]> git.proxmox.com Git - mirror_ovs.git/blob - ofproto/ofproto.c
Merge "citrix" branch into "master.
[mirror_ovs.git] / ofproto / ofproto.c
1 /*
2 * Copyright (c) 2009 Nicira Networks.
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at:
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <config.h>
18 #include "ofproto.h"
19 #include <errno.h>
20 #include <inttypes.h>
21 #include <net/if.h>
22 #include <netinet/in.h>
23 #include <stdbool.h>
24 #include <stdlib.h>
25 #include "classifier.h"
26 #include "coverage.h"
27 #include "discovery.h"
28 #include "dpif.h"
29 #include "dynamic-string.h"
30 #include "executer.h"
31 #include "fail-open.h"
32 #include "in-band.h"
33 #include "mac-learning.h"
34 #include "netdev.h"
35 #include "netflow.h"
36 #include "odp-util.h"
37 #include "ofp-print.h"
38 #include "ofpbuf.h"
39 #include "openflow/nicira-ext.h"
40 #include "openflow/openflow.h"
41 #include "openflow/openflow-mgmt.h"
42 #include "openvswitch/datapath-protocol.h"
43 #include "packets.h"
44 #include "pinsched.h"
45 #include "pktbuf.h"
46 #include "poll-loop.h"
47 #include "port-array.h"
48 #include "rconn.h"
49 #include "shash.h"
50 #include "status.h"
51 #include "stp.h"
52 #include "svec.h"
53 #include "tag.h"
54 #include "timeval.h"
55 #include "unixctl.h"
56 #include "vconn.h"
57 #include "vconn-ssl.h"
58 #include "xtoxll.h"
59
60 #define THIS_MODULE VLM_ofproto
61 #include "vlog.h"
62
63 enum {
64 DP_GROUP_FLOOD = 0,
65 DP_GROUP_ALL = 1
66 };
67
68 enum {
69 TABLEID_HASH = 0,
70 TABLEID_CLASSIFIER = 1
71 };
72
73 struct ofport {
74 struct netdev *netdev;
75 struct ofp_phy_port opp; /* In host byte order. */
76 };
77
78 static void ofport_free(struct ofport *);
79 static void hton_ofp_phy_port(struct ofp_phy_port *);
80
81 static int xlate_actions(const union ofp_action *in, size_t n_in,
82 const flow_t *flow, struct ofproto *ofproto,
83 const struct ofpbuf *packet,
84 struct odp_actions *out, tag_type *tags,
85 bool *may_setup_flow);
86
87 struct rule {
88 struct cls_rule cr;
89
90 uint16_t idle_timeout; /* In seconds from time of last use. */
91 uint16_t hard_timeout; /* In seconds from time of creation. */
92 long long int used; /* Last-used time (0 if never used). */
93 long long int created; /* Creation time. */
94 uint64_t packet_count; /* Number of packets received. */
95 uint64_t byte_count; /* Number of bytes received. */
96 uint64_t accounted_bytes; /* Number of bytes passed to account_cb. */
97 uint8_t tcp_flags; /* Bitwise-OR of all TCP flags seen. */
98 uint8_t ip_tos; /* Last-seen IP type-of-service. */
99 tag_type tags; /* Tags (set only by hooks). */
100
101 /* If 'super' is non-NULL, this rule is a subrule, that is, it is an
102 * exact-match rule (having cr.wc.wildcards of 0) generated from the
103 * wildcard rule 'super'. In this case, 'list' is an element of the
104 * super-rule's list.
105 *
106 * If 'super' is NULL, this rule is a super-rule, and 'list' is the head of
107 * a list of subrules. A super-rule with no wildcards (where
108 * cr.wc.wildcards is 0) will never have any subrules. */
109 struct rule *super;
110 struct list list;
111
112 /* OpenFlow actions.
113 *
114 * A subrule has no actions (it uses the super-rule's actions). */
115 int n_actions;
116 union ofp_action *actions;
117
118 /* Datapath actions.
119 *
120 * A super-rule with wildcard fields never has ODP actions (since the
121 * datapath only supports exact-match flows). */
122 bool installed; /* Installed in datapath? */
123 bool may_install; /* True ordinarily; false if actions must
124 * be reassessed for every packet. */
125 int n_odp_actions;
126 union odp_action *odp_actions;
127 };
128
129 static inline bool
130 rule_is_hidden(const struct rule *rule)
131 {
132 /* Subrules are merely an implementation detail, so hide them from the
133 * controller. */
134 if (rule->super != NULL) {
135 return true;
136 }
137
138 /* Rules with priority higher than UINT16_MAX are set up by ofproto itself
139 * (e.g. by in-band control) and are intentionally hidden from the
140 * controller. */
141 if (rule->cr.priority > UINT16_MAX) {
142 return true;
143 }
144
145 return false;
146 }
147
148 static struct rule *rule_create(struct rule *super, const union ofp_action *,
149 size_t n_actions, uint16_t idle_timeout,
150 uint16_t hard_timeout);
151 static void rule_free(struct rule *);
152 static void rule_destroy(struct ofproto *, struct rule *);
153 static struct rule *rule_from_cls_rule(const struct cls_rule *);
154 static void rule_insert(struct ofproto *, struct rule *,
155 struct ofpbuf *packet, uint16_t in_port);
156 static void rule_remove(struct ofproto *, struct rule *);
157 static bool rule_make_actions(struct ofproto *, struct rule *,
158 const struct ofpbuf *packet);
159 static void rule_install(struct ofproto *, struct rule *,
160 struct rule *displaced_rule);
161 static void rule_uninstall(struct ofproto *, struct rule *);
162 static void rule_post_uninstall(struct ofproto *, struct rule *);
163
164 struct ofconn {
165 struct list node;
166 struct rconn *rconn;
167 struct pktbuf *pktbuf;
168 bool send_flow_exp;
169 int miss_send_len;
170
171 struct rconn_packet_counter *packet_in_counter;
172
173 /* Number of OpenFlow messages queued as replies to OpenFlow requests, and
174 * the maximum number before we stop reading OpenFlow requests. */
175 #define OFCONN_REPLY_MAX 100
176 struct rconn_packet_counter *reply_counter;
177 };
178
179 static struct ofconn *ofconn_create(struct ofproto *, struct rconn *);
180 static void ofconn_destroy(struct ofconn *, struct ofproto *);
181 static void ofconn_run(struct ofconn *, struct ofproto *);
182 static void ofconn_wait(struct ofconn *);
183 static void queue_tx(struct ofpbuf *msg, const struct ofconn *ofconn,
184 struct rconn_packet_counter *counter);
185
186 struct ofproto {
187 /* Settings. */
188 uint64_t datapath_id; /* Datapath ID. */
189 uint64_t fallback_dpid; /* Datapath ID if no better choice found. */
190 uint64_t mgmt_id; /* Management channel identifier. */
191 char *manufacturer; /* Manufacturer. */
192 char *hardware; /* Hardware. */
193 char *software; /* Software version. */
194 char *serial; /* Serial number. */
195
196 /* Datapath. */
197 struct dpif *dpif;
198 struct netdev_monitor *netdev_monitor;
199 struct port_array ports; /* Index is ODP port nr; ofport->opp.port_no is
200 * OFP port nr. */
201 struct shash port_by_name;
202 uint32_t max_ports;
203
204 /* Configuration. */
205 struct switch_status *switch_status;
206 struct status_category *ss_cat;
207 struct in_band *in_band;
208 struct discovery *discovery;
209 struct fail_open *fail_open;
210 struct pinsched *miss_sched, *action_sched;
211 struct executer *executer;
212 struct netflow *netflow;
213
214 /* Flow table. */
215 struct classifier cls;
216 bool need_revalidate;
217 long long int next_expiration;
218 struct tag_set revalidate_set;
219
220 /* OpenFlow connections. */
221 struct list all_conns;
222 struct ofconn *controller;
223 struct pvconn **listeners;
224 size_t n_listeners;
225 struct pvconn **snoops;
226 size_t n_snoops;
227
228 /* Hooks for ovs-vswitchd. */
229 const struct ofhooks *ofhooks;
230 void *aux;
231
232 /* Used by default ofhooks. */
233 struct mac_learning *ml;
234 };
235
236 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
237
238 static const struct ofhooks default_ofhooks;
239
240 static uint64_t pick_datapath_id(const struct ofproto *);
241 static uint64_t pick_fallback_dpid(void);
242 static void send_packet_in_miss(struct ofpbuf *, void *ofproto);
243 static void send_packet_in_action(struct ofpbuf *, void *ofproto);
244 static void update_used(struct ofproto *);
245 static void update_stats(struct rule *, const struct odp_flow_stats *);
246 static void expire_rule(struct cls_rule *, void *ofproto);
247 static bool revalidate_rule(struct ofproto *p, struct rule *rule);
248 static void revalidate_cb(struct cls_rule *rule_, void *p_);
249
250 static void handle_odp_msg(struct ofproto *, struct ofpbuf *);
251
252 static void handle_openflow(struct ofconn *, struct ofproto *,
253 struct ofpbuf *);
254
255 static void refresh_port_group(struct ofproto *, unsigned int group);
256 static void update_port(struct ofproto *, const char *devname);
257 static int init_ports(struct ofproto *);
258 static void reinit_ports(struct ofproto *);
259
260 int
261 ofproto_create(const char *datapath, const struct ofhooks *ofhooks, void *aux,
262 struct ofproto **ofprotop)
263 {
264 struct odp_stats stats;
265 struct ofproto *p;
266 struct dpif *dpif;
267 int error;
268
269 *ofprotop = NULL;
270
271 /* Connect to datapath and start listening for messages. */
272 error = dpif_open(datapath, &dpif);
273 if (error) {
274 VLOG_ERR("failed to open datapath %s: %s", datapath, strerror(error));
275 return error;
276 }
277 error = dpif_get_dp_stats(dpif, &stats);
278 if (error) {
279 VLOG_ERR("failed to obtain stats for datapath %s: %s",
280 datapath, strerror(error));
281 dpif_close(dpif);
282 return error;
283 }
284 error = dpif_recv_set_mask(dpif, ODPL_MISS | ODPL_ACTION);
285 if (error) {
286 VLOG_ERR("failed to listen on datapath %s: %s",
287 datapath, strerror(error));
288 dpif_close(dpif);
289 return error;
290 }
291 dpif_flow_flush(dpif);
292 dpif_recv_purge(dpif);
293
294 /* Initialize settings. */
295 p = xcalloc(1, sizeof *p);
296 p->fallback_dpid = pick_fallback_dpid();
297 p->datapath_id = p->fallback_dpid;
298 p->manufacturer = xstrdup("Nicira Networks, Inc.");
299 p->hardware = xstrdup("Reference Implementation");
300 p->software = xstrdup(VERSION BUILDNR);
301 p->serial = xstrdup("None");
302
303 /* Initialize datapath. */
304 p->dpif = dpif;
305 p->netdev_monitor = netdev_monitor_create();
306 port_array_init(&p->ports);
307 shash_init(&p->port_by_name);
308 p->max_ports = stats.max_ports;
309
310 /* Initialize submodules. */
311 p->switch_status = switch_status_create(p);
312 p->in_band = NULL;
313 p->discovery = NULL;
314 p->fail_open = NULL;
315 p->miss_sched = p->action_sched = NULL;
316 p->executer = NULL;
317 p->netflow = NULL;
318
319 /* Initialize flow table. */
320 classifier_init(&p->cls);
321 p->need_revalidate = false;
322 p->next_expiration = time_msec() + 1000;
323 tag_set_init(&p->revalidate_set);
324
325 /* Initialize OpenFlow connections. */
326 list_init(&p->all_conns);
327 p->controller = ofconn_create(p, rconn_create(5, 8));
328 p->controller->pktbuf = pktbuf_create();
329 p->controller->miss_send_len = OFP_DEFAULT_MISS_SEND_LEN;
330 p->listeners = NULL;
331 p->n_listeners = 0;
332 p->snoops = NULL;
333 p->n_snoops = 0;
334
335 /* Initialize hooks. */
336 if (ofhooks) {
337 p->ofhooks = ofhooks;
338 p->aux = aux;
339 p->ml = NULL;
340 } else {
341 p->ofhooks = &default_ofhooks;
342 p->aux = p;
343 p->ml = mac_learning_create();
344 }
345
346 /* Register switch status category. */
347 p->ss_cat = switch_status_register(p->switch_status, "remote",
348 rconn_status_cb, p->controller->rconn);
349
350 /* Almost done... */
351 error = init_ports(p);
352 if (error) {
353 ofproto_destroy(p);
354 return error;
355 }
356
357 /* Pick final datapath ID. */
358 p->datapath_id = pick_datapath_id(p);
359 VLOG_INFO("using datapath ID %012"PRIx64, p->datapath_id);
360
361 *ofprotop = p;
362 return 0;
363 }
364
365 void
366 ofproto_set_datapath_id(struct ofproto *p, uint64_t datapath_id)
367 {
368 uint64_t old_dpid = p->datapath_id;
369 p->datapath_id = datapath_id ? datapath_id : pick_datapath_id(p);
370 if (p->datapath_id != old_dpid) {
371 VLOG_INFO("datapath ID changed to %012"PRIx64, p->datapath_id);
372 rconn_reconnect(p->controller->rconn);
373 }
374 }
375
376 void
377 ofproto_set_mgmt_id(struct ofproto *p, uint64_t mgmt_id)
378 {
379 p->mgmt_id = mgmt_id;
380 }
381
382 void
383 ofproto_set_probe_interval(struct ofproto *p, int probe_interval)
384 {
385 probe_interval = probe_interval ? MAX(probe_interval, 5) : 0;
386 rconn_set_probe_interval(p->controller->rconn, probe_interval);
387 if (p->fail_open) {
388 int trigger_duration = probe_interval ? probe_interval * 3 : 15;
389 fail_open_set_trigger_duration(p->fail_open, trigger_duration);
390 }
391 }
392
393 void
394 ofproto_set_max_backoff(struct ofproto *p, int max_backoff)
395 {
396 rconn_set_max_backoff(p->controller->rconn, max_backoff);
397 }
398
399 void
400 ofproto_set_desc(struct ofproto *p,
401 const char *manufacturer, const char *hardware,
402 const char *software, const char *serial)
403 {
404 if (manufacturer) {
405 free(p->manufacturer);
406 p->manufacturer = xstrdup(manufacturer);
407 }
408 if (hardware) {
409 free(p->hardware);
410 p->hardware = xstrdup(hardware);
411 }
412 if (software) {
413 free(p->software);
414 p->software = xstrdup(software);
415 }
416 if (serial) {
417 free(p->serial);
418 p->serial = xstrdup(serial);
419 }
420 }
421
422 int
423 ofproto_set_in_band(struct ofproto *p, bool in_band)
424 {
425 if (in_band != (p->in_band != NULL)) {
426 if (in_band) {
427 return in_band_create(p, p->dpif, p->switch_status,
428 p->controller->rconn, &p->in_band);
429 } else {
430 ofproto_set_discovery(p, false, NULL, true);
431 in_band_destroy(p->in_band);
432 p->in_band = NULL;
433 }
434 rconn_reconnect(p->controller->rconn);
435 }
436 return 0;
437 }
438
439 int
440 ofproto_set_discovery(struct ofproto *p, bool discovery,
441 const char *re, bool update_resolv_conf)
442 {
443 if (discovery != (p->discovery != NULL)) {
444 if (discovery) {
445 int error = ofproto_set_in_band(p, true);
446 if (error) {
447 return error;
448 }
449 error = discovery_create(re, update_resolv_conf,
450 p->dpif, p->switch_status,
451 &p->discovery);
452 if (error) {
453 return error;
454 }
455 } else {
456 discovery_destroy(p->discovery);
457 p->discovery = NULL;
458 }
459 rconn_disconnect(p->controller->rconn);
460 } else if (discovery) {
461 discovery_set_update_resolv_conf(p->discovery, update_resolv_conf);
462 return discovery_set_accept_controller_re(p->discovery, re);
463 }
464 return 0;
465 }
466
467 int
468 ofproto_set_controller(struct ofproto *ofproto, const char *controller)
469 {
470 if (ofproto->discovery) {
471 return EINVAL;
472 } else if (controller) {
473 if (strcmp(rconn_get_name(ofproto->controller->rconn), controller)) {
474 return rconn_connect(ofproto->controller->rconn, controller);
