]> git.proxmox.com Git - mirror_ovs.git/blob - ofproto/ofproto.c
netdev: Factor restoring flags into new "struct netdev_saved_flags".
[mirror_ovs.git] / ofproto / ofproto.c
1 /*
2 * Copyright (c) 2009, 2010, 2011, 2012, 2013 Nicira, Inc.
3 * Copyright (c) 2010 Jean Tourrilhes - HP-Labs.
4 *
5 * Licensed under the Apache License, Version 2.0 (the "License");
6 * you may not use this file except in compliance with the License.
7 * You may obtain a copy of the License at:
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17
18 #include <config.h>
19 #include "ofproto.h"
20 #include <errno.h>
21 #include <inttypes.h>
22 #include <stdbool.h>
23 #include <stdlib.h>
24 #include "bitmap.h"
25 #include "byte-order.h"
26 #include "classifier.h"
27 #include "connmgr.h"
28 #include "coverage.h"
29 #include "dynamic-string.h"
30 #include "hash.h"
31 #include "hmap.h"
32 #include "meta-flow.h"
33 #include "netdev.h"
34 #include "nx-match.h"
35 #include "ofp-actions.h"
36 #include "ofp-errors.h"
37 #include "ofp-msgs.h"
38 #include "ofp-print.h"
39 #include "ofp-util.h"
40 #include "ofpbuf.h"
41 #include "ofproto-provider.h"
42 #include "openflow/nicira-ext.h"
43 #include "openflow/openflow.h"
44 #include "packets.h"
45 #include "pinsched.h"
46 #include "pktbuf.h"
47 #include "poll-loop.h"
48 #include "random.h"
49 #include "shash.h"
50 #include "simap.h"
51 #include "sset.h"
52 #include "timeval.h"
53 #include "unaligned.h"
54 #include "unixctl.h"
55 #include "vlog.h"
56
57 VLOG_DEFINE_THIS_MODULE(ofproto);
58
59 COVERAGE_DEFINE(ofproto_error);
60 COVERAGE_DEFINE(ofproto_flush);
61 COVERAGE_DEFINE(ofproto_no_packet_in);
62 COVERAGE_DEFINE(ofproto_packet_out);
63 COVERAGE_DEFINE(ofproto_queue_req);
64 COVERAGE_DEFINE(ofproto_recv_openflow);
65 COVERAGE_DEFINE(ofproto_reinit_ports);
66 COVERAGE_DEFINE(ofproto_uninstallable);
67 COVERAGE_DEFINE(ofproto_update_port);
68
69 enum ofproto_state {
70 S_OPENFLOW, /* Processing OpenFlow commands. */
71 S_EVICT, /* Evicting flows from over-limit tables. */
72 S_FLUSH, /* Deleting all flow table rules. */
73 };
74
75 enum ofoperation_type {
76 OFOPERATION_ADD,
77 OFOPERATION_DELETE,
78 OFOPERATION_MODIFY
79 };
80
81 /* A single OpenFlow request can execute any number of operations. The
82 * ofopgroup maintain OpenFlow state common to all of the operations, e.g. the
83 * ofconn to which an error reply should be sent if necessary.
84 *
85 * ofproto initiates some operations internally. These operations are still
86 * assigned to groups but will not have an associated ofconn. */
87 struct ofopgroup {
88 struct ofproto *ofproto; /* Owning ofproto. */
89 struct list ofproto_node; /* In ofproto's "pending" list. */
90 struct list ops; /* List of "struct ofoperation"s. */
91 int n_running; /* Number of ops still pending. */
92
93 /* Data needed to send OpenFlow reply on failure or to send a buffered
94 * packet on success.
95 *
96 * If list_is_empty(ofconn_node) then this ofopgroup never had an
97 * associated ofconn or its ofconn's connection dropped after it initiated
98 * the operation. In the latter case 'ofconn' is a wild pointer that
99 * refers to freed memory, so the 'ofconn' member must be used only if
100 * !list_is_empty(ofconn_node).
101 */
102 struct list ofconn_node; /* In ofconn's list of pending opgroups. */
103 struct ofconn *ofconn; /* ofconn for reply (but see note above). */
104 struct ofp_header *request; /* Original request (truncated at 64 bytes). */
105 uint32_t buffer_id; /* Buffer id from original request. */
106 };
107
108 static struct ofopgroup *ofopgroup_create_unattached(struct ofproto *);
109 static struct ofopgroup *ofopgroup_create(struct ofproto *, struct ofconn *,
110 const struct ofp_header *,
111 uint32_t buffer_id);
112 static void ofopgroup_submit(struct ofopgroup *);
113 static void ofopgroup_complete(struct ofopgroup *);
114
115 /* A single flow table operation. */
116 struct ofoperation {
117 struct ofopgroup *group; /* Owning group. */
118 struct list group_node; /* In ofopgroup's "ops" list. */
119 struct hmap_node hmap_node; /* In ofproto's "deletions" hmap. */
120 struct rule *rule; /* Rule being operated upon. */
121 enum ofoperation_type type; /* Type of operation. */
122
123 /* OFOPERATION_ADD. */
124 struct rule *victim; /* Rule being replaced, if any.. */
125
126 /* OFOPERATION_MODIFY: The old actions, if the actions are changing. */
127 struct ofpact *ofpacts;
128 size_t ofpacts_len;
129
130 /* OFOPERATION_DELETE. */
131 enum ofp_flow_removed_reason reason; /* Reason flow was removed. */
132
133 ovs_be64 flow_cookie; /* Rule's old flow cookie. */
134 enum ofperr error; /* 0 if no error. */
135 };
136
137 static struct ofoperation *ofoperation_create(struct ofopgroup *,
138 struct rule *,
139 enum ofoperation_type,
140 enum ofp_flow_removed_reason);
141 static void ofoperation_destroy(struct ofoperation *);
142
143 /* oftable. */
144 static void oftable_init(struct oftable *);
145 static void oftable_destroy(struct oftable *);
146
147 static void oftable_set_name(struct oftable *, const char *name);
148
149 static void oftable_disable_eviction(struct oftable *);
150 static void oftable_enable_eviction(struct oftable *,
151 const struct mf_subfield *fields,
152 size_t n_fields);
153
154 static void oftable_remove_rule(struct rule *);
155 static struct rule *oftable_replace_rule(struct rule *);
156 static void oftable_substitute_rule(struct rule *old, struct rule *new);
157
158 /* A set of rules within a single OpenFlow table (oftable) that have the same
159 * values for the oftable's eviction_fields. A rule to be evicted, when one is
160 * needed, is taken from the eviction group that contains the greatest number
161 * of rules.
162 *
163 * An oftable owns any number of eviction groups, each of which contains any
164 * number of rules.
165 *
166 * Membership in an eviction group is imprecise, based on the hash of the
167 * oftable's eviction_fields (in the eviction_group's id_node.hash member).
168 * That is, if two rules have different eviction_fields, but those
169 * eviction_fields hash to the same value, then they will belong to the same
170 * eviction_group anyway.
171 *
172 * (When eviction is not enabled on an oftable, we don't track any eviction
173 * groups, to save time and space.) */
174 struct eviction_group {
175 struct hmap_node id_node; /* In oftable's "eviction_groups_by_id". */
176 struct heap_node size_node; /* In oftable's "eviction_groups_by_size". */
177 struct heap rules; /* Contains "struct rule"s. */
178 };
179
180 static struct rule *choose_rule_to_evict(struct oftable *);
181 static void ofproto_evict(struct ofproto *);
182 static uint32_t rule_eviction_priority(struct rule *);
183
184 /* ofport. */
185 static void ofport_destroy__(struct ofport *);
186 static void ofport_destroy(struct ofport *);
187
188 static void update_port(struct ofproto *, const char *devname);
189 static int init_ports(struct ofproto *);
190 static void reinit_ports(struct ofproto *);
191
192 /* rule. */
193 static void ofproto_rule_destroy__(struct rule *);
194 static void ofproto_rule_send_removed(struct rule *, uint8_t reason);
195 static bool rule_is_modifiable(const struct rule *);
196
197 /* OpenFlow. */
198 static enum ofperr add_flow(struct ofproto *, struct ofconn *,
199 const struct ofputil_flow_mod *,
200 const struct ofp_header *);
201 static void delete_flow__(struct rule *, struct ofopgroup *);
202 static bool handle_openflow(struct ofconn *, struct ofpbuf *);
203 static enum ofperr handle_flow_mod__(struct ofproto *, struct ofconn *,
204 const struct ofputil_flow_mod *,
205 const struct ofp_header *);
206
207 /* ofproto. */
208 static uint64_t pick_datapath_id(const struct ofproto *);
209 static uint64_t pick_fallback_dpid(void);
210 static void ofproto_destroy__(struct ofproto *);
211 static void update_mtu(struct ofproto *, struct ofport *);
212
213 /* unixctl. */
214 static void ofproto_unixctl_init(void);
215
216 /* All registered ofproto classes, in probe order. */
217 static const struct ofproto_class **ofproto_classes;
218 static size_t n_ofproto_classes;
219 static size_t allocated_ofproto_classes;
220
221 /* Map from datapath name to struct ofproto, for use by unixctl commands. */
222 static struct hmap all_ofprotos = HMAP_INITIALIZER(&all_ofprotos);
223
224 /* Initial mappings of port to OpenFlow number mappings. */
225 static struct shash init_ofp_ports = SHASH_INITIALIZER(&init_ofp_ports);
226
227 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
228
229 /* Must be called to initialize the ofproto library.
230 *
231 * The caller may pass in 'iface_hints', which contains an shash of
232 * "iface_hint" elements indexed by the interface's name. The provider
233 * may use these hints to describe the startup configuration in order to
234 * reinitialize its state. The caller owns the provided data, so a
235 * provider will make copies of anything required. An ofproto provider
236 * will remove any existing state that is not described by the hint, and
237 * may choose to remove it all. */
238 void
239 ofproto_init(const struct shash *iface_hints)
240 {
241 struct shash_node *node;
242 size_t i;
243
244 ofproto_class_register(&ofproto_dpif_class);
245
246 /* Make a local copy, since we don't own 'iface_hints' elements. */
247 SHASH_FOR_EACH(node, iface_hints) {
248 const struct iface_hint *orig_hint = node->data;
249 struct iface_hint *new_hint = xmalloc(sizeof *new_hint);
250 const char *br_type = ofproto_normalize_type(orig_hint->br_type);
251
252 new_hint->br_name = xstrdup(orig_hint->br_name);
253 new_hint->br_type = xstrdup(br_type);
254 new_hint->ofp_port = orig_hint->ofp_port;
255
256 shash_add(&init_ofp_ports, node->name, new_hint);
257 }
258
259 for (i = 0; i < n_ofproto_classes; i++) {
260 ofproto_classes[i]->init(&init_ofp_ports);
261 }
262 }
263
264 /* 'type' should be a normalized datapath type, as returned by
265 * ofproto_normalize_type(). Returns the corresponding ofproto_class
266 * structure, or a null pointer if there is none registered for 'type'. */
267 static const struct ofproto_class *
268 ofproto_class_find__(const char *type)
269 {
270 size_t i;
271
272 for (i = 0; i < n_ofproto_classes; i++) {
273 const struct ofproto_class *class = ofproto_classes[i];
274 struct sset types;
275 bool found;
276
277 sset_init(&types);
278 class->enumerate_types(&types);
279 found = sset_contains(&types, type);
280 sset_destroy(&types);
281
282 if (found) {
283 return class;
284 }
285 }
286 VLOG_WARN("unknown datapath type %s", type);
287 return NULL;
288 }
289
290 /* Registers a new ofproto class. After successful registration, new ofprotos
291 * of that type can be created using ofproto_create(). */
292 int
293 ofproto_class_register(const struct ofproto_class *new_class)
294 {
295 size_t i;
296
297 for (i = 0; i < n_ofproto_classes; i++) {
298 if (ofproto_classes[i] == new_class) {
299 return EEXIST;
300 }
301 }
302
303 if (n_ofproto_classes >= allocated_ofproto_classes) {
304 ofproto_classes = x2nrealloc(ofproto_classes,
305 &allocated_ofproto_classes,
306 sizeof *ofproto_classes);
307 }
308 ofproto_classes[n_ofproto_classes++] = new_class;
309 return 0;
310 }
311
312 /* Unregisters a datapath provider. 'type' must have been previously
313 * registered and not currently be in use by any ofprotos. After
314 * unregistration new datapaths of that type cannot be opened using
315 * ofproto_create(). */
316 int
317 ofproto_class_unregister(const struct ofproto_class *class)
318 {
319 size_t i;
320
321 for (i = 0; i < n_ofproto_classes; i++) {
322 if (ofproto_classes[i] == class) {
323 for (i++; i < n_ofproto_classes; i++) {
324 ofproto_classes[i - 1] = ofproto_classes[i];
325 }
326 n_ofproto_classes--;
327 return 0;
328 }
329 }
330 VLOG_WARN("attempted to unregister an ofproto class that is not "
331 "registered");
332 return EAFNOSUPPORT;
333 }
334
335 /* Clears 'types' and enumerates all registered ofproto types into it. The
336 * caller must first initialize the sset. */
337 void
338 ofproto_enumerate_types(struct sset *types)
339 {
340 size_t i;
341
342 for (i = 0; i < n_ofproto_classes; i++) {
343 ofproto_classes[i]->enumerate_types(types);
344 }
345 }
346
347 /* Returns the fully spelled out name for the given ofproto 'type'.
348 *
349 * Normalized type string can be compared with strcmp(). Unnormalized type
350 * string might be the same even if they have different spellings. */
351 const char *
352 ofproto_normalize_type(const char *type)
353 {
354 return type && type[0] ? type : "system";
355 }
356
357 /* Clears 'names' and enumerates the names of all known created ofprotos with
358 * the given 'type'. The caller must first initialize the sset. Returns 0 if
359 * successful, otherwise a positive errno value.
360 *
361 * Some kinds of datapaths might not be practically enumerable. This is not
362 * considered an error. */
363 int
364 ofproto_enumerate_names(const char *type, struct sset *names)
365 {
366 const struct ofproto_class *class = ofproto_class_find__(type);
367 return class ? class->enumerate_names(type, names) : EAFNOSUPPORT;
368 }
369
370 int
371 ofproto_create(const char *datapath_name, const char *datapath_type,
372 struct ofproto **ofprotop)
373 {
374 const struct ofproto_class *class;
375 struct ofproto *ofproto;
376 int error;
377 int i;
378
379 *ofprotop = NULL;
380
381 ofproto_unixctl_init();
382
383 datapath_type = ofproto_normalize_type(datapath_type);
384 class = ofproto_class_find__(datapath_type);
385 if (!class) {
386 VLOG_WARN("could not create datapath %s of unknown type %s",
387 datapath_name, datapath_type);
388 return EAFNOSUPPORT;
389 }
390
391 ofproto = class->alloc();
392 if (!ofproto) {
393 VLOG_ERR("failed to allocate datapath %s of type %s",
394 datapath_name, datapath_type);
395 return ENOMEM;
396 }
397
398 /* Initialize. */
399 memset(ofproto, 0, sizeof *ofproto);
400 ofproto->ofproto_class = class;
401 ofproto->name = xstrdup(datapath_name);
402 ofproto->type = xstrdup(datapath_type);
403 hmap_insert(&all_ofprotos, &ofproto->hmap_node,
404 hash_string(ofproto->name, 0));
405 ofproto->datapath_id = 0;
406 ofproto_set_flow_eviction_threshold(ofproto,
407 OFPROTO_FLOW_EVICTION_THRESHOLD_DEFAULT);
408 ofproto->forward_bpdu = false;
409 ofproto->fallback_dpid = pick_fallback_dpid();
410 ofproto->mfr_desc = NULL;
411 ofproto->hw_desc = NULL;
412 ofproto->sw_desc = NULL;
413 ofproto->serial_desc = NULL;
414 ofproto->dp_desc = NULL;
415 ofproto->frag_handling = OFPC_FRAG_NORMAL;
416 hmap_init(&ofproto->ports);
417 shash_init(&ofproto->port_by_name);
418 simap_init(&ofproto->ofp_requests);
419 ofproto->max_ports = OFPP_MAX;
420 ofproto->tables = NULL;
421 ofproto->n_tables = 0;
422 list_init(&ofproto->expirable);
423 ofproto->connmgr = connmgr_create(ofproto, datapath_name, datapath_name);
424 ofproto->state = S_OPENFLOW;
425 list_init(&ofproto->pending);
426 ofproto->n_pending = 0;
427 hmap_init(&ofproto->deletions);
428 ofproto->n_add = ofproto->n_delete = ofproto->n_modify = 0;
429 ofproto->first_op = ofproto->last_op = LLONG_MIN;
430 ofproto->next_op_report = LLONG_MAX;
431 ofproto->op_backoff = LLONG_MIN;
432 ofproto->vlan_bitmap = NULL;
433 ofproto->vlans_changed = false;
434 ofproto->min_mtu = INT_MAX;
435
436 error = ofproto->ofproto_class->construct(ofproto);
437 if (error) {
438 VLOG_ERR("failed to open datapath %s: %s",
439 datapath_name, strerror(error));
440 ofproto_destroy__(ofproto);
441 return error;
442 }
443
444 /* The "max_ports" member should have been set by ->construct(ofproto).
445 * Port 0 is not a valid OpenFlow port, so mark that as unavailable. */
446 ofproto->ofp_port_ids = bitmap_allocate(ofproto->max_ports);
447 bitmap_set1(ofproto->ofp_port_ids, 0);
448
449 /* Check that hidden tables, if any, are at the end. */
450 ovs_assert(ofproto->n_tables);
451 for (i = 0; i + 1 < ofproto->n_tables; i++) {
452 enum oftable_flags flags = ofproto->tables[i].flags;
453 enum oftable_flags next_flags = ofproto->tables[i + 1].flags;
454
455 ovs_assert(!(flags & OFTABLE_HIDDEN) || next_flags & OFTABLE_HIDDEN);
456 }
457
458 ofproto->datapath_id = pick_datapath_id(ofproto);
459 init_ports(ofproto);
460
461 *ofprotop = ofproto;
462 return 0;
463 }
464
465 /* Must be called (only) by an ofproto implementation in its constructor
466 * function. See the large comment on 'construct' in struct ofproto_class for
467 * details. */
468 void
469 ofproto_init_tables(struct ofproto *ofproto, int n_tables)
470 {
471 struct oftable *table;
472
473 ovs_assert(!ofproto->n_tables);
474 ovs_assert(n_tables >= 1 && n_tables <= 255);
475
476 ofproto->n_tables = n_tables;
477 ofproto->tables = xmalloc(n_tables * sizeof *ofproto->tables);
478 OFPROTO_FOR_EACH_TABLE (table, ofproto) {
479 oftable_init(table);
480 }
481 }
482
483 /* To be optionally called (only) by an ofproto implementation in its
484 * constructor function. See the large comment on 'construct' in struct
485 * ofproto_class for details.
486 *
487 * Sets the maximum number of ports to 'max_ports'. The ofproto generic layer
488 * will then ensure that actions passed into the ofproto implementation will
489 * not refer to OpenFlow ports numbered 'max_ports' or higher. If this
490 * function is not called, there will be no such restriction.
491 *
492 * Reserved ports numbered OFPP_MAX and higher are special and not subject to
493 * the 'max_ports' restriction. */
494 void
495 ofproto_init_max_ports(struct ofproto *ofproto, uint16_t max_ports)
496 {
497 ovs_assert(max_ports <= OFPP_MAX);
498 ofproto->max_ports = max_ports;
499 }
500
501 uint64_t
502 ofproto_get_datapath_id(const struct ofproto *ofproto)
503 {
504 return ofproto->datapath_id;
505 }
506
507 void
508 ofproto_set_datapath_id(struct ofproto *p, uint64_t datapath_id)
509 {
510 uint64_t old_dpid = p->datapath_id;
511 p->datapath_id = datapath_id ? datapath_id : pick_datapath_id(p);
512 if (p->datapath_id != old_dpid) {
513 /* Force all active connections to reconnect, since there is no way to
514 * notify a controller that the datapath ID has changed. */
515 ofproto_reconnect_controllers(p);
516 }
517 }
518
519 void
520 ofproto_set_controllers(struct ofproto *p,
521 const struct ofproto_controller *controllers,
522 size_t n_controllers, uint32_t allowed_versions)
523 {
524 connmgr_set_controllers(p->connmgr, controllers, n_controllers,
525 allowed_versions);
526 }
527
528 void
529 ofproto_set_fail_mode(struct ofproto *p, enum ofproto_fail_mode fail_mode)
530 {
531 connmgr_set_fail_mode(p->connmgr, fail_mode);
532 }
533
534 /* Drops the connections between 'ofproto' and all of its controllers, forcing
535 * them to reconnect. */
536 void
537 ofproto_reconnect_controllers(struct ofproto *ofproto)
538 {
539 connmgr_reconnect(ofproto->connmgr);
540 }
541
542 /* Sets the 'n' TCP port addresses in 'extras' as ones to which 'ofproto''s
543 * in-band control should guarantee access, in the same way that in-band
544 * control guarantees access to OpenFlow controllers. */
545 void
546 ofproto_set_extra_in_band_remotes(struct ofproto *ofproto,
547 const struct sockaddr_in *extras, size_t n)
548 {
549 connmgr_set_extra_in_band_remotes(ofproto->connmgr, extras, n);
550 }
551
552 /* Sets the OpenFlow queue used by flows set up by in-band control on
553 * 'ofproto' to 'queue_id'. If 'queue_id' is negative, then in-band control
554 * flows will use the default queue. */
555 void
556 ofproto_set_in_band_queue(struct ofproto *ofproto, int queue_id)
557 {
558 connmgr_set_in_band_queue(ofproto->connmgr, queue_id);
559 }
560
561 /* Sets the number of flows at which eviction from the kernel flow table
562 * will occur. */
563 void
564 ofproto_set_flow_eviction_threshold(struct ofproto *ofproto, unsigned threshold)
565 {
566 if (threshold < OFPROTO_FLOW_EVICTION_THRESHOLD_MIN) {
567 ofproto->flow_eviction_threshold = OFPROTO_FLOW_EVICTION_THRESHOLD_MIN;
568 } else {
569 ofproto->flow_eviction_threshold = threshold;
570 }
571 }
572
573 /* If forward_bpdu is true, the NORMAL action will forward frames with
574 * reserved (e.g. STP) destination Ethernet addresses. if forward_bpdu is false,
575 * the NORMAL action will drop these frames. */
576 void
577 ofproto_set_forward_bpdu(struct ofproto *ofproto, bool forward_bpdu)
578 {
579 bool old_val = ofproto->forward_bpdu;
580 ofproto->forward_bpdu = forward_bpdu;
581 if (old_val != ofproto->forward_bpdu) {
582 if (ofproto->ofproto_class->forward_bpdu_changed) {
583 ofproto->ofproto_class->forward_bpdu_changed(ofproto);
584 }
585 }
586 }
587
588 /* Sets the MAC aging timeout for the OFPP_NORMAL action on 'ofproto' to
589 * 'idle_time', in seconds, and the maximum number of MAC table entries to
590 * 'max_entries'. */
591 void
592 ofproto_set_mac_table_config(struct ofproto *ofproto, unsigned idle_time,
593 size_t max_entries)
594 {
595 if (ofproto->ofproto_class->set_mac_table_config) {
596 ofproto->ofproto_class->set_mac_table_config(ofproto, idle_time,
597 max_entries);
598 }
599 }
600
601 void
602 ofproto_set_dp_desc(struct ofproto *p, const char *dp_desc)
603 {
604 free(p->dp_desc);
605 p->dp_desc = dp_desc ? xstrdup(dp_desc) : NULL;
606 }
607
608 int
609 ofproto_set_snoops(struct ofproto *ofproto, const struct sset *snoops)
610 {
611 return connmgr_set_snoops(ofproto->connmgr, snoops);
612 }
613
614 int
615 ofproto_set_netflow(struct ofproto *ofproto,
616 const struct netflow_options *nf_options)
617 {
618 if (nf_options && sset_is_empty(&nf_options->collectors)) {
619 nf_options = NULL;
620 }
621
622 if (ofproto->ofproto_class->set_netflow) {
623 return ofproto->ofproto_class->set_netflow(ofproto, nf_options);
624 } else {
625 return nf_options ? EOPNOTSUPP : 0;
626 }
627 }
628
629 int
630 ofproto_set_sflow(struct ofproto *ofproto,
631 const struct ofproto_sflow_options *oso)
632 {
633 if (oso && sset_is_empty(&oso->targets)) {
634 oso = NULL;
635 }
636
637 if (ofproto->ofproto_class->set_sflow) {
638 return ofproto->ofproto_class->set_sflow(ofproto, oso);
639 } else {
640 return oso ? EOPNOTSUPP : 0;
641 }
642 }
643
644 int
645 ofproto_set_ipfix(struct ofproto *ofproto,
646 const struct ofproto_ipfix_bridge_exporter_options *bo,
647 const struct ofproto_ipfix_flow_exporter_options *fo,
648 size_t n_fo)
649 {
650 if (ofproto->ofproto_class->set_ipfix) {
651 return ofproto->ofproto_class->set_ipfix(ofproto, bo, fo, n_fo);
652 } else {
653 return (bo || fo) ? EOPNOTSUPP : 0;
654 }
655 }
656 \f
657 /* Spanning Tree Protocol (STP) configuration. */
658
659 /* Configures STP on 'ofproto' using the settings defined in 's'. If
660 * 's' is NULL, disables STP.
