]> git.proxmox.com Git - ovs.git/blob - ofproto/ofproto.c
ofproto: Factor conditional out of loop in send_flow_removed().
[ovs.git] / ofproto / ofproto.c
1 /*
2 * Copyright (c) 2009, 2010 Nicira Networks.
3 * Copyright (c) 2010 Jean Tourrilhes - HP-Labs.
4 *
5 * Licensed under the Apache License, Version 2.0 (the "License");
6 * you may not use this file except in compliance with the License.
7 * You may obtain a copy of the License at:
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17
18 #include <config.h>
19 #include "ofproto.h"
20 #include <errno.h>
21 #include <inttypes.h>
22 #include <sys/socket.h>
23 #include <net/if.h>
24 #include <netinet/in.h>
25 #include <stdbool.h>
26 #include <stdlib.h>
27 #include "classifier.h"
28 #include "coverage.h"
29 #include "discovery.h"
30 #include "dpif.h"
31 #include "dynamic-string.h"
32 #include "fail-open.h"
33 #include "hash.h"
34 #include "hmap.h"
35 #include "in-band.h"
36 #include "mac-learning.h"
37 #include "netdev.h"
38 #include "netflow.h"
39 #include "odp-util.h"
40 #include "ofp-print.h"
41 #include "ofp-util.h"
42 #include "ofproto-sflow.h"
43 #include "ofpbuf.h"
44 #include "openflow/nicira-ext.h"
45 #include "openflow/openflow.h"
46 #include "openvswitch/datapath-protocol.h"
47 #include "packets.h"
48 #include "pinsched.h"
49 #include "pktbuf.h"
50 #include "poll-loop.h"
51 #include "rconn.h"
52 #include "shash.h"
53 #include "status.h"
54 #include "stream-ssl.h"
55 #include "svec.h"
56 #include "tag.h"
57 #include "timeval.h"
58 #include "unixctl.h"
59 #include "vconn.h"
60 #include "vlog.h"
61 #include "xtoxll.h"
62
63 VLOG_DEFINE_THIS_MODULE(ofproto)
64
65 #include "sflow_api.h"
66
67 enum {
68 TABLEID_HASH = 0,
69 TABLEID_CLASSIFIER = 1
70 };
71
72
73 struct ofport {
74 struct hmap_node hmap_node; /* In struct ofproto's "ports" hmap. */
75 struct netdev *netdev;
76 struct ofp_phy_port opp; /* In host byte order. */
77 uint16_t odp_port;
78 };
79
80 static void ofport_free(struct ofport *);
81 static void hton_ofp_phy_port(struct ofp_phy_port *);
82
83 static int xlate_actions(const union ofp_action *in, size_t n_in,
84 const flow_t *flow, struct ofproto *ofproto,
85 const struct ofpbuf *packet,
86 struct odp_actions *out, tag_type *tags,
87 bool *may_set_up_flow, uint16_t *nf_output_iface);
88
89 struct rule {
90 struct cls_rule cr;
91
92 uint64_t flow_cookie; /* Controller-issued identifier.
93 (Kept in network-byte order.) */
94 uint16_t idle_timeout; /* In seconds from time of last use. */
95 uint16_t hard_timeout; /* In seconds from time of creation. */
96 bool send_flow_removed; /* Send a flow removed message? */
97 long long int used; /* Last-used time (0 if never used). */
98 long long int created; /* Creation time. */
99 uint64_t packet_count; /* Number of packets received. */
100 uint64_t byte_count; /* Number of bytes received. */
101 uint64_t accounted_bytes; /* Number of bytes passed to account_cb. */
102 tag_type tags; /* Tags (set only by hooks). */
103 struct netflow_flow nf_flow; /* Per-flow NetFlow tracking data. */
104
105 /* If 'super' is non-NULL, this rule is a subrule, that is, it is an
106 * exact-match rule (having cr.wc.wildcards of 0) generated from the
107 * wildcard rule 'super'. In this case, 'list' is an element of the
108 * super-rule's list.
109 *
110 * If 'super' is NULL, this rule is a super-rule, and 'list' is the head of
111 * a list of subrules. A super-rule with no wildcards (where
112 * cr.wc.wildcards is 0) will never have any subrules. */
113 struct rule *super;
114 struct list list;
115
116 /* OpenFlow actions.
117 *
118 * 'n_actions' is the number of elements in the 'actions' array. A single
119 * action may take up more more than one element's worth of space.
120 *
121 * A subrule has no actions (it uses the super-rule's actions). */
122 int n_actions;
123 union ofp_action *actions;
124
125 /* Datapath actions.
126 *
127 * A super-rule with wildcard fields never has ODP actions (since the
128 * datapath only supports exact-match flows). */
129 bool installed; /* Installed in datapath? */
130 bool may_install; /* True ordinarily; false if actions must
131 * be reassessed for every packet. */
132 int n_odp_actions;
133 union odp_action *odp_actions;
134 };
135
136 static inline bool
137 rule_is_hidden(const struct rule *rule)
138 {
139 /* Subrules are merely an implementation detail, so hide them from the
140 * controller. */
141 if (rule->super != NULL) {
142 return true;
143 }
144
145 /* Rules with priority higher than UINT16_MAX are set up by ofproto itself
146 * (e.g. by in-band control) and are intentionally hidden from the
147 * controller. */
148 if (rule->cr.priority > UINT16_MAX) {
149 return true;
150 }
151
152 return false;
153 }
154
155 static struct rule *rule_create(struct ofproto *, struct rule *super,
156 const union ofp_action *, size_t n_actions,
157 uint16_t idle_timeout, uint16_t hard_timeout,
158 uint64_t flow_cookie, bool send_flow_removed);
159 static void rule_free(struct rule *);
160 static void rule_destroy(struct ofproto *, struct rule *);
161 static struct rule *rule_from_cls_rule(const struct cls_rule *);
162 static void rule_insert(struct ofproto *, struct rule *,
163 struct ofpbuf *packet, uint16_t in_port);
164 static void rule_remove(struct ofproto *, struct rule *);
165 static bool rule_make_actions(struct ofproto *, struct rule *,
166 const struct ofpbuf *packet);
167 static void rule_install(struct ofproto *, struct rule *,
168 struct rule *displaced_rule);
169 static void rule_uninstall(struct ofproto *, struct rule *);
170 static void rule_post_uninstall(struct ofproto *, struct rule *);
171 static void send_flow_removed(struct ofproto *p, struct rule *rule,
172 long long int now, uint8_t reason);
173
174 /* ofproto supports two kinds of OpenFlow connections:
175 *
176 * - "Primary" connections to ordinary OpenFlow controllers. ofproto
177 * maintains persistent connections to these controllers and by default
178 * sends them asynchronous messages such as packet-ins.
179 *
180 * - "Service" connections, e.g. from ovs-ofctl. When these connections
181 * drop, it is the other side's responsibility to reconnect them if
182 * necessary. ofproto does not send them asynchronous messages by default.
183 *
184 * Currently, active (tcp, ssl, unix) connections are always "primary"
185 * connections and passive (ptcp, pssl, punix) connections are always "service"
186 * connections. There is no inherent reason for this, but it reflects the
187 * common case.
188 */
189 enum ofconn_type {
190 OFCONN_PRIMARY, /* An ordinary OpenFlow controller. */
191 OFCONN_SERVICE /* A service connection, e.g. "ovs-ofctl". */
192 };
193
194 /* A listener for incoming OpenFlow "service" connections. */
195 struct ofservice {
196 struct hmap_node node; /* In struct ofproto's "services" hmap. */
197 struct pvconn *pvconn; /* OpenFlow connection listener. */
198
199 /* These are not used by ofservice directly. They are settings for
200 * accepted "struct ofconn"s from the pvconn. */
201 int probe_interval; /* Max idle time before probing, in seconds. */
202 int rate_limit; /* Max packet-in rate in packets per second. */
203 int burst_limit; /* Limit on accumulating packet credits. */
204 };
205
206 static struct ofservice *ofservice_lookup(struct ofproto *,
207 const char *target);
208 static int ofservice_create(struct ofproto *,
209 const struct ofproto_controller *);
210 static void ofservice_reconfigure(struct ofservice *,
211 const struct ofproto_controller *);
212 static void ofservice_destroy(struct ofproto *, struct ofservice *);
213
214 /* An OpenFlow connection. */
215 struct ofconn {
216 struct ofproto *ofproto; /* The ofproto that owns this connection. */
217 struct list node; /* In struct ofproto's "all_conns" list. */
218 struct rconn *rconn; /* OpenFlow connection. */
219 enum ofconn_type type; /* Type. */
220
221 /* OFPT_PACKET_IN related data. */
222 struct rconn_packet_counter *packet_in_counter; /* # queued on 'rconn'. */
223 struct pinsched *schedulers[2]; /* Indexed by reason code; see below. */
224 struct pktbuf *pktbuf; /* OpenFlow packet buffers. */
225 int miss_send_len; /* Bytes to send of buffered packets. */
226
227 /* Number of OpenFlow messages queued on 'rconn' as replies to OpenFlow
228 * requests, and the maximum number before we stop reading OpenFlow
229 * requests. */
230 #define OFCONN_REPLY_MAX 100
231 struct rconn_packet_counter *reply_counter;
232
233 /* type == OFCONN_PRIMARY only. */
234 enum nx_role role; /* Role. */
235 struct hmap_node hmap_node; /* In struct ofproto's "controllers" map. */
236 struct discovery *discovery; /* Controller discovery object, if enabled. */
237 struct status_category *ss; /* Switch status category. */
238 enum ofproto_band band; /* In-band or out-of-band? */
239 };
240
241 /* We use OFPR_NO_MATCH and OFPR_ACTION as indexes into struct ofconn's
242 * "schedulers" array. Their values are 0 and 1, and their meanings and values
243 * coincide with _ODPL_MISS_NR and _ODPL_ACTION_NR, so this is convenient. In
244 * case anything ever changes, check their values here. */
245 #define N_SCHEDULERS 2
246 BUILD_ASSERT_DECL(OFPR_NO_MATCH == 0);
247 BUILD_ASSERT_DECL(OFPR_NO_MATCH == _ODPL_MISS_NR);
248 BUILD_ASSERT_DECL(OFPR_ACTION == 1);
249 BUILD_ASSERT_DECL(OFPR_ACTION == _ODPL_ACTION_NR);
250
251 static struct ofconn *ofconn_create(struct ofproto *, struct rconn *,
252 enum ofconn_type);
253 static void ofconn_destroy(struct ofconn *);
254 static void ofconn_run(struct ofconn *, struct ofproto *);
255 static void ofconn_wait(struct ofconn *);
256 static bool ofconn_receives_async_msgs(const struct ofconn *);
257 static char *ofconn_make_name(const struct ofproto *, const char *target);
258 static void ofconn_set_rate_limit(struct ofconn *, int rate, int burst);
259
260 static void queue_tx(struct ofpbuf *msg, const struct ofconn *ofconn,
261 struct rconn_packet_counter *counter);
262
263 static void send_packet_in(struct ofproto *, struct ofpbuf *odp_msg);
264 static void do_send_packet_in(struct ofpbuf *odp_msg, void *ofconn);
265
266 struct ofproto {
267 /* Settings. */
268 uint64_t datapath_id; /* Datapath ID. */
269 uint64_t fallback_dpid; /* Datapath ID if no better choice found. */
270 char *mfr_desc; /* Manufacturer. */
271 char *hw_desc; /* Hardware. */
272 char *sw_desc; /* Software version. */
273 char *serial_desc; /* Serial number. */
274 char *dp_desc; /* Datapath description. */
275
276 /* Datapath. */
277 struct dpif *dpif;
278 struct netdev_monitor *netdev_monitor;
279 struct hmap ports; /* Contains "struct ofport"s. */
280 struct shash port_by_name;
281 uint32_t max_ports;
282
283 /* Configuration. */
284 struct switch_status *switch_status;
285 struct fail_open *fail_open;
286 struct netflow *netflow;
287 struct ofproto_sflow *sflow;
288
289 /* In-band control. */
290 struct in_band *in_band;
291 long long int next_in_band_update;
292 struct sockaddr_in *extra_in_band_remotes;
293 size_t n_extra_remotes;
294
295 /* Flow table. */
296 struct classifier cls;
297 bool need_revalidate;
298 long long int next_expiration;
299 struct tag_set revalidate_set;
300 bool tun_id_from_cookie;
301
302 /* OpenFlow connections. */
303 struct hmap controllers; /* Controller "struct ofconn"s. */
304 struct list all_conns; /* Contains "struct ofconn"s. */
305 enum ofproto_fail_mode fail_mode;
306
307 /* OpenFlow listeners. */
308 struct hmap services; /* Contains "struct ofservice"s. */
309 struct pvconn **snoops;
310 size_t n_snoops;
311
312 /* Hooks for ovs-vswitchd. */
313 const struct ofhooks *ofhooks;
314 void *aux;
315
316 /* Used by default ofhooks. */
317 struct mac_learning *ml;
318 };
319
320 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
321
322 static const struct ofhooks default_ofhooks;
323
324 static uint64_t pick_datapath_id(const struct ofproto *);
325 static uint64_t pick_fallback_dpid(void);
326
327 static void ofproto_expire(struct ofproto *);
328
329 static void update_stats(struct ofproto *, struct rule *,
330 const struct odp_flow_stats *);
331 static bool revalidate_rule(struct ofproto *p, struct rule *rule);
332 static void revalidate_cb(struct cls_rule *rule_, void *p_);
333
334 static void handle_odp_msg(struct ofproto *, struct ofpbuf *);
335
336 static void handle_openflow(struct ofconn *, struct ofproto *,
337 struct ofpbuf *);
338
339 static void refresh_port_groups(struct ofproto *);
340
341 static struct ofport *get_port(const struct ofproto *, uint16_t odp_port);
342 static void update_port(struct ofproto *, const char *devname);
343 static int init_ports(struct ofproto *);
344 static void reinit_ports(struct ofproto *);
345
346 int
347 ofproto_create(const char *datapath, const char *datapath_type,
348 const struct ofhooks *ofhooks, void *aux,
349 struct ofproto **ofprotop)
350 {
351 struct odp_stats stats;
352 struct ofproto *p;
353 struct dpif *dpif;
354 int error;
355
356 *ofprotop = NULL;
357
358 /* Connect to datapath and start listening for messages. */
359 error = dpif_open(datapath, datapath_type, &dpif);
360 if (error) {
361 VLOG_ERR("failed to open datapath %s: %s", datapath, strerror(error));
362 return error;
363 }
364 error = dpif_get_dp_stats(dpif, &stats);
365 if (error) {
366 VLOG_ERR("failed to obtain stats for datapath %s: %s",
367 datapath, strerror(error));
368 dpif_close(dpif);
369 return error;
370 }
371 error = dpif_recv_set_mask(dpif, ODPL_MISS | ODPL_ACTION | ODPL_SFLOW);
372 if (error) {
373 VLOG_ERR("failed to listen on datapath %s: %s",
374 datapath, strerror(error));
375 dpif_close(dpif);
376 return error;
377 }
378 dpif_flow_flush(dpif);
379 dpif_recv_purge(dpif);
380
381 /* Initialize settings. */
382 p = xzalloc(sizeof *p);
383 p->fallback_dpid = pick_fallback_dpid();
384 p->datapath_id = p->fallback_dpid;
385 p->mfr_desc = xstrdup(DEFAULT_MFR_DESC);
386 p->hw_desc = xstrdup(DEFAULT_HW_DESC);
387 p->sw_desc = xstrdup(DEFAULT_SW_DESC);
388 p->serial_desc = xstrdup(DEFAULT_SERIAL_DESC);
389 p->dp_desc = xstrdup(DEFAULT_DP_DESC);
390
391 /* Initialize datapath. */
392 p->dpif = dpif;
393 p->netdev_monitor = netdev_monitor_create();
394 hmap_init(&p->ports);
395 shash_init(&p->port_by_name);
396 p->max_ports = stats.max_ports;
397
398 /* Initialize submodules. */
399 p->switch_status = switch_status_create(p);
400 p->in_band = NULL;
401 p->fail_open = NULL;
402 p->netflow = NULL;
403 p->sflow = NULL;
404
405 /* Initialize flow table. */
406 classifier_init(&p->cls);
407 p->need_revalidate = false;
408 p->next_expiration = time_msec() + 1000;
409 tag_set_init(&p->revalidate_set);
410
411 /* Initialize OpenFlow connections. */
412 list_init(&p->all_conns);
413 hmap_init(&p->controllers);
414 hmap_init(&p->services);
415 p->snoops = NULL;
416 p->n_snoops = 0;
417
418 /* Initialize hooks. */
419 if (ofhooks) {
420 p->ofhooks = ofhooks;
421 p->aux = aux;
422 p->ml = NULL;
423 } else {
424 p->ofhooks = &default_ofhooks;
425 p->aux = p;
426 p->ml = mac_learning_create();
427 }
428
429 /* Pick final datapath ID. */
430 p->datapath_id = pick_datapath_id(p);
431 VLOG_INFO("using datapath ID %016"PRIx64, p->datapath_id);
432
433 *ofprotop = p;
434 return 0;
435 }
436
437 void
438 ofproto_set_datapath_id(struct ofproto *p, uint64_t datapath_id)
439 {
440 uint64_t old_dpid = p->datapath_id;
441 p->datapath_id = datapath_id ? datapath_id : pick_datapath_id(p);
442 if (p->datapath_id != old_dpid) {
443 VLOG_INFO("datapath ID changed to %016"PRIx64, p->datapath_id);
444
445 /* Force all active connections to reconnect, since there is no way to
446 * notify a controller that the datapath ID has changed. */
447 ofproto_reconnect_controllers(p);
448 }
449 }
450
451 static bool
452 is_discovery_controller(const struct ofproto_controller *c)
453 {
454 return !strcmp(c->target, "discover");
455 }
456
457 static bool
458 is_in_band_controller(const struct ofproto_controller *c)
459 {
460 return is_discovery_controller(c) || c->band == OFPROTO_IN_BAND;
461 }
462
463 /* Creates a new controller in 'ofproto'. Some of the settings are initially
464 * drawn from 'c', but update_controller() needs to be called later to finish
465 * the new ofconn's configuration. */
466 static void
467 add_controller(struct ofproto *ofproto, const struct ofproto_controller *c)
468 {
469 struct discovery *discovery;
470 struct ofconn *ofconn;
471
472 if (is_discovery_controller(c)) {
473 int error = discovery_create(c->accept_re, c->update_resolv_conf,
474 ofproto->dpif, ofproto->switch_status,
475 &discovery);
476 if (error) {
477 return;
478 }
479 } else {
480 discovery = NULL;
481 }
482
483 ofconn = ofconn_create(ofproto, rconn_create(5, 8), OFCONN_PRIMARY);
484 ofconn->pktbuf = pktbuf_create();
485 ofconn->miss_send_len = OFP_DEFAULT_MISS_SEND_LEN;
486 if (discovery) {
487 ofconn->discovery = discovery;
488 } else {
489 char *name = ofconn_make_name(ofproto, c->target);
490 rconn_connect(ofconn->rconn, c->target, name);
491 free(name);
492 }
493 hmap_insert(&ofproto->controllers, &ofconn->hmap_node,
494 hash_string(c->target, 0));
495 }
496
497 /* Reconfigures 'ofconn' to match 'c'. This function cannot update an ofconn's
498 * target or turn discovery on or off (these are done by creating new ofconns
499 * and deleting old ones), but it can update the rest of an ofconn's
500 * settings. */
501 static void
502 update_controller(struct ofconn *ofconn, const struct ofproto_controller *c)
503 {
504 int probe_interval;
505
506 ofconn->band = (is_in_band_controller(c)
507 ? OFPROTO_IN_BAND : OFPROTO_OUT_OF_BAND);
508
509 rconn_set_max_backoff(ofconn->rconn, c->max_backoff);
510
511 probe_interval = c->probe_interval ? MAX(c->probe_interval, 5) : 0;
512 rconn_set_probe_interval(ofconn->rconn, probe_interval);
513
514 if (ofconn->discovery) {
515 discovery_set_update_resolv_conf(ofconn->discovery,
516 c->update_resolv_conf);
517 discovery_set_accept_controller_re(ofconn->discovery, c->accept_re);
518 }
519
520 ofconn_set_rate_limit(ofconn, c->rate_limit, c->burst_limit);
521 }
522
523 static const char *
524 ofconn_get_target(const struct ofconn *ofconn)
525 {
526 return ofconn->discovery ? "discover" : rconn_get_target(ofconn->rconn);
527 }
528
529 static struct ofconn *
530 find_controller_by_target(struct ofproto *ofproto, const char *target)
531 {
532 struct ofconn *ofconn;
533
534 HMAP_FOR_EACH_WITH_HASH (ofconn, hmap_node,
535 hash_string(target, 0), &ofproto->controllers) {
536 if (!strcmp(ofconn_get_target(ofconn), target)) {
537 return ofconn;
538 }
539 }
540 return NULL;
541 }
542
543 static void
544 update_in_band_remotes(struct ofproto *ofproto)
545 {
546 const struct ofconn *ofconn;
547 struct sockaddr_in *addrs;
548 size_t max_addrs, n_addrs;
549 bool discovery;
550 size_t i;
551
552 /* Allocate enough memory for as many remotes as we could possibly have. */
553 max_addrs = ofproto->n_extra_remotes + hmap_count(&ofproto->controllers);
554 addrs = xmalloc(max_addrs * sizeof *addrs);
555 n_addrs = 0;
556
557 /* Add all the remotes. */
558 discovery = false;
559 HMAP_FOR_EACH (ofconn, hmap_node, &ofproto->controllers) {
560 struct sockaddr_in *sin = &addrs[n_addrs];
561
562 if (ofconn->band == OFPROTO_OUT_OF_BAND) {
563 continue;
564 }
565
566 sin->sin_addr.s_addr = rconn_get_remote_ip(ofconn->rconn);
567 if (sin->sin_addr.s_addr) {
568 sin->sin_port = rconn_get_remote_port(ofconn->rconn);
569 n_addrs++;
570 }
571 if (ofconn->discovery) {
572 discovery = true;
573 }
574 }
575 for (i = 0; i < ofproto->n_extra_remotes; i++) {
576 addrs[n_addrs++] = ofproto->extra_in_band_remotes[i];
577 }
578
579 /* Create or update or destroy in-band.
