]> git.proxmox.com Git - mirror_ovs.git/blob - ofproto/ofproto.c
d3912c17b638483db56740f5677e9da3852a9542
[mirror_ovs.git] / ofproto / ofproto.c
1 /*
2 * Copyright (c) 2009, 2010 Nicira Networks.
3 * Copyright (c) 2010 Jean Tourrilhes - HP-Labs.
4 *
5 * Licensed under the Apache License, Version 2.0 (the "License");
6 * you may not use this file except in compliance with the License.
7 * You may obtain a copy of the License at:
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17
18 #include <config.h>
19 #include "ofproto.h"
20 #include <errno.h>
21 #include <inttypes.h>
22 #include <sys/socket.h>
23 #include <net/if.h>
24 #include <netinet/in.h>
25 #include <stdbool.h>
26 #include <stdlib.h>
27 #include "classifier.h"
28 #include "coverage.h"
29 #include "discovery.h"
30 #include "dpif.h"
31 #include "dynamic-string.h"
32 #include "fail-open.h"
33 #include "in-band.h"
34 #include "mac-learning.h"
35 #include "netdev.h"
36 #include "netflow.h"
37 #include "odp-util.h"
38 #include "ofp-print.h"
39 #include "ofp-util.h"
40 #include "ofproto-sflow.h"
41 #include "ofpbuf.h"
42 #include "openflow/nicira-ext.h"
43 #include "openflow/openflow.h"
44 #include "openvswitch/datapath-protocol.h"
45 #include "packets.h"
46 #include "pinsched.h"
47 #include "pktbuf.h"
48 #include "poll-loop.h"
49 #include "port-array.h"
50 #include "rconn.h"
51 #include "shash.h"
52 #include "status.h"
53 #include "stp.h"
54 #include "stream-ssl.h"
55 #include "svec.h"
56 #include "tag.h"
57 #include "timeval.h"
58 #include "unixctl.h"
59 #include "vconn.h"
60 #include "vlog.h"
61 #include "xtoxll.h"
62
63 VLOG_DEFINE_THIS_MODULE(ofproto)
64
65 #include "sflow_api.h"
66
67 enum {
68 TABLEID_HASH = 0,
69 TABLEID_CLASSIFIER = 1
70 };
71
72 struct ofport {
73 struct netdev *netdev;
74 struct ofp_phy_port opp; /* In host byte order. */
75 };
76
77 static void ofport_free(struct ofport *);
78 static void hton_ofp_phy_port(struct ofp_phy_port *);
79
80 static int xlate_actions(const union ofp_action *in, size_t n_in,
81 const flow_t *flow, struct ofproto *ofproto,
82 const struct ofpbuf *packet,
83 struct odp_actions *out, tag_type *tags,
84 bool *may_set_up_flow, uint16_t *nf_output_iface);
85
86 struct rule {
87 struct cls_rule cr;
88
89 uint64_t flow_cookie; /* Controller-issued identifier.
90 (Kept in network-byte order.) */
91 uint16_t idle_timeout; /* In seconds from time of last use. */
92 uint16_t hard_timeout; /* In seconds from time of creation. */
93 bool send_flow_removed; /* Send a flow removed message? */
94 long long int used; /* Last-used time (0 if never used). */
95 long long int created; /* Creation time. */
96 uint64_t packet_count; /* Number of packets received. */
97 uint64_t byte_count; /* Number of bytes received. */
98 uint64_t accounted_bytes; /* Number of bytes passed to account_cb. */
99 tag_type tags; /* Tags (set only by hooks). */
100 struct netflow_flow nf_flow; /* Per-flow NetFlow tracking data. */
101
102 /* If 'super' is non-NULL, this rule is a subrule, that is, it is an
103 * exact-match rule (having cr.wc.wildcards of 0) generated from the
104 * wildcard rule 'super'. In this case, 'list' is an element of the
105 * super-rule's list.
106 *
107 * If 'super' is NULL, this rule is a super-rule, and 'list' is the head of
108 * a list of subrules. A super-rule with no wildcards (where
109 * cr.wc.wildcards is 0) will never have any subrules. */
110 struct rule *super;
111 struct list list;
112
113 /* OpenFlow actions.
114 *
115 * 'n_actions' is the number of elements in the 'actions' array. A single
116 * action may take up more more than one element's worth of space.
117 *
118 * A subrule has no actions (it uses the super-rule's actions). */
119 int n_actions;
120 union ofp_action *actions;
121
122 /* Datapath actions.
123 *
124 * A super-rule with wildcard fields never has ODP actions (since the
125 * datapath only supports exact-match flows). */
126 bool installed; /* Installed in datapath? */
127 bool may_install; /* True ordinarily; false if actions must
128 * be reassessed for every packet. */
129 int n_odp_actions;
130 union odp_action *odp_actions;
131 };
132
133 static inline bool
134 rule_is_hidden(const struct rule *rule)
135 {
136 /* Subrules are merely an implementation detail, so hide them from the
137 * controller. */
138 if (rule->super != NULL) {
139 return true;
140 }
141
142 /* Rules with priority higher than UINT16_MAX are set up by ofproto itself
143 * (e.g. by in-band control) and are intentionally hidden from the
144 * controller. */
145 if (rule->cr.priority > UINT16_MAX) {
146 return true;
147 }
148
149 return false;
150 }
151
152 static struct rule *rule_create(struct ofproto *, struct rule *super,
153 const union ofp_action *, size_t n_actions,
154 uint16_t idle_timeout, uint16_t hard_timeout,
155 uint64_t flow_cookie, bool send_flow_removed);
156 static void rule_free(struct rule *);
157 static void rule_destroy(struct ofproto *, struct rule *);
158 static struct rule *rule_from_cls_rule(const struct cls_rule *);
159 static void rule_insert(struct ofproto *, struct rule *,
160 struct ofpbuf *packet, uint16_t in_port);
161 static void rule_remove(struct ofproto *, struct rule *);
162 static bool rule_make_actions(struct ofproto *, struct rule *,
163 const struct ofpbuf *packet);
164 static void rule_install(struct ofproto *, struct rule *,
165 struct rule *displaced_rule);
166 static void rule_uninstall(struct ofproto *, struct rule *);
167 static void rule_post_uninstall(struct ofproto *, struct rule *);
168 static void send_flow_removed(struct ofproto *p, struct rule *rule,
169 long long int now, uint8_t reason);
170
171 /* ofproto supports two kinds of OpenFlow connections:
172 *
173 * - "Controller connections": Connections to ordinary OpenFlow controllers.
174 * ofproto maintains persistent connections to these controllers and by
175 * default sends them asynchronous messages such as packet-ins.
176 *
177 * - "Transient connections", e.g. from ovs-ofctl. When these connections
178 * drop, it is the other side's responsibility to reconnect them if
179 * necessary. ofproto does not send them asynchronous messages by default.
180 */
181 enum ofconn_type {
182 OFCONN_CONTROLLER, /* An OpenFlow controller. */
183 OFCONN_TRANSIENT /* A transient connection. */
184 };
185
186 /* An OpenFlow connection. */
187 struct ofconn {
188 struct ofproto *ofproto; /* The ofproto that owns this connection. */
189 struct list node; /* In struct ofproto's "all_conns" list. */
190 struct rconn *rconn; /* OpenFlow connection. */
191 enum ofconn_type type; /* Type. */
192
193 /* OFPT_PACKET_IN related data. */
194 struct rconn_packet_counter *packet_in_counter; /* # queued on 'rconn'. */
195 struct pinsched *schedulers[2]; /* Indexed by reason code; see below. */
196 struct pktbuf *pktbuf; /* OpenFlow packet buffers. */
197 int miss_send_len; /* Bytes to send of buffered packets. */
198
199 /* Number of OpenFlow messages queued on 'rconn' as replies to OpenFlow
200 * requests, and the maximum number before we stop reading OpenFlow
201 * requests. */
202 #define OFCONN_REPLY_MAX 100
203 struct rconn_packet_counter *reply_counter;
204
205 /* type == OFCONN_CONTROLLER only. */
206 enum nx_role role; /* Role. */
207 struct hmap_node hmap_node; /* In struct ofproto's "controllers" map. */
208 struct discovery *discovery; /* Controller discovery object, if enabled. */
209 struct status_category *ss; /* Switch status category. */
210 enum ofproto_band band; /* In-band or out-of-band? */
211 };
212
213 /* We use OFPR_NO_MATCH and OFPR_ACTION as indexes into struct ofconn's
214 * "schedulers" array. Their values are 0 and 1, and their meanings and values
215 * coincide with _ODPL_MISS_NR and _ODPL_ACTION_NR, so this is convenient. In
216 * case anything ever changes, check their values here. */
217 #define N_SCHEDULERS 2
218 BUILD_ASSERT_DECL(OFPR_NO_MATCH == 0);
219 BUILD_ASSERT_DECL(OFPR_NO_MATCH == _ODPL_MISS_NR);
220 BUILD_ASSERT_DECL(OFPR_ACTION == 1);
221 BUILD_ASSERT_DECL(OFPR_ACTION == _ODPL_ACTION_NR);
222
223 static struct ofconn *ofconn_create(struct ofproto *, struct rconn *,
224 enum ofconn_type);
225 static void ofconn_destroy(struct ofconn *);
226 static void ofconn_run(struct ofconn *, struct ofproto *);
227 static void ofconn_wait(struct ofconn *);
228 static bool ofconn_receives_async_msgs(const struct ofconn *);
229 static char *ofconn_make_name(const struct ofproto *, const char *target);
230
231 static void queue_tx(struct ofpbuf *msg, const struct ofconn *ofconn,
232 struct rconn_packet_counter *counter);
233
234 static void send_packet_in(struct ofproto *, struct ofpbuf *odp_msg);
235 static void do_send_packet_in(struct ofpbuf *odp_msg, void *ofconn);
236
237 struct ofproto {
238 /* Settings. */
239 uint64_t datapath_id; /* Datapath ID. */
240 uint64_t fallback_dpid; /* Datapath ID if no better choice found. */
241 char *mfr_desc; /* Manufacturer. */
242 char *hw_desc; /* Hardware. */
243 char *sw_desc; /* Software version. */
244 char *serial_desc; /* Serial number. */
245 char *dp_desc; /* Datapath description. */
246
247 /* Datapath. */
248 struct dpif *dpif;
249 struct netdev_monitor *netdev_monitor;
250 struct port_array ports; /* Index is ODP port nr; ofport->opp.port_no is
251 * OFP port nr. */
252 struct shash port_by_name;
253 uint32_t max_ports;
254
255 /* Configuration. */
256 struct switch_status *switch_status;
257 struct fail_open *fail_open;
258 struct netflow *netflow;
259 struct ofproto_sflow *sflow;
260
261 /* In-band control. */
262 struct in_band *in_band;
263 long long int next_in_band_update;
264 struct sockaddr_in *extra_in_band_remotes;
265 size_t n_extra_remotes;
266
267 /* Flow table. */
268 struct classifier cls;
269 bool need_revalidate;
270 long long int next_expiration;
271 struct tag_set revalidate_set;
272 bool tun_id_from_cookie;
273
274 /* OpenFlow connections. */
275 struct hmap controllers; /* Controller "struct ofconn"s. */
276 struct list all_conns; /* Contains "struct ofconn"s. */
277 enum ofproto_fail_mode fail_mode;
278 struct pvconn **listeners;
279 size_t n_listeners;
280 struct pvconn **snoops;
281 size_t n_snoops;
282
283 /* Hooks for ovs-vswitchd. */
284 const struct ofhooks *ofhooks;
285 void *aux;
286
287 /* Used by default ofhooks. */
288 struct mac_learning *ml;
289 };
290
291 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
292
293 static const struct ofhooks default_ofhooks;
294
295 static uint64_t pick_datapath_id(const struct ofproto *);
296 static uint64_t pick_fallback_dpid(void);
297
298 static void update_used(struct ofproto *);
299 static void update_stats(struct ofproto *, struct rule *,
300 const struct odp_flow_stats *);
301 static void expire_rule(struct cls_rule *, void *ofproto);
302 static void active_timeout(struct ofproto *ofproto, struct rule *rule);
303 static bool revalidate_rule(struct ofproto *p, struct rule *rule);
304 static void revalidate_cb(struct cls_rule *rule_, void *p_);
305
306 static void handle_odp_msg(struct ofproto *, struct ofpbuf *);
307
308 static void handle_openflow(struct ofconn *, struct ofproto *,
309 struct ofpbuf *);
310
311 static void refresh_port_groups(struct ofproto *);
312
313 static void update_port(struct ofproto *, const char *devname);
314 static int init_ports(struct ofproto *);
315 static void reinit_ports(struct ofproto *);
316
317 int
318 ofproto_create(const char *datapath, const char *datapath_type,
319 const struct ofhooks *ofhooks, void *aux,
320 struct ofproto **ofprotop)
321 {
322 struct odp_stats stats;
323 struct ofproto *p;
324 struct dpif *dpif;
325 int error;
326
327 *ofprotop = NULL;
328
329 /* Connect to datapath and start listening for messages. */
330 error = dpif_open(datapath, datapath_type, &dpif);
331 if (error) {
332 VLOG_ERR("failed to open datapath %s: %s", datapath, strerror(error));
333 return error;
334 }
335 error = dpif_get_dp_stats(dpif, &stats);
336 if (error) {
337 VLOG_ERR("failed to obtain stats for datapath %s: %s",
338 datapath, strerror(error));
339 dpif_close(dpif);
340 return error;
341 }
342 error = dpif_recv_set_mask(dpif, ODPL_MISS | ODPL_ACTION | ODPL_SFLOW);
343 if (error) {
344 VLOG_ERR("failed to listen on datapath %s: %s",
345 datapath, strerror(error));
346 dpif_close(dpif);
347 return error;
348 }
349 dpif_flow_flush(dpif);
350 dpif_recv_purge(dpif);
351
352 /* Initialize settings. */
353 p = xzalloc(sizeof *p);
354 p->fallback_dpid = pick_fallback_dpid();
355 p->datapath_id = p->fallback_dpid;
356 p->mfr_desc = xstrdup(DEFAULT_MFR_DESC);
357 p->hw_desc = xstrdup(DEFAULT_HW_DESC);
358 p->sw_desc = xstrdup(DEFAULT_SW_DESC);
359 p->serial_desc = xstrdup(DEFAULT_SERIAL_DESC);
360 p->dp_desc = xstrdup(DEFAULT_DP_DESC);
361
362 /* Initialize datapath. */
363 p->dpif = dpif;
364 p->netdev_monitor = netdev_monitor_create();
365 port_array_init(&p->ports);
366 shash_init(&p->port_by_name);
367 p->max_ports = stats.max_ports;
368
369 /* Initialize submodules. */
370 p->switch_status = switch_status_create(p);
371 p->in_band = NULL;
372 p->fail_open = NULL;
373 p->netflow = NULL;
374 p->sflow = NULL;
375
376 /* Initialize flow table. */
377 classifier_init(&p->cls);
378 p->need_revalidate = false;
379 p->next_expiration = time_msec() + 1000;
380 tag_set_init(&p->revalidate_set);
381
382 /* Initialize OpenFlow connections. */
383 list_init(&p->all_conns);
384 hmap_init(&p->controllers);
385 p->listeners = NULL;
386 p->n_listeners = 0;
387 p->snoops = NULL;
388 p->n_snoops = 0;
389
390 /* Initialize hooks. */
391 if (ofhooks) {
392 p->ofhooks = ofhooks;
393 p->aux = aux;
394 p->ml = NULL;
395 } else {
396 p->ofhooks = &default_ofhooks;
397 p->aux = p;
398 p->ml = mac_learning_create();
399 }
400
401 /* Pick final datapath ID. */
402 p->datapath_id = pick_datapath_id(p);
403 VLOG_INFO("using datapath ID %016"PRIx64, p->datapath_id);
404
405 *ofprotop = p;
406 return 0;
407 }
408
409 void
410 ofproto_set_datapath_id(struct ofproto *p, uint64_t datapath_id)
411 {
412 uint64_t old_dpid = p->datapath_id;
413 p->datapath_id = datapath_id ? datapath_id : pick_datapath_id(p);
414 if (p->datapath_id != old_dpid) {
415 VLOG_INFO("datapath ID changed to %016"PRIx64, p->datapath_id);
416
417 /* Force all active connections to reconnect, since there is no way to
418 * notify a controller that the datapath ID has changed. */
419 ofproto_reconnect_controllers(p);
420 }
421 }
422
423 static bool
424 is_discovery_controller(const struct ofproto_controller *c)
425 {
426 return !strcmp(c->target, "discover");
427 }
428
429 static bool
430 is_in_band_controller(const struct ofproto_controller *c)
431 {
432 return is_discovery_controller(c) || c->band == OFPROTO_IN_BAND;
433 }
434
435 /* Creates a new controller in 'ofproto'. Some of the settings are initially
436 * drawn from 'c', but update_controller() needs to be called later to finish
437 * the new ofconn's configuration. */
438 static void
439 add_controller(struct ofproto *ofproto, const struct ofproto_controller *c)
440 {
441 struct discovery *discovery;
442 struct ofconn *ofconn;
443
444 if (is_discovery_controller(c)) {
445 int error = discovery_create(c->accept_re, c->update_resolv_conf,
446 ofproto->dpif, ofproto->switch_status,
447 &discovery);
448 if (error) {
449 return;
450 }
451 } else {
452 discovery = NULL;
453 }
454
455 ofconn = ofconn_create(ofproto, rconn_create(5, 8), OFCONN_CONTROLLER);
456 ofconn->pktbuf = pktbuf_create();
457 ofconn->miss_send_len = OFP_DEFAULT_MISS_SEND_LEN;
458 if (discovery) {
459 ofconn->discovery = discovery;
460 } else {
461 char *name = ofconn_make_name(ofproto, c->target);
462 rconn_connect(ofconn->rconn, c->target, name);
463 free(name);
464 }
465 hmap_insert(&ofproto->controllers, &ofconn->hmap_node,
466 hash_string(c->target, 0));
467 }
468
469 /* Reconfigures 'ofconn' to match 'c'. This function cannot update an ofconn's
470 * target or turn discovery on or off (these are done by creating new ofconns
471 * and deleting old ones), but it can update the rest of an ofconn's
472 * settings. */
473 static void
474 update_controller(struct ofconn *ofconn, const struct ofproto_controller *c)
475 {
476 struct ofproto *ofproto = ofconn->ofproto;
477 int probe_interval;
478 int i;
479
480 ofconn->band = (is_in_band_controller(c)
481 ? OFPROTO_IN_BAND : OFPROTO_OUT_OF_BAND);
482
483 rconn_set_max_backoff(ofconn->rconn, c->max_backoff);
484
485 probe_interval = c->probe_interval ? MAX(c->probe_interval, 5) : 0;
486 rconn_set_probe_interval(ofconn->rconn, probe_interval);
487
488 if (ofconn->discovery) {
489 discovery_set_update_resolv_conf(ofconn->discovery,
490 c->update_resolv_conf);
491 discovery_set_accept_controller_re(ofconn->discovery, c->accept_re);
492 }
493
494 for (i = 0; i < N_SCHEDULERS; i++) {
495 struct pinsched **s = &ofconn->schedulers[i];
496
497 if (c->rate_limit > 0) {
498 if (!*s) {
499 *s = pinsched_create(c->rate_limit, c->burst_limit,
500 ofproto->switch_status);
501 } else {
502 pinsched_set_limits(*s, c->rate_limit, c->burst_limit);
503 }
504 } else {
505 pinsched_destroy(*s);
506 *s = NULL;
507 }
508 }
509 }
510
511 static const char *
512 ofconn_get_target(const struct ofconn *ofconn)
513 {
514 return ofconn->discovery ? "discover" : rconn_get_target(ofconn->rconn);
515 }
516
517 static struct ofconn *
518 find_controller_by_target(struct ofproto *ofproto, const char *target)
519 {
520 struct ofconn *ofconn;
521
522 HMAP_FOR_EACH_WITH_HASH (ofconn, struct ofconn, hmap_node,
523 hash_string(target, 0), &ofproto->controllers) {
524 if (!strcmp(ofconn_get_target(ofconn), target)) {
525 return ofconn;
526 }
527 }
528 return NULL;
529 }
530
531 static void
532 update_in_band_remotes(struct ofproto *ofproto)
533 {
534 const struct ofconn *ofconn;
535 struct sockaddr_in *addrs;
536 size_t max_addrs, n_addrs;
537 bool discovery;
538 size_t i;
539
540 /* Allocate enough memory for as many remotes as we could possibly have. */
541 max_addrs = ofproto->n_extra_remotes + hmap_count(&ofproto->controllers);
542 addrs = xmalloc(max_addrs * sizeof *addrs);
543 n_addrs = 0;
544
545 /* Add all the remotes. */
546 discovery = false;
547 HMAP_FOR_EACH (ofconn, struct ofconn, hmap_node, &ofproto->controllers) {
548 struct sockaddr_in *sin = &addrs[n_addrs];
549
550 if (ofconn->band == OFPROTO_OUT_OF_BAND) {
551 continue;
552 }
553
554 sin->sin_addr.s_addr = rconn_get_remote_ip(ofconn->rconn);
555 if (sin->sin_addr.s_addr) {
556 sin->sin_port = rconn_get_remote_port(ofconn->rconn);
557 n_addrs++;
558 }
559 if (ofconn->discovery) {
560 discovery = true;
561 }
562 }
563 for (i = 0; i < ofproto->n_extra_remotes; i++) {
564 addrs[n_addrs++] = ofproto->extra_in_band_remotes[i];
565 }
566
567 /* Create or update or destroy in-band.