475 } else {
476 return 0;
477 }
478 } else {
479 rconn_disconnect(ofproto->controller->rconn);
480 return 0;
481 }
482 }
483
484 static int
485 set_pvconns(struct pvconn ***pvconnsp, size_t *n_pvconnsp,
486 const struct svec *svec)
487 {
488 struct pvconn **pvconns = *pvconnsp;
489 size_t n_pvconns = *n_pvconnsp;
490 int retval = 0;
491 size_t i;
492
493 for (i = 0; i < n_pvconns; i++) {
494 pvconn_close(pvconns[i]);
495 }
496 free(pvconns);
497
498 pvconns = xmalloc(svec->n * sizeof *pvconns);
499 n_pvconns = 0;
500 for (i = 0; i < svec->n; i++) {
501 const char *name = svec->names[i];
502 struct pvconn *pvconn;
503 int error;
504
505 error = pvconn_open(name, &pvconn);
506 if (!error) {
507 pvconns[n_pvconns++] = pvconn;
508 } else {
509 VLOG_ERR("failed to listen on %s: %s", name, strerror(error));
510 if (!retval) {
511 retval = error;
512 }
513 }
514 }
515
516 *pvconnsp = pvconns;
517 *n_pvconnsp = n_pvconns;
518
519 return retval;
520 }
521
522 int
523 ofproto_set_listeners(struct ofproto *ofproto, const struct svec *listeners)
524 {
525 return set_pvconns(&ofproto->listeners, &ofproto->n_listeners, listeners);
526 }
527
528 int
529 ofproto_set_snoops(struct ofproto *ofproto, const struct svec *snoops)
530 {
531 return set_pvconns(&ofproto->snoops, &ofproto->n_snoops, snoops);
532 }
533
534 int
535 ofproto_set_netflow(struct ofproto *ofproto, const struct svec *collectors,
536 uint8_t engine_type, uint8_t engine_id, bool add_id_to_iface)
537 {
538 if (collectors && collectors->n) {
539 if (!ofproto->netflow) {
540 ofproto->netflow = netflow_create();
541 }
542 netflow_set_engine(ofproto->netflow, engine_type, engine_id,
543 add_id_to_iface);
544 return netflow_set_collectors(ofproto->netflow, collectors);
545 } else {
546 netflow_destroy(ofproto->netflow);
547 ofproto->netflow = NULL;
548 return 0;
549 }
550 }
551
552 void
553 ofproto_set_failure(struct ofproto *ofproto, bool fail_open)
554 {
555 if (fail_open) {
556 struct rconn *rconn = ofproto->controller->rconn;
557 int trigger_duration = rconn_get_probe_interval(rconn) * 3;
558 if (!ofproto->fail_open) {
559 ofproto->fail_open = fail_open_create(ofproto, trigger_duration,
560 ofproto->switch_status,
561 rconn);
562 } else {
563 fail_open_set_trigger_duration(ofproto->fail_open,
564 trigger_duration);
565 }
566 } else {
567 fail_open_destroy(ofproto->fail_open);
568 ofproto->fail_open = NULL;
569 }
570 }
571
572 void
573 ofproto_set_rate_limit(struct ofproto *ofproto,
574 int rate_limit, int burst_limit)
575 {
576 if (rate_limit > 0) {
577 if (!ofproto->miss_sched) {
578 ofproto->miss_sched = pinsched_create(rate_limit, burst_limit,
579 ofproto->switch_status);
580 ofproto->action_sched = pinsched_create(rate_limit, burst_limit,
581 NULL);
582 } else {
583 pinsched_set_limits(ofproto->miss_sched, rate_limit, burst_limit);
584 pinsched_set_limits(ofproto->action_sched,
585 rate_limit, burst_limit);
586 }
587 } else {
588 pinsched_destroy(ofproto->miss_sched);
589 ofproto->miss_sched = NULL;
590 pinsched_destroy(ofproto->action_sched);
591 ofproto->action_sched = NULL;
592 }
593 }
594
595 int
596 ofproto_set_stp(struct ofproto *ofproto UNUSED, bool enable_stp)
597 {
598 /* XXX */
599 if (enable_stp) {
600 VLOG_WARN("STP is not yet implemented");
601 return EINVAL;
602 } else {
603 return 0;
604 }
605 }
606
607 int
608 ofproto_set_remote_execution(struct ofproto *ofproto, const char *command_acl,
609 const char *command_dir)
610 {
611 if (command_acl) {
612 if (!ofproto->executer) {
613 return executer_create(command_acl, command_dir,
614 &ofproto->executer);
615 } else {
616 executer_set_acl(ofproto->executer, command_acl, command_dir);
617 }
618 } else {
619 executer_destroy(ofproto->executer);
620 ofproto->executer = NULL;
621 }
622 return 0;
623 }
624
625 uint64_t
626 ofproto_get_datapath_id(const struct ofproto *ofproto)
627 {
628 return ofproto->datapath_id;
629 }
630
631 uint64_t
632 ofproto_get_mgmt_id(const struct ofproto *ofproto)
633 {
634 return ofproto->mgmt_id;
635 }
636
637 int
638 ofproto_get_probe_interval(const struct ofproto *ofproto)
639 {
640 return rconn_get_probe_interval(ofproto->controller->rconn);
641 }
642
643 int
644 ofproto_get_max_backoff(const struct ofproto *ofproto)
645 {
646 return rconn_get_max_backoff(ofproto->controller->rconn);
647 }
648
649 bool
650 ofproto_get_in_band(const struct ofproto *ofproto)
651 {
652 return ofproto->in_band != NULL;
653 }
654
655 bool
656 ofproto_get_discovery(const struct ofproto *ofproto)
657 {
658 return ofproto->discovery != NULL;
659 }
660
661 const char *
662 ofproto_get_controller(const struct ofproto *ofproto)
663 {
664 return rconn_get_name(ofproto->controller->rconn);
665 }
666
667 void
668 ofproto_get_listeners(const struct ofproto *ofproto, struct svec *listeners)
669 {
670 size_t i;
671
672 for (i = 0; i < ofproto->n_listeners; i++) {
673 svec_add(listeners, pvconn_get_name(ofproto->listeners[i]));
674 }
675 }
676
677 void
678 ofproto_get_snoops(const struct ofproto *ofproto, struct svec *snoops)
679 {
680 size_t i;
681
682 for (i = 0; i < ofproto->n_snoops; i++) {
683 svec_add(snoops, pvconn_get_name(ofproto->snoops[i]));
684 }
685 }
686
687 void
688 ofproto_destroy(struct ofproto *p)
689 {
690 struct ofconn *ofconn, *next_ofconn;
691 struct ofport *ofport;
692 unsigned int port_no;
693 size_t i;
694
695 if (!p) {
696 return;
697 }
698
699 ofproto_flush_flows(p);
700 classifier_destroy(&p->cls);
701
702 LIST_FOR_EACH_SAFE (ofconn, next_ofconn, struct ofconn, node,
703 &p->all_conns) {
704 ofconn_destroy(ofconn, p);
705 }
706
707 dpif_close(p->dpif);
708 netdev_monitor_destroy(p->netdev_monitor);
709 PORT_ARRAY_FOR_EACH (ofport, &p->ports, port_no) {
710 ofport_free(ofport);
711 }
712 shash_destroy(&p->port_by_name);
713
714 switch_status_destroy(p->switch_status);
715 in_band_destroy(p->in_band);
716 discovery_destroy(p->discovery);
717 fail_open_destroy(p->fail_open);
718 pinsched_destroy(p->miss_sched);
719 pinsched_destroy(p->action_sched);
720 executer_destroy(p->executer);
721 netflow_destroy(p->netflow);
722
723 switch_status_unregister(p->ss_cat);
724
725 for (i = 0; i < p->n_listeners; i++) {
726 pvconn_close(p->listeners[i]);
727 }
728 free(p->listeners);
729
730 for (i = 0; i < p->n_snoops; i++) {
731 pvconn_close(p->snoops[i]);
732 }
733 free(p->snoops);
734
735 mac_learning_destroy(p->ml);
736
737 free(p);
738 }
739
740 int
741 ofproto_run(struct ofproto *p)
742 {
743 int error = ofproto_run1(p);
744 if (!error) {
745 error = ofproto_run2(p, false);
746 }
747 return error;
748 }
749
750 static void
751 process_port_change(struct ofproto *ofproto, int error, char *devname)
752 {
753 if (error == ENOBUFS) {
754 reinit_ports(ofproto);
755 } else if (!error) {
756 update_port(ofproto, devname);
757 free(devname);
758 }
759 }
760
761 int
762 ofproto_run1(struct ofproto *p)
763 {
764 struct ofconn *ofconn, *next_ofconn;
765 char *devname;
766 int error;
767 int i;
768
769 for (i = 0; i < 50; i++) {
770 struct ofpbuf *buf;
771 int error;
772
773 error = dpif_recv(p->dpif, &buf);
774 if (error) {
775 if (error == ENODEV) {
776 /* Someone destroyed the datapath behind our back. The caller
777 * better destroy us and give up, because we're just going to
778 * spin from here on out. */
779 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
780 VLOG_ERR_RL(&rl, "%s: datapath was destroyed externally",
781 dpif_name(p->dpif));
782 return ENODEV;
783 }
784 break;
785 }
786
787 handle_odp_msg(p, buf);
788 }
789
790 while ((error = dpif_port_poll(p->dpif, &devname)) != EAGAIN) {
791 process_port_change(p, error, devname);
792 }
793 while ((error = netdev_monitor_poll(p->netdev_monitor,
794 &devname)) != EAGAIN) {
795 process_port_change(p, error, devname);
796 }
797
798 if (p->in_band) {
799 in_band_run(p->in_band);
800 }
801 if (p->discovery) {
802 char *controller_name;
803 if (rconn_is_connectivity_questionable(p->controller->rconn)) {
804 discovery_question_connectivity(p->discovery);
805 }
806 if (discovery_run(p->discovery, &controller_name)) {
807 if (controller_name) {
808 rconn_connect(p->controller->rconn, controller_name);
809 } else {
810 rconn_disconnect(p->controller->rconn);
811 }
812 }
813 }
814 pinsched_run(p->miss_sched, send_packet_in_miss, p);
815 pinsched_run(p->action_sched, send_packet_in_action, p);
816 if (p->executer) {
817 executer_run(p->executer);
818 }
819
820 LIST_FOR_EACH_SAFE (ofconn, next_ofconn, struct ofconn, node,
821 &p->all_conns) {
822 ofconn_run(ofconn, p);
823 }
824
825 /* Fail-open maintenance. Do this after processing the ofconns since
826 * fail-open checks the status of the controller rconn. */
827 if (p->fail_open) {
828 fail_open_run(p->fail_open);
829 }
830
831 for (i = 0; i < p->n_listeners; i++) {
832 struct vconn *vconn;
833 int retval;
834
835 retval = pvconn_accept(p->listeners[i], OFP_VERSION, &vconn);
836 if (!retval) {
837 ofconn_create(p, rconn_new_from_vconn("passive", vconn));
838 } else if (retval != EAGAIN) {
839 VLOG_WARN_RL(&rl, "accept failed (%s)", strerror(retval));
840 }
841 }
842
843 for (i = 0; i < p->n_snoops; i++) {
844 struct vconn *vconn;
845 int retval;
846
847 retval = pvconn_accept(p->snoops[i], OFP_VERSION, &vconn);
848 if (!retval) {
849 rconn_add_monitor(p->controller->rconn, vconn);
850 } else if (retval != EAGAIN) {
851 VLOG_WARN_RL(&rl, "accept failed (%s)", strerror(retval));
852 }
853 }
854
855 if (time_msec() >= p->next_expiration) {
856 COVERAGE_INC(ofproto_expiration);
857 p->next_expiration = time_msec() + 1000;
858 update_used(p);
859
860 classifier_for_each(&p->cls, CLS_INC_ALL, expire_rule, p);
861
862 /* Let the hook know that we're at a stable point: all outstanding data
863 * in existing flows has been accounted to the account_cb. Thus, the
864 * hook can now reasonably do operations that depend on having accurate
865 * flow volume accounting (currently, that's just bond rebalancing). */
866 if (p->ofhooks->account_checkpoint_cb) {
867 p->ofhooks->account_checkpoint_cb(p->aux);
868 }
869 }
870
871 if (p->netflow) {
872 netflow_run(p->netflow);
873 }
874
875 return 0;
876 }
877
878 struct revalidate_cbdata {
879 struct ofproto *ofproto;
880 bool revalidate_all; /* Revalidate all exact-match rules? */
881 bool revalidate_subrules; /* Revalidate all exact-match subrules? */
882 struct tag_set revalidate_set; /* Set of tags to revalidate. */
883 };
884
885 int
886 ofproto_run2(struct ofproto *p, bool revalidate_all)
887 {
888 if (p->need_revalidate || revalidate_all
889 || !tag_set_is_empty(&p->revalidate_set)) {
890 struct revalidate_cbdata cbdata;
891 cbdata.ofproto = p;
892 cbdata.revalidate_all = revalidate_all;
893 cbdata.revalidate_subrules = p->need_revalidate;
894 cbdata.revalidate_set = p->revalidate_set;
895 tag_set_init(&p->revalidate_set);
896 COVERAGE_INC(ofproto_revalidate);
897 classifier_for_each(&p->cls, CLS_INC_EXACT, revalidate_cb, &cbdata);
898 p->need_revalidate = false;
899 }
900
901 return 0;
902 }
903
904 void
905 ofproto_wait(struct ofproto *p)
906 {
907 struct ofconn *ofconn;
908 size_t i;
909
910 dpif_recv_wait(p->dpif);
911 dpif_port_poll_wait(p->dpif);
912 netdev_monitor_poll_wait(p->netdev_monitor);
913 LIST_FOR_EACH (ofconn, struct ofconn, node, &p->all_conns) {
914 ofconn_wait(ofconn);
915 }
916 if (p->in_band) {
917 in_band_wait(p->in_band);
918 }
919 if (p->discovery) {
920 discovery_wait(p->discovery);
921 }
922 if (p->fail_open) {
923 fail_open_wait(p->fail_open);
924 }
925 pinsched_wait(p->miss_sched);
926 pinsched_wait(p->action_sched);
927 if (p->executer) {
928 executer_wait(p->executer);
929 }
930 if (!tag_set_is_empty(&p->revalidate_set)) {
931 poll_immediate_wake();
932 }
933 if (p->need_revalidate) {
934 /* Shouldn't happen, but if it does just go around again. */
935 VLOG_DBG_RL(&rl, "need revalidate in ofproto_wait_cb()");
936 poll_immediate_wake();
937 } else if (p->next_expiration != LLONG_MAX) {
938 poll_timer_wait(p->next_expiration - time_msec());
939 }
940 for (i = 0; i < p->n_listeners; i++) {
941 pvconn_wait(p->listeners[i]);
942 }
943 for (i = 0; i < p->n_snoops; i++) {
944 pvconn_wait(p->snoops[i]);
945 }
946 }
947
948 void
949 ofproto_revalidate(struct ofproto *ofproto, tag_type tag)
950 {
951 tag_set_add(&ofproto->revalidate_set, tag);
952 }
953
954 struct tag_set *
955 ofproto_get_revalidate_set(struct ofproto *ofproto)
956 {
957 return &ofproto->revalidate_set;
958 }
959
960 bool
961 ofproto_is_alive(const struct ofproto *p)
962 {
963 return p->discovery || rconn_is_alive(p->controller->rconn);
964 }
965
966 int
967 ofproto_send_packet(struct ofproto *p, const flow_t *flow,
968 const union ofp_action *actions, size_t n_actions,
969 const struct ofpbuf *packet)
970 {
971 struct odp_actions odp_actions;
972 int error;
973
974 error = xlate_actions(actions, n_actions, flow, p, packet, &odp_actions,
975 NULL, NULL);
976 if (error) {
977 return error;
978 }
979
980 /* XXX Should we translate the dpif_execute() errno value into an OpenFlow
981 * error code? */
982 dpif_execute(p->dpif, flow->in_port, odp_actions.actions,
983 odp_actions.n_actions, packet);
984 return 0;
985 }
986
987 void
988 ofproto_add_flow(struct ofproto *p,
989 const flow_t *flow, uint32_t wildcards, unsigned int priority,
990 const union ofp_action *actions, size_t n_actions,
991 int idle_timeout)
992 {
993 struct rule *rule;
994 rule = rule_create(NULL, actions, n_actions,
995 idle_timeout >= 0 ? idle_timeout : 5 /* XXX */, 0);
996 cls_rule_from_flow(&rule->cr, flow, wildcards, priority);
997 rule_insert(p, rule, NULL, 0);
998 }
999
1000 void
1001 ofproto_delete_flow(struct ofproto *ofproto, const flow_t *flow,
1002 uint32_t wildcards, unsigned int priority)
1003 {
1004 struct rule *rule;
1005
1006 rule = rule_from_cls_rule(classifier_find_rule_exactly(&ofproto->cls,
1007 flow, wildcards,
1008 priority));
1009 if (rule) {
1010 rule_remove(ofproto, rule);
1011 }
1012 }
1013
1014 static void
1015 destroy_rule(struct cls_rule *rule_, void *ofproto_)
1016 {
1017 struct rule *rule = rule_from_cls_rule(rule_);
1018 struct ofproto *ofproto = ofproto_;
1019
1020 /* Mark the flow as not installed, even though it might really be
1021 * installed, so that rule_remove() doesn't bother trying to uninstall it.