661 *
662 * Returns 0 if successful, otherwise a positive errno value. */
663 int
664 ofproto_set_stp(struct ofproto *ofproto,
665 const struct ofproto_stp_settings *s)
666 {
667 return (ofproto->ofproto_class->set_stp
668 ? ofproto->ofproto_class->set_stp(ofproto, s)
669 : EOPNOTSUPP);
670 }
671
672 /* Retrieves STP status of 'ofproto' and stores it in 's'. If the
673 * 'enabled' member of 's' is false, then the other members are not
674 * meaningful.
675 *
676 * Returns 0 if successful, otherwise a positive errno value. */
677 int
678 ofproto_get_stp_status(struct ofproto *ofproto,
679 struct ofproto_stp_status *s)
680 {
681 return (ofproto->ofproto_class->get_stp_status
682 ? ofproto->ofproto_class->get_stp_status(ofproto, s)
683 : EOPNOTSUPP);
684 }
685
686 /* Configures STP on 'ofp_port' of 'ofproto' using the settings defined
687 * in 's'. The caller is responsible for assigning STP port numbers
688 * (using the 'port_num' member in the range of 1 through 255, inclusive)
689 * and ensuring there are no duplicates. If the 's' is NULL, then STP
690 * is disabled on the port.
691 *
692 * Returns 0 if successful, otherwise a positive errno value.*/
693 int
694 ofproto_port_set_stp(struct ofproto *ofproto, uint16_t ofp_port,
695 const struct ofproto_port_stp_settings *s)
696 {
697 struct ofport *ofport = ofproto_get_port(ofproto, ofp_port);
698 if (!ofport) {
699 VLOG_WARN("%s: cannot configure STP on nonexistent port %"PRIu16,
700 ofproto->name, ofp_port);
701 return ENODEV;
702 }
703
704 return (ofproto->ofproto_class->set_stp_port
705 ? ofproto->ofproto_class->set_stp_port(ofport, s)
706 : EOPNOTSUPP);
707 }
708
709 /* Retrieves STP port status of 'ofp_port' on 'ofproto' and stores it in
710 * 's'. If the 'enabled' member in 's' is false, then the other members
711 * are not meaningful.
712 *
713 * Returns 0 if successful, otherwise a positive errno value.*/
714 int
715 ofproto_port_get_stp_status(struct ofproto *ofproto, uint16_t ofp_port,
716 struct ofproto_port_stp_status *s)
717 {
718 struct ofport *ofport = ofproto_get_port(ofproto, ofp_port);
719 if (!ofport) {
720 VLOG_WARN_RL(&rl, "%s: cannot get STP status on nonexistent "
721 "port %"PRIu16, ofproto->name, ofp_port);
722 return ENODEV;
723 }
724
725 return (ofproto->ofproto_class->get_stp_port_status
726 ? ofproto->ofproto_class->get_stp_port_status(ofport, s)
727 : EOPNOTSUPP);
728 }
729 \f
730 /* Queue DSCP configuration. */
731
732 /* Registers meta-data associated with the 'n_qdscp' Qualities of Service
733 * 'queues' attached to 'ofport'. This data is not intended to be sufficient
734 * to implement QoS. Instead, it is used to implement features which require
735 * knowledge of what queues exist on a port, and some basic information about
736 * them.
737 *
738 * Returns 0 if successful, otherwise a positive errno value. */
739 int
740 ofproto_port_set_queues(struct ofproto *ofproto, uint16_t ofp_port,
741 const struct ofproto_port_queue *queues,
742 size_t n_queues)
743 {
744 struct ofport *ofport = ofproto_get_port(ofproto, ofp_port);
745
746 if (!ofport) {
747 VLOG_WARN("%s: cannot set queues on nonexistent port %"PRIu16,
748 ofproto->name, ofp_port);
749 return ENODEV;
750 }
751
752 return (ofproto->ofproto_class->set_queues
753 ? ofproto->ofproto_class->set_queues(ofport, queues, n_queues)
754 : EOPNOTSUPP);
755 }
756 \f
757 /* Connectivity Fault Management configuration. */
758
759 /* Clears the CFM configuration from 'ofp_port' on 'ofproto'. */
760 void
761 ofproto_port_clear_cfm(struct ofproto *ofproto, uint16_t ofp_port)
762 {
763 struct ofport *ofport = ofproto_get_port(ofproto, ofp_port);
764 if (ofport && ofproto->ofproto_class->set_cfm) {
765 ofproto->ofproto_class->set_cfm(ofport, NULL);
766 }
767 }
768
769 /* Configures connectivity fault management on 'ofp_port' in 'ofproto'. Takes
770 * basic configuration from the configuration members in 'cfm', and the remote
771 * maintenance point ID from remote_mpid. Ignores the statistics members of
772 * 'cfm'.
773 *
774 * This function has no effect if 'ofproto' does not have a port 'ofp_port'. */
775 void
776 ofproto_port_set_cfm(struct ofproto *ofproto, uint16_t ofp_port,
777 const struct cfm_settings *s)
778 {
779 struct ofport *ofport;
780 int error;
781
782 ofport = ofproto_get_port(ofproto, ofp_port);
783 if (!ofport) {
784 VLOG_WARN("%s: cannot configure CFM on nonexistent port %"PRIu16,
785 ofproto->name, ofp_port);
786 return;
787 }
788
789 /* XXX: For configuration simplicity, we only support one remote_mpid
790 * outside of the CFM module. It's not clear if this is the correct long
791 * term solution or not. */
792 error = (ofproto->ofproto_class->set_cfm
793 ? ofproto->ofproto_class->set_cfm(ofport, s)
794 : EOPNOTSUPP);
795 if (error) {
796 VLOG_WARN("%s: CFM configuration on port %"PRIu16" (%s) failed (%s)",
797 ofproto->name, ofp_port, netdev_get_name(ofport->netdev),
798 strerror(error));
799 }
800 }
801
802 /* Configures BFD on 'ofp_port' in 'ofproto'. This function has no effect if
803 * 'ofproto' does not have a port 'ofp_port'. */
804 void
805 ofproto_port_set_bfd(struct ofproto *ofproto, uint16_t ofp_port,
806 const struct smap *cfg)
807 {
808 struct ofport *ofport;
809 int error;
810
811 ofport = ofproto_get_port(ofproto, ofp_port);
812 if (!ofport) {
813 VLOG_WARN("%s: cannot configure bfd on nonexistent port %"PRIu16,
814 ofproto->name, ofp_port);
815 }
816
817 error = (ofproto->ofproto_class->set_bfd
818 ? ofproto->ofproto_class->set_bfd(ofport, cfg)
819 : EOPNOTSUPP);
820 if (error) {
821 VLOG_WARN("%s: bfd configuration on port %"PRIu16" (%s) failed (%s)",
822 ofproto->name, ofp_port, netdev_get_name(ofport->netdev),
823 strerror(error));
824 }
825 }
826
827 /* Populates 'status' with key value pairs indicating the status of the BFD
828 * session on 'ofp_port'. This information is intended to be populated in the
829 * OVS database. Has no effect if 'ofp_port' is not na OpenFlow port in
830 * 'ofproto'. */
831 int
832 ofproto_port_get_bfd_status(struct ofproto *ofproto, uint16_t ofp_port,
833 struct smap *status)
834 {
835 struct ofport *ofport = ofproto_get_port(ofproto, ofp_port);
836 return (ofport && ofproto->ofproto_class->get_bfd_status
837 ? ofproto->ofproto_class->get_bfd_status(ofport, status)
838 : EOPNOTSUPP);
839 }
840
841 /* Checks the status of LACP negotiation for 'ofp_port' within ofproto.
842 * Returns 1 if LACP partner information for 'ofp_port' is up-to-date,
843 * 0 if LACP partner information is not current (generally indicating a
844 * connectivity problem), or -1 if LACP is not enabled on 'ofp_port'. */
845 int
846 ofproto_port_is_lacp_current(struct ofproto *ofproto, uint16_t ofp_port)
847 {
848 struct ofport *ofport = ofproto_get_port(ofproto, ofp_port);
849 return (ofport && ofproto->ofproto_class->port_is_lacp_current
850 ? ofproto->ofproto_class->port_is_lacp_current(ofport)
851 : -1);
852 }
853 \f
854 /* Bundles. */
855
856 /* Registers a "bundle" associated with client data pointer 'aux' in 'ofproto'.
857 * A bundle is the same concept as a Port in OVSDB, that is, it consists of one
858 * or more "slave" devices (Interfaces, in OVSDB) along with a VLAN
859 * configuration plus, if there is more than one slave, a bonding
860 * configuration.
861 *
862 * If 'aux' is already registered then this function updates its configuration
863 * to 's'. Otherwise, this function registers a new bundle.
864 *
865 * Bundles only affect the NXAST_AUTOPATH action and output to the OFPP_NORMAL
866 * port. */
867 int
868 ofproto_bundle_register(struct ofproto *ofproto, void *aux,
869 const struct ofproto_bundle_settings *s)
870 {
871 return (ofproto->ofproto_class->bundle_set
872 ? ofproto->ofproto_class->bundle_set(ofproto, aux, s)
873 : EOPNOTSUPP);
874 }
875
876 /* Unregisters the bundle registered on 'ofproto' with auxiliary data 'aux'.
877 * If no such bundle has been registered, this has no effect. */
878 int
879 ofproto_bundle_unregister(struct ofproto *ofproto, void *aux)
880 {
881 return ofproto_bundle_register(ofproto, aux, NULL);
882 }
883
884 \f
885 /* Registers a mirror associated with client data pointer 'aux' in 'ofproto'.
886 * If 'aux' is already registered then this function updates its configuration
887 * to 's'. Otherwise, this function registers a new mirror. */
888 int
889 ofproto_mirror_register(struct ofproto *ofproto, void *aux,
890 const struct ofproto_mirror_settings *s)
891 {
892 return (ofproto->ofproto_class->mirror_set
893 ? ofproto->ofproto_class->mirror_set(ofproto, aux, s)
894 : EOPNOTSUPP);
895 }
896
897 /* Unregisters the mirror registered on 'ofproto' with auxiliary data 'aux'.
898 * If no mirror has been registered, this has no effect. */
899 int
900 ofproto_mirror_unregister(struct ofproto *ofproto, void *aux)
901 {
902 return ofproto_mirror_register(ofproto, aux, NULL);
903 }
904
905 /* Retrieves statistics from mirror associated with client data pointer
906 * 'aux' in 'ofproto'. Stores packet and byte counts in 'packets' and
907 * 'bytes', respectively. If a particular counters is not supported,
908 * the appropriate argument is set to UINT64_MAX. */
909 int
910 ofproto_mirror_get_stats(struct ofproto *ofproto, void *aux,
911 uint64_t *packets, uint64_t *bytes)
912 {
913 if (!ofproto->ofproto_class->mirror_get_stats) {
914 *packets = *bytes = UINT64_MAX;
915 return EOPNOTSUPP;
916 }
917
918 return ofproto->ofproto_class->mirror_get_stats(ofproto, aux,
919 packets, bytes);
920 }
921
922 /* Configures the VLANs whose bits are set to 1 in 'flood_vlans' as VLANs on
923 * which all packets are flooded, instead of using MAC learning. If
924 * 'flood_vlans' is NULL, then MAC learning applies to all VLANs.
925 *
926 * Flood VLANs affect only the treatment of packets output to the OFPP_NORMAL
927 * port. */
928 int
929 ofproto_set_flood_vlans(struct ofproto *ofproto, unsigned long *flood_vlans)
930 {
931 return (ofproto->ofproto_class->set_flood_vlans
932 ? ofproto->ofproto_class->set_flood_vlans(ofproto, flood_vlans)
933 : EOPNOTSUPP);
934 }
935
936 /* Returns true if 'aux' is a registered bundle that is currently in use as the
937 * output for a mirror. */
938 bool
939 ofproto_is_mirror_output_bundle(const struct ofproto *ofproto, void *aux)
940 {
941 return (ofproto->ofproto_class->is_mirror_output_bundle
942 ? ofproto->ofproto_class->is_mirror_output_bundle(ofproto, aux)
943 : false);
944 }
945 \f
946 /* Configuration of OpenFlow tables. */
947
948 /* Returns the number of OpenFlow tables in 'ofproto'. */
949 int
950 ofproto_get_n_tables(const struct ofproto *ofproto)
951 {
952 return ofproto->n_tables;
953 }
954
955 /* Configures the OpenFlow table in 'ofproto' with id 'table_id' with the
956 * settings from 's'. 'table_id' must be in the range 0 through the number of
957 * OpenFlow tables in 'ofproto' minus 1, inclusive.
958 *
959 * For read-only tables, only the name may be configured. */
960 void
961 ofproto_configure_table(struct ofproto *ofproto, int table_id,
962 const struct ofproto_table_settings *s)
963 {
964 struct oftable *table;
965
966 ovs_assert(table_id >= 0 && table_id < ofproto->n_tables);
967 table = &ofproto->tables[table_id];
968
969 oftable_set_name(table, s->name);
970
971 if (table->flags & OFTABLE_READONLY) {
972 return;
973 }
974
975 if (s->groups) {
976 oftable_enable_eviction(table, s->groups, s->n_groups);
977 } else {
978 oftable_disable_eviction(table);
979 }
980
981 table->max_flows = s->max_flows;
982 if (classifier_count(&table->cls) > table->max_flows
983 && table->eviction_fields) {
984 /* 'table' contains more flows than allowed. We might not be able to
985 * evict them right away because of the asynchronous nature of flow
986 * table changes. Schedule eviction for later. */
987 switch (ofproto->state) {
988 case S_OPENFLOW:
989 ofproto->state = S_EVICT;
990 break;
991 case S_EVICT:
992 case S_FLUSH:
993 /* We're already deleting flows, nothing more to do. */
994 break;
995 }
996 }
997 }
998 \f
999 bool
1000 ofproto_has_snoops(const struct ofproto *ofproto)
1001 {
1002 return connmgr_has_snoops(ofproto->connmgr);
1003 }
1004
1005 void
1006 ofproto_get_snoops(const struct ofproto *ofproto, struct sset *snoops)
1007 {
1008 connmgr_get_snoops(ofproto->connmgr, snoops);
1009 }
1010
1011 static void
1012 ofproto_flush__(struct ofproto *ofproto)
1013 {
1014 struct ofopgroup *group;
1015 struct oftable *table;
1016
1017 if (ofproto->ofproto_class->flush) {
1018 ofproto->ofproto_class->flush(ofproto);
1019 }
1020
1021 group = ofopgroup_create_unattached(ofproto);
1022 OFPROTO_FOR_EACH_TABLE (table, ofproto) {
1023 struct rule *rule, *next_rule;
1024 struct cls_cursor cursor;
1025
1026 if (table->flags & OFTABLE_HIDDEN) {
1027 continue;
1028 }
1029
1030 cls_cursor_init(&cursor, &table->cls, NULL);
1031 CLS_CURSOR_FOR_EACH_SAFE (rule, next_rule, cr, &cursor) {
1032 if (!rule->pending) {
1033 ofoperation_create(group, rule, OFOPERATION_DELETE,
1034 OFPRR_DELETE);
1035 oftable_remove_rule(rule);
1036 ofproto->ofproto_class->rule_destruct(rule);
1037 }
1038 }
1039 }
1040 ofopgroup_submit(group);
1041 }
1042
1043 static void
1044 ofproto_destroy__(struct ofproto *ofproto)
1045 {
1046 struct oftable *table;
1047
1048 ovs_assert(list_is_empty(&ofproto->pending));
1049 ovs_assert(!ofproto->n_pending);
1050
1051 connmgr_destroy(ofproto->connmgr);
1052
1053 hmap_remove(&all_ofprotos, &ofproto->hmap_node);
1054 free(ofproto->name);
1055 free(ofproto->type);
1056 free(ofproto->mfr_desc);
1057 free(ofproto->hw_desc);
1058 free(ofproto->sw_desc);
1059 free(ofproto->serial_desc);
1060 free(ofproto->dp_desc);
1061 hmap_destroy(&ofproto->ports);
1062 shash_destroy(&ofproto->port_by_name);
1063 bitmap_free(ofproto->ofp_port_ids);
1064 simap_destroy(&ofproto->ofp_requests);
1065
1066 OFPROTO_FOR_EACH_TABLE (table, ofproto) {
1067 oftable_destroy(table);
1068 }
1069 free(ofproto->tables);
1070
1071 hmap_destroy(&ofproto->deletions);
1072
1073 free(ofproto->vlan_bitmap);
1074
1075 ofproto->ofproto_class->dealloc(ofproto);
1076 }
1077
1078 void
1079 ofproto_destroy(struct ofproto *p)
1080 {
1081 struct ofport *ofport, *next_ofport;
1082
1083 if (!p) {
1084 return;
1085 }
1086
1087 ofproto_flush__(p);
1088 HMAP_FOR_EACH_SAFE (ofport, next_ofport, hmap_node, &p->ports) {
1089 ofport_destroy(ofport);
1090 }
1091
1092 p->ofproto_class->destruct(p);
1093 ofproto_destroy__(p);
1094 }
1095
1096 /* Destroys the datapath with the respective 'name' and 'type'. With the Linux
1097 * kernel datapath, for example, this destroys the datapath in the kernel, and
1098 * with the netdev-based datapath, it tears down the data structures that
1099 * represent the datapath.
1100 *
1101 * The datapath should not be currently open as an ofproto. */
1102 int
1103 ofproto_delete(const char *name, const char *type)
1104 {
1105 const struct ofproto_class *class = ofproto_class_find__(type);
1106 return (!class ? EAFNOSUPPORT
1107 : !class->del ? EACCES
1108 : class->del(type, name));
1109 }
1110
1111 static void
1112 process_port_change(struct ofproto *ofproto, int error, char *devname)
1113 {
1114 if (error == ENOBUFS) {
1115 reinit_ports(ofproto);
1116 } else if (!error) {
1117 update_port(ofproto, devname);
1118 free(devname);
1119 }
1120 }
1121
1122 int
1123 ofproto_type_run(const char *datapath_type)
1124 {
1125 const struct ofproto_class *class;
1126 int error;
1127
1128 datapath_type = ofproto_normalize_type(datapath_type);
1129 class = ofproto_class_find__(datapath_type);
1130
1131 error = class->type_run ? class->type_run(datapath_type) : 0;
1132 if (error && error != EAGAIN) {
1133 VLOG_ERR_RL(&rl, "%s: type_run failed (%s)",
1134 datapath_type, strerror(error));
1135 }
1136 return error;
1137 }
1138
1139 int
1140 ofproto_type_run_fast(const char *datapath_type)
1141 {
1142 const struct ofproto_class *class;
1143 int error;
1144
1145 datapath_type = ofproto_normalize_type(datapath_type);
1146 class = ofproto_class_find__(datapath_type);
1147
1148 error = class->type_run_fast ? class->type_run_fast(datapath_type) : 0;
1149 if (error && error != EAGAIN) {
1150 VLOG_ERR_RL(&rl, "%s: type_run_fast failed (%s)",
1151 datapath_type, strerror(error));
1152 }
1153 return error;
1154 }
1155
1156 void
1157 ofproto_type_wait(const char *datapath_type)
1158 {
1159 const struct ofproto_class *class;
1160
1161 datapath_type = ofproto_normalize_type(datapath_type);
1162 class = ofproto_class_find__(datapath_type);
1163
1164 if (class->type_wait) {
1165 class->type_wait(datapath_type);
1166 }
1167 }
1168
1169 int
1170 ofproto_run(struct ofproto *p)
1171 {
1172 struct sset changed_netdevs;
1173 const char *changed_netdev;
1174 struct ofport *ofport;
1175 int error;
1176
1177 error = p->ofproto_class->run(p);
1178 if (error && error != EAGAIN) {
1179 VLOG_ERR_RL(&rl, "%s: run failed (%s)", p->name, strerror(error));
1180 }
1181
1182 if (p->ofproto_class->port_poll) {
1183 char *devname;
1184
1185 while ((error = p->ofproto_class->port_poll(p, &devname)) != EAGAIN) {
1186 process_port_change(p, error, devname);
1187 }
1188 }
1189
1190 /* Update OpenFlow port status for any port whose netdev has changed.
1191 *
1192 * Refreshing a given 'ofport' can cause an arbitrary ofport to be
1193 * destroyed, so it's not safe to update ports directly from the
1194 * HMAP_FOR_EACH loop, or even to use HMAP_FOR_EACH_SAFE. Instead, we
1195 * need this two-phase approach. */
1196 sset_init(&changed_netdevs);
1197 HMAP_FOR_EACH (ofport, hmap_node, &p->ports) {
1198 unsigned int change_seq = netdev_change_seq(ofport->netdev);
1199 if (ofport->change_seq != change_seq) {
1200 ofport->change_seq = change_seq;
1201 sset_add(&changed_netdevs, netdev_get_name(ofport->netdev));
1202 }
1203 }
1204 SSET_FOR_EACH (changed_netdev, &changed_netdevs) {
1205 update_port(p, changed_netdev);
1206 }
1207 sset_destroy(&changed_netdevs);
1208
1209 switch (p->state) {
1210 case S_OPENFLOW:
1211 connmgr_run(p->connmgr, handle_openflow);
1212 break;
1213
1214 case S_EVICT:
1215 connmgr_run(p->connmgr, NULL);
1216 ofproto_evict(p);
1217 if (list_is_empty(&p->pending) && hmap_is_empty(&p->deletions)) {
1218 p->state = S_OPENFLOW;
1219 }
1220 break;
1221
1222 case S_FLUSH:
1223 connmgr_run(p->connmgr, NULL);
1224 ofproto_flush__(p);
1225 if (list_is_empty(&p->pending) && hmap_is_empty(&p->deletions)) {
1226 connmgr_flushed(p->connmgr);
1227 p->state = S_OPENFLOW;
1228 }
1229 break;
1230
1231 default:
1232 NOT_REACHED();
1233 }
1234
1235 if (time_msec() >= p->next_op_report) {
1236 long long int ago = (time_msec() - p->first_op) / 1000;
1237 long long int interval = (p->last_op - p->first_op) / 1000;
1238 struct ds s;
1239
1240 ds_init(&s);
1241 ds_put_format(&s, "%d flow_mods ",
1242 p->n_add + p->n_delete + p->n_modify);
1243 if (interval == ago) {
1244 ds_put_format(&s, "in the last %lld s", ago);
1245 } else if (interval) {
1246 ds_put_format(&s, "in the %lld s starting %lld s ago",
1247 interval, ago);
1248 } else {
1249 ds_put_format(&s, "%lld s ago", ago);
1250 }
1251
1252 ds_put_cstr(&s, " (");
1253 if (p->n_add) {
1254 ds_put_format(&s, "%d adds, ", p->n_add);
1255 }
1256 if (p->n_delete) {
1257 ds_put_format(&s, "%d deletes, ", p->n_delete);
1258 }
1259 if (p->n_modify) {
1260 ds_put_format(&s, "%d modifications, ", p->n_modify);
1261 }
1262 s.length -= 2;
1263 ds_put_char(&s, ')');
1264
1265 VLOG_INFO("%s: %s", p->name, ds_cstr(&s));
1266 ds_destroy(&s);
1267
1268 p->n_add = p->n_delete = p->n_modify = 0;
1269 p->next_op_report = LLONG_MAX;
1270 }
1271
1272 return error;
1273 }
1274
1275 /* Performs periodic activity required by 'ofproto' that needs to be done
1276 * with the least possible latency.
