *packet_in_counter; /* # queued on 'rconn'. */
237 struct pinsched *schedulers[2]; /* Indexed by reason code; see below. */
238 struct pktbuf *pktbuf; /* OpenFlow packet buffers. */
239 int miss_send_len; /* Bytes to send of buffered packets. */
240
241 /* Number of OpenFlow messages queued on 'rconn' as replies to OpenFlow
242 * requests, and the maximum number before we stop reading OpenFlow
243 * requests. */
244 #define OFCONN_REPLY_MAX 100
245 struct rconn_packet_counter *reply_counter;
246
247 /* type == OFCONN_PRIMARY only. */
248 enum nx_role role; /* Role. */
249 struct hmap_node hmap_node; /* In struct ofproto's "controllers" map. */
250 struct discovery *discovery; /* Controller discovery object, if enabled. */
251 struct status_category *ss; /* Switch status category. */
252 enum ofproto_band band; /* In-band or out-of-band? */
253 };
254
255 /* We use OFPR_NO_MATCH and OFPR_ACTION as indexes into struct ofconn's
256 * "schedulers" array. Their values are 0 and 1, and their meanings and values
257 * coincide with _ODPL_MISS_NR and _ODPL_ACTION_NR, so this is convenient. In
258 * case anything ever changes, check their values here. */
259 #define N_SCHEDULERS 2
260 BUILD_ASSERT_DECL(OFPR_NO_MATCH == 0);
261 BUILD_ASSERT_DECL(OFPR_NO_MATCH == _ODPL_MISS_NR);
262 BUILD_ASSERT_DECL(OFPR_ACTION == 1);
263 BUILD_ASSERT_DECL(OFPR_ACTION == _ODPL_ACTION_NR);
264
265 static struct ofconn *ofconn_create(struct ofproto *, struct rconn *,
266 enum ofconn_type);
267 static void ofconn_destroy(struct ofconn *);
268 static void ofconn_run(struct ofconn *);
269 static void ofconn_wait(struct ofconn *);
270 static bool ofconn_receives_async_msgs(const struct ofconn *);
271 static char *ofconn_make_name(const struct ofproto *, const char *target);
272 static void ofconn_set_rate_limit(struct ofconn *, int rate, int burst);
273
274 static void queue_tx(struct ofpbuf *msg, const struct ofconn *ofconn,
275 struct rconn_packet_counter *counter);
276
277 static void send_packet_in(struct ofproto *, struct ofpbuf *odp_msg);
278 static void do_send_packet_in(struct ofpbuf *odp_msg, void *ofconn);
279
280 struct ofproto {
281 /* Settings. */
282 uint64_t datapath_id; /* Datapath ID. */
283 uint64_t fallback_dpid; /* Datapath ID if no better choice found. */
284 char *mfr_desc; /* Manufacturer. */
285 char *hw_desc; /* Hardware. */
286 char *sw_desc; /* Software version. */
287 char *serial_desc; /* Serial number. */
288 char *dp_desc; /* Datapath description. */
289
290 /* Datapath. */
291 struct dpif *dpif;
292 struct netdev_monitor *netdev_monitor;
293 struct hmap ports; /* Contains "struct ofport"s. */
294 struct shash port_by_name;
295 uint32_t max_ports;
296
297 /* Configuration. */
298 struct switch_status *switch_status;
299 struct fail_open *fail_open;
300 struct netflow *netflow;
301 struct ofproto_sflow *sflow;
302
303 /* In-band control. */
304 struct in_band *in_band;
305 long long int next_in_band_update;
306 struct sockaddr_in *extra_in_band_remotes;
307 size_t n_extra_remotes;
308 int in_band_queue;
309
310 /* Flow table. */
311 struct classifier cls;
312 long long int next_expiration;
313
314 /* Facets. */
315 struct hmap facets;
316 bool need_revalidate;
317 struct tag_set revalidate_set;
318
319 /* OpenFlow connections. */
320 struct hmap controllers; /* Controller "struct ofconn"s. */
321 struct list all_conns; /* Contains "struct ofconn"s. */
322 enum ofproto_fail_mode fail_mode;
323
324 /* OpenFlow listeners. */
325 struct hmap services; /* Contains "struct ofservice"s. */
326 struct pvconn **snoops;
327 size_t n_snoops;
328
329 /* Hooks for ovs-vswitchd. */
330 const struct ofhooks *ofhooks;
331 void *aux;
332
333 /* Used by default ofhooks. */
334 struct mac_learning *ml;
335 };
336
337 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
338
339 static const struct ofhooks default_ofhooks;
340
341 static uint64_t pick_datapath_id(const struct ofproto *);
342 static uint64_t pick_fallback_dpid(void);
343
344 static int ofproto_expire(struct ofproto *);
345
346 static void handle_odp_msg(struct ofproto *, struct ofpbuf *);
347
348 static void handle_openflow(struct ofconn *, struct ofpbuf *);
349
350 static struct ofport *get_port(const struct ofproto *, uint16_t odp_port);
351 static void update_port(struct ofproto *, const char *devname);
352 static int init_ports(struct ofproto *);
353 static void reinit_ports(struct ofproto *);
354
355 int
356 ofproto_create(const char *datapath, const char *datapath_type,
357 const struct ofhooks *ofhooks, void *aux,
358 struct ofproto **ofprotop)
359 {
360 struct odp_stats stats;
361 struct ofproto *p;
362 struct dpif *dpif;
363 int error;
364
365 *ofprotop = NULL;
366
367 /* Connect to datapath and start listening for messages. */
368 error = dpif_open(datapath, datapath_type, &dpif);
369 if (error) {
370 VLOG_ERR("failed to open datapath %s: %s", datapath, strerror(error));
371 return error;
372 }
373 error = dpif_get_dp_stats(dpif, &stats);
374 if (error) {
375 VLOG_ERR("failed to obtain stats for datapath %s: %s",
376 datapath, strerror(error));
377 dpif_close(dpif);
378 return error;
379 }
380 error = dpif_recv_set_mask(dpif, ODPL_MISS | ODPL_ACTION | ODPL_SFLOW);
381 if (error) {
382 VLOG_ERR("failed to listen on datapath %s: %s",
383 datapath, strerror(error));
384 dpif_close(dpif);
385 return error;
386 }
387 dpif_flow_flush(dpif);
388 dpif_recv_purge(dpif);
389
390 /* Initialize settings. */
391 p = xzalloc(sizeof *p);
392 p->fallback_dpid = pick_fallback_dpid();
393 p->datapath_id = p->fallback_dpid;
394 p->mfr_desc = xstrdup(DEFAULT_MFR_DESC);
395 p->hw_desc = xstrdup(DEFAULT_HW_DESC);
396 p->sw_desc = xstrdup(DEFAULT_SW_DESC);
397 p->serial_desc = xstrdup(DEFAULT_SERIAL_DESC);
398 p->dp_desc = xstrdup(DEFAULT_DP_DESC);
399
400 /* Initialize datapath. */
401 p->dpif = dpif;
402 p->netdev_monitor = netdev_monitor_create();
403 hmap_init(&p->ports);
404 shash_init(&p->port_by_name);
405 p->max_ports = stats.max_ports;
406
407 /* Initialize submodules. */
408 p->switch_status = switch_status_create(p);
409 p->fail_open = NULL;
410 p->netflow = NULL;
411 p->sflow = NULL;
412
413 /* Initialize in-band control. */
414 p->in_band = NULL;
415 p->in_band_queue = -1;
416
417 /* Initialize flow table. */
418 classifier_init(&p->cls);
419 p->next_expiration = time_msec() + 1000;
420
421 /* Initialize facet table. */
422 hmap_init(&p->facets);
423 p->need_revalidate = false;
424 tag_set_init(&p->revalidate_set);
425
426 /* Initialize OpenFlow connections. */
427 list_init(&p->all_conns);
428 hmap_init(&p->controllers);
429 hmap_init(&p->services);
430 p->snoops = NULL;
431 p->n_snoops = 0;
432
433 /* Initialize hooks. */
434 if (ofhooks) {
435 p->ofhooks = ofhooks;
436 p->aux = aux;
437 p->ml = NULL;
438 } else {
439 p->ofhooks = &default_ofhooks;
440 p->aux = p;
441 p->ml = mac_learning_create();
442 }
443
444 /* Pick final datapath ID. */
445 p->datapath_id = pick_datapath_id(p);
446 VLOG_INFO("using datapath ID %016"PRIx64, p->datapath_id);
447
448 *ofprotop = p;
449 return 0;
450 }
451
452 void
453 ofproto_set_datapath_id(struct ofproto *p, uint64_t datapath_id)
454 {
455 uint64_t old_dpid = p->datapath_id;
456 p->datapath_id = datapath_id ? datapath_id : pick_datapath_id(p);
457 if (p->datapath_id != old_dpid) {
458 VLOG_INFO("datapath ID changed to %016"PRIx64, p->datapath_id);
459
460 /* Force all active connections to reconnect, since there is no way to
461 * notify a controller that the datapath ID has changed. */
462 ofproto_reconnect_controllers(p);
463 }
464 }
465
466 static bool
467 is_discovery_controller(const struct ofproto_controller *c)
468 {
469 return !strcmp(c->target, "discover");
470 }
471
472 static bool
473 is_in_band_controller(const struct ofproto_controller *c)
474 {
475 return is_discovery_controller(c) || c->band == OFPROTO_IN_BAND;
476 }
477
478 /* Creates a new controller in 'ofproto'. Some of the settings are initially
479 * drawn from 'c', but update_controller() needs to be called later to finish
480 * the new ofconn's configuration. */
481 static void
482 add_controller(struct ofproto *ofproto, const struct ofproto_controller *c)
483 {
484 struct discovery *discovery;
485 struct ofconn *ofconn;
486
487 if (is_discovery_controller(c)) {
488 int error = discovery_create(c->accept_re, c->update_resolv_conf,
489 ofproto->dpif, ofproto->switch_status,
490 &discovery);
491 if (error) {
492 return;
493 }
494 } else {
495 discovery = NULL;
496 }
497
498 ofconn = ofconn_create(ofproto, rconn_create(5, 8), OFCONN_PRIMARY);
499 ofconn->pktbuf = pktbuf_create();
500 ofconn->miss_send_len = OFP_DEFAULT_MISS_SEND_LEN;
501 if (discovery) {
502 ofconn->discovery = discovery;
503 } else {
504 char *name = ofconn_make_name(ofproto, c->target);
505 rconn_connect(ofconn->rconn, c->target, name);
506 free(name);
507 }
508 hmap_insert(&ofproto->controllers, &ofconn->hmap_node,
509 hash_string(c->target, 0));
510 }
511
512 /* Reconfigures 'ofconn' to match 'c'. This function cannot update an ofconn's
513 * target or turn discovery on or off (these are done by creating new ofconns
514 * and deleting old ones), but it can update the rest of an ofconn's
515 * settings. */
516 static void
517 update_controller(struct ofconn *ofconn, const struct ofproto_controller *c)
518 {
519 int probe_interval;
520
521 ofconn->band = (is_in_band_controller(c)
522 ? OFPROTO_IN_BAND : OFPROTO_OUT_OF_BAND);
523
524 rconn_set_max_backoff(ofconn->rconn, c->max_backoff);
525
526 probe_interval = c->probe_interval ? MAX(c->probe_interval, 5) : 0;
527 rconn_set_probe_interval(ofconn->rconn, probe_interval);
528
529 if (ofconn->discovery) {
530 discovery_set_update_resolv_conf(ofconn->discovery,
531 c->update_resolv_conf);
532 discovery_set_accept_controller_re(ofconn->discovery, c->accept_re);
533 }
534
535 ofconn_set_rate_limit(ofconn, c->rate_limit, c->burst_limit);
536 }
537
538 static const char *
539 ofconn_get_target(const struct ofconn *ofconn)
540 {
541 return ofconn->discovery ? "discover" : rconn_get_target(ofconn->rconn);
542 }
543
544 static struct ofconn *
545 find_controller_by_target(struct ofproto *ofproto, const char *target)
546 {
547 struct ofconn *ofconn;
548
549 HMAP_FOR_EACH_WITH_HASH (ofconn, hmap_node,
550 hash_string(target, 0), &ofproto->controllers) {
551 if (!strcmp(ofconn_get_target(ofconn), target)) {
552 return ofconn;
553 }
554 }
555 return NULL;
556 }
557
558 static void
559 update_in_band_remotes(struct ofproto *ofproto)
560 {
561 const struct ofconn *ofconn;
562 struct sockaddr_in *addrs;
563 size_t max_addrs, n_addrs;
564 bool discovery;
565 size_t i;
566
567 /* Allocate enough memory for as many remotes as we could possibly have. */
568 max_addrs = ofproto->n_extra_remotes + hmap_count(&ofproto->controllers);
569 addrs = xmalloc(max_addrs * sizeof *addrs);
570 n_addrs = 0;
571
572 /* Add all the remotes. */
573 discovery = false;
574 HMAP_FOR_EACH (ofconn, hmap_node, &ofproto->controllers) {
575 struct sockaddr_in *sin = &addrs[n_addrs];
576
577 if (ofconn->band == OFPROTO_OUT_OF_BAND) {
578 continue;
579 }
580
581 sin->sin_addr.s_addr = rconn_get_remote_ip(ofconn->rconn);
582 if (sin->sin_addr.s_addr) {
583 sin->sin_port = rconn_get_remote_port(ofconn->rconn);
584 n_addrs++;
585 }
586 if (ofconn->discovery) {
587 discovery = true;
588 }
589 }
590 for (i = 0; i < ofproto->n_extra_remotes; i++) {
591 addrs[n_addrs++] = ofproto->extra_in_band_remotes[i];
592 }
593
594 /* Create or update or destroy in-band.
595 *
596 * Ordinarily we only enable in-band if there's at least one remote
597 * address, but discovery needs the in-band rules for DHCP to be installed
598 * even before we know any remote addresses. */
599 if (n_addrs || discovery) {
600 if (!ofproto->in_band) {
601 in_band_create(ofproto, ofproto->dpif, ofproto->switch_status,
602 &ofproto->in_band);
603 }
604 if (ofproto->in_band) {
605 in_band_set_remotes(ofproto->in_band, addrs, n_addrs);
606 }
607 in_band_set_queue(ofproto->in_band, ofproto->in_band_queue);
608 ofproto->next_in_band_update = time_msec() + 1000;
609 } else {
610 in_band_destroy(ofproto->in_band);
611 ofproto->in_band = NULL;
612 }
613
614 /* Clean up. */
615 free(addrs);
616 }
617
618 static void
619 update_fail_open(struct ofproto *p)
620 {
621 struct ofconn *ofconn;
622
623 if (!hmap_is_empty(&p->controllers)
624 && p->fail_mode == OFPROTO_FAIL_STANDALONE) {
625 struct rconn **rconns;
626 size_t n;
627
628 if (!p->fail_open) {
629 p->fail_open = fail_open_create(p, p->switch_status);
630 }
631
632 n = 0;
633 rconns = xmalloc(hmap_count(&p->controllers) * sizeof *rconns);
634 HMAP_FOR_EACH (ofconn, hmap_node, &p->controllers) {
635 rconns[n++] = ofconn->rconn;
636 }
637
638 fail_open_set_controllers(p->fail_open, rconns, n);
639 /* p->fail_open takes ownership of 'rconns'. */
640 } else {
641 fail_open_destroy(p->fail_open);
642 p->fail_open = NULL;
643 }
644 }
645
646 void
647 ofproto_set_controllers(struct ofproto *p,
648 const struct ofproto_controller *controllers,
649 size_t n_controllers)
650 {
651 struct shash new_controllers;
652 struct ofconn *ofconn, *next_ofconn;
653 struct ofservice *ofservice, *next_ofservice;
654 bool ss_exists;
655 size_t i;
656
657 /* Create newly configured controllers and services.
658 * Create a name to ofproto_controller mapping in 'new_controllers'. */
659 shash_init(&new_controllers);
660 for (i = 0; i < n_controllers; i++) {
661 const struct ofproto_controller *c = &controllers[i];
662
663 if (!vconn_verify_name(c->target) || !strcmp(c->target, "discover")) {
664 if (!find_controller_by_target(p, c->target)) {
665 add_controller(p, c);
666 }
667 } else if (!pvconn_verify_name(c->target)) {
668 if (!ofservice_lookup(p, c->target) && ofservice_create(p, c)) {
669 continue;
670 }
671 } else {
672 VLOG_WARN_RL(&rl, "%s: unsupported controller \"%s\"",
673 dpif_name(p->dpif), c->target);
674 continue;
675 }
676
677 shash_add_once(&new_controllers, c->target, &controllers[i]);
678 }
679
680 /* Delete controllers that are no longer configured.
681 * Update configuration of all now-existing controllers. */
682 ss_exists = false;
683 HMAP_FOR_EACH_SAFE (ofconn, next_ofconn, hmap_node, &p->controllers) {
684 struct ofproto_controller *c;
685
686 c = shash_find_data(&new_controllers, ofconn_get_target(ofconn));
687 if (!c) {
688 ofconn_destroy(ofconn);
689 } else {
690 update_controller(ofconn, c);
691 if (ofconn->ss) {
692 ss_exists = true;
693 }
694 }
695 }
696
697 /* Delete services that are no longer configured.
698 * Update configuration of all now-existing services. */
699 HMAP_FOR_EACH_SAFE (ofservice, next_ofservice, node, &p->services) {
700 struct ofproto_controller *c;
701
702 c = shash_find_data(&new_controllers,
703 pvconn_get_name(ofservice->pvconn));
704 if (!c) {
705 ofservice_destroy(p, ofservice);
706 } else {
707 ofservice_reconfigure(ofservice, c);
708 }
709 }
710
711 shash_destroy(&new_controllers);
712
713 update_in_band_remotes(p);
714 update_fail_open(p);
715
716 if (!hmap_is_empty(&p->controllers) && !ss_exists) {
717 ofconn = CONTAINER_OF(hmap_first(&p->controllers),
718 struct ofconn, hmap_node);
719 ofconn->ss = switch_status_register(p->switch_status, "remote",
720 rconn_status_cb, ofconn->rconn);
721 }
722 }
723
724 void
725 ofproto_set_fail_mode(struct ofproto *p, enum ofproto_fail_mode fail_mode)
726 {
727 p->fail_mode = fail_mode;
728 update_fail_open(p);
729 }
730
731 /* Drops the connections between 'ofproto' and all of its controllers, forcing
732 * them to reconnect. */
733 void
734 ofproto_reconnect_controllers(struct ofproto *ofproto)
735 {
736 struct ofconn *ofconn;
737
738 LIST_FOR_EACH (ofconn, node, &ofproto->all_conns) {
739 rconn_reconnect(ofconn->rconn);
740 }
741 }
742
743 static bool
744 any_extras_changed(const struct ofproto *ofproto,
745 const struct sockaddr_in *extras, size_t n)
746 {
747 size_t i;
748
749 if (n != ofproto->n_extra_remotes) {
750 return true;
751 }
752
753 for (i = 0; i < n; i++) {
754 const struct sockaddr_in *old = &ofproto->extra_in_band_remotes[i];
755 const struct sockaddr_in *new = &extras[i];
756
757 if (old->sin_addr.s_addr != new->sin_addr.s_addr ||
758 old->sin_port != new->sin_port) {
759 return true;
760 }
761 }
762
763 return false;
764 }
765
766 /* Sets the 'n' TCP port addresses in 'extras' as ones to which 'ofproto''s
767 * in-band control should guarantee access, in the same way that in-band
768 * control guarantees access to OpenFlow controllers. */
769 void
770 ofproto_set_extra_in_band_remotes(struct ofproto *ofproto,
771 const struct sockaddr_in *extras, size_t n)
772 {
773 if (!any_extras_changed(ofproto, extras, n)) {
774 return;
775 }
776
777 free(ofproto->extra_in_band_remotes);
778 ofproto->n_extra_remotes = n;
779 ofproto->extra_in_band_remotes = xmemdup(extras, n * sizeof *extras);
780
781 update_in_band_remotes(ofproto);
782 }
783
784 /* Sets the OpenFlow queue used by flows set up by in-band control on
785 * 'ofproto' to 'queue_id'. If 'queue_id' is negative, then in-band control
786 * flows will use the default queue. */
787 void
788 ofproto_set_in_band_queue(struct ofproto *ofproto, int queue_id)
789 {
790 if (queue_id != ofproto->in_band_queue) {
791 ofproto->in_band_queue = queue_id;
792 update_in_band_remotes(ofproto);
793 }
794 }
795
796 void
797 ofproto_set_desc(struct ofproto *p,
798 const char *mfr_desc, const char *hw_desc,
799 const char *sw_desc, const char *serial_desc,
800 const char *dp_desc)
801 {
802 struct ofp_desc_stats *ods;
803
804 if (mfr_desc) {
805 if (strlen(mfr_desc) >= sizeof ods->mfr_desc) {
806 VLOG_WARN("truncating mfr_desc, must be less than %zu characters",
807 sizeof ods->mfr_desc);
808 }
809 free(p->mfr_desc);
810 p->mfr_desc = xstrdup(mfr_desc);
811 }
812 if (hw_desc) {
813 if (strlen(hw_desc) >= sizeof ods->hw_desc) {
814 VLOG_WARN("truncating hw_desc, must be less than %zu characters",
815 sizeof ods->hw_desc);
816 }
817 free(p->hw_desc);
818 p->hw_desc = xstrdup(hw_desc);
819 }
820 if (sw_desc) {
821 if (strlen(sw_desc) >= sizeof ods->sw_desc) {
822 VLOG_WARN("truncating sw_desc, must be less than %zu characters",
823 sizeof ods->sw_desc);
824 }
825 free(p->sw_desc);
826 p->sw_desc = xstrdup(sw_desc);
827 }
828 if (serial_desc) {
829 if (strlen(serial_desc) >= sizeof ods->serial_num) {
830 VLOG_WARN("truncating serial_desc, must be less than %zu "
831 "characters",
832 sizeof ods->serial_num);
833 }
834 free(p->serial_desc);
835 p->serial_desc = xstrdup(serial_desc);
836 }
837 if (dp_desc) {
838 if (strlen(dp_desc) >= sizeof ods->dp_desc) {
839 VLOG_WARN("truncating dp_desc, must be less than %zu characters",
840 sizeof ods->dp_desc);
841 }
842 free(p->dp_desc);
843 p->dp_desc = xstrdup(dp_desc);
844 }
845 }
846
847 static int
848 set_pvconns(struct pvconn ***pvconnsp, size_t *n_pvconnsp,
849 const struct svec *svec)
850 {
851 struct pvconn **pvconns = *pvconnsp;
852 size_t n_pvconns = *n_pvconnsp;
853 int retval = 0;
854 size_t i;
855
856 for (i = 0; i < n_pvconns; i++) {
857 pvconn_close(pvconns[i]);
858 }
859 free(pvconns);
860
861 pvconns = xmalloc(svec->n * sizeof *pvconns);
862 n_pvconns = 0;
863 for (i = 0; i < svec->n; i++) {
864 const char *name = svec->names[i];
865 struct pvconn *pvconn;
866 int error;
867
868 error = pvconn_open(name, &pvconn);
869 if (!error) {
870 pvconns[n_pvconns++] = pvconn;
871 } else {
872 VLOG_ERR("failed to listen on %s: %s", name, strerror(error));
873 if (!retval) {
874 retval = error;
875 }
876 }
877 }
878
879 *pvconnsp = pvconns;
880 *n_pvconnsp = n_pvconns;
881
882 return retval;
883 }
884
885 int
886 ofproto_set_snoops(struct ofproto *ofproto, const struct svec *snoops)
887 {
888 return set_pvconns(&ofproto->snoops, &ofproto->n_snoops, snoops);
889 }
890
891 int
892 ofproto_set_netflow(struct ofproto *ofproto,
893 const struct netflow_options *nf_options)
894 {
895 if (nf_options && nf_options->collectors.n) {
896 if (!ofproto->netflow) {
897 ofproto->netflow = netflow_create();
898 }
899 return netflow_set_options(ofproto->netflow, nf_options);
900 } else {
901 netflow_destroy(ofproto->netflow);
902 ofproto->netflow = NULL;
903 return 0;
904 }
905 }
906
907 void
908 ofproto_set_sflow(struct ofproto *ofproto,
909 const struct ofproto_sflow_options *oso)
910 {
911 struct ofproto_sflow *os = ofproto->sflow;
912 if (oso) {
913 if (!os) {
914 struct ofport *ofport;
915
916 os = ofproto->sflow = ofproto_sflow_create(ofproto->dpif);
917 HMAP_FOR_EACH (ofport, hmap_node, &ofproto->ports) {
918 ofproto_sflow_add_port(os, ofport->odp_port,
919 netdev_get_name(ofport->netdev));
920 }
921 }
922 ofproto_sflow_set_options(os, oso);
923 } else {
924 ofproto_sflow_destroy(os);
925 ofproto->sflow = NULL;
926 }
927 }
928
929 uint64_t
930 ofproto_get_datapath_id(const struct ofproto *ofproto)
931 {
932 return ofproto->datapath_id;
933 }
934
935 bool
936 ofproto_has_primary_controller(const struct ofproto *ofproto)
937 {
938 return !hmap_is_empty(&ofproto->controllers);
939 }
940
941 enum ofproto_fail_mode
942 ofproto_get_fail_mode(const struct ofproto *p)
943 {
944 return p->fail_mode;
945 }
946
947 void
948 ofproto_get_snoops(const struct ofproto *ofproto, struct svec *snoops)
949 {
950 size_t i;
951
952 for (i = 0; i < ofproto->n_snoops; i++) {
953 svec_add(snoops, pvconn_get_name(ofproto->snoops[i]));
954 }
955 }
956
957 void
958 ofproto_destroy(struct ofproto *p)
959 {
960 struct ofservice *ofservice, *next_ofservice;
961 struct ofconn *ofconn, *next_ofconn;
962 struct ofport *ofport, *next_ofport;
963 size_t i;
964
965 if (!p) {
966 return;
967 }
968
969 /* Destroy fail-open and in-band early, since they touch the classifier. */
970 fail_open_destroy(p->fail_open);
971 p->fail_open = NULL;
972
973 in_band_destroy(p->in_band);
974 p->in_band = NULL;
975 free(p->extra_in_band_remotes);
976
977 ofproto_flush_flows(p);
978 classifier_destroy(&p->cls);
979 hmap_destroy(&p->facets);
980
981 LIST_FOR_EACH_SAFE (ofconn, next_ofconn, node, &p->all_conns) {
982 ofconn_destroy(ofconn);
983 }
984 hmap_destroy(&p->controllers);
985
986 dpif_close(p->dpif);
987 netdev_monitor_destroy(p->netdev_monitor);
988 HMAP_FOR_EACH_SAFE (ofport, next_ofport, hmap_node, &p->ports) {
989 hmap_remove(&p->ports, &ofport->hmap_node);
990 ofport_free(ofport);
991 }
992 shash_destroy(&p->port_by_name);
993
994 switch_status_destroy(p->switch_status);
995 netflow_destroy(p->netflow);
996 ofproto_sflow_destroy(p->sflow);
997
998 HMAP_FOR_EACH_SAFE (ofservice, next_ofservice, node, &p->services) {
999 ofservice_destroy(p, ofservice);
1000 }
1001 hmap_destroy(&p->services);
1002
1003 for (i = 0; i < p->n_snoops; i++) {
1004 pvconn_close(p->snoops[i]);
1005 }
1006 free(p->snoops);
1007
1008 mac_learning_destroy(p->ml);
1009
1010 free(p->mfr_desc);
1011 free(p->hw_desc);
1012 free(p->sw_desc);
1013 free(p->serial_desc);
1014 free(p->dp_desc);
1015
1016 hmap_destroy(&p->ports);
1017
1018 free(p);
1019 }
1020
1021 int
1022 ofproto_run(struct ofproto *p)
1023 {
1024 int error = ofproto_run1(p);
1025 if (!error) {
1026 error = ofproto_run2(p, false);
1027 }
1028 return error;
1029 }
1030
1031 static void
1032 process_port_change(struct ofproto *ofproto, int error, char *devname)
1033 {
1034 if (error == ENOBUFS) {
1035 reinit_ports(ofproto);
1036 } else if (!error) {
1037 update_port(ofproto, devname);
1038 free(devname);
1039 }
1040 }
1041
1042 /* Returns a "preference level" for snooping 'ofconn'. A higher return value
1043 * means that 'ofconn' is more interesting for monitoring than a lower return
1044 * value. */
1045 static int
1046 snoop_preference(const struct ofconn *ofconn)
1047 {
1048 switch (ofconn->role) {
1049 case NX_ROLE_MASTER:
1050 return 3;
1051 case NX_ROLE_OTHER:
1052 return 2;
1053 case NX_ROLE_SLAVE:
1054 return 1;
1055 default:
1056 /* Shouldn't happen. */
1057 return 0;
1058 }
1059 }
1060
1061 /* One of ofproto's "snoop" pvconns has accepted a new connection on 'vconn'.