1022 * There is no point in uninstalling it individually since we are about to
1023 * blow away all the flows with dpif_flow_flush(). */
1024 rule->installed = false;
1025
1026 rule_remove(ofproto, rule);
1027 }
1028
1029 void
1030 ofproto_flush_flows(struct ofproto *ofproto)
1031 {
1032 COVERAGE_INC(ofproto_flush);
1033 classifier_for_each(&ofproto->cls, CLS_INC_ALL, destroy_rule, ofproto);
1034 dpif_flow_flush(ofproto->dpif);
1035 if (ofproto->in_band) {
1036 in_band_flushed(ofproto->in_band);
1037 }
1038 if (ofproto->fail_open) {
1039 fail_open_flushed(ofproto->fail_open);
1040 }
1041 }
1042 \f
1043 static void
1044 reinit_ports(struct ofproto *p)
1045 {
1046 struct svec devnames;
1047 struct ofport *ofport;
1048 unsigned int port_no;
1049 struct odp_port *odp_ports;
1050 size_t n_odp_ports;
1051 size_t i;
1052
1053 svec_init(&devnames);
1054 PORT_ARRAY_FOR_EACH (ofport, &p->ports, port_no) {
1055 svec_add (&devnames, (char *) ofport->opp.name);
1056 }
1057 dpif_port_list(p->dpif, &odp_ports, &n_odp_ports);
1058 for (i = 0; i < n_odp_ports; i++) {
1059 svec_add (&devnames, odp_ports[i].devname);
1060 }
1061 free(odp_ports);
1062
1063 svec_sort_unique(&devnames);
1064 for (i = 0; i < devnames.n; i++) {
1065 update_port(p, devnames.names[i]);
1066 }
1067 svec_destroy(&devnames);
1068 }
1069
1070 static void
1071 refresh_port_group(struct ofproto *p, unsigned int group)
1072 {
1073 uint16_t *ports;
1074 size_t n_ports;
1075 struct ofport *port;
1076 unsigned int port_no;
1077
1078 assert(group == DP_GROUP_ALL || group == DP_GROUP_FLOOD);
1079
1080 ports = xmalloc(port_array_count(&p->ports) * sizeof *ports);
1081 n_ports = 0;
1082 PORT_ARRAY_FOR_EACH (port, &p->ports, port_no) {
1083 if (group == DP_GROUP_ALL || !(port->opp.config & OFPPC_NO_FLOOD)) {
1084 ports[n_ports++] = port_no;
1085 }
1086 }
1087 dpif_port_group_set(p->dpif, group, ports, n_ports);
1088 free(ports);
1089 }
1090
1091 static void
1092 refresh_port_groups(struct ofproto *p)
1093 {
1094 refresh_port_group(p, DP_GROUP_FLOOD);
1095 refresh_port_group(p, DP_GROUP_ALL);
1096 }
1097
1098 static struct ofport *
1099 make_ofport(const struct odp_port *odp_port)
1100 {
1101 enum netdev_flags flags;
1102 struct ofport *ofport;
1103 struct netdev *netdev;
1104 bool carrier;
1105 int error;
1106
1107 error = netdev_open(odp_port->devname, NETDEV_ETH_TYPE_NONE, &netdev);
1108 if (error) {
1109 VLOG_WARN_RL(&rl, "ignoring port %s (%"PRIu16") because netdev %s "
1110 "cannot be opened (%s)",
1111 odp_port->devname, odp_port->port,
1112 odp_port->devname, strerror(error));
1113 return NULL;
1114 }
1115
1116 ofport = xmalloc(sizeof *ofport);
1117 ofport->netdev = netdev;
1118 ofport->opp.port_no = odp_port_to_ofp_port(odp_port->port);
1119 netdev_get_etheraddr(netdev, ofport->opp.hw_addr);
1120 memcpy(ofport->opp.name, odp_port->devname,
1121 MIN(sizeof ofport->opp.name, sizeof odp_port->devname));
1122 ofport->opp.name[sizeof ofport->opp.name - 1] = '\0';
1123
1124 netdev_get_flags(netdev, &flags);
1125 ofport->opp.config = flags & NETDEV_UP ? 0 : OFPPC_PORT_DOWN;
1126
1127 netdev_get_carrier(netdev, &carrier);
1128 ofport->opp.state = carrier ? 0 : OFPPS_LINK_DOWN;
1129
1130 netdev_get_features(netdev,
1131 &ofport->opp.curr, &ofport->opp.advertised,
1132 &ofport->opp.supported, &ofport->opp.peer);
1133 return ofport;
1134 }
1135
1136 static bool
1137 ofport_conflicts(const struct ofproto *p, const struct odp_port *odp_port)
1138 {
1139 if (port_array_get(&p->ports, odp_port->port)) {
1140 VLOG_WARN_RL(&rl, "ignoring duplicate port %"PRIu16" in datapath",
1141 odp_port->port);
1142 return true;
1143 } else if (shash_find(&p->port_by_name, odp_port->devname)) {
1144 VLOG_WARN_RL(&rl, "ignoring duplicate device %s in datapath",
1145 odp_port->devname);
1146 return true;
1147 } else {
1148 return false;
1149 }
1150 }
1151
1152 static int
1153 ofport_equal(const struct ofport *a_, const struct ofport *b_)
1154 {
1155 const struct ofp_phy_port *a = &a_->opp;
1156 const struct ofp_phy_port *b = &b_->opp;
1157
1158 BUILD_ASSERT_DECL(sizeof *a == 48); /* Detect ofp_phy_port changes. */
1159 return (a->port_no == b->port_no
1160 && !memcmp(a->hw_addr, b->hw_addr, sizeof a->hw_addr)
1161 && !strcmp((char *) a->name, (char *) b->name)
1162 && a->state == b->state
1163 && a->config == b->config
1164 && a->curr == b->curr
1165 && a->advertised == b->advertised
1166 && a->supported == b->supported
1167 && a->peer == b->peer);
1168 }
1169
1170 static void
1171 send_port_status(struct ofproto *p, const struct ofport *ofport,
1172 uint8_t reason)
1173 {
1174 /* XXX Should limit the number of queued port status change messages. */
1175 struct ofconn *ofconn;
1176 LIST_FOR_EACH (ofconn, struct ofconn, node, &p->all_conns) {
1177 struct ofp_port_status *ops;
1178 struct ofpbuf *b;
1179
1180 ops = make_openflow_xid(sizeof *ops, OFPT_PORT_STATUS, 0, &b);
1181 ops->reason = reason;
1182 ops->desc = ofport->opp;
1183 hton_ofp_phy_port(&ops->desc);
1184 queue_tx(b, ofconn, NULL);
1185 }
1186 if (p->ofhooks->port_changed_cb) {
1187 p->ofhooks->port_changed_cb(reason, &ofport->opp, p->aux);
1188 }
1189 }
1190
1191 static void
1192 ofport_install(struct ofproto *p, struct ofport *ofport)
1193 {
1194 netdev_monitor_add(p->netdev_monitor, ofport->netdev);
1195 port_array_set(&p->ports, ofp_port_to_odp_port(ofport->opp.port_no),
1196 ofport);
1197 shash_add(&p->port_by_name, (char *) ofport->opp.name, ofport);
1198 }
1199
1200 static void
1201 ofport_remove(struct ofproto *p, struct ofport *ofport)
1202 {
1203 netdev_monitor_remove(p->netdev_monitor, ofport->netdev);
1204 port_array_set(&p->ports, ofp_port_to_odp_port(ofport->opp.port_no), NULL);
1205 shash_delete(&p->port_by_name,
1206 shash_find(&p->port_by_name, (char *) ofport->opp.name));
1207 }
1208
1209 static void
1210 ofport_free(struct ofport *ofport)
1211 {
1212 if (ofport) {
1213 netdev_close(ofport->netdev);
1214 free(ofport);
1215 }
1216 }
1217
1218 static void
1219 update_port(struct ofproto *p, const char *devname)
1220 {
1221 struct odp_port odp_port;
1222 struct ofport *old_ofport;
1223 struct ofport *new_ofport;
1224 int error;
1225
1226 COVERAGE_INC(ofproto_update_port);
1227
1228 /* Query the datapath for port information. */
1229 error = dpif_port_query_by_name(p->dpif, devname, &odp_port);
1230
1231 /* Find the old ofport. */
1232 old_ofport = shash_find_data(&p->port_by_name, devname);
1233 if (!error) {
1234 if (!old_ofport) {
1235 /* There's no port named 'devname' but there might be a port with
1236 * the same port number. This could happen if a port is deleted
1237 * and then a new one added in its place very quickly, or if a port
1238 * is renamed. In the former case we want to send an OFPPR_DELETE
1239 * and an OFPPR_ADD, and in the latter case we want to send a
1240 * single OFPPR_MODIFY. We can distinguish the cases by comparing
1241 * the old port's ifindex against the new port, or perhaps less
1242 * reliably but more portably by comparing the old port's MAC
1243 * against the new port's MAC. However, this code isn't that smart
1244 * and always sends an OFPPR_MODIFY (XXX). */
1245 old_ofport = port_array_get(&p->ports, odp_port.port);
1246 }
1247 } else if (error != ENOENT && error != ENODEV) {
1248 VLOG_WARN_RL(&rl, "dpif_port_query_by_name returned unexpected error "
1249 "%s", strerror(error));
1250 return;
1251 }
1252
1253 /* Create a new ofport. */
1254 new_ofport = !error ? make_ofport(&odp_port) : NULL;
1255
1256 /* Eliminate a few pathological cases. */
1257 if (!old_ofport && !new_ofport) {
1258 return;
1259 } else if (old_ofport && new_ofport) {
1260 /* Most of the 'config' bits are OpenFlow soft state, but
1261 * OFPPC_PORT_DOWN is maintained the kernel. So transfer the OpenFlow
1262 * bits from old_ofport. (make_ofport() only sets OFPPC_PORT_DOWN and
1263 * leaves the other bits 0.) */
1264 new_ofport->opp.config |= old_ofport->opp.config & ~OFPPC_PORT_DOWN;
1265
1266 if (ofport_equal(old_ofport, new_ofport)) {
1267 /* False alarm--no change. */
1268 ofport_free(new_ofport);
1269 return;
1270 }
1271 }
1272
1273 /* Now deal with the normal cases. */
1274 if (old_ofport) {
1275 ofport_remove(p, old_ofport);
1276 }
1277 if (new_ofport) {
1278 ofport_install(p, new_ofport);
1279 }
1280 send_port_status(p, new_ofport ? new_ofport : old_ofport,
1281 (!old_ofport ? OFPPR_ADD
1282 : !new_ofport ? OFPPR_DELETE
1283 : OFPPR_MODIFY));
1284 ofport_free(old_ofport);
1285
1286 /* Update port groups. */
1287 refresh_port_groups(p);
1288 }
1289
1290 static int
1291 init_ports(struct ofproto *p)
1292 {
1293 struct odp_port *ports;
1294 size_t n_ports;
1295 size_t i;
1296 int error;
1297
1298 error = dpif_port_list(p->dpif, &ports, &n_ports);
1299 if (error) {
1300 return error;
1301 }
1302
1303 for (i = 0; i < n_ports; i++) {
1304 const struct odp_port *odp_port = &ports[i];
1305 if (!ofport_conflicts(p, odp_port)) {
1306 struct ofport *ofport = make_ofport(odp_port);
1307 if (ofport) {
1308 ofport_install(p, ofport);
1309 }
1310 }
1311 }
1312 free(ports);
1313 refresh_port_groups(p);
1314 return 0;
1315 }
1316 \f
1317 static struct ofconn *
1318 ofconn_create(struct ofproto *p, struct rconn *rconn)
1319 {
1320 struct ofconn *ofconn = xmalloc(sizeof *ofconn);
1321 list_push_back(&p->all_conns, &ofconn->node);
1322 ofconn->rconn = rconn;
1323 ofconn->pktbuf = NULL;
1324 ofconn->send_flow_exp = false;
1325 ofconn->miss_send_len = 0;
1326 ofconn->packet_in_counter = rconn_packet_counter_create ();
1327 ofconn->reply_counter = rconn_packet_counter_create ();
1328 return ofconn;
1329 }
1330
1331 static void
1332 ofconn_destroy(struct ofconn *ofconn, struct ofproto *p)
1333 {
1334 if (p->executer) {
1335 executer_rconn_closing(p->executer, ofconn->rconn);
1336 }
1337
1338 list_remove(&ofconn->node);
1339 rconn_destroy(ofconn->rconn);
1340 rconn_packet_counter_destroy(ofconn->packet_in_counter);
1341 rconn_packet_counter_destroy(ofconn->reply_counter);
1342 pktbuf_destroy(ofconn->pktbuf);
1343 free(ofconn);
1344 }
1345
1346 static void
1347 ofconn_run(struct ofconn *ofconn, struct ofproto *p)
1348 {
1349 int iteration;
1350
1351 rconn_run(ofconn->rconn);
1352
1353 if (rconn_packet_counter_read (ofconn->reply_counter) < OFCONN_REPLY_MAX) {
1354 /* Limit the number of iterations to prevent other tasks from
1355 * starving. */
1356 for (iteration = 0; iteration < 50; iteration++) {
1357 struct ofpbuf *of_msg = rconn_recv(ofconn->rconn);
1358 if (!of_msg) {
1359 break;
1360 }
1361 if (p->fail_open) {
1362 fail_open_maybe_recover(p->fail_open);
1363 }
1364 handle_openflow(ofconn, p, of_msg);
1365 ofpbuf_delete(of_msg);
1366 }
1367 }
1368
1369 if (ofconn != p->controller && !rconn_is_alive(ofconn->rconn)) {
1370 ofconn_destroy(ofconn, p);
1371 }
1372 }
1373
1374 static void
1375 ofconn_wait(struct ofconn *ofconn)
1376 {
1377 rconn_run_wait(ofconn->rconn);
1378 if (rconn_packet_counter_read (ofconn->reply_counter) < OFCONN_REPLY_MAX) {
1379 rconn_recv_wait(ofconn->rconn);
1380 } else {
1381 COVERAGE_INC(ofproto_ofconn_stuck);
1382 }
1383 }
1384 \f
1385 /* Caller is responsible for initializing the 'cr' member of the returned
1386 * rule. */
1387 static struct rule *
1388 rule_create(struct rule *super,
1389 const union ofp_action *actions, size_t n_actions,
1390 uint16_t idle_timeout, uint16_t hard_timeout)
1391 {
1392 struct rule *rule = xcalloc(1, sizeof *rule);
1393 rule->idle_timeout = idle_timeout;
1394 rule->hard_timeout = hard_timeout;
1395 rule->used = rule->created = time_msec();
1396 rule->super = super;
1397 if (super) {
1398 list_push_back(&super->list, &rule->list);
1399 } else {
1400 list_init(&rule->list);
1401 }
1402 rule->n_actions = n_actions;
1403 rule->actions = xmemdup(actions, n_actions * sizeof *actions);
1404 return rule;
1405 }
1406
1407 static struct rule *
1408 rule_from_cls_rule(const struct cls_rule *cls_rule)
1409 {
1410 return cls_rule ? CONTAINER_OF(cls_rule, struct rule, cr) : NULL;
1411 }
1412
1413 static void
1414 rule_free(struct rule *rule)
1415 {
1416 free(rule->actions);
1417 free(rule->odp_actions);
1418 free(rule);
1419 }
1420
1421 /* Destroys 'rule'. If 'rule' is a subrule, also removes it from its
1422 * super-rule's list of subrules. If 'rule' is a super-rule, also iterates
1423 * through all of its subrules and revalidates them, destroying any that no
1424 * longer has a super-rule (which is probably all of them).