1277 *
1278 * It makes sense to call this function a couple of times per poll loop, to
1279 * provide a significant performance boost on some benchmarks with the
1280 * ofproto-dpif implementation. */
1281 int
1282 ofproto_run_fast(struct ofproto *p)
1283 {
1284 int error;
1285
1286 error = p->ofproto_class->run_fast ? p->ofproto_class->run_fast(p) : 0;
1287 if (error && error != EAGAIN) {
1288 VLOG_ERR_RL(&rl, "%s: fastpath run failed (%s)",
1289 p->name, strerror(error));
1290 }
1291 return error;
1292 }
1293
1294 void
1295 ofproto_wait(struct ofproto *p)
1296 {
1297 struct ofport *ofport;
1298
1299 p->ofproto_class->wait(p);
1300 if (p->ofproto_class->port_poll_wait) {
1301 p->ofproto_class->port_poll_wait(p);
1302 }
1303
1304 HMAP_FOR_EACH (ofport, hmap_node, &p->ports) {
1305 if (ofport->change_seq != netdev_change_seq(ofport->netdev)) {
1306 poll_immediate_wake();
1307 }
1308 }
1309
1310 switch (p->state) {
1311 case S_OPENFLOW:
1312 connmgr_wait(p->connmgr, true);
1313 break;
1314
1315 case S_EVICT:
1316 case S_FLUSH:
1317 connmgr_wait(p->connmgr, false);
1318 if (list_is_empty(&p->pending) && hmap_is_empty(&p->deletions)) {
1319 poll_immediate_wake();
1320 }
1321 break;
1322 }
1323 }
1324
1325 bool
1326 ofproto_is_alive(const struct ofproto *p)
1327 {
1328 return connmgr_has_controllers(p->connmgr);
1329 }
1330
1331 /* Adds some memory usage statistics for 'ofproto' into 'usage', for use with
1332 * memory_report(). */
1333 void
1334 ofproto_get_memory_usage(const struct ofproto *ofproto, struct simap *usage)
1335 {
1336 const struct oftable *table;
1337 unsigned int n_rules;
1338
1339 simap_increase(usage, "ports", hmap_count(&ofproto->ports));
1340 simap_increase(usage, "ops",
1341 ofproto->n_pending + hmap_count(&ofproto->deletions));
1342
1343 n_rules = 0;
1344 OFPROTO_FOR_EACH_TABLE (table, ofproto) {
1345 n_rules += classifier_count(&table->cls);
1346 }
1347 simap_increase(usage, "rules", n_rules);
1348
1349 if (ofproto->ofproto_class->get_memory_usage) {
1350 ofproto->ofproto_class->get_memory_usage(ofproto, usage);
1351 }
1352
1353 connmgr_get_memory_usage(ofproto->connmgr, usage);
1354 }
1355
1356 void
1357 ofproto_get_ofproto_controller_info(const struct ofproto *ofproto,
1358 struct shash *info)
1359 {
1360 connmgr_get_controller_info(ofproto->connmgr, info);
1361 }
1362
1363 void
1364 ofproto_free_ofproto_controller_info(struct shash *info)
1365 {
1366 connmgr_free_controller_info(info);
1367 }
1368
1369 /* Makes a deep copy of 'old' into 'port'. */
1370 void
1371 ofproto_port_clone(struct ofproto_port *port, const struct ofproto_port *old)
1372 {
1373 port->name = xstrdup(old->name);
1374 port->type = xstrdup(old->type);
1375 port->ofp_port = old->ofp_port;
1376 }
1377
1378 /* Frees memory allocated to members of 'ofproto_port'.
1379 *
1380 * Do not call this function on an ofproto_port obtained from
1381 * ofproto_port_dump_next(): that function retains ownership of the data in the
1382 * ofproto_port. */
1383 void
1384 ofproto_port_destroy(struct ofproto_port *ofproto_port)
1385 {
1386 free(ofproto_port->name);
1387 free(ofproto_port->type);
1388 }
1389
1390 /* Initializes 'dump' to begin dumping the ports in an ofproto.
1391 *
1392 * This function provides no status indication. An error status for the entire
1393 * dump operation is provided when it is completed by calling
1394 * ofproto_port_dump_done().
1395 */
1396 void
1397 ofproto_port_dump_start(struct ofproto_port_dump *dump,
1398 const struct ofproto *ofproto)
1399 {
1400 dump->ofproto = ofproto;
1401 dump->error = ofproto->ofproto_class->port_dump_start(ofproto,
1402 &dump->state);
1403 }
1404
1405 /* Attempts to retrieve another port from 'dump', which must have been created
1406 * with ofproto_port_dump_start(). On success, stores a new ofproto_port into
1407 * 'port' and returns true. On failure, returns false.
1408 *
1409 * Failure might indicate an actual error or merely that the last port has been
1410 * dumped. An error status for the entire dump operation is provided when it
1411 * is completed by calling ofproto_port_dump_done().
1412 *
1413 * The ofproto owns the data stored in 'port'. It will remain valid until at
1414 * least the next time 'dump' is passed to ofproto_port_dump_next() or
1415 * ofproto_port_dump_done(). */
1416 bool
1417 ofproto_port_dump_next(struct ofproto_port_dump *dump,
1418 struct ofproto_port *port)
1419 {
1420 const struct ofproto *ofproto = dump->ofproto;
1421
1422 if (dump->error) {
1423 return false;
1424 }
1425
1426 dump->error = ofproto->ofproto_class->port_dump_next(ofproto, dump->state,
1427 port);
1428 if (dump->error) {
1429 ofproto->ofproto_class->port_dump_done(ofproto, dump->state);
1430 return false;
1431 }
1432 return true;
1433 }
1434
1435 /* Completes port table dump operation 'dump', which must have been created
1436 * with ofproto_port_dump_start(). Returns 0 if the dump operation was
1437 * error-free, otherwise a positive errno value describing the problem. */
1438 int
1439 ofproto_port_dump_done(struct ofproto_port_dump *dump)
1440 {
1441 const struct ofproto *ofproto = dump->ofproto;
1442 if (!dump->error) {
1443 dump->error = ofproto->ofproto_class->port_dump_done(ofproto,
1444 dump->state);
1445 }
1446 return dump->error == EOF ? 0 : dump->error;
1447 }
1448
1449 /* Returns the type to pass to netdev_open() when a datapath of type
1450 * 'datapath_type' has a port of type 'port_type', for a few special
1451 * cases when a netdev type differs from a port type. For example, when
1452 * using the userspace datapath, a port of type "internal" needs to be
1453 * opened as "tap".
1454 *
1455 * Returns either 'type' itself or a string literal, which must not be
1456 * freed. */
1457 const char *
1458 ofproto_port_open_type(const char *datapath_type, const char *port_type)
1459 {
1460 const struct ofproto_class *class;
1461
1462 datapath_type = ofproto_normalize_type(datapath_type);
1463 class = ofproto_class_find__(datapath_type);
1464 if (!class) {
1465 return port_type;
1466 }
1467
1468 return (class->port_open_type
1469 ? class->port_open_type(datapath_type, port_type)
1470 : port_type);
1471 }
1472
1473 /* Attempts to add 'netdev' as a port on 'ofproto'. If 'ofp_portp' is
1474 * non-null and '*ofp_portp' is not OFPP_NONE, attempts to use that as
1475 * the port's OpenFlow port number.
1476 *
1477 * If successful, returns 0 and sets '*ofp_portp' to the new port's
1478 * OpenFlow port number (if 'ofp_portp' is non-null). On failure,
1479 * returns a positive errno value and sets '*ofp_portp' to OFPP_NONE (if
1480 * 'ofp_portp' is non-null). */
1481 int
1482 ofproto_port_add(struct ofproto *ofproto, struct netdev *netdev,
1483 uint16_t *ofp_portp)
1484 {
1485 uint16_t ofp_port = ofp_portp ? *ofp_portp : OFPP_NONE;
1486 int error;
1487
1488 error = ofproto->ofproto_class->port_add(ofproto, netdev);
1489 if (!error) {
1490 const char *netdev_name = netdev_get_name(netdev);
1491
1492 simap_put(&ofproto->ofp_requests, netdev_name, ofp_port);
1493 update_port(ofproto, netdev_name);
1494 }
1495 if (ofp_portp) {
1496 struct ofproto_port ofproto_port;
1497
1498 ofproto_port_query_by_name(ofproto, netdev_get_name(netdev),
1499 &ofproto_port);
1500 *ofp_portp = error ? OFPP_NONE : ofproto_port.ofp_port;
1501 ofproto_port_destroy(&ofproto_port);
1502 }
1503 return error;
1504 }
1505
1506 /* Looks up a port named 'devname' in 'ofproto'. On success, returns 0 and
1507 * initializes '*port' appropriately; on failure, returns a positive errno
1508 * value.
1509 *
1510 * The caller owns the data in 'ofproto_port' and must free it with
1511 * ofproto_port_destroy() when it is no longer needed. */
1512 int
1513 ofproto_port_query_by_name(const struct ofproto *ofproto, const char *devname,
1514 struct ofproto_port *port)
1515 {
1516 int error;
1517
1518 error = ofproto->ofproto_class->port_query_by_name(ofproto, devname, port);
1519 if (error) {
1520 memset(port, 0, sizeof *port);
1521 }
1522 return error;
1523 }
1524
1525 /* Deletes port number 'ofp_port' from the datapath for 'ofproto'.
1526 * Returns 0 if successful, otherwise a positive errno. */
1527 int
1528 ofproto_port_del(struct ofproto *ofproto, uint16_t ofp_port)
1529 {
1530 struct ofport *ofport = ofproto_get_port(ofproto, ofp_port);
1531 const char *name = ofport ? netdev_get_name(ofport->netdev) : "<unknown>";
1532 struct simap_node *ofp_request_node;
1533 int error;
1534
1535 ofp_request_node = simap_find(&ofproto->ofp_requests, name);
1536 if (ofp_request_node) {
1537 simap_delete(&ofproto->ofp_requests, ofp_request_node);
1538 }
1539
1540 error = ofproto->ofproto_class->port_del(ofproto, ofp_port);
1541 if (!error && ofport) {
1542 /* 'name' is the netdev's name and update_port() is going to close the
1543 * netdev. Just in case update_port() refers to 'name' after it
1544 * destroys 'ofport', make a copy of it around the update_port()
1545 * call. */
1546 char *devname = xstrdup(name);
1547 update_port(ofproto, devname);
1548 free(devname);
1549 }
1550 return error;
1551 }
1552
1553 /* Adds a flow to OpenFlow flow table 0 in 'p' that matches 'cls_rule' and
1554 * performs the 'n_actions' actions in 'actions'. The new flow will not
1555 * timeout.
1556 *
1557 * If cls_rule->priority is in the range of priorities supported by OpenFlow
1558 * (0...65535, inclusive) then the flow will be visible to OpenFlow
1559 * controllers; otherwise, it will be hidden.
1560 *
1561 * The caller retains ownership of 'cls_rule' and 'ofpacts'.
1562 *
1563 * This is a helper function for in-band control and fail-open. */
1564 void
1565 ofproto_add_flow(struct ofproto *ofproto, const struct match *match,
1566 unsigned int priority,
1567 const struct ofpact *ofpacts, size_t ofpacts_len)
1568 {
1569 const struct rule *rule;
1570
1571 rule = rule_from_cls_rule(classifier_find_match_exactly(
1572 &ofproto->tables[0].cls, match, priority));
1573 if (!rule || !ofpacts_equal(rule->ofpacts, rule->ofpacts_len,
1574 ofpacts, ofpacts_len)) {
1575 struct ofputil_flow_mod fm;
1576
1577 memset(&fm, 0, sizeof fm);
1578 fm.match = *match;
1579 fm.priority = priority;
1580 fm.buffer_id = UINT32_MAX;
1581 fm.ofpacts = xmemdup(ofpacts, ofpacts_len);
1582 fm.ofpacts_len = ofpacts_len;
1583 add_flow(ofproto, NULL, &fm, NULL);
1584 free(fm.ofpacts);
1585 }
1586 }
1587
1588 /* Executes the flow modification specified in 'fm'. Returns 0 on success, an
1589 * OFPERR_* OpenFlow error code on failure, or OFPROTO_POSTPONE if the
1590 * operation cannot be initiated now but may be retried later.
1591 *
1592 * This is a helper function for in-band control and fail-open. */
1593 int
1594 ofproto_flow_mod(struct ofproto *ofproto, const struct ofputil_flow_mod *fm)
1595 {
1596 return handle_flow_mod__(ofproto, NULL, fm, NULL);
1597 }
1598
1599 /* Searches for a rule with matching criteria exactly equal to 'target' in
1600 * ofproto's table 0 and, if it finds one, deletes it.
1601 *
1602 * This is a helper function for in-band control and fail-open. */
1603 bool
1604 ofproto_delete_flow(struct ofproto *ofproto,
1605 const struct match *target, unsigned int priority)
1606 {
1607 struct rule *rule;
1608
1609 rule = rule_from_cls_rule(classifier_find_match_exactly(
1610 &ofproto->tables[0].cls, target, priority));
1611 if (!rule) {
1612 /* No such rule -> success. */
1613 return true;
1614 } else if (rule->pending) {
1615 /* An operation on the rule is already pending -> failure.
1616 * Caller must retry later if it's important. */
1617 return false;
1618 } else {
1619 /* Initiate deletion -> success. */
1620 struct ofopgroup *group = ofopgroup_create_unattached(ofproto);
1621 ofoperation_create(group, rule, OFOPERATION_DELETE, OFPRR_DELETE);
1622 oftable_remove_rule(rule);
1623 ofproto->ofproto_class->rule_destruct(rule);
1624 ofopgroup_submit(group);
1625 return true;
1626 }
1627
1628 }
1629
1630 /* Starts the process of deleting all of the flows from all of ofproto's flow
1631 * tables and then reintroducing the flows required by in-band control and
1632 * fail-open. The process will complete in a later call to ofproto_run(). */
1633 void
1634 ofproto_flush_flows(struct ofproto *ofproto)
1635 {
1636 COVERAGE_INC(ofproto_flush);
1637 ofproto->state = S_FLUSH;
1638 }
1639 \f
1640 static void
1641 reinit_ports(struct ofproto *p)
1642 {
1643 struct ofproto_port_dump dump;
1644 struct sset devnames;
1645 struct ofport *ofport;
1646 struct ofproto_port ofproto_port;
1647 const char *devname;
1648
1649 COVERAGE_INC(ofproto_reinit_ports);
1650
1651 sset_init(&devnames);
1652 HMAP_FOR_EACH (ofport, hmap_node, &p->ports) {
1653 sset_add(&devnames, netdev_get_name(ofport->netdev));
1654 }
1655 OFPROTO_PORT_FOR_EACH (&ofproto_port, &dump, p) {
1656 sset_add(&devnames, ofproto_port.name);
1657 }
1658
1659 SSET_FOR_EACH (devname, &devnames) {
1660 update_port(p, devname);
1661 }
1662 sset_destroy(&devnames);
1663 }
1664
1665 static uint16_t
1666 alloc_ofp_port(struct ofproto *ofproto, const char *netdev_name)
1667 {
1668 uint16_t ofp_port;
1669 uint16_t end_port_no = ofproto->alloc_port_no;
1670
1671 ofp_port = simap_get(&ofproto->ofp_requests, netdev_name);
1672 ofp_port = ofp_port ? ofp_port : OFPP_NONE;
1673
1674 if (ofp_port >= ofproto->max_ports
1675 || bitmap_is_set(ofproto->ofp_port_ids, ofp_port)) {
1676 /* Search for a free OpenFlow port number. We try not to
1677 * immediately reuse them to prevent problems due to old
1678 * flows. */
1679 for (;;) {
1680 if (++ofproto->alloc_port_no >= ofproto->max_ports) {
1681 ofproto->alloc_port_no = 0;
1682 }
1683 if (!bitmap_is_set(ofproto->ofp_port_ids,
1684 ofproto->alloc_port_no)) {
1685 ofp_port = ofproto->alloc_port_no;
1686 break;
1687 }
1688 if (ofproto->alloc_port_no == end_port_no) {
1689 return OFPP_NONE;
1690 }
1691 }
1692 }
1693 bitmap_set1(ofproto->ofp_port_ids, ofp_port);
1694 return ofp_port;
1695 }
1696
1697 static void
1698 dealloc_ofp_port(const struct ofproto *ofproto, uint16_t ofp_port)
1699 {
1700 if (ofp_port < ofproto->max_ports) {
1701 bitmap_set0(ofproto->ofp_port_ids, ofp_port);
1702 }
1703 }
1704
1705 /* Opens and returns a netdev for 'ofproto_port' in 'ofproto', or a null
1706 * pointer if the netdev cannot be opened. On success, also fills in
1707 * 'opp'. */
1708 static struct netdev *
1709 ofport_open(struct ofproto *ofproto,
1710 struct ofproto_port *ofproto_port,
1711 struct ofputil_phy_port *pp)
1712 {
1713 enum netdev_flags flags;
1714 struct netdev *netdev;
1715 int error;
1716
1717 error = netdev_open(ofproto_port->name, ofproto_port->type, &netdev);
1718 if (error) {
1719 VLOG_WARN_RL(&rl, "%s: ignoring port %s (%"PRIu16") because netdev %s "
1720 "cannot be opened (%s)",
1721 ofproto->name,
1722 ofproto_port->name, ofproto_port->ofp_port,
1723 ofproto_port->name, strerror(error));
1724 return NULL;
1725 }
1726
1727 if (ofproto_port->ofp_port == OFPP_NONE) {
1728 if (!strcmp(ofproto->name, ofproto_port->name)) {
1729 ofproto_port->ofp_port = OFPP_LOCAL;
1730 } else {
1731 ofproto_port->ofp_port = alloc_ofp_port(ofproto,
1732 ofproto_port->name);
1733 }
1734 }
1735 pp->port_no = ofproto_port->ofp_port;
1736 netdev_get_etheraddr(netdev, pp->hw_addr);
1737 ovs_strlcpy(pp->name, ofproto_port->name, sizeof pp->name);
1738 netdev_get_flags(netdev, &flags);
1739 pp->config = flags & NETDEV_UP ? 0 : OFPUTIL_PC_PORT_DOWN;
1740 pp->state = netdev_get_carrier(netdev) ? 0 : OFPUTIL_PS_LINK_DOWN;
1741 netdev_get_features(netdev, &pp->curr, &pp->advertised,
1742 &pp->supported, &pp->peer);
1743 pp->curr_speed = netdev_features_to_bps(pp->curr, 0);
1744 pp->max_speed = netdev_features_to_bps(pp->supported, 0);
1745
1746 return netdev;
1747 }
1748
1749 /* Returns true if most fields of 'a' and 'b' are equal. Differences in name,
1750 * port number, and 'config' bits other than OFPUTIL_PS_LINK_DOWN are
1751 * disregarded. */
1752 static bool
1753 ofport_equal(const struct ofputil_phy_port *a,
1754 const struct ofputil_phy_port *b)
1755 {
1756 return (eth_addr_equals(a->hw_addr, b->hw_addr)
1757 && a->state == b->state
1758 && !((a->config ^ b->config) & OFPUTIL_PC_PORT_DOWN)
1759 && a->curr == b->curr
1760 && a->advertised == b->advertised
1761 && a->supported == b->supported
1762 && a->peer == b->peer
1763 && a->curr_speed == b->curr_speed
1764 && a->max_speed == b->max_speed);
1765 }
1766
1767 /* Adds an ofport to 'p' initialized based on the given 'netdev' and 'opp'.
1768 * The caller must ensure that 'p' does not have a conflicting ofport (that is,
1769 * one with the same name or port number). */
1770 static void
1771 ofport_install(struct ofproto *p,
1772 struct netdev *netdev, const struct ofputil_phy_port *pp)
1773 {
1774 const char *netdev_name = netdev_get_name(netdev);
1775 struct ofport *ofport;
1776 int error;
1777
1778 /* Create ofport. */
1779 ofport = p->ofproto_class->port_alloc();
1780 if (!ofport) {
1781 error = ENOMEM;
1782 goto error;
1783 }
1784 ofport->ofproto = p;
1785 ofport->netdev = netdev;
1786 ofport->change_seq = netdev_change_seq(netdev);
1787 ofport->pp = *pp;
1788 ofport->ofp_port = pp->port_no;
1789
1790 /* Add port to 'p'. */
1791 hmap_insert(&p->ports, &ofport->hmap_node, hash_int(ofport->ofp_port, 0));
1792 shash_add(&p->port_by_name, netdev_name, ofport);
1793
1794 update_mtu(p, ofport);
1795
1796 /* Let the ofproto_class initialize its private data. */
1797 error = p->ofproto_class->port_construct(ofport);
1798 if (error) {
1799 goto error;
1800 }
1801 connmgr_send_port_status(p->connmgr, pp, OFPPR_ADD);
1802 return;
1803
1804 error:
1805 VLOG_WARN_RL(&rl, "%s: could not add port %s (%s)",
1806 p->name, netdev_name, strerror(error));
1807 if (ofport) {
1808 ofport_destroy__(ofport);
1809 } else {
1810 netdev_close(netdev);
1811 }
1812 }
1813
1814 /* Removes 'ofport' from 'p' and destroys it. */
1815 static void
1816 ofport_remove(struct ofport *ofport)
1817 {
1818 connmgr_send_port_status(ofport->ofproto->connmgr, &ofport->pp,
1819 OFPPR_DELETE);
1820 ofport_destroy(ofport);
1821 }
1822
1823 /* If 'ofproto' contains an ofport named 'name', removes it from 'ofproto' and
1824 * destroys it. */
1825 static void
1826 ofport_remove_with_name(struct ofproto *ofproto, const char *name)
1827 {
1828 struct ofport *port = shash_find_data(&ofproto->port_by_name, name);
1829 if (port) {
1830 ofport_remove(port);
1831 }
1832 }
1833
1834 /* Updates 'port' with new 'pp' description.