580 *
581 * Ordinarily we only enable in-band if there's at least one remote
582 * address, but discovery needs the in-band rules for DHCP to be installed
583 * even before we know any remote addresses. */
584 if (n_addrs || discovery) {
585 if (!ofproto->in_band) {
586 in_band_create(ofproto, ofproto->dpif, ofproto->switch_status,
587 &ofproto->in_band);
588 }
589 if (ofproto->in_band) {
590 in_band_set_remotes(ofproto->in_band, addrs, n_addrs);
591 }
592 ofproto->next_in_band_update = time_msec() + 1000;
593 } else {
594 in_band_destroy(ofproto->in_band);
595 ofproto->in_band = NULL;
596 }
597
598 /* Clean up. */
599 free(addrs);
600 }
601
602 static void
603 update_fail_open(struct ofproto *p)
604 {
605 struct ofconn *ofconn;
606
607 if (!hmap_is_empty(&p->controllers)
608 && p->fail_mode == OFPROTO_FAIL_STANDALONE) {
609 struct rconn **rconns;
610 size_t n;
611
612 if (!p->fail_open) {
613 p->fail_open = fail_open_create(p, p->switch_status);
614 }
615
616 n = 0;
617 rconns = xmalloc(hmap_count(&p->controllers) * sizeof *rconns);
618 HMAP_FOR_EACH (ofconn, hmap_node, &p->controllers) {
619 rconns[n++] = ofconn->rconn;
620 }
621
622 fail_open_set_controllers(p->fail_open, rconns, n);
623 /* p->fail_open takes ownership of 'rconns'. */
624 } else {
625 fail_open_destroy(p->fail_open);
626 p->fail_open = NULL;
627 }
628 }
629
630 void
631 ofproto_set_controllers(struct ofproto *p,
632 const struct ofproto_controller *controllers,
633 size_t n_controllers)
634 {
635 struct shash new_controllers;
636 struct ofconn *ofconn, *next_ofconn;
637 struct ofservice *ofservice, *next_ofservice;
638 bool ss_exists;
639 size_t i;
640
641 /* Create newly configured controllers and services.
642 * Create a name to ofproto_controller mapping in 'new_controllers'. */
643 shash_init(&new_controllers);
644 for (i = 0; i < n_controllers; i++) {
645 const struct ofproto_controller *c = &controllers[i];
646
647 if (!vconn_verify_name(c->target) || !strcmp(c->target, "discover")) {
648 if (!find_controller_by_target(p, c->target)) {
649 add_controller(p, c);
650 }
651 } else if (!pvconn_verify_name(c->target)) {
652 if (!ofservice_lookup(p, c->target) && ofservice_create(p, c)) {
653 continue;
654 }
655 } else {
656 VLOG_WARN_RL(&rl, "%s: unsupported controller \"%s\"",
657 dpif_name(p->dpif), c->target);
658 continue;
659 }
660
661 shash_add_once(&new_controllers, c->target, &controllers[i]);
662 }
663
664 /* Delete controllers that are no longer configured.
665 * Update configuration of all now-existing controllers. */
666 ss_exists = false;
667 HMAP_FOR_EACH_SAFE (ofconn, next_ofconn, hmap_node, &p->controllers) {
668 struct ofproto_controller *c;
669
670 c = shash_find_data(&new_controllers, ofconn_get_target(ofconn));
671 if (!c) {
672 ofconn_destroy(ofconn);
673 } else {
674 update_controller(ofconn, c);
675 if (ofconn->ss) {
676 ss_exists = true;
677 }
678 }
679 }
680
681 /* Delete services that are no longer configured.
682 * Update configuration of all now-existing services. */
683 HMAP_FOR_EACH_SAFE (ofservice, next_ofservice, node, &p->services) {
684 struct ofproto_controller *c;
685
686 c = shash_find_data(&new_controllers,
687 pvconn_get_name(ofservice->pvconn));
688 if (!c) {
689 ofservice_destroy(p, ofservice);
690 } else {
691 ofservice_reconfigure(ofservice, c);
692 }
693 }
694
695 shash_destroy(&new_controllers);
696
697 update_in_band_remotes(p);
698 update_fail_open(p);
699
700 if (!hmap_is_empty(&p->controllers) && !ss_exists) {
701 ofconn = CONTAINER_OF(hmap_first(&p->controllers),
702 struct ofconn, hmap_node);
703 ofconn->ss = switch_status_register(p->switch_status, "remote",
704 rconn_status_cb, ofconn->rconn);
705 }
706 }
707
708 void
709 ofproto_set_fail_mode(struct ofproto *p, enum ofproto_fail_mode fail_mode)
710 {
711 p->fail_mode = fail_mode;
712 update_fail_open(p);
713 }
714
715 /* Drops the connections between 'ofproto' and all of its controllers, forcing
716 * them to reconnect. */
717 void
718 ofproto_reconnect_controllers(struct ofproto *ofproto)
719 {
720 struct ofconn *ofconn;
721
722 LIST_FOR_EACH (ofconn, node, &ofproto->all_conns) {
723 rconn_reconnect(ofconn->rconn);
724 }
725 }
726
727 static bool
728 any_extras_changed(const struct ofproto *ofproto,
729 const struct sockaddr_in *extras, size_t n)
730 {
731 size_t i;
732
733 if (n != ofproto->n_extra_remotes) {
734 return true;
735 }
736
737 for (i = 0; i < n; i++) {
738 const struct sockaddr_in *old = &ofproto->extra_in_band_remotes[i];
739 const struct sockaddr_in *new = &extras[i];
740
741 if (old->sin_addr.s_addr != new->sin_addr.s_addr ||
742 old->sin_port != new->sin_port) {
743 return true;
744 }
745 }
746
747 return false;
748 }
749
750 /* Sets the 'n' TCP port addresses in 'extras' as ones to which 'ofproto''s
751 * in-band control should guarantee access, in the same way that in-band
752 * control guarantees access to OpenFlow controllers. */
753 void
754 ofproto_set_extra_in_band_remotes(struct ofproto *ofproto,
755 const struct sockaddr_in *extras, size_t n)
756 {
757 if (!any_extras_changed(ofproto, extras, n)) {
758 return;
759 }
760
761 free(ofproto->extra_in_band_remotes);
762 ofproto->n_extra_remotes = n;
763 ofproto->extra_in_band_remotes = xmemdup(extras, n * sizeof *extras);
764
765 update_in_band_remotes(ofproto);
766 }
767
768 void
769 ofproto_set_desc(struct ofproto *p,
770 const char *mfr_desc, const char *hw_desc,
771 const char *sw_desc, const char *serial_desc,
772 const char *dp_desc)
773 {
774 struct ofp_desc_stats *ods;
775
776 if (mfr_desc) {
777 if (strlen(mfr_desc) >= sizeof ods->mfr_desc) {
778 VLOG_WARN("truncating mfr_desc, must be less than %zu characters",
779 sizeof ods->mfr_desc);
780 }
781 free(p->mfr_desc);
782 p->mfr_desc = xstrdup(mfr_desc);
783 }
784 if (hw_desc) {
785 if (strlen(hw_desc) >= sizeof ods->hw_desc) {
786 VLOG_WARN("truncating hw_desc, must be less than %zu characters",
787 sizeof ods->hw_desc);
788 }
789 free(p->hw_desc);
790 p->hw_desc = xstrdup(hw_desc);
791 }
792 if (sw_desc) {
793 if (strlen(sw_desc) >= sizeof ods->sw_desc) {
794 VLOG_WARN("truncating sw_desc, must be less than %zu characters",
795 sizeof ods->sw_desc);
796 }
797 free(p->sw_desc);
798 p->sw_desc = xstrdup(sw_desc);
799 }
800 if (serial_desc) {
801 if (strlen(serial_desc) >= sizeof ods->serial_num) {
802 VLOG_WARN("truncating serial_desc, must be less than %zu "
803 "characters",
804 sizeof ods->serial_num);
805 }
806 free(p->serial_desc);
807 p->serial_desc = xstrdup(serial_desc);
808 }
809 if (dp_desc) {
810 if (strlen(dp_desc) >= sizeof ods->dp_desc) {
811 VLOG_WARN("truncating dp_desc, must be less than %zu characters",
812 sizeof ods->dp_desc);
813 }
814 free(p->dp_desc);
815 p->dp_desc = xstrdup(dp_desc);
816 }
817 }
818
819 static int
820 set_pvconns(struct pvconn ***pvconnsp, size_t *n_pvconnsp,
821 const struct svec *svec)
822 {
823 struct pvconn **pvconns = *pvconnsp;
824 size_t n_pvconns = *n_pvconnsp;
825 int retval = 0;
826 size_t i;
827
828 for (i = 0; i < n_pvconns; i++) {
829 pvconn_close(pvconns[i]);
830 }
831 free(pvconns);
832
833 pvconns = xmalloc(svec->n * sizeof *pvconns);
834 n_pvconns = 0;
835 for (i = 0; i < svec->n; i++) {
836 const char *name = svec->names[i];
837 struct pvconn *pvconn;
838 int error;
839
840 error = pvconn_open(name, &pvconn);
841 if (!error) {
842 pvconns[n_pvconns++] = pvconn;
843 } else {
844 VLOG_ERR("failed to listen on %s: %s", name, strerror(error));
845 if (!retval) {
846 retval = error;
847 }
848 }
849 }
850
851 *pvconnsp = pvconns;
852 *n_pvconnsp = n_pvconns;
853
854 return retval;
855 }
856
857 int
858 ofproto_set_snoops(struct ofproto *ofproto, const struct svec *snoops)
859 {
860 return set_pvconns(&ofproto->snoops, &ofproto->n_snoops, snoops);
861 }
862
863 int
864 ofproto_set_netflow(struct ofproto *ofproto,
865 const struct netflow_options *nf_options)
866 {
867 if (nf_options && nf_options->collectors.n) {
868 if (!ofproto->netflow) {
869 ofproto->netflow = netflow_create();
870 }
871 return netflow_set_options(ofproto->netflow, nf_options);
872 } else {
873 netflow_destroy(ofproto->netflow);
874 ofproto->netflow = NULL;
875 return 0;
876 }
877 }
878
879 void
880 ofproto_set_sflow(struct ofproto *ofproto,
881 const struct ofproto_sflow_options *oso)
882 {
883 struct ofproto_sflow *os = ofproto->sflow;
884 if (oso) {
885 if (!os) {
886 struct ofport *ofport;
887
888 os = ofproto->sflow = ofproto_sflow_create(ofproto->dpif);
889 refresh_port_groups(ofproto);
890 HMAP_FOR_EACH (ofport, hmap_node, &ofproto->ports) {
891 ofproto_sflow_add_port(os, ofport->odp_port,
892 netdev_get_name(ofport->netdev));
893 }
894 }
895 ofproto_sflow_set_options(os, oso);
896 } else {
897 ofproto_sflow_destroy(os);
898 ofproto->sflow = NULL;
899 }
900 }
901
902 uint64_t
903 ofproto_get_datapath_id(const struct ofproto *ofproto)
904 {
905 return ofproto->datapath_id;
906 }
907
908 bool
909 ofproto_has_primary_controller(const struct ofproto *ofproto)
910 {
911 return !hmap_is_empty(&ofproto->controllers);
912 }
913
914 enum ofproto_fail_mode
915 ofproto_get_fail_mode(const struct ofproto *p)
916 {
917 return p->fail_mode;
918 }
919
920 void
921 ofproto_get_snoops(const struct ofproto *ofproto, struct svec *snoops)
922 {
923 size_t i;
924
925 for (i = 0; i < ofproto->n_snoops; i++) {
926 svec_add(snoops, pvconn_get_name(ofproto->snoops[i]));
927 }
928 }
929
930 void
931 ofproto_destroy(struct ofproto *p)
932 {
933 struct ofservice *ofservice, *next_ofservice;
934 struct ofconn *ofconn, *next_ofconn;
935 struct ofport *ofport, *next_ofport;
936 size_t i;
937
938 if (!p) {
939 return;
940 }
941
942 /* Destroy fail-open and in-band early, since they touch the classifier. */
943 fail_open_destroy(p->fail_open);
944 p->fail_open = NULL;
945
946 in_band_destroy(p->in_band);
947 p->in_band = NULL;
948 free(p->extra_in_band_remotes);
949
950 ofproto_flush_flows(p);
951 classifier_destroy(&p->cls);
952
953 LIST_FOR_EACH_SAFE (ofconn, next_ofconn, node, &p->all_conns) {
954 ofconn_destroy(ofconn);
955 }
956 hmap_destroy(&p->controllers);
957
958 dpif_close(p->dpif);
959 netdev_monitor_destroy(p->netdev_monitor);
960 HMAP_FOR_EACH_SAFE (ofport, next_ofport, hmap_node, &p->ports) {
961 hmap_remove(&p->ports, &ofport->hmap_node);
962 ofport_free(ofport);
963 }
964 shash_destroy(&p->port_by_name);
965
966 switch_status_destroy(p->switch_status);
967 netflow_destroy(p->netflow);
968 ofproto_sflow_destroy(p->sflow);
969
970 HMAP_FOR_EACH_SAFE (ofservice, next_ofservice, node, &p->services) {
971 ofservice_destroy(p, ofservice);
972 }
973 hmap_destroy(&p->services);
974
975 for (i = 0; i < p->n_snoops; i++) {
976 pvconn_close(p->snoops[i]);
977 }
978 free(p->snoops);
979
980 mac_learning_destroy(p->ml);
981
982 free(p->mfr_desc);
983 free(p->hw_desc);
984 free(p->sw_desc);
985 free(p->serial_desc);
986 free(p->dp_desc);
987
988 hmap_destroy(&p->ports);
989
990 free(p);
991 }
992
993 int
994 ofproto_run(struct ofproto *p)
995 {
996 int error = ofproto_run1(p);
997 if (!error) {
998 error = ofproto_run2(p, false);
999 }
1000 return error;
1001 }
1002
1003 static void
1004 process_port_change(struct ofproto *ofproto, int error, char *devname)
1005 {
1006 if (error == ENOBUFS) {
1007 reinit_ports(ofproto);
1008 } else if (!error) {
1009 update_port(ofproto, devname);
1010 free(devname);
1011 }
1012 }
1013
1014 /* Returns a "preference level" for snooping 'ofconn'. A higher return value
1015 * means that 'ofconn' is more interesting for monitoring than a lower return
1016 * value. */
1017 static int
1018 snoop_preference(const struct ofconn *ofconn)
1019 {
1020 switch (ofconn->role) {
1021 case NX_ROLE_MASTER:
1022 return 3;
1023 case NX_ROLE_OTHER:
1024 return 2;
1025 case NX_ROLE_SLAVE:
1026 return 1;
1027 default:
1028 /* Shouldn't happen. */
1029 return 0;
1030 }
1031 }
1032
1033 /* One of ofproto's "snoop" pvconns has accepted a new connection on 'vconn'.
1034 * Connects this vconn to a controller. */
1035 static void
1036 add_snooper(struct ofproto *ofproto, struct vconn *vconn)
1037 {
1038 struct ofconn *ofconn, *best;
1039
1040 /* Pick a controller for monitoring. */
1041 best = NULL;
1042 LIST_FOR_EACH (ofconn, node, &ofproto->all_conns) {
1043 if (ofconn->type == OFCONN_PRIMARY
1044 && (!best || snoop_preference(ofconn) > snoop_preference(best))) {
1045 best = ofconn;
1046 }
1047 }
1048
1049 if (best) {
1050 rconn_add_monitor(best->rconn, vconn);
1051 } else {
1052 VLOG_INFO_RL(&rl, "no controller connection to snoop");
1053 vconn_close(vconn);
1054 }
1055 }
1056
1057 int
1058 ofproto_run1(struct ofproto *p)
1059 {
1060 struct ofconn *ofconn, *next_ofconn;
1061 struct ofservice *ofservice;
1062 char *devname;
1063 int error;
1064 int i;
1065
1066 if (shash_is_empty(&p->port_by_name)) {
1067 init_ports(p);
1068 }
1069
1070 for (i = 0; i < 50; i++) {
1071 struct ofpbuf *buf;
1072
1073 error = dpif_recv(p->dpif, &buf);
1074 if (error) {
1075 if (error == ENODEV) {
1076 /* Someone destroyed the datapath behind our back. The caller
1077 * better destroy us and give up, because we're just going to
1078 * spin from here on out. */
1079 static struct vlog_rate_limit rl2 = VLOG_RATE_LIMIT_INIT(1, 5);
1080 VLOG_ERR_RL(&rl2, "%s: datapath was destroyed externally",
1081 dpif_name(p->dpif));
1082 return ENODEV;
1083 }
1084 break;
1085 }
1086
1087 handle_odp_msg(p, buf);
1088 }
1089
1090 while ((error = dpif_port_poll(p->dpif, &devname)) != EAGAIN) {
1091 process_port_change(p, error, devname);
1092 }
1093 while ((error = netdev_monitor_poll(p->netdev_monitor,
1094 &devname)) != EAGAIN) {
1095 process_port_change(p, error, devname);
1096 }
1097
1098 if (p->in_band) {
1099 if (time_msec() >= p->next_in_band_update) {
1100 update_in_band_remotes(p);
1101 }
1102 in_band_run(p->in_band);
1103 }
1104
1105 LIST_FOR_EACH_SAFE (ofconn, next_ofconn, node, &p->all_conns) {
1106 ofconn_run(ofconn, p);
1107 }
1108
1109 /* Fail-open maintenance. Do this after processing the ofconns since
1110 * fail-open checks the status of the controller rconn. */
1111 if (p->fail_open) {
1112 fail_open_run(p->fail_open);
1113 }
1114
1115 HMAP_FOR_EACH (ofservice, node, &p->services) {
1116 struct vconn *vconn;
1117 int retval;
1118
1119 retval = pvconn_accept(ofservice->pvconn, OFP_VERSION, &vconn);
1120 if (!retval) {
1121 struct rconn *rconn;
1122 char *name;
1123
1124 rconn = rconn_create(ofservice->probe_interval, 0);
1125 name = ofconn_make_name(p, vconn_get_name(vconn));
1126 rconn_connect_unreliably(rconn, vconn, name);
1127 free(name);
1128
1129 ofconn = ofconn_create(p, rconn, OFCONN_SERVICE);
1130 ofconn_set_rate_limit(ofconn, ofservice->rate_limit,
1131 ofservice->burst_limit);
1132 } else if (retval != EAGAIN) {
1133 VLOG_WARN_RL(&rl, "accept failed (%s)", strerror(retval));
1134 }
1135 }
1136
1137 for (i = 0; i < p->n_snoops; i++) {
1138 struct vconn *vconn;
1139 int retval;
1140
1141 retval = pvconn_accept(p->snoops[i], OFP_VERSION, &vconn);
1142 if (!retval) {
1143 add_snooper(p, vconn);
1144 } else if (retval != EAGAIN) {
1145 VLOG_WARN_RL(&rl, "accept failed (%s)", strerror(retval));
1146 }
1147 }
1148
1149 if (time_msec() >= p->next_expiration) {
1150 COVERAGE_INC(ofproto_expiration);
1151 ofproto_expire(p);
1152 p->next_expiration = time_msec() + 1000;
1153 }
1154
1155 if (p->netflow) {
1156 netflow_run(p->netflow);
1157 }
1158 if (p->sflow) {
1159 ofproto_sflow_run(p->sflow);
1160 }
1161
1162 return 0;
1163 }
1164
1165 struct revalidate_cbdata {
1166 struct ofproto *ofproto;
1167 bool revalidate_all; /* Revalidate all exact-match rules? */
1168 bool revalidate_subrules; /* Revalidate all exact-match subrules? */
1169 struct tag_set revalidate_set; /* Set of tags to revalidate. */
1170 };
1171
1172 int
1173 ofproto_run2(struct ofproto *p, bool revalidate_all)
1174 {
1175 if (p->need_revalidate || revalidate_all
1176 || !tag_set_is_empty(&p->revalidate_set)) {
1177 struct revalidate_cbdata cbdata;
1178 cbdata.ofproto = p;
1179 cbdata.revalidate_all = revalidate_all;
1180 cbdata.revalidate_subrules = p->need_revalidate;
1181 cbdata.revalidate_set = p->revalidate_set;
1182 tag_set_init(&p->revalidate_set);
1183 COVERAGE_INC(ofproto_revalidate);
1184 classifier_for_each(&p->cls, CLS_INC_EXACT, revalidate_cb, &cbdata);
1185 p->need_revalidate = false;
1186 }
1187
1188 return 0;
1189 }
1190
1191 void
1192 ofproto_wait(struct ofproto *p)
1193 {
1194 struct ofservice *ofservice;
1195 struct ofconn *ofconn;
1196 size_t i;
1197
1198 dpif_recv_wait(p->dpif);
1199 dpif_port_poll_wait(p->dpif);
1200 netdev_monitor_poll_wait(p->netdev_monitor);
1201 LIST_FOR_EACH (ofconn, node, &p->all_conns) {
1202 ofconn_wait(ofconn);
1203 }
1204 if (p->in_band) {
1205 poll_timer_wait_until(p->next_in_band_update);
1206 in_band_wait(p->in_band);
1207 }
1208 if (p->fail_open) {
1209 fail_open_wait(p->fail_open);
1210 }
1211 if (p->sflow) {
1212 ofproto_sflow_wait(p->sflow);
1213 }
1214 if (!tag_set_is_empty(&p->revalidate_set)) {
1215 poll_immediate_wake();
1216 }
1217 if (p->need_revalidate) {
1218 /* Shouldn't happen, but if it does just go around again. */
1219 VLOG_DBG_RL(&rl, "need revalidate in ofproto_wait_cb()");
1220 poll_immediate_wake();
1221 } else if (p->next_expiration != LLONG_MAX) {
1222 poll_timer_wait_until(p->next_expiration);
1223 }
1224 HMAP_FOR_EACH (ofservice, node, &p->services) {
1225 pvconn_wait(ofservice->pvconn);
1226 }
1227 for (i = 0; i < p->n_snoops; i++) {
1228 pvconn_wait(p->snoops[i]);
1229 }
1230 }
1231
1232 void
1233 ofproto_revalidate(struct ofproto *ofproto, tag_type tag)
1234 {
1235 tag_set_add(&ofproto->revalidate_set, tag);
1236 }
1237
1238 struct tag_set *
1239 ofproto_get_revalidate_set(struct ofproto *ofproto)
1240 {
1241 return &ofproto->revalidate_set;
1242 }
1243
1244 bool
1245 ofproto_is_alive(const struct ofproto *p)
1246 {
1247 return !hmap_is_empty(&p->controllers);
1248 }
1249
1250 int
1251 ofproto_send_packet(struct ofproto *p, const flow_t *flow,
1252 const union ofp_action *actions, size_t n_actions,
1253 const struct ofpbuf *packet)
1254 {
1255 struct odp_actions odp_actions;
1256 int error;
1257
1258 error = xlate_actions(actions, n_actions, flow, p, packet, &odp_actions,
1259 NULL, NULL, NULL);
1260 if (error) {
1261 return error;
1262 }
1263
1264 /* XXX Should we translate the dpif_execute() errno value into an OpenFlow
1265 * error code? */
1266 dpif_execute(p->dpif, flow->in_port, odp_actions.actions,
1267 odp_actions.n_actions, packet);
1268 return 0;
1269 }
1270
1271 void
1272 ofproto_add_flow(struct ofproto *p,
1273 const flow_t *flow, uint32_t wildcards, unsigned int priority,
1274 const union ofp_action *actions, size_t n_actions,
1275 int idle_timeout)
1276 {
1277 struct rule *rule;
1278 rule = rule_create(p, NULL, actions, n_actions,
1279 idle_timeout >= 0 ? idle_timeout : 5 /* XXX */,
1280 0, 0, false);
1281 cls_rule_from_flow(flow, wildcards, priority, &rule->cr);
1282 rule_insert(p, rule, NULL, 0);
1283 }
1284
1285 void
1286 ofproto_delete_flow(struct ofproto *ofproto, const flow_t *flow,
1287 uint32_t wildcards, unsigned int priority)
1288 {
1289 struct rule *rule;
1290
1291 rule = rule_from_cls_rule(classifier_find_rule_exactly(&ofproto->cls,
1292 flow, wildcards,
1293 priority));
1294 if (rule) {
1295 rule_remove(ofproto, rule);
1296 }
1297 }
1298
1299 static void
1300 destroy_rule(struct cls_rule *rule_, void *ofproto_)
1301 {
1302 struct rule *rule = rule_from_cls_rule(rule_);
1303 struct ofproto *ofproto = ofproto_;
1304
1305 /* Mark the flow as not installed, even though it might really be
1306 * installed, so that rule_remove() doesn't bother trying to uninstall it.