1425 *
1426 * Before calling this function, the caller must make have removed 'rule' from
1427 * the classifier. If 'rule' is an exact-match rule, the caller is also
1428 * responsible for ensuring that it has been uninstalled from the datapath. */
1429 static void
1430 rule_destroy(struct ofproto *ofproto, struct rule *rule)
1431 {
1432 if (!rule->super) {
1433 struct rule *subrule, *next;
1434 LIST_FOR_EACH_SAFE (subrule, next, struct rule, list, &rule->list) {
1435 revalidate_rule(ofproto, subrule);
1436 }
1437 } else {
1438 list_remove(&rule->list);
1439 }
1440 rule_free(rule);
1441 }
1442
1443 static bool
1444 rule_has_out_port(const struct rule *rule, uint16_t out_port)
1445 {
1446 const union ofp_action *oa;
1447 struct actions_iterator i;
1448
1449 if (out_port == htons(OFPP_NONE)) {
1450 return true;
1451 }
1452 for (oa = actions_first(&i, rule->actions, rule->n_actions); oa;
1453 oa = actions_next(&i)) {
1454 if (oa->type == htons(OFPAT_OUTPUT) && oa->output.port == out_port) {
1455 return true;
1456 }
1457 }
1458 return false;
1459 }
1460
1461 /* Executes the actions indicated by 'rule' on 'packet', which is in flow
1462 * 'flow' and is considered to have arrived on ODP port 'in_port'.
1463 *
1464 * The flow that 'packet' actually contains does not need to actually match
1465 * 'rule'; the actions in 'rule' will be applied to it either way. Likewise,
1466 * the packet and byte counters for 'rule' will be credited for the packet sent
1467 * out whether or not the packet actually matches 'rule'.
1468 *
1469 * If 'rule' is an exact-match rule and 'flow' actually equals the rule's flow,
1470 * the caller must already have accurately composed ODP actions for it given
1471 * 'packet' using rule_make_actions(). If 'rule' is a wildcard rule, or if
1472 * 'rule' is an exact-match rule but 'flow' is not the rule's flow, then this
1473 * function will compose a set of ODP actions based on 'rule''s OpenFlow
1474 * actions and apply them to 'packet'. */
1475 static void
1476 rule_execute(struct ofproto *ofproto, struct rule *rule,
1477 struct ofpbuf *packet, const flow_t *flow)
1478 {
1479 const union odp_action *actions;
1480 size_t n_actions;
1481 struct odp_actions a;
1482
1483 /* Grab or compose the ODP actions.
1484 *
1485 * The special case for an exact-match 'rule' where 'flow' is not the
1486 * rule's flow is important to avoid, e.g., sending a packet out its input
1487 * port simply because the ODP actions were composed for the wrong
1488 * scenario. */
1489 if (rule->cr.wc.wildcards || !flow_equal(flow, &rule->cr.flow)) {
1490 struct rule *super = rule->super ? rule->super : rule;
1491 if (xlate_actions(super->actions, super->n_actions, flow, ofproto,
1492 packet, &a, NULL, 0)) {
1493 return;
1494 }
1495 actions = a.actions;
1496 n_actions = a.n_actions;
1497 } else {
1498 actions = rule->odp_actions;
1499 n_actions = rule->n_odp_actions;
1500 }
1501
1502 /* Execute the ODP actions. */
1503 if (!dpif_execute(ofproto->dpif, flow->in_port,
1504 actions, n_actions, packet)) {
1505 struct odp_flow_stats stats;
1506 flow_extract_stats(flow, packet, &stats);
1507 update_stats(rule, &stats);
1508 rule->used = time_msec();
1509 }
1510 }
1511
1512 static void
1513 rule_insert(struct ofproto *p, struct rule *rule, struct ofpbuf *packet,
1514 uint16_t in_port)
1515 {
1516 struct rule *displaced_rule;
1517
1518 /* Insert the rule in the classifier. */
1519 displaced_rule = rule_from_cls_rule(classifier_insert(&p->cls, &rule->cr));
1520 if (!rule->cr.wc.wildcards) {
1521 rule_make_actions(p, rule, packet);
1522 }
1523
1524 /* Send the packet and credit it to the rule. */
1525 if (packet) {
1526 flow_t flow;
1527 flow_extract(packet, in_port, &flow);
1528 rule_execute(p, rule, packet, &flow);
1529 }
1530
1531 /* Install the rule in the datapath only after sending the packet, to
1532 * avoid packet reordering. */
1533 if (rule->cr.wc.wildcards) {
1534 COVERAGE_INC(ofproto_add_wc_flow);
1535 p->need_revalidate = true;
1536 } else {
1537 rule_install(p, rule, displaced_rule);
1538 }
1539
1540 /* Free the rule that was displaced, if any. */
1541 if (displaced_rule) {
1542 rule_destroy(p, displaced_rule);
1543 }
1544 }
1545
1546 static struct rule *
1547 rule_create_subrule(struct ofproto *ofproto, struct rule *rule,
1548 const flow_t *flow)
1549 {
1550 struct rule *subrule = rule_create(rule, NULL, 0,
1551 rule->idle_timeout, rule->hard_timeout);
1552 COVERAGE_INC(ofproto_subrule_create);
1553 cls_rule_from_flow(&subrule->cr, flow, 0,
1554 (rule->cr.priority <= UINT16_MAX ? UINT16_MAX
1555 : rule->cr.priority));
1556 classifier_insert_exact(&ofproto->cls, &subrule->cr);
1557
1558 return subrule;
1559 }
1560
1561 static void
1562 rule_remove(struct ofproto *ofproto, struct rule *rule)
1563 {
1564 if (rule->cr.wc.wildcards) {
1565 COVERAGE_INC(ofproto_del_wc_flow);
1566 ofproto->need_revalidate = true;
1567 } else {
1568 rule_uninstall(ofproto, rule);
1569 }
1570 classifier_remove(&ofproto->cls, &rule->cr);
1571 rule_destroy(ofproto, rule);
1572 }
1573
1574 /* Returns true if the actions changed, false otherwise. */
1575 static bool
1576 rule_make_actions(struct ofproto *p, struct rule *rule,
1577 const struct ofpbuf *packet)
1578 {
1579 const struct rule *super;
1580 struct odp_actions a;
1581 size_t actions_len;
1582
1583 assert(!rule->cr.wc.wildcards);
1584
1585 super = rule->super ? rule->super : rule;
1586 rule->tags = 0;
1587 xlate_actions(super->actions, super->n_actions, &rule->cr.flow, p,
1588 packet, &a, &rule->tags, &rule->may_install);
1589
1590 actions_len = a.n_actions * sizeof *a.actions;
1591 if (rule->n_odp_actions != a.n_actions
1592 || memcmp(rule->odp_actions, a.actions, actions_len)) {
1593 COVERAGE_INC(ofproto_odp_unchanged);
1594 free(rule->odp_actions);
1595 rule->n_odp_actions = a.n_actions;
1596 rule->odp_actions = xmemdup(a.actions, actions_len);
1597 return true;
1598 } else {
1599 return false;
1600 }
1601 }
1602
1603 static int
1604 do_put_flow(struct ofproto *ofproto, struct rule *rule, int flags,
1605 struct odp_flow_put *put)
1606 {
1607 memset(&put->flow.stats, 0, sizeof put->flow.stats);
1608 put->flow.key = rule->cr.flow;
1609 put->flow.actions = rule->odp_actions;
1610 put->flow.n_actions = rule->n_odp_actions;
1611 put->flags = flags;
1612 return dpif_flow_put(ofproto->dpif, put);
1613 }
1614
1615 static void
1616 rule_install(struct ofproto *p, struct rule *rule, struct rule *displaced_rule)
1617 {
1618 assert(!rule->cr.wc.wildcards);
1619
1620 if (rule->may_install) {
1621 struct odp_flow_put put;
1622 if (!do_put_flow(p, rule,
1623 ODPPF_CREATE | ODPPF_MODIFY | ODPPF_ZERO_STATS,
1624 &put)) {
1625 rule->installed = true;
1626 if (displaced_rule) {
1627 update_stats(rule, &put.flow.stats);
1628 rule_post_uninstall(p, displaced_rule);
1629 }
1630 }
1631 } else if (displaced_rule) {
1632 rule_uninstall(p, displaced_rule);
1633 }
1634 }
1635
1636 static void
1637 rule_reinstall(struct ofproto *ofproto, struct rule *rule)
1638 {
1639 if (rule->installed) {
1640 struct odp_flow_put put;
1641 COVERAGE_INC(ofproto_dp_missed);
1642 do_put_flow(ofproto, rule, ODPPF_CREATE | ODPPF_MODIFY, &put);
1643 } else {
1644 rule_install(ofproto, rule, NULL);
1645 }
1646 }
1647
1648 static void
1649 rule_update_actions(struct ofproto *ofproto, struct rule *rule)
1650 {
1651 bool actions_changed = rule_make_actions(ofproto, rule, NULL);
1652 if (rule->may_install) {
1653 if (rule->installed) {
1654 if (actions_changed) {
1655 /* XXX should really do rule_post_uninstall() for the *old* set
1656 * of actions, and distinguish the old stats from the new. */
1657 struct odp_flow_put put;
1658 do_put_flow(ofproto, rule, ODPPF_CREATE | ODPPF_MODIFY, &put);
1659 }
1660 } else {
1661 rule_install(ofproto, rule, NULL);
1662 }
1663 } else {
1664 rule_uninstall(ofproto, rule);
1665 }
1666 }
1667
1668 static void
1669 rule_account(struct ofproto *ofproto, struct rule *rule, uint64_t extra_bytes)
1670 {
1671 uint64_t total_bytes = rule->byte_count + extra_bytes;
1672
1673 if (ofproto->ofhooks->account_flow_cb
1674 && total_bytes > rule->accounted_bytes)
1675 {
1676 ofproto->ofhooks->account_flow_cb(
1677 &rule->cr.flow, rule->odp_actions, rule->n_odp_actions,
1678 total_bytes - rule->accounted_bytes, ofproto->aux);
1679 rule->accounted_bytes = total_bytes;
1680 }
1681 }
1682
1683 static void
1684 rule_uninstall(struct ofproto *p, struct rule *rule)
1685 {
1686 assert(!rule->cr.wc.wildcards);
1687 if (rule->installed) {
1688 struct odp_flow odp_flow;
1689
1690 odp_flow.key = rule->cr.flow;
1691 odp_flow.actions = NULL;
1692 odp_flow.n_actions = 0;
1693 if (!dpif_flow_del(p->dpif, &odp_flow)) {
1694 update_stats(rule, &odp_flow.stats);
1695 }
1696 rule->installed = false;
1697
1698 rule_post_uninstall(p, rule);
1699 }
1700 }
1701
1702 static void
1703 rule_post_uninstall(struct ofproto *ofproto, struct rule *rule)
1704 {
1705 struct rule *super = rule->super;
1706
1707 rule_account(ofproto, rule, 0);
1708 if (ofproto->netflow && rule->byte_count) {
1709 struct ofexpired expired;
1710 expired.flow = rule->cr.flow;
1711 expired.packet_count = rule->packet_count;
1712 expired.byte_count = rule->byte_count;
1713 expired.used = rule->used;
1714 expired.created = rule->created;
1715 expired.tcp_flags = rule->tcp_flags;
1716 expired.ip_tos = rule->ip_tos;
1717 netflow_expire(ofproto->netflow, &expired);
1718 }
1719 if (super) {
1720 super->packet_count += rule->packet_count;
1721 super->byte_count += rule->byte_count;
1722 super->tcp_flags |= rule->tcp_flags;
1723 if (rule->packet_count) {
1724 super->ip_tos = rule->ip_tos;
1725 }
1726 }
1727
1728 /* Reset counters to prevent double counting if the rule ever gets
1729 * reinstalled. */
1730 rule->packet_count = 0;
1731 rule->byte_count = 0;
1732 rule->accounted_bytes = 0;
1733 rule->tcp_flags = 0;
1734 rule->ip_tos = 0;
1735 }
1736 \f
1737 static void
1738 queue_tx(struct ofpbuf *msg, const struct ofconn *ofconn,
1739 struct rconn_packet_counter *counter)
1740 {
1741 update_openflow_length(msg);
1742 if (rconn_send(ofconn->rconn, msg, counter)) {
1743 ofpbuf_delete(msg);
1744 }
1745 }
1746
1747 static void
1748 send_error(const struct ofconn *ofconn, const struct ofp_header *oh,
1749 int error, const void *data, size_t len)
1750 {
1751 struct ofpbuf *buf;
1752 struct ofp_error_msg *oem;
1753
1754 if (!(error >> 16)) {
1755 VLOG_WARN_RL(&rl, "not sending bad error code %d to controller",
1756 error);
1757 return;
1758 }
1759
1760 COVERAGE_INC(ofproto_error);
1761 oem = make_openflow_xid(len + sizeof *oem, OFPT_ERROR,
1762 oh ? oh->xid : 0, &buf);
1763 oem->type = htons((unsigned int) error >> 16);
1764 oem->code = htons(error & 0xffff);
1765 memcpy(oem->data, data, len);
1766 queue_tx(buf, ofconn, ofconn->reply_counter);
1767 }
1768
1769 static void
1770 send_error_oh(const struct ofconn *ofconn, const struct ofp_header *oh,
1771 int error)
1772 {
1773 size_t oh_length = ntohs(oh->length);
1774 send_error(ofconn, oh, error, oh, MIN(oh_length, 64));
1775 }
1776
1777 static void
1778 hton_ofp_phy_port(struct ofp_phy_port *opp)
1779 {
1780 opp->port_no = htons(opp->port_no);
1781 opp->config = htonl(opp->config);
1782 opp->state = htonl(opp->state);
1783 opp->curr = htonl(opp->curr);
1784 opp->advertised = htonl(opp->advertised);
1785 opp->supported = htonl(opp->supported);
1786 opp->peer = htonl(opp->peer);
1787 }
1788
1789 static int
1790 handle_echo_request(struct ofconn *ofconn, struct ofp_header *oh)
1791 {
1792 struct ofp_header *rq = oh;
1793 queue_tx(make_echo_reply(rq), ofconn, ofconn->reply_counter);
1794 return 0;
1795 }
1796
1797 static int
1798 handle_features_request(struct ofproto *p, struct ofconn *ofconn,
1799 struct ofp_header *oh)
1800 {
1801 struct ofp_switch_features *osf;
1802 struct ofpbuf *buf;
1803 unsigned int port_no;
1804 struct ofport *port;
1805
1806 osf = make_openflow_xid(sizeof *osf, OFPT_FEATURES_REPLY, oh->xid, &buf);
1807 osf->datapath_id = htonll(p->datapath_id);
1808 osf->n_buffers = htonl(pktbuf_capacity());
1809 osf->n_tables = 2;
1810 osf->capabilities = htonl(OFPC_FLOW_STATS | OFPC_TABLE_STATS |
1811 OFPC_PORT_STATS | OFPC_MULTI_PHY_TX);
1812 osf->actions = htonl((1u << OFPAT_OUTPUT) |
1813 (1u << OFPAT_SET_VLAN_VID) |
1814 (1u << OFPAT_SET_VLAN_PCP) |
1815 (1u << OFPAT_STRIP_VLAN) |
1816 (1u << OFPAT_SET_DL_SRC) |
1817 (1u << OFPAT_SET_DL_DST) |
1818 (1u << OFPAT_SET_NW_SRC) |
1819 (1u << OFPAT_SET_NW_DST) |
1820 (1u << OFPAT_SET_TP_SRC) |
1821 (1u << OFPAT_SET_TP_DST));
1822
1823 PORT_ARRAY_FOR_EACH (port, &p->ports, port_no) {
1824 hton_ofp_phy_port(ofpbuf_put(buf, &port->opp, sizeof port->opp));
1825 }
1826
1827 queue_tx(buf, ofconn, ofconn->reply_counter);
1828 return 0;
1829 }
1830
1831 static int