568 *
569 * Ordinarily we only enable in-band if there's at least one remote
570 * address, but discovery needs the in-band rules for DHCP to be installed
571 * even before we know any remote addresses. */
572 if (n_addrs || discovery) {
573 if (!ofproto->in_band) {
574 in_band_create(ofproto, ofproto->dpif, ofproto->switch_status,
575 &ofproto->in_band);
576 }
577 if (ofproto->in_band) {
578 in_band_set_remotes(ofproto->in_band, addrs, n_addrs);
579 }
580 ofproto->next_in_band_update = time_msec() + 1000;
581 } else {
582 in_band_destroy(ofproto->in_band);
583 ofproto->in_band = NULL;
584 }
585
586 /* Clean up. */
587 free(addrs);
588 }
589
590 static void
591 update_fail_open(struct ofproto *p)
592 {
593 struct ofconn *ofconn;
594
595 if (!hmap_is_empty(&p->controllers)
596 && p->fail_mode == OFPROTO_FAIL_STANDALONE) {
597 struct rconn **rconns;
598 size_t n;
599
600 if (!p->fail_open) {
601 p->fail_open = fail_open_create(p, p->switch_status);
602 }
603
604 n = 0;
605 rconns = xmalloc(hmap_count(&p->controllers) * sizeof *rconns);
606 HMAP_FOR_EACH (ofconn, struct ofconn, hmap_node, &p->controllers) {
607 rconns[n++] = ofconn->rconn;
608 }
609
610 fail_open_set_controllers(p->fail_open, rconns, n);
611 /* p->fail_open takes ownership of 'rconns'. */
612 } else {
613 fail_open_destroy(p->fail_open);
614 p->fail_open = NULL;
615 }
616 }
617
618 void
619 ofproto_set_controllers(struct ofproto *p,
620 const struct ofproto_controller *controllers,
621 size_t n_controllers)
622 {
623 struct shash new_controllers;
624 struct ofconn *ofconn, *next;
625 bool ss_exists;
626 size_t i;
627
628 shash_init(&new_controllers);
629 for (i = 0; i < n_controllers; i++) {
630 const struct ofproto_controller *c = &controllers[i];
631
632 shash_add_once(&new_controllers, c->target, &controllers[i]);
633 if (!find_controller_by_target(p, c->target)) {
634 add_controller(p, c);
635 }
636 }
637
638 ss_exists = false;
639 HMAP_FOR_EACH_SAFE (ofconn, next, struct ofconn, hmap_node,
640 &p->controllers) {
641 struct ofproto_controller *c;
642
643 c = shash_find_data(&new_controllers, ofconn_get_target(ofconn));
644 if (!c) {
645 ofconn_destroy(ofconn);
646 } else {
647 update_controller(ofconn, c);
648 if (ofconn->ss) {
649 ss_exists = true;
650 }
651 }
652 }
653 shash_destroy(&new_controllers);
654
655 update_in_band_remotes(p);
656
657 update_fail_open(p);
658
659 if (!hmap_is_empty(&p->controllers) && !ss_exists) {
660 ofconn = CONTAINER_OF(hmap_first(&p->controllers),
661 struct ofconn, hmap_node);
662 ofconn->ss = switch_status_register(p->switch_status, "remote",
663 rconn_status_cb, ofconn->rconn);
664 }
665 }
666
667 void
668 ofproto_set_fail_mode(struct ofproto *p, enum ofproto_fail_mode fail_mode)
669 {
670 p->fail_mode = fail_mode;
671 update_fail_open(p);
672 }
673
674 /* Drops the connections between 'ofproto' and all of its controllers, forcing
675 * them to reconnect. */
676 void
677 ofproto_reconnect_controllers(struct ofproto *ofproto)
678 {
679 struct ofconn *ofconn;
680
681 LIST_FOR_EACH (ofconn, struct ofconn, node, &ofproto->all_conns) {
682 rconn_reconnect(ofconn->rconn);
683 }
684 }
685
686 static bool
687 any_extras_changed(const struct ofproto *ofproto,
688 const struct sockaddr_in *extras, size_t n)
689 {
690 size_t i;
691
692 if (n != ofproto->n_extra_remotes) {
693 return true;
694 }
695
696 for (i = 0; i < n; i++) {
697 const struct sockaddr_in *old = &ofproto->extra_in_band_remotes[i];
698 const struct sockaddr_in *new = &extras[i];
699
700 if (old->sin_addr.s_addr != new->sin_addr.s_addr ||
701 old->sin_port != new->sin_port) {
702 return true;
703 }
704 }
705
706 return false;
707 }
708
709 /* Sets the 'n' TCP port addresses in 'extras' as ones to which 'ofproto''s
710 * in-band control should guarantee access, in the same way that in-band
711 * control guarantees access to OpenFlow controllers. */
712 void
713 ofproto_set_extra_in_band_remotes(struct ofproto *ofproto,
714 const struct sockaddr_in *extras, size_t n)
715 {
716 if (!any_extras_changed(ofproto, extras, n)) {
717 return;
718 }
719
720 free(ofproto->extra_in_band_remotes);
721 ofproto->n_extra_remotes = n;
722 ofproto->extra_in_band_remotes = xmemdup(extras, n * sizeof *extras);
723
724 update_in_band_remotes(ofproto);
725 }
726
727 void
728 ofproto_set_desc(struct ofproto *p,
729 const char *mfr_desc, const char *hw_desc,
730 const char *sw_desc, const char *serial_desc,
731 const char *dp_desc)
732 {
733 struct ofp_desc_stats *ods;
734
735 if (mfr_desc) {
736 if (strlen(mfr_desc) >= sizeof ods->mfr_desc) {
737 VLOG_WARN("truncating mfr_desc, must be less than %zu characters",
738 sizeof ods->mfr_desc);
739 }
740 free(p->mfr_desc);
741 p->mfr_desc = xstrdup(mfr_desc);
742 }
743 if (hw_desc) {
744 if (strlen(hw_desc) >= sizeof ods->hw_desc) {
745 VLOG_WARN("truncating hw_desc, must be less than %zu characters",
746 sizeof ods->hw_desc);
747 }
748 free(p->hw_desc);
749 p->hw_desc = xstrdup(hw_desc);
750 }
751 if (sw_desc) {
752 if (strlen(sw_desc) >= sizeof ods->sw_desc) {
753 VLOG_WARN("truncating sw_desc, must be less than %zu characters",
754 sizeof ods->sw_desc);
755 }
756 free(p->sw_desc);
757 p->sw_desc = xstrdup(sw_desc);
758 }
759 if (serial_desc) {
760 if (strlen(serial_desc) >= sizeof ods->serial_num) {
761 VLOG_WARN("truncating serial_desc, must be less than %zu "
762 "characters",
763 sizeof ods->serial_num);
764 }
765 free(p->serial_desc);
766 p->serial_desc = xstrdup(serial_desc);
767 }
768 if (dp_desc) {
769 if (strlen(dp_desc) >= sizeof ods->dp_desc) {
770 VLOG_WARN("truncating dp_desc, must be less than %zu characters",
771 sizeof ods->dp_desc);
772 }
773 free(p->dp_desc);
774 p->dp_desc = xstrdup(dp_desc);
775 }
776 }
777
778 static int
779 set_pvconns(struct pvconn ***pvconnsp, size_t *n_pvconnsp,
780 const struct svec *svec)
781 {
782 struct pvconn **pvconns = *pvconnsp;
783 size_t n_pvconns = *n_pvconnsp;
784 int retval = 0;
785 size_t i;
786
787 for (i = 0; i < n_pvconns; i++) {
788 pvconn_close(pvconns[i]);
789 }
790 free(pvconns);
791
792 pvconns = xmalloc(svec->n * sizeof *pvconns);
793 n_pvconns = 0;
794 for (i = 0; i < svec->n; i++) {
795 const char *name = svec->names[i];
796 struct pvconn *pvconn;
797 int error;
798
799 error = pvconn_open(name, &pvconn);
800 if (!error) {
801 pvconns[n_pvconns++] = pvconn;
802 } else {
803 VLOG_ERR("failed to listen on %s: %s", name, strerror(error));
804 if (!retval) {
805 retval = error;
806 }
807 }
808 }
809
810 *pvconnsp = pvconns;
811 *n_pvconnsp = n_pvconns;
812
813 return retval;
814 }
815
816 int
817 ofproto_set_listeners(struct ofproto *ofproto, const struct svec *listeners)
818 {
819 return set_pvconns(&ofproto->listeners, &ofproto->n_listeners, listeners);
820 }
821
822 int
823 ofproto_set_snoops(struct ofproto *ofproto, const struct svec *snoops)
824 {
825 return set_pvconns(&ofproto->snoops, &ofproto->n_snoops, snoops);
826 }
827
828 int
829 ofproto_set_netflow(struct ofproto *ofproto,
830 const struct netflow_options *nf_options)
831 {
832 if (nf_options && nf_options->collectors.n) {
833 if (!ofproto->netflow) {
834 ofproto->netflow = netflow_create();
835 }
836 return netflow_set_options(ofproto->netflow, nf_options);
837 } else {
838 netflow_destroy(ofproto->netflow);
839 ofproto->netflow = NULL;
840 return 0;
841 }
842 }
843
844 void
845 ofproto_set_sflow(struct ofproto *ofproto,
846 const struct ofproto_sflow_options *oso)
847 {
848 struct ofproto_sflow *os = ofproto->sflow;
849 if (oso) {
850 if (!os) {
851 struct ofport *ofport;
852 unsigned int odp_port;
853
854 os = ofproto->sflow = ofproto_sflow_create(ofproto->dpif);
855 refresh_port_groups(ofproto);
856 PORT_ARRAY_FOR_EACH (ofport, &ofproto->ports, odp_port) {
857 ofproto_sflow_add_port(os, odp_port,
858 netdev_get_name(ofport->netdev));
859 }
860 }
861 ofproto_sflow_set_options(os, oso);
862 } else {
863 ofproto_sflow_destroy(os);
864 ofproto->sflow = NULL;
865 }
866 }
867
868 int
869 ofproto_set_stp(struct ofproto *ofproto OVS_UNUSED, bool enable_stp)
870 {
871 /* XXX */
872 if (enable_stp) {
873 VLOG_WARN("STP is not yet implemented");
874 return EINVAL;
875 } else {
876 return 0;
877 }
878 }
879
880 uint64_t
881 ofproto_get_datapath_id(const struct ofproto *ofproto)
882 {
883 return ofproto->datapath_id;
884 }
885
886 bool
887 ofproto_has_controller(const struct ofproto *ofproto)
888 {
889 return !hmap_is_empty(&ofproto->controllers);
890 }
891
892 enum ofproto_fail_mode
893 ofproto_get_fail_mode(const struct ofproto *p)
894 {
895 return p->fail_mode;
896 }
897
898 void
899 ofproto_get_listeners(const struct ofproto *ofproto, struct svec *listeners)
900 {
901 size_t i;
902
903 for (i = 0; i < ofproto->n_listeners; i++) {
904 svec_add(listeners, pvconn_get_name(ofproto->listeners[i]));
905 }
906 }
907
908 void
909 ofproto_get_snoops(const struct ofproto *ofproto, struct svec *snoops)
910 {
911 size_t i;
912
913 for (i = 0; i < ofproto->n_snoops; i++) {
914 svec_add(snoops, pvconn_get_name(ofproto->snoops[i]));
915 }
916 }
917
918 void
919 ofproto_destroy(struct ofproto *p)
920 {
921 struct ofconn *ofconn, *next_ofconn;
922 struct ofport *ofport;
923 unsigned int port_no;
924 size_t i;
925
926 if (!p) {
927 return;
928 }
929
930 /* Destroy fail-open and in-band early, since they touch the classifier. */
931 fail_open_destroy(p->fail_open);
932 p->fail_open = NULL;
933
934 in_band_destroy(p->in_band);
935 p->in_band = NULL;
936 free(p->extra_in_band_remotes);
937
938 ofproto_flush_flows(p);
939 classifier_destroy(&p->cls);
940
941 LIST_FOR_EACH_SAFE (ofconn, next_ofconn, struct ofconn, node,
942 &p->all_conns) {
943 ofconn_destroy(ofconn);
944 }
945 hmap_destroy(&p->controllers);
946
947 dpif_close(p->dpif);
948 netdev_monitor_destroy(p->netdev_monitor);
949 PORT_ARRAY_FOR_EACH (ofport, &p->ports, port_no) {
950 ofport_free(ofport);
951 }
952 shash_destroy(&p->port_by_name);
953
954 switch_status_destroy(p->switch_status);
955 netflow_destroy(p->netflow);
956 ofproto_sflow_destroy(p->sflow);
957
958 for (i = 0; i < p->n_listeners; i++) {
959 pvconn_close(p->listeners[i]);
960 }
961 free(p->listeners);
962
963 for (i = 0; i < p->n_snoops; i++) {
964 pvconn_close(p->snoops[i]);
965 }
966 free(p->snoops);
967
968 mac_learning_destroy(p->ml);
969
970 free(p->mfr_desc);
971 free(p->hw_desc);
972 free(p->sw_desc);
973 free(p->serial_desc);
974 free(p->dp_desc);
975
976 port_array_destroy(&p->ports);
977
978 free(p);
979 }
980
981 int
982 ofproto_run(struct ofproto *p)
983 {
984 int error = ofproto_run1(p);
985 if (!error) {
986 error = ofproto_run2(p, false);
987 }
988 return error;
989 }
990
991 static void
992 process_port_change(struct ofproto *ofproto, int error, char *devname)
993 {
994 if (error == ENOBUFS) {
995 reinit_ports(ofproto);
996 } else if (!error) {
997 update_port(ofproto, devname);
998 free(devname);
999 }
1000 }
1001
1002 /* Returns a "preference level" for snooping 'ofconn'. A higher return value
1003 * means that 'ofconn' is more interesting for monitoring than a lower return
1004 * value. */
1005 static int
1006 snoop_preference(const struct ofconn *ofconn)
1007 {
1008 switch (ofconn->role) {
1009 case NX_ROLE_MASTER:
1010 return 3;
1011 case NX_ROLE_OTHER:
1012 return 2;
1013 case NX_ROLE_SLAVE:
1014 return 1;
1015 default:
1016 /* Shouldn't happen. */
1017 return 0;
1018 }
1019 }
1020
1021 /* One of ofproto's "snoop" pvconns has accepted a new connection on 'vconn'.
1022 * Connects this vconn to a controller. */
1023 static void
1024 add_snooper(struct ofproto *ofproto, struct vconn *vconn)
1025 {
1026 struct ofconn *ofconn, *best;
1027
1028 /* Pick a controller for monitoring. */
1029 best = NULL;
1030 LIST_FOR_EACH (ofconn, struct ofconn, node, &ofproto->all_conns) {
1031 if (ofconn->type == OFCONN_CONTROLLER
1032 && (!best || snoop_preference(ofconn) > snoop_preference(best))) {
1033 best = ofconn;
1034 }
1035 }
1036
1037 if (best) {
1038 rconn_add_monitor(best->rconn, vconn);
1039 } else {
1040 VLOG_INFO_RL(&rl, "no controller connection to snoop");
1041 vconn_close(vconn);
1042 }
1043 }
1044
1045 int
1046 ofproto_run1(struct ofproto *p)
1047 {
1048 struct ofconn *ofconn, *next_ofconn;
1049 char *devname;
1050 int error;
1051 int i;
1052
1053 if (shash_is_empty(&p->port_by_name)) {
1054 init_ports(p);
1055 }
1056
1057 for (i = 0; i < 50; i++) {
1058 struct ofpbuf *buf;
1059 int error;
1060
1061 error = dpif_recv(p->dpif, &buf);
1062 if (error) {
1063 if (error == ENODEV) {
1064 /* Someone destroyed the datapath behind our back. The caller
1065 * better destroy us and give up, because we're just going to
1066 * spin from here on out. */
1067 static struct vlog_rate_limit rl2 = VLOG_RATE_LIMIT_INIT(1, 5);
1068 VLOG_ERR_RL(&rl2, "%s: datapath was destroyed externally",
1069 dpif_name(p->dpif));
1070 return ENODEV;
1071 }
1072 break;
1073 }
1074
1075 handle_odp_msg(p, buf);
1076 }
1077
1078 while ((error = dpif_port_poll(p->dpif, &devname)) != EAGAIN) {
1079 process_port_change(p, error, devname);
1080 }
1081 while ((error = netdev_monitor_poll(p->netdev_monitor,
1082 &devname)) != EAGAIN) {
1083 process_port_change(p, error, devname);
1084 }
1085
1086 if (p->in_band) {
1087 if (time_msec() >= p->next_in_band_update) {
1088 update_in_band_remotes(p);
1089 }
1090 in_band_run(p->in_band);
1091 }
1092
1093 LIST_FOR_EACH_SAFE (ofconn, next_ofconn, struct ofconn, node,
1094 &p->all_conns) {
1095 ofconn_run(ofconn, p);
1096 }
1097
1098 /* Fail-open maintenance. Do this after processing the ofconns since
1099 * fail-open checks the status of the controller rconn. */
1100 if (p->fail_open) {
1101 fail_open_run(p->fail_open);
1102 }
1103
1104 for (i = 0; i < p->n_listeners; i++) {
1105 struct vconn *vconn;
1106 int retval;
1107
1108 retval = pvconn_accept(p->listeners[i], OFP_VERSION, &vconn);
1109 if (!retval) {
1110 struct rconn *rconn;
1111 char *name;
1112
1113 rconn = rconn_create(60, 0);
1114 name = ofconn_make_name(p, vconn_get_name(vconn));
1115 rconn_connect_unreliably(rconn, vconn, name);
1116 free(name);
1117
1118 ofconn_create(p, rconn, OFCONN_TRANSIENT);
1119 } else if (retval != EAGAIN) {
1120 VLOG_WARN_RL(&rl, "accept failed (%s)", strerror(retval));
1121 }
1122 }
1123
1124 for (i = 0; i < p->n_snoops; i++) {
1125 struct vconn *vconn;
1126 int retval;
1127
1128 retval = pvconn_accept(p->snoops[i], OFP_VERSION, &vconn);
1129 if (!retval) {
1130 add_snooper(p, vconn);
1131 } else if (retval != EAGAIN) {
1132 VLOG_WARN_RL(&rl, "accept failed (%s)", strerror(retval));
1133 }
1134 }
1135
1136 if (time_msec() >= p->next_expiration) {
1137 COVERAGE_INC(ofproto_expiration);
1138 p->next_expiration = time_msec() + 1000;
1139 update_used(p);
1140
1141 classifier_for_each(&p->cls, CLS_INC_ALL, expire_rule, p);
1142
1143 /* Let the hook know that we're at a stable point: all outstanding data
1144 * in existing flows has been accounted to the account_cb. Thus, the
1145 * hook can now reasonably do operations that depend on having accurate
1146 * flow volume accounting (currently, that's just bond rebalancing). */
1147 if (p->ofhooks->account_checkpoint_cb) {
1148 p->ofhooks->account_checkpoint_cb(p->aux);
1149 }
1150 }
1151
1152 if (p->netflow) {
1153 netflow_run(p->netflow);
1154 }
1155 if (p->sflow) {
1156 ofproto_sflow_run(p->sflow);
1157 }
1158
1159 return 0;
1160 }
1161
1162 struct revalidate_cbdata {
1163 struct ofproto *ofproto;
1164 bool revalidate_all; /* Revalidate all exact-match rules? */
1165 bool revalidate_subrules; /* Revalidate all exact-match subrules? */
1166 struct tag_set revalidate_set; /* Set of tags to revalidate. */
1167 };
1168
1169 int
1170 ofproto_run2(struct ofproto *p, bool revalidate_all)
1171 {
1172 if (p->need_revalidate || revalidate_all
1173 || !tag_set_is_empty(&p->revalidate_set)) {
1174 struct revalidate_cbdata cbdata;
1175 cbdata.ofproto = p;
1176 cbdata.revalidate_all = revalidate_all;
1177 cbdata.revalidate_subrules = p->need_revalidate;
1178 cbdata.revalidate_set = p->revalidate_set;
1179 tag_set_init(&p->revalidate_set);
1180 COVERAGE_INC(ofproto_revalidate);
1181 classifier_for_each(&p->cls, CLS_INC_EXACT, revalidate_cb, &cbdata);
1182 p->need_revalidate = false;
1183 }
1184
1185 return 0;
1186 }
1187
1188 void
1189 ofproto_wait(struct ofproto *p)
1190 {
1191 struct ofconn *ofconn;
1192 size_t i;
1193
1194 dpif_recv_wait(p->dpif);
1195 dpif_port_poll_wait(p->dpif);
1196 netdev_monitor_poll_wait(p->netdev_monitor);
1197 LIST_FOR_EACH (ofconn, struct ofconn, node, &p->all_conns) {
1198 ofconn_wait(ofconn);
1199 }
1200 if (p->in_band) {
1201 poll_timer_wait_until(p->next_in_band_update);
1202 in_band_wait(p->in_band);
1203 }
1204 if (p->fail_open) {
1205 fail_open_wait(p->fail_open);
1206 }
1207 if (p->sflow) {
1208 ofproto_sflow_wait(p->sflow);
1209 }
1210 if (!tag_set_is_empty(&p->revalidate_set)) {
1211 poll_immediate_wake();
1212 }
1213 if (p->need_revalidate) {
1214 /* Shouldn't happen, but if it does just go around again. */
1215 VLOG_DBG_RL(&rl, "need revalidate in ofproto_wait_cb()");
1216 poll_immediate_wake();
1217 } else if (p->next_expiration != LLONG_MAX) {
1218 poll_timer_wait_until(p->next_expiration);
1219 }
1220 for (i = 0; i < p->n_listeners; i++) {
1221 pvconn_wait(p->listeners[i]);
1222 }
1223 for (i = 0; i < p->n_snoops; i++) {
1224 pvconn_wait(p->snoops[i]);
1225 }
1226 }
1227
1228 void
1229 ofproto_revalidate(struct ofproto *ofproto, tag_type tag)
1230 {
1231 tag_set_add(&ofproto->revalidate_set, tag);
1232 }
1233
1234 struct tag_set *
1235 ofproto_get_revalidate_set(struct ofproto *ofproto)
1236 {
1237 return &ofproto->revalidate_set;
1238 }
1239
1240 bool
1241 ofproto_is_alive(const struct ofproto *p)
1242 {
1243 return !hmap_is_empty(&p->controllers);
1244 }
1245
1246 int
1247 ofproto_send_packet(struct ofproto *p, const flow_t *flow,
1248 const union ofp_action *actions, size_t n_actions,
1249 const struct ofpbuf *packet)
1250 {
1251 struct odp_actions odp_actions;
1252 int error;
1253
1254 error = xlate_actions(actions, n_actions, flow, p, packet, &odp_actions,
1255 NULL, NULL, NULL);
1256 if (error) {
1257 return error;
1258 }
1259
1260 /* XXX Should we translate the dpif_execute() errno value into an OpenFlow
1261 * error code? */
1262 dpif_execute(p->dpif, flow->in_port, odp_actions.actions,
1263 odp_actions.n_actions, packet);
1264 return 0;
1265 }
1266
1267 void
1268 ofproto_add_flow(struct ofproto *p,
1269 const flow_t *flow, uint32_t wildcards, unsigned int priority,
1270 const union ofp_action *actions, size_t n_actions,
1271 int idle_timeout)
1272 {
1273 struct rule *rule;
1274 rule = rule_create(p, NULL, actions, n_actions,
1275 idle_timeout >= 0 ? idle_timeout : 5 /* XXX */,
1276 0, 0, false);
1277 cls_rule_from_flow(flow, wildcards, priority, &rule->cr);
1278 rule_insert(p, rule, NULL, 0);
1279 }
1280
1281 void
1282 ofproto_delete_flow(struct ofproto *ofproto, const flow_t *flow,
1283 uint32_t wildcards, unsigned int priority)
1284 {
1285 struct rule *rule;
1286
1287 rule = rule_from_cls_rule(classifier_find_rule_exactly(&ofproto->cls,
1288 flow, wildcards,
1289 priority));
1290 if (rule) {
1291 rule_remove(ofproto, rule);
1292 }
1293 }
1294
1295 static void
1296 destroy_rule(struct cls_rule *rule_, void *ofproto_)
1297 {
1298 struct rule *rule = rule_from_cls_rule(rule_);
1299 struct ofproto *ofproto = ofproto_;
1300
1301 /* Mark the flow as not installed, even though it might really be
1302 * installed, so that rule_remove() doesn't bother trying to uninstall it.