1062 * Connects this vconn to a controller. */
1063 static void
1064 add_snooper(struct ofproto *ofproto, struct vconn *vconn)
1065 {
1066 struct ofconn *ofconn, *best;
1067
1068 /* Pick a controller for monitoring. */
1069 best = NULL;
1070 LIST_FOR_EACH (ofconn, node, &ofproto->all_conns) {
1071 if (ofconn->type == OFCONN_PRIMARY
1072 && (!best || snoop_preference(ofconn) > snoop_preference(best))) {
1073 best = ofconn;
1074 }
1075 }
1076
1077 if (best) {
1078 rconn_add_monitor(best->rconn, vconn);
1079 } else {
1080 VLOG_INFO_RL(&rl, "no controller connection to snoop");
1081 vconn_close(vconn);
1082 }
1083 }
1084
1085 int
1086 ofproto_run1(struct ofproto *p)
1087 {
1088 struct ofconn *ofconn, *next_ofconn;
1089 struct ofservice *ofservice;
1090 char *devname;
1091 int error;
1092 int i;
1093
1094 if (shash_is_empty(&p->port_by_name)) {
1095 init_ports(p);
1096 }
1097
1098 for (i = 0; i < 50; i++) {
1099 struct ofpbuf *buf;
1100
1101 error = dpif_recv(p->dpif, &buf);
1102 if (error) {
1103 if (error == ENODEV) {
1104 /* Someone destroyed the datapath behind our back. The caller
1105 * better destroy us and give up, because we're just going to
1106 * spin from here on out. */
1107 static struct vlog_rate_limit rl2 = VLOG_RATE_LIMIT_INIT(1, 5);
1108 VLOG_ERR_RL(&rl2, "%s: datapath was destroyed externally",
1109 dpif_name(p->dpif));
1110 return ENODEV;
1111 }
1112 break;
1113 }
1114
1115 handle_odp_msg(p, buf);
1116 }
1117
1118 while ((error = dpif_port_poll(p->dpif, &devname)) != EAGAIN) {
1119 process_port_change(p, error, devname);
1120 }
1121 while ((error = netdev_monitor_poll(p->netdev_monitor,
1122 &devname)) != EAGAIN) {
1123 process_port_change(p, error, devname);
1124 }
1125
1126 if (p->in_band) {
1127 if (time_msec() >= p->next_in_band_update) {
1128 update_in_band_remotes(p);
1129 }
1130 in_band_run(p->in_band);
1131 }
1132
1133 LIST_FOR_EACH_SAFE (ofconn, next_ofconn, node, &p->all_conns) {
1134 ofconn_run(ofconn);
1135 }
1136
1137 /* Fail-open maintenance. Do this after processing the ofconns since
1138 * fail-open checks the status of the controller rconn. */
1139 if (p->fail_open) {
1140 fail_open_run(p->fail_open);
1141 }
1142
1143 HMAP_FOR_EACH (ofservice, node, &p->services) {
1144 struct vconn *vconn;
1145 int retval;
1146
1147 retval = pvconn_accept(ofservice->pvconn, OFP_VERSION, &vconn);
1148 if (!retval) {
1149 struct rconn *rconn;
1150 char *name;
1151
1152 rconn = rconn_create(ofservice->probe_interval, 0);
1153 name = ofconn_make_name(p, vconn_get_name(vconn));
1154 rconn_connect_unreliably(rconn, vconn, name);
1155 free(name);
1156
1157 ofconn = ofconn_create(p, rconn, OFCONN_SERVICE);
1158 ofconn_set_rate_limit(ofconn, ofservice->rate_limit,
1159 ofservice->burst_limit);
1160 } else if (retval != EAGAIN) {
1161 VLOG_WARN_RL(&rl, "accept failed (%s)", strerror(retval));
1162 }
1163 }
1164
1165 for (i = 0; i < p->n_snoops; i++) {
1166 struct vconn *vconn;
1167 int retval;
1168
1169 retval = pvconn_accept(p->snoops[i], OFP_VERSION, &vconn);
1170 if (!retval) {
1171 add_snooper(p, vconn);
1172 } else if (retval != EAGAIN) {
1173 VLOG_WARN_RL(&rl, "accept failed (%s)", strerror(retval));
1174 }
1175 }
1176
1177 if (time_msec() >= p->next_expiration) {
1178 int delay = ofproto_expire(p);
1179 p->next_expiration = time_msec() + delay;
1180 COVERAGE_INC(ofproto_expiration);
1181 }
1182
1183 if (p->netflow) {
1184 netflow_run(p->netflow);
1185 }
1186 if (p->sflow) {
1187 ofproto_sflow_run(p->sflow);
1188 }
1189
1190 return 0;
1191 }
1192
1193 int
1194 ofproto_run2(struct ofproto *p, bool revalidate_all)
1195 {
1196 /* Figure out what we need to revalidate now, if anything. */
1197 struct tag_set revalidate_set = p->revalidate_set;
1198 if (p->need_revalidate) {
1199 revalidate_all = true;
1200 }
1201
1202 /* Clear the revalidation flags. */
1203 tag_set_init(&p->revalidate_set);
1204 p->need_revalidate = false;
1205
1206 /* Now revalidate if there's anything to do. */
1207 if (revalidate_all || !tag_set_is_empty(&revalidate_set)) {
1208 struct facet *facet, *next;
1209
1210 HMAP_FOR_EACH_SAFE (facet, next, hmap_node, &p->facets) {
1211 if (revalidate_all
1212 || tag_set_intersects(&revalidate_set, facet->tags)) {
1213 facet_revalidate(p, facet);
1214 }
1215 }
1216 }
1217
1218 return 0;
1219 }
1220
1221 void
1222 ofproto_wait(struct ofproto *p)
1223 {
1224 struct ofservice *ofservice;
1225 struct ofconn *ofconn;
1226 size_t i;
1227
1228 dpif_recv_wait(p->dpif);
1229 dpif_port_poll_wait(p->dpif);
1230 netdev_monitor_poll_wait(p->netdev_monitor);
1231 LIST_FOR_EACH (ofconn, node, &p->all_conns) {
1232 ofconn_wait(ofconn);
1233 }
1234 if (p->in_band) {
1235 poll_timer_wait_until(p->next_in_band_update);
1236 in_band_wait(p->in_band);
1237 }
1238 if (p->fail_open) {
1239 fail_open_wait(p->fail_open);
1240 }
1241 if (p->sflow) {
1242 ofproto_sflow_wait(p->sflow);
1243 }
1244 if (!tag_set_is_empty(&p->revalidate_set)) {
1245 poll_immediate_wake();
1246 }
1247 if (p->need_revalidate) {
1248 /* Shouldn't happen, but if it does just go around again. */
1249 VLOG_DBG_RL(&rl, "need revalidate in ofproto_wait_cb()");
1250 poll_immediate_wake();
1251 } else if (p->next_expiration != LLONG_MAX) {
1252 poll_timer_wait_until(p->next_expiration);
1253 }
1254 HMAP_FOR_EACH (ofservice, node, &p->services) {
1255 pvconn_wait(ofservice->pvconn);
1256 }
1257 for (i = 0; i < p->n_snoops; i++) {
1258 pvconn_wait(p->snoops[i]);
1259 }
1260 }
1261
1262 void
1263 ofproto_revalidate(struct ofproto *ofproto, tag_type tag)
1264 {
1265 tag_set_add(&ofproto->revalidate_set, tag);
1266 }
1267
1268 struct tag_set *
1269 ofproto_get_revalidate_set(struct ofproto *ofproto)
1270 {
1271 return &ofproto->revalidate_set;
1272 }
1273
1274 bool
1275 ofproto_is_alive(const struct ofproto *p)
1276 {
1277 return !hmap_is_empty(&p->controllers);
1278 }
1279
1280 /* Deletes port number 'odp_port' from the datapath for 'ofproto'.
1281 *
1282 * This is almost the same as calling dpif_port_del() directly on the
1283 * datapath, but it also makes 'ofproto' close its open netdev for the port
1284 * (if any). This makes it possible to create a new netdev of a different
1285 * type under the same name, which otherwise the netdev library would refuse
1286 * to do because of the conflict. (The netdev would eventually get closed on
1287 * the next trip through ofproto_run(), but this interface is more direct.)
1288 *
1289 * Returns 0 if successful, otherwise a positive errno. */
1290 int
1291 ofproto_port_del(struct ofproto *ofproto, uint16_t odp_port)
1292 {
1293 struct ofport *ofport = get_port(ofproto, odp_port);
1294 const char *name = ofport ? (char *) ofport->opp.name : "<unknown>";
1295 int error;
1296
1297 error = dpif_port_del(ofproto->dpif, odp_port);
1298 if (error) {
1299 VLOG_ERR("%s: failed to remove port %"PRIu16" (%s) interface (%s)",
1300 dpif_name(ofproto->dpif), odp_port, name, strerror(error));
1301 } else if (ofport) {
1302 /* 'name' is ofport->opp.name and update_port() is going to destroy
1303 * 'ofport'. Just in case update_port() refers to 'name' after it
1304 * destroys 'ofport', make a copy of it around the update_port()
1305 * call. */
1306 char *devname = xstrdup(name);
1307 update_port(ofproto, devname);
1308 free(devname);
1309 }
1310 return error;
1311 }
1312
1313 /* Checks if 'ofproto' thinks 'odp_port' should be included in floods. Returns
1314 * true if 'odp_port' exists and should be included, false otherwise. */
1315 bool
1316 ofproto_port_is_floodable(struct ofproto *ofproto, uint16_t odp_port)
1317 {
1318 struct ofport *ofport = get_port(ofproto, odp_port);
1319 return ofport && !(ofport->opp.config & OFPPC_NO_FLOOD);
1320 }
1321
1322 int
1323 ofproto_send_packet(struct ofproto *p, const struct flow *flow,
1324 const union ofp_action *actions, size_t n_actions,
1325 const struct ofpbuf *packet)
1326 {
1327 struct odp_actions odp_actions;
1328 int error;
1329
1330 error = xlate_actions(actions, n_actions, flow, p, packet, &odp_actions,
1331 NULL, NULL, NULL);
1332 if (error) {
1333 return error;
1334 }
1335
1336 /* XXX Should we translate the dpif_execute() errno value into an OpenFlow
1337 * error code? */
1338 dpif_execute(p->dpif, odp_actions.actions, odp_actions.n_actions, packet);
1339 return 0;
1340 }
1341
1342 /* Adds a flow to the OpenFlow flow table in 'p' that matches 'cls_rule' and
1343 * performs the 'n_actions' actions in 'actions'. The new flow will not
1344 * timeout.
1345 *
1346 * If cls_rule->priority is in the range of priorities supported by OpenFlow
1347 * (0...65535, inclusive) then the flow will be visible to OpenFlow
1348 * controllers; otherwise, it will be hidden.
1349 *
1350 * The caller retains ownership of 'cls_rule' and 'actions'. */
1351 void
1352 ofproto_add_flow(struct ofproto *p, const struct cls_rule *cls_rule,
1353 const union ofp_action *actions, size_t n_actions)
1354 {
1355 struct rule *rule;
1356 rule = rule_create(cls_rule, actions, n_actions, 0, 0, 0, false);
1357 rule_insert(p, rule);
1358 }
1359
1360 void
1361 ofproto_delete_flow(struct ofproto *ofproto, const struct cls_rule *target)
1362 {
1363 struct rule *rule;
1364
1365 rule = rule_from_cls_rule(classifier_find_rule_exactly(&ofproto->cls,
1366 target));
1367 if (rule) {
1368 rule_remove(ofproto, rule);
1369 }
1370 }
1371
1372 void
1373 ofproto_flush_flows(struct ofproto *ofproto)
1374 {
1375 struct facet *facet, *next_facet;
1376 struct rule *rule, *next_rule;
1377 struct cls_cursor cursor;
1378
1379 COVERAGE_INC(ofproto_flush);
1380
1381 HMAP_FOR_EACH_SAFE (facet, next_facet, hmap_node, &ofproto->facets) {
1382 /* Mark the facet as not installed so that facet_remove() doesn't
1383 * bother trying to uninstall it. There is no point in uninstalling it
1384 * individually since we are about to blow away all the facets with
1385 * dpif_flow_flush(). */
1386 facet->installed = false;
1387 facet_remove(ofproto, facet);
1388 }
1389
1390 cls_cursor_init(&cursor, &ofproto->cls, NULL);
1391 CLS_CURSOR_FOR_EACH_SAFE (rule, next_rule, cr, &cursor) {
1392 rule_remove(ofproto, rule);
1393 }
1394
1395 dpif_flow_flush(ofproto->dpif);
1396 if (ofproto->in_band) {
1397 in_band_flushed(ofproto->in_band);
1398 }
1399 if (ofproto->fail_open) {
1400 fail_open_flushed(ofproto->fail_open);
1401 }
1402 }
1403 \f
1404 static void
1405 reinit_ports(struct ofproto *p)
1406 {
1407 struct svec devnames;
1408 struct ofport *ofport;
1409 struct odp_port *odp_ports;
1410 size_t n_odp_ports;
1411 size_t i;
1412
1413 COVERAGE_INC(ofproto_reinit_ports);
1414
1415 svec_init(&devnames);
1416 HMAP_FOR_EACH (ofport, hmap_node, &p->ports) {
1417 svec_add (&devnames, (char *) ofport->opp.name);
1418 }
1419 dpif_port_list(p->dpif, &odp_ports, &n_odp_ports);
1420 for (i = 0; i < n_odp_ports; i++) {
1421 svec_add (&devnames, odp_ports[i].devname);
1422 }
1423 free(odp_ports);
1424
1425 svec_sort_unique(&devnames);
1426 for (i = 0; i < devnames.n; i++) {
1427 update_port(p, devnames.names[i]);
1428 }
1429 svec_destroy(&devnames);
1430 }
1431
1432 static struct ofport *
1433 make_ofport(const struct odp_port *odp_port)
1434 {
1435 struct netdev_options netdev_options;
1436 enum netdev_flags flags;
1437 struct ofport *ofport;
1438 struct netdev *netdev;
1439 int error;
1440
1441 memset(&netdev_options, 0, sizeof netdev_options);
1442 netdev_options.name = odp_port->devname;
1443 netdev_options.ethertype = NETDEV_ETH_TYPE_NONE;
1444
1445 error = netdev_open(&netdev_options, &netdev);
1446 if (error) {
1447 VLOG_WARN_RL(&rl, "ignoring port %s (%"PRIu16") because netdev %s "
1448 "cannot be opened (%s)",
1449 odp_port->devname, odp_port->port,
1450 odp_port->devname, strerror(error));
1451 return NULL;
1452 }
1453
1454 ofport = xmalloc(sizeof *ofport);
1455 ofport->netdev = netdev;
1456 ofport->odp_port = odp_port->port;
1457 ofport->opp.port_no = odp_port_to_ofp_port(odp_port->port);
1458 netdev_get_etheraddr(netdev, ofport->opp.hw_addr);
1459 memcpy(ofport->opp.name, odp_port->devname,
1460 MIN(sizeof ofport->opp.name, sizeof odp_port->devname));
1461 ofport->opp.name[sizeof ofport->opp.name - 1] = '\0';
1462
1463 netdev_get_flags(netdev, &flags);
1464 ofport->opp.config = flags & NETDEV_UP ? 0 : OFPPC_PORT_DOWN;
1465
1466 ofport->opp.state = netdev_get_carrier(netdev) ? 0 : OFPPS_LINK_DOWN;
1467
1468 netdev_get_features(netdev,
1469 &ofport->opp.curr, &ofport->opp.advertised,
1470 &ofport->opp.supported, &ofport->opp.peer);
1471 return ofport;
1472 }
1473
1474 static bool
1475 ofport_conflicts(const struct ofproto *p, const struct odp_port *odp_port)
1476 {
1477 if (get_port(p, odp_port->port)) {
1478 VLOG_WARN_RL(&rl, "ignoring duplicate port %"PRIu16" in datapath",
1479 odp_port->port);
1480 return true;
1481 } else if (shash_find(&p->port_by_name, odp_port->devname)) {
1482 VLOG_WARN_RL(&rl, "ignoring duplicate device %s in datapath",
1483 odp_port->devname);
1484 return true;
1485 } else {
1486 return false;
1487 }
1488 }
1489
1490 static int
1491 ofport_equal(const struct ofport *a_, const struct ofport *b_)
1492 {
1493 const struct ofp_phy_port *a = &a_->opp;
1494 const struct ofp_phy_port *b = &b_->opp;
1495
1496 BUILD_ASSERT_DECL(sizeof *a == 48); /* Detect ofp_phy_port changes. */
1497 return (a->port_no == b->port_no
1498 && !memcmp(a->hw_addr, b->hw_addr, sizeof a->hw_addr)
1499 && !strcmp((char *) a->name, (char *) b->name)
1500 && a->state == b->state
1501 && a->config == b->config
1502 && a->curr == b->curr
1503 && a->advertised == b->advertised
1504 && a->supported == b->supported
1505 && a->peer == b->peer);
1506 }
1507
1508 static void
1509 send_port_status(struct ofproto *p, const struct ofport *ofport,
1510 uint8_t reason)
1511 {
1512 /* XXX Should limit the number of queued port status change messages. */
1513 struct ofconn *ofconn;
1514 LIST_FOR_EACH (ofconn, node, &p->all_conns) {
1515 struct ofp_port_status *ops;
1516 struct ofpbuf *b;
1517
1518 /* Primary controllers, even slaves, should always get port status
1519 updates. Otherwise obey ofconn_receives_async_msgs(). */
1520 if (ofconn->type != OFCONN_PRIMARY
1521 && !ofconn_receives_async_msgs(ofconn)) {
1522 continue;
1523 }
1524
1525 ops = make_openflow_xid(sizeof *ops, OFPT_PORT_STATUS, 0, &b);
1526 ops->reason = reason;
1527 ops->desc = ofport->opp;
1528 hton_ofp_phy_port(&ops->desc);
1529 queue_tx(b, ofconn, NULL);
1530 }
1531 }
1532
1533 static void
1534 ofport_install(struct ofproto *p, struct ofport *ofport)
1535 {
1536 const char *netdev_name = (const char *) ofport->opp.name;
1537
1538 netdev_monitor_add(p->netdev_monitor, ofport->netdev);
1539 hmap_insert(&p->ports, &ofport->hmap_node, hash_int(ofport->odp_port, 0));
1540 shash_add(&p->port_by_name, netdev_name, ofport);
1541 if (p->sflow) {
1542 ofproto_sflow_add_port(p->sflow, ofport->odp_port, netdev_name);
1543 }
1544 }
1545
1546 static void
1547 ofport_remove(struct ofproto *p, struct ofport *ofport)
1548 {
1549 netdev_monitor_remove(p->netdev_monitor, ofport->netdev);
1550 hmap_remove(&p->ports, &ofport->hmap_node);
1551 shash_delete(&p->port_by_name,
1552 shash_find(&p->port_by_name, (char *) ofport->opp.name));
1553 if (p->sflow) {
1554 ofproto_sflow_del_port(p->sflow, ofport->odp_port);
1555 }
1556 }
1557
1558 static void
1559 ofport_free(struct ofport *ofport)
1560 {
1561 if (ofport) {
1562 netdev_close(ofport->netdev);
1563 free(ofport);
1564 }
1565 }
1566
1567 static struct ofport *
1568 get_port(const struct ofproto *ofproto, uint16_t odp_port)
1569 {
1570 struct ofport *port;
1571
1572 HMAP_FOR_EACH_IN_BUCKET (port, hmap_node,
1573 hash_int(odp_port, 0), &ofproto->ports) {
1574 if (port->odp_port == odp_port) {
1575 return port;
1576 }
1577 }
1578 return NULL;
1579 }
1580
1581 static void
1582 update_port(struct ofproto *p, const char *devname)
1583 {
1584 struct odp_port odp_port;
1585 struct ofport *old_ofport;
1586 struct ofport *new_ofport;
1587 int error;
1588
1589 COVERAGE_INC(ofproto_update_port);
1590
1591 /* Query the datapath for port information. */
1592 error = dpif_port_query_by_name(p->dpif, devname, &odp_port);
1593
1594 /* Find the old ofport. */
1595 old_ofport = shash_find_data(&p->port_by_name, devname);
1596 if (!error) {
1597 if (!old_ofport) {
1598 /* There's no port named 'devname' but there might be a port with
1599 * the same port number. This could happen if a port is deleted
1600 * and then a new one added in its place very quickly, or if a port
1601 * is renamed. In the former case we want to send an OFPPR_DELETE
1602 * and an OFPPR_ADD, and in the latter case we want to send a
1603 * single OFPPR_MODIFY. We can distinguish the cases by comparing
1604 * the old port's ifindex against the new port, or perhaps less
1605 * reliably but more portably by comparing the old port's MAC
1606 * against the new port's MAC. However, this code isn't that smart
1607 * and always sends an OFPPR_MODIFY (XXX). */
1608 old_ofport = get_port(p, odp_port.port);
1609 }
1610 } else if (error != ENOENT && error != ENODEV) {
1611 VLOG_WARN_RL(&rl, "dpif_port_query_by_name returned unexpected error "