1835 *
1836 * Does not handle a name or port number change. The caller must implement
1837 * such a change as a delete followed by an add. */
1838 static void
1839 ofport_modified(struct ofport *port, struct ofputil_phy_port *pp)
1840 {
1841 memcpy(port->pp.hw_addr, pp->hw_addr, ETH_ADDR_LEN);
1842 port->pp.config = ((port->pp.config & ~OFPUTIL_PC_PORT_DOWN)
1843 | (pp->config & OFPUTIL_PC_PORT_DOWN));
1844 port->pp.state = pp->state;
1845 port->pp.curr = pp->curr;
1846 port->pp.advertised = pp->advertised;
1847 port->pp.supported = pp->supported;
1848 port->pp.peer = pp->peer;
1849 port->pp.curr_speed = pp->curr_speed;
1850 port->pp.max_speed = pp->max_speed;
1851
1852 connmgr_send_port_status(port->ofproto->connmgr, &port->pp, OFPPR_MODIFY);
1853 }
1854
1855 /* Update OpenFlow 'state' in 'port' and notify controller. */
1856 void
1857 ofproto_port_set_state(struct ofport *port, enum ofputil_port_state state)
1858 {
1859 if (port->pp.state != state) {
1860 port->pp.state = state;
1861 connmgr_send_port_status(port->ofproto->connmgr, &port->pp,
1862 OFPPR_MODIFY);
1863 }
1864 }
1865
1866 void
1867 ofproto_port_unregister(struct ofproto *ofproto, uint16_t ofp_port)
1868 {
1869 struct ofport *port = ofproto_get_port(ofproto, ofp_port);
1870 if (port) {
1871 if (port->ofproto->ofproto_class->set_realdev) {
1872 port->ofproto->ofproto_class->set_realdev(port, 0, 0);
1873 }
1874 if (port->ofproto->ofproto_class->set_stp_port) {
1875 port->ofproto->ofproto_class->set_stp_port(port, NULL);
1876 }
1877 if (port->ofproto->ofproto_class->set_cfm) {
1878 port->ofproto->ofproto_class->set_cfm(port, NULL);
1879 }
1880 if (port->ofproto->ofproto_class->bundle_remove) {
1881 port->ofproto->ofproto_class->bundle_remove(port);
1882 }
1883 }
1884 }
1885
1886 static void
1887 ofport_destroy__(struct ofport *port)
1888 {
1889 struct ofproto *ofproto = port->ofproto;
1890 const char *name = netdev_get_name(port->netdev);
1891
1892 hmap_remove(&ofproto->ports, &port->hmap_node);
1893 shash_delete(&ofproto->port_by_name,
1894 shash_find(&ofproto->port_by_name, name));
1895
1896 netdev_close(port->netdev);
1897 ofproto->ofproto_class->port_dealloc(port);
1898 }
1899
1900 static void
1901 ofport_destroy(struct ofport *port)
1902 {
1903 if (port) {
1904 dealloc_ofp_port(port->ofproto, port->ofp_port);
1905 port->ofproto->ofproto_class->port_destruct(port);
1906 ofport_destroy__(port);
1907 }
1908 }
1909
1910 struct ofport *
1911 ofproto_get_port(const struct ofproto *ofproto, uint16_t ofp_port)
1912 {
1913 struct ofport *port;
1914
1915 HMAP_FOR_EACH_IN_BUCKET (port, hmap_node,
1916 hash_int(ofp_port, 0), &ofproto->ports) {
1917 if (port->ofp_port == ofp_port) {
1918 return port;
1919 }
1920 }
1921 return NULL;
1922 }
1923
1924 int
1925 ofproto_port_get_stats(const struct ofport *port, struct netdev_stats *stats)
1926 {
1927 struct ofproto *ofproto = port->ofproto;
1928 int error;
1929
1930 if (ofproto->ofproto_class->port_get_stats) {
1931 error = ofproto->ofproto_class->port_get_stats(port, stats);
1932 } else {
1933 error = EOPNOTSUPP;
1934 }
1935
1936 return error;
1937 }
1938
1939 static void
1940 update_port(struct ofproto *ofproto, const char *name)
1941 {
1942 struct ofproto_port ofproto_port;
1943 struct ofputil_phy_port pp;
1944 struct netdev *netdev;
1945 struct ofport *port;
1946
1947 COVERAGE_INC(ofproto_update_port);
1948
1949 /* Fetch 'name''s location and properties from the datapath. */
1950 netdev = (!ofproto_port_query_by_name(ofproto, name, &ofproto_port)
1951 ? ofport_open(ofproto, &ofproto_port, &pp)
1952 : NULL);
1953 if (netdev) {
1954 port = ofproto_get_port(ofproto, ofproto_port.ofp_port);
1955 if (port && !strcmp(netdev_get_name(port->netdev), name)) {
1956 struct netdev *old_netdev = port->netdev;
1957
1958 /* 'name' hasn't changed location. Any properties changed? */
1959 if (!ofport_equal(&port->pp, &pp)) {
1960 ofport_modified(port, &pp);
1961 }
1962
1963 update_mtu(ofproto, port);
1964
1965 /* Install the newly opened netdev in case it has changed.
1966 * Don't close the old netdev yet in case port_modified has to
1967 * remove a retained reference to it.*/
1968 port->netdev = netdev;
1969 port->change_seq = netdev_change_seq(netdev);
1970
1971 if (port->ofproto->ofproto_class->port_modified) {
1972 port->ofproto->ofproto_class->port_modified(port);
1973 }
1974
1975 netdev_close(old_netdev);
1976 } else {
1977 /* If 'port' is nonnull then its name differs from 'name' and thus
1978 * we should delete it. If we think there's a port named 'name'
1979 * then its port number must be wrong now so delete it too. */
1980 if (port) {
1981 ofport_remove(port);
1982 }
1983 ofport_remove_with_name(ofproto, name);
1984 ofport_install(ofproto, netdev, &pp);
1985 }
1986 } else {
1987 /* Any port named 'name' is gone now. */
1988 ofport_remove_with_name(ofproto, name);
1989 }
1990 ofproto_port_destroy(&ofproto_port);
1991 }
1992
1993 static int
1994 init_ports(struct ofproto *p)
1995 {
1996 struct ofproto_port_dump dump;
1997 struct ofproto_port ofproto_port;
1998 struct shash_node *node, *next;
1999
2000 OFPROTO_PORT_FOR_EACH (&ofproto_port, &dump, p) {
2001 const char *name = ofproto_port.name;
2002
2003 if (shash_find(&p->port_by_name, name)) {
2004 VLOG_WARN_RL(&rl, "%s: ignoring duplicate device %s in datapath",
2005 p->name, name);
2006 } else {
2007 struct ofputil_phy_port pp;
2008 struct netdev *netdev;
2009
2010 /* Check if an OpenFlow port number had been requested. */
2011 node = shash_find(&init_ofp_ports, name);
2012 if (node) {
2013 const struct iface_hint *iface_hint = node->data;
2014 simap_put(&p->ofp_requests, name, iface_hint->ofp_port);
2015 }
2016
2017 netdev = ofport_open(p, &ofproto_port, &pp);
2018 if (netdev) {
2019 ofport_install(p, netdev, &pp);
2020 }
2021 }
2022 }
2023
2024 SHASH_FOR_EACH_SAFE(node, next, &init_ofp_ports) {
2025 struct iface_hint *iface_hint = node->data;
2026
2027 if (!strcmp(iface_hint->br_name, p->name)) {
2028 free(iface_hint->br_name);
2029 free(iface_hint->br_type);
2030 free(iface_hint);
2031 shash_delete(&init_ofp_ports, node);
2032 }
2033 }
2034
2035 return 0;
2036 }
2037
2038 /* Find the minimum MTU of all non-datapath devices attached to 'p'.
2039 * Returns ETH_PAYLOAD_MAX or the minimum of the ports. */
2040 static int
2041 find_min_mtu(struct ofproto *p)
2042 {
2043 struct ofport *ofport;
2044 int mtu = 0;
2045
2046 HMAP_FOR_EACH (ofport, hmap_node, &p->ports) {
2047 struct netdev *netdev = ofport->netdev;
2048 int dev_mtu;
2049
2050 /* Skip any internal ports, since that's what we're trying to
2051 * set. */
2052 if (!strcmp(netdev_get_type(netdev), "internal")) {
2053 continue;
2054 }
2055
2056 if (netdev_get_mtu(netdev, &dev_mtu)) {
2057 continue;
2058 }
2059 if (!mtu || dev_mtu < mtu) {
2060 mtu = dev_mtu;
2061 }
2062 }
2063
2064 return mtu ? mtu: ETH_PAYLOAD_MAX;
2065 }
2066
2067 /* Update MTU of all datapath devices on 'p' to the minimum of the
2068 * non-datapath ports in event of 'port' added or changed. */
2069 static void
2070 update_mtu(struct ofproto *p, struct ofport *port)
2071 {
2072 struct ofport *ofport;
2073 struct netdev *netdev = port->netdev;
2074 int dev_mtu, old_min;
2075
2076 if (netdev_get_mtu(netdev, &dev_mtu)) {
2077 port->mtu = 0;
2078 return;
2079 }
2080 if (!strcmp(netdev_get_type(port->netdev), "internal")) {
2081 if (dev_mtu > p->min_mtu) {
2082 if (!netdev_set_mtu(port->netdev, p->min_mtu)) {
2083 dev_mtu = p->min_mtu;
2084 }
2085 }
2086 port->mtu = dev_mtu;
2087 return;
2088 }
2089
2090 /* For non-internal port find new min mtu. */
2091 old_min = p->min_mtu;
2092 port->mtu = dev_mtu;
2093 p->min_mtu = find_min_mtu(p);
2094 if (p->min_mtu == old_min) {
2095 return;
2096 }
2097
2098 HMAP_FOR_EACH (ofport, hmap_node, &p->ports) {
2099 struct netdev *netdev = ofport->netdev;
2100
2101 if (!strcmp(netdev_get_type(netdev), "internal")) {
2102 if (!netdev_set_mtu(netdev, p->min_mtu)) {
2103 ofport->mtu = p->min_mtu;
2104 }
2105 }
2106 }
2107 }
2108 \f
2109 static void
2110 ofproto_rule_destroy__(struct rule *rule)
2111 {
2112 if (rule) {
2113 cls_rule_destroy(&rule->cr);
2114 free(rule->ofpacts);
2115 rule->ofproto->ofproto_class->rule_dealloc(rule);
2116 }
2117 }
2118
2119 /* This function allows an ofproto implementation to destroy any rules that
2120 * remain when its ->destruct() function is called. The caller must have
2121 * already uninitialized any derived members of 'rule' (step 5 described in the
2122 * large comment in ofproto/ofproto-provider.h titled "Life Cycle").
2123 * This function implements steps 6 and 7.
2124 *
2125 * This function should only be called from an ofproto implementation's
2126 * ->destruct() function. It is not suitable elsewhere. */
2127 void
2128 ofproto_rule_destroy(struct rule *rule)
2129 {
2130 ovs_assert(!rule->pending);
2131 oftable_remove_rule(rule);
2132 ofproto_rule_destroy__(rule);
2133 }
2134
2135 /* Returns true if 'rule' has an OpenFlow OFPAT_OUTPUT or OFPAT_ENQUEUE action
2136 * that outputs to 'port' (output to OFPP_FLOOD and OFPP_ALL doesn't count). */
2137 bool
2138 ofproto_rule_has_out_port(const struct rule *rule, uint16_t port)
2139 {
2140 return (port == OFPP_ANY
2141 || ofpacts_output_to_port(rule->ofpacts, rule->ofpacts_len, port));
2142 }
2143
2144 /* Returns true if a rule related to 'op' has an OpenFlow OFPAT_OUTPUT or
2145 * OFPAT_ENQUEUE action that outputs to 'out_port'. */
2146 bool
2147 ofoperation_has_out_port(const struct ofoperation *op, uint16_t out_port)
2148 {
2149 if (ofproto_rule_has_out_port(op->rule, out_port)) {
2150 return true;
2151 }
2152
2153 switch (op->type) {
2154 case OFOPERATION_ADD:
2155 return op->victim && ofproto_rule_has_out_port(op->victim, out_port);
2156
2157 case OFOPERATION_DELETE:
2158 return false;
2159
2160 case OFOPERATION_MODIFY:
2161 return ofpacts_output_to_port(op->ofpacts, op->ofpacts_len, out_port);
2162 }
2163
2164 NOT_REACHED();
2165 }
2166
2167 /* Executes the actions indicated by 'rule' on 'packet' and credits 'rule''s
2168 * statistics appropriately. 'packet' must have at least sizeof(struct
2169 * ofp10_packet_in) bytes of headroom.
2170 *
2171 * 'packet' doesn't necessarily have to match 'rule'. 'rule' will be credited
2172 * with statistics for 'packet' either way.
2173 *
2174 * Takes ownership of 'packet'. */
2175 static int
2176 rule_execute(struct rule *rule, uint16_t in_port, struct ofpbuf *packet)
2177 {
2178 struct flow flow;
2179
2180 ovs_assert(ofpbuf_headroom(packet) >= sizeof(struct ofp10_packet_in));
2181
2182 flow_extract(packet, 0, 0, NULL, in_port, &flow);
2183 return rule->ofproto->ofproto_class->rule_execute(rule, &flow, packet);
2184 }
2185
2186 /* Returns true if 'rule' should be hidden from the controller.
2187 *
2188 * Rules with priority higher than UINT16_MAX are set up by ofproto itself
2189 * (e.g. by in-band control) and are intentionally hidden from the
2190 * controller. */
2191 bool
2192 ofproto_rule_is_hidden(const struct rule *rule)
2193 {
2194 return rule->cr.priority > UINT16_MAX;
2195 }
2196
2197 static enum oftable_flags
2198 rule_get_flags(const struct rule *rule)
2199 {
2200 return rule->ofproto->tables[rule->table_id].flags;
2201 }
2202
2203 static bool
2204 rule_is_modifiable(const struct rule *rule)
2205 {
2206 return !(rule_get_flags(rule) & OFTABLE_READONLY);
2207 }
2208 \f
2209 static enum ofperr
2210 handle_echo_request(struct ofconn *ofconn, const struct ofp_header *oh)
2211 {
2212 ofconn_send_reply(ofconn, make_echo_reply(oh));
2213 return 0;
2214 }
2215
2216 static enum ofperr
2217 handle_features_request(struct ofconn *ofconn, const struct ofp_header *oh)
2218 {
2219 struct ofproto *ofproto = ofconn_get_ofproto(ofconn);
2220 struct ofputil_switch_features features;
2221 struct ofport *port;
2222 bool arp_match_ip;
2223 struct ofpbuf *b;
2224 int n_tables;
2225 int i;
2226
2227 ofproto->ofproto_class->get_features(ofproto, &arp_match_ip,
2228 &features.actions);
2229 ovs_assert(features.actions & OFPUTIL_A_OUTPUT); /* sanity check */
2230
2231 /* Count only non-hidden tables in the number of tables. (Hidden tables,
2232 * if present, are always at the end.) */
2233 n_tables = ofproto->n_tables;
2234 for (i = 0; i < ofproto->n_tables; i++) {
2235 if (ofproto->tables[i].flags & OFTABLE_HIDDEN) {
2236 n_tables = i;
2237 break;
2238 }
2239 }
2240
2241 features.datapath_id = ofproto->datapath_id;
2242 features.n_buffers = pktbuf_capacity();
2243 features.n_tables = n_tables;
2244 features.capabilities = (OFPUTIL_C_FLOW_STATS | OFPUTIL_C_TABLE_STATS |
2245 OFPUTIL_C_PORT_STATS | OFPUTIL_C_QUEUE_STATS);
2246 if (arp_match_ip) {
2247 features.capabilities |= OFPUTIL_C_ARP_MATCH_IP;
2248 }
2249 /* FIXME: Fill in proper features.auxiliary_id for auxiliary connections */
2250 features.auxiliary_id = 0;
2251 b = ofputil_encode_switch_features(&features, ofconn_get_protocol(ofconn),
2252 oh->xid);
2253 HMAP_FOR_EACH (port, hmap_node, &ofproto->ports) {
2254 ofputil_put_switch_features_port(&port->pp, b);
2255 }
2256
2257 ofconn_send_reply(ofconn, b);
2258 return 0;
2259 }
2260
2261 static enum ofperr
2262 handle_get_config_request(struct ofconn *ofconn, const struct ofp_header *oh)
2263 {
2264 struct ofproto *ofproto = ofconn_get_ofproto(ofconn);
2265 struct ofp_switch_config *osc;
2266 enum ofp_config_flags flags;
2267 struct ofpbuf *buf;
2268
2269 /* Send reply. */
2270 buf = ofpraw_alloc_reply(OFPRAW_OFPT_GET_CONFIG_REPLY, oh, 0);
2271 osc = ofpbuf_put_uninit(buf, sizeof *osc);
2272 flags = ofproto->frag_handling;
2273 /* OFPC_INVALID_TTL_TO_CONTROLLER is deprecated in OF 1.3 */
2274 if (oh->version < OFP13_VERSION
2275 && ofconn_get_invalid_ttl_to_controller(ofconn)) {
2276 flags |= OFPC_INVALID_TTL_TO_CONTROLLER;
2277 }
2278 osc->flags = htons(flags);
2279 osc->miss_send_len = htons(ofconn_get_miss_send_len(ofconn));
2280 ofconn_send_reply(ofconn, buf);
2281
2282 return 0;
2283 }
2284
2285 static enum ofperr
2286 handle_set_config(struct ofconn *ofconn, const struct ofp_header *oh)
2287 {
2288 const struct ofp_switch_config *osc = ofpmsg_body(oh);
2289 struct ofproto *ofproto = ofconn_get_ofproto(ofconn);
2290 uint16_t flags = ntohs(osc->flags);
2291
2292 if (ofconn_get_type(ofconn) != OFCONN_PRIMARY
2293 || ofconn_get_role(ofconn) != OFPCR12_ROLE_SLAVE) {
2294 enum ofp_config_flags cur = ofproto->frag_handling;
2295 enum ofp_config_flags next = flags & OFPC_FRAG_MASK;
2296
2297 ovs_assert((cur & OFPC_FRAG_MASK) == cur);
2298 if (cur != next) {
2299 if (ofproto->ofproto_class->set_frag_handling(ofproto, next)) {
2300 ofproto->frag_handling = next;
2301 } else {
2302 VLOG_WARN_RL(&rl, "%s: unsupported fragment handling mode %s",
2303 ofproto->name,
2304 ofputil_frag_handling_to_string(next));
2305 }
2306 }
2307 }
2308 /* OFPC_INVALID_TTL_TO_CONTROLLER is deprecated in OF 1.3 */
2309 ofconn_set_invalid_ttl_to_controller(ofconn,
2310 (oh->version < OFP13_VERSION
2311 && flags & OFPC_INVALID_TTL_TO_CONTROLLER));
2312
2313 ofconn_set_miss_send_len(ofconn, ntohs(osc->miss_send_len));
2314
2315 return 0;
2316 }
2317
2318 /* Checks whether 'ofconn' is a slave controller. If so, returns an OpenFlow
2319 * error message code for the caller to propagate upward. Otherwise, returns
2320 * 0.
2321 *
2322 * The log message mentions 'msg_type'. */
2323 static enum ofperr
2324 reject_slave_controller(struct ofconn *ofconn)
2325 {
2326 if (ofconn_get_type(ofconn) == OFCONN_PRIMARY
2327 && ofconn_get_role(ofconn) == OFPCR12_ROLE_SLAVE) {
2328 return OFPERR_OFPBRC_EPERM;
2329 } else {
2330 return 0;
2331 }
2332 }
2333
2334 static enum ofperr
2335 handle_packet_out(struct ofconn *ofconn, const struct ofp_header *oh)
2336 {
2337 struct ofproto *p = ofconn_get_ofproto(ofconn);
2338 struct ofputil_packet_out po;
2339 struct ofpbuf *payload;
2340 uint64_t ofpacts_stub[1024 / 8];
2341 struct ofpbuf ofpacts;
2342 struct flow flow;
2343 enum ofperr error;
2344
2345 COVERAGE_INC(ofproto_packet_out);
2346
2347 error = reject_slave_controller(ofconn);
2348 if (error) {
2349 goto exit;
2350 }
2351
2352 /* Decode message. */
2353 ofpbuf_use_stub(&ofpacts, ofpacts_stub, sizeof ofpacts_stub);
2354 error = ofputil_decode_packet_out(&po, oh, &ofpacts);
2355 if (error) {
2356 goto exit_free_ofpacts;
2357 }
2358 if (po.in_port >= p->max_ports && po.in_port < OFPP_MAX) {
2359 error = OFPERR_OFPBRC_BAD_PORT;
2360 goto exit_free_ofpacts;
2361 }
2362
2363
2364 /* Get payload. */
2365 if (po.buffer_id != UINT32_MAX) {
2366 error = ofconn_pktbuf_retrieve(ofconn, po.buffer_id, &payload, NULL);
2367 if (error || !payload) {
2368 goto exit_free_ofpacts;
2369 }
2370 } else {
2371 payload = xmalloc(sizeof *payload);
2372 ofpbuf_use_const(payload, po.packet, po.packet_len);
2373 }
2374
2375 /* Verify actions against packet, then send packet if successful. */
2376 flow_extract(payload, 0, 0, NULL, po.in_port, &flow);
2377 error = ofpacts_check(po.ofpacts, po.ofpacts_len, &flow, p->max_ports);
2378 if (!error) {
2379 error = p->ofproto_class->packet_out(p, payload, &flow,
2380 po.ofpacts, po.ofpacts_len);
2381 }
2382 ofpbuf_delete(payload);
2383
2384 exit_free_ofpacts:
2385 ofpbuf_uninit(&ofpacts);
2386 exit:
2387 return error;
2388 }
2389
2390 static void
2391 update_port_config(struct ofport *port,
2392 enum ofputil_port_config config,
2393 enum ofputil_port_config mask)
2394 {
2395 enum ofputil_port_config old_config = port->pp.config;
2396 enum ofputil_port_config toggle;
2397
2398 toggle = (config ^ port->pp.config) & mask;
2399 if (toggle & OFPUTIL_PC_PORT_DOWN) {
2400 if (config & OFPUTIL_PC_PORT_DOWN) {
2401 netdev_turn_flags_off(port->netdev, NETDEV_UP, NULL);
2402 } else {
2403 netdev_turn_flags_on(port->netdev, NETDEV_UP, NULL);
2404 }
2405 toggle &= ~OFPUTIL_PC_PORT_DOWN;
2406 }
2407
2408 port->pp.config ^= toggle;
2409 if (port->pp.config != old_config) {
2410 port->ofproto->ofproto_class->port_reconfigured(port, old_config);
2411 }
2412 }
2413
2414 static enum ofperr
2415 handle_port_mod(struct ofconn *ofconn, const struct ofp_header *oh)
2416 {
2417 struct ofproto *p = ofconn_get_ofproto(ofconn);
2418 struct ofputil_port_mod pm;
2419 struct ofport *port;
2420 enum ofperr error;
2421
2422 error = reject_slave_controller(ofconn);
2423 if (error) {
2424 return error;
2425 }
2426
2427 error = ofputil_decode_port_mod(oh, &pm);
2428 if (error) {
2429 return error;
2430 }
2431
2432 port = ofproto_get_port(p, pm.port_no);
2433 if (!port) {
2434 return OFPERR_OFPPMFC_BAD_PORT;
2435 } else if (!eth_addr_equals(port->pp.hw_addr, pm.hw_addr)) {
2436 return OFPERR_OFPPMFC_BAD_HW_ADDR;
2437 } else {
2438 update_port_config(port, pm.config, pm.mask);
2439 if (pm.advertise) {
2440 netdev_set_advertisements(port->netdev, pm.advertise);
2441 }
2442 }
2443 return 0;
2444 }
2445
2446 static enum ofperr
2447 handle_desc_stats_request(struct ofconn *ofconn,
2448 const struct ofp_header *request)
2449 {
2450 static const char *default_mfr_desc = "Nicira, Inc.";
2451 static const char *default_hw_desc = "Open vSwitch";
2452 static const char *default_sw_desc = VERSION;
2453 static const char *default_serial_desc = "None";
2454 static const char *default_dp_desc = "None";
2455
2456 struct ofproto *p = ofconn_get_ofproto(ofconn);
2457 struct ofp_desc_stats *ods;
2458 struct ofpbuf *msg;
2459
2460 msg = ofpraw_alloc_stats_reply(request, 0);
2461 ods = ofpbuf_put_zeros(msg, sizeof *ods);
2462 ovs_strlcpy(ods->mfr_desc, p->mfr_desc ? p->mfr_desc : default_mfr_desc,
2463 sizeof ods->mfr_desc);
2464 ovs_strlcpy(ods->hw_desc, p->hw_desc ? p->hw_desc : default_hw_desc,
2465 sizeof ods->hw_desc);
2466 ovs_strlcpy(ods->sw_desc, p->sw_desc ? p->sw_desc : default_sw_desc,
2467 sizeof ods->sw_desc);
2468 ovs_strlcpy(ods->serial_num,
2469 p->serial_desc ? p->serial_desc : default_serial_desc,
2470 sizeof ods->serial_num);
2471 ovs_strlcpy(ods->dp_desc, p->dp_desc ? p->dp_desc : default_dp_desc,
2472 sizeof ods->dp_desc);
2473 ofconn_send_reply(ofconn, msg);
2474
2475 return 0;
2476 }
2477
2478 static enum ofperr
2479 handle_table_stats_request(struct ofconn *ofconn,
2480 const struct ofp_header *request)
2481 {
2482 struct ofproto *p = ofconn_get_ofproto(ofconn);
2483 struct ofp12_table_stats *ots;
2484 struct ofpbuf *msg;
2485 int n_tables;
2486 size_t i;
2487
2488 /* Set up default values.
2489 *
2490 * ofp12_table_stats is used as a generic structure as
2491 * it is able to hold all the fields for ofp10_table_stats
2492 * and ofp11_table_stats (and of course itself).