1303 * There is no point in uninstalling it individually since we are about to
1304 * blow away all the flows with dpif_flow_flush(). */
1305 rule->installed = false;
1306
1307 rule_remove(ofproto, rule);
1308 }
1309
1310 void
1311 ofproto_flush_flows(struct ofproto *ofproto)
1312 {
1313 COVERAGE_INC(ofproto_flush);
1314 classifier_for_each(&ofproto->cls, CLS_INC_ALL, destroy_rule, ofproto);
1315 dpif_flow_flush(ofproto->dpif);
1316 if (ofproto->in_band) {
1317 in_band_flushed(ofproto->in_band);
1318 }
1319 if (ofproto->fail_open) {
1320 fail_open_flushed(ofproto->fail_open);
1321 }
1322 }
1323 \f
1324 static void
1325 reinit_ports(struct ofproto *p)
1326 {
1327 struct svec devnames;
1328 struct ofport *ofport;
1329 unsigned int port_no;
1330 struct odp_port *odp_ports;
1331 size_t n_odp_ports;
1332 size_t i;
1333
1334 svec_init(&devnames);
1335 PORT_ARRAY_FOR_EACH (ofport, &p->ports, port_no) {
1336 svec_add (&devnames, (char *) ofport->opp.name);
1337 }
1338 dpif_port_list(p->dpif, &odp_ports, &n_odp_ports);
1339 for (i = 0; i < n_odp_ports; i++) {
1340 svec_add (&devnames, odp_ports[i].devname);
1341 }
1342 free(odp_ports);
1343
1344 svec_sort_unique(&devnames);
1345 for (i = 0; i < devnames.n; i++) {
1346 update_port(p, devnames.names[i]);
1347 }
1348 svec_destroy(&devnames);
1349 }
1350
1351 static size_t
1352 refresh_port_group(struct ofproto *p, unsigned int group)
1353 {
1354 uint16_t *ports;
1355 size_t n_ports;
1356 struct ofport *port;
1357 unsigned int port_no;
1358
1359 assert(group == DP_GROUP_ALL || group == DP_GROUP_FLOOD);
1360
1361 ports = xmalloc(port_array_count(&p->ports) * sizeof *ports);
1362 n_ports = 0;
1363 PORT_ARRAY_FOR_EACH (port, &p->ports, port_no) {
1364 if (group == DP_GROUP_ALL || !(port->opp.config & OFPPC_NO_FLOOD)) {
1365 ports[n_ports++] = port_no;
1366 }
1367 }
1368 dpif_port_group_set(p->dpif, group, ports, n_ports);
1369 free(ports);
1370
1371 return n_ports;
1372 }
1373
1374 static void
1375 refresh_port_groups(struct ofproto *p)
1376 {
1377 size_t n_flood = refresh_port_group(p, DP_GROUP_FLOOD);
1378 size_t n_all = refresh_port_group(p, DP_GROUP_ALL);
1379 if (p->sflow) {
1380 ofproto_sflow_set_group_sizes(p->sflow, n_flood, n_all);
1381 }
1382 }
1383
1384 static struct ofport *
1385 make_ofport(const struct odp_port *odp_port)
1386 {
1387 struct netdev_options netdev_options;
1388 enum netdev_flags flags;
1389 struct ofport *ofport;
1390 struct netdev *netdev;
1391 bool carrier;
1392 int error;
1393
1394 memset(&netdev_options, 0, sizeof netdev_options);
1395 netdev_options.name = odp_port->devname;
1396 netdev_options.ethertype = NETDEV_ETH_TYPE_NONE;
1397
1398 error = netdev_open(&netdev_options, &netdev);
1399 if (error) {
1400 VLOG_WARN_RL(&rl, "ignoring port %s (%"PRIu16") because netdev %s "
1401 "cannot be opened (%s)",
1402 odp_port->devname, odp_port->port,
1403 odp_port->devname, strerror(error));
1404 return NULL;
1405 }
1406
1407 ofport = xmalloc(sizeof *ofport);
1408 ofport->netdev = netdev;
1409 ofport->opp.port_no = odp_port_to_ofp_port(odp_port->port);
1410 netdev_get_etheraddr(netdev, ofport->opp.hw_addr);
1411 memcpy(ofport->opp.name, odp_port->devname,
1412 MIN(sizeof ofport->opp.name, sizeof odp_port->devname));
1413 ofport->opp.name[sizeof ofport->opp.name - 1] = '\0';
1414
1415 netdev_get_flags(netdev, &flags);
1416 ofport->opp.config = flags & NETDEV_UP ? 0 : OFPPC_PORT_DOWN;
1417
1418 netdev_get_carrier(netdev, &carrier);
1419 ofport->opp.state = carrier ? 0 : OFPPS_LINK_DOWN;
1420
1421 netdev_get_features(netdev,
1422 &ofport->opp.curr, &ofport->opp.advertised,
1423 &ofport->opp.supported, &ofport->opp.peer);
1424 return ofport;
1425 }
1426
1427 static bool
1428 ofport_conflicts(const struct ofproto *p, const struct odp_port *odp_port)
1429 {
1430 if (port_array_get(&p->ports, odp_port->port)) {
1431 VLOG_WARN_RL(&rl, "ignoring duplicate port %"PRIu16" in datapath",
1432 odp_port->port);
1433 return true;
1434 } else if (shash_find(&p->port_by_name, odp_port->devname)) {
1435 VLOG_WARN_RL(&rl, "ignoring duplicate device %s in datapath",
1436 odp_port->devname);
1437 return true;
1438 } else {
1439 return false;
1440 }
1441 }
1442
1443 static int
1444 ofport_equal(const struct ofport *a_, const struct ofport *b_)
1445 {
1446 const struct ofp_phy_port *a = &a_->opp;
1447 const struct ofp_phy_port *b = &b_->opp;
1448
1449 BUILD_ASSERT_DECL(sizeof *a == 48); /* Detect ofp_phy_port changes. */
1450 return (a->port_no == b->port_no
1451 && !memcmp(a->hw_addr, b->hw_addr, sizeof a->hw_addr)
1452 && !strcmp((char *) a->name, (char *) b->name)
1453 && a->state == b->state
1454 && a->config == b->config
1455 && a->curr == b->curr
1456 && a->advertised == b->advertised
1457 && a->supported == b->supported
1458 && a->peer == b->peer);
1459 }
1460
1461 static void
1462 send_port_status(struct ofproto *p, const struct ofport *ofport,
1463 uint8_t reason)
1464 {
1465 /* XXX Should limit the number of queued port status change messages. */
1466 struct ofconn *ofconn;
1467 LIST_FOR_EACH (ofconn, struct ofconn, node, &p->all_conns) {
1468 struct ofp_port_status *ops;
1469 struct ofpbuf *b;
1470
1471 if (!ofconn_receives_async_msgs(ofconn)) {
1472 continue;
1473 }
1474
1475 ops = make_openflow_xid(sizeof *ops, OFPT_PORT_STATUS, 0, &b);
1476 ops->reason = reason;
1477 ops->desc = ofport->opp;
1478 hton_ofp_phy_port(&ops->desc);
1479 queue_tx(b, ofconn, NULL);
1480 }
1481 if (p->ofhooks->port_changed_cb) {
1482 p->ofhooks->port_changed_cb(reason, &ofport->opp, p->aux);
1483 }
1484 }
1485
1486 static void
1487 ofport_install(struct ofproto *p, struct ofport *ofport)
1488 {
1489 uint16_t odp_port = ofp_port_to_odp_port(ofport->opp.port_no);
1490 const char *netdev_name = (const char *) ofport->opp.name;
1491
1492 netdev_monitor_add(p->netdev_monitor, ofport->netdev);
1493 port_array_set(&p->ports, odp_port, ofport);
1494 shash_add(&p->port_by_name, netdev_name, ofport);
1495 if (p->sflow) {
1496 ofproto_sflow_add_port(p->sflow, odp_port, netdev_name);
1497 }
1498 }
1499
1500 static void
1501 ofport_remove(struct ofproto *p, struct ofport *ofport)
1502 {
1503 uint16_t odp_port = ofp_port_to_odp_port(ofport->opp.port_no);
1504
1505 netdev_monitor_remove(p->netdev_monitor, ofport->netdev);
1506 port_array_delete(&p->ports, odp_port);
1507 shash_delete(&p->port_by_name,
1508 shash_find(&p->port_by_name, (char *) ofport->opp.name));
1509 if (p->sflow) {
1510 ofproto_sflow_del_port(p->sflow, odp_port);
1511 }
1512 }
1513
1514 static void
1515 ofport_free(struct ofport *ofport)
1516 {
1517 if (ofport) {
1518 netdev_close(ofport->netdev);
1519 free(ofport);
1520 }
1521 }
1522
1523 static void
1524 update_port(struct ofproto *p, const char *devname)
1525 {
1526 struct odp_port odp_port;
1527 struct ofport *old_ofport;
1528 struct ofport *new_ofport;
1529 int error;
1530
1531 COVERAGE_INC(ofproto_update_port);
1532
1533 /* Query the datapath for port information. */
1534 error = dpif_port_query_by_name(p->dpif, devname, &odp_port);
1535
1536 /* Find the old ofport. */
1537 old_ofport = shash_find_data(&p->port_by_name, devname);
1538 if (!error) {
1539 if (!old_ofport) {
1540 /* There's no port named 'devname' but there might be a port with
1541 * the same port number. This could happen if a port is deleted
1542 * and then a new one added in its place very quickly, or if a port
1543 * is renamed. In the former case we want to send an OFPPR_DELETE
1544 * and an OFPPR_ADD, and in the latter case we want to send a
1545 * single OFPPR_MODIFY. We can distinguish the cases by comparing
1546 * the old port's ifindex against the new port, or perhaps less
1547 * reliably but more portably by comparing the old port's MAC
1548 * against the new port's MAC. However, this code isn't that smart
1549 * and always sends an OFPPR_MODIFY (XXX). */
1550 old_ofport = port_array_get(&p->ports, odp_port.port);
1551 }
1552 } else if (error != ENOENT && error != ENODEV) {
1553 VLOG_WARN_RL(&rl, "dpif_port_query_by_name returned unexpected error "
1554 "%s", strerror(error));
1555 return;
1556 }
1557
1558 /* Create a new ofport. */
1559 new_ofport = !error ? make_ofport(&odp_port) : NULL;
1560
1561 /* Eliminate a few pathological cases. */
1562 if (!old_ofport && !new_ofport) {
1563 return;
1564 } else if (old_ofport && new_ofport) {
1565 /* Most of the 'config' bits are OpenFlow soft state, but
1566 * OFPPC_PORT_DOWN is maintained the kernel. So transfer the OpenFlow
1567 * bits from old_ofport. (make_ofport() only sets OFPPC_PORT_DOWN and
1568 * leaves the other bits 0.) */
1569 new_ofport->opp.config |= old_ofport->opp.config & ~OFPPC_PORT_DOWN;
1570
1571 if (ofport_equal(old_ofport, new_ofport)) {
1572 /* False alarm--no change. */
1573 ofport_free(new_ofport);
1574 return;
1575 }
1576 }
1577
1578 /* Now deal with the normal cases. */
1579 if (old_ofport) {
1580 ofport_remove(p, old_ofport);
1581 }
1582 if (new_ofport) {
1583 ofport_install(p, new_ofport);
1584 }
1585 send_port_status(p, new_ofport ? new_ofport : old_ofport,
1586 (!old_ofport ? OFPPR_ADD
1587 : !new_ofport ? OFPPR_DELETE
1588 : OFPPR_MODIFY));
1589 ofport_free(old_ofport);
1590
1591 /* Update port groups. */
1592 refresh_port_groups(p);
1593 }
1594
1595 static int
1596 init_ports(struct ofproto *p)
1597 {
1598 struct odp_port *ports;
1599 size_t n_ports;
1600 size_t i;
1601 int error;
1602
1603 error = dpif_port_list(p->dpif, &ports, &n_ports);
1604 if (error) {
1605 return error;
1606 }
1607
1608 for (i = 0; i < n_ports; i++) {
1609 const struct odp_port *odp_port = &ports[i];
1610 if (!ofport_conflicts(p, odp_port)) {
1611 struct ofport *ofport = make_ofport(odp_port);
1612 if (ofport) {
1613 ofport_install(p, ofport);
1614 }
1615 }
1616 }
1617 free(ports);
1618 refresh_port_groups(p);
1619 return 0;
1620 }
1621 \f
1622 static struct ofconn *
1623 ofconn_create(struct ofproto *p, struct rconn *rconn, enum ofconn_type type)
1624 {
1625 struct ofconn *ofconn = xzalloc(sizeof *ofconn);
1626 ofconn->ofproto = p;
1627 list_push_back(&p->all_conns, &ofconn->node);
1628 ofconn->rconn = rconn;
1629 ofconn->type = type;
1630 ofconn->role = NX_ROLE_OTHER;
1631 ofconn->packet_in_counter = rconn_packet_counter_create ();
1632 ofconn->pktbuf = NULL;
1633 ofconn->miss_send_len = 0;
1634 ofconn->reply_counter = rconn_packet_counter_create ();
1635 return ofconn;
1636 }
1637
1638 static void
1639 ofconn_destroy(struct ofconn *ofconn)
1640 {
1641 if (ofconn->type == OFCONN_CONTROLLER) {
1642 hmap_remove(&ofconn->ofproto->controllers, &ofconn->hmap_node);
1643 }
1644 discovery_destroy(ofconn->discovery);
1645
1646 list_remove(&ofconn->node);
1647 switch_status_unregister(ofconn->ss);
1648 rconn_destroy(ofconn->rconn);
1649 rconn_packet_counter_destroy(ofconn->packet_in_counter);
1650 rconn_packet_counter_destroy(ofconn->reply_counter);
1651 pktbuf_destroy(ofconn->pktbuf);
1652 free(ofconn);
1653 }
1654
1655 static void
1656 ofconn_run(struct ofconn *ofconn, struct ofproto *p)
1657 {
1658 int iteration;
1659 size_t i;
1660
1661 if (ofconn->discovery) {
1662 char *controller_name;
1663 if (rconn_is_connectivity_questionable(ofconn->rconn)) {
1664 discovery_question_connectivity(ofconn->discovery);
1665 }
1666 if (discovery_run(ofconn->discovery, &controller_name)) {
1667 if (controller_name) {
1668 char *ofconn_name = ofconn_make_name(p, controller_name);
1669 rconn_connect(ofconn->rconn, controller_name, ofconn_name);
1670 free(ofconn_name);
1671 } else {
1672 rconn_disconnect(ofconn->rconn);
1673 }
1674 }
1675 }
1676
1677 for (i = 0; i < N_SCHEDULERS; i++) {
1678 pinsched_run(ofconn->schedulers[i], do_send_packet_in, ofconn);
1679 }
1680
1681 rconn_run(ofconn->rconn);
1682
1683 if (rconn_packet_counter_read (ofconn->reply_counter) < OFCONN_REPLY_MAX) {
1684 /* Limit the number of iterations to prevent other tasks from
1685 * starving. */
1686 for (iteration = 0; iteration < 50; iteration++) {
1687 struct ofpbuf *of_msg = rconn_recv(ofconn->rconn);
1688 if (!of_msg) {
1689 break;
1690 }
1691 if (p->fail_open) {
1692 fail_open_maybe_recover(p->fail_open);
1693 }
1694 handle_openflow(ofconn, p, of_msg);
1695 ofpbuf_delete(of_msg);
1696 }
1697 }
1698
1699 if (!ofconn->discovery && !rconn_is_alive(ofconn->rconn)) {
1700 ofconn_destroy(ofconn);
1701 }
1702 }
1703
1704 static void
1705 ofconn_wait(struct ofconn *ofconn)
1706 {
1707 int i;
1708
1709 if (ofconn->discovery) {
1710 discovery_wait(ofconn->discovery);
1711 }
1712 for (i = 0; i < N_SCHEDULERS; i++) {
1713 pinsched_wait(ofconn->schedulers[i]);
1714 }
1715 rconn_run_wait(ofconn->rconn);
1716 if (rconn_packet_counter_read (ofconn->reply_counter) < OFCONN_REPLY_MAX) {
1717 rconn_recv_wait(ofconn->rconn);
1718 } else {
1719 COVERAGE_INC(ofproto_ofconn_stuck);
1720 }
1721 }
1722
1723 /* Returns true if 'ofconn' should receive asynchronous messages. */
1724 static bool
1725 ofconn_receives_async_msgs(const struct ofconn *ofconn)
1726 {
1727 if (ofconn->type == OFCONN_CONTROLLER) {
1728 /* Ordinary controllers always get asynchronous messages unless they
1729 * have configured themselves as "slaves". */
1730 return ofconn->role != NX_ROLE_SLAVE;
1731 } else {
1732 /* Transient connections don't get asynchronous messages unless they
1733 * have explicitly asked for them by setting a nonzero miss send
1734 * length. */
1735 return ofconn->miss_send_len > 0;
1736 }
1737 }
1738
1739 /* Returns a human-readable name for an OpenFlow connection between 'ofproto'
1740 * and 'target', suitable for use in log messages for identifying the
1741 * connection.
1742 *
1743 * The name is dynamically allocated. The caller should free it (with free())
1744 * when it is no longer needed. */
1745 static char *
1746 ofconn_make_name(const struct ofproto *ofproto, const char *target)
1747 {
1748 return xasprintf("%s<->%s", dpif_base_name(ofproto->dpif), target);
1749 }
1750 \f
1751 /* Caller is responsible for initializing the 'cr' member of the returned
1752 * rule. */
1753 static struct rule *
1754 rule_create(struct ofproto *ofproto, struct rule *super,
1755 const union ofp_action *actions, size_t n_actions,
1756 uint16_t idle_timeout, uint16_t hard_timeout,
1757 uint64_t flow_cookie, bool send_flow_removed)
1758 {
1759 struct rule *rule = xzalloc(sizeof *rule);
1760 rule->idle_timeout = idle_timeout;
1761 rule->hard_timeout = hard_timeout;
1762 rule->flow_cookie = flow_cookie;
1763 rule->used = rule->created = time_msec();
1764 rule->send_flow_removed = send_flow_removed;
1765 rule->super = super;
1766 if (super) {
1767 list_push_back(&super->list, &rule->list);
1768 } else {
1769 list_init(&rule->list);
1770 }
1771 rule->n_actions = n_actions;
1772 rule->actions = xmemdup(actions, n_actions * sizeof *actions);
1773 netflow_flow_clear(&rule->nf_flow);
1774 netflow_flow_update_time(ofproto->netflow, &rule->nf_flow, rule->created);
1775
1776 return rule;
1777 }
1778
1779 static struct rule *
1780 rule_from_cls_rule(const struct cls_rule *cls_rule)
1781 {
1782 return cls_rule ? CONTAINER_OF(cls_rule, struct rule, cr) : NULL;
1783 }
1784
1785 static void
1786 rule_free(struct rule *rule)
1787 {
1788 free(rule->actions);
1789 free(rule->odp_actions);
1790 free(rule);
1791 }
1792
1793 /* Destroys 'rule'. If 'rule' is a subrule, also removes it from its
1794 * super-rule's list of subrules. If 'rule' is a super-rule, also iterates
1795 * through all of its subrules and revalidates them, destroying any that no
1796 * longer has a super-rule (which is probably all of them).