1612 "%s", strerror(error));
1613 return;
1614 }
1615
1616 /* Create a new ofport. */
1617 new_ofport = !error ? make_ofport(&odp_port) : NULL;
1618
1619 /* Eliminate a few pathological cases. */
1620 if (!old_ofport && !new_ofport) {
1621 return;
1622 } else if (old_ofport && new_ofport) {
1623 /* Most of the 'config' bits are OpenFlow soft state, but
1624 * OFPPC_PORT_DOWN is maintained by the kernel. So transfer the
1625 * OpenFlow bits from old_ofport. (make_ofport() only sets
1626 * OFPPC_PORT_DOWN and leaves the other bits 0.) */
1627 new_ofport->opp.config |= old_ofport->opp.config & ~OFPPC_PORT_DOWN;
1628
1629 if (ofport_equal(old_ofport, new_ofport)) {
1630 /* False alarm--no change. */
1631 ofport_free(new_ofport);
1632 return;
1633 }
1634 }
1635
1636 /* Now deal with the normal cases. */
1637 if (old_ofport) {
1638 ofport_remove(p, old_ofport);
1639 }
1640 if (new_ofport) {
1641 ofport_install(p, new_ofport);
1642 }
1643 send_port_status(p, new_ofport ? new_ofport : old_ofport,
1644 (!old_ofport ? OFPPR_ADD
1645 : !new_ofport ? OFPPR_DELETE
1646 : OFPPR_MODIFY));
1647 ofport_free(old_ofport);
1648 }
1649
1650 static int
1651 init_ports(struct ofproto *p)
1652 {
1653 struct odp_port *ports;
1654 size_t n_ports;
1655 size_t i;
1656 int error;
1657
1658 error = dpif_port_list(p->dpif, &ports, &n_ports);
1659 if (error) {
1660 return error;
1661 }
1662
1663 for (i = 0; i < n_ports; i++) {
1664 const struct odp_port *odp_port = &ports[i];
1665 if (!ofport_conflicts(p, odp_port)) {
1666 struct ofport *ofport = make_ofport(odp_port);
1667 if (ofport) {
1668 ofport_install(p, ofport);
1669 }
1670 }
1671 }
1672 free(ports);
1673 return 0;
1674 }
1675 \f
1676 static struct ofconn *
1677 ofconn_create(struct ofproto *p, struct rconn *rconn, enum ofconn_type type)
1678 {
1679 struct ofconn *ofconn = xzalloc(sizeof *ofconn);
1680 ofconn->ofproto = p;
1681 list_push_back(&p->all_conns, &ofconn->node);
1682 ofconn->rconn = rconn;
1683 ofconn->type = type;
1684 ofconn->flow_format = NXFF_OPENFLOW10;
1685 ofconn->role = NX_ROLE_OTHER;
1686 ofconn->packet_in_counter = rconn_packet_counter_create ();
1687 ofconn->pktbuf = NULL;
1688 ofconn->miss_send_len = 0;
1689 ofconn->reply_counter = rconn_packet_counter_create ();
1690 return ofconn;
1691 }
1692
1693 static void
1694 ofconn_destroy(struct ofconn *ofconn)
1695 {
1696 if (ofconn->type == OFCONN_PRIMARY) {
1697 hmap_remove(&ofconn->ofproto->controllers, &ofconn->hmap_node);
1698 }
1699 discovery_destroy(ofconn->discovery);
1700
1701 list_remove(&ofconn->node);
1702 switch_status_unregister(ofconn->ss);
1703 rconn_destroy(ofconn->rconn);
1704 rconn_packet_counter_destroy(ofconn->packet_in_counter);
1705 rconn_packet_counter_destroy(ofconn->reply_counter);
1706 pktbuf_destroy(ofconn->pktbuf);
1707 free(ofconn);
1708 }
1709
1710 static void
1711 ofconn_run(struct ofconn *ofconn)
1712 {
1713 struct ofproto *p = ofconn->ofproto;
1714 int iteration;
1715 size_t i;
1716
1717 if (ofconn->discovery) {
1718 char *controller_name;
1719 if (rconn_is_connectivity_questionable(ofconn->rconn)) {
1720 discovery_question_connectivity(ofconn->discovery);
1721 }
1722 if (discovery_run(ofconn->discovery, &controller_name)) {
1723 if (controller_name) {
1724 char *ofconn_name = ofconn_make_name(p, controller_name);
1725 rconn_connect(ofconn->rconn, controller_name, ofconn_name);
1726 free(ofconn_name);
1727 } else {
1728 rconn_disconnect(ofconn->rconn);
1729 }
1730 }
1731 }
1732
1733 for (i = 0; i < N_SCHEDULERS; i++) {
1734 pinsched_run(ofconn->schedulers[i], do_send_packet_in, ofconn);
1735 }
1736
1737 rconn_run(ofconn->rconn);
1738
1739 if (rconn_packet_counter_read (ofconn->reply_counter) < OFCONN_REPLY_MAX) {
1740 /* Limit the number of iterations to prevent other tasks from
1741 * starving. */
1742 for (iteration = 0; iteration < 50; iteration++) {
1743 struct ofpbuf *of_msg = rconn_recv(ofconn->rconn);
1744 if (!of_msg) {
1745 break;
1746 }
1747 if (p->fail_open) {
1748 fail_open_maybe_recover(p->fail_open);
1749 }
1750 handle_openflow(ofconn, of_msg);
1751 ofpbuf_delete(of_msg);
1752 }
1753 }
1754
1755 if (!ofconn->discovery && !rconn_is_alive(ofconn->rconn)) {
1756 ofconn_destroy(ofconn);
1757 }
1758 }
1759
1760 static void
1761 ofconn_wait(struct ofconn *ofconn)
1762 {
1763 int i;
1764
1765 if (ofconn->discovery) {
1766 discovery_wait(ofconn->discovery);
1767 }
1768 for (i = 0; i < N_SCHEDULERS; i++) {
1769 pinsched_wait(ofconn->schedulers[i]);
1770 }
1771 rconn_run_wait(ofconn->rconn);
1772 if (rconn_packet_counter_read (ofconn->reply_counter) < OFCONN_REPLY_MAX) {
1773 rconn_recv_wait(ofconn->rconn);
1774 } else {
1775 COVERAGE_INC(ofproto_ofconn_stuck);
1776 }
1777 }
1778
1779 /* Returns true if 'ofconn' should receive asynchronous messages. */
1780 static bool
1781 ofconn_receives_async_msgs(const struct ofconn *ofconn)
1782 {
1783 if (ofconn->type == OFCONN_PRIMARY) {
1784 /* Primary controllers always get asynchronous messages unless they
1785 * have configured themselves as "slaves". */
1786 return ofconn->role != NX_ROLE_SLAVE;
1787 } else {
1788 /* Service connections don't get asynchronous messages unless they have
1789 * explicitly asked for them by setting a nonzero miss send length. */
1790 return ofconn->miss_send_len > 0;
1791 }
1792 }
1793
1794 /* Returns a human-readable name for an OpenFlow connection between 'ofproto'
1795 * and 'target', suitable for use in log messages for identifying the
1796 * connection.
1797 *
1798 * The name is dynamically allocated. The caller should free it (with free())
1799 * when it is no longer needed. */
1800 static char *
1801 ofconn_make_name(const struct ofproto *ofproto, const char *target)
1802 {
1803 return xasprintf("%s<->%s", dpif_base_name(ofproto->dpif), target);
1804 }
1805
1806 static void
1807 ofconn_set_rate_limit(struct ofconn *ofconn, int rate, int burst)
1808 {
1809 int i;
1810
1811 for (i = 0; i < N_SCHEDULERS; i++) {
1812 struct pinsched **s = &ofconn->schedulers[i];
1813
1814 if (rate > 0) {
1815 if (!*s) {
1816 *s = pinsched_create(rate, burst,
1817 ofconn->ofproto->switch_status);
1818 } else {
1819 pinsched_set_limits(*s, rate, burst);
1820 }
1821 } else {
1822 pinsched_destroy(*s);
1823 *s = NULL;
1824 }
1825 }
1826 }
1827 \f
1828 static void
1829 ofservice_reconfigure(struct ofservice *ofservice,
1830 const struct ofproto_controller *c)
1831 {
1832 ofservice->probe_interval = c->probe_interval;
1833 ofservice->rate_limit = c->rate_limit;
1834 ofservice->burst_limit = c->burst_limit;
1835 }
1836
1837 /* Creates a new ofservice in 'ofproto'. Returns 0 if successful, otherwise a
1838 * positive errno value. */
1839 static int
1840 ofservice_create(struct ofproto *ofproto, const struct ofproto_controller *c)
1841 {
1842 struct ofservice *ofservice;
1843 struct pvconn *pvconn;
1844 int error;
1845
1846 error = pvconn_open(c->target, &pvconn);
1847 if (error) {
1848 return error;
1849 }
1850
1851 ofservice = xzalloc(sizeof *ofservice);
1852 hmap_insert(&ofproto->services, &ofservice->node,
1853 hash_string(c->target, 0));
1854 ofservice->pvconn = pvconn;
1855
1856 ofservice_reconfigure(ofservice, c);
1857
1858 return 0;
1859 }
1860
1861 static void
1862 ofservice_destroy(struct ofproto *ofproto, struct ofservice *ofservice)
1863 {
1864 hmap_remove(&ofproto->services, &ofservice->node);
1865 pvconn_close(ofservice->pvconn);
1866 free(ofservice);
1867 }
1868
1869 /* Finds and returns the ofservice within 'ofproto' that has the given
1870 * 'target', or a null pointer if none exists. */
1871 static struct ofservice *
1872 ofservice_lookup(struct ofproto *ofproto, const char *target)
1873 {
1874 struct ofservice *ofservice;
1875
1876 HMAP_FOR_EACH_WITH_HASH (ofservice, node, hash_string(target, 0),
1877 &ofproto->services) {
1878 if (!strcmp(pvconn_get_name(ofservice->pvconn), target)) {
1879 return ofservice;
1880 }
1881 }
1882 return NULL;
1883 }
1884 \f
1885 /* Returns true if 'rule' should be hidden from the controller.
1886 *
1887 * Rules with priority higher than UINT16_MAX are set up by ofproto itself
1888 * (e.g. by in-band control) and are intentionally hidden from the
1889 * controller. */
1890 static bool
1891 rule_is_hidden(const struct rule *rule)
1892 {
1893 return rule->cr.priority > UINT16_MAX;
1894 }
1895
1896 /* Creates and returns a new rule initialized as specified.
1897 *
1898 * The caller is responsible for inserting the rule into the classifier (with
1899 * rule_insert()). */
1900 static struct rule *
1901 rule_create(const struct cls_rule *cls_rule,
1902 const union ofp_action *actions, size_t n_actions,
1903 uint16_t idle_timeout, uint16_t hard_timeout,
1904 ovs_be64 flow_cookie, bool send_flow_removed)
1905 {
1906 struct rule *rule = xzalloc(sizeof *rule);
1907 rule->cr = *cls_rule;
1908 rule->idle_timeout = idle_timeout;
1909 rule->hard_timeout = hard_timeout;
1910 rule->flow_cookie = flow_cookie;
1911 rule->used = rule->created = time_msec();
1912 rule->send_flow_removed = send_flow_removed;
1913 list_init(&rule->facets);
1914 if (n_actions > 0) {
1915 rule->n_actions = n_actions;
1916 rule->actions = xmemdup(actions, n_actions * sizeof *actions);
1917 }
1918
1919 return rule;
1920 }
1921
1922 static struct rule *
1923 rule_from_cls_rule(const struct cls_rule *cls_rule)
1924 {
1925 return cls_rule ? CONTAINER_OF(cls_rule, struct rule, cr) : NULL;
1926 }
1927
1928 static void
1929 rule_free(struct rule *rule)
1930 {
1931 free(rule->actions);
1932 free(rule);
1933 }
1934
1935 /* Destroys 'rule' and iterates through all of its facets and revalidates them,
1936 * destroying any that no longer has a rule (which is probably all of them).
1937 *
1938 * The caller must have already removed 'rule' from the classifier. */
1939 static void
1940 rule_destroy(struct ofproto *ofproto, struct rule *rule)
1941 {
1942 struct facet *facet, *next_facet;
1943 LIST_FOR_EACH_SAFE (facet, next_facet, list_node, &rule->facets) {
1944 facet_revalidate(ofproto, facet);
1945 }
1946 rule_free(rule);
1947 }
1948
1949 /* Returns true if 'rule' has an OpenFlow OFPAT_OUTPUT or OFPAT_ENQUEUE action
1950 * that outputs to 'out_port' (output to OFPP_FLOOD and OFPP_ALL doesn't
1951 * count). */
1952 static bool
1953 rule_has_out_port(const struct rule *rule, ovs_be16 out_port)
1954 {
1955 const union ofp_action *oa;
1956 struct actions_iterator i;
1957
1958 if (out_port == htons(OFPP_NONE)) {
1959 return true;
1960 }
1961 for (oa = actions_first(&i, rule->actions, rule->n_actions); oa;
1962 oa = actions_next(&i)) {
1963 if (action_outputs_to_port(oa, out_port)) {
1964 return true;
1965 }
1966 }
1967 return false;
1968 }
1969
1970 /* Executes, within 'ofproto', the 'n_actions' actions in 'actions' on
1971 * 'packet', which arrived on 'in_port'.
1972 *
1973 * Takes ownership of 'packet'. */
1974 static bool
1975 execute_odp_actions(struct ofproto *ofproto, uint16_t in_port,
1976 const union odp_action *actions, size_t n_actions,
1977 struct ofpbuf *packet)
1978 {
1979 if (n_actions == 1 && actions[0].type == ODPAT_CONTROLLER) {
1980 /* As an optimization, avoid a round-trip from userspace to kernel to
1981 * userspace. This also avoids possibly filling up kernel packet
1982 * buffers along the way. */
1983 struct odp_msg *msg;
1984
1985 msg = ofpbuf_push_uninit(packet, sizeof *msg);
1986 msg->type = _ODPL_ACTION_NR;
1987 msg->length = sizeof(struct odp_msg) + packet->size;
1988 msg->port = in_port;
1989 msg->reserved = 0;
1990 msg->arg = actions[0].controller.arg;
1991
1992 send_packet_in(ofproto, packet);
1993
1994 return true;
1995 } else {
1996 int error;
1997
1998 error = dpif_execute(ofproto->dpif, actions, n_actions, packet);
1999 ofpbuf_delete(packet);
2000 return !error;
2001 }
2002 }
2003
2004 /* Executes the actions indicated by 'facet' on 'packet' and credits 'facet''s
2005 * statistics appropriately. 'packet' must have at least sizeof(struct
2006 * ofp_packet_in) bytes of headroom.
2007 *
2008 * For correct results, 'packet' must actually be in 'facet''s flow; that is,
2009 * applying flow_extract() to 'packet' would yield the same flow as
2010 * 'facet->flow'.
2011 *
2012 * 'facet' must have accurately composed ODP actions; that is, it must not be
2013 * in need of revalidation.
2014 *
2015 * Takes ownership of 'packet'. */
2016 static void
2017 facet_execute(struct ofproto *ofproto, struct facet *facet,
2018 struct ofpbuf *packet)
2019 {
2020 struct odp_flow_stats stats;
2021
2022 assert(ofpbuf_headroom(packet) >= sizeof(struct ofp_packet_in));
2023
2024 flow_extract_stats(&facet->flow, packet, &stats);
2025 if (execute_odp_actions(ofproto, facet->flow.in_port,
2026 facet->actions, facet->n_actions, packet)) {
2027 facet_update_stats(ofproto, facet, &stats);
2028 facet->used = time_msec();
2029 netflow_flow_update_time(ofproto->netflow,
2030 &facet->nf_flow, facet->used);
2031 }
2032 }
2033
2034 /* Executes the actions indicated by 'rule' on 'packet' and credits 'rule''s
2035 * statistics (or the statistics for one of its facets) appropriately.
2036 * 'packet' must have at least sizeof(struct ofp_packet_in) bytes of headroom.
2037 *
2038 * 'packet' doesn't necessarily have to match 'rule'. 'rule' will be credited
2039 * with statistics for 'packet' either way.
2040 *
2041 * Takes ownership of 'packet'. */
2042 static void
2043 rule_execute(struct ofproto *ofproto, struct rule *rule, uint16_t in_port,
2044 struct ofpbuf *packet)
2045 {
2046 struct facet *facet;
2047 struct odp_actions a;
2048 struct flow flow;
2049 size_t size;
2050
2051 assert(ofpbuf_headroom(packet) >= sizeof(struct ofp_packet_in));
2052
2053 flow_extract(packet, 0, in_port, &flow);
2054
2055 /* First look for a related facet. If we find one, account it to that. */
2056 facet = facet_lookup_valid(ofproto, &flow);
2057 if (facet && facet->rule == rule) {
2058 facet_execute(ofproto, facet, packet);
2059 return;
2060 }
2061
2062 /* Otherwise, if 'rule' is in fact the correct rule for 'packet', then
2063 * create a new facet for it and use that. */
2064 if (rule_lookup(ofproto, &flow) == rule) {
2065 facet = facet_create(ofproto, rule, &flow, packet);
2066 facet_execute(ofproto, facet, packet);
2067 facet_install(ofproto, facet, true);
2068 return;
2069 }
2070
2071 /* We can't account anything to a facet. If we were to try, then that
2072 * facet would have a non-matching rule, busting our invariants. */
2073 if (xlate_actions(rule->actions, rule->n_actions, &flow, ofproto,
2074 packet, &a, NULL, 0, NULL)) {
2075 ofpbuf_delete(packet);
2076 return;
2077 }
2078 size = packet->size;
2079 if (execute_odp_actions(ofproto, in_port,
2080 a.actions, a.n_actions, packet)) {
2081 rule->used = time_msec();
2082 rule->packet_count++;
2083 rule->byte_count += size;
2084 }
2085 }
2086
2087 /* Inserts 'rule' into 'p''s flow table. */
2088 static void
2089 rule_insert(struct ofproto *p, struct rule *rule)
2090 {
2091 struct rule *displaced_rule;
2092
2093 displaced_rule = rule_from_cls_rule(classifier_insert(&p->cls, &rule->cr));
2094 if (displaced_rule) {
2095 rule_destroy(p, displaced_rule);
2096 }
2097 p->need_revalidate = true;
2098 }
2099
2100 /* Creates and returns a new facet within 'ofproto' owned by 'rule', given a
2101 * 'flow' and an example 'packet' within that flow.
2102 *
2103 * The caller must already have determined that no facet with an identical
2104 * 'flow' exists in 'ofproto' and that 'flow' is the best match for 'rule' in
2105 * 'ofproto''s classifier table. */
2106 static struct facet *
2107 facet_create(struct ofproto *ofproto, struct rule *rule,
2108 const struct flow *flow, const struct ofpbuf *packet)
2109 {
2110 struct facet *facet;
2111
2112 facet = xzalloc(sizeof *facet);
2113 facet->used = time_msec();
2114 hmap_insert(&ofproto->facets, &facet->hmap_node, flow_hash(flow, 0));
2115 list_push_back(&rule->facets, &facet->list_node);
2116 facet->rule = rule;
2117 facet->flow = *flow;
2118 netflow_flow_init(&facet->nf_flow);
2119 netflow_flow_update_time(ofproto->netflow, &facet->nf_flow, facet->used);
2120
2121 facet_make_actions(ofproto, facet, packet);
2122
2123 return facet;
2124 }
2125
2126 static void
2127 facet_free(struct facet *facet)
2128 {
2129 free(facet->actions);
2130 free(facet);
2131 }
2132
2133 /* Remove 'rule' from 'ofproto' and free up the associated memory:
2134 *
2135 * - Removes 'rule' from the classifier.
2136 *
2137 * - If 'rule' has facets, revalidates them (and possibly uninstalls and
2138 * destroys them), via rule_destroy().
2139 */
2140 static void
2141 rule_remove(struct ofproto *ofproto, struct rule *rule)
2142 {
2143 COVERAGE_INC(ofproto_del_rule);
2144 ofproto->need_revalidate = true;
2145 classifier_remove(&ofproto->cls, &rule->cr);
2146 rule_destroy(ofproto, rule);
2147 }
2148
2149 /* Remove 'facet' from 'ofproto' and free up the associated memory:
2150 *
2151 * - If 'facet' was installed in the datapath, uninstalls it and updates its
2152 * rule's statistics, via facet_uninstall().
2153 *
2154 * - Removes 'facet' from its rule and from ofproto->facets.