1307 * There is no point in uninstalling it individually since we are about to
1308 * blow away all the flows with dpif_flow_flush(). */
1309 rule->installed = false;
1310
1311 rule_remove(ofproto, rule);
1312 }
1313
1314 void
1315 ofproto_flush_flows(struct ofproto *ofproto)
1316 {
1317 COVERAGE_INC(ofproto_flush);
1318 classifier_for_each(&ofproto->cls, CLS_INC_ALL, destroy_rule, ofproto);
1319 dpif_flow_flush(ofproto->dpif);
1320 if (ofproto->in_band) {
1321 in_band_flushed(ofproto->in_band);
1322 }
1323 if (ofproto->fail_open) {
1324 fail_open_flushed(ofproto->fail_open);
1325 }
1326 }
1327 \f
1328 static void
1329 reinit_ports(struct ofproto *p)
1330 {
1331 struct svec devnames;
1332 struct ofport *ofport;
1333 struct odp_port *odp_ports;
1334 size_t n_odp_ports;
1335 size_t i;
1336
1337 svec_init(&devnames);
1338 HMAP_FOR_EACH (ofport, hmap_node, &p->ports) {
1339 svec_add (&devnames, (char *) ofport->opp.name);
1340 }
1341 dpif_port_list(p->dpif, &odp_ports, &n_odp_ports);
1342 for (i = 0; i < n_odp_ports; i++) {
1343 svec_add (&devnames, odp_ports[i].devname);
1344 }
1345 free(odp_ports);
1346
1347 svec_sort_unique(&devnames);
1348 for (i = 0; i < devnames.n; i++) {
1349 update_port(p, devnames.names[i]);
1350 }
1351 svec_destroy(&devnames);
1352 }
1353
1354 static size_t
1355 refresh_port_group(struct ofproto *p, unsigned int group)
1356 {
1357 uint16_t *ports;
1358 size_t n_ports;
1359 struct ofport *port;
1360
1361 assert(group == DP_GROUP_ALL || group == DP_GROUP_FLOOD);
1362
1363 ports = xmalloc(hmap_count(&p->ports) * sizeof *ports);
1364 n_ports = 0;
1365 HMAP_FOR_EACH (port, hmap_node, &p->ports) {
1366 if (group == DP_GROUP_ALL || !(port->opp.config & OFPPC_NO_FLOOD)) {
1367 ports[n_ports++] = port->odp_port;
1368 }
1369 }
1370 dpif_port_group_set(p->dpif, group, ports, n_ports);
1371 free(ports);
1372
1373 return n_ports;
1374 }
1375
1376 static void
1377 refresh_port_groups(struct ofproto *p)
1378 {
1379 size_t n_flood = refresh_port_group(p, DP_GROUP_FLOOD);
1380 size_t n_all = refresh_port_group(p, DP_GROUP_ALL);
1381 if (p->sflow) {
1382 ofproto_sflow_set_group_sizes(p->sflow, n_flood, n_all);
1383 }
1384 }
1385
1386 static struct ofport *
1387 make_ofport(const struct odp_port *odp_port)
1388 {
1389 struct netdev_options netdev_options;
1390 enum netdev_flags flags;
1391 struct ofport *ofport;
1392 struct netdev *netdev;
1393 bool carrier;
1394 int error;
1395
1396 memset(&netdev_options, 0, sizeof netdev_options);
1397 netdev_options.name = odp_port->devname;
1398 netdev_options.ethertype = NETDEV_ETH_TYPE_NONE;
1399
1400 error = netdev_open(&netdev_options, &netdev);
1401 if (error) {
1402 VLOG_WARN_RL(&rl, "ignoring port %s (%"PRIu16") because netdev %s "
1403 "cannot be opened (%s)",
1404 odp_port->devname, odp_port->port,
1405 odp_port->devname, strerror(error));
1406 return NULL;
1407 }
1408
1409 ofport = xmalloc(sizeof *ofport);
1410 ofport->netdev = netdev;
1411 ofport->odp_port = odp_port->port;
1412 ofport->opp.port_no = odp_port_to_ofp_port(odp_port->port);
1413 netdev_get_etheraddr(netdev, ofport->opp.hw_addr);
1414 memcpy(ofport->opp.name, odp_port->devname,
1415 MIN(sizeof ofport->opp.name, sizeof odp_port->devname));
1416 ofport->opp.name[sizeof ofport->opp.name - 1] = '\0';
1417
1418 netdev_get_flags(netdev, &flags);
1419 ofport->opp.config = flags & NETDEV_UP ? 0 : OFPPC_PORT_DOWN;
1420
1421 netdev_get_carrier(netdev, &carrier);
1422 ofport->opp.state = carrier ? 0 : OFPPS_LINK_DOWN;
1423
1424 netdev_get_features(netdev,
1425 &ofport->opp.curr, &ofport->opp.advertised,
1426 &ofport->opp.supported, &ofport->opp.peer);
1427 return ofport;
1428 }
1429
1430 static bool
1431 ofport_conflicts(const struct ofproto *p, const struct odp_port *odp_port)
1432 {
1433 if (get_port(p, odp_port->port)) {
1434 VLOG_WARN_RL(&rl, "ignoring duplicate port %"PRIu16" in datapath",
1435 odp_port->port);
1436 return true;
1437 } else if (shash_find(&p->port_by_name, odp_port->devname)) {
1438 VLOG_WARN_RL(&rl, "ignoring duplicate device %s in datapath",
1439 odp_port->devname);
1440 return true;
1441 } else {
1442 return false;
1443 }
1444 }
1445
1446 static int
1447 ofport_equal(const struct ofport *a_, const struct ofport *b_)
1448 {
1449 const struct ofp_phy_port *a = &a_->opp;
1450 const struct ofp_phy_port *b = &b_->opp;
1451
1452 BUILD_ASSERT_DECL(sizeof *a == 48); /* Detect ofp_phy_port changes. */
1453 return (a->port_no == b->port_no
1454 && !memcmp(a->hw_addr, b->hw_addr, sizeof a->hw_addr)
1455 && !strcmp((char *) a->name, (char *) b->name)
1456 && a->state == b->state
1457 && a->config == b->config
1458 && a->curr == b->curr
1459 && a->advertised == b->advertised
1460 && a->supported == b->supported
1461 && a->peer == b->peer);
1462 }
1463
1464 static void
1465 send_port_status(struct ofproto *p, const struct ofport *ofport,
1466 uint8_t reason)
1467 {
1468 /* XXX Should limit the number of queued port status change messages. */
1469 struct ofconn *ofconn;
1470 LIST_FOR_EACH (ofconn, node, &p->all_conns) {
1471 struct ofp_port_status *ops;
1472 struct ofpbuf *b;
1473
1474 if (!ofconn_receives_async_msgs(ofconn)) {
1475 continue;
1476 }
1477
1478 ops = make_openflow_xid(sizeof *ops, OFPT_PORT_STATUS, 0, &b);
1479 ops->reason = reason;
1480 ops->desc = ofport->opp;
1481 hton_ofp_phy_port(&ops->desc);
1482 queue_tx(b, ofconn, NULL);
1483 }
1484 if (p->ofhooks->port_changed_cb) {
1485 p->ofhooks->port_changed_cb(reason, &ofport->opp, p->aux);
1486 }
1487 }
1488
1489 static void
1490 ofport_install(struct ofproto *p, struct ofport *ofport)
1491 {
1492 const char *netdev_name = (const char *) ofport->opp.name;
1493
1494 netdev_monitor_add(p->netdev_monitor, ofport->netdev);
1495 hmap_insert(&p->ports, &ofport->hmap_node, hash_int(ofport->odp_port, 0));
1496 shash_add(&p->port_by_name, netdev_name, ofport);
1497 if (p->sflow) {
1498 ofproto_sflow_add_port(p->sflow, ofport->odp_port, netdev_name);
1499 }
1500 }
1501
1502 static void
1503 ofport_remove(struct ofproto *p, struct ofport *ofport)
1504 {
1505 netdev_monitor_remove(p->netdev_monitor, ofport->netdev);
1506 hmap_remove(&p->ports, &ofport->hmap_node);
1507 shash_delete(&p->port_by_name,
1508 shash_find(&p->port_by_name, (char *) ofport->opp.name));
1509 if (p->sflow) {
1510 ofproto_sflow_del_port(p->sflow, ofport->odp_port);
1511 }
1512 }
1513
1514 static void
1515 ofport_free(struct ofport *ofport)
1516 {
1517 if (ofport) {
1518 netdev_close(ofport->netdev);
1519 free(ofport);
1520 }
1521 }
1522
1523 static struct ofport *
1524 get_port(const struct ofproto *ofproto, uint16_t odp_port)
1525 {
1526 struct ofport *port;
1527
1528 HMAP_FOR_EACH_IN_BUCKET (port, hmap_node,
1529 hash_int(odp_port, 0), &ofproto->ports) {
1530 if (port->odp_port == odp_port) {
1531 return port;
1532 }
1533 }
1534 return NULL;
1535 }
1536
1537 static void
1538 update_port(struct ofproto *p, const char *devname)
1539 {
1540 struct odp_port odp_port;
1541 struct ofport *old_ofport;
1542 struct ofport *new_ofport;
1543 int error;
1544
1545 COVERAGE_INC(ofproto_update_port);
1546
1547 /* Query the datapath for port information. */
1548 error = dpif_port_query_by_name(p->dpif, devname, &odp_port);
1549
1550 /* Find the old ofport. */
1551 old_ofport = shash_find_data(&p->port_by_name, devname);
1552 if (!error) {
1553 if (!old_ofport) {
1554 /* There's no port named 'devname' but there might be a port with
1555 * the same port number. This could happen if a port is deleted
1556 * and then a new one added in its place very quickly, or if a port
1557 * is renamed. In the former case we want to send an OFPPR_DELETE
1558 * and an OFPPR_ADD, and in the latter case we want to send a
1559 * single OFPPR_MODIFY. We can distinguish the cases by comparing
1560 * the old port's ifindex against the new port, or perhaps less
1561 * reliably but more portably by comparing the old port's MAC
1562 * against the new port's MAC. However, this code isn't that smart
1563 * and always sends an OFPPR_MODIFY (XXX). */
1564 old_ofport = get_port(p, odp_port.port);
1565 }
1566 } else if (error != ENOENT && error != ENODEV) {
1567 VLOG_WARN_RL(&rl, "dpif_port_query_by_name returned unexpected error "
1568 "%s", strerror(error));
1569 return;
1570 }
1571
1572 /* Create a new ofport. */
1573 new_ofport = !error ? make_ofport(&odp_port) : NULL;
1574
1575 /* Eliminate a few pathological cases. */
1576 if (!old_ofport && !new_ofport) {
1577 return;
1578 } else if (old_ofport && new_ofport) {
1579 /* Most of the 'config' bits are OpenFlow soft state, but
1580 * OFPPC_PORT_DOWN is maintained the kernel. So transfer the OpenFlow
1581 * bits from old_ofport. (make_ofport() only sets OFPPC_PORT_DOWN and
1582 * leaves the other bits 0.) */
1583 new_ofport->opp.config |= old_ofport->opp.config & ~OFPPC_PORT_DOWN;
1584
1585 if (ofport_equal(old_ofport, new_ofport)) {
1586 /* False alarm--no change. */
1587 ofport_free(new_ofport);
1588 return;
1589 }
1590 }
1591
1592 /* Now deal with the normal cases. */
1593 if (old_ofport) {
1594 ofport_remove(p, old_ofport);
1595 }
1596 if (new_ofport) {
1597 ofport_install(p, new_ofport);
1598 }
1599 send_port_status(p, new_ofport ? new_ofport : old_ofport,
1600 (!old_ofport ? OFPPR_ADD
1601 : !new_ofport ? OFPPR_DELETE
1602 : OFPPR_MODIFY));
1603 ofport_free(old_ofport);
1604
1605 /* Update port groups. */
1606 refresh_port_groups(p);
1607 }
1608
1609 static int
1610 init_ports(struct ofproto *p)
1611 {
1612 struct odp_port *ports;
1613 size_t n_ports;
1614 size_t i;
1615 int error;
1616
1617 error = dpif_port_list(p->dpif, &ports, &n_ports);
1618 if (error) {
1619 return error;
1620 }
1621
1622 for (i = 0; i < n_ports; i++) {
1623 const struct odp_port *odp_port = &ports[i];
1624 if (!ofport_conflicts(p, odp_port)) {
1625 struct ofport *ofport = make_ofport(odp_port);
1626 if (ofport) {
1627 ofport_install(p, ofport);
1628 }
1629 }
1630 }
1631 free(ports);
1632 refresh_port_groups(p);
1633 return 0;
1634 }
1635 \f
1636 static struct ofconn *
1637 ofconn_create(struct ofproto *p, struct rconn *rconn, enum ofconn_type type)
1638 {
1639 struct ofconn *ofconn = xzalloc(sizeof *ofconn);
1640 ofconn->ofproto = p;
1641 list_push_back(&p->all_conns, &ofconn->node);
1642 ofconn->rconn = rconn;
1643 ofconn->type = type;
1644 ofconn->role = NX_ROLE_OTHER;
1645 ofconn->packet_in_counter = rconn_packet_counter_create ();
1646 ofconn->pktbuf = NULL;
1647 ofconn->miss_send_len = 0;
1648 ofconn->reply_counter = rconn_packet_counter_create ();
1649 return ofconn;
1650 }
1651
1652 static void
1653 ofconn_destroy(struct ofconn *ofconn)
1654 {
1655 if (ofconn->type == OFCONN_PRIMARY) {
1656 hmap_remove(&ofconn->ofproto->controllers, &ofconn->hmap_node);
1657 }
1658 discovery_destroy(ofconn->discovery);
1659
1660 list_remove(&ofconn->node);
1661 switch_status_unregister(ofconn->ss);
1662 rconn_destroy(ofconn->rconn);
1663 rconn_packet_counter_destroy(ofconn->packet_in_counter);
1664 rconn_packet_counter_destroy(ofconn->reply_counter);
1665 pktbuf_destroy(ofconn->pktbuf);
1666 free(ofconn);
1667 }
1668
1669 static void
1670 ofconn_run(struct ofconn *ofconn, struct ofproto *p)
1671 {
1672 int iteration;
1673 size_t i;
1674
1675 if (ofconn->discovery) {
1676 char *controller_name;
1677 if (rconn_is_connectivity_questionable(ofconn->rconn)) {
1678 discovery_question_connectivity(ofconn->discovery);
1679 }
1680 if (discovery_run(ofconn->discovery, &controller_name)) {
1681 if (controller_name) {
1682 char *ofconn_name = ofconn_make_name(p, controller_name);
1683 rconn_connect(ofconn->rconn, controller_name, ofconn_name);
1684 free(ofconn_name);
1685 } else {
1686 rconn_disconnect(ofconn->rconn);
1687 }
1688 }
1689 }
1690
1691 for (i = 0; i < N_SCHEDULERS; i++) {
1692 pinsched_run(ofconn->schedulers[i], do_send_packet_in, ofconn);
1693 }
1694
1695 rconn_run(ofconn->rconn);
1696
1697 if (rconn_packet_counter_read (ofconn->reply_counter) < OFCONN_REPLY_MAX) {
1698 /* Limit the number of iterations to prevent other tasks from
1699 * starving. */
1700 for (iteration = 0; iteration < 50; iteration++) {
1701 struct ofpbuf *of_msg = rconn_recv(ofconn->rconn);
1702 if (!of_msg) {
1703 break;
1704 }
1705 if (p->fail_open) {
1706 fail_open_maybe_recover(p->fail_open);
1707 }
1708 handle_openflow(ofconn, p, of_msg);
1709 ofpbuf_delete(of_msg);
1710 }
1711 }
1712
1713 if (!ofconn->discovery && !rconn_is_alive(ofconn->rconn)) {
1714 ofconn_destroy(ofconn);
1715 }
1716 }
1717
1718 static void
1719 ofconn_wait(struct ofconn *ofconn)
1720 {
1721 int i;
1722
1723 if (ofconn->discovery) {
1724 discovery_wait(ofconn->discovery);
1725 }
1726 for (i = 0; i < N_SCHEDULERS; i++) {
1727 pinsched_wait(ofconn->schedulers[i]);
1728 }
1729 rconn_run_wait(ofconn->rconn);
1730 if (rconn_packet_counter_read (ofconn->reply_counter) < OFCONN_REPLY_MAX) {
1731 rconn_recv_wait(ofconn->rconn);
1732 } else {
1733 COVERAGE_INC(ofproto_ofconn_stuck);
1734 }
1735 }
1736
1737 /* Returns true if 'ofconn' should receive asynchronous messages. */
1738 static bool
1739 ofconn_receives_async_msgs(const struct ofconn *ofconn)
1740 {
1741 if (ofconn->type == OFCONN_PRIMARY) {
1742 /* Primary controllers always get asynchronous messages unless they
1743 * have configured themselves as "slaves". */
1744 return ofconn->role != NX_ROLE_SLAVE;
1745 } else {
1746 /* Service connections don't get asynchronous messages unless they have
1747 * explicitly asked for them by setting a nonzero miss send length. */
1748 return ofconn->miss_send_len > 0;
1749 }
1750 }
1751
1752 /* Returns a human-readable name for an OpenFlow connection between 'ofproto'
1753 * and 'target', suitable for use in log messages for identifying the
1754 * connection.
1755 *
1756 * The name is dynamically allocated. The caller should free it (with free())
1757 * when it is no longer needed. */
1758 static char *
1759 ofconn_make_name(const struct ofproto *ofproto, const char *target)
1760 {
1761 return xasprintf("%s<->%s", dpif_base_name(ofproto->dpif), target);
1762 }
1763
1764 static void
1765 ofconn_set_rate_limit(struct ofconn *ofconn, int rate, int burst)
1766 {
1767 int i;
1768
1769 for (i = 0; i < N_SCHEDULERS; i++) {
1770 struct pinsched **s = &ofconn->schedulers[i];
1771
1772 if (rate > 0) {
1773 if (!*s) {
1774 *s = pinsched_create(rate, burst,
1775 ofconn->ofproto->switch_status);
1776 } else {
1777 pinsched_set_limits(*s, rate, burst);
1778 }
1779 } else {
1780 pinsched_destroy(*s);
1781 *s = NULL;
1782 }
1783 }
1784 }
1785 \f
1786 static void
1787 ofservice_reconfigure(struct ofservice *ofservice,
1788 const struct ofproto_controller *c)
1789 {
1790 ofservice->probe_interval = c->probe_interval;
1791 ofservice->rate_limit = c->rate_limit;
1792 ofservice->burst_limit = c->burst_limit;
1793 }
1794
1795 /* Creates a new ofservice in 'ofproto'. Returns 0 if successful, otherwise a
1796 * positive errno value. */
1797 static int
1798 ofservice_create(struct ofproto *ofproto, const struct ofproto_controller *c)
1799 {
1800 struct ofservice *ofservice;
1801 struct pvconn *pvconn;
1802 int error;
1803
1804 error = pvconn_open(c->target, &pvconn);
1805 if (error) {
1806 return error;
1807 }
1808
1809 ofservice = xzalloc(sizeof *ofservice);
1810 hmap_insert(&ofproto->services, &ofservice->node,
1811 hash_string(c->target, 0));
1812 ofservice->pvconn = pvconn;
1813
1814 ofservice_reconfigure(ofservice, c);
1815
1816 return 0;
1817 }
1818
1819 static void
1820 ofservice_destroy(struct ofproto *ofproto, struct ofservice *ofservice)
1821 {
1822 hmap_remove(&ofproto->services, &ofservice->node);
1823 pvconn_close(ofservice->pvconn);
1824 free(ofservice);
1825 }
1826
1827 /* Finds and returns the ofservice within 'ofproto' that has the given
1828 * 'target', or a null pointer if none exists. */
1829 static struct ofservice *
1830 ofservice_lookup(struct ofproto *ofproto, const char *target)
1831 {
1832 struct ofservice *ofservice;
1833
1834 HMAP_FOR_EACH_WITH_HASH (ofservice, node, hash_string(target, 0),
1835 &ofproto->services) {
1836 if (!strcmp(pvconn_get_name(ofservice->pvconn), target)) {
1837 return ofservice;
1838 }
1839 }
1840 return NULL;
1841 }
1842 \f
1843 /* Caller is responsible for initializing the 'cr' member of the returned
1844 * rule. */
1845 static struct rule *
1846 rule_create(struct ofproto *ofproto, struct rule *super,
1847 const union ofp_action *actions, size_t n_actions,
1848 uint16_t idle_timeout, uint16_t hard_timeout,
1849 uint64_t flow_cookie, bool send_flow_removed)
1850 {
1851 struct rule *rule = xzalloc(sizeof *rule);
1852 rule->idle_timeout = idle_timeout;
1853 rule->hard_timeout = hard_timeout;
1854 rule->flow_cookie = flow_cookie;
1855 rule->used = rule->created = time_msec();
1856 rule->send_flow_removed = send_flow_removed;
1857 rule->super = super;
1858 if (super) {
1859 list_push_back(&super->list, &rule->list);
1860 } else {
1861 list_init(&rule->list);
1862 }
1863 if (n_actions > 0) {
1864 rule->n_actions = n_actions;
1865 rule->actions = xmemdup(actions, n_actions * sizeof *actions);
1866 }
1867 netflow_flow_clear(&rule->nf_flow);
1868 netflow_flow_update_time(ofproto->netflow, &rule->nf_flow, rule->created);
1869
1870 return rule;
1871 }
1872
1873 static struct rule *
1874 rule_from_cls_rule(const struct cls_rule *cls_rule)
1875 {
1876 return cls_rule ? CONTAINER_OF(cls_rule, struct rule, cr) : NULL;
1877 }
1878
1879 static void
1880 rule_free(struct rule *rule)
1881 {
1882 free(rule->actions);
1883 free(rule->odp_actions);
1884 free(rule);
1885 }
1886
1887 /* Destroys 'rule'. If 'rule' is a subrule, also removes it from its
1888 * super-rule's list of subrules. If 'rule' is a super-rule, also iterates
1889 * through all of its subrules and revalidates them, destroying any that no
1890 * longer has a super-rule (which is probably all of them).