1797 *
1798 * Before calling this function, the caller must make have removed 'rule' from
1799 * the classifier. If 'rule' is an exact-match rule, the caller is also
1800 * responsible for ensuring that it has been uninstalled from the datapath. */
1801 static void
1802 rule_destroy(struct ofproto *ofproto, struct rule *rule)
1803 {
1804 if (!rule->super) {
1805 struct rule *subrule, *next;
1806 LIST_FOR_EACH_SAFE (subrule, next, struct rule, list, &rule->list) {
1807 revalidate_rule(ofproto, subrule);
1808 }
1809 } else {
1810 list_remove(&rule->list);
1811 }
1812 rule_free(rule);
1813 }
1814
1815 static bool
1816 rule_has_out_port(const struct rule *rule, uint16_t out_port)
1817 {
1818 const union ofp_action *oa;
1819 struct actions_iterator i;
1820
1821 if (out_port == htons(OFPP_NONE)) {
1822 return true;
1823 }
1824 for (oa = actions_first(&i, rule->actions, rule->n_actions); oa;
1825 oa = actions_next(&i)) {
1826 if (action_outputs_to_port(oa, out_port)) {
1827 return true;
1828 }
1829 }
1830 return false;
1831 }
1832
1833 /* Executes the actions indicated by 'rule' on 'packet', which is in flow
1834 * 'flow' and is considered to have arrived on ODP port 'in_port'.
1835 *
1836 * The flow that 'packet' actually contains does not need to actually match
1837 * 'rule'; the actions in 'rule' will be applied to it either way. Likewise,
1838 * the packet and byte counters for 'rule' will be credited for the packet sent
1839 * out whether or not the packet actually matches 'rule'.
1840 *
1841 * If 'rule' is an exact-match rule and 'flow' actually equals the rule's flow,
1842 * the caller must already have accurately composed ODP actions for it given
1843 * 'packet' using rule_make_actions(). If 'rule' is a wildcard rule, or if
1844 * 'rule' is an exact-match rule but 'flow' is not the rule's flow, then this
1845 * function will compose a set of ODP actions based on 'rule''s OpenFlow
1846 * actions and apply them to 'packet'. */
1847 static void
1848 rule_execute(struct ofproto *ofproto, struct rule *rule,
1849 struct ofpbuf *packet, const flow_t *flow)
1850 {
1851 const union odp_action *actions;
1852 size_t n_actions;
1853 struct odp_actions a;
1854
1855 /* Grab or compose the ODP actions.
1856 *
1857 * The special case for an exact-match 'rule' where 'flow' is not the
1858 * rule's flow is important to avoid, e.g., sending a packet out its input
1859 * port simply because the ODP actions were composed for the wrong
1860 * scenario. */
1861 if (rule->cr.wc.wildcards || !flow_equal(flow, &rule->cr.flow)) {
1862 struct rule *super = rule->super ? rule->super : rule;
1863 if (xlate_actions(super->actions, super->n_actions, flow, ofproto,
1864 packet, &a, NULL, 0, NULL)) {
1865 return;
1866 }
1867 actions = a.actions;
1868 n_actions = a.n_actions;
1869 } else {
1870 actions = rule->odp_actions;
1871 n_actions = rule->n_odp_actions;
1872 }
1873
1874 /* Execute the ODP actions. */
1875 if (!dpif_execute(ofproto->dpif, flow->in_port,
1876 actions, n_actions, packet)) {
1877 struct odp_flow_stats stats;
1878 flow_extract_stats(flow, packet, &stats);
1879 update_stats(ofproto, rule, &stats);
1880 rule->used = time_msec();
1881 netflow_flow_update_time(ofproto->netflow, &rule->nf_flow, rule->used);
1882 }
1883 }
1884
1885 static void
1886 rule_insert(struct ofproto *p, struct rule *rule, struct ofpbuf *packet,
1887 uint16_t in_port)
1888 {
1889 struct rule *displaced_rule;
1890
1891 /* Insert the rule in the classifier. */
1892 displaced_rule = rule_from_cls_rule(classifier_insert(&p->cls, &rule->cr));
1893 if (!rule->cr.wc.wildcards) {
1894 rule_make_actions(p, rule, packet);
1895 }
1896
1897 /* Send the packet and credit it to the rule. */
1898 if (packet) {
1899 flow_t flow;
1900 flow_extract(packet, 0, in_port, &flow);
1901 rule_execute(p, rule, packet, &flow);
1902 }
1903
1904 /* Install the rule in the datapath only after sending the packet, to
1905 * avoid packet reordering. */
1906 if (rule->cr.wc.wildcards) {
1907 COVERAGE_INC(ofproto_add_wc_flow);
1908 p->need_revalidate = true;
1909 } else {
1910 rule_install(p, rule, displaced_rule);
1911 }
1912
1913 /* Free the rule that was displaced, if any. */
1914 if (displaced_rule) {
1915 rule_destroy(p, displaced_rule);
1916 }
1917 }
1918
1919 static struct rule *
1920 rule_create_subrule(struct ofproto *ofproto, struct rule *rule,
1921 const flow_t *flow)
1922 {
1923 struct rule *subrule = rule_create(ofproto, rule, NULL, 0,
1924 rule->idle_timeout, rule->hard_timeout,
1925 0, false);
1926 COVERAGE_INC(ofproto_subrule_create);
1927 cls_rule_from_flow(flow, 0, (rule->cr.priority <= UINT16_MAX ? UINT16_MAX
1928 : rule->cr.priority), &subrule->cr);
1929 classifier_insert_exact(&ofproto->cls, &subrule->cr);
1930
1931 return subrule;
1932 }
1933
1934 static void
1935 rule_remove(struct ofproto *ofproto, struct rule *rule)
1936 {
1937 if (rule->cr.wc.wildcards) {
1938 COVERAGE_INC(ofproto_del_wc_flow);
1939 ofproto->need_revalidate = true;
1940 } else {
1941 rule_uninstall(ofproto, rule);
1942 }
1943 classifier_remove(&ofproto->cls, &rule->cr);
1944 rule_destroy(ofproto, rule);
1945 }
1946
1947 /* Returns true if the actions changed, false otherwise. */
1948 static bool
1949 rule_make_actions(struct ofproto *p, struct rule *rule,
1950 const struct ofpbuf *packet)
1951 {
1952 const struct rule *super;
1953 struct odp_actions a;
1954 size_t actions_len;
1955
1956 assert(!rule->cr.wc.wildcards);
1957
1958 super = rule->super ? rule->super : rule;
1959 rule->tags = 0;
1960 xlate_actions(super->actions, super->n_actions, &rule->cr.flow, p,
1961 packet, &a, &rule->tags, &rule->may_install,
1962 &rule->nf_flow.output_iface);
1963
1964 actions_len = a.n_actions * sizeof *a.actions;
1965 if (rule->n_odp_actions != a.n_actions
1966 || memcmp(rule->odp_actions, a.actions, actions_len)) {
1967 COVERAGE_INC(ofproto_odp_unchanged);
1968 free(rule->odp_actions);
1969 rule->n_odp_actions = a.n_actions;
1970 rule->odp_actions = xmemdup(a.actions, actions_len);
1971 return true;
1972 } else {
1973 return false;
1974 }
1975 }
1976
1977 static int
1978 do_put_flow(struct ofproto *ofproto, struct rule *rule, int flags,
1979 struct odp_flow_put *put)
1980 {
1981 memset(&put->flow.stats, 0, sizeof put->flow.stats);
1982 put->flow.key = rule->cr.flow;
1983 put->flow.actions = rule->odp_actions;
1984 put->flow.n_actions = rule->n_odp_actions;
1985 put->flow.flags = 0;
1986 put->flags = flags;
1987 return dpif_flow_put(ofproto->dpif, put);
1988 }
1989
1990 static void
1991 rule_install(struct ofproto *p, struct rule *rule, struct rule *displaced_rule)
1992 {
1993 assert(!rule->cr.wc.wildcards);
1994
1995 if (rule->may_install) {
1996 struct odp_flow_put put;
1997 if (!do_put_flow(p, rule,
1998 ODPPF_CREATE | ODPPF_MODIFY | ODPPF_ZERO_STATS,
1999 &put)) {
2000 rule->installed = true;
2001 if (displaced_rule) {
2002 update_stats(p, displaced_rule, &put.flow.stats);
2003 rule_post_uninstall(p, displaced_rule);
2004 }
2005 }
2006 } else if (displaced_rule) {
2007 rule_uninstall(p, displaced_rule);
2008 }
2009 }
2010
2011 static void
2012 rule_reinstall(struct ofproto *ofproto, struct rule *rule)
2013 {
2014 if (rule->installed) {
2015 struct odp_flow_put put;
2016 COVERAGE_INC(ofproto_dp_missed);
2017 do_put_flow(ofproto, rule, ODPPF_CREATE | ODPPF_MODIFY, &put);
2018 } else {
2019 rule_install(ofproto, rule, NULL);
2020 }
2021 }
2022
2023 static void
2024 rule_update_actions(struct ofproto *ofproto, struct rule *rule)
2025 {
2026 bool actions_changed;
2027 uint16_t new_out_iface, old_out_iface;
2028
2029 old_out_iface = rule->nf_flow.output_iface;
2030 actions_changed = rule_make_actions(ofproto, rule, NULL);
2031
2032 if (rule->may_install) {
2033 if (rule->installed) {
2034 if (actions_changed) {
2035 struct odp_flow_put put;
2036 do_put_flow(ofproto, rule, ODPPF_CREATE | ODPPF_MODIFY
2037 | ODPPF_ZERO_STATS, &put);
2038 update_stats(ofproto, rule, &put.flow.stats);
2039
2040 /* Temporarily set the old output iface so that NetFlow
2041 * messages have the correct output interface for the old
2042 * stats. */
2043 new_out_iface = rule->nf_flow.output_iface;
2044 rule->nf_flow.output_iface = old_out_iface;
2045 rule_post_uninstall(ofproto, rule);
2046 rule->nf_flow.output_iface = new_out_iface;
2047 }
2048 } else {
2049 rule_install(ofproto, rule, NULL);
2050 }
2051 } else {
2052 rule_uninstall(ofproto, rule);
2053 }
2054 }
2055
2056 static void
2057 rule_account(struct ofproto *ofproto, struct rule *rule, uint64_t extra_bytes)
2058 {
2059 uint64_t total_bytes = rule->byte_count + extra_bytes;
2060
2061 if (ofproto->ofhooks->account_flow_cb
2062 && total_bytes > rule->accounted_bytes)
2063 {
2064 ofproto->ofhooks->account_flow_cb(
2065 &rule->cr.flow, rule->tags, rule->odp_actions, rule->n_odp_actions,
2066 total_bytes - rule->accounted_bytes, ofproto->aux);
2067 rule->accounted_bytes = total_bytes;
2068 }
2069 }
2070
2071 static void
2072 rule_uninstall(struct ofproto *p, struct rule *rule)
2073 {
2074 assert(!rule->cr.wc.wildcards);
2075 if (rule->installed) {
2076 struct odp_flow odp_flow;
2077
2078 odp_flow.key = rule->cr.flow;
2079 odp_flow.actions = NULL;
2080 odp_flow.n_actions = 0;
2081 odp_flow.flags = 0;
2082 if (!dpif_flow_del(p->dpif, &odp_flow)) {
2083 update_stats(p, rule, &odp_flow.stats);
2084 }
2085 rule->installed = false;
2086
2087 rule_post_uninstall(p, rule);
2088 }
2089 }
2090
2091 static bool
2092 is_controller_rule(struct rule *rule)
2093 {
2094 /* If the only action is send to the controller then don't report
2095 * NetFlow expiration messages since it is just part of the control
2096 * logic for the network and not real traffic. */
2097
2098 return (rule
2099 && rule->super
2100 && rule->super->n_actions == 1
2101 && action_outputs_to_port(&rule->super->actions[0],
2102 htons(OFPP_CONTROLLER)));
2103 }
2104
2105 static void
2106 rule_post_uninstall(struct ofproto *ofproto, struct rule *rule)
2107 {
2108 struct rule *super = rule->super;
2109
2110 rule_account(ofproto, rule, 0);
2111
2112 if (ofproto->netflow && !is_controller_rule(rule)) {
2113 struct ofexpired expired;
2114 expired.flow = rule->cr.flow;
2115 expired.packet_count = rule->packet_count;
2116 expired.byte_count = rule->byte_count;
2117 expired.used = rule->used;
2118 netflow_expire(ofproto->netflow, &rule->nf_flow, &expired);
2119 }
2120 if (super) {
2121 super->packet_count += rule->packet_count;
2122 super->byte_count += rule->byte_count;
2123
2124 /* Reset counters to prevent double counting if the rule ever gets
2125 * reinstalled. */
2126 rule->packet_count = 0;
2127 rule->byte_count = 0;
2128 rule->accounted_bytes = 0;
2129
2130 netflow_flow_clear(&rule->nf_flow);
2131 }
2132 }
2133 \f
2134 static void
2135 queue_tx(struct ofpbuf *msg, const struct ofconn *ofconn,
2136 struct rconn_packet_counter *counter)
2137 {
2138 update_openflow_length(msg);
2139 if (rconn_send(ofconn->rconn, msg, counter)) {
2140 ofpbuf_delete(msg);
2141 }
2142 }
2143
2144 static void
2145 send_error(const struct ofconn *ofconn, const struct ofp_header *oh,
2146 int error, const void *data, size_t len)
2147 {
2148 struct ofpbuf *buf;
2149 struct ofp_error_msg *oem;
2150
2151 if (!(error >> 16)) {
2152 VLOG_WARN_RL(&rl, "not sending bad error code %d to controller",
2153 error);
2154 return;
2155 }
2156
2157 COVERAGE_INC(ofproto_error);
2158 oem = make_openflow_xid(len + sizeof *oem, OFPT_ERROR,
2159 oh ? oh->xid : 0, &buf);
2160 oem->type = htons((unsigned int) error >> 16);
2161 oem->code = htons(error & 0xffff);
2162 memcpy(oem->data, data, len);
2163 queue_tx(buf, ofconn, ofconn->reply_counter);
2164 }
2165
2166 static void
2167 send_error_oh(const struct ofconn *ofconn, const struct ofp_header *oh,
2168 int error)
2169 {
2170 size_t oh_length = ntohs(oh->length);
2171 send_error(ofconn, oh, error, oh, MIN(oh_length, 64));
2172 }
2173
2174 static void
2175 hton_ofp_phy_port(struct ofp_phy_port *opp)
2176 {
2177 opp->port_no = htons(opp->port_no);
2178 opp->config = htonl(opp->config);
2179 opp->state = htonl(opp->state);
2180 opp->curr = htonl(opp->curr);
2181 opp->advertised = htonl(opp->advertised);
2182 opp->supported = htonl(opp->supported);
2183 opp->peer = htonl(opp->peer);
2184 }
2185
2186 static int
2187 handle_echo_request(struct ofconn *ofconn, struct ofp_header *oh)
2188 {
2189 struct ofp_header *rq = oh;
2190 queue_tx(make_echo_reply(rq), ofconn, ofconn->reply_counter);
2191 return 0;
2192 }
2193
2194 static int
2195 handle_features_request(struct ofproto *p, struct ofconn *ofconn,
2196 struct ofp_header *oh)
2197 {
2198 struct ofp_switch_features *osf;
2199 struct ofpbuf *buf;
2200 unsigned int port_no;
2201 struct ofport *port;
2202
2203 osf = make_openflow_xid(sizeof *osf, OFPT_FEATURES_REPLY, oh->xid, &buf);
2204 osf->datapath_id = htonll(p->datapath_id);
2205 osf->n_buffers = htonl(pktbuf_capacity());
2206 osf->n_tables = 2;
2207 osf->capabilities = htonl(OFPC_FLOW_STATS | OFPC_TABLE_STATS |
2208 OFPC_PORT_STATS | OFPC_ARP_MATCH_IP);
2209 osf->actions = htonl((1u << OFPAT_OUTPUT) |
2210 (1u << OFPAT_SET_VLAN_VID) |
2211 (1u << OFPAT_SET_VLAN_PCP) |
2212 (1u << OFPAT_STRIP_VLAN) |
2213 (1u << OFPAT_SET_DL_SRC) |
2214 (1u << OFPAT_SET_DL_DST) |
2215 (1u << OFPAT_SET_NW_SRC) |
2216 (1u << OFPAT_SET_NW_DST) |
2217 (1u << OFPAT_SET_NW_TOS) |
2218 (1u << OFPAT_SET_TP_SRC) |
2219 (1u << OFPAT_SET_TP_DST) |
2220 (1u << OFPAT_ENQUEUE));
2221
2222 PORT_ARRAY_FOR_EACH (port, &p->ports, port_no) {
2223 hton_ofp_phy_port(ofpbuf_put(buf, &port->opp, sizeof port->opp));
2224 }
2225
2226 queue_tx(buf, ofconn, ofconn->reply_counter);
2227 return 0;
2228 }
2229
2230 static int
2231 handle_get_config_request(struct ofproto *p, struct ofconn *ofconn,
2232 struct ofp_header *oh)
2233 {
2234 struct ofpbuf *buf;
2235 struct ofp_switch_config *osc;
2236 uint16_t flags;
2237 bool drop_frags;
2238
2239 /* Figure out flags. */
2240 dpif_get_drop_frags(p->dpif, &drop_frags);
2241 flags = drop_frags ? OFPC_FRAG_DROP : OFPC_FRAG_NORMAL;
2242
2243 /* Send reply. */
2244 osc = make_openflow_xid(sizeof *osc, OFPT_GET_CONFIG_REPLY, oh->xid, &buf);
2245 osc->flags = htons(flags);
2246 osc->miss_send_len = htons(ofconn->miss_send_len);
2247 queue_tx(buf, ofconn, ofconn->reply_counter);
2248
2249 return 0;
2250 }
2251
2252 static int
2253 handle_set_config(struct ofproto *p, struct ofconn *ofconn,
2254 struct ofp_switch_config *osc)
2255 {
2256 uint16_t flags;
2257 int error;
2258
2259 error = check_ofp_message(&osc->header, OFPT_SET_CONFIG, sizeof *osc);
2260 if (error) {
2261 return error;
2262 }
2263 flags = ntohs(osc->flags);
2264
2265 if (ofconn->type == OFCONN_CONTROLLER && ofconn->role != NX_ROLE_SLAVE) {
2266 switch (flags & OFPC_FRAG_MASK) {
2267 case OFPC_FRAG_NORMAL:
2268 dpif_set_drop_frags(p->dpif, false);
2269 break;
2270 case OFPC_FRAG_DROP:
2271 dpif_set_drop_frags(p->dpif, true);
2272 break;
2273 default:
2274 VLOG_WARN_RL(&rl, "requested bad fragment mode (flags=%"PRIx16")",
2275 osc->flags);
2276 break;
2277 }
2278 }
2279
2280 ofconn->miss_send_len = ntohs(osc->miss_send_len);
2281
2282 return 0;
2283 }
2284
2285 static void
2286 add_output_group_action(struct odp_actions *actions, uint16_t group,
2287 uint16_t *nf_output_iface)
2288 {
2289 odp_actions_add(actions, ODPAT_OUTPUT_GROUP)->output_group.group = group;
2290
2291 if (group == DP_GROUP_ALL || group == DP_GROUP_FLOOD) {
2292 *nf_output_iface = NF_OUT_FLOOD;
2293 }
2294 }
2295
2296 static void
2297 add_controller_action(struct odp_actions *actions, uint16_t max_len)
2298 {
2299 union odp_action *a = odp_actions_add(actions, ODPAT_CONTROLLER);
2300 a->controller.arg = max_len;
2301 }
2302
2303 struct action_xlate_ctx {
2304 /* Input. */
2305 flow_t flow; /* Flow to which these actions correspond. */
2306 int recurse; /* Recursion level, via xlate_table_action. */
2307 struct ofproto *ofproto;
2308 const struct ofpbuf *packet; /* The packet corresponding to 'flow', or a
2309 * null pointer if we are revalidating
2310 * without a packet to refer to. */
2311
2312 /* Output. */
2313 struct odp_actions *out; /* Datapath actions. */
2314 tag_type *tags; /* Tags associated with OFPP_NORMAL actions. */
2315 bool may_set_up_flow; /* True ordinarily; false if the actions must
2316 * be reassessed for every packet. */
2317 uint16_t nf_output_iface; /* Output interface index for NetFlow. */
2318 };
2319
2320 static void do_xlate_actions(const union ofp_action *in, size_t n_in,
2321 struct action_xlate_ctx *ctx);
2322
2323 static void
2324 add_output_action(struct action_xlate_ctx *ctx, uint16_t port)
2325 {
2326 const struct ofport *ofport = port_array_get(&ctx->ofproto->ports, port);
2327
2328 if (ofport) {
2329 if (ofport->opp.config & OFPPC_NO_FWD) {
2330 /* Forwarding disabled on port. */
2331 return;
2332 }
2333 } else {
2334 /*
2335 * We don't have an ofport record for this port, but it doesn't hurt to
2336 * allow forwarding to it anyhow. Maybe such a port will appear later
2337 * and we're pre-populating the flow table.