2155 */
2156 static void
2157 facet_remove(struct ofproto *ofproto, struct facet *facet)
2158 {
2159 facet_uninstall(ofproto, facet);
2160 facet_flush_stats(ofproto, facet);
2161 hmap_remove(&ofproto->facets, &facet->hmap_node);
2162 list_remove(&facet->list_node);
2163 facet_free(facet);
2164 }
2165
2166 /* Composes the ODP actions for 'facet' based on its rule's actions. */
2167 static void
2168 facet_make_actions(struct ofproto *p, struct facet *facet,
2169 const struct ofpbuf *packet)
2170 {
2171 const struct rule *rule = facet->rule;
2172 struct odp_actions a;
2173 size_t actions_len;
2174
2175 xlate_actions(rule->actions, rule->n_actions, &facet->flow, p,
2176 packet, &a, &facet->tags, &facet->may_install,
2177 &facet->nf_flow.output_iface);
2178
2179 actions_len = a.n_actions * sizeof *a.actions;
2180 if (facet->n_actions != a.n_actions
2181 || memcmp(facet->actions, a.actions, actions_len)) {
2182 free(facet->actions);
2183 facet->n_actions = a.n_actions;
2184 facet->actions = xmemdup(a.actions, actions_len);
2185 }
2186 }
2187
2188 static int
2189 facet_put__(struct ofproto *ofproto, struct facet *facet, int flags,
2190 struct odp_flow_put *put)
2191 {
2192 memset(&put->flow.stats, 0, sizeof put->flow.stats);
2193 odp_flow_key_from_flow(&put->flow.key, &facet->flow);
2194 put->flow.actions = facet->actions;
2195 put->flow.n_actions = facet->n_actions;
2196 put->flow.flags = 0;
2197 put->flags = flags;
2198 return dpif_flow_put(ofproto->dpif, put);
2199 }
2200
2201 /* If 'facet' is installable, inserts or re-inserts it into 'p''s datapath. If
2202 * 'zero_stats' is true, clears any existing statistics from the datapath for
2203 * 'facet'. */
2204 static void
2205 facet_install(struct ofproto *p, struct facet *facet, bool zero_stats)
2206 {
2207 if (facet->may_install) {
2208 struct odp_flow_put put;
2209 int flags;
2210
2211 flags = ODPPF_CREATE | ODPPF_MODIFY;
2212 if (zero_stats) {
2213 flags |= ODPPF_ZERO_STATS;
2214 }
2215 if (!facet_put__(p, facet, flags, &put)) {
2216 facet->installed = true;
2217 }
2218 }
2219 }
2220
2221 /* Ensures that the bytes in 'facet', plus 'extra_bytes', have been passed up
2222 * to the accounting hook function in the ofhooks structure. */
2223 static void
2224 facet_account(struct ofproto *ofproto,
2225 struct facet *facet, uint64_t extra_bytes)
2226 {
2227 uint64_t total_bytes = facet->byte_count + extra_bytes;
2228
2229 if (ofproto->ofhooks->account_flow_cb
2230 && total_bytes > facet->accounted_bytes)
2231 {
2232 ofproto->ofhooks->account_flow_cb(
2233 &facet->flow, facet->tags, facet->actions, facet->n_actions,
2234 total_bytes - facet->accounted_bytes, ofproto->aux);
2235 facet->accounted_bytes = total_bytes;
2236 }
2237 }
2238
2239 /* If 'rule' is installed in the datapath, uninstalls it. */
2240 static void
2241 facet_uninstall(struct ofproto *p, struct facet *facet)
2242 {
2243 if (facet->installed) {
2244 struct odp_flow odp_flow;
2245
2246 odp_flow_key_from_flow(&odp_flow.key, &facet->flow);
2247 odp_flow.actions = NULL;
2248 odp_flow.n_actions = 0;
2249 odp_flow.flags = 0;
2250 if (!dpif_flow_del(p->dpif, &odp_flow)) {
2251 facet_update_stats(p, facet, &odp_flow.stats);
2252 }
2253 facet->installed = false;
2254 }
2255 }
2256
2257 /* Returns true if the only action for 'facet' is to send to the controller.
2258 * (We don't report NetFlow expiration messages for such facets because they
2259 * are just part of the control logic for the network, not real traffic). */
2260 static bool
2261 facet_is_controller_flow(struct facet *facet)
2262 {
2263 return (facet
2264 && facet->rule->n_actions == 1
2265 && action_outputs_to_port(&facet->rule->actions[0],
2266 htons(OFPP_CONTROLLER)));
2267 }
2268
2269 /* Folds all of 'facet''s statistics into its rule. Also updates the
2270 * accounting ofhook and emits a NetFlow expiration if appropriate. */
2271 static void
2272 facet_flush_stats(struct ofproto *ofproto, struct facet *facet)
2273 {
2274 facet_account(ofproto, facet, 0);
2275
2276 if (ofproto->netflow && !facet_is_controller_flow(facet)) {
2277 struct ofexpired expired;
2278 expired.flow = facet->flow;
2279 expired.packet_count = facet->packet_count;
2280 expired.byte_count = facet->byte_count;
2281 expired.used = facet->used;
2282 netflow_expire(ofproto->netflow, &facet->nf_flow, &expired);
2283 }
2284
2285 facet->rule->packet_count += facet->packet_count;
2286 facet->rule->byte_count += facet->byte_count;
2287
2288 /* Reset counters to prevent double counting if 'facet' ever gets
2289 * reinstalled. */
2290 facet->packet_count = 0;
2291 facet->byte_count = 0;
2292 facet->accounted_bytes = 0;
2293
2294 netflow_flow_clear(&facet->nf_flow);
2295 }
2296
2297 /* Searches 'ofproto''s table of facets for one exactly equal to 'flow'.
2298 * Returns it if found, otherwise a null pointer.
2299 *
2300 * The returned facet might need revalidation; use facet_lookup_valid()
2301 * instead if that is important. */
2302 static struct facet *
2303 facet_find(struct ofproto *ofproto, const struct flow *flow)
2304 {
2305 struct facet *facet;
2306
2307 HMAP_FOR_EACH_WITH_HASH (facet, hmap_node, flow_hash(flow, 0),
2308 &ofproto->facets) {
2309 if (flow_equal(flow, &facet->flow)) {
2310 return facet;
2311 }
2312 }
2313
2314 return NULL;
2315 }
2316
2317 /* Searches 'ofproto''s table of facets for one exactly equal to 'flow'.
2318 * Returns it if found, otherwise a null pointer.
2319 *
2320 * The returned facet is guaranteed to be valid. */
2321 static struct facet *
2322 facet_lookup_valid(struct ofproto *ofproto, const struct flow *flow)
2323 {
2324 struct facet *facet = facet_find(ofproto, flow);
2325
2326 /* The facet we found might not be valid, since we could be in need of
2327 * revalidation. If it is not valid, don't return it. */
2328 if (facet
2329 && ofproto->need_revalidate
2330 && !facet_revalidate(ofproto, facet)) {
2331 COVERAGE_INC(ofproto_invalidated);
2332 return NULL;
2333 }
2334
2335 return facet;
2336 }
2337
2338 /* Re-searches 'ofproto''s classifier for a rule matching 'facet':
2339 *
2340 * - If the rule found is different from 'facet''s current rule, moves
2341 * 'facet' to the new rule and recompiles its actions.
2342 *
2343 * - If the rule found is the same as 'facet''s current rule, leaves 'facet'
2344 * where it is and recompiles its actions anyway.
2345 *
2346 * - If there is none, destroys 'facet'.
2347 *
2348 * Returns true if 'facet' still exists, false if it has been destroyed. */
2349 static bool
2350 facet_revalidate(struct ofproto *ofproto, struct facet *facet)
2351 {
2352 struct rule *new_rule;
2353 struct odp_actions a;
2354 size_t actions_len;
2355 uint16_t new_nf_output_iface;
2356 bool actions_changed;
2357
2358 COVERAGE_INC(facet_revalidate);
2359
2360 /* Determine the new rule. */
2361 new_rule = rule_lookup(ofproto, &facet->flow);
2362 if (!new_rule) {
2363 /* No new rule, so delete the facet. */
2364 facet_remove(ofproto, facet);
2365 return false;
2366 }
2367
2368 /* Calculate new ODP actions.
2369 *
2370 * We are very cautious about actually modifying 'facet' state at this
2371 * point, because we might need to, e.g., emit a NetFlow expiration and, if
2372 * so, we need to have the old state around to properly compose it. */
2373 xlate_actions(new_rule->actions, new_rule->n_actions, &facet->flow,
2374 ofproto, NULL, &a, &facet->tags, &facet->may_install,
2375 &new_nf_output_iface);
2376 actions_len = a.n_actions * sizeof *a.actions;
2377 actions_changed = (facet->n_actions != a.n_actions
2378 || memcmp(facet->actions, a.actions, actions_len));
2379
2380 /* If the ODP actions changed or the installability changed, then we need
2381 * to talk to the datapath. */
2382 if (actions_changed || facet->may_install != facet->installed) {
2383 if (facet->may_install) {
2384 struct odp_flow_put put;
2385
2386 memset(&put.flow.stats, 0, sizeof put.flow.stats);
2387 odp_flow_key_from_flow(&put.flow.key, &facet->flow);
2388 put.flow.actions = a.actions;
2389 put.flow.n_actions = a.n_actions;
2390 put.flow.flags = 0;
2391 put.flags = ODPPF_CREATE | ODPPF_MODIFY | ODPPF_ZERO_STATS;
2392 dpif_flow_put(ofproto->dpif, &put);
2393
2394 facet_update_stats(ofproto, facet, &put.flow.stats);
2395 } else {
2396 facet_uninstall(ofproto, facet);
2397 }
2398
2399 /* The datapath flow is gone or has zeroed stats, so push stats out of
2400 * 'facet' into 'rule'. */
2401 facet_flush_stats(ofproto, facet);
2402 }
2403
2404 /* Update 'facet' now that we've taken care of all the old state. */
2405 facet->nf_flow.output_iface = new_nf_output_iface;
2406 if (actions_changed) {
2407 free(facet->actions);
2408 facet->n_actions = a.n_actions;
2409 facet->actions = xmemdup(a.actions, actions_len);
2410 }
2411 if (facet->rule != new_rule) {
2412 COVERAGE_INC(facet_changed_rule);
2413 list_remove(&facet->list_node);
2414 list_push_back(&new_rule->facets, &facet->list_node);
2415 facet->rule = new_rule;
2416 facet->used = new_rule->created;
2417 }
2418
2419 return true;
2420 }
2421 \f
2422 static void
2423 queue_tx(struct ofpbuf *msg, const struct ofconn *ofconn,
2424 struct rconn_packet_counter *counter)
2425 {
2426 update_openflow_length(msg);
2427 if (rconn_send(ofconn->rconn, msg, counter)) {
2428 ofpbuf_delete(msg);
2429 }
2430 }
2431
2432 static void
2433 send_error_oh(const struct ofconn *ofconn, const struct ofp_header *oh,
2434 int error)
2435 {
2436 struct ofpbuf *buf = make_ofp_error_msg(error, oh);
2437 if (buf) {
2438 COVERAGE_INC(ofproto_error);
2439 queue_tx(buf, ofconn, ofconn->reply_counter);
2440 }
2441 }
2442
2443 static void
2444 hton_ofp_phy_port(struct ofp_phy_port *opp)
2445 {
2446 opp->port_no = htons(opp->port_no);
2447 opp->config = htonl(opp->config);
2448 opp->state = htonl(opp->state);
2449 opp->curr = htonl(opp->curr);
2450 opp->advertised = htonl(opp->advertised);
2451 opp->supported = htonl(opp->supported);
2452 opp->peer = htonl(opp->peer);
2453 }
2454
2455 static int
2456 handle_echo_request(struct ofconn *ofconn, struct ofp_header *oh)
2457 {
2458 struct ofp_header *rq = oh;
2459 queue_tx(make_echo_reply(rq), ofconn, ofconn->reply_counter);
2460 return 0;
2461 }
2462
2463 static int
2464 handle_features_request(struct ofconn *ofconn, struct ofp_header *oh)
2465 {
2466 struct ofp_switch_features *osf;
2467 struct ofpbuf *buf;
2468 struct ofport *port;
2469
2470 osf = make_openflow_xid(sizeof *osf, OFPT_FEATURES_REPLY, oh->xid, &buf);
2471 osf->datapath_id = htonll(ofconn->ofproto->datapath_id);
2472 osf->n_buffers = htonl(pktbuf_capacity());
2473 osf->n_tables = 2;
2474 osf->capabilities = htonl(OFPC_FLOW_STATS | OFPC_TABLE_STATS |
2475 OFPC_PORT_STATS | OFPC_ARP_MATCH_IP);
2476 osf->actions = htonl((1u << OFPAT_OUTPUT) |
2477 (1u << OFPAT_SET_VLAN_VID) |
2478 (1u << OFPAT_SET_VLAN_PCP) |
2479 (1u << OFPAT_STRIP_VLAN) |
2480 (1u << OFPAT_SET_DL_SRC) |
2481 (1u << OFPAT_SET_DL_DST) |
2482 (1u << OFPAT_SET_NW_SRC) |
2483 (1u << OFPAT_SET_NW_DST) |
2484 (1u << OFPAT_SET_NW_TOS) |
2485 (1u << OFPAT_SET_TP_SRC) |
2486 (1u << OFPAT_SET_TP_DST) |
2487 (1u << OFPAT_ENQUEUE));
2488
2489 HMAP_FOR_EACH (port, hmap_node, &ofconn->ofproto->ports) {
2490 hton_ofp_phy_port(ofpbuf_put(buf, &port->opp, sizeof port->opp));
2491 }
2492
2493 queue_tx(buf, ofconn, ofconn->reply_counter);
2494 return 0;
2495 }
2496
2497 static int
2498 handle_get_config_request(struct ofconn *ofconn, struct ofp_header *oh)
2499 {
2500 struct ofpbuf *buf;
2501 struct ofp_switch_config *osc;
2502 uint16_t flags;
2503 bool drop_frags;
2504
2505 /* Figure out flags. */
2506 dpif_get_drop_frags(ofconn->ofproto->dpif, &drop_frags);
2507 flags = drop_frags ? OFPC_FRAG_DROP : OFPC_FRAG_NORMAL;
2508
2509 /* Send reply. */
2510 osc = make_openflow_xid(sizeof *osc, OFPT_GET_CONFIG_REPLY, oh->xid, &buf);
2511 osc->flags = htons(flags);
2512 osc->miss_send_len = htons(ofconn->miss_send_len);
2513 queue_tx(buf, ofconn, ofconn->reply_counter);
2514
2515 return 0;
2516 }
2517
2518 static int
2519 handle_set_config(struct ofconn *ofconn, struct ofp_switch_config *osc)
2520 {
2521 uint16_t flags;
2522 int error;
2523
2524 error = check_ofp_message(&osc->header, OFPT_SET_CONFIG, sizeof *osc);
2525 if (error) {
2526 return error;
2527 }
2528 flags = ntohs(osc->flags);
2529
2530 if (ofconn->type == OFCONN_PRIMARY && ofconn->role != NX_ROLE_SLAVE) {
2531 switch (flags & OFPC_FRAG_MASK) {
2532 case OFPC_FRAG_NORMAL:
2533 dpif_set_drop_frags(ofconn->ofproto->dpif, false);
2534 break;
2535 case OFPC_FRAG_DROP:
2536 dpif_set_drop_frags(ofconn->ofproto->dpif, true);
2537 break;
2538 default:
2539 VLOG_WARN_RL(&rl, "requested bad fragment mode (flags=%"PRIx16")",
2540 osc->flags);
2541 break;
2542 }
2543 }
2544
2545 ofconn->miss_send_len = ntohs(osc->miss_send_len);
2546
2547 return 0;
2548 }
2549
2550 static void
2551 add_controller_action(struct odp_actions *actions, uint16_t max_len)
2552 {
2553 union odp_action *a = odp_actions_add(actions, ODPAT_CONTROLLER);
2554 a->controller.arg = max_len;
2555 }
2556
2557 struct action_xlate_ctx {
2558 /* Input. */
2559 struct flow flow; /* Flow to which these actions correspond. */
2560 int recurse; /* Recursion level, via xlate_table_action. */
2561 struct ofproto *ofproto;
2562 const struct ofpbuf *packet; /* The packet corresponding to 'flow', or a
2563 * null pointer if we are revalidating
2564 * without a packet to refer to. */
2565
2566 /* Output. */
2567 struct odp_actions *out; /* Datapath actions. */
2568 tag_type tags; /* Tags associated with OFPP_NORMAL actions. */
2569 bool may_set_up_flow; /* True ordinarily; false if the actions must
2570 * be reassessed for every packet. */
2571 uint16_t nf_output_iface; /* Output interface index for NetFlow. */
2572 };
2573
2574 /* Maximum depth of flow table recursion (due to NXAST_RESUBMIT actions) in a
2575 * flow translation. */
2576 #define MAX_RESUBMIT_RECURSION 8
2577
2578 static void do_xlate_actions(const union ofp_action *in, size_t n_in,
2579 struct action_xlate_ctx *ctx);
2580
2581 static void
2582 add_output_action(struct action_xlate_ctx *ctx, uint16_t port)
2583 {
2584 const struct ofport *ofport = get_port(ctx->ofproto, port);
2585
2586 if (ofport) {
2587 if (ofport->opp.config & OFPPC_NO_FWD) {
2588 /* Forwarding disabled on port. */
2589 return;
2590 }
2591 } else {
2592 /*
2593 * We don't have an ofport record for this port, but it doesn't hurt to
2594 * allow forwarding to it anyhow. Maybe such a port will appear later
2595 * and we're pre-populating the flow table.