1891 *
1892 * Before calling this function, the caller must make have removed 'rule' from
1893 * the classifier. If 'rule' is an exact-match rule, the caller is also
1894 * responsible for ensuring that it has been uninstalled from the datapath. */
1895 static void
1896 rule_destroy(struct ofproto *ofproto, struct rule *rule)
1897 {
1898 if (!rule->super) {
1899 struct rule *subrule, *next;
1900 LIST_FOR_EACH_SAFE (subrule, next, list, &rule->list) {
1901 revalidate_rule(ofproto, subrule);
1902 }
1903 } else {
1904 list_remove(&rule->list);
1905 }
1906 rule_free(rule);
1907 }
1908
1909 static bool
1910 rule_has_out_port(const struct rule *rule, uint16_t out_port)
1911 {
1912 const union ofp_action *oa;
1913 struct actions_iterator i;
1914
1915 if (out_port == htons(OFPP_NONE)) {
1916 return true;
1917 }
1918 for (oa = actions_first(&i, rule->actions, rule->n_actions); oa;
1919 oa = actions_next(&i)) {
1920 if (action_outputs_to_port(oa, out_port)) {
1921 return true;
1922 }
1923 }
1924 return false;
1925 }
1926
1927 /* Executes, within 'ofproto', the 'n_actions' actions in 'actions' on
1928 * 'packet', which arrived on 'in_port'.
1929 *
1930 * Takes ownership of 'packet'. */
1931 static bool
1932 execute_odp_actions(struct ofproto *ofproto, uint16_t in_port,
1933 const union odp_action *actions, size_t n_actions,
1934 struct ofpbuf *packet)
1935 {
1936 if (n_actions == 1 && actions[0].type == ODPAT_CONTROLLER) {
1937 /* As an optimization, avoid a round-trip from userspace to kernel to
1938 * userspace. This also avoids possibly filling up kernel packet
1939 * buffers along the way. */
1940 struct odp_msg *msg;
1941
1942 msg = ofpbuf_push_uninit(packet, sizeof *msg);
1943 msg->type = _ODPL_ACTION_NR;
1944 msg->length = sizeof(struct odp_msg) + packet->size;
1945 msg->port = in_port;
1946 msg->reserved = 0;
1947 msg->arg = actions[0].controller.arg;
1948
1949 send_packet_in(ofproto, packet);
1950
1951 return true;
1952 } else {
1953 int error;
1954
1955 error = dpif_execute(ofproto->dpif, in_port,
1956 actions, n_actions, packet);
1957 ofpbuf_delete(packet);
1958 return !error;
1959 }
1960 }
1961
1962 /* Executes the actions indicated by 'rule' on 'packet', which is in flow
1963 * 'flow' and is considered to have arrived on ODP port 'in_port'. 'packet'
1964 * must have at least sizeof(struct ofp_packet_in) bytes of headroom.
1965 *
1966 * The flow that 'packet' actually contains does not need to actually match
1967 * 'rule'; the actions in 'rule' will be applied to it either way. Likewise,
1968 * the packet and byte counters for 'rule' will be credited for the packet sent
1969 * out whether or not the packet actually matches 'rule'.
1970 *
1971 * If 'rule' is an exact-match rule and 'flow' actually equals the rule's flow,
1972 * the caller must already have accurately composed ODP actions for it given
1973 * 'packet' using rule_make_actions(). If 'rule' is a wildcard rule, or if
1974 * 'rule' is an exact-match rule but 'flow' is not the rule's flow, then this
1975 * function will compose a set of ODP actions based on 'rule''s OpenFlow
1976 * actions and apply them to 'packet'.
1977 *
1978 * Takes ownership of 'packet'. */
1979 static void
1980 rule_execute(struct ofproto *ofproto, struct rule *rule,
1981 struct ofpbuf *packet, const flow_t *flow)
1982 {
1983 const union odp_action *actions;
1984 struct odp_flow_stats stats;
1985 size_t n_actions;
1986 struct odp_actions a;
1987
1988 assert(ofpbuf_headroom(packet) >= sizeof(struct ofp_packet_in));
1989
1990 /* Grab or compose the ODP actions.
1991 *
1992 * The special case for an exact-match 'rule' where 'flow' is not the
1993 * rule's flow is important to avoid, e.g., sending a packet out its input
1994 * port simply because the ODP actions were composed for the wrong
1995 * scenario. */
1996 if (rule->cr.wc.wildcards || !flow_equal(flow, &rule->cr.flow)) {
1997 struct rule *super = rule->super ? rule->super : rule;
1998 if (xlate_actions(super->actions, super->n_actions, flow, ofproto,
1999 packet, &a, NULL, 0, NULL)) {
2000 ofpbuf_delete(packet);
2001 return;
2002 }
2003 actions = a.actions;
2004 n_actions = a.n_actions;
2005 } else {
2006 actions = rule->odp_actions;
2007 n_actions = rule->n_odp_actions;
2008 }
2009
2010 /* Execute the ODP actions. */
2011 flow_extract_stats(flow, packet, &stats);
2012 if (execute_odp_actions(ofproto, flow->in_port,
2013 actions, n_actions, packet)) {
2014 update_stats(ofproto, rule, &stats);
2015 rule->used = time_msec();
2016 netflow_flow_update_time(ofproto->netflow, &rule->nf_flow, rule->used);
2017 }
2018 }
2019
2020 /* Inserts 'rule' into 'p''s flow table.
2021 *
2022 * If 'packet' is nonnull, takes ownership of 'packet', executes 'rule''s
2023 * actions on it and credits the statistics for sending the packet to 'rule'.
2024 * 'packet' must have at least sizeof(struct ofp_packet_in) bytes of
2025 * headroom. */
2026 static void
2027 rule_insert(struct ofproto *p, struct rule *rule, struct ofpbuf *packet,
2028 uint16_t in_port)
2029 {
2030 struct rule *displaced_rule;
2031
2032 /* Insert the rule in the classifier. */
2033 displaced_rule = rule_from_cls_rule(classifier_insert(&p->cls, &rule->cr));
2034 if (!rule->cr.wc.wildcards) {
2035 rule_make_actions(p, rule, packet);
2036 }
2037
2038 /* Send the packet and credit it to the rule. */
2039 if (packet) {
2040 flow_t flow;
2041 flow_extract(packet, 0, in_port, &flow);
2042 rule_execute(p, rule, packet, &flow);
2043 }
2044
2045 /* Install the rule in the datapath only after sending the packet, to
2046 * avoid packet reordering. */
2047 if (rule->cr.wc.wildcards) {
2048 COVERAGE_INC(ofproto_add_wc_flow);
2049 p->need_revalidate = true;
2050 } else {
2051 rule_install(p, rule, displaced_rule);
2052 }
2053
2054 /* Free the rule that was displaced, if any. */
2055 if (displaced_rule) {
2056 rule_destroy(p, displaced_rule);
2057 }
2058 }
2059
2060 static struct rule *
2061 rule_create_subrule(struct ofproto *ofproto, struct rule *rule,
2062 const flow_t *flow)
2063 {
2064 struct rule *subrule = rule_create(ofproto, rule, NULL, 0,
2065 rule->idle_timeout, rule->hard_timeout,
2066 0, false);
2067 COVERAGE_INC(ofproto_subrule_create);
2068 cls_rule_from_flow(flow, 0, (rule->cr.priority <= UINT16_MAX ? UINT16_MAX
2069 : rule->cr.priority), &subrule->cr);
2070 classifier_insert_exact(&ofproto->cls, &subrule->cr);
2071
2072 return subrule;
2073 }
2074
2075 static void
2076 rule_remove(struct ofproto *ofproto, struct rule *rule)
2077 {
2078 if (rule->cr.wc.wildcards) {
2079 COVERAGE_INC(ofproto_del_wc_flow);
2080 ofproto->need_revalidate = true;
2081 } else {
2082 rule_uninstall(ofproto, rule);
2083 }
2084 classifier_remove(&ofproto->cls, &rule->cr);
2085 rule_destroy(ofproto, rule);
2086 }
2087
2088 /* Returns true if the actions changed, false otherwise. */
2089 static bool
2090 rule_make_actions(struct ofproto *p, struct rule *rule,
2091 const struct ofpbuf *packet)
2092 {
2093 const struct rule *super;
2094 struct odp_actions a;
2095 size_t actions_len;
2096
2097 assert(!rule->cr.wc.wildcards);
2098
2099 super = rule->super ? rule->super : rule;
2100 rule->tags = 0;
2101 xlate_actions(super->actions, super->n_actions, &rule->cr.flow, p,
2102 packet, &a, &rule->tags, &rule->may_install,
2103 &rule->nf_flow.output_iface);
2104
2105 actions_len = a.n_actions * sizeof *a.actions;
2106 if (rule->n_odp_actions != a.n_actions
2107 || memcmp(rule->odp_actions, a.actions, actions_len)) {
2108 COVERAGE_INC(ofproto_odp_unchanged);
2109 free(rule->odp_actions);
2110 rule->n_odp_actions = a.n_actions;
2111 rule->odp_actions = xmemdup(a.actions, actions_len);
2112 return true;
2113 } else {
2114 return false;
2115 }
2116 }
2117
2118 static int
2119 do_put_flow(struct ofproto *ofproto, struct rule *rule, int flags,
2120 struct odp_flow_put *put)
2121 {
2122 memset(&put->flow.stats, 0, sizeof put->flow.stats);
2123 put->flow.key = rule->cr.flow;
2124 put->flow.actions = rule->odp_actions;
2125 put->flow.n_actions = rule->n_odp_actions;
2126 put->flow.flags = 0;
2127 put->flags = flags;
2128 return dpif_flow_put(ofproto->dpif, put);
2129 }
2130
2131 static void
2132 rule_install(struct ofproto *p, struct rule *rule, struct rule *displaced_rule)
2133 {
2134 assert(!rule->cr.wc.wildcards);
2135
2136 if (rule->may_install) {
2137 struct odp_flow_put put;
2138 if (!do_put_flow(p, rule,
2139 ODPPF_CREATE | ODPPF_MODIFY | ODPPF_ZERO_STATS,
2140 &put)) {
2141 rule->installed = true;
2142 if (displaced_rule) {
2143 update_stats(p, displaced_rule, &put.flow.stats);
2144 rule_post_uninstall(p, displaced_rule);
2145 }
2146 }
2147 } else if (displaced_rule) {
2148 rule_uninstall(p, displaced_rule);
2149 }
2150 }
2151
2152 static void
2153 rule_reinstall(struct ofproto *ofproto, struct rule *rule)
2154 {
2155 if (rule->installed) {
2156 struct odp_flow_put put;
2157 COVERAGE_INC(ofproto_dp_missed);
2158 do_put_flow(ofproto, rule, ODPPF_CREATE | ODPPF_MODIFY, &put);
2159 } else {
2160 rule_install(ofproto, rule, NULL);
2161 }
2162 }
2163
2164 static void
2165 rule_update_actions(struct ofproto *ofproto, struct rule *rule)
2166 {
2167 bool actions_changed;
2168 uint16_t new_out_iface, old_out_iface;
2169
2170 old_out_iface = rule->nf_flow.output_iface;
2171 actions_changed = rule_make_actions(ofproto, rule, NULL);
2172
2173 if (rule->may_install) {
2174 if (rule->installed) {
2175 if (actions_changed) {
2176 struct odp_flow_put put;
2177 do_put_flow(ofproto, rule, ODPPF_CREATE | ODPPF_MODIFY
2178 | ODPPF_ZERO_STATS, &put);
2179 update_stats(ofproto, rule, &put.flow.stats);
2180
2181 /* Temporarily set the old output iface so that NetFlow
2182 * messages have the correct output interface for the old
2183 * stats. */
2184 new_out_iface = rule->nf_flow.output_iface;
2185 rule->nf_flow.output_iface = old_out_iface;
2186 rule_post_uninstall(ofproto, rule);
2187 rule->nf_flow.output_iface = new_out_iface;
2188 }
2189 } else {
2190 rule_install(ofproto, rule, NULL);
2191 }
2192 } else {
2193 rule_uninstall(ofproto, rule);
2194 }
2195 }
2196
2197 static void
2198 rule_account(struct ofproto *ofproto, struct rule *rule, uint64_t extra_bytes)
2199 {
2200 uint64_t total_bytes = rule->byte_count + extra_bytes;
2201
2202 if (ofproto->ofhooks->account_flow_cb
2203 && total_bytes > rule->accounted_bytes)
2204 {
2205 ofproto->ofhooks->account_flow_cb(
2206 &rule->cr.flow, rule->tags, rule->odp_actions, rule->n_odp_actions,
2207 total_bytes - rule->accounted_bytes, ofproto->aux);
2208 rule->accounted_bytes = total_bytes;
2209 }
2210 }
2211
2212 static void
2213 rule_uninstall(struct ofproto *p, struct rule *rule)
2214 {
2215 assert(!rule->cr.wc.wildcards);
2216 if (rule->installed) {
2217 struct odp_flow odp_flow;
2218
2219 odp_flow.key = rule->cr.flow;
2220 odp_flow.actions = NULL;
2221 odp_flow.n_actions = 0;
2222 odp_flow.flags = 0;
2223 if (!dpif_flow_del(p->dpif, &odp_flow)) {
2224 update_stats(p, rule, &odp_flow.stats);
2225 }
2226 rule->installed = false;
2227
2228 rule_post_uninstall(p, rule);
2229 }
2230 }
2231
2232 static bool
2233 is_controller_rule(struct rule *rule)
2234 {
2235 /* If the only action is send to the controller then don't report
2236 * NetFlow expiration messages since it is just part of the control
2237 * logic for the network and not real traffic. */
2238
2239 return (rule
2240 && rule->super
2241 && rule->super->n_actions == 1
2242 && action_outputs_to_port(&rule->super->actions[0],
2243 htons(OFPP_CONTROLLER)));
2244 }
2245
2246 static void
2247 rule_post_uninstall(struct ofproto *ofproto, struct rule *rule)
2248 {
2249 struct rule *super = rule->super;
2250
2251 rule_account(ofproto, rule, 0);
2252
2253 if (ofproto->netflow && !is_controller_rule(rule)) {
2254 struct ofexpired expired;
2255 expired.flow = rule->cr.flow;
2256 expired.packet_count = rule->packet_count;
2257 expired.byte_count = rule->byte_count;
2258 expired.used = rule->used;
2259 netflow_expire(ofproto->netflow, &rule->nf_flow, &expired);
2260 }
2261 if (super) {
2262 super->packet_count += rule->packet_count;
2263 super->byte_count += rule->byte_count;
2264
2265 /* Reset counters to prevent double counting if the rule ever gets
2266 * reinstalled. */
2267 rule->packet_count = 0;
2268 rule->byte_count = 0;
2269 rule->accounted_bytes = 0;
2270
2271 netflow_flow_clear(&rule->nf_flow);
2272 }
2273 }
2274 \f
2275 static void
2276 queue_tx(struct ofpbuf *msg, const struct ofconn *ofconn,
2277 struct rconn_packet_counter *counter)
2278 {
2279 update_openflow_length(msg);
2280 if (rconn_send(ofconn->rconn, msg, counter)) {
2281 ofpbuf_delete(msg);
2282 }
2283 }
2284
2285 static void
2286 send_error(const struct ofconn *ofconn, const struct ofp_header *oh,
2287 int error, const void *data, size_t len)
2288 {
2289 struct ofpbuf *buf;
2290 struct ofp_error_msg *oem;
2291
2292 if (!(error >> 16)) {
2293 VLOG_WARN_RL(&rl, "not sending bad error code %d to controller",
2294 error);
2295 return;
2296 }
2297
2298 COVERAGE_INC(ofproto_error);
2299 oem = make_openflow_xid(len + sizeof *oem, OFPT_ERROR,
2300 oh ? oh->xid : 0, &buf);
2301 oem->type = htons((unsigned int) error >> 16);
2302 oem->code = htons(error & 0xffff);
2303 memcpy(oem->data, data, len);
2304 queue_tx(buf, ofconn, ofconn->reply_counter);
2305 }
2306
2307 static void
2308 send_error_oh(const struct ofconn *ofconn, const struct ofp_header *oh,
2309 int error)
2310 {
2311 size_t oh_length = ntohs(oh->length);
2312 send_error(ofconn, oh, error, oh, MIN(oh_length, 64));
2313 }
2314
2315 static void
2316 hton_ofp_phy_port(struct ofp_phy_port *opp)
2317 {
2318 opp->port_no = htons(opp->port_no);
2319 opp->config = htonl(opp->config);
2320 opp->state = htonl(opp->state);
2321 opp->curr = htonl(opp->curr);
2322 opp->advertised = htonl(opp->advertised);
2323 opp->supported = htonl(opp->supported);
2324 opp->peer = htonl(opp->peer);
2325 }
2326
2327 static int
2328 handle_echo_request(struct ofconn *ofconn, struct ofp_header *oh)
2329 {
2330 struct ofp_header *rq = oh;
2331 queue_tx(make_echo_reply(rq), ofconn, ofconn->reply_counter);
2332 return 0;
2333 }
2334
2335 static int
2336 handle_features_request(struct ofproto *p, struct ofconn *ofconn,
2337 struct ofp_header *oh)
2338 {
2339 struct ofp_switch_features *osf;
2340 struct ofpbuf *buf;
2341 struct ofport *port;
2342
2343 osf = make_openflow_xid(sizeof *osf, OFPT_FEATURES_REPLY, oh->xid, &buf);
2344 osf->datapath_id = htonll(p->datapath_id);
2345 osf->n_buffers = htonl(pktbuf_capacity());
2346 osf->n_tables = 2;
2347 osf->capabilities = htonl(OFPC_FLOW_STATS | OFPC_TABLE_STATS |
2348 OFPC_PORT_STATS | OFPC_ARP_MATCH_IP);
2349 osf->actions = htonl((1u << OFPAT_OUTPUT) |
2350 (1u << OFPAT_SET_VLAN_VID) |
2351 (1u << OFPAT_SET_VLAN_PCP) |
2352 (1u << OFPAT_STRIP_VLAN) |
2353 (1u << OFPAT_SET_DL_SRC) |
2354 (1u << OFPAT_SET_DL_DST) |
2355 (1u << OFPAT_SET_NW_SRC) |
2356 (1u << OFPAT_SET_NW_DST) |
2357 (1u << OFPAT_SET_NW_TOS) |
2358 (1u << OFPAT_SET_TP_SRC) |
2359 (1u << OFPAT_SET_TP_DST) |
2360 (1u << OFPAT_ENQUEUE));
2361
2362 HMAP_FOR_EACH (port, hmap_node, &p->ports) {
2363 hton_ofp_phy_port(ofpbuf_put(buf, &port->opp, sizeof port->opp));
2364 }
2365
2366 queue_tx(buf, ofconn, ofconn->reply_counter);
2367 return 0;
2368 }
2369
2370 static int
2371 handle_get_config_request(struct ofproto *p, struct ofconn *ofconn,
2372 struct ofp_header *oh)
2373 {
2374 struct ofpbuf *buf;
2375 struct ofp_switch_config *osc;
2376 uint16_t flags;
2377 bool drop_frags;
2378
2379 /* Figure out flags. */
2380 dpif_get_drop_frags(p->dpif, &drop_frags);
2381 flags = drop_frags ? OFPC_FRAG_DROP : OFPC_FRAG_NORMAL;
2382
2383 /* Send reply. */
2384 osc = make_openflow_xid(sizeof *osc, OFPT_GET_CONFIG_REPLY, oh->xid, &buf);
2385 osc->flags = htons(flags);
2386 osc->miss_send_len = htons(ofconn->miss_send_len);
2387 queue_tx(buf, ofconn, ofconn->reply_counter);
2388
2389 return 0;
2390 }
2391
2392 static int
2393 handle_set_config(struct ofproto *p, struct ofconn *ofconn,
2394 struct ofp_switch_config *osc)
2395 {
2396 uint16_t flags;
2397 int error;
2398
2399 error = check_ofp_message(&osc->header, OFPT_SET_CONFIG, sizeof *osc);
2400 if (error) {
2401 return error;
2402 }
2403 flags = ntohs(osc->flags);
2404
2405 if (ofconn->type == OFCONN_PRIMARY && ofconn->role != NX_ROLE_SLAVE) {
2406 switch (flags & OFPC_FRAG_MASK) {
2407 case OFPC_FRAG_NORMAL:
2408 dpif_set_drop_frags(p->dpif, false);
2409 break;
2410 case OFPC_FRAG_DROP:
2411 dpif_set_drop_frags(p->dpif, true);
2412 break;
2413 default:
2414 VLOG_WARN_RL(&rl, "requested bad fragment mode (flags=%"PRIx16")",
2415 osc->flags);
2416 break;
2417 }
2418 }
2419
2420 ofconn->miss_send_len = ntohs(osc->miss_send_len);
2421
2422 return 0;
2423 }
2424
2425 static void
2426 add_output_group_action(struct odp_actions *actions, uint16_t group,
2427 uint16_t *nf_output_iface)
2428 {
2429 odp_actions_add(actions, ODPAT_OUTPUT_GROUP)->output_group.group = group;
2430
2431 if (group == DP_GROUP_ALL || group == DP_GROUP_FLOOD) {
2432 *nf_output_iface = NF_OUT_FLOOD;
2433 }
2434 }
2435
2436 static void
2437 add_controller_action(struct odp_actions *actions, uint16_t max_len)
2438 {
2439 union odp_action *a = odp_actions_add(actions, ODPAT_CONTROLLER);
2440 a->controller.arg = max_len;
2441 }
2442
2443 struct action_xlate_ctx {
2444 /* Input. */
2445 flow_t flow; /* Flow to which these actions correspond. */
2446 int recurse; /* Recursion level, via xlate_table_action. */
2447 struct ofproto *ofproto;
2448 const struct ofpbuf *packet; /* The packet corresponding to 'flow', or a
2449 * null pointer if we are revalidating
2450 * without a packet to refer to. */
2451
2452 /* Output. */
2453 struct odp_actions *out; /* Datapath actions. */
2454 tag_type *tags; /* Tags associated with OFPP_NORMAL actions. */
2455 bool may_set_up_flow; /* True ordinarily; false if the actions must
2456 * be reassessed for every packet. */
2457 uint16_t nf_output_iface; /* Output interface index for NetFlow. */
2458 };
2459
2460 /* Maximum depth of flow table recursion (due to NXAST_RESUBMIT actions) in a
2461 * flow translation. */
2462 #define MAX_RESUBMIT_RECURSION 8
2463
2464 static void do_xlate_actions(const union ofp_action *in, size_t n_in,
2465 struct action_xlate_ctx *ctx);
2466
2467 static void
2468 add_output_action(struct action_xlate_ctx *ctx, uint16_t port)
2469 {
2470 const struct ofport *ofport = get_port(ctx->ofproto, port);
2471
2472 if (ofport) {
2473 if (ofport->opp.config & OFPPC_NO_FWD) {
2474 /* Forwarding disabled on port. */
2475 return;
2476 }
2477 } else {
2478 /*
2479 * We don't have an ofport record for this port, but it doesn't hurt to
2480 * allow forwarding to it anyhow. Maybe such a port will appear later
2481 * and we're pre-populating the flow table.