1832 handle_get_config_request(struct ofproto *p, struct ofconn *ofconn,
1833 struct ofp_header *oh)
1834 {
1835 struct ofpbuf *buf;
1836 struct ofp_switch_config *osc;
1837 uint16_t flags;
1838 bool drop_frags;
1839
1840 /* Figure out flags. */
1841 dpif_get_drop_frags(p->dpif, &drop_frags);
1842 flags = drop_frags ? OFPC_FRAG_DROP : OFPC_FRAG_NORMAL;
1843 if (ofconn->send_flow_exp) {
1844 flags |= OFPC_SEND_FLOW_EXP;
1845 }
1846
1847 /* Send reply. */
1848 osc = make_openflow_xid(sizeof *osc, OFPT_GET_CONFIG_REPLY, oh->xid, &buf);
1849 osc->flags = htons(flags);
1850 osc->miss_send_len = htons(ofconn->miss_send_len);
1851 queue_tx(buf, ofconn, ofconn->reply_counter);
1852
1853 return 0;
1854 }
1855
1856 static int
1857 handle_set_config(struct ofproto *p, struct ofconn *ofconn,
1858 struct ofp_switch_config *osc)
1859 {
1860 uint16_t flags;
1861 int error;
1862
1863 error = check_ofp_message(&osc->header, OFPT_SET_CONFIG, sizeof *osc);
1864 if (error) {
1865 return error;
1866 }
1867 flags = ntohs(osc->flags);
1868
1869 ofconn->send_flow_exp = (flags & OFPC_SEND_FLOW_EXP) != 0;
1870
1871 if (ofconn == p->controller) {
1872 switch (flags & OFPC_FRAG_MASK) {
1873 case OFPC_FRAG_NORMAL:
1874 dpif_set_drop_frags(p->dpif, false);
1875 break;
1876 case OFPC_FRAG_DROP:
1877 dpif_set_drop_frags(p->dpif, true);
1878 break;
1879 default:
1880 VLOG_WARN_RL(&rl, "requested bad fragment mode (flags=%"PRIx16")",
1881 osc->flags);
1882 break;
1883 }
1884 }
1885
1886 if ((ntohs(osc->miss_send_len) != 0) != (ofconn->miss_send_len != 0)) {
1887 if (ntohs(osc->miss_send_len) != 0) {
1888 ofconn->pktbuf = pktbuf_create();
1889 } else {
1890 pktbuf_destroy(ofconn->pktbuf);
1891 }
1892 }
1893
1894 ofconn->miss_send_len = ntohs(osc->miss_send_len);
1895
1896 return 0;
1897 }
1898
1899 static void
1900 add_output_group_action(struct odp_actions *actions, uint16_t group)
1901 {
1902 odp_actions_add(actions, ODPAT_OUTPUT_GROUP)->output_group.group = group;
1903 }
1904
1905 static void
1906 add_controller_action(struct odp_actions *actions,
1907 const struct ofp_action_output *oao)
1908 {
1909 union odp_action *a = odp_actions_add(actions, ODPAT_CONTROLLER);
1910 a->controller.arg = oao->max_len ? ntohs(oao->max_len) : UINT32_MAX;
1911 }
1912
1913 struct action_xlate_ctx {
1914 /* Input. */
1915 const flow_t *flow; /* Flow to which these actions correspond. */
1916 int recurse; /* Recursion level, via xlate_table_action. */
1917 struct ofproto *ofproto;
1918 const struct ofpbuf *packet; /* The packet corresponding to 'flow', or a
1919 * null pointer if we are revalidating
1920 * without a packet to refer to. */
1921
1922 /* Output. */
1923 struct odp_actions *out; /* Datapath actions. */
1924 tag_type *tags; /* Tags associated with OFPP_NORMAL actions. */
1925 bool may_setup_flow; /* True ordinarily; false if the actions must
1926 * be reassessed for every packet. */
1927 };
1928
1929 static void do_xlate_actions(const union ofp_action *in, size_t n_in,
1930 struct action_xlate_ctx *ctx);
1931
1932 static void
1933 add_output_action(struct action_xlate_ctx *ctx, uint16_t port)
1934 {
1935 const struct ofport *ofport = port_array_get(&ctx->ofproto->ports, port);
1936
1937 if (ofport) {
1938 if (ofport->opp.config & OFPPC_NO_FWD) {
1939 /* Forwarding disabled on port. */
1940 return;
1941 }
1942 } else {
1943 /*
1944 * We don't have an ofport record for this port, but it doesn't hurt to
1945 * allow forwarding to it anyhow. Maybe such a port will appear later
1946 * and we're pre-populating the flow table.
1947 */
1948 }
1949
1950 odp_actions_add(ctx->out, ODPAT_OUTPUT)->output.port = port;
1951 }
1952
1953 static struct rule *
1954 lookup_valid_rule(struct ofproto *ofproto, const flow_t *flow)
1955 {
1956 struct rule *rule;
1957 rule = rule_from_cls_rule(classifier_lookup(&ofproto->cls, flow));
1958
1959 /* The rule we found might not be valid, since we could be in need of
1960 * revalidation. If it is not valid, don't return it. */
1961 if (rule
1962 && rule->super
1963 && ofproto->need_revalidate
1964 && !revalidate_rule(ofproto, rule)) {
1965 COVERAGE_INC(ofproto_invalidated);
1966 return NULL;
1967 }
1968
1969 return rule;
1970 }
1971
1972 static void
1973 xlate_table_action(struct action_xlate_ctx *ctx, uint16_t in_port)
1974 {
1975 if (!ctx->recurse) {
1976 struct rule *rule;
1977 flow_t flow;
1978
1979 flow = *ctx->flow;
1980 flow.in_port = in_port;
1981
1982 rule = lookup_valid_rule(ctx->ofproto, &flow);
1983 if (rule) {
1984 if (rule->super) {
1985 rule = rule->super;
1986 }
1987
1988 ctx->recurse++;
1989 do_xlate_actions(rule->actions, rule->n_actions, ctx);
1990 ctx->recurse--;
1991 }
1992 }
1993 }
1994
1995 static void
1996 xlate_output_action(struct action_xlate_ctx *ctx,
1997 const struct ofp_action_output *oao)
1998 {
1999 uint16_t odp_port;
2000
2001 switch (ntohs(oao->port)) {
2002 case OFPP_IN_PORT:
2003 add_output_action(ctx, ctx->flow->in_port);
2004 break;
2005 case OFPP_TABLE:
2006 xlate_table_action(ctx, ctx->flow->in_port);
2007 break;
2008 case OFPP_NORMAL:
2009 if (!ctx->ofproto->ofhooks->normal_cb(ctx->flow, ctx->packet,
2010 ctx->out, ctx->tags,
2011 ctx->ofproto->aux)) {
2012 COVERAGE_INC(ofproto_uninstallable);
2013 ctx->may_setup_flow = false;
2014 }
2015 break;
2016 case OFPP_FLOOD:
2017 add_output_group_action(ctx->out, DP_GROUP_FLOOD);
2018 break;
2019 case OFPP_ALL:
2020 add_output_group_action(ctx->out, DP_GROUP_ALL);
2021 break;
2022 case OFPP_CONTROLLER:
2023 add_controller_action(ctx->out, oao);
2024 break;
2025 case OFPP_LOCAL:
2026 add_output_action(ctx, ODPP_LOCAL);
2027 break;
2028 default:
2029 odp_port = ofp_port_to_odp_port(ntohs(oao->port));
2030 if (odp_port != ctx->flow->in_port) {
2031 add_output_action(ctx, odp_port);
2032 }
2033 break;
2034 }
2035 }
2036
2037 static void
2038 xlate_nicira_action(struct action_xlate_ctx *ctx,
2039 const struct nx_action_header *nah)
2040 {
2041 const struct nx_action_resubmit *nar;
2042 int subtype = ntohs(nah->subtype);
2043
2044 assert(nah->vendor == htonl(NX_VENDOR_ID));
2045 switch (subtype) {
2046 case NXAST_RESUBMIT:
2047 nar = (const struct nx_action_resubmit *) nah;
2048 xlate_table_action(ctx, ofp_port_to_odp_port(ntohs(nar->in_port)));
2049 break;
2050
2051 default:
2052 VLOG_DBG_RL(&rl, "unknown Nicira action type %"PRIu16, subtype);
2053 break;
2054 }
2055 }
2056
2057 static void
2058 do_xlate_actions(const union ofp_action *in, size_t n_in,
2059 struct action_xlate_ctx *ctx)
2060 {
2061 struct actions_iterator iter;
2062 const union ofp_action *ia;
2063 const struct ofport *port;
2064
2065 port = port_array_get(&ctx->ofproto->ports, ctx->flow->in_port);
2066 if (port && port->opp.config & (OFPPC_NO_RECV | OFPPC_NO_RECV_STP) &&
2067 port->opp.config & (eth_addr_equals(ctx->flow->dl_dst, stp_eth_addr)
2068 ? OFPPC_NO_RECV_STP : OFPPC_NO_RECV)) {
2069 /* Drop this flow. */
2070 return;
2071 }
2072
2073 for (ia = actions_first(&iter, in, n_in); ia; ia = actions_next(&iter)) {
2074 uint16_t type = ntohs(ia->type);
2075 union odp_action *oa;
2076
2077 switch (type) {
2078 case OFPAT_OUTPUT:
2079 xlate_output_action(ctx, &ia->output);
2080 break;
2081
2082 case OFPAT_SET_VLAN_VID:
2083 oa = odp_actions_add(ctx->out, ODPAT_SET_VLAN_VID);
2084 oa->vlan_vid.vlan_vid = ia->vlan_vid.vlan_vid;
2085 break;
2086
2087 case OFPAT_SET_VLAN_PCP:
2088 oa = odp_actions_add(ctx->out, ODPAT_SET_VLAN_PCP);
2089 oa->vlan_pcp.vlan_pcp = ia->vlan_pcp.vlan_pcp;
2090 break;
2091
2092 case OFPAT_STRIP_VLAN:
2093 odp_actions_add(ctx->out, ODPAT_STRIP_VLAN);
2094 break;
2095
2096 case OFPAT_SET_DL_SRC:
2097 oa = odp_actions_add(ctx->out, ODPAT_SET_DL_SRC);
2098 memcpy(oa->dl_addr.dl_addr,
2099 ((struct ofp_action_dl_addr *) ia)->dl_addr, ETH_ADDR_LEN);
2100 break;
2101
2102 case OFPAT_SET_DL_DST:
2103 oa = odp_actions_add(ctx->out, ODPAT_SET_DL_DST);
2104 memcpy(oa->dl_addr.dl_addr,
2105 ((struct ofp_action_dl_addr *) ia)->dl_addr, ETH_ADDR_LEN);
2106 break;
2107
2108 case OFPAT_SET_NW_SRC:
2109 oa = odp_actions_add(ctx->out, ODPAT_SET_NW_SRC);
2110 oa->nw_addr.nw_addr = ia->nw_addr.nw_addr;
2111 break;
2112
2113 case OFPAT_SET_TP_SRC:
2114 oa = odp_actions_add(ctx->out, ODPAT_SET_TP_SRC);
2115 oa->tp_port.tp_port = ia->tp_port.tp_port;
2116 break;
2117
2118 case OFPAT_VENDOR:
2119 xlate_nicira_action(ctx, (const struct nx_action_header *) ia);
2120 break;
2121
2122 default:
2123 VLOG_DBG_RL(&rl, "unknown action type %"PRIu16, type);
2124 break;
2125 }
2126 }
2127 }
2128
2129 static int
2130 xlate_actions(const union ofp_action *in, size_t n_in,
2131 const flow_t *flow, struct ofproto *ofproto,
2132 const struct ofpbuf *packet,
2133 struct odp_actions *out, tag_type *tags, bool *may_setup_flow)
2134 {
2135 tag_type no_tags = 0;
2136 struct action_xlate_ctx ctx;
2137 COVERAGE_INC(ofproto_ofp2odp);
2138 odp_actions_init(out);
2139 ctx.flow = flow;
2140 ctx.recurse = 0;
2141 ctx.ofproto = ofproto;
2142 ctx.packet = packet;
2143 ctx.out = out;
2144 ctx.tags = tags ? tags : &no_tags;
2145 ctx.may_setup_flow = true;
2146 do_xlate_actions(in, n_in, &ctx);
2147
2148 /* Check with in-band control to see if we're allowed to setup this
2149 * flow. */
2150 if (!in_band_rule_check(ofproto->in_band, flow, out)) {
2151 ctx.may_setup_flow = false;
2152 }
2153
2154 if (may_setup_flow) {
2155 *may_setup_flow = ctx.may_setup_flow;
2156 }
2157 if (odp_actions_overflow(out)) {
2158 odp_actions_init(out);
2159 return ofp_mkerr(OFPET_BAD_ACTION, OFPBAC_TOO_MANY);
2160 }
2161 return 0;
2162 }
2163
2164 static int
2165 handle_packet_out(struct ofproto *p, struct ofconn *ofconn,
2166 struct ofp_header *oh)
2167 {
2168 struct ofp_packet_out *opo;
2169 struct ofpbuf payload, *buffer;
2170 struct odp_actions actions;
2171 int n_actions;
2172 uint16_t in_port;
2173 flow_t flow;
2174 int error;
2175
2176 error = check_ofp_packet_out(oh, &payload, &n_actions, p->max_ports);
2177 if (error) {
2178 return error;
2179 }
2180 opo = (struct ofp_packet_out *) oh;
2181
2182 COVERAGE_INC(ofproto_packet_out);
2183 if (opo->buffer_id != htonl(UINT32_MAX)) {
2184 error = pktbuf_retrieve(ofconn->pktbuf, ntohl(opo->buffer_id),
2185 &buffer, &in_port);
2186 if (error || !buffer) {
2187 return error;
2188 }
2189 payload = *buffer;
2190 } else {
2191 buffer = NULL;
2192 }
2193
2194 flow_extract(&payload, ofp_port_to_odp_port(ntohs(opo->in_port)), &flow);
2195 error = xlate_actions((const union ofp_action *) opo->actions, n_actions,
2196 &flow, p, &payload, &actions, NULL, NULL);
2197 if (error) {
2198 return error;
2199 }
2200
2201 dpif_execute(p->dpif, flow.in_port, actions.actions, actions.n_actions,
2202 &payload);
2203 ofpbuf_delete(buffer);
2204
2205 return 0;
2206 }
2207
2208 static void
2209 update_port_config(struct ofproto *p, struct ofport *port,
2210 uint32_t config, uint32_t mask)
2211 {
2212 mask &= config ^ port->opp.config;
2213 if (mask & OFPPC_PORT_DOWN) {
2214 if (config & OFPPC_PORT_DOWN) {
2215 netdev_turn_flags_off(port->netdev, NETDEV_UP, true);
2216 } else {
2217 netdev_turn_flags_on(port->netdev, NETDEV_UP, true);
2218 }
2219 }
2220 #define REVALIDATE_BITS (OFPPC_NO_RECV | OFPPC_NO_RECV_STP | OFPPC_NO_FWD)
2221 if (mask & REVALIDATE_BITS) {
2222 COVERAGE_INC(ofproto_costly_flags);
2223 port->opp.config ^= mask & REVALIDATE_BITS;
2224 p->need_revalidate = true;
2225 }
2226 #undef REVALIDATE_BITS
2227 if (mask & OFPPC_NO_FLOOD) {
2228 port->opp.config ^= OFPPC_NO_FLOOD;
2229 refresh_port_group(p, DP_GROUP_FLOOD);
2230 }
2231 if (mask & OFPPC_NO_PACKET_IN) {
2232 port->opp.config ^= OFPPC_NO_PACKET_IN;
2233 }
2234 }
2235
2236 static int
2237 handle_port_mod(struct ofproto *p, struct ofp_header *oh)
2238 {
2239 const struct ofp_port_mod *opm;
2240 struct ofport *port;
2241 int error;
2242
2243 error = check_ofp_message(oh, OFPT_PORT_MOD, sizeof *opm);
2244 if (error) {
2245 return error;
2246 }
2247 opm = (struct ofp_port_mod *) oh;
2248
2249 port = port_array_get(&p->ports,
2250 ofp_port_to_odp_port(ntohs(opm->port_no)));
2251 if (!port) {
2252 return ofp_mkerr(OFPET_PORT_MOD_FAILED, OFPPMFC_BAD_PORT);
2253 } else if (memcmp(port->opp.hw_addr, opm->hw_addr, OFP_ETH_ALEN)) {
2254 return ofp_mkerr(OFPET_PORT_MOD_FAILED, OFPPMFC_BAD_HW_ADDR);
2255 } else {
2256 update_port_config(p, port, ntohl(opm->config), ntohl(opm->mask));
2257 if (opm->advertise) {
2258 netdev_set_advertisements(port->netdev, ntohl(opm->advertise));
2259 }
2260 }
2261 return 0;
2262 }
2263
2264 static struct ofpbuf *
2265 make_stats_reply(uint32_t xid, uint16_t type, size_t body_len)
2266 {
2267 struct ofp_stats_reply *osr;
2268 struct ofpbuf *msg;
2269
2270 msg = ofpbuf_new(MIN(sizeof *osr + body_len, UINT16_MAX));
2271 osr = put_openflow_xid(sizeof *osr, OFPT_STATS_REPLY, xid, msg);
2272 osr->type = type;
2273 osr->flags = htons(0);
2274 return msg;
2275 }