2596 */
2597 }
2598
2599 odp_actions_add(ctx->out, ODPAT_OUTPUT)->output.port = port;
2600 ctx->nf_output_iface = port;
2601 }
2602
2603 static struct rule *
2604 rule_lookup(struct ofproto *ofproto, const struct flow *flow)
2605 {
2606 return rule_from_cls_rule(classifier_lookup(&ofproto->cls, flow));
2607 }
2608
2609 static void
2610 xlate_table_action(struct action_xlate_ctx *ctx, uint16_t in_port)
2611 {
2612 if (ctx->recurse < MAX_RESUBMIT_RECURSION) {
2613 uint16_t old_in_port;
2614 struct rule *rule;
2615
2616 /* Look up a flow with 'in_port' as the input port. Then restore the
2617 * original input port (otherwise OFPP_NORMAL and OFPP_IN_PORT will
2618 * have surprising behavior). */
2619 old_in_port = ctx->flow.in_port;
2620 ctx->flow.in_port = in_port;
2621 rule = rule_lookup(ctx->ofproto, &ctx->flow);
2622 ctx->flow.in_port = old_in_port;
2623
2624 if (rule) {
2625 ctx->recurse++;
2626 do_xlate_actions(rule->actions, rule->n_actions, ctx);
2627 ctx->recurse--;
2628 }
2629 } else {
2630 struct vlog_rate_limit recurse_rl = VLOG_RATE_LIMIT_INIT(1, 1);
2631
2632 VLOG_ERR_RL(&recurse_rl, "NXAST_RESUBMIT recursed over %d times",
2633 MAX_RESUBMIT_RECURSION);
2634 }
2635 }
2636
2637 static void
2638 flood_packets(struct ofproto *ofproto, uint16_t odp_in_port, uint32_t mask,
2639 uint16_t *nf_output_iface, struct odp_actions *actions)
2640 {
2641 struct ofport *ofport;
2642
2643 HMAP_FOR_EACH (ofport, hmap_node, &ofproto->ports) {
2644 uint16_t odp_port = ofport->odp_port;
2645 if (odp_port != odp_in_port && !(ofport->opp.config & mask)) {
2646 odp_actions_add(actions, ODPAT_OUTPUT)->output.port = odp_port;
2647 }
2648 }
2649 *nf_output_iface = NF_OUT_FLOOD;
2650 }
2651
2652 static void
2653 xlate_output_action__(struct action_xlate_ctx *ctx,
2654 uint16_t port, uint16_t max_len)
2655 {
2656 uint16_t odp_port;
2657 uint16_t prev_nf_output_iface = ctx->nf_output_iface;
2658
2659 ctx->nf_output_iface = NF_OUT_DROP;
2660
2661 switch (port) {
2662 case OFPP_IN_PORT:
2663 add_output_action(ctx, ctx->flow.in_port);
2664 break;
2665 case OFPP_TABLE:
2666 xlate_table_action(ctx, ctx->flow.in_port);
2667 break;
2668 case OFPP_NORMAL:
2669 if (!ctx->ofproto->ofhooks->normal_cb(&ctx->flow, ctx->packet,
2670 ctx->out, &ctx->tags,
2671 &ctx->nf_output_iface,
2672 ctx->ofproto->aux)) {
2673 COVERAGE_INC(ofproto_uninstallable);
2674 ctx->may_set_up_flow = false;
2675 }
2676 break;
2677 case OFPP_FLOOD:
2678 flood_packets(ctx->ofproto, ctx->flow.in_port, OFPPC_NO_FLOOD,
2679 &ctx->nf_output_iface, ctx->out);
2680 break;
2681 case OFPP_ALL:
2682 flood_packets(ctx->ofproto, ctx->flow.in_port, 0,
2683 &ctx->nf_output_iface, ctx->out);
2684 break;
2685 case OFPP_CONTROLLER:
2686 add_controller_action(ctx->out, max_len);
2687 break;
2688 case OFPP_LOCAL:
2689 add_output_action(ctx, ODPP_LOCAL);
2690 break;
2691 default:
2692 odp_port = ofp_port_to_odp_port(port);
2693 if (odp_port != ctx->flow.in_port) {
2694 add_output_action(ctx, odp_port);
2695 }
2696 break;
2697 }
2698
2699 if (prev_nf_output_iface == NF_OUT_FLOOD) {
2700 ctx->nf_output_iface = NF_OUT_FLOOD;
2701 } else if (ctx->nf_output_iface == NF_OUT_DROP) {
2702 ctx->nf_output_iface = prev_nf_output_iface;
2703 } else if (prev_nf_output_iface != NF_OUT_DROP &&
2704 ctx->nf_output_iface != NF_OUT_FLOOD) {
2705 ctx->nf_output_iface = NF_OUT_MULTI;
2706 }
2707 }
2708
2709 static void
2710 xlate_output_action(struct action_xlate_ctx *ctx,
2711 const struct ofp_action_output *oao)
2712 {
2713 xlate_output_action__(ctx, ntohs(oao->port), ntohs(oao->max_len));
2714 }
2715
2716 /* If the final ODP action in 'ctx' is "pop priority", drop it, as an
2717 * optimization, because we're going to add another action that sets the
2718 * priority immediately after, or because there are no actions following the
2719 * pop. */
2720 static void
2721 remove_pop_action(struct action_xlate_ctx *ctx)
2722 {
2723 size_t n = ctx->out->n_actions;
2724 if (n > 0 && ctx->out->actions[n - 1].type == ODPAT_POP_PRIORITY) {
2725 ctx->out->n_actions--;
2726 }
2727 }
2728
2729 static void
2730 xlate_enqueue_action(struct action_xlate_ctx *ctx,
2731 const struct ofp_action_enqueue *oae)
2732 {
2733 uint16_t ofp_port, odp_port;
2734 uint32_t priority;
2735 int error;
2736
2737 error = dpif_queue_to_priority(ctx->ofproto->dpif, ntohl(oae->queue_id),
2738 &priority);
2739 if (error) {
2740 /* Fall back to ordinary output action. */
2741 xlate_output_action__(ctx, ntohs(oae->port), 0);
2742 return;
2743 }
2744
2745 /* Figure out ODP output port. */
2746 ofp_port = ntohs(oae->port);
2747 if (ofp_port != OFPP_IN_PORT) {
2748 odp_port = ofp_port_to_odp_port(ofp_port);
2749 } else {
2750 odp_port = ctx->flow.in_port;
2751 }
2752
2753 /* Add ODP actions. */
2754 remove_pop_action(ctx);
2755 odp_actions_add(ctx->out, ODPAT_SET_PRIORITY)->priority.priority
2756 = priority;
2757 add_output_action(ctx, odp_port);
2758 odp_actions_add(ctx->out, ODPAT_POP_PRIORITY);
2759
2760 /* Update NetFlow output port. */
2761 if (ctx->nf_output_iface == NF_OUT_DROP) {
2762 ctx->nf_output_iface = odp_port;
2763 } else if (ctx->nf_output_iface != NF_OUT_FLOOD) {
2764 ctx->nf_output_iface = NF_OUT_MULTI;
2765 }
2766 }
2767
2768 static void
2769 xlate_set_queue_action(struct action_xlate_ctx *ctx,
2770 const struct nx_action_set_queue *nasq)
2771 {
2772 uint32_t priority;
2773 int error;
2774
2775 error = dpif_queue_to_priority(ctx->ofproto->dpif, ntohl(nasq->queue_id),
2776 &priority);
2777 if (error) {
2778 /* Couldn't translate queue to a priority, so ignore. A warning
2779 * has already been logged. */
2780 return;
2781 }
2782
2783 remove_pop_action(ctx);
2784 odp_actions_add(ctx->out, ODPAT_SET_PRIORITY)->priority.priority
2785 = priority;
2786 }
2787
2788 static void
2789 xlate_set_dl_tci(struct action_xlate_ctx *ctx)
2790 {
2791 ovs_be16 tci = ctx->flow.vlan_tci;
2792 if (!(tci & htons(VLAN_CFI))) {
2793 odp_actions_add(ctx->out, ODPAT_STRIP_VLAN);
2794 } else {
2795 union odp_action *oa = odp_actions_add(ctx->out, ODPAT_SET_DL_TCI);
2796 oa->dl_tci.tci = tci & ~htons(VLAN_CFI);
2797 }
2798 }
2799
2800 static void
2801 xlate_reg_move_action(struct action_xlate_ctx *ctx,
2802 const struct nx_action_reg_move *narm)
2803 {
2804 ovs_be16 old_tci = ctx->flow.vlan_tci;
2805
2806 nxm_execute_reg_move(narm, &ctx->flow);
2807
2808 if (ctx->flow.vlan_tci != old_tci) {
2809 xlate_set_dl_tci(ctx);
2810 }
2811 }
2812
2813 static void
2814 xlate_nicira_action(struct action_xlate_ctx *ctx,
2815 const struct nx_action_header *nah)
2816 {
2817 const struct nx_action_resubmit *nar;
2818 const struct nx_action_set_tunnel *nast;
2819 const struct nx_action_set_queue *nasq;
2820 union odp_action *oa;
2821 int subtype = ntohs(nah->subtype);
2822
2823 assert(nah->vendor == htonl(NX_VENDOR_ID));
2824 switch (subtype) {
2825 case NXAST_RESUBMIT:
2826 nar = (const struct nx_action_resubmit *) nah;
2827 xlate_table_action(ctx, ofp_port_to_odp_port(ntohs(nar->in_port)));
2828 break;
2829
2830 case NXAST_SET_TUNNEL:
2831 nast = (const struct nx_action_set_tunnel *) nah;
2832 oa = odp_actions_add(ctx->out, ODPAT_SET_TUNNEL);
2833 ctx->flow.tun_id = oa->tunnel.tun_id = nast->tun_id;
2834 break;
2835
2836 case NXAST_DROP_SPOOFED_ARP:
2837 if (ctx->flow.dl_type == htons(ETH_TYPE_ARP)) {
2838 odp_actions_add(ctx->out, ODPAT_DROP_SPOOFED_ARP);
2839 }
2840 break;
2841
2842 case NXAST_SET_QUEUE:
2843 nasq = (const struct nx_action_set_queue *) nah;
2844 xlate_set_queue_action(ctx, nasq);
2845 break;
2846
2847 case NXAST_POP_QUEUE:
2848 odp_actions_add(ctx->out, ODPAT_POP_PRIORITY);
2849 break;
2850
2851 case NXAST_REG_MOVE:
2852 xlate_reg_move_action(ctx, (const struct nx_action_reg_move *) nah);
2853 break;
2854
2855 case NXAST_REG_LOAD:
2856 nxm_execute_reg_load((const struct nx_action_reg_load *) nah,
2857 &ctx->flow);
2858
2859 case NXAST_NOTE:
2860 /* Nothing to do. */
2861 break;
2862
2863 /* If you add a new action here that modifies flow data, don't forget to
2864 * update the flow key in ctx->flow at the same time. */
2865
2866 default:
2867 VLOG_DBG_RL(&rl, "unknown Nicira action type %"PRIu16, subtype);
2868 break;
2869 }
2870 }
2871
2872 static void
2873 do_xlate_actions(const union ofp_action *in, size_t n_in,
2874 struct action_xlate_ctx *ctx)
2875 {
2876 struct actions_iterator iter;
2877 const union ofp_action *ia;
2878 const struct ofport *port;
2879
2880 port = get_port(ctx->ofproto, ctx->flow.in_port);
2881 if (port && port->opp.config & (OFPPC_NO_RECV | OFPPC_NO_RECV_STP) &&
2882 port->opp.config & (eth_addr_equals(ctx->flow.dl_dst, eth_addr_stp)
2883 ? OFPPC_NO_RECV_STP : OFPPC_NO_RECV)) {
2884 /* Drop this flow. */
2885 return;
2886 }
2887
2888 for (ia = actions_first(&iter, in, n_in); ia; ia = actions_next(&iter)) {
2889 uint16_t type = ntohs(ia->type);
2890 union odp_action *oa;
2891
2892 switch (type) {
2893 case OFPAT_OUTPUT:
2894 xlate_output_action(ctx, &ia->output);
2895 break;
2896
2897 case OFPAT_SET_VLAN_VID:
2898 ctx->flow.vlan_tci &= ~htons(VLAN_VID_MASK);
2899 ctx->flow.vlan_tci |= ia->vlan_vid.vlan_vid | htons(VLAN_CFI);
2900 xlate_set_dl_tci(ctx);
2901 break;
2902
2903 case OFPAT_SET_VLAN_PCP:
2904 ctx->flow.vlan_tci &= ~htons(VLAN_PCP_MASK);
2905 ctx->flow.vlan_tci |= htons(
2906 (ia->vlan_pcp.vlan_pcp << VLAN_PCP_SHIFT) | VLAN_CFI);
2907 xlate_set_dl_tci(ctx);
2908 break;
2909
2910 case OFPAT_STRIP_VLAN:
2911 ctx->flow.vlan_tci = htons(0);
2912 xlate_set_dl_tci(ctx);
2913 break;
2914
2915 case OFPAT_SET_DL_SRC:
2916 oa = odp_actions_add(ctx->out, ODPAT_SET_DL_SRC);
2917 memcpy(oa->dl_addr.dl_addr,
2918 ((struct ofp_action_dl_addr *) ia)->dl_addr, ETH_ADDR_LEN);
2919 memcpy(ctx->flow.dl_src,
2920 ((struct ofp_action_dl_addr *) ia)->dl_addr, ETH_ADDR_LEN);
2921 break;
2922
2923 case OFPAT_SET_DL_DST:
2924 oa = odp_actions_add(ctx->out, ODPAT_SET_DL_DST);
2925 memcpy(oa->dl_addr.dl_addr,
2926 ((struct ofp_action_dl_addr *) ia)->dl_addr, ETH_ADDR_LEN);
2927 memcpy(ctx->flow.dl_dst,
2928 ((struct ofp_action_dl_addr *) ia)->dl_addr, ETH_ADDR_LEN);
2929 break;
2930
2931 case OFPAT_SET_NW_SRC:
2932 oa = odp_actions_add(ctx->out, ODPAT_SET_NW_SRC);
2933 ctx->flow.nw_src = oa->nw_addr.nw_addr = ia->nw_addr.nw_addr;
2934 break;
2935
2936 case OFPAT_SET_NW_DST:
2937 oa = odp_actions_add(ctx->out, ODPAT_SET_NW_DST);
2938 ctx->flow.nw_dst = oa->nw_addr.nw_addr = ia->nw_addr.nw_addr;
2939 break;
2940
2941 case OFPAT_SET_NW_TOS:
2942 oa = odp_actions_add(ctx->out, ODPAT_SET_NW_TOS);
2943 ctx->flow.nw_tos = oa->nw_tos.nw_tos = ia->nw_tos.nw_tos;
2944 break;
2945
2946 case OFPAT_SET_TP_SRC:
2947 oa = odp_actions_add(ctx->out, ODPAT_SET_TP_SRC);
2948 ctx->flow.tp_src = oa->tp_port.tp_port = ia->tp_port.tp_port;
2949 break;
2950
2951 case OFPAT_SET_TP_DST:
2952 oa = odp_actions_add(ctx->out, ODPAT_SET_TP_DST);
2953 ctx->flow.tp_dst = oa->tp_port.tp_port = ia->tp_port.tp_port;
2954 break;
2955
2956 case OFPAT_VENDOR:
2957 xlate_nicira_action(ctx, (const struct nx_action_header *) ia);
2958 break;
2959
2960 case OFPAT_ENQUEUE:
2961 xlate_enqueue_action(ctx, (const struct ofp_action_enqueue *) ia);
2962 break;
2963
2964 default:
2965 VLOG_DBG_RL(&rl, "unknown action type %"PRIu16, type);
2966 break;
2967 }
2968 }
2969 }
2970
2971 static int
2972 xlate_actions(const union ofp_action *in, size_t n_in,
2973 const struct flow *flow, struct ofproto *ofproto,
2974 const struct ofpbuf *packet,
2975 struct odp_actions *out, tag_type *tags, bool *may_set_up_flow,
2976 uint16_t *nf_output_iface)
2977 {
2978 struct action_xlate_ctx ctx;
2979
2980 COVERAGE_INC(ofproto_ofp2odp);
2981 odp_actions_init(out);
2982 ctx.flow = *flow;
2983 ctx.recurse = 0;
2984 ctx.ofproto = ofproto;
2985 ctx.packet = packet;
2986 ctx.out = out;
2987 ctx.tags = 0;
2988 ctx.may_set_up_flow = true;
2989 ctx.nf_output_iface = NF_OUT_DROP;
2990 do_xlate_actions(in, n_in, &ctx);
2991 remove_pop_action(&ctx);
2992
2993 /* Check with in-band control to see if we're allowed to set up this
2994 * flow. */
2995 if (!in_band_rule_check(ofproto->in_band, flow, out)) {
2996 ctx.may_set_up_flow = false;
2997 }
2998
2999 if (tags) {
3000 *tags = ctx.tags;
3001 }
3002 if (may_set_up_flow) {
3003 *may_set_up_flow = ctx.may_set_up_flow;
3004 }
3005 if (nf_output_iface) {
3006 *nf_output_iface = ctx.nf_output_iface;
3007 }
3008 if (odp_actions_overflow(out)) {
3009 COVERAGE_INC(odp_overflow);
3010 odp_actions_init(out);
3011 return ofp_mkerr(OFPET_BAD_ACTION, OFPBAC_TOO_MANY);
3012 }
3013 return 0;
3014 }
3015
3016 /* Checks whether 'ofconn' is a slave controller. If so, returns an OpenFlow
3017 * error message code (composed with ofp_mkerr()) for the caller to propagate
3018 * upward. Otherwise, returns 0.
3019 *
3020 * The log message mentions 'msg_type'. */
3021 static int
3022 reject_slave_controller(struct ofconn *ofconn, const const char *msg_type)
3023 {
3024 if (ofconn->type == OFCONN_PRIMARY && ofconn->role == NX_ROLE_SLAVE) {
3025 static struct vlog_rate_limit perm_rl = VLOG_RATE_LIMIT_INIT(1, 5);
3026 VLOG_WARN_RL(&perm_rl, "rejecting %s message from slave controller",
3027 msg_type);
3028
3029 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_EPERM);
3030 } else {
3031 return 0;
3032 }
3033 }
3034
3035 static int
3036 handle_packet_out(struct ofconn *ofconn, struct ofp_header *oh)
3037 {
3038 struct ofproto *p = ofconn->ofproto;
3039 struct ofp_packet_out *opo;
3040 struct ofpbuf payload, *buffer;
3041 union ofp_action *ofp_actions;
3042 struct odp_actions odp_actions;
3043 struct ofpbuf request;
3044 struct flow flow;
3045 size_t n_ofp_actions;
3046 uint16_t in_port;
3047 int error;
3048
3049 COVERAGE_INC(ofproto_packet_out);
3050
3051 error = reject_slave_controller(ofconn, "OFPT_PACKET_OUT");
3052 if (error) {
3053 return error;
3054 }
3055
3056 /* Get ofp_packet_out. */
3057 request.data = oh;
3058 request.size = ntohs(oh->length);
3059 opo = ofpbuf_try_pull(&request, offsetof(struct ofp_packet_out, actions));
3060 if (!opo) {
3061 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
3062 }
3063
3064 /* Get actions. */
3065 error = ofputil_pull_actions(&request, ntohs(opo->actions_len),
3066 &ofp_actions, &n_ofp_actions);
3067 if (error) {
3068 return error;
3069 }
3070
3071 /* Get payload. */
3072 if (opo->buffer_id != htonl(UINT32_MAX)) {
3073 error = pktbuf_retrieve(ofconn->pktbuf, ntohl(opo->buffer_id),
3074 &buffer, &in_port);
3075 if (error || !buffer) {
3076 return error;
3077 }
3078 payload = *buffer;
3079 } else {
3080 payload = request;
3081 buffer = NULL;
3082 }
3083
3084 /* Extract flow, check actions. */
3085 flow_extract(&payload, 0, ofp_port_to_odp_port(ntohs(opo->in_port)),
3086 &flow);
3087 error = validate_actions(ofp_actions, n_ofp_actions, &flow, p->max_ports);
3088 if (error) {
3089 goto exit;
3090 }
3091
3092 /* Send. */
3093 error = xlate_actions(ofp_actions, n_ofp_actions, &flow, p, &payload,
3094 &odp_actions, NULL, NULL, NULL);
3095 if (!error) {
3096 dpif_execute(p->dpif, odp_actions.actions, odp_actions.n_actions,
3097 &payload);
3098 }
3099
3100 exit:
3101 ofpbuf_delete(buffer);
3102 return 0;
3103 }
3104
3105 static void
3106 update_port_config(struct ofproto *p, struct ofport *port,
3107 uint32_t config, uint32_t mask)
3108 {
3109 mask &= config ^ port->opp.config;
3110 if (mask & OFPPC_PORT_DOWN) {
3111 if (config & OFPPC_PORT_DOWN) {
3112 netdev_turn_flags_off(port->netdev, NETDEV_UP, true);
3113 } else {
3114 netdev_turn_flags_on(port->netdev, NETDEV_UP, true);
3115 }
3116 }
3117 #define REVALIDATE_BITS (OFPPC_NO_RECV | OFPPC_NO_RECV_STP | \
3118 OFPPC_NO_FWD | OFPPC_NO_FLOOD)
3119 if (mask & REVALIDATE_BITS) {
3120 COVERAGE_INC(ofproto_costly_flags);
3121 port->opp.config ^= mask & REVALIDATE_BITS;
3122 p->need_revalidate = true;
3123 }
3124 #undef REVALIDATE_BITS
3125 if (mask & OFPPC_NO_PACKET_IN) {
3126 port->opp.config ^= OFPPC_NO_PACKET_IN;
3127 }
3128 }
3129
3130 static int
3131 handle_port_mod(struct ofconn *ofconn, struct ofp_header *oh)
3132 {
3133 struct ofproto *p = ofconn->ofproto;
3134 const struct ofp_port_mod *opm;
3135 struct ofport *port;
3136 int error;
3137
3138 error = reject_slave_controller(ofconn, "OFPT_PORT_MOD");
3139 if (error) {
3140 return error;
3141 }
3142 error = check_ofp_message(oh, OFPT_PORT_MOD, sizeof *opm);
3143 if (error) {
3144 return error;
3145 }
3146 opm = (struct ofp_port_mod *) oh;
3147
3148 port = get_port(p, ofp_port_to_odp_port(ntohs(opm->port_no)));
3149 if (!port) {
3150 return ofp_mkerr(OFPET_PORT_MOD_FAILED, OFPPMFC_BAD_PORT);
3151 } else if (memcmp(port->opp.hw_addr, opm->hw_addr, OFP_ETH_ALEN)) {
3152 return ofp_mkerr(OFPET_PORT_MOD_FAILED, OFPPMFC_BAD_HW_ADDR);
3153 } else {
3154 update_port_config(p, port, ntohl(opm->config), ntohl(opm->mask));
3155 if (opm->advertise) {
3156 netdev_set_advertisements(port->netdev, ntohl(opm->advertise));
3157 }
3158 }
3159 return 0;
3160 }
3161
3162 static struct ofpbuf *
3163 make_ofp_stats_reply(ovs_be32 xid, ovs_be16 type, size_t body_len)
3164 {
3165 struct ofp_stats_reply *osr;
3166 struct ofpbuf *msg;
3167
3168 msg = ofpbuf_new(MIN(sizeof *osr + body_len, UINT16_MAX));
3169 osr = put_openflow_xid(sizeof *osr, OFPT_STATS_REPLY, xid, msg);
3170 osr->type = type;
3171 osr->flags = htons(0);
3172 return msg;
3173 }
3174
3175 static struct ofpbuf *
3176 start_ofp_stats_reply(const struct ofp_stats_request *request, size_t body_len)
3177 {
3178 return make_ofp_stats_reply(request->header.xid, request->type, body_len);
3179 }
3180
3181 static void *
3182 append_ofp_stats_reply(size_t nbytes, struct ofconn *ofconn,
3183 struct ofpbuf **msgp)
3184 {
3185 struct ofpbuf *msg = *msgp;
3186 assert(nbytes <= UINT16_MAX - sizeof(struct ofp_stats_reply));
3187 if (nbytes + msg->size > UINT16_MAX) {
3188 struct ofp_stats_reply *reply = msg->data;
3189 reply->flags = htons(OFPSF_REPLY_MORE);
3190 *msgp = make_ofp_stats_reply(reply->header.xid, reply->type, nbytes);
3191 queue_tx(msg, ofconn, ofconn->reply_counter);
3192 }
3193 return ofpbuf_put_uninit(*msgp, nbytes);
3194 }
3195
3196 static struct ofpbuf *
3197 make_nxstats_reply(ovs_be32 xid, ovs_be32 subtype, size_t body_len)
3198 {
3199 struct nicira_stats_msg *nsm;
3200 struct ofpbuf *msg;
3201
3202 msg = ofpbuf_new(MIN(sizeof *nsm + body_len, UINT16_MAX));
3203 nsm = put_openflow_xid(sizeof *nsm, OFPT_STATS_REPLY, xid, msg);
3204 nsm->type = htons(OFPST_VENDOR);
3205 nsm->flags = htons(0);
3206 nsm->vendor = htonl(NX_VENDOR_ID);
3207 nsm->subtype = htonl(subtype);
3208 return msg;
3209 }
3210
3211 static struct ofpbuf *
3212 start_nxstats_reply(const struct nicira_stats_msg *request, size_t body_len)
3213 {
3214 return make_nxstats_reply(request->header.xid, request->subtype, body_len);
3215 }
3216
3217 static void
3218 append_nxstats_reply(size_t nbytes, struct ofconn *ofconn,
3219 struct ofpbuf **msgp)
3220 {
3221 struct ofpbuf *msg = *msgp;
3222 assert(nbytes <= UINT16_MAX - sizeof(struct nicira_stats_msg));
3223 if (nbytes + msg->size > UINT16_MAX) {
3224 struct nicira_stats_msg *reply = msg->data;
3225 reply->flags = htons(OFPSF_REPLY_MORE);
3226 *msgp = make_nxstats_reply(reply->header.xid, reply->subtype, nbytes);
3227 queue_tx(msg, ofconn, ofconn->reply_counter);
3228 }
3229 ofpbuf_prealloc_tailroom(*msgp, nbytes);
3230 }
3231
3232 static int
3233 handle_desc_stats_request(struct ofconn *ofconn,
3234 struct ofp_stats_request *request)
3235 {
3236 struct ofproto *p = ofconn->ofproto;
3237 struct ofp_desc_stats *ods;
3238 struct ofpbuf *msg;
3239
3240 msg = start_ofp_stats_reply(request, sizeof *ods);
3241 ods = append_ofp_stats_reply(sizeof *ods, ofconn, &msg);
3242 memset(ods, 0, sizeof *ods);
3243 ovs_strlcpy(ods->mfr_desc, p->mfr_desc, sizeof ods->mfr_desc);
3244 ovs_strlcpy(ods->hw_desc, p->hw_desc, sizeof ods->hw_desc);
3245 ovs_strlcpy(ods->sw_desc, p->sw_desc, sizeof ods->sw_desc);
3246 ovs_strlcpy(ods->serial_num, p->serial_desc, sizeof ods->serial_num);
3247 ovs_strlcpy(ods->dp_desc, p->dp_desc, sizeof ods->dp_desc);
3248 queue_tx(msg, ofconn, ofconn->reply_counter);
3249
3250 return 0;
3251 }
3252
3253 static int
3254 handle_table_stats_request(struct ofconn *ofconn,
3255 struct ofp_stats_request *request)
3256 {
3257 struct ofproto *p = ofconn->ofproto;
3258 struct ofp_table_stats *ots;
3259 struct ofpbuf *msg;
3260
3261 msg = start_ofp_stats_reply(request, sizeof *ots * 2);
3262
3263 /* Classifier table. */
3264 ots = append_ofp_stats_reply(sizeof *ots, ofconn, &msg);
3265 memset(ots, 0, sizeof *ots);
3266 strcpy(ots->name, "classifier");
3267 ots->wildcards = (ofconn->flow_format == NXFF_OPENFLOW10
3268 ? htonl(OFPFW_ALL) : htonl(OVSFW_ALL));
3269 ots->max_entries = htonl(1024 * 1024); /* An arbitrary big number. */
3270 ots->active_count = htonl(classifier_count(&p->cls));
3271 ots->lookup_count = htonll(0); /* XXX */
3272 ots->matched_count = htonll(0); /* XXX */
3273
3274 queue_tx(msg, ofconn, ofconn->reply_counter);
3275 return 0;
3276 }
3277
3278 static void
3279 append_port_stat(struct ofport *port, struct ofconn *ofconn,
3280 struct ofpbuf **msgp)
3281 {
3282 struct netdev_stats stats;
3283 struct ofp_port_stats *ops;
3284
3285 /* Intentionally ignore return value, since errors will set
3286 * 'stats' to all-1s, which is correct for OpenFlow, and
3287 * netdev_get_stats() will log errors. */
3288 netdev_get_stats(port->netdev, &stats);
3289
3290 ops = append_ofp_stats_reply(sizeof *ops, ofconn, msgp);
3291 ops->port_no = htons(port->opp.port_no);
3292 memset(ops->pad, 0, sizeof ops->pad);
3293 ops->rx_packets = htonll(stats.rx_packets);
3294 ops->tx_packets = htonll(stats.tx_packets);
3295 ops->rx_bytes = htonll(stats.rx_bytes);
3296 ops->tx_bytes = htonll(stats.tx_bytes);
3297 ops->rx_dropped = htonll(stats.rx_dropped);
3298 ops->tx_dropped = htonll(stats.tx_dropped);
3299 ops->rx_errors = htonll(stats.rx_errors);
3300 ops->tx_errors = htonll(stats.tx_errors);
3301 ops->rx_frame_err = htonll(stats.rx_frame_errors);
3302 ops->rx_over_err = htonll(stats.rx_over_errors);
3303 ops->rx_crc_err = htonll(stats.rx_crc_errors);
3304 ops->collisions = htonll(stats.collisions);
3305 }
3306
3307 static int
3308 handle_port_stats_request(struct ofconn *ofconn, struct ofp_stats_request *osr,
3309 size_t arg_size)
3310 {
3311 struct ofproto *p = ofconn->ofproto;
3312 struct ofp_port_stats_request *psr;
3313 struct ofp_port_stats *ops;
3314 struct ofpbuf *msg;
3315 struct ofport *port;
3316
3317 if (arg_size != sizeof *psr) {
3318 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
3319 }
3320 psr = (struct ofp_port_stats_request *) osr->body;
3321
3322 msg = start_ofp_stats_reply(osr, sizeof *ops * 16);
3323 if (psr->port_no != htons(OFPP_NONE)) {
3324 port = get_port(p, ofp_port_to_odp_port(ntohs(psr->port_no)));
3325 if (port) {
3326 append_port_stat(port, ofconn, &msg);
3327 }
3328 } else {
3329 HMAP_FOR_EACH (port, hmap_node, &p->ports) {
3330 append_port_stat(port, ofconn, &msg);
3331 }
3332 }
3333
3334 queue_tx(msg, ofconn, ofconn->reply_counter);
3335 return 0;
3336 }
3337
3338 /* Obtains statistic counters for 'rule' within 'p' and stores them into
3339 * '*packet_countp' and '*byte_countp'. The returned statistics include
3340 * statistics for all of 'rule''s facets. */
3341 static void
3342 query_stats(struct ofproto *p, struct rule *rule,
3343 uint64_t *packet_countp, uint64_t *byte_countp)
3344 {
3345 uint64_t packet_count, byte_count;
3346 struct facet *facet;
3347 struct odp_flow *odp_flows;
3348 size_t n_odp_flows;
3349
3350 /* Start from historical data for 'rule' itself that are no longer tracked
3351 * by the datapath. This counts, for example, facets that have expired. */
3352 packet_count = rule->packet_count;
3353 byte_count = rule->byte_count;
3354
3355 /* Prepare to ask the datapath for statistics on all of the rule's facets.