2493 */
2494 ots = xcalloc(p->n_tables, sizeof *ots);
2495 for (i = 0; i < p->n_tables; i++) {
2496 ots[i].table_id = i;
2497 sprintf(ots[i].name, "table%zu", i);
2498 ots[i].match = htonll(OFPXMT12_MASK);
2499 ots[i].wildcards = htonll(OFPXMT12_MASK);
2500 ots[i].write_actions = htonl(OFPAT11_OUTPUT);
2501 ots[i].apply_actions = htonl(OFPAT11_OUTPUT);
2502 ots[i].write_setfields = htonll(OFPXMT12_MASK);
2503 ots[i].apply_setfields = htonll(OFPXMT12_MASK);
2504 ots[i].metadata_match = htonll(UINT64_MAX);
2505 ots[i].metadata_write = htonll(UINT64_MAX);
2506 ots[i].instructions = htonl(OFPIT11_ALL);
2507 ots[i].config = htonl(OFPTC11_TABLE_MISS_MASK);
2508 ots[i].max_entries = htonl(1000000); /* An arbitrary big number. */
2509 ots[i].active_count = htonl(classifier_count(&p->tables[i].cls));
2510 }
2511
2512 p->ofproto_class->get_tables(p, ots);
2513
2514 /* Post-process the tables, dropping hidden tables. */
2515 n_tables = p->n_tables;
2516 for (i = 0; i < p->n_tables; i++) {
2517 const struct oftable *table = &p->tables[i];
2518
2519 if (table->flags & OFTABLE_HIDDEN) {
2520 n_tables = i;
2521 break;
2522 }
2523
2524 if (table->name) {
2525 ovs_strzcpy(ots[i].name, table->name, sizeof ots[i].name);
2526 }
2527
2528 if (table->max_flows < ntohl(ots[i].max_entries)) {
2529 ots[i].max_entries = htonl(table->max_flows);
2530 }
2531 }
2532
2533 msg = ofputil_encode_table_stats_reply(ots, n_tables, request);
2534 ofconn_send_reply(ofconn, msg);
2535
2536 free(ots);
2537
2538 return 0;
2539 }
2540
2541 static void
2542 append_port_stat(struct ofport *port, struct list *replies)
2543 {
2544 struct ofputil_port_stats ops = { .port_no = port->pp.port_no };
2545
2546 /* Intentionally ignore return value, since errors will set
2547 * 'stats' to all-1s, which is correct for OpenFlow, and
2548 * netdev_get_stats() will log errors. */
2549 ofproto_port_get_stats(port, &ops.stats);
2550
2551 ofputil_append_port_stat(replies, &ops);
2552 }
2553
2554 static enum ofperr
2555 handle_port_stats_request(struct ofconn *ofconn,
2556 const struct ofp_header *request)
2557 {
2558 struct ofproto *p = ofconn_get_ofproto(ofconn);
2559 struct ofport *port;
2560 struct list replies;
2561 uint16_t port_no;
2562 enum ofperr error;
2563
2564 error = ofputil_decode_port_stats_request(request, &port_no);
2565 if (error) {
2566 return error;
2567 }
2568
2569 ofpmp_init(&replies, request);
2570 if (port_no != OFPP_ANY) {
2571 port = ofproto_get_port(p, port_no);
2572 if (port) {
2573 append_port_stat(port, &replies);
2574 }
2575 } else {
2576 HMAP_FOR_EACH (port, hmap_node, &p->ports) {
2577 append_port_stat(port, &replies);
2578 }
2579 }
2580
2581 ofconn_send_replies(ofconn, &replies);
2582 return 0;
2583 }
2584
2585 static enum ofperr
2586 handle_port_desc_stats_request(struct ofconn *ofconn,
2587 const struct ofp_header *request)
2588 {
2589 struct ofproto *p = ofconn_get_ofproto(ofconn);
2590 enum ofp_version version;
2591 struct ofport *port;
2592 struct list replies;
2593
2594 ofpmp_init(&replies, request);
2595
2596 version = ofputil_protocol_to_ofp_version(ofconn_get_protocol(ofconn));
2597 HMAP_FOR_EACH (port, hmap_node, &p->ports) {
2598 ofputil_append_port_desc_stats_reply(version, &port->pp, &replies);
2599 }
2600
2601 ofconn_send_replies(ofconn, &replies);
2602 return 0;
2603 }
2604
2605 static void
2606 calc_flow_duration__(long long int start, long long int now,
2607 uint32_t *sec, uint32_t *nsec)
2608 {
2609 long long int msecs = now - start;
2610 *sec = msecs / 1000;
2611 *nsec = (msecs % 1000) * (1000 * 1000);
2612 }
2613
2614 /* Checks whether 'table_id' is 0xff or a valid table ID in 'ofproto'. Returns
2615 * 0 if 'table_id' is OK, otherwise an OpenFlow error code. */
2616 static enum ofperr
2617 check_table_id(const struct ofproto *ofproto, uint8_t table_id)
2618 {
2619 return (table_id == 0xff || table_id < ofproto->n_tables
2620 ? 0
2621 : OFPERR_OFPBRC_BAD_TABLE_ID);
2622
2623 }
2624
2625 static struct oftable *
2626 next_visible_table(const struct ofproto *ofproto, uint8_t table_id)
2627 {
2628 struct oftable *table;
2629
2630 for (table = &ofproto->tables[table_id];
2631 table < &ofproto->tables[ofproto->n_tables];
2632 table++) {
2633 if (!(table->flags & OFTABLE_HIDDEN)) {
2634 return table;
2635 }
2636 }
2637
2638 return NULL;
2639 }
2640
2641 static struct oftable *
2642 first_matching_table(const struct ofproto *ofproto, uint8_t table_id)
2643 {
2644 if (table_id == 0xff) {
2645 return next_visible_table(ofproto, 0);
2646 } else if (table_id < ofproto->n_tables) {
2647 return &ofproto->tables[table_id];
2648 } else {
2649 return NULL;
2650 }
2651 }
2652
2653 static struct oftable *
2654 next_matching_table(const struct ofproto *ofproto,
2655 const struct oftable *table, uint8_t table_id)
2656 {
2657 return (table_id == 0xff
2658 ? next_visible_table(ofproto, (table - ofproto->tables) + 1)
2659 : NULL);
2660 }
2661
2662 /* Assigns TABLE to each oftable, in turn, that matches TABLE_ID in OFPROTO:
2663 *
2664 * - If TABLE_ID is 0xff, this iterates over every classifier table in
2665 * OFPROTO, skipping tables marked OFTABLE_HIDDEN.
2666 *
2667 * - If TABLE_ID is the number of a table in OFPROTO, then the loop iterates
2668 * only once, for that table. (This can be used to access tables marked
2669 * OFTABLE_HIDDEN.)
2670 *
2671 * - Otherwise, TABLE_ID isn't valid for OFPROTO, so the loop won't be
2672 * entered at all. (Perhaps you should have validated TABLE_ID with
2673 * check_table_id().)
2674 *
2675 * All parameters are evaluated multiple times.
2676 */
2677 #define FOR_EACH_MATCHING_TABLE(TABLE, TABLE_ID, OFPROTO) \
2678 for ((TABLE) = first_matching_table(OFPROTO, TABLE_ID); \
2679 (TABLE) != NULL; \
2680 (TABLE) = next_matching_table(OFPROTO, TABLE, TABLE_ID))
2681
2682 /* Searches 'ofproto' for rules in table 'table_id' (or in all tables, if
2683 * 'table_id' is 0xff) that match 'match' in the "loose" way required for
2684 * OpenFlow OFPFC_MODIFY and OFPFC_DELETE requests and puts them on list
2685 * 'rules'.
2686 *
2687 * If 'out_port' is anything other than OFPP_ANY, then only rules that output
2688 * to 'out_port' are included.
2689 *
2690 * Hidden rules are always omitted.
2691 *
2692 * Returns 0 on success, otherwise an OpenFlow error code. */
2693 static enum ofperr
2694 collect_rules_loose(struct ofproto *ofproto, uint8_t table_id,
2695 const struct match *match,
2696 ovs_be64 cookie, ovs_be64 cookie_mask,
2697 uint16_t out_port, struct list *rules)
2698 {
2699 struct oftable *table;
2700 struct cls_rule cr;
2701 enum ofperr error;
2702
2703 error = check_table_id(ofproto, table_id);
2704 if (error) {
2705 return error;
2706 }
2707
2708 list_init(rules);
2709 cls_rule_init(&cr, match, 0);
2710 FOR_EACH_MATCHING_TABLE (table, table_id, ofproto) {
2711 struct cls_cursor cursor;
2712 struct rule *rule;
2713
2714 cls_cursor_init(&cursor, &table->cls, &cr);
2715 CLS_CURSOR_FOR_EACH (rule, cr, &cursor) {
2716 if (rule->pending) {
2717 error = OFPROTO_POSTPONE;
2718 goto exit;
2719 }
2720 if (!ofproto_rule_is_hidden(rule)
2721 && ofproto_rule_has_out_port(rule, out_port)
2722 && !((rule->flow_cookie ^ cookie) & cookie_mask)) {
2723 list_push_back(rules, &rule->ofproto_node);
2724 }
2725 }
2726 }
2727
2728 exit:
2729 cls_rule_destroy(&cr);
2730 return error;
2731 }
2732
2733 /* Searches 'ofproto' for rules in table 'table_id' (or in all tables, if
2734 * 'table_id' is 0xff) that match 'match' in the "strict" way required for
2735 * OpenFlow OFPFC_MODIFY_STRICT and OFPFC_DELETE_STRICT requests and puts them
2736 * on list 'rules'.
2737 *
2738 * If 'out_port' is anything other than OFPP_ANY, then only rules that output
2739 * to 'out_port' are included.
2740 *
2741 * Hidden rules are always omitted.
2742 *
2743 * Returns 0 on success, otherwise an OpenFlow error code. */
2744 static enum ofperr
2745 collect_rules_strict(struct ofproto *ofproto, uint8_t table_id,
2746 const struct match *match, unsigned int priority,
2747 ovs_be64 cookie, ovs_be64 cookie_mask,
2748 uint16_t out_port, struct list *rules)
2749 {
2750 struct oftable *table;
2751 struct cls_rule cr;
2752 int error;
2753
2754 error = check_table_id(ofproto, table_id);
2755 if (error) {
2756 return error;
2757 }
2758
2759 list_init(rules);
2760 cls_rule_init(&cr, match, priority);
2761 FOR_EACH_MATCHING_TABLE (table, table_id, ofproto) {
2762 struct rule *rule;
2763
2764 rule = rule_from_cls_rule(classifier_find_rule_exactly(&table->cls,
2765 &cr));
2766 if (rule) {
2767 if (rule->pending) {
2768 error = OFPROTO_POSTPONE;
2769 goto exit;
2770 }
2771 if (!ofproto_rule_is_hidden(rule)
2772 && ofproto_rule_has_out_port(rule, out_port)
2773 && !((rule->flow_cookie ^ cookie) & cookie_mask)) {
2774 list_push_back(rules, &rule->ofproto_node);
2775 }
2776 }
2777 }
2778
2779 exit:
2780 cls_rule_destroy(&cr);
2781 return 0;
2782 }
2783
2784 /* Returns 'age_ms' (a duration in milliseconds), converted to seconds and
2785 * forced into the range of a uint16_t. */
2786 static int
2787 age_secs(long long int age_ms)
2788 {
2789 return (age_ms < 0 ? 0
2790 : age_ms >= UINT16_MAX * 1000 ? UINT16_MAX
2791 : (unsigned int) age_ms / 1000);
2792 }
2793
2794 static enum ofperr
2795 handle_flow_stats_request(struct ofconn *ofconn,
2796 const struct ofp_header *request)
2797 {
2798 struct ofproto *ofproto = ofconn_get_ofproto(ofconn);
2799 struct ofputil_flow_stats_request fsr;
2800 struct list replies;
2801 struct list rules;
2802 struct rule *rule;
2803 enum ofperr error;
2804
2805 error = ofputil_decode_flow_stats_request(&fsr, request);
2806 if (error) {
2807 return error;
2808 }
2809
2810 error = collect_rules_loose(ofproto, fsr.table_id, &fsr.match,
2811 fsr.cookie, fsr.cookie_mask,
2812 fsr.out_port, &rules);
2813 if (error) {
2814 return error;
2815 }
2816
2817 ofpmp_init(&replies, request);
2818 LIST_FOR_EACH (rule, ofproto_node, &rules) {
2819 long long int now = time_msec();
2820 struct ofputil_flow_stats fs;
2821
2822 minimatch_expand(&rule->cr.match, &fs.match);
2823 fs.priority = rule->cr.priority;
2824 fs.cookie = rule->flow_cookie;
2825 fs.table_id = rule->table_id;
2826 calc_flow_duration__(rule->created, now, &fs.duration_sec,
2827 &fs.duration_nsec);
2828 fs.idle_timeout = rule->idle_timeout;
2829 fs.hard_timeout = rule->hard_timeout;
2830 fs.idle_age = age_secs(now - rule->used);
2831 fs.hard_age = age_secs(now - rule->modified);
2832 ofproto->ofproto_class->rule_get_stats(rule, &fs.packet_count,
2833 &fs.byte_count);
2834 fs.ofpacts = rule->ofpacts;
2835 fs.ofpacts_len = rule->ofpacts_len;
2836 fs.flags = 0;
2837 if (rule->send_flow_removed) {
2838 fs.flags |= OFPFF_SEND_FLOW_REM;
2839 /* FIXME: Implement OF 1.3 flags OFPFF13_NO_PKT_COUNTS
2840 and OFPFF13_NO_BYT_COUNTS */
2841 }
2842 ofputil_append_flow_stats_reply(&fs, &replies);
2843 }
2844 ofconn_send_replies(ofconn, &replies);
2845
2846 return 0;
2847 }
2848
2849 static void
2850 flow_stats_ds(struct rule *rule, struct ds *results)
2851 {
2852 uint64_t packet_count, byte_count;
2853
2854 rule->ofproto->ofproto_class->rule_get_stats(rule,
2855 &packet_count, &byte_count);
2856
2857 if (rule->table_id != 0) {
2858 ds_put_format(results, "table_id=%"PRIu8", ", rule->table_id);
2859 }
2860 ds_put_format(results, "duration=%llds, ",
2861 (time_msec() - rule->created) / 1000);
2862 ds_put_format(results, "priority=%u, ", rule->cr.priority);
2863 ds_put_format(results, "n_packets=%"PRIu64", ", packet_count);
2864 ds_put_format(results, "n_bytes=%"PRIu64", ", byte_count);
2865 cls_rule_format(&rule->cr, results);
2866 ds_put_char(results, ',');
2867 ofpacts_format(rule->ofpacts, rule->ofpacts_len, results);
2868 ds_put_cstr(results, "\n");
2869 }
2870
2871 /* Adds a pretty-printed description of all flows to 'results', including
2872 * hidden flows (e.g., set up by in-band control). */
2873 void
2874 ofproto_get_all_flows(struct ofproto *p, struct ds *results)
2875 {
2876 struct oftable *table;
2877
2878 OFPROTO_FOR_EACH_TABLE (table, p) {
2879 struct cls_cursor cursor;
2880 struct rule *rule;
2881
2882 cls_cursor_init(&cursor, &table->cls, NULL);
2883 CLS_CURSOR_FOR_EACH (rule, cr, &cursor) {
2884 flow_stats_ds(rule, results);
2885 }
2886 }
2887 }
2888
2889 /* Obtains the NetFlow engine type and engine ID for 'ofproto' into
2890 * '*engine_type' and '*engine_id', respectively. */
2891 void
2892 ofproto_get_netflow_ids(const struct ofproto *ofproto,
2893 uint8_t *engine_type, uint8_t *engine_id)
2894 {
2895 ofproto->ofproto_class->get_netflow_ids(ofproto, engine_type, engine_id);
2896 }
2897
2898 /* Checks the status of CFM configured on 'ofp_port' within 'ofproto'. Returns
2899 * true if the port's CFM status was successfully stored into '*status'.
2900 * Returns false if the port did not have CFM configured, in which case
2901 * '*status' is indeterminate.
2902 *
2903 * The caller must provide and owns '*status', but it does not own and must not
2904 * modify or free the array returned in 'status->rmps'. */
2905 bool
2906 ofproto_port_get_cfm_status(const struct ofproto *ofproto, uint16_t ofp_port,
2907 struct ofproto_cfm_status *status)
2908 {
2909 struct ofport *ofport = ofproto_get_port(ofproto, ofp_port);
2910 return (ofport
2911 && ofproto->ofproto_class->get_cfm_status
2912 && ofproto->ofproto_class->get_cfm_status(ofport, status));
2913 }
2914
2915 static enum ofperr
2916 handle_aggregate_stats_request(struct ofconn *ofconn,
2917 const struct ofp_header *oh)
2918 {
2919 struct ofproto *ofproto = ofconn_get_ofproto(ofconn);
2920 struct ofputil_flow_stats_request request;
2921 struct ofputil_aggregate_stats stats;
2922 bool unknown_packets, unknown_bytes;
2923 struct ofpbuf *reply;
2924 struct list rules;
2925 struct rule *rule;
2926 enum ofperr error;
2927
2928 error = ofputil_decode_flow_stats_request(&request, oh);
2929 if (error) {
2930 return error;
2931 }
2932
2933 error = collect_rules_loose(ofproto, request.table_id, &request.match,
2934 request.cookie, request.cookie_mask,
2935 request.out_port, &rules);
2936 if (error) {
2937 return error;
2938 }
2939
2940 memset(&stats, 0, sizeof stats);
2941 unknown_packets = unknown_bytes = false;
2942 LIST_FOR_EACH (rule, ofproto_node, &rules) {
2943 uint64_t packet_count;
2944 uint64_t byte_count;
2945
2946 ofproto->ofproto_class->rule_get_stats(rule, &packet_count,
2947 &byte_count);
2948
2949 if (packet_count == UINT64_MAX) {
2950 unknown_packets = true;
2951 } else {
2952 stats.packet_count += packet_count;
2953 }
2954
2955 if (byte_count == UINT64_MAX) {
2956 unknown_bytes = true;
2957 } else {
2958 stats.byte_count += byte_count;
2959 }
2960
2961 stats.flow_count++;
2962 }
2963 if (unknown_packets) {
2964 stats.packet_count = UINT64_MAX;
2965 }
2966 if (unknown_bytes) {
2967 stats.byte_count = UINT64_MAX;
2968 }
2969
2970 reply = ofputil_encode_aggregate_stats_reply(&stats, oh);
2971 ofconn_send_reply(ofconn, reply);
2972
2973 return 0;
2974 }
2975
2976 struct queue_stats_cbdata {
2977 struct ofport *ofport;
2978 struct list replies;
2979 };
2980
2981 static void
2982 put_queue_stats(struct queue_stats_cbdata *cbdata, uint32_t queue_id,
2983 const struct netdev_queue_stats *stats)
2984 {
2985
2986 struct ofputil_queue_stats oqs = {
2987 .port_no = cbdata->ofport->pp.port_no,
2988 .queue_id = queue_id,
2989 .stats = *stats,
2990 };
2991 ofputil_append_queue_stat(&cbdata->replies, &oqs);
2992 }
2993
2994 static void
2995 handle_queue_stats_dump_cb(uint32_t queue_id,
2996 struct netdev_queue_stats *stats,
2997 void *cbdata_)
2998 {
2999 struct queue_stats_cbdata *cbdata = cbdata_;
3000
3001 put_queue_stats(cbdata, queue_id, stats);
3002 }
3003
3004 static enum ofperr
3005 handle_queue_stats_for_port(struct ofport *port, uint32_t queue_id,
3006 struct queue_stats_cbdata *cbdata)
3007 {
3008 cbdata->ofport = port;
3009 if (queue_id == OFPQ_ALL) {
3010 netdev_dump_queue_stats(port->netdev,
3011 handle_queue_stats_dump_cb, cbdata);
3012 } else {
3013 struct netdev_queue_stats stats;
3014
3015 if (!netdev_get_queue_stats(port->netdev, queue_id, &stats)) {
3016 put_queue_stats(cbdata, queue_id, &stats);
3017 } else {
3018 return OFPERR_OFPQOFC_BAD_QUEUE;
3019 }
3020 }
3021 return 0;
3022 }
3023
3024 static enum ofperr
3025 handle_queue_stats_request(struct ofconn *ofconn,
3026 const struct ofp_header *rq)
3027 {
3028 struct ofproto *ofproto = ofconn_get_ofproto(ofconn);
3029 struct queue_stats_cbdata cbdata;
3030 struct ofport *port;
3031 enum ofperr error;
3032 struct ofputil_queue_stats_request oqsr;
3033
3034 COVERAGE_INC(ofproto_queue_req);
3035
3036 ofpmp_init(&cbdata.replies, rq);
3037
3038 error = ofputil_decode_queue_stats_request(rq, &oqsr);
3039 if (error) {
3040 return error;
3041 }
3042
3043 if (oqsr.port_no == OFPP_ANY) {
3044 error = OFPERR_OFPQOFC_BAD_QUEUE;
3045 HMAP_FOR_EACH (port, hmap_node, &ofproto->ports) {
3046 if (!handle_queue_stats_for_port(port, oqsr.queue_id, &cbdata)) {
3047 error = 0;
3048 }
3049 }
3050 } else {
3051 port = ofproto_get_port(ofproto, oqsr.port_no);
3052 error = (port
3053 ? handle_queue_stats_for_port(port, oqsr.queue_id, &cbdata)
3054 : OFPERR_OFPQOFC_BAD_PORT);
3055 }
3056 if (!error) {
3057 ofconn_send_replies(ofconn, &cbdata.replies);
3058 } else {
3059 ofpbuf_list_delete(&cbdata.replies);
3060 }
3061
3062 return error;
3063 }
3064
3065 static bool
3066 is_flow_deletion_pending(const struct ofproto *ofproto,
3067 const struct cls_rule *cls_rule,
3068 uint8_t table_id)
3069 {
3070 if (!hmap_is_empty(&ofproto->deletions)) {
3071 struct ofoperation *op;
3072
3073 HMAP_FOR_EACH_WITH_HASH (op, hmap_node,
3074 cls_rule_hash(cls_rule, table_id),
3075 &ofproto->deletions) {
3076 if (cls_rule_equal(cls_rule, &op->rule->cr)) {
3077 return true;
3078 }
3079 }
3080 }
3081
3082 return false;
3083 }
3084
3085 /* Implements OFPFC_ADD and the cases for OFPFC_MODIFY and OFPFC_MODIFY_STRICT
3086 * in which no matching flow already exists in the flow table.
3087 *
3088 * Adds the flow specified by 'ofm', which is followed by 'n_actions'
3089 * ofp_actions, to the ofproto's flow table. Returns 0 on success, an OpenFlow
3090 * error code on failure, or OFPROTO_POSTPONE if the operation cannot be
3091 * initiated now but may be retried later.
3092 *
3093 * Upon successful return, takes ownership of 'fm->ofpacts'. On failure,
3094 * ownership remains with the caller.