2482 */
2483 }
2484
2485 odp_actions_add(ctx->out, ODPAT_OUTPUT)->output.port = port;
2486 ctx->nf_output_iface = port;
2487 }
2488
2489 static struct rule *
2490 lookup_valid_rule(struct ofproto *ofproto, const flow_t *flow)
2491 {
2492 struct rule *rule;
2493 rule = rule_from_cls_rule(classifier_lookup(&ofproto->cls, flow));
2494
2495 /* The rule we found might not be valid, since we could be in need of
2496 * revalidation. If it is not valid, don't return it. */
2497 if (rule
2498 && rule->super
2499 && ofproto->need_revalidate
2500 && !revalidate_rule(ofproto, rule)) {
2501 COVERAGE_INC(ofproto_invalidated);
2502 return NULL;
2503 }
2504
2505 return rule;
2506 }
2507
2508 static void
2509 xlate_table_action(struct action_xlate_ctx *ctx, uint16_t in_port)
2510 {
2511 if (ctx->recurse < MAX_RESUBMIT_RECURSION) {
2512 uint16_t old_in_port;
2513 struct rule *rule;
2514
2515 /* Look up a flow with 'in_port' as the input port. Then restore the
2516 * original input port (otherwise OFPP_NORMAL and OFPP_IN_PORT will
2517 * have surprising behavior). */
2518 old_in_port = ctx->flow.in_port;
2519 ctx->flow.in_port = in_port;
2520 rule = lookup_valid_rule(ctx->ofproto, &ctx->flow);
2521 ctx->flow.in_port = old_in_port;
2522
2523 if (rule) {
2524 if (rule->super) {
2525 rule = rule->super;
2526 }
2527
2528 ctx->recurse++;
2529 do_xlate_actions(rule->actions, rule->n_actions, ctx);
2530 ctx->recurse--;
2531 }
2532 } else {
2533 struct vlog_rate_limit recurse_rl = VLOG_RATE_LIMIT_INIT(1, 1);
2534
2535 VLOG_ERR_RL(&recurse_rl, "NXAST_RESUBMIT recursed over %d times",
2536 MAX_RESUBMIT_RECURSION);
2537 }
2538 }
2539
2540 static void
2541 xlate_output_action__(struct action_xlate_ctx *ctx,
2542 uint16_t port, uint16_t max_len)
2543 {
2544 uint16_t odp_port;
2545 uint16_t prev_nf_output_iface = ctx->nf_output_iface;
2546
2547 ctx->nf_output_iface = NF_OUT_DROP;
2548
2549 switch (port) {
2550 case OFPP_IN_PORT:
2551 add_output_action(ctx, ctx->flow.in_port);
2552 break;
2553 case OFPP_TABLE:
2554 xlate_table_action(ctx, ctx->flow.in_port);
2555 break;
2556 case OFPP_NORMAL:
2557 if (!ctx->ofproto->ofhooks->normal_cb(&ctx->flow, ctx->packet,
2558 ctx->out, ctx->tags,
2559 &ctx->nf_output_iface,
2560 ctx->ofproto->aux)) {
2561 COVERAGE_INC(ofproto_uninstallable);
2562 ctx->may_set_up_flow = false;
2563 }
2564 break;
2565 case OFPP_FLOOD:
2566 add_output_group_action(ctx->out, DP_GROUP_FLOOD,
2567 &ctx->nf_output_iface);
2568 break;
2569 case OFPP_ALL:
2570 add_output_group_action(ctx->out, DP_GROUP_ALL, &ctx->nf_output_iface);
2571 break;
2572 case OFPP_CONTROLLER:
2573 add_controller_action(ctx->out, max_len);
2574 break;
2575 case OFPP_LOCAL:
2576 add_output_action(ctx, ODPP_LOCAL);
2577 break;
2578 default:
2579 odp_port = ofp_port_to_odp_port(port);
2580 if (odp_port != ctx->flow.in_port) {
2581 add_output_action(ctx, odp_port);
2582 }
2583 break;
2584 }
2585
2586 if (prev_nf_output_iface == NF_OUT_FLOOD) {
2587 ctx->nf_output_iface = NF_OUT_FLOOD;
2588 } else if (ctx->nf_output_iface == NF_OUT_DROP) {
2589 ctx->nf_output_iface = prev_nf_output_iface;
2590 } else if (prev_nf_output_iface != NF_OUT_DROP &&
2591 ctx->nf_output_iface != NF_OUT_FLOOD) {
2592 ctx->nf_output_iface = NF_OUT_MULTI;
2593 }
2594 }
2595
2596 static void
2597 xlate_output_action(struct action_xlate_ctx *ctx,
2598 const struct ofp_action_output *oao)
2599 {
2600 xlate_output_action__(ctx, ntohs(oao->port), ntohs(oao->max_len));
2601 }
2602
2603 /* If the final ODP action in 'ctx' is "pop priority", drop it, as an
2604 * optimization, because we're going to add another action that sets the
2605 * priority immediately after, or because there are no actions following the
2606 * pop. */
2607 static void
2608 remove_pop_action(struct action_xlate_ctx *ctx)
2609 {
2610 size_t n = ctx->out->n_actions;
2611 if (n > 0 && ctx->out->actions[n - 1].type == ODPAT_POP_PRIORITY) {
2612 ctx->out->n_actions--;
2613 }
2614 }
2615
2616 static void
2617 xlate_enqueue_action(struct action_xlate_ctx *ctx,
2618 const struct ofp_action_enqueue *oae)
2619 {
2620 uint16_t ofp_port, odp_port;
2621 uint32_t priority;
2622 int error;
2623
2624 error = dpif_queue_to_priority(ctx->ofproto->dpif, ntohl(oae->queue_id),
2625 &priority);
2626 if (error) {
2627 /* Fall back to ordinary output action. */
2628 xlate_output_action__(ctx, ntohs(oae->port), 0);
2629 return;
2630 }
2631
2632 /* Figure out ODP output port. */
2633 ofp_port = ntohs(oae->port);
2634 if (ofp_port != OFPP_IN_PORT) {
2635 odp_port = ofp_port_to_odp_port(ofp_port);
2636 } else {
2637 odp_port = ctx->flow.in_port;
2638 }
2639
2640 /* Add ODP actions. */
2641 remove_pop_action(ctx);
2642 odp_actions_add(ctx->out, ODPAT_SET_PRIORITY)->priority.priority
2643 = priority;
2644 add_output_action(ctx, odp_port);
2645 odp_actions_add(ctx->out, ODPAT_POP_PRIORITY);
2646
2647 /* Update NetFlow output port. */
2648 if (ctx->nf_output_iface == NF_OUT_DROP) {
2649 ctx->nf_output_iface = odp_port;
2650 } else if (ctx->nf_output_iface != NF_OUT_FLOOD) {
2651 ctx->nf_output_iface = NF_OUT_MULTI;
2652 }
2653 }
2654
2655 static void
2656 xlate_set_queue_action(struct action_xlate_ctx *ctx,
2657 const struct nx_action_set_queue *nasq)
2658 {
2659 uint32_t priority;
2660 int error;
2661
2662 error = dpif_queue_to_priority(ctx->ofproto->dpif, ntohl(nasq->queue_id),
2663 &priority);
2664 if (error) {
2665 /* Couldn't translate queue to a priority, so ignore. A warning
2666 * has already been logged. */
2667 return;
2668 }
2669
2670 remove_pop_action(ctx);
2671 odp_actions_add(ctx->out, ODPAT_SET_PRIORITY)->priority.priority
2672 = priority;
2673 }
2674
2675 static void
2676 xlate_nicira_action(struct action_xlate_ctx *ctx,
2677 const struct nx_action_header *nah)
2678 {
2679 const struct nx_action_resubmit *nar;
2680 const struct nx_action_set_tunnel *nast;
2681 const struct nx_action_set_queue *nasq;
2682 union odp_action *oa;
2683 int subtype = ntohs(nah->subtype);
2684
2685 assert(nah->vendor == htonl(NX_VENDOR_ID));
2686 switch (subtype) {
2687 case NXAST_RESUBMIT:
2688 nar = (const struct nx_action_resubmit *) nah;
2689 xlate_table_action(ctx, ofp_port_to_odp_port(ntohs(nar->in_port)));
2690 break;
2691
2692 case NXAST_SET_TUNNEL:
2693 nast = (const struct nx_action_set_tunnel *) nah;
2694 oa = odp_actions_add(ctx->out, ODPAT_SET_TUNNEL);
2695 ctx->flow.tun_id = oa->tunnel.tun_id = nast->tun_id;
2696 break;
2697
2698 case NXAST_DROP_SPOOFED_ARP:
2699 if (ctx->flow.dl_type == htons(ETH_TYPE_ARP)) {
2700 odp_actions_add(ctx->out, ODPAT_DROP_SPOOFED_ARP);
2701 }
2702 break;
2703
2704 case NXAST_SET_QUEUE:
2705 nasq = (const struct nx_action_set_queue *) nah;
2706 xlate_set_queue_action(ctx, nasq);
2707 break;
2708
2709 case NXAST_POP_QUEUE:
2710 odp_actions_add(ctx->out, ODPAT_POP_PRIORITY);
2711 break;
2712
2713 /* If you add a new action here that modifies flow data, don't forget to
2714 * update the flow key in ctx->flow at the same time. */
2715
2716 default:
2717 VLOG_DBG_RL(&rl, "unknown Nicira action type %"PRIu16, subtype);
2718 break;
2719 }
2720 }
2721
2722 static void
2723 do_xlate_actions(const union ofp_action *in, size_t n_in,
2724 struct action_xlate_ctx *ctx)
2725 {
2726 struct actions_iterator iter;
2727 const union ofp_action *ia;
2728 const struct ofport *port;
2729
2730 port = get_port(ctx->ofproto, ctx->flow.in_port);
2731 if (port && port->opp.config & (OFPPC_NO_RECV | OFPPC_NO_RECV_STP) &&
2732 port->opp.config & (eth_addr_equals(ctx->flow.dl_dst, eth_addr_stp)
2733 ? OFPPC_NO_RECV_STP : OFPPC_NO_RECV)) {
2734 /* Drop this flow. */
2735 return;
2736 }
2737
2738 for (ia = actions_first(&iter, in, n_in); ia; ia = actions_next(&iter)) {
2739 uint16_t type = ntohs(ia->type);
2740 union odp_action *oa;
2741
2742 switch (type) {
2743 case OFPAT_OUTPUT:
2744 xlate_output_action(ctx, &ia->output);
2745 break;
2746
2747 case OFPAT_SET_VLAN_VID:
2748 oa = odp_actions_add(ctx->out, ODPAT_SET_VLAN_VID);
2749 ctx->flow.dl_vlan = oa->vlan_vid.vlan_vid = ia->vlan_vid.vlan_vid;
2750 break;
2751
2752 case OFPAT_SET_VLAN_PCP:
2753 oa = odp_actions_add(ctx->out, ODPAT_SET_VLAN_PCP);
2754 ctx->flow.dl_vlan_pcp = oa->vlan_pcp.vlan_pcp = ia->vlan_pcp.vlan_pcp;
2755 break;
2756
2757 case OFPAT_STRIP_VLAN:
2758 odp_actions_add(ctx->out, ODPAT_STRIP_VLAN);
2759 ctx->flow.dl_vlan = htons(OFP_VLAN_NONE);
2760 ctx->flow.dl_vlan_pcp = 0;
2761 break;
2762
2763 case OFPAT_SET_DL_SRC:
2764 oa = odp_actions_add(ctx->out, ODPAT_SET_DL_SRC);
2765 memcpy(oa->dl_addr.dl_addr,
2766 ((struct ofp_action_dl_addr *) ia)->dl_addr, ETH_ADDR_LEN);
2767 memcpy(ctx->flow.dl_src,
2768 ((struct ofp_action_dl_addr *) ia)->dl_addr, ETH_ADDR_LEN);
2769 break;
2770
2771 case OFPAT_SET_DL_DST:
2772 oa = odp_actions_add(ctx->out, ODPAT_SET_DL_DST);
2773 memcpy(oa->dl_addr.dl_addr,
2774 ((struct ofp_action_dl_addr *) ia)->dl_addr, ETH_ADDR_LEN);
2775 memcpy(ctx->flow.dl_dst,
2776 ((struct ofp_action_dl_addr *) ia)->dl_addr, ETH_ADDR_LEN);
2777 break;
2778
2779 case OFPAT_SET_NW_SRC:
2780 oa = odp_actions_add(ctx->out, ODPAT_SET_NW_SRC);
2781 ctx->flow.nw_src = oa->nw_addr.nw_addr = ia->nw_addr.nw_addr;
2782 break;
2783
2784 case OFPAT_SET_NW_DST:
2785 oa = odp_actions_add(ctx->out, ODPAT_SET_NW_DST);
2786 ctx->flow.nw_dst = oa->nw_addr.nw_addr = ia->nw_addr.nw_addr;
2787 break;
2788
2789 case OFPAT_SET_NW_TOS:
2790 oa = odp_actions_add(ctx->out, ODPAT_SET_NW_TOS);
2791 ctx->flow.nw_tos = oa->nw_tos.nw_tos = ia->nw_tos.nw_tos;
2792 break;
2793
2794 case OFPAT_SET_TP_SRC:
2795 oa = odp_actions_add(ctx->out, ODPAT_SET_TP_SRC);
2796 ctx->flow.tp_src = oa->tp_port.tp_port = ia->tp_port.tp_port;
2797 break;
2798
2799 case OFPAT_SET_TP_DST:
2800 oa = odp_actions_add(ctx->out, ODPAT_SET_TP_DST);
2801 ctx->flow.tp_dst = oa->tp_port.tp_port = ia->tp_port.tp_port;
2802 break;
2803
2804 case OFPAT_VENDOR:
2805 xlate_nicira_action(ctx, (const struct nx_action_header *) ia);
2806 break;
2807
2808 case OFPAT_ENQUEUE:
2809 xlate_enqueue_action(ctx, (const struct ofp_action_enqueue *) ia);
2810 break;
2811
2812 default:
2813 VLOG_DBG_RL(&rl, "unknown action type %"PRIu16, type);
2814 break;
2815 }
2816 }
2817 }
2818
2819 static int
2820 xlate_actions(const union ofp_action *in, size_t n_in,
2821 const flow_t *flow, struct ofproto *ofproto,
2822 const struct ofpbuf *packet,
2823 struct odp_actions *out, tag_type *tags, bool *may_set_up_flow,
2824 uint16_t *nf_output_iface)
2825 {
2826 tag_type no_tags = 0;
2827 struct action_xlate_ctx ctx;
2828 COVERAGE_INC(ofproto_ofp2odp);
2829 odp_actions_init(out);
2830 ctx.flow = *flow;
2831 ctx.recurse = 0;
2832 ctx.ofproto = ofproto;
2833 ctx.packet = packet;
2834 ctx.out = out;
2835 ctx.tags = tags ? tags : &no_tags;
2836 ctx.may_set_up_flow = true;
2837 ctx.nf_output_iface = NF_OUT_DROP;
2838 do_xlate_actions(in, n_in, &ctx);
2839 remove_pop_action(&ctx);
2840
2841 /* Check with in-band control to see if we're allowed to set up this
2842 * flow. */
2843 if (!in_band_rule_check(ofproto->in_band, flow, out)) {
2844 ctx.may_set_up_flow = false;
2845 }
2846
2847 if (may_set_up_flow) {
2848 *may_set_up_flow = ctx.may_set_up_flow;
2849 }
2850 if (nf_output_iface) {
2851 *nf_output_iface = ctx.nf_output_iface;
2852 }
2853 if (odp_actions_overflow(out)) {
2854 COVERAGE_INC(odp_overflow);
2855 odp_actions_init(out);
2856 return ofp_mkerr(OFPET_BAD_ACTION, OFPBAC_TOO_MANY);
2857 }
2858 return 0;
2859 }
2860
2861 /* Checks whether 'ofconn' is a slave controller. If so, returns an OpenFlow
2862 * error message code (composed with ofp_mkerr()) for the caller to propagate
2863 * upward. Otherwise, returns 0.