3356 *
3357 * Also, add any statistics that are not tracked by the datapath for each
3358 * facet. This includes, for example, statistics for packets that were
3359 * executed "by hand" by ofproto via dpif_execute() but must be accounted
3360 * to a rule. */
3361 odp_flows = xzalloc(list_size(&rule->facets) * sizeof *odp_flows);
3362 n_odp_flows = 0;
3363 LIST_FOR_EACH (facet, list_node, &rule->facets) {
3364 struct odp_flow *odp_flow = &odp_flows[n_odp_flows++];
3365 odp_flow_key_from_flow(&odp_flow->key, &facet->flow);
3366 packet_count += facet->packet_count;
3367 byte_count += facet->byte_count;
3368 }
3369
3370 /* Fetch up-to-date statistics from the datapath and add them in. */
3371 if (!dpif_flow_get_multiple(p->dpif, odp_flows, n_odp_flows)) {
3372 size_t i;
3373
3374 for (i = 0; i < n_odp_flows; i++) {
3375 struct odp_flow *odp_flow = &odp_flows[i];
3376 packet_count += odp_flow->stats.n_packets;
3377 byte_count += odp_flow->stats.n_bytes;
3378 }
3379 }
3380 free(odp_flows);
3381
3382 /* Return the stats to the caller. */
3383 *packet_countp = packet_count;
3384 *byte_countp = byte_count;
3385 }
3386
3387 static void
3388 calc_flow_duration(long long int start, ovs_be32 *sec, ovs_be32 *nsec)
3389 {
3390 long long int msecs = time_msec() - start;
3391 *sec = htonl(msecs / 1000);
3392 *nsec = htonl((msecs % 1000) * (1000 * 1000));
3393 }
3394
3395 static void
3396 put_ofp_flow_stats(struct ofconn *ofconn, struct rule *rule,
3397 ovs_be16 out_port, struct ofpbuf **replyp)
3398 {
3399 struct ofp_flow_stats *ofs;
3400 uint64_t packet_count, byte_count;
3401 size_t act_len, len;
3402
3403 if (rule_is_hidden(rule) || !rule_has_out_port(rule, out_port)) {
3404 return;
3405 }
3406
3407 act_len = sizeof *rule->actions * rule->n_actions;
3408 len = offsetof(struct ofp_flow_stats, actions) + act_len;
3409
3410 query_stats(ofconn->ofproto, rule, &packet_count, &byte_count);
3411
3412 ofs = append_ofp_stats_reply(len, ofconn, replyp);
3413 ofs->length = htons(len);
3414 ofs->table_id = 0;
3415 ofs->pad = 0;
3416 ofputil_cls_rule_to_match(&rule->cr, ofconn->flow_format, &ofs->match);
3417 calc_flow_duration(rule->created, &ofs->duration_sec, &ofs->duration_nsec);
3418 ofs->cookie = rule->flow_cookie;
3419 ofs->priority = htons(rule->cr.priority);
3420 ofs->idle_timeout = htons(rule->idle_timeout);
3421 ofs->hard_timeout = htons(rule->hard_timeout);
3422 memset(ofs->pad2, 0, sizeof ofs->pad2);
3423 ofs->packet_count = htonll(packet_count);
3424 ofs->byte_count = htonll(byte_count);
3425 if (rule->n_actions > 0) {
3426 memcpy(ofs->actions, rule->actions, act_len);
3427 }
3428 }
3429
3430 static bool
3431 is_valid_table(uint8_t table_id)
3432 {
3433 return table_id == 0 || table_id == 0xff;
3434 }
3435
3436 static int
3437 handle_flow_stats_request(struct ofconn *ofconn,
3438 const struct ofp_stats_request *osr, size_t arg_size)
3439 {
3440 struct ofp_flow_stats_request *fsr;
3441 struct ofpbuf *reply;
3442
3443 if (arg_size != sizeof *fsr) {
3444 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
3445 }
3446 fsr = (struct ofp_flow_stats_request *) osr->body;
3447
3448 COVERAGE_INC(ofproto_flows_req);
3449 reply = start_ofp_stats_reply(osr, 1024);
3450 if (is_valid_table(fsr->table_id)) {
3451 struct cls_cursor cursor;
3452 struct cls_rule target;
3453 struct rule *rule;
3454
3455 ofputil_cls_rule_from_match(&fsr->match, 0, NXFF_OPENFLOW10, 0,
3456 &target);
3457 cls_cursor_init(&cursor, &ofconn->ofproto->cls, &target);
3458 CLS_CURSOR_FOR_EACH (rule, cr, &cursor) {
3459 put_ofp_flow_stats(ofconn, rule, fsr->out_port, &reply);
3460 }
3461 }
3462 queue_tx(reply, ofconn, ofconn->reply_counter);
3463
3464 return 0;
3465 }
3466
3467 static void
3468 put_nx_flow_stats(struct ofconn *ofconn, struct rule *rule,
3469 ovs_be16 out_port, struct ofpbuf **replyp)
3470 {
3471 struct nx_flow_stats *nfs;
3472 uint64_t packet_count, byte_count;
3473 size_t act_len, start_len;
3474 struct ofpbuf *reply;
3475
3476 if (rule_is_hidden(rule) || !rule_has_out_port(rule, out_port)) {
3477 return;
3478 }
3479
3480 query_stats(ofconn->ofproto, rule, &packet_count, &byte_count);
3481
3482 act_len = sizeof *rule->actions * rule->n_actions;
3483
3484 start_len = (*replyp)->size;
3485 append_nxstats_reply(sizeof *nfs + NXM_MAX_LEN + act_len, ofconn, replyp);
3486 reply = *replyp;
3487
3488 nfs = ofpbuf_put_uninit(reply, sizeof *nfs);
3489 nfs->table_id = 0;
3490 nfs->pad = 0;
3491 calc_flow_duration(rule->created, &nfs->duration_sec, &nfs->duration_nsec);
3492 nfs->cookie = rule->flow_cookie;
3493 nfs->priority = htons(rule->cr.priority);
3494 nfs->idle_timeout = htons(rule->idle_timeout);
3495 nfs->hard_timeout = htons(rule->hard_timeout);
3496 nfs->match_len = htons(nx_put_match(reply, &rule->cr));
3497 memset(nfs->pad2, 0, sizeof nfs->pad2);
3498 nfs->packet_count = htonll(packet_count);
3499 nfs->byte_count = htonll(byte_count);
3500 if (rule->n_actions > 0) {
3501 ofpbuf_put(reply, rule->actions, act_len);
3502 }
3503 nfs->length = htons(reply->size - start_len);
3504 }
3505
3506 static int
3507 handle_nxst_flow(struct ofconn *ofconn, struct ofpbuf *b)
3508 {
3509 struct nx_flow_stats_request *nfsr;
3510 struct cls_rule target;
3511 struct ofpbuf *reply;
3512 int error;
3513
3514 /* Dissect the message. */
3515 nfsr = ofpbuf_try_pull(b, sizeof *nfsr);
3516 if (!nfsr) {
3517 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
3518 }
3519 error = nx_pull_match(b, ntohs(nfsr->match_len), 0, &target);
3520 if (error) {
3521 return error;
3522 }
3523
3524 COVERAGE_INC(ofproto_flows_req);
3525 reply = start_nxstats_reply(&nfsr->nsm, 1024);
3526 if (is_valid_table(nfsr->table_id)) {
3527 struct cls_cursor cursor;
3528 struct rule *rule;
3529
3530 cls_cursor_init(&cursor, &ofconn->ofproto->cls, &target);
3531 CLS_CURSOR_FOR_EACH (rule, cr, &cursor) {
3532 put_nx_flow_stats(ofconn, rule, nfsr->out_port, &reply);
3533 }
3534 }
3535 queue_tx(reply, ofconn, ofconn->reply_counter);
3536
3537 return 0;
3538 }
3539
3540 static void
3541 flow_stats_ds(struct ofproto *ofproto, struct rule *rule, struct ds *results)
3542 {
3543 struct ofp_match match;
3544 uint64_t packet_count, byte_count;
3545 size_t act_len = sizeof *rule->actions * rule->n_actions;
3546
3547 query_stats(ofproto, rule, &packet_count, &byte_count);
3548 ofputil_cls_rule_to_match(&rule->cr, NXFF_OPENFLOW10, &match);
3549
3550 ds_put_format(results, "duration=%llds, ",
3551 (time_msec() - rule->created) / 1000);
3552 ds_put_format(results, "priority=%u, ", rule->cr.priority);
3553 ds_put_format(results, "n_packets=%"PRIu64", ", packet_count);
3554 ds_put_format(results, "n_bytes=%"PRIu64", ", byte_count);
3555 ofp_print_match(results, &match, true);
3556 if (act_len > 0) {
3557 ofp_print_actions(results, &rule->actions->header, act_len);
3558 } else {
3559 ds_put_cstr(results, "drop");
3560 }
3561 ds_put_cstr(results, "\n");
3562 }
3563
3564 /* Adds a pretty-printed description of all flows to 'results', including
3565 * those marked hidden by secchan (e.g., by in-band control). */
3566 void
3567 ofproto_get_all_flows(struct ofproto *p, struct ds *results)
3568 {
3569 struct cls_cursor cursor;
3570 struct rule *rule;
3571
3572 cls_cursor_init(&cursor, &p->cls, NULL);
3573 CLS_CURSOR_FOR_EACH (rule, cr, &cursor) {
3574 flow_stats_ds(p, rule, results);
3575 }
3576 }
3577
3578 static void
3579 query_aggregate_stats(struct ofproto *ofproto, struct cls_rule *target,
3580 ovs_be16 out_port, uint8_t table_id,
3581 struct ofp_aggregate_stats_reply *oasr)
3582 {
3583 uint64_t total_packets = 0;
3584 uint64_t total_bytes = 0;
3585 int n_flows = 0;
3586
3587 COVERAGE_INC(ofproto_agg_request);
3588
3589 if (is_valid_table(table_id)) {
3590 struct cls_cursor cursor;
3591 struct rule *rule;
3592
3593 cls_cursor_init(&cursor, &ofproto->cls, target);
3594 CLS_CURSOR_FOR_EACH (rule, cr, &cursor) {
3595 if (!rule_is_hidden(rule) && rule_has_out_port(rule, out_port)) {
3596 uint64_t packet_count;
3597 uint64_t byte_count;
3598
3599 query_stats(ofproto, rule, &packet_count, &byte_count);
3600
3601 total_packets += packet_count;
3602 total_bytes += byte_count;
3603 n_flows++;
3604 }
3605 }
3606 }
3607
3608 oasr->flow_count = htonl(n_flows);
3609 oasr->packet_count = htonll(total_packets);
3610 oasr->byte_count = htonll(total_bytes);
3611 memset(oasr->pad, 0, sizeof oasr->pad);
3612 }
3613
3614 static int
3615 handle_aggregate_stats_request(struct ofconn *ofconn,
3616 const struct ofp_stats_request *osr,
3617 size_t arg_size)
3618 {
3619 struct ofp_aggregate_stats_request *request;
3620 struct ofp_aggregate_stats_reply *reply;
3621 struct cls_rule target;
3622 struct ofpbuf *msg;
3623
3624 if (arg_size != sizeof *request) {
3625 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
3626 }
3627 request = (struct ofp_aggregate_stats_request *) osr->body;
3628
3629 ofputil_cls_rule_from_match(&request->match, 0, NXFF_OPENFLOW10, 0,
3630 &target);
3631
3632 msg = start_ofp_stats_reply(osr, sizeof *reply);
3633 reply = append_ofp_stats_reply(sizeof *reply, ofconn, &msg);
3634 query_aggregate_stats(ofconn->ofproto, &target, request->out_port,
3635 request->table_id, reply);
3636 queue_tx(msg, ofconn, ofconn->reply_counter);
3637 return 0;
3638 }
3639
3640 static int
3641 handle_nxst_aggregate(struct ofconn *ofconn, struct ofpbuf *b)
3642 {
3643 struct nx_aggregate_stats_request *request;
3644 struct ofp_aggregate_stats_reply *reply;
3645 struct cls_rule target;
3646 struct ofpbuf *buf;
3647 int error;
3648
3649 /* Dissect the message. */
3650 request = ofpbuf_try_pull(b, sizeof *request);
3651 if (!request) {
3652 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
3653 }
3654 error = nx_pull_match(b, ntohs(request->match_len), 0, &target);
3655 if (error) {
3656 return error;
3657 }
3658
3659 /* Reply. */
3660 COVERAGE_INC(ofproto_flows_req);
3661 buf = start_nxstats_reply(&request->nsm, sizeof *reply);
3662 reply = ofpbuf_put_uninit(buf, sizeof *reply);
3663 query_aggregate_stats(ofconn->ofproto, &target, request->out_port,
3664 request->table_id, reply);
3665 queue_tx(buf, ofconn, ofconn->reply_counter);
3666
3667 return 0;
3668 }
3669
3670 struct queue_stats_cbdata {
3671 struct ofconn *ofconn;
3672 struct ofport *ofport;
3673 struct ofpbuf *msg;
3674 };
3675
3676 static void
3677 put_queue_stats(struct queue_stats_cbdata *cbdata, uint32_t queue_id,
3678 const struct netdev_queue_stats *stats)
3679 {
3680 struct ofp_queue_stats *reply;
3681
3682 reply = append_ofp_stats_reply(sizeof *reply, cbdata->ofconn, &cbdata->msg);
3683 reply->port_no = htons(cbdata->ofport->opp.port_no);
3684 memset(reply->pad, 0, sizeof reply->pad);
3685 reply->queue_id = htonl(queue_id);
3686 reply->tx_bytes = htonll(stats->tx_bytes);
3687 reply->tx_packets = htonll(stats->tx_packets);
3688 reply->tx_errors = htonll(stats->tx_errors);
3689 }
3690
3691 static void
3692 handle_queue_stats_dump_cb(uint32_t queue_id,
3693 struct netdev_queue_stats *stats,
3694 void *cbdata_)
3695 {
3696 struct queue_stats_cbdata *cbdata = cbdata_;
3697
3698 put_queue_stats(cbdata, queue_id, stats);
3699 }
3700
3701 static void
3702 handle_queue_stats_for_port(struct ofport *port, uint32_t queue_id,
3703 struct queue_stats_cbdata *cbdata)
3704 {
3705 cbdata->ofport = port;
3706 if (queue_id == OFPQ_ALL) {
3707 netdev_dump_queue_stats(port->netdev,
3708 handle_queue_stats_dump_cb, cbdata);
3709 } else {
3710 struct netdev_queue_stats stats;
3711
3712 if (!netdev_get_queue_stats(port->netdev, queue_id, &stats)) {
3713 put_queue_stats(cbdata, queue_id, &stats);
3714 }
3715 }
3716 }
3717
3718 static int
3719 handle_queue_stats_request(struct ofconn *ofconn,
3720 const struct ofp_stats_request *osr,
3721 size_t arg_size)
3722 {
3723 struct ofproto *ofproto = ofconn->ofproto;
3724 struct ofp_queue_stats_request *qsr;
3725 struct queue_stats_cbdata cbdata;
3726 struct ofport *port;
3727 unsigned int port_no;
3728 uint32_t queue_id;
3729
3730 if (arg_size != sizeof *qsr) {
3731 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
3732 }
3733 qsr = (struct ofp_queue_stats_request *) osr->body;
3734
3735 COVERAGE_INC(ofproto_queue_req);
3736
3737 cbdata.ofconn = ofconn;
3738 cbdata.msg = start_ofp_stats_reply(osr, 128);
3739
3740 port_no = ntohs(qsr->port_no);
3741 queue_id = ntohl(qsr->queue_id);
3742 if (port_no == OFPP_ALL) {
3743 HMAP_FOR_EACH (port, hmap_node, &ofproto->ports) {
3744 handle_queue_stats_for_port(port, queue_id, &cbdata);
3745 }
3746 } else if (port_no < ofproto->max_ports) {
3747 port = get_port(ofproto, ofp_port_to_odp_port(port_no));
3748 if (port) {
3749 handle_queue_stats_for_port(port, queue_id, &cbdata);
3750 }
3751 } else {
3752 ofpbuf_delete(cbdata.msg);
3753 return ofp_mkerr(OFPET_QUEUE_OP_FAILED, OFPQOFC_BAD_PORT);
3754 }
3755 queue_tx(cbdata.msg, ofconn, ofconn->reply_counter);
3756
3757 return 0;
3758 }
3759
3760 static int
3761 handle_vendor_stats_request(struct ofconn *ofconn,
3762 struct ofp_stats_request *osr, size_t arg_size)
3763 {
3764 struct nicira_stats_msg *nsm;
3765 struct ofpbuf b;
3766 ovs_be32 vendor;
3767
3768 if (arg_size < 4) {
3769 VLOG_WARN_RL(&rl, "truncated vendor stats request body");
3770 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
3771 }
3772
3773 memcpy(&vendor, osr->body, sizeof vendor);
3774 if (vendor != htonl(NX_VENDOR_ID)) {
3775 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_VENDOR);
3776 }
3777
3778 if (ntohs(osr->header.length) < sizeof(struct nicira_stats_msg)) {
3779 VLOG_WARN_RL(&rl, "truncated Nicira stats request");
3780 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
3781 }
3782
3783 nsm = (struct nicira_stats_msg *) osr;
3784 b.data = nsm;
3785 b.size = ntohs(nsm->header.length);
3786 switch (ntohl(nsm->subtype)) {
3787 case NXST_FLOW:
3788 return handle_nxst_flow(ofconn, &b);
3789
3790 case NXST_AGGREGATE:
3791 return handle_nxst_aggregate(ofconn, &b);
3792
3793 default:
3794 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_SUBTYPE);
3795 }
3796 }
3797
3798 static int
3799 handle_stats_request(struct ofconn *ofconn, struct ofp_header *oh)
3800 {
3801 struct ofp_stats_request *osr;
3802 size_t arg_size;
3803 int error;
3804
3805 error = check_ofp_message_array(oh, OFPT_STATS_REQUEST, sizeof *osr,
3806 1, &arg_size);
3807 if (error) {
3808 return error;
3809 }
3810 osr = (struct ofp_stats_request *) oh;
3811
3812 switch (ntohs(osr->type)) {
3813 case OFPST_DESC:
3814 return handle_desc_stats_request(ofconn, osr);
3815
3816 case OFPST_FLOW:
3817 return handle_flow_stats_request(ofconn, osr, arg_size);
3818
3819 case OFPST_AGGREGATE:
3820 return handle_aggregate_stats_request(ofconn, osr, arg_size);
3821
3822 case OFPST_TABLE:
3823 return handle_table_stats_request(ofconn, osr);
3824
3825 case OFPST_PORT:
3826 return handle_port_stats_request(ofconn, osr, arg_size);
3827
3828 case OFPST_QUEUE:
3829 return handle_queue_stats_request(ofconn, osr, arg_size);
3830
3831 case OFPST_VENDOR:
3832 return handle_vendor_stats_request(ofconn, osr, arg_size);
3833
3834 default:
3835 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_STAT);
3836 }
3837 }
3838
3839 static long long int
3840 msec_from_nsec(uint64_t sec, uint32_t nsec)
3841 {
3842 return !sec ? 0 : sec * 1000 + nsec / 1000000;
3843 }
3844
3845 static void
3846 facet_update_time(struct ofproto *ofproto, struct facet *facet,
3847 const struct odp_flow_stats *stats)
3848 {
3849 long long int used = msec_from_nsec(stats->used_sec, stats->used_nsec);
3850 if (used > facet->used) {
3851 facet->used = used;
3852 if (used > facet->rule->used) {
3853 facet->rule->used = used;
3854 }
3855 netflow_flow_update_time(ofproto->netflow, &facet->nf_flow, used);
3856 }
3857 }
3858
3859 /* Folds the statistics from 'stats' into the counters in 'facet'.
3860 *
3861 * Because of the meaning of a facet's counters, it only makes sense to do this
3862 * if 'stats' are not tracked in the datapath, that is, if 'stats' represents a
3863 * packet that was sent by hand or if it represents statistics that have been
3864 * cleared out of the datapath. */
3865 static void
3866 facet_update_stats(struct ofproto *ofproto, struct facet *facet,
3867 const struct odp_flow_stats *stats)
3868 {
3869 if (stats->n_packets) {
3870 facet_update_time(ofproto, facet, stats);
3871 facet->packet_count += stats->n_packets;
3872 facet->byte_count += stats->n_bytes;
3873 netflow_flow_update_flags(&facet->nf_flow, stats->tcp_flags);
3874 }
3875 }
3876
3877 struct flow_mod {
3878 struct cls_rule cr;
3879 ovs_be64 cookie;
3880 uint16_t command;
3881 uint16_t idle_timeout;
3882 uint16_t hard_timeout;
3883 uint32_t buffer_id;
3884 uint16_t out_port;
3885 uint16_t flags;
3886 union ofp_action *actions;
3887 size_t n_actions;
3888 };
3889
3890 /* Implements OFPFC_ADD and the cases for OFPFC_MODIFY and OFPFC_MODIFY_STRICT
3891 * in which no matching flow already exists in the flow table.