3095 *
3096 * 'ofconn' is used to retrieve the packet buffer specified in ofm->buffer_id,
3097 * if any. */
3098 static enum ofperr
3099 add_flow(struct ofproto *ofproto, struct ofconn *ofconn,
3100 const struct ofputil_flow_mod *fm, const struct ofp_header *request)
3101 {
3102 struct oftable *table;
3103 struct ofopgroup *group;
3104 struct rule *victim;
3105 struct cls_rule cr;
3106 struct rule *rule;
3107 int error;
3108
3109 error = check_table_id(ofproto, fm->table_id);
3110 if (error) {
3111 return error;
3112 }
3113
3114 /* Pick table. */
3115 if (fm->table_id == 0xff) {
3116 uint8_t table_id;
3117 if (ofproto->ofproto_class->rule_choose_table) {
3118 error = ofproto->ofproto_class->rule_choose_table(ofproto,
3119 &fm->match,
3120 &table_id);
3121 if (error) {
3122 return error;
3123 }
3124 ovs_assert(table_id < ofproto->n_tables);
3125 table = &ofproto->tables[table_id];
3126 } else {
3127 table = &ofproto->tables[0];
3128 }
3129 } else if (fm->table_id < ofproto->n_tables) {
3130 table = &ofproto->tables[fm->table_id];
3131 } else {
3132 return OFPERR_OFPBRC_BAD_TABLE_ID;
3133 }
3134
3135 if (table->flags & OFTABLE_READONLY) {
3136 return OFPERR_OFPBRC_EPERM;
3137 }
3138
3139 /* Allocate new rule and initialize classifier rule. */
3140 rule = ofproto->ofproto_class->rule_alloc();
3141 if (!rule) {
3142 VLOG_WARN_RL(&rl, "%s: failed to create rule (%s)",
3143 ofproto->name, strerror(error));
3144 return ENOMEM;
3145 }
3146 cls_rule_init(&rule->cr, &fm->match, fm->priority);
3147
3148 /* Serialize against pending deletion. */
3149 if (is_flow_deletion_pending(ofproto, &cr, table - ofproto->tables)) {
3150 cls_rule_destroy(&rule->cr);
3151 ofproto->ofproto_class->rule_dealloc(rule);
3152 return OFPROTO_POSTPONE;
3153 }
3154
3155 /* Check for overlap, if requested. */
3156 if (fm->flags & OFPFF_CHECK_OVERLAP
3157 && classifier_rule_overlaps(&table->cls, &rule->cr)) {
3158 cls_rule_destroy(&rule->cr);
3159 ofproto->ofproto_class->rule_dealloc(rule);
3160 return OFPERR_OFPFMFC_OVERLAP;
3161 }
3162
3163 /* FIXME: Implement OFPFF12_RESET_COUNTS */
3164
3165 rule->ofproto = ofproto;
3166 rule->pending = NULL;
3167 rule->flow_cookie = fm->new_cookie;
3168 rule->created = rule->modified = rule->used = time_msec();
3169 rule->idle_timeout = fm->idle_timeout;
3170 rule->hard_timeout = fm->hard_timeout;
3171 rule->table_id = table - ofproto->tables;
3172 rule->send_flow_removed = (fm->flags & OFPFF_SEND_FLOW_REM) != 0;
3173 /* FIXME: Implement OF 1.3 flags OFPFF13_NO_PKT_COUNTS
3174 and OFPFF13_NO_BYT_COUNTS */
3175 rule->ofpacts = xmemdup(fm->ofpacts, fm->ofpacts_len);
3176 rule->ofpacts_len = fm->ofpacts_len;
3177 rule->evictable = true;
3178 rule->eviction_group = NULL;
3179 list_init(&rule->expirable);
3180 rule->monitor_flags = 0;
3181 rule->add_seqno = 0;
3182 rule->modify_seqno = 0;
3183
3184 /* Insert new rule. */
3185 victim = oftable_replace_rule(rule);
3186 if (victim && !rule_is_modifiable(victim)) {
3187 error = OFPERR_OFPBRC_EPERM;
3188 } else if (victim && victim->pending) {
3189 error = OFPROTO_POSTPONE;
3190 } else {
3191 struct ofoperation *op;
3192 struct rule *evict;
3193
3194 if (classifier_count(&table->cls) > table->max_flows) {
3195 bool was_evictable;
3196
3197 was_evictable = rule->evictable;
3198 rule->evictable = false;
3199 evict = choose_rule_to_evict(table);
3200 rule->evictable = was_evictable;
3201
3202 if (!evict) {
3203 error = OFPERR_OFPFMFC_TABLE_FULL;
3204 goto exit;
3205 } else if (evict->pending) {
3206 error = OFPROTO_POSTPONE;
3207 goto exit;
3208 }
3209 } else {
3210 evict = NULL;
3211 }
3212
3213 group = ofopgroup_create(ofproto, ofconn, request, fm->buffer_id);
3214 op = ofoperation_create(group, rule, OFOPERATION_ADD, 0);
3215 op->victim = victim;
3216
3217 error = ofproto->ofproto_class->rule_construct(rule);
3218 if (error) {
3219 op->group->n_running--;
3220 ofoperation_destroy(rule->pending);
3221 } else if (evict) {
3222 delete_flow__(evict, group);
3223 }
3224 ofopgroup_submit(group);
3225 }
3226
3227 exit:
3228 /* Back out if an error occurred. */
3229 if (error) {
3230 oftable_substitute_rule(rule, victim);
3231 ofproto_rule_destroy__(rule);
3232 }
3233 return error;
3234 }
3235 \f
3236 /* OFPFC_MODIFY and OFPFC_MODIFY_STRICT. */
3237
3238 /* Modifies the rules listed in 'rules', changing their actions to match those
3239 * in 'fm'.
3240 *
3241 * 'ofconn' is used to retrieve the packet buffer specified in fm->buffer_id,
3242 * if any.
3243 *
3244 * Returns 0 on success, otherwise an OpenFlow error code. */
3245 static enum ofperr
3246 modify_flows__(struct ofproto *ofproto, struct ofconn *ofconn,
3247 const struct ofputil_flow_mod *fm,
3248 const struct ofp_header *request, struct list *rules)
3249 {
3250 struct ofopgroup *group;
3251 struct rule *rule;
3252 enum ofperr error;
3253
3254 group = ofopgroup_create(ofproto, ofconn, request, fm->buffer_id);
3255 error = OFPERR_OFPBRC_EPERM;
3256 LIST_FOR_EACH (rule, ofproto_node, rules) {
3257 struct ofoperation *op;
3258 bool actions_changed;
3259 ovs_be64 new_cookie;
3260
3261 /* FIXME: Implement OFPFF12_RESET_COUNTS */
3262
3263 if (rule_is_modifiable(rule)) {
3264 /* At least one rule is modifiable, don't report EPERM error. */
3265 error = 0;
3266 } else {
3267 continue;
3268 }
3269
3270 actions_changed = !ofpacts_equal(fm->ofpacts, fm->ofpacts_len,
3271 rule->ofpacts, rule->ofpacts_len);
3272 new_cookie = (fm->new_cookie != htonll(UINT64_MAX)
3273 ? fm->new_cookie
3274 : rule->flow_cookie);
3275
3276 op = ofoperation_create(group, rule, OFOPERATION_MODIFY, 0);
3277 rule->flow_cookie = new_cookie;
3278 if (actions_changed) {
3279 op->ofpacts = rule->ofpacts;
3280 op->ofpacts_len = rule->ofpacts_len;
3281 rule->ofpacts = xmemdup(fm->ofpacts, fm->ofpacts_len);
3282 rule->ofpacts_len = fm->ofpacts_len;
3283 rule->ofproto->ofproto_class->rule_modify_actions(rule);
3284 } else {
3285 ofoperation_complete(op, 0);
3286 }
3287 }
3288 ofopgroup_submit(group);
3289
3290 return error;
3291 }
3292
3293 static enum ofperr
3294 modify_flows_add(struct ofproto *ofproto, struct ofconn *ofconn,
3295 const struct ofputil_flow_mod *fm,
3296 const struct ofp_header *request)
3297 {
3298 if (fm->cookie_mask != htonll(0) || fm->new_cookie == htonll(UINT64_MAX)) {
3299 return 0;
3300 }
3301 return add_flow(ofproto, ofconn, fm, request);
3302 }
3303
3304 /* Implements OFPFC_MODIFY. Returns 0 on success or an OpenFlow error code on
3305 * failure.
3306 *
3307 * 'ofconn' is used to retrieve the packet buffer specified in fm->buffer_id,
3308 * if any. */
3309 static enum ofperr
3310 modify_flows_loose(struct ofproto *ofproto, struct ofconn *ofconn,
3311 const struct ofputil_flow_mod *fm,
3312 const struct ofp_header *request)
3313 {
3314 struct list rules;
3315 int error;
3316
3317 error = collect_rules_loose(ofproto, fm->table_id, &fm->match,
3318 fm->cookie, fm->cookie_mask,
3319 OFPP_ANY, &rules);
3320 if (error) {
3321 return error;
3322 } else if (list_is_empty(&rules)) {
3323 return modify_flows_add(ofproto, ofconn, fm, request);
3324 } else {
3325 return modify_flows__(ofproto, ofconn, fm, request, &rules);
3326 }
3327 }
3328
3329 /* Implements OFPFC_MODIFY_STRICT. Returns 0 on success or an OpenFlow error
3330 * code on failure.
3331 *
3332 * 'ofconn' is used to retrieve the packet buffer specified in fm->buffer_id,
3333 * if any. */
3334 static enum ofperr
3335 modify_flow_strict(struct ofproto *ofproto, struct ofconn *ofconn,
3336 const struct ofputil_flow_mod *fm,
3337 const struct ofp_header *request)
3338 {
3339 struct list rules;
3340 int error;
3341
3342 error = collect_rules_strict(ofproto, fm->table_id, &fm->match,
3343 fm->priority, fm->cookie, fm->cookie_mask,
3344 OFPP_ANY, &rules);
3345
3346 if (error) {
3347 return error;
3348 } else if (list_is_empty(&rules)) {
3349 return modify_flows_add(ofproto, ofconn, fm, request);
3350 } else {
3351 return list_is_singleton(&rules) ? modify_flows__(ofproto, ofconn,
3352 fm, request, &rules)
3353 : 0;
3354 }
3355 }
3356 \f
3357 /* OFPFC_DELETE implementation. */
3358
3359 static void
3360 delete_flow__(struct rule *rule, struct ofopgroup *group)
3361 {
3362 struct ofproto *ofproto = rule->ofproto;
3363
3364 ofproto_rule_send_removed(rule, OFPRR_DELETE);
3365
3366 ofoperation_create(group, rule, OFOPERATION_DELETE, OFPRR_DELETE);
3367 oftable_remove_rule(rule);
3368 ofproto->ofproto_class->rule_destruct(rule);
3369 }
3370
3371 /* Deletes the rules listed in 'rules'.
3372 *
3373 * Returns 0 on success, otherwise an OpenFlow error code. */
3374 static enum ofperr
3375 delete_flows__(struct ofproto *ofproto, struct ofconn *ofconn,
3376 const struct ofp_header *request, struct list *rules)
3377 {
3378 struct rule *rule, *next;
3379 struct ofopgroup *group;
3380
3381 group = ofopgroup_create(ofproto, ofconn, request, UINT32_MAX);
3382 LIST_FOR_EACH_SAFE (rule, next, ofproto_node, rules) {
3383 delete_flow__(rule, group);
3384 }
3385 ofopgroup_submit(group);
3386
3387 return 0;
3388 }
3389
3390 /* Implements OFPFC_DELETE. */
3391 static enum ofperr
3392 delete_flows_loose(struct ofproto *ofproto, struct ofconn *ofconn,
3393 const struct ofputil_flow_mod *fm,
3394 const struct ofp_header *request)
3395 {
3396 struct list rules;
3397 enum ofperr error;
3398
3399 error = collect_rules_loose(ofproto, fm->table_id, &fm->match,
3400 fm->cookie, fm->cookie_mask,
3401 fm->out_port, &rules);
3402 return (error ? error
3403 : !list_is_empty(&rules) ? delete_flows__(ofproto, ofconn, request,
3404 &rules)
3405 : 0);
3406 }
3407
3408 /* Implements OFPFC_DELETE_STRICT. */
3409 static enum ofperr
3410 delete_flow_strict(struct ofproto *ofproto, struct ofconn *ofconn,
3411 const struct ofputil_flow_mod *fm,
3412 const struct ofp_header *request)
3413 {
3414 struct list rules;
3415 enum ofperr error;
3416
3417 error = collect_rules_strict(ofproto, fm->table_id, &fm->match,
3418 fm->priority, fm->cookie, fm->cookie_mask,
3419 fm->out_port, &rules);
3420 return (error ? error
3421 : list_is_singleton(&rules) ? delete_flows__(ofproto, ofconn,
3422 request, &rules)
3423 : 0);
3424 }
3425
3426 static void
3427 ofproto_rule_send_removed(struct rule *rule, uint8_t reason)
3428 {
3429 struct ofputil_flow_removed fr;
3430
3431 if (ofproto_rule_is_hidden(rule) || !rule->send_flow_removed) {
3432 return;
3433 }
3434
3435 minimatch_expand(&rule->cr.match, &fr.match);
3436 fr.priority = rule->cr.priority;
3437 fr.cookie = rule->flow_cookie;
3438 fr.reason = reason;
3439 fr.table_id = rule->table_id;
3440 calc_flow_duration__(rule->created, time_msec(),
3441 &fr.duration_sec, &fr.duration_nsec);
3442 fr.idle_timeout = rule->idle_timeout;
3443 fr.hard_timeout = rule->hard_timeout;
3444 rule->ofproto->ofproto_class->rule_get_stats(rule, &fr.packet_count,
3445 &fr.byte_count);
3446
3447 connmgr_send_flow_removed(rule->ofproto->connmgr, &fr);
3448 }
3449
3450 void
3451 ofproto_rule_update_used(struct rule *rule, long long int used)
3452 {
3453 if (used > rule->used) {
3454 struct eviction_group *evg = rule->eviction_group;
3455
3456 rule->used = used;
3457 if (evg) {
3458 heap_change(&evg->rules, &rule->evg_node,
3459 rule_eviction_priority(rule));
3460 }
3461 }
3462 }
3463
3464 /* Sends an OpenFlow "flow removed" message with the given 'reason' (either
3465 * OFPRR_HARD_TIMEOUT or OFPRR_IDLE_TIMEOUT), and then removes 'rule' from its
3466 * ofproto.
3467 *
3468 * 'rule' must not have a pending operation (that is, 'rule->pending' must be
3469 * NULL).
3470 *
3471 * ofproto implementation ->run() functions should use this function to expire
3472 * OpenFlow flows. */
3473 void
3474 ofproto_rule_expire(struct rule *rule, uint8_t reason)
3475 {
3476 struct ofproto *ofproto = rule->ofproto;
3477 struct ofopgroup *group;
3478
3479 ovs_assert(reason == OFPRR_HARD_TIMEOUT || reason == OFPRR_IDLE_TIMEOUT);
3480
3481 ofproto_rule_send_removed(rule, reason);
3482
3483 group = ofopgroup_create_unattached(ofproto);
3484 ofoperation_create(group, rule, OFOPERATION_DELETE, reason);
3485 oftable_remove_rule(rule);
3486 ofproto->ofproto_class->rule_destruct(rule);
3487 ofopgroup_submit(group);
3488 }
3489 \f
3490 static enum ofperr
3491 handle_flow_mod(struct ofconn *ofconn, const struct ofp_header *oh)
3492 {
3493 struct ofproto *ofproto = ofconn_get_ofproto(ofconn);
3494 struct ofputil_flow_mod fm;
3495 uint64_t ofpacts_stub[1024 / 8];
3496 struct ofpbuf ofpacts;
3497 enum ofperr error;
3498 long long int now;
3499
3500 error = reject_slave_controller(ofconn);
3501 if (error) {
3502 goto exit;
3503 }
3504
3505 ofpbuf_use_stub(&ofpacts, ofpacts_stub, sizeof ofpacts_stub);
3506 error = ofputil_decode_flow_mod(&fm, oh, ofconn_get_protocol(ofconn),
3507 &ofpacts);
3508 if (!error) {
3509 error = ofpacts_check(fm.ofpacts, fm.ofpacts_len,
3510 &fm.match.flow, ofproto->max_ports);
3511 }
3512 if (!error) {
3513 error = handle_flow_mod__(ofproto, ofconn, &fm, oh);
3514 }
3515 if (error) {
3516 goto exit_free_ofpacts;
3517 }
3518
3519 /* Record the operation for logging a summary report. */
3520 switch (fm.command) {
3521 case OFPFC_ADD:
3522 ofproto->n_add++;
3523 break;
3524
3525 case OFPFC_MODIFY:
3526 case OFPFC_MODIFY_STRICT:
3527 ofproto->n_modify++;
3528 break;
3529
3530 case OFPFC_DELETE:
3531 case OFPFC_DELETE_STRICT:
3532 ofproto->n_delete++;
3533 break;
3534 }
3535
3536 now = time_msec();
3537 if (ofproto->next_op_report == LLONG_MAX) {
3538 ofproto->first_op = now;
3539 ofproto->next_op_report = MAX(now + 10 * 1000,
3540 ofproto->op_backoff);
3541 ofproto->op_backoff = ofproto->next_op_report + 60 * 1000;
3542 }
3543 ofproto->last_op = now;
3544
3545 exit_free_ofpacts:
3546 ofpbuf_uninit(&ofpacts);
3547 exit:
3548 return error;
3549 }
3550
3551 static enum ofperr
3552 handle_flow_mod__(struct ofproto *ofproto, struct ofconn *ofconn,
3553 const struct ofputil_flow_mod *fm,
3554 const struct ofp_header *oh)
3555 {
3556 if (ofproto->n_pending >= 50) {
3557 ovs_assert(!list_is_empty(&ofproto->pending));
3558 return OFPROTO_POSTPONE;
3559 }
3560
3561 switch (fm->command) {
3562 case OFPFC_ADD:
3563 return add_flow(ofproto, ofconn, fm, oh);
3564
3565 case OFPFC_MODIFY:
3566 return modify_flows_loose(ofproto, ofconn, fm, oh);
3567
3568 case OFPFC_MODIFY_STRICT:
3569 return modify_flow_strict(ofproto, ofconn, fm, oh);
3570
3571 case OFPFC_DELETE:
3572 return delete_flows_loose(ofproto, ofconn, fm, oh);
3573
3574 case OFPFC_DELETE_STRICT:
3575 return delete_flow_strict(ofproto, ofconn, fm, oh);
3576
3577 default:
3578 if (fm->command > 0xff) {
3579 VLOG_WARN_RL(&rl, "%s: flow_mod has explicit table_id but "
3580 "flow_mod_table_id extension is not enabled",
3581 ofproto->name);
3582 }
3583 return OFPERR_OFPFMFC_BAD_COMMAND;
3584 }
3585 }
3586
3587 static enum ofperr
3588 handle_role_request(struct ofconn *ofconn, const struct ofp_header *oh)
3589 {
3590 struct ofputil_role_request request;
3591 struct ofputil_role_request reply;
3592 struct ofpbuf *buf;
3593 enum ofperr error;
3594
3595 error = ofputil_decode_role_message(oh, &request);
3596 if (error) {
3597 return error;
3598 }
3599
3600 if (request.role != OFPCR12_ROLE_NOCHANGE) {
3601 if (ofconn_get_role(ofconn) != request.role
3602 && ofconn_has_pending_opgroups(ofconn)) {
3603 return OFPROTO_POSTPONE;
3604 }
3605
3606 if (request.have_generation_id
3607 && !ofconn_set_master_election_id(ofconn, request.generation_id)) {
3608 return OFPERR_OFPRRFC_STALE;
3609 }
3610
3611 ofconn_set_role(ofconn, request.role);
3612 }
3613
3614 reply.role = ofconn_get_role(ofconn);
3615 reply.have_generation_id = ofconn_get_master_election_id(
3616 ofconn, &reply.generation_id);
3617 buf = ofputil_encode_role_reply(oh, &reply);
3618 ofconn_send_reply(ofconn, buf);
3619
3620 return 0;
3621 }
3622
3623 static enum ofperr
3624 handle_nxt_flow_mod_table_id(struct ofconn *ofconn,
3625 const struct ofp_header *oh)
3626 {
3627 const struct nx_flow_mod_table_id *msg = ofpmsg_body(oh);
3628 enum ofputil_protocol cur, next;
3629
3630 cur = ofconn_get_protocol(ofconn);
3631 next = ofputil_protocol_set_tid(cur, msg->set != 0);
3632 ofconn_set_protocol(ofconn, next);
3633
3634 return 0;
3635 }
3636
3637 static enum ofperr
3638 handle_nxt_set_flow_format(struct ofconn *ofconn, const struct ofp_header *oh)
3639 {
3640 const struct nx_set_flow_format *msg = ofpmsg_body(oh);
3641 enum ofputil_protocol cur, next;
3642 enum ofputil_protocol next_base;
3643
3644 next_base = ofputil_nx_flow_format_to_protocol(ntohl(msg->format));
3645 if (!next_base) {
3646 return OFPERR_OFPBRC_EPERM;
3647 }
3648
3649 cur = ofconn_get_protocol(ofconn);
3650 next = ofputil_protocol_set_base(cur, next_base);
3651 if (cur != next && ofconn_has_pending_opgroups(ofconn)) {
3652 /* Avoid sending async messages in surprising protocol. */
3653 return OFPROTO_POSTPONE;
3654 }
3655
3656 ofconn_set_protocol(ofconn, next);
3657 return 0;
3658 }
3659
3660 static enum ofperr
3661 handle_nxt_set_packet_in_format(struct ofconn *ofconn,
3662 const struct ofp_header *oh)
3663 {
3664 const struct nx_set_packet_in_format *msg = ofpmsg_body(oh);
3665 uint32_t format;
3666
3667 format = ntohl(msg->format);
3668 if (format != NXPIF_OPENFLOW10 && format != NXPIF_NXM) {
3669 return OFPERR_OFPBRC_EPERM;
3670 }
3671
3672 if (format != ofconn_get_packet_in_format(ofconn)
3673 && ofconn_has_pending_opgroups(ofconn)) {
3674 /* Avoid sending async message in surprsing packet in format. */
3675 return OFPROTO_POSTPONE;
3676 }
3677
3678 ofconn_set_packet_in_format(ofconn, format);
3679 return 0;
3680 }
3681
3682 static enum ofperr
3683 handle_nxt_set_async_config(struct ofconn *ofconn, const struct ofp_header *oh)
3684 {
3685 const struct nx_async_config *msg = ofpmsg_body(oh);
3686 uint32_t master[OAM_N_TYPES];
3687 uint32_t slave[OAM_N_TYPES];
3688
3689 master[OAM_PACKET_IN] = ntohl(msg->packet_in_mask[0]);
3690 master[OAM_PORT_STATUS] = ntohl(msg->port_status_mask[0]);
3691 master[OAM_FLOW_REMOVED] = ntohl(msg->flow_removed_mask[0]);
3692
3693 slave[OAM_PACKET_IN] = ntohl(msg->packet_in_mask[1]);
3694 slave[OAM_PORT_STATUS] = ntohl(msg->port_status_mask[1]);
3695 slave[OAM_FLOW_REMOVED] = ntohl(msg->flow_removed_mask[1]);
3696
3697 ofconn_set_async_config(ofconn, master, slave);
3698 if (ofconn_get_type(ofconn) == OFCONN_SERVICE &&
3699 !ofconn_get_miss_send_len(ofconn)) {
3700 ofconn_set_miss_send_len(ofconn, OFP_DEFAULT_MISS_SEND_LEN);
3701 }
3702
3703 return 0;
3704 }
3705
3706 static enum ofperr
3707 handle_nxt_set_controller_id(struct ofconn *ofconn,
3708 const struct ofp_header *oh)
3709 {
3710 const struct nx_controller_id *nci = ofpmsg_body(oh);
3711
3712 if (!is_all_zeros(nci->zero, sizeof nci->zero)) {
3713 return OFPERR_NXBRC_MUST_BE_ZERO;
3714 }
3715