2864 *
2865 * 'oh' is used to make log messages more informative. */
2866 static int
2867 reject_slave_controller(struct ofconn *ofconn, const struct ofp_header *oh)
2868 {
2869 if (ofconn->type == OFCONN_PRIMARY && ofconn->role == NX_ROLE_SLAVE) {
2870 static struct vlog_rate_limit perm_rl = VLOG_RATE_LIMIT_INIT(1, 5);
2871 char *type_name;
2872
2873 type_name = ofp_message_type_to_string(oh->type);
2874 VLOG_WARN_RL(&perm_rl, "rejecting %s message from slave controller",
2875 type_name);
2876 free(type_name);
2877
2878 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_EPERM);
2879 } else {
2880 return 0;
2881 }
2882 }
2883
2884 static int
2885 handle_packet_out(struct ofproto *p, struct ofconn *ofconn,
2886 struct ofp_header *oh)
2887 {
2888 struct ofp_packet_out *opo;
2889 struct ofpbuf payload, *buffer;
2890 struct odp_actions actions;
2891 int n_actions;
2892 uint16_t in_port;
2893 flow_t flow;
2894 int error;
2895
2896 error = reject_slave_controller(ofconn, oh);
2897 if (error) {
2898 return error;
2899 }
2900
2901 error = check_ofp_packet_out(oh, &payload, &n_actions, p->max_ports);
2902 if (error) {
2903 return error;
2904 }
2905 opo = (struct ofp_packet_out *) oh;
2906
2907 COVERAGE_INC(ofproto_packet_out);
2908 if (opo->buffer_id != htonl(UINT32_MAX)) {
2909 error = pktbuf_retrieve(ofconn->pktbuf, ntohl(opo->buffer_id),
2910 &buffer, &in_port);
2911 if (error || !buffer) {
2912 return error;
2913 }
2914 payload = *buffer;
2915 } else {
2916 buffer = NULL;
2917 }
2918
2919 flow_extract(&payload, 0, ofp_port_to_odp_port(ntohs(opo->in_port)), &flow);
2920 error = xlate_actions((const union ofp_action *) opo->actions, n_actions,
2921 &flow, p, &payload, &actions, NULL, NULL, NULL);
2922 if (error) {
2923 return error;
2924 }
2925
2926 dpif_execute(p->dpif, flow.in_port, actions.actions, actions.n_actions,
2927 &payload);
2928 ofpbuf_delete(buffer);
2929
2930 return 0;
2931 }
2932
2933 static void
2934 update_port_config(struct ofproto *p, struct ofport *port,
2935 uint32_t config, uint32_t mask)
2936 {
2937 mask &= config ^ port->opp.config;
2938 if (mask & OFPPC_PORT_DOWN) {
2939 if (config & OFPPC_PORT_DOWN) {
2940 netdev_turn_flags_off(port->netdev, NETDEV_UP, true);
2941 } else {
2942 netdev_turn_flags_on(port->netdev, NETDEV_UP, true);
2943 }
2944 }
2945 #define REVALIDATE_BITS (OFPPC_NO_RECV | OFPPC_NO_RECV_STP | OFPPC_NO_FWD)
2946 if (mask & REVALIDATE_BITS) {
2947 COVERAGE_INC(ofproto_costly_flags);
2948 port->opp.config ^= mask & REVALIDATE_BITS;
2949 p->need_revalidate = true;
2950 }
2951 #undef REVALIDATE_BITS
2952 if (mask & OFPPC_NO_FLOOD) {
2953 port->opp.config ^= OFPPC_NO_FLOOD;
2954 refresh_port_groups(p);
2955 }
2956 if (mask & OFPPC_NO_PACKET_IN) {
2957 port->opp.config ^= OFPPC_NO_PACKET_IN;
2958 }
2959 }
2960
2961 static int
2962 handle_port_mod(struct ofproto *p, struct ofconn *ofconn,
2963 struct ofp_header *oh)
2964 {
2965 const struct ofp_port_mod *opm;
2966 struct ofport *port;
2967 int error;
2968
2969 error = reject_slave_controller(ofconn, oh);
2970 if (error) {
2971 return error;
2972 }
2973 error = check_ofp_message(oh, OFPT_PORT_MOD, sizeof *opm);
2974 if (error) {
2975 return error;
2976 }
2977 opm = (struct ofp_port_mod *) oh;
2978
2979 port = get_port(p, ofp_port_to_odp_port(ntohs(opm->port_no)));
2980 if (!port) {
2981 return ofp_mkerr(OFPET_PORT_MOD_FAILED, OFPPMFC_BAD_PORT);
2982 } else if (memcmp(port->opp.hw_addr, opm->hw_addr, OFP_ETH_ALEN)) {
2983 return ofp_mkerr(OFPET_PORT_MOD_FAILED, OFPPMFC_BAD_HW_ADDR);
2984 } else {
2985 update_port_config(p, port, ntohl(opm->config), ntohl(opm->mask));
2986 if (opm->advertise) {
2987 netdev_set_advertisements(port->netdev, ntohl(opm->advertise));
2988 }
2989 }
2990 return 0;
2991 }
2992
2993 static struct ofpbuf *
2994 make_stats_reply(uint32_t xid, uint16_t type, size_t body_len)
2995 {
2996 struct ofp_stats_reply *osr;
2997 struct ofpbuf *msg;
2998
2999 msg = ofpbuf_new(MIN(sizeof *osr + body_len, UINT16_MAX));
3000 osr = put_openflow_xid(sizeof *osr, OFPT_STATS_REPLY, xid, msg);
3001 osr->type = type;
3002 osr->flags = htons(0);
3003 return msg;
3004 }
3005
3006 static struct ofpbuf *
3007 start_stats_reply(const struct ofp_stats_request *request, size_t body_len)
3008 {
3009 return make_stats_reply(request->header.xid, request->type, body_len);
3010 }
3011
3012 static void *
3013 append_stats_reply(size_t nbytes, struct ofconn *ofconn, struct ofpbuf **msgp)
3014 {
3015 struct ofpbuf *msg = *msgp;
3016 assert(nbytes <= UINT16_MAX - sizeof(struct ofp_stats_reply));
3017 if (nbytes + msg->size > UINT16_MAX) {
3018 struct ofp_stats_reply *reply = msg->data;
3019 reply->flags = htons(OFPSF_REPLY_MORE);
3020 *msgp = make_stats_reply(reply->header.xid, reply->type, nbytes);
3021 queue_tx(msg, ofconn, ofconn->reply_counter);
3022 }
3023 return ofpbuf_put_uninit(*msgp, nbytes);
3024 }
3025
3026 static int
3027 handle_desc_stats_request(struct ofproto *p, struct ofconn *ofconn,
3028 struct ofp_stats_request *request)
3029 {
3030 struct ofp_desc_stats *ods;
3031 struct ofpbuf *msg;
3032
3033 msg = start_stats_reply(request, sizeof *ods);
3034 ods = append_stats_reply(sizeof *ods, ofconn, &msg);
3035 memset(ods, 0, sizeof *ods);
3036 ovs_strlcpy(ods->mfr_desc, p->mfr_desc, sizeof ods->mfr_desc);
3037 ovs_strlcpy(ods->hw_desc, p->hw_desc, sizeof ods->hw_desc);
3038 ovs_strlcpy(ods->sw_desc, p->sw_desc, sizeof ods->sw_desc);
3039 ovs_strlcpy(ods->serial_num, p->serial_desc, sizeof ods->serial_num);
3040 ovs_strlcpy(ods->dp_desc, p->dp_desc, sizeof ods->dp_desc);
3041 queue_tx(msg, ofconn, ofconn->reply_counter);
3042
3043 return 0;
3044 }
3045
3046 static void
3047 count_subrules(struct cls_rule *cls_rule, void *n_subrules_)
3048 {
3049 struct rule *rule = rule_from_cls_rule(cls_rule);
3050 int *n_subrules = n_subrules_;
3051
3052 if (rule->super) {
3053 (*n_subrules)++;
3054 }
3055 }
3056
3057 static int
3058 handle_table_stats_request(struct ofproto *p, struct ofconn *ofconn,
3059 struct ofp_stats_request *request)
3060 {
3061 struct ofp_table_stats *ots;
3062 struct ofpbuf *msg;
3063 struct odp_stats dpstats;
3064 int n_exact, n_subrules, n_wild;
3065
3066 msg = start_stats_reply(request, sizeof *ots * 2);
3067
3068 /* Count rules of various kinds. */
3069 n_subrules = 0;
3070 classifier_for_each(&p->cls, CLS_INC_EXACT, count_subrules, &n_subrules);
3071 n_exact = classifier_count_exact(&p->cls) - n_subrules;
3072 n_wild = classifier_count(&p->cls) - classifier_count_exact(&p->cls);
3073
3074 /* Hash table. */
3075 dpif_get_dp_stats(p->dpif, &dpstats);
3076 ots = append_stats_reply(sizeof *ots, ofconn, &msg);
3077 memset(ots, 0, sizeof *ots);
3078 ots->table_id = TABLEID_HASH;
3079 strcpy(ots->name, "hash");
3080 ots->wildcards = htonl(0);
3081 ots->max_entries = htonl(dpstats.max_capacity);
3082 ots->active_count = htonl(n_exact);
3083 ots->lookup_count = htonll(dpstats.n_frags + dpstats.n_hit +
3084 dpstats.n_missed);
3085 ots->matched_count = htonll(dpstats.n_hit); /* XXX */
3086
3087 /* Classifier table. */
3088 ots = append_stats_reply(sizeof *ots, ofconn, &msg);
3089 memset(ots, 0, sizeof *ots);
3090 ots->table_id = TABLEID_CLASSIFIER;
3091 strcpy(ots->name, "classifier");
3092 ots->wildcards = p->tun_id_from_cookie ? htonl(OVSFW_ALL)
3093 : htonl(OFPFW_ALL);
3094 ots->max_entries = htonl(65536);
3095 ots->active_count = htonl(n_wild);
3096 ots->lookup_count = htonll(0); /* XXX */
3097 ots->matched_count = htonll(0); /* XXX */
3098
3099 queue_tx(msg, ofconn, ofconn->reply_counter);
3100 return 0;
3101 }
3102
3103 static void
3104 append_port_stat(struct ofport *port, struct ofconn *ofconn,
3105 struct ofpbuf **msgp)
3106 {
3107 struct netdev_stats stats;
3108 struct ofp_port_stats *ops;
3109
3110 /* Intentionally ignore return value, since errors will set
3111 * 'stats' to all-1s, which is correct for OpenFlow, and
3112 * netdev_get_stats() will log errors. */
3113 netdev_get_stats(port->netdev, &stats);
3114
3115 ops = append_stats_reply(sizeof *ops, ofconn, msgp);
3116 ops->port_no = htons(port->opp.port_no);
3117 memset(ops->pad, 0, sizeof ops->pad);
3118 ops->rx_packets = htonll(stats.rx_packets);
3119 ops->tx_packets = htonll(stats.tx_packets);
3120 ops->rx_bytes = htonll(stats.rx_bytes);
3121 ops->tx_bytes = htonll(stats.tx_bytes);
3122 ops->rx_dropped = htonll(stats.rx_dropped);
3123 ops->tx_dropped = htonll(stats.tx_dropped);
3124 ops->rx_errors = htonll(stats.rx_errors);
3125 ops->tx_errors = htonll(stats.tx_errors);
3126 ops->rx_frame_err = htonll(stats.rx_frame_errors);
3127 ops->rx_over_err = htonll(stats.rx_over_errors);
3128 ops->rx_crc_err = htonll(stats.rx_crc_errors);
3129 ops->collisions = htonll(stats.collisions);
3130 }
3131
3132 static int
3133 handle_port_stats_request(struct ofproto *p, struct ofconn *ofconn,
3134 struct ofp_stats_request *osr,
3135 size_t arg_size)
3136 {
3137 struct ofp_port_stats_request *psr;
3138 struct ofp_port_stats *ops;
3139 struct ofpbuf *msg;
3140 struct ofport *port;
3141
3142 if (arg_size != sizeof *psr) {
3143 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
3144 }
3145 psr = (struct ofp_port_stats_request *) osr->body;
3146
3147 msg = start_stats_reply(osr, sizeof *ops * 16);
3148 if (psr->port_no != htons(OFPP_NONE)) {
3149 port = get_port(p, ofp_port_to_odp_port(ntohs(psr->port_no)));
3150 if (port) {
3151 append_port_stat(port, ofconn, &msg);
3152 }
3153 } else {
3154 HMAP_FOR_EACH (port, hmap_node, &p->ports) {
3155 append_port_stat(port, ofconn, &msg);
3156 }
3157 }
3158
3159 queue_tx(msg, ofconn, ofconn->reply_counter);
3160 return 0;
3161 }
3162
3163 struct flow_stats_cbdata {
3164 struct ofproto *ofproto;
3165 struct ofconn *ofconn;
3166 uint16_t out_port;
3167 struct ofpbuf *msg;
3168 };
3169
3170 /* Obtains statistic counters for 'rule' within 'p' and stores them into
3171 * '*packet_countp' and '*byte_countp'. If 'rule' is a wildcarded rule, the
3172 * returned statistic include statistics for all of 'rule''s subrules. */
3173 static void
3174 query_stats(struct ofproto *p, struct rule *rule,
3175 uint64_t *packet_countp, uint64_t *byte_countp)
3176 {
3177 uint64_t packet_count, byte_count;
3178 struct rule *subrule;
3179 struct odp_flow *odp_flows;
3180 size_t n_odp_flows;
3181
3182 /* Start from historical data for 'rule' itself that are no longer tracked
3183 * by the datapath. This counts, for example, subrules that have
3184 * expired. */
3185 packet_count = rule->packet_count;
3186 byte_count = rule->byte_count;
3187
3188 /* Prepare to ask the datapath for statistics on 'rule', or if it is
3189 * wildcarded then on all of its subrules.
3190 *
3191 * Also, add any statistics that are not tracked by the datapath for each
3192 * subrule. This includes, for example, statistics for packets that were
3193 * executed "by hand" by ofproto via dpif_execute() but must be accounted
3194 * to a flow. */
3195 n_odp_flows = rule->cr.wc.wildcards ? list_size(&rule->list) : 1;
3196 odp_flows = xzalloc(n_odp_flows * sizeof *odp_flows);
3197 if (rule->cr.wc.wildcards) {
3198 size_t i = 0;
3199 LIST_FOR_EACH (subrule, list, &rule->list) {
3200 odp_flows[i++].key = subrule->cr.flow;
3201 packet_count += subrule->packet_count;
3202 byte_count += subrule->byte_count;
3203 }
3204 } else {
3205 odp_flows[0].key = rule->cr.flow;
3206 }
3207
3208 /* Fetch up-to-date statistics from the datapath and add them in. */
3209 if (!dpif_flow_get_multiple(p->dpif, odp_flows, n_odp_flows)) {
3210 size_t i;
3211 for (i = 0; i < n_odp_flows; i++) {
3212 struct odp_flow *odp_flow = &odp_flows[i];
3213 packet_count += odp_flow->stats.n_packets;
3214 byte_count += odp_flow->stats.n_bytes;
3215 }
3216 }
3217 free(odp_flows);
3218
3219 /* Return the stats to the caller. */
3220 *packet_countp = packet_count;
3221 *byte_countp = byte_count;
3222 }
3223
3224 static void
3225 flow_stats_cb(struct cls_rule *rule_, void *cbdata_)
3226 {
3227 struct rule *rule = rule_from_cls_rule(rule_);
3228 struct flow_stats_cbdata *cbdata = cbdata_;
3229 struct ofp_flow_stats *ofs;
3230 uint64_t packet_count, byte_count;
3231 size_t act_len, len;
3232 long long int tdiff = time_msec() - rule->created;
3233 uint32_t sec = tdiff / 1000;
3234 uint32_t msec = tdiff - (sec * 1000);
3235
3236 if (rule_is_hidden(rule) || !rule_has_out_port(rule, cbdata->out_port)) {
3237 return;
3238 }
3239
3240 act_len = sizeof *rule->actions * rule->n_actions;
3241 len = offsetof(struct ofp_flow_stats, actions) + act_len;
3242
3243 query_stats(cbdata->ofproto, rule, &packet_count, &byte_count);
3244
3245 ofs = append_stats_reply(len, cbdata->ofconn, &cbdata->msg);
3246 ofs->length = htons(len);
3247 ofs->table_id = rule->cr.wc.wildcards ? TABLEID_CLASSIFIER : TABLEID_HASH;
3248 ofs->pad = 0;
3249 flow_to_match(&rule->cr.flow, rule->cr.wc.wildcards,
3250 cbdata->ofproto->tun_id_from_cookie, &ofs->match);
3251 ofs->duration_sec = htonl(sec);
3252 ofs->duration_nsec = htonl(msec * 1000000);
3253 ofs->cookie = rule->flow_cookie;
3254 ofs->priority = htons(rule->cr.priority);
3255 ofs->idle_timeout = htons(rule->idle_timeout);
3256 ofs->hard_timeout = htons(rule->hard_timeout);
3257 memset(ofs->pad2, 0, sizeof ofs->pad2);
3258 ofs->packet_count = htonll(packet_count);
3259 ofs->byte_count = htonll(byte_count);
3260 if (rule->n_actions > 0) {
3261 memcpy(ofs->actions, rule->actions, act_len);
3262 }
3263 }
3264
3265 static int
3266 table_id_to_include(uint8_t table_id)
3267 {
3268 return (table_id == TABLEID_HASH ? CLS_INC_EXACT
3269 : table_id == TABLEID_CLASSIFIER ? CLS_INC_WILD
3270 : table_id == 0xff ? CLS_INC_ALL
3271 : 0);
3272 }
3273
3274 static int
3275 handle_flow_stats_request(struct ofproto *p, struct ofconn *ofconn,
3276 const struct ofp_stats_request *osr,
3277 size_t arg_size)
3278 {
3279 struct ofp_flow_stats_request *fsr;
3280 struct flow_stats_cbdata cbdata;
3281 struct cls_rule target;
3282
3283 if (arg_size != sizeof *fsr) {
3284 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
3285 }
3286 fsr = (struct ofp_flow_stats_request *) osr->body;
3287
3288 COVERAGE_INC(ofproto_flows_req);
3289 cbdata.ofproto = p;
3290 cbdata.ofconn = ofconn;
3291 cbdata.out_port = fsr->out_port;
3292 cbdata.msg = start_stats_reply(osr, 1024);
3293 cls_rule_from_match(&fsr->match, 0, false, 0, &target);
3294 classifier_for_each_match(&p->cls, &target,
3295 table_id_to_include(fsr->table_id),
3296 flow_stats_cb, &cbdata);
3297 queue_tx(cbdata.msg, ofconn, ofconn->reply_counter);
3298 return 0;
3299 }
3300
3301 struct flow_stats_ds_cbdata {
3302 struct ofproto *ofproto;
3303 struct ds *results;
3304 };
3305
3306 static void
3307 flow_stats_ds_cb(struct cls_rule *rule_, void *cbdata_)
3308 {
3309 struct rule *rule = rule_from_cls_rule(rule_);
3310 struct flow_stats_ds_cbdata *cbdata = cbdata_;
3311 struct ds *results = cbdata->results;
3312 struct ofp_match match;
3313 uint64_t packet_count, byte_count;
3314 size_t act_len = sizeof *rule->actions * rule->n_actions;
3315
3316 /* Don't report on subrules. */
3317 if (rule->super != NULL) {
3318 return;
3319 }
3320
3321 query_stats(cbdata->ofproto, rule, &packet_count, &byte_count);
3322 flow_to_match(&rule->cr.flow, rule->cr.wc.wildcards,
3323 cbdata->ofproto->tun_id_from_cookie, &match);
3324
3325 ds_put_format(results, "duration=%llds, ",
3326 (time_msec() - rule->created) / 1000);
3327 ds_put_format(results, "priority=%u, ", rule->cr.priority);
3328 ds_put_format(results, "n_packets=%"PRIu64", ", packet_count);
3329 ds_put_format(results, "n_bytes=%"PRIu64", ", byte_count);
3330 ofp_print_match(results, &match, true);
3331 if (act_len > 0) {
3332 ofp_print_actions(results, &rule->actions->header, act_len);
3333 }
3334 ds_put_cstr(results, "\n");
3335 }
3336
3337 /* Adds a pretty-printed description of all flows to 'results', including
3338 * those marked hidden by secchan (e.g., by in-band control). */
3339 void
3340 ofproto_get_all_flows(struct ofproto *p, struct ds *results)
3341 {
3342 struct ofp_match match;
3343 struct cls_rule target;
3344 struct flow_stats_ds_cbdata cbdata;
3345
3346 memset(&match, 0, sizeof match);
3347 match.wildcards = htonl(OVSFW_ALL);
3348
3349 cbdata.ofproto = p;
3350 cbdata.results = results;
3351
3352 cls_rule_from_match(&match, 0, false, 0, &target);
3353 classifier_for_each_match(&p->cls, &target, CLS_INC_ALL,
3354 flow_stats_ds_cb, &cbdata);
3355 }
3356
3357 struct aggregate_stats_cbdata {
3358 struct ofproto *ofproto;
3359 uint16_t out_port;
3360 uint64_t packet_count;
3361 uint64_t byte_count;
3362 uint32_t n_flows;
3363 };
3364
3365 static void
3366 aggregate_stats_cb(struct cls_rule *rule_, void *cbdata_)
3367 {
3368 struct rule *rule = rule_from_cls_rule(rule_);
3369 struct aggregate_stats_cbdata *cbdata = cbdata_;
3370 uint64_t packet_count, byte_count;
3371
3372 if (rule_is_hidden(rule) || !rule_has_out_port(rule, cbdata->out_port)) {
3373 return;
3374 }
3375
3376 query_stats(cbdata->ofproto, rule, &packet_count, &byte_count);
3377
3378 cbdata->packet_count += packet_count;
3379 cbdata->byte_count += byte_count;
3380 cbdata->n_flows++;
3381 }
3382
3383 static int
3384 handle_aggregate_stats_request(struct ofproto *p, struct ofconn *ofconn,
3385 const struct ofp_stats_request *osr,
3386 size_t arg_size)
3387 {
3388 struct ofp_aggregate_stats_request *asr;
3389 struct ofp_aggregate_stats_reply *reply;
3390 struct aggregate_stats_cbdata cbdata;
3391 struct cls_rule target;
3392 struct ofpbuf *msg;
3393
3394 if (arg_size != sizeof *asr) {
3395 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
3396 }
3397 asr = (struct ofp_aggregate_stats_request *) osr->body;
3398
3399 COVERAGE_INC(ofproto_agg_request);
3400 cbdata.ofproto = p;
3401 cbdata.out_port = asr->out_port;
3402 cbdata.packet_count = 0;
3403 cbdata.byte_count = 0;
3404 cbdata.n_flows = 0;
3405 cls_rule_from_match(&asr->match, 0, false, 0, &target);
3406 classifier_for_each_match(&p->cls, &target,
3407 table_id_to_include(asr->table_id),
3408 aggregate_stats_cb, &cbdata);
3409
3410 msg = start_stats_reply(osr, sizeof *reply);
3411 reply = append_stats_reply(sizeof *reply, ofconn, &msg);
3412 reply->flow_count = htonl(cbdata.n_flows);
3413 reply->packet_count = htonll(cbdata.packet_count);
3414 reply->byte_count = htonll(cbdata.byte_count);
3415 queue_tx(msg, ofconn, ofconn->reply_counter);
3416 return 0;
3417 }
3418
3419 struct queue_stats_cbdata {
3420 struct ofconn *ofconn;
3421 struct ofport *ofport;
3422 struct ofpbuf *msg;
3423 };
3424
3425 static void
3426 put_queue_stats(struct queue_stats_cbdata *cbdata, uint32_t queue_id,
3427 const struct netdev_queue_stats *stats)
3428 {
3429 struct ofp_queue_stats *reply;
3430
3431 reply = append_stats_reply(sizeof *reply, cbdata->ofconn, &cbdata->msg);
3432 reply->port_no = htons(cbdata->ofport->opp.port_no);
3433 memset(reply->pad, 0, sizeof reply->pad);
3434 reply->queue_id = htonl(queue_id);
3435 reply->tx_bytes = htonll(stats->tx_bytes);
3436 reply->tx_packets = htonll(stats->tx_packets);
3437 reply->tx_errors = htonll(stats->tx_errors);
3438 }
3439
3440 static void
3441 handle_queue_stats_dump_cb(uint32_t queue_id,
3442 struct netdev_queue_stats *stats,
3443 void *cbdata_)
3444 {
3445 struct queue_stats_cbdata *cbdata = cbdata_;
3446
3447 put_queue_stats(cbdata, queue_id, stats);
3448 }
3449
3450 static void
3451 handle_queue_stats_for_port(struct ofport *port, uint32_t queue_id,
3452 struct queue_stats_cbdata *cbdata)
3453 {
3454 cbdata->ofport = port;
3455 if (queue_id == OFPQ_ALL) {
3456 netdev_dump_queue_stats(port->netdev,
3457 handle_queue_stats_dump_cb, cbdata);
3458 } else {
3459 struct netdev_queue_stats stats;
3460
3461 if (!netdev_get_queue_stats(port->netdev, queue_id, &stats)) {
3462 put_queue_stats(cbdata, queue_id, &stats);
3463 }
3464 }
3465 }
3466
3467 static int
3468 handle_queue_stats_request(struct ofproto *ofproto, struct ofconn *ofconn,
3469 const struct ofp_stats_request *osr,
3470 size_t arg_size)
3471 {
3472 struct ofp_queue_stats_request *qsr;
3473 struct queue_stats_cbdata cbdata;
3474 struct ofport *port;
3475 unsigned int port_no;
3476 uint32_t queue_id;
3477
3478 if (arg_size != sizeof *qsr) {
3479 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
3480 }
3481 qsr = (struct ofp_queue_stats_request *) osr->body;
3482
3483 COVERAGE_INC(ofproto_queue_req);
3484
3485 cbdata.ofconn = ofconn;
3486 cbdata.msg = start_stats_reply(osr, 128);
3487
3488 port_no = ntohs(qsr->port_no);
3489 queue_id = ntohl(qsr->queue_id);
3490 if (port_no == OFPP_ALL) {
3491 HMAP_FOR_EACH (port, hmap_node, &ofproto->ports) {
3492 handle_queue_stats_for_port(port, queue_id, &cbdata);
3493 }
3494 } else if (port_no < ofproto->max_ports) {
3495 port = get_port(ofproto, ofp_port_to_odp_port(port_no));
3496 if (port) {
3497 handle_queue_stats_for_port(port, queue_id, &cbdata);
3498 }
3499 } else {
3500 ofpbuf_delete(cbdata.msg);
3501 return ofp_mkerr(OFPET_QUEUE_OP_FAILED, OFPQOFC_BAD_PORT);
3502 }
3503 queue_tx(cbdata.msg, ofconn, ofconn->reply_counter);
3504
3505 return 0;
3506 }
3507
3508 static int
3509 handle_stats_request(struct ofproto *p, struct ofconn *ofconn,
3510 struct ofp_header *oh)
3511 {
3512 struct ofp_stats_request *osr;
3513 size_t arg_size;
3514 int error;
3515
3516 error = check_ofp_message_array(oh, OFPT_STATS_REQUEST, sizeof *osr,
3517 1, &arg_size);
3518 if (error) {
3519 return error;
3520 }
3521 osr = (struct ofp_stats_request *) oh;
3522
3523 switch (ntohs(osr->type)) {
3524 case OFPST_DESC:
3525 return handle_desc_stats_request(p, ofconn, osr);
3526
3527 case OFPST_FLOW:
3528 return handle_flow_stats_request(p, ofconn, osr, arg_size);
3529
3530 case OFPST_AGGREGATE:
3531 return handle_aggregate_stats_request(p, ofconn, osr, arg_size);
3532
3533 case OFPST_TABLE:
3534 return handle_table_stats_request(p, ofconn, osr);
3535
3536 case OFPST_PORT:
3537 return handle_port_stats_request(p, ofconn, osr, arg_size);
3538
3539 case OFPST_QUEUE:
3540 return handle_queue_stats_request(p, ofconn, osr, arg_size);
3541
3542 case OFPST_VENDOR:
3543 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_VENDOR);
3544
3545 default:
3546 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_STAT);
3547 }
3548 }
3549
3550 static long long int
3551 msec_from_nsec(uint64_t sec, uint32_t nsec)
3552 {
3553 return !sec ? 0 : sec * 1000 + nsec / 1000000;
3554 }
3555
3556 static void
3557 update_time(struct ofproto *ofproto, struct rule *rule,
3558 const struct odp_flow_stats *stats)
3559 {
3560 long long int used = msec_from_nsec(stats->used_sec, stats->used_nsec);
3561 if (used > rule->used) {
3562 rule->used = used;
3563 if (rule->super && used > rule->super->used) {
3564 rule->super->used = used;
3565 }
3566 netflow_flow_update_time(ofproto->netflow, &rule->nf_flow, used);
3567 }
3568 }
3569
3570 static void
3571 update_stats(struct ofproto *ofproto, struct rule *rule,
3572 const struct odp_flow_stats *stats)
3573 {
3574 if (stats->n_packets) {
3575 update_time(ofproto, rule, stats);
3576 rule->packet_count += stats->n_packets;
3577 rule->byte_count += stats->n_bytes;
3578 netflow_flow_update_flags(&rule->nf_flow, stats->tcp_flags);
3579 }
3580 }
3581
3582 /* Implements OFPFC_ADD and the cases for OFPFC_MODIFY and OFPFC_MODIFY_STRICT
3583 * in which no matching flow already exists in the flow table.