3892 *
3893 * Adds the flow specified by 'ofm', which is followed by 'n_actions'
3894 * ofp_actions, to ofconn->ofproto's flow table. Returns 0 on success or an
3895 * OpenFlow error code as encoded by ofp_mkerr() on failure.
3896 *
3897 * 'ofconn' is used to retrieve the packet buffer specified in ofm->buffer_id,
3898 * if any. */
3899 static int
3900 add_flow(struct ofconn *ofconn, struct flow_mod *fm)
3901 {
3902 struct ofproto *p = ofconn->ofproto;
3903 struct ofpbuf *packet;
3904 struct rule *rule;
3905 uint16_t in_port;
3906 int error;
3907
3908 if (fm->flags & OFPFF_CHECK_OVERLAP
3909 && classifier_rule_overlaps(&p->cls, &fm->cr)) {
3910 return ofp_mkerr(OFPET_FLOW_MOD_FAILED, OFPFMFC_OVERLAP);
3911 }
3912
3913 error = 0;
3914 if (fm->buffer_id != UINT32_MAX) {
3915 error = pktbuf_retrieve(ofconn->pktbuf, fm->buffer_id,
3916 &packet, &in_port);
3917 } else {
3918 packet = NULL;
3919 in_port = UINT16_MAX;
3920 }
3921
3922 rule = rule_create(&fm->cr, fm->actions, fm->n_actions,
3923 fm->idle_timeout, fm->hard_timeout, fm->cookie,
3924 fm->flags & OFPFF_SEND_FLOW_REM);
3925 rule_insert(p, rule);
3926 if (packet) {
3927 rule_execute(p, rule, in_port, packet);
3928 }
3929 return error;
3930 }
3931
3932 static struct rule *
3933 find_flow_strict(struct ofproto *p, const struct flow_mod *fm)
3934 {
3935 return rule_from_cls_rule(classifier_find_rule_exactly(&p->cls, &fm->cr));
3936 }
3937
3938 static int
3939 send_buffered_packet(struct ofconn *ofconn,
3940 struct rule *rule, uint32_t buffer_id)
3941 {
3942 struct ofpbuf *packet;
3943 uint16_t in_port;
3944 int error;
3945
3946 if (buffer_id == UINT32_MAX) {
3947 return 0;
3948 }
3949
3950 error = pktbuf_retrieve(ofconn->pktbuf, buffer_id, &packet, &in_port);
3951 if (error) {
3952 return error;
3953 }
3954
3955 rule_execute(ofconn->ofproto, rule, in_port, packet);
3956
3957 return 0;
3958 }
3959 \f
3960 /* OFPFC_MODIFY and OFPFC_MODIFY_STRICT. */
3961
3962 struct modify_flows_cbdata {
3963 struct ofproto *ofproto;
3964 const struct flow_mod *fm;
3965 struct rule *match;
3966 };
3967
3968 static int modify_flow(struct ofproto *, const struct flow_mod *,
3969 struct rule *);
3970
3971 /* Implements OFPFC_MODIFY. Returns 0 on success or an OpenFlow error code as
3972 * encoded by ofp_mkerr() on failure.
3973 *
3974 * 'ofconn' is used to retrieve the packet buffer specified in ofm->buffer_id,
3975 * if any. */
3976 static int
3977 modify_flows_loose(struct ofconn *ofconn, struct flow_mod *fm)
3978 {
3979 struct ofproto *p = ofconn->ofproto;
3980 struct rule *match = NULL;
3981 struct cls_cursor cursor;
3982 struct rule *rule;
3983
3984 cls_cursor_init(&cursor, &p->cls, &fm->cr);
3985 CLS_CURSOR_FOR_EACH (rule, cr, &cursor) {
3986 if (!rule_is_hidden(rule)) {
3987 match = rule;
3988 modify_flow(p, fm, rule);
3989 }
3990 }
3991
3992 if (match) {
3993 /* This credits the packet to whichever flow happened to match last.
3994 * That's weird. Maybe we should do a lookup for the flow that
3995 * actually matches the packet? Who knows. */
3996 send_buffered_packet(ofconn, match, fm->buffer_id);
3997 return 0;
3998 } else {
3999 return add_flow(ofconn, fm);
4000 }
4001 }
4002
4003 /* Implements OFPFC_MODIFY_STRICT. Returns 0 on success or an OpenFlow error
4004 * code as encoded by ofp_mkerr() on failure.
4005 *
4006 * 'ofconn' is used to retrieve the packet buffer specified in ofm->buffer_id,
4007 * if any. */
4008 static int
4009 modify_flow_strict(struct ofconn *ofconn, struct flow_mod *fm)
4010 {
4011 struct ofproto *p = ofconn->ofproto;
4012 struct rule *rule = find_flow_strict(p, fm);
4013 if (rule && !rule_is_hidden(rule)) {
4014 modify_flow(p, fm, rule);
4015 return send_buffered_packet(ofconn, rule, fm->buffer_id);
4016 } else {
4017 return add_flow(ofconn, fm);
4018 }
4019 }
4020
4021 /* Implements core of OFPFC_MODIFY and OFPFC_MODIFY_STRICT where 'rule' has
4022 * been identified as a flow in 'p''s flow table to be modified, by changing
4023 * the rule's actions to match those in 'ofm' (which is followed by 'n_actions'
4024 * ofp_action[] structures). */
4025 static int
4026 modify_flow(struct ofproto *p, const struct flow_mod *fm, struct rule *rule)
4027 {
4028 size_t actions_len = fm->n_actions * sizeof *rule->actions;
4029
4030 rule->flow_cookie = fm->cookie;
4031
4032 /* If the actions are the same, do nothing. */
4033 if (fm->n_actions == rule->n_actions
4034 && (!fm->n_actions
4035 || !memcmp(fm->actions, rule->actions, actions_len))) {
4036 return 0;
4037 }
4038
4039 /* Replace actions. */
4040 free(rule->actions);
4041 rule->actions = fm->n_actions ? xmemdup(fm->actions, actions_len) : NULL;
4042 rule->n_actions = fm->n_actions;
4043
4044 p->need_revalidate = true;
4045
4046 return 0;
4047 }
4048 \f
4049 /* OFPFC_DELETE implementation. */
4050
4051 static void delete_flow(struct ofproto *, struct rule *, ovs_be16 out_port);
4052
4053 /* Implements OFPFC_DELETE. */
4054 static void
4055 delete_flows_loose(struct ofproto *p, const struct flow_mod *fm)
4056 {
4057 struct rule *rule, *next_rule;
4058 struct cls_cursor cursor;
4059
4060 cls_cursor_init(&cursor, &p->cls, &fm->cr);
4061 CLS_CURSOR_FOR_EACH_SAFE (rule, next_rule, cr, &cursor) {
4062 delete_flow(p, rule, htons(fm->out_port));
4063 }
4064 }
4065
4066 /* Implements OFPFC_DELETE_STRICT. */
4067 static void
4068 delete_flow_strict(struct ofproto *p, struct flow_mod *fm)
4069 {
4070 struct rule *rule = find_flow_strict(p, fm);
4071 if (rule) {
4072 delete_flow(p, rule, htons(fm->out_port));
4073 }
4074 }
4075
4076 /* Implements core of OFPFC_DELETE and OFPFC_DELETE_STRICT where 'rule' has
4077 * been identified as a flow to delete from 'p''s flow table, by deleting the
4078 * flow and sending out a OFPT_FLOW_REMOVED message to any interested
4079 * controller.
4080 *
4081 * Will not delete 'rule' if it is hidden. Will delete 'rule' only if
4082 * 'out_port' is htons(OFPP_NONE) or if 'rule' actually outputs to the
4083 * specified 'out_port'. */
4084 static void
4085 delete_flow(struct ofproto *p, struct rule *rule, ovs_be16 out_port)
4086 {
4087 if (rule_is_hidden(rule)) {
4088 return;
4089 }
4090
4091 if (out_port != htons(OFPP_NONE) && !rule_has_out_port(rule, out_port)) {
4092 return;
4093 }
4094
4095 rule_send_removed(p, rule, OFPRR_DELETE);
4096 rule_remove(p, rule);
4097 }
4098 \f
4099 static int
4100 flow_mod_core(struct ofconn *ofconn, struct flow_mod *fm)
4101 {
4102 struct ofproto *p = ofconn->ofproto;
4103 int error;
4104
4105 error = reject_slave_controller(ofconn, "flow_mod");
4106 if (error) {
4107 return error;
4108 }
4109
4110 error = validate_actions(fm->actions, fm->n_actions,
4111 &fm->cr.flow, p->max_ports);
4112 if (error) {
4113 return error;
4114 }
4115
4116 /* We do not support the emergency flow cache. It will hopefully
4117 * get dropped from OpenFlow in the near future. */
4118 if (fm->flags & OFPFF_EMERG) {
4119 /* There isn't a good fit for an error code, so just state that the
4120 * flow table is full. */
4121 return ofp_mkerr(OFPET_FLOW_MOD_FAILED, OFPFMFC_ALL_TABLES_FULL);
4122 }
4123
4124 switch (fm->command) {
4125 case OFPFC_ADD:
4126 return add_flow(ofconn, fm);
4127
4128 case OFPFC_MODIFY:
4129 return modify_flows_loose(ofconn, fm);
4130
4131 case OFPFC_MODIFY_STRICT:
4132 return modify_flow_strict(ofconn, fm);
4133
4134 case OFPFC_DELETE:
4135 delete_flows_loose(p, fm);
4136 return 0;
4137
4138 case OFPFC_DELETE_STRICT:
4139 delete_flow_strict(p, fm);
4140 return 0;
4141
4142 default:
4143 return ofp_mkerr(OFPET_FLOW_MOD_FAILED, OFPFMFC_BAD_COMMAND);
4144 }
4145 }
4146
4147 static int
4148 handle_ofpt_flow_mod(struct ofconn *ofconn, struct ofp_header *oh)
4149 {
4150 struct ofp_match orig_match;
4151 struct ofp_flow_mod *ofm;
4152 struct flow_mod fm;
4153 struct ofpbuf b;
4154 int error;
4155
4156 b.data = oh;
4157 b.size = ntohs(oh->length);
4158
4159 /* Dissect the message. */
4160 ofm = ofpbuf_try_pull(&b, sizeof *ofm);
4161 if (!ofm) {
4162 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
4163 }
4164 error = ofputil_pull_actions(&b, b.size, &fm.actions, &fm.n_actions);
4165 if (error) {
4166 return error;
4167 }
4168
4169 /* Normalize ofm->match. If normalization actually changes anything, then
4170 * log the differences. */
4171 ofm->match.pad1[0] = ofm->match.pad2[0] = 0;
4172 orig_match = ofm->match;
4173 normalize_match(&ofm->match);
4174 if (memcmp(&ofm->match, &orig_match, sizeof orig_match)) {
4175 static struct vlog_rate_limit normal_rl = VLOG_RATE_LIMIT_INIT(1, 1);
4176 if (!VLOG_DROP_INFO(&normal_rl)) {
4177 char *old = ofp_match_to_literal_string(&orig_match);
4178 char *new = ofp_match_to_literal_string(&ofm->match);
4179 VLOG_INFO("%s: normalization changed ofp_match, details:",
4180 rconn_get_name(ofconn->rconn));
4181 VLOG_INFO(" pre: %s", old);
4182 VLOG_INFO("post: %s", new);
4183 free(old);
4184 free(new);
4185 }
4186 }
4187
4188 /* Translate the message. */
4189 ofputil_cls_rule_from_match(&ofm->match, ntohs(ofm->priority),
4190 ofconn->flow_format, ofm->cookie, &fm.cr);
4191 fm.cookie = ofm->cookie;
4192 fm.command = ntohs(ofm->command);
4193 fm.idle_timeout = ntohs(ofm->idle_timeout);
4194 fm.hard_timeout = ntohs(ofm->hard_timeout);
4195 fm.buffer_id = ntohl(ofm->buffer_id);
4196 fm.out_port = ntohs(ofm->out_port);
4197 fm.flags = ntohs(ofm->flags);
4198
4199 /* Execute the command. */
4200 return flow_mod_core(ofconn, &fm);
4201 }
4202
4203 static int
4204 handle_nxt_flow_mod(struct ofconn *ofconn, struct ofp_header *oh)
4205 {
4206 struct nx_flow_mod *nfm;
4207 struct flow_mod fm;
4208 struct ofpbuf b;
4209 int error;
4210
4211 b.data = oh;
4212 b.size = ntohs(oh->length);
4213
4214 /* Dissect the message. */
4215 nfm = ofpbuf_try_pull(&b, sizeof *nfm);
4216 if (!nfm) {
4217 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
4218 }
4219 error = nx_pull_match(&b, ntohs(nfm->match_len), ntohs(nfm->priority),
4220 &fm.cr);
4221 if (error) {
4222 return error;
4223 }
4224 error = ofputil_pull_actions(&b, b.size, &fm.actions, &fm.n_actions);
4225 if (error) {
4226 return error;
4227 }
4228
4229 /* Translate the message. */
4230 fm.cookie = nfm->cookie;
4231 fm.command = ntohs(nfm->command);
4232 fm.idle_timeout = ntohs(nfm->idle_timeout);
4233 fm.hard_timeout = ntohs(nfm->hard_timeout);
4234 fm.buffer_id = ntohl(nfm->buffer_id);
4235 fm.out_port = ntohs(nfm->out_port);
4236 fm.flags = ntohs(nfm->flags);
4237
4238 /* Execute the command. */
4239 return flow_mod_core(ofconn, &fm);
4240 }
4241
4242 static int
4243 handle_tun_id_from_cookie(struct ofconn *ofconn, struct nxt_tun_id_cookie *msg)
4244 {
4245 int error;
4246
4247 error = check_ofp_message(&msg->header, OFPT_VENDOR, sizeof *msg);
4248 if (error) {
4249 return error;
4250 }
4251
4252 ofconn->flow_format = msg->set ? NXFF_TUN_ID_FROM_COOKIE : NXFF_OPENFLOW10;
4253 return 0;
4254 }
4255
4256 static int
4257 handle_role_request(struct ofconn *ofconn, struct nicira_header *msg)
4258 {
4259 struct nx_role_request *nrr;
4260 struct nx_role_request *reply;
4261 struct ofpbuf *buf;
4262 uint32_t role;
4263
4264 if (ntohs(msg->header.length) != sizeof *nrr) {
4265 VLOG_WARN_RL(&rl, "received role request of length %u (expected %zu)",
4266 ntohs(msg->header.length), sizeof *nrr);
4267 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
4268 }
4269 nrr = (struct nx_role_request *) msg;
4270
4271 if (ofconn->type != OFCONN_PRIMARY) {
4272 VLOG_WARN_RL(&rl, "ignoring role request on non-controller "
4273 "connection");
4274 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_EPERM);
4275 }
4276
4277 role = ntohl(nrr->role);
4278 if (role != NX_ROLE_OTHER && role != NX_ROLE_MASTER
4279 && role != NX_ROLE_SLAVE) {
4280 VLOG_WARN_RL(&rl, "received request for unknown role %"PRIu32, role);
4281
4282 /* There's no good error code for this. */
4283 return ofp_mkerr(OFPET_BAD_REQUEST, -1);
4284 }
4285
4286 if (role == NX_ROLE_MASTER) {
4287 struct ofconn *other;
4288
4289 HMAP_FOR_EACH (other, hmap_node, &ofconn->ofproto->controllers) {
4290 if (other->role == NX_ROLE_MASTER) {
4291 other->role = NX_ROLE_SLAVE;
4292 }
4293 }
4294 }
4295 ofconn->role = role;
4296
4297 reply = make_nxmsg_xid(sizeof *reply, NXT_ROLE_REPLY, msg->header.xid,
4298 &buf);
4299 reply->role = htonl(role);
4300 queue_tx(buf, ofconn, ofconn->reply_counter);
4301
4302 return 0;
4303 }
4304
4305 static int
4306 handle_nxt_set_flow_format(struct ofconn *ofconn,
4307 struct nxt_set_flow_format *msg)
4308 {
4309 uint32_t format;
4310 int error;
4311
4312 error = check_ofp_message(&msg->header, OFPT_VENDOR, sizeof *msg);
4313 if (error) {
4314 return error;
4315 }
4316
4317 format = ntohl(msg->format);
4318 if (format == NXFF_OPENFLOW10
4319 || format == NXFF_TUN_ID_FROM_COOKIE
4320 || format == NXFF_NXM) {
4321 ofconn->flow_format = format;
4322 return 0;
4323 } else {
4324 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_EPERM);
4325 }
4326 }
4327
4328 static int
4329 handle_vendor(struct ofconn *ofconn, void *msg)
4330 {
4331 struct ofproto *p = ofconn->ofproto;
4332 struct ofp_vendor_header *ovh = msg;
4333 struct nicira_header *nh;
4334
4335 if (ntohs(ovh->header.length) < sizeof(struct ofp_vendor_header)) {
4336 VLOG_WARN_RL(&rl, "received vendor message of length %u "
4337 "(expected at least %zu)",
4338 ntohs(ovh->header.length), sizeof(struct ofp_vendor_header));
4339 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
4340 }
4341 if (ovh->vendor != htonl(NX_VENDOR_ID)) {
4342 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_VENDOR);
4343 }
4344 if (ntohs(ovh->header.length) < sizeof(struct nicira_header)) {
4345 VLOG_WARN_RL(&rl, "received Nicira vendor message of length %u "
4346 "(expected at least %zu)",
4347 ntohs(ovh->header.length), sizeof(struct nicira_header));
4348 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
4349 }
4350
4351 nh = msg;
4352 switch (ntohl(nh->subtype)) {
4353 case NXT_STATUS_REQUEST:
4354 return switch_status_handle_request(p->switch_status, ofconn->rconn,
4355 msg);
4356
4357 case NXT_TUN_ID_FROM_COOKIE:
4358 return handle_tun_id_from_cookie(ofconn, msg);
4359
4360 case NXT_ROLE_REQUEST:
4361 return handle_role_request(ofconn, msg);
4362
4363 case NXT_SET_FLOW_FORMAT:
4364 return handle_nxt_set_flow_format(ofconn, msg);
4365
4366 case NXT_FLOW_MOD:
4367 return handle_nxt_flow_mod(ofconn, &ovh->header);
4368 }
4369
4370 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_SUBTYPE);
4371 }
4372
4373 static int
4374 handle_barrier_request(struct ofconn *ofconn, struct ofp_header *oh)
4375 {
4376 struct ofp_header *ob;
4377 struct ofpbuf *buf;
4378
4379 /* Currently, everything executes synchronously, so we can just
4380 * immediately send the barrier reply. */
4381 ob = make_openflow_xid(sizeof *ob, OFPT_BARRIER_REPLY, oh->xid, &buf);
4382 queue_tx(buf, ofconn, ofconn->reply_counter);
4383 return 0;
4384 }
4385
4386 static void
4387 handle_openflow(struct ofconn *ofconn, struct ofpbuf *ofp_msg)
4388 {
4389 struct ofp_header *oh = ofp_msg->data;
4390 int error;
4391
4392 COVERAGE_INC(ofproto_recv_openflow);
4393 switch (oh->type) {
4394 case OFPT_ECHO_REQUEST:
4395 error = handle_echo_request(ofconn, oh);
4396 break;
4397
4398 case OFPT_ECHO_REPLY:
4399 error = 0;
4400 break;
4401
4402 case OFPT_FEATURES_REQUEST:
4403 error = handle_features_request(ofconn, oh);
4404 break;
4405
4406 case OFPT_GET_CONFIG_REQUEST:
4407 error = handle_get_config_request(ofconn, oh);
4408 break;
4409
4410 case OFPT_SET_CONFIG:
4411 error = handle_set_config(ofconn, ofp_msg->data);
4412 break;
4413
4414 case OFPT_PACKET_OUT:
4415 error = handle_packet_out(ofconn, ofp_msg->data);
4416 break;
4417
4418 case OFPT_PORT_MOD:
4419 error = handle_port_mod(ofconn, oh);
4420 break;
4421
4422 case OFPT_FLOW_MOD:
4423 error = handle_ofpt_flow_mod(ofconn, ofp_msg->data);
4424 break;
4425
4426 case OFPT_STATS_REQUEST:
4427 error = handle_stats_request(ofconn, oh);
4428 break;
4429
4430 case OFPT_VENDOR:
4431 error = handle_vendor(ofconn, ofp_msg->data);
4432 break;
4433
4434 case OFPT_BARRIER_REQUEST:
4435 error = handle_barrier_request(ofconn, oh);
4436 break;
4437
4438 default:
4439 if (VLOG_IS_WARN_ENABLED()) {
4440 char *s = ofp_to_string(oh, ntohs(oh->length), 2);
4441 VLOG_DBG_RL(&rl, "OpenFlow message ignored: %s", s);
4442 free(s);
4443 }
4444 error = ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_TYPE);
4445 break;
4446 }
4447
4448 if (error) {
4449 send_error_oh(ofconn, ofp_msg->data, error);
4450 }
4451 }
4452 \f
4453 static void
4454 handle_odp_miss_msg(struct ofproto *p, struct ofpbuf *packet)
4455 {
4456 struct odp_msg *msg = packet->data;
4457 struct ofpbuf payload;
4458 struct facet *facet;
4459 struct flow flow;
4460
4461 payload.data = msg + 1;
4462 payload.size = msg->length - sizeof *msg;
4463 flow_extract(&payload, msg->arg, msg->port, &flow);
4464
4465 packet->l2 = payload.l2;
4466 packet->l3 = payload.l3;
4467 packet->l4 = payload.l4;
4468 packet->l7 = payload.l7;
4469
4470 /* Check with in-band control to see if this packet should be sent
4471 * to the local port regardless of the flow table. */
4472 if (in_band_msg_in_hook(p->in_band, &flow, &payload)) {
4473 union odp_action action;
4474
4475 memset(&action, 0, sizeof(action));
4476 action.output.type = ODPAT_OUTPUT;
4477 action.output.port = ODPP_LOCAL;
4478 dpif_execute(p->dpif, &action, 1, &payload);
4479 }
4480
4481 facet = facet_lookup_valid(p, &flow);
4482 if (!facet) {
4483 struct rule *rule = rule_lookup(p, &flow);
4484 if (!rule) {
4485 /* Don't send a packet-in if OFPPC_NO_PACKET_IN asserted. */
4486 struct ofport *port = get_port(p, msg->port);
4487 if (port) {
4488 if (port->opp.config & OFPPC_NO_PACKET_IN) {
4489 COVERAGE_INC(ofproto_no_packet_in);
4490 /* XXX install 'drop' flow entry */
4491 ofpbuf_delete(packet);
4492 return;
4493 }
4494 } else {
4495 VLOG_WARN_RL(&rl, "packet-in on unknown port %"PRIu16,
4496 msg->port);
4497 }
4498
4499 COVERAGE_INC(ofproto_packet_in);
4500 send_packet_in(p, packet);
4501 return;
4502 }
4503
4504 facet = facet_create(p, rule, &flow, packet);
4505 } else if (!facet->may_install) {
4506 /* The facet is not installable, that is, we need to process every
4507 * packet, so process the current packet's actions into 'facet'. */
4508 facet_make_actions(p, facet, packet);
4509 }
4510
4511 if (facet->rule->cr.priority == FAIL_OPEN_PRIORITY) {
4512 /*
4513 * Extra-special case for fail-open mode.
4514 *
4515 * We are in fail-open mode and the packet matched the fail-open rule,
4516 * but we are connected to a controller too. We should send the packet
4517 * up to the controller in the hope that it will try to set up a flow
4518 * and thereby allow us to exit fail-open.