3716 ofconn_set_controller_id(ofconn, ntohs(nci->controller_id));
3717 return 0;
3718 }
3719
3720 static enum ofperr
3721 handle_barrier_request(struct ofconn *ofconn, const struct ofp_header *oh)
3722 {
3723 struct ofpbuf *buf;
3724
3725 if (ofconn_has_pending_opgroups(ofconn)) {
3726 return OFPROTO_POSTPONE;
3727 }
3728
3729 buf = ofpraw_alloc_reply((oh->version == OFP10_VERSION
3730 ? OFPRAW_OFPT10_BARRIER_REPLY
3731 : OFPRAW_OFPT11_BARRIER_REPLY), oh, 0);
3732 ofconn_send_reply(ofconn, buf);
3733 return 0;
3734 }
3735
3736 static void
3737 ofproto_compose_flow_refresh_update(const struct rule *rule,
3738 enum nx_flow_monitor_flags flags,
3739 struct list *msgs)
3740 {
3741 struct ofoperation *op = rule->pending;
3742 struct ofputil_flow_update fu;
3743 struct match match;
3744
3745 if (op && op->type == OFOPERATION_ADD && !op->victim) {
3746 /* We'll report the final flow when the operation completes. Reporting
3747 * it now would cause a duplicate report later. */
3748 return;
3749 }
3750
3751 fu.event = (flags & (NXFMF_INITIAL | NXFMF_ADD)
3752 ? NXFME_ADDED : NXFME_MODIFIED);
3753 fu.reason = 0;
3754 fu.idle_timeout = rule->idle_timeout;
3755 fu.hard_timeout = rule->hard_timeout;
3756 fu.table_id = rule->table_id;
3757 fu.cookie = rule->flow_cookie;
3758 minimatch_expand(&rule->cr.match, &match);
3759 fu.match = &match;
3760 fu.priority = rule->cr.priority;
3761 if (!(flags & NXFMF_ACTIONS)) {
3762 fu.ofpacts = NULL;
3763 fu.ofpacts_len = 0;
3764 } else if (!op) {
3765 fu.ofpacts = rule->ofpacts;
3766 fu.ofpacts_len = rule->ofpacts_len;
3767 } else {
3768 /* An operation is in progress. Use the previous version of the flow's
3769 * actions, so that when the operation commits we report the change. */
3770 switch (op->type) {
3771 case OFOPERATION_ADD:
3772 /* We already verified that there was a victim. */
3773 fu.ofpacts = op->victim->ofpacts;
3774 fu.ofpacts_len = op->victim->ofpacts_len;
3775 break;
3776
3777 case OFOPERATION_MODIFY:
3778 if (op->ofpacts) {
3779 fu.ofpacts = op->ofpacts;
3780 fu.ofpacts_len = op->ofpacts_len;
3781 } else {
3782 fu.ofpacts = rule->ofpacts;
3783 fu.ofpacts_len = rule->ofpacts_len;
3784 }
3785 break;
3786
3787 case OFOPERATION_DELETE:
3788 fu.ofpacts = rule->ofpacts;
3789 fu.ofpacts_len = rule->ofpacts_len;
3790 break;
3791
3792 default:
3793 NOT_REACHED();
3794 }
3795 }
3796
3797 if (list_is_empty(msgs)) {
3798 ofputil_start_flow_update(msgs);
3799 }
3800 ofputil_append_flow_update(&fu, msgs);
3801 }
3802
3803 void
3804 ofmonitor_compose_refresh_updates(struct list *rules, struct list *msgs)
3805 {
3806 struct rule *rule;
3807
3808 LIST_FOR_EACH (rule, ofproto_node, rules) {
3809 enum nx_flow_monitor_flags flags = rule->monitor_flags;
3810 rule->monitor_flags = 0;
3811
3812 ofproto_compose_flow_refresh_update(rule, flags, msgs);
3813 }
3814 }
3815
3816 static void
3817 ofproto_collect_ofmonitor_refresh_rule(const struct ofmonitor *m,
3818 struct rule *rule, uint64_t seqno,
3819 struct list *rules)
3820 {
3821 enum nx_flow_monitor_flags update;
3822
3823 if (ofproto_rule_is_hidden(rule)) {
3824 return;
3825 }
3826
3827 if (!(rule->pending
3828 ? ofoperation_has_out_port(rule->pending, m->out_port)
3829 : ofproto_rule_has_out_port(rule, m->out_port))) {
3830 return;
3831 }
3832
3833 if (seqno) {
3834 if (rule->add_seqno > seqno) {
3835 update = NXFMF_ADD | NXFMF_MODIFY;
3836 } else if (rule->modify_seqno > seqno) {
3837 update = NXFMF_MODIFY;
3838 } else {
3839 return;
3840 }
3841
3842 if (!(m->flags & update)) {
3843 return;
3844 }
3845 } else {
3846 update = NXFMF_INITIAL;
3847 }
3848
3849 if (!rule->monitor_flags) {
3850 list_push_back(rules, &rule->ofproto_node);
3851 }
3852 rule->monitor_flags |= update | (m->flags & NXFMF_ACTIONS);
3853 }
3854
3855 static void
3856 ofproto_collect_ofmonitor_refresh_rules(const struct ofmonitor *m,
3857 uint64_t seqno,
3858 struct list *rules)
3859 {
3860 const struct ofproto *ofproto = ofconn_get_ofproto(m->ofconn);
3861 const struct ofoperation *op;
3862 const struct oftable *table;
3863 struct cls_rule target;
3864
3865 cls_rule_init_from_minimatch(&target, &m->match, 0);
3866 FOR_EACH_MATCHING_TABLE (table, m->table_id, ofproto) {
3867 struct cls_cursor cursor;
3868 struct rule *rule;
3869
3870 cls_cursor_init(&cursor, &table->cls, &target);
3871 CLS_CURSOR_FOR_EACH (rule, cr, &cursor) {
3872 ovs_assert(!rule->pending); /* XXX */
3873 ofproto_collect_ofmonitor_refresh_rule(m, rule, seqno, rules);
3874 }
3875 }
3876
3877 HMAP_FOR_EACH (op, hmap_node, &ofproto->deletions) {
3878 struct rule *rule = op->rule;
3879
3880 if (((m->table_id == 0xff
3881 ? !(ofproto->tables[rule->table_id].flags & OFTABLE_HIDDEN)
3882 : m->table_id == rule->table_id))
3883 && cls_rule_is_loose_match(&rule->cr, &target.match)) {
3884 ofproto_collect_ofmonitor_refresh_rule(m, rule, seqno, rules);
3885 }
3886 }
3887 cls_rule_destroy(&target);
3888 }
3889
3890 static void
3891 ofproto_collect_ofmonitor_initial_rules(struct ofmonitor *m,
3892 struct list *rules)
3893 {
3894 if (m->flags & NXFMF_INITIAL) {
3895 ofproto_collect_ofmonitor_refresh_rules(m, 0, rules);
3896 }
3897 }
3898
3899 void
3900 ofmonitor_collect_resume_rules(struct ofmonitor *m,
3901 uint64_t seqno, struct list *rules)
3902 {
3903 ofproto_collect_ofmonitor_refresh_rules(m, seqno, rules);
3904 }
3905
3906 static enum ofperr
3907 handle_flow_monitor_request(struct ofconn *ofconn, const struct ofp_header *oh)
3908 {
3909 struct ofproto *ofproto = ofconn_get_ofproto(ofconn);
3910 struct ofmonitor **monitors;
3911 size_t n_monitors, allocated_monitors;
3912 struct list replies;
3913 enum ofperr error;
3914 struct list rules;
3915 struct ofpbuf b;
3916 size_t i;
3917
3918 error = 0;
3919 ofpbuf_use_const(&b, oh, ntohs(oh->length));
3920 monitors = NULL;
3921 n_monitors = allocated_monitors = 0;
3922 for (;;) {
3923 struct ofputil_flow_monitor_request request;
3924 struct ofmonitor *m;
3925 int retval;
3926
3927 retval = ofputil_decode_flow_monitor_request(&request, &b);
3928 if (retval == EOF) {
3929 break;
3930 } else if (retval) {
3931 error = retval;
3932 goto error;
3933 }
3934
3935 if (request.table_id != 0xff
3936 && request.table_id >= ofproto->n_tables) {
3937 error = OFPERR_OFPBRC_BAD_TABLE_ID;
3938 goto error;
3939 }
3940
3941 error = ofmonitor_create(&request, ofconn, &m);
3942 if (error) {
3943 goto error;
3944 }
3945
3946 if (n_monitors >= allocated_monitors) {
3947 monitors = x2nrealloc(monitors, &allocated_monitors,
3948 sizeof *monitors);
3949 }
3950 monitors[n_monitors++] = m;
3951 }
3952
3953 list_init(&rules);
3954 for (i = 0; i < n_monitors; i++) {
3955 ofproto_collect_ofmonitor_initial_rules(monitors[i], &rules);
3956 }
3957
3958 ofpmp_init(&replies, oh);
3959 ofmonitor_compose_refresh_updates(&rules, &replies);
3960 ofconn_send_replies(ofconn, &replies);
3961
3962 free(monitors);
3963
3964 return 0;
3965
3966 error:
3967 for (i = 0; i < n_monitors; i++) {
3968 ofmonitor_destroy(monitors[i]);
3969 }
3970 free(monitors);
3971 return error;
3972 }
3973
3974 static enum ofperr
3975 handle_flow_monitor_cancel(struct ofconn *ofconn, const struct ofp_header *oh)
3976 {
3977 struct ofmonitor *m;
3978 uint32_t id;
3979
3980 id = ofputil_decode_flow_monitor_cancel(oh);
3981 m = ofmonitor_lookup(ofconn, id);
3982 if (!m) {
3983 return OFPERR_NXBRC_FM_BAD_ID;
3984 }
3985
3986 ofmonitor_destroy(m);
3987 return 0;
3988 }
3989
3990 static enum ofperr
3991 handle_openflow__(struct ofconn *ofconn, const struct ofpbuf *msg)
3992 {
3993 const struct ofp_header *oh = msg->data;
3994 enum ofptype type;
3995 enum ofperr error;
3996
3997 error = ofptype_decode(&type, oh);
3998 if (error) {
3999 return error;
4000 }
4001
4002 switch (type) {
4003 /* OpenFlow requests. */
4004 case OFPTYPE_ECHO_REQUEST:
4005 return handle_echo_request(ofconn, oh);
4006
4007 case OFPTYPE_FEATURES_REQUEST:
4008 return handle_features_request(ofconn, oh);
4009
4010 case OFPTYPE_GET_CONFIG_REQUEST:
4011 return handle_get_config_request(ofconn, oh);
4012
4013 case OFPTYPE_SET_CONFIG:
4014 return handle_set_config(ofconn, oh);
4015
4016 case OFPTYPE_PACKET_OUT:
4017 return handle_packet_out(ofconn, oh);
4018
4019 case OFPTYPE_PORT_MOD:
4020 return handle_port_mod(ofconn, oh);
4021
4022 case OFPTYPE_FLOW_MOD:
4023 return handle_flow_mod(ofconn, oh);
4024
4025 case OFPTYPE_BARRIER_REQUEST:
4026 return handle_barrier_request(ofconn, oh);
4027
4028 case OFPTYPE_ROLE_REQUEST:
4029 return handle_role_request(ofconn, oh);
4030
4031 /* OpenFlow replies. */
4032 case OFPTYPE_ECHO_REPLY:
4033 return 0;
4034
4035 /* Nicira extension requests. */
4036 case OFPTYPE_FLOW_MOD_TABLE_ID:
4037 return handle_nxt_flow_mod_table_id(ofconn, oh);
4038
4039 case OFPTYPE_SET_FLOW_FORMAT:
4040 return handle_nxt_set_flow_format(ofconn, oh);
4041
4042 case OFPTYPE_SET_PACKET_IN_FORMAT:
4043 return handle_nxt_set_packet_in_format(ofconn, oh);
4044
4045 case OFPTYPE_SET_CONTROLLER_ID:
4046 return handle_nxt_set_controller_id(ofconn, oh);
4047
4048 case OFPTYPE_FLOW_AGE:
4049 /* Nothing to do. */
4050 return 0;
4051
4052 case OFPTYPE_FLOW_MONITOR_CANCEL:
4053 return handle_flow_monitor_cancel(ofconn, oh);
4054
4055 case OFPTYPE_SET_ASYNC_CONFIG:
4056 return handle_nxt_set_async_config(ofconn, oh);
4057
4058 /* Statistics requests. */
4059 case OFPTYPE_DESC_STATS_REQUEST:
4060 return handle_desc_stats_request(ofconn, oh);
4061
4062 case OFPTYPE_FLOW_STATS_REQUEST:
4063 return handle_flow_stats_request(ofconn, oh);
4064
4065 case OFPTYPE_AGGREGATE_STATS_REQUEST:
4066 return handle_aggregate_stats_request(ofconn, oh);
4067
4068 case OFPTYPE_TABLE_STATS_REQUEST:
4069 return handle_table_stats_request(ofconn, oh);
4070
4071 case OFPTYPE_PORT_STATS_REQUEST:
4072 return handle_port_stats_request(ofconn, oh);
4073
4074 case OFPTYPE_QUEUE_STATS_REQUEST:
4075 return handle_queue_stats_request(ofconn, oh);
4076
4077 case OFPTYPE_PORT_DESC_STATS_REQUEST:
4078 return handle_port_desc_stats_request(ofconn, oh);
4079
4080 case OFPTYPE_FLOW_MONITOR_STATS_REQUEST:
4081 return handle_flow_monitor_request(ofconn, oh);
4082
4083 /* FIXME: Change the following once they are implemented: */
4084 case OFPTYPE_QUEUE_GET_CONFIG_REQUEST:
4085 case OFPTYPE_GET_ASYNC_REQUEST:
4086 case OFPTYPE_METER_MOD:
4087 case OFPTYPE_GROUP_REQUEST:
4088 case OFPTYPE_GROUP_DESC_REQUEST:
4089 case OFPTYPE_GROUP_FEATURES_REQUEST:
4090 case OFPTYPE_METER_REQUEST:
4091 case OFPTYPE_METER_CONFIG_REQUEST:
4092 case OFPTYPE_METER_FEATURES_REQUEST:
4093 case OFPTYPE_TABLE_FEATURES_REQUEST:
4094 return OFPERR_OFPBRC_BAD_TYPE;
4095
4096 case OFPTYPE_HELLO:
4097 case OFPTYPE_ERROR:
4098 case OFPTYPE_FEATURES_REPLY:
4099 case OFPTYPE_GET_CONFIG_REPLY:
4100 case OFPTYPE_PACKET_IN:
4101 case OFPTYPE_FLOW_REMOVED:
4102 case OFPTYPE_PORT_STATUS:
4103 case OFPTYPE_BARRIER_REPLY:
4104 case OFPTYPE_QUEUE_GET_CONFIG_REPLY:
4105 case OFPTYPE_DESC_STATS_REPLY:
4106 case OFPTYPE_FLOW_STATS_REPLY:
4107 case OFPTYPE_QUEUE_STATS_REPLY:
4108 case OFPTYPE_PORT_STATS_REPLY:
4109 case OFPTYPE_TABLE_STATS_REPLY:
4110 case OFPTYPE_AGGREGATE_STATS_REPLY:
4111 case OFPTYPE_PORT_DESC_STATS_REPLY:
4112 case OFPTYPE_ROLE_REPLY:
4113 case OFPTYPE_FLOW_MONITOR_PAUSED:
4114 case OFPTYPE_FLOW_MONITOR_RESUMED:
4115 case OFPTYPE_FLOW_MONITOR_STATS_REPLY:
4116 case OFPTYPE_GET_ASYNC_REPLY:
4117 case OFPTYPE_GROUP_REPLY:
4118 case OFPTYPE_GROUP_DESC_REPLY:
4119 case OFPTYPE_GROUP_FEATURES_REPLY:
4120 case OFPTYPE_METER_REPLY:
4121 case OFPTYPE_METER_CONFIG_REPLY:
4122 case OFPTYPE_METER_FEATURES_REPLY:
4123 case OFPTYPE_TABLE_FEATURES_REPLY:
4124 default:
4125 return OFPERR_OFPBRC_BAD_TYPE;
4126 }
4127 }
4128
4129 static bool
4130 handle_openflow(struct ofconn *ofconn, struct ofpbuf *ofp_msg)
4131 {
4132 int error = handle_openflow__(ofconn, ofp_msg);
4133 if (error && error != OFPROTO_POSTPONE) {
4134 ofconn_send_error(ofconn, ofp_msg->data, error);
4135 }
4136 COVERAGE_INC(ofproto_recv_openflow);
4137 return error != OFPROTO_POSTPONE;
4138 }
4139 \f
4140 /* Asynchronous operations. */
4141
4142 /* Creates and returns a new ofopgroup that is not associated with any
4143 * OpenFlow connection.
4144 *
4145 * The caller should add operations to the returned group with
4146 * ofoperation_create() and then submit it with ofopgroup_submit(). */
4147 static struct ofopgroup *
4148 ofopgroup_create_unattached(struct ofproto *ofproto)
4149 {
4150 struct ofopgroup *group = xzalloc(sizeof *group);
4151 group->ofproto = ofproto;
4152 list_init(&group->ofproto_node);
4153 list_init(&group->ops);
4154 list_init(&group->ofconn_node);
4155 return group;
4156 }
4157
4158 /* Creates and returns a new ofopgroup for 'ofproto'.
4159 *
4160 * If 'ofconn' is NULL, the new ofopgroup is not associated with any OpenFlow
4161 * connection. The 'request' and 'buffer_id' arguments are ignored.
4162 *
4163 * If 'ofconn' is nonnull, then the new ofopgroup is associated with 'ofconn'.
4164 * If the ofopgroup eventually fails, then the error reply will include
4165 * 'request'. If the ofopgroup eventually succeeds, then the packet with
4166 * buffer id 'buffer_id' on 'ofconn' will be sent by 'ofconn''s ofproto.
4167 *
4168 * The caller should add operations to the returned group with
4169 * ofoperation_create() and then submit it with ofopgroup_submit(). */
4170 static struct ofopgroup *
4171 ofopgroup_create(struct ofproto *ofproto, struct ofconn *ofconn,
4172 const struct ofp_header *request, uint32_t buffer_id)
4173 {
4174 struct ofopgroup *group = ofopgroup_create_unattached(ofproto);
4175 if (ofconn) {
4176 size_t request_len = ntohs(request->length);
4177
4178 ovs_assert(ofconn_get_ofproto(ofconn) == ofproto);
4179
4180 ofconn_add_opgroup(ofconn, &group->ofconn_node);
4181 group->ofconn = ofconn;
4182 group->request = xmemdup(request, MIN(request_len, 64));
4183 group->buffer_id = buffer_id;
4184 }
4185 return group;
4186 }
4187
4188 /* Submits 'group' for processing.
4189 *
4190 * If 'group' contains no operations (e.g. none were ever added, or all of the
4191 * ones that were added completed synchronously), then it is destroyed
4192 * immediately. Otherwise it is added to the ofproto's list of pending
4193 * groups. */
4194 static void
4195 ofopgroup_submit(struct ofopgroup *group)
4196 {
4197 if (!group->n_running) {
4198 ofopgroup_complete(group);
4199 } else {
4200 list_push_back(&group->ofproto->pending, &group->ofproto_node);
4201 group->ofproto->n_pending++;
4202 }
4203 }
4204
4205 static void
4206 ofopgroup_complete(struct ofopgroup *group)
4207 {
4208 struct ofproto *ofproto = group->ofproto;
4209
4210 struct ofconn *abbrev_ofconn;
4211 ovs_be32 abbrev_xid;
4212
4213 struct ofoperation *op, *next_op;
4214 int error;
4215
4216 ovs_assert(!group->n_running);
4217
4218 error = 0;
4219 LIST_FOR_EACH (op, group_node, &group->ops) {
4220 if (op->error) {
4221 error = op->error;
4222 break;
4223 }
4224 }
4225
4226 if (!error && group->ofconn && group->buffer_id != UINT32_MAX) {
4227 LIST_FOR_EACH (op, group_node, &group->ops) {
4228 if (op->type != OFOPERATION_DELETE) {
4229 struct ofpbuf *packet;
4230 uint16_t in_port;
4231
4232 error = ofconn_pktbuf_retrieve(group->ofconn, group->buffer_id,
4233 &packet, &in_port);
4234 if (packet) {
4235 ovs_assert(!error);
4236 error = rule_execute(op->rule, in_port, packet);
4237 }
4238 break;
4239 }
4240 }
4241 }
4242
4243 if (!error && !list_is_empty(&group->ofconn_node)) {
4244 abbrev_ofconn = group->ofconn;
4245 abbrev_xid = group->request->xid;
4246 } else {
4247 abbrev_ofconn = NULL;
4248 abbrev_xid = htonl(0);
4249 }
4250 LIST_FOR_EACH_SAFE (op, next_op, group_node, &group->ops) {
4251 struct rule *rule = op->rule;
4252
4253 /* We generally want to report the change to active OpenFlow flow
4254 monitors (e.g. NXST_FLOW_MONITOR). There are three exceptions:
4255
4256 - The operation failed.
4257
4258 - The affected rule is not visible to controllers.
4259
4260 - The operation's only effect was to update rule->modified. */
4261 if (!(op->error
4262 || ofproto_rule_is_hidden(rule)
4263 || (op->type == OFOPERATION_MODIFY
4264 && op->ofpacts
4265 && rule->flow_cookie == op->flow_cookie))) {
4266 /* Check that we can just cast from ofoperation_type to
4267 * nx_flow_update_event. */
4268 BUILD_ASSERT_DECL((enum nx_flow_update_event) OFOPERATION_ADD
4269 == NXFME_ADDED);
4270 BUILD_ASSERT_DECL((enum nx_flow_update_event) OFOPERATION_DELETE
4271 == NXFME_DELETED);
4272 BUILD_ASSERT_DECL((enum nx_flow_update_event) OFOPERATION_MODIFY
4273 == NXFME_MODIFIED);
4274
4275 ofmonitor_report(ofproto->connmgr, rule,
4276 (enum nx_flow_update_event) op->type,
4277 op->reason, abbrev_ofconn, abbrev_xid);
4278 }
4279
4280 rule->pending = NULL;
4281
4282 switch (op->type) {
4283 case OFOPERATION_ADD:
4284 if (!op->error) {
4285 uint16_t vid_mask;
4286
4287 ofproto_rule_destroy__(op->victim);
4288 vid_mask = minimask_get_vid_mask(&rule->cr.match.mask);
4289 if (vid_mask == VLAN_VID_MASK) {
4290 if (ofproto->vlan_bitmap) {
4291 uint16_t vid = miniflow_get_vid(&rule->cr.match.flow);
4292 if (!bitmap_is_set(ofproto->vlan_bitmap, vid)) {
4293 bitmap_set1(ofproto->vlan_bitmap, vid);
4294 ofproto->vlans_changed = true;
4295 }
4296 } else {
4297 ofproto->vlans_changed = true;
4298 }
4299 }
4300 } else {
4301 oftable_substitute_rule(rule, op->victim);
4302 ofproto_rule_destroy__(rule);
4303 }
4304 break;
4305
4306 case OFOPERATION_DELETE:
4307 ovs_assert(!op->error);
4308 ofproto_rule_destroy__(rule);
4309 op->rule = NULL;
4310 break;
4311
4312 case OFOPERATION_MODIFY:
4313 if (!op->error) {
4314 rule->modified = time_msec();
4315 } else {
4316 rule->flow_cookie = op->flow_cookie;
4317 if (op->ofpacts) {
4318 free(rule->ofpacts);
4319 rule->ofpacts = op->ofpacts;
4320 rule->ofpacts_len = op->ofpacts_len;
4321 op->ofpacts = NULL;
4322 op->ofpacts_len = 0;
4323 }
4324 }
4325 break;
4326
4327 default:
4328 NOT_REACHED();
4329 }
4330
4331 ofoperation_destroy(op);
4332 }
4333
4334 ofmonitor_flush(ofproto->connmgr);
4335
4336 if (!list_is_empty(&group->ofproto_node)) {
4337 ovs_assert(ofproto->n_pending > 0);
4338 ofproto->n_pending--;
4339 list_remove(&group->ofproto_node);
4340 }
4341 if (!list_is_empty(&group->ofconn_node)) {
4342 list_remove(&group->ofconn_node);
4343 if (error) {
4344 ofconn_send_error(group->ofconn, group->request, error);
4345 }
4346 connmgr_retry(ofproto->connmgr);
4347 }
4348 free(group->request);
4349 free(group);
4350 }
4351
4352 /* Initiates a new operation on 'rule', of the specified 'type', within
4353 * 'group'. Prior to calling, 'rule' must not have any pending operation.
4354 *
4355 * For a 'type' of OFOPERATION_DELETE, 'reason' should specify the reason that
4356 * the flow is being deleted. For other 'type's, 'reason' is ignored (use 0).