3584 *
3585 * Adds the flow specified by 'ofm', which is followed by 'n_actions'
3586 * ofp_actions, to 'p''s flow table. Returns 0 on success or an OpenFlow error
3587 * code as encoded by ofp_mkerr() on failure.
3588 *
3589 * 'ofconn' is used to retrieve the packet buffer specified in ofm->buffer_id,
3590 * if any. */
3591 static int
3592 add_flow(struct ofproto *p, struct ofconn *ofconn,
3593 const struct ofp_flow_mod *ofm, size_t n_actions)
3594 {
3595 struct ofpbuf *packet;
3596 struct rule *rule;
3597 uint16_t in_port;
3598 int error;
3599
3600 if (ofm->flags & htons(OFPFF_CHECK_OVERLAP)) {
3601 flow_t flow;
3602 uint32_t wildcards;
3603
3604 flow_from_match(&ofm->match, p->tun_id_from_cookie, ofm->cookie,
3605 &flow, &wildcards);
3606 if (classifier_rule_overlaps(&p->cls, &flow, wildcards,
3607 ntohs(ofm->priority))) {
3608 return ofp_mkerr(OFPET_FLOW_MOD_FAILED, OFPFMFC_OVERLAP);
3609 }
3610 }
3611
3612 rule = rule_create(p, NULL, (const union ofp_action *) ofm->actions,
3613 n_actions, ntohs(ofm->idle_timeout),
3614 ntohs(ofm->hard_timeout), ofm->cookie,
3615 ofm->flags & htons(OFPFF_SEND_FLOW_REM));
3616 cls_rule_from_match(&ofm->match, ntohs(ofm->priority),
3617 p->tun_id_from_cookie, ofm->cookie, &rule->cr);
3618
3619 error = 0;
3620 if (ofm->buffer_id != htonl(UINT32_MAX)) {
3621 error = pktbuf_retrieve(ofconn->pktbuf, ntohl(ofm->buffer_id),
3622 &packet, &in_port);
3623 } else {
3624 packet = NULL;
3625 in_port = UINT16_MAX;
3626 }
3627
3628 rule_insert(p, rule, packet, in_port);
3629 return error;
3630 }
3631
3632 static struct rule *
3633 find_flow_strict(struct ofproto *p, const struct ofp_flow_mod *ofm)
3634 {
3635 uint32_t wildcards;
3636 flow_t flow;
3637
3638 flow_from_match(&ofm->match, p->tun_id_from_cookie, ofm->cookie,
3639 &flow, &wildcards);
3640 return rule_from_cls_rule(classifier_find_rule_exactly(
3641 &p->cls, &flow, wildcards,
3642 ntohs(ofm->priority)));
3643 }
3644
3645 static int
3646 send_buffered_packet(struct ofproto *ofproto, struct ofconn *ofconn,
3647 struct rule *rule, const struct ofp_flow_mod *ofm)
3648 {
3649 struct ofpbuf *packet;
3650 uint16_t in_port;
3651 flow_t flow;
3652 int error;
3653
3654 if (ofm->buffer_id == htonl(UINT32_MAX)) {
3655 return 0;
3656 }
3657
3658 error = pktbuf_retrieve(ofconn->pktbuf, ntohl(ofm->buffer_id),
3659 &packet, &in_port);
3660 if (error) {
3661 return error;
3662 }
3663
3664 flow_extract(packet, 0, in_port, &flow);
3665 rule_execute(ofproto, rule, packet, &flow);
3666
3667 return 0;
3668 }
3669 \f
3670 /* OFPFC_MODIFY and OFPFC_MODIFY_STRICT. */
3671
3672 struct modify_flows_cbdata {
3673 struct ofproto *ofproto;
3674 const struct ofp_flow_mod *ofm;
3675 size_t n_actions;
3676 struct rule *match;
3677 };
3678
3679 static int modify_flow(struct ofproto *, const struct ofp_flow_mod *,
3680 size_t n_actions, struct rule *);
3681 static void modify_flows_cb(struct cls_rule *, void *cbdata_);
3682
3683 /* Implements OFPFC_MODIFY. Returns 0 on success or an OpenFlow error code as
3684 * encoded by ofp_mkerr() on failure.
3685 *
3686 * 'ofconn' is used to retrieve the packet buffer specified in ofm->buffer_id,
3687 * if any. */
3688 static int
3689 modify_flows_loose(struct ofproto *p, struct ofconn *ofconn,
3690 const struct ofp_flow_mod *ofm, size_t n_actions)
3691 {
3692 struct modify_flows_cbdata cbdata;
3693 struct cls_rule target;
3694
3695 cbdata.ofproto = p;
3696 cbdata.ofm = ofm;
3697 cbdata.n_actions = n_actions;
3698 cbdata.match = NULL;
3699
3700 cls_rule_from_match(&ofm->match, 0, p->tun_id_from_cookie, ofm->cookie,
3701 &target);
3702
3703 classifier_for_each_match(&p->cls, &target, CLS_INC_ALL,
3704 modify_flows_cb, &cbdata);
3705 if (cbdata.match) {
3706 /* This credits the packet to whichever flow happened to happened to
3707 * match last. That's weird. Maybe we should do a lookup for the
3708 * flow that actually matches the packet? Who knows. */
3709 send_buffered_packet(p, ofconn, cbdata.match, ofm);
3710 return 0;
3711 } else {
3712 return add_flow(p, ofconn, ofm, n_actions);
3713 }
3714 }
3715
3716 /* Implements OFPFC_MODIFY_STRICT. Returns 0 on success or an OpenFlow error
3717 * code as encoded by ofp_mkerr() on failure.
3718 *
3719 * 'ofconn' is used to retrieve the packet buffer specified in ofm->buffer_id,
3720 * if any. */
3721 static int
3722 modify_flow_strict(struct ofproto *p, struct ofconn *ofconn,
3723 struct ofp_flow_mod *ofm, size_t n_actions)
3724 {
3725 struct rule *rule = find_flow_strict(p, ofm);
3726 if (rule && !rule_is_hidden(rule)) {
3727 modify_flow(p, ofm, n_actions, rule);
3728 return send_buffered_packet(p, ofconn, rule, ofm);
3729 } else {
3730 return add_flow(p, ofconn, ofm, n_actions);
3731 }
3732 }
3733
3734 /* Callback for modify_flows_loose(). */
3735 static void
3736 modify_flows_cb(struct cls_rule *rule_, void *cbdata_)
3737 {
3738 struct rule *rule = rule_from_cls_rule(rule_);
3739 struct modify_flows_cbdata *cbdata = cbdata_;
3740
3741 if (!rule_is_hidden(rule)) {
3742 cbdata->match = rule;
3743 modify_flow(cbdata->ofproto, cbdata->ofm, cbdata->n_actions, rule);
3744 }
3745 }
3746
3747 /* Implements core of OFPFC_MODIFY and OFPFC_MODIFY_STRICT where 'rule' has
3748 * been identified as a flow in 'p''s flow table to be modified, by changing
3749 * the rule's actions to match those in 'ofm' (which is followed by 'n_actions'
3750 * ofp_action[] structures). */
3751 static int
3752 modify_flow(struct ofproto *p, const struct ofp_flow_mod *ofm,
3753 size_t n_actions, struct rule *rule)
3754 {
3755 size_t actions_len = n_actions * sizeof *rule->actions;
3756
3757 rule->flow_cookie = ofm->cookie;
3758
3759 /* If the actions are the same, do nothing. */
3760 if (n_actions == rule->n_actions
3761 && (!n_actions || !memcmp(ofm->actions, rule->actions, actions_len)))
3762 {
3763 return 0;
3764 }
3765
3766 /* Replace actions. */
3767 free(rule->actions);
3768 rule->actions = n_actions ? xmemdup(ofm->actions, actions_len) : NULL;
3769 rule->n_actions = n_actions;
3770
3771 /* Make sure that the datapath gets updated properly. */
3772 if (rule->cr.wc.wildcards) {
3773 COVERAGE_INC(ofproto_mod_wc_flow);
3774 p->need_revalidate = true;
3775 } else {
3776 rule_update_actions(p, rule);
3777 }
3778
3779 return 0;
3780 }
3781 \f
3782 /* OFPFC_DELETE implementation. */
3783
3784 struct delete_flows_cbdata {
3785 struct ofproto *ofproto;
3786 uint16_t out_port;
3787 };
3788
3789 static void delete_flows_cb(struct cls_rule *, void *cbdata_);
3790 static void delete_flow(struct ofproto *, struct rule *, uint16_t out_port);
3791
3792 /* Implements OFPFC_DELETE. */
3793 static void
3794 delete_flows_loose(struct ofproto *p, const struct ofp_flow_mod *ofm)
3795 {
3796 struct delete_flows_cbdata cbdata;
3797 struct cls_rule target;
3798
3799 cbdata.ofproto = p;
3800 cbdata.out_port = ofm->out_port;
3801
3802 cls_rule_from_match(&ofm->match, 0, p->tun_id_from_cookie, ofm->cookie,
3803 &target);
3804
3805 classifier_for_each_match(&p->cls, &target, CLS_INC_ALL,
3806 delete_flows_cb, &cbdata);
3807 }
3808
3809 /* Implements OFPFC_DELETE_STRICT. */
3810 static void
3811 delete_flow_strict(struct ofproto *p, struct ofp_flow_mod *ofm)
3812 {
3813 struct rule *rule = find_flow_strict(p, ofm);
3814 if (rule) {
3815 delete_flow(p, rule, ofm->out_port);
3816 }
3817 }
3818
3819 /* Callback for delete_flows_loose(). */
3820 static void
3821 delete_flows_cb(struct cls_rule *rule_, void *cbdata_)
3822 {
3823 struct rule *rule = rule_from_cls_rule(rule_);
3824 struct delete_flows_cbdata *cbdata = cbdata_;
3825
3826 delete_flow(cbdata->ofproto, rule, cbdata->out_port);
3827 }
3828
3829 /* Implements core of OFPFC_DELETE and OFPFC_DELETE_STRICT where 'rule' has
3830 * been identified as a flow to delete from 'p''s flow table, by deleting the
3831 * flow and sending out a OFPT_FLOW_REMOVED message to any interested
3832 * controller.
3833 *
3834 * Will not delete 'rule' if it is hidden. Will delete 'rule' only if
3835 * 'out_port' is htons(OFPP_NONE) or if 'rule' actually outputs to the
3836 * specified 'out_port'. */
3837 static void
3838 delete_flow(struct ofproto *p, struct rule *rule, uint16_t out_port)
3839 {
3840 if (rule_is_hidden(rule)) {
3841 return;
3842 }
3843
3844 if (out_port != htons(OFPP_NONE) && !rule_has_out_port(rule, out_port)) {
3845 return;
3846 }
3847
3848 send_flow_removed(p, rule, time_msec(), OFPRR_DELETE);
3849 rule_remove(p, rule);
3850 }
3851 \f
3852 static int
3853 handle_flow_mod(struct ofproto *p, struct ofconn *ofconn,
3854 struct ofp_flow_mod *ofm)
3855 {
3856 struct ofp_match orig_match;
3857 size_t n_actions;
3858 int error;
3859
3860 error = reject_slave_controller(ofconn, &ofm->header);
3861 if (error) {
3862 return error;
3863 }
3864 error = check_ofp_message_array(&ofm->header, OFPT_FLOW_MOD, sizeof *ofm,
3865 sizeof *ofm->actions, &n_actions);
3866 if (error) {
3867 return error;
3868 }
3869
3870 /* We do not support the emergency flow cache. It will hopefully
3871 * get dropped from OpenFlow in the near future. */
3872 if (ofm->flags & htons(OFPFF_EMERG)) {
3873 /* There isn't a good fit for an error code, so just state that the
3874 * flow table is full. */
3875 return ofp_mkerr(OFPET_FLOW_MOD_FAILED, OFPFMFC_ALL_TABLES_FULL);
3876 }
3877
3878 /* Normalize ofp->match. If normalization actually changes anything, then
3879 * log the differences. */
3880 ofm->match.pad1[0] = ofm->match.pad2[0] = 0;
3881 orig_match = ofm->match;
3882 normalize_match(&ofm->match);
3883 if (memcmp(&ofm->match, &orig_match, sizeof orig_match)) {
3884 static struct vlog_rate_limit normal_rl = VLOG_RATE_LIMIT_INIT(1, 1);
3885 if (!VLOG_DROP_INFO(&normal_rl)) {
3886 char *old = ofp_match_to_literal_string(&orig_match);
3887 char *new = ofp_match_to_literal_string(&ofm->match);
3888 VLOG_INFO("%s: normalization changed ofp_match, details:",
3889 rconn_get_name(ofconn->rconn));
3890 VLOG_INFO(" pre: %s", old);
3891 VLOG_INFO("post: %s", new);
3892 free(old);
3893 free(new);
3894 }
3895 }
3896
3897 if (!ofm->match.wildcards) {
3898 ofm->priority = htons(UINT16_MAX);
3899 }
3900
3901 error = validate_actions((const union ofp_action *) ofm->actions,
3902 n_actions, p->max_ports);
3903 if (error) {
3904 return error;
3905 }
3906
3907 switch (ntohs(ofm->command)) {
3908 case OFPFC_ADD:
3909 return add_flow(p, ofconn, ofm, n_actions);
3910
3911 case OFPFC_MODIFY:
3912 return modify_flows_loose(p, ofconn, ofm, n_actions);
3913
3914 case OFPFC_MODIFY_STRICT:
3915 return modify_flow_strict(p, ofconn, ofm, n_actions);
3916
3917 case OFPFC_DELETE:
3918 delete_flows_loose(p, ofm);
3919 return 0;
3920
3921 case OFPFC_DELETE_STRICT:
3922 delete_flow_strict(p, ofm);
3923 return 0;
3924
3925 default:
3926 return ofp_mkerr(OFPET_FLOW_MOD_FAILED, OFPFMFC_BAD_COMMAND);
3927 }
3928 }
3929
3930 static int
3931 handle_tun_id_from_cookie(struct ofproto *p, struct nxt_tun_id_cookie *msg)
3932 {
3933 int error;
3934
3935 error = check_ofp_message(&msg->header, OFPT_VENDOR, sizeof *msg);
3936 if (error) {
3937 return error;
3938 }
3939
3940 p->tun_id_from_cookie = !!msg->set;
3941 return 0;
3942 }
3943
3944 static int
3945 handle_role_request(struct ofproto *ofproto,
3946 struct ofconn *ofconn, struct nicira_header *msg)
3947 {
3948 struct nx_role_request *nrr;
3949 struct nx_role_request *reply;
3950 struct ofpbuf *buf;
3951 uint32_t role;
3952
3953 if (ntohs(msg->header.length) != sizeof *nrr) {
3954 VLOG_WARN_RL(&rl, "received role request of length %u (expected %zu)",
3955 ntohs(msg->header.length), sizeof *nrr);
3956 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
3957 }
3958 nrr = (struct nx_role_request *) msg;
3959
3960 if (ofconn->type != OFCONN_PRIMARY) {
3961 VLOG_WARN_RL(&rl, "ignoring role request on non-controller "
3962 "connection");
3963 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_EPERM);
3964 }
3965
3966 role = ntohl(nrr->role);
3967 if (role != NX_ROLE_OTHER && role != NX_ROLE_MASTER
3968 && role != NX_ROLE_SLAVE) {
3969 VLOG_WARN_RL(&rl, "received request for unknown role %"PRIu32, role);
3970
3971 /* There's no good error code for this. */
3972 return ofp_mkerr(OFPET_BAD_REQUEST, -1);
3973 }
3974
3975 if (role == NX_ROLE_MASTER) {
3976 struct ofconn *other;
3977
3978 HMAP_FOR_EACH (other, hmap_node, &ofproto->controllers) {
3979 if (other->role == NX_ROLE_MASTER) {
3980 other->role = NX_ROLE_SLAVE;
3981 }
3982 }
3983 }
3984 ofconn->role = role;
3985
3986 reply = make_openflow_xid(sizeof *reply, OFPT_VENDOR, msg->header.xid,
3987 &buf);
3988 reply->nxh.vendor = htonl(NX_VENDOR_ID);
3989 reply->nxh.subtype = htonl(NXT_ROLE_REPLY);
3990 reply->role = htonl(role);
3991 queue_tx(buf, ofconn, ofconn->reply_counter);
3992
3993 return 0;
3994 }
3995
3996 static int
3997 handle_vendor(struct ofproto *p, struct ofconn *ofconn, void *msg)
3998 {
3999 struct ofp_vendor_header *ovh = msg;
4000 struct nicira_header *nh;
4001
4002 if (ntohs(ovh->header.length) < sizeof(struct ofp_vendor_header)) {
4003 VLOG_WARN_RL(&rl, "received vendor message of length %u "
4004 "(expected at least %zu)",
4005 ntohs(ovh->header.length), sizeof(struct ofp_vendor_header));
4006 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
4007 }
4008 if (ovh->vendor != htonl(NX_VENDOR_ID)) {
4009 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_VENDOR);
4010 }
4011 if (ntohs(ovh->header.length) < sizeof(struct nicira_header)) {
4012 VLOG_WARN_RL(&rl, "received Nicira vendor message of length %u "
4013 "(expected at least %zu)",
4014 ntohs(ovh->header.length), sizeof(struct nicira_header));
4015 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN);
4016 }
4017
4018 nh = msg;
4019 switch (ntohl(nh->subtype)) {
4020 case NXT_STATUS_REQUEST:
4021 return switch_status_handle_request(p->switch_status, ofconn->rconn,
4022 msg);
4023
4024 case NXT_TUN_ID_FROM_COOKIE:
4025 return handle_tun_id_from_cookie(p, msg);
4026
4027 case NXT_ROLE_REQUEST:
4028 return handle_role_request(p, ofconn, msg);
4029 }
4030
4031 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_SUBTYPE);
4032 }
4033
4034 static int
4035 handle_barrier_request(struct ofconn *ofconn, struct ofp_header *oh)
4036 {
4037 struct ofp_header *ob;
4038 struct ofpbuf *buf;
4039
4040 /* Currently, everything executes synchronously, so we can just
4041 * immediately send the barrier reply. */
4042 ob = make_openflow_xid(sizeof *ob, OFPT_BARRIER_REPLY, oh->xid, &buf);
4043 queue_tx(buf, ofconn, ofconn->reply_counter);
4044 return 0;
4045 }
4046
4047 static void
4048 handle_openflow(struct ofconn *ofconn, struct ofproto *p,
4049 struct ofpbuf *ofp_msg)
4050 {
4051 struct ofp_header *oh = ofp_msg->data;
4052 int error;
4053
4054 COVERAGE_INC(ofproto_recv_openflow);
4055 switch (oh->type) {
4056 case OFPT_ECHO_REQUEST:
4057 error = handle_echo_request(ofconn, oh);
4058 break;
4059
4060 case OFPT_ECHO_REPLY:
4061 error = 0;
4062 break;
4063
4064 case OFPT_FEATURES_REQUEST:
4065 error = handle_features_request(p, ofconn, oh);
4066 break;
4067
4068 case OFPT_GET_CONFIG_REQUEST:
4069 error = handle_get_config_request(p, ofconn, oh);
4070 break;
4071
4072 case OFPT_SET_CONFIG:
4073 error = handle_set_config(p, ofconn, ofp_msg->data);
4074 break;
4075
4076 case OFPT_PACKET_OUT:
4077 error = handle_packet_out(p, ofconn, ofp_msg->data);
4078 break;
4079
4080 case OFPT_PORT_MOD:
4081 error = handle_port_mod(p, ofconn, oh);
4082 break;
4083
4084 case OFPT_FLOW_MOD:
4085 error = handle_flow_mod(p, ofconn, ofp_msg->data);
4086 break;
4087
4088 case OFPT_STATS_REQUEST:
4089 error = handle_stats_request(p, ofconn, oh);
4090 break;
4091
4092 case OFPT_VENDOR:
4093 error = handle_vendor(p, ofconn, ofp_msg->data);
4094 break;
4095
4096 case OFPT_BARRIER_REQUEST:
4097 error = handle_barrier_request(ofconn, oh);
4098 break;
4099
4100 default:
4101 if (VLOG_IS_WARN_ENABLED()) {
4102 char *s = ofp_to_string(oh, ntohs(oh->length), 2);
4103 VLOG_DBG_RL(&rl, "OpenFlow message ignored: %s", s);
4104 free(s);
4105 }
4106 error = ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_TYPE);
4107 break;
4108 }
4109
4110 if (error) {
4111 send_error_oh(ofconn, ofp_msg->data, error);
4112 }
4113 }
4114 \f
4115 static void
4116 handle_odp_miss_msg(struct ofproto *p, struct ofpbuf *packet)
4117 {
4118 struct odp_msg *msg = packet->data;
4119 struct rule *rule;
4120 struct ofpbuf payload;
4121 flow_t flow;
4122
4123 payload.data = msg + 1;
4124 payload.size = msg->length - sizeof *msg;
4125 flow_extract(&payload, msg->arg, msg->port, &flow);
4126
4127 /* Check with in-band control to see if this packet should be sent
4128 * to the local port regardless of the flow table. */
4129 if (in_band_msg_in_hook(p->in_band, &flow, &payload)) {
4130 union odp_action action;
4131
4132 memset(&action, 0, sizeof(action));
4133 action.output.type = ODPAT_OUTPUT;
4134 action.output.port = ODPP_LOCAL;
4135 dpif_execute(p->dpif, flow.in_port, &action, 1, &payload);
4136 }
4137
4138 rule = lookup_valid_rule(p, &flow);
4139 if (!rule) {
4140 /* Don't send a packet-in if OFPPC_NO_PACKET_IN asserted. */
4141 struct ofport *port = get_port(p, msg->port);
4142 if (port) {
4143 if (port->opp.config & OFPPC_NO_PACKET_IN) {
4144 COVERAGE_INC(ofproto_no_packet_in);
4145 /* XXX install 'drop' flow entry */
4146 ofpbuf_delete(packet);
4147 return;
4148 }
4149 } else {
4150 VLOG_WARN_RL(&rl, "packet-in on unknown port %"PRIu16, msg->port);
4151 }
4152
4153 COVERAGE_INC(ofproto_packet_in);
4154 send_packet_in(p, packet);
4155 return;
4156 }
4157
4158 if (rule->cr.wc.wildcards) {
4159 rule = rule_create_subrule(p, rule, &flow);
4160 rule_make_actions(p, rule, packet);
4161 } else {
4162 if (!rule->may_install) {
4163 /* The rule is not installable, that is, we need to process every
4164 * packet, so process the current packet and set its actions into
4165 * 'subrule'. */
4166 rule_make_actions(p, rule, packet);
4167 } else {
4168 /* XXX revalidate rule if it needs it */
4169 }
4170 }
4171
4172 if (rule->super && rule->super->cr.priority == FAIL_OPEN_PRIORITY) {
4173 /*
4174 * Extra-special case for fail-open mode.