2338 */
2339 }
2340
2341 odp_actions_add(ctx->out, ODPAT_OUTPUT)->output.port = port;
2342 ctx->nf_output_iface = port;
2343 }
2344
2345 static struct rule *
2346 lookup_valid_rule(struct ofproto *ofproto, const flow_t *flow)
2347 {
2348 struct rule *rule;
2349 rule = rule_from_cls_rule(classifier_lookup(&ofproto->cls, flow));
2350
2351 /* The rule we found might not be valid, since we could be in need of
2352 * revalidation. If it is not valid, don't return it. */
2353 if (rule
2354 && rule->super
2355 && ofproto->need_revalidate
2356 && !revalidate_rule(ofproto, rule)) {
2357 COVERAGE_INC(ofproto_invalidated);
2358 return NULL;
2359 }
2360
2361 return rule;
2362 }
2363
2364 static void
2365 xlate_table_action(struct action_xlate_ctx *ctx, uint16_t in_port)
2366 {
2367 if (!ctx->recurse) {
2368 uint16_t old_in_port;
2369 struct rule *rule;
2370
2371 /* Look up a flow with 'in_port' as the input port. Then restore the
2372 * original input port (otherwise OFPP_NORMAL and OFPP_IN_PORT will
2373 * have surprising behavior). */
2374 old_in_port = ctx->flow.in_port;
2375 ctx->flow.in_port = in_port;
2376 rule = lookup_valid_rule(ctx->ofproto, &ctx->flow);
2377 ctx->flow.in_port = old_in_port;
2378
2379 if (rule) {
2380 if (rule->super) {
2381 rule = rule->super;
2382 }
2383
2384 ctx->recurse++;
2385 do_xlate_actions(rule->actions, rule->n_actions, ctx);
2386 ctx->recurse--;
2387 }
2388 }
2389 }
2390
2391 static void
2392 xlate_output_action__(struct action_xlate_ctx *ctx,
2393 uint16_t port, uint16_t max_len)
2394 {
2395 uint16_t odp_port;
2396 uint16_t prev_nf_output_iface = ctx->nf_output_iface;
2397
2398 ctx->nf_output_iface = NF_OUT_DROP;
2399
2400 switch (port) {
2401 case OFPP_IN_PORT:
2402 add_output_action(ctx, ctx->flow.in_port);
2403 break;
2404 case OFPP_TABLE:
2405 xlate_table_action(ctx, ctx->flow.in_port);
2406 break;
2407 case OFPP_NORMAL:
2408 if (!ctx->ofproto->ofhooks->normal_cb(&ctx->flow, ctx->packet,
2409 ctx->out, ctx->tags,
2410 &ctx->nf_output_iface,
2411 ctx->ofproto->aux)) {
2412 COVERAGE_INC(ofproto_uninstallable);
2413 ctx->may_set_up_flow = false;
2414 }
2415 break;
2416 case OFPP_FLOOD:
2417 add_output_group_action(ctx->out, DP_GROUP_FLOOD,
2418 &ctx->nf_output_iface);
2419 break;
2420 case OFPP_ALL:
2421 add_output_group_action(ctx->out, DP_GROUP_ALL, &ctx->nf_output_iface);
2422 break;
2423 case OFPP_CONTROLLER:
2424 add_controller_action(ctx->out, max_len);
2425 break;
2426 case OFPP_LOCAL:
2427 add_output_action(ctx, ODPP_LOCAL);
2428 break;
2429 default:
2430 odp_port = ofp_port_to_odp_port(port);
2431 if (odp_port != ctx->flow.in_port) {
2432 add_output_action(ctx, odp_port);
2433 }
2434 break;
2435 }
2436
2437 if (prev_nf_output_iface == NF_OUT_FLOOD) {
2438 ctx->nf_output_iface = NF_OUT_FLOOD;
2439 } else if (ctx->nf_output_iface == NF_OUT_DROP) {
2440 ctx->nf_output_iface = prev_nf_output_iface;
2441 } else if (prev_nf_output_iface != NF_OUT_DROP &&
2442 ctx->nf_output_iface != NF_OUT_FLOOD) {
2443 ctx->nf_output_iface = NF_OUT_MULTI;
2444 }
2445 }
2446
2447 static void
2448 xlate_output_action(struct action_xlate_ctx *ctx,
2449 const struct ofp_action_output *oao)
2450 {
2451 xlate_output_action__(ctx, ntohs(oao->port), ntohs(oao->max_len));
2452 }
2453
2454 /* If the final ODP action in 'ctx' is "pop priority", drop it, as an
2455 * optimization, because we're going to add another action that sets the
2456 * priority immediately after, or because there are no actions following the
2457 * pop. */
2458 static void
2459 remove_pop_action(struct action_xlate_ctx *ctx)
2460 {
2461 size_t n = ctx->out->n_actions;
2462 if (n > 0 && ctx->out->actions[n - 1].type == ODPAT_POP_PRIORITY) {
2463 ctx->out->n_actions--;
2464 }
2465 }
2466
2467 static void
2468 xlate_enqueue_action(struct action_xlate_ctx *ctx,
2469 const struct ofp_action_enqueue *oae)
2470 {
2471 uint16_t ofp_port, odp_port;
2472 uint32_t priority;
2473 int error;
2474
2475 error = dpif_queue_to_priority(ctx->ofproto->dpif, ntohl(oae->queue_id),
2476 &priority);
2477 if (error) {
2478 /* Fall back to ordinary output action. */
2479 xlate_output_action__(ctx, ntohs(oae->port), 0);
2480 return;
2481 }
2482
2483 /* Figure out ODP output port. */
2484 ofp_port = ntohs(oae->port);
2485 if (ofp_port != OFPP_IN_PORT) {
2486 odp_port = ofp_port_to_odp_port(ofp_port);
2487 } else {
2488 odp_port = ctx->flow.in_port;
2489 }
2490
2491 /* Add ODP actions. */
2492 remove_pop_action(ctx);
2493 odp_actions_add(ctx->out, ODPAT_SET_PRIORITY)->priority.priority
2494 = priority;
2495 add_output_action(ctx, odp_port);
2496 odp_actions_add(ctx->out, ODPAT_POP_PRIORITY);
2497
2498 /* Update NetFlow output port. */
2499 if (ctx->nf_output_iface == NF_OUT_DROP) {
2500 ctx->nf_output_iface = odp_port;
2501 } else if (ctx->nf_output_iface != NF_OUT_FLOOD) {
2502 ctx->nf_output_iface = NF_OUT_MULTI;
2503 }
2504 }
2505
2506 static void
2507 xlate_nicira_action(struct action_xlate_ctx *ctx,
2508 const struct nx_action_header *nah)
2509 {
2510 const struct nx_action_resubmit *nar;
2511 const struct nx_action_set_tunnel *nast;
2512 union odp_action *oa;
2513 int subtype = ntohs(nah->subtype);
2514
2515 assert(nah->vendor == htonl(NX_VENDOR_ID));
2516 switch (subtype) {
2517 case NXAST_RESUBMIT:
2518 nar = (const struct nx_action_resubmit *) nah;
2519 xlate_table_action(ctx, ofp_port_to_odp_port(ntohs(nar->in_port)));
2520 break;
2521
2522 case NXAST_SET_TUNNEL:
2523 nast = (const struct nx_action_set_tunnel *) nah;
2524 oa = odp_actions_add(ctx->out, ODPAT_SET_TUNNEL);
2525 ctx->flow.tun_id = oa->tunnel.tun_id = nast->tun_id;
2526 break;
2527
2528 /* If you add a new action here that modifies flow data, don't forget to
2529 * update the flow key in ctx->flow at the same time. */
2530
2531 default:
2532 VLOG_DBG_RL(&rl, "unknown Nicira action type %"PRIu16, subtype);
2533 break;
2534 }
2535 }
2536
2537 static void
2538 do_xlate_actions(const union ofp_action *in, size_t n_in,
2539 struct action_xlate_ctx *ctx)
2540 {
2541 struct actions_iterator iter;
2542 const union ofp_action *ia;
2543 const struct ofport *port;
2544
2545 port = port_array_get(&ctx->ofproto->ports, ctx->flow.in_port);
2546 if (port && port->opp.config & (OFPPC_NO_RECV | OFPPC_NO_RECV_STP) &&
2547 port->opp.config & (eth_addr_equals(ctx->flow.dl_dst, stp_eth_addr)
2548 ? OFPPC_NO_RECV_STP : OFPPC_NO_RECV)) {
2549 /* Drop this flow. */
2550 return;
2551 }
2552
2553 for (ia = actions_first(&iter, in, n_in); ia; ia = actions_next(&iter)) {
2554 uint16_t type = ntohs(ia->type);
2555 union odp_action *oa;
2556
2557 switch (type) {
2558 case OFPAT_OUTPUT:
2559 xlate_output_action(ctx, &ia->output);
2560 break;
2561
2562 case OFPAT_SET_VLAN_VID:
2563 oa = odp_actions_add(ctx->out, ODPAT_SET_VLAN_VID);
2564 ctx->flow.dl_vlan = oa->vlan_vid.vlan_vid = ia->vlan_vid.vlan_vid;
2565 break;
2566
2567 case OFPAT_SET_VLAN_PCP:
2568 oa = odp_actions_add(ctx->out, ODPAT_SET_VLAN_PCP);
2569 ctx->flow.dl_vlan_pcp = oa->vlan_pcp.vlan_pcp = ia->vlan_pcp.vlan_pcp;
2570 break;
2571
2572 case OFPAT_STRIP_VLAN:
2573 odp_actions_add(ctx->out, ODPAT_STRIP_VLAN);
2574 ctx->flow.dl_vlan = htons(OFP_VLAN_NONE);
2575 ctx->flow.dl_vlan_pcp = 0;
2576 break;
2577
2578 case OFPAT_SET_DL_SRC:
2579 oa = odp_actions_add(ctx->out, ODPAT_SET_DL_SRC);
2580 memcpy(oa->dl_addr.dl_addr,
2581 ((struct ofp_action_dl_addr *) ia)->dl_addr, ETH_ADDR_LEN);
2582 memcpy(ctx->flow.dl_src,
2583 ((struct ofp_action_dl_addr *) ia)->dl_addr, ETH_ADDR_LEN);
2584 break;
2585
2586 case OFPAT_SET_DL_DST:
2587 oa = odp_actions_add(ctx->out, ODPAT_SET_DL_DST);
2588 memcpy(oa->dl_addr.dl_addr,
2589 ((struct ofp_action_dl_addr *) ia)->dl_addr, ETH_ADDR_LEN);
2590 memcpy(ctx->flow.dl_dst,
2591 ((struct ofp_action_dl_addr *) ia)->dl_addr, ETH_ADDR_LEN);
2592 break;
2593
2594 case OFPAT_SET_NW_SRC:
2595 oa = odp_actions_add(ctx->out, ODPAT_SET_NW_SRC);
2596 ctx->flow.nw_src = oa->nw_addr.nw_addr = ia->nw_addr.nw_addr;
2597 break;
2598
2599 case OFPAT_SET_NW_DST:
2600 oa = odp_actions_add(ctx->out, ODPAT_SET_NW_DST);
2601 ctx->flow.nw_dst = oa->nw_addr.nw_addr = ia->nw_addr.nw_addr;
2602 break;
2603
2604 case OFPAT_SET_NW_TOS:
2605 oa = odp_actions_add(ctx->out, ODPAT_SET_NW_TOS);
2606 ctx->flow.nw_tos = oa->nw_tos.nw_tos = ia->nw_tos.nw_tos;
2607 break;
2608
2609 case OFPAT_SET_TP_SRC:
2610 oa = odp_actions_add(ctx->out, ODPAT_SET_TP_SRC);
2611 ctx->flow.tp_src = oa->tp_port.tp_port = ia->tp_port.tp_port;
2612 break;
2613
2614 case OFPAT_SET_TP_DST:
2615 oa = odp_actions_add(ctx->out, ODPAT_SET_TP_DST);
2616 ctx->flow.tp_dst = oa->tp_port.tp_port = ia->tp_port.tp_port;
2617 break;
2618
2619 case OFPAT_VENDOR:
2620 xlate_nicira_action(ctx, (const struct nx_action_header *) ia);
2621 break;
2622
2623 case OFPAT_ENQUEUE:
2624 xlate_enqueue_action(ctx, (const struct ofp_action_enqueue *) ia);
2625 break;
2626
2627 default:
2628 VLOG_DBG_RL(&rl, "unknown action type %"PRIu16, type);
2629 break;
2630 }
2631 }
2632 }
2633
2634 static int
2635 xlate_actions(const union ofp_action *in, size_t n_in,
2636 const flow_t *flow, struct ofproto *ofproto,
2637 const struct ofpbuf *packet,
2638 struct odp_actions *out, tag_type *tags, bool *may_set_up_flow,
2639 uint16_t *nf_output_iface)
2640 {
2641 tag_type no_tags = 0;
2642 struct action_xlate_ctx ctx;
2643 COVERAGE_INC(ofproto_ofp2odp);
2644 odp_actions_init(out);
2645 ctx.flow = *flow;
2646 ctx.recurse = 0;
2647 ctx.ofproto = ofproto;
2648 ctx.packet = packet;
2649 ctx.out = out;
2650 ctx.tags = tags ? tags : &no_tags;
2651 ctx.may_set_up_flow = true;
2652 ctx.nf_output_iface = NF_OUT_DROP;
2653 do_xlate_actions(in, n_in, &ctx);
2654 remove_pop_action(&ctx);
2655
2656 /* Check with in-band control to see if we're allowed to set up this
2657 * flow. */
2658 if (!in_band_rule_check(ofproto->in_band, flow, out)) {
2659 ctx.may_set_up_flow = false;
2660 }
2661
2662 if (may_set_up_flow) {
2663 *may_set_up_flow = ctx.may_set_up_flow;
2664 }
2665 if (nf_output_iface) {
2666 *nf_output_iface = ctx.nf_output_iface;
2667 }
2668 if (odp_actions_overflow(out)) {
2669 odp_actions_init(out);
2670 return ofp_mkerr(OFPET_BAD_ACTION, OFPBAC_TOO_MANY);
2671 }
2672 return 0;
2673 }
2674
2675 /* Checks whether 'ofconn' is a slave controller. If so, returns an OpenFlow
2676 * error message code (composed with ofp_mkerr()) for the caller to propagate
2677 * upward. Otherwise, returns 0.
2678 *
2679 * 'oh' is used to make log messages more informative. */
2680 static int
2681 reject_slave_controller(struct ofconn *ofconn, const struct ofp_header *oh)
2682 {
2683 if (ofconn->type == OFCONN_CONTROLLER && ofconn->role == NX_ROLE_SLAVE) {
2684 static struct vlog_rate_limit perm_rl = VLOG_RATE_LIMIT_INIT(1, 5);
2685 char *type_name;
2686
2687 type_name = ofp_message_type_to_string(oh->type);
2688 VLOG_WARN_RL(&perm_rl, "rejecting %s message from slave controller",
2689 type_name);
2690 free(type_name);
2691
2692 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_EPERM);
2693 } else {
2694 return 0;
2695 }
2696 }
2697
2698 static int
2699 handle_packet_out(struct ofproto *p, struct ofconn *ofconn,
2700 struct ofp_header *oh)
2701 {
2702 struct ofp_packet_out *opo;
2703 struct ofpbuf payload, *buffer;
2704 struct odp_actions actions;
2705 int n_actions;
2706 uint16_t in_port;
2707 flow_t flow;
2708 int error;
2709
2710 error = reject_slave_controller(ofconn, oh);
2711 if (error) {
2712 return error;
2713 }
2714
2715 error = check_ofp_packet_out(oh, &payload, &n_actions, p->max_ports);
2716 if (error) {
2717 return error;
2718 }
2719 opo = (struct ofp_packet_out *) oh;
2720
2721 COVERAGE_INC(ofproto_packet_out);
2722 if (opo->buffer_id != htonl(UINT32_MAX)) {
2723 error = pktbuf_retrieve(ofconn->pktbuf, ntohl(opo->buffer_id),
2724 &buffer, &in_port);
2725 if (error || !buffer) {
2726 return error;
2727 }
2728 payload = *buffer;
2729 } else {
2730 buffer = NULL;
2731 }
2732
2733 flow_extract(&payload, 0, ofp_port_to_odp_port(ntohs(opo->in_port)), &flow);
2734 error = xlate_actions((const union ofp_action *) opo->actions, n_actions,
2735 &flow, p, &payload, &actions, NULL, NULL, NULL);
2736 if (error) {
2737 return error;
2738 }
2739
2740 dpif_execute(p->dpif, flow.in_port, actions.actions, actions.n_actions,
2741 &payload);
2742 ofpbuf_delete(buffer);
2743
2744 return 0;
2745 }
2746
2747 static void
2748 update_port_config(struct ofproto *p, struct ofport *port,
2749 uint32_t config, uint32_t mask)
2750 {
2751 mask &= config ^ port->opp.config;
2752 if (mask & OFPPC_PORT_DOWN) {
2753 if (config & OFPPC_PORT_DOWN) {
2754 netdev_turn_flags_off(port->netdev, NETDEV_UP, true);
2755 } else {
2756 netdev_turn_flags_on(port->netdev, NETDEV_UP, true);
2757 }
2758 }
2759 #define REVALIDATE_BITS (OFPPC_NO_RECV | OFPPC_NO_RECV_STP | OFPPC_NO_FWD)
2760 if (mask & REVALIDATE_BITS) {
2761 COVERAGE_INC(ofproto_costly_flags);
2762 port->opp.config ^= mask & REVALIDATE_BITS;
2763 p->need_revalidate = true;
2764 }
2765 #undef REVALIDATE_BITS
2766 if (mask & OFPPC_NO_FLOOD) {
2767 port->opp.config ^= OFPPC_NO_FLOOD;
2768 refresh_port_groups(p);
2769 }
2770 if (mask & OFPPC_NO_PACKET_IN) {
2771 port->opp.config ^= OFPPC_NO_PACKET_IN;
2772 }
2773 }
2774
2775 static int
2776 handle_port_mod(struct ofproto *p, struct ofconn *ofconn,
2777 struct ofp_header *oh)
2778 {
2779 const struct ofp_port_mod *opm;
2780 struct ofport *port;
2781 int error;
2782
2783 error = reject_slave_controller(ofconn, oh);
2784 if (error) {
2785 return error;
2786 }
2787 error = check_ofp_message(oh, OFPT_PORT_MOD, sizeof *opm);
2788 if (error) {
2789 return error;
2790 }
2791 opm = (struct ofp_port_mod *) oh;
2792
2793 port = port_array_get(&p->ports,
2794 ofp_port_to_odp_port(ntohs(opm->port_no)));
2795 if (!port) {
2796 return ofp_mkerr(OFPET_PORT_MOD_FAILED, OFPPMFC_BAD_PORT);
2797 } else if (memcmp(port->opp.hw_addr, opm->hw_addr, OFP_ETH_ALEN)) {
2798 return ofp_mkerr(OFPET_PORT_MOD_FAILED, OFPPMFC_BAD_HW_ADDR);
2799 } else {
2800 update_port_config(p, port, ntohl(opm->config), ntohl(opm->mask));
2801 if (opm->advertise) {
2802 netdev_set_advertisements(port->netdev, ntohl(opm->advertise));
2803 }
2804 }
2805 return 0;
2806 }
2807
2808 static struct ofpbuf *
2809 make_stats_reply(uint32_t xid, uint16_t type, size_t body_len)
2810 {
2811 struct ofp_stats_reply *osr;
2812 struct ofpbuf *msg;
2813
2814 msg = ofpbuf_new(MIN(sizeof *osr + body_len, UINT16_MAX));
2815 osr = put_openflow_xid(sizeof *osr, OFPT_STATS_REPLY, xid, msg);
2816 osr->type = type;
2817 osr->flags = htons(0);
2818 return msg;
2819 }
2820
2821 static struct ofpbuf *
2822 start_stats_reply(const struct ofp_stats_request *request, size_t body_len)
2823 {
2824 return make_stats_reply(request->header.xid, request->type, body_len);
2825 }
2826
2827 static void *
2828 append_stats_reply(size_t nbytes, struct ofconn *ofconn, struct ofpbuf **msgp)
2829 {
2830 struct ofpbuf *msg = *msgp;
2831 assert(nbytes <= UINT16_MAX - sizeof(struct ofp_stats_reply));
2832 if (nbytes + msg->size > UINT16_MAX) {
2833 struct ofp_stats_reply *reply = msg->data;
2834 reply->flags = htons(OFPSF_REPLY_MORE);
2835 *msgp = make_stats_reply(reply->header.xid, reply->type, nbytes);
2836 queue_tx(msg, ofconn, ofconn->reply_counter);
2837 }
2838 return ofpbuf_put_uninit(*msgp, nbytes);
2839 }
2840
2841 static int
2842 handle_desc_stats_request(struct ofproto *p, struct ofconn *ofconn,
2843 struct ofp_stats_request *request)
2844 {
2845 struct ofp_desc_stats *ods;
2846 struct ofpbuf *msg;
2847
2848 msg = start_stats_reply(request, sizeof *ods);
2849 ods = append_stats_reply(sizeof *ods, ofconn, &msg);
2850 memset(ods, 0, sizeof *ods);
2851 ovs_strlcpy(ods->mfr_desc, p->mfr_desc, sizeof ods->mfr_desc);
2852 ovs_strlcpy(ods->hw_desc, p->hw_desc, sizeof ods->hw_desc);
2853 ovs_strlcpy(ods->sw_desc, p->sw_desc, sizeof ods->sw_desc);
2854 ovs_strlcpy(ods->serial_num, p->serial_desc, sizeof ods->serial_num);
2855 ovs_strlcpy(ods->dp_desc, p->dp_desc, sizeof ods->dp_desc);
2856 queue_tx(msg, ofconn, ofconn->reply_counter);
2857
2858 return 0;
2859 }
2860
2861 static void
2862 count_subrules(struct cls_rule *cls_rule, void *n_subrules_)
2863 {
2864 struct rule *rule = rule_from_cls_rule(cls_rule);
2865 int *n_subrules = n_subrules_;
2866
2867 if (rule->super) {
2868 (*n_subrules)++;
2869 }
2870 }
2871
2872 static int
2873 handle_table_stats_request(struct ofproto *p, struct ofconn *ofconn,
2874 struct ofp_stats_request *request)
2875 {
2876 struct ofp_table_stats *ots;
2877 struct ofpbuf *msg;
2878 struct odp_stats dpstats;
2879 int n_exact, n_subrules, n_wild;
2880
2881 msg = start_stats_reply(request, sizeof *ots * 2);
2882
2883 /* Count rules of various kinds. */
2884 n_subrules = 0;
2885 classifier_for_each(&p->cls, CLS_INC_EXACT, count_subrules, &n_subrules);
2886 n_exact = classifier_count_exact(&p->cls) - n_subrules;
2887 n_wild = classifier_count(&p->cls) - classifier_count_exact(&p->cls);