4519 *
4520 * See the top-level comment in fail-open.c for more information.
4521 */
4522 send_packet_in(p, ofpbuf_clone_with_headroom(packet,
4523 DPIF_RECV_MSG_PADDING));
4524 }
4525
4526 ofpbuf_pull(packet, sizeof *msg);
4527 facet_execute(p, facet, packet);
4528 facet_install(p, facet, false);
4529 }
4530
4531 static void
4532 handle_odp_msg(struct ofproto *p, struct ofpbuf *packet)
4533 {
4534 struct odp_msg *msg = packet->data;
4535
4536 switch (msg->type) {
4537 case _ODPL_ACTION_NR:
4538 COVERAGE_INC(ofproto_ctlr_action);
4539 send_packet_in(p, packet);
4540 break;
4541
4542 case _ODPL_SFLOW_NR:
4543 if (p->sflow) {
4544 ofproto_sflow_received(p->sflow, msg);
4545 }
4546 ofpbuf_delete(packet);
4547 break;
4548
4549 case _ODPL_MISS_NR:
4550 handle_odp_miss_msg(p, packet);
4551 break;
4552
4553 default:
4554 VLOG_WARN_RL(&rl, "received ODP message of unexpected type %"PRIu32,
4555 msg->type);
4556 break;
4557 }
4558 }
4559 \f
4560 /* Flow expiration. */
4561
4562 static int ofproto_dp_max_idle(const struct ofproto *);
4563 static void ofproto_update_used(struct ofproto *);
4564 static void rule_expire(struct ofproto *, struct rule *);
4565 static void ofproto_expire_facets(struct ofproto *, int dp_max_idle);
4566
4567 /* This function is called periodically by ofproto_run(). Its job is to
4568 * collect updates for the flows that have been installed into the datapath,
4569 * most importantly when they last were used, and then use that information to
4570 * expire flows that have not been used recently.
4571 *
4572 * Returns the number of milliseconds after which it should be called again. */
4573 static int
4574 ofproto_expire(struct ofproto *ofproto)
4575 {
4576 struct rule *rule, *next_rule;
4577 struct cls_cursor cursor;
4578 int dp_max_idle;
4579
4580 /* Update 'used' for each flow in the datapath. */
4581 ofproto_update_used(ofproto);
4582
4583 /* Expire facets that have been idle too long. */
4584 dp_max_idle = ofproto_dp_max_idle(ofproto);
4585 ofproto_expire_facets(ofproto, dp_max_idle);
4586
4587 /* Expire OpenFlow flows whose idle_timeout or hard_timeout has passed. */
4588 cls_cursor_init(&cursor, &ofproto->cls, NULL);
4589 CLS_CURSOR_FOR_EACH_SAFE (rule, next_rule, cr, &cursor) {
4590 rule_expire(ofproto, rule);
4591 }
4592
4593 /* Let the hook know that we're at a stable point: all outstanding data
4594 * in existing flows has been accounted to the account_cb. Thus, the
4595 * hook can now reasonably do operations that depend on having accurate
4596 * flow volume accounting (currently, that's just bond rebalancing). */
4597 if (ofproto->ofhooks->account_checkpoint_cb) {
4598 ofproto->ofhooks->account_checkpoint_cb(ofproto->aux);
4599 }
4600
4601 return MIN(dp_max_idle, 1000);
4602 }
4603
4604 /* Update 'used' member of installed facets. */
4605 static void
4606 ofproto_update_used(struct ofproto *p)
4607 {
4608 struct odp_flow *flows;
4609 size_t n_flows;
4610 size_t i;
4611 int error;
4612
4613 error = dpif_flow_list_all(p->dpif, &flows, &n_flows);
4614 if (error) {
4615 return;
4616 }
4617
4618 for (i = 0; i < n_flows; i++) {
4619 struct odp_flow *f = &flows[i];
4620 struct facet *facet;
4621 struct flow flow;
4622
4623 odp_flow_key_to_flow(&f->key, &flow);
4624 facet = facet_find(p, &flow);
4625
4626 if (facet && facet->installed) {
4627 facet_update_time(p, facet, &f->stats);
4628 facet_account(p, facet, f->stats.n_bytes);
4629 } else {
4630 /* There's a flow in the datapath that we know nothing about.
4631 * Delete it. */
4632 COVERAGE_INC(ofproto_unexpected_rule);
4633 dpif_flow_del(p->dpif, f);
4634 }
4635
4636 }
4637 free(flows);
4638 }
4639
4640 /* Calculates and returns the number of milliseconds of idle time after which
4641 * facets should expire from the datapath and we should fold their statistics
4642 * into their parent rules in userspace. */
4643 static int
4644 ofproto_dp_max_idle(const struct ofproto *ofproto)
4645 {
4646 /*
4647 * Idle time histogram.
4648 *
4649 * Most of the time a switch has a relatively small number of facets. When
4650 * this is the case we might as well keep statistics for all of them in
4651 * userspace and to cache them in the kernel datapath for performance as
4652 * well.
4653 *
4654 * As the number of facets increases, the memory required to maintain
4655 * statistics about them in userspace and in the kernel becomes
4656 * significant. However, with a large number of facets it is likely that
4657 * only a few of them are "heavy hitters" that consume a large amount of
4658 * bandwidth. At this point, only heavy hitters are worth caching in the
4659 * kernel and maintaining in userspaces; other facets we can discard.
4660 *
4661 * The technique used to compute the idle time is to build a histogram with
4662 * N_BUCKETS buckets whose width is BUCKET_WIDTH msecs each. Each facet
4663 * that is installed in the kernel gets dropped in the appropriate bucket.
4664 * After the histogram has been built, we compute the cutoff so that only
4665 * the most-recently-used 1% of facets (but at least 1000 flows) are kept
4666 * cached. At least the most-recently-used bucket of facets is kept, so
4667 * actually an arbitrary number of facets can be kept in any given
4668 * expiration run (though the next run will delete most of those unless
4669 * they receive additional data).
4670 *
4671 * This requires a second pass through the facets, in addition to the pass
4672 * made by ofproto_update_used(), because the former function never looks
4673 * at uninstallable facets.
4674 */
4675 enum { BUCKET_WIDTH = ROUND_UP(100, TIME_UPDATE_INTERVAL) };
4676 enum { N_BUCKETS = 5000 / BUCKET_WIDTH };
4677 int buckets[N_BUCKETS] = { 0 };
4678 struct facet *facet;
4679 int total, bucket;
4680 long long int now;
4681 int i;
4682
4683 total = hmap_count(&ofproto->facets);
4684 if (total <= 1000) {
4685 return N_BUCKETS * BUCKET_WIDTH;
4686 }
4687
4688 /* Build histogram. */
4689 now = time_msec();
4690 HMAP_FOR_EACH (facet, hmap_node, &ofproto->facets) {
4691 long long int idle = now - facet->used;
4692 int bucket = (idle <= 0 ? 0
4693 : idle >= BUCKET_WIDTH * N_BUCKETS ? N_BUCKETS - 1
4694 : (unsigned int) idle / BUCKET_WIDTH);
4695 buckets[bucket]++;
4696 }
4697
4698 /* Find the first bucket whose flows should be expired. */
4699 for (bucket = 0; bucket < N_BUCKETS; bucket++) {
4700 if (buckets[bucket]) {
4701 int subtotal = 0;
4702 do {
4703 subtotal += buckets[bucket++];
4704 } while (bucket < N_BUCKETS && subtotal < MAX(1000, total / 100));
4705 break;
4706 }
4707 }
4708
4709 if (VLOG_IS_DBG_ENABLED()) {
4710 struct ds s;
4711
4712 ds_init(&s);
4713 ds_put_cstr(&s, "keep");
4714 for (i = 0; i < N_BUCKETS; i++) {
4715 if (i == bucket) {
4716 ds_put_cstr(&s, ", drop");
4717 }
4718 if (buckets[i]) {
4719 ds_put_format(&s, " %d:%d", i * BUCKET_WIDTH, buckets[i]);
4720 }
4721 }
4722 VLOG_INFO("%s: %s (msec:count)",
4723 dpif_name(ofproto->dpif), ds_cstr(&s));
4724 ds_destroy(&s);
4725 }
4726
4727 return bucket * BUCKET_WIDTH;
4728 }
4729
4730 static void
4731 facet_active_timeout(struct ofproto *ofproto, struct facet *facet)
4732 {
4733 if (ofproto->netflow && !facet_is_controller_flow(facet) &&
4734 netflow_active_timeout_expired(ofproto->netflow, &facet->nf_flow)) {
4735 struct ofexpired expired;
4736 struct odp_flow odp_flow;
4737
4738 /* Get updated flow stats.
4739 *
4740 * XXX We could avoid this call entirely if (1) ofproto_update_used()
4741 * updated TCP flags and (2) the dpif_flow_list_all() in
4742 * ofproto_update_used() zeroed TCP flags. */
4743 memset(&odp_flow, 0, sizeof odp_flow);
4744 if (facet->installed) {
4745 odp_flow_key_from_flow(&odp_flow.key, &facet->flow);
4746 odp_flow.flags = ODPFF_ZERO_TCP_FLAGS;
4747 dpif_flow_get(ofproto->dpif, &odp_flow);
4748
4749 if (odp_flow.stats.n_packets) {
4750 facet_update_time(ofproto, facet, &odp_flow.stats);
4751 netflow_flow_update_flags(&facet->nf_flow,
4752 odp_flow.stats.tcp_flags);
4753 }
4754 }
4755
4756 expired.flow = facet->flow;
4757 expired.packet_count = facet->packet_count +
4758 odp_flow.stats.n_packets;
4759 expired.byte_count = facet->byte_count + odp_flow.stats.n_bytes;
4760 expired.used = facet->used;
4761
4762 netflow_expire(ofproto->netflow, &facet->nf_flow, &expired);
4763 }
4764 }
4765
4766 static void
4767 ofproto_expire_facets(struct ofproto *ofproto, int dp_max_idle)
4768 {
4769 long long int cutoff = time_msec() - dp_max_idle;
4770 struct facet *facet, *next_facet;
4771
4772 HMAP_FOR_EACH_SAFE (facet, next_facet, hmap_node, &ofproto->facets) {
4773 facet_active_timeout(ofproto, facet);
4774 if (facet->used < cutoff) {
4775 facet_remove(ofproto, facet);
4776 }
4777 }
4778 }
4779
4780 /* If 'rule' is an OpenFlow rule, that has expired according to OpenFlow rules,
4781 * then delete it entirely. */
4782 static void
4783 rule_expire(struct ofproto *ofproto, struct rule *rule)
4784 {
4785 struct facet *facet, *next_facet;
4786 long long int now;
4787 uint8_t reason;
4788
4789 /* Has 'rule' expired? */
4790 now = time_msec();
4791 if (rule->hard_timeout
4792 && now > rule->created + rule->hard_timeout * 1000) {
4793 reason = OFPRR_HARD_TIMEOUT;
4794 } else if (rule->idle_timeout && list_is_empty(&rule->facets)
4795 && now >rule->used + rule->idle_timeout * 1000) {
4796 reason = OFPRR_IDLE_TIMEOUT;
4797 } else {
4798 return;
4799 }
4800
4801 COVERAGE_INC(ofproto_expired);
4802
4803 /* Update stats. (This is a no-op if the rule expired due to an idle
4804 * timeout, because that only happens when the rule has no facets left.) */
4805 LIST_FOR_EACH_SAFE (facet, next_facet, list_node, &rule->facets) {
4806 facet_remove(ofproto, facet);
4807 }
4808
4809 /* Get rid of the rule. */
4810 if (!rule_is_hidden(rule)) {
4811 rule_send_removed(ofproto, rule, reason);
4812 }
4813 rule_remove(ofproto, rule);
4814 }
4815 \f
4816 static struct ofpbuf *
4817 compose_ofp_flow_removed(struct ofconn *ofconn, const struct rule *rule,
4818 uint8_t reason)
4819 {
4820 struct ofp_flow_removed *ofr;
4821 struct ofpbuf *buf;
4822
4823 ofr = make_openflow(sizeof *ofr, OFPT_FLOW_REMOVED, &buf);
4824 ofputil_cls_rule_to_match(&rule->cr, ofconn->flow_format, &ofr->match);
4825 ofr->cookie = rule->flow_cookie;
4826 ofr->priority = htons(rule->cr.priority);
4827 ofr->reason = reason;
4828 calc_flow_duration(rule->created, &ofr->duration_sec, &ofr->duration_nsec);
4829 ofr->idle_timeout = htons(rule->idle_timeout);
4830 ofr->packet_count = htonll(rule->packet_count);
4831 ofr->byte_count = htonll(rule->byte_count);
4832
4833 return buf;
4834 }
4835
4836 static struct ofpbuf *
4837 compose_nx_flow_removed(const struct rule *rule, uint8_t reason)
4838 {
4839 struct nx_flow_removed *nfr;
4840 struct ofpbuf *buf;
4841 int match_len;
4842
4843 nfr = make_nxmsg(sizeof *nfr, NXT_FLOW_REMOVED, &buf);
4844
4845 match_len = nx_put_match(buf, &rule->cr);
4846
4847 nfr->cookie = rule->flow_cookie;
4848 nfr->priority = htons(rule->cr.priority);
4849 nfr->reason = reason;
4850 calc_flow_duration(rule->created, &nfr->duration_sec, &nfr->duration_nsec);
4851 nfr->idle_timeout = htons(rule->idle_timeout);
4852 nfr->match_len = htons(match_len);
4853 nfr->packet_count = htonll(rule->packet_count);
4854 nfr->byte_count = htonll(rule->byte_count);
4855
4856 return buf;
4857 }
4858
4859 static void
4860 rule_send_removed(struct ofproto *p, struct rule *rule, uint8_t reason)
4861 {
4862 struct ofconn *ofconn;
4863
4864 if (!rule->send_flow_removed) {
4865 return;
4866 }
4867
4868 LIST_FOR_EACH (ofconn, node, &p->all_conns) {
4869 struct ofpbuf *msg;
4870
4871 if (!rconn_is_connected(ofconn->rconn)
4872 || !ofconn_receives_async_msgs(ofconn)) {
4873 continue;
4874 }
4875
4876 msg = (ofconn->flow_format == NXFF_NXM
4877 ? compose_nx_flow_removed(rule, reason)
4878 : compose_ofp_flow_removed(ofconn, rule, reason));
4879
4880 /* Account flow expirations under ofconn->reply_counter, the counter
4881 * for replies to OpenFlow requests. That works because preventing
4882 * OpenFlow requests from being processed also prevents new flows from
4883 * being added (and expiring). (It also prevents processing OpenFlow
4884 * requests that would not add new flows, so it is imperfect.) */
4885 queue_tx(msg, ofconn, ofconn->reply_counter);
4886 }
4887 }
4888
4889 /* pinsched callback for sending 'packet' on 'ofconn'. */
4890 static void
4891 do_send_packet_in(struct ofpbuf *packet, void *ofconn_)
4892 {
4893 struct ofconn *ofconn = ofconn_;
4894
4895 rconn_send_with_limit(ofconn->rconn, packet,
4896 ofconn->packet_in_counter, 100);
4897 }
4898
4899 /* Takes 'packet', which has been converted with do_convert_to_packet_in(), and
4900 * finalizes its content for sending on 'ofconn', and passes it to 'ofconn''s
4901 * packet scheduler for sending.
4902 *
4903 * 'max_len' specifies the maximum number of bytes of the packet to send on
4904 * 'ofconn' (INT_MAX specifies no limit).
4905 *
4906 * If 'clone' is true, the caller retains ownership of 'packet'. Otherwise,
4907 * ownership is transferred to this function. */
4908 static void
4909 schedule_packet_in(struct ofconn *ofconn, struct ofpbuf *packet, int max_len,
4910 bool clone)
4911 {
4912 struct ofproto *ofproto = ofconn->ofproto;
4913 struct ofp_packet_in *opi = packet->data;
4914 uint16_t in_port = ofp_port_to_odp_port(ntohs(opi->in_port));
4915 int send_len, trim_size;
4916 uint32_t buffer_id;
4917
4918 /* Get buffer. */
4919 if (opi->reason == OFPR_ACTION) {
4920 buffer_id = UINT32_MAX;
4921 } else if (ofproto->fail_open && fail_open_is_active(ofproto->fail_open)) {
4922 buffer_id = pktbuf_get_null();
4923 } else if (!ofconn->pktbuf) {
4924 buffer_id = UINT32_MAX;
4925 } else {
4926 struct ofpbuf payload;
4927 payload.data = opi->data;
4928 payload.size = packet->size - offsetof(struct ofp_packet_in, data);
4929 buffer_id = pktbuf_save(ofconn->pktbuf, &payload, in_port);
4930 }
4931
4932 /* Figure out how much of the packet to send. */
4933 send_len = ntohs(opi->total_len);
4934 if (buffer_id != UINT32_MAX) {
4935 send_len = MIN(send_len, ofconn->miss_send_len);
4936 }
4937 send_len = MIN(send_len, max_len);
4938
4939 /* Adjust packet length and clone if necessary. */
4940 trim_size = offsetof(struct ofp_packet_in, data) + send_len;
4941 if (clone) {
4942 packet = ofpbuf_clone_data(packet->data, trim_size);
4943 opi = packet->data;
4944 } else {
4945 packet->size = trim_size;
4946 }
4947
4948 /* Update packet headers. */
4949 opi->buffer_id = htonl(buffer_id);
4950 update_openflow_length(packet);
4951
4952 /* Hand over to packet scheduler. It might immediately call into
4953 * do_send_packet_in() or it might buffer it for a while (until a later
4954 * call to pinsched_run()). */
4955 pinsched_send(ofconn->schedulers[opi->reason], in_port,
4956 packet, do_send_packet_in, ofconn);
4957 }
4958
4959 /* Replace struct odp_msg header in 'packet' by equivalent struct
4960 * ofp_packet_in. The odp_msg must have sufficient headroom to do so (e.g. as
4961 * returned by dpif_recv()).
4962 *
4963 * The conversion is not complete: the caller still needs to trim any unneeded
4964 * payload off the end of the buffer, set the length in the OpenFlow header,
4965 * and set buffer_id. Those require us to know the controller settings and so
4966 * must be done on a per-controller basis.
4967 *
4968 * Returns the maximum number of bytes of the packet that should be sent to
4969 * the controller (INT_MAX if no limit). */
4970 static int
4971 do_convert_to_packet_in(struct ofpbuf *packet)
4972 {
4973 struct odp_msg *msg = packet->data;
4974 struct ofp_packet_in *opi;
4975 uint8_t reason;
4976 uint16_t total_len;
4977 uint16_t in_port;
4978 int max_len;
4979
4980 /* Extract relevant header fields */
4981 if (msg->type == _ODPL_ACTION_NR) {
4982 reason = OFPR_ACTION;
4983 max_len = msg->arg;
4984 } else {
4985 reason = OFPR_NO_MATCH;
4986 max_len = INT_MAX;
4987 }
4988 total_len = msg->length - sizeof *msg;
4989 in_port = odp_port_to_ofp_port(msg->port);
4990
4991 /* Repurpose packet buffer by overwriting header. */
4992 ofpbuf_pull(packet, sizeof(struct odp_msg));
4993 opi = ofpbuf_push_zeros(packet, offsetof(struct ofp_packet_in, data));
4994 opi->header.version = OFP_VERSION;
4995 opi->header.type = OFPT_PACKET_IN;
4996 opi->total_len = htons(total_len);
4997 opi->in_port = htons(in_port);
4998 opi->reason = reason;
4999
5000 return max_len;
5001 }
5002
5003 /* Given 'packet' containing an odp_msg of type _ODPL_ACTION_NR or
5004 * _ODPL_MISS_NR, sends an OFPT_PACKET_IN message to each OpenFlow controller
5005 * as necessary according to their individual configurations.
5006 *
5007 * 'packet' must have sufficient headroom to convert it into a struct
5008 * ofp_packet_in (e.g. as returned by dpif_recv()).
5009 *
5010 * Takes ownership of 'packet'. */
5011 static void
5012 send_packet_in(struct ofproto *ofproto, struct ofpbuf *packet)
5013 {
5014 struct ofconn *ofconn, *prev;
5015 int max_len;
5016
5017 max_len = do_convert_to_packet_in(packet);
5018
5019 prev = NULL;
5020 LIST_FOR_EACH (ofconn, node, &ofproto->all_conns) {
5021 if (ofconn_receives_async_msgs(ofconn)) {
5022 if (prev) {
5023 schedule_packet_in(prev, packet, max_len, true);
5024 }
5025 prev = ofconn;
5026 }
5027 }
5028 if (prev) {
5029 schedule_packet_in(prev, packet, max_len, false);
5030 } else {
5031 ofpbuf_delete(packet);
5032 }
5033 }
5034
5035 static uint64_t
5036 pick_datapath_id(const struct ofproto *ofproto)
5037 {
5038 const struct ofport *port;
5039
5040 port = get_port(ofproto, ODPP_LOCAL);
5041 if (port) {
5042 uint8_t ea[ETH_ADDR_LEN];
5043 int error;
5044
5045 error = netdev_get_etheraddr(port->netdev, ea);
5046 if (!error) {
5047 return eth_addr_to_uint64(ea);
5048 }
5049 VLOG_WARN("could not get MAC address for %s (%s)",
5050 netdev_get_name(port->netdev), strerror(error));
5051 }
5052 return ofproto->fallback_dpid;
5053 }
5054
5055 static uint64_t
5056 pick_fallback_dpid(void)
5057 {
5058 uint8_t ea[ETH_ADDR_LEN];
5059 eth_addr_nicira_random(ea);
5060 return eth_addr_to_uint64(ea);
5061 }
5062 \f
5063 static bool
5064 default_normal_ofhook_cb(const struct flow *flow, const struct ofpbuf *packet,
5065 struct odp_actions *actions, tag_type *tags,
5066 uint16_t *nf_output_iface, void *ofproto_)
5067 {
5068 struct ofproto *ofproto = ofproto_;
5069 int out_port;
5070
5071 /* Drop frames for reserved multicast addresses. */
5072 if (eth_addr_is_reserved(flow->dl_dst)) {
5073 return true;
5074 }
5075
5076 /* Learn source MAC (but don't try to learn from revalidation). */
5077 if (packet != NULL) {
5078 tag_type rev_tag = mac_learning_learn(ofproto->ml, flow->dl_src,
5079 0, flow->in_port,
5080 GRAT_ARP_LOCK_NONE);
5081 if (rev_tag) {
5082 /* The log messages here could actually be useful in debugging,
5083 * so keep the rate limit relatively high. */
5084 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(30, 300);
5085 VLOG_DBG_RL(&rl, "learned that "ETH_ADDR_FMT" is on port %"PRIu16,
5086 ETH_ADDR_ARGS(flow->dl_src), flow->in_port);
5087 ofproto_revalidate(ofproto, rev_tag);
5088 }
5089 }
5090
5091 /* Determine output port. */
5092 out_port = mac_learning_lookup_tag(ofproto->ml, flow->dl_dst, 0, tags,
5093 NULL);
5094 if (out_port < 0) {
5095 flood_packets(ofproto, flow->in_port, OFPPC_NO_FLOOD,
5096 nf_output_iface, actions);
5097 } else if (out_port != flow->in_port) {
5098 odp_actions_add(actions, ODPAT_OUTPUT)->output.port = out_port;
5099 *nf_output_iface = out_port;
5100 } else {
5101 /* Drop. */
5102 }
5103
5104 return true;
5105 }
5106
5107 static const struct ofhooks default_ofhooks = {
5108 default_normal_ofhook_cb,
5109 NULL,
5110 NULL
5111 };