2276
2277 static struct ofpbuf *
2278 start_stats_reply(const struct ofp_stats_request *request, size_t body_len)
2279 {
2280 return make_stats_reply(request->header.xid, request->type, body_len);
2281 }
2282
2283 static void *
2284 append_stats_reply(size_t nbytes, struct ofconn *ofconn, struct ofpbuf **msgp)
2285 {
2286 struct ofpbuf *msg = *msgp;
2287 assert(nbytes <= UINT16_MAX - sizeof(struct ofp_stats_reply));
2288 if (nbytes + msg->size > UINT16_MAX) {
2289 struct ofp_stats_reply *reply = msg->data;
2290 reply->flags = htons(OFPSF_REPLY_MORE);
2291 *msgp = make_stats_reply(reply->header.xid, reply->type, nbytes);
2292 queue_tx(msg, ofconn, ofconn->reply_counter);
2293 }
2294 return ofpbuf_put_uninit(*msgp, nbytes);
2295 }
2296
2297 static int
2298 handle_desc_stats_request(struct ofproto *p, struct ofconn *ofconn,
2299 struct ofp_stats_request *request)
2300 {
2301 struct ofp_desc_stats *ods;
2302 struct ofpbuf *msg;
2303
2304 msg = start_stats_reply(request, sizeof *ods);
2305 ods = append_stats_reply(sizeof *ods, ofconn, &msg);
2306 strncpy(ods->mfr_desc, p->manufacturer, sizeof ods->mfr_desc);
2307 strncpy(ods->hw_desc, p->hardware, sizeof ods->hw_desc);
2308 strncpy(ods->sw_desc, p->software, sizeof ods->sw_desc);
2309 strncpy(ods->serial_num, p->serial, sizeof ods->serial_num);
2310 queue_tx(msg, ofconn, ofconn->reply_counter);
2311
2312 return 0;
2313 }
2314
2315 static void
2316 count_subrules(struct cls_rule *cls_rule, void *n_subrules_)
2317 {
2318 struct rule *rule = rule_from_cls_rule(cls_rule);
2319 int *n_subrules = n_subrules_;
2320
2321 if (rule->super) {
2322 (*n_subrules)++;
2323 }
2324 }
2325
2326 static int
2327 handle_table_stats_request(struct ofproto *p, struct ofconn *ofconn,
2328 struct ofp_stats_request *request)
2329 {
2330 struct ofp_table_stats *ots;
2331 struct ofpbuf *msg;
2332 struct odp_stats dpstats;
2333 int n_exact, n_subrules, n_wild;
2334
2335 msg = start_stats_reply(request, sizeof *ots * 2);
2336
2337 /* Count rules of various kinds. */
2338 n_subrules = 0;
2339 classifier_for_each(&p->cls, CLS_INC_EXACT, count_subrules, &n_subrules);
2340 n_exact = classifier_count_exact(&p->cls) - n_subrules;
2341 n_wild = classifier_count(&p->cls) - classifier_count_exact(&p->cls);
2342
2343 /* Hash table. */
2344 dpif_get_dp_stats(p->dpif, &dpstats);
2345 ots = append_stats_reply(sizeof *ots, ofconn, &msg);
2346 memset(ots, 0, sizeof *ots);
2347 ots->table_id = TABLEID_HASH;
2348 strcpy(ots->name, "hash");
2349 ots->wildcards = htonl(0);
2350 ots->max_entries = htonl(dpstats.max_capacity);
2351 ots->active_count = htonl(n_exact);
2352 ots->lookup_count = htonll(dpstats.n_frags + dpstats.n_hit +
2353 dpstats.n_missed);
2354 ots->matched_count = htonll(dpstats.n_hit); /* XXX */
2355
2356 /* Classifier table. */
2357 ots = append_stats_reply(sizeof *ots, ofconn, &msg);
2358 memset(ots, 0, sizeof *ots);
2359 ots->table_id = TABLEID_CLASSIFIER;
2360 strcpy(ots->name, "classifier");
2361 ots->wildcards = htonl(OFPFW_ALL);
2362 ots->max_entries = htonl(65536);
2363 ots->active_count = htonl(n_wild);
2364 ots->lookup_count = htonll(0); /* XXX */
2365 ots->matched_count = htonll(0); /* XXX */
2366
2367 queue_tx(msg, ofconn, ofconn->reply_counter);
2368 return 0;
2369 }
2370
2371 static int
2372 handle_port_stats_request(struct ofproto *p, struct ofconn *ofconn,
2373 struct ofp_stats_request *request)
2374 {
2375 struct ofp_port_stats *ops;
2376 struct ofpbuf *msg;
2377 struct ofport *port;
2378 unsigned int port_no;
2379
2380 msg = start_stats_reply(request, sizeof *ops * 16);
2381 PORT_ARRAY_FOR_EACH (port, &p->ports, port_no) {
2382 struct netdev_stats stats;
2383
2384 /* Intentionally ignore return value, since errors will set 'stats' to
2385 * all-1s, which is correct for OpenFlow, and netdev_get_stats() will
2386 * log errors. */
2387 netdev_get_stats(port->netdev, &stats);
2388
2389 ops = append_stats_reply(sizeof *ops, ofconn, &msg);
2390 ops->port_no = htons(odp_port_to_ofp_port(port_no));
2391 memset(ops->pad, 0, sizeof ops->pad);
2392 ops->rx_packets = htonll(stats.rx_packets);
2393 ops->tx_packets = htonll(stats.tx_packets);
2394 ops->rx_bytes = htonll(stats.rx_bytes);
2395 ops->tx_bytes = htonll(stats.tx_bytes);
2396 ops->rx_dropped = htonll(stats.rx_dropped);
2397 ops->tx_dropped = htonll(stats.tx_dropped);
2398 ops->rx_errors = htonll(stats.rx_errors);
2399 ops->tx_errors = htonll(stats.tx_errors);
2400 ops->rx_frame_err = htonll(stats.rx_frame_errors);
2401 ops->rx_over_err = htonll(stats.rx_over_errors);
2402 ops->rx_crc_err = htonll(stats.rx_crc_errors);
2403 ops->collisions = htonll(stats.collisions);
2404 }
2405
2406 queue_tx(msg, ofconn, ofconn->reply_counter);
2407 return 0;
2408 }
2409
2410 struct flow_stats_cbdata {
2411 struct ofproto *ofproto;
2412 struct ofconn *ofconn;
2413 uint16_t out_port;
2414 struct ofpbuf *msg;
2415 };
2416
2417 static void
2418 query_stats(struct ofproto *p, struct rule *rule,
2419 uint64_t *packet_countp, uint64_t *byte_countp)
2420 {
2421 uint64_t packet_count, byte_count;
2422 struct rule *subrule;
2423 struct odp_flow *odp_flows;
2424 size_t n_odp_flows;
2425
2426 n_odp_flows = rule->cr.wc.wildcards ? list_size(&rule->list) : 1;
2427 odp_flows = xcalloc(1, n_odp_flows * sizeof *odp_flows);
2428 if (rule->cr.wc.wildcards) {
2429 size_t i = 0;
2430 LIST_FOR_EACH (subrule, struct rule, list, &rule->list) {
2431 odp_flows[i++].key = subrule->cr.flow;
2432 }
2433 } else {
2434 odp_flows[0].key = rule->cr.flow;
2435 }
2436
2437 packet_count = rule->packet_count;
2438 byte_count = rule->byte_count;
2439 if (!dpif_flow_get_multiple(p->dpif, odp_flows, n_odp_flows)) {
2440 size_t i;
2441 for (i = 0; i < n_odp_flows; i++) {
2442 struct odp_flow *odp_flow = &odp_flows[i];
2443 packet_count += odp_flow->stats.n_packets;
2444 byte_count += odp_flow->stats.n_bytes;
2445 }
2446 }
2447 free(odp_flows);
2448
2449 *packet_countp = packet_count;
2450 *byte_countp = byte_count;
2451 }
2452
2453 static void
2454 flow_stats_cb(struct cls_rule *rule_, void *cbdata_)
2455 {
2456 struct rule *rule = rule_from_cls_rule(rule_);
2457 struct flow_stats_cbdata *cbdata = cbdata_;
2458 struct ofp_flow_stats *ofs;
2459 uint64_t packet_count, byte_count;
2460 size_t act_len, len;
2461
2462 if (rule_is_hidden(rule) || !rule_has_out_port(rule, cbdata->out_port)) {
2463 return;
2464 }
2465
2466 act_len = sizeof *rule->actions * rule->n_actions;
2467 len = offsetof(struct ofp_flow_stats, actions) + act_len;
2468
2469 query_stats(cbdata->ofproto, rule, &packet_count, &byte_count);
2470
2471 ofs = append_stats_reply(len, cbdata->ofconn, &cbdata->msg);
2472 ofs->length = htons(len);
2473 ofs->table_id = rule->cr.wc.wildcards ? TABLEID_CLASSIFIER : TABLEID_HASH;
2474 ofs->pad = 0;
2475 flow_to_match(&rule->cr.flow, rule->cr.wc.wildcards, &ofs->match);
2476 ofs->duration = htonl((time_msec() - rule->created) / 1000);
2477 ofs->priority = htons(rule->cr.priority);
2478 ofs->idle_timeout = htons(rule->idle_timeout);
2479 ofs->hard_timeout = htons(rule->hard_timeout);
2480 memset(ofs->pad2, 0, sizeof ofs->pad2);
2481 ofs->packet_count = htonll(packet_count);
2482 ofs->byte_count = htonll(byte_count);
2483 memcpy(ofs->actions, rule->actions, act_len);
2484 }
2485
2486 static int
2487 table_id_to_include(uint8_t table_id)
2488 {
2489 return (table_id == TABLEID_HASH ? CLS_INC_EXACT
2490 : table_id == TABLEID_CLASSIFIER ? CLS_INC_WILD
2491 : table_id == 0xff ? CLS_INC_ALL
2492 : 0);
2493 }
2494
2495 static int
2496 handle_flow_stats_request(struct ofproto *p, struct ofconn *ofconn,
2497 const struct ofp_stats_request *osr,
2498 size_t arg_size)
2499 {
2500 struct ofp_flow_stats_request *fsr;
2501 struct flow_stats_cbdata cbdata;
2502 struct cls_rule target;
2503
2504 if (arg_size != sizeof *fsr) {
2505 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LENGTH);
2506 }
2507 fsr = (struct ofp_flow_stats_request *) osr->body;
2508
2509 COVERAGE_INC(ofproto_flows_req);
2510 cbdata.ofproto = p;
2511 cbdata.ofconn = ofconn;
2512 cbdata.out_port = fsr->out_port;
2513 cbdata.msg = start_stats_reply(osr, 1024);
2514 cls_rule_from_match(&target, &fsr->match, 0);
2515 classifier_for_each_match(&p->cls, &target,
2516 table_id_to_include(fsr->table_id),
2517 flow_stats_cb, &cbdata);
2518 queue_tx(cbdata.msg, ofconn, ofconn->reply_counter);
2519 return 0;
2520 }
2521
2522 struct flow_stats_ds_cbdata {
2523 struct ofproto *ofproto;
2524 struct ds *results;
2525 };
2526
2527 static void
2528 flow_stats_ds_cb(struct cls_rule *rule_, void *cbdata_)
2529 {
2530 struct rule *rule = rule_from_cls_rule(rule_);
2531 struct flow_stats_ds_cbdata *cbdata = cbdata_;
2532 struct ds *results = cbdata->results;
2533 struct ofp_match match;
2534 uint64_t packet_count, byte_count;
2535 size_t act_len = sizeof *rule->actions * rule->n_actions;
2536
2537 /* Don't report on subrules. */
2538 if (rule->super != NULL) {
2539 return;
2540 }
2541
2542 query_stats(cbdata->ofproto, rule, &packet_count, &byte_count);
2543 flow_to_ovs_match(&rule->cr.flow, rule->cr.wc.wildcards, &match);
2544
2545 ds_put_format(results, "duration=%llds, ",
2546 (time_msec() - rule->created) / 1000);
2547 ds_put_format(results, "priority=%u, ", rule->cr.priority);
2548 ds_put_format(results, "n_packets=%"PRIu64", ", packet_count);
2549 ds_put_format(results, "n_bytes=%"PRIu64", ", byte_count);
2550 ofp_print_match(results, &match, true);
2551 ofp_print_actions(results, &rule->actions->header, act_len);
2552 ds_put_cstr(results, "\n");
2553 }
2554
2555 /* Adds a pretty-printed description of all flows to 'results', including
2556 * those marked hidden by secchan (e.g., by in-band control). */
2557 void
2558 ofproto_get_all_flows(struct ofproto *p, struct ds *results)
2559 {
2560 struct ofp_match match;
2561 struct cls_rule target;
2562 struct flow_stats_ds_cbdata cbdata;
2563
2564 memset(&match, 0, sizeof match);
2565 match.wildcards = htonl(OFPFW_ALL);
2566
2567 cbdata.ofproto = p;
2568 cbdata.results = results;
2569
2570 cls_rule_from_match(&target, &match, 0);
2571 classifier_for_each_match(&p->cls, &target, CLS_INC_ALL,
2572 flow_stats_ds_cb, &cbdata);
2573 }
2574
2575 struct aggregate_stats_cbdata {
2576 struct ofproto *ofproto;
2577 uint16_t out_port;
2578 uint64_t packet_count;
2579 uint64_t byte_count;
2580 uint32_t n_flows;
2581 };
2582
2583 static void
2584 aggregate_stats_cb(struct cls_rule *rule_, void *cbdata_)
2585 {
2586 struct rule *rule = rule_from_cls_rule(rule_);
2587 struct aggregate_stats_cbdata *cbdata = cbdata_;
2588 uint64_t packet_count, byte_count;
2589
2590 if (rule_is_hidden(rule) || !rule_has_out_port(rule, cbdata->out_port)) {
2591 return;
2592 }
2593
2594 query_stats(cbdata->ofproto, rule, &packet_count, &byte_count);
2595
2596 cbdata->packet_count += packet_count;
2597 cbdata->byte_count += byte_count;
2598 cbdata->n_flows++;
2599 }
2600
2601 static int
2602 handle_aggregate_stats_request(struct ofproto *p, struct ofconn *ofconn,
2603 const struct ofp_stats_request *osr,
2604 size_t arg_size)
2605 {
2606 struct ofp_aggregate_stats_request *asr;
2607 struct ofp_aggregate_stats_reply *reply;
2608 struct aggregate_stats_cbdata cbdata;
2609 struct cls_rule target;
2610 struct ofpbuf *msg;
2611
2612 if (arg_size != sizeof *asr) {
2613 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LENGTH);
2614 }
2615 asr = (struct ofp_aggregate_stats_request *) osr->body;
2616
2617 COVERAGE_INC(ofproto_agg_request);
2618 cbdata.ofproto = p;
2619 cbdata.out_port = asr->out_port;
2620 cbdata.packet_count = 0;
2621 cbdata.byte_count = 0;
2622 cbdata.n_flows = 0;
2623 cls_rule_from_match(&target, &asr->match, 0);
2624 classifier_for_each_match(&p->cls, &target,
2625 table_id_to_include(asr->table_id),
2626 aggregate_stats_cb, &cbdata);
2627
2628 msg = start_stats_reply(osr, sizeof *reply);
2629 reply = append_stats_reply(sizeof *reply, ofconn, &msg);
2630 reply->flow_count = htonl(cbdata.n_flows);
2631 reply->packet_count = htonll(cbdata.packet_count);
2632 reply->byte_count = htonll(cbdata.byte_count);
2633 queue_tx(msg, ofconn, ofconn->reply_counter);
2634 return 0;
2635 }
2636
2637 static int
2638 handle_stats_request(struct ofproto *p, struct ofconn *ofconn,
2639 struct ofp_header *oh)
2640 {
2641 struct ofp_stats_request *osr;
2642 size_t arg_size;
2643 int error;
2644
2645 error = check_ofp_message_array(oh, OFPT_STATS_REQUEST, sizeof *osr,
2646 1, &arg_size);
2647 if (error) {
2648 return error;
2649 }
2650 osr = (struct ofp_stats_request *) oh;
2651
2652 switch (ntohs(osr->type)) {
2653 case OFPST_DESC:
2654 return handle_desc_stats_request(p, ofconn, osr);
2655
2656 case OFPST_FLOW:
2657 return handle_flow_stats_request(p, ofconn, osr, arg_size);
2658
2659 case OFPST_AGGREGATE:
2660 return handle_aggregate_stats_request(p, ofconn, osr, arg_size);
2661
2662 case OFPST_TABLE:
2663 return handle_table_stats_request(p, ofconn, osr);
2664
2665 case OFPST_PORT:
2666 return handle_port_stats_request(p, ofconn, osr);
2667
2668 case OFPST_VENDOR:
2669 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_VENDOR);
2670
2671 default:
2672 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_STAT);
2673 }
2674 }
2675
2676 static long long int
2677 msec_from_nsec(uint64_t sec, uint32_t nsec)
2678 {
2679 return !sec ? 0 : sec * 1000 + nsec / 1000000;
2680 }
2681
2682 static void
2683 update_time(struct rule *rule, const struct odp_flow_stats *stats)
2684 {
2685 long long int used = msec_from_nsec(stats->used_sec, stats->used_nsec);
2686 if (used > rule->used) {
2687 rule->used = used;
2688 }
2689 }
2690
2691 static void
2692 update_stats(struct rule *rule, const struct odp_flow_stats *stats)
2693 {
2694 update_time(rule, stats);
2695 rule->packet_count += stats->n_packets;
2696 rule->byte_count += stats->n_bytes;
2697 rule->tcp_flags |= stats->tcp_flags;
2698 if (stats->n_packets) {
2699 rule->ip_tos = stats->ip_tos;
2700 }
2701 }
2702
2703 static int
2704 add_flow(struct ofproto *p, struct ofconn *ofconn,
2705 struct ofp_flow_mod *ofm, size_t n_actions)
2706 {
2707 struct ofpbuf *packet;
2708 struct rule *rule;
2709 uint16_t in_port;
2710 int error;
2711
2712 rule = rule_create(NULL, (const union ofp_action *) ofm->actions,
2713 n_actions, ntohs(ofm->idle_timeout),
2714 ntohs(ofm->hard_timeout));
2715 cls_rule_from_match(&rule->cr, &ofm->match, ntohs(ofm->priority));
2716
2717 packet = NULL;
2718 error = 0;
2719 if (ofm->buffer_id != htonl(UINT32_MAX)) {
2720 error = pktbuf_retrieve(ofconn->pktbuf, ntohl(ofm->buffer_id),
2721 &packet, &in_port);
2722 }
2723
2724 rule_insert(p, rule, packet, in_port);
2725 ofpbuf_delete(packet);
2726 return error;
2727 }
2728
2729 static int
2730 modify_flow(struct ofproto *p, const struct ofp_flow_mod *ofm,
2731 size_t n_actions, uint16_t command, struct rule *rule)
2732 {
2733 if (rule_is_hidden(rule)) {
2734 return 0;
2735 }
2736
2737 if (command == OFPFC_DELETE) {
2738 rule_remove(p, rule);
2739 } else {
2740 size_t actions_len = n_actions * sizeof *rule->actions;
2741
2742 if (n_actions == rule->n_actions
2743 && !memcmp(ofm->actions, rule->actions, actions_len))
2744 {
2745 return 0;
2746 }
2747
2748 free(rule->actions);
2749 rule->actions = xmemdup(ofm->actions, actions_len);
2750 rule->n_actions = n_actions;
2751
2752 if (rule->cr.wc.wildcards) {
2753 COVERAGE_INC(ofproto_mod_wc_flow);
2754 p->need_revalidate = true;
2755 } else {
2756 rule_update_actions(p, rule);
2757 }
2758 }
2759
2760 return 0;
2761 }
2762
2763 static int
2764 modify_flows_strict(struct ofproto *p, const struct ofp_flow_mod *ofm,
2765 size_t n_actions, uint16_t command)
2766 {
2767 struct rule *rule;
2768 uint32_t wildcards;
2769 flow_t flow;
2770
2771 flow_from_match(&flow, &wildcards, &ofm->match);
2772 rule = rule_from_cls_rule(classifier_find_rule_exactly(
2773 &p->cls, &flow, wildcards,
2774 ntohs(ofm->priority)));
2775
2776 if (rule) {
2777 if (command == OFPFC_DELETE
2778 && ofm->out_port != htons(OFPP_NONE)
2779 && !rule_has_out_port(rule, ofm->out_port)) {
2780 return 0;
2781 }
2782
2783 modify_flow(p, ofm, n_actions, command, rule);
2784 }
2785 return 0;
2786 }
2787
2788 struct modify_flows_cbdata {
2789 struct ofproto *ofproto;
2790 const struct ofp_flow_mod *ofm;
2791 uint16_t out_port;
2792 size_t n_actions;
2793 uint16_t command;
2794 };
2795
2796 static void
2797 modify_flows_cb(struct cls_rule *rule_, void *cbdata_)
2798 {
2799 struct rule *rule = rule_from_cls_rule(rule_);
2800 struct modify_flows_cbdata *cbdata = cbdata_;
2801
2802 if (cbdata->out_port != htons(OFPP_NONE)
2803 && !rule_has_out_port(rule, cbdata->out_port)) {
2804 return;
2805 }
2806
2807 modify_flow(cbdata->ofproto, cbdata->ofm, cbdata->n_actions,
2808 cbdata->command, rule);
2809 }
2810
2811 static int
2812 modify_flows_loose(struct ofproto *p, const struct ofp_flow_mod *ofm,
2813 size_t n_actions, uint16_t command)
2814 {
2815 struct modify_flows_cbdata cbdata;
2816 struct cls_rule target;
2817
2818 cbdata.ofproto = p;
2819 cbdata.ofm = ofm;
2820 cbdata.out_port = (command == OFPFC_DELETE ? ofm->out_port
2821 : htons(OFPP_NONE));
2822 cbdata.n_actions = n_actions;
2823 cbdata.command = command;
2824
2825 cls_rule_from_match(&target, &ofm->match, 0);
2826
2827 classifier_for_each_match(&p->cls, &target, CLS_INC_ALL,
2828 modify_flows_cb, &cbdata);
2829 return 0;
2830 }
2831
2832 static int
2833 handle_flow_mod(struct ofproto *p, struct ofconn *ofconn,
2834 struct ofp_flow_mod *ofm)
2835 {
2836 size_t n_actions;
2837 int error;
2838
2839 error = check_ofp_message_array(&ofm->header, OFPT_FLOW_MOD, sizeof *ofm,
2840 sizeof *ofm->actions, &n_actions);
2841 if (error) {
2842 return error;
2843 }
2844
2845 normalize_match(&ofm->match);
2846 if (!ofm->match.wildcards) {
2847 ofm->priority = htons(UINT16_MAX);
2848 }
2849
2850 error = validate_actions((const union ofp_action *) ofm->actions,
2851 n_actions, p->max_ports);
2852 if (error) {
2853 return error;
2854 }
2855
2856 switch (ntohs(ofm->command)) {
2857 case OFPFC_ADD:
2858 return add_flow(p, ofconn, ofm, n_actions);
2859
2860 case OFPFC_MODIFY:
2861 return modify_flows_loose(p, ofm, n_actions, OFPFC_MODIFY);
2862
2863 case OFPFC_MODIFY_STRICT:
2864 return modify_flows_strict(p, ofm, n_actions, OFPFC_MODIFY);
2865
2866 case OFPFC_DELETE:
2867 return modify_flows_loose(p, ofm, n_actions, OFPFC_DELETE);
2868
2869 case OFPFC_DELETE_STRICT:
2870 return modify_flows_strict(p, ofm, n_actions, OFPFC_DELETE);
2871
2872 default:
2873 return ofp_mkerr(OFPET_FLOW_MOD_FAILED, OFPFMFC_BAD_COMMAND);
2874 }
2875 }
2876
2877 static void
2878 send_capability_reply(struct ofproto *p, struct ofconn *ofconn, uint32_t xid)
2879 {
2880 struct ofmp_capability_reply *ocr;
2881 struct ofpbuf *b;
2882 char capabilities[] = "com.nicira.mgmt.manager=false\n";
2883
2884 ocr = make_openflow_xid(sizeof(*ocr), OFPT_VENDOR, xid, &b);
2885 ocr->header.header.vendor = htonl(NX_VENDOR_ID);
2886 ocr->header.header.subtype = htonl(NXT_MGMT);
2887 ocr->header.type = htons(OFMPT_CAPABILITY_REPLY);
2888
2889 ocr->format = htonl(OFMPCOF_SIMPLE);
2890 ocr->mgmt_id = htonll(p->mgmt_id);
2891
2892 ofpbuf_put(b, capabilities, strlen(capabilities));
2893
2894 queue_tx(b, ofconn, ofconn->reply_counter);
2895 }
2896
2897 static int
2898 handle_ofmp(struct ofproto *p, struct ofconn *ofconn,
2899 struct ofmp_header *ofmph)
2900 {
2901 size_t msg_len = ntohs(ofmph->header.header.length);
2902 if (msg_len < sizeof(*ofmph)) {
2903 VLOG_WARN_RL(&rl, "dropping short managment message: %d\n", msg_len);
2904 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LENGTH);
2905 }
2906
2907 if (ofmph->type == htons(OFMPT_CAPABILITY_REQUEST)) {
2908 struct ofmp_capability_request *ofmpcr;
2909
2910 if (msg_len < sizeof(struct ofmp_capability_request)) {
2911 VLOG_WARN_RL(&rl, "dropping short capability request: %d\n",
2912 msg_len);
2913 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LENGTH);
2914 }
2915
2916 ofmpcr = (struct ofmp_capability_request *)ofmph;
2917 if (ofmpcr->format != htonl(OFMPCAF_SIMPLE)) {
2918 /* xxx Find a better type than bad subtype */
2919 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_SUBTYPE);
2920 }
2921
2922 send_capability_reply(p, ofconn, ofmph->header.header.xid);
2923 return 0;
2924 } else {
2925 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_SUBTYPE);
2926 }
2927 }
2928
2929 static int
2930 handle_vendor(struct ofproto *p, struct ofconn *ofconn, void *msg)
2931 {
2932 struct ofp_vendor_header *ovh = msg;
2933 struct nicira_header *nh;
2934
2935 if (ntohs(ovh->header.length) < sizeof(struct ofp_vendor_header)) {
2936 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LENGTH);
2937 }
2938 if (ovh->vendor != htonl(NX_VENDOR_ID)) {
2939 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_VENDOR);
2940 }
2941 if (ntohs(ovh->header.length) < sizeof(struct nicira_header)) {
2942 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LENGTH);
2943 }
2944
2945 nh = msg;
2946 switch (ntohl(nh->subtype)) {
2947 case NXT_STATUS_REQUEST:
2948 return switch_status_handle_request(p->switch_status, ofconn->rconn,
2949 msg);
2950
2951 case NXT_ACT_SET_CONFIG:
2952 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_SUBTYPE); /* XXX */
2953
2954 case NXT_ACT_GET_CONFIG:
2955 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_SUBTYPE); /* XXX */
2956
2957 case NXT_COMMAND_REQUEST:
2958 if (p->executer) {
2959 return executer_handle_request(p->executer, ofconn->rconn, msg);
2960 }
2961 break;
2962
2963 case NXT_MGMT:
2964 return handle_ofmp(p, ofconn, msg);
2965 }
2966
2967 return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_SUBTYPE);
2968 }
2969
2970 static void
2971 handle_openflow(struct ofconn *ofconn, struct ofproto *p,
2972 struct ofpbuf *ofp_msg)
2973 {
2974 struct ofp_header *oh = ofp_msg->data;
2975 int error;
2976
2977 COVERAGE_INC(ofproto_recv_openflow);
2978 switch (oh->type) {
2979 case OFPT_ECHO_REQUEST:
2980 error = handle_echo_request(ofconn, oh);
2981 break;
2982
2983 case OFPT_ECHO_REPLY:
2984 error = 0;
2985 break;
2986
2987 case OFPT_FEATURES_REQUEST:
2988 error = handle_features_request(p, ofconn, oh);
2989 break;
2990
2991 case OFPT_GET_CONFIG_REQUEST:
2992 error = handle_get_config_request(p, ofconn, oh);
2993 break;
2994
2995 case OFPT_SET_CONFIG:
2996 error = handle_set_config(p, ofconn, ofp_msg->data);
2997 break;
2998
2999 case OFPT_PACKET_OUT:
3000 error = handle_packet_out(p, ofconn, ofp_msg->data);
3001 break;
3002
3003 case OFPT_PORT_MOD:
3004 error = handle_port_mod(p, oh);
3005 break;
3006
3007 case OFPT_FLOW_MOD:
3008 error = handle_flow_mod(p, ofconn, ofp_msg->data);
3009 break;
3010
3011 case OFPT_STATS_REQUEST:
3012 error = handle_stats_request(p, ofconn, oh);
3013 break;
3014
3015 case OFPT_VENDOR:
3016 error = handle_vendor(p, ofconn, ofp_msg->data);
3017 break;
3018
3019 default:
3020 if (VLOG_IS_WARN_ENABLED()) {
3021 char *s = ofp_to_string(oh, ntohs(oh->length), 2);
3022 VLOG_DBG_RL(&rl, "OpenFlow message ignored: %s", s);
3023 free(s);
3024 }
3025 error = ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_TYPE);
3026 break;
3027 }
3028
3029 if (error) {
3030 send_error_oh(ofconn, ofp_msg->data, error);
3031 }
3032 }
3033 \f
3034 static void
3035 handle_odp_msg(struct ofproto *p, struct ofpbuf *packet)
3036 {
3037 struct odp_msg *msg = packet->data;
3038 uint16_t in_port = odp_port_to_ofp_port(msg->port);
3039 struct rule *rule;
3040 struct ofpbuf payload;
3041 flow_t flow;
3042
3043 /* Handle controller actions. */
3044 if (msg->type == _ODPL_ACTION_NR) {
3045 COVERAGE_INC(ofproto_ctlr_action);
3046 pinsched_send(p->action_sched, in_port, packet,
3047 send_packet_in_action, p);
3048 return;
3049 }
3050
3051 payload.data = msg + 1;
3052 payload.size = msg->length - sizeof *msg;
3053 flow_extract(&payload, msg->port, &flow);
3054
3055 /* Check with in-band control to see if this packet should be sent
3056 * to the local port regardless of the flow table. */
3057 if (in_band_msg_in_hook(p->in_band, &flow, &payload)) {
3058 union odp_action action;
3059
3060 memset(&action, 0, sizeof(action));
3061 action.output.type = ODPAT_OUTPUT;
3062 action.output.port = ODPP_LOCAL;
3063 dpif_execute(p->dpif, flow.in_port, &action, 1, &payload);
3064 }
3065
3066 rule = lookup_valid_rule(p, &flow);
3067 if (!rule) {
3068 /* Don't send a packet-in if OFPPC_NO_PACKET_IN asserted. */
3069 struct ofport *port = port_array_get(&p->ports, msg->port);
3070 if (port) {
3071 if (port->opp.config & OFPPC_NO_PACKET_IN) {
3072 COVERAGE_INC(ofproto_no_packet_in);
3073 /* XXX install 'drop' flow entry */
3074 ofpbuf_delete(packet);
3075 return;
3076 }
3077 } else {
3078 VLOG_WARN_RL(&rl, "packet-in on unknown port %"PRIu16, msg->port);
3079 }
3080
3081 COVERAGE_INC(ofproto_packet_in);
3082 pinsched_send(p->miss_sched, in_port, packet, send_packet_in_miss, p);
3083 return;
3084 }
3085
3086 if (rule->cr.wc.wildcards) {
3087 rule = rule_create_subrule(p, rule, &flow);
3088 rule_make_actions(p, rule, packet);
3089 } else {
3090 if (!rule->may_install) {
3091 /* The rule is not installable, that is, we need to process every
3092 * packet, so process the current packet and set its actions into
3093 * 'subrule'. */
3094 rule_make_actions(p, rule, packet);
3095 } else {
3096 /* XXX revalidate rule if it needs it */
3097 }
3098 }
3099
3100 rule_execute(p, rule, &payload, &flow);
3101 rule_reinstall(p, rule);
3102
3103 if (rule->super && rule->super->cr.priority == FAIL_OPEN_PRIORITY
3104 && rconn_is_connected(p->controller->rconn)) {
3105 /*
3106 * Extra-special case for fail-open mode.