2888
2889 /* Hash table. */
2890 dpif_get_dp_stats(p->dpif, &dpstats);
2891 ots = append_stats_reply(sizeof *ots, ofconn, &msg);
2892 memset(ots, 0, sizeof *ots);
2893 ots->table_id = TABLEID_HASH;
2894 strcpy(ots->name, "hash");
2895 ots->wildcards = htonl(0);
2896 ots->max_entries = htonl(dpstats.max_capacity);
2897 ots->active_count = htonl(n_exact);
2898 ots->lookup_count = htonll(dpstats.n_frags + dpstats.n_hit +
2899 dpstats.n_missed);
2900 ots->matched_count = htonll(dpstats.n_hit); /* XXX */
2901
2902 /* Classifier table. */
2903 ots = append_stats_reply(sizeof *ots, ofconn, &msg);
2904 memset(ots, 0, sizeof *ots);
2905 ots->table_id = TABLEID_CLASSIFIER;
2906 strcpy(ots->name, "classifier");
2907 ots->wildcards = p->tun_id_from_cookie ? htonl(OVSFW_ALL)
2908 : htonl(OFPFW_ALL);
2909 ots->max_entries = htonl(65536);
2910 ots->active_count = htonl(n_wild);
2911 ots->lookup_count = htonll(0); /* XXX */
2912 ots->matched_count = htonll(0); /* XXX */
2913
2914 queue_tx(msg, ofconn, ofconn->reply_counter);
2915 return 0;
2916 }
2917
2918 static void
2919 append_port_stat(struct ofport *port, uint16_t port_no, struct ofconn *ofconn,
2920 struct ofpbuf **msgp)
2921 {
2922 struct netdev_stats stats;
2923 struct ofp_port_stats *ops;
2924
2925 /* Intentionally ignore return value, since errors will set
2926 * 'stats' to all-1s, which is correct for OpenFlow, and
2927 * netdev_get_stats() will log errors. */
2928 netdev_get_stats(port->netdev, &stats);
2929
2930 ops = append_stats_reply(sizeof *ops, ofconn, msgp);
2931 ops->port_no = htons(odp_port_to_ofp_port(port_no));
2932 memset(ops->pad, 0, sizeof ops->pad);
2933 ops->rx_packets = htonll(stats.rx_packets);
2934 ops->tx_packets = htonll(stats.tx_packets);
2935 ops->rx_bytes = htonll(stats.rx_bytes);
2936 ops->tx_bytes = htonll(stats.tx_bytes);
2937 ops->rx_dropped = htonll(stats.rx_dropped);
2938 ops->tx_dropped = htonll(stats.tx_dropped);
2939 ops->rx_errors = htonll(stats.rx_errors);
2940 ops->tx_errors = htonll(stats.tx_errors);
2941 ops->rx_frame_err = htonll(stats.rx_frame_errors);
2942 ops->rx_over_err = htonll(stats.rx_over_errors);
2943 ops->rx_crc_err = htonll(stats.rx_crc_errors);
2944 ops->collisions = htonll(stats.collisions);
2945 }
2946
2947 static int
2948 handle_port_stats_request(struct ofproto *p, struct ofconn *ofconn,
2949 struct ofp_stats_request *osr,
2950 size_t arg_size)
2951 {
2952 struct ofp_port_stats_request *psr;
2953 struct ofp_port_stats *ops;
2954 struct ofpbuf *msg;
2955 struct ofport *port;
2956 unsigned int port_no;
2957
2958 if (arg_size != sizeof *psr) {
2959 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
2960 }
2961 psr = (struct ofp_port_stats_request *) osr->body;
2962
2963 msg = start_stats_reply(osr, sizeof *ops * 16);
2964 if (psr->port_no != htons(OFPP_NONE)) {
2965 port = port_array_get(&p->ports,
2966 ofp_port_to_odp_port(ntohs(psr->port_no)));
2967 if (port) {
2968 append_port_stat(port, ntohs(psr->port_no), ofconn, &msg);
2969 }
2970 } else {
2971 PORT_ARRAY_FOR_EACH (port, &p->ports, port_no) {
2972 append_port_stat(port, port_no, ofconn, &msg);
2973 }
2974 }
2975
2976 queue_tx(msg, ofconn, ofconn->reply_counter);
2977 return 0;
2978 }
2979
2980 struct flow_stats_cbdata {
2981 struct ofproto *ofproto;
2982 struct ofconn *ofconn;
2983 uint16_t out_port;
2984 struct ofpbuf *msg;
2985 };
2986
2987 /* Obtains statistic counters for 'rule' within 'p' and stores them into
2988 * '*packet_countp' and '*byte_countp'. If 'rule' is a wildcarded rule, the
2989 * returned statistic include statistics for all of 'rule''s subrules. */
2990 static void
2991 query_stats(struct ofproto *p, struct rule *rule,
2992 uint64_t *packet_countp, uint64_t *byte_countp)
2993 {
2994 uint64_t packet_count, byte_count;
2995 struct rule *subrule;
2996 struct odp_flow *odp_flows;
2997 size_t n_odp_flows;
2998
2999 /* Start from historical data for 'rule' itself that are no longer tracked
3000 * by the datapath. This counts, for example, subrules that have
3001 * expired. */
3002 packet_count = rule->packet_count;
3003 byte_count = rule->byte_count;
3004
3005 /* Prepare to ask the datapath for statistics on 'rule', or if it is
3006 * wildcarded then on all of its subrules.
3007 *
3008 * Also, add any statistics that are not tracked by the datapath for each
3009 * subrule. This includes, for example, statistics for packets that were
3010 * executed "by hand" by ofproto via dpif_execute() but must be accounted
3011 * to a flow. */
3012 n_odp_flows = rule->cr.wc.wildcards ? list_size(&rule->list) : 1;
3013 odp_flows = xzalloc(n_odp_flows * sizeof *odp_flows);
3014 if (rule->cr.wc.wildcards) {
3015 size_t i = 0;
3016 LIST_FOR_EACH (subrule, struct rule, list, &rule->list) {
3017 odp_flows[i++].key = subrule->cr.flow;
3018 packet_count += subrule->packet_count;
3019 byte_count += subrule->byte_count;
3020 }
3021 } else {
3022 odp_flows[0].key = rule->cr.flow;
3023 }
3024
3025 /* Fetch up-to-date statistics from the datapath and add them in. */
3026 if (!dpif_flow_get_multiple(p->dpif, odp_flows, n_odp_flows)) {
3027 size_t i;
3028 for (i = 0; i < n_odp_flows; i++) {
3029 struct odp_flow *odp_flow = &odp_flows[i];
3030 packet_count += odp_flow->stats.n_packets;
3031 byte_count += odp_flow->stats.n_bytes;
3032 }
3033 }
3034 free(odp_flows);
3035
3036 /* Return the stats to the caller. */
3037 *packet_countp = packet_count;
3038 *byte_countp = byte_count;
3039 }
3040
3041 static void
3042 flow_stats_cb(struct cls_rule *rule_, void *cbdata_)
3043 {
3044 struct rule *rule = rule_from_cls_rule(rule_);
3045 struct flow_stats_cbdata *cbdata = cbdata_;
3046 struct ofp_flow_stats *ofs;
3047 uint64_t packet_count, byte_count;
3048 size_t act_len, len;
3049 long long int tdiff = time_msec() - rule->created;
3050 uint32_t sec = tdiff / 1000;
3051 uint32_t msec = tdiff - (sec * 1000);
3052
3053 if (rule_is_hidden(rule) || !rule_has_out_port(rule, cbdata->out_port)) {
3054 return;
3055 }
3056
3057 act_len = sizeof *rule->actions * rule->n_actions;
3058 len = offsetof(struct ofp_flow_stats, actions) + act_len;
3059
3060 query_stats(cbdata->ofproto, rule, &packet_count, &byte_count);
3061
3062 ofs = append_stats_reply(len, cbdata->ofconn, &cbdata->msg);
3063 ofs->length = htons(len);
3064 ofs->table_id = rule->cr.wc.wildcards ? TABLEID_CLASSIFIER : TABLEID_HASH;
3065 ofs->pad = 0;
3066 flow_to_match(&rule->cr.flow, rule->cr.wc.wildcards,
3067 cbdata->ofproto->tun_id_from_cookie, &ofs->match);
3068 ofs->duration_sec = htonl(sec);
3069 ofs->duration_nsec = htonl(msec * 1000000);
3070 ofs->cookie = rule->flow_cookie;
3071 ofs->priority = htons(rule->cr.priority);
3072 ofs->idle_timeout = htons(rule->idle_timeout);
3073 ofs->hard_timeout = htons(rule->hard_timeout);
3074 memset(ofs->pad2, 0, sizeof ofs->pad2);
3075 ofs->packet_count = htonll(packet_count);
3076 ofs->byte_count = htonll(byte_count);
3077 memcpy(ofs->actions, rule->actions, act_len);
3078 }
3079
3080 static int
3081 table_id_to_include(uint8_t table_id)
3082 {
3083 return (table_id == TABLEID_HASH ? CLS_INC_EXACT
3084 : table_id == TABLEID_CLASSIFIER ? CLS_INC_WILD
3085 : table_id == 0xff ? CLS_INC_ALL
3086 : 0);
3087 }
3088
3089 static int
3090 handle_flow_stats_request(struct ofproto *p, struct ofconn *ofconn,
3091 const struct ofp_stats_request *osr,
3092 size_t arg_size)
3093 {
3094 struct ofp_flow_stats_request *fsr;
3095 struct flow_stats_cbdata cbdata;
3096 struct cls_rule target;
3097
3098 if (arg_size != sizeof *fsr) {
3099 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
3100 }
3101 fsr = (struct ofp_flow_stats_request *) osr->body;
3102
3103 COVERAGE_INC(ofproto_flows_req);
3104 cbdata.ofproto = p;
3105 cbdata.ofconn = ofconn;
3106 cbdata.out_port = fsr->out_port;
3107 cbdata.msg = start_stats_reply(osr, 1024);
3108 cls_rule_from_match(&fsr->match, 0, false, 0, &target);
3109 classifier_for_each_match(&p->cls, &target,
3110 table_id_to_include(fsr->table_id),
3111 flow_stats_cb, &cbdata);
3112 queue_tx(cbdata.msg, ofconn, ofconn->reply_counter);
3113 return 0;
3114 }
3115
3116 struct flow_stats_ds_cbdata {
3117 struct ofproto *ofproto;
3118 struct ds *results;
3119 };
3120
3121 static void
3122 flow_stats_ds_cb(struct cls_rule *rule_, void *cbdata_)
3123 {
3124 struct rule *rule = rule_from_cls_rule(rule_);
3125 struct flow_stats_ds_cbdata *cbdata = cbdata_;
3126 struct ds *results = cbdata->results;
3127 struct ofp_match match;
3128 uint64_t packet_count, byte_count;
3129 size_t act_len = sizeof *rule->actions * rule->n_actions;
3130
3131 /* Don't report on subrules. */
3132 if (rule->super != NULL) {
3133 return;
3134 }
3135
3136 query_stats(cbdata->ofproto, rule, &packet_count, &byte_count);
3137 flow_to_match(&rule->cr.flow, rule->cr.wc.wildcards,
3138 cbdata->ofproto->tun_id_from_cookie, &match);
3139
3140 ds_put_format(results, "duration=%llds, ",
3141 (time_msec() - rule->created) / 1000);
3142 ds_put_format(results, "priority=%u, ", rule->cr.priority);
3143 ds_put_format(results, "n_packets=%"PRIu64", ", packet_count);
3144 ds_put_format(results, "n_bytes=%"PRIu64", ", byte_count);
3145 ofp_print_match(results, &match, true);
3146 ofp_print_actions(results, &rule->actions->header, act_len);
3147 ds_put_cstr(results, "\n");
3148 }
3149
3150 /* Adds a pretty-printed description of all flows to 'results', including
3151 * those marked hidden by secchan (e.g., by in-band control). */
3152 void
3153 ofproto_get_all_flows(struct ofproto *p, struct ds *results)
3154 {
3155 struct ofp_match match;
3156 struct cls_rule target;
3157 struct flow_stats_ds_cbdata cbdata;
3158
3159 memset(&match, 0, sizeof match);
3160 match.wildcards = htonl(OVSFW_ALL);
3161
3162 cbdata.ofproto = p;
3163 cbdata.results = results;
3164
3165 cls_rule_from_match(&match, 0, false, 0, &target);
3166 classifier_for_each_match(&p->cls, &target, CLS_INC_ALL,
3167 flow_stats_ds_cb, &cbdata);
3168 }
3169
3170 struct aggregate_stats_cbdata {
3171 struct ofproto *ofproto;
3172 uint16_t out_port;
3173 uint64_t packet_count;
3174 uint64_t byte_count;
3175 uint32_t n_flows;
3176 };
3177
3178 static void
3179 aggregate_stats_cb(struct cls_rule *rule_, void *cbdata_)
3180 {
3181 struct rule *rule = rule_from_cls_rule(rule_);
3182 struct aggregate_stats_cbdata *cbdata = cbdata_;
3183 uint64_t packet_count, byte_count;
3184
3185 if (rule_is_hidden(rule) || !rule_has_out_port(rule, cbdata->out_port)) {
3186 return;
3187 }
3188
3189 query_stats(cbdata->ofproto, rule, &packet_count, &byte_count);
3190
3191 cbdata->packet_count += packet_count;
3192 cbdata->byte_count += byte_count;
3193 cbdata->n_flows++;
3194 }
3195
3196 static int
3197 handle_aggregate_stats_request(struct ofproto *p, struct ofconn *ofconn,
3198 const struct ofp_stats_request *osr,
3199 size_t arg_size)
3200 {
3201 struct ofp_aggregate_stats_request *asr;
3202 struct ofp_aggregate_stats_reply *reply;
3203 struct aggregate_stats_cbdata cbdata;
3204 struct cls_rule target;
3205 struct ofpbuf *msg;
3206
3207 if (arg_size != sizeof *asr) {
3208 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
3209 }
3210 asr = (struct ofp_aggregate_stats_request *) osr->body;
3211
3212 COVERAGE_INC(ofproto_agg_request);
3213 cbdata.ofproto = p;
3214 cbdata.out_port = asr->out_port;
3215 cbdata.packet_count = 0;
3216 cbdata.byte_count = 0;
3217 cbdata.n_flows = 0;
3218 cls_rule_from_match(&asr->match, 0, false, 0, &target);
3219 classifier_for_each_match(&p->cls, &target,
3220 table_id_to_include(asr->table_id),
3221 aggregate_stats_cb, &cbdata);
3222
3223 msg = start_stats_reply(osr, sizeof *reply);
3224 reply = append_stats_reply(sizeof *reply, ofconn, &msg);
3225 reply->flow_count = htonl(cbdata.n_flows);
3226 reply->packet_count = htonll(cbdata.packet_count);
3227 reply->byte_count = htonll(cbdata.byte_count);
3228 queue_tx(msg, ofconn, ofconn->reply_counter);
3229 return 0;
3230 }
3231
3232 struct queue_stats_cbdata {
3233 struct ofconn *ofconn;
3234 struct ofpbuf *msg;
3235 uint16_t port_no;
3236 };
3237
3238 static void
3239 put_queue_stats(struct queue_stats_cbdata *cbdata, uint32_t queue_id,
3240 const struct netdev_queue_stats *stats)
3241 {
3242 struct ofp_queue_stats *reply;
3243
3244 reply = append_stats_reply(sizeof *reply, cbdata->ofconn, &cbdata->msg);
3245 reply->port_no = htons(cbdata->port_no);
3246 memset(reply->pad, 0, sizeof reply->pad);
3247 reply->queue_id = htonl(queue_id);
3248 reply->tx_bytes = htonll(stats->tx_bytes);
3249 reply->tx_packets = htonll(stats->tx_packets);
3250 reply->tx_errors = htonll(stats->tx_errors);
3251 }
3252
3253 static void
3254 handle_queue_stats_dump_cb(uint32_t queue_id,
3255 struct netdev_queue_stats *stats,
3256 void *cbdata_)
3257 {
3258 struct queue_stats_cbdata *cbdata = cbdata_;
3259
3260 put_queue_stats(cbdata, queue_id, stats);
3261 }
3262
3263 static void
3264 handle_queue_stats_for_port(struct ofport *port, uint16_t port_no,
3265 uint32_t queue_id,
3266 struct queue_stats_cbdata *cbdata)
3267 {
3268 cbdata->port_no = port_no;
3269 if (queue_id == OFPQ_ALL) {
3270 netdev_dump_queue_stats(port->netdev,
3271 handle_queue_stats_dump_cb, cbdata);
3272 } else {
3273 struct netdev_queue_stats stats;
3274
3275 netdev_get_queue_stats(port->netdev, queue_id, &stats);
3276 put_queue_stats(cbdata, queue_id, &stats);
3277 }
3278 }
3279
3280 static int
3281 handle_queue_stats_request(struct ofproto *ofproto, struct ofconn *ofconn,
3282 const struct ofp_stats_request *osr,
3283 size_t arg_size)
3284 {
3285 struct ofp_queue_stats_request *qsr;
3286 struct queue_stats_cbdata cbdata;
3287 struct ofport *port;
3288 unsigned int port_no;
3289 uint32_t queue_id;
3290
3291 if (arg_size != sizeof *qsr) {
3292 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
3293 }
3294 qsr = (struct ofp_queue_stats_request *) osr->body;
3295
3296 COVERAGE_INC(ofproto_queue_req);
3297
3298 cbdata.ofconn = ofconn;
3299 cbdata.msg = start_stats_reply(osr, 128);
3300
3301 port_no = ntohs(qsr->port_no);
3302 queue_id = ntohl(qsr->queue_id);
3303 if (port_no == OFPP_ALL) {
3304 PORT_ARRAY_FOR_EACH (port, &ofproto->ports, port_no) {
3305 handle_queue_stats_for_port(port, port_no, queue_id, &cbdata);
3306 }
3307 } else if (port_no < ofproto->max_ports) {
3308 port = port_array_get(&ofproto->ports, port_no);
3309 if (port) {
3310 handle_queue_stats_for_port(port, port_no, queue_id, &cbdata);
3311 }
3312 } else {
3313 ofpbuf_delete(cbdata.msg);
3314 return ofp_mkerr(OFPET_QUEUE_OP_FAILED, OFPQOFC_BAD_PORT);
3315 }
3316 queue_tx(cbdata.msg, ofconn, ofconn->reply_counter);
3317
3318 return 0;
3319 }
3320
3321 static int
3322 handle_stats_request(struct ofproto *p, struct ofconn *ofconn,
3323 struct ofp_header *oh)
3324 {
3325 struct ofp_stats_request *osr;
3326 size_t arg_size;
3327 int error;
3328
3329 error = check_ofp_message_array(oh, OFPT_STATS_REQUEST, sizeof *osr,
3330 1, &arg_size);
3331 if (error) {
3332 return error;
3333 }
3334 osr = (struct ofp_stats_request *) oh;
3335
3336 switch (ntohs(osr->type)) {
3337 case OFPST_DESC:
3338 return handle_desc_stats_request(p, ofconn, osr);
3339
3340 case OFPST_FLOW:
3341 return handle_flow_stats_request(p, ofconn, osr, arg_size);
3342
3343 case OFPST_AGGREGATE:
3344 return handle_aggregate_stats_request(p, ofconn, osr, arg_size);
3345
3346 case OFPST_TABLE:
3347 return handle_table_stats_request(p, ofconn, osr);
3348
3349 case OFPST_PORT:
3350 return handle_port_stats_request(p, ofconn, osr, arg_size);
3351
3352 case OFPST_QUEUE:
3353 return handle_queue_stats_request(p, ofconn, osr, arg_size);
3354
3355 case OFPST_VENDOR:
3356 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_VENDOR);
3357
3358 default:
3359 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_STAT);
3360 }
3361 }
3362
3363 static long long int
3364 msec_from_nsec(uint64_t sec, uint32_t nsec)
3365 {
3366 return !sec ? 0 : sec * 1000 + nsec / 1000000;
3367 }
3368
3369 static void
3370 update_time(struct ofproto *ofproto, struct rule *rule,
3371 const struct odp_flow_stats *stats)
3372 {
3373 long long int used = msec_from_nsec(stats->used_sec, stats->used_nsec);
3374 if (used > rule->used) {
3375 rule->used = used;
3376 if (rule->super && used > rule->super->used) {
3377 rule->super->used = used;
3378 }
3379 netflow_flow_update_time(ofproto->netflow, &rule->nf_flow, used);
3380 }
3381 }
3382
3383 static void
3384 update_stats(struct ofproto *ofproto, struct rule *rule,
3385 const struct odp_flow_stats *stats)
3386 {
3387 if (stats->n_packets) {
3388 update_time(ofproto, rule, stats);
3389 rule->packet_count += stats->n_packets;
3390 rule->byte_count += stats->n_bytes;
3391 netflow_flow_update_flags(&rule->nf_flow, stats->tcp_flags);
3392 }
3393 }
3394
3395 /* Implements OFPFC_ADD and the cases for OFPFC_MODIFY and OFPFC_MODIFY_STRICT
3396 * in which no matching flow already exists in the flow table.