4357 *
4358 * Returns the newly created ofoperation (which is also available as
4359 * rule->pending). */
4360 static struct ofoperation *
4361 ofoperation_create(struct ofopgroup *group, struct rule *rule,
4362 enum ofoperation_type type,
4363 enum ofp_flow_removed_reason reason)
4364 {
4365 struct ofproto *ofproto = group->ofproto;
4366 struct ofoperation *op;
4367
4368 ovs_assert(!rule->pending);
4369
4370 op = rule->pending = xzalloc(sizeof *op);
4371 op->group = group;
4372 list_push_back(&group->ops, &op->group_node);
4373 op->rule = rule;
4374 op->type = type;
4375 op->reason = reason;
4376 op->flow_cookie = rule->flow_cookie;
4377
4378 group->n_running++;
4379
4380 if (type == OFOPERATION_DELETE) {
4381 hmap_insert(&ofproto->deletions, &op->hmap_node,
4382 cls_rule_hash(&rule->cr, rule->table_id));
4383 }
4384
4385 return op;
4386 }
4387
4388 static void
4389 ofoperation_destroy(struct ofoperation *op)
4390 {
4391 struct ofopgroup *group = op->group;
4392
4393 if (op->rule) {
4394 op->rule->pending = NULL;
4395 }
4396 if (op->type == OFOPERATION_DELETE) {
4397 hmap_remove(&group->ofproto->deletions, &op->hmap_node);
4398 }
4399 list_remove(&op->group_node);
4400 free(op->ofpacts);
4401 free(op);
4402 }
4403
4404 /* Indicates that 'op' completed with status 'error', which is either 0 to
4405 * indicate success or an OpenFlow error code on failure.
4406 *
4407 * If 'error' is 0, indicating success, the operation will be committed
4408 * permanently to the flow table. There is one interesting subcase:
4409 *
4410 * - If 'op' is an "add flow" operation that is replacing an existing rule in
4411 * the flow table (the "victim" rule) by a new one, then the caller must
4412 * have uninitialized any derived state in the victim rule, as in step 5 in
4413 * the "Life Cycle" in ofproto/ofproto-provider.h. ofoperation_complete()
4414 * performs steps 6 and 7 for the victim rule, most notably by calling its
4415 * ->rule_dealloc() function.
4416 *
4417 * If 'error' is nonzero, then generally the operation will be rolled back:
4418 *
4419 * - If 'op' is an "add flow" operation, ofproto removes the new rule or
4420 * restores the original rule. The caller must have uninitialized any
4421 * derived state in the new rule, as in step 5 of in the "Life Cycle" in
4422 * ofproto/ofproto-provider.h. ofoperation_complete() performs steps 6 and
4423 * and 7 for the new rule, calling its ->rule_dealloc() function.
4424 *
4425 * - If 'op' is a "modify flow" operation, ofproto restores the original
4426 * actions.
4427 *
4428 * - 'op' must not be a "delete flow" operation. Removing a rule is not
4429 * allowed to fail. It must always succeed.
4430 *
4431 * Please see the large comment in ofproto/ofproto-provider.h titled
4432 * "Asynchronous Operation Support" for more information. */
4433 void
4434 ofoperation_complete(struct ofoperation *op, enum ofperr error)
4435 {
4436 struct ofopgroup *group = op->group;
4437
4438 ovs_assert(op->rule->pending == op);
4439 ovs_assert(group->n_running > 0);
4440 ovs_assert(!error || op->type != OFOPERATION_DELETE);
4441
4442 op->error = error;
4443 if (!--group->n_running && !list_is_empty(&group->ofproto_node)) {
4444 ofopgroup_complete(group);
4445 }
4446 }
4447
4448 struct rule *
4449 ofoperation_get_victim(struct ofoperation *op)
4450 {
4451 ovs_assert(op->type == OFOPERATION_ADD);
4452 return op->victim;
4453 }
4454 \f
4455 static uint64_t
4456 pick_datapath_id(const struct ofproto *ofproto)
4457 {
4458 const struct ofport *port;
4459
4460 port = ofproto_get_port(ofproto, OFPP_LOCAL);
4461 if (port) {
4462 uint8_t ea[ETH_ADDR_LEN];
4463 int error;
4464
4465 error = netdev_get_etheraddr(port->netdev, ea);
4466 if (!error) {
4467 return eth_addr_to_uint64(ea);
4468 }
4469 VLOG_WARN("%s: could not get MAC address for %s (%s)",
4470 ofproto->name, netdev_get_name(port->netdev),
4471 strerror(error));
4472 }
4473 return ofproto->fallback_dpid;
4474 }
4475
4476 static uint64_t
4477 pick_fallback_dpid(void)
4478 {
4479 uint8_t ea[ETH_ADDR_LEN];
4480 eth_addr_nicira_random(ea);
4481 return eth_addr_to_uint64(ea);
4482 }
4483 \f
4484 /* Table overflow policy. */
4485
4486 /* Chooses and returns a rule to evict from 'table'. Returns NULL if the table
4487 * is not configured to evict rules or if the table contains no evictable
4488 * rules. (Rules with 'evictable' set to false or with no timeouts are not
4489 * evictable.) */
4490 static struct rule *
4491 choose_rule_to_evict(struct oftable *table)
4492 {
4493 struct eviction_group *evg;
4494
4495 if (!table->eviction_fields) {
4496 return NULL;
4497 }
4498
4499 /* In the common case, the outer and inner loops here will each be entered
4500 * exactly once:
4501 *
4502 * - The inner loop normally "return"s in its first iteration. If the
4503 * eviction group has any evictable rules, then it always returns in
4504 * some iteration.
4505 *
4506 * - The outer loop only iterates more than once if the largest eviction
4507 * group has no evictable rules.
4508 *
4509 * - The outer loop can exit only if table's 'max_flows' is all filled up
4510 * by unevictable rules'. */
4511 HEAP_FOR_EACH (evg, size_node, &table->eviction_groups_by_size) {
4512 struct rule *rule;
4513
4514 HEAP_FOR_EACH (rule, evg_node, &evg->rules) {
4515 if (rule->evictable) {
4516 return rule;
4517 }
4518 }
4519 }
4520
4521 return NULL;
4522 }
4523
4524 /* Searches 'ofproto' for tables that have more flows than their configured
4525 * maximum and that have flow eviction enabled, and evicts as many flows as
4526 * necessary and currently feasible from them.
4527 *
4528 * This triggers only when an OpenFlow table has N flows in it and then the
4529 * client configures a maximum number of flows less than N. */
4530 static void
4531 ofproto_evict(struct ofproto *ofproto)
4532 {
4533 struct ofopgroup *group;
4534 struct oftable *table;
4535
4536 group = ofopgroup_create_unattached(ofproto);
4537 OFPROTO_FOR_EACH_TABLE (table, ofproto) {
4538 while (classifier_count(&table->cls) > table->max_flows
4539 && table->eviction_fields) {
4540 struct rule *rule;
4541
4542 rule = choose_rule_to_evict(table);
4543 if (!rule || rule->pending) {
4544 break;
4545 }
4546
4547 ofoperation_create(group, rule,
4548 OFOPERATION_DELETE, OFPRR_EVICTION);
4549 oftable_remove_rule(rule);
4550 ofproto->ofproto_class->rule_destruct(rule);
4551 }
4552 }
4553 ofopgroup_submit(group);
4554 }
4555 \f
4556 /* Eviction groups. */
4557
4558 /* Returns the priority to use for an eviction_group that contains 'n_rules'
4559 * rules. The priority contains low-order random bits to ensure that eviction
4560 * groups with the same number of rules are prioritized randomly. */
4561 static uint32_t
4562 eviction_group_priority(size_t n_rules)
4563 {
4564 uint16_t size = MIN(UINT16_MAX, n_rules);
4565 return (size << 16) | random_uint16();
4566 }
4567
4568 /* Updates 'evg', an eviction_group within 'table', following a change that
4569 * adds or removes rules in 'evg'. */
4570 static void
4571 eviction_group_resized(struct oftable *table, struct eviction_group *evg)
4572 {
4573 heap_change(&table->eviction_groups_by_size, &evg->size_node,
4574 eviction_group_priority(heap_count(&evg->rules)));
4575 }
4576
4577 /* Destroys 'evg', an eviction_group within 'table':
4578 *
4579 * - Removes all the rules, if any, from 'evg'. (It doesn't destroy the
4580 * rules themselves, just removes them from the eviction group.)
4581 *
4582 * - Removes 'evg' from 'table'.
4583 *
4584 * - Frees 'evg'. */
4585 static void
4586 eviction_group_destroy(struct oftable *table, struct eviction_group *evg)
4587 {
4588 while (!heap_is_empty(&evg->rules)) {
4589 struct rule *rule;
4590
4591 rule = CONTAINER_OF(heap_pop(&evg->rules), struct rule, evg_node);
4592 rule->eviction_group = NULL;
4593 }
4594 hmap_remove(&table->eviction_groups_by_id, &evg->id_node);
4595 heap_remove(&table->eviction_groups_by_size, &evg->size_node);
4596 heap_destroy(&evg->rules);
4597 free(evg);
4598 }
4599
4600 /* Removes 'rule' from its eviction group, if any. */
4601 static void
4602 eviction_group_remove_rule(struct rule *rule)
4603 {
4604 if (rule->eviction_group) {
4605 struct oftable *table = &rule->ofproto->tables[rule->table_id];
4606 struct eviction_group *evg = rule->eviction_group;
4607
4608 rule->eviction_group = NULL;
4609 heap_remove(&evg->rules, &rule->evg_node);
4610 if (heap_is_empty(&evg->rules)) {
4611 eviction_group_destroy(table, evg);
4612 } else {
4613 eviction_group_resized(table, evg);
4614 }
4615 }
4616 }
4617
4618 /* Hashes the 'rule''s values for the eviction_fields of 'rule''s table, and
4619 * returns the hash value. */
4620 static uint32_t
4621 eviction_group_hash_rule(struct rule *rule)
4622 {
4623 struct oftable *table = &rule->ofproto->tables[rule->table_id];
4624 const struct mf_subfield *sf;
4625 struct flow flow;
4626 uint32_t hash;
4627
4628 hash = table->eviction_group_id_basis;
4629 miniflow_expand(&rule->cr.match.flow, &flow);
4630 for (sf = table->eviction_fields;
4631 sf < &table->eviction_fields[table->n_eviction_fields];
4632 sf++)
4633 {
4634 if (mf_are_prereqs_ok(sf->field, &flow)) {
4635 union mf_value value;
4636
4637 mf_get_value(sf->field, &flow, &value);
4638 if (sf->ofs) {
4639 bitwise_zero(&value, sf->field->n_bytes, 0, sf->ofs);
4640 }
4641 if (sf->ofs + sf->n_bits < sf->field->n_bytes * 8) {
4642 unsigned int start = sf->ofs + sf->n_bits;
4643 bitwise_zero(&value, sf->field->n_bytes, start,
4644 sf->field->n_bytes * 8 - start);
4645 }
4646 hash = hash_bytes(&value, sf->field->n_bytes, hash);
4647 } else {
4648 hash = hash_int(hash, 0);
4649 }
4650 }
4651
4652 return hash;
4653 }
4654
4655 /* Returns an eviction group within 'table' with the given 'id', creating one
4656 * if necessary. */
4657 static struct eviction_group *
4658 eviction_group_find(struct oftable *table, uint32_t id)
4659 {
4660 struct eviction_group *evg;
4661
4662 HMAP_FOR_EACH_WITH_HASH (evg, id_node, id, &table->eviction_groups_by_id) {
4663 return evg;
4664 }
4665
4666 evg = xmalloc(sizeof *evg);
4667 hmap_insert(&table->eviction_groups_by_id, &evg->id_node, id);
4668 heap_insert(&table->eviction_groups_by_size, &evg->size_node,
4669 eviction_group_priority(0));
4670 heap_init(&evg->rules);
4671
4672 return evg;
4673 }
4674
4675 /* Returns an eviction priority for 'rule'. The return value should be
4676 * interpreted so that higher priorities make a rule more attractive candidates
4677 * for eviction. */
4678 static uint32_t
4679 rule_eviction_priority(struct rule *rule)
4680 {
4681 long long int hard_expiration;
4682 long long int idle_expiration;
4683 long long int expiration;
4684 uint32_t expiration_offset;
4685
4686 /* Calculate time of expiration. */
4687 hard_expiration = (rule->hard_timeout
4688 ? rule->modified + rule->hard_timeout * 1000
4689 : LLONG_MAX);
4690 idle_expiration = (rule->idle_timeout
4691 ? rule->used + rule->idle_timeout * 1000
4692 : LLONG_MAX);
4693 expiration = MIN(hard_expiration, idle_expiration);
4694 if (expiration == LLONG_MAX) {
4695 return 0;
4696 }
4697
4698 /* Calculate the time of expiration as a number of (approximate) seconds
4699 * after program startup.
4700 *
4701 * This should work OK for program runs that last UINT32_MAX seconds or
4702 * less. Therefore, please restart OVS at least once every 136 years. */
4703 expiration_offset = (expiration >> 10) - (time_boot_msec() >> 10);
4704
4705 /* Invert the expiration offset because we're using a max-heap. */
4706 return UINT32_MAX - expiration_offset;
4707 }
4708
4709 /* Adds 'rule' to an appropriate eviction group for its oftable's
4710 * configuration. Does nothing if 'rule''s oftable doesn't have eviction
4711 * enabled, or if 'rule' is a permanent rule (one that will never expire on its
4712 * own).
4713 *
4714 * The caller must ensure that 'rule' is not already in an eviction group. */
4715 static void
4716 eviction_group_add_rule(struct rule *rule)
4717 {
4718 struct ofproto *ofproto = rule->ofproto;
4719 struct oftable *table = &ofproto->tables[rule->table_id];
4720
4721 if (table->eviction_fields
4722 && (rule->hard_timeout || rule->idle_timeout)) {
4723 struct eviction_group *evg;
4724
4725 evg = eviction_group_find(table, eviction_group_hash_rule(rule));
4726
4727 rule->eviction_group = evg;
4728 heap_insert(&evg->rules, &rule->evg_node,
4729 rule_eviction_priority(rule));
4730 eviction_group_resized(table, evg);
4731 }
4732 }
4733 \f
4734 /* oftables. */
4735
4736 /* Initializes 'table'. */
4737 static void
4738 oftable_init(struct oftable *table)
4739 {
4740 memset(table, 0, sizeof *table);
4741 classifier_init(&table->cls);
4742 table->max_flows = UINT_MAX;
4743 }
4744
4745 /* Destroys 'table', including its classifier and eviction groups.
4746 *
4747 * The caller is responsible for freeing 'table' itself. */
4748 static void
4749 oftable_destroy(struct oftable *table)
4750 {
4751 ovs_assert(classifier_is_empty(&table->cls));
4752 oftable_disable_eviction(table);
4753 classifier_destroy(&table->cls);
4754 free(table->name);
4755 }
4756
4757 /* Changes the name of 'table' to 'name'. If 'name' is NULL or the empty
4758 * string, then 'table' will use its default name.
4759 *
4760 * This only affects the name exposed for a table exposed through the OpenFlow
4761 * OFPST_TABLE (as printed by "ovs-ofctl dump-tables"). */
4762 static void
4763 oftable_set_name(struct oftable *table, const char *name)
4764 {
4765 if (name && name[0]) {
4766 int len = strnlen(name, OFP_MAX_TABLE_NAME_LEN);
4767 if (!table->name || strncmp(name, table->name, len)) {
4768 free(table->name);
4769 table->name = xmemdup0(name, len);
4770 }
4771 } else {
4772 free(table->name);
4773 table->name = NULL;
4774 }
4775 }
4776
4777 /* oftables support a choice of two policies when adding a rule would cause the
4778 * number of flows in the table to exceed the configured maximum number: either
4779 * they can refuse to add the new flow or they can evict some existing flow.
4780 * This function configures the former policy on 'table'. */
4781 static void
4782 oftable_disable_eviction(struct oftable *table)
4783 {
4784 if (table->eviction_fields) {
4785 struct eviction_group *evg, *next;
4786
4787 HMAP_FOR_EACH_SAFE (evg, next, id_node,
4788 &table->eviction_groups_by_id) {
4789 eviction_group_destroy(table, evg);
4790 }
4791 hmap_destroy(&table->eviction_groups_by_id);
4792 heap_destroy(&table->eviction_groups_by_size);
4793
4794 free(table->eviction_fields);
4795 table->eviction_fields = NULL;
4796 table->n_eviction_fields = 0;
4797 }
4798 }
4799
4800 /* oftables support a choice of two policies when adding a rule would cause the
4801 * number of flows in the table to exceed the configured maximum number: either
4802 * they can refuse to add the new flow or they can evict some existing flow.
4803 * This function configures the latter policy on 'table', with fairness based
4804 * on the values of the 'n_fields' fields specified in 'fields'. (Specifying
4805 * 'n_fields' as 0 disables fairness.) */
4806 static void
4807 oftable_enable_eviction(struct oftable *table,
4808 const struct mf_subfield *fields, size_t n_fields)
4809 {
4810 struct cls_cursor cursor;
4811 struct rule *rule;
4812
4813 if (table->eviction_fields
4814 && n_fields == table->n_eviction_fields
4815 && (!n_fields
4816 || !memcmp(fields, table->eviction_fields,
4817 n_fields * sizeof *fields))) {
4818 /* No change. */
4819 return;
4820 }
4821
4822 oftable_disable_eviction(table);
4823
4824 table->n_eviction_fields = n_fields;
4825 table->eviction_fields = xmemdup(fields, n_fields * sizeof *fields);
4826
4827 table->eviction_group_id_basis = random_uint32();
4828 hmap_init(&table->eviction_groups_by_id);
4829 heap_init(&table->eviction_groups_by_size);
4830
4831 cls_cursor_init(&cursor, &table->cls, NULL);
4832 CLS_CURSOR_FOR_EACH (rule, cr, &cursor) {
4833 eviction_group_add_rule(rule);
4834 }
4835 }
4836
4837 /* Removes 'rule' from the oftable that contains it. */
4838 static void
4839 oftable_remove_rule(struct rule *rule)
4840 {
4841 struct ofproto *ofproto = rule->ofproto;
4842 struct oftable *table = &ofproto->tables[rule->table_id];
4843
4844 classifier_remove(&table->cls, &rule->cr);
4845 eviction_group_remove_rule(rule);
4846 if (!list_is_empty(&rule->expirable)) {
4847 list_remove(&rule->expirable);
4848 }
4849 }
4850
4851 /* Inserts 'rule' into its oftable. Removes any existing rule from 'rule''s
4852 * oftable that has an identical cls_rule. Returns the rule that was removed,
4853 * if any, and otherwise NULL. */
4854 static struct rule *
4855 oftable_replace_rule(struct rule *rule)
4856 {
4857 struct ofproto *ofproto = rule->ofproto;
4858 struct oftable *table = &ofproto->tables[rule->table_id];
4859 struct rule *victim;
4860 bool may_expire = rule->hard_timeout || rule->idle_timeout;
4861
4862 if (may_expire) {
4863 list_insert(&ofproto->expirable, &rule->expirable);
4864 }
4865
4866 victim = rule_from_cls_rule(classifier_replace(&table->cls, &rule->cr));
4867 if (victim) {
4868 if (!list_is_empty(&victim->expirable)) {
4869 list_remove(&victim->expirable);
4870 }
4871 eviction_group_remove_rule(victim);
4872 }
4873 eviction_group_add_rule(rule);
4874 return victim;
4875 }
4876
4877 /* Removes 'old' from its oftable then, if 'new' is nonnull, inserts 'new'. */
4878 static void
4879 oftable_substitute_rule(struct rule *old, struct rule *new)
4880 {
4881 if (new) {
4882 oftable_replace_rule(new);
4883 } else {
4884 oftable_remove_rule(old);
4885 }
4886 }
4887 \f
4888 /* unixctl commands. */
4889
4890 struct ofproto *
4891 ofproto_lookup(const char *name)
4892 {
4893 struct ofproto *ofproto;
4894
4895 HMAP_FOR_EACH_WITH_HASH (ofproto, hmap_node, hash_string(name, 0),
4896 &all_ofprotos) {
4897 if (!strcmp(ofproto->name, name)) {
4898 return ofproto;
4899 }
4900 }
4901 return NULL;
4902 }
4903
4904 static void
4905 ofproto_unixctl_list(struct unixctl_conn *conn, int argc OVS_UNUSED,
4906 const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED)
4907 {
4908 struct ofproto *ofproto;
4909 struct ds results;
4910
4911 ds_init(&results);
4912 HMAP_FOR_EACH (ofproto, hmap_node, &all_ofprotos) {
4913 ds_put_format(&results, "%s\n", ofproto->name);
4914 }
4915 unixctl_command_reply(conn, ds_cstr(&results));
4916 ds_destroy(&results);
4917 }
4918
4919 static void
4920 ofproto_unixctl_init(void)
4921 {
4922 static bool registered;
4923 if (registered) {
4924 return;
4925 }
4926 registered = true;
4927
4928 unixctl_command_register("ofproto/list", "", 0, 0,
4929 ofproto_unixctl_list, NULL);
4930 }
4931 \f
4932 /* Linux VLAN device support (e.g. "eth0.10" for VLAN 10.)
4933 *
4934 * This is deprecated. It is only for compatibility with broken device drivers
4935 * in old versions of Linux that do not properly support VLANs when VLAN
4936 * devices are not used. When broken device drivers are no longer in
4937 * widespread use, we will delete these interfaces. */
4938
4939 /* Sets a 1-bit in the 4096-bit 'vlan_bitmap' for each VLAN ID that is matched
4940 * (exactly) by an OpenFlow rule in 'ofproto'. */
4941 void
4942 ofproto_get_vlan_usage(struct ofproto *ofproto, unsigned long int *vlan_bitmap)
4943 {
4944 const struct oftable *oftable;
4945
4946 free(ofproto->vlan_bitmap);
4947 ofproto->vlan_bitmap = bitmap_allocate(4096);
4948 ofproto->vlans_changed = false;
4949
4950 OFPROTO_FOR_EACH_TABLE (oftable, ofproto) {
4951 const struct cls_table *table;
4952
4953 HMAP_FOR_EACH (table, hmap_node, &oftable->cls.tables) {
4954 if (minimask_get_vid_mask(&table->mask) == VLAN_VID_MASK) {
4955 const struct cls_rule *rule;
4956
4957 HMAP_FOR_EACH (rule, hmap_node, &table->rules) {
4958 uint16_t vid = miniflow_get_vid(&rule->match.flow);
4959 bitmap_set1(vlan_bitmap, vid);
4960 bitmap_set1(ofproto->vlan_bitmap, vid);
4961 }
4962 }
4963 }
4964 }
4965 }
4966
4967 /* Returns true if new VLANs have come into use by the flow table since the
4968 * last call to ofproto_get_vlan_usage().
4969 *
4970 * We don't track when old VLANs stop being used. */
4971 bool
4972 ofproto_has_vlan_usage_changed(const struct ofproto *ofproto)
4973 {
4974 return ofproto->vlans_changed;
4975 }
4976
4977 /* Configures a VLAN splinter binding between the ports identified by OpenFlow
4978 * port numbers 'vlandev_ofp_port' and 'realdev_ofp_port'. If
4979 * 'realdev_ofp_port' is nonzero, then the VLAN device is enslaved to the real
4980 * device as a VLAN splinter for VLAN ID 'vid'. If 'realdev_ofp_port' is zero,
4981 * then the VLAN device is un-enslaved. */
4982 int
4983 ofproto_port_set_realdev(struct ofproto *ofproto, uint16_t vlandev_ofp_port,
4984 uint16_t realdev_ofp_port, int vid)
4985 {
4986 struct ofport *ofport;
4987 int error;
4988
4989 ovs_assert(vlandev_ofp_port != realdev_ofp_port);
4990
4991 ofport = ofproto_get_port(ofproto, vlandev_ofp_port);
4992 if (!ofport) {
4993 VLOG_WARN("%s: cannot set realdev on nonexistent port %"PRIu16,
4994 ofproto->name, vlandev_ofp_port);
4995 return EINVAL;
4996 }
4997
4998 if (!ofproto->ofproto_class->set_realdev) {
4999 if (!vlandev_ofp_port) {
5000 return 0;
5001 }
5002 VLOG_WARN("%s: vlan splinters not supported", ofproto->name);
5003 return EOPNOTSUPP;
5004 }
5005
5006 error = ofproto->ofproto_class->set_realdev(ofport, realdev_ofp_port, vid);
5007 if (error) {
5008 VLOG_WARN("%s: setting realdev on port %"PRIu16" (%s) failed (%s)",
5009 ofproto->name, vlandev_ofp_port,
5010 netdev_get_name(ofport->netdev), strerror(error));
5011 }
5012 return error;
5013 }