4175 *
4176 * We are in fail-open mode and the packet matched the fail-open rule,
4177 * but we are connected to a controller too. We should send the packet
4178 * up to the controller in the hope that it will try to set up a flow
4179 * and thereby allow us to exit fail-open.
4180 *
4181 * See the top-level comment in fail-open.c for more information.
4182 */
4183 send_packet_in(p, ofpbuf_clone_with_headroom(packet,
4184 DPIF_RECV_MSG_PADDING));
4185 }
4186
4187 ofpbuf_pull(packet, sizeof *msg);
4188 rule_execute(p, rule, packet, &flow);
4189 rule_reinstall(p, rule);
4190 }
4191
4192 static void
4193 handle_odp_msg(struct ofproto *p, struct ofpbuf *packet)
4194 {
4195 struct odp_msg *msg = packet->data;
4196
4197 switch (msg->type) {
4198 case _ODPL_ACTION_NR:
4199 COVERAGE_INC(ofproto_ctlr_action);
4200 send_packet_in(p, packet);
4201 break;
4202
4203 case _ODPL_SFLOW_NR:
4204 if (p->sflow) {
4205 ofproto_sflow_received(p->sflow, msg);
4206 }
4207 ofpbuf_delete(packet);
4208 break;
4209
4210 case _ODPL_MISS_NR:
4211 handle_odp_miss_msg(p, packet);
4212 break;
4213
4214 default:
4215 VLOG_WARN_RL(&rl, "received ODP message of unexpected type %"PRIu32,
4216 msg->type);
4217 break;
4218 }
4219 }
4220 \f
4221 /* Flow expiration. */
4222
4223 struct expire_cbdata {
4224 struct ofproto *ofproto;
4225 };
4226
4227 static void ofproto_update_used(struct ofproto *);
4228 static void rule_expire(struct cls_rule *, void *cbdata);
4229
4230 /* This function is called periodically by ofproto_run(). Its job is to
4231 * collect updates for the flows that have been installed into the datapath,
4232 * most importantly when they last were used, and then use that information to
4233 * expire flows that have not been used recently. */
4234 static void
4235 ofproto_expire(struct ofproto *ofproto)
4236 {
4237 struct expire_cbdata cbdata;
4238
4239 /* Update 'used' for each flow in the datapath. */
4240 ofproto_update_used(ofproto);
4241
4242 /* Expire idle flows. */
4243 cbdata.ofproto = ofproto;
4244 classifier_for_each(&ofproto->cls, CLS_INC_ALL, rule_expire, &cbdata);
4245
4246 /* Let the hook know that we're at a stable point: all outstanding data
4247 * in existing flows has been accounted to the account_cb. Thus, the
4248 * hook can now reasonably do operations that depend on having accurate
4249 * flow volume accounting (currently, that's just bond rebalancing). */
4250 if (ofproto->ofhooks->account_checkpoint_cb) {
4251 ofproto->ofhooks->account_checkpoint_cb(ofproto->aux);
4252 }
4253 }
4254
4255 /* Update 'used' member of each flow currently installed into the datapath. */
4256 static void
4257 ofproto_update_used(struct ofproto *p)
4258 {
4259 struct odp_flow *flows;
4260 size_t n_flows;
4261 size_t i;
4262 int error;
4263
4264 error = dpif_flow_list_all(p->dpif, &flows, &n_flows);
4265 if (error) {
4266 return;
4267 }
4268
4269 for (i = 0; i < n_flows; i++) {
4270 struct odp_flow *f = &flows[i];
4271 struct rule *rule;
4272
4273 rule = rule_from_cls_rule(
4274 classifier_find_rule_exactly(&p->cls, &f->key, 0, UINT16_MAX));
4275
4276 if (rule && rule->installed) {
4277 update_time(p, rule, &f->stats);
4278 rule_account(p, rule, f->stats.n_bytes);
4279 } else {
4280 /* There's a flow in the datapath that we know nothing about.
4281 * Delete it. */
4282 COVERAGE_INC(ofproto_unexpected_rule);
4283 dpif_flow_del(p->dpif, f);
4284 }
4285
4286 }
4287 free(flows);
4288 }
4289
4290 static void
4291 rule_active_timeout(struct ofproto *ofproto, struct rule *rule)
4292 {
4293 if (ofproto->netflow && !is_controller_rule(rule) &&
4294 netflow_active_timeout_expired(ofproto->netflow, &rule->nf_flow)) {
4295 struct ofexpired expired;
4296 struct odp_flow odp_flow;
4297
4298 /* Get updated flow stats.
4299 *
4300 * XXX We could avoid this call entirely if (1) ofproto_update_used()
4301 * updated TCP flags and (2) the dpif_flow_list_all() in
4302 * ofproto_update_used() zeroed TCP flags. */
4303 memset(&odp_flow, 0, sizeof odp_flow);
4304 if (rule->installed) {
4305 odp_flow.key = rule->cr.flow;
4306 odp_flow.flags = ODPFF_ZERO_TCP_FLAGS;
4307 dpif_flow_get(ofproto->dpif, &odp_flow);
4308
4309 if (odp_flow.stats.n_packets) {
4310 update_time(ofproto, rule, &odp_flow.stats);
4311 netflow_flow_update_flags(&rule->nf_flow,
4312 odp_flow.stats.tcp_flags);
4313 }
4314 }
4315
4316 expired.flow = rule->cr.flow;
4317 expired.packet_count = rule->packet_count +
4318 odp_flow.stats.n_packets;
4319 expired.byte_count = rule->byte_count + odp_flow.stats.n_bytes;
4320 expired.used = rule->used;
4321
4322 netflow_expire(ofproto->netflow, &rule->nf_flow, &expired);
4323
4324 /* Schedule us to send the accumulated records once we have
4325 * collected all of them. */
4326 poll_immediate_wake();
4327 }
4328 }
4329
4330 /* If 'cls_rule' is an OpenFlow rule, that has expired according to OpenFlow
4331 * rules, then delete it entirely.
4332 *
4333 * If 'cls_rule' is a subrule, that has not been used recently, remove it from
4334 * the datapath and fold its statistics back into its super-rule.
4335 *
4336 * (This is a callback function for classifier_for_each().) */
4337 static void
4338 rule_expire(struct cls_rule *cls_rule, void *cbdata_)
4339 {
4340 struct expire_cbdata *cbdata = cbdata_;
4341 struct ofproto *ofproto = cbdata->ofproto;
4342 struct rule *rule = rule_from_cls_rule(cls_rule);
4343 long long int hard_expire, idle_expire, expire, now;
4344
4345 /* Calculate OpenFlow expiration times for 'rule'. */
4346 hard_expire = (rule->hard_timeout
4347 ? rule->created + rule->hard_timeout * 1000
4348 : LLONG_MAX);
4349 idle_expire = (rule->idle_timeout
4350 && (rule->super || list_is_empty(&rule->list))
4351 ? rule->used + rule->idle_timeout * 1000
4352 : LLONG_MAX);
4353 expire = MIN(hard_expire, idle_expire);
4354
4355 now = time_msec();
4356 if (now < expire) {
4357 /* 'rule' has not expired according to OpenFlow rules. */
4358 if (rule->installed && now >= rule->used + 5000) {
4359 /* This rule is idle, so uninstall it from the datapath. */
4360 if (rule->super) {
4361 rule_remove(ofproto, rule);
4362 } else {
4363 rule_uninstall(ofproto, rule);
4364 }
4365 } else if (!rule->cr.wc.wildcards) {
4366 /* Send NetFlow active timeout if appropriate. */
4367 rule_active_timeout(cbdata->ofproto, rule);
4368 }
4369 } else {
4370 /* 'rule' has expired according to OpenFlow rules. */
4371 COVERAGE_INC(ofproto_expired);
4372
4373 /* Update stats. (This is a no-op if the rule expired due to an idle
4374 * timeout, because that only happens when the rule has no subrules
4375 * left.) */
4376 if (rule->cr.wc.wildcards) {
4377 struct rule *subrule, *next;
4378 LIST_FOR_EACH_SAFE (subrule, next, list, &rule->list) {
4379 rule_remove(cbdata->ofproto, subrule);
4380 }
4381 } else {
4382 rule_uninstall(cbdata->ofproto, rule);
4383 }
4384
4385 /* Get rid of the rule. */
4386 if (!rule_is_hidden(rule)) {
4387 send_flow_removed(cbdata->ofproto, rule, now,
4388 (now >= hard_expire
4389 ? OFPRR_HARD_TIMEOUT : OFPRR_IDLE_TIMEOUT));
4390 }
4391 rule_remove(cbdata->ofproto, rule);
4392 }
4393 }
4394 \f
4395 static void
4396 revalidate_cb(struct cls_rule *sub_, void *cbdata_)
4397 {
4398 struct rule *sub = rule_from_cls_rule(sub_);
4399 struct revalidate_cbdata *cbdata = cbdata_;
4400
4401 if (cbdata->revalidate_all
4402 || (cbdata->revalidate_subrules && sub->super)
4403 || (tag_set_intersects(&cbdata->revalidate_set, sub->tags))) {
4404 revalidate_rule(cbdata->ofproto, sub);
4405 }
4406 }
4407
4408 static bool
4409 revalidate_rule(struct ofproto *p, struct rule *rule)
4410 {
4411 const flow_t *flow = &rule->cr.flow;
4412
4413 COVERAGE_INC(ofproto_revalidate_rule);
4414 if (rule->super) {
4415 struct rule *super;
4416 super = rule_from_cls_rule(classifier_lookup_wild(&p->cls, flow));
4417 if (!super) {
4418 rule_remove(p, rule);
4419 return false;
4420 } else if (super != rule->super) {
4421 COVERAGE_INC(ofproto_revalidate_moved);
4422 list_remove(&rule->list);
4423 list_push_back(&super->list, &rule->list);
4424 rule->super = super;
4425 rule->hard_timeout = super->hard_timeout;
4426 rule->idle_timeout = super->idle_timeout;
4427 rule->created = super->created;
4428 rule->used = 0;
4429 }
4430 }
4431
4432 rule_update_actions(p, rule);
4433 return true;
4434 }
4435
4436 static struct ofpbuf *
4437 compose_flow_removed(struct ofproto *p, const struct rule *rule,
4438 long long int now, uint8_t reason)
4439 {
4440 struct ofp_flow_removed *ofr;
4441 struct ofpbuf *buf;
4442 long long int tdiff = now - rule->created;
4443 uint32_t sec = tdiff / 1000;
4444 uint32_t msec = tdiff - (sec * 1000);
4445
4446 ofr = make_openflow(sizeof *ofr, OFPT_FLOW_REMOVED, &buf);
4447 flow_to_match(&rule->cr.flow, rule->cr.wc.wildcards, p->tun_id_from_cookie,
4448 &ofr->match);
4449 ofr->cookie = rule->flow_cookie;
4450 ofr->priority = htons(rule->cr.priority);
4451 ofr->reason = reason;
4452 ofr->duration_sec = htonl(sec);
4453 ofr->duration_nsec = htonl(msec * 1000000);
4454 ofr->idle_timeout = htons(rule->idle_timeout);
4455 ofr->packet_count = htonll(rule->packet_count);
4456 ofr->byte_count = htonll(rule->byte_count);
4457
4458 return buf;
4459 }
4460
4461 static void
4462 send_flow_removed(struct ofproto *p, struct rule *rule,
4463 long long int now, uint8_t reason)
4464 {
4465 struct ofconn *ofconn;
4466 struct ofconn *prev;
4467 struct ofpbuf *buf = NULL;
4468
4469 if (!rule->send_flow_removed) {
4470 return;
4471 }
4472
4473 /* We limit the maximum number of queued flow expirations it by accounting
4474 * them under the counter for replies. That works because preventing
4475 * OpenFlow requests from being processed also prevents new flows from
4476 * being added (and expiring). (It also prevents processing OpenFlow
4477 * requests that would not add new flows, so it is imperfect.) */
4478
4479 prev = NULL;
4480 LIST_FOR_EACH (ofconn, node, &p->all_conns) {
4481 if (rconn_is_connected(ofconn->rconn)
4482 && ofconn_receives_async_msgs(ofconn)) {
4483 if (prev) {
4484 queue_tx(ofpbuf_clone(buf), prev, prev->reply_counter);
4485 } else {
4486 buf = compose_flow_removed(p, rule, now, reason);
4487 }
4488 prev = ofconn;
4489 }
4490 }
4491 if (prev) {
4492 queue_tx(buf, prev, prev->reply_counter);
4493 }
4494 }
4495
4496 /* pinsched callback for sending 'packet' on 'ofconn'. */
4497 static void
4498 do_send_packet_in(struct ofpbuf *packet, void *ofconn_)
4499 {
4500 struct ofconn *ofconn = ofconn_;
4501
4502 rconn_send_with_limit(ofconn->rconn, packet,
4503 ofconn->packet_in_counter, 100);
4504 }
4505
4506 /* Takes 'packet', which has been converted with do_convert_to_packet_in(), and
4507 * finalizes its content for sending on 'ofconn', and passes it to 'ofconn''s
4508 * packet scheduler for sending.
4509 *
4510 * 'max_len' specifies the maximum number of bytes of the packet to send on
4511 * 'ofconn' (INT_MAX specifies no limit).
4512 *
4513 * If 'clone' is true, the caller retains ownership of 'packet'. Otherwise,
4514 * ownership is transferred to this function. */
4515 static void
4516 schedule_packet_in(struct ofconn *ofconn, struct ofpbuf *packet, int max_len,
4517 bool clone)
4518 {
4519 struct ofproto *ofproto = ofconn->ofproto;
4520 struct ofp_packet_in *opi = packet->data;
4521 uint16_t in_port = ofp_port_to_odp_port(ntohs(opi->in_port));
4522 int send_len, trim_size;
4523 uint32_t buffer_id;
4524
4525 /* Get buffer. */
4526 if (opi->reason == OFPR_ACTION) {
4527 buffer_id = UINT32_MAX;
4528 } else if (ofproto->fail_open && fail_open_is_active(ofproto->fail_open)) {
4529 buffer_id = pktbuf_get_null();
4530 } else if (!ofconn->pktbuf) {
4531 buffer_id = UINT32_MAX;
4532 } else {
4533 struct ofpbuf payload;
4534 payload.data = opi->data;
4535 payload.size = packet->size - offsetof(struct ofp_packet_in, data);
4536 buffer_id = pktbuf_save(ofconn->pktbuf, &payload, in_port);
4537 }
4538
4539 /* Figure out how much of the packet to send. */
4540 send_len = ntohs(opi->total_len);
4541 if (buffer_id != UINT32_MAX) {
4542 send_len = MIN(send_len, ofconn->miss_send_len);
4543 }
4544 send_len = MIN(send_len, max_len);
4545
4546 /* Adjust packet length and clone if necessary. */
4547 trim_size = offsetof(struct ofp_packet_in, data) + send_len;
4548 if (clone) {
4549 packet = ofpbuf_clone_data(packet->data, trim_size);
4550 opi = packet->data;
4551 } else {
4552 packet->size = trim_size;
4553 }
4554
4555 /* Update packet headers. */
4556 opi->buffer_id = htonl(buffer_id);
4557 update_openflow_length(packet);
4558
4559 /* Hand over to packet scheduler. It might immediately call into
4560 * do_send_packet_in() or it might buffer it for a while (until a later
4561 * call to pinsched_run()). */
4562 pinsched_send(ofconn->schedulers[opi->reason], in_port,
4563 packet, do_send_packet_in, ofconn);
4564 }
4565
4566 /* Replace struct odp_msg header in 'packet' by equivalent struct
4567 * ofp_packet_in. The odp_msg must have sufficient headroom to do so (e.g. as
4568 * returned by dpif_recv()).
4569 *
4570 * The conversion is not complete: the caller still needs to trim any unneeded
4571 * payload off the end of the buffer, set the length in the OpenFlow header,
4572 * and set buffer_id. Those require us to know the controller settings and so
4573 * must be done on a per-controller basis.
4574 *
4575 * Returns the maximum number of bytes of the packet that should be sent to
4576 * the controller (INT_MAX if no limit). */
4577 static int
4578 do_convert_to_packet_in(struct ofpbuf *packet)
4579 {
4580 struct odp_msg *msg = packet->data;
4581 struct ofp_packet_in *opi;
4582 uint8_t reason;
4583 uint16_t total_len;
4584 uint16_t in_port;
4585 int max_len;
4586
4587 /* Extract relevant header fields */
4588 if (msg->type == _ODPL_ACTION_NR) {
4589 reason = OFPR_ACTION;
4590 max_len = msg->arg;
4591 } else {
4592 reason = OFPR_NO_MATCH;
4593 max_len = INT_MAX;
4594 }
4595 total_len = msg->length - sizeof *msg;
4596 in_port = odp_port_to_ofp_port(msg->port);
4597
4598 /* Repurpose packet buffer by overwriting header. */
4599 ofpbuf_pull(packet, sizeof(struct odp_msg));
4600 opi = ofpbuf_push_zeros(packet, offsetof(struct ofp_packet_in, data));
4601 opi->header.version = OFP_VERSION;
4602 opi->header.type = OFPT_PACKET_IN;
4603 opi->total_len = htons(total_len);
4604 opi->in_port = htons(in_port);
4605 opi->reason = reason;
4606
4607 return max_len;
4608 }
4609
4610 /* Given 'packet' containing an odp_msg of type _ODPL_ACTION_NR or
4611 * _ODPL_MISS_NR, sends an OFPT_PACKET_IN message to each OpenFlow controller
4612 * as necessary according to their individual configurations.
4613 *
4614 * 'packet' must have sufficient headroom to convert it into a struct
4615 * ofp_packet_in (e.g. as returned by dpif_recv()).
4616 *
4617 * Takes ownership of 'packet'. */
4618 static void
4619 send_packet_in(struct ofproto *ofproto, struct ofpbuf *packet)
4620 {
4621 struct ofconn *ofconn, *prev;
4622 int max_len;
4623
4624 max_len = do_convert_to_packet_in(packet);
4625
4626 prev = NULL;
4627 LIST_FOR_EACH (ofconn, node, &ofproto->all_conns) {
4628 if (ofconn_receives_async_msgs(ofconn)) {
4629 if (prev) {
4630 schedule_packet_in(prev, packet, max_len, true);
4631 }
4632 prev = ofconn;
4633 }
4634 }
4635 if (prev) {
4636 schedule_packet_in(prev, packet, max_len, false);
4637 } else {
4638 ofpbuf_delete(packet);
4639 }
4640 }
4641
4642 static uint64_t
4643 pick_datapath_id(const struct ofproto *ofproto)
4644 {
4645 const struct ofport *port;
4646
4647 port = get_port(ofproto, ODPP_LOCAL);
4648 if (port) {
4649 uint8_t ea[ETH_ADDR_LEN];
4650 int error;
4651
4652 error = netdev_get_etheraddr(port->netdev, ea);
4653 if (!error) {
4654 return eth_addr_to_uint64(ea);
4655 }
4656 VLOG_WARN("could not get MAC address for %s (%s)",
4657 netdev_get_name(port->netdev), strerror(error));
4658 }
4659 return ofproto->fallback_dpid;
4660 }
4661
4662 static uint64_t
4663 pick_fallback_dpid(void)
4664 {
4665 uint8_t ea[ETH_ADDR_LEN];
4666 eth_addr_nicira_random(ea);
4667 return eth_addr_to_uint64(ea);
4668 }
4669 \f
4670 static bool
4671 default_normal_ofhook_cb(const flow_t *flow, const struct ofpbuf *packet,
4672 struct odp_actions *actions, tag_type *tags,
4673 uint16_t *nf_output_iface, void *ofproto_)
4674 {
4675 struct ofproto *ofproto = ofproto_;
4676 int out_port;
4677
4678 /* Drop frames for reserved multicast addresses. */
4679 if (eth_addr_is_reserved(flow->dl_dst)) {
4680 return true;
4681 }
4682
4683 /* Learn source MAC (but don't try to learn from revalidation). */
4684 if (packet != NULL) {
4685 tag_type rev_tag = mac_learning_learn(ofproto->ml, flow->dl_src,
4686 0, flow->in_port,
4687 GRAT_ARP_LOCK_NONE);
4688 if (rev_tag) {
4689 /* The log messages here could actually be useful in debugging,
4690 * so keep the rate limit relatively high. */
4691 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(30, 300);
4692 VLOG_DBG_RL(&rl, "learned that "ETH_ADDR_FMT" is on port %"PRIu16,
4693 ETH_ADDR_ARGS(flow->dl_src), flow->in_port);
4694 ofproto_revalidate(ofproto, rev_tag);
4695 }
4696 }
4697
4698 /* Determine output port. */
4699 out_port = mac_learning_lookup_tag(ofproto->ml, flow->dl_dst, 0, tags,
4700 NULL);
4701 if (out_port < 0) {
4702 add_output_group_action(actions, DP_GROUP_FLOOD, nf_output_iface);
4703 } else if (out_port != flow->in_port) {
4704 odp_actions_add(actions, ODPAT_OUTPUT)->output.port = out_port;
4705 *nf_output_iface = out_port;
4706 } else {
4707 /* Drop. */
4708 }
4709
4710 return true;
4711 }
4712
4713 static const struct ofhooks default_ofhooks = {
4714 NULL,
4715 default_normal_ofhook_cb,
4716 NULL,
4717 NULL
4718 };