3397 *
3398 * Adds the flow specified by 'ofm', which is followed by 'n_actions'
3399 * ofp_actions, to 'p''s flow table. Returns 0 on success or an OpenFlow error
3400 * code as encoded by ofp_mkerr() on failure.
3401 *
3402 * 'ofconn' is used to retrieve the packet buffer specified in ofm->buffer_id,
3403 * if any. */
3404 static int
3405 add_flow(struct ofproto *p, struct ofconn *ofconn,
3406 const struct ofp_flow_mod *ofm, size_t n_actions)
3407 {
3408 struct ofpbuf *packet;
3409 struct rule *rule;
3410 uint16_t in_port;
3411 int error;
3412
3413 if (ofm->flags & htons(OFPFF_CHECK_OVERLAP)) {
3414 flow_t flow;
3415 uint32_t wildcards;
3416
3417 flow_from_match(&ofm->match, p->tun_id_from_cookie, ofm->cookie,
3418 &flow, &wildcards);
3419 if (classifier_rule_overlaps(&p->cls, &flow, wildcards,
3420 ntohs(ofm->priority))) {
3421 return ofp_mkerr(OFPET_FLOW_MOD_FAILED, OFPFMFC_OVERLAP);
3422 }
3423 }
3424
3425 rule = rule_create(p, NULL, (const union ofp_action *) ofm->actions,
3426 n_actions, ntohs(ofm->idle_timeout),
3427 ntohs(ofm->hard_timeout), ofm->cookie,
3428 ofm->flags & htons(OFPFF_SEND_FLOW_REM));
3429 cls_rule_from_match(&ofm->match, ntohs(ofm->priority),
3430 p->tun_id_from_cookie, ofm->cookie, &rule->cr);
3431
3432 error = 0;
3433 if (ofm->buffer_id != htonl(UINT32_MAX)) {
3434 error = pktbuf_retrieve(ofconn->pktbuf, ntohl(ofm->buffer_id),
3435 &packet, &in_port);
3436 } else {
3437 packet = NULL;
3438 in_port = UINT16_MAX;
3439 }
3440
3441 rule_insert(p, rule, packet, in_port);
3442 ofpbuf_delete(packet);
3443 return error;
3444 }
3445
3446 static struct rule *
3447 find_flow_strict(struct ofproto *p, const struct ofp_flow_mod *ofm)
3448 {
3449 uint32_t wildcards;
3450 flow_t flow;
3451
3452 flow_from_match(&ofm->match, p->tun_id_from_cookie, ofm->cookie,
3453 &flow, &wildcards);
3454 return rule_from_cls_rule(classifier_find_rule_exactly(
3455 &p->cls, &flow, wildcards,
3456 ntohs(ofm->priority)));
3457 }
3458
3459 static int
3460 send_buffered_packet(struct ofproto *ofproto, struct ofconn *ofconn,
3461 struct rule *rule, const struct ofp_flow_mod *ofm)
3462 {
3463 struct ofpbuf *packet;
3464 uint16_t in_port;
3465 flow_t flow;
3466 int error;
3467
3468 if (ofm->buffer_id == htonl(UINT32_MAX)) {
3469 return 0;
3470 }
3471
3472 error = pktbuf_retrieve(ofconn->pktbuf, ntohl(ofm->buffer_id),
3473 &packet, &in_port);
3474 if (error) {
3475 return error;
3476 }
3477
3478 flow_extract(packet, 0, in_port, &flow);
3479 rule_execute(ofproto, rule, packet, &flow);
3480 ofpbuf_delete(packet);
3481
3482 return 0;
3483 }
3484 \f
3485 /* OFPFC_MODIFY and OFPFC_MODIFY_STRICT. */
3486
3487 struct modify_flows_cbdata {
3488 struct ofproto *ofproto;
3489 const struct ofp_flow_mod *ofm;
3490 size_t n_actions;
3491 struct rule *match;
3492 };
3493
3494 static int modify_flow(struct ofproto *, const struct ofp_flow_mod *,
3495 size_t n_actions, struct rule *);
3496 static void modify_flows_cb(struct cls_rule *, void *cbdata_);
3497
3498 /* Implements OFPFC_MODIFY. Returns 0 on success or an OpenFlow error code as
3499 * encoded by ofp_mkerr() on failure.
3500 *
3501 * 'ofconn' is used to retrieve the packet buffer specified in ofm->buffer_id,
3502 * if any. */
3503 static int
3504 modify_flows_loose(struct ofproto *p, struct ofconn *ofconn,
3505 const struct ofp_flow_mod *ofm, size_t n_actions)
3506 {
3507 struct modify_flows_cbdata cbdata;
3508 struct cls_rule target;
3509
3510 cbdata.ofproto = p;
3511 cbdata.ofm = ofm;
3512 cbdata.n_actions = n_actions;
3513 cbdata.match = NULL;
3514
3515 cls_rule_from_match(&ofm->match, 0, p->tun_id_from_cookie, ofm->cookie,
3516 &target);
3517
3518 classifier_for_each_match(&p->cls, &target, CLS_INC_ALL,
3519 modify_flows_cb, &cbdata);
3520 if (cbdata.match) {
3521 /* This credits the packet to whichever flow happened to happened to
3522 * match last. That's weird. Maybe we should do a lookup for the
3523 * flow that actually matches the packet? Who knows. */
3524 send_buffered_packet(p, ofconn, cbdata.match, ofm);
3525 return 0;
3526 } else {
3527 return add_flow(p, ofconn, ofm, n_actions);
3528 }
3529 }
3530
3531 /* Implements OFPFC_MODIFY_STRICT. Returns 0 on success or an OpenFlow error
3532 * code as encoded by ofp_mkerr() on failure.
3533 *
3534 * 'ofconn' is used to retrieve the packet buffer specified in ofm->buffer_id,
3535 * if any. */
3536 static int
3537 modify_flow_strict(struct ofproto *p, struct ofconn *ofconn,
3538 struct ofp_flow_mod *ofm, size_t n_actions)
3539 {
3540 struct rule *rule = find_flow_strict(p, ofm);
3541 if (rule && !rule_is_hidden(rule)) {
3542 modify_flow(p, ofm, n_actions, rule);
3543 return send_buffered_packet(p, ofconn, rule, ofm);
3544 } else {
3545 return add_flow(p, ofconn, ofm, n_actions);
3546 }
3547 }
3548
3549 /* Callback for modify_flows_loose(). */
3550 static void
3551 modify_flows_cb(struct cls_rule *rule_, void *cbdata_)
3552 {
3553 struct rule *rule = rule_from_cls_rule(rule_);
3554 struct modify_flows_cbdata *cbdata = cbdata_;
3555
3556 if (!rule_is_hidden(rule)) {
3557 cbdata->match = rule;
3558 modify_flow(cbdata->ofproto, cbdata->ofm, cbdata->n_actions, rule);
3559 }
3560 }
3561
3562 /* Implements core of OFPFC_MODIFY and OFPFC_MODIFY_STRICT where 'rule' has
3563 * been identified as a flow in 'p''s flow table to be modified, by changing
3564 * the rule's actions to match those in 'ofm' (which is followed by 'n_actions'
3565 * ofp_action[] structures). */
3566 static int
3567 modify_flow(struct ofproto *p, const struct ofp_flow_mod *ofm,
3568 size_t n_actions, struct rule *rule)
3569 {
3570 size_t actions_len = n_actions * sizeof *rule->actions;
3571
3572 rule->flow_cookie = ofm->cookie;
3573
3574 /* If the actions are the same, do nothing. */
3575 if (n_actions == rule->n_actions
3576 && !memcmp(ofm->actions, rule->actions, actions_len))
3577 {
3578 return 0;
3579 }
3580
3581 /* Replace actions. */
3582 free(rule->actions);
3583 rule->actions = xmemdup(ofm->actions, actions_len);
3584 rule->n_actions = n_actions;
3585
3586 /* Make sure that the datapath gets updated properly. */
3587 if (rule->cr.wc.wildcards) {
3588 COVERAGE_INC(ofproto_mod_wc_flow);
3589 p->need_revalidate = true;
3590 } else {
3591 rule_update_actions(p, rule);
3592 }
3593
3594 return 0;
3595 }
3596 \f
3597 /* OFPFC_DELETE implementation. */
3598
3599 struct delete_flows_cbdata {
3600 struct ofproto *ofproto;
3601 uint16_t out_port;
3602 };
3603
3604 static void delete_flows_cb(struct cls_rule *, void *cbdata_);
3605 static void delete_flow(struct ofproto *, struct rule *, uint16_t out_port);
3606
3607 /* Implements OFPFC_DELETE. */
3608 static void
3609 delete_flows_loose(struct ofproto *p, const struct ofp_flow_mod *ofm)
3610 {
3611 struct delete_flows_cbdata cbdata;
3612 struct cls_rule target;
3613
3614 cbdata.ofproto = p;
3615 cbdata.out_port = ofm->out_port;
3616
3617 cls_rule_from_match(&ofm->match, 0, p->tun_id_from_cookie, ofm->cookie,
3618 &target);
3619
3620 classifier_for_each_match(&p->cls, &target, CLS_INC_ALL,
3621 delete_flows_cb, &cbdata);
3622 }
3623
3624 /* Implements OFPFC_DELETE_STRICT. */
3625 static void
3626 delete_flow_strict(struct ofproto *p, struct ofp_flow_mod *ofm)
3627 {
3628 struct rule *rule = find_flow_strict(p, ofm);
3629 if (rule) {
3630 delete_flow(p, rule, ofm->out_port);
3631 }
3632 }
3633
3634 /* Callback for delete_flows_loose(). */
3635 static void
3636 delete_flows_cb(struct cls_rule *rule_, void *cbdata_)
3637 {
3638 struct rule *rule = rule_from_cls_rule(rule_);
3639 struct delete_flows_cbdata *cbdata = cbdata_;
3640
3641 delete_flow(cbdata->ofproto, rule, cbdata->out_port);
3642 }
3643
3644 /* Implements core of OFPFC_DELETE and OFPFC_DELETE_STRICT where 'rule' has
3645 * been identified as a flow to delete from 'p''s flow table, by deleting the
3646 * flow and sending out a OFPT_FLOW_REMOVED message to any interested
3647 * controller.
3648 *
3649 * Will not delete 'rule' if it is hidden. Will delete 'rule' only if
3650 * 'out_port' is htons(OFPP_NONE) or if 'rule' actually outputs to the
3651 * specified 'out_port'. */
3652 static void
3653 delete_flow(struct ofproto *p, struct rule *rule, uint16_t out_port)
3654 {
3655 if (rule_is_hidden(rule)) {
3656 return;
3657 }
3658
3659 if (out_port != htons(OFPP_NONE) && !rule_has_out_port(rule, out_port)) {
3660 return;
3661 }
3662
3663 send_flow_removed(p, rule, time_msec(), OFPRR_DELETE);
3664 rule_remove(p, rule);
3665 }
3666 \f
3667 static int
3668 handle_flow_mod(struct ofproto *p, struct ofconn *ofconn,
3669 struct ofp_flow_mod *ofm)
3670 {
3671 struct ofp_match orig_match;
3672 size_t n_actions;
3673 int error;
3674
3675 error = reject_slave_controller(ofconn, &ofm->header);
3676 if (error) {
3677 return error;
3678 }
3679 error = check_ofp_message_array(&ofm->header, OFPT_FLOW_MOD, sizeof *ofm,
3680 sizeof *ofm->actions, &n_actions);
3681 if (error) {
3682 return error;
3683 }
3684
3685 /* We do not support the emergency flow cache. It will hopefully
3686 * get dropped from OpenFlow in the near future. */
3687 if (ofm->flags & htons(OFPFF_EMERG)) {
3688 /* There isn't a good fit for an error code, so just state that the
3689 * flow table is full. */
3690 return ofp_mkerr(OFPET_FLOW_MOD_FAILED, OFPFMFC_ALL_TABLES_FULL);
3691 }
3692
3693 /* Normalize ofp->match. If normalization actually changes anything, then
3694 * log the differences. */
3695 ofm->match.pad1[0] = ofm->match.pad2[0] = 0;
3696 orig_match = ofm->match;
3697 normalize_match(&ofm->match);
3698 if (memcmp(&ofm->match, &orig_match, sizeof orig_match)) {
3699 static struct vlog_rate_limit normal_rl = VLOG_RATE_LIMIT_INIT(1, 1);
3700 if (!VLOG_DROP_INFO(&normal_rl)) {
3701 char *old = ofp_match_to_literal_string(&orig_match);
3702 char *new = ofp_match_to_literal_string(&ofm->match);
3703 VLOG_INFO("%s: normalization changed ofp_match, details:",
3704 rconn_get_name(ofconn->rconn));
3705 VLOG_INFO(" pre: %s", old);
3706 VLOG_INFO("post: %s", new);
3707 free(old);
3708 free(new);
3709 }
3710 }
3711
3712 if (!ofm->match.wildcards) {
3713 ofm->priority = htons(UINT16_MAX);
3714 }
3715
3716 error = validate_actions((const union ofp_action *) ofm->actions,
3717 n_actions, p->max_ports);
3718 if (error) {
3719 return error;
3720 }
3721
3722 switch (ntohs(ofm->command)) {
3723 case OFPFC_ADD:
3724 return add_flow(p, ofconn, ofm, n_actions);
3725
3726 case OFPFC_MODIFY:
3727 return modify_flows_loose(p, ofconn, ofm, n_actions);
3728
3729 case OFPFC_MODIFY_STRICT:
3730 return modify_flow_strict(p, ofconn, ofm, n_actions);
3731
3732 case OFPFC_DELETE:
3733 delete_flows_loose(p, ofm);
3734 return 0;
3735
3736 case OFPFC_DELETE_STRICT:
3737 delete_flow_strict(p, ofm);
3738 return 0;
3739
3740 default:
3741 return ofp_mkerr(OFPET_FLOW_MOD_FAILED, OFPFMFC_BAD_COMMAND);
3742 }
3743 }
3744
3745 static int
3746 handle_tun_id_from_cookie(struct ofproto *p, struct nxt_tun_id_cookie *msg)
3747 {
3748 int error;
3749
3750 error = check_ofp_message(&msg->header, OFPT_VENDOR, sizeof *msg);
3751 if (error) {
3752 return error;
3753 }
3754
3755 p->tun_id_from_cookie = !!msg->set;
3756 return 0;
3757 }
3758
3759 static int
3760 handle_role_request(struct ofproto *ofproto,
3761 struct ofconn *ofconn, struct nicira_header *msg)
3762 {
3763 struct nx_role_request *nrr;
3764 struct nx_role_request *reply;
3765 struct ofpbuf *buf;
3766 uint32_t role;
3767
3768 if (ntohs(msg->header.length) != sizeof *nrr) {
3769 VLOG_WARN_RL(&rl, "received role request of length %u (expected %zu)",
3770 ntohs(msg->header.length), sizeof *nrr);
3771 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
3772 }
3773 nrr = (struct nx_role_request *) msg;
3774
3775 if (ofconn->type != OFCONN_CONTROLLER) {
3776 VLOG_WARN_RL(&rl, "ignoring role request on non-controller "
3777 "connection");
3778 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_EPERM);
3779 }
3780
3781 role = ntohl(nrr->role);
3782 if (role != NX_ROLE_OTHER && role != NX_ROLE_MASTER
3783 && role != NX_ROLE_SLAVE) {
3784 VLOG_WARN_RL(&rl, "received request for unknown role %"PRIu32, role);
3785
3786 /* There's no good error code for this. */
3787 return ofp_mkerr(OFPET_BAD_REQUEST, -1);
3788 }
3789
3790 if (role == NX_ROLE_MASTER) {
3791 struct ofconn *other;
3792
3793 HMAP_FOR_EACH (other, struct ofconn, hmap_node,
3794 &ofproto->controllers) {
3795 if (other->role == NX_ROLE_MASTER) {
3796 other->role = NX_ROLE_SLAVE;
3797 }
3798 }
3799 }
3800 ofconn->role = role;
3801
3802 reply = make_openflow_xid(sizeof *reply, OFPT_VENDOR, msg->header.xid,
3803 &buf);
3804 reply->nxh.vendor = htonl(NX_VENDOR_ID);
3805 reply->nxh.subtype = htonl(NXT_ROLE_REPLY);
3806 reply->role = htonl(role);
3807 queue_tx(buf, ofconn, ofconn->reply_counter);
3808
3809 return 0;
3810 }
3811
3812 static int
3813 handle_vendor(struct ofproto *p, struct ofconn *ofconn, void *msg)
3814 {
3815 struct ofp_vendor_header *ovh = msg;
3816 struct nicira_header *nh;
3817
3818 if (ntohs(ovh->header.length) < sizeof(struct ofp_vendor_header)) {
3819 VLOG_WARN_RL(&rl, "received vendor message of length %u "
3820 "(expected at least %zu)",
3821 ntohs(ovh->header.length), sizeof(struct ofp_vendor_header));
3822 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
3823 }
3824 if (ovh->vendor != htonl(NX_VENDOR_ID)) {
3825 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_VENDOR);
3826 }
3827 if (ntohs(ovh->header.length) < sizeof(struct nicira_header)) {
3828 VLOG_WARN_RL(&rl, "received Nicira vendor message of length %u "
3829 "(expected at least %zu)",
3830 ntohs(ovh->header.length), sizeof(struct nicira_header));
3831 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
3832 }
3833
3834 nh = msg;
3835 switch (ntohl(nh->subtype)) {
3836 case NXT_STATUS_REQUEST:
3837 return switch_status_handle_request(p->switch_status, ofconn->rconn,
3838 msg);
3839
3840 case NXT_TUN_ID_FROM_COOKIE:
3841 return handle_tun_id_from_cookie(p, msg);
3842
3843 case NXT_ROLE_REQUEST:
3844 return handle_role_request(p, ofconn, msg);
3845 }
3846
3847 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_SUBTYPE);
3848 }
3849
3850 static int
3851 handle_barrier_request(struct ofconn *ofconn, struct ofp_header *oh)
3852 {
3853 struct ofp_header *ob;
3854 struct ofpbuf *buf;
3855
3856 /* Currently, everything executes synchronously, so we can just
3857 * immediately send the barrier reply. */
3858 ob = make_openflow_xid(sizeof *ob, OFPT_BARRIER_REPLY, oh->xid, &buf);
3859 queue_tx(buf, ofconn, ofconn->reply_counter);
3860 return 0;
3861 }
3862
3863 static void
3864 handle_openflow(struct ofconn *ofconn, struct ofproto *p,
3865 struct ofpbuf *ofp_msg)
3866 {
3867 struct ofp_header *oh = ofp_msg->data;
3868 int error;
3869
3870 COVERAGE_INC(ofproto_recv_openflow);
3871 switch (oh->type) {
3872 case OFPT_ECHO_REQUEST:
3873 error = handle_echo_request(ofconn, oh);
3874 break;
3875
3876 case OFPT_ECHO_REPLY:
3877 error = 0;
3878 break;
3879
3880 case OFPT_FEATURES_REQUEST:
3881 error = handle_features_request(p, ofconn, oh);
3882 break;
3883
3884 case OFPT_GET_CONFIG_REQUEST:
3885 error = handle_get_config_request(p, ofconn, oh);
3886 break;
3887
3888 case OFPT_SET_CONFIG:
3889 error = handle_set_config(p, ofconn, ofp_msg->data);
3890 break;
3891
3892 case OFPT_PACKET_OUT:
3893 error = handle_packet_out(p, ofconn, ofp_msg->data);
3894 break;
3895
3896 case OFPT_PORT_MOD:
3897 error = handle_port_mod(p, ofconn, oh);
3898 break;
3899
3900 case OFPT_FLOW_MOD:
3901 error = handle_flow_mod(p, ofconn, ofp_msg->data);
3902 break;
3903
3904 case OFPT_STATS_REQUEST:
3905 error = handle_stats_request(p, ofconn, oh);
3906 break;
3907
3908 case OFPT_VENDOR:
3909 error = handle_vendor(p, ofconn, ofp_msg->data);
3910 break;
3911
3912 case OFPT_BARRIER_REQUEST:
3913 error = handle_barrier_request(ofconn, oh);
3914 break;
3915
3916 default:
3917 if (VLOG_IS_WARN_ENABLED()) {
3918 char *s = ofp_to_string(oh, ntohs(oh->length), 2);
3919 VLOG_DBG_RL(&rl, "OpenFlow message ignored: %s", s);
3920 free(s);
3921 }
3922 error = ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_TYPE);
3923 break;
3924 }
3925
3926 if (error) {
3927 send_error_oh(ofconn, ofp_msg->data, error);
3928 }
3929 }
3930 \f
3931 static void
3932 handle_odp_miss_msg(struct ofproto *p, struct ofpbuf *packet)
3933 {
3934 struct odp_msg *msg = packet->data;
3935 struct rule *rule;
3936 struct ofpbuf payload;
3937 flow_t flow;
3938
3939 payload.data = msg + 1;
3940 payload.size = msg->length - sizeof *msg;
3941 flow_extract(&payload, msg->arg, msg->port, &flow);
3942
3943 /* Check with in-band control to see if this packet should be sent
3944 * to the local port regardless of the flow table. */
3945 if (in_band_msg_in_hook(p->in_band, &flow, &payload)) {
3946 union odp_action action;
3947
3948 memset(&action, 0, sizeof(action));
3949 action.output.type = ODPAT_OUTPUT;
3950 action.output.port = ODPP_LOCAL;
3951 dpif_execute(p->dpif, flow.in_port, &action, 1, &payload);
3952 }
3953
3954 rule = lookup_valid_rule(p, &flow);
3955 if (!rule) {
3956 /* Don't send a packet-in if OFPPC_NO_PACKET_IN asserted. */
3957 struct ofport *port = port_array_get(&p->ports, msg->port);
3958 if (port) {
3959 if (port->opp.config & OFPPC_NO_PACKET_IN) {
3960 COVERAGE_INC(ofproto_no_packet_in);
3961 /* XXX install 'drop' flow entry */
3962 ofpbuf_delete(packet);
3963 return;
3964 }
3965 } else {
3966 VLOG_WARN_RL(&rl, "packet-in on unknown port %"PRIu16, msg->port);
3967 }
3968
3969 COVERAGE_INC(ofproto_packet_in);
3970 send_packet_in(p, packet);
3971 return;
3972 }
3973
3974 if (rule->cr.wc.wildcards) {
3975 rule = rule_create_subrule(p, rule, &flow);
3976 rule_make_actions(p, rule, packet);
3977 } else {
3978 if (!rule->may_install) {
3979 /* The rule is not installable, that is, we need to process every
3980 * packet, so process the current packet and set its actions into
3981 * 'subrule'. */
3982 rule_make_actions(p, rule, packet);
3983 } else {
3984 /* XXX revalidate rule if it needs it */
3985 }
3986 }
3987
3988 rule_execute(p, rule, &payload, &flow);
3989 rule_reinstall(p, rule);
3990
3991 if (rule->super && rule->super->cr.priority == FAIL_OPEN_PRIORITY) {
3992 /*
3993 * Extra-special case for fail-open mode.