3107 *
3108 * We are in fail-open mode and the packet matched the fail-open rule,
3109 * but we are connected to a controller too. We should send the packet
3110 * up to the controller in the hope that it will try to set up a flow
3111 * and thereby allow us to exit fail-open.
3112 *
3113 * See the top-level comment in fail-open.c for more information.
3114 */
3115 pinsched_send(p->miss_sched, in_port, packet, send_packet_in_miss, p);
3116 } else {
3117 ofpbuf_delete(packet);
3118 }
3119 }
3120 \f
3121 static void
3122 revalidate_cb(struct cls_rule *sub_, void *cbdata_)
3123 {
3124 struct rule *sub = rule_from_cls_rule(sub_);
3125 struct revalidate_cbdata *cbdata = cbdata_;
3126
3127 if (cbdata->revalidate_all
3128 || (cbdata->revalidate_subrules && sub->super)
3129 || (tag_set_intersects(&cbdata->revalidate_set, sub->tags))) {
3130 revalidate_rule(cbdata->ofproto, sub);
3131 }
3132 }
3133
3134 static bool
3135 revalidate_rule(struct ofproto *p, struct rule *rule)
3136 {
3137 const flow_t *flow = &rule->cr.flow;
3138
3139 COVERAGE_INC(ofproto_revalidate_rule);
3140 if (rule->super) {
3141 struct rule *super;
3142 super = rule_from_cls_rule(classifier_lookup_wild(&p->cls, flow));
3143 if (!super) {
3144 rule_remove(p, rule);
3145 return false;
3146 } else if (super != rule->super) {
3147 COVERAGE_INC(ofproto_revalidate_moved);
3148 list_remove(&rule->list);
3149 list_push_back(&super->list, &rule->list);
3150 rule->super = super;
3151 rule->hard_timeout = super->hard_timeout;
3152 rule->idle_timeout = super->idle_timeout;
3153 rule->created = super->created;
3154 rule->used = 0;
3155 }
3156 }
3157
3158 rule_update_actions(p, rule);
3159 return true;
3160 }
3161
3162 static struct ofpbuf *
3163 compose_flow_exp(const struct rule *rule, long long int now, uint8_t reason)
3164 {
3165 struct ofp_flow_expired *ofe;
3166 struct ofpbuf *buf;
3167
3168 ofe = make_openflow(sizeof *ofe, OFPT_FLOW_EXPIRED, &buf);
3169 flow_to_match(&rule->cr.flow, rule->cr.wc.wildcards, &ofe->match);
3170 ofe->priority = htons(rule->cr.priority);
3171 ofe->reason = reason;
3172 ofe->duration = (now - rule->created) / 1000;
3173 ofe->packet_count = rule->packet_count;
3174 ofe->byte_count = rule->byte_count;
3175
3176 return buf;
3177 }
3178
3179 static void
3180 send_flow_exp(struct ofproto *p, struct rule *rule,
3181 long long int now, uint8_t reason)
3182 {
3183 struct ofconn *ofconn;
3184 struct ofconn *prev;
3185 struct ofpbuf *buf = NULL;
3186
3187 /* We limit the maximum number of queued flow expirations it by accounting
3188 * them under the counter for replies. That works because preventing
3189 * OpenFlow requests from being processed also prevents new flows from
3190 * being added (and expiring). (It also prevents processing OpenFlow
3191 * requests that would not add new flows, so it is imperfect.) */
3192
3193 prev = NULL;
3194 LIST_FOR_EACH (ofconn, struct ofconn, node, &p->all_conns) {
3195 if (ofconn->send_flow_exp && rconn_is_connected(ofconn->rconn)) {
3196 if (prev) {
3197 queue_tx(ofpbuf_clone(buf), prev, prev->reply_counter);
3198 } else {
3199 buf = compose_flow_exp(rule, now, reason);
3200 }
3201 prev = ofconn;
3202 }
3203 }
3204 if (prev) {
3205 queue_tx(buf, prev, prev->reply_counter);
3206 }
3207 }
3208
3209 static void
3210 uninstall_idle_flow(struct ofproto *ofproto, struct rule *rule)
3211 {
3212 assert(rule->installed);
3213 assert(!rule->cr.wc.wildcards);
3214
3215 if (rule->super) {
3216 rule_remove(ofproto, rule);
3217 } else {
3218 rule_uninstall(ofproto, rule);
3219 }
3220 }
3221
3222 static void
3223 expire_rule(struct cls_rule *cls_rule, void *p_)
3224 {
3225 struct ofproto *p = p_;
3226 struct rule *rule = rule_from_cls_rule(cls_rule);
3227 long long int hard_expire, idle_expire, expire, now;
3228
3229 hard_expire = (rule->hard_timeout
3230 ? rule->created + rule->hard_timeout * 1000
3231 : LLONG_MAX);
3232 idle_expire = (rule->idle_timeout
3233 && (rule->super || list_is_empty(&rule->list))
3234 ? rule->used + rule->idle_timeout * 1000
3235 : LLONG_MAX);
3236 expire = MIN(hard_expire, idle_expire);
3237 if (expire == LLONG_MAX) {
3238 if (rule->installed && time_msec() >= rule->used + 5000) {
3239 uninstall_idle_flow(p, rule);
3240 }
3241 return;
3242 }
3243
3244 now = time_msec();
3245 if (now < expire) {
3246 if (rule->installed && now >= rule->used + 5000) {
3247 uninstall_idle_flow(p, rule);
3248 }
3249 return;
3250 }
3251
3252 COVERAGE_INC(ofproto_expired);
3253 if (rule->cr.wc.wildcards) {
3254 /* Update stats. (This code will be a no-op if the rule expired
3255 * due to an idle timeout, because in that case the rule has no
3256 * subrules left.) */
3257 struct rule *subrule, *next;
3258 LIST_FOR_EACH_SAFE (subrule, next, struct rule, list, &rule->list) {
3259 rule_remove(p, subrule);
3260 }
3261 }
3262
3263 send_flow_exp(p, rule, now,
3264 (now >= hard_expire
3265 ? OFPER_HARD_TIMEOUT : OFPER_IDLE_TIMEOUT));
3266 rule_remove(p, rule);
3267 }
3268
3269 static void
3270 update_used(struct ofproto *p)
3271 {
3272 struct odp_flow *flows;
3273 size_t n_flows;
3274 size_t i;
3275 int error;
3276
3277 error = dpif_flow_list_all(p->dpif, &flows, &n_flows);
3278 if (error) {
3279 return;
3280 }
3281
3282 for (i = 0; i < n_flows; i++) {
3283 struct odp_flow *f = &flows[i];
3284 struct rule *rule;
3285
3286 rule = rule_from_cls_rule(
3287 classifier_find_rule_exactly(&p->cls, &f->key, 0, UINT16_MAX));
3288 if (!rule || !rule->installed) {
3289 COVERAGE_INC(ofproto_unexpected_rule);
3290 dpif_flow_del(p->dpif, f);
3291 continue;
3292 }
3293
3294 update_time(rule, &f->stats);
3295 rule_account(p, rule, f->stats.n_bytes);
3296 }
3297 free(flows);
3298 }
3299
3300 static void
3301 do_send_packet_in(struct ofconn *ofconn, uint32_t buffer_id,
3302 const struct ofpbuf *packet, int send_len)
3303 {
3304 struct odp_msg *msg = packet->data;
3305 struct ofpbuf payload;
3306 struct ofpbuf *opi;
3307 uint8_t reason;
3308
3309 /* Extract packet payload from 'msg'. */
3310 payload.data = msg + 1;
3311 payload.size = msg->length - sizeof *msg;
3312
3313 /* Construct ofp_packet_in message. */
3314 reason = msg->type == _ODPL_ACTION_NR ? OFPR_ACTION : OFPR_NO_MATCH;
3315 opi = make_packet_in(buffer_id, odp_port_to_ofp_port(msg->port), reason,
3316 &payload, send_len);
3317
3318 /* Send. */
3319 rconn_send_with_limit(ofconn->rconn, opi, ofconn->packet_in_counter, 100);
3320 }
3321
3322 static void
3323 send_packet_in_action(struct ofpbuf *packet, void *p_)
3324 {
3325 struct ofproto *p = p_;
3326 struct ofconn *ofconn;
3327 struct odp_msg *msg;
3328
3329 msg = packet->data;
3330 LIST_FOR_EACH (ofconn, struct ofconn, node, &p->all_conns) {
3331 if (ofconn == p->controller || ofconn->miss_send_len) {
3332 do_send_packet_in(ofconn, UINT32_MAX, packet, msg->arg);
3333 }
3334 }
3335 ofpbuf_delete(packet);
3336 }
3337
3338 static void
3339 send_packet_in_miss(struct ofpbuf *packet, void *p_)
3340 {
3341 struct ofproto *p = p_;
3342 bool in_fail_open = p->fail_open && fail_open_is_active(p->fail_open);
3343 struct ofconn *ofconn;
3344 struct ofpbuf payload;
3345 struct odp_msg *msg;
3346
3347 msg = packet->data;
3348 payload.data = msg + 1;
3349 payload.size = msg->length - sizeof *msg;
3350 LIST_FOR_EACH (ofconn, struct ofconn, node, &p->all_conns) {
3351 if (ofconn->miss_send_len) {
3352 struct pktbuf *pb = ofconn->pktbuf;
3353 uint32_t buffer_id = (in_fail_open
3354 ? pktbuf_get_null()
3355 : pktbuf_save(pb, &payload, msg->port));
3356 int send_len = (buffer_id != UINT32_MAX ? ofconn->miss_send_len
3357 : UINT32_MAX);
3358 do_send_packet_in(ofconn, buffer_id, packet, send_len);
3359 }
3360 }
3361 ofpbuf_delete(packet);
3362 }
3363
3364 static uint64_t
3365 pick_datapath_id(const struct ofproto *ofproto)
3366 {
3367 const struct ofport *port;
3368
3369 port = port_array_get(&ofproto->ports, ODPP_LOCAL);
3370 if (port) {
3371 uint8_t ea[ETH_ADDR_LEN];
3372 int error;
3373
3374 error = netdev_get_etheraddr(port->netdev, ea);
3375 if (!error) {
3376 return eth_addr_to_uint64(ea);
3377 }
3378 VLOG_WARN("could not get MAC address for %s (%s)",
3379 netdev_get_name(port->netdev), strerror(error));
3380 }
3381 return ofproto->fallback_dpid;
3382 }
3383
3384 static uint64_t
3385 pick_fallback_dpid(void)
3386 {
3387 uint8_t ea[ETH_ADDR_LEN];
3388 eth_addr_random(ea);
3389 ea[0] = 0x00; /* Set Nicira OUI. */
3390 ea[1] = 0x23;
3391 ea[2] = 0x20;
3392 return eth_addr_to_uint64(ea);
3393 }
3394 \f
3395 static bool
3396 default_normal_ofhook_cb(const flow_t *flow, const struct ofpbuf *packet,
3397 struct odp_actions *actions, tag_type *tags,
3398 void *ofproto_)
3399 {
3400 struct ofproto *ofproto = ofproto_;
3401 int out_port;
3402
3403 /* Drop frames for reserved multicast addresses. */
3404 if (eth_addr_is_reserved(flow->dl_dst)) {
3405 return true;
3406 }
3407
3408 /* Learn source MAC (but don't try to learn from revalidation). */
3409 if (packet != NULL) {
3410 tag_type rev_tag = mac_learning_learn(ofproto->ml, flow->dl_src,
3411 0, flow->in_port);
3412 if (rev_tag) {
3413 /* The log messages here could actually be useful in debugging,
3414 * so keep the rate limit relatively high. */
3415 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(30, 300);
3416 VLOG_DBG_RL(&rl, "learned that "ETH_ADDR_FMT" is on port %"PRIu16,
3417 ETH_ADDR_ARGS(flow->dl_src), flow->in_port);
3418 ofproto_revalidate(ofproto, rev_tag);
3419 }
3420 }
3421
3422 /* Determine output port. */
3423 out_port = mac_learning_lookup_tag(ofproto->ml, flow->dl_dst, 0, tags);
3424 if (out_port < 0) {
3425 add_output_group_action(actions, DP_GROUP_FLOOD);
3426 } else if (out_port != flow->in_port) {
3427 odp_actions_add(actions, ODPAT_OUTPUT)->output.port = out_port;
3428 } else {
3429 /* Drop. */
3430 }
3431
3432 return true;
3433 }
3434
3435 static const struct ofhooks default_ofhooks = {
3436 NULL,
3437 default_normal_ofhook_cb,
3438 NULL,
3439 NULL
3440 };