3994 *
3995 * We are in fail-open mode and the packet matched the fail-open rule,
3996 * but we are connected to a controller too. We should send the packet
3997 * up to the controller in the hope that it will try to set up a flow
3998 * and thereby allow us to exit fail-open.
3999 *
4000 * See the top-level comment in fail-open.c for more information.
4001 */
4002 send_packet_in(p, packet);
4003 } else {
4004 ofpbuf_delete(packet);
4005 }
4006 }
4007
4008 static void
4009 handle_odp_msg(struct ofproto *p, struct ofpbuf *packet)
4010 {
4011 struct odp_msg *msg = packet->data;
4012
4013 switch (msg->type) {
4014 case _ODPL_ACTION_NR:
4015 COVERAGE_INC(ofproto_ctlr_action);
4016 send_packet_in(p, packet);
4017 break;
4018
4019 case _ODPL_SFLOW_NR:
4020 if (p->sflow) {
4021 ofproto_sflow_received(p->sflow, msg);
4022 }
4023 ofpbuf_delete(packet);
4024 break;
4025
4026 case _ODPL_MISS_NR:
4027 handle_odp_miss_msg(p, packet);
4028 break;
4029
4030 default:
4031 VLOG_WARN_RL(&rl, "received ODP message of unexpected type %"PRIu32,
4032 msg->type);
4033 break;
4034 }
4035 }
4036 \f
4037 static void
4038 revalidate_cb(struct cls_rule *sub_, void *cbdata_)
4039 {
4040 struct rule *sub = rule_from_cls_rule(sub_);
4041 struct revalidate_cbdata *cbdata = cbdata_;
4042
4043 if (cbdata->revalidate_all
4044 || (cbdata->revalidate_subrules && sub->super)
4045 || (tag_set_intersects(&cbdata->revalidate_set, sub->tags))) {
4046 revalidate_rule(cbdata->ofproto, sub);
4047 }
4048 }
4049
4050 static bool
4051 revalidate_rule(struct ofproto *p, struct rule *rule)
4052 {
4053 const flow_t *flow = &rule->cr.flow;
4054
4055 COVERAGE_INC(ofproto_revalidate_rule);
4056 if (rule->super) {
4057 struct rule *super;
4058 super = rule_from_cls_rule(classifier_lookup_wild(&p->cls, flow));
4059 if (!super) {
4060 rule_remove(p, rule);
4061 return false;
4062 } else if (super != rule->super) {
4063 COVERAGE_INC(ofproto_revalidate_moved);
4064 list_remove(&rule->list);
4065 list_push_back(&super->list, &rule->list);
4066 rule->super = super;
4067 rule->hard_timeout = super->hard_timeout;
4068 rule->idle_timeout = super->idle_timeout;
4069 rule->created = super->created;
4070 rule->used = 0;
4071 }
4072 }
4073
4074 rule_update_actions(p, rule);
4075 return true;
4076 }
4077
4078 static struct ofpbuf *
4079 compose_flow_removed(struct ofproto *p, const struct rule *rule,
4080 long long int now, uint8_t reason)
4081 {
4082 struct ofp_flow_removed *ofr;
4083 struct ofpbuf *buf;
4084 long long int tdiff = now - rule->created;
4085 uint32_t sec = tdiff / 1000;
4086 uint32_t msec = tdiff - (sec * 1000);
4087
4088 ofr = make_openflow(sizeof *ofr, OFPT_FLOW_REMOVED, &buf);
4089 flow_to_match(&rule->cr.flow, rule->cr.wc.wildcards, p->tun_id_from_cookie,
4090 &ofr->match);
4091 ofr->cookie = rule->flow_cookie;
4092 ofr->priority = htons(rule->cr.priority);
4093 ofr->reason = reason;
4094 ofr->duration_sec = htonl(sec);
4095 ofr->duration_nsec = htonl(msec * 1000000);
4096 ofr->idle_timeout = htons(rule->idle_timeout);
4097 ofr->packet_count = htonll(rule->packet_count);
4098 ofr->byte_count = htonll(rule->byte_count);
4099
4100 return buf;
4101 }
4102
4103 static void
4104 uninstall_idle_flow(struct ofproto *ofproto, struct rule *rule)
4105 {
4106 assert(rule->installed);
4107 assert(!rule->cr.wc.wildcards);
4108
4109 if (rule->super) {
4110 rule_remove(ofproto, rule);
4111 } else {
4112 rule_uninstall(ofproto, rule);
4113 }
4114 }
4115
4116 static void
4117 send_flow_removed(struct ofproto *p, struct rule *rule,
4118 long long int now, uint8_t reason)
4119 {
4120 struct ofconn *ofconn;
4121 struct ofconn *prev;
4122 struct ofpbuf *buf = NULL;
4123
4124 /* We limit the maximum number of queued flow expirations it by accounting
4125 * them under the counter for replies. That works because preventing
4126 * OpenFlow requests from being processed also prevents new flows from
4127 * being added (and expiring). (It also prevents processing OpenFlow
4128 * requests that would not add new flows, so it is imperfect.) */
4129
4130 prev = NULL;
4131 LIST_FOR_EACH (ofconn, struct ofconn, node, &p->all_conns) {
4132 if (rule->send_flow_removed && rconn_is_connected(ofconn->rconn)
4133 && ofconn_receives_async_msgs(ofconn)) {
4134 if (prev) {
4135 queue_tx(ofpbuf_clone(buf), prev, prev->reply_counter);
4136 } else {
4137 buf = compose_flow_removed(p, rule, now, reason);
4138 }
4139 prev = ofconn;
4140 }
4141 }
4142 if (prev) {
4143 queue_tx(buf, prev, prev->reply_counter);
4144 }
4145 }
4146
4147
4148 static void
4149 expire_rule(struct cls_rule *cls_rule, void *p_)
4150 {
4151 struct ofproto *p = p_;
4152 struct rule *rule = rule_from_cls_rule(cls_rule);
4153 long long int hard_expire, idle_expire, expire, now;
4154
4155 hard_expire = (rule->hard_timeout
4156 ? rule->created + rule->hard_timeout * 1000
4157 : LLONG_MAX);
4158 idle_expire = (rule->idle_timeout
4159 && (rule->super || list_is_empty(&rule->list))
4160 ? rule->used + rule->idle_timeout * 1000
4161 : LLONG_MAX);
4162 expire = MIN(hard_expire, idle_expire);
4163
4164 now = time_msec();
4165 if (now < expire) {
4166 if (rule->installed && now >= rule->used + 5000) {
4167 uninstall_idle_flow(p, rule);
4168 } else if (!rule->cr.wc.wildcards) {
4169 active_timeout(p, rule);
4170 }
4171
4172 return;
4173 }
4174
4175 COVERAGE_INC(ofproto_expired);
4176
4177 /* Update stats. This code will be a no-op if the rule expired
4178 * due to an idle timeout. */
4179 if (rule->cr.wc.wildcards) {
4180 struct rule *subrule, *next;
4181 LIST_FOR_EACH_SAFE (subrule, next, struct rule, list, &rule->list) {
4182 rule_remove(p, subrule);
4183 }
4184 } else {
4185 rule_uninstall(p, rule);
4186 }
4187
4188 if (!rule_is_hidden(rule)) {
4189 send_flow_removed(p, rule, now,
4190 (now >= hard_expire
4191 ? OFPRR_HARD_TIMEOUT : OFPRR_IDLE_TIMEOUT));
4192 }
4193 rule_remove(p, rule);
4194 }
4195
4196 static void
4197 active_timeout(struct ofproto *ofproto, struct rule *rule)
4198 {
4199 if (ofproto->netflow && !is_controller_rule(rule) &&
4200 netflow_active_timeout_expired(ofproto->netflow, &rule->nf_flow)) {
4201 struct ofexpired expired;
4202 struct odp_flow odp_flow;
4203
4204 /* Get updated flow stats. */
4205 memset(&odp_flow, 0, sizeof odp_flow);
4206 if (rule->installed) {
4207 odp_flow.key = rule->cr.flow;
4208 odp_flow.flags = ODPFF_ZERO_TCP_FLAGS;
4209 dpif_flow_get(ofproto->dpif, &odp_flow);
4210
4211 if (odp_flow.stats.n_packets) {
4212 update_time(ofproto, rule, &odp_flow.stats);
4213 netflow_flow_update_flags(&rule->nf_flow,
4214 odp_flow.stats.tcp_flags);
4215 }
4216 }
4217
4218 expired.flow = rule->cr.flow;
4219 expired.packet_count = rule->packet_count +
4220 odp_flow.stats.n_packets;
4221 expired.byte_count = rule->byte_count + odp_flow.stats.n_bytes;
4222 expired.used = rule->used;
4223
4224 netflow_expire(ofproto->netflow, &rule->nf_flow, &expired);
4225
4226 /* Schedule us to send the accumulated records once we have
4227 * collected all of them. */
4228 poll_immediate_wake();
4229 }
4230 }
4231
4232 static void
4233 update_used(struct ofproto *p)
4234 {
4235 struct odp_flow *flows;
4236 size_t n_flows;
4237 size_t i;
4238 int error;
4239
4240 error = dpif_flow_list_all(p->dpif, &flows, &n_flows);
4241 if (error) {
4242 return;
4243 }
4244
4245 for (i = 0; i < n_flows; i++) {
4246 struct odp_flow *f = &flows[i];
4247 struct rule *rule;
4248
4249 rule = rule_from_cls_rule(
4250 classifier_find_rule_exactly(&p->cls, &f->key, 0, UINT16_MAX));
4251 if (!rule || !rule->installed) {
4252 COVERAGE_INC(ofproto_unexpected_rule);
4253 dpif_flow_del(p->dpif, f);
4254 continue;
4255 }
4256
4257 update_time(p, rule, &f->stats);
4258 rule_account(p, rule, f->stats.n_bytes);
4259 }
4260 free(flows);
4261 }
4262
4263 /* pinsched callback for sending 'packet' on 'ofconn'. */
4264 static void
4265 do_send_packet_in(struct ofpbuf *packet, void *ofconn_)
4266 {
4267 struct ofconn *ofconn = ofconn_;
4268
4269 rconn_send_with_limit(ofconn->rconn, packet,
4270 ofconn->packet_in_counter, 100);
4271 }
4272
4273 /* Takes 'packet', which has been converted with do_convert_to_packet_in(), and
4274 * finalizes its content for sending on 'ofconn', and passes it to 'ofconn''s
4275 * packet scheduler for sending.
4276 *
4277 * 'max_len' specifies the maximum number of bytes of the packet to send on
4278 * 'ofconn' (INT_MAX specifies no limit).
4279 *
4280 * If 'clone' is true, the caller retains ownership of 'packet'. Otherwise,
4281 * ownership is transferred to this function. */
4282 static void
4283 schedule_packet_in(struct ofconn *ofconn, struct ofpbuf *packet, int max_len,
4284 bool clone)
4285 {
4286 struct ofproto *ofproto = ofconn->ofproto;
4287 struct ofp_packet_in *opi = packet->data;
4288 uint16_t in_port = ofp_port_to_odp_port(ntohs(opi->in_port));
4289 int send_len, trim_size;
4290 uint32_t buffer_id;
4291
4292 /* Get buffer. */
4293 if (opi->reason == OFPR_ACTION) {
4294 buffer_id = UINT32_MAX;
4295 } else if (ofproto->fail_open && fail_open_is_active(ofproto->fail_open)) {
4296 buffer_id = pktbuf_get_null();
4297 } else if (!ofconn->pktbuf) {
4298 buffer_id = UINT32_MAX;
4299 } else {
4300 struct ofpbuf payload;
4301 payload.data = opi->data;
4302 payload.size = packet->size - offsetof(struct ofp_packet_in, data);
4303 buffer_id = pktbuf_save(ofconn->pktbuf, &payload, in_port);
4304 }
4305
4306 /* Figure out how much of the packet to send. */
4307 send_len = ntohs(opi->total_len);
4308 if (buffer_id != UINT32_MAX) {
4309 send_len = MIN(send_len, ofconn->miss_send_len);
4310 }
4311 send_len = MIN(send_len, max_len);
4312
4313 /* Adjust packet length and clone if necessary. */
4314 trim_size = offsetof(struct ofp_packet_in, data) + send_len;
4315 if (clone) {
4316 packet = ofpbuf_clone_data(packet->data, trim_size);
4317 opi = packet->data;
4318 } else {
4319 packet->size = trim_size;
4320 }
4321
4322 /* Update packet headers. */
4323 opi->buffer_id = htonl(buffer_id);
4324 update_openflow_length(packet);
4325
4326 /* Hand over to packet scheduler. It might immediately call into
4327 * do_send_packet_in() or it might buffer it for a while (until a later
4328 * call to pinsched_run()). */
4329 pinsched_send(ofconn->schedulers[opi->reason], in_port,
4330 packet, do_send_packet_in, ofconn);
4331 }
4332
4333 /* Replace struct odp_msg header in 'packet' by equivalent struct
4334 * ofp_packet_in. The odp_msg must have sufficient headroom to do so (e.g. as
4335 * returned by dpif_recv()).
4336 *
4337 * The conversion is not complete: the caller still needs to trim any unneeded
4338 * payload off the end of the buffer, set the length in the OpenFlow header,
4339 * and set buffer_id. Those require us to know the controller settings and so
4340 * must be done on a per-controller basis.
4341 *
4342 * Returns the maximum number of bytes of the packet that should be sent to
4343 * the controller (INT_MAX if no limit). */
4344 static int
4345 do_convert_to_packet_in(struct ofpbuf *packet)
4346 {
4347 struct odp_msg *msg = packet->data;
4348 struct ofp_packet_in *opi;
4349 uint8_t reason;
4350 uint16_t total_len;
4351 uint16_t in_port;
4352 int max_len;
4353
4354 /* Extract relevant header fields */
4355 if (msg->type == _ODPL_ACTION_NR) {
4356 reason = OFPR_ACTION;
4357 max_len = msg->arg;
4358 } else {
4359 reason = OFPR_NO_MATCH;
4360 max_len = INT_MAX;
4361 }
4362 total_len = msg->length - sizeof *msg;
4363 in_port = odp_port_to_ofp_port(msg->port);
4364
4365 /* Repurpose packet buffer by overwriting header. */
4366 ofpbuf_pull(packet, sizeof(struct odp_msg));
4367 opi = ofpbuf_push_zeros(packet, offsetof(struct ofp_packet_in, data));
4368 opi->header.version = OFP_VERSION;
4369 opi->header.type = OFPT_PACKET_IN;
4370 opi->total_len = htons(total_len);
4371 opi->in_port = htons(in_port);
4372 opi->reason = reason;
4373
4374 return max_len;
4375 }
4376
4377 /* Given 'packet' containing an odp_msg of type _ODPL_ACTION_NR or
4378 * _ODPL_MISS_NR, sends an OFPT_PACKET_IN message to each OpenFlow controller
4379 * as necessary according to their individual configurations.
4380 *
4381 * 'packet' must have sufficient headroom to convert it into a struct
4382 * ofp_packet_in (e.g. as returned by dpif_recv()).
4383 *
4384 * Takes ownership of 'packet'. */
4385 static void
4386 send_packet_in(struct ofproto *ofproto, struct ofpbuf *packet)
4387 {
4388 struct ofconn *ofconn, *prev;
4389 int max_len;
4390
4391 max_len = do_convert_to_packet_in(packet);
4392
4393 prev = NULL;
4394 LIST_FOR_EACH (ofconn, struct ofconn, node, &ofproto->all_conns) {
4395 if (ofconn_receives_async_msgs(ofconn)) {
4396 if (prev) {
4397 schedule_packet_in(prev, packet, max_len, true);
4398 }
4399 prev = ofconn;
4400 }
4401 }
4402 if (prev) {
4403 schedule_packet_in(prev, packet, max_len, false);
4404 } else {
4405 ofpbuf_delete(packet);
4406 }
4407 }
4408
4409 static uint64_t
4410 pick_datapath_id(const struct ofproto *ofproto)
4411 {
4412 const struct ofport *port;
4413
4414 port = port_array_get(&ofproto->ports, ODPP_LOCAL);
4415 if (port) {
4416 uint8_t ea[ETH_ADDR_LEN];
4417 int error;
4418
4419 error = netdev_get_etheraddr(port->netdev, ea);
4420 if (!error) {
4421 return eth_addr_to_uint64(ea);
4422 }
4423 VLOG_WARN("could not get MAC address for %s (%s)",
4424 netdev_get_name(port->netdev), strerror(error));
4425 }
4426 return ofproto->fallback_dpid;
4427 }
4428
4429 static uint64_t
4430 pick_fallback_dpid(void)
4431 {
4432 uint8_t ea[ETH_ADDR_LEN];
4433 eth_addr_nicira_random(ea);
4434 return eth_addr_to_uint64(ea);
4435 }
4436 \f
4437 static bool
4438 default_normal_ofhook_cb(const flow_t *flow, const struct ofpbuf *packet,
4439 struct odp_actions *actions, tag_type *tags,
4440 uint16_t *nf_output_iface, void *ofproto_)
4441 {
4442 struct ofproto *ofproto = ofproto_;
4443 int out_port;
4444
4445 /* Drop frames for reserved multicast addresses. */
4446 if (eth_addr_is_reserved(flow->dl_dst)) {
4447 return true;
4448 }
4449
4450 /* Learn source MAC (but don't try to learn from revalidation). */
4451 if (packet != NULL) {
4452 tag_type rev_tag = mac_learning_learn(ofproto->ml, flow->dl_src,
4453 0, flow->in_port,
4454 GRAT_ARP_LOCK_NONE);
4455 if (rev_tag) {
4456 /* The log messages here could actually be useful in debugging,
4457 * so keep the rate limit relatively high. */
4458 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(30, 300);
4459 VLOG_DBG_RL(&rl, "learned that "ETH_ADDR_FMT" is on port %"PRIu16,
4460 ETH_ADDR_ARGS(flow->dl_src), flow->in_port);
4461 ofproto_revalidate(ofproto, rev_tag);
4462 }
4463 }
4464
4465 /* Determine output port. */
4466 out_port = mac_learning_lookup_tag(ofproto->ml, flow->dl_dst, 0, tags,
4467 NULL);
4468 if (out_port < 0) {
4469 add_output_group_action(actions, DP_GROUP_FLOOD, nf_output_iface);
4470 } else if (out_port != flow->in_port) {
4471 odp_actions_add(actions, ODPAT_OUTPUT)->output.port = out_port;
4472 *nf_output_iface = out_port;
4473 } else {
4474 /* Drop. */
4475 }
4476
4477 return true;
4478 }
4479
4480 static const struct ofhooks default_ofhooks = {
4481 NULL,
4482 default_normal_ofhook_cb,
4483 NULL,
4484 NULL
